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Final Report for Project "Using Multicast 
Communication for Resource Finding in Distributed 

Systems" (CCR-8806358) 

PART II - SUMMARY OF COMPLETED PROJECT 

The goal of the project was to investigate distributed algorithms that can be used to find 
the locations of remote resources in a dynamic environment where resources can migrate 
between nodes. Such algorithms are necessary to allow sharing of resources between users 
of a distributed system. In studying the new and existing algorithms, not only the message 
cost of finding a resource was considered but the processing cost, which depends on the 
number of nodes that must participate in locating a resource, was also included. In bus 
based local area networks, a single broadcast message can reach all nodes but such a scheme 
has a very high processing overhead since all nodes need to process the request sent to find 
a resource. We have developed algorithms that use multicast communication and send the 
request to a small number of nodes. These algorithms provide significant savings in message 
and/or processing costs and have been applied to applications such as object invocation 

and load sharing. In store-and-forward networks, we have shown that very simple schemes 
that are easy to implement can have average message cost similar to several of the existing 
algorithms. Efficient schemes for implementing multicast communication have also been 
developed. Since several other problems in distributed systems can be modeled as instances 
of finding generalized resources, we also investigated how distributed mutual exclusion and 
replicated data management schemes can benefit from resource finding algorithms. 

PART III - TECHNICAL INFORMATION 

We have addressed the problem of resource finding in local area networks which provide 
support for multicast communication in the hardware and also in store-and-forward networks. 
The following is a brief summary of the results of research that was supported by award 
CCR-8806358. 

1. Using Multicast Communication for Resource Finding in Local Area Networks 

If a resource is found using a broadcast message, every node in the distributed system 
must receive the request message each time a location operation is performed. We have 
developed a method that can reduce this overhead [2]. In this method the universe of 
resource names is partitioned into a relatively small number of groups and each group 
is assigned a unique address. Nodes storing the location of a resource belonging to a 
particular group instruct their network interfaces to receive messages sent to the group 
address. A node attempting to find a resource first determines the address of the group 
to which the resource belongs. This is accomplished via a well known hash function. A 
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multicast message is then sent to that address. Using analytic and simulation models, 
we investigated the performance of the scheme. Our conclusion is that even when there 
is a large number of resources in the system which migrate frequently, the multicast 
scheme is very efficient as a small number of nodes participate in each resource finding 
operation. 

The multicast scheme sends a single location message (similar to broadcast) and hence 
the response time of the resource finding operation is small. It is possible to further 
reduce the number of nodes that need to handle request messages for finding a resource 
when increased response time is acceptable. We have investigated a generalized polling 
scheme [3] in which the request for a resource's location is successively sent to groups 
of nodes until the resource is located. In this case, the cost function is not only the 
number of nodes that process the request messages but also the time required to find 
the node where the resource resides, taking into account network contention and errors. 
Using a detailed network model, we have developed algorithms that can be used to 
partition the nodes in the system into multicast groups and determine the order in 
which the groups should be polled to minimize the cost. 

The multicast facilities of a local area network can also be exploited to implement 
load sharing which is also an instance of the resource finding problem since the logical 
resource to be found is the node with the least load. We present a scheme in [6] 
which associates nodes having similar workloads with common multicast groups. The 
membership of the groups changes dynamically as the load varies at the nodes. When 
a new task arrives, a sequence of requests may be sent as multicast messages; starting 
with the multicast group consisting of idle nodes. A node is chosen to execute the new 
task from the ones that respond to the first multicast request. If some node is idle, 
it is found in a single message. Using a simulation study we showed that this scheme 
achieves close to optimal load sharing by reducing the processing overhead. 

2. Resource Finding in Store-and-Forward Networks 

In [1], we model the process of searching for a resource in a distributed system whose 
nodes are connected through a store—and—forward network. In this work, our main 
goal was to understand the message cost of resource finding in such networks. Based 
on this model, we show lower and upper bounds on the number of messages necessary 
to find a resource when nothing is known about the location of the resource. Although 
similar bounds have been derived for other methods but they require nodes to main-
tain additional information (nodes must store addresses in the forwarding addresses 
method). 

The model is also used to establish results about the complexity of finding optimal 
algorithms to locate a resource when the probability distribution for the location of 
the resource in the network is known. We show that the optimization problem is NP-
hard for general networks. Finally we show an algorithm for tree networks which can 
be specialized to polynomial algorithms for special kinds of trees. (The polynomial 
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algorithms can be used as the basis of heuristic algorithms for general networks.) An 
application of this algorithm yields optimal search algorithms for bidirectional ring 
networks. 

3. Efficient Message Delivery to Dynamic Multicast Groups 

Dynamic multicast groups arise in many distributed applications. In particular, such 
groups can be used to reach a set of nodes that can locate a resource. We have 
addressed two separate problems in the area of message delivery to multicast groups 
[4,5]. First, to reduce the cost of message delivery to a group, we investigated the use 
of a spanning tree of the members of a multicast group. The problem of constructing 
a minimal spanning tree of the members of a multicast group which include only a 
subset of the nodes in the network is computationally intractable. In dynamic groups, 
the problem becomes more serious because the tree needs to be recomputed when 
the membership of the group changes. We developed two heuristic algorithms which 
update the tree incrementally as the membership changes. The goal is to reduce the 
total bandwidth required for sending data and control messages. The broadcast tree 
based algorithm makes use of a tree structure in the network, and the other algorithm 
joins a new member to the node that is nearest to it and is already in the multicast tree. 

A simulation model was used to study the performance of the algorithms. Although 
the cost of delivering data messages is higher in the proposed algorithms, they have 
lower overall cost when the group is dynamic and the cost of maintaining the trees is 
also included. 

We also investigated how reliable and ordered message delivery to dynamic multicast 
groups can be implemented. In point-to-point networks, we exploit the tree structure 
maintained for message delivery to ensure ordering. For local area networks, we devel-
oped an efficient protocol which makes use of the broadcast communication medium. 
The protocol ensures that not only members of a single group receive messages in the 
same order, but processes in different groups also receive common messages in the same 
order. 

4. Distributed Mutual Exclusion and Management of Replicated Data 

The resource finding problem is quite general and efficient algorithms for it can be 
used in several other problems in distributed systems. For example, in distributed 
mutual exclusion, the privilege that allows a node to enter the critical section (CS) 
can be considered a logical resource which migrates as nodes make requests to enter 
the CS. To obtain access to the CS, the requesting node has to find the current holder 
of the privilege or another node which can transfer the privilege to it. We studied 
a communication efficient distributed mutual exclusion algorithm [7] based on the 
forwarding addresses method that was developed for finding resources. We developed 
a formal model of the algorithm's execution, which enabled us to prove its correctness. 
The formal model is also used to show that an execution history of the algorithm when 
concurrent requests are made (the normal case) is equivalent to a history in which the 
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requests are made serially. Based on this fact we proved a logarithmic upper bound 
on the average number of messages needed per access to the critical section. 

In a replicated data system, the logical resource is the data which has copies at several 
nodes (this is done to increase the availability of the data). A transaction typically 
needs to locate a set of copies before it is allowed to access the data. Although the nodes 
where the copies are stored may be known, due to node failures and recoveries, the 
currently operational nodes with the data copies may not be known. In [10], multicast 
communication is used to find the set of nodes that can allow a transaction to read or 
update the data. The new protocol not only provides high data availability but also 
provides a high degree of load sharing between the nodes having copies of the data. We 
used a simulation model to demonstrate that the high degree of load sharing leads to 
significant improvement in transaction response time compared to existing replication 
management protocols. Our other work in this area has produced results that can be 
used to determine optimal vote and quorum assignments as well as a unified mechanism 
for modeling the operation of a general class of protocols [8,10,11,12,13]. We have also 
developed new schemes for building fault-tolerant distributed applications based on 
the replication of computations and checkpointing and rollback techniques [9,14,15]. 

In addition to the research discussed above, the award also supported our initial work 
in weakly consistent distributed shared memories [15,16,17]. These initial results were im-
portant in preparing a new proposal that has been funded by NSF this year. The dissertation 
work of several doctoral students was also partly supported by this award. Three of them 
have already completed their Ph.D. and two others are expected to complete in the next six 
months. 
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Summary 

One of the problems encountered in distributed systems is how to find the location of the 

resources needed by a computation. In many situations the location may have to be found 

at run time, when the resource is accessed, thus the efficiency of the location algorithm 

will affect the performance of the system. In general, the larger the distributed system, the 

more the number of processors at which a resource may reside at the time it is accessed. 

The general problem of resource location in distributed systems has not been addressed 

adequately, and most of the systems have adopted ad hoc solutions without a careful study 

of the performance of the algorithms used. In this thesis it is studied the problem of finding 

the location of resources in order to get a better understanding of the factors affecting the 

cost of a location algorithm. This study will make it possible to judge proposed algorithms 

as well as to come up with new ones, optimized for particular systems. 

Most distributed systems are based on bus networks that have broadcast and multicast 

capabilities. The thesis first describes an efficient location method that takes advantage 

of the multicast capabilities of these networks to reduce the computation cost of resource 

location finding. Performance results based on a simulation of the scheme are presented, 

showing that the method is a simple and efficient one. An approximate analysis is also 

presented, and it is shown that the analysis provides an extremely good approximation for 

low and high values of the load in the system. In another multicast scheme for broadcast 

networks, the thesis considers a system in which no references to resources are stored in the 

network except where the resource resides. Besides the CPU cost, response time costs are 

also considered, and a cost formula is found for the scheme. Based on this cost formula, 

an algorithm is presented to find an optimal sequence of multicast groups to be used in 

locating a resource. 



xiv 

The thesis then considers the communication costs incurred by location finding algo-

rithms in store—and—forward networks. A model of such system is first constructed and, 

based on this model, a worst case analysis is performed to obtain a lower bound on the 

number of messages needed to locate a resource when no information about the location 

of the resource is available at the node conducting the search. It is also shown that when 

the searcher node has the probability distribution indicating the location of the resource 

in the system, the problem of finding the optimal way to traverse the network has only a 

polynomial time algorithm for restricted classes of networks. 

The use of hint tables can reduce the cost of resource location when a resource is used 

repeatedly. The thesis presents a model of the usage of hint tables and shows how it affects 

the performance of finding the location of resources. 
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Summary 

This thesis considers the performance of synchronziation protocols based on quorum 

consensus in distributed systems. In these protocols, an operation can proceed if permission 

can be obtained from nodes that constitute a quorum group. The collection of all quorum 

groups is a quorum set. Voting can be used to define quorum sets and it is appealing because 

it is flexible and can be easily implemented. However, voting cannot be used to represent 

all quorum sets. 

We first study the problem of optimizing the system availability of quorum consensus 

methods and presents a direct method for finding the optimal quorum set for mutual ex-

clusion, and reading and writing of replicated data We show that the optimal system 

availability can be achieved by voting. 

The thesis then considers optimizing an arbitrary performance measure.. Changes in 

the quorum set cause performance changes in a discrete and highly complex manner, and 

a direct method is difficult to obtain. However, when the quorum set is given, the system 

behavior is fixed and the performance can then be computed with relative ease. The thesis 

presents an efficient algorithm for generating the universe of vote assignable quorum sets. 

The optimal voting parameter settings can be obtained by a search. 

The thesis next presents a non-voting based quorum consensus protocol, called the Grid 

Protocol, that has small quorum groups. An analysis shows that the data availability of 

this protocol can be as high as voting and simulation results show that transactions using 

the grid protocol can have lower response time than voting. 

Finally, the multi-dimensional voting concept is investigated where vote and quorum 

assignments are k-dimensional vectors of non-negative integers. Each dimension of the 



xi 

vote and quorum assignment is similar to voting and the quorum requirements in different 

dimensions can be combined in a number of ways. Multi-dimensional voting is as general 

as quorum sets but has the advantage that it is flexible and easy to implement. Several 

replica control protocols are implemented using multi-dimensional voting which illustrate 

the versatility of this technique. 
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Summary 

This dissertation presents checkpointing and rollback-recovery techniques for building fault 

tolerant distributed systems. Checkpoints are used to ensure that computations are able to 

make forward progress in the presence of failures, which is essential when computations are 

long running. The concept of locality is introduced, which is the objective of restricting a 

checkpoint or rollback operation to a single computation to contain the effects of failures. 

Since the number of failures increases as a system becomes larger, an uncontrolled propa-

gation of a rollback each time a failure occurs can impede forward progress when locality is 

not satisfied. In addition, we require that programmers be able to control the frequency of 

checkpoints in a computation, independent of other computations; thus, making it possible 

to provide different degrees of fault tolerance for individual computations. Algorithms that 

achieve locality are presented for distributed message based systems, distributed object 

based systems, and replicated computations. 

We first address locality with respect to distributed message based systems. When 

computations are deterministic, we develop a solution that is based on a combination of 

consistent and pessimistic checkpointing techniques. When computations may be non- . 

 deterministic, we show how the blocking required to enforce locality can be reduced to 

enhance concurrency. Next, we present checkpoint and rollback algorithms for distributed 

object based systems. By exploiting the structure of objects and operation invocations, 

we derive algorithms that involve fewer participants compared to when invocations are 

xv 



treated as messages and approaches from message based systems are used. These results 

are then extended to satisfy the locality of checkpoint and rollback operations in object 

based systems. Finally, we discuss how checkpointing can be integrated with replicated 

computations. We develop an approach that retains the attractive features from both 

checkpointing and replication while potentially reducing the cost of achieving fault tolerance. 

In many situations, a checkpointed replicated computation can potentially outperform a 

checkpointed non-replicated computation. 

xvi 
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Resource Finding in Store-and-Forward Networks* 

Jose M. Bernabeu—Aubdn 
Mustaque Ahamad 
Mostafa H. Ammar 

Abstract 

We present a model of searching for a resource in a distributed system whose nodes 

are connected through a store-and-forward network. Based on this model, we show 

a lower bound on the number of messages needed to find a resource when nothing is 

known about the nodes that have the current location of the resource. The model 

also helps us to establish results about the time complexity of determining a message 

optimal resource finding algorithm when the probability distribution for the location of 

the resource in the network is known. We show that the optimization problem is NP-

hard for general networks. Finally we show that optimal resource finding algorithms can 

be determined in polynomial time for a class of tree networks and bidirectional rings. 

The polynomial algorithms can be used as a basis of heuristic algorithms for general 

networks. 

This work was supported in part by NSF grants CCR -8806358 and NCR-8604850. 
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Using Multicast Communication to Locate Resources 
in a LAN-Based Distributed Systemt 

Mustaque Ahamad Mostafa H. Ammar Jose M. Bernabiu-Aubdn M. Yousef Khalidi 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, GA 30332 

system must also implement algorithms to update the informa-
tion stored by the name servers when resources are created or 
deleted or when they are migrated. To avoid this, the database 
can be distributed in such a way that a name server at a node 
maintains a list of only resources local to the node. In such a sys-
tem a remote resource can be located by broadcasting its name, 
and having the node where the resource is located respond. This 
scheme is used in Clouds [DLS85] for locating remote objects. 
Broadcast can also be used when other schemes fail to locate a 
resource. 

We are concerned with a distributed system that uses a 
broadcast bus local area network. In such an environment, all 
network interfaces receive every message carried on the bus. A 
particular message is delivered to the attached node only if it 
is sent to a destination address that the interface has been in-
structed to recognize. Such addresses will at least include the 
broadcast address and the node's own address. Thus, if a broad-
cast message is used to locate a resource, the message will be 
delivered to all the nodes in the distributed system. This in turn 
will cause all the nodes to search their local resource directories 
which represents a wastage of CPU time at all nodes except the 
one where the resource resides. 

In this paper, we explore the design of a distributed name 
server where multicast communication is used to locate the re-
quested resource. In such a system, a particular message sent to 
locate a resource will be delivered to only a subset of the nodes 
in the system. The availability of bus interface communications 
technology that supports multicast in the hardware provides the 
motivation for this work. Our goal is to design a location scheme 
that is simple from the point of view of a node that needs to find 
a resource but, at the same time, reduces the number of nodes 
that must participate in the location process. 

We associate a multicast address with each resource name 
and this address is used to communicate with the name server 
of the resource. Each node receives messages sent to multicast 
addresses corresponding to the resources whose locations are 
stored by the local name server. Typically, a limited number of 
multicast addresses will be available at each interface for use by 
the resource location operations. Since the number of resources 
in the distributed system can be large, the resource name to 
multicast address mapping is many-to-one. For such a system, 
we present the algorithms to be executed when a resource is cre-
ated, deleted or a request is made for finding its location. We 
also study the performance of the multicast scheme and compare 
it with broadcast. The cost measure used is the number of nodes 
that process messages sent for finding a resource or for updat- 

Abstract 

In this paper we present a resource (e.g., file, pro-
cess) location scheme which exploits the multicast 
communication capability of local area networks. In 
the scheme, the universe of resource names is parti-
tioned into a relatively small number of groups and 
each group is assigned a unique address. Nodes stor-
ing the locations of resources belonging to a particu-
lar group instruct their network interfaces to receive 
all location messages sent to the group address. To 
locate a resource, a node first determines the address 
of the group to which the resource belongs (this can 
be accomplished via a well-known hash function), 
and a multicast message is then sent to the address. 
The algorithm performance is studied by means of 
simulation, and approximate closed form solutions 
are derived for systems operating at heavy and low 
loads. The scheme's performance is compared with 
that of broadcast, and it is shown that the proposed 
scheme performs much better than broadcast alone. 

Introduction 

e advantages offered by distributed systems include resource 
tring, fault-tolerance and parallel execution of a computation. 
e programming of distributed systems is more complex than 
itralized ones due to the unavailability of the global state of 
system. For example, in a dynamic system where resources 

files, processes) can be migrated between nodes, a user 
st program an algorithm to find the current location of a re-
irce needed by his or her computation. This can be avoided if 
Ts are provided with the abstraction of a unified system where 
location of resources is transparent to them. Resources are 

srred to by names and, at runtime, the system determines the 
Tent location of a named resource. 

Many schemes have been proposed for finding the location 
named resource. Conceptually, there exists a database that 

res the associations between resource names and their loca-
us. This database can be partitioned and stored at one or 
re nodes that are called name servers. When a remote re-
Erce, R, needs to be accessed, the request for its location 
add be sent to a name server that stores R's location. The 

r This work has been 'partially supported by NSF grants CCR-8806358, 
R -860.1850, and CCR -8619886. 
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Abstract 

In this paper we present a protocol to locate (or find) 
named resources in a distributed system which uses the 
multicast capabilities of the underlying network. Each 
node in the network uses a sequence of node groups, and 
each node group is associated with a unique multicast ad-
dress. To locate a resource, the searching node sequentially 
polls each one of the groups until the resource is found. 
This scheme is a generalization of both pure polling and 
broadcast. Our basic aim is to show how to obtain an 
optimal division of the nodes into multicast groups. To 
that end, the protocol is analyzed and an efficient algo-
rithm is given that provides a group division minimizing 
the expected cost per location operation. 

Introduction 

Distributed systems offer many advantages over centralized ones, 
including fault—tolerance, resource sharing and increased paral-
lelism. The task of programming a distributed system, however, 
is more difficult because the global system state is not available. 
In particular, in systems where resources (e.g., files, processes) 
can be migrated between nodes, it would be necessary for the 
user to implement a procedure to find resources needed by the 
computation. To avoid this, the system must offer the users the 
abstraction of a unified system in which the location of resources 
is transparent to them. In such a system, the Operating System 
should implement an algorithm to find the location of a remote 
resource. When a resource may be used repeatedly at a node, 
caching its address locally [1,2,3,4], is a widely used technique for 
reducing the cost of determining the location of a resource. Since 
the cache information may be incorrect, the general problem of 
finding the resource still exists when caching is used. 

A widely used scheme to find resources involves the use of 
name servers [1,5]. In its simplest form, one of the nodes in the 
network is designated as the name server for the whole system. 
When a node needs to locate a resource, it directs a request to 
the name server. When a resource moves between nodes, an 
update message is sent to notify the name server. In a large sys- 

. tem, such a name server would become a bottleneck, degrading 
'the performance of the system. Also, the single name server ap-
.proach would be especially vulnerable to node failures. A more 

This work was supported in part by NSF grants NCR-8609850 and CCR-
8806358.  

general approach can distribute the name server task among sev-
eral nodes and, a particular name server usually takes care of 
only a part of the resource name space. The problem now is to 
decide which name server to contact to find the location of a re-
source. A resource's location may now be found by broadcasting 
(actually multicasting [6,7]) to all name servers requesting that 
they provide the resource's address. Another approach, used in 
the R" system [2], is to encode the name of the node where a re-
source was created in the resource's name. Then that node will 
function as the resource's name server. 

In the absence of name servers, a node wishing to determine 
the location of a resource, can send a broadcast message to all 
nodes and make them search their local directories. This is the 
approach taken in the Clouds operating system [8]. Broadcasting, 
though simple, would waste computational resources at every 
node, where it would compete with the local computations for 
CPU time. For large rates of location requests this would rapidly 
degrade the performance of the entire system. 

At the other extreme, if the individual nodes are polled se-
quentially, this would certainly decrease the amount of CPU time 
wasted in the system (especially if the nodes more likely to know 
about the resource were consulted first). However this approach 
would also increase the bandwidth utilization, because many mes-
sages will be sent. Since the messages are sent sequentially, the 
real disadvantage of this approach is that the location operations 
would take longer (larger response time). 

In this paper we present a location protocol which consid-
ers a cost measure that includes both the CPU utilization and 
the response time. The approach taken is based on a scheme in 
which the nodes in the network are divided into disjoint multi-
cast groups, and are polled by a sequence of multicast messages. 
The two approaches mentioned above are just special cases when 
all nodes are reached by a single message (broadcast) or when 
only one node is reached with each message (polling). We also 
present a cost model for the system and an efficient algorithm 
which, based on the probability distribution of a resource's loca-
tion among the nodes in the network, finds the optimal decom-
position into disjoint groups, as well as the optimal sequence in 
which the groups should be polled. 

In section 2 we give a description of the protocol operation. 
In section 3 we present the model of the system to be used for 
the cost analysis carried out in section 4. Section 5 describes 
an algorithm to determine an optimal multicast grouping. Some 
numerical examples are presented in section 6. In section 7 we 
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abstract 
Dynamic multicast groups arise in many distributed applications. 

A spanning tree of the members of a multicast group can be used to 
reduce the cost of message delivery to the members. The problem 
of constructing a minimal spanning tree of the members of a multi-
cast group which includes only a subset of the nodes in the network 
is computationally intractable. In dynamic groups, the problem be-
comes more serious because the tree needs to be recomputed when 
the membership of the group changes. We develop two heuristic algo-
rithms which update the tree incrementally as the membership changes 
and reduce the total bandwidth required for sending data and control 
messages. The broadcast tree based algorithm makes use of a tree 
structure in the network, and the other algorithm joins a new member 
to the node that is nearest to it and is already in the multicast tree. A 
simulation model is used to study the performance of the algorithms. 

1 Introduction 

Multicast communication allows a message to be addressed to 
any subset of nodes in a network. In many distributed applica-
tions, a set of nodes need to be queried or notified (e.g., name 
servers) when a certain event happens. A multicast facility can 
not only simplify the implementation of such applications but 
can also deliver the message to the destination nodes more effi-
ciently compared to when a separate copy of the message is sent 
to each destination node. We define a multicast group as a set 
of nodes to which a message needs to be delivered. Although 
a multicast group is sometimes defined by a set of processes, 
we consider the nodes where these processes execute because 
the cost of message delivery in this paper depends only on the 
nodes in.the group. 

The membership of a multicast group changes with time in 
many applications. For example, when data is replicated to en-
hance its availability, the nodes that store copies of a particular 
data item define a multicast group. When a node storing a copy 
fails, it can be deleted from the group, and other nodes can 
be added to the group to increase the availability of the data. 
In [2], a multicast based resource finding scheme is proposed in 
which the set of nodes that receive a message sent to a particular 
address changes as resources are created, deleted or migrated. 
Other distributed algorithms that can make use of multicast 
communication with dynamic membership include commit and 
checkpointing algorithms [14], and load balancing [17]. One of 
the emerging application of distributed systems is multimedia 
teleconferencing which naturally defines a dynamic cornmunica- 

Inns work was supported in part by NSF grant CCR-8806358.  

tion group since the set of participants varies with time. Thus, 
dynamic multicast groups arise both at the application level as 
well as in the operating system. 

A multicast message can be delivered by sending a copy of 
the message to each member of the group. However, this wastes 
bandwidth because multiple copies of a message may be sent 
over the same communication link. This can be avoided by con-
structing a spanning tree of the members of a multicast group 
and then delivering the message by forwarding copies of it along 
the edges of the tree. However, unlike a broadcast spanning tree 
[8,11], the problem of constructing a minimum multicast span-
ning tree is computationally intractable (NP-complete) since it 
is an instance of the steiner tree problem [12]. Thus, for large 
networks, construction of an optimal multicast tree is infeasible. 
When the membership of the group is dynamic, the problem 
becomes more serious because the tree needs to be recomputed 
each time a member deletes from the group or a new member is 
added to it. 

In this paper, we will investigate heuristics for constructing 
low cost multicast spanning trees in a dynamic environment. 
More precisely, we will present schemes that incrementally up-
date the multicast tree as the membership of the group changes. 
We will evaluate the performance of these algorithms by means 
of simulation and compare them with the best known heuristic 
algorithm developed by Wall [18] which computes the multicast 
tree structure for a given membership of the group. 

2 Related Work 
Wall [18] investigated techniques for organizing tree structures 
that can be used to efficiently deliver a multicast message to its 
destination nodes in a point-to-point network. He described a 
distributed algorithm which takes the set of nodes in the group 
as input and produces a low cost spanning tree that contains 
these nodes. In a later section, we will consider the details of this 
algorithm because it will be used to evaluate the effectiveness of 
the algorithms proposed in this paper. 

The problem of routing a message to multiple destinations 
has been addressed by many researchers. In [1], an extension to 
the DOD Internet protocol [16] is proposed which allows multiple 
destination addresses in a packet. At gateway nodes, the packet 
can be replicated and sent along different branches depending 
on the addresses contained in the packet header. In [9], many 
schemes have been explored for routing of multicast messages 
in an internetwork and extended LANs. The construction of a 
spanning tree for a multicast group in a bus-based hypercube 
is described in [15]. A performance study of several routing 
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Abstract 

Many distributed applications can be implemented efficiently using multi-

cast communication which allows a message to be sent to a group of processes. 

Dynamic process groups arise naturally in distributed environments. In such 

groups, processes can join or leave the group asynchronously. In this paper, 

we address the problem of ordered and reliable message delivery to dynamic 

multicast groups in distributed systems. We present an efficient protocol which 
makes use of the broadcast communication medium. The protocol ensures that 
not only members of a single group receive messages in the same order, but 

processes in different groups also receive common messages in the same order. 

We also discuss how the protocol can tolerate node and communication failures. 

*This work was supported in part by NSF grants CCR -8806358 and CCR-8619886. 
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Abstract 

In local area networks, a multicast message can be de-
livered to a subset of hosts in the network. Such a commu-
nication facility can be exploited to efficiently implement 
distributed applications. We propose a multicast based al-
gorithm for load balancing in a local computer network. 
The ability of a host to determine its membership to a 
multicast group based on its workload makes it possible 
to send a transfer request to only those hosts which have 
lower workload than the host that wants to transfer a task. 
This reduces the overhead of load balancing because a host 
does not waste computational resources when it cannot ac-
cept a task. We use a simulation model to investigate the 
performance of the multicast based algorithm and compare 
it to algorithms that use unicast (point-to-point) commu-
nication. 

1 Introduction 

Multicast communication allows a message to be ad-
dressed to any subset of hosts in a network. A multicast 
facility can not only simplify the implementation of many 
distributed applications but it can also exploit the capa-
bilities of current local area network (LAN) interfaces that 
provide hardware support for multicast address recognition 
[4,14 We define a multicast group associated with address 
m as the set of hosts that receive a message sent to m. 
Current network interfaces allow a host to join and delete 
from a multicast group by instructing its network inter-
face to start/stop accepting messages sent to a particular 
address. 

In a local computer network, many hosts (workstations) 
are frequently idle while others are heavily loaded. Load 
balancing can be used in such a system to allow the shar-
ing of computational resources by transparently distribut-
ing the system workload among the hosts in the network. 
The two main components of a load balancing algorithm 
are the transfer policy, which determines whether to pro-
cess a task locally or remotely, and the placement policy, 

*This work was supported in part by NSF grant CCFt-
8806358.  

which determines to which host a task selected for transfer 
should be sent. When these policies react to the system 
state they are called dynamic policies. Hosts need to ex-
change information about their workload for implementing 
dynamic load balancing. In this paper we investigate effi-
cient dynamic load balancing algorithms that use multicast 
communication to determine the host where an incoming 
task should be sent. 

The load balancing algorithm is based on a simple 
scheme in which the current workload at a host determines 
its membership to a particular multicast group. Hosts be- 
longing to a group have similar workloads. When a host 
h wants to explore if it is possible to transfer an incoming 
task, it queries hosts with lower workloads by sending mul- 
ticast messages to groups that correspond to loads lighter 
than the current workload of h. Thus, a host can com- 
municate with a group of hosts in a particular workload 
range without collecting information about the workload 
at various hosts. This is made possible by the ability of 
each host to change its membership based on its workload. 
Since multicast messages are sent to only groups corre- 
sponding to lower workloads, hosts with higher workload 
do not waste computational resources processing requests 
from hosts that have lower workload. This can significantly 
reduce the overhead of load balancing. Also, instead of 
probing a set of hosts to determine one with the lowest 
load, the algorithm only needs to send messages until the 
first response is received. Since each host can determine 
its membership to a group locally, no message overhead is 
incurred for maintaining the groups. 

In this paper, we present the details of a multicast based 
load balancing algorithm and show how it can be imple-
mented in a LAN. We study the performance of the algo-
rithm and compare it with other algorithms that have been 
proposed. In section 2, we describe the related work in the 
areas of multicast communication and load balancing. The 
system model is presented in section 3. We present the al-
gorithm in section 4 and address the performance issues in 
section 5. Concluding remarks are described in section 6. 
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Abstract 

In this paper we present a distributed algorithm for mutual exclusion. The algorithm 
maintains a dynamic forest structure in which the paths between nodes are compressed as 
a result of requesting the Critical Section. We develop a formal model of the algorithm's 
execution, which enables us to prove its correctnes. The formal model is also used to show 
that an execution history of the algorithm when concurrent requests are made (the ususal 
case) is equivalent to a history in which the requests are made serially. Based on this fact 
we are able to prove a logarithmic upper bound on the average number of messages needed 
per critical section grant. 

1 Introduction 

Distributed systems offer many advantages induding sharing of resources by processes executing 
at different nodes. In many applications, a process needs to obtain mutual exdusion before it 
can use a resource. We address the problem of designing an efficient distributed algorithm that 
can be used to achieve mutual exclusion in a distributed system. 

A number of distributed mutual exclusion algorithms have been proposed [1]. The operation 
of many of the algorithms can be characterized by an information structure [2] that defines a 
set of processes that must be informed before acquiring the Critical Section (CS), and another 
set must be informed when the process releases the CS. Examples of these algorithms indude 
[3,4,5,6,7,8]. The communication cost of all the algorithms except [5] is 0(N) where N is the 
number of nodes that share access to a resource. The algorithm described in [5] reduces the 
communication cost to 0(.1/71) by imposing a logical structure on the processes. 

Recently tree-based algorithms have been proposed for achieving mutual exclusion that re-
quire smaller number of messages [9,10,11]. However, in these algorithms some nodes need to 

'This work was supported in part by NSF grants CCR-8806358 and CCR-8619886. 



77:) 	cyf (,),z  
Ld-cr 	))-5.-vvl 5 , 

C/t1 / 	1.1 S 	c 7-3 	s e)11 

Multi-Dimensional Voting* 

Mustaque Ahamadt 

Mostafa H. Ammart 

Shun Yan Cheungt 

tCollege of Computing 

Georgia Institute of Technology, Atlanta, GA 30332 

tDepartment of Mathematics and Computer Science 

Emory University, Atlanta, GA 30322 

Abstract 

We introduce a new concept, multi-dimensional voting, in which the vote and quo-
rum assignments are k-dimensional vectors of non-negative integers and each dimension 
is independent of the others. Multi-dimensional voting is more powerful than traditional 
weighted voting because it is equivalent to the general method for achieving synchro-
nization in distributed systems which is based on sets of groups of nodes (quorum sets). 
We describe an efficient algorithm for finding a multi-dimensional vote assignment for 
any given quorum set and show examples of its use. We demonstrate the versatility 
of multi-dimensional voting by using it to implement mutual exclusion in fault-tolerant 
distributed systems, and protocols for synchronizing access to fully and partially repli-
cated data. These protocols cannot be implemented by traditional weighted voting. 
Also, the protocols based on multi-dimensional voting are easier to implement and/or 
provide greater flexibility than existing protocols for the same purpose. Finally, we 
present a generalization of the multi-dimensional voting scheme, called nested multi-
dimensional voting, that can facilitate implementation of replica control protocols that 
use structured quorum sets. 

This work was supported in part by NSF grants NCR-8604850 and CCR-8806358, and by the University 
Research Committee of Emory University. 
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Abstract. A distributed system can support fault-tolerant 
applications by replicating data and computation at 
nodes that have independent failure modes. We present 
a scheme called parallel execution threads (PET) which 
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LeBlanc is a member of the Association for Computing Machinery. 
the IEEE Computer Society and Sigma Xi. 

can be used to implement fault-tolerant computations 
in an object-based distributed system. In a system that 
replicates objects, the PET scheme can be used to repli-
cate a computation by creating a number of parallel 
threads which execute with different replicas of the in-
voked objects. A computation can be completed success-
fully if at least one thread does not encounter any failed 
nodes and its completion preserves the consistency of 
the objects. The PET scheme can tolerate failures that 
occur during the execution of the computation as long 
as all threads are not affected by the failures. We present 
the algorithms required to implement the PET scheme 
and also address some performance issues. 

Key words: Fault-tolerant computing — Atomicity — Dis-
tributed systems and replication 



	

Ct."p 4., ez. /- 	r rz 	I ../.-:',;I:'i-.' 	 - 1.,....coc, iii,1-1,;;; 

./.. 

	

..- ) --, _,,,-, , (2 ;,,,,,.... ", 	7" -!--Vl 	.--12-c-tA_,. (--; -41'-'‘.... 	i.C.(..! r S 10- ,A 

	

,..' 	, 

!,......t_ 	.--71..)._-, 	u' k, p,... ‘.. - 1- C.'".41Vii' .....--j 	(--.E.'. vt ..'. , 	e9--7l. 	3.1),-,.....4 ,I 

  

The Grid Protocol: A High Performance Scheme 

for Maintaining Replicated Data* 

Shun Yan Cheungt 

Mostafa H. Ammart 

Mustaque Ahamadt 

t Department of Mathematics and Computer Science 

Emory University, Atlanta, GA 30322 

tCollege of Computing 

Georgia Institute of Technology 

Atlanta, GA 30332 

Abstract 

We present a new protocol for maintaining replicated data that can provide both 

high data availability and low response time. In the protocol, the nodes are organized in 
a logical grid. Existing protocols are designed primarily to achieve high availability by 
updating a large fraction of the copies which provides some (although not significant) 

load sharing. In the new protocol, transaction processing is shared effectively among 

nodes storing copies of the data and both the response time experienced by transactions 

and the system throughput are improved significantly. We present an analysis of the 

availability of the new protocol and use simulation to study the effect of load sharing 

on the response time of transactions. We also compare the new protocol with a voting 
based scheme. 

This work was supported in part by NSF grants NCR-8604850 and CCR-8806358, and by the University 
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♦Abstract—In the weighted voting protocol which is used to maintain 

consistency of replicated data, the availability of the data to read 
write operations not only depends on the availability of the nodes 

ring the data but also on the vote and quorum assignments used. 
consider the problem of determining the vote and quorum assign-

lilts that yield the best performance in a distributed system where 

Ie availabilities can be different and the mix of the read and write 
gyrations is arbitrary. The optimal vote and quorum assignments de-

td only on the system parameters such as node availability and 

ration mix, but also on the performance measure. We present an 
1
imeration algorithm that can be used to find the vote and quorum 
'ignments that need to be considered for achieving optimal perfor-
nce. When the performance measure is data availability, an analyt-

method is derived to evaluate it for any vote and quorum assign- 
1
rit. This method and the enumeration algorithm are used to find the 
finial vote and quorum assignment for several systems. The enu-
ration algorithm can also be used to obtain the optimal performance 
m other measures are considered. 

Mdex Terms—Availability, data replication, fault tolerance, replica 

trol methods, vote and quorum assignment, weighted voting. 

I. INTRODUCTION 

DISTRIBUTED system consists of a number of po-
Iktentially unreliable nodes interconnected via a corn-
nication subnetwork. The resources stored at the nodes 
be shared and when a node fails, the resources stored 

he node become unavailable. Replicating resources at 
'erent nodes with independent failure modes can en-
ce availability and fault tolerance, since a resource 
Id be available even when some nodes have failed. 
en data are replicated, care must be taken to preserve 
sistency among the various copies or replicas. In ad-
on to increased availability, replication can also pro-

improved performance of read transactions by reduc- 
the network communication cost since these 

sactions can access the data from the local replica. 
large number of replica control protocols have been 

eloped to maintain the consistency of replicated data 
In this paper, we address the issue of optimization for 

sting-based replica control protocol by deriving a gen-
method for finding the optimal settings for the param-
s of the protocol. We consider the voting mechanism 
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because it has proven to be flexible and relatively easy to 
implement. 

Voting has been used for various applications in dis-
tributed systems. In [2], Gifford proposed its use for syn-
chronizing read and write operations on replicated files. 
Each file replica is assigned some number of votes and 
each operation is required to obtain a predefined quorum 
of votes to proceed. To ensure that a read operation re-
turns the value installed by the last write operation, the 
read and write operations must acquire r and w number of 
votes, respectively, such that r + w > L, where L is the 
total number of votes assigned to all replicas. The values 
r and w are called the read and write quorum. Generally, 
r + w = L + 1 is used which ensures that each read 
quorum has a nonempty intersection with each write quo-
rum. Since all replicas need not be updated when a write 
operation completes, timestamps or version numbers must 
be used in order to determine the value that is written most 
recently. When version numbers are used, each write quo-
rum must also intersect with every other write quorum, 
i.e., 2w > L [2] . 

A number of replica control protocols have been de-
rived from weighted voting. Eager and Sevcik introduced 
a dynamic scheme based on voting that allows the system 
to switch between normal and failure modes [3] (which 
have different values for read and write quorums). The 
system can also change the quorum assignment in the 
schemes presented in [4]-[6] and the vote assignment can 
be changed in the scheme described in [7]. Other proto-
cols based on voting are presented in [8]-[10]. 

The problem of assigning votes to achieve mutual ex-
clusion is addressed by Garcia-Molina and Barbara in 
[11]. When the quorum for each operation is a majority 
of all votes assigned, each operation will have mutually 
exclusive access to the data. In general, mutual exclusion 
can be guaranteed by defining a set of groups of nodes 
[12], called a coterie, such that any two groups in a co-
terie have a nonempty intersection. When voting is used, 
the groups of nodes that have a majority of the votes con-
stitute a coterie (there exist coteries that cannot be ob-
tained from any vote assignment [11]). In [11], it is shown 
that only a finite set of vote assignments need to be con-
sidered to get all coteries that can be obtained from vote 
assignments. Thus, it is not necessary to deal with the 
unbounded set of possible vote assignments. In another 
work, the same authors have considered the problem of 
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Abstract 
We present in this paper a summary of the results of 

our research in replica control protocols that are based on 
quorum consensus. In quorum consensus methods, oper-
ations are required to obtain permission from a quorum 
group of nodes to proceed to completion and the collection 
of quorum groups is called a quorum set. In the summary 
we present the techniques that we have developed for find-
ing the quorum set that maximizes a given performance 
measure. We also present a brief discussion of the optimal-
ity of voting, a replica control protocol that can effectively 
reduce response time through load sharing, and the multi- 
dimensional voting (MD) technique, that can be used to 
define all quorum sets. An MD-voting based implementa-
tion of a dynamic quorum consensus protocol that allows 
the synchronization procedure to adapt to the current state 
of the system is also presented. 

1 Introduction 

Distributed systems offer many advantages including fault-
, tolerance which can be achieved by replicating resources at 
( nodes with independent failure modes. When data (e.g., 
files) is replicated, algorithms must be used to maintain the 
consistency of the copies or replicas of the data. Such al-
gorithms, called replica control protocols, implement rules 
for accessing the replicas to ensure correctness (e.g., single-
copy serializability). A large number of replica control pro-
tocols have been proposed in the literature. These include 

(voting, available copies, primary copy and many others. 
The main focus of these protocols has been to enhance 
availability by tolerating as many node and communica-
tion failures as possible. Availability can be defined as the 
Liteady state probability that a transaction is able to access 
the data successfully when it arrives to the system. 

Data replication can also be used to improve other per-
-ormance measures. For example, the execution of a trans-
iction requires reading of data from disk, processing and 
)ossibly writing the data to the disk (when it is modi-
ied). If data is not replicated, all transactions that access 
data stored at a node must wait for the data to be read 

'This work was supported in part by NSF grants NCR-8604850 
1 nd CCR-8806358. 

I Work was done while this author was at the College of Comput-
Ilig, Georgia Institute of Technology, Atlanta, Georgia.  

or written. When the data is replicated, load generated 
by the requests can be shared by nodes having the repli-
cas and hence the response time of the transactions can 
be improved. Notice that the degree of sharing depends 
on the replica control protocol used. If read transactions 
can access any replica (a write transaction must update 
all replicas to ensure correctness), the load generated at 
each node by the read transactions will be 1/n compared 
to when no replication is used (n is the number of replicas). 

We consider protocols that are based on quorum con-
sensus [1]. An operation proceeds to completion only if it 
can obtain permission from nodes that constitute a quo-
rum group [2]. Quorum groups used by, conflicting oper-
ations have non-empty intersections to guarantee proper 
synchronization. The collection of quorum groups used by 
an operation is known as a quorum set. If each group in 
the quorum set intersects with every other group in the 
set, it is called a coterie [3] and it can be used to achieve 
mutual exclusion. Weighted voting [4] is a representation 
technique to define quorum sets so that quorum groups 
need not be listed explicitly. It is shown in [3] that there 
exist quorum sets that cannot be defined by voting. 

We will summarize the results of our research in Sec-
tions 2-6 and they include techniques for finding the quo-
rum set that optimizes a given performance measure, a 
replica control protocol for reducing response time, the 
multi-dimensional voting concept and an implementation 
of a dynamic replica control method. 

2 Optimal System Availability 

2.1 Homogeneous Systems 

We have explored how optimal vote and quorum assign-
ments can be obtained for a system for read and write 
transactions when their mix could be arbitrary. In [5], we 
considered the problem in a system where node reliabili-
ties are identical. The performance measures considered 
are the system availability (i.e., the probability that some 
part of the system is available) to transactions without 
blocking (a transaction aborts instantaneously when the 
currently operational nodes do not have sufficient votes to 
form a desired quorum) and the mean response time when 
transactions wait for nodes to recover from failures until a 
quorum is available. One of the interesting results shows 
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Abstract 

A general class of protocols used for achieving mutual 
exclusion in distributed systems is quorum consensus. In 
these methods, an operation must obtain permission from 
a group of coordinators before it can proceed to comple-
tion. We consider a store-and-forward network with co-
ordinators resident in some of the switching nodes. The 
main motivation for having multiple coordinators is to en-
hance system availability. Most studies of the availability 
of quorum consensus protocols have been concerned with 
assessing the system availability. In this work we consider 
the user point-of-view availability defined as the proba-
bility that a mutual exclusion operation originating at a 
given site can proceed to completion. We consider scenar-
ios where the network links, as well as the network nodes 
may fail. Our objective is to analyze the user experienced 
availability and to determine how to best design a system 
so as to obtain high availability. 

1 Introduction 

A distributed system consists of a number of cooperating 
nodes interconnected by a communication network. The 
nodes communicate with each other through messages sent 
over the network. The advent of high speed networking 
allows for the possibility of running a multitude of new 
distributed applications. A number of these applications 
require mutually exclusive access to resources, for example, 
updates to a file must be synchronized. Synchronization 
methods used in distributed systems must be tolerant to 
node and network failures. 

A general class of protocols used for achieving mutual 
exclusion in distributed systems is quorum consensus. In 
these methods, an operation must obtain permission from a 
group of coordinators, before it can proceed to completion. 
The groups that can grant permission must intersect with 
each other and a coordinator grants permission to only one 
operation at a time. This ensures that no two operations 
can proceed simultaneously. A set of groups, known as a 
coterie [1, 2], can be defined whose members are groups 
of coordinators that have the non-empty intersection (i.e., 
contain at least one common coordinator) property. In ad-
dition, if a group is a member of the coterie then it cannot 

This work was supported in part by NSF grants NCR-8604850 
and CCR-8806358. 

Figure 1: Coordinators, Users and Switching Nodes 

be a subset of any other group in the coterie. The best 
known quorum consensus protocol is majority consensus 
[3] where each group consists of a majority of the coordi-
nators. Weighted Voting [4] is a simple technique that can 
be used to implement quorum consensus protocols, where 
each node is assigned a number of votes and an operation 
must obtain a majority of votes before it can proceed to 
completion. 

Each assignment of votes uniquely defines a coterie. 
For example, in a system with four coordinators, A, B, C 
and D that are assigned 2, 3, 1, and 1 votes respectively, 
an operation requires at least four (a majority) votes to 
proceed. The coterie describing this is {{A,B}, {A,C,D}, 
{B,C}, {B,D}}. It has also been shown that there exist co-
teries that cannot be obtained from a vote assignment [2]. 
As will be demonstrated in this paper, non-vote assignable 
coteries may be needed to optimize system performance. 
Multi-dimensional voting is a voting-like technique that 
can be used to implement non-vote assignable coteries [5]. 

We consider a store-and-forward network with coordi-
nators resident in some of the switching nodes. (See Figure 
1.) The nodes and the links in the network are unreliable, 
and failure of a switching node where a coordinator re-
sides implies that the coordinator is not accessible. Users 
are attached to the system by a connection to one of the 
switching nodes. A user becomes disconnected if the node 
to which he is attached fails. 

The main motivation for having multiple coordinators 
is to enhance system availability. A system with a single 
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Abstract 

checkpointing scheme can be used to ensure forward 
sess of a computation (program) even when failures oc-
In a distributed system, many autonomous programs 
execute concurrently and obtain services from a set of 
:d servers. In such a system, it is desirable to restrict 
i.ckpoint or rollback operation to a single program to 
ze the effects of failures, even when processes of dif-

i t programs communicate with servers. This can be 
ved by a scheme based on message logging and consis-
:heckpoints when the system is deterministic. When  
stem (communication network or programs) is non-

rninistic, the semantics of the server functions should 
Ilploited to reduce the additional synchronization that 

to be introduced to ensure locality. We illustrate this 
lesenting efficient algorithms for a file server that do 
quire the logging of messages on stable storage. 

ttroduction 

distributed program can exploit the concurrency in-
, in an application by executing it at many nodes. 
ver, unlike a centralized system, it is possible that 
parts (nodes or communication links) of the system 

while others remain operational. This could result 
nconsistent state in which the results of a computa-
.e reflected at some nodes but not at others. Atomic 
c tions [10] provide a mechanism which guarantees 
computation either completes at all nodes or has no 
m the system. The atomicity property provided by 
tions masks failures from the users by undoing par-

:ompleted computations when failures are detected, 
es not promise forward progress. Thus, failures do 
ise inconsistent executions, but they can lead to the 
xl undoing of a computation. This can be avoided 
kg a checkpoint and rollback scheme [14] which al-
e computation to be restarted from an intermediate 

entralized systems, checkpointing and rollback- 
y are straight forward. A process takes a checkpoint 

s work was supported in part by NSF grant CCR- 
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periodically by saving its state on stable storage [10]. When 
a failure occurs, the process rolls back to its most recent 
checkpoint, assumes the state saved in that checkpoint, and 
resumes execution. In distributed systems, checkpoints are 
maintained for each process in the system. 

In distributed systems, there are many concurrently ex-
ecuting computations or programs, each of which is exe-
cuted by a set of processes. Usually, there is no direct 
interaction between processes of different programs. How-
ever, processes of different programs may interact with a 
common set of server processes (e.g., file server) which im-
plement services provided by the system. Since the exe-
cution of each program is relatively autonomous, we want 
to find checkpoint and rollback algorithms with the follow-
ing properties, even when processes of different programs 
communicate with the shared servers. 

• When a program wants to checkpoint its current state, 
processes in other programs should not be required to 
take a checkpoint. 

• When one or more processes in a program fail, their 
rollback should not roll back processes in other pro-
grams. 

We call these locality properties because they require 
that the checkpoint or rollback of one program does not 
affect others. These are necessary in large distributed sys-
tems to localize the effect of failures. Since the number 
of failures will increase as the system becomes larger, an 
uncontrolled propagation of a rollback each time a failure 
occurs in the system can impede forward progress. Another 
advantage of locality is the reduced cost of checkpoint and 
rollback operations because a smaller number of processes 
need to participate in their execution. 

There are several approaches to checkpointing in dis-
tributed systems. In consistent checkpointing [1, 8, 11, 19], 
processes coordinate their checkpointing such that the set 
of checkpoints taken from all the processes forms a consis-
tent global state of the system. A global state [4] is consis-
tent if no message is recorded as received before it has been 
sent. When a failure occurs, processes roll back and restart 
from their most recent checkpoints. Tamir and Sequin [19] 
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Abstract 

checkpointing scheme can be used to ensure forward 
)rogress of a computation (program) even when failures 
)ccur. In this paper, we present efficient checkpoint and 
rollback algorithms for distributed object based systems. 
?revious work in distributed checkpointing his been de-
roted primarily to message based systems. By utilizing the 
iitructure of objects and operation invocations, efficient al-
$orithms are developed that involve fewer nodes compared 
a when invocations are treated as messages and existing 
agorithms are used. 

L. Introduction 

There are two paradigms for structuring distributed sys-
ams. In message based systems, processes do not share 
nemory, and communicate by exchanging messages. In 
,bject based systems, objects encapsulate data and define 
it number of operations that can be invoked by threads. 

I
k thread is an active entity that executes code in objects, 
traversing objects as it executes (a thread is comparable 
,o a process, as defined in many conventional systems). In 

• in integrated distributed system, a thread can invoke both 
ocal and remote objects in a uniform manner. Since any 
hread can invoke an object (when it has permission to ac-
:ess it), all objects logically reside in a global address space 
1st is shared by the threads. Object based systems are 
oecoming increasingly popular since objects provide a se-
:ure and easy to use abstraction of shared memory, which 
,s seen by many as an attractive concept for programming 
iistributed systems. 

In an object based system, a distributed computation 
is executed by one or more threads. The state of an ob-
ject is defined by the data encapsulated by it and threads 
transform the object state by possibly changing the val-
es assigned to its data items. A thread moves from one 

abject to the next through operation invocations, which 
create dependencies between different objects that may be 
tored at several nodes. Dependencies between computa-
tions are created when the threads executing on behalf of 

*This work was supported in part by NSF grant CCR-
8806358. -  

them invoke common objects. 
In a distributed system, it is possible that some compo-

nents (nodes or communication links) of the system may 
fail while others remain operational. This could result in 
an inconsistent state in which the results of a computa-
tion are reflected at some nodes but not at others. Atomic 
transactions [11] provide a mechanism which guarantees 
that a computation either completes at all nodes or had 
no effect on the system. The atomicity property provided 
by transactions masks failures from users by undoing par-
tially completed computations when failures are detected, 
but does not promise forward progress. Thus, failures do 
not cause inconsistent executions, but they can lead to the 
repeated undoing of a computation. This can be avoided 
by using a checkpoint and rollback scheme [18] which al-
lows a computation to be restarted from an -intermediate 
state. 

In centralized systems, checkpointing and rollback-
recovery are straight forward. With this scheme, a pro-
cessor takes a checkpoint periodically by saving its volatile 
state on stable storage [3, 11]. When a failure occurs, the 
processor rolls back to its most recent checkpoint, assumes 
the state saved in that checkpoint, and resumes execution. 
However, in distributed systems, asynchronous interaction 
among different nodes makes checkpointing and rollback-
recovery more complicated. Depending on the algorithm 
used, a checkpoint or rollback may involve several nodes 
and threads. After a failure, recovered nodes must be 
brought back to a consistent state with nodes that did not 
fail. 

For distributed systems, the checkpointing problem has 
primarily been addressed for message based systems. Al-
though there exists a duality between message and object 
based systems [12, 14, 21] and it is possible to convert al-
gorithms for message based systems so they can be used 
in object based systems, little or no work has been done in 
distributed checkpointing which exploits the structure of 
object based systems. 

The algorithms that have been proposed can be divided 
into two classes: independent checkpointing, and consis-
tent checkpointing. In the first approach, a process can 
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Abstract 

Causal memory is a weakly consistent memory in which 
reads are required to return the value of the most re-
cent write based on the causal ordering of read and 
write operations. We present a simple owner protocol 
for implementing a causal distributed shared memory 
(DSM) and argue that our implementation is more effi-
cient than comparable coherent DSM implementations. 
Moreover, we show that writing programs for causal 
memory is no more difficult than writing programs for 

atomic shared memory. We believe that causal memory 
is an attractive target architecture for DSM systems. 

1 Introduction 

Distributed shared memory is an attractive abstraction 
because it allows processes uniform access to local and 
remote information. This uniformity of access simplifies 
programming, eliminating the need for separate mech-
anisms to access local state and remote state. How-
ever, consistent distributed shared memory (DSM) can 
be difficult to implement efficiently. Most DSM imple-
mentations to date use variants of multiprocessor cache 
consistency algorithms that perform poorly in high la-
tency distributed systems. Weakly consistent memories 
allow implementations better suited to the high laten-
cies encountered in distributed systems. 

Traditionally, a shared memory is correct if reads 
return the value of the "most recent write" to the loca-
tion being read. Atomic memory satisfies this "register 
property" by regarding reads and writes as operation 
intervals on a global time line and requiring that op-
erations "take effect" at some point within the oper-
ation interval [17]. Under this model, each operation 
corresponds to a distinct point (operations may not 
"take effect" simultaneously) on the global time line 
and, for any read operation, the most recent write is 

• Funded by NSF grants CCR-8619886 and CCR-8806358. 

well-defined. While the order of overlapping writes may 
not be determined until a subsequent read operation 
"chooses" which write is the most recent, the resulting 
execution must still obey the register property. Sequen-
tial consistency [12] is a weakening of atomic memory 
that relaxes the requirement that operations take ef-
fect during their operation intervals. Several researchers 
[20, 2, 6] have sought to exploit the considerable flex-
ibility provided by sequential consistency over atomic 
memory yet the requirement that sequentially consis- 
tent executions appear "as if" they obey the register 

property is severely restrictive. 
Existing implementations of consistent (atomic) 

DSM [15, 18] require frequent, expensive global syn-
chronization leading to inefficiency and problems of 
scale. Researchers in the architecture community have 
also begun to question the wisdom of always maintain-
ing strong consistency [1, 14, 9, 7]. Recent work [10] 
has suggested that the principled weakening of consis; 
tency may solve problems of latency and scale and still 
provide a reasonable programming model. 

We explore a type of weakly consistent memory in-
troduced in [10] that we call causal memory. (A for-
mal study of causal memory is presented in [3] where 
the memory discussed in this paper is called strict 
causal memory.) Informally, causal memory requires 
that reads return values consistent with all causally re-
lated reads and writes of that same location. We say 
that "reads respect the order of causally related writes." 
Causal memory does not require all writes of a sin-
gle location to be totally ordered; several processors 
may write a location concurrently and independently, 
without synchronizing. Subsequent readers may dis-
agree on the relative ordering of these concurrent writes. 
Causal memory is based on Lamport's concept of po-
tential causality [11]. We introduce a similar notion of 
causality based on reads and writes in a shared memory 
environment. Causal memory is also closely related to 
the ISIS causal broadcast introduced in [5]. A notion 
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Abstract 

We propose and advocate the use of weakly consistent memories in distributed shared mem-

ory systems to combat unacceptable network delay and to allow such systems to scale. We 

examine proposed memory correctness conditions and demonstrate how they are related by a 

weakness hierarchy. Multiversion interpretations of memory are introduced as means of sys-

tematically exploring the space of possible memories. Slow memory is one such memory that 

allows the effects of writes to propagate slowly through the system, eliminating the need for 

costly consistency maintenance protocols that limit concurrency. Slow memory possesses a 

valuable locality property and supports a reduction from traditional atomic memory. Thus slow 

memory is as expressive as atomic memory. We demonstrate this expressiveness by presenting 

two exclusion algorithms and a solution to Fischer and Michael's dictionary problem on slow 

memory. 
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Abstract 

Differing remote and local state access mechanisms in distributed computing environments 

make programming for concurrent execution difficult. This paper presents a novel programming 

paradigm that simplifies development tasks by allowing programmers to create distributed ap-

plications without having to be aware of their physical distribution, or runtime degrees of con-

currency. This paradigm, used to program distributed applications for the CLOUDS distributed 

operating system, models these applications like centralized programs where processes communi-

cate and synchronize using shared memory. Distribution is achieved automatically at execution 

time. 
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Abstract 

In this paper we present a resource (e.g., file, pro-
cess) location scheme which exploits the multicast 
communication capability of local area networks. In 
the scheme, the universe of resource names is parti-
tioned into a relatively small number of groups and 
each group is assigned a unique address. Nodes stor-
ing the locations of resources belonging to a particu-
lar group instruct their network interfaces to receive 
all location messages sent to the group address. To 
locate a resource, a node first determines the address 
of the group to which the resource belongs (this can 
be accomplished via a well-known hash function), 
and a multicast message is then sent to the address. 
The algorithm performance is studied by means of 
simulation, and approximate closed form solutions 
are derived for systems operating at heavy and low 
loads. The scheme's performance is compared with 
that of broadcast, and it is shown that the proposed 
scheme performs much better than broadcast alone. 

Introduction 

le advantages offered by distributed systems include resource 
aring, fault-tolerance and parallel execution of a computation. 
to programming of distributed systems is more complex than 
ntralized ones due to the unavailability of the global state of 
e system. For example, in a dynamic system where resources 
g.. files, processes) can be migrated between nodes, a user 
ist program an algorithm to find the current location of a re-
urce needed by his or her computation. This can be avoided if 
ers are provided with the abstraction of a unified system where 
e location of resources is transparent to them. Resources are 
[erred to by names and, at runtime, the system determines the 
rrent location of a named resource. 

Many schemes have been proposed for finding the location 
a named resource. Conceptually, there exists a database that 
)res the associations between resource names and their loca-
ins. This database can be partitioned and stored at one or 
ire nodes that are called name servers. When a remote re-
tiree. A, needs to be accessed, the request for its location 
ould be sent to a name server that stores R's location. The 

tThis work has been partially supported by NSF grants CCR-8806358, 
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system must also implement algorithms to update the informa-
tion stored by the name servers when resources are created or 
deleted or when, they are migrated. To avoid this, the database 
can be distributed in such a way that a name server at a node 
maintains a list of only resources local to the node. In such a sys-
tem a remote resource can be located by broadcasting its name, 
and having the node where the resource is located respond. This 
scheme is used in Clouds [DLS85] for locating remote objects. 
Broadcast can also be used when other schemes fail to locate a 
resource. 

We are concerned with a distributed system that uses a 
broadcast bus local area network. In such an environment, all . 
network interfaces receive every message carried on the bus. A 
particular message is delivered to the attached node only if it 
is sent to a destination address that the interface has been in-
structed to recognize. Such addresses will at least include the 
broadcast address and the node's own address. Thus, if a broad-
cast message is used to locate a resource, the message will be 
delivered to all the nodes in the distributed system. This in turn 
will cause all the nodes to search their local resource directories 
which represents a wastage of CPU time at all nodes except the 
one where the resource resides. 

In this paper, we explore the design of a distributed name 
server where multicast communication is used to locate the re-
quested resource. In such a system, a particular message sent to 
locate a resource will be delivered to only a subset of the nodes 
in the system. The availability of bus interface communications 
technology that supports multicast in the hardware provides the 
motivation for this work. Our goal is to design a location scheme 
that is simple from the point of view of a node that needs to find 
a resource but, at the same time, reduces the number of nodes 
that must participate in the location process. 

We associate a multicast address with each resource name 
and this address is used to communicate with the name server 
of the resource. Each node receives messages sent to multicast 
addresses corresponding to the resources whose locations are 
stored by the local name server. Typically, a limited number of 
multicast addresses will be available at each interface for use by 
the resource location operations. Since the number of resources 
in the distributed system can be large, the resource name to 
multicast address mapping is many-to-one. For such a system. 
we present the algorithms to be executed when a resource is cre-
ated, deleted or a request is made for finding its location. We 
also study the performance of the multicast scheme and compare 
it with broadcast. The cost measure used is the number of nodes 
that process messages sent for finding a resource or for updat- 
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ing the information stored by name servers when resources are 
added or deleted. We use simulation and analytical techniques 
to determine the cost and demonstrate that the expected cost 
is much smaller for the multicast scheme when it is compared 
with broadcast. 

We do not claim that to locate resources, a distributed sys-
tem should use only the scheme proposed in this paper. It can 
be used in conjunction with other methods, e.g., hint tables to 
avoid broadcasting the request when a resource is not found at 
its expected location. 

Section 2 describes related work and the system model is 
presented in section 3. The algorithms that implement the mul-
ticast scheme are described in section 4. We discuss the correct. 
ness of the algorithms in section 5. Performance analysis and 
simulation results are described in section 6. We conclude the 
paper in section 7. 

2 Related Work 

Name servers are used for locating resources in many systems. In 
the Grapevine system [BLNS82], a resource name is of the type 
F.R where R is the name of a registry and F is the name of the 
resource in the R registry. Each registry has associated with it a 
collection of name servers. When the location of a name server 
for R. is not known, it is found from a well-known registry with 
is maintained in every name server. The Clearinghouse [0D83] 
system generalizes this by adding another level for naming. 

If a resource is accessed at a node many times, its location 
can be cached so that the node does not have to consult with a 
remote name server each time the resource is used. Cached infor-
mation is called hints and have been discussed in [Ter87,ABA88]. 
Since a resource can migrate, hints can be wrong and hence a 
name server should be located in that situation. In another 
scheme called forwarding addresses [Fow85], a node stores the 
address of the node where a resource residing at it has moved. 
A resource is located by following these addresses. 

The broadcast scheme, where a message for finding a re-
source is sent to all nodes in the network, is a special case of the 
scheme presented in [MV85] in which a node queries a subset of 
the nodes to find the location of a resource. In the V system 
[CI■186], multicast is used to communicate with the name server 
nodes when the resource is not found at the expected location 
and its name server is not known. 

In the scheme presented in this paper, each node implements 
the scheme (it is possible to exclude certain nodes) and the set 
of nodes that receive a message sent to locate a particular re-
source depends on the resource name. Thus, the sets of nodes 
that process the location message for two different resources may 
be different. We study the relationship between the number of 
multicast groups supported by the hardware, the sizes of the 
multicast groups (the number of nodes that receive messages 
sent to a multicast address) and the number of resources in the 
system.  

3 System Model 

A distributed system is assumed to be a set of L (numbered 
from 1 to L) nodes connected by a broadcast bus. Each node 
contains a set of resources which can be accessed by both local 
and remote nodes. Each resource has a unique name which is 
used by the users to refer to the resource. The set of resources 
residing at a node is dynamic: new resources can be created and 
existing ones can be deleted. Resources can also be migrated 
between nodes. 

A node consists of a processor (could also be a multiproces-
sor) with its own memory and a network interface that allows 
the processor to exchange messages with other nodes. 

The network interface receives messages transmitted over the 
network and performs address recognition to determine if an ar-
riving message should be delivered to the processor. The in-
terface is also responsible for transmitting messages sent by the 
processor. 

We assume that the network interface can recognize the 
unique address associated with the node, the broadcast address 
and a set, 4), of multicast addresses. A message sent to the mul-
ticast address m will be delivered to a processor only if m is in 
its 4). A processor can change the membership of its own set 4). 
However, the number of addresses in 4) cannot be more than AI'. 
Thus, at any point in time, a node can choose to receive mul-
ticast messages sent to at most Al addresses. The restriction 
on the size of 41 holds for currently available network interfaces. 

For example, the Digital UNIBUS Network Adapter, DEUNA' 
[Deu83], supports a maximum of 10 multicast addresses (there 
exist interfaces that support a larger number of addresses but 
the set of addresses allocated to the location subsystem will be 
limited in size). We also assume that if a node sends a message 
which generates a response, the sender will receive the response 
in at most b seconds. This allows the use of timeouts for deciding 
when not to wait for any more responses. 

We assume that the operating system at each node, in ad-
dition to other functions, implements a resource management 
subsystem, RMS, and a location subsystem, LS. RMS handles 
the creation, deletion and migration of resources and stores in-
formation about all resources that are currently resident at its 
node. When a user needs to access a remote resource, RMS 
communicates with LS, which finds the current location of the 
remote resource. We assume that identical copies of RMS and 
LS execute at each node and RMS informs its local LS when a 
resource is created or deleted. 

4 Location Subsystem 

The LS executing at a node communicates with its local RMS 
and the LS at other nodes to implement a distributed name 
server. In this section, we describe the data structures main-
tained by each LS and its interface with the RMS. We also 
describe the algorithms executed when a resource is created. 

'DEUNA and UNIBUS are trademarks of Digital Equipment 

Corporation. 
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deleted or its location needs to be found. Since some of these 

functions can be executed concurrently at different nodes, their 

code must use some synchronization mechanism to assure atom-

icity when it is required. We do not include the code for syn-

chronization to avoid the unnecessary complexity. Also, it is 

assumed that no node failures occur. The effect of failures on 

the scheme and their handling is described in a [AABKS7]. 

14.1' Location Subsystem Data Structures 

Each LS maintains a directory of < resource name, node > 
pairs and a multicast table. A multicast table entry consists 

of a multicast address and a count. A mapping (e.g., a hash-

ing function), w. which is well known, is used by LS to map 

r a resource name to a multicast address. For each R such that 

< R,i > is in the directory, there must be an entry in the mul-

ticast table with w(R) as the address. The count field of this 

entry is the number of resources in the local directory that map 

to the address w(R). Initially, the address field in each entry 

of the table is set to a multicast address E which is not in the 

range of the mapping w. As will be seen later, the resources 

whose names are stored in the directory can be both local as 

well as remote. Each address in the multicast table at a node 

is also added to its (I) and hence the size of the multicast table 

cannot exceed Al. A multicast message sent by LS with in as 
i ts address will be received by a node if there is a resource, R, in 

i ts directory such that w(R) = m (it is assumed that in belongs 

to a set of multicast addresses that are used only by the location 
subsystem). 

4.2 Location Subsystem Calls 

The RNIS at a node not only calls the local LS for locating a 

remote resource, it also makes a call to LS when a resource is 

created or deleted. The functions implemented by LS that are 

called by RNIS are defined below. To implement these functions, 

LS may have to communicate with its peers at other nodes. A 
message sent by LS contains its destination and source addresses, 

a type and data (if any) depending on the type of the message. 

The types of the messages used by LS and the data contained 

in them is described in the code for the functions. We assume 

that these functions are called at node i (1 < i < L). 

• AddResource(R : ResourceName) 

This function is called by RMS when the resource R is 
created. This makes R available to remote nodes that can 

locate it by requesting their LS. Since the multicast table 

size is limited, the resource name and its location may have 

to be added to the directory at some other node. When it 
is not possible to add < R, i > to the local directory, the 
CreateSpace function is called, and returns the node that 
can add < R, i > to its directory and 4,7( R) to its multicast 
table. We describe the CreateSpace function later. 

function AddResource (R : ResourceName) 
begin 

R) is in the multicast table then 
increment the count of the entry having 
address w( R); add < R, i > to directory; 

else if entry in the table with address E then  

change the address in the entry from E to w(R) 
and make its count 1; 

add < R. i > to directory; 

else 

j := CreateSpace(R); 

if i j then 

send a message of type AddReq to node j 
with < R,i > as data; 

else 

(* A free entry is created in local multicast table') 

change the address in the entry from E 
to w(R) and make count 1; 

add < R, i > to directory; 
end; 

• FindResource(R : ResourceName) 

This function is called by RMS to find the location of the 
remote resource R. If R exists at some node currently, the 

address of that node is returned by this function. 

function FindResource (R : ResourceName) 
begin 

if < R,j > in the directory then 
return(j); 

else 
send a FindReq message to address w(R) with R 
as data; wait for FindResp message; 
j := address of node sending FindResp message; 
return(j) ; 

end; 

• DeleteResource(R: ResourceName) 

This function is called when RMS needs to delete R. RNIS 

asks the local LS to find its location node, j, and delete 

the resource name and its multicast address at the node 

where they are stored. We do not consider the messages 

sent by RMS to its peer at node j to actually delete the 

resource. 

function DeleteResource(R : ResourceName); 

begin 
if < R,j > in directory then 

delete < R,j > from directory; 

decrement the count in the entry with address 

4,4 R ) in the multicast table; 

and when count becomes 0, change w(R) to E; 
return(j) 

else 
send a DeleteReq message to w(R) 
with R in the data field; wait for a 

DeleteResp message returning node name j; 

return(j) 

end; 

LS does not provide a function to be invoked when a resource 

is migrated. RMS can inform LS of the migration by deleting 

the resource at its current node and adding it at the new node 

by calling the functions described above. 



4.3 Internal Functions of The Location Subsystem 	quest message and their handling is described in the code 
of the functions. 

We now describe the CreateSpace and the MessageHandler 
functions. These functions are internal because no other compo-
nent of the system has access to them. Again, we assume that 
the functions are executed at node i. 

• CreateSpace(R) 

The CreateSpace function is called by LS at node i when 
it cannot add < R, i > to its directory because all ad-
dresses in the entries of the multicast table are different 
from Lo(R) and E. Since FindReq messages for R are ad-
dressed to w(R), the node where the location of R is stored 
must have Lo(R) in its multicast table. The CreateSpace 
function finds a node where either 4.1(R) is in the multicast 
table or there is an entry with address equal to E. When 
this cannot be done, it creates an entry with address E 
at some node by moving resource names from the node's 
directory to some other node. The range of r.a has to be 
restricted to assure that CreateSpace returns a node with 
this property. We discuss this in a later section. 

function CreateSpace(R) 
begin 

( 5  Check if some node has ca(R) in multicast table 5 ) 
send a SpaceReq message to w(R); 
wait for SpaceResp message to arrive for 6 time; 
if one or more SpaceResp messages arrive then 

choose one and let j be the sender 
of the chosen message; 

return(j); 
( 5  Check if some node has address E 
in its multicast table *) 

send a SpaceReq message to E; 
wait for SpaceResp messages to arrive for b time; 
if one or more SpaceResp messages arrive then 

choose one and let j be the sender 
of the chosen message; 
ret urn(j); 

( 5  No node has w(R) in its table and all tables are full 5 ) 
send a TableReq message to the broadcast address; 
wait for TableResp messages to arrive for 6 time; 
let j and k be two nodes such that multicast tables 
received from them in the TableResp messages 
have a common multicast address' m.; 
send a MoveDirEntryReq message to j with k and m 
in the data field; 
wait for a MoveDirEntryResp message; 
return(j) ; 

• Mess ageHandler(msg) 
The MessageHandler function is executed by LS at node i 
when a request message arrives for LS. This message may 
have been sent to the unicast address of i or a multicast or 
the broadcast address. Since only request messages arrive 
asynchronously, we show the handling of these messages. 
The response messages are received when LS sends a re- 

'An alternative way of getting two nodes which share a multicast address 

is to poll nodes one at a time until two nodes with a common address are 
identified.  

function MessageHandler(msg : Message) 
begin 

j := sender of msg; 
case msg.type of 

AddReq: 
< R,k > := data received in msg; 
if w(R) is address in an entry in the table then 

increment the count in the entry 
with address w (R); add < R, k > to directory; 

else if there is an entry with address E then 
change the address in the entry 
from E to w(R); make its count 1; 
add < R,k > to the directory; 

FindReq: 
R := resource name received in msg; 
if < R,k > in the directory then 

send k in a FindResp message to j; 

DeleteReq: 
R := resource name received in msg; 
if < R,k > in directory then 

delete < R, k > from directory; 
decrement the count in the multicast 
table entry having address w(R); 

if count becomes 0 then change w(R) to E; 

send k in a DeleteResp message to j; 
SpaceReq: 

send a SpaceResp message to j; 
TableReq: 

send multicast table in TableResp message to j; 
MoveDirEntryReq: 

m := multicast address received in msg; 
k := node address received in msg; 
for each < R,1 > in the directory 
such that w(R) = m do 

send an AddReq message to k with < R,1 > 
as data; change u.i(R) to E in the multicast table; 
send MoveDirEntryResp message to j; 

2 Correctness 

The correctness requirement for the multicast based scheme is 
that when a resource exists (it has been added by calling the 
function AddResource(R) and it has not been deleted by calling 
DeleteResource(R)), then executing FindResource(R) at any 
node must return the current location of R. Let i be the node 
where FindResource is executed and let j be the current loca-
tion of R. If < R, j > is not in the directory at node i then a 
FindReq message is sent to w(R). Thus, the location of R will be 
returned by the FindResource call if the node where < R. j > 
is stored in the directory has ca(R) in its multicast table. This 
will guarantee that the FindReq message for R is received by 
the node that stores its location. Since < R,j > is added to the 
directory at a node only when either ,..1(R) is in the multicast 
table or there is an entry with address E which is changed to 
..‘(10 (AddResource function and handling of AddReq message 
in MessageHandler), the correctness follows if we can demon-
strate that < R, j > is added to the directory at some node as 
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result of executing AddResource. 

If w(R) or E is the address in an entry of the multicast table 
t node i when AddResource is executed, < R, i > is added to 

I
'le local directory. Otherwise, < R, i > is sent to node j which 
 returned by the CreateSpace function. If j is the address of 
to chosen node that responded to the SpaceReq message sent 
) either ‘,.:( R) or E then < R , i > is added to the directory at 
he responding node. When no nodes respond to the SpaceReq 
iessages sent to these addresses, then multicast tables at all 

lades are full (there is no entry with E' as the address) and 
3ne of the tables has an entry with the address (4,(R). In this 
lse, all multicast tables are collected at node i and two tables 
living a common multicast address are found. To guarantee 
liat there exist two such tables, we need to restrict, K, the I
.nge of ca. Since the multicast table size is M and there are L 
Ries, if K < L • M then two tables will have a common address 
hen all tables are full and none of them has the address ca(R). 
his follows because otherwise K > L • M +1 (all addresses in 

multicast tables are distinct and different from ca(R)) which 
a contradiction. 

Once two nodes such that their multicast tables have a corn- 

on address, a, are found, the entry containing a at one node 
freed by sending all resource names mapping to the address a 
the other node that sent the table with address a in it. The 

source name entries deleted from the directory of one node 
le added at the other node because the multicast address cor- 
iponding to the resource names is in the table at the other 
!de. R is added to the directory at the node where the free en-
( is created. Thus, when AddResource(R) is called, the name 

id location of R are added to the directory of some node which 
is co(R) in its multicast table. 

Performance Study 

study the performance of the location scheme presented above 
? will use a simulation model of a system that uses the multi-

1st location algorithm. The simulation results will provide us 
.th an understanding of how the performance of the proposed 
heme is affected by various parameters and how it compares 
Ith the use of broadcast to locate a resource. We will also 
resent analytic results for light and heavy load approximations. 

1 Simulation Model 

r the purpose of the simulation we make the assumption that 
delete and add operations occur independently of each other. 

zquests to find and delete a particular resource are only allowed 
hen the resource has been added but not yet deleted. Resources 

l e added to the system as a Poisson process with rate 7. An 
id request is equally likely to arrive at any of the nodes. A 
source being added is equally likely to have its name mapped 
any address (this is a property of the function ca). Thus the 
tal arrival rate of add requests per node per address is 
ecall that L = number of nodes, K = number of multicast 
(dresses in the range of ‘,./, and M = size of multicast tables). 
nce a resource is added, it will reside in a node for a time that 
exponentially distributed with rate g. A delete request for  

a particular resource is equally likely to occur at any node in 
the system. Once a resource has been added, find requests are 
generated for it at a rate A until it is deleted. The interarrival 
time of find requests for a particular resource is exponentially 
distributed and a find request is equally likely to arrive at any 
node in the system. 

We are interested in studying the system in the steady state, 
and in that state, the rate of resources leaving the system will 
be 7, and the average time spent by a resource in the system is 
given by Thus, the average number of resources in the system, 
f, can easily be computed by applying Little's Law[Lit61]. 

= 7 	 (1) 

The simulation closely follows the steps of the algorithms pre-
sented in section 4. In the definition of the CreateSpace func-
tion, three phases can be distinguished. In the first phase, a 
SpaceReq message is sent to a multicast address (different from 
E) and one of the nodes responding to it is selected. In the sim-
ulation, it is equally likely that any particular node be selected 
from the set of nodes having the multicast address in their tables. 
In the second phase, one of the nodes with empty multicast table 

entries has to be selected. Again, any node is equally likely to 
be selected. Finally in the third phase both a multicast address 
and two nodes belonging to its multicast group have to be se-
lected. It is equally likely that any particular multicast address 
will be selected out of those which are in tables at more than 
one node. Any pair of nodes with that address is also equally 
likely to be chosen. 

We assume in the discussion that the system will be fault—

free. In particular it will -always be possible to add a new re-
source, and resources for which find's and/or delete's arrive, 
must have already been added. 

8.1.1 Cost Calculation 

We describe the performance of the multicast scheme in terms 
of the cost of certain operations. This cost is defined as the 
number of messages delivered and processed by nodes in the 
system. Thus, for example, if during an operation a message is 
sent to a multicast group consisting of 3 nodes, and in turn one 
of the nodes sends back an acknowledgement message, the cost 
of this operation would be 4 under the proposed metric. This 
metric properly reflects the amount of total CPU time used by 
the location system. In calculating our costs we are concerned 
only with the function that terminates by returning the location 
of the resource to the RMS. Additions and deletions of resource 
references are considered, however the costs of addition, deletion 
or usage of the resource itself are not. 

A detailed description of how the costs are computed for each 
of the location subsystem operations is included in [AABK87]. 
The cost of an operation depends on the size of the multicast 
group to which a message is sent to implement the operation. 
The multicast group size depends the number of nodes in the 
system, L and the multicast table size M. 

With the same assumptions about system behavior as we 
made above, we can find the average cost for each operation type 
(and the total combined average for all types) when broadcast 
is used as the only location method. The probability that a 



resource, chosen at random, be local will be given by 1, thus 
the average cost of a find (or delete) operation will be given by, 

, 
= Cd= L • L 1 =L-1 —1 

The cost of additions will be always zero, because the resource 
reference is stored only locally. As shown in [AABK87], the 
combined cost for the three types of operations will be, 

CB = (L 1)  Ap 
A + 2 • IL ( 3 ) 

where .A , /4 and L are as defined earlier. 

6.2 Simulation Results 

We performed two sets of simulations. In the first set, the sim-
ulations were run for a system consisting of 20 nodes in which 
each node's multicast table could hold up to 10 multicast ad-
dresses. In the second set, the value of K was fixed to 100, and 
the value of Al varied from 5 (its minimum) to 100. 

For the first set, different values for K have been considered, 
covering all its possible range (notice that it is necessary that 
K < L • Al). The maximum load (average number of resources 
in the system) considered was 2000 (that is 100 resources per 
node on the average when the multicast table size, Al, is 10). 
Due to the fact that the cost of delete operations varies similarly 
to the cost of find's, we have only shown the latter's costs. 

In figure 1, we show the variation of the average cost of find 
operations. We plot the variations for several values of K. It 
can be observed that the costs reach a definite asymptotic value 
at high loads, and this value is reached relatively fast as the load 
is increased. It can also be seen that for large K (close to the 
maximum), there is a relative maximum in the cost curve (al-
though it is not very pronounced). To understand this behavior, 
we have to consider what happens when the load varies from 1 to 
2000. We start by pointing out that with our cost measure, the 
average cost of a find operation will increase with the number 
of nodes receiving messages sent to a given multicast address. 
The larger the number of multicast addresses, the smaller the 
number of nodes with a given address. At load 1 there is, on the 
average, a number of nodes close to one which contain a given 
multicast address. As the number of resources in the system 
increases, the number of nodes containing resources that map 
to a given multicast address will increase while there is enough 
room in the tables to store the multicast addresses of all existing 
resources. Thus the cost of find requests will also increase. As 
the multicast tables start getting full and K > Al, the multi-
cast addresses will compete with each other for a place in the 
tables as a result of calls to the CreateSpace function. This 
will in general decrease the number of nodes in a given mul-
ticast group: references of resources that map to a particular 
address will be moved by using the AfoveDirectory message and 
will be collected at a small number of nodes, thus decreasing the 
cost of a find. When K < M the cost curves are monotonically 
increasing. This is because there is never competition between 
the multicast addresses, and, in the limit, all addresses are in 
the multicast tables of all the nodes, thus making any multicast  

message equal in cost to a broadcast. 

As shown in figure 1. the larger the number of addresses. K, 
the lower the cost of find. This is a direct consequence of t he 
fact that increasing the number of multicast addresses reduces 
the number of multicast table entries available per address. thus 
reducing the number of nodes in a particular multicast group. 
For the system being considered, the average cost of a find oper-
ation when only broadcast is used to locate objects is given by 
equation (2) and equal to 19. It can be seen that even for rela-
tively low values of K (K = 20), the cost of using the multicast 
scheme is slightly more than half that of broadcast for heavy 
loads Otis even lower for low loads). When K is incremented to 
50, the cost reduces to approximately one fifth of the broadcast 
cost. Thus the multicast method compares very favorably with 
respect to broadcast for find operations (the same can be said 
about delete operations). 

Figure 2 plots the average cost of add operations versus the 
average number of resources in the system. For A' < !if this 
cost will be zero (there is always room in the multicast table 
to store the address of a new resource). For any given K. the 
cost seems to vary similarly to the cost of find's. The biggest 
difference consists of the fact that at low loads, the larger K, the 
larger the cost, whereas at high loads the opposite is true. This 
happens because at loads high enough so that addresses have 
already started to compete for multicast table entries, but low 
enough that the number of nodes in each multicast group has 
not yet been balanced, the likelihood of a totally new address 
coming in the system is high, thus forcing the execution of the 
CreateSpace function up to its second phase. Once the num- 

ber of nodes per multicast address starts balancing, however, all 
multicast addresses will have at least one entry in the multicast 
tables, and the larger the K, the lesser the number of nodes con-
taining any particular address. Thus, the cost of executing the 
CreateSpace protocol decreases with K, and, according to the 
figures, although the probability that the CreateSpace protocol 
be executed increases with K, its cost becomes low enough as to 
make it cheaper for higher values of K. For add operations, the 
multicast scheme clearly performs worse than broadcast, whose 
cost is zero. 

We call the ratio of add request rate to find request rate 
the operation mix. The actual operation mix will not affect 
the costs of find, delete and add operations at any given load, 
however it will affect the overall average cost for all operation 
types. In figure 3 we show the variation of the overall average 
cost for all operation types for a system in which the operation 
mix is 1 : 40. It can be seen that the variation of the costs 
follows closely the one observed in figure 1, which is due to the 
fact that find operations are the ones contributing most to the 
overall cost. The average overall cost for broadcast (as derived 
in the last subsection) would be slightly less than 19, and the 
overall cost of the multicast scheme still is only slightly higher 
that half the overall cost of the broadcast scheme for K = 20, 
and much lower for higher values of K. 

In figure 4 we plot the variation of the average cost of find 
operations against the number of multicast addresses, K. for 
some values of the load. It can be seen that the cost falls sharply 
as K increases. It can also be observed that for K close to its 
maximum (200) higher loads lead to somewhat lower costs of 

(2) 
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find. 

In figure '5 we plot the variation of the cost of add operations 
against the number of multicast addresses. K. In this figure, the 

effects seen in figure 2 are made more apparent: at medium 

loads, the larger K the larger the cost of add operations. 

In figure 6 the variation of the average cost of find operations 

is plotted as .11, the size of a node's multicast table. increases. 

The value of K for all curves is set to 100. At low loads, the cost 

does not seem to depend on the value of M (this is in agreement 

with the results obtained for the low load approximation, see 

next section). In general, for all loads. the cost will increase 

until a certain value for M is reached. Thus, by increasing M 
sufficiently, the system can be made to work in the "low load 

range". 

A similar effect can be observed in figure 7, where the cost 
of add operations is plotted against M. Here, again, we observe 

that for sufficiently large M the system starts operating in the 

"low load range" (characterized by the cost of add being close 
to zero). This value for M coincides with the one observed on 
the plot for the cost of find. 

6.3 Approximate Analysis 

The results of the simulation indicate that the system seems 

to be operating mainly in two modes: at low loads, the cost 

increases rapidly, whereas after a certain value of the load its 

behavior changes radically and the system stabilizes with an 
almost constant cost. This suggests a description of the system's 

behavior at heavy and low loads will be useful to understand the 

system's overall behavior. 
- 

It is possible to provide models which will approximate the 

behavior of the algorithms for low loads. Such analysis will 

provide us with closed form expressions for the costs. It is also 

possible to obtain models which provide upper and lower bounds 

on the costs when the system is operating at heavy loads. 

In [AABK87], we derive the expressions for the approximate 

costs at low loads. This is achieved by assuming that there is 

always room in the multicast tables to store the address to which 

a resource maps and, thus, all resource references are stored at 

the node where the resource resides. We obtain the following 

results for the average costs (note: C.,Cd and C1 stand for the 

average costs of add, delete and find operations, respectively. C 

represents the overall average cost). 
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Notice that the costs do not depend on the value of AL Also 

note that as oo, the costs in (4) approach the respective 

'costs fur the broadcast approach. 

In [111.1K87] we also derive upper and lower bounds for the 

different costs in the heavy load limit. Under this limit the  

system is assumed to have reached a given configuration for its 

multicast tables. In this configuration, all multicast addresses 

are stored in at least one entry of some multicast table. The 

configuration, once reached, does not change unless the load 

decreases. For add and find operations we derived upper and 

lower bounds for the limit of the cost at heavy loads. Denoting 

the upper and lower bounds of an operation o by Co and Co 

respectively„•e have, 
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Where q = L-y-4 .1 and p = LM - K - q(L - 1). For delete 
operations we were able to obtain the heavy load limit given by, 

Cd = (L 2)! +1 

In figure 8 we plot the low load limit value and the heavy 

load bounds for the cost of find for K = 20. We can see that 

the low load limit fits the simulation curve at low loads. As the 

load increases, the simulation curve eventually enters the zone 

between the upper and lower bound approximations. A close 

match with the simulation results has also been observed for the 

cost of the other operations and for all the values of K we have 

studied. 

7 Concluding Remarks 

In this paper we presented the algorithms necessary to imple-

ment a simple location scheme based on multicast communica-

tion. To analyze its performance, a simulation model was de-

veloped which closely followed the steps of the algorithms. The 

simulation results showed that the scheme had a lower cost than 

broadcast alone. In order to predict the costs of the scheme 

for cases not included in the simulation, analytic results were 

obtained which approximate the behavior of the system at low 

loads, and provide tight upper and lower bounds on the costs 

incurred when using this location scheme on systems operating 

with a large number of resources. 

In all cases considered, the cost of find operations using the 

multicast scheme is lower than if broadcast were used instead. 

Even when the number of multicast addresses is less than or 

equal to the number of entries in the multicast table, the multi-

cast scheme presented in this paper has a lower cost than broad-

cast for low values of the load. Even though the cost of add will 

always be worse for the multicast scheme (for broadcast its cost 

will always be zero), the overall cost still favors the multicast 

scheme for large enough values of K. Since the value of K is 

C: 

Ca 

C" 

Cr  (L 1)
K + /1/(L - 2) 	M 



constrained by M, the larger the size of the multicast table sup-
ported by the bus interface, the larger K can be made. 
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Resource Finding in Store-and-Forward Networks* 

Jose M. Bernabeu—Aubon 
Mustaque Ahamad 
Mostafa H. Ammar 

Abstract 

. We present a model of searching for a resource in a distributed system whose nodes 

are connected through a store-and-forward network. Based on this model, we show 

a lower bound on the number of messages needed to find a resource when nothing is 

known about the nodes that have the current location of the resource. The model 

also helps us to establish results about the time complexity of determining a message 

optimal resource finding algorithm when the probability distribution for the location of 
the resource in the network is known. We show that the optimization problem is NP-
hard for general networks. Finally we show that optimal resource finding algorithms can 

be determined in polynomial time for a class of tree networks and bidirectional rings. 

The polynomial algorithms can be used as a basis of heuristic algorithms for general 
networks. 

'This work was supported in part by NSF grants CCR -8806358 and NCR-8604850. 
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1 Introduction 

Distributed systems need to implement algorithms for finding the location of remote re-
sources to reduce the complexity of their use. We investigate the communication cost of 
resource finding algorithms in a store—and—forward network. We consider two situations. 
First, we investigate the message cost of resource finding when a searcher node does not 
know where information about the current location of the resource resides. Such a situation 
can arise in a distributed system with the commonly used schemes such as name servers 
[1] or hint tables [2]. For example, when the name server node fails, the algorithm used by 
the searcher node (the node that wants to find the resource location) must work without 
knowledge about the nodes that are likely to know the resource location. 

It may be possible to reduce the communication cost of resource finding if statistical 
information (e.g., a probability distribution) is maintained about the nodes that are likely to 
know the location of a resource. Such information can be derived from usage and migration 
patterns of resources in the network. For example, when the resource is an idle node, nodes 
having high job arrival rates will be less likely to be available when the resource is needed. 
When the statistical information is available to a searcher node, it should attempt to query 
the nodes in an order that minimizes the communication cost. We investigate the time 
complexity of algorithms that can be used to determine such an ordering of the nodes. 

In the resource finding algorithms we consider, a searcher follows the links of the network 
from one node to another until a reference (identity of the node where the resource resides) 
to the requested resource is found. Thus, we only consider serial searches in which only 
one agent is active at any given time. To reduce the time needed to find the location of a 
resource, it would be desirable to start several searchers at the same time exploring different 
sets of nodes. Multiple agent searches have the added complexity of synchronization between 
the searchers, e.g., if one searcher finds a reference then others need to be informed in order 
to halt their searches. The results obtained here for serial searches will inevitably form the 
basis of an understanding of multiple agent searches. Furthermore, we will see that even 
with this simple model of resource finding, the problem of finding the order in which the 
nodes should be searched to minimize message cost is intractable in most networks. We 
conjecture that a more complex search model that includes multiple agents and coordination 
will render the problem even harder. 

The following summarizes the results we have obtained for serial searches: 

• When the searcher has no information about the location of a resource (or of its 
references): 

— The average number of messages used in searching for the resource is S/( Vg), 
where N is the number of nodes in the network, is is the rate at which the resource 
moves and A is the rate at which requests for the resource arrive. This lower 
bound includes the messages needed to update the references to the resource. 
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—For arbitrary networks, the average number of messages needed to find the ref-
erence for a resource having n references in the network has an upper bound of 
N — n (this bound is tight). 

• When the searcher has a probability distribution describing the likelihood of a par-
ticular node knowing the location of a resource: 

—The problem of determining the optimal way of searching an arbitrary network 
to minimize the average number of messages used is NP-hard, even when there 
is only one reference for the resource. The problem remains NP-hard, even when 
the network is completely connected, when the cost of sending a message through 
a network link is not the same for all links. 

—It is shown that when the probability distribution is uniform, the optimal way 
to search a tree network in which the cost of traversing any link is the same, is 
by following a depth—first traversal. 

—An algorithm is developed for general tree networks which improves on exhaustive 
search. Such an algorithm has exponential time complexity for general trees, 
although its complexity becomes polynomial for special classes of trees. These 
polynomial algorithms can form the basis of efficient heuristic search techniques 
in arbitrary networks. Also, as a special case of the application of the algorithm 
developed for trees, we show a polynomial algorithm to find the optimal way to 

search for a resource in a bidirectional ring network. 

The resource finding problem has been addressed by several researchers. In [3] and [5], 
distributed methods suitable for store—and—forward networks are presented and it is shown 
that the average cost of the methods considered is ft(V) when the ratio of the request 
rate and the movement rate is a constant (p/A = c where c is a constant). The forwarding 
addresses based protocols studied in [5] require that all nodes store a node address for each 
of the resources and hence they could have a high storage cost. In contrast to serial search 
considered here which is sequential, in the method in [3], a node searches for a resource by 
simultaneously sending a request message to a predetermined set of nodes. The message 
complexity is S/(V.—N) for both of these methods. This cost could be reduced by keeping 
information about the nodes that are likely to know the location of the resource. The 
problem investigated in this paper, of determining the optimal way to search the network 
when such information is available for the resource's location at each node, has not been 
addressed in the literature. 

The problem of searching has also been addressed in the literature in a different context 
[6, 7, 8, 9, 10, 11, 12]. However, the solutions obtained are not applicable to resource 
finding in distributed systems (e.g., in [11] the problem of determining the smallest number 
of searching agents to capture an evading target in a graph is studied). There exist other 
schemes which are useful in a particular type of network (e.g, a local area network) [13, 14]. 
These schemes may not be efficient if used in a store—and—forward network. 

In section 2 we introduce our model of the system and a precise characterization of serial 

search. In section 3 we analyze the average cost of serial search when the searcher has no 
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knowledge about the location of the resource. In section 4 we study the problem of finding 
an optimal way to traverse the network when the searcher has the probability distribution 
of the resource being at a certain node in the network. The paper is concluded in section 5. 

2 System Model 

We model the system as a collection of N nodes connected by a store-and-forward com-
munications network. Thus we can represent the system by a graph G(V, E) in which the 
vertices represent the nodes and the edges represent the communication links in the net-
work. A node's CPU is responsible for both switching arriving messages to appropriate 
outgoing links and for resource table look up, if a message requesting the location of a 
resource is received. With each edge e we will associate a cost c(e), which is incurred every 
time a message traverses the edge. This cost is intended to represent the bandwidth cost 
associated with traversing the corresponding link. A distributed system will be represented 
by G(V, E ,c). 

Each resource in the system resides in one of the nodes, and for each resource, n different 
nodes store a reference to the resource's current location. The node where the resource 
resides contains one of the references. The set of nodes containing references to a given 

resource is called the well-informed set of the resource (this set is similar to the set of nodes 
where the location of a resource is posted in [3]). No other node outside of the well-informed 
set of a resource has any knowledge about where the resource or any of its references are. 
We will assume that the references are instantaneously updated when a resource moves, 
which happens at rate 0. We will further assume that the locations of the resources are 
requested with rate A. For each A C V such that IAI = n, we will denote by Q(A) the 
probability that A is the well-informed set of the resource when its location is requested at 
a node not in A. This distribution may not be known to searcher nodes. 

2.1 Search Model 

We can visualize the serial search process as one in which a searcher agent starts at a node 
and not finding a reference to the resource, decides on the next node to be visited. It 
then traverses a path leading to the chosen node in order to search there for the resource 
reference. This process is repeated until a node storing a reference to the resource is found, 
at which point the search terminates. When the objective is to find a reference to the 
resource incurring the least communication cost, the procedure used by the searcher to 
make a decision on the next node to consult has the following natural properties. 

1. Once a node has been consulted, it should not be consulted again. 

2. Once the searcher decides to search a new node, it will go to it through a shortest 
path, and all nodes along the path will have been already searched (otherwise the 
next node to search would be one of them). 
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3. As a consequence of the above, no shortest path from the current node to the next 
node selected can contain a not—yet—consulted node. 

Serial search can be seen as a rule which selects the next node to be consulted based on 
the past history of the search. Since the only information the searcher can get by consulting 
a node not in the well—informed set is that the node does not have a resource reference, 
the sequence in which the nodes should be consulted can be laid out statically from the 
beginning. Therefore, we can formalize serial search using the notion of a walk in a graph 
that defines the order in which the searcher will visit the nodes until a reference to the 
resource is found. If the searcher is at node vi and it next wants to visit node v3, the walk 
would include the nodes on the path from vi to vj when {vi, vi} 0 E. When the search 
plan corresponds to walk (vo , v1 , ..., vt) ({vi, vi+1} E E for i < 1), vi needs to search for 
a reference only if it has not been visited previously in the walk. We call vi a first visit 
if vp  # vi for all p < i. On all visits to a node except its first visit, a searcher is merely 
"switched" to the next node along the walk. A search terminates at a first visited node 
where a reference to the resource is found. For a walk, w, we define V(w) as the set of all 
nodes that can potentially be visited by the walk. 

Although a search plan corresponds to a walk in a graph, we want to consider only 
those walks which correspond to search plans that satisfy the properties described above. 

For example, if (vo , 	vt) is a walk such that v, is not a first visit, there is no need to 
traverse the link {vt_i, vt} since the resource was not found at node vt previously. In fact, 
only a subset of the possible walks in a graph correspond to search plans and we will call 
such walks serial traversals. The properties that are satisfied by serial traversals are stated 
in the following definition. 

Definition 1 A serial traversal in G(V, E, c) is a walk s = (vo ,vi ,.. 
following conditions, 

vi), that satisfies the 

(a) For all i, j, s.t. i < j, if none of the v„„ for i < m < j is 
(vi, + 1, . . . , vj) is a shortest path between vi and 

(b) vi is a first visit. 

first visited, the walk 

We call a serial traversal s complete if V(s) = V. Thus, a searcher can potentially visit all 
nodes if the serial traversal it is using is complete. If the locations of the resource references 
do not change during the time the search is conducted, a reference will be guaranteed to 
be found when a complete serial traversal is used (we address migration later). The set of 
complete serial traversals of a graph starting at node v E V will be denoted by C(G, v). 

It is possible that if Q is known, it may not be necessary to visit some nodes because 
they do not store a reference to the resource. For example, if IAI = 1, Q(A) becomes the 
probability of a particular node storing a reference to the resource. If Q(A) is zero for 
some nodes then a non—complete traversal may be optimal because the nodes for which 
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Q(A) is zero need not be searched. However, there will be a complete serial traversal that 
will have the same cost (as defined in the following paragraph) as the optimal traversal. 
For instance, assume that s is an optimal non-complete serial traversal which goes through 
nodes for which the value of Q is non—zero ands leaves out the nodes with zero—probability. 
Such a traversal can be made complete by extending it with a walk that covers the nodes 
with zero—probability, which does not increase its cost according to (3) because Q(A) will be 
zero when A contains the zero—probability nodes. Thus each optimal traversal has at least 
one corresponding optimal complete traversal, and no generality is lost by considering only 
the complete ones. In the following discussion, unless explicitly stated, a serial traversal or 
a walk is assumed to be complete. 

The cost incurred in finding a resource depends on, Q, the probability distribution for 
the well—informed set and the serial traversal used. If s is the serial traversal used and the 
resource is found at node v, the searcher traverses the links up to the first visit of v. We 
use a„ to denote the subtraversal of a that ends at the first visit of v. Thus, if the resource 
is found at node v, the cost of finding it is the length of a„ which is the sum of all edges in 
4. If we denote a's length by As), and Q a (v) is the probability that the resource is found 
at node v, the cost of finding the resource using a, C?, can be written as, 

C? = E i(s„)Q„(v) 	 (1) 
vEv 

Qa(v) can be easily derived from Q, 

Q a(v) = 	E 	Q(A) 
	

(2) 
AnV(8.)=Iv) 

Alternatively we can write, 
CQ = > liN(A) 	 ( 3) 

ACV 
where IP„I is the cost of a conditioned on the fact that A C V (IAI = n) is the well—informed 
set. 

From the cost formulas derived above, it can be seen that our decision to consider serial 
traversals only excludes walks which are not optimal. This is proved in the following lemma 
and hence, when our goal is to minimize the communication cost of finding resources, it is 
only necessary to consider serial traversals. 

Lemma 1 Let to = (vo, v 1 , 	1> 2, be a complete walk that is not a serial traversal. 
Then, there is another complete walk w', such that C2, < C. 

Proof: The cost defined for a serial traversal also applies to a complete walk. If to violates 
condition (b) in definition 1, vi is not a first visit. For tv' = (v0,..., 24_1) it is clear that 
tv' is complete and C2, = C4 . If to violates condition (a), then there are i < j, such that 
wl = (vi, 	vi) is not a shortest path and none of the node v„, for i < m < j is a first visit. 
We consider a shorest path w2  = 	..., vii ) where ty: = vi and = v3, and we construct 
tv' by substituting w2 in place of w t . It can be seen that this tv' is such that Cwci, < CY, 
(since to is complete so is te). 	 ■ 

5 



2.2 Resource Finding Algorithms 

A resource finding algorithm is a "scheduler" which, given a probability distribution for 
the well—informed set of a resource, produces a serial traversal to be used as the plan of 
the search. In general for each starting node, v, a random complete serial traversal may 
be chosen based on a probability distribution fly  : C(G, v) —0 [0,1]. Thus we will identify 
a network—wide resource finding algorithm with the family of distributions R = {Rv}vEv • 
Re(s) is the probability that the algorithm produces serial traversal s E C(G, v), when 
starting the search at node v. A deterministic algorithm is a special case and will always 
choose the same serial traversal. That is, the distributions R„ will have value 1 for a 
particular serial traversal and zero for all others. 

We use J(R, Q, v) to denote the average cost of a resource finding algorithm starting at 
node v that uses R to choose among serial traversals and Q is the probability distribution 
for the well—informed set. We get 

J(R,Q, v) = E c?Rt,(3) 	 (4) 
sEC(G,v) 

A resource can migrate while another node is trying to locate it and hence the member-
ship of its well—informed set may change. When a particular serial traversal is being used, 
the nodes already visited by it could comprise the new well—informed set and hence the 
resource will not be found even when the serial traversal is complete. However, to ensure 
correctness, the searcher node can augment the scheme. For example, the search can be 
restarted after some time when the change in the well—informed set has taken effect. Since 
we expect migration to be infrequent compared to the rate of requests for finding a resource 
in a real system, such a situation would be rare and it will not have an impact on the 
average cost of resource finding. 

3 Non—Informed Search 

In a distributed system, a node may not have any information about the current location 
of a remote resource. As discussed earlier, this could happen either when the node does 
not monitor information about all remote resources or the information is allowed to be 
temporarily incorrect. We will investigate the resource finding problem when the searcher 
knows only the number of references, n. The probability distribution indicating the like-
lihood of a particular set of nodes being the well—informed set, Q, is not known. In such 
a system, we are interested in estimates of the average cost incurred by resource finding 
algorithms. 

3.1 Complete Networks 

We study the problem for complete networks (there is a communication link between every 
pair of nodes) when c(e) = 1 for all e E E. We will use KN to denote a complete network 
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with N nodes. Thus our cost measure actually accounts for the number of messages used 
to locate the resource. The cost of an optimal serial traversal in a complete network will 
constitute a lower bound on the cost of a serial traversal in any of its subnetworks with the 
same number of nodes. This is so because the set of complete traversals in a subnetwork is 
a subset of the set of complete traversals in the complete network. 

In a complete network, any node can be reached directly from any other node. If all 
links have the same cost, no serial traversal will ever visit the same node twice. In other 
words, the set of all complete traversals, C(G, v), is just the set of all (N — 1)! permutations 
of nodes in V in which v is the first node. 

For an uninformed searcher, any resource finding algorithm will make its selection of 
the serial traversal independent of the resource for which the search is being undertaken. 
It will only depend on the network and the node starting the search. This is similar to 
the model presented by Mullender and Vitanyi in [3], where the set of nodes to be queried 
by a searcher node depends only on the node and not the resource being requested. It is 
proved in [3] that the algorithm has a lower bound of 2NIAT messages per location operation 
on the average (including the messages needed to update the resource references). This 
lower bound is reached in a complete network in which the references are distributed in a 
particular way forming what the authors call a fully distributed scheme. 

We now demonstrate a resource finding algorithm based on serial traversals that has this 
lower bound when nodes are non—informed, and the bound is reached in complete networks 
with a unit cost function when n, the number of references, is set to a certain value. Since 
Q is not known, the searcher has no information which can be used to distinguish one serial 
traversal from another. Thus, it should choose a serial traversal randomly. In particular, we 
will use algorithm R which chooses each complete serial traversal with the same probability 
(R„ (s) =  (G 1 ,v)I for all s E C(G, v)). We call R the uniform algorithm. We will show that 
R has the desirable property that, independent of the unknown underlying distribution Q, 
its average cost is .÷1 . Furthermore, R is distributed because any node will be equally 
likely to participate in finding a resource since each serial traversal is chosen with the same 
probability. 

Theorem 1 For G(V, E) = K N and c(e) = 1 for all e E E, the location cost when li t, is 
uniform; i.e., .14(s) = l e(L ) f Vs E C(G, v), is independent of Q and is given by 

J(R, Q,  v) = 
n +1 

Proof: Let Nk be the number of serial traversals which, for a given A C V (IAI = n), have 
a cost Hilt = k. Such traversals will not have any of their first k — 1 nodes in A, and there 
are( N; 	possible choices for those nodes. On the other hand different orderings of those 
nodes will produce different traversals. There are (k — 1)! ways of ordering those (k — 1) 
nodes, thus, in total there are( 1v;1 1-1(k — 1)! different ways to select the sequence of the 
first (k — 1) nodes of a serial traversal with the desired property. Next we have n different 
choices for the node vk (which will contain the first reference found along the traversal). 
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Finally, we have (N — 1— k)! different ways to order the remaining (N —1 — k) nodes in 
the traversal. Thus, the total number of traversals with the property is given by, 

= 
(N —1— n 

	

k 	k —1 
)

(k —1)!n(N —1— k)! 

We have that IC(G, v)I = (N — 1)!. Using (4) we have 

J(R,Q,v) = E c?Rt,(s) = 	E E IVQ(A) 
(N 

1 
 —1)! 

 aEC(G,v) 	 sE C(G,v) ACV 

	

N—n 	 1 	 N—n 

• (N —1)! 
	 E Q(A) E E 	

= (N —1)! 
E Q(A) E kNk 

 ACV 	k=1 HA.k 	 ACV 	k=1  

1 N—n 
k 	— 1 — n)

(k — 1)!n(N —1— k)! 
(

• 

 N —1)! ifs=1 	k 1 
—n n N (N —1— n)! 

• (N — 1)! •=1. (k —1)!(N — n — k)!
k(k —1)!(N —1— k)! 

(N —1— n)!n N 	 (N —1— k)! 
(N — 1)! 
	  E k(n 1)! 

(n 1)!(N — n — k)! k=1 

1 Nv.—n 
k 

(N —1— k) 
= (N-1) 1...# 

n k=1 	n — 1 

To proceed with the summation let us drop the factor 71=7  for the moment. We will 
consider it later. We first perform a change in the summation index, substituting k for j, 
where j = N — n — k, 

N—n  (N — 

n —1 
— 	

N_n_i
(N — n — j) 

_ 1+ j) 
E k 	

) E 	j=0 
N —n-1 (n  + 	N —n-1 (n _ i+j) 

E = (N — n) E 

	

j=0 	 j=1 

The desired result follows by applying the properties 

;(771 = + 1)(771 
j — 1 

and, 
E  n 

— 	
n 

• 
i=0  ( 3  

■ 

If an algorithm does not choose each traversal with the same probability as R does, 
there will be instances of the probability distribution Q for which the average search cost 
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will be higher than the one given above. As an example, assume that the searcher uses a 
deterministic algorithm R, for which Rt,(s) = 1 for a particular traversal, s E C(G, v). Thus 
s would be used each time the location of a resource needs to be found at node v. Let 
G = K5, n = 1 and let s = (vo , v1 , v2 , v3, v4 ) be such that Rvo (s) = 1. If Q({v4}) = 1, then 
.1(R, Q, vo) = 4 instead of 2.5 as given by lemma 1. Thus, to make sure that the average cost 
of finding a resource is ..+1 , R should be uniform (14(s) = R„(3 1 ) for all s, 81  E C(G, v)). 

From the cost formulas derived above, it follows that when the number of references 
stored for a resource is equal to N — 1, then the cost of finding it reduces to 1 (clearly 
the absolute minimum when it is not found locally). However, distributing the references 
in the network to n nodes will incur its own cost when the resource changes location. In 
order to distribute n references to a giVen resource, n — 1 nodes have to be notified (the 
node where the resource moves, already has a reference to it). In complete networks, this 
requires that n —1 links be traversed. Thus the total cost per location operation would have 
to account for the cost of distributing the references as well. A straightforward way to do 
this is to divide the cost of distributing n references among all the location operations that 
take place between two consecutive update operations (updates are done when the resource 
migrates to a new node). Considering the rates of update and location requests, p and A, 
respectively, the number of location operations between two consecutive update operations 
would be given by Thus we would have to add (n — 1) to the cost of each location 

operation, obtaining the following formula for the total cost per location operation, 

T = — 
n +

N 
1+ 

A (5) 

The following theorem shows that T = II(N) when Ar < < N. 

Theorem 2 If it, < < N, then the number of references that minimizes T is nmin = 

APITAT — 1, and the minimum total cost would be Train  = 2(07 — 

Proof: Straightforward by taking the derivative of the cost formula and equating it to 
zero. 	 ■ 

In the above theorem we have considered only cases in which f, < µ< N, this is due 
to the fact that for all other cases, the minimum of the cost formula is attained for values 
of n less than 1 or greater than N —1. In those cases, clearly, the optimum strategy would 
be to keep just one reference or broadcast a reference to the resource to all nodes in the 
network respectively. 

Theorem 3 The following properties hold, 

a) If < 14., then nmin  = 1 and Train  = 

b) If )17̀, > N, then nmin  = N and Train  =(N -1)y; < 1. 
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3.2 Extensions to General Networks 

The results of the previous section are for complete networks. For arbitrary networks, we 
can only provide a lower bound, that is, for a general G(V, E), Ti n(G) > T,nin(Kivi). For 
non—complete networks it is not clear that all possible serial traversals have to be considered 
with equal probability. The difficulty is due to the fact that the topology of the network 
imposes restrictions on how to navigate in the network. 

We can provide an upper bound on the cost of finding a resource using serial search by 
giving a particular algorithm and deriving its cost. The cost of an optimal algorithm will 
be smaller or equal to the cost of the above algorithm. In the following theorem we present 
an algorithm which does not choose every traversal with the same probability, and whose 
cost is bounded by a quantity which will be shown to be tight for general networks. 

Theorem 4 Let G(V, E, c) be a distributed system (c is constant and equal to 1), then 
there is an algorithm R for which J(R, Q, v) < N — m. 

Proof: Given an arbitrary connected graph G(V, E), we can find a spanning tree for it, 
which is rooted at v and has N — 1 edges. Let w = (v = vo, vu, v2(N_ 1 ) = v) 
be a depth—first traversal of the tree, where v u  is the last first visit in the traversal, and 
(vu , . v2 (N... 1 )) is the shortest path from vu  to v. Based on the traversal w, we can traverse 
the tree in two different ways: we can start at v o  and proceed from v; to vi+1, or we can start 
at v2(N_ 1 ) and proceed from vi to vi_ 1 . We can associate serial traversal .si = (vo, , v u) 
with the first form of traversing the tree and si= (v2(N-1), • • • vd) with the second, where 
vd is, similarly to vu , the last first visited node in the traversal w' = (v2 (N_ 1 ), vd, vo) 
(i.e., the reversed traversal of w). 

We consider the algorithm R, defined by Ru (si) = R„ (s2)= 1. The maximum number 
of edges to be traversed is 2(N — 1) — 1. Let us assume that node vk is the first visited node 
in 31  with a resource reference, then when following traversal s i , we will incur a cost of k. 
On the other hand, if the subtree rooted at vk has m elements, the last time node vk will be 
visited is Vk+2( m_1). The question we ask now is what is the maximum cost we could incur 
if we followed the traversal 3 2 . If all references are inside the subtree rooted at vk, then the 
first node containing a reference which would be found by following s2 is 14+20"1). If there 
is a node, outside the tree, that node will be found before v ki_2 („i_ i ) when following 
32. Thus, if all the references are in the subtree rooted at vk, the search proceeding along 
traversal 3 2  would reach its maximum cost. This cost would be 2(N — 1) — (k -I-2(m — 1)). 
By our assumptions we have that m > n, the number of references to the resource. Thus 
the above cost will reach a maximum when m = n. In other words, if A is the well—informed 
set, and traversal 31 incurs the cost .//4 , the cost incurred by following traversal 32 will be 
at most 2(N — 1) — (1/./ + 2(n — 1)). Thus 

J(R,Q,v) = 0,,R„(31)-F CgRv(32) 

-1
2(

E (H4 + H.A2 )Q(A)) 
ACV,IAl=n 
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< 	E (114 -I- 2(N — 1) — (I14 4. 2(n — 1)))Q(A)) 
ACV,IAI=n 

= (N — n) 

■ 

Theorem 4 provides a tight upper bound for general networks when Q is unknown (i.e., 
it cannot be lowered without changing the assumptions of the theorem). For example, for 
all path networks in which the search starts at one of the extremes and the set A contains 
the n nodes farthest away from the starting node, the minimum cost will be N — n. 

4 Optimal Resource Finding for Informed Searchers 

In this section we investigate the problem of finding the optimal way to conduct a serial 
search in a general network when the searcher knows the distribution Q. Since the cost 
of resource finding will be high for uninformed searchers, nodes can reduce this cost by 
maintaining information from which Q can be estimated. As stated earlier, such information 
may include locality of resource access as well as usage and migration patterns. 

A resource finding algorithm R will be optimal when J(R, Q, v) is minimal for each v. 
It can be readily seen that for each v E V, there is a certain serial traversal (not necessarily 
unique), s(v) E C(G,v), such that the algorithm R defined by Rv (s(v)) = 1 is an optimal 
one. This will happen when s(v) is such that C?(0  is minimal for all .9 E C(G, v). In other 
words, there is an optimal resource finding algorithm which is deterministic. For a given 
node v, we will thus be interested in the problem of finding the complete serial traversal, 
s E C(G, v) for which C? is minimal. We will say that such a serial traversal is optimal. 

We will restrict the model to those networks in which n = 1. In that case Q({v}) 
becomes the probability that the resource resides at node v, and we will use the notation 
II(v) instead. For this particular case it can be seen that the cost formula presented in (1) 
reduces to the following expression. 

Crsi  = E i(sy )II(v) 	 (6) 
vEV 

We now consider the problem of finding an optimal serial traversal for various types of 
networks when II is given. We present several results concerning the time complexity of the 
optimal serial traversal problem by showing that the optimization problem (as it will be 
presented later) is NP-hard for general graphs. This result was also shown by Trummel and 
Weisinger [15] in a different formulation. We will show the additional result that holds for 
complete graphs with non-unit edge costs. Notice that the NP-hardness results obtained for 
our special case are also applicable to the general problem in which the number of references 
is not fixed. We will first prove the following lemma which will be used in the NP-hardness 
proofs. 

11 



Lemma 2 Let G(V, E, c) be a distributed system, and let II be the uniform distribution 
on V — {v0}, II(v) = 11- for all v # vo, where N is the number of nodes in the system. 
Let M = min eEE{c(e)}, then, 

(i) If s = 	vN-1) is a complete traversal such that 	= M for all 
i, 0 < i < N — 1, then 	= M4.1  and s is optimal. 

(ii) Consider the graph G'(V, E'), where E' = {{v,v 1}1{v, 	E E and c({v, v'}) = M}. 
Then a traversal s E C(G, vo) has cost CF = M if if and only ifs is a hamiltonian 
path starting at vo in G', and such a traversal is optimal. 

Proof: Since Call  = Et,Ev  i(soll(v) and 48,4 ) = Mi, C,11  = ENO 1  R = M. To show 
that s is optimal, let s' = (vo = 43, ,4) be another complete serial traversal. If s' satisfies 
the conditions of s then its cost will be the same as the cost of s. Otherwise, either 1 > N 
or c({v:, v;+1 }) > M for some i. Then CP > MI-, which proves that s is optimal. 

In part (ii), if CT = M a then s will have to satisfy the conditions of part (i), which 
implies that s is optimal and it clearly is a hamiltonian path in G' (and in G itself). On the 
other hand, if s is a hamiltonian path in G' and the cost of each link is M so CP is M I% . 

■ 

4.1 General Networks 

In general networks, the optimal traversal problem is NP-hard even in the simple case when 
II is uniform and link costs are the same (c is constant). 

Theorem 5 The problem of finding an optimal serial traversal starting at a particular node 
of a distributed system G(V, E, c), with c the constant function and equal to 1, is NP—hard 
(see (15D. 

Proof: We will prove this result by reducing the hamiltonian path problem to our problem. 
Let G(V, E),vo E V be an instance of the hamiltonian path problem. Then we construct the 
following instance of the optimal traversal problem: G(V, E, c), v E V, II with c = 1 and II 
as the uniform distribution on V — {v0}. Let G'(V, E') be such that E' = {{v, v'}I{v, v'} E 
E and c({v, v'}) = 1}. We would have E' = E (all edges have the same cost) and thus, 
G'(V, E') = G(V, E), and from part (ii) of lemma 2, G will have an optimal traversal with 
cost LT if and only if G has a hamiltonian path. This, together with the fact that the 
reduction presented can be clearly carried out in polynomial time completes the proof. ■ 

4.2 Complete Networks 

In complete networks, if the link cost function is a constant (c(e) = M for all e E E), it can 
be easily seen that an optimal traversal will visit nodes in decreasing order for the value of 
the probability distribution II. Since nodes can be sorted according to decreasing order of 
II(v) in O(NlogN) time, the optimal traversal can be found efficiently in complete networks 
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when the edge cost function c is a constant. If c is not constant, however, the problem 
becomes NP-hard, even for the simple case in which the distribution II is uniform. Thus, a 
small increase in the complexity of the problem renders it computationally intractable. 

Theorem 6 The problem of finding the optimal serial traversal in a distributed system, 
G(V, E, c), where G(V, E) = KN and c(e) = 1 or 2 for all e E E, and where II is the uniform 
distribution, is NP—hard. 

Proof: We will prove the result by reducing the hamiltonian path problem to our problem. 
Let G(V, E), vo, where vo E V, be an instance of the hamiltonian path problem starting at 
vo. We will transform it to the problem G'(V, E', c), vo, where G'(V, E') = KN, and c is 
defined as 

c(fv,v1)= 	
1 if {v, v'} E E 
2 otherwise 

The edges in G' with cost 1 correspond to edges in G. Thus, the set E" = {{w, w'} Ic({w, wi}) = 
1} is exactly E and, thus, G"(V, E") = G(V, E). Using II as the uniform distribution on 
V — {yo}, we know from part (ii) of lemma 2 that an optimal traversal in G' will have cost 
14 if and only if G has a hamiltonian path. On the other hand the above reduction can 
obviously be carried out in polynomial time, from which the theorem follows. 	■ 

4.3 Tree Networks 

Figure 1: Example tree 

It seems clear from the above that an algorithm to solve the optimal serial traversal 
problem is computationally intractable for arbitrary graphs. It may, however, be possible 
to identify a subclass of graphs for which there exists a more efficient algorithm. A heuristic 
can then be used for general graphs by applying the algorithm to a subgraph in the class 
which is efficiently solvable. 

In this section, we will study the class of tree structures. We first consider trees in which 
costs of all edges are the same and the distribution II is uniform. In this case, an optimal 
traversal can be found efficiently because we will show that any depth—first traversal is 
optimal. When the edge costs and II are not uniform, we present an algorithm which runs 
in polynomial time for a certain class of trees with a restricted number of what we call 
frontiers (to be defined later). Examples of such subclasses of trees are line graphs and 
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star graphs. Furthermore, we will show how to use the algorithm to solve the problem in 
a bidirectional ring network. The algorithm presented in this section to find an optimal 
traversal in trees is based on dynamic programming. 

We designate the node where search starts in a tree network as the root of the tree 
which will be represented by the letter r. We will assume node 1 to be the root in the tree 
in figure 1 in our examples. We first define some concepts that will be used in the proofs 
for tree networks. 

Let G(V, E) be a graph, and let s i  and 32 be two possibly non-complete serial traversals, 
s1  = (vo , 	v„,) and 32 = (u0,..., up). If vn, = uo then we say that .92 is composable with 
si and we will define their composition, si • 32 = (v o , 	v„, = uo , ..., up ), which is the 
sequence resulting from appending 32 to si, without repeating uo. If si • s 2  is also a serial 
traversal then we say that 32 is compatible with si . An example of two composable serial 
traversals in the tree of figure 1 is the following: s i  = (1,2,1,3) 32  = (3, 6,3,1,2,4), where 
the composition s i  • 32  = (1, 2,1,3,6,3,1,2,4). Furthermore, 32 is compatible with si since 
si  • s2  is also a serial traversal. As an example of composable but not compatible serial 
traversals, consider traversals s i  and 32 in figure 1 where si = (1,2,1,3) and 32 = (3,1,2). 
The composition s = si  • s2  = (1,2,1,3,1,2) is not a serial traversal because the last node 
of s is not a first visit and hence 32 is not compatible with s i . 

In a tree, there is a unique simple path between any pair of nodes. We will denote by 
L um  the unique simple path joining nodes u and v. The following lemma shows that any 
serial traversal (not necessarily complete) is the composition of a serial subtraversal and a 
simple path. 

Lemma 3 Let s = (vo , ... , vi = v) such that I > 1. There is a serial traversal s' such that 
s = s' • L„,,„ and V(s') = V(s) — {v}. 

Proof: s can be written as follows, s = (vo, , 	, v„„. 	= v), where v„, is a first 
visit and for all i such that m < i < 1, vi is not a first visit. Let s' = (vo, vm ). s' is also 
a serial traversal because v„, is a first visit and it must satisfy condition (b) of definition 1 
because otherwise s will not be a serial traversal. On the other hand, from condition (b) 
of definition 1, (vm , v) is a shortest path between v„, and v, that is, in our case it is 
the simple path L„„,,„. It is also clear from the above that V(s') = V(s) — {v}, thus letting 

= v,„ we have proved the lemma. 	 ■ 

4.3.1 Tree Networks with Uniform Cost and Probability Distribution 

In the special case when the distribution is uniform and all the edge costs in the tree network 
are equal, it is possible to give an efficient algorithm to find the optimal serial traversal. 
In fact, traversals producing the minimal cost will be depth-first traversals, which first-
visit the nodes in an order that is a possible search order for depth-first search. The main 
property of a depth-first traversal is that once the traversal leaves a subtree rooted at v, it 
never again visits node v. 
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When the root is fixed in a tree, we can associate each link in it with one of its nodes 
(with the descendant node). Ifs is a depth-first traversal of the tree ending at node u 
(complete traversals are assumed unless indicated otherwise), then the following will be 
true of s 

• The link leading to a node v not in L r ,„ will be traversed exactly twice since the 
traversal has to get to v and then out of v to reach u. There are (N - 1) - i(L uo.) 
such links since s visits all nodes. 

• The link leading to a node in L T ,u  is traversed exactly once (to get to u). There are 
i(L u,r ) such links. 

Thus the length of s, I(s), would satisfy 

1(s) = 2[(N - 1) - i(Lr,u)] + 1(Lr,u) = 2(N - 1) - i(Lr,u) 	 ( 7) 

If s' is a complete serial traversal which may not visit the nodes in a depth-first search 
order and it also ends at node u of tree T then the link leading to a node v not in L r,u  will 
be traversed at least twice (the traversal has to get to v and then out of v to reach u but 
its visit order may require it to pass through v more times). Therefore, 

£(.5') > 2[(N - 1) -1(L,., u)]+ i(L r,u ) = 2(N - - 
	

( 8) 

Thus, depth-first traversals have minimum length once the ending node is fixed. 

Lemma 4 If T is a tree with c(e) = 1 for all e, and s and s' are two depth-first traversals 
of T then C,11  = 

Proof: Since II is assumed to be uniform, CP = Eve, 44)11(v) = NI I  Eve, 44). 
Similarly, CI) = NIT  EvEv  i(sc). Therefore, we only need to prove that E vEv. i(su ) = 

EvE V /WO' We denote EvEv i(s„) by a, and hence need to prove that a, = cre. We will 
prove it by induction on the size of the tree. For N = 1 there is only one tree and only one 
traversal, thus the property holds. Let's now assume the property holds for all trees with 
cardinality up to N - 1 for N > 1. We will now prove that it holds for N. Let T be a 
tree with N nodes, rooted at r. Let ri to rk be the descendant nodes of r. Let Ti denote 
the subtree rooted at ri. Finally, let Ni denote the size of subtree Ti. Let us consider a 
depth-first traversal s of tree T. Such traversal will visit each one of the above trees in 
turn. Due to the fact that s is a depth-first traversal, once it starts traversing tree Ti it will 
continue with Ti until it has visited all its nodes. Without loss of generality, let's assume 
that s traverses the above subtrees in the order given by the subindices, that is it first visits 
T1, then T2 and so on, leaving Tk last. We can decompose s as follows: 

s = (r, r1) • 81 Lu, 	• (r1, r, r2) • 82 • Lu2 ,T2  • (rz, r, r3) • . sk_1 • L uk_, ,rk _i  • (rk-1, rk) • Sk 

where each si is a depth-first traversal of subtree T1 ending at /Li. Let v E V(Ti). Then we 
can write s„ as 

s, = (r,ri) • si • 	• ...(ri-i,r, ri)(.9i)u 
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Thus i(s„) would be given by 

= 1+ 1(80 i(L ui ,„)-F 2 + ...-F i(si_i) 	 + 2+ i((si)v ) 

Notice that in the above si are depth—first traversals, thus using 7 we can write 

i(sv ) = 1 + 2(Ni  — 1) + 2 ÷ 	2(Ni_i — 1) + 2 + E((si) v ) 

which would finally result in 

i(sv ) = 1 + 2 E Ni £((si) v ) 
.i=1 

Thus we can write a, as 

as = 	EsEv(si)(1 -F.  2 Eiifi  Ni £((si)„) 
= 	 Ni a,; ) 

which can be rewritten as 

k k • 

a, = N — 1 + (N — 1) 2  — E (No2 + E asi  
i=1 

Following an identical argument, we can show that 

k 	k 

a„, = N — 1+ (N — 1)2  — E (No2 + E crei  
1=1 	1=1 

By the induction hypothesis, a„ ;  = crsi i , thus a, = as, and CP = CT follows. 

■ 

Theorem 'T If II is a uniform distribution over V — {r} and c(e) = 1 for all e, then any 
depth—first serial traversal of the tree is optimal. 

Proof: From lemma 4 we know that all depth—first serial traversals have the same cost. 
We only have to prove that the cost of a serial traversal is greater than or equal to the cost 
of a depth—first serial traversal. The cost of a serial traversal would be given by 

Cn = E i(so 	1 n(v) = 	E Aso 
- 

vEV 	 vEV 

Again, let us denote E vev  i(st,) by a,. Let CT be the cost of any depth—first serial traversal 
for tree T and let aT be the value of EvEv  i(s„) for any such traversal s (since the cost 
is same, so is the value of a). We will prove that for an arbitrary serial traversal s' of T, 

> CT by showing that a„, > aT. We will proceed by using induction. The basis is 
trivial, a depth—first traversal is minimal for a tree with just one node. Assume that it is 
still true for all trees with size less than or equal to N —1 (N > 1), we will now prove it for 
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N. Let s be an arbitrary complete serial traversal of T ending at u. It is easy to see that 
(see figure 2) 

S = Si • Luaus • Lu2,u 

where u1  is also a leaf node of T and al  is a serial traversal ending at u i , and where 
V(L u,,u,) C V(si), such that if v E V(Lu2 ,u ) — {u2} then v is a first visit in s. It is easy to 
see that all nodes v in Lu2,u  (except possibly u2 ) have at most one direct descendant. Thus 
u1  is the last leaf node which is a first visit in s besides u. Let T1  be the tree resulting from 
T after the removal of V(L u2 ,u ) — {u2}. Then al  is a complete serial traversal of T1. We 
would thus have 

as = 	 E 	i(.90 
vEv(L.2,0-{u2} 
t(Lu2 ,u ) _i 

= aal + E (i(s)— 
i=0 

Let s' be a depth—first serial traversal ending at u. Then we can also write 

"1 ."u3,u2 Lu2,U 

Let T2 be the subtree rooted at u2 formed by all descendants of u2 except V(Lu 2 ,u) — {u2 }. 
Then u3 would be a leaf node of T2 and .91 would also be a depth-first traversal of T1. Thus, 

i(Lu2 ,n )-1 

Cre = cral 	> 	0 
1=0 

By the induction hypothesis a„ > agt, and from 7 and 8, A(s) > t(s'). Thus we get 
as  > cre = aT, which completes the proof. 	 ■ 

Notice that although in the above lemmas and in the theorem we have assumed that 
c(e) = 1, the results also hold for any other constant value for c(e). 

4.3.2 General Tree Networks 

In a general tree network, the order in which a serial traversal visits the nodes depends on 
the link costs and the. distribution II. A serial traversal starts at the root and expands the 
search by visiting nodes until the resource is found. At any point, the set of nodes visited' 
by the traversal will contain the root node and it is easy to see that the subgraph defined 
by the visited nodes will be connected. In fact, this subgraph will be a subtree of the tree 
network. The next definition formalizes some properties of these subtrees which are used 
in the development of the algorithm which finds an optimal serial traversal. 

Definition 2 Given a rooted tree G(V, E) with root r E V, we say that B C V is a border 
of G if for all v,w E B, v V(L ro„). A frontier of G(V,E) is an ordered pair f = (B,v) 
where B is a border and v E B. 

17 



U3 

Figure 2: Decomposition of a serial traversal in a tree 

In figure 1, the sets {2}, {2, 6} and {1} are valid examples of borders. The set {2, 4} 
however is not a border because 2 E V(L1,4). ({2, 6), 2) is an example of a frontier in this 
tree. In general, if G(V, E) is tree with root r, the set of leaf nodes of any subtree of G(V, E) 
which is also rooted at r will define a border. Similarly, a border defines a unique subtree 
of G(V, E) which is rooted at r. This subtree consists of the nodes that are on the path 
from r to a node in the border. If B is a border and V(B) denotes the set of nodes in the 
subtree defined by B then V(B) = Iviv E V(L r,,„) and w E Bl. 

Since the nodes visited by a serial traversal that starts at r (not necessarily a complete 
traversal) also induce a subtree of G(V, E) rooted at r, we can associate a border with a 
serial traversal. If s = (vo ,..., in) is a serial traversal (s may not be complete) then vi is a 
first visit, which means there will be no i # 1 such that vt E V(L,.,„; ) and hence vi belongs 
to the border of s. If we denote by B(s) the border of s (note V(B(s)) = V(s)), we can 
associate a frontier with s, as captured in the following definition. 

Definition 3 We define the following, 

• Given a serial traversal starting at the root, s = (v o , 	vi), we define the frontier 
associated with the traversal by F(s) = (B(s), 

• Given a frontier, f, we define S(f) as the set of serial traversals whose frontier is f; 
i.e., S(f) = Isis starts at r and F(s) = fl. 

• We also define 0(f, II) = {s E S(f )I= mine Es(f) C,111. Thus, 0(1,11) contains 
minimum cost serial traversals for a given frontier f. 
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• Finally, we define the optimal cost,11f, as ,1If= CI, 1  for s E 0(f,11). 

For instance, in figure 1, traversals s i  = (1,2, 1,3,6) and 32 = (1,3,1,2,1,3,6) are 
such that F(si) = F(s2) = f = ({2,6}, 6). Furthermore, S(f) = {3 1 ,32 } and, assuming 
a uniform II and unit costs for the links, using (6) we get Gig = 2,4 and C82  = 34, thus 

0(f, 11) = {si }. 

If s E S(f) for some f = (B, v), B 	{r}, then, by lemma 3, s = s' • L.„,,„ with 
V(s') = V(s) — {v} = V(B) — {v}. Since F(1) = f' = (B', v') where B' is the border of s', 
V(B') = V(s') = V(s) — {v}. When s' is extended by composing L.„,,„ with it to form s, 
the increase in the average cost due to this extension only depends on the frontier f' and 
not on s'. To show this, we first need to modify the expression for Cr: in (6) when a serial 
traversal may not be complete. In the case when s may not be complete, the cost incurred 
when the resource is not found at nodes in V(s) will be i(s). The probability of this is 
(1 — EuEv(„) II(u)) and hence CP can be written as 

CP = E €(.9.)11(u)+/(s)(1 — E II(u)) 
u€V(al 	 uEV (a) 

Since s = s' • L„,,„ and V(s') = V(s) — {v}, we have 

C1,1  = E t(sitz )11(u)+,e(soll(v)+ i(s)(1 — II(v) — E 11(u)) 
uell(e) 	 uEV(e) 

It can be easily derived from the above and the facts that V(s') = V(B') and t(s) = t(s,„) = 

Cn = 	 E II(u)) 
uEv (w) 

Since the second term in the expression for the cost of s does not depend on the particular 
s' selected, but only on the frontier f', the increase in the average cost only depends on 
frontier f' when a serial traversal is extended as given in the lemma. This allows us to 
establish the following result. 

Theorem 8 Let f = (B,v), and let s E 0(1, II) then there is an f' = (B', v') and s' E 
0(f', II), such that s = s' • L„ , ,„ and V(s') = V(s) — {v}. 

Proof: Let s' be constructed from s as in the proof of lemma 3. Since s' ends at v', 
= (B', v') where B' is the border of s'. We will prove that such s' belongs to 0(f', II) 

if s E 0(1,11). Assume to the contrary that s' O(f', II), then there is an s" E 0(fl , II) 
such that CIL < Cr.). Let us now consider the following traversal s" = s" • L(v', v). By (9) 
we would have 

Cr)„ = 	 E 11(w)) < 	 — E 11(w)) = Cn 
weV(B1 	 toeV(W) 

(9) 
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But the above cannot be true because s is assumed to be optimal. Thus such an s" cannot 
exist and s' itself has to be optimal. 	 ■ 

Using this theorem, we can now give an algorithm based on dynamic programming to 
find an optimal serial traversal of a tree. It starts with frontiers for which the set of nodes 
in subtrees defined by their borders has cardinality 1, until it gets to those with cardinality 
N. The algorithm also finds an optimal serial traversal for each frontier of the tree using 
the results of theorem 8. The frontier with minimal cost among those with cardinality N 
is selected and the serial traversal corresponding to it is the optimal. 

In the algorithm to follow, Fi stands for the set of frontiers for which the cardinality 
of V (B) is i where B is the border of a frontier in Fi, and S f will represent an optimal 
traversal for frontier f, i.e., Si E0(1,11). 

Algorithm 1 

Precompute i(L,„,„,) for all pairs {v, v'}; 
f := ({r},r) ; (* note F1 = {f} *) 
R.( := 0; 
S 	(r); 
for i := 2 to N do 

Find the set F1 , based on F1_1; 
for each f E F1 do 

(B, v) := f; 
Let D(B, v) be the subset of F1_ 1  whose frontiers 

f' = (B', v') are such that V(B') = V(B) — {v}; 
ft f 	minfiED(B,v0P i(L„,, v )(1 — II(V(//1)))}; 
(B,„,v„,):= fm ; (* the frontier yielding the above minimum. *) 

:= Sim  
endfor 

endfor 
return(S/), where f is a frontier in FN 

with minimum Of. 

The correctness of the algorithm follows from theorem 8, which guarantees that to find 
an optimal traversal f = (B, v), only the frontiers f' = (B', v'), with V(B') = V(B) — {v} 
have to be inspected. The above algorithm represents a general procedure to solve the 
problem in trees. However, its execution time in the general case will be exponential in 
the number of nodes since the number of frontiers could be exponential. For particular 
subclasses of trees, the algorithm can be specialized to increase its efficiency. For instance, 
when the only nodes with non—zero probability are the leaves of the tree, the only frontiers 
that have to be considered are those whose border contains only leaf nodes. Similarly, in 
a star network with b branches and maximum branch length of h, the maximum number 
of frontiers will be bounded by (h 1)" • b. Thus for constant b the algorithm will run 
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in polynomial time. A path graph is a special case of a star with at most two branches. 
The borders of a path graph consist of at most two nodes, each at a different branch from 
the root. Thus the total number of frontiers will , be bounded by N 2 , making algorithm 1 
polynomial. Although a bidirectional ring is not a tree, the following lemma shows how 
algorithm 1 can be adapted for rings. 

Lemma 5 Given a bidirectional ring network G(V, E, c) and a complete serial traversal s 
for the ring, there is one link (edge) in E which is not traversed by s. 

Proof: Let s = (v0,..., vi_i, vi). Each node in a ring network is attached to two different 
links. hi particular, vi is attached to two links, one of them is {14_ 1 , v/}. If s traverses all 
the links in the ring, then it will traverse the other link attached to vi, which means that 
there is an i such that 0 < i < 1 and {vi—i, vi} is the other link attached to vl. But this 
means that vi E 	which implies that vi is not a first visit, thus contradicting the 
hypothesis that s is a serial traversal. 	 ■ 

Thus, if s is an optimal serial traversal and e is one of the unused edges, s would also 
be an optimal serial traversal for the line graph obtained by eliminating e from E. Thus 
the previous algorithm can be modified in the following way: 

Algorithm 2 

for each e E E consider G,(V, E — {e}, c) 
Find an optimal traversal se  for Ge  applying algorithm 1; 

endfor 
Let s = se  such that Call = minei€E C 1,11  ; 
return s 

It is possible to make use of algorithm 1 in a general network as a heuristic. For example, 
a particular path in a network could be selected as the set of name servers, holding references 
to resources in the network. The algorithm presented here could be used to find a resource 
reference. As a more concrete example, let us consider bidirectional manhattan networks 
[16,17]. In such networks, nodes could transmit references for their resources to all the nodes 
in their column (row). To locate a resource a node would then apply algorithm 2 to its row 
(column). This scheme to distribute the references to resources in a Manhattan network is 
similar to that presented by Mullender and Vitanyi in [3]. Thus, it is possible to apply the 
results in this section to construct heuristics for graphs other than "polynomial-frontier" 
trees. 

4.3.3 Numerical Examples 

We now show how algorithm 1 can be used to find optimal serial traversals in tree net- 
works. Let us consider the tree in figure 1 and assume that the search starts at node 1. 

21 



We will use the notation II to represent the vector II = (142), ...,I1(8)). When II is uni-
form we get the optimal traversal presented in figure 3-(a). We notice that the optimal 
traversal is a depth-first serial traversal of the tree as was expected from theorem 7. When 
II = (0.01, 0.01,0.01,0.2425,0.2425,0.2425,0.2425), that is, the leaf nodes have a higher 
probability than the internal nodes, the optimal traversal presented in figure 3-(b) goes 
first to the subtree containing the largest number of leaf nodes, then proceeding with the 
other subtree. For the same probability distribution, when we make the costs of the edges 
{4, 7) and {4, 8) equal to 2, we get the traversal in figure 3-(c), which decides to leave 
the traversal of the heavier weights until the end. Finally, for the probability distribution 
II = (0.5, 0.4, 0.002, 0.08, 0.014, 0.002,0.002), we get the optimal traversal in figure 3-(d). 
This traversal visits higher probability nodes first. 

If we consider a ring consisting of 8 nodes, and we start the search from node 1, when 
the probability distribution is uniform, the optimal traversal, as shown in figure 4-(a), 
traverses the ring in one direction without turning back. When the probability is 0.3 for 
both neighbors of node 1 (nodes 2 and 8), and 0.08 for the other nodes, the optimal traversal, 
as shown in figure 4-(b), first visits the two highest probability nodes and then proceeds 
with the rest of them. 

5 Concluding Remarks 

The average cost incurred by a searcher node which has no knowledge about the location 
of the resource is high in large networks. In this situation, the cost of serial search is 
SI(riAN) and this bound has also been shown to hold for various other methods (two of 
the forwarding address protocols [5] which are also serial in nature as well as the scheme in 
[3]). The conclusion that we draw is that it is necessary to possess more knowledge about 
the location of a resource to make the process of finding it sufficiently efficient. 

We have studied the problem of finding an optimal serial traversal when the searcher 
has the distribution for the well-informed set at request time. In particular we have looked 
at the case when the well-informed set is a singleton. The results show that such a problem 
is NP-hard even for complete graphs in which all links do not have the same cost (in fact, 
when there are only two different values for the link costs). Thus the existence of an efficient 
algorithm to find an optimal serial traversal is very unlikely. In the last sections we have 
shown that the problem can be solved in polynomial time for some classes of trees, and 
based on it we have shown a polynomial algorithm for ring networks. 
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Abstract 

We introduce a new concept, multi -dimensional voting, in which the vote and quo-
rum assignments are k-dimensional vectors of non-negative integers and each dimension 
is independent of the others. Multi-dimensional voting is more powerful than traditional 
weighted voting because it is equivalent to the general method for achieving synchro-
nization in distributed systems which is based on sets of groups of nodes (quorum sets). 
We describe an efficient algorithm for finding a multi-dimensional vote assignment for 
any given quorum set and show examples of its use. We demonstrate the versatility 
of multi-dimensional voting by using it to implement mutual exclusion in fault-tolerant 
distributed systems; and protocols for synchronizing access to fully and partially repli-
cated data. These protocols cannot be implemented by traditional weighted voting. 
Also, the protocols based on multi-dimensional , voting are easier to implement and/or 
provide greater flexibility than existing protocols for the same purpose. Finally, we 
present a generalization of the multi-dimensional voting scheme, called nested multi-
dimensional voting, that can facilitate implementation of replica control protocols that 
use structured quorum sets. 
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1 Introduction 

Distributed systems offer many advantages, including resource sharing and fault-tolerance. 
The latter can be achieved by replicating a resource at nodes with independent failure 
modes. Replication can also improve performance when load is shared among the nodes 
that have instances of a resource. In many applications, users need to synchronize ac-
cess to shared resources. For example, when data is replicated to improve its availability, 
updating the data requires mutually exclusive access. This is necessary for maintaining 
data consistency. The synchronization technique should work in the presence of node and 
communication failures. 

Quorum consensus is a general class of synchronization protocols for distributed systems. 
An operation proceeds to completion only if it can obtain permission from nodes that 
constitute a quorum group [3]. Quorum groups used by conflicting operations have non- 
empty intersections to guarantee proper synchronization. The collection of quorum groups 

used by an operation is known as a quorum set. When each group intersects with every 
other group in a quorum set, it is called a coterie [4, 5] and it can be used to achieve mutual 
exclusion in distributed systems. The general method to define quorum sets is by listing 
them explicitly. A well-known method for defining quorum sets is weighted voting [6] which 
is a generalization of the majority consensus method [7]. In voting, each node is assigned a 
number of votes and each operation must obtain a pre-defined quorum of votes before it is 
allowed to execute to completion. Voting can be used for achieving mutual exclusion and 
synchronizing reading and writing of replicated data. In mutual exclusion, each operation 
must obtain a majority of the votes assigned before it can proceed. In reading and writing, 
the read and write quorums must be such that theii sum is more than the total number 
of votes and when version numbers are used to identify the most recent update, the write 
quorum should be at least a majority of all votes. 

Implementing quorum sets in general requires that each node maintain a list of member 
groups. A decision on whether a quorum has been collected is achieved through a search 
of that list. In general, to determine if a group of nodes that responded to a request is a 
quorum group is time consuming because the size of the quorum set can be exponential. 
Weighted voting, on the other hand, is easier to implement as each node has to maintain its 
own vote assignment. An operation can proceed if the number of votes collected is at least 
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the required quorum. Also, addition and removal of nodes may cause the quorum sets to be 
purged and replaced by new ones but will only require a change in the quorum assignment 
when voting is used. 

It was shown in [5] that the method of quorum sets is more general than voting by 
showing quorum sets which cannot be obtained from any vote assignment. Quorum sets 
that are not obtained from vote assignments can be used to achieve better performance by 
reducing the number of messages. The quorum consensus methods proposed in [8], [9], [10] 
and [11] organize the nodes in a logical structure. The quorum groups that are derived from 
such structures can be smaller than those defined by voting and have lower communication 
cost. These structured quorum sets are usually not defined by vote assignments. 

We present in this work a new unifying voting-based method that is as powerful as the 
method of quorum sets and has the flexibility and ease of implementation of voting. In 
multi-dimensional (MD) voting, the vote assignment to each node and the quorums are 
k-dimensional vectors of non-negative integers. Each dimension of the vote and quorum 
assignment is similar to voting and the quorum requirements in different dimensions can be 
combined in a number of ways. This makes multi-dimensional voting more powerful than 
standard voting. We will discuss a number of applications which can be implemented with 
multi-dimensional voting but not with standard voting. 

Methods based on coteries or voting when the quorum or vote assignment does not 
change are static because the groups of nodes that can allow an operation to complete do 
not change. Thus, systems that use a static method do not attempt to adapt to continuously 
varying system state. Dynamic protocols in contrast react to changes in the state of the 
system and adapt the synchronization procedure accordingly. The system can use the state 
information to determine the best quorum set or to reconfigure itself in anticipation of future 
failures. Several dynamic quorum consensus methods have been proposed (see for example 
[12], [13], [14] and [15]). These protocols can use different quorum sets at different times 
and the various pairs of read and write quorum sets used must satisfy additional constraints 
to guarantee data consistency. In this paper we focus on the description of MD-voting and 
its use in static quorum consensus protocols. A dynamic MD-voting method similar to the 
quorum inflation/deflation technique in [13] has been presented in [16]. 

The paper is organized as follows. In Section 2, we introduce the concept of a multi- 
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dimensional vote assignment. In Section 3, we show that every quorum set can be repre-
sented by a multi-dimensional vote assignment and present an efficient algorithm for finding 
one. Sections 4 and 5 discuss the use of multi-dimensional voting for mutual exclusion and 
reading and writing of replicated data, respectively. In Section 6 we consider the use of 
MD-voting for maintaining the consistency of partially replicated data where individual 
nodes may not contain the entire replica. Such a scheme is described in [17]. By applying 
the MD-voting paradigm to the problem, we develop a more flexible scheme that provides 
higher availability in some instances. Finally, we present in Section 7, a generalization called 
Nested MD-voting and provide an example of its use. We conclude the paper in Section 8. 

2 Multi-Dimensional Voting 

We consider a distributed system of N nodes which are numbered as 1, 2, ..., N. In 
multi-dimensional (MD) voting, the vote value assigned to a node and the quorum are 
k-dimensional vectors of non-negative integers. Formally, the MD vote assignment VN,k 
is a Nxk matrix where uid represents the vote assignment to node i in the jth dimension 
and vij > 0 for i = 1, 2, ..., N and j = 1, 2, ..., k. The votes assigned in the various 
dimensions are independent of each other. The quorum assignment x i;  = q2, gk) is 
a k-dimensional integer vector, where q1 > 0, for j = 1, 2, ...,k. In addition, a number 1, 

1 < l < k, is defined which is the number of dimensions of vote assignments for which the 
quorum must be satisfied. Thus, there are two levels of requirements: vote and dimension. 
At the vote level, the number of votes received for a dimension must be greater than or 

equal to the quorum requirement in that dimension. At the dimension level, the number 
of dimensions for which a quorum is collected must be greater than or equal to 1. As we 
show in the next section, this extra level of flexibility makes MD-voting more powerful than 
standard voting. We denote MD-voting with quorum requirement in £ of k dimensions 
as MD(/, k)-voting and the term SD-voting (single dimensional voting) will refer to the 
standard voting method described in [6]. In fact, MD(1,1)-voting is the same as SD-voting. 

Synchronization methods developed from MD-voting operate in a similar manner as 
SD-voting. Each node stores its vote which consists of k integers and each operation has a 
quorum requirement for each dimension and the value of /. An operation requests permission 
from the nodes by sending a voting request to them. When a node receives a vote request, it 
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votes "reject" if it wants to disallow the operation to proceed (e.g., due to locking conflict) 
or replies with its vote in all dimensions. Each operation maintains k independent variables 
which accumulate the votes received in each dimension. When a response containing a 
vote is received, the operation adds the vote in each dimension to the appropriate variable 
and when the sums in at least / variables are greater than or equal to the quorum in the 
corresponding dimensions, the operation can proceed. 

Figure 1 shows an example of how MD-voting works in a system of six nodes. Let us 
assume that in response to a request, the votes of nodes.1, 3 and 4 are received. These vec-
tors are added up and the vector sum is then compared with the vector quorum assignment. 
The compare operation is performed per dimension and the results zero and one represent 
quorum deficiency and sufficiency, respectively. In this case, the quorum requirement is sat-
isfied only in the fourth dimension. If MD(1,4)-voting is used, then an operation collecting 
the votes shown in Figure 1 will be allowed to proceed. However, the operation cannot be 
executed when MD(/, 4)-voting, for = 2, 3, and 4, is used. 

Nodes responding to 	 Multi-dimetuional 
a quorum collection request 	time assignment 

Node I 12 0 

3 1 

• 	 Node 3 0 1 

Node 4 1 0 

1 0 

I 0 1 

2 2 2 0 2 	2 

0 0 Votes received 

0 2 --•• 0 1 0 	2 

1 1 --•• 1 0 1 	1 

1 1 

2 0 

3 1 3 	S sum of vote: collected 

Compare 5 3 S 	5 Quorum vector 

I 	0 0 0 	1' 

Number of dimensions satisfied is one 

Figure 1: Voting procedure in multi-dimensional voting 

One way to implement MD-voting is for each node to store the k integers representing 
its vote and quorum assignment. In response to a voting request, a node sends the integers 
representing the vote assignment of the sending node. An alternative implementation is to 

4 



have all nodes store the quorum vector and the vote assignment matrix. Voting messages 
in this case contain only the identifier of the sending node; thus trading off storage with 
message length. When a large number of dimensions is used, the voting messages can be 

long or significant storage space may be required. In the next section, we will present a 
method for finding MD vote and quorum assignments which tries to reduce the number of 
dimensions. 

3 Finding a Multi-Dimensional Vote Assignment 

3.1 Definitions and Notation 

Let U = {1,2, ..., N} be the universe set of all nodes and we will refer to sets of nodes 
as groups. A quorum set Q is a set of groups of nodes in U and these groups have the 
minimality property [3]: 

YG,HEQ: GZH 

The synchronization requirements define what groups are included in the set. For example, 
if mutual exclusion is desired, this set is a coterie and any two of its members must have a 
non-empty intersection (see Section 4). 

A number of quorum sets can be represented by SD-voting. Each node i in SD-voting is 
assigned vi votes (1 < i < N) where vi is a non-negative integer and a quorum q is defined, 
such that nodes in each group of the set have at least q votes. Specifically, with the vote 
assignment v = v2 , ..., vN), the members of the set defined by (v, q) are tight groups of 
nodes which have at least q votes. A group G is tight with respect to quorum q if, 

• EgEG Vg q and, 

• any proper subset of G has less than q votes 

The set of tight groups Q defined by (jz, q) is, 

Q = {G I G is a tight group with respect to quorum q} 

and this set has the minimality property since if there would exist G, H E Q such that 
G C H, then H would not be tight. Hence, a vote and a quorum assignment (v, q) defines 



a unique quorum set. For instance, the vote assignment (1,1,1) to a three node system with 
q = 2 defines the quorum set {{1,2},{1,3},{2,3}}. The same set can be represented by the 
vote assignment (2,2,3) and q = 4. In fact, if a quorum set is SD-vote assignable, there is 
an infinite number of vote and quorum assignments that may be used to represent it. 

In a similar manner, an MD(t, k) vote and quorum assignment also defines a unique quo-
rum set. A group G is a tight group in MD(t, k)-voting with respect to quorum requirement 
q if 

• EgeG  vgd,> q11  for at least t distinct dimensions j 1 ,j2,...,ji and, 

• any proper subset of G satisfies quorum requirements in strictly less than t dimensions 

The set ( 21,k(VNA, i k ) of tight groups represented by the MD(t, k) vote and quorum assign-
ment (VN,k,g.k ) is, 

Qt,k(VN,k, Ik ) = {G I G is a tight group in MD(t, k)-voting with respect to i k } 

Similar to SD-voting, the same set of tight groups can be represented by different MD(t, k) 

vote and quorum assignments. The set of tight groups for the special cases where t = 1 
(any dimension) and t = k (all dimensions) can be given as follows, 

Qi,k(VN,k, 4k ) = {G I G is a tight group such that: 3j : 1 < j < k : 	vg ,3 > q1} 
gEG 

Qk,k(VN,k,gk) = {G I G is a tight group such that: Vj : 1 < j < k E vg, > qj} 
gEG 

In MD(1,k)-voting, an operation can proceed if quorum is available in any dimension and 
in MD(k, k)-voting, quorum requirements in all dimensions must be satisfied. For MD(1,k)- 
voting, we can also write, 

k 	 k 

Q 1,k(VN,k 2A) = {GIGEUCJAVHEUCi: HOG} 	 (1) 
j=1 	j=1 

where Ci is the set of tight groups defined by the j ih  dimension of vote and quorum assign-
ment, i.e, Q 1,k(VN ek gic ) is all the minimal groups in 14=1  Ci. 

Table 1 presents a two-dimensional vote and quorum assignment to a system of four 
nodes. The sets C1 and C2 are the sets of tight groups corresponding to the first and 
second dimension of the MD vote and quorum assignment, respectively. 
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1 1 

1 1 
v4,2 = 2=(2,3) 

1 1 

0 2 
C1  = {{1,2},{1,3},{2,3}}, C2 = {{1,{2, 4}, {3, 4}, {1, 2, 3}} 

Q1,2074,2,20 = {{ 1 , 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} 
Q2,2(V4,2,q2) = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} 

Table 1: An example of multi-dimensional vote assignment 

3.2 The Existence of MD Vote Assignments 

We show that any quorum set Q can be represented by an MD(1,k) vote and quorum 
assignment. 

Lemma 3.1: Let Q be a set of groups satisfying the minimality property such that 

V G,HEQ: GZH 

Then Q can be represented by an MD(1,k) vote and quorum assignment where k = I Q I- 

Proof: Let Q = {G1,G2,...,Gk} so that I Q I= k. We construct the following k-dimensional 
vote assignment: the vote value of node i in the jth dimension, i = 1,2, ...,N and j = 
1,2, ...,k is given by, 

Vid = 1 

yid = 0 

for i E Gi 

for i 

with qi =1G2 I. We will show that Q = Qi,k(VN,k,g.k). 

From the construction of the MD(1,k) vote and quorum assignment that yields ch,k(vN,k, g k ), 

it is trivially true that H E Q 	HE Q1,k(VN,k,g4), i.e., QC.  Qi,k(V .N,k,2k )• (When 
H = Gi, votes from nodes in H satisfy the quorum requirement in the j th  dimension and 
H is also tight.) Consider the Ph dimension of the MD vote assignment that is derived 
from the group Gi E Q. The set of groups Ci represented by this dimension is equal 
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to {G,} and since Q i ,k(VNA,u) is all the minimal groups in U9L Ci (see (1)), we have 

Qi,k(VN,k,l k ) g 

Lemma 3.1 guarantees that an MD(1,k) vote and quorum assignment can be found for 

any set of minimal groups Q. In the constructive proof, since each group is represented by 

a separate dimension, the number of dimensions used is equal to IQ I, which may be large. 

We present in what follows a technique that tries to represent several groups by a single 

dimension of an MD vote and quorum assignment. Therefore, in practice, the number of 

dimensions needed to obtain an MD(1,k) vote assignment could be much less than I Q I. 

3.3 Algorithm for Finding an MD Vote Assignment 

The proof of Lemma 3.1 provides an MD(1,k) vote and quorum assignment with k equal to 

the number of groups in the quorum set. In this assignment, each dimension represents one 
quorum group and vice versa. Since all groups of an SD -vote assignable quorum set can 

be represented by a single dimension, MD(1,1) voting can be used to represent such sets. 

For quorum sets that are not SD-vote assignable, we use a single dimension to represent as 

many groups as possible to reduce the number of dimensions. 

In [18], a technique is described for testing if a set of groups Q is SD-vote assignable. 
A linear program, LP(Q), is set up using the groups in Q and solved using the Simplex 

method. If LP(Q) does not have a feasible solution then Q is not SD-vote assignable. 
Otherwise, a rational solution is found which can be converted to an integral vote and 

quorum assignment. We have extended the algorithm to find an MD(1,k) vote and quorum 

assignment for a quorum set Q. The new algorithm is illustrated in Figure 2 and is described 

in detail in Appendix A. It finds an MD(1,k) vote assignment by testing to see if the initial 

quorum set Q is SD-vote assignable. If so, the algorithm outputs the MD(1,1)-vote and 

quorum assignment found by the Simplex method. Otherwise, a group A is removed from Q 

and the quorum set Q — {A}, consisting of the remaining groups of Q, is tested to see if it is 
SD-vote assignable. This process is repeated until the groups that remain form an SD-vote 

assignable quorum set. The vote and quorum assignment for this quorum set is the first 

dimension of the MD-vote and quorum assignment. The groups that were removed in the 

process are stored in the temporary variable D and used as input in a second iteration to 

find the second dimension of vote and quorum assignment. This is repeated until all groups 



Not feasible 

Done Choose a group A in Q; 
Q:=Q- (A); 

D := D + 

Q := D; 
D := empty set; 

k := 0; 
Q := input quorum set; 
D := empty set; *  *(D is the set of deleted groups in an iteration.) 

Setup and solve LP( Q); 
k := k + 1; 
Output solution Yk and qk; 

Feasible 

are represented by the MD-vote and quorum assignments. Since a quorum set consisting of 
a single group is SD-vote assignable, at least one group of Q is represented and removed in 
each iteration, and the algorithm is guaranteed to terminate. 

This algorithm will be used to find MD(1,k) vote and quorum assignments for several 
non-SD vote assignable quorum sets in the following sections. 

Figure 2: Algorithm for finding MD(1,k) vote and quorum assignment 

3.4 Using MD-Voting for Distributed Synchronization 

MD-voting is a powerful concept and has a wide range of applications. The subsequent sec-
tions (Sections 4, 5 and 6) illustrate the versatility of MD-voting by using it to implement 
solutions to a variety of synchronization problems in distributed systems. Although any 
quorum set can be represented by an MD(1,k) vote and quorum assignment, finding such 
a representation, however, requires listing the quorum set and using the algorithm in the 
previous subsection. For certain replica control protocols producing the listing is imprac- 
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tical. In such situations, we would like to be able to determine the MD-voting parameters 
from the description of the protocol. In some instances, as will be seen in Section 5.2, 
MD(t, k)-voting parameters may be found from the protocol description. In other situa-
tions, this may not be possible. We introduce a generalization of MD-voting, called Nested 
MD-voting, which will help us in determining the MD-voting parameters for a hierarchical 
quorum consensus method. 

4 MD-Voting for Mutual Exclusion 

The problem of mutual exclusion arises in many applications where a process must acquire 
exclusive access to a shared resource. In distributed systems, the synchronization method 
used must tolerate node and link failures. The general method for achieving synchronization 
in a distributed system is the use of coteries. The definition of a coterie is given in [5] and 
it is repeated here for completeness. 

Definition 4.1: Coterie [5]. A set of groups Q is a coterie under U = {1,2, , N} iff 

1. GEQ 	GCE/ A GOO 

2. (Intersection property) V G, H E Q: GnHOO 

3. (Minimality property) V G, H E Q: G%H 

A process synchronizes with other processes by obtaining permission from nodes that form 
a group of the coterie. A node gives permission to only one request at a time and the 
other requests are kept pending until the request that was given permission completes. The 
intersection property guarantees that only one process will succeed at a time and mutual 
exclusion is achieved. However, in the general case, implementation of the method based 
on coteries could be complex. It will require that processes keep a list of the groups in the 
coterie and a comparison of the responses against this list is made to determine if a process 
can proceed. To determine if a set of nodes form a group in a coterie can be computationally 
expensive because the size of a coterie can be exponential. 

SD-voting can also be used to achieve mutual exclusion when the quorum used is a 
majority of the votes. The SD vote assignment to the nodes uniquely determines a coterie 
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and we will call coteries that have an SD-voting equivalent SD-vote assignable. There exist 
coteries that cannot be obtained from SD vote assignments, thus the method of coteries is 
more general than SD-voting [5]. SD-voting also requires a relatively large number of nodes 
to participate in the execution of the protocol. For example, to achieve mutual exclusion, 
nodes that have more than half the votes must participate. Consequently, each mutual 
exclusion request generates a large number of messages which have a significant impact 
on response time. Coteries that are not SD-vote assignable can achieve mutual exclusion 
using a lower number of messages (e.g. [8] and [9]). However, such coteries cannot be 
implemented by SD-voting. The following corollary shows that MD-voting is as general 
as coteries and can be used to implement mutual exclusion methods with the desirable 
properties of SD-voting. 

Corollary 4.1: A mutual exclusion coterie Q of N nodes can be represented by an MD(1,k) 
vote and quorum assignment. 

Proof: Since Q satisfies the minimality property (Q is a quorum set), the claim follows from 
Lemma 3.1. 

Table 2 shows a coterie which was described in [5] and it was shown to be non SD-vote 
assignable. The table presents an MD(1,4) vote and quorum assignment for the coterie. 
(Notice that the number of dimensions, 4, is smaller than the number of groups in the 
coterie which is 7.) 

Q = {{12},{134},{135},{146},{156},{236},{245}} 

( 2 0 2 2 
3 1 0 0 
0 1 0 2 

V6,4 = 
1 0 1 1 

1 q 
-4 

= (5,3,5,5) 

1 0 1 1 

\ 0 1 2 0 / 

Table 2: A non SD-vote assignable coterie and its multi-dimensional vote assignment 
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A structured coterie approach organizes nodes in some logical structure and groups in 
the coterie are derived from this structure. In [9] the nodes are organized into a binary tree 
structure and groups of nodes that form a path from the root to a leaf define a group in the 
coterie. If some node on a path fails, it is replaced by two paths starting from the children 
of the failed node. The tree-based method can achieve mutual exclusion using as few as 
log(N) messages when there are few failures. Table 3 shows the MD(1,5)-vote and quorum 
assignment, produced by the algorithm in Section 3, for the coterie that is derived from a 
binary tree of depth three. Alternatively, we can find, by inspection, the MD(2,3)-vote and 
quorum assignment in Table 4 to represent the same coterie. 

Q = {{124},{125},{136},{137},{145},{167},{2346},{2347}, 
{2356},{2357},{2467},{2567},{3456},{3457},{4567}} 

/0 0 0 2 2 \ 

0 2 2 0 1 

1 1 1 1 0 

V7,5 = 2 0 2 0 1 , 	is  = (6,6,6,4,4) 

2 2 0 0 1 
1 1 1 1 0 

`1 1 1 1 0 / 

Table 3: A tree-based coterie and its MD(1,5)-vote and quorum assignment 

V7,3 = 

/1 

0 
0 
0 
0 
0 

\0 

0 
1 
0 
2 
2 
0 
0 

0\ 
0 
1 
0 
0 
2 
2 

, 	q = (1,3,3) 

Table 4: MD(2,3)-vote and quorum assignment for the tree-based coterie inTable 3 
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5 MD-Voting for Reading and Writing Replicated Data 

We examine the use of MD-voting to implement read and write quorum sets which corre-
spond to replica control protocols that cannot be implemented using SD-voting. We assume 
that a node stores only a single version of the replica and version numbers are used to iden-
tify the most recently updated replicas. The method described can easily be modified when 
timestamping is used instead of version numbers. A read operation returns some value and 
a write operation installs a new value. To ensure one-copy serializability [19], we do not 
allow a read and write operation and two write operations to execute concurrently 1  . In 
general, synchronization of read and write operations to replicated data can be ensured by 
requiring that each operation obtain permission of *a group of nodes and the groups used 
by conflicting operations have non-empty intersection. Minimal groups of nodes that can 
allow a read and write operation to complete are called read and write groups respectively. 
The read and write quorum sets R and W are the sets of read and write groups used. (W 
is a quorum set and R is its anti-quorum set [3].) The synchronization requirements given 

above are satisfied if, 

1. (Read/write intersection property) V G E R, HE W:Gn H # 0, and 

2. (Write/write intersection property) V G, HE W:GilHO 

R and W have the minimality property and W also has the intersection property (W is 
a coterie). Since read operations can be executed concurrently, the set R need not satisfy 
the intersection property, i.e., in general R is not a coterie. For a given R, to maximize 
write availability, W equals the maximal set of minimal groups that have read/write and 
write/write intersection property. The set W, in general, is not unique for a given R. For ex-
ample, let R = {{1,2}, {3,4}}, then the sets {{1,3},{1,4},{2,3,4}} and {{1,3},{2,3},{1,2,4}} 
can both be used as write quorum sets. 

A replica control protocol corresponds to a read and a write quorum set which satisfy 
the synchronization requirements. Thus, in the general case, consistency of replicated data 

1 In addition to the replica control protocol each node uses a local synchronization protocol (e.g., two-
phase locking or timestamp ordering) to achieve one-copy serializability. Note that single writer/multiple 
readers synchronization is sufficient but not necessary for achieving one-copy serializability. 
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is maintained using two possibly different sets of groups (one for reading and the other for 
writing) which have the minimality property. It is straightforward to see that MD vote 
assignments can be obtained for each of them, one is used for reading and the other one is 
used for writing. In the general case, the MD vote assignments obtained for the read and 
write quorum sets may be different. Consequently, a node must use the appropriate MD 
vote assignment (based on the type of the request) to vote on each request. Thus, votes 
obtained for a read request cannot be used for a write request. Although it is feasible to 
implement read and write quorum sets with separate MD vote and quorum assignments, 
it is simpler and more efficient to allow votes obtained for reading to be augmented to a 
quorum for writing because transactions usually read the data before updating it. This will 
be similar to SD-voting where the same vote assignment is used to define both read and 
write quorum sets. In the next subsection, we describe a replica control protocol that uses 
a single MD vote assignment to define both read and write quorum sets and allows a read 
quorum to be augmented when the read data items are also updated. 

5.1 A Replica Control Protocol Based on MD -Voting 

In the design of a replica control protocol under the assumption that read transactions 
are predominant, an appropriate read quorum set that provides high read performance is 
chosen and the corresponding write quorum set is computed to satisfy the synchronization 
requirements. In general, the read quorum set can be represented by an MD(1, k) vote 
and read quorum assignment. Let VN,k and 7: k = (ri,r2,...,rk) be the vote and read 
quorum assignment for an MD(1, k)-voting system used in reading and Qt,k (vN ,k , _tic ) rep-
resents the set of minimal groups defined by the assignment. To allow write operations to 
synchronize using the same vote and read quorum assignment, we define the write quorum 
tsk = (wi , w2, . wk) to be, 

N 

Wi = 	 7-1 + 1, 	for j = 1,2,...,k 

Since, as explained later, the write/write intersection is achieved in another manner, we do 

not require 	•that wi > 1-1-01=i vi' +1 1 votes, for j =  1,2, ..., k. The write 	•quorum wi will 2 

only ensure that groups that satisfy the write requirement intersect with all read groups 
of the j gh dimension of the MD vote assignment. Since the read quorum set is defined 
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by MD(i,k)-voting, we must use MD(k - l + 1, k)-voting for writing to ensure that the 
read/write intersection property holds. Let Q k+1-1,k(VN Mk) be the set of tight groups 

represented by the MD(k 1 - 1, k) vote and write quorum assignment. The following 

lemma shows that Qt,k(VN,k,rj,) and Qk+i-e,k(VN,kosk) have the read/write intersection 

property. 

Lemma 5.1: 

V G E QtA( VN,k Ek ) , H  E k4-1 -1,k( VN,k, Mk): G n H OO 

Proof: 

Let G and H be two arbitrary groups in Qt,k(VN,kti:k) and Q k+1-1,k(VN,k, VA) respec-
tively. Since (1)4- (k 1 - 1) > k, there is some dimension s such that, 

E vg,, ra  
gEG 

and E vh,, > 
hEH 

Since ra  tv, > 	there must be a common node in G and H and hence Gn H # 0. ❑ 

Although the sets Qe,k(VN,k,7_:k) and Qk+i-e,k(VN,k,  tij) ; ) have the intersection property 
which is necessary for read/write synchronization, Qk +i _t,k(VNA, tsk ) may not be a write 
quorum set for Q t,k(VN,k7 7-:k) because it may not have the write/write intersection property 
which is required when version numbers are used. To achieve this, we can augment each 
group of Q k4-1-1,k(VN,k7 Mk) to include a group of Q 1,k(VN,k7 . We define the write quorum 
set W which is derived from Qt,k(VN,kt1:k) and Qk+i-e,k(VN,k,u).k) in the following way: 

W= {A Li./31AUB is minimal and A E Qt,k(VN,k,1:k),B E Qk+i-t,k(VN,ktMc)} 

The set W is unique for a given pair (Qt,k(VNA,r k ) --t,k(VN,k, Mk)) and it can be 
constructed by first forming the set of all groups {A U B}, where A E Qt,k(VN,k,rk)  and 
B E k+1_0(VN Mk), and then removing all the groups that are supersets of some other 
group in the constructed set. It can be easily seen that when Qt,k(VN,k,7_:k) and W are 
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used for reading and writing, both the read/write and write/write intersection properties 
are satisfied. The latter property follows from the read/write intersection of groups in 

Ql,k(VN,k,Tk) and Qk+1-t,k(VN,k,3_4k)• 

The replica control protocol used is thus as follows: when reading, the operation obtains 
a read quorum in at least l dimensions and when writing, it must obtain a read quorum 
and a write quorum in and k 1 — I dimensions, respectively. If reading of the data is 
followed by its write (which is the typical case), the write operation only needs to obtain a 
write quorum and the method thus allows the read quorum to be augmented. 

A special case of the protocol is when MD(1,k)-voting is used for reading. Then, we can 
use the method in Section 3 to find an MD(1,k) vote and read quorum assignment for any 
given read quorum set. The corresponding write quorum set will be represented by using an 
MD(k, k) vote and write quorum assignment. In this case, the read operation can proceed 
if it can obtain a read quorum in any one dimension. If the transaction wishes to update 
the data after reading it, the votes received for the read request must be supplemented with 
additional votes such that in each dimension the number of votes received is greater than 
or equal to the write quorum for that dimension. The general case where MD(i, k)-voting 
(arbitrary i) is used, is more difficult as we do not yet have an algorithm to find an MD(i, k) 

assignment when 0 1. However, if the read quorum set used is derived from some logical 
structure, such as the example described in the next subsection, we may be able to use the 
structure to formulate an MD assignment. 

5.2 Example - The Grid Protocol 

As an example, we consider the replica control method presented in [10] which organizes 
the nodes of the system into a logical grid consisting of m rows and n columns. A read 
quorum group contains n nodes where one node is selected from each column and a write 
group consists of nodes in a read group and all nodes in a column of the grid (the quorum 
sets used in this method are generally not SD-vote assignable). For example, Figure 3 
shows a six node system organized into a 2x3 grid. The read and write quorum sets used 
are {{1,2,3}, {1,2,6}, {1,5,3}, {1,5,6}, {4,2,3}, {4,2,6}, {4,5,3}, {4,5,6}} and {{1,4,2,3}, 
{1,4,2,6}, {1,4,5,3}, {1,4,5,6}, {2,5,1,3}, {2,5,1,6}, {2,5,4,3}, {2,5,4,6}, {3,6,1,2}, {3,6,1,5}, 
{3,6,4,2}, {3,6,4,5}}, respectively. Notice that a read and a write quorum group and two 
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Figure 3: A Grid Network 

write quorum groups have non-empty intersection. 

The read quorum groups of the grid protocol can be represented by the following MD-
vote and quorum assignment. The MD-vote assignment used for an mxn grid network 
consists of n dimensions and a node i has vi = 1 if it is in column j, otherwise v1 ,3 = 0, for 
j = 1, 2, ..., n. For instance, the MD-vote assignment of the 2x3 grid system in Figure 3 is 
given in Table 5. Nodes in the first column (i.e., nodes 1 and 4) are assigned one vote in the 

V6 ,3 = 

I 1 0 0 

0 1 0 

0 0 1 

1 0 0 	
= 1 , 1 , 1 	= (2, 2, 2) 

0 1 0 
o 0 1. 

Table 5: Multi-dimensional vote and quorum assignment for the 2x3 grid system 

first dimension and zero votes in the other dimensions. Similarly, the nodes in the second 
and third columns are assigned one vote in the second and third dimensions, and zero votes 
in the other dimensions, respectively. The read quorum vector used is r n  = (1, 1, ..., 1) and 
the voting method is MD(n, n)-voting (i.e., quorum requirement must be satisfied in all n 
dimensions). The number of votes collected in dimension j is at least one if and only if 
some node in column j responded positively to a voting request. If the quorum requirement 
is satisfied in all dimensions, then there is at least one node in each column that responded 
positively, and vice versa. Thus, the MD(n, n)-voting method represents the read quorum 
set of the grid protocol. 

There are many write quorum sets possible for a given read quorum set of the grid 
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protocol and the one proposed by the previous subsection is defined using the write quorum 
vector wn  = (wi , w2, , wn) where wi = vij — 4-1, for j = 1, 2, ..., n. Since ri = 1, 
for all j, and only nodes in column j have non-zero votes in the jgh dimension, we have that 
wi = m, for all j. A write quorum group consists of the union of a read quorum group and a 
group in the set Q i ,n(VN,„,z,) which is the set of tight groups defined by MD(1,n)-voting. 
A group in 00 (V - N,„, gin ) satisfies the quorum requirement in at least one dimension. Since 
wi = m and only nodes in column j have non-zero votes in dimension j, for j = 1, 2, ..., n, 
the quorum requirement in dimension j is satisfied only when all nodes in column j respond 

positively. Hence, a write quorum group consists of a read quorum group and all nodes in 
a column of the grid which is the case in the grid protocol. 

The grid protocol is based on the structured quorum set concept discussed in Section 
4. The size of the read and write groups in a square grid is of the order 0(1k), where 
K is the number of nodes with replicas and it can be smaller than quorum groups in SD- 
voting. A simulation study in [10] showed that the response times of transactions in systems 

using the grid protocol are significantly lower than those that use SD-voting for the same 
number of nodes. It also showed that an increase in the number of nodes in a system 
using SD-voting will not result in much reduction in response time because the load is not 
shared effectively. Systems using the grid protocol have higher maximum throughput and 
lower response time. Notice that in the MD-voting method, operations are unaware of the 
topology and the position of the nodes in the grid. 

6 Partially Replicated Data 

6.1 Background 

Fragmentation is a technique where a file is divided into fragments and different fragments 
may be stored on different nodes. Fragmentation may be necessary because the amount 
of storage space needed to store a file exceeds the capacity of a node. Also, transactions 
at a particular node often access a specific portion of the data and storing the frequently 
accessed part locally will effectively reduce network traffic and delay. 

Fragmented data can also be replicated and the fragments can be replicated a different 
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number of times and stored at a different set of nodes. A single node may not necessarily 
hold all the fragments of a file. The schemes that can be used to maintain data consistency 
in such environment are called partial replication methods since nodes may maintain only 
a fraction of the file. Partial replication complicates access to the file because subsets of 
nodes must be identified that will constitute a complete and current copy. 

6.2 Maintaining Partially Replicated Data 

A scheme that can be used for maintaining the consistency of partially replicated data is 
described in [17]. The system consists of N nodes and to reduce storage, only M replicas 
(M < N) are distributed among the nodes. Each replica is subdivided into N fragments, 

where f,, denotes the Ph fragment of the ith  replica, i = 1,2, ..., M and j = 1, 2, N. 

Each node stores M distinct fragments of the file. The fragments stored at a particular node 
are identified as a segment. The Full Copy Equivalent (FCE) of a file is the least number of 
segments necessary in the worst case to reconstruct the file. As an illustration, we consider 
a five-node system with three replicas. Each replica is subdivided into five fragments and 
the fragments are stored as shown in Figure 4. Note that the segments in nodes 1 and 3 are 
sufficient to reconstruct the entire replica. However, the segments in nodes 1 and 2 are not 
sufficient. Note also that any three segments are guaianteed to contain enough fragments 
to reconstruct the replica. Thus, in the worst case, any three segments are required and 
FCE = 3. In general, the FCE in the distribution scheme in [17], is equal to N — M 1. 

Node 1 Node 2 Node 3 Node 4 Node 5 

f12 f13 114 f15- 

122 123 124 125 121 

133 135 131 132 

Figure 4: Distribution 1 of fragments over the nodes 

The read and write quorums r and w must satisfy the following constraints: 

• N—M+1<r<N 

• max(N — M 1, [1-4-11) < w < N 
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• N (N — M 1) < r -F w < 2N 

The read and write quorum combinations that can be used for the system in Figure 4 are 
(r = 3, w = 5), (r = 4, w = 4) and (r = 5, w = 3). For instance, if (r = 3, w = 5), then the 
read and write quorum sets R 1  and W1  are given by: 

Ri = {{123},{124},{125},{134},{135},{145},{234},{235},{245}, {345}} 

= {{12345}} 

Note that this particular quorum selection (r = 3, w = 5) is the most desirable from a 
performance point of view if read operations are predominant. 

6.3 Using MD-Voting for Maintaining Partially Replicated Data 

Consider the distribution of fragments given in Figure 4. For a read operation, it is possible 

to access a smaller group of segments than the ones in R 1  to reconstruct the complete replica. 
For instance, R2 = {{13}, {14}, {24}, {25}, {35}} can be used as the read quorum set when 
the write quorum set W2 = W1 = {{12345}}. Since each group of nodes that constitute a 
quorum group in R1 is also a quorum group in R2, R2 provides better availability than R1. 
This is due to the fact that if the file can be read using R 1 , it can also be read when groups 
in R2 are used. (R2  is said to dominate R 1  [3] since each group in R 1  is a superset of some 
group in R2.) The reason the more desirable quorum sets are not possible in [17] is because 
R2 is not vote assignable using traditional SD-voting. It is however , possible to obtain R2 
and W2 above using MD(5,5)-voting and the vote and quorum assignments in Table 6. 

175 5 = 

1 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 
1 

1 

0 

0 

0 

1 

1 

1 

0 

0 

0 

1 
1 

1 

, r 5  = (1,1,1,1,1) and .u 5  = (3,3,3,3,3) 

Table 6: An MD(5,5)-vote and quorum assignment for partially replicated data 
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The above observation forms the basis of our partially replicated data scheme described 
below which is based on MD-voting. Assuming that each file is subdivided into k fragments 
(the scheme in [17] uses k = N): 

• Assign the vote uji, a positive integer, to fragment f,,, for i = 1,2, ..., M and j = 

1,2, ..., k, and define the vote assignment VNk as follows: 

— vai = uji, if the segment at node a, a = 1,2, ..., N, contains the fragment fii 
for some i = 1,2, ...,M and j = 1,2, ..., k. 

— vat = 0, otherwise. 

• For each dimension j, j = 1,2, ..., k, we define the quorums ri and w3 such that 
r-■ N 

[Li esti + 1 1 	 %—,
4
JV and rj 	V.7j == 2_ =.1 trij 4- 1. of > 0, wi > 	2 

• Read and write accesses to the partially replicated file use the MD(k, k)-voting pro-
tocol and the read and write quorum sets used are: 

R = {G I G is a minimal group in MD(k, k)-voting with respect to r k } 

W = {H I H is a minimal group in MD(k, k)-voting with respect to wk } 

The following lemmas show that R and W defined above will correctly synchronize read 
and write operations, and read operations will return the most recent copy of the data. 

Lemma 6.2: 

Let: 

Rt = {G I G is a minimal group in MD(i, k)-voting with respect to Lk} 

Wt = {H J H is a minimal group in MD(t, k)-voting with respect to w k } 

If t 	, then: 

VG E Rt, H Wt : GnHoo 
and 

VG,H E Wt : Gn H 4 
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Prof: 

Let G E 14 and H E Wt, then G and H satisfy the vote requirements in at least 
dimensions with respect to rk  and wk , respectively. Since l > [411, there is at least one 
dimension j such that EaEG Val > ri and EaEH Vaj > wj. Since rj wj > 	vi j, we 
have that Gni/0 0. 

If G, H E Wt, then we have that E aEG  vai > wj and EaEH Vai > w1, for some dimension 

j. Since 2w3 > E;.1=1 vii, we have that G n H # 0. ❑ 

From Lemma 6.2 and the fact that k > PV-1, we have that: 

VGER, HEW: Gn11015 

and 
V G,HEW: GnI100 

The following lemma guarantees that a read operation access a complete replica. 

Lemma 6.3: 

Each read operation will access a complete replica. 
Prof: 

Let G E R and H E W. Since R and W satisfy read and write quorum requirements 
in all k dimensions, we have that EaEG Vaj > rj and EaEH vaj > wj. for dimension 
j = 1,2, ..., k. Since rj wi > E iN_i  vij, each read quorum group contains a fragment j 

that has been updated by the most recent write operation, for j = 1,2, ..., k. Hence, the 
read operation will obtain the most recent copy of data. ❑ 

6.4 Properties of the MD -Voting Approach 

The MD-voting scheme assigns votes to fragments in contrast to the scheme presented in [17] 
which assigns votes to segments. The finer granularity of vote assignment in the MD-voting 
method allows the system to recognize more available system states in some instances. This 
has been demonstrated in our previous example (see Section 6.3) where through the use of 
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MD-voting one can obtain a better read quorum set. This property is formalized in the 
following lemma. 

Lemma 6.4: 

For the MD-voting partial replication scheme described in Section 6.3, let R be the read 
quorum set obtained by setting /hi = 1 and ri = 1, for i = 1,2, ..., M and j = 1, 2, ..., k. 

Let G be an arbitrary group of nodes that contains a complete replica. Then, 

3HER: HCG 

Proof: 

In order to construct a complete replica, the segments in G must contain a fragment f,,, 
for each j = 1, 2, 	k and for some i = 1, 2, ..., M. Then the sum of votes r 1...a€G Val 	1, 

for j = 1, 2, ..., k and hence G or a subset of G is a group in R.CI 

We know from Lemma 6.4 that with MD-voting, it is possible to identify the minimal set of 
segments that constitute a complete copy of data and allow the system to access the data 
when minimal groups of nodes are operational. In contrast with [17] where a voting scheme 
is used to identify the set of segments, it is possible to first find the set of of minimal groups 
of segments and then construct an MD-vote assignment to represent it. 

Another advantage of using MD-voting for maintaining partially replicated data is 
greater flexibility. Different fragments can be replicated a different number of times and a 
node can store an arbitrary number of fragments. Distribution of fragments of the repli-
cas is not subject to any constraint which is not true for the scheme in [17]. The correct 
operation of the protocol is still guaranteed through Lemmas 6.3 and 6.4. 

For instance, we can fragment three replicas into four fragments each and distribute 
the fragments over five nodes in the manner given in Figure 5. The votes assigned to 
different fragments can be different. For instance, in Table 7, we allocate fragments at node 
1 two votes each and fragments at others nodes receive one vote each. Using the quorum 
assignments given in the figure, the corresponding read and write quorum sets are {{124}, 
{125}, {145}, {2345}} and {{124}, {125}, {1345}} respectively. 

Choosing the optimal fragment distribution, fragment vote and quorum assignment 
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Node 1 Node 2 Node 3 Node 4 Node 5 

112 121 113 114 

122 123 132 124 133 

134 fai 

Figure 5: Distribution 2 of fragments over the nodes 

2 2 0 2 

1 1 1 0 

V54 = 1 [ 1 0 0 , /14 = (2,2,2,2) and tut  = (3,3,2,3) 

0 0 1 1 

0 0 1 1 

Table 7: An MD(4,4)-vote and quorum assignment for partially replicated data 

when storage per node and node availabilities are given, is an interesting problem for future 

research. 

7 Nested Multi-Dimensional Voting 

In this section we present another representation method for the multi-dimensional voting 

scheme. Recall that a quorum group in MD(i, k)-voting satisfies the quorum requirements 

in any t of k dimensions. Another multi-dimensional voting method uses an explicit list 

of groups of dimension indices called index set I for which quorum requirements are to 

be satisfied. Figure 6 shows an example of the voting procedure using this MD-voting 

method in a system of six nodes. The index set I used is {{1,2}, {1,3}, {1,4}, {2,4}, 

{3,4}}. Suppose the votes of nodes 1, 2, 3 and 4 are received. The vector sum of votes 

is determined and compared to the quorum vector. The quorum requirements in the first 

and fourth dimensions are satisfied. The voting procedure now proceeds to check if {1,4} 

is an index group or a superset of an index group in I. Since {1,4} is a group in I, the 

procedure returns successfully. In this technique, the set I represents an explicit listing of 
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dimension requirements. MD(1, k)-voting is a special case of this MD-voting method since 
it uses the index set that consists of all subsets of size l of the set {1, 2, ..., k}. Note that 

each member of I should be a minimal group and I satisfies the minimality property (see 

Section 3.1). 

Nodes responding to 	Generalized multi-dimensional  
a quorum collection request 	

vote assignment 
 

1 --.- 	2 0 2 2 	—■ 2 0 2 2 

Node 2 	 3 1 0 0 3 1 0 0 Votes received --a■ 

3 	 0 Node 1 0 2 0 1 0 2 

(

Node 

4 Node 	 1 0 1 1 1 0 1 1 

1 0 1 1 

0 1 2 0 

6 2 3 5 Sum of votes collected 

Compare 5 3 5 5 Quorum vector 

I 0 0 1 

Index set of dimension requirements: 

(1,4), 12,4 Poe ) 

 

(I, 4) 

   

   

    

Success 

Figure 6: Generalized multi-dimensional voting 

A drawback of this new MD-voting scheme is the use of an explicit list of index groups 
I. Since I is a set of minimal groups under the universe {1, 2, ..., k} (k is the number of 
dimensions in the MD-vote assignment), it can be considered as a quorum set for a system 
of k "nodes". Consequently, we can define I by using AID(e, k') -voting. For example, the 
index set I in Figure 6 is a quorum set of 4 "nodes" defined by the MD(2,3)-vote and 
quorum assignment in Table 8. 

Figure 7 demonstrates the operation of the system shown previously in Figure 6 with 
the index set replaced by its MD(2,3) representation. Notice that there are two levels of 
MD-vote and quorum assignments. At the first level, votes are assigned to the nodes and 
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2 1 0 
1 0 2 

v4,3 = 
0 1 1 ' 

= (2,2,2) 

1 2 1 

Table 8: MD-vote and quorum assignment for index set I in Figure 6 

the second level vote and quorum assignment is used to represent the index set. First, 
the votes of nodes 1, 2, 3 and 4 are received and added. The vector sum of votes is then 
compared to the quorum assignment and it is found that quorum requirement in the first 
and fourth dimensions are satisfied. Then, the voting procedure uses the index group {1,4} 
to select the vote values in the second level of the assignment. Rows one and four of the 
second level vote assignment are added and compared to the quorum requirement of that 
level. The quorum requirements in the first and second dimensions are satisfied and since 

the second level uses MD(2,3)-voting, the procedure returns successfully. 

Although in the above example the index set I was represented by an MD(2,3)-vote 
assignment, it could have been represented by MD-voting with another index set I' and so 
on. For example, I can be represented by the MD-vote assignment 

1 0 0 0 

0 1 0 0 
v4,4 = 

( 

and index set I' = {{1,2} , {1,3} , {1, 4} , {2,3}, {2,4},{3,4}} 
0 0 1 0 

0 0 0 1 

Notice that I' itself is representable by an MD(1,1) assignment. 2  We call this multi-level 
MD-voting technique nested multi-dimensional (NMD) voting. 

An NMD-voting technique is defined by the number of levels K, a set of multi-dimensional 
vote and quorum assignments (q ) ko lti.) ), for i = 1, 2, ...K and a number N1 is always 
equal to the number or replicas N and ki  = N1_1 for i = 2,3, ..., K. For example, in 
Figure 7, the number of levels K = 2, the number of nodes at level 1 N1 = 6, the number of 
"nodes" at level 2 is equal to the number of dimensions at level 1; N2 = k1 = 4, the number 

2 /' can be obtained by assigning one vote to each node and setting the quorum to two. 
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Nosier responding to 
a quorum collection request 

Nested inidli-thmatsional 
vote assigiunent 

2 	0 	2 

3 	1 	0 

0 	1 	0 

1 	0 	1 

1 	0 	1 

0 	1 	2 

.2 

0 

2 

1 

1 

0 

Compare 

•••■•■••... 2 

3 

0 

1 

0 

1 

1 

0 

2 

0 

0 

1 

2 

0 

2 

I 

MN/ 

Votes received 

Stan of votes collected 

Quorum vector I 

Level 1 

Node 1 
•■••• Node 2 

Node 3 ••■••• 

Node 4 •■■•■• 

11 

5 

2 

3 

3 

5 

S 

5 

1 0 0 1 

2 

1 

0 

1 

0 

1 

2 
)

( 0 

2 

1 

1 

2 

1 

1 

2 

0 

1 

Second level mies 
calculation 

auorion vector 

Lewd 2 

1 

Compare 
3 
3 

3 
3 

1 
3 

1 

Number of thmentions satisfied is nvo 
Number of dimensions required is two 

Quonset collection procedure is successful 

Figure 7: Two level nested multi-dimensional voting with t = 2 at level 2 

of dimensions at level 2 k2 = 3 and i = 2. The vote and quorum assignments at the two 

levels (1414) ,q(41) ) and (17,0 , 2 ), are shown in Figure 7. 	. 

7.1 Example - Hierarchical Quorum Consensus 

As an illustration, we present an example of the application of the NMD-voting technique 

which results in a generalization of the Hierarchical Quorum Consensus (HQC) method 

presented in [11]. The voting procedure in the HQC method uses a hierarchy of vertices 

organized into a tree. The highest and lowest levels of the hierarchy contain the root vertex 

and the leaf vertices, respectively. The leaf vertices are nodes with replicas and constitute 

the first level of hierarchy (level 0). The non-leaf vertices are logical and they are used only 

to define the quorum set. The votes from the replicas (at the lowest level) are propagated 

up the hierarchy along the branches of the tree. A vertex at level i will vote positively if 
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the number of its child nodes at level i — 1 that voted positively is greater than or equal to 
the required quorum. Otherwise it votes negatively. Thus, a read (write) quorum group at 
the hierarchical level i consists of ri (wi) vertices at level i — 1. The outcome of the voting 
procedure is determined by the vote of the root vertex. 

Figure 8: A two-level hierarchical quorum set 

As an example, consider the nodes in Figure 8 which are organized into a two-level 
hierarchy. The read and write quorums at level i are ri = 2 and wi = 2, for i = 1,2. The 
level 1 quorum sets are: 

R211 W21 

R22, W22 

R231 W23 

• {{12},{13},{23}} 

{{45},{46},{56}} 

• {{78},{79},{89}} 

For instance, the left most vertex in level 1 will vote positively if at least two nodes in {1, 
2, 3} vote positively, otherwise it votes negatively. The quorum groups at level 2 (the root 
of the tree) consist of groups from two different level 1 quorum sets because the quorum 
requirement at level 2 is equal to two. The read and write quorum sets defined by the 
hierarchical structure in Figure 8 are thus equal to: 

Q2 = {{1245}, {1246}, {1256}, {1345},03461, {1356}, 

{2345}, {2346}, {2356}, {1278},{1279}, {1289}, 

{1378}, {1379},{1389},{2378},{2379},{2389}, 

{4578}, {4579},{4589},{4678},{4679},{4689}, 

{5678},{5679},{5689}1 
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V9,3 = 

1 

1 

0 

0 

0 
0 
0 

k 0 

0 

0 

0 

1 

1 

1 
0 
0 
0 

0 N 

0 

0 

0 

0 	= (2,2,2) 

0 
1 
1 
1 / 

Each group of Q2 consists of four nodes which is not a majority group. But notice that any 
two groups in Q2 have a non-empty intersection. 

Table 9: MD-vote and quorum assignment for a two-level HQC quorum set 

Q2 can be defined using (non-nested) MD(2,3)-voting with the vote and quorum assign-
ments in Table 9. The number of dimensions of MD-vote assignment is equal to the number 
of hierarchical groups (vertices) at the level 1 which is 3. The vote assignment is derived 
from the structure of level 0 and 1 with the vote vii of node i being one if i is a member 
of hierarchical group j and being zero otherwise. For instance, node 4 is a member of sec-
ond hierarchical group and correspondingly, its vote assignment is (0, 1, 0). The quorum 
assignment g is the vector (2, 2, 2) and is derived from the fact that for a vertex at level 1 
to vote positively, at least two of its children have to return positive replies. The value of 
is equal to two because for the vertex at level 2 to return a positive vote, at least two of its 
children have to vote positively. The MD-vote assignment in Table 9 thus represents the 
two level hierarchical quorum set defined by the structure in Figure 8 in a natural manner. 
In general, any quorum set defined by a two-level hierarchy can be represented in a similar 
manner by the use of MD(1, k)-voting. 

Quorum sets that are defined using three or more hierarchical levels do not have a natural 
MD(L, k)-voting representation and NMD-voting must be used. 3  For instance, Figure 10 

3We emphasize that one can always find an MD(1,k)-vote and quorum assignment for a HQC quorum 
set. This will require the list of the quorum groups which may be quite large. For example, the read and 
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represents a quorum set from a system with 27 replicas which is defined by a three-level 
hierarchical structure using read and write quorums of two at each level. This hierarchical 
quorum set can be defined by using a two level NMD-voting with.the voting parameters 
((41491) ), (14,2242) ), t). The vote vli )  (the vote assignment to node i in dimension 

j at level 1) in 473  is one if node i is a member of hierarchical group j at level 1, for 

i = 1, 2, ..., 27 and j = 1, 2, ...9, and zero otherwise, and gi) = (2,2,...,2). Val) and  4) 

are equal to V9,3 and 13  in Table 9, respectively, and l = 2. 

k vertices 

Level 

v = 1 

va"b = 0  

quorum assignment 

  

Figure 9: Relationship between the NMD vote and quorum assignment, and the hierarchical 
structure 

The above NMD-vote assignment is obtained by considering the hierarchical structure in 
Figure 10. Each level of MD-vote and quorum assignment represents one level of hierarchy 
and the topmost level is represented by the parameter 1. For the hierarchical level i, except 
for the highest level, the number of rows and columns in the MD-vote assignment is equal 
to the number of vertices at levels i — 1 and i, respectively. The sizes of the quorum groups 
at level i — 1 form the quorum vector for level i (see Figure 9). For instance, to represent 
the level 1 hierarchical quorum sets defined by the structure in Figure 10 we use a vote 
assignment with 27 rows (number of nodes at level 0) and nine columns (number of nodes 
at level 1). The vote value va(sb.)  = 1 if vertex a at level i — 1 is a child of vertex b at level i, 

and otherwise vab = 0. The quorum vector at level i is derived from the quorum required 
(number of children voting positively) for a node at level i to vote positively. For example, 
if node b requires at least four of its children to return positive votes, then e (the quorum 
requirement at level i in the bth dimension) will be equal to four. Finally, the parameter 

write quorum sets for the system in Figure 10 contain 81 groups of 8 nodes each. 
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is set to the quorum required at the root vertex. 

1 25 26 27 

Figure 10: A three-level hierarchical quorum set 

One of the advantages of the use of NMD-voting in representing HQC quorum sets is 

flexibility. We can define more general hierarchical structures where a quorum group at 

level i consists of subgroups of level i — 1 of various sizes, i.e., different subgroups of level 

i — 1 can use a different quorum. For instance, the quorum set in Figure 11 is defined by 

a three-level hierarchical structure where all subtrees do not have the same height and all 

nodes do not have the same number of children. Assuming that each level in the hierarchy 

uses the majority quorum, then the quorum set defined by the hierarchical structure can be 

represented by the NMD-vote assignment in Table 10. The NMD-vote and quorum assign-

ment is obtained by applying the technique described above after extending the hierarchical 

structure so that each node is a leaf at level 3. 

With the NMD-voting technique, determining whether a group of nodes constitutes a 

quorum group is similar to weighted voting. In particular, the quorum collection method, 

i.e., querying nodes for their votes, can be quite general and is not confined to the polling-like 

approach described in [11]. 

8 Concluding Remarks 

In this paper, we have introduced the concept of a multi-dimensional vote and quorum 

assignment which is a generalization of standard voting. In multi-dimensional voting, the 

vote assigned to a node and the quorum assignment are vectors of non-negative integers 
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Level 1 

Level 0 

Figure 11: A general three-level hierarchical quorum set 

and each dimension is similar to standard voting. We have shown that any set of minimal 
groups can be represented by multi-dimensional voting and thus MD-voting is as powerful 
as the quorum set concept, which is the general approach for achieving mutual exclusion in 
distributed systems. Multi-dimensional voting has the advantage that it is flexible and can 
be easily implemented. 

We have developed an efficient algorithm for finding a multi-dimensional vote and quo-
rum assignment for any set of minimal groups and its use was demonstrated by finding 
multi-dimensional vote assignments for some non SD-vote assignable quorum sets. We de-
scribed distributed synchronization methods based on multi-dimensional voting which are 
easier to implement and/or are more flexible than existing schemes for the same purpose. 
For example, the multi-dimensional voting scheme for maintaining partially replicated data 
has no restrictions on the placement of the fragments and a node can store an arbitrary 
number of fragments. Finally, we presented the nested multi-dimensional voting technique, 
which is a generalization of multi-dimensional voting, and showed that it may be better 
suited for representing structured quorum sets in some instances. 

We have demonstrated that MD-voting can indeed be used to implement a wide range 
of replica control protocols. Future research needs to consider the performance implications 
of the additional flexibility provided through the use of MD-voting. 
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/ l 	0 	0 	0 0 	0 0 	0 	0 ■ 
1 0 0 	0 0 	0 0 	0 	0 

1 0 0 	0 0 	0 0 	0 	0 

0 

0 

1 

0 

0 	0 

1 	0 

0 	0 

0 	0 

0 	0 	0 

0 	0 	0 
vg9= 0 0 0 	1 0 	0 0 	0 	0 , 4)  = (2,1,1,1,1,1,1,1,1) 

0 0 0 	0 1 	0 0 	0 	0 

0 0 0 	0 0 	1 0 	0 	0 

0 0 0 	0 0 	0 1 	0 	0 
0 0 0 	0 0 	0 0 	1 	0 

`0 0 0 	0 0 	0 0 	0 	1 !  

/ 1 0 0 \ 

1 0 0 

1 0 0 

0 1 0 

4,23)  = 0 0 1 , q?)  = (2,1,3), 	and i = 2 

0 0 1 

0 0 1 

0 0 1 

\ 0 0 1 

Table 10: MD-vote and quorum assignment for the three-level HQC quorum set in Figure 

11 
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Appendix A: Algorithm for Finding an MD-vote assignment 

In [18], a technique is described for testing if a set of groups Q is SD-vote assignable. 
The linear program LP(Q) shown in Figure (12) is set up using the groups in Q. The 

Minimize: 

s .t . 

N 

E tli+ q 
i=1 

VGEQ: 
gEG 

V H E st—TgQIU)u psub(Q) : 

> 0, i = 1, 2, ..., N 

q> 1 

 

(2) 

 

E vh 5_ q — 1 
hEH 

(3) 

Figure 12: LP(Q): Linear program corresponding to Q 

following notations are used: 

• sup(Q U) is the set of all groups that are subsets of U (= {1, 2, ..., N}) and not 
supersets of any group in Q, and 

• psub(Q) is the set of all groups that are proper subsets of the groups in Q. 

If LP(Q) does not have a feasible solution then Q is not SD-vote assignable. Otherwise a 
rational solution is found and can be converted to an integral vote and quorum assignment. 

Unlike [18], in this paper we are dealing with quorum sets Q that have the minimality 
property. This allows us a further refinement of LP(Q) which is a result of the following 
lemma. 

Lemma A.1: Let Q be a set of groups satisfying the minimality property, i.e., V G, H E 
Q: G % H. Then, 

psub(Q) C st—rp(QIU) 

Proof: The proof is by contradiction. 
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Assume there is a group X that is in psub(Q) but not in iT'uji(Q U). Since X E psub(Q), 

X is a proper subset of some group A E Q. Furthermore, X stp(QIU) so it is a superset 

of some (other) group B such that B E Q. However, then Q would violate the minimality 

property because the above facts imply that B C A. This contradicts the premise. ❑ 

We can thus substitute constrain (3) in LP(Q) with, 

V H E st-V1(Q I U) : > vh  < q -1 	 (4) 
hEH 

We extend the SD-vote finding procedure to find an MD(1,k) vote and quorum assign-
ment for a quorum set Q. The algorithm (illustrated in Figure 2) constructs an MD(1,k)- 
vote assignment by testing to see if Q is SD-vote assignable. If not, groups are systematically 
removed from Q until the groups that remain form an SD-vote assignable quorum set. The 
votes and quorum obtained from the solution form the assignment in the first dimension. 
The set of groups removed from Q to make it SD-vote assignable are then used as input 
to a second iteration to find the second dimension of vote and quorum assignment. This 
is repeated until all groups are represented by the MD-vote assignment. Since a quorum 
set with a single group is SD-vote assignable, in each iteration at least one group of Q is 
removed, and the algorithm is guaranteed to terminate. 

In what follows, we address the following two elements of the MD-vote finding algorithm 
in more detail. 

1. The use of the Simplex tableau of LP(Q) to decide which group to remove when 
LP(Q) is infeasible. 

2. A method by which the effort expended to determine that LP(Q) is not feasible is 
used to facilitate the solution of LP(Q - {A}) when group A is removed from Q. 

A.1 Choosing a Group for Removal 

In the first phase of the Simplex method, artificial variables are added to the constraints 
(2) of LP(Q) to obtain a basis and each of these constraints correspond to one quorum 
group in Q. These artificial variables are pivoted out of the basis during this phase (i.e., 
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the artificial variables are eliminated) and if this cannot be achieved, it is an indication that 
Q is not SD-vote assignable. In this case, a row that contains a basic artificial variable is 
selected and removed. Since only the rows that correspond to groups of Q contain artificial 
variables, we will always remove a constraint that corresponds to a group A E Q. If there 
are several rows with basic artificial variables, one is chosen arbitrarily for removal. 

A.2 Reusing Computational Effort Spent in Solving LP(Q) 

In the MD-vote finding algorithm, several related linear programs may need to be con-
structed and solved until a feasible solution is found. Since the linear programs are derived 
from one another, the computational effort expended to detect feasibility of one linear pro-
gram can be used in the next and need not be wasted. The removal of a group A from Q 

will result in the deletion of one constraint from (2), namely, 

E vg  q 
	

(5) 

gEA 

However, since the set of constraints (4) is derived from ."-firp(Q IU), the removal of a group 
from Q will cause significant changes in this set. The new linear program to determine if 
the quorum set Q — {A} is SD-vote assignable is LP(Q — {A}) given in Figure 13. The set 
sm-sp(Q I U) is a proper subset of .wp(Q — {A} I U), this is because any group that is not a 
superset of groups of Q is also not a superset of groups of Q — {A} . Also, A is a group of 
3w(Q {A} IU) but not a group of .Wcp(Q IU). The set [Cp(Q {A}IU)-31 -4 -9(Q I U)], which 
represents the new constraints in LP(Q — {A}), contains only groups that are supersets of 
group A. Therefore, LP(Q —{A}) has one less constraint (namely constraint (5)) and several 
new constraints that are derived from groups that are supersets of A. 

We derive a lemma that shows how to obtain the set of constraints that must be added 
to LP(Q) to obtain LP(Q — {A}) so that the solution procedure (Simplex method) can be 
continued from the point where it was detected that LP(Q) was not feasible. Let Q\A be 
the set of groups obtained from Q by taking the difference of each group of Q and the group 
A, i.e., 

Q\A={(G—A)IG EQ}  

For instance, let Q = {{1,2}, {1,3},{2,3}} and A = {3}, then Q\A = {{1,2}, {1},{2}}. 
The following lemma gives the groups that must be added to LP(Q) to obtain LP(Q — {A}): 

38 



N 
Minimize: E 	q 

s.t. 	YGEQ—{A}: Ev g q 
gEG 

V H .stp(Q — {A}IU) E vh  < q — 1 
hEH 

(6) 

(7) 

> 0, i = 1,2,...,N 

q > 1 

Figure 13: LP(Q — {A}): Linear program corresponding to Q — {A} 

Lemma A.1: Let Q be a set of groups that satisfy the minimality property, then, 

twv9(Q — {A}IU)=.9 . p(QIU)u{GuAIGE.31—ip(((Q — 1/11)\A)IU— A)} 

Before we can show Lemma A.1, we need to show the following auxiliary lemma. 

Lemma A.2: Let Q be a set of groups that satisfy the minimality property. If G E 
-.172((Q — {A})\AI U — A), then G U A E Yirp(Q — {A} I U). 

Proof: The proof is by contradiction. 

Each group G E Q — {A})\A I U — A) is a subset of U — A and not a superset 
of any group of (Q — {A})\A. Suppose there exists a group G such that it is a group in 
Ttii5((Q — {A})\A I U — A) and G U A is not a group in :§laTo(Q — {A} J U). Then it must be 
that G U A is a superset of some group B E Q — {A} and thus, 

BcGUA 	B—ACG 

G is a superset of B — A 

Since B — A is a group of (Q — {A})\A, this implies that G -.9TAT4(Q — {A})\A I U — A) 
and it contradicts the fact that G E .31—sp((Q — {A})\A U — A). ❑ 
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The set Titp((Q — {A})\ AI U — A) is the set of groups that are subsets of U — A and 
not supersets of any group of (Q — {A})\A. Lemma A.2 states that when we add A to a 
group G E ,szp((Q — {A})\AIU — A), the resulting group G U A will not be a superset of 
any group of Q — {A} under the universe of nodes U. These are precisely the groups that 
will be added to LP(Q) to obtain LP(Q — {A}) which was given in Lemma A.1 above. Now 
we can show the correctness of Lemma A.1. 

Proof of Lemma A.1: We will show that LHS C RHS and RHS C LHS. 

Let X be an arbitrary group in 81.- •(Q — {A} I U). If X E W(Q  I U), then LHS C RHS 
is trivially true. Let X st;)(Q I U), then it must be that X is a superset of A and X is 
not a superset of any group in Q — {A}. We can write X as, 

X=YUA 

where Y is not a superset of any group in (Q — {A})\A under the universe U — A. Thus, 
X which is equal to Y U A is a member of {G U A I G E .31 —sp((Q — {A})\A I U — A)} because 

Y E st..)((Q — {A})\A I U — A) and hence LHS C RHS. 

Since st(Q I U) c . -11)(Q — {A} I U), we can show that RHS C LHS by showing 
1G UAIGE .sp((Q — {A})\A I U — A) c st-7-ip(Q - {A} I U). Let X be an arbitrary group 
in {G U A I G E s'ip((Q — {A})\A I U — A), then X can be written as, 

X=YUA 

for some Y E st—spl(Q — {A})\A I U — A). By Lemma A.2, we have X E .91-47(Q — {A}IU).0 

The constraints that must be added when A is removed are derived from groups of the 
set {G UAIGE s-Tir)((Q — {A})\A U — A)}. Notice that this set always contains A as an 
element because the empty set is an element of TtT((Q — {A})\A' U— A). Lemma A.1 thus 
defines the set of constraints that are added to LP(Q) to obtain LP(Q — {A}) when group 
A is removed from Q and provides us with a method to convert LP(Q) to LP(Q — {A}). 

40 



Distributed Computing (1990) 4:69-80 [31127E[11 	[Di 
1CDRUNI-111M 
0 Springer-Verlag 1990 

Fault-tolerant atomic computations 
in an object-based distributed system * 
Mustaque Ahamad, Partha Dasgupta, and Richard J. LeBlanc, Jr. 

School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA 

Received December 22, 1988/Accepted February 20,1990 

Mustaque Ahamad received his 
B.E. (Hons.) degree in Electrical 
Engineering from the Birla Insti-
tute of Technology and Science, Pi-
lani, India. He obtained his M.S. 
and Ph.D. degrees in Computer 
Science from the State University 
of New York at Stony Brook in 
1983 and 1985 respectively. Since 
September 1985, he is an Assistant 
Professor in the School of Informa-
tion and Computer Science at the 
Georgia Institute of Technology, 
Atlanta. His research interests in-
clude distributed operating sys-
tems, distributed algorithms, fault-

tolerant systems and performance evaluation. 

Partha Dasgupta is an Assistant 
Professor at Georgia Tech since 
1984. He has a Ph.D. in Computer 
Science from the State University 
of New York at Stony Brook. He 
is the technical project director of 
the Clouds distributed operating 
systems project, as well as a co-
principal investigator of Georgia 
Tech's NSF-CER award. His re-
search interests include building 
distributed operating systems, dis-
tributed algorithms, fault-tolerant 
systems and distributed program-
ming support. 

Abstract. A distributed system can support fault-tolerant 
applications by replicating data and computation at 
nodes that have independent failure modes. We present 
a scheme called parallel execution threads (PET) which 

* This work was supported in part by NSF grants CCR-8619886 
and CCR-8806358, and RADC contract number F30602-86-C-
0032 

Offprint requests to: M. Ahamad 

Richard J. LeBlanc, Jr. re-
ceived the B.S. degree in physics 
from Louisiana State University in 
1972 and the M.S. and Ph.D. de-
grees in computer sciences from the 
University of Wisconsin — Madison 
in 1974 and 1977, respectively. He 
is currently a Professor in the 
School of Information and Com-
puter Science of the Georgia Insti-
tute of Technology. His research in-
terests include programming lan-
guage design and implementation, 
programming environments, and 
software engineering. Dr. LeBlanc's 
current research work involves ap-

plication of these interests in distributed processing systems. As 
co-director of the Clouds Project, he is studying language concepts 
and software engineering methodology for utilizing a highly reli-
able, object-based distributed system. He is also interested in speci-
fication-based software development methodologies and tools. Dr. 
LeBlanc is a member of the Association for Computing Machinery, 
the IEEE Computer Society and Sigma Xi. 

can be used to implement fault-tolerant computations 
in an object-based distributed system. In a system that 
replicates objects, the PET scheme can be used to repli-
cate a computation by creating a number of parallel 
threads which execute with different replicas of the in-
voked objects. A computation can be completed success-
fully if at least one thread does not encounter any failed 
nodes and its completion preserves the consistency of 
the objects. The PET scheme can tolerate failures that 
occur during the execution of the computation as long 
as all threads are not affected by the failures. We present 
the algorithms required to implement the PET scheme 
and also address some performance issues. 

Key words: Fault-tolerant computing — Atomicity — Dis-
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1 Introduction 

Distributed computing systems offer many advantages 
which include resource sharing, parallelism and the po-
tential for increased availability due to multiplicity of 
components. A distributed implementation of an appli-
cation can exploit the concurrency available in the appli-
cation by executing parts of the computation at different 
nodes. However, it is possible that some components 
of the distributed system (nodes or communication links) 
fail while others remain operational. This could result 
in an inconsistent system state where the results of a 
computation are reflected at some nodes but not at 
others. Atomic actions (we refer to them simply as ac-
tions) provide a mechanism which guarantees that a 
computation either completes at all nodes or it has no 
effect on the state of the system. 

The atomicity property provided by actions masks 
failures from users by undoing a partially completed 
computation when a failure is detected. This ensures that 
the system will remain in a consistent state; however, 
actions do not promise forward progress. Thus, though 
failures do not cause inconsistent executions, they can 
lead to repeated aborts of an action. Although the failure 
of an arbitrary set of system components can make pro-
gress impossible, we would like to guarantee that a com-
putation, once started, will complete when not more than 
a certain number of node or communication failures oc-
cur in the system. The failures may occur either before 
the computation was started or during its execution. 

If a data item is replicated at a number of nodes 
with independent failure modes then an action that needs 
to access the item can make progress even when some 
of the nodes where the item is stored have failed. How-
ever, care must be taken to ensure the consistency of 
such data replicas. Many consistency maintenance algo-
rithms have been proposed for use with replicated data 
[9, 13, 4]. 

In an object-based system, data is encapsulated in 
objects which define the operations that can be used 
to access the data. An action may invoke operations 
defined by many objects during the course of its execu-
tion. When objects are replicated, it must be ensured 
that any replica touched (read or written) by the action 
is not outdated. When a node that stores a touched repli-
ca fails, the action must be aborted even when nodes 
having other replicas are operational. In this case, the 
action can be repeatedly tried until it completes. The 
failed nodes can be avoided by the system in successive 
tries. However, this increases the time between the start 
and completion of the action, which increases the proba-
bility of further node failures occurring during its execu-
tion. An alternative to the sequential repetition is to 
replicate the computation of the action. Conceptually, 
the action computation is executed by many parallel 
threads (a thread represents an independent execution 
of the action) and each thread executes as if there is 
no replication. The action can be completed when at 
least one thread does not encounter failed nodes and 
a wirteient number of replicas of each touched object 
ate avatiabie. "I -he latter condition is necessary for main- 

taining consistency. In this paper, we present such a 
scheme which we call parallel execution threads (PET). 
The set of parallel threads executing on behalf of an 
action are called a PET computation. 

The replication of computation in an object-based 
system presents problems that do not arise when repli-
cated data is accessed by non-replicated computations. 
Since objects are accessed by arbitrary operations, in 
the general case, the execution of an operation on an 
object can change the state of the object in a non-deter-
ministic fashion. Thus, executing an operation separately 
at all replicas even with the same input parameters may 
lead to a situation where the states of the replicas are 
no longer the same. Such a state can result in inconsistent 
executions. In addition, the invocation of an operation 
can lead to more nested invocations. These situations 
do not arise in maintaining consistency of replicated data 
(as opposed to objects) because the only operation that 
updates the data is a write (as is the case when files 
are replicated). Similar problems do arise when processes 
that encapsulate data are replicated. 

We describe how replication of data and computa-
tion is handled in the PET scheme, giving rise to an 
implementation of fault-tolerant actions in an object-
based system. We present the assumptions about the 
system in Sect. 2. The problem of computation replica-
tion is described in Sect. 3. The PET scheme in presented 
Sect. 4 and the implementation issues related to PET 
are presented in Sect. 5. Sections 6 and 7 address the 
correctness and performance of the PET scheme. Related 
work is described and compared with the PET scheme 
in Sect. 8. The paper is concluded in Sect. 9. 

2 System model 

We consider replicated computations in an object-based 
system. The model used is similar to the one which is 
provided by the Clouds operating system [7]. Clouds 
supports objects and threads. An object is a persistent 
instance of an abstract data type. The data encapsulated 
in an object can be accessed by a number of operations 
defined by the object. Thus, objects provide storage for 
both data and the code to be executed when computa-
tions invoke the objects. To support fault-tolerance, ob-
jects may be replicated. 

A computation is executed in Clouds by one or more 
threads. A thread is an active entity that can invoke 
operations defined by a set of objects, which may reside 
at many nodes. The state of an object is defined by the 
data encapsulated in it ; threads transform the object 
state by possibly changing the values stored in its data 
items. We allow non-deterministic operations and hence 
when the same operation is executed at two replicas of 
an object with identical states, the resulting states may 
be different. This has implications on what kind of 
schemes can be used for implementing replicated compu-
tations. 

We assume objects to be relatively heavy-weight 
compared to the notion of objects in the programming 
language parlance (e.g. Smalltalk). A Clouds object is 
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a long-lived virtual space and the data defined by the 
object resides permanently in its virtual space until the 
object is deleted. Objects correspond to entities such as 
queues, directories, page maps, text files, database rela-
tions, and libraries; not to fine-grained entities such as 
integers. However, an object logically belongs to a single 
node even though parts of the object may be temporarily 
moved to other nodes. A large amount of data and/or 
code that needs to be stored at several nodes should 
be viewed as a collection of objects. 

We will consider two mechanisms for implementing 
invocations of remote objects: 

1. An object is invoked at the node where it exists by 
a remote procedure call (RPC) mechanism. In this case, 
conceptually, the caller thread moves to the node where 
the object is stored and hence the computation is distrib-
uted. 
2. The invoked object is brought to the invoking node 
(via demand paging) and computation proceeds at the 
invoking node. This mechanism can be supported by 
the distributed shared memory (DSM) abstraction [12] 
and is useful in a data servers/workstations environment 
in which the objects are stored at the data servers but 
the computation must take place at the workstations. 

The PET scheme provides fault-tolerance by execut- 
ing a computation using several replicated threads. It 

guarantees consistency by using quorum protocols and 
it uses commit protocols to ensure that changes made 
by a single thread are reflected at all touched objects. 
To achieve this, substantial amount of communication 
overhead is incurred. Although it may be possible to 
use it in a wide-area network, it is better suited in a 
local-area network environment where hardware sup- 
port for multicast can be exploited to reduce the commu- 
nication overhead. Furthermore, the latency in the DSM 
approach can become unacceptable in a wide-area net- 
work. To keep the description of the algorithms simple, 
we assume reliable message delivery but it can be easily 
seen that in many cases, communication failures can be 
handled in a manner similar to failures of nodes. Node 
failures are assumed to be fail-stop. Furthermore, we 
assume that when an invoked object is at an operational 
node, the invocation will return in a fixed time with 
a high probability. Thus, timeouts are used to deal with 
node or communication failures. Our scheme can deal 
with network partitions and we do not require that node 
and communication failures be distinguishable. 

Each object has a permanent copy on stable storage 
which is updated only when a thread commits. Since 
the copy of the object in volatile memory is lost when 
a node fails, a thread that has not copied its state to 
stable storage is aborted when a node it touches fails. 

3 Replicating objects and invocations 

In the object/thread model, a thread executes by invok- 
ing operations of a set of objects which may be stored 
at many nodes. When objects are replicated for fault- 

tolerance, several approaches are possible for executing 
the computation represented by a thread. For example, 
a thread can execute with a single replica of an invoked 
object. In this case, computation is not replicated and 
it will fail if the thread invokes a replica at a failed node 
or a node participating in the execution fails before the 
thread terminates. Such an approach was used by ISIS 
[5] but to provide fault-tolerance, checkpointing and 
restart of threads was used. In another approach, compu-
tation itself can be replicated whenever a replicated ob-
ject is invoked. In the CIRCUS approach [6], when a 
thread invokes an object having n replicas, n threads 
are created and each thread executes with a separate 
replica. Thus, the invocation of a replicated object results 
in replication of computation. When several objects are 
invoked in a nested manner, this can lead to a large 
number of threads and a replica can receive multiple 
invocation requests when a single invocation is to be 
executed. This requires that nodes collate invocation re-
quests and results returned by them. The ISIS and CIR-
CUS approaches can be contrasted in the sense that 
one does not replicate computation while the other repli-
cates computation to the maximum possible degree. 

The CIRCUS approach offers the advantage that an 
invocation of an object can return successfully even when 
some of the called replicas are at failed nodes. Thus, 
fault-tolerance can be provided without using other 
mechanisms such as checkpointing. However, when op-
erations defined by objects are non-deterministic, execu-
tion of an operation at each node separately may not 
work because the same operation invoked at two identi-
cal replicas may produce different results. The use of 
a single thread as in ISIS does not have this problem 
because execution is done at a single node and the updat-
ed state of the replica is copied to other nodes. 

Our goal is to provide a method for implementing 
computations in an object-based system which has the 
following properties. 

1. A thread is a basic entity in the system and its imple-
mentation should remain simple and efficient even when 
objects are replicated. 
2. A computation should be able to complete even when 
failures occur either prior to or during its execution. This 
can be achieved by using replication, but the system state 
and the results returned when a computation completes 
must be the same as in a failure-free system that uses 
no replication. 

We present a scheme that replicates computation to 
provide fault-tolerance but works even when object op-
erations are non-deterministic. Our approach is based 
on a synthesis of the methods proposed in [5] and [6]. 
For each top-level fault-tolerant computation, we create 
several threads and each thread executes independently 
as in a non-replicated environment. Thus, a thread in-
vokes only one replica of each replicated object it 
touches. When one or more threads return successfully, 
one of them is committed and the rest are aborted. The 
details of the scheme, the necessary algorithms and per-
formance issues are considered in the following sections. 



Thread i11 , 1 	 Thread Ai,2 

Object 01 

 (3 Replicas) 

Object 02 

(2 Replicas) 

Object 03 

(3 Replicas) 

Fig. 1. Parallel execution threads 
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4 The PET scheme 

In the PET scheme, which is intended to be used in 
a system that replicates objects, a computation is execut-
ed by a number of parallel threads. Each thread begins 
execution by invoking the same operation of an object 
but further invocations may be different because object 
operations can be non-deterministic. The execution of 
a thread proceeds as if there is no replication of objects 
because a single replica of each invoked object is used 
by the thread. 

We denote by 	 fl) the jth  thread of the PET 
computation A.. The node where the computation A i  
starts is called its coordinator and we denote it by C(A i ). 
C(A i) decides the number of threads to be created and 
chooses a node for each thread where its execution be-
gins. We call this node the home of the thread and use 
H(A,, i) to refer to the home node of thread A 1 , ; . When 
/1 1 , i  invokes an object, a single replica of the invoked 
object is chosen (see Sect. 5.1). A i , i  executes with a copy 
of the replica which is obtained from the permanent state 
of the replica. Also, the thread does not request any 
locks at this time and hence can execute without delay 
when the node is operational (locks are obtained when 
a thread is committed). If all, nodes where replicas in-
voked by A 1 , ;  exist are operational and this thread can 
get access to the replicas, then 24 1 , completes and returns 
success to its home node H(A i , j). We use 01  to refer 
to the rth  replica of object 

In Fig. 1, two threads are created for executing the 
computation A i  which begins execution by invoking an 
operation defined by object 0 1 . The replica of 0 1  invoked 
by each thread is chosen from the replicas that exist 
at nodes which are thought to be operational using a 
scheme considered in a later section. Since each thread 
executes as if there is no object replication in the system, 
no further parallel threads are created when the threads 
invoke objects 02  and 03 . In the example, both A 1 , 1  
and A 1 , 2  invoke the same set of objects but they execute  

with different replicas of each object. The latter may not 
be possible when the scheme used to choose replicas 
does not know about the replicas that have been invoked 
by other threads of the same action or when the degree 
of replication of an invoked object is smaller than the 
number of threads. In such a case, we allow multiple 
threads belonging to the same action to invoke a single 
replica. 

Although the PET computation is executed by many 
threads, its result should be the same as if a single thread 
executed the computation in a failure-free environment. 
Since the execution of each thread may not be identical 
because of non-deterministic operations, the PET com-
putation should be completed by committing a single 
thread and undoing the effects of all other threads. A 
thread that returns successfully to its home node may 
not be able to commit when it is chosen to do so because 
failures can occur after the thread returns to its home 
node. To provide fault-tolerance, the commit protocol 
used by the PET scheme must try to commit threads 
until it is successful or all threads encounter failed nodes 
while invoking the replicas or in the commit phase. In 
the latter case, the PET computation is aborted. 

We take an optimistic approach in which at invoca-
tion time, a thread only needs to get access to a single 
replica and not be aware of the other replicas of the 
object. To preserve consistency of objects, concurrent 
PET computations must be synchronized with respect 
to each other. Furthermore, the changes to the state of 
each object cannot just be applied to a single replica, 
rather, they have to be reflected at other nodes where 
replicas of the object exist. We use a quorum-based 
method [9] for synchronization and copy the updated 
replica to nodes which store other replicas of the object. 
Since updates made by a single thread are copied to 
other nodes, non-deterministic execution does not pres-
ent any problems. Furthermore, the quorum method en-
sures consistency even when the network is partitioned. 

5 Implementation of PETs 

The implementation of the PET scheme requires algo-
rithms for choosing the replicas to be invoked by a 
thread, for synchronization of the threads, and for propa-
gation of replica states when a thread is committed. Since 
the execution of each of the threads proceeds as if there 
is no replication, either RPC or the DSM mechanisms 
can be used to implement it. When RPC is used, the 
thread computation is done at each of the nodes where 
a replica touched by the thread is stored. In the other 
case, the computation is done at a single node but it 
uses replicas which are stored in stable storage at other 
nodes. The algorithms are similar for both mechanisms, 
any differences will be considered in the following discus-
sion. 

5.1 Choosing a replica 

When a thread invokes an object, the choice of the repli- 
ca of the called object for executing the invocation can 



affect the number of failures that can be tolerated by 
the action. If the object has been previously invoked 
by the thread, the replica that was used for the earlier 
invocation must be chosen for correct execution of the 
thread. Otherwise, though it is possible to choose any 
of the replicas that exist at nodes thought to be opera-
tional, a better scheme will choose one that permits a 
greater number of failures to be tolerated. Since the fail-
ure of a node where an already touched replica exists 
will abort the action, it is better to choose a replica 
at one of these nodes, thus minimizing the number of 
nodes touched by the thread. If such a replica does not 
exist then the chosen one should be at a node that is 
not touched by other threads, thus minimizing the 
number of threads aborted by the failure of a single node. 
We propose the following scheme for choosing replicas. 

1. If the object was invoked by the thread previously, 
use the same replica that was used before to execute 
the invocation. 
2. Otherwise, if a replica exists at the node where the 
thread is currently executing, the invocation is executed 
using the local replica of the called object. 
3. Otherwise, determine if a replica exists at any of the 
nodes already touched by the thread. If such a node 
exists then use the replica at that node. 
4. Otherwise, choose the replica at a node that is thought 
to be operational and has been touched by the smallest 

number of other threads of the same action. (This may 
not be known accurately and hence the decision must 
be based on what is known to the caller node. The cor-
rectness of the PET scheme does not depend on the accu-
racy of this knowledge.) 

The proposed scheme is applicable in both cases 
when the computation is distributed (RPC) and also 
when it is done at a single node (DSM). In the first 
case, since the computation is distributed at nodes where 
touched replicas are stored, minimizing the number of 
such nodes increases the probability that the thread is 
not aborted due to a failure. In the second case, all repli-
cas are brought at a single node and the computation 
is done locally. However, the replicas should be stored 
at their source nodes at the time the thread commits. 
This is necessary in a workstation/data server environ-
ment where the workstations do not have enough stable 
storage or are diskless. Thus, again, minimizing the 
number of nodes that participate in the execution of 
a thread provides a higher degree of fault-tolerance. 

5.2 Invocation of a replica by multiple threads 

It can be seen that when the above scheme is used to 
choose a replica, more than one thread of an action 
may invoke the same replica. Since object operations 
can be non-deterministic, the calls to the replica can have 
different parameters and hence cannot be collated; they 
must be executed separately. For this purpose, we use 
the following scheme. The two threads are treated as 
different computations and when a thread invokes the 
replica for the first time, it is given a copy of the replica 
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state from stable storage which it uses for all calls. We 
can do this because threads belonging to the same action 
do not need to communicate or share. Thus, each thread 
works with its own copy of the replica. When one of 
these threads is committed, the copies belonging to the 
aborted threads are discarded. 

A number of volatile copies of a replica will be creat-
ed at a node where a replica is invoked by multiple 
threads of a PET computation. These copies must be 
retained until the PET computation terminates because 
any future invocation by a thread must execute with 
its volatile copy. The use of techniques such as copy-on-
write can reduce the storage cost since only those parts 
of the replica that are updated need to be stored sepa-
rately. 

5.3 Committing a PET computation 

Consider a PET computation that has been started as 
a set of n threads. These threads start executing at their 
home nodes and some of the threads return successfully. 
We now describe the commit protocols which can be 
used to ensure that the results of a single thread are 
applied to the replicas of the objects invoked by that 
thread. 

The commit protocol takes any one completed 
thread, and for each object touched by the thread, it 

tries to apply the updates made by this thread to a ma-
jority of the replicas of the object (copying from the 
updated replica is used for this purpose). This is done 
atomically, and all the other treads are aborted. Since 
the PET computation can be completed successfully if 
a single thread can be committed, the commit can be 
done sequentially, that is try to commit one thread, and 
if it fails, repeat the same for another thread. This can 
also be attempted in parallel; that is, try to commit all 
the threads, and finally elect one of the successful 
threads and apply its updates. The sequential commit 
is simpler and cheaper because the protocol necessary 
to do it can be executed by the coordinator node. How-
ever, it requires that the coordinator remain operational 
until the PET is committed. A decentralized commit pro-
tocol can be used to tolerate failure of the coordinator. 
We discuss both types of protocols. 

To commit a thread, we first make a list of the objects 
touched by the thread, regardless of whether the object 
replica was read or updated. This list (and a list of nodes 
visited by the thread) can be built as the thread traverses 
various replicas and it can be returned to the home node 
of the thread when the invocation returns. We then ob-
tain quorums for each of the touched objects [9]. A 
quorum is obtained if at least a majority of votes are 
collected and the replica touched by the thread has the 
latest version number. When there are few failures (the 
typical case), the number of nodes that respond to a 
quorum request will be higher than a majority. In the 
commit protocol, the replica state is updated at all these 
nodes. This is done to maximize the likelihood that 
threads execute with the most up-to-date state of an in-
voked object. Since a thread touches a replica without 
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checking if it is current, updating as many replicas as 
possible will increase the probability that replicas 
touched by the thread are not found to be outdated 
when the quorum is collected. 

We choose majority quorums for both read and up-
date operations to provide maximum fault-tolerance for 
both types of operations. When operations that only 
read are more frequent, a smaller read quorum can be 
used to reduce the cost of implementing them. However, 
the fault-tolerance for update operations will decrease 
because a higher write quorum will be required. If a 
lesser degree of fault-tolerance is acceptable for update 
operations then a smaller quorum for read operations 
can be used when most operations are of the type read. 
Thus, an arbitrary quorum assignment can be used in 
place of the quorum used in this and the following sec-
tions. 

After all the quorums are successfully obtained, the 
updates to replicas touched by the thread are propagat-
ed. This is done by copying the updated state of the 
touched replica to the corresponding state of all replicas 
that constitute the quorum for the object. Note that we 
could have obtained a read quorum when the object 
replica was touched, and a write quorum when the repli-
ca is finally updated. We choose to use an optimistic 
approach and obtain quorums only after the execution 
of the thread has terminated. Thus, the quorum collec-
tion is done only for committing threads and not for 
all threads of a PET computation. 

A node starts quorum collection for an object by 
sending a message to all nodes that store replicas of 
the object. This message identifies whether the quorum 
is being collected for a read or write operation. An opera-
tional node responds to such a request by sending a 
response and it also places a lock on the replica. A read 
lock is placed when the quorum collection is for a read 
operation, otherwise a write lock is placed. A node re-
sponds only when the appropriate lock can be obtained. 
For example, if some thread belonging to a different 
computation already has a write lock on a replica, the 
node will not respond to quorum requests for threads 
of other computations until the write lock is released. 
Since read locks can be granted to any number of threads 
belonging to the same or different computations, a node 
can respond to a read quorum request immediately when 
a write lock does not exist on the replica. Thus, read 
locks by different threads are compatible. Furthermore, 
write locks are compatible when they are requested by 
threads of the same computation. If a write lock is 
granted to thread A i , i  and then a write or read quorum 
request arrives from A ,, k (Ai , i  and Aid, both belong to 
the same computation A i), then also the node can re-
spond to the request. We can do this because only one 
of the threads will commit successfully. Notice that no 
lock is placed on a replica when it is touched. A lock 
is placed only when a quorum request is received. 

Let RT(A,, i) be the set of replicas which have been 
invoked by thread A,, ; . We also define the set of objects, 
0 T(A,, ;), which are invoked by the thread as follows. 

OT(A i , j)= {01 101 , r e RT(A,, j)} 

Each replica 0/ , r  of object 01  has a version number, 
VN (0 1 ,) associated with it. All version numbers are set 
to zero when the replicas are created and VN(0 1 ,,.) is 
incremented each time a thread that updated 01,, is com-
mitted. 

Centralized commit protocol. We assume a PET computa-
tion A i  is under execution. At some point, a thread 21,,. ; 

 completes by returning to its home node H(A,, i) which 
informs the coordinator node C(A,) of the completion 
of the thread. Suppose A i , is the first thread to notify 
C(A,). Now C(A,) executes the following steps to see 
if the thread can be committed. The algorithm used is 
a general version of the 2-phase commit protocol. 

• C(A,) sends a pre-commit message to nodes where 
replicas in RT(A,, J) are stored. On receiving a message, 
each node creates a stable version of its data segment(s) 
of the replicas in RT (A id) and replies with a positive 
acknowledgement. 
• If all nodes that store replicas in RT (A i , j) reply with 
positive acknowledgements, C(A 1) proceeds, else it aborts 
this thread (as in the pre-commit phase of the 2-phase 
commit protocol). If no message is received from a node, 
the coordinator timeouts and assumes a negative ack-
nowledgement (assumes that the node has failed). 
• Now, C (A,) must collect quorums for touched objects. 
This is done by sending a request to all nodes that store 
replicas of each object touched by the thread. That is, 
the request is sent to nodes where replicas in 
{01 ,,.10i e 0 T(A,, i)} are stored. The quorum message re-
quests a read lock for object 0, if the thread did not 
update the object state. Otherwise, a write lock is re-
quested. If a lock cannot be obtained due to a conflict, 
then the quorum request is kept pending. When the lock 
is obtained, then the node having replica 0, , r  replies to 
this request with the version number VN(0,,). 
• The coordinator is successful in getting the quorum 
if: 

V 01  e 0T (A i, ;) {CARD (Qset) > MAJ (WI 

Where CARD denotes the cardinality, 

Qset = {0/ „.1 VN(0 1 , r)_VN (0,,,) 01 ,,E RT (A i , ;)} 

and MAJ (01) = CARD ({O/ , J)/2 -1- 1. 

That is, for all the objects touched by the thread, at 
least a majority of the replicas should be in the quorum 
with appropriate locks placed on them, and the version 
numbers of these replicas must be less than or equal 
to the version number of 0,, „ the replica touched by 
A,, J . Since at least a majority of the replicas of an object 
and their version numbers are updated when a thread 
commits, the version numbers of replicas not in the quor-
um cannot be higher than VN(0,,). Thus, when a quor-
um is collected successfully, A,,. ;  has executed with the 
most up-to-date state of the object. 

• If the quorum cannot be collected, the thread is 
aborted and the locks are released by sending a message 
to the nodes that responded positively to the quorum 
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request. Otherwise, the coordinator records this on stable 
storage and for each object in OT(A,, i), it asks the nodes 
that participated in the quorum to commit. Let t denote 
the replica of 0, that is touched by the thread A i , ;  of 
PET A i  which is being committed. That is, if Ol e OT(A i , j) 
then 01 ,,ERT(A i , j). The commit is done as follows. 

for all {01 ,, I node storing 01 ,, participated in the quorum} 

if r t then the data segments of 01,, are replaced with 
the data segments of 01 ,„ and the version number of 
0/ , is set to the new (incremented) version number 
of 01,,. 

if r = t then the pre-committed version is made perma-
nent and VN(0,,,.) is incremented. 

The state of a touched replica is made permanent 
and this state is propagated to the replicas that consitute 
the quorum. The version number of each updated replica 
is set to the new version number of the touched replica. 
The failure of a node that participated in the quorum 
before the termination of the commit protocol will delay 
the completion of the commit protocol until the node 
recovers even if a majority exists without it (the protocol 
can be easily modified so it can terminate when the state 
has been propagated to a majority of nodes). Since the 
locks are recorded in stable storage and the segments 
of touched replicas are also stored in stable storage at 
the nodes where the thread executed, the replica state 
will be propagated when nodes recover from failures. 

If A o  is aborted, any nodes that sent messages are 
informed so they can release locks. The coordinator 
waits for another thread to complete and repeats the 
algorithm. When a thread is committed, the coordinator 
informs the home nodes of remaining threads, which are 
then aborted. If all threads get aborted, the PET fails. 

In the above algorithm, the decision to commit or 
to abort a thread is made when the quorum is collected. 
The locks prevent any of the participants in the quorum 
from responding to conflicting quorum requests of other 
computations. If messages get lost, the participants re-
main blocked and have to check back with the coordina-
tor after timeouts. If the coordinator fails during commit, 
the home nodes of completed threads may have to wait 
for the coordinator to become operational again. The 
decentralized commit protocol avoids this by allowing 
the home nodes to coordinate between themselves to 
reach a decision. 

Decentralized commit protocol. The decentralized commit 
protocol does not require that the coordinator remain 
operational until a thread is committed. The coordinator 
starts the computation at the home nodes but does not 
have to participate in the committing of a thread. Each 
home node receives a list containing all the home nodes 
of the threads that execute the PET computation. The 
home node of thread A i , ;, H(A i , j) takes the following 
actions when A i  returns successfully. 

• H(A i , ;) sends a pre-commit message to nodes storing 
all replicas touched by the thread A i 1 , that is RT(A i , j). 
A node responds to such a message immediately. If 

H(A i , J) does not receive a response from some node then 
it assumes that the node has failed and the thread is 
aborted. This decision is recorded by H(A i , j). 

• When all nodes storing replicas in RT(A f , j) respond 
positively, H(il f , i) attempts to obtain a quorum. The 
quorum is obtained in the same way as before. Since 
a lock granted to a thread does not conflict with threads 
of the same PET computation, each replica may partici-
pate in the quorum of many threads of a single PET 
computation. 

• If H(A i , j) succeeds in obtaining a quorum, it asks 
nodes that store replicas in RT(A i, ;) to propagate the 
updated data segments of the touched replicas to the 
replicas participating in the quorum. Since each replica 
may participate in several quorums, it is possible for 
it to receive several different data segments. It stores 
all these data segments separately, tagged by the thread 
identifier. It is not required that the data segments be 
stored in stable storage. 

• After successful state propagation, H(A,, i) decides to 
attempt to commit A i , J . At this point, we use an election 
protocol [8] among all H(A,, k) such that fli , k has com-
pleted. The elected node is chosen to be the candidate 
for commit, and it executes a 2-phase commit with the 
participants in its quorum as the cohorts. The cohorts 
make the state of the committed thread permanent, and 
discard any data segments received from other threads. 

• If the elected node fails, or is unable to commit be-
cause a node in its quorum fails, an election is conducted 
again and the new winner is chosen from the home nodes 
of the remaining threads. This is repeated until a thread 
is committed. If all home nodes fail or are unable to 
commit their threads, the PET fails. 

After successful commit of A i , ; , 11(A,. ;) informs all 
the other home nodes, which abort the threads con-
trolled by them. 

The decentralized commit protocol uses a greedy al-
gorithm since it attempts to propagate the states of all 
completed threads before making the commit decision. 
On the other hand, the centralized commit protocol 
takes a lazy approach for state propagation since it is 
done only after a commit decision has been reached. 
The greedy state propagation requires that a larger 
number of messages are sent but it commits a thread 
when the centralized commit protocol cannot do so be-
cause of a particular sequence of failures. Several varia-
tions in between these two algorithms can be easily de-
rived. Also, many optimizations are possible in the algo-
rithms presented in this section. 

We use an optimistic approach and do not lock repli-
cas constituting a quorum set at the time a replica is 
invoked. Therefore, it is possible that threads executing 
on behalf of two actions can execute with different repli-
cas of an object and consequently neither of them can 
collect the required quorum. In this case, both coordina-
tors will abort after a timeout period because they will 
assume that the nodes that do not respond have failed. 
Thus, timeout by the coordinators prevents deadlocks. 
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6 Correctness 

The correctness of the PET scheme will follow if it can 
be shown that the execution of an action is single-copy 
serializable with respect to other actions. Furthermore, 
the state of the object replicas resulting from the action 
using PET should also be obtainable when the action 
is executed by a single thread. Since an action commits 
when a thread is committed after collecting an appro-
priate quorum, one-copy serializability follows. We do 
allow conflicting locks on a replica to be granted simulta-
neously to threads of the same computation. This does 
not affect correctness because the commit protocols en-
sure that a single thread is committed even when quor-
ums are obtained by home nodes of multiple threads. 

The permanent state of the replicas is changed only 
when a thread commits and since a single thread is com-
mitted, the result is the same as if the action was executed 
by a single thread when no communication takes place 
between the different threads. If two threads do not in-
voke a single replica then there will be no communica-
tion between them. In the case when a common replica 
is invoked, each thread gets a private copy from the 
single permanent state of the replica and works with 
its own copy. Thus, there cannot be any communication 
between them. The PET scheme can handle non-deter-
ministic computations because the effect is the same as 
if a single thread executes the action. 

7 Performance issues 

The system is available to an action if for each object 
touched by the action, the number of replicas of the 
object at operational nodes is equal to or greater than 
the number required for the completion of the action. 
Availability, which is used as a measure of fault-toler-
ance, is defined as the steady state probability of a system 
being available to an action. Using the quorum consen-
sus method, an action can commit only if the set of 
operational nodes that store replicas of an object 
touched by the action constitute a quorum. Thus, when 
the quorum is q, the availability of an object to the action 
is limited by the probability of having at least q replicas 
at operational nodes. To be able to tolerate maximum 
number of failures for both read and write operations, 
the value of q is set to the majority of N, which is the 
total number of replicas of an object. Thus, we define 
system availability as the steady state probability of hav-
ing at least a majority of replicas at operational nodes. 

In a system state in which each object invoked by 
an action is available (at least a majority of its replicas 
are at operational nodes), the scheme used for executing 
the action should be able to commit it when problems 
such as locking conflicts do not arise. In the PET scheme, 
this may not be possible if all threads of an action en-
counter failed nodes. Thus, an action is committed with 
the probability that at least one thread does not invoke 
a replica stored at a failed node. It can be easily seen 
that as the number of threads is increased, this probabili-
ty will increase because each thread tries to execute with  

a different set of replicas. Since each thread makes re-
mote calls (when necessary) independently of others, the 
communication cost of executing the action computation 
will increase with the number of threads. In this section, 
we develop a simple model to estimate the number of 
threads that need to be created to achieve a given degree 
of fault-tolerance. The communication cost of the PET 
as well as other schemes is considered in Sect. 8. 

7.1 Number of threads 

If each node in the system has up-to-date information 
about failures and the operational nodes constitute a 
quorum for each object to be touched by a thread, a 
single thread can execute with available replicas and the 
action can be committed when no transient failures occur 
(nodes storing replicas touched by the thread do not 
fail before it is committed). The use of multiple threads 
by the PET scheme guards against transient failures 
while not requiring accurate information about failed 
nodes because each thread potentially executes with a 
different set of replicas. 

We use a simple model to study the relationship be-
tween the probability of committing an action and the 
number of threads. We assume that the steady state 
probability of a node being operational is p. We also 
call p the reliability of each node. Let Psue (X, N, 1, m) 
be the probability of committing an action when each 
object is replicated at N nodes, 1 nodes are visited by 
a thread and m threads execute the PET computation. 
The parameter denotes the scheme used for choosing 
replicas invoked by a thread which has an impact on 
the probability of success. The action can be committed 
only when at least one of the m threads returns success-
fully (it invokes replicas which are at operational nodes) 
and quorums are available for objects touched by the 
threads. To make the analysis feasible, we will compute 
Psue (R, N, 1, m) where M is the scheme in which a node 
storing a replica of the invoked object is chosen random-
ly when such a replica is not available at the nodes al-
ready visited by the thread. Thus, each replica is chosen 
with the same probability and no information about cur-
rently operational nodes is needed. It can be easily seen 
that /L c  N, 1, m) Psuc q, N, 1, m), where 99  is the 
scheme described in Sect. 5.1. Thus, Ps„, , N, 1, m) pro-
vides a lower bound for Psue (.9', N, 1, m), and typically 
the number of threads required to get a certain level 
of fault-tolerance will be smaller than the number de-
rived from the analytical results. We also assume that 
when a thread touches replicas of two objects which 
are at different nodes, the sets of nodes storing replicas 
of each object are disjoint. This implies that such objects 
are replicated at nodes with independent failure modes. 
This allows us to assume that the probabilities of success-
ful quorum collection for objects invoked at different 
nodes are independent. It may not be true for real sys-
tems but Psuc (g N, 1, m) will still be a lower bound for 
ps,, e (Y, N, 1, m) when the assumption is relaxed. 

Let 1 be the number of nodes at which a given thread 
executes. (In the DSM approach, 1 is the number of nodes 
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that supply replicas to the thread.) With the assumptions 
that objects invoked on different nodes do not have repli-
cas at common nodes and when N = 2 k +1, the probabil-
ity of success is, 

13,„c  (R, N, 1, m) 
N 	N 	 N 

=Pilaff- E 	E 	Q.,_, 
n1--=k+1 n2=k+1 	ni=k+1 

(i - n N 

where 

Prnai = 	(1\1) 114 (1 - p)N  "' 
nr=k+1 n i 

and 

Q., =() P"' (1  P)N  ni  

A detailed derivation of Ps„c (-1, N, 1 , m) can be found 
in the Appendix. 

Table 1 shows Psuc  for various values of m when 1=1 
(replicas of objects invoked by a thread are available 
at a single node). To illustrate how guc  depends on the 
degree of replication, N, and the reliability of each node, 
p, several combinations of values for these parameters 
are considered. We see that when N =3 and p= 0.9 (on 
the average, each node is operational 90% of the time), 
the probability that a single thread can be used to com-
plete the computation successfully is 0.891. This proba-
bility is slightly lower than p because not only the node 
storing the chosen replica must be operational but a 
quorum must also be available for successfully complet-
ing the computation. It can be seen from the formula 
for Ps„, that when / = 1, the probability of success is 
bounded by Pmaj  which is the probability that quorum 
is available. For N = 3 and p= 0.9, Pmaj  is 0.972 and it 
is not necessary to create a large number of threads to 
achieve a probability of success close to Pmaj . Puy  > 0.96 
even when p= 0.9 and three threads are used to execute 
the action. This is true for both N = 3 and N = 5. If 
p = 0.99, psuc > 0.998 when three threads are used to exe-
cute the computation. Since nodes are highly reliable 
in practical systems, it is not necessary to have a large 
degree of replication to ensure that a majority of replicas 
are available with a very high probability. It can be seen 
from Table 1 that in such systems, a PET computation 
can be committed with a probability that is close to 
the availability of the system with a modest number of 
threads. 

In Table 2 we illustrate the impact of distribution 
on ps„, by considering the case when 1=3. Thus, each 
thread executes at 3 different nodes because replicas of 
the objects invoked by the threads are distributed. There 
are several reasons why replicas of all objects cannot 
be stored at a single node. These include limitation on 
storage space at each node, ownership of objects and 
the need to keep them at nodes where they are used 

Table 1. Puy  for 1=1 

Number 
of 
threads 
(m) 

PR 

N =3 N =5 

p=0.9 p =0.99 p=0.9 p=0.99 

1 0.8910 0.98990 0.89667 0.98999 
2 0.9450 0.99643 0.96665 0.99791 
3 0.9630 0.99861 0.98415 0.99954 
4 0.9690 0.99933 0.98904 0.99988 
5 0.9710 0.99958 0.99058 0.99996 

Table 2. P for 1=3 

Number 
of 
threads 	N =3 	 N=5 
(n) 

p = 0.9 p=0.99 p=0.9 p=0.99 

1 0.70734 0.97000 0.72093 0.97028 
2 0.82831 0.98908 0.87691 0.99338 
3 0.87683 0.99559 0.93195 0.99839 
4 0.89772 0.99783 0.95417 0.99955 
5 0.90742 0.99862 0.96412 0.99984 
6 0.91225 0.99891 0.96893 0.99992 

most often. It can be seen that a higher number of 
threads are necessary for achieving a given probability 
of success for a PET computation when 1 is increased 
from 1 to 3. Since Psue  is the probability when the replica 
to be used by a thread is chosen randomly, we see that 
when p -= 0.9 and N = 3, a computation executed by a 
single thread will complete successfully only with proba-
bility 0.707. This is due to the fact that all three nodes 
chosen to execute the thread computation must be oper-
ational and quorums must be available. In fact, Pita; , 
which is the probability that quorums are available for 
all objects is only 0.918 for this system. The probability 
of success can be made close to 0.918 by using 5 threads. 
When each node is highly reliable (p = 0.99), we see that 
Rue  will be greater than 0.995 when the number of 
threads in 3 and each thread invokes replicas stored at 
3 nodes (in this case, gni  a  is 0.9991). Similar conclusions 
can be drawn about the system when N = 5. 

Since 	N, 1 , m)Ps„c (R, N, 1, m), the number of 
threads required to get a desired probability of success 
will be no greater (and usually less) when the scheme 
of Sect. 5.1 is used to choose replicas. For example, in 
a system with p =0.9, N = 3 and 1=2, it can be seen 
from the formula for Rue  that 3 threads are needed to 
ensure that Ps„, is higher than 0.90. However, if no two 
threads invoke replicas stored at the same node (the 
scheme of Sect. 5.1 tries to ensure this), gue >0.90 can 
be achieved with only 2 threads for the same values of 
p, N and 1. This can be shown easily because if quorums 
are available, both threads will fail only when one replica 
of each invoked object is at a failed node (since 1=2, 
objects at two distinct nodes are invoked). Since two 
threads do not invoke the same replicas, each thread 
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must invoke replicas at one operational and one failed 
node. In this case the probability of success is greater 
then 0.92 which is much higher than .13,„c  (R, 3, 2, 2) 
= 0.887. 

When the DSM mechanism is used to implement 
object invocation in a workstation/data server environ-
ment, a thread will complete successfully if its home node 
and the data server nodes that supply replicas used by 
the thread do not fail. Since the number of data servers 
is small, each data server will contain replicas of most 
objects when the degree of replication is high. If all repli-
cas used by a thread are available at a single data server, 
only two nodes will be touched by a thread when scheme 
9' is used (home node and a data server) and hence 
1= 2. In such a system, fewer threads will be needed be-
cause I will be smaller. 

The analysis presented in Sect. 7.1 for the steady 
state, but in practical systems, there are periods when 
a large number of failures occur followed by a relatively 
stable operation of the system. If information exists 
about the frequency of failures, it can be used to decide 
the number of threads that need to be created. In many 
distributed systems, there exists a monitoring service that 
allows each node to maintain approximate information 
about the state of other nodes. For example, in Clouds, 
such information is already maintained for reconfigura-
tion purposes. If the node where an action originates 
believes (based on the information available at it) that 
there are no or a very small number of failures, it can 
create a small number of threads. This will reduce the 
computation and communication load in the system. On 
the other hand, if there are many node and link failures, 
a large number of threads should be created to avoid 
the failed nodes and links. Similarly, the use of a large 
number of threads is desirable if an action must commit 
with a very high probability. Thus, not only can the 
system use the available state information to reduce com-
munication and computation costs, but the PET scheme 
also provides a trade-off between the degree of fault-
tolerance and its cost (computation and communication). 

8 Comparison with related work 

A large number of algorithms have been proposed to 
maintain the consistency of replicated data but most of 
them do not address the problems that can arise when 
computation is also replicated. In this section, we only 
describe the ones that address the object and computa-
tion replication problem in distributed systems. Other 
schemes such as multi-version programming (e.g., triple 
modular redundancy [2]) which have been proposed for 
handling program faults are also not discussed. 

• Replicated programs in CIRCUS 
The CIRCUS system [6] addressed the problem of repli-
cated distributed computation. In CIRCUS, when a call 
is made to a program module that has n replicas, n paral-
lel threads are created and each executes independently 
with a single replica. It can be easily seen that the caller 
can receive multiple results, and hence it must collate 

them. Furthermore, a replica can receive a call multiple 
times when the caller module is itself replicated and 
hence the callee also needs to collate. In the PET scheme 
each thread executes as if there is no replication, thus 
the collation problem does not arise. Furthermore, the 
CIRCUS scheme requires that the computation defined 
by each replica be determinisitc because the changes in 
the state of the replicas are done by executing the opera-
tion independently at each replica. This is not required 
by the PET scheme because it commits a single thread 
and the effects of the other threads are undone. Thus, 
it can be used even when computations are non-deter-
ministic. 

The CIRCUS scheme has a high communication over-
head because the number of messages needed to execute 
a replicated computation will be 2N 2  1 (N is the degree 
of replication and there are 1 nesting levels) because each 
caller replica will invoke all the callee replicas. On the 
other hand, in the PET scheme only 21m messages are 
generated for executing the m threads. For guaranteeing 
atomicity and consistency, CIRCUS requires that each 
server communicate with the clients to determine if the 
results of the computation should be committed. This 
is done by using the same mechanism except that the 
servers make replicated calls to the clients and hence 
the additional communication cost of the commit algo-
rithm is 2N 2 1. In the PET scheme, quorums and a com-
mit protocol are used to ensure atomicity and con-
sistency. The overhead of these algorithms for commit-
ting a thread will be less than 4 NI. Although the PET 
scheme does need to send the updated state of modified 
replicas, that is made necessary because we want to han-
dle non-deterministic computations. 

• Fault-tolerant distributed objects 
The algorithm presented by Birman [5] for implement-
ing fault-tolerant objects does not replicate the computa-
tion when a call is made to a replicated object 0. The 
call is executed at a single node called the coordinator. 
If the execution of the call changes the state of 0, the 
replica at the coordinator is copied to all other nodes 
where O's replicas exist. If a node fails while it is execut-
ing the operation on 0, another node where a replica 
of 0 exists is chosen to execute the operation. To ensure 
forward progress, the coordinator sends periodic check-
points to other replicas and hence a new coordinator 
can resume a partially completed computation. The fail-
ure of the coordinator must be detected and a single 
other node must be chosen to execute the operation. 
Algorithms for checkpointing and finding another node 
that can resume a computation after a failure are not 
required by the PET scheme but an action needs to be 
restarted when all threads encounter failed nodes. 

The execution of a computation in ISIS in done by 
a single thread which requires 21 messages but there 
is an overhead of sending checkpoints to all operational 
nodes that store replicas of an invoked object (other 
messages are needed to inform nodes when they can 
discard retained results of calls). The checkpoints can 
be sent infrequently when there are few failures but in 
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such a case, the PET scheme can also use fewer threads. 
In ISIS as with PET, a commit protocol is used when 
an action completes. Although the overhead of collecting 
quorums is not there, the concurrency control scheme 
which is based on the available copies method [4] cannot 
deal with network partitions. The available copies meth-
od can be adapted to the PET scheme but quorums 
allow it to tolerate partitions. 

• Fault-tolerant RPC 
The scheme presented by Yap et al. [14] for fault-toler-
ant RPC avoids the collation problem of CIRCUS by 
sending a call to a process associated with the primary 
replica of a module. However, the call must be executed 
by each replica sequentially before the primary is allowed 
to return the results. Although the communication cost 
of executing a computation is 4N1, it can only be used 
when computations are deterministic and network parti-
tions do not occur. 

• View-stamp replication 
The view-stamp replication algorithm [11] can be used 
in a system that replicates objects. In this scheme, opera-
tion calls are sent to a primary which then propagates 
the relevant events to other replicas. These updates can 
be normally sent asynchronously. However, there is a 
single execution thread and failure of an invoked primary 
leads to an abort of the action. Other transient failures 
may be tolerated depending on the new view that results 
from the reorganization. Similar to the PET scheme, 
when nodes storing a majority or more of the replicas 
have failed, actions cannot be committed. Since an action 
can only be committed when a view contains at least 
a majority of the replicas, the communication cost asso-
ciated with propagation and committing the action is 
similar to the PET scheme. 

In all schemes other than the view-stamp and PET, 
the communication cost of executing the computation 
depends on N which can only be changed by reconfigur-
ing the system by changing the number of replicas (such 
a cost may be incurred by the view-stamp algorithm 
for propagating the state even when the action is 
aborted). The PET scheme offers the advantage that this 
cost can be controlled at the time the action is created 
because it depends on the number of threads and not 
N. The cost of the quorum and commit protocols and 
state propagation does depend on N but these are 
needed with the assumption about the system. Non-de-
terministic computations require that changes to objects 
must be copied at other nodes and network partitions 
require communication with a majority of the nodes. 
A scheme presented in a recent extension [10] of our 
earlier work [1] also has some of the advantages offered 
by the PET scheme. It presents similar algorithms for 
choosing replicas and a commit protocol. 

9 Concluding remarks 

An object-based distributed system can use object repli- 
cation to provide fault-tolerance. If computation of an 

action is not replicated in such a system, the action will 
fail when it either invokes a replica at a failed node 
or a node fails during the execution of the computation. 
This leads to an abort of the action. The PET scheme 
reduces the probability of an action being aborted due 
to failures by replicating the computation. The scheme 
is simple because each computation thread executes as 
if there is no replication. Furthermore, the computation 
and communication costs of executing a fault-tolerant 
action will be higher only if a greater degree of fault-
tolerance is desired. 

The implementation of the algorithms required to 
support the PET scheme will be undertaken after the 
basic system objects that support the Clouds operating 
system functions are implemented. The Ra kernel, which 
will provide the necessary mechanisms to support the 
system objects, has already been implemented [3] and 
debugged. In future, we want to explore the implementa-
tion of fault-tolerant services using the PET scheme. 
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Appendix 

We now present the derivation of 11,,. As in Sect. 7, we assume 
that all threads invoke replicas stored at 1 distinct nodes. Further-
more, when replicas of two objects are invoked at different nodes, 
the sets of nodes that store the replicas of the two objects are 
disjoint. This will allow us to assume that when a thread needs 
to invoke a replica at a node that has not been visited by it, the 
probability that it will choose an operational node is independent 
of the nodes that have been visited by the thread. We assume 
N = 2k + 1 and the steady state probability of a node , being opera-
tional to be p. 

We define the state of the system in which a PET computation 
executes in terms of the number of operational nodes that store 
replicas of objects touched by the threads of the computation. In 
particular, when threads execute at 1 distinct nodes, let S 
=(n 1 , n 2 , n,) be a given system state in which n,(0 < n i  <N) of 
the N replicas of the group of objects are at operational nodes. 
This group of objects is defined by the replicas touched at the 

node. Let d be the set of possible system states. As defined 
in Sect. 7, the probability of successful completion is Pm,c (A , N, 1, m), 
where m is the number of threads and 1 and N are as defined 
above. Since a computation can be committed only if at least one 
of the thread returns successfully and quorums are available for 
all touched objects (e.g., majority of replicas are at operational 
nodes), we can express FL (R, N, 1, m) as follows: 

Ps.,(gf, N, 1, m) 

= E Prob. [S] Prob. [at least one of m threads succeeds 
SEA 

in state S and quorums are available 
for all touched objects in state S] 

We compute 1 — Pm,c (R, N, 1, m) and denote it by 
n.„(ge, N, 1, m). Thus, 11.„(9 , N, 1, m) is the probability that the 
computation is not successful either because quorum was not avail-
able for some touched object or all threads encountered failed 
nodes. To compute Pfaii, we partition the states in the set 4. Let 
4 +  be the subset of states such that each state in it has at least 
a majority of replicas of each touched object at operational nodes. 
Therefore, if S=(1 1 , n 2 , ..., n i)e + then n i > k for 1 < i< /. Let 
=z1-4 k , which is the subset of states in which quorums are not 
available for one or more objects. Since a computation must fail 
when a quorum is not available for some object that it touches, 
all states in z lead to failure. Furthermore, the computation can 
fail even in a state that belongs to 4 +  because all threads may 
encounter failed nodes. Thus, we can write, 

N, 1, m) 
= E Prob.[S] 

564 -  

+ E Prob. [5] Prob. [all m threads fail in state S] 
5€4'  

We first compute E Prob.[S]. 
5.4 

E Prob. [S] =1— E Prob. [S] 
5.d- 	 5E4. 

N 	N 

=1- E 	E • • • E Q., Q., - • 
n, =k +1 n2=k+1 	n,=k+1 

where 

(2 k + 1) 	 p)2k + 1 - n, 

ni  

Since Q 	not depend on nj  when j+ i, the above can be simpli- 
fied to, 

E Prob. [5] =1— P„Im;  
Sed - 

where 

= 	2k+1\  

n=k+1 	n 

is the probability that at least a majority of replicas of an object 
are at operational nodes. 

To complete the derivation of .1L it (9, N, 1, m), we now derive 
the probability that the computation fails even when quorums are 
available for all touched objects. In state S=(1 1 , n2  , ..., ni), the 
probability that a thread executes at operational nodes is 

1 
—
ni

• —
n2 

 N N 
...— 

N • 	 N 
ni 

Thus a thread fails with probability (1 — n -rA). Since 
i = I. 

threads choose replicas independent of each other, the probability 
n.1"'

•  that all m threads fail is simply ( 1 — H N 
Therefore, 

E Prob. [S] Prob. [all m threads fail in state S] 
5E2+ 

1 	m 
E • • • E Q„, Q„, - • • • Q.(1 

	

n1=k+1 n2=k+1 	n/=k+1 	 1=1 N 

Therefore, 

11..(9P, N, 1, m)= 1  — )3.'1( 1, N, 1, m) 
=1 — (1 — P„;aj ) 

N 	N 	 m  

- E E • E 'AN) n, -=k+1 n2=k+1 	m=k+1 	 i=1 

N 	N 	 N 	 1 	\ n, 

= 	E 	E • • • E 	Qkl - 	12 .1 	 .A) 
n,=k+1 n2=k+1 	ni=k+1 	 i=1 

1=1 
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