
OCA PAD INITIATION - PROJECT HEADER INFORMATION 06/15/88

Active
Cost share #:
Center shr #:

Mod #:

10:16:20

Project #
Center # : 	06-0A0

Contract#:
Prime

Subprojects ? : N
Main project #:

Rev #: 0
OCA file #:
Work type : RES
Document : GRANT
Contract entity: GTRC

Unit code: 02.010.142 ICS

Sponsor/division names:
Sponsor/division codes':

unt
ontract value
unded

Cost sharing amount

s chan
4,274.00
64,274.00

54,166.00:

Project unit:
Project dire .r(s):

Security class (U,C,S,TS)
Defense priority rating
Equipment title vests with:

SUN 3/60 M-4-10

/A
Sponsor

Does 'Subcontracting plan apply ?: N

PROJECT ADMINISTRATION DATA

OCA contact: St

Sponsor technical contact

NATHANIEL MACON
(202)357-7375
NATIONAL SCIENCE FOUNDATION
CISE/CCR
WASHINGTON, D.C. 20550

Administrative comments -
INITIATION.

894-4820

Sponsor issuing office

SHARON GRAHAM
(202)357-9621
NATIONAL SCIENCE FOUNDATION
DGC/CISE
WASHINGTON, D.C. 20550

ONR resident rep. is ACO
NSF supplemental sheet

GIT X

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT

Project No. C-36-651 	

Project Director AHAMAD M 	

Closeout Notice Date 08/16/91

Center No. R6506-0A0 	

School/Lab COMPUTING

Sponsor NAIL SCIENCE FOUNDATION/GENERAL 	

Contract/Grant No. CCR-8806358
	

Contract Entity GTRC

Prime Contract No.

Title USING MULTICAST COMMUNICATION FOR RESOURCE FINDING IN DISTRIBUTED SYSTEMS

Effective Completion Date 910531 (Performance) 910831 (Reports)

Date
Closeout Actions Required: 	 Y/N Submitted

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory 8 Related Certificate
Classified Material Certificate
Release and Assignment
Other

N
Y 	910814

N
N
N

Comments**FORMERLY G-36-651. INVOICING VIA NSF LINE OF CREDIT. 98A SATISFIES_
REQUIREMENT FOR PATENT REPORT.

Subproject Under Main Project No. 	

Continues Project No. 	

Distribution Required:

Project Director
Administrative Network Representative
GTRI Accounting/Grants and Contracts
Procurement/Supply Services
Research Property Manegment
Research Security Services
Reports Coordinator (OCA)
GTRC
Project File
Other 	

N

NOTE: Final Patent Questionnaire sent to PDPI.

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

NOTICE OF PROJECT CLOSEOUT (SUBPROJECTS)

Closeout Notice Date 08/16/91

Project No. C-36-651 	 Center No. R6506-0A0 	

Project Director AHAMAD M 	School/Lab COMPUTING

Sponsor NATL SCIENCE FOUNDATION/GENERAL 	

Project * C-36-616 	 PD AHAMAD M 	 Unit 02.010.300 T
GRANT II 	CCR-8806358 	 MOD* NCE 	 COMPUTING *

1 Ctr * 246R656-0A2 	Main prof II C-36-651 	 OCA CO MSH
Sponsor-NATL SCIENCE FOUNDAT 	 /GENERAL 	 107/000

' USING MULTICAST COMM
Start 880615 End 910531 Funded 	9,375.00 Contract 	 9,375.00

LEGEND
1. * indicates the project is a subproject.
2. I indicates the project is active and being updated.
3. A indicates the project is currently active.
4. T indicates the project has been terminated.
5. R indicates a terminated project that is being modified.

I MB Number 345-0058

FOUNDM I

118000STREET, NW

'WASHINGTON, .DC 20550

BULK RATE
POSTAGE & FEES PAID

National Science Foundation
Permit No. G-69

Mustaque Ahaaad
School of Information & Computer Science
Georgia Tech Research Corp
Atlanta 	 GA 	30332

PART I - PROJECT IDENTIFICATION INFORMATION
1. Program Official/Org. Nathaniel Macon 	— CCR

2. Program Name 	SCAFTWARE SYSTEMS PRGGRAM

3. Award Dates (MM/YY) 	From: 	06fila 	 To: 	051 f 1

4. Institution and Address
Georgia Tech Research Corp
Administration Euilding
Atlanta 	 GA 30332

5. Award Number 	8806358

6. Project Title
.es.±arch Initiation: 	Using Multicast Communication for

i,kesource Finding in Distributed Systems

This Packet Contains
NSF Form 98A

And 1 Return Envelope

PART IV — FINAL PROJECT REPORT — SUMMARY DATA ON PROJECT PERSONNEL
(To be submitted to cognizant Program Officer upon completion of project)

1
The data requested below are important for the development of a statistical profile on the personnel supported by
Federal grants. The information on this part is solicited in response to Public Law 99-383 and 42 USC 1885C. All informa-
tion provided will be treated as confidential and will be safeguarded in accordance with the provisions of the Privacy Act
lof 1974. You should submit a single copy of this part with each final project report. However, submission of the requested
information is not mandatory and is not a precondition of future award(s). Check the "Decline to Provide Information"
box below if you do not wish to provide the information.

Please enter the numbers of individuals supported under this grant.
Do not enter information for individuals working less than 40 hours in any calendar year.

1

i

Senior
Staff

Post-
Doctorals

Graduate
Students

Under-
Graduates

Other
Participantsl

Male Fern. Male Fern. Male Fern. Male Fern. Male Fern.

A. Total, U.S. Citizens ..1_ 0,
I— i

B. Total, Permanent Residents

1 	U.S. Citizens or
Permanent Residents2:

American Indian or Alaskan Native 	

Asian 	

Black, Not of Hispanic Origin 	

Hispanic 	

Pacific Islander 	

White. Not of Hispanic Origin 	

1_

.1.-- I-

C. Total, Other Non-U.S. Citizens

Specify Country
1.

2.

3.

D. Total, All participants
(A + B + C) 1 2 -1—

Disabled3

Decline to Provide Information: Check box if you do not wish to provide this information (you are still required to return this page
■ 	along with Parts I-III).

1 Category includes, for example, college and precollege teachers, conference and workshop participants.

2Use the category that best describes the ethnic/racial status for all U.S. Citizens and Non-citizens with Permanent Residency. (If more
than one category applies, use the one category that most closely reflects the person's recognition in the community.)

3A person having a physical or mental impairment that substantially limits one or more major life activities; who has a record of such
impairment; or who is regarded as having such impairment. (Disabled individuals also should be counted under the appropriate
ethnic/racial group unless they are classified as "Other Non-U.S. Citizens.")

AMERICAN INDIAN OR ALASKAN NATIVE: A person having origins in any of the original peoples of North America, and who main-
tain cultural identification through tribal affiliation or community recognition.

ASIAN: A person having origins in any of the original peoples of East Asia, Southeast Asia and the Indian subcontinent. This area
includes, for example, China, India, Indonesia, Japan, Korea and Vietnam.

BLACK, NOT OF HISPANIC ORIGIN: A person having origins in any of the black racial groups of Africa.

HISPANIC: A person of Mexican, Puerto Rican, Cuban, Central or South American or other Spanish culture or origin, regardless of race.

PACIFIC ISLANDER: A person having origins in any of the original peoples of Hawaii; the U.S. Pacific Territories of Guam,
American Samoa, or the Northern Marianas; the U.S. Trust Territory of Palau; the islands of Micronesia or Melanesia; or the
Philippines.

WHITE, NOT OF HISPANIC ORIGIN: A person having origins in any of the original peoples of Europe, North Africa, or the Middle East.

THIS PART WILL BE PHYSICALLY SEPARATED FROM THE FINAL PROJECT REPORT AND USED AS A COMPUTER
SOURCE DOCUMENT. DO NOT DUPLICATE IT ON THE REVERSE OF ANY OTHER PART OF THE FINAL REPORT.

SF Form 98A (Rev. 5/90)

Final Report for Project "Using Multicast
Communication for Resource Finding in Distributed

Systems" (CCR-8806358)

PART II - SUMMARY OF COMPLETED PROJECT

The goal of the project was to investigate distributed algorithms that can be used to find
the locations of remote resources in a dynamic environment where resources can migrate
between nodes. Such algorithms are necessary to allow sharing of resources between users
of a distributed system. In studying the new and existing algorithms, not only the message
cost of finding a resource was considered but the processing cost, which depends on the
number of nodes that must participate in locating a resource, was also included. In bus
based local area networks, a single broadcast message can reach all nodes but such a scheme
has a very high processing overhead since all nodes need to process the request sent to find
a resource. We have developed algorithms that use multicast communication and send the
request to a small number of nodes. These algorithms provide significant savings in message
and/or processing costs and have been applied to applications such as object invocation

and load sharing. In store-and-forward networks, we have shown that very simple schemes
that are easy to implement can have average message cost similar to several of the existing
algorithms. Efficient schemes for implementing multicast communication have also been
developed. Since several other problems in distributed systems can be modeled as instances
of finding generalized resources, we also investigated how distributed mutual exclusion and
replicated data management schemes can benefit from resource finding algorithms.

PART III - TECHNICAL INFORMATION

We have addressed the problem of resource finding in local area networks which provide
support for multicast communication in the hardware and also in store-and-forward networks.
The following is a brief summary of the results of research that was supported by award
CCR-8806358.

1. Using Multicast Communication for Resource Finding in Local Area Networks

If a resource is found using a broadcast message, every node in the distributed system
must receive the request message each time a location operation is performed. We have
developed a method that can reduce this overhead [2]. In this method the universe of
resource names is partitioned into a relatively small number of groups and each group
is assigned a unique address. Nodes storing the location of a resource belonging to a
particular group instruct their network interfaces to receive messages sent to the group
address. A node attempting to find a resource first determines the address of the group
to which the resource belongs. This is accomplished via a well known hash function. A

1

multicast message is then sent to that address. Using analytic and simulation models,
we investigated the performance of the scheme. Our conclusion is that even when there
is a large number of resources in the system which migrate frequently, the multicast
scheme is very efficient as a small number of nodes participate in each resource finding
operation.

The multicast scheme sends a single location message (similar to broadcast) and hence
the response time of the resource finding operation is small. It is possible to further
reduce the number of nodes that need to handle request messages for finding a resource
when increased response time is acceptable. We have investigated a generalized polling
scheme [3] in which the request for a resource's location is successively sent to groups
of nodes until the resource is located. In this case, the cost function is not only the
number of nodes that process the request messages but also the time required to find
the node where the resource resides, taking into account network contention and errors.
Using a detailed network model, we have developed algorithms that can be used to
partition the nodes in the system into multicast groups and determine the order in
which the groups should be polled to minimize the cost.

The multicast facilities of a local area network can also be exploited to implement
load sharing which is also an instance of the resource finding problem since the logical
resource to be found is the node with the least load. We present a scheme in [6]
which associates nodes having similar workloads with common multicast groups. The
membership of the groups changes dynamically as the load varies at the nodes. When
a new task arrives, a sequence of requests may be sent as multicast messages; starting
with the multicast group consisting of idle nodes. A node is chosen to execute the new
task from the ones that respond to the first multicast request. If some node is idle,
it is found in a single message. Using a simulation study we showed that this scheme
achieves close to optimal load sharing by reducing the processing overhead.

2. Resource Finding in Store-and-Forward Networks

In [1], we model the process of searching for a resource in a distributed system whose
nodes are connected through a store—and—forward network. In this work, our main
goal was to understand the message cost of resource finding in such networks. Based
on this model, we show lower and upper bounds on the number of messages necessary
to find a resource when nothing is known about the location of the resource. Although
similar bounds have been derived for other methods but they require nodes to main-
tain additional information (nodes must store addresses in the forwarding addresses
method).

The model is also used to establish results about the complexity of finding optimal
algorithms to locate a resource when the probability distribution for the location of
the resource in the network is known. We show that the optimization problem is NP-
hard for general networks. Finally we show an algorithm for tree networks which can
be specialized to polynomial algorithms for special kinds of trees. (The polynomial

2

algorithms can be used as the basis of heuristic algorithms for general networks.) An
application of this algorithm yields optimal search algorithms for bidirectional ring
networks.

3. Efficient Message Delivery to Dynamic Multicast Groups

Dynamic multicast groups arise in many distributed applications. In particular, such
groups can be used to reach a set of nodes that can locate a resource. We have
addressed two separate problems in the area of message delivery to multicast groups
[4,5]. First, to reduce the cost of message delivery to a group, we investigated the use
of a spanning tree of the members of a multicast group. The problem of constructing
a minimal spanning tree of the members of a multicast group which include only a
subset of the nodes in the network is computationally intractable. In dynamic groups,
the problem becomes more serious because the tree needs to be recomputed when
the membership of the group changes. We developed two heuristic algorithms which
update the tree incrementally as the membership changes. The goal is to reduce the
total bandwidth required for sending data and control messages. The broadcast tree
based algorithm makes use of a tree structure in the network, and the other algorithm
joins a new member to the node that is nearest to it and is already in the multicast tree.

A simulation model was used to study the performance of the algorithms. Although
the cost of delivering data messages is higher in the proposed algorithms, they have
lower overall cost when the group is dynamic and the cost of maintaining the trees is
also included.

We also investigated how reliable and ordered message delivery to dynamic multicast
groups can be implemented. In point-to-point networks, we exploit the tree structure
maintained for message delivery to ensure ordering. For local area networks, we devel-
oped an efficient protocol which makes use of the broadcast communication medium.
The protocol ensures that not only members of a single group receive messages in the
same order, but processes in different groups also receive common messages in the same
order.

4. Distributed Mutual Exclusion and Management of Replicated Data

The resource finding problem is quite general and efficient algorithms for it can be
used in several other problems in distributed systems. For example, in distributed
mutual exclusion, the privilege that allows a node to enter the critical section (CS)
can be considered a logical resource which migrates as nodes make requests to enter
the CS. To obtain access to the CS, the requesting node has to find the current holder
of the privilege or another node which can transfer the privilege to it. We studied
a communication efficient distributed mutual exclusion algorithm [7] based on the
forwarding addresses method that was developed for finding resources. We developed
a formal model of the algorithm's execution, which enabled us to prove its correctness.
The formal model is also used to show that an execution history of the algorithm when
concurrent requests are made (the normal case) is equivalent to a history in which the

3

requests are made serially. Based on this fact we proved a logarithmic upper bound
on the average number of messages needed per access to the critical section.

In a replicated data system, the logical resource is the data which has copies at several
nodes (this is done to increase the availability of the data). A transaction typically
needs to locate a set of copies before it is allowed to access the data. Although the nodes
where the copies are stored may be known, due to node failures and recoveries, the
currently operational nodes with the data copies may not be known. In [10], multicast
communication is used to find the set of nodes that can allow a transaction to read or
update the data. The new protocol not only provides high data availability but also
provides a high degree of load sharing between the nodes having copies of the data. We
used a simulation model to demonstrate that the high degree of load sharing leads to
significant improvement in transaction response time compared to existing replication
management protocols. Our other work in this area has produced results that can be
used to determine optimal vote and quorum assignments as well as a unified mechanism
for modeling the operation of a general class of protocols [8,10,11,12,13]. We have also
developed new schemes for building fault-tolerant distributed applications based on
the replication of computations and checkpointing and rollback techniques [9,14,15].

In addition to the research discussed above, the award also supported our initial work
in weakly consistent distributed shared memories [15,16,17]. These initial results were im-
portant in preparing a new proposal that has been funded by NSF this year. The dissertation
work of several doctoral students was also partly supported by this award. Three of them
have already completed their Ph.D. and two others are expected to complete in the next six
months.

Publications from Research Funded by Award CCR -8806358

1. J. M. Bernabeu, M. Ahamad, and M. H. Ammar, Resource Finding in Store-and-
forward Networks, to appear in Acta Informatica.

2. M. Ahamad, M. H. Ammar, J. M. Bernabeu and M. Y. Khalidi, Using Multicast
Communication to Locate Resources in a LAN-based Distributed System, Proc. of the
13th IEEE Conference on Local Computer Networks, October, 1988.

3. J. M. Bernabeu, M. H. Ammar and M. Ahamad, Optimal Selection of Multicast Groups
for Resource Location in a Distributed System, in Proc. of IEEE INFOCOM, April
1989.

4. N. Belkier and M. Ahamad, Low Cost Algorithms for Message Delivery in Dynamic
Multicast Groups, in Proc. of Ninth International Conference on Distributed Comput-
ing, June 1989.

4

5. N. Belkier and M. Ahamad, Ordered and Reliable Message Delivery in Dynamic Multi-
cast Groups, Georgia Tech Technical Report, April 1990. (submitted for publication).

6. M. Ahamad and N. Belkier, Using Multicast Communication for Dynamic Load Bal-
ancing in Local Area Networks, in 14th IEEE Conference on Local Computer Networks,
October, 1989.

7. J. M. Bernabeu and M. Ahamad, Applying a Path Compression Technique to Obtain
an Efficient Distributed Mutual Exclusion Algorithm, in Lecture Notes in Computer
Science (Proc. of International Workshop on Distributed Algorithms, Nice, September
1989).

8. S. Y. Cheung, M. Ahamad and M. H. Ammar, Multi -dimensional Voting, to appear in
ACM Transactions on Computer Systems.

9. M. Ahamad, P. Dasgupta and R. J. LeBlanc, Fault-tolerant Atomic Computations in
an Object-based Distributed System, Distributed Computing Vol 4(2), 1990.

10. S. Y. Cheung, M. H. Ammar and M. Ahamad, The Grid Protocol: A High Performance
Scheme for Maintaining Replicated Data, Proc. of Sixth IEEE International Conference

on Data Engineering, February, 1990 (To appear in IEEE Transactions on Knowledge
and Data Engineering).

11. M. H. Ammar, M. Ahamad, S. Y. Cheung, Performance of Quorum Consensus Pro-
tocols for Mutual Exclusion from the User's Point of View, Proc. of the 2nd IEEE
Workshop on Future Trends in Distributed Computing Systems, 1990. (submitted for
journal publication).

12. M. Ahamad, M. H. Ammar, S. Y. Cheung, Optimizing the Performance of Replica
Control Protocols, Proc. of the IEEE Workshop on the Management of Replicated
Data, Houston, Texas, 1990.

13. S. Y. Cheung, M. Ahamad and M. H. Ammar, Optimizing Vote and Quorum Assign-
ments for Reading and Writing Replicated Data, IEEE Trans. on Knowledge and Data
Engineering, September, 1989 (also in Proc. of Fifth International Conference on Data
Engineering, February, 1989).

14. L. Lin, M. Ahamad, Checkpointing and Rollback -Recovery in Object -based Distributed
Systems, in Proc. of 20th Fault -tolerant Computing Systems Symposium, July 1990.

15. M. Ahamad and L. Lin, Using Checkpoints to Localize the Effects of Faults in Dis-
tributed Systems, in Proc. of IEEE Symposium on Reliable Distributed Systems, Oc-
tober, 1989 (submitted for journal publication).

5

16. P. W. Hutto and M. Ahamad, Slow Memory: Weakening Consistency to Enhance
Concurrency in Distributed Shared Memories, Proc. of the 10th International Confer-
ence on Distributed Computing Systems, Paris, France, 1990. (submitted for journal
publication).

17. M. Ahamad, P. W. Hutto and R. John, Implementing and Programming Causal Dis-
tributed Memory, Proc. of the 11th International Conference on Distributed Comput-
ing, May 1991.

18. M. Ahamad, M. Chelliah, P. Dasgupta, R. LeBlanc and M. Pearson, Shared Memory
Programming in Distributed Systems, Georgia Tech Technical Report GIT-CC-90/63.
(submitted for publication).

6

Thesis Abstracts

Location Finding Algorithms for Distributed Systems

a Thesis
Presented to

The Faculty of the Division of Graduate Studies

By

Jose Manuel Bernabeu Auban

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy
in the School of Information and Computer Science

Georgia Institute of Technology
December 1988

Summary

One of the problems encountered in distributed systems is how to find the location of the

resources needed by a computation. In many situations the location may have to be found

at run time, when the resource is accessed, thus the efficiency of the location algorithm

will affect the performance of the system. In general, the larger the distributed system, the

more the number of processors at which a resource may reside at the time it is accessed.

The general problem of resource location in distributed systems has not been addressed

adequately, and most of the systems have adopted ad hoc solutions without a careful study

of the performance of the algorithms used. In this thesis it is studied the problem of finding

the location of resources in order to get a better understanding of the factors affecting the

cost of a location algorithm. This study will make it possible to judge proposed algorithms

as well as to come up with new ones, optimized for particular systems.

Most distributed systems are based on bus networks that have broadcast and multicast

capabilities. The thesis first describes an efficient location method that takes advantage

of the multicast capabilities of these networks to reduce the computation cost of resource

location finding. Performance results based on a simulation of the scheme are presented,

showing that the method is a simple and efficient one. An approximate analysis is also

presented, and it is shown that the analysis provides an extremely good approximation for

low and high values of the load in the system. In another multicast scheme for broadcast

networks, the thesis considers a system in which no references to resources are stored in the

network except where the resource resides. Besides the CPU cost, response time costs are

also considered, and a cost formula is found for the scheme. Based on this cost formula,

an algorithm is presented to find an optimal sequence of multicast groups to be used in

locating a resource.

xiv

The thesis then considers the communication costs incurred by location finding algo-

rithms in store—and—forward networks. A model of such system is first constructed and,

based on this model, a worst case analysis is performed to obtain a lower bound on the

number of messages needed to locate a resource when no information about the location

of the resource is available at the node conducting the search. It is also shown that when

the searcher node has the probability distribution indicating the location of the resource

in the system, the problem of finding the optimal way to traverse the network has only a

polynomial time algorithm for restricted classes of networks.

The use of hint tables can reduce the cost of resource location when a resource is used

repeatedly. The thesis presents a model of the usage of hint tables and shows how it affects

the performance of finding the location of resources.

Optimizing the Performance of Quorum Consensus Replica
Control Protocols

a Thesis
Presented to

The Faculty of the Division of Graduate Studies

By

Shun Yan Cheung

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy
in the College of Computing

Georgia Institute of Technology
July 1990

Summary

This thesis considers the performance of synchronziation protocols based on quorum

consensus in distributed systems. In these protocols, an operation can proceed if permission

can be obtained from nodes that constitute a quorum group. The collection of all quorum

groups is a quorum set. Voting can be used to define quorum sets and it is appealing because

it is flexible and can be easily implemented. However, voting cannot be used to represent

all quorum sets.

We first study the problem of optimizing the system availability of quorum consensus

methods and presents a direct method for finding the optimal quorum set for mutual ex-

clusion, and reading and writing of replicated data We show that the optimal system

availability can be achieved by voting.

The thesis then considers optimizing an arbitrary performance measure.. Changes in

the quorum set cause performance changes in a discrete and highly complex manner, and

a direct method is difficult to obtain. However, when the quorum set is given, the system

behavior is fixed and the performance can then be computed with relative ease. The thesis

presents an efficient algorithm for generating the universe of vote assignable quorum sets.

The optimal voting parameter settings can be obtained by a search.

The thesis next presents a non-voting based quorum consensus protocol, called the Grid

Protocol, that has small quorum groups. An analysis shows that the data availability of

this protocol can be as high as voting and simulation results show that transactions using

the grid protocol can have lower response time than voting.

Finally, the multi-dimensional voting concept is investigated where vote and quorum

assignments are k-dimensional vectors of non-negative integers. Each dimension of the

xi

vote and quorum assignment is similar to voting and the quorum requirements in different

dimensions can be combined in a number of ways. Multi-dimensional voting is as general

as quorum sets but has the advantage that it is flexible and easy to implement. Several

replica control protocols are implemented using multi-dimensional voting which illustrate

the versatility of this technique.

Localizing the Effects of Failures in
Distributed Systems

Technical Report GIT-ICS-90/43
October 1990

Luke Lin
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

A Dissertation
Presented to

The Academic Faculty

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Information and Computer Science

Copyright © 1990 by Luke Lin

Summary

This dissertation presents checkpointing and rollback-recovery techniques for building fault

tolerant distributed systems. Checkpoints are used to ensure that computations are able to

make forward progress in the presence of failures, which is essential when computations are

long running. The concept of locality is introduced, which is the objective of restricting a

checkpoint or rollback operation to a single computation to contain the effects of failures.

Since the number of failures increases as a system becomes larger, an uncontrolled propa-

gation of a rollback each time a failure occurs can impede forward progress when locality is

not satisfied. In addition, we require that programmers be able to control the frequency of

checkpoints in a computation, independent of other computations; thus, making it possible

to provide different degrees of fault tolerance for individual computations. Algorithms that

achieve locality are presented for distributed message based systems, distributed object

based systems, and replicated computations.

We first address locality with respect to distributed message based systems. When

computations are deterministic, we develop a solution that is based on a combination of

consistent and pessimistic checkpointing techniques. When computations may be non- .

 deterministic, we show how the blocking required to enforce locality can be reduced to

enhance concurrency. Next, we present checkpoint and rollback algorithms for distributed

object based systems. By exploiting the structure of objects and operation invocations,

we derive algorithms that involve fewer participants compared to when invocations are

xv

treated as messages and approaches from message based systems are used. These results

are then extended to satisfy the locality of checkpoint and rollback operations in object

based systems. Finally, we discuss how checkpointing can be integrated with replicated

computations. We develop an approach that retains the attractive features from both

checkpointing and replication while potentially reducing the cost of achieving fault tolerance.

In many situations, a checkpointed replicated computation can potentially outperform a

checkpointed non-replicated computation.

xvi

Cover Pages of Publications

7- -)/.--)2

Resource Finding in Store-and-Forward Networks*

Jose M. Bernabeu—Aubdn
Mustaque Ahamad
Mostafa H. Ammar

Abstract

We present a model of searching for a resource in a distributed system whose nodes

are connected through a store-and-forward network. Based on this model, we show

a lower bound on the number of messages needed to find a resource when nothing is

known about the nodes that have the current location of the resource. The model

also helps us to establish results about the time complexity of determining a message

optimal resource finding algorithm when the probability distribution for the location of

the resource in the network is known. We show that the optimization problem is NP-

hard for general networks. Finally we show that optimal resource finding algorithms can

be determined in polynomial time for a class of tree networks and bidirectional rings.

The polynomial algorithms can be used as a basis of heuristic algorithms for general

networks.

This work was supported in part by NSF grants CCR -8806358 and NCR-8604850.

1

Using Multicast Communication to Locate Resources
in a LAN-Based Distributed Systemt

Mustaque Ahamad Mostafa H. Ammar Jose M. Bernabiu-Aubdn M. Yousef Khalidi

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

system must also implement algorithms to update the informa-
tion stored by the name servers when resources are created or
deleted or when they are migrated. To avoid this, the database
can be distributed in such a way that a name server at a node
maintains a list of only resources local to the node. In such a sys-
tem a remote resource can be located by broadcasting its name,
and having the node where the resource is located respond. This
scheme is used in Clouds [DLS85] for locating remote objects.
Broadcast can also be used when other schemes fail to locate a
resource.

We are concerned with a distributed system that uses a
broadcast bus local area network. In such an environment, all
network interfaces receive every message carried on the bus. A
particular message is delivered to the attached node only if it
is sent to a destination address that the interface has been in-
structed to recognize. Such addresses will at least include the
broadcast address and the node's own address. Thus, if a broad-
cast message is used to locate a resource, the message will be
delivered to all the nodes in the distributed system. This in turn
will cause all the nodes to search their local resource directories
which represents a wastage of CPU time at all nodes except the
one where the resource resides.

In this paper, we explore the design of a distributed name
server where multicast communication is used to locate the re-
quested resource. In such a system, a particular message sent to
locate a resource will be delivered to only a subset of the nodes
in the system. The availability of bus interface communications
technology that supports multicast in the hardware provides the
motivation for this work. Our goal is to design a location scheme
that is simple from the point of view of a node that needs to find
a resource but, at the same time, reduces the number of nodes
that must participate in the location process.

We associate a multicast address with each resource name
and this address is used to communicate with the name server
of the resource. Each node receives messages sent to multicast
addresses corresponding to the resources whose locations are
stored by the local name server. Typically, a limited number of
multicast addresses will be available at each interface for use by
the resource location operations. Since the number of resources
in the distributed system can be large, the resource name to
multicast address mapping is many-to-one. For such a system,
we present the algorithms to be executed when a resource is cre-
ated, deleted or a request is made for finding its location. We
also study the performance of the multicast scheme and compare
it with broadcast. The cost measure used is the number of nodes
that process messages sent for finding a resource or for updat-

Abstract

In this paper we present a resource (e.g., file, pro-
cess) location scheme which exploits the multicast
communication capability of local area networks. In
the scheme, the universe of resource names is parti-
tioned into a relatively small number of groups and
each group is assigned a unique address. Nodes stor-
ing the locations of resources belonging to a particu-
lar group instruct their network interfaces to receive
all location messages sent to the group address. To
locate a resource, a node first determines the address
of the group to which the resource belongs (this can
be accomplished via a well-known hash function),
and a multicast message is then sent to the address.
The algorithm performance is studied by means of
simulation, and approximate closed form solutions
are derived for systems operating at heavy and low
loads. The scheme's performance is compared with
that of broadcast, and it is shown that the proposed
scheme performs much better than broadcast alone.

Introduction

e advantages offered by distributed systems include resource
tring, fault-tolerance and parallel execution of a computation.
e programming of distributed systems is more complex than
itralized ones due to the unavailability of the global state of
system. For example, in a dynamic system where resources

files, processes) can be migrated between nodes, a user
st program an algorithm to find the current location of a re-
irce needed by his or her computation. This can be avoided if
Ts are provided with the abstraction of a unified system where
location of resources is transparent to them. Resources are

srred to by names and, at runtime, the system determines the
Tent location of a named resource.

Many schemes have been proposed for finding the location
named resource. Conceptually, there exists a database that

res the associations between resource names and their loca-
us. This database can be partitioned and stored at one or
re nodes that are called name servers. When a remote re-
Erce, R, needs to be accessed, the request for its location
add be sent to a name server that stores R's location. The

r This work has been 'partially supported by NSF grants CCR-8806358,
R -860.1850, and CCR -8619886.

10 1

Optimal Selection of Multicast Groups for Resource Location
in a Distributed System

Jose M. Bernablu—Aubdn
	

Mostafa H. Ammar 	Mustaque Ahamad

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

In this paper we present a protocol to locate (or find)
named resources in a distributed system which uses the
multicast capabilities of the underlying network. Each
node in the network uses a sequence of node groups, and
each node group is associated with a unique multicast ad-
dress. To locate a resource, the searching node sequentially
polls each one of the groups until the resource is found.
This scheme is a generalization of both pure polling and
broadcast. Our basic aim is to show how to obtain an
optimal division of the nodes into multicast groups. To
that end, the protocol is analyzed and an efficient algo-
rithm is given that provides a group division minimizing
the expected cost per location operation.

Introduction

Distributed systems offer many advantages over centralized ones,
including fault—tolerance, resource sharing and increased paral-
lelism. The task of programming a distributed system, however,
is more difficult because the global system state is not available.
In particular, in systems where resources (e.g., files, processes)
can be migrated between nodes, it would be necessary for the
user to implement a procedure to find resources needed by the
computation. To avoid this, the system must offer the users the
abstraction of a unified system in which the location of resources
is transparent to them. In such a system, the Operating System
should implement an algorithm to find the location of a remote
resource. When a resource may be used repeatedly at a node,
caching its address locally [1,2,3,4], is a widely used technique for
reducing the cost of determining the location of a resource. Since
the cache information may be incorrect, the general problem of
finding the resource still exists when caching is used.

A widely used scheme to find resources involves the use of
name servers [1,5]. In its simplest form, one of the nodes in the
network is designated as the name server for the whole system.
When a node needs to locate a resource, it directs a request to
the name server. When a resource moves between nodes, an
update message is sent to notify the name server. In a large sys-

. tem, such a name server would become a bottleneck, degrading
'the performance of the system. Also, the single name server ap-
.proach would be especially vulnerable to node failures. A more

This work was supported in part by NSF grants NCR-8609850 and CCR-
8806358.

general approach can distribute the name server task among sev-
eral nodes and, a particular name server usually takes care of
only a part of the resource name space. The problem now is to
decide which name server to contact to find the location of a re-
source. A resource's location may now be found by broadcasting
(actually multicasting [6,7]) to all name servers requesting that
they provide the resource's address. Another approach, used in
the R" system [2], is to encode the name of the node where a re-
source was created in the resource's name. Then that node will
function as the resource's name server.

In the absence of name servers, a node wishing to determine
the location of a resource, can send a broadcast message to all
nodes and make them search their local directories. This is the
approach taken in the Clouds operating system [8]. Broadcasting,
though simple, would waste computational resources at every
node, where it would compete with the local computations for
CPU time. For large rates of location requests this would rapidly
degrade the performance of the entire system.

At the other extreme, if the individual nodes are polled se-
quentially, this would certainly decrease the amount of CPU time
wasted in the system (especially if the nodes more likely to know
about the resource were consulted first). However this approach
would also increase the bandwidth utilization, because many mes-
sages will be sent. Since the messages are sent sequentially, the
real disadvantage of this approach is that the location operations
would take longer (larger response time).

In this paper we present a location protocol which consid-
ers a cost measure that includes both the CPU utilization and
the response time. The approach taken is based on a scheme in
which the nodes in the network are divided into disjoint multi-
cast groups, and are polled by a sequence of multicast messages.
The two approaches mentioned above are just special cases when
all nodes are reached by a single message (broadcast) or when
only one node is reached with each message (polling). We also
present a cost model for the system and an efficient algorithm
which, based on the probability distribution of a resource's loca-
tion among the nodes in the network, finds the optimal decom-
position into disjoint groups, as well as the optimal sequence in
which the groups should be polled.

In section 2 we give a description of the protocol operation.
In section 3 we present the model of the system to be used for
the cost analysis carried out in section 4. Section 5 describes
an algorithm to determine an optimal multicast grouping. Some
numerical examples are presented in section 6. In section 7 we

312
H2702-9/89/0000/0312501.00 © 1989 IEEE

Low Cost Algorithms for Message Delivery
in Dynamic Multicast Groupst

Nasr E. Belkeir 	Mustaque Ahamad

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

abstract
Dynamic multicast groups arise in many distributed applications.

A spanning tree of the members of a multicast group can be used to
reduce the cost of message delivery to the members. The problem
of constructing a minimal spanning tree of the members of a multi-
cast group which includes only a subset of the nodes in the network
is computationally intractable. In dynamic groups, the problem be-
comes more serious because the tree needs to be recomputed when
the membership of the group changes. We develop two heuristic algo-
rithms which update the tree incrementally as the membership changes
and reduce the total bandwidth required for sending data and control
messages. The broadcast tree based algorithm makes use of a tree
structure in the network, and the other algorithm joins a new member
to the node that is nearest to it and is already in the multicast tree. A
simulation model is used to study the performance of the algorithms.

1 Introduction

Multicast communication allows a message to be addressed to
any subset of nodes in a network. In many distributed applica-
tions, a set of nodes need to be queried or notified (e.g., name
servers) when a certain event happens. A multicast facility can
not only simplify the implementation of such applications but
can also deliver the message to the destination nodes more effi-
ciently compared to when a separate copy of the message is sent
to each destination node. We define a multicast group as a set
of nodes to which a message needs to be delivered. Although
a multicast group is sometimes defined by a set of processes,
we consider the nodes where these processes execute because
the cost of message delivery in this paper depends only on the
nodes in.the group.

The membership of a multicast group changes with time in
many applications. For example, when data is replicated to en-
hance its availability, the nodes that store copies of a particular
data item define a multicast group. When a node storing a copy
fails, it can be deleted from the group, and other nodes can
be added to the group to increase the availability of the data.
In [2], a multicast based resource finding scheme is proposed in
which the set of nodes that receive a message sent to a particular
address changes as resources are created, deleted or migrated.
Other distributed algorithms that can make use of multicast
communication with dynamic membership include commit and
checkpointing algorithms [14], and load balancing [17]. One of
the emerging application of distributed systems is multimedia
teleconferencing which naturally defines a dynamic cornmunica-

Inns work was supported in part by NSF grant CCR-8806358.

tion group since the set of participants varies with time. Thus,
dynamic multicast groups arise both at the application level as
well as in the operating system.

A multicast message can be delivered by sending a copy of
the message to each member of the group. However, this wastes
bandwidth because multiple copies of a message may be sent
over the same communication link. This can be avoided by con-
structing a spanning tree of the members of a multicast group
and then delivering the message by forwarding copies of it along
the edges of the tree. However, unlike a broadcast spanning tree
[8,11], the problem of constructing a minimum multicast span-
ning tree is computationally intractable (NP-complete) since it
is an instance of the steiner tree problem [12]. Thus, for large
networks, construction of an optimal multicast tree is infeasible.
When the membership of the group is dynamic, the problem
becomes more serious because the tree needs to be recomputed
each time a member deletes from the group or a new member is
added to it.

In this paper, we will investigate heuristics for constructing
low cost multicast spanning trees in a dynamic environment.
More precisely, we will present schemes that incrementally up-
date the multicast tree as the membership of the group changes.
We will evaluate the performance of these algorithms by means
of simulation and compare them with the best known heuristic
algorithm developed by Wall [18] which computes the multicast
tree structure for a given membership of the group.

2 Related Work
Wall [18] investigated techniques for organizing tree structures
that can be used to efficiently deliver a multicast message to its
destination nodes in a point-to-point network. He described a
distributed algorithm which takes the set of nodes in the group
as input and produces a low cost spanning tree that contains
these nodes. In a later section, we will consider the details of this
algorithm because it will be used to evaluate the effectiveness of
the algorithms proposed in this paper.

The problem of routing a message to multiple destinations
has been addressed by many researchers. In [1], an extension to
the DOD Internet protocol [16] is proposed which allows multiple
destination addresses in a packet. At gateway nodes, the packet
can be replicated and sent along different branches depending
on the addresses contained in the packet header. In [9], many
schemes have been explored for routing of multicast messages
in an internetwork and extended LANs. The construction of a
spanning tree for a multicast group in a bus-based hypercube
is described in [15]. A performance study of several routing

110
CH2706-0/89/0000/0110$01.00 ®1989 IEEE

Ordered and Reliable Message Delivery
in Dynamic Multicast Groups*

Nasr E. Belkeir
Mustaque Ahamad

School of Information and Computer Science

Georgia Institute of Technology

Atlanta, GA 30332

(404) - 894-2593

Abstract

Many distributed applications can be implemented efficiently using multi-

cast communication which allows a message to be sent to a group of processes.

Dynamic process groups arise naturally in distributed environments. In such

groups, processes can join or leave the group asynchronously. In this paper,

we address the problem of ordered and reliable message delivery to dynamic

multicast groups in distributed systems. We present an efficient protocol which
makes use of the broadcast communication medium. The protocol ensures that
not only members of a single group receive messages in the same order, but

processes in different groups also receive common messages in the same order.

We also discuss how the protocol can tolerate node and communication failures.

*This work was supported in part by NSF grants CCR -8806358 and CCR-8619886.

1

C 	_
/ l :

Using Multicast Communication for Dynamic Load
Balancing in Local Area Networks *

Mustaque Ahamad Nasr E. Belkeir
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

In local area networks, a multicast message can be de-
livered to a subset of hosts in the network. Such a commu-
nication facility can be exploited to efficiently implement
distributed applications. We propose a multicast based al-
gorithm for load balancing in a local computer network.
The ability of a host to determine its membership to a
multicast group based on its workload makes it possible
to send a transfer request to only those hosts which have
lower workload than the host that wants to transfer a task.
This reduces the overhead of load balancing because a host
does not waste computational resources when it cannot ac-
cept a task. We use a simulation model to investigate the
performance of the multicast based algorithm and compare
it to algorithms that use unicast (point-to-point) commu-
nication.

1 Introduction

Multicast communication allows a message to be ad-
dressed to any subset of hosts in a network. A multicast
facility can not only simplify the implementation of many
distributed applications but it can also exploit the capa-
bilities of current local area network (LAN) interfaces that
provide hardware support for multicast address recognition
[4,14 We define a multicast group associated with address
m as the set of hosts that receive a message sent to m.
Current network interfaces allow a host to join and delete
from a multicast group by instructing its network inter-
face to start/stop accepting messages sent to a particular
address.

In a local computer network, many hosts (workstations)
are frequently idle while others are heavily loaded. Load
balancing can be used in such a system to allow the shar-
ing of computational resources by transparently distribut-
ing the system workload among the hosts in the network.
The two main components of a load balancing algorithm
are the transfer policy, which determines whether to pro-
cess a task locally or remotely, and the placement policy,

*This work was supported in part by NSF grant CCFt-
8806358.

which determines to which host a task selected for transfer
should be sent. When these policies react to the system
state they are called dynamic policies. Hosts need to ex-
change information about their workload for implementing
dynamic load balancing. In this paper we investigate effi-
cient dynamic load balancing algorithms that use multicast
communication to determine the host where an incoming
task should be sent.

The load balancing algorithm is based on a simple
scheme in which the current workload at a host determines
its membership to a particular multicast group. Hosts be-
longing to a group have similar workloads. When a host
h wants to explore if it is possible to transfer an incoming
task, it queries hosts with lower workloads by sending mul-
ticast messages to groups that correspond to loads lighter
than the current workload of h. Thus, a host can com-
municate with a group of hosts in a particular workload
range without collecting information about the workload
at various hosts. This is made possible by the ability of
each host to change its membership based on its workload.
Since multicast messages are sent to only groups corre-
sponding to lower workloads, hosts with higher workload
do not waste computational resources processing requests
from hosts that have lower workload. This can significantly
reduce the overhead of load balancing. Also, instead of
probing a set of hosts to determine one with the lowest
load, the algorithm only needs to send messages until the
first response is received. Since each host can determine
its membership to a group locally, no message overhead is
incurred for maintaining the groups.

In this paper, we present the details of a multicast based
load balancing algorithm and show how it can be imple-
mented in a LAN. We study the performance of the algo-
rithm and compare it with other algorithms that have been
proposed. In section 2, we describe the related work in the
areas of multicast communication and load balancing. The
system model is presented in section 3. We present the al-
gorithm in section 4 and address the performance issues in
section 5. Concluding remarks are described in section 6.

Applying a Path—Compression Technique to Obtain an Efficient
Distributed Mutual Exclusion Algorithm*

Josi M. Bernabiu-Aubdn

Departamento de Sistemas Informaticos y Computacidn
Universidad Politecnica de Valencia

Apartado 22012, 46020 VALENCIA (Spain)

Mustaque Ahamad

School of Information and Computer Science
Georgia Institute of Technology

ATLANTA, GA 30332-0280 (USA)

Abstract

In this paper we present a distributed algorithm for mutual exclusion. The algorithm
maintains a dynamic forest structure in which the paths between nodes are compressed as
a result of requesting the Critical Section. We develop a formal model of the algorithm's
execution, which enables us to prove its correctnes. The formal model is also used to show
that an execution history of the algorithm when concurrent requests are made (the ususal
case) is equivalent to a history in which the requests are made serially. Based on this fact
we are able to prove a logarithmic upper bound on the average number of messages needed
per critical section grant.

1 Introduction

Distributed systems offer many advantages induding sharing of resources by processes executing
at different nodes. In many applications, a process needs to obtain mutual exdusion before it
can use a resource. We address the problem of designing an efficient distributed algorithm that
can be used to achieve mutual exclusion in a distributed system.

A number of distributed mutual exclusion algorithms have been proposed [1]. The operation
of many of the algorithms can be characterized by an information structure [2] that defines a
set of processes that must be informed before acquiring the Critical Section (CS), and another
set must be informed when the process releases the CS. Examples of these algorithms indude
[3,4,5,6,7,8]. The communication cost of all the algorithms except [5] is 0(N) where N is the
number of nodes that share access to a resource. The algorithm described in [5] reduces the
communication cost to 0(.1/71) by imposing a logical structure on the processes.

Recently tree-based algorithms have been proposed for achieving mutual exclusion that re-
quire smaller number of messages [9,10,11]. However, in these algorithms some nodes need to

'This work was supported in part by NSF grants CCR-8806358 and CCR-8619886.

77:) 	cyf (,),z
Ld-cr))-5.-vvl 5 ,

C/t1 / 	1.1 S 	c 7-3 	s e)11

Multi-Dimensional Voting*

Mustaque Ahamadt

Mostafa H. Ammart

Shun Yan Cheungt

tCollege of Computing

Georgia Institute of Technology, Atlanta, GA 30332

tDepartment of Mathematics and Computer Science

Emory University, Atlanta, GA 30322

Abstract

We introduce a new concept, multi-dimensional voting, in which the vote and quo-
rum assignments are k-dimensional vectors of non-negative integers and each dimension
is independent of the others. Multi-dimensional voting is more powerful than traditional
weighted voting because it is equivalent to the general method for achieving synchro-
nization in distributed systems which is based on sets of groups of nodes (quorum sets).
We describe an efficient algorithm for finding a multi-dimensional vote assignment for
any given quorum set and show examples of its use. We demonstrate the versatility
of multi-dimensional voting by using it to implement mutual exclusion in fault-tolerant
distributed systems, and protocols for synchronizing access to fully and partially repli-
cated data. These protocols cannot be implemented by traditional weighted voting.
Also, the protocols based on multi-dimensional voting are easier to implement and/or
provide greater flexibility than existing protocols for the same purpose. Finally, we
present a generalization of the multi-dimensional voting scheme, called nested multi-
dimensional voting, that can facilitate implementation of replica control protocols that
use structured quorum sets.

This work was supported in part by NSF grants NCR-8604850 and CCR-8806358, and by the University
Research Committee of Emory University.

Distributed Computing (1990) 4:69-80 DUFLETITE1,
MaR_,--7111N

Springer-Verlag 1990

Fault-tolerant atomic computations
in an object-based distributed system *
Mustaque Ahamad, Partha Dasgupta, and Richard J. LeBlanc, Jr.

School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received December 22, 1988/Accepted f ebruary 20,1990

Mustaque Ahamad received his
B.E. (Hons.) degree in Electrical
Engineering from the Birla Insti-
tute of Technology and Science, Pi-
lani, India. He obtained his M.S.
and Ph.D. degrees in Computer
Science from the State University
of New York at Stony Brook in
1983 and 1985 respectively. Since
September 1985, he is an Assistant
Professor in the School of Informa-
tion and Computer Science at the
Georgia Institute of Technology,
Atlanta. His research interests in-
clude distributed operating sys-
tems, distributed algorithms, fault-

tolerant systems and performance evaluation.

Partha Dasgupta is an Assistant
Professor at Georgia Tech since
1984: He has a Ph.D. in Computer
Science from the State University
of New York at Stony Brook. He
is the technical project director of
the Clouds distributed operating
systems project, as well as a co-
principal investigator of Georgia
Tech's NSF-CER award. His re-
search interests include building
distributed operating systems, dis-
tributed algorithms, fault-tolerant
systems and distributed program-
ming support.

Abstract. A distributed system can support fault-tolerant
applications by replicating data and computation at
nodes that have independent failure modes. We present
a scheme called parallel execution threads (PET) which

• This work was supported in part by NSF grants CCR-8619886
and CCR-8806358, and RADC contract number F30602-86-C-
0032

Offprint requests to: M. Ahamad

Richard J. LeBlanc, Jr. re-
ceived the B.S. degree in physics
from Louisiana State University in
1972 and the M.S. and Ph.D. de-
grees in computer sciences from the
University of Wisconsin — Madison
in 1974 and 1977. respectively. He
is currently a Professor in the
School of Information and Com-
puter Science of the Georgia Insti-
tute of Technology. His research in-
terests include programming lan-
guage design and implementation.
programming environments, and
software engineering. Dr. LeBlanc's
current research work involves ap-

plication of these interests in distributed processing systems. As
co-director of the Clouds Project, he is studying language concepts
and software engineering methodology for utilizing a highly reli-
able, object-based distributed system. He is also interested in speci-
fication-based software development methodologies and tools. Dr.
LeBlanc is a member of the Association for Computing Machinery.
the IEEE Computer Society and Sigma Xi.

can be used to implement fault-tolerant computations
in an object-based distributed system. In a system that
replicates objects, the PET scheme can be used to repli-
cate a computation by creating a number of parallel
threads which execute with different replicas of the in-
voked objects. A computation can be completed success-
fully if at least one thread does not encounter any failed
nodes and its completion preserves the consistency of
the objects. The PET scheme can tolerate failures that
occur during the execution of the computation as long
as all threads are not affected by the failures. We present
the algorithms required to implement the PET scheme
and also address some performance issues.

Key words: Fault-tolerant computing — Atomicity — Dis-
tributed systems and replication

	

Ct."p 4., ez. /- 	r rz 	I ../.-:',;I:'i-.' 	 - 1.,....coc, iii,1-1,;;;

./..

	

..-) --, _,,,-, , (2 ;,,,,,.... ", 	7" -!--Vl 	.--12-c-tA_,. (--; -41'-'‘.... 	i.C.(..! r S 10- ,A

	

,..' 	,

!,......t_ 	.--71..)._-, 	u' k, p,... ‘.. - 1- C.'".41Vii'--j 	(--.E.'. vt ..'. , 	e9--7l. 	3.1),-,.....4 ,I

The Grid Protocol: A High Performance Scheme

for Maintaining Replicated Data*

Shun Yan Cheungt

Mostafa H. Ammart

Mustaque Ahamadt

t Department of Mathematics and Computer Science

Emory University, Atlanta, GA 30322

tCollege of Computing

Georgia Institute of Technology

Atlanta, GA 30332

Abstract

We present a new protocol for maintaining replicated data that can provide both

high data availability and low response time. In the protocol, the nodes are organized in
a logical grid. Existing protocols are designed primarily to achieve high availability by
updating a large fraction of the copies which provides some (although not significant)

load sharing. In the new protocol, transaction processing is shared effectively among

nodes storing copies of the data and both the response time experienced by transactions

and the system throughput are improved significantly. We present an analysis of the

availability of the new protocol and use simulation to study the effect of load sharing

on the response time of transactions. We also compare the new protocol with a voting
based scheme.

This work was supported in part by NSF grants NCR-8604850 and CCR-8806358, and by the University

Research Committee of Emory University.

Optimizing Vote and Quorum Assignments for
Reading and Writing Replicated Data

SHUN YAN CHEUNG, MUSTAQUE AHAMAD, AND MOSTAFA H. AMMAR, MEMBER, IEEE

EE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. I. NO. 3. SEPTEMBER 1989 	 387

♦Abstract—In the weighted voting protocol which is used to maintain

consistency of replicated data, the availability of the data to read
write operations not only depends on the availability of the nodes

ring the data but also on the vote and quorum assignments used.
consider the problem of determining the vote and quorum assign-

lilts that yield the best performance in a distributed system where

Ie availabilities can be different and the mix of the read and write
gyrations is arbitrary. The optimal vote and quorum assignments de-

td only on the system parameters such as node availability and

ration mix, but also on the performance measure. We present an
1
imeration algorithm that can be used to find the vote and quorum
'ignments that need to be considered for achieving optimal perfor-
nce. When the performance measure is data availability, an analyt-

method is derived to evaluate it for any vote and quorum assign-
1
rit. This method and the enumeration algorithm are used to find the
finial vote and quorum assignment for several systems. The enu-
ration algorithm can also be used to obtain the optimal performance
m other measures are considered.

Mdex Terms—Availability, data replication, fault tolerance, replica

trol methods, vote and quorum assignment, weighted voting.

I. INTRODUCTION

DISTRIBUTED system consists of a number of po-
Iktentially unreliable nodes interconnected via a corn-
nication subnetwork. The resources stored at the nodes
be shared and when a node fails, the resources stored

he node become unavailable. Replicating resources at
'erent nodes with independent failure modes can en-
ce availability and fault tolerance, since a resource
Id be available even when some nodes have failed.
en data are replicated, care must be taken to preserve
sistency among the various copies or replicas. In ad-
on to increased availability, replication can also pro-

improved performance of read transactions by reduc-
the network communication cost since these

sactions can access the data from the local replica.
large number of replica control protocols have been

eloped to maintain the consistency of replicated data
In this paper, we address the issue of optimization for

sting-based replica control protocol by deriving a gen-
method for finding the optimal settings for the param-
s of the protocol. We consider the voting mechanism

anuscript received September 28, 1988; revised July 11, 1989. This
was supported in part by the National Science Foundation under

rs CCR-8806358 and NCR-8604850.
le authors are with the School of Information and Computer Science,

Institute of Technology, Atlanta, GA 30332.
EE Log Number 8930638.

because it has proven to be flexible and relatively easy to
implement.

Voting has been used for various applications in dis-
tributed systems. In [2], Gifford proposed its use for syn-
chronizing read and write operations on replicated files.
Each file replica is assigned some number of votes and
each operation is required to obtain a predefined quorum
of votes to proceed. To ensure that a read operation re-
turns the value installed by the last write operation, the
read and write operations must acquire r and w number of
votes, respectively, such that r + w > L, where L is the
total number of votes assigned to all replicas. The values
r and w are called the read and write quorum. Generally,
r + w = L + 1 is used which ensures that each read
quorum has a nonempty intersection with each write quo-
rum. Since all replicas need not be updated when a write
operation completes, timestamps or version numbers must
be used in order to determine the value that is written most
recently. When version numbers are used, each write quo-
rum must also intersect with every other write quorum,
i.e., 2w > L [2] .

A number of replica control protocols have been de-
rived from weighted voting. Eager and Sevcik introduced
a dynamic scheme based on voting that allows the system
to switch between normal and failure modes [3] (which
have different values for read and write quorums). The
system can also change the quorum assignment in the
schemes presented in [4]-[6] and the vote assignment can
be changed in the scheme described in [7]. Other proto-
cols based on voting are presented in [8]-[10].

The problem of assigning votes to achieve mutual ex-
clusion is addressed by Garcia-Molina and Barbara in
[11]. When the quorum for each operation is a majority
of all votes assigned, each operation will have mutually
exclusive access to the data. In general, mutual exclusion
can be guaranteed by defining a set of groups of nodes
[12], called a coterie, such that any two groups in a co-
terie have a nonempty intersection. When voting is used,
the groups of nodes that have a majority of the votes con-
stitute a coterie (there exist coteries that cannot be ob-
tained from any vote assignment [11]). In [11], it is shown
that only a finite set of vote assignments need to be con-
sidered to get all coteries that can be obtained from vote
assignments. Thus, it is not necessary to deal with the
unbounded set of possible vote assignments. In another
work, the same authors have considered the problem of

1041-4347/89/0900-0387$01.00 © 1989 IEEE

Optimizing the Performance of Quorum Consensus Replica
Control Protocols*

Mustaque Ahamad
College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332

Mostafa H. Ammar
College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332

Shun Yan Cheungt
Dept. of Math. lz Comp. Science

Emory University

Atlanta, Georgia 30322

Abstract
We present in this paper a summary of the results of

our research in replica control protocols that are based on
quorum consensus. In quorum consensus methods, oper-
ations are required to obtain permission from a quorum
group of nodes to proceed to completion and the collection
of quorum groups is called a quorum set. In the summary
we present the techniques that we have developed for find-
ing the quorum set that maximizes a given performance
measure. We also present a brief discussion of the optimal-
ity of voting, a replica control protocol that can effectively
reduce response time through load sharing, and the multi-
dimensional voting (MD) technique, that can be used to
define all quorum sets. An MD-voting based implementa-
tion of a dynamic quorum consensus protocol that allows
the synchronization procedure to adapt to the current state
of the system is also presented.

1 Introduction

Distributed systems offer many advantages including fault-
, tolerance which can be achieved by replicating resources at
(nodes with independent failure modes. When data (e.g.,
files) is replicated, algorithms must be used to maintain the
consistency of the copies or replicas of the data. Such al-
gorithms, called replica control protocols, implement rules
for accessing the replicas to ensure correctness (e.g., single-
copy serializability). A large number of replica control pro-
tocols have been proposed in the literature. These include

(voting, available copies, primary copy and many others.
The main focus of these protocols has been to enhance
availability by tolerating as many node and communica-
tion failures as possible. Availability can be defined as the
Liteady state probability that a transaction is able to access
the data successfully when it arrives to the system.

Data replication can also be used to improve other per-
-ormance measures. For example, the execution of a trans-
iction requires reading of data from disk, processing and
)ossibly writing the data to the disk (when it is modi-
ied). If data is not replicated, all transactions that access
data stored at a node must wait for the data to be read

'This work was supported in part by NSF grants NCR-8604850
1 nd CCR-8806358.

I Work was done while this author was at the College of Comput-
Ilig, Georgia Institute of Technology, Atlanta, Georgia.

or written. When the data is replicated, load generated
by the requests can be shared by nodes having the repli-
cas and hence the response time of the transactions can
be improved. Notice that the degree of sharing depends
on the replica control protocol used. If read transactions
can access any replica (a write transaction must update
all replicas to ensure correctness), the load generated at
each node by the read transactions will be 1/n compared
to when no replication is used (n is the number of replicas).

We consider protocols that are based on quorum con-
sensus [1]. An operation proceeds to completion only if it
can obtain permission from nodes that constitute a quo-
rum group [2]. Quorum groups used by, conflicting oper-
ations have non-empty intersections to guarantee proper
synchronization. The collection of quorum groups used by
an operation is known as a quorum set. If each group in
the quorum set intersects with every other group in the
set, it is called a coterie [3] and it can be used to achieve
mutual exclusion. Weighted voting [4] is a representation
technique to define quorum sets so that quorum groups
need not be listed explicitly. It is shown in [3] that there
exist quorum sets that cannot be defined by voting.

We will summarize the results of our research in Sec-
tions 2-6 and they include techniques for finding the quo-
rum set that optimizes a given performance measure, a
replica control protocol for reducing response time, the
multi-dimensional voting concept and an implementation
of a dynamic replica control method.

2 Optimal System Availability

2.1 Homogeneous Systems

We have explored how optimal vote and quorum assign-
ments can be obtained for a system for read and write
transactions when their mix could be arbitrary. In [5], we
considered the problem in a system where node reliabili-
ties are identical. The performance measures considered
are the system availability (i.e., the probability that some
part of the system is available) to transactions without
blocking (a transaction aborts instantaneously when the
currently operational nodes do not have sufficient votes to
form a desired quorum) and the mean response time when
transactions wait for nodes to recover from failures until a
quorum is available. One of the interesting results shows

l02
r-10329-3/90/0000/0102$01.00 © IEEE

Node with
Resident
Coordinator

user

T; 	tAA 	C.12-2CL. 	 2,, c1

c)-4 	1.k"1-1.(Va 	 lskvtgLkitod

PerformanCe of Quorum Consensus Protocols for Mutual Exclusion from the
User's Point of View*

Mostafa H. Ammar 	Mustaque Ahamad 	Shun Yan Cheung
College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

A general class of protocols used for achieving mutual
exclusion in distributed systems is quorum consensus. In
these methods, an operation must obtain permission from
a group of coordinators before it can proceed to comple-
tion. We consider a store-and-forward network with co-
ordinators resident in some of the switching nodes. The
main motivation for having multiple coordinators is to en-
hance system availability. Most studies of the availability
of quorum consensus protocols have been concerned with
assessing the system availability. In this work we consider
the user point-of-view availability defined as the proba-
bility that a mutual exclusion operation originating at a
given site can proceed to completion. We consider scenar-
ios where the network links, as well as the network nodes
may fail. Our objective is to analyze the user experienced
availability and to determine how to best design a system
so as to obtain high availability.

1 Introduction

A distributed system consists of a number of cooperating
nodes interconnected by a communication network. The
nodes communicate with each other through messages sent
over the network. The advent of high speed networking
allows for the possibility of running a multitude of new
distributed applications. A number of these applications
require mutually exclusive access to resources, for example,
updates to a file must be synchronized. Synchronization
methods used in distributed systems must be tolerant to
node and network failures.

A general class of protocols used for achieving mutual
exclusion in distributed systems is quorum consensus. In
these methods, an operation must obtain permission from a
group of coordinators, before it can proceed to completion.
The groups that can grant permission must intersect with
each other and a coordinator grants permission to only one
operation at a time. This ensures that no two operations
can proceed simultaneously. A set of groups, known as a
coterie [1, 2], can be defined whose members are groups
of coordinators that have the non-empty intersection (i.e.,
contain at least one common coordinator) property. In ad-
dition, if a group is a member of the coterie then it cannot

This work was supported in part by NSF grants NCR-8604850
and CCR-8806358.

Figure 1: Coordinators, Users and Switching Nodes

be a subset of any other group in the coterie. The best
known quorum consensus protocol is majority consensus
[3] where each group consists of a majority of the coordi-
nators. Weighted Voting [4] is a simple technique that can
be used to implement quorum consensus protocols, where
each node is assigned a number of votes and an operation
must obtain a majority of votes before it can proceed to
completion.

Each assignment of votes uniquely defines a coterie.
For example, in a system with four coordinators, A, B, C
and D that are assigned 2, 3, 1, and 1 votes respectively,
an operation requires at least four (a majority) votes to
proceed. The coterie describing this is {{A,B}, {A,C,D},
{B,C}, {B,D}}. It has also been shown that there exist co-
teries that cannot be obtained from a vote assignment [2].
As will be demonstrated in this paper, non-vote assignable
coteries may be needed to optimize system performance.
Multi-dimensional voting is a voting-like technique that
can be used to implement non-vote assignable coteries [5].

We consider a store-and-forward network with coordi-
nators resident in some of the switching nodes. (See Figure
1.) The nodes and the links in the network are unreliable,
and failure of a switching node where a coordinator re-
sides implies that the coordinator is not accessible. Users
are attached to the system by a connection to one of the
switching nodes. A user becomes disconnected if the node
to which he is attached fails.

The main motivation for having multiple coordinators
is to enhance system availability. A system with a single

Using Checkpoints to Localize the Effects of Faults in Distributed
Systems *

Mustaque Ahamad Luke Lin

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

checkpointing scheme can be used to ensure forward
sess of a computation (program) even when failures oc-
In a distributed system, many autonomous programs
execute concurrently and obtain services from a set of
:d servers. In such a system, it is desirable to restrict
i.ckpoint or rollback operation to a single program to
ze the effects of failures, even when processes of dif-

i t programs communicate with servers. This can be
ved by a scheme based on message logging and consis-
:heckpoints when the system is deterministic. When
stem (communication network or programs) is non-

rninistic, the semantics of the server functions should
Ilploited to reduce the additional synchronization that

to be introduced to ensure locality. We illustrate this
lesenting efficient algorithms for a file server that do
quire the logging of messages on stable storage.

ttroduction

distributed program can exploit the concurrency in-
, in an application by executing it at many nodes.
ver, unlike a centralized system, it is possible that
parts (nodes or communication links) of the system

while others remain operational. This could result
nconsistent state in which the results of a computa-
.e reflected at some nodes but not at others. Atomic
c tions [10] provide a mechanism which guarantees
computation either completes at all nodes or has no
m the system. The atomicity property provided by
tions masks failures from the users by undoing par-

:ompleted computations when failures are detected,
es not promise forward progress. Thus, failures do
ise inconsistent executions, but they can lead to the
xl undoing of a computation. This can be avoided
kg a checkpoint and rollback scheme [14] which al-
e computation to be restarted from an intermediate

entralized systems, checkpointing and rollback-
y are straight forward. A process takes a checkpoint

s work was supported in part by NSF grant CCR-

-6/89/0000/0002/$01.00 © 1989 IEEE
	

2

periodically by saving its state on stable storage [10]. When
a failure occurs, the process rolls back to its most recent
checkpoint, assumes the state saved in that checkpoint, and
resumes execution. In distributed systems, checkpoints are
maintained for each process in the system.

In distributed systems, there are many concurrently ex-
ecuting computations or programs, each of which is exe-
cuted by a set of processes. Usually, there is no direct
interaction between processes of different programs. How-
ever, processes of different programs may interact with a
common set of server processes (e.g., file server) which im-
plement services provided by the system. Since the exe-
cution of each program is relatively autonomous, we want
to find checkpoint and rollback algorithms with the follow-
ing properties, even when processes of different programs
communicate with the shared servers.

• When a program wants to checkpoint its current state,
processes in other programs should not be required to
take a checkpoint.

• When one or more processes in a program fail, their
rollback should not roll back processes in other pro-
grams.

We call these locality properties because they require
that the checkpoint or rollback of one program does not
affect others. These are necessary in large distributed sys-
tems to localize the effect of failures. Since the number
of failures will increase as the system becomes larger, an
uncontrolled propagation of a rollback each time a failure
occurs in the system can impede forward progress. Another
advantage of locality is the reduced cost of checkpoint and
rollback operations because a smaller number of processes
need to participate in their execution.

There are several approaches to checkpointing in dis-
tributed systems. In consistent checkpointing [1, 8, 11, 19],
processes coordinate their checkpointing such that the set
of checkpoints taken from all the processes forms a consis-
tent global state of the system. A global state [4] is consis-
tent if no message is recorded as received before it has been
sent. When a failure occurs, processes roll back and restart
from their most recent checkpoints. Tamir and Sequin [19]

Checkpointing and Rollback-Recovery in Distributed Object Based
Systems *

Luke Lin
	

Mustaque Ahamad

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

checkpointing scheme can be used to ensure forward
)rogress of a computation (program) even when failures
)ccur. In this paper, we present efficient checkpoint and
rollback algorithms for distributed object based systems.
?revious work in distributed checkpointing his been de-
roted primarily to message based systems. By utilizing the
iitructure of objects and operation invocations, efficient al-
$orithms are developed that involve fewer nodes compared
a when invocations are treated as messages and existing
agorithms are used.

L. Introduction

There are two paradigms for structuring distributed sys-
ams. In message based systems, processes do not share
nemory, and communicate by exchanging messages. In
,bject based systems, objects encapsulate data and define
it number of operations that can be invoked by threads.

I
k thread is an active entity that executes code in objects,
traversing objects as it executes (a thread is comparable
,o a process, as defined in many conventional systems). In

• in integrated distributed system, a thread can invoke both
ocal and remote objects in a uniform manner. Since any
hread can invoke an object (when it has permission to ac-
:ess it), all objects logically reside in a global address space
1st is shared by the threads. Object based systems are
oecoming increasingly popular since objects provide a se-
:ure and easy to use abstraction of shared memory, which
,s seen by many as an attractive concept for programming
iistributed systems.

In an object based system, a distributed computation
is executed by one or more threads. The state of an ob-
ject is defined by the data encapsulated by it and threads
transform the object state by possibly changing the val-
es assigned to its data items. A thread moves from one

abject to the next through operation invocations, which
create dependencies between different objects that may be
tored at several nodes. Dependencies between computa-
tions are created when the threads executing on behalf of

*This work was supported in part by NSF grant CCR-
8806358. -

them invoke common objects.
In a distributed system, it is possible that some compo-

nents (nodes or communication links) of the system may
fail while others remain operational. This could result in
an inconsistent state in which the results of a computa-
tion are reflected at some nodes but not at others. Atomic
transactions [11] provide a mechanism which guarantees
that a computation either completes at all nodes or had
no effect on the system. The atomicity property provided
by transactions masks failures from users by undoing par-
tially completed computations when failures are detected,
but does not promise forward progress. Thus, failures do
not cause inconsistent executions, but they can lead to the
repeated undoing of a computation. This can be avoided
by using a checkpoint and rollback scheme [18] which al-
lows a computation to be restarted from an -intermediate
state.

In centralized systems, checkpointing and rollback-
recovery are straight forward. With this scheme, a pro-
cessor takes a checkpoint periodically by saving its volatile
state on stable storage [3, 11]. When a failure occurs, the
processor rolls back to its most recent checkpoint, assumes
the state saved in that checkpoint, and resumes execution.
However, in distributed systems, asynchronous interaction
among different nodes makes checkpointing and rollback-
recovery more complicated. Depending on the algorithm
used, a checkpoint or rollback may involve several nodes
and threads. After a failure, recovered nodes must be
brought back to a consistent state with nodes that did not
fail.

For distributed systems, the checkpointing problem has
primarily been addressed for message based systems. Al-
though there exists a duality between message and object
based systems [12, 14, 21] and it is possible to convert al-
gorithms for message based systems so they can be used
in object based systems, little or no work has been done in
distributed checkpointing which exploits the structure of
object based systems.

The algorithms that have been proposed can be divided
into two classes: independent checkpointing, and consis-
tent checkpointing. In the first approach, a process can

H 2877-9/90/0000/0097/$01.00 — 1990 IEEE 	97

Implementing and Programming
Causal Distributed Shared Memory*

Mustaque Ahamad Phillip W. Hutto 	Ranjit John

. 	College of Computing, Ga Tech
Atlanta, Georgia 30332-0280 USA

Email: {mustaq, pwh, rjohn)ecc gatech. edu

Abstract

Causal memory is a weakly consistent memory in which
reads are required to return the value of the most re-
cent write based on the causal ordering of read and
write operations. We present a simple owner protocol
for implementing a causal distributed shared memory
(DSM) and argue that our implementation is more effi-
cient than comparable coherent DSM implementations.
Moreover, we show that writing programs for causal
memory is no more difficult than writing programs for

atomic shared memory. We believe that causal memory
is an attractive target architecture for DSM systems.

1 Introduction

Distributed shared memory is an attractive abstraction
because it allows processes uniform access to local and
remote information. This uniformity of access simplifies
programming, eliminating the need for separate mech-
anisms to access local state and remote state. How-
ever, consistent distributed shared memory (DSM) can
be difficult to implement efficiently. Most DSM imple-
mentations to date use variants of multiprocessor cache
consistency algorithms that perform poorly in high la-
tency distributed systems. Weakly consistent memories
allow implementations better suited to the high laten-
cies encountered in distributed systems.

Traditionally, a shared memory is correct if reads
return the value of the "most recent write" to the loca-
tion being read. Atomic memory satisfies this "register
property" by regarding reads and writes as operation
intervals on a global time line and requiring that op-
erations "take effect" at some point within the oper-
ation interval [17]. Under this model, each operation
corresponds to a distinct point (operations may not
"take effect" simultaneously) on the global time line
and, for any read operation, the most recent write is

• Funded by NSF grants CCR-8619886 and CCR-8806358.

well-defined. While the order of overlapping writes may
not be determined until a subsequent read operation
"chooses" which write is the most recent, the resulting
execution must still obey the register property. Sequen-
tial consistency [12] is a weakening of atomic memory
that relaxes the requirement that operations take ef-
fect during their operation intervals. Several researchers
[20, 2, 6] have sought to exploit the considerable flex-
ibility provided by sequential consistency over atomic
memory yet the requirement that sequentially consis-
tent executions appear "as if" they obey the register

property is severely restrictive.
Existing implementations of consistent (atomic)

DSM [15, 18] require frequent, expensive global syn-
chronization leading to inefficiency and problems of
scale. Researchers in the architecture community have
also begun to question the wisdom of always maintain-
ing strong consistency [1, 14, 9, 7]. Recent work [10]
has suggested that the principled weakening of consis;
tency may solve problems of latency and scale and still
provide a reasonable programming model.

We explore a type of weakly consistent memory in-
troduced in [10] that we call causal memory. (A for-
mal study of causal memory is presented in [3] where
the memory discussed in this paper is called strict
causal memory.) Informally, causal memory requires
that reads return values consistent with all causally re-
lated reads and writes of that same location. We say
that "reads respect the order of causally related writes."
Causal memory does not require all writes of a sin-
gle location to be totally ordered; several processors
may write a location concurrently and independently,
without synchronizing. Subsequent readers may dis-
agree on the relative ordering of these concurrent writes.
Causal memory is based on Lamport's concept of po-
tential causality [11]. We introduce a similar notion of
causality based on reads and writes in a shared memory
environment. Causal memory is also closely related to
the ISIS causal broadcast introduced in [5]. A notion

274
CH2996-7/9110000/0274$01.00 © 1991 IEEE

Weakening Consistency

in Distributed Shared Memories*

Phillip W. Hutto 	Mustaque Ahamad

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280 USA
Phone: (404) 894-2593

pwhOcc.gatech.edu s mustacOcc.gatech.edu

Abstract

We propose and advocate the use of weakly consistent memories in distributed shared mem-

ory systems to combat unacceptable network delay and to allow such systems to scale. We

examine proposed memory correctness conditions and demonstrate how they are related by a

weakness hierarchy. Multiversion interpretations of memory are introduced as means of sys-

tematically exploring the space of possible memories. Slow memory is one such memory that

allows the effects of writes to propagate slowly through the system, eliminating the need for

costly consistency maintenance protocols that limit concurrency. Slow memory possesses a

valuable locality property and supports a reduction from traditional atomic memory. Thus slow

memory is as expressive as atomic memory. We demonstrate this expressiveness by presenting

two exclusion algorithms and a solution to Fischer and Michael's dictionary problem on slow

memory.

This work funded by NSF grants CCR-8619886 and CCR-8806358. Submitted to IEEE Transactions on Parallel

and Distributed Computing. A preliminary version of this paper appears in the Proceedings of the 10th International

Conference on Distributed Computing Systems, May 1990, Paris, France.

Shared Memory Programming in a Distributed System *

Mustaque Ahamad

Muthusarny Chelliah

Partha Dasgupta

Richard J. LeBlanc

Mark Pearson

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280 USA

Phone: (404) 894-2593

mustaciacc.gatech.edu

Abstract

Differing remote and local state access mechanisms in distributed computing environments

make programming for concurrent execution difficult. This paper presents a novel programming

paradigm that simplifies development tasks by allowing programmers to create distributed ap-

plications without having to be aware of their physical distribution, or runtime degrees of con-

currency. This paradigm, used to program distributed applications for the CLOUDS distributed

operating system, models these applications like centralized programs where processes communi-

cate and synchronize using shared memory. Distribution is achieved automatically at execution

time.

This work funded by NSF grants CCR-8619886 and CCR-8806358.

Selected Publications in Full

Using Multicast Communication to Locate Resources
in a LAN-Based Distributed Systems

Alustaque Ahamad Mostafa H. Ammar Jose M. Bernabeu-Aubdn 	M. Yousef Khalidi

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

In this paper we present a resource (e.g., file, pro-
cess) location scheme which exploits the multicast
communication capability of local area networks. In
the scheme, the universe of resource names is parti-
tioned into a relatively small number of groups and
each group is assigned a unique address. Nodes stor-
ing the locations of resources belonging to a particu-
lar group instruct their network interfaces to receive
all location messages sent to the group address. To
locate a resource, a node first determines the address
of the group to which the resource belongs (this can
be accomplished via a well-known hash function),
and a multicast message is then sent to the address.
The algorithm performance is studied by means of
simulation, and approximate closed form solutions
are derived for systems operating at heavy and low
loads. The scheme's performance is compared with
that of broadcast, and it is shown that the proposed
scheme performs much better than broadcast alone.

Introduction

le advantages offered by distributed systems include resource
aring, fault-tolerance and parallel execution of a computation.
to programming of distributed systems is more complex than
ntralized ones due to the unavailability of the global state of
e system. For example, in a dynamic system where resources
g.. files, processes) can be migrated between nodes, a user
ist program an algorithm to find the current location of a re-
urce needed by his or her computation. This can be avoided if
ers are provided with the abstraction of a unified system where
e location of resources is transparent to them. Resources are
[erred to by names and, at runtime, the system determines the
rrent location of a named resource.

Many schemes have been proposed for finding the location
a named resource. Conceptually, there exists a database that
)res the associations between resource names and their loca-
ins. This database can be partitioned and stored at one or
ire nodes that are called name servers. When a remote re-
tiree. A, needs to be accessed, the request for its location
ould be sent to a name server that stores R's location. The

tThis work has been partially supported by NSF grants CCR-8806358,

-860.1850. and CCR-8619885.

system must also implement algorithms to update the informa-
tion stored by the name servers when resources are created or
deleted or when, they are migrated. To avoid this, the database
can be distributed in such a way that a name server at a node
maintains a list of only resources local to the node. In such a sys-
tem a remote resource can be located by broadcasting its name,
and having the node where the resource is located respond. This
scheme is used in Clouds [DLS85] for locating remote objects.
Broadcast can also be used when other schemes fail to locate a
resource.

We are concerned with a distributed system that uses a
broadcast bus local area network. In such an environment, all .
network interfaces receive every message carried on the bus. A
particular message is delivered to the attached node only if it
is sent to a destination address that the interface has been in-
structed to recognize. Such addresses will at least include the
broadcast address and the node's own address. Thus, if a broad-
cast message is used to locate a resource, the message will be
delivered to all the nodes in the distributed system. This in turn
will cause all the nodes to search their local resource directories
which represents a wastage of CPU time at all nodes except the
one where the resource resides.

In this paper, we explore the design of a distributed name
server where multicast communication is used to locate the re-
quested resource. In such a system, a particular message sent to
locate a resource will be delivered to only a subset of the nodes
in the system. The availability of bus interface communications
technology that supports multicast in the hardware provides the
motivation for this work. Our goal is to design a location scheme
that is simple from the point of view of a node that needs to find
a resource but, at the same time, reduces the number of nodes
that must participate in the location process.

We associate a multicast address with each resource name
and this address is used to communicate with the name server
of the resource. Each node receives messages sent to multicast
addresses corresponding to the resources whose locations are
stored by the local name server. Typically, a limited number of
multicast addresses will be available at each interface for use by
the resource location operations. Since the number of resources
in the distributed system can be large, the resource name to
multicast address mapping is many-to-one. For such a system.
we present the algorithms to be executed when a resource is cre-
ated, deleted or a request is made for finding its location. We
also study the performance of the multicast scheme and compare
it with broadcast. The cost measure used is the number of nodes
that process messages sent for finding a resource or for updat-

191

ing the information stored by name servers when resources are
added or deleted. We use simulation and analytical techniques
to determine the cost and demonstrate that the expected cost
is much smaller for the multicast scheme when it is compared
with broadcast.

We do not claim that to locate resources, a distributed sys-
tem should use only the scheme proposed in this paper. It can
be used in conjunction with other methods, e.g., hint tables to
avoid broadcasting the request when a resource is not found at
its expected location.

Section 2 describes related work and the system model is
presented in section 3. The algorithms that implement the mul-
ticast scheme are described in section 4. We discuss the correct.
ness of the algorithms in section 5. Performance analysis and
simulation results are described in section 6. We conclude the
paper in section 7.

2 Related Work

Name servers are used for locating resources in many systems. In
the Grapevine system [BLNS82], a resource name is of the type
F.R where R is the name of a registry and F is the name of the
resource in the R registry. Each registry has associated with it a
collection of name servers. When the location of a name server
for R. is not known, it is found from a well-known registry with
is maintained in every name server. The Clearinghouse [0D83]
system generalizes this by adding another level for naming.

If a resource is accessed at a node many times, its location
can be cached so that the node does not have to consult with a
remote name server each time the resource is used. Cached infor-
mation is called hints and have been discussed in [Ter87,ABA88].
Since a resource can migrate, hints can be wrong and hence a
name server should be located in that situation. In another
scheme called forwarding addresses [Fow85], a node stores the
address of the node where a resource residing at it has moved.
A resource is located by following these addresses.

The broadcast scheme, where a message for finding a re-
source is sent to all nodes in the network, is a special case of the
scheme presented in [MV85] in which a node queries a subset of
the nodes to find the location of a resource. In the V system
[CI■186], multicast is used to communicate with the name server
nodes when the resource is not found at the expected location
and its name server is not known.

In the scheme presented in this paper, each node implements
the scheme (it is possible to exclude certain nodes) and the set
of nodes that receive a message sent to locate a particular re-
source depends on the resource name. Thus, the sets of nodes
that process the location message for two different resources may
be different. We study the relationship between the number of
multicast groups supported by the hardware, the sizes of the
multicast groups (the number of nodes that receive messages
sent to a multicast address) and the number of resources in the
system.

3 System Model

A distributed system is assumed to be a set of L (numbered
from 1 to L) nodes connected by a broadcast bus. Each node
contains a set of resources which can be accessed by both local
and remote nodes. Each resource has a unique name which is
used by the users to refer to the resource. The set of resources
residing at a node is dynamic: new resources can be created and
existing ones can be deleted. Resources can also be migrated
between nodes.

A node consists of a processor (could also be a multiproces-
sor) with its own memory and a network interface that allows
the processor to exchange messages with other nodes.

The network interface receives messages transmitted over the
network and performs address recognition to determine if an ar-
riving message should be delivered to the processor. The in-
terface is also responsible for transmitting messages sent by the
processor.

We assume that the network interface can recognize the
unique address associated with the node, the broadcast address
and a set, 4), of multicast addresses. A message sent to the mul-
ticast address m will be delivered to a processor only if m is in
its 4). A processor can change the membership of its own set 4).
However, the number of addresses in 4) cannot be more than AI'.
Thus, at any point in time, a node can choose to receive mul-
ticast messages sent to at most Al addresses. The restriction
on the size of 41 holds for currently available network interfaces.

For example, the Digital UNIBUS Network Adapter, DEUNA'
[Deu83], supports a maximum of 10 multicast addresses (there
exist interfaces that support a larger number of addresses but
the set of addresses allocated to the location subsystem will be
limited in size). We also assume that if a node sends a message
which generates a response, the sender will receive the response
in at most b seconds. This allows the use of timeouts for deciding
when not to wait for any more responses.

We assume that the operating system at each node, in ad-
dition to other functions, implements a resource management
subsystem, RMS, and a location subsystem, LS. RMS handles
the creation, deletion and migration of resources and stores in-
formation about all resources that are currently resident at its
node. When a user needs to access a remote resource, RMS
communicates with LS, which finds the current location of the
remote resource. We assume that identical copies of RMS and
LS execute at each node and RMS informs its local LS when a
resource is created or deleted.

4 Location Subsystem

The LS executing at a node communicates with its local RMS
and the LS at other nodes to implement a distributed name
server. In this section, we describe the data structures main-
tained by each LS and its interface with the RMS. We also
describe the algorithms executed when a resource is created.

'DEUNA and UNIBUS are trademarks of Digital Equipment

Corporation.

194

deleted or its location needs to be found. Since some of these

functions can be executed concurrently at different nodes, their

code must use some synchronization mechanism to assure atom-

icity when it is required. We do not include the code for syn-

chronization to avoid the unnecessary complexity. Also, it is

assumed that no node failures occur. The effect of failures on

the scheme and their handling is described in a [AABKS7].

14.1' Location Subsystem Data Structures

Each LS maintains a directory of < resource name, node >
pairs and a multicast table. A multicast table entry consists

of a multicast address and a count. A mapping (e.g., a hash-

ing function), w. which is well known, is used by LS to map

r a resource name to a multicast address. For each R such that

< R,i > is in the directory, there must be an entry in the mul-

ticast table with w(R) as the address. The count field of this

entry is the number of resources in the local directory that map

to the address w(R). Initially, the address field in each entry

of the table is set to a multicast address E which is not in the

range of the mapping w. As will be seen later, the resources

whose names are stored in the directory can be both local as

well as remote. Each address in the multicast table at a node

is also added to its (I) and hence the size of the multicast table

cannot exceed Al. A multicast message sent by LS with in as
i ts address will be received by a node if there is a resource, R, in

i ts directory such that w(R) = m (it is assumed that in belongs

to a set of multicast addresses that are used only by the location
subsystem).

4.2 Location Subsystem Calls

The RNIS at a node not only calls the local LS for locating a

remote resource, it also makes a call to LS when a resource is

created or deleted. The functions implemented by LS that are

called by RNIS are defined below. To implement these functions,

LS may have to communicate with its peers at other nodes. A
message sent by LS contains its destination and source addresses,

a type and data (if any) depending on the type of the message.

The types of the messages used by LS and the data contained

in them is described in the code for the functions. We assume

that these functions are called at node i (1 < i < L).

• AddResource(R : ResourceName)

This function is called by RMS when the resource R is
created. This makes R available to remote nodes that can

locate it by requesting their LS. Since the multicast table

size is limited, the resource name and its location may have

to be added to the directory at some other node. When it
is not possible to add < R, i > to the local directory, the
CreateSpace function is called, and returns the node that
can add < R, i > to its directory and 4,7(R) to its multicast
table. We describe the CreateSpace function later.

function AddResource (R : ResourceName)
begin

R) is in the multicast table then
increment the count of the entry having
address w(R); add < R, i > to directory;

else if entry in the table with address E then

change the address in the entry from E to w(R)
and make its count 1;

add < R. i > to directory;

else

j := CreateSpace(R);

if i j then

send a message of type AddReq to node j
with < R,i > as data;

else

(* A free entry is created in local multicast table')

change the address in the entry from E
to w(R) and make count 1;

add < R, i > to directory;
end;

• FindResource(R : ResourceName)

This function is called by RMS to find the location of the
remote resource R. If R exists at some node currently, the

address of that node is returned by this function.

function FindResource (R : ResourceName)
begin

if < R,j > in the directory then
return(j);

else
send a FindReq message to address w(R) with R
as data; wait for FindResp message;
j := address of node sending FindResp message;
return(j) ;

end;

• DeleteResource(R: ResourceName)

This function is called when RMS needs to delete R. RNIS

asks the local LS to find its location node, j, and delete

the resource name and its multicast address at the node

where they are stored. We do not consider the messages

sent by RMS to its peer at node j to actually delete the

resource.

function DeleteResource(R : ResourceName);

begin
if < R,j > in directory then

delete < R,j > from directory;

decrement the count in the entry with address

4,4 R) in the multicast table;

and when count becomes 0, change w(R) to E;
return(j)

else
send a DeleteReq message to w(R)
with R in the data field; wait for a

DeleteResp message returning node name j;

return(j)

end;

LS does not provide a function to be invoked when a resource

is migrated. RMS can inform LS of the migration by deleting

the resource at its current node and adding it at the new node

by calling the functions described above.

4.3 Internal Functions of The Location Subsystem 	quest message and their handling is described in the code
of the functions.

We now describe the CreateSpace and the MessageHandler
functions. These functions are internal because no other compo-
nent of the system has access to them. Again, we assume that
the functions are executed at node i.

• CreateSpace(R)

The CreateSpace function is called by LS at node i when
it cannot add < R, i > to its directory because all ad-
dresses in the entries of the multicast table are different
from Lo(R) and E. Since FindReq messages for R are ad-
dressed to w(R), the node where the location of R is stored
must have Lo(R) in its multicast table. The CreateSpace
function finds a node where either 4.1(R) is in the multicast
table or there is an entry with address equal to E. When
this cannot be done, it creates an entry with address E
at some node by moving resource names from the node's
directory to some other node. The range of r.a has to be
restricted to assure that CreateSpace returns a node with
this property. We discuss this in a later section.

function CreateSpace(R)
begin

(5 Check if some node has ca(R) in multicast table 5)
send a SpaceReq message to w(R);
wait for SpaceResp message to arrive for 6 time;
if one or more SpaceResp messages arrive then

choose one and let j be the sender
of the chosen message;

return(j);
(5 Check if some node has address E
in its multicast table *)

send a SpaceReq message to E;
wait for SpaceResp messages to arrive for b time;
if one or more SpaceResp messages arrive then

choose one and let j be the sender
of the chosen message;
ret urn(j);

(5 No node has w(R) in its table and all tables are full 5)
send a TableReq message to the broadcast address;
wait for TableResp messages to arrive for 6 time;
let j and k be two nodes such that multicast tables
received from them in the TableResp messages
have a common multicast address' m.;
send a MoveDirEntryReq message to j with k and m
in the data field;
wait for a MoveDirEntryResp message;
return(j) ;

• Mess ageHandler(msg)
The MessageHandler function is executed by LS at node i
when a request message arrives for LS. This message may
have been sent to the unicast address of i or a multicast or
the broadcast address. Since only request messages arrive
asynchronously, we show the handling of these messages.
The response messages are received when LS sends a re-

'An alternative way of getting two nodes which share a multicast address

is to poll nodes one at a time until two nodes with a common address are
identified.

function MessageHandler(msg : Message)
begin

j := sender of msg;
case msg.type of

AddReq:
< R,k > := data received in msg;
if w(R) is address in an entry in the table then

increment the count in the entry
with address w (R); add < R, k > to directory;

else if there is an entry with address E then
change the address in the entry
from E to w(R); make its count 1;
add < R,k > to the directory;

FindReq:
R := resource name received in msg;
if < R,k > in the directory then

send k in a FindResp message to j;

DeleteReq:
R := resource name received in msg;
if < R,k > in directory then

delete < R, k > from directory;
decrement the count in the multicast
table entry having address w(R);

if count becomes 0 then change w(R) to E;

send k in a DeleteResp message to j;
SpaceReq:

send a SpaceResp message to j;
TableReq:

send multicast table in TableResp message to j;
MoveDirEntryReq:

m := multicast address received in msg;
k := node address received in msg;
for each < R,1 > in the directory
such that w(R) = m do

send an AddReq message to k with < R,1 >
as data; change u.i(R) to E in the multicast table;
send MoveDirEntryResp message to j;

2 Correctness

The correctness requirement for the multicast based scheme is
that when a resource exists (it has been added by calling the
function AddResource(R) and it has not been deleted by calling
DeleteResource(R)), then executing FindResource(R) at any
node must return the current location of R. Let i be the node
where FindResource is executed and let j be the current loca-
tion of R. If < R, j > is not in the directory at node i then a
FindReq message is sent to w(R). Thus, the location of R will be
returned by the FindResource call if the node where < R. j >
is stored in the directory has ca(R) in its multicast table. This
will guarantee that the FindReq message for R is received by
the node that stores its location. Since < R,j > is added to the
directory at a node only when either ,..1(R) is in the multicast
table or there is an entry with address E which is changed to
..‘(10 (AddResource function and handling of AddReq message
in MessageHandler), the correctness follows if we can demon-
strate that < R, j > is added to the directory at some node as

196

result of executing AddResource.

If w(R) or E is the address in an entry of the multicast table
t node i when AddResource is executed, < R, i > is added to

I
'le local directory. Otherwise, < R, i > is sent to node j which
 returned by the CreateSpace function. If j is the address of
to chosen node that responded to the SpaceReq message sent
) either ‘,.:(R) or E then < R , i > is added to the directory at
he responding node. When no nodes respond to the SpaceReq
iessages sent to these addresses, then multicast tables at all

lades are full (there is no entry with E' as the address) and
3ne of the tables has an entry with the address (4,(R). In this
lse, all multicast tables are collected at node i and two tables
living a common multicast address are found. To guarantee
liat there exist two such tables, we need to restrict, K, the I
.nge of ca. Since the multicast table size is M and there are L
Ries, if K < L • M then two tables will have a common address
hen all tables are full and none of them has the address ca(R).
his follows because otherwise K > L • M +1 (all addresses in

multicast tables are distinct and different from ca(R)) which
a contradiction.

Once two nodes such that their multicast tables have a corn-

on address, a, are found, the entry containing a at one node
freed by sending all resource names mapping to the address a
the other node that sent the table with address a in it. The

source name entries deleted from the directory of one node
le added at the other node because the multicast address cor-
iponding to the resource names is in the table at the other
!de. R is added to the directory at the node where the free en-
(is created. Thus, when AddResource(R) is called, the name

id location of R are added to the directory of some node which
is co(R) in its multicast table.

Performance Study

study the performance of the location scheme presented above
? will use a simulation model of a system that uses the multi-

1st location algorithm. The simulation results will provide us
.th an understanding of how the performance of the proposed
heme is affected by various parameters and how it compares
Ith the use of broadcast to locate a resource. We will also
resent analytic results for light and heavy load approximations.

1 Simulation Model

r the purpose of the simulation we make the assumption that
delete and add operations occur independently of each other.

zquests to find and delete a particular resource are only allowed
hen the resource has been added but not yet deleted. Resources

l e added to the system as a Poisson process with rate 7. An
id request is equally likely to arrive at any of the nodes. A
source being added is equally likely to have its name mapped
any address (this is a property of the function ca). Thus the
tal arrival rate of add requests per node per address is
ecall that L = number of nodes, K = number of multicast
(dresses in the range of ‘,./, and M = size of multicast tables).
nce a resource is added, it will reside in a node for a time that
exponentially distributed with rate g. A delete request for

a particular resource is equally likely to occur at any node in
the system. Once a resource has been added, find requests are
generated for it at a rate A until it is deleted. The interarrival
time of find requests for a particular resource is exponentially
distributed and a find request is equally likely to arrive at any
node in the system.

We are interested in studying the system in the steady state,
and in that state, the rate of resources leaving the system will
be 7, and the average time spent by a resource in the system is
given by Thus, the average number of resources in the system,
f, can easily be computed by applying Little's Law[Lit61].

= 7 	 (1)

The simulation closely follows the steps of the algorithms pre-
sented in section 4. In the definition of the CreateSpace func-
tion, three phases can be distinguished. In the first phase, a
SpaceReq message is sent to a multicast address (different from
E) and one of the nodes responding to it is selected. In the sim-
ulation, it is equally likely that any particular node be selected
from the set of nodes having the multicast address in their tables.
In the second phase, one of the nodes with empty multicast table

entries has to be selected. Again, any node is equally likely to
be selected. Finally in the third phase both a multicast address
and two nodes belonging to its multicast group have to be se-
lected. It is equally likely that any particular multicast address
will be selected out of those which are in tables at more than
one node. Any pair of nodes with that address is also equally
likely to be chosen.

We assume in the discussion that the system will be fault—

free. In particular it will -always be possible to add a new re-
source, and resources for which find's and/or delete's arrive,
must have already been added.

8.1.1 Cost Calculation

We describe the performance of the multicast scheme in terms
of the cost of certain operations. This cost is defined as the
number of messages delivered and processed by nodes in the
system. Thus, for example, if during an operation a message is
sent to a multicast group consisting of 3 nodes, and in turn one
of the nodes sends back an acknowledgement message, the cost
of this operation would be 4 under the proposed metric. This
metric properly reflects the amount of total CPU time used by
the location system. In calculating our costs we are concerned
only with the function that terminates by returning the location
of the resource to the RMS. Additions and deletions of resource
references are considered, however the costs of addition, deletion
or usage of the resource itself are not.

A detailed description of how the costs are computed for each
of the location subsystem operations is included in [AABK87].
The cost of an operation depends on the size of the multicast
group to which a message is sent to implement the operation.
The multicast group size depends the number of nodes in the
system, L and the multicast table size M.

With the same assumptions about system behavior as we
made above, we can find the average cost for each operation type
(and the total combined average for all types) when broadcast
is used as the only location method. The probability that a

resource, chosen at random, be local will be given by 1, thus
the average cost of a find (or delete) operation will be given by,

,
= Cd= L • L 1 =L-1 —1

The cost of additions will be always zero, because the resource
reference is stored only locally. As shown in [AABK87], the
combined cost for the three types of operations will be,

CB = (L 1) Ap
A + 2 • IL (3)

where .A , /4 and L are as defined earlier.

6.2 Simulation Results

We performed two sets of simulations. In the first set, the sim-
ulations were run for a system consisting of 20 nodes in which
each node's multicast table could hold up to 10 multicast ad-
dresses. In the second set, the value of K was fixed to 100, and
the value of Al varied from 5 (its minimum) to 100.

For the first set, different values for K have been considered,
covering all its possible range (notice that it is necessary that
K < L • Al). The maximum load (average number of resources
in the system) considered was 2000 (that is 100 resources per
node on the average when the multicast table size, Al, is 10).
Due to the fact that the cost of delete operations varies similarly
to the cost of find's, we have only shown the latter's costs.

In figure 1, we show the variation of the average cost of find
operations. We plot the variations for several values of K. It
can be observed that the costs reach a definite asymptotic value
at high loads, and this value is reached relatively fast as the load
is increased. It can also be seen that for large K (close to the
maximum), there is a relative maximum in the cost curve (al-
though it is not very pronounced). To understand this behavior,
we have to consider what happens when the load varies from 1 to
2000. We start by pointing out that with our cost measure, the
average cost of a find operation will increase with the number
of nodes receiving messages sent to a given multicast address.
The larger the number of multicast addresses, the smaller the
number of nodes with a given address. At load 1 there is, on the
average, a number of nodes close to one which contain a given
multicast address. As the number of resources in the system
increases, the number of nodes containing resources that map
to a given multicast address will increase while there is enough
room in the tables to store the multicast addresses of all existing
resources. Thus the cost of find requests will also increase. As
the multicast tables start getting full and K > Al, the multi-
cast addresses will compete with each other for a place in the
tables as a result of calls to the CreateSpace function. This
will in general decrease the number of nodes in a given mul-
ticast group: references of resources that map to a particular
address will be moved by using the AfoveDirectory message and
will be collected at a small number of nodes, thus decreasing the
cost of a find. When K < M the cost curves are monotonically
increasing. This is because there is never competition between
the multicast addresses, and, in the limit, all addresses are in
the multicast tables of all the nodes, thus making any multicast

message equal in cost to a broadcast.

As shown in figure 1. the larger the number of addresses. K,
the lower the cost of find. This is a direct consequence of t he
fact that increasing the number of multicast addresses reduces
the number of multicast table entries available per address. thus
reducing the number of nodes in a particular multicast group.
For the system being considered, the average cost of a find oper-
ation when only broadcast is used to locate objects is given by
equation (2) and equal to 19. It can be seen that even for rela-
tively low values of K (K = 20), the cost of using the multicast
scheme is slightly more than half that of broadcast for heavy
loads Otis even lower for low loads). When K is incremented to
50, the cost reduces to approximately one fifth of the broadcast
cost. Thus the multicast method compares very favorably with
respect to broadcast for find operations (the same can be said
about delete operations).

Figure 2 plots the average cost of add operations versus the
average number of resources in the system. For A' < !if this
cost will be zero (there is always room in the multicast table
to store the address of a new resource). For any given K. the
cost seems to vary similarly to the cost of find's. The biggest
difference consists of the fact that at low loads, the larger K, the
larger the cost, whereas at high loads the opposite is true. This
happens because at loads high enough so that addresses have
already started to compete for multicast table entries, but low
enough that the number of nodes in each multicast group has
not yet been balanced, the likelihood of a totally new address
coming in the system is high, thus forcing the execution of the
CreateSpace function up to its second phase. Once the num-

ber of nodes per multicast address starts balancing, however, all
multicast addresses will have at least one entry in the multicast
tables, and the larger the K, the lesser the number of nodes con-
taining any particular address. Thus, the cost of executing the
CreateSpace protocol decreases with K, and, according to the
figures, although the probability that the CreateSpace protocol
be executed increases with K, its cost becomes low enough as to
make it cheaper for higher values of K. For add operations, the
multicast scheme clearly performs worse than broadcast, whose
cost is zero.

We call the ratio of add request rate to find request rate
the operation mix. The actual operation mix will not affect
the costs of find, delete and add operations at any given load,
however it will affect the overall average cost for all operation
types. In figure 3 we show the variation of the overall average
cost for all operation types for a system in which the operation
mix is 1 : 40. It can be seen that the variation of the costs
follows closely the one observed in figure 1, which is due to the
fact that find operations are the ones contributing most to the
overall cost. The average overall cost for broadcast (as derived
in the last subsection) would be slightly less than 19, and the
overall cost of the multicast scheme still is only slightly higher
that half the overall cost of the broadcast scheme for K = 20,
and much lower for higher values of K.

In figure 4 we plot the variation of the average cost of find
operations against the number of multicast addresses, K. for
some values of the load. It can be seen that the cost falls sharply
as K increases. It can also be observed that for K close to its
maximum (200) higher loads lead to somewhat lower costs of

(2)

198

find.

In figure '5 we plot the variation of the cost of add operations
against the number of multicast addresses. K. In this figure, the

effects seen in figure 2 are made more apparent: at medium

loads, the larger K the larger the cost of add operations.

In figure 6 the variation of the average cost of find operations

is plotted as .11, the size of a node's multicast table. increases.

The value of K for all curves is set to 100. At low loads, the cost

does not seem to depend on the value of M (this is in agreement

with the results obtained for the low load approximation, see

next section). In general, for all loads. the cost will increase

until a certain value for M is reached. Thus, by increasing M
sufficiently, the system can be made to work in the "low load

range".

A similar effect can be observed in figure 7, where the cost
of add operations is plotted against M. Here, again, we observe

that for sufficiently large M the system starts operating in the

"low load range" (characterized by the cost of add being close
to zero). This value for M coincides with the one observed on
the plot for the cost of find.

6.3 Approximate Analysis

The results of the simulation indicate that the system seems

to be operating mainly in two modes: at low loads, the cost

increases rapidly, whereas after a certain value of the load its

behavior changes radically and the system stabilizes with an
almost constant cost. This suggests a description of the system's

behavior at heavy and low loads will be useful to understand the

system's overall behavior.
-

It is possible to provide models which will approximate the

behavior of the algorithms for low loads. Such analysis will

provide us with closed form expressions for the costs. It is also

possible to obtain models which provide upper and lower bounds

on the costs when the system is operating at heavy loads.

In [AABK87], we derive the expressions for the approximate

costs at low loads. This is achieved by assuming that there is

always room in the multicast tables to store the address to which

a resource maps and, thus, all resource references are stored at

the node where the resource resides. We obtain the following

results for the average costs (note: C.,Cd and C1 stand for the

average costs of add, delete and find operations, respectively. C

represents the overall average cost).

= 0

C
	

(2 + (L - 2)(1 - 	
L

L 1

„ -

= CJ Cd

C = 	
+ A

C
A + 2 • it 1 	

(4)

Notice that the costs do not depend on the value of AL Also

note that as oo, the costs in (4) approach the respective

'costs fur the broadcast approach.

In [111.1K87] we also derive upper and lower bounds for the

different costs in the heavy load limit. Under this limit the

system is assumed to have reached a given configuration for its

multicast tables. In this configuration, all multicast addresses

are stored in at least one entry of some multicast table. The

configuration, once reached, does not change unless the load

decreases. For add and find operations we derived upper and

lower bounds for the limit of the cost at heavy loads. Denoting

the upper and lower bounds of an operation o by Co and Co

respectively„•e have,

= (2L-1)11 +1

	

 LK [LM +L- K
	 K

11 J(2LM - K(L -Llif 1))]

M 	2
= (2L - 1)—

K
 +1- —(qL 2 + (p + 1) 2 + K - q -1)

LK

= (L 1)
K + M(L - 2) M

	

LK 	LK

L21i
(qL + (p + 1) 2 + K - q - 1)

LA 	LK
L21 K 	4. L

j (2LM - K (L4-I + 1))]

Where q = L-y-4 .1 and p = LM - K - q(L - 1). For delete
operations we were able to obtain the heavy load limit given by,

Cd = (L 2)! +1

In figure 8 we plot the low load limit value and the heavy

load bounds for the cost of find for K = 20. We can see that

the low load limit fits the simulation curve at low loads. As the

load increases, the simulation curve eventually enters the zone

between the upper and lower bound approximations. A close

match with the simulation results has also been observed for the

cost of the other operations and for all the values of K we have

studied.

7 Concluding Remarks

In this paper we presented the algorithms necessary to imple-

ment a simple location scheme based on multicast communica-

tion. To analyze its performance, a simulation model was de-

veloped which closely followed the steps of the algorithms. The

simulation results showed that the scheme had a lower cost than

broadcast alone. In order to predict the costs of the scheme

for cases not included in the simulation, analytic results were

obtained which approximate the behavior of the system at low

loads, and provide tight upper and lower bounds on the costs

incurred when using this location scheme on systems operating

with a large number of resources.

In all cases considered, the cost of find operations using the

multicast scheme is lower than if broadcast were used instead.

Even when the number of multicast addresses is less than or

equal to the number of entries in the multicast table, the multi-

cast scheme presented in this paper has a lower cost than broad-

cast for low values of the load. Even though the cost of add will

always be worse for the multicast scheme (for broadcast its cost

will always be zero), the overall cost still favors the multicast

scheme for large enough values of K. Since the value of K is

C:

Ca

C"

Cr (L 1)
K + /1/(L - 2) 	M

constrained by M, the larger the size of the multicast table sup-
ported by the bus interface, the larger K can be made.

References

[AABK87] M. Ahamad, M.H. Ammar, J. Bernabeu-Auban, and
M.Y. Khaldi. A Multicast Scheme for Locating Ob-
jects in a Distributed Operating System. Technical
Report G1T-ICS-87/01, Georgia Institute of Tech-
nology, January 1987.

[ABA88] M. Ammar, J. Bernabeu-Aubin, and M. Ahamad.
Using Hint Tables to Locate Resources in Dis-
tributed Systems. In INFOCOM'88, IEEE, March
1988.

[BLNS82] A. D. Birrel, R. Levin, R. M. Needham, and
M. D. Schroeder. Grapevine: an exercise in dis-
tributed computing. Communications of the ACM,
25(4):260-274, April 1982.

[CM86] 	D. R. Cheriton and T. P. Mann. A Decentralized
Naming Facility. Technical Report STAN-CS-1098,
Department of Computer Science, Stanford Univer-
sity, February 1986. Revised version to appear in
ACM Transactions on Computer Systems.

[Deu83] 	Deuna Users Manual. Digital Equipment Corpora-
tion, 1983.

[DLS85) 	P. Dasgupta, R. J. LeBlanc, and E. Spafford. The
Clouds Project: Design and Implementation of a
Fault-Tolerant Distributed Operating System. Tech-
nical Report GIT-ICS-85/29, Georgia Institute of
Technology, 1985.

[Fow85] 	R.J. Fowler. Decentralized Object Finding Using
Forwarding Addresses. PhD Thesis 85-12-1, Univer-
sity of Washington, December 1985.

[Lit61] 	J.D.C. Little. A Proof of the Queueing Formula L =
AM'. Operations Research, 9:383-387, 1961.

[MV85] 	S.J. Mullender and P.M.B. Vitinyi. Distributed
match-making for processes in computer networks.
In Fourth ACM Symposium on the Principles of Dis-
tributed Computing, ACM, Minacki, Ontario, Au-
gust 1985.

[OD83] 	D.C. Oppen and Y.K. Dalai. The clearinghouse: a
decentralized agent for locating named objects in a
distributed environment. ACM Transactions on Of-
fice Information Systems, 1(3):230-253, July 1983.

(Ter87] 	D.B. Terry. Caching hints in distributed systems.
IEEE Transactions on Software Engineering, SE-
13(1):48-54, January 1987.

200

20.0 20.11-r 	= I
K~ /

c 15.0
/. .• 20
w ~ /o

2

. • • • . - •
	 ■

• • - - • • • ..

................

E
-6 I

Figure 3: Average overall cost versus average number of resources
: Average rust of find versus average number of resources

20 10.07 	 	
.

-

.

= 50

K = 100

..

:z.a 10.0 	/ 	 2(1

7 7 K

..1

K = 2110

K = 20
..........................

K = 50

• • 	 	100

• I/

/ •

/e.'
IV1i ---4.,4,,4-6- .. Ir . 	 i 	 i 	 4-6-4-1-1-1

011 	 S00.0 	 10110.0 	 /u10.0 	 2000.0

..11., root oumber Of ITSOUR TS in the ay.viroa

hgo ?. .%% vrAge 	of mid ■ ersils ancrage number of IP:Mill. I'S

20.0
r = WOO

N

I L'" Al=10 I

r 	1110•
...

ym 	 100.0 	 15011

Num& r of motto-ass widirs§ts,

Figure -I: A vPragr r ■ t,i 111. Jim! 111, 115 II U1111.1.1" of ildlifeSSI,

21111.0

I I. =
AI = 111

0.0
2000.0 0 0 2111111.0

0.0
0.0 	 500.11 	 1000.0 	 15110.0

Average number of resources in the myrtem

	

.

	

500.0 	 1000.0 	 1500.0
'teenage number of resources in the system

L = 20
Al = 10
[nix= I 40

.a .t 	 to..1
25.11 am 	 75.11 	 11111.11

NW/S/1T of 1 nencS /11 fabk. 31

1 ormol• G. A eragot 1,1ki 111 Ps/ cr,us 11111111;aq ell Nal leN

r = 700

r =

c =.

—)00

I .1/ = 211
K = 1011

•
r = 1000

•

I l " A r=1 of

r 100

50 a 	 100.0
Alutnkr of malterast adorn.,

rigor.. 5: Average CIKii or add vevsus number of addresses

.4
 c

ra
p

e
C

O

o
f

a
dd

 u
p

o
 ra

ti
o

n

150.0 200.0

r 	:100
r — 29

90 	 25.0 	 uu 	 75.0 	 190 0
Number o/ entries, Al

Figure 7: Average cost of odd versus number of entries

5.0

1,1 2.5

I L = 	I K = 101)

= 20
31 = 10

= 20

.109.11 101111.9
.117 figq• moan r 14 11 ,01117V 	 in lb.

low load approximation
upper bound

_ — — — — — — — — — 	 — _ _ — —_ _ — _
lo~~ ^~=/

.• 	
simulation

	

' 	• • 	• 	1

	

17,119.0 	 2000 0

Imm' .1. I 'tiottol.trostolo 	:111.11,1 , 	 11 •1111111.111011

10.0

=

Resource Finding in Store-and-Forward Networks*

Jose M. Bernabeu—Aubon
Mustaque Ahamad
Mostafa H. Ammar

Abstract

. We present a model of searching for a resource in a distributed system whose nodes

are connected through a store-and-forward network. Based on this model, we show

a lower bound on the number of messages needed to find a resource when nothing is

known about the nodes that have the current location of the resource. The model

also helps us to establish results about the time complexity of determining a message

optimal resource finding algorithm when the probability distribution for the location of
the resource in the network is known. We show that the optimization problem is NP-
hard for general networks. Finally we show that optimal resource finding algorithms can

be determined in polynomial time for a class of tree networks and bidirectional rings.

The polynomial algorithms can be used as a basis of heuristic algorithms for general
networks.

'This work was supported in part by NSF grants CCR -8806358 and NCR-8604850.

1

1 Introduction

Distributed systems need to implement algorithms for finding the location of remote re-
sources to reduce the complexity of their use. We investigate the communication cost of
resource finding algorithms in a store—and—forward network. We consider two situations.
First, we investigate the message cost of resource finding when a searcher node does not
know where information about the current location of the resource resides. Such a situation
can arise in a distributed system with the commonly used schemes such as name servers
[1] or hint tables [2]. For example, when the name server node fails, the algorithm used by
the searcher node (the node that wants to find the resource location) must work without
knowledge about the nodes that are likely to know the resource location.

It may be possible to reduce the communication cost of resource finding if statistical
information (e.g., a probability distribution) is maintained about the nodes that are likely to
know the location of a resource. Such information can be derived from usage and migration
patterns of resources in the network. For example, when the resource is an idle node, nodes
having high job arrival rates will be less likely to be available when the resource is needed.
When the statistical information is available to a searcher node, it should attempt to query
the nodes in an order that minimizes the communication cost. We investigate the time
complexity of algorithms that can be used to determine such an ordering of the nodes.

In the resource finding algorithms we consider, a searcher follows the links of the network
from one node to another until a reference (identity of the node where the resource resides)
to the requested resource is found. Thus, we only consider serial searches in which only
one agent is active at any given time. To reduce the time needed to find the location of a
resource, it would be desirable to start several searchers at the same time exploring different
sets of nodes. Multiple agent searches have the added complexity of synchronization between
the searchers, e.g., if one searcher finds a reference then others need to be informed in order
to halt their searches. The results obtained here for serial searches will inevitably form the
basis of an understanding of multiple agent searches. Furthermore, we will see that even
with this simple model of resource finding, the problem of finding the order in which the
nodes should be searched to minimize message cost is intractable in most networks. We
conjecture that a more complex search model that includes multiple agents and coordination
will render the problem even harder.

The following summarizes the results we have obtained for serial searches:

• When the searcher has no information about the location of a resource (or of its
references):

— The average number of messages used in searching for the resource is S/(Vg),
where N is the number of nodes in the network, is is the rate at which the resource
moves and A is the rate at which requests for the resource arrive. This lower
bound includes the messages needed to update the references to the resource.

1

—For arbitrary networks, the average number of messages needed to find the ref-
erence for a resource having n references in the network has an upper bound of
N — n (this bound is tight).

• When the searcher has a probability distribution describing the likelihood of a par-
ticular node knowing the location of a resource:

—The problem of determining the optimal way of searching an arbitrary network
to minimize the average number of messages used is NP-hard, even when there
is only one reference for the resource. The problem remains NP-hard, even when
the network is completely connected, when the cost of sending a message through
a network link is not the same for all links.

—It is shown that when the probability distribution is uniform, the optimal way
to search a tree network in which the cost of traversing any link is the same, is
by following a depth—first traversal.

—An algorithm is developed for general tree networks which improves on exhaustive
search. Such an algorithm has exponential time complexity for general trees,
although its complexity becomes polynomial for special classes of trees. These
polynomial algorithms can form the basis of efficient heuristic search techniques
in arbitrary networks. Also, as a special case of the application of the algorithm
developed for trees, we show a polynomial algorithm to find the optimal way to

search for a resource in a bidirectional ring network.

The resource finding problem has been addressed by several researchers. In [3] and [5],
distributed methods suitable for store—and—forward networks are presented and it is shown
that the average cost of the methods considered is ft(V) when the ratio of the request
rate and the movement rate is a constant (p/A = c where c is a constant). The forwarding
addresses based protocols studied in [5] require that all nodes store a node address for each
of the resources and hence they could have a high storage cost. In contrast to serial search
considered here which is sequential, in the method in [3], a node searches for a resource by
simultaneously sending a request message to a predetermined set of nodes. The message
complexity is S/(V.—N) for both of these methods. This cost could be reduced by keeping
information about the nodes that are likely to know the location of the resource. The
problem investigated in this paper, of determining the optimal way to search the network
when such information is available for the resource's location at each node, has not been
addressed in the literature.

The problem of searching has also been addressed in the literature in a different context
[6, 7, 8, 9, 10, 11, 12]. However, the solutions obtained are not applicable to resource
finding in distributed systems (e.g., in [11] the problem of determining the smallest number
of searching agents to capture an evading target in a graph is studied). There exist other
schemes which are useful in a particular type of network (e.g, a local area network) [13, 14].
These schemes may not be efficient if used in a store—and—forward network.

In section 2 we introduce our model of the system and a precise characterization of serial

search. In section 3 we analyze the average cost of serial search when the searcher has no

2

knowledge about the location of the resource. In section 4 we study the problem of finding
an optimal way to traverse the network when the searcher has the probability distribution
of the resource being at a certain node in the network. The paper is concluded in section 5.

2 System Model

We model the system as a collection of N nodes connected by a store-and-forward com-
munications network. Thus we can represent the system by a graph G(V, E) in which the
vertices represent the nodes and the edges represent the communication links in the net-
work. A node's CPU is responsible for both switching arriving messages to appropriate
outgoing links and for resource table look up, if a message requesting the location of a
resource is received. With each edge e we will associate a cost c(e), which is incurred every
time a message traverses the edge. This cost is intended to represent the bandwidth cost
associated with traversing the corresponding link. A distributed system will be represented
by G(V, E ,c).

Each resource in the system resides in one of the nodes, and for each resource, n different
nodes store a reference to the resource's current location. The node where the resource
resides contains one of the references. The set of nodes containing references to a given

resource is called the well-informed set of the resource (this set is similar to the set of nodes
where the location of a resource is posted in [3]). No other node outside of the well-informed
set of a resource has any knowledge about where the resource or any of its references are.
We will assume that the references are instantaneously updated when a resource moves,
which happens at rate 0. We will further assume that the locations of the resources are
requested with rate A. For each A C V such that IAI = n, we will denote by Q(A) the
probability that A is the well-informed set of the resource when its location is requested at
a node not in A. This distribution may not be known to searcher nodes.

2.1 Search Model

We can visualize the serial search process as one in which a searcher agent starts at a node
and not finding a reference to the resource, decides on the next node to be visited. It
then traverses a path leading to the chosen node in order to search there for the resource
reference. This process is repeated until a node storing a reference to the resource is found,
at which point the search terminates. When the objective is to find a reference to the
resource incurring the least communication cost, the procedure used by the searcher to
make a decision on the next node to consult has the following natural properties.

1. Once a node has been consulted, it should not be consulted again.

2. Once the searcher decides to search a new node, it will go to it through a shortest
path, and all nodes along the path will have been already searched (otherwise the
next node to search would be one of them).

3

3. As a consequence of the above, no shortest path from the current node to the next
node selected can contain a not—yet—consulted node.

Serial search can be seen as a rule which selects the next node to be consulted based on
the past history of the search. Since the only information the searcher can get by consulting
a node not in the well—informed set is that the node does not have a resource reference,
the sequence in which the nodes should be consulted can be laid out statically from the
beginning. Therefore, we can formalize serial search using the notion of a walk in a graph
that defines the order in which the searcher will visit the nodes until a reference to the
resource is found. If the searcher is at node vi and it next wants to visit node v3, the walk
would include the nodes on the path from vi to vj when {vi, vi} 0 E. When the search
plan corresponds to walk (vo , v1 , ..., vt) ({vi, vi+1} E E for i < 1), vi needs to search for
a reference only if it has not been visited previously in the walk. We call vi a first visit
if vp # vi for all p < i. On all visits to a node except its first visit, a searcher is merely
"switched" to the next node along the walk. A search terminates at a first visited node
where a reference to the resource is found. For a walk, w, we define V(w) as the set of all
nodes that can potentially be visited by the walk.

Although a search plan corresponds to a walk in a graph, we want to consider only
those walks which correspond to search plans that satisfy the properties described above.

For example, if (vo , 	vt) is a walk such that v, is not a first visit, there is no need to
traverse the link {vt_i, vt} since the resource was not found at node vt previously. In fact,
only a subset of the possible walks in a graph correspond to search plans and we will call
such walks serial traversals. The properties that are satisfied by serial traversals are stated
in the following definition.

Definition 1 A serial traversal in G(V, E, c) is a walk s = (vo ,vi ,..
following conditions,

vi), that satisfies the

(a) For all i, j, s.t. i < j, if none of the v„„ for i < m < j is
(vi, + 1, . . . , vj) is a shortest path between vi and

(b) vi is a first visit.

first visited, the walk

We call a serial traversal s complete if V(s) = V. Thus, a searcher can potentially visit all
nodes if the serial traversal it is using is complete. If the locations of the resource references
do not change during the time the search is conducted, a reference will be guaranteed to
be found when a complete serial traversal is used (we address migration later). The set of
complete serial traversals of a graph starting at node v E V will be denoted by C(G, v).

It is possible that if Q is known, it may not be necessary to visit some nodes because
they do not store a reference to the resource. For example, if IAI = 1, Q(A) becomes the
probability of a particular node storing a reference to the resource. If Q(A) is zero for
some nodes then a non—complete traversal may be optimal because the nodes for which

4

Q(A) is zero need not be searched. However, there will be a complete serial traversal that
will have the same cost (as defined in the following paragraph) as the optimal traversal.
For instance, assume that s is an optimal non-complete serial traversal which goes through
nodes for which the value of Q is non—zero ands leaves out the nodes with zero—probability.
Such a traversal can be made complete by extending it with a walk that covers the nodes
with zero—probability, which does not increase its cost according to (3) because Q(A) will be
zero when A contains the zero—probability nodes. Thus each optimal traversal has at least
one corresponding optimal complete traversal, and no generality is lost by considering only
the complete ones. In the following discussion, unless explicitly stated, a serial traversal or
a walk is assumed to be complete.

The cost incurred in finding a resource depends on, Q, the probability distribution for
the well—informed set and the serial traversal used. If s is the serial traversal used and the
resource is found at node v, the searcher traverses the links up to the first visit of v. We
use a„ to denote the subtraversal of a that ends at the first visit of v. Thus, if the resource
is found at node v, the cost of finding it is the length of a„ which is the sum of all edges in
4. If we denote a's length by As), and Q a (v) is the probability that the resource is found
at node v, the cost of finding the resource using a, C?, can be written as,

C? = E i(s„)Q„(v) 	 (1)
vEv

Qa(v) can be easily derived from Q,

Q a(v) = 	E 	Q(A)
	

(2)
AnV(8.)=Iv)

Alternatively we can write,
CQ = > liN(A) 	 (3)

ACV
where IP„I is the cost of a conditioned on the fact that A C V (IAI = n) is the well—informed
set.

From the cost formulas derived above, it can be seen that our decision to consider serial
traversals only excludes walks which are not optimal. This is proved in the following lemma
and hence, when our goal is to minimize the communication cost of finding resources, it is
only necessary to consider serial traversals.

Lemma 1 Let to = (vo, v 1 , 	1> 2, be a complete walk that is not a serial traversal.
Then, there is another complete walk w', such that C2, < C.

Proof: The cost defined for a serial traversal also applies to a complete walk. If to violates
condition (b) in definition 1, vi is not a first visit. For tv' = (v0,..., 24_1) it is clear that
tv' is complete and C2, = C4 . If to violates condition (a), then there are i < j, such that
wl = (vi, 	vi) is not a shortest path and none of the node v„, for i < m < j is a first visit.
We consider a shorest path w2 = 	..., vii) where ty: = vi and = v3, and we construct
tv' by substituting w2 in place of w t . It can be seen that this tv' is such that Cwci, < CY,
(since to is complete so is te). 	 ■

5

2.2 Resource Finding Algorithms

A resource finding algorithm is a "scheduler" which, given a probability distribution for
the well—informed set of a resource, produces a serial traversal to be used as the plan of
the search. In general for each starting node, v, a random complete serial traversal may
be chosen based on a probability distribution fly : C(G, v) —0 [0,1]. Thus we will identify
a network—wide resource finding algorithm with the family of distributions R = {Rv}vEv •
Re(s) is the probability that the algorithm produces serial traversal s E C(G, v), when
starting the search at node v. A deterministic algorithm is a special case and will always
choose the same serial traversal. That is, the distributions R„ will have value 1 for a
particular serial traversal and zero for all others.

We use J(R, Q, v) to denote the average cost of a resource finding algorithm starting at
node v that uses R to choose among serial traversals and Q is the probability distribution
for the well—informed set. We get

J(R,Q, v) = E c?Rt,(3) 	 (4)
sEC(G,v)

A resource can migrate while another node is trying to locate it and hence the member-
ship of its well—informed set may change. When a particular serial traversal is being used,
the nodes already visited by it could comprise the new well—informed set and hence the
resource will not be found even when the serial traversal is complete. However, to ensure
correctness, the searcher node can augment the scheme. For example, the search can be
restarted after some time when the change in the well—informed set has taken effect. Since
we expect migration to be infrequent compared to the rate of requests for finding a resource
in a real system, such a situation would be rare and it will not have an impact on the
average cost of resource finding.

3 Non—Informed Search

In a distributed system, a node may not have any information about the current location
of a remote resource. As discussed earlier, this could happen either when the node does
not monitor information about all remote resources or the information is allowed to be
temporarily incorrect. We will investigate the resource finding problem when the searcher
knows only the number of references, n. The probability distribution indicating the like-
lihood of a particular set of nodes being the well—informed set, Q, is not known. In such
a system, we are interested in estimates of the average cost incurred by resource finding
algorithms.

3.1 Complete Networks

We study the problem for complete networks (there is a communication link between every
pair of nodes) when c(e) = 1 for all e E E. We will use KN to denote a complete network

6

with N nodes. Thus our cost measure actually accounts for the number of messages used
to locate the resource. The cost of an optimal serial traversal in a complete network will
constitute a lower bound on the cost of a serial traversal in any of its subnetworks with the
same number of nodes. This is so because the set of complete traversals in a subnetwork is
a subset of the set of complete traversals in the complete network.

In a complete network, any node can be reached directly from any other node. If all
links have the same cost, no serial traversal will ever visit the same node twice. In other
words, the set of all complete traversals, C(G, v), is just the set of all (N — 1)! permutations
of nodes in V in which v is the first node.

For an uninformed searcher, any resource finding algorithm will make its selection of
the serial traversal independent of the resource for which the search is being undertaken.
It will only depend on the network and the node starting the search. This is similar to
the model presented by Mullender and Vitanyi in [3], where the set of nodes to be queried
by a searcher node depends only on the node and not the resource being requested. It is
proved in [3] that the algorithm has a lower bound of 2NIAT messages per location operation
on the average (including the messages needed to update the resource references). This
lower bound is reached in a complete network in which the references are distributed in a
particular way forming what the authors call a fully distributed scheme.

We now demonstrate a resource finding algorithm based on serial traversals that has this
lower bound when nodes are non—informed, and the bound is reached in complete networks
with a unit cost function when n, the number of references, is set to a certain value. Since
Q is not known, the searcher has no information which can be used to distinguish one serial
traversal from another. Thus, it should choose a serial traversal randomly. In particular, we
will use algorithm R which chooses each complete serial traversal with the same probability
(R„ (s) = (G 1 ,v)I for all s E C(G, v)). We call R the uniform algorithm. We will show that
R has the desirable property that, independent of the unknown underlying distribution Q,
its average cost is .÷1 . Furthermore, R is distributed because any node will be equally
likely to participate in finding a resource since each serial traversal is chosen with the same
probability.

Theorem 1 For G(V, E) = K N and c(e) = 1 for all e E E, the location cost when li t, is
uniform; i.e., .14(s) = l e(L) f Vs E C(G, v), is independent of Q and is given by

J(R, Q, v) =
n +1

Proof: Let Nk be the number of serial traversals which, for a given A C V (IAI = n), have
a cost Hilt = k. Such traversals will not have any of their first k — 1 nodes in A, and there
are(N; 	possible choices for those nodes. On the other hand different orderings of those
nodes will produce different traversals. There are (k — 1)! ways of ordering those (k — 1)
nodes, thus, in total there are(1v;1 1-1(k — 1)! different ways to select the sequence of the
first (k — 1) nodes of a serial traversal with the desired property. Next we have n different
choices for the node vk (which will contain the first reference found along the traversal).

7

Finally, we have (N — 1— k)! different ways to order the remaining (N —1 — k) nodes in
the traversal. Thus, the total number of traversals with the property is given by,

=
(N —1— n

	

k 	k —1
)

(k —1)!n(N —1— k)!

We have that IC(G, v)I = (N — 1)!. Using (4) we have

J(R,Q,v) = E c?Rt,(s) = 	E E IVQ(A)
(N

1
 —1)!

 aEC(G,v) 	 sE C(G,v) ACV

	

N—n 	 1 	 N—n

• (N —1)!
	 E Q(A) E E 	

= (N —1)!
E Q(A) E kNk

 ACV 	k=1 HA.k 	 ACV 	k=1

1 N—n
k 	— 1 — n)

(k — 1)!n(N —1— k)!
(

•

 N —1)! ifs=1 	k 1
—n n N (N —1— n)!

• (N — 1)! •=1. (k —1)!(N — n — k)!
k(k —1)!(N —1— k)!

(N —1— n)!n N 	 (N —1— k)!
(N — 1)!
	 E k(n 1)!

(n 1)!(N — n — k)! k=1

1 Nv.—n
k

(N —1— k)
= (N-1) 1...#

n k=1 	n — 1

To proceed with the summation let us drop the factor 71=7 for the moment. We will
consider it later. We first perform a change in the summation index, substituting k for j,
where j = N — n — k,

N—n (N —

n —1
— 	

N_n_i
(N — n — j)

_ 1+ j)
E k 	

) E 	j=0
N —n-1 (n + 	N —n-1 (n _ i+j)

E = (N — n) E

	

j=0 	 j=1

The desired result follows by applying the properties

;(771 = + 1)(771
j — 1

and,
E n

— 	
n

•
i=0 (3

■

If an algorithm does not choose each traversal with the same probability as R does,
there will be instances of the probability distribution Q for which the average search cost

8

will be higher than the one given above. As an example, assume that the searcher uses a
deterministic algorithm R, for which Rt,(s) = 1 for a particular traversal, s E C(G, v). Thus
s would be used each time the location of a resource needs to be found at node v. Let
G = K5, n = 1 and let s = (vo , v1 , v2 , v3, v4) be such that Rvo (s) = 1. If Q({v4}) = 1, then
.1(R, Q, vo) = 4 instead of 2.5 as given by lemma 1. Thus, to make sure that the average cost
of finding a resource is ..+1 , R should be uniform (14(s) = R„(3 1) for all s, 81 E C(G, v)).

From the cost formulas derived above, it follows that when the number of references
stored for a resource is equal to N — 1, then the cost of finding it reduces to 1 (clearly
the absolute minimum when it is not found locally). However, distributing the references
in the network to n nodes will incur its own cost when the resource changes location. In
order to distribute n references to a giVen resource, n — 1 nodes have to be notified (the
node where the resource moves, already has a reference to it). In complete networks, this
requires that n —1 links be traversed. Thus the total cost per location operation would have
to account for the cost of distributing the references as well. A straightforward way to do
this is to divide the cost of distributing n references among all the location operations that
take place between two consecutive update operations (updates are done when the resource
migrates to a new node). Considering the rates of update and location requests, p and A,
respectively, the number of location operations between two consecutive update operations
would be given by Thus we would have to add (n — 1) to the cost of each location

operation, obtaining the following formula for the total cost per location operation,

T = —
n +

N
1+

A (5)

The following theorem shows that T = II(N) when Ar < < N.

Theorem 2 If it, < < N, then the number of references that minimizes T is nmin =

APITAT — 1, and the minimum total cost would be Train = 2(07 —

Proof: Straightforward by taking the derivative of the cost formula and equating it to
zero. 	 ■

In the above theorem we have considered only cases in which f, < µ< N, this is due
to the fact that for all other cases, the minimum of the cost formula is attained for values
of n less than 1 or greater than N —1. In those cases, clearly, the optimum strategy would
be to keep just one reference or broadcast a reference to the resource to all nodes in the
network respectively.

Theorem 3 The following properties hold,

a) If < 14., then nmin = 1 and Train =

b) If)17̀, > N, then nmin = N and Train =(N -1)y; < 1.

9

3.2 Extensions to General Networks

The results of the previous section are for complete networks. For arbitrary networks, we
can only provide a lower bound, that is, for a general G(V, E), Ti n(G) > T,nin(Kivi). For
non—complete networks it is not clear that all possible serial traversals have to be considered
with equal probability. The difficulty is due to the fact that the topology of the network
imposes restrictions on how to navigate in the network.

We can provide an upper bound on the cost of finding a resource using serial search by
giving a particular algorithm and deriving its cost. The cost of an optimal algorithm will
be smaller or equal to the cost of the above algorithm. In the following theorem we present
an algorithm which does not choose every traversal with the same probability, and whose
cost is bounded by a quantity which will be shown to be tight for general networks.

Theorem 4 Let G(V, E, c) be a distributed system (c is constant and equal to 1), then
there is an algorithm R for which J(R, Q, v) < N — m.

Proof: Given an arbitrary connected graph G(V, E), we can find a spanning tree for it,
which is rooted at v and has N — 1 edges. Let w = (v = vo, vu, v2(N_ 1) = v)
be a depth—first traversal of the tree, where v u is the last first visit in the traversal, and
(vu , . v2 (N... 1)) is the shortest path from vu to v. Based on the traversal w, we can traverse
the tree in two different ways: we can start at v o and proceed from v; to vi+1, or we can start
at v2(N_ 1) and proceed from vi to vi_ 1 . We can associate serial traversal .si = (vo, , v u)
with the first form of traversing the tree and si= (v2(N-1), • • • vd) with the second, where
vd is, similarly to vu , the last first visited node in the traversal w' = (v2 (N_ 1), vd, vo)
(i.e., the reversed traversal of w).

We consider the algorithm R, defined by Ru (si) = R„ (s2)= 1. The maximum number
of edges to be traversed is 2(N — 1) — 1. Let us assume that node vk is the first visited node
in 31 with a resource reference, then when following traversal s i , we will incur a cost of k.
On the other hand, if the subtree rooted at vk has m elements, the last time node vk will be
visited is Vk+2(m_1). The question we ask now is what is the maximum cost we could incur
if we followed the traversal 3 2 . If all references are inside the subtree rooted at vk, then the
first node containing a reference which would be found by following s2 is 14+20"1). If there
is a node, outside the tree, that node will be found before v ki_2 („i_ i) when following
32. Thus, if all the references are in the subtree rooted at vk, the search proceeding along
traversal 3 2 would reach its maximum cost. This cost would be 2(N — 1) — (k -I-2(m — 1)).
By our assumptions we have that m > n, the number of references to the resource. Thus
the above cost will reach a maximum when m = n. In other words, if A is the well—informed
set, and traversal 31 incurs the cost .//4 , the cost incurred by following traversal 32 will be
at most 2(N — 1) — (1/./ + 2(n — 1)). Thus

J(R,Q,v) = 0,,R„(31)-F CgRv(32)

-1
2(

E (H4 + H.A2)Q(A))
ACV,IAl=n

10

< 	E (114 -I- 2(N — 1) — (I14 4. 2(n — 1)))Q(A))
ACV,IAI=n

= (N — n)

■

Theorem 4 provides a tight upper bound for general networks when Q is unknown (i.e.,
it cannot be lowered without changing the assumptions of the theorem). For example, for
all path networks in which the search starts at one of the extremes and the set A contains
the n nodes farthest away from the starting node, the minimum cost will be N — n.

4 Optimal Resource Finding for Informed Searchers

In this section we investigate the problem of finding the optimal way to conduct a serial
search in a general network when the searcher knows the distribution Q. Since the cost
of resource finding will be high for uninformed searchers, nodes can reduce this cost by
maintaining information from which Q can be estimated. As stated earlier, such information
may include locality of resource access as well as usage and migration patterns.

A resource finding algorithm R will be optimal when J(R, Q, v) is minimal for each v.
It can be readily seen that for each v E V, there is a certain serial traversal (not necessarily
unique), s(v) E C(G,v), such that the algorithm R defined by Rv (s(v)) = 1 is an optimal
one. This will happen when s(v) is such that C?(0 is minimal for all .9 E C(G, v). In other
words, there is an optimal resource finding algorithm which is deterministic. For a given
node v, we will thus be interested in the problem of finding the complete serial traversal,
s E C(G, v) for which C? is minimal. We will say that such a serial traversal is optimal.

We will restrict the model to those networks in which n = 1. In that case Q({v})
becomes the probability that the resource resides at node v, and we will use the notation
II(v) instead. For this particular case it can be seen that the cost formula presented in (1)
reduces to the following expression.

Crsi = E i(sy)II(v) 	 (6)
vEV

We now consider the problem of finding an optimal serial traversal for various types of
networks when II is given. We present several results concerning the time complexity of the
optimal serial traversal problem by showing that the optimization problem (as it will be
presented later) is NP-hard for general graphs. This result was also shown by Trummel and
Weisinger [15] in a different formulation. We will show the additional result that holds for
complete graphs with non-unit edge costs. Notice that the NP-hardness results obtained for
our special case are also applicable to the general problem in which the number of references
is not fixed. We will first prove the following lemma which will be used in the NP-hardness
proofs.

11

Lemma 2 Let G(V, E, c) be a distributed system, and let II be the uniform distribution
on V — {v0}, II(v) = 11- for all v # vo, where N is the number of nodes in the system.
Let M = min eEE{c(e)}, then,

(i) If s = 	vN-1) is a complete traversal such that 	= M for all
i, 0 < i < N — 1, then 	= M4.1 and s is optimal.

(ii) Consider the graph G'(V, E'), where E' = {{v,v 1}1{v, 	E E and c({v, v'}) = M}.
Then a traversal s E C(G, vo) has cost CF = M if if and only ifs is a hamiltonian
path starting at vo in G', and such a traversal is optimal.

Proof: Since Call = Et,Ev i(soll(v) and 48,4) = Mi, C,11 = ENO 1 R = M. To show
that s is optimal, let s' = (vo = 43, ,4) be another complete serial traversal. If s' satisfies
the conditions of s then its cost will be the same as the cost of s. Otherwise, either 1 > N
or c({v:, v;+1 }) > M for some i. Then CP > MI-, which proves that s is optimal.

In part (ii), if CT = M a then s will have to satisfy the conditions of part (i), which
implies that s is optimal and it clearly is a hamiltonian path in G' (and in G itself). On the
other hand, if s is a hamiltonian path in G' and the cost of each link is M so CP is M I% .

■

4.1 General Networks

In general networks, the optimal traversal problem is NP-hard even in the simple case when
II is uniform and link costs are the same (c is constant).

Theorem 5 The problem of finding an optimal serial traversal starting at a particular node
of a distributed system G(V, E, c), with c the constant function and equal to 1, is NP—hard
(see (15D.

Proof: We will prove this result by reducing the hamiltonian path problem to our problem.
Let G(V, E),vo E V be an instance of the hamiltonian path problem. Then we construct the
following instance of the optimal traversal problem: G(V, E, c), v E V, II with c = 1 and II
as the uniform distribution on V — {v0}. Let G'(V, E') be such that E' = {{v, v'}I{v, v'} E
E and c({v, v'}) = 1}. We would have E' = E (all edges have the same cost) and thus,
G'(V, E') = G(V, E), and from part (ii) of lemma 2, G will have an optimal traversal with
cost LT if and only if G has a hamiltonian path. This, together with the fact that the
reduction presented can be clearly carried out in polynomial time completes the proof. ■

4.2 Complete Networks

In complete networks, if the link cost function is a constant (c(e) = M for all e E E), it can
be easily seen that an optimal traversal will visit nodes in decreasing order for the value of
the probability distribution II. Since nodes can be sorted according to decreasing order of
II(v) in O(NlogN) time, the optimal traversal can be found efficiently in complete networks

12

when the edge cost function c is a constant. If c is not constant, however, the problem
becomes NP-hard, even for the simple case in which the distribution II is uniform. Thus, a
small increase in the complexity of the problem renders it computationally intractable.

Theorem 6 The problem of finding the optimal serial traversal in a distributed system,
G(V, E, c), where G(V, E) = KN and c(e) = 1 or 2 for all e E E, and where II is the uniform
distribution, is NP—hard.

Proof: We will prove the result by reducing the hamiltonian path problem to our problem.
Let G(V, E), vo, where vo E V, be an instance of the hamiltonian path problem starting at
vo. We will transform it to the problem G'(V, E', c), vo, where G'(V, E') = KN, and c is
defined as

c(fv,v1)= 	
1 if {v, v'} E E
2 otherwise

The edges in G' with cost 1 correspond to edges in G. Thus, the set E" = {{w, w'} Ic({w, wi}) =
1} is exactly E and, thus, G"(V, E") = G(V, E). Using II as the uniform distribution on
V — {yo}, we know from part (ii) of lemma 2 that an optimal traversal in G' will have cost
14 if and only if G has a hamiltonian path. On the other hand the above reduction can
obviously be carried out in polynomial time, from which the theorem follows. 	■

4.3 Tree Networks

Figure 1: Example tree

It seems clear from the above that an algorithm to solve the optimal serial traversal
problem is computationally intractable for arbitrary graphs. It may, however, be possible
to identify a subclass of graphs for which there exists a more efficient algorithm. A heuristic
can then be used for general graphs by applying the algorithm to a subgraph in the class
which is efficiently solvable.

In this section, we will study the class of tree structures. We first consider trees in which
costs of all edges are the same and the distribution II is uniform. In this case, an optimal
traversal can be found efficiently because we will show that any depth—first traversal is
optimal. When the edge costs and II are not uniform, we present an algorithm which runs
in polynomial time for a certain class of trees with a restricted number of what we call
frontiers (to be defined later). Examples of such subclasses of trees are line graphs and

13

star graphs. Furthermore, we will show how to use the algorithm to solve the problem in
a bidirectional ring network. The algorithm presented in this section to find an optimal
traversal in trees is based on dynamic programming.

We designate the node where search starts in a tree network as the root of the tree
which will be represented by the letter r. We will assume node 1 to be the root in the tree
in figure 1 in our examples. We first define some concepts that will be used in the proofs
for tree networks.

Let G(V, E) be a graph, and let s i and 32 be two possibly non-complete serial traversals,
s1 = (vo , 	v„,) and 32 = (u0,..., up). If vn, = uo then we say that .92 is composable with
si and we will define their composition, si • 32 = (v o , 	v„, = uo , ..., up), which is the
sequence resulting from appending 32 to si, without repeating uo. If si • s 2 is also a serial
traversal then we say that 32 is compatible with si . An example of two composable serial
traversals in the tree of figure 1 is the following: s i = (1,2,1,3) 32 = (3, 6,3,1,2,4), where
the composition s i • 32 = (1, 2,1,3,6,3,1,2,4). Furthermore, 32 is compatible with si since
si • s2 is also a serial traversal. As an example of composable but not compatible serial
traversals, consider traversals s i and 32 in figure 1 where si = (1,2,1,3) and 32 = (3,1,2).
The composition s = si • s2 = (1,2,1,3,1,2) is not a serial traversal because the last node
of s is not a first visit and hence 32 is not compatible with s i .

In a tree, there is a unique simple path between any pair of nodes. We will denote by
L um the unique simple path joining nodes u and v. The following lemma shows that any
serial traversal (not necessarily complete) is the composition of a serial subtraversal and a
simple path.

Lemma 3 Let s = (vo , ... , vi = v) such that I > 1. There is a serial traversal s' such that
s = s' • L„,,„ and V(s') = V(s) — {v}.

Proof: s can be written as follows, s = (vo, , 	, v„„. 	= v), where v„, is a first
visit and for all i such that m < i < 1, vi is not a first visit. Let s' = (vo, vm). s' is also
a serial traversal because v„, is a first visit and it must satisfy condition (b) of definition 1
because otherwise s will not be a serial traversal. On the other hand, from condition (b)
of definition 1, (vm , v) is a shortest path between v„, and v, that is, in our case it is
the simple path L„„,,„. It is also clear from the above that V(s') = V(s) — {v}, thus letting

= v,„ we have proved the lemma. 	 ■

4.3.1 Tree Networks with Uniform Cost and Probability Distribution

In the special case when the distribution is uniform and all the edge costs in the tree network
are equal, it is possible to give an efficient algorithm to find the optimal serial traversal.
In fact, traversals producing the minimal cost will be depth-first traversals, which first-
visit the nodes in an order that is a possible search order for depth-first search. The main
property of a depth-first traversal is that once the traversal leaves a subtree rooted at v, it
never again visits node v.

14

When the root is fixed in a tree, we can associate each link in it with one of its nodes
(with the descendant node). Ifs is a depth-first traversal of the tree ending at node u
(complete traversals are assumed unless indicated otherwise), then the following will be
true of s

• The link leading to a node v not in L r ,„ will be traversed exactly twice since the
traversal has to get to v and then out of v to reach u. There are (N - 1) - i(L uo.)
such links since s visits all nodes.

• The link leading to a node in L T ,u is traversed exactly once (to get to u). There are
i(L u,r) such links.

Thus the length of s, I(s), would satisfy

1(s) = 2[(N - 1) - i(Lr,u)] + 1(Lr,u) = 2(N - 1) - i(Lr,u) 	 (7)

If s' is a complete serial traversal which may not visit the nodes in a depth-first search
order and it also ends at node u of tree T then the link leading to a node v not in L r,u will
be traversed at least twice (the traversal has to get to v and then out of v to reach u but
its visit order may require it to pass through v more times). Therefore,

£(.5') > 2[(N - 1) -1(L,., u)]+ i(L r,u) = 2(N - -
	

(8)

Thus, depth-first traversals have minimum length once the ending node is fixed.

Lemma 4 If T is a tree with c(e) = 1 for all e, and s and s' are two depth-first traversals
of T then C,11 =

Proof: Since II is assumed to be uniform, CP = Eve, 44)11(v) = NI I Eve, 44).
Similarly, CI) = NIT EvEv i(sc). Therefore, we only need to prove that E vEv. i(su) =

EvE V /WO' We denote EvEv i(s„) by a, and hence need to prove that a, = cre. We will
prove it by induction on the size of the tree. For N = 1 there is only one tree and only one
traversal, thus the property holds. Let's now assume the property holds for all trees with
cardinality up to N - 1 for N > 1. We will now prove that it holds for N. Let T be a
tree with N nodes, rooted at r. Let ri to rk be the descendant nodes of r. Let Ti denote
the subtree rooted at ri. Finally, let Ni denote the size of subtree Ti. Let us consider a
depth-first traversal s of tree T. Such traversal will visit each one of the above trees in
turn. Due to the fact that s is a depth-first traversal, once it starts traversing tree Ti it will
continue with Ti until it has visited all its nodes. Without loss of generality, let's assume
that s traverses the above subtrees in the order given by the subindices, that is it first visits
T1, then T2 and so on, leaving Tk last. We can decompose s as follows:

s = (r, r1) • 81 Lu, 	• (r1, r, r2) • 82 • Lu2 ,T2 • (rz, r, r3) • . sk_1 • L uk_, ,rk _i • (rk-1, rk) • Sk

where each si is a depth-first traversal of subtree T1 ending at /Li. Let v E V(Ti). Then we
can write s„ as

s, = (r,ri) • si • 	• ...(ri-i,r, ri)(.9i)u

15

Thus i(s„) would be given by

= 1+ 1(80 i(L ui ,„)-F 2 + ...-F i(si_i) 	 + 2+ i((si)v)

Notice that in the above si are depth—first traversals, thus using 7 we can write

i(sv) = 1 + 2(Ni — 1) + 2 ÷ 	2(Ni_i — 1) + 2 + E((si) v)

which would finally result in

i(sv) = 1 + 2 E Ni £((si) v)
.i=1

Thus we can write a, as

as = 	EsEv(si)(1 -F. 2 Eiifi Ni £((si)„)
= 	 Ni a,;)

which can be rewritten as

k k •

a, = N — 1 + (N — 1) 2 — E (No2 + E asi
i=1

Following an identical argument, we can show that

k 	k

a„, = N — 1+ (N — 1)2 — E (No2 + E crei
1=1 	1=1

By the induction hypothesis, a„ ; = crsi i , thus a, = as, and CP = CT follows.

■

Theorem 'T If II is a uniform distribution over V — {r} and c(e) = 1 for all e, then any
depth—first serial traversal of the tree is optimal.

Proof: From lemma 4 we know that all depth—first serial traversals have the same cost.
We only have to prove that the cost of a serial traversal is greater than or equal to the cost
of a depth—first serial traversal. The cost of a serial traversal would be given by

Cn = E i(so 	1 n(v) = 	E Aso
-

vEV 	 vEV

Again, let us denote E vev i(st,) by a,. Let CT be the cost of any depth—first serial traversal
for tree T and let aT be the value of EvEv i(s„) for any such traversal s (since the cost
is same, so is the value of a). We will prove that for an arbitrary serial traversal s' of T,

> CT by showing that a„, > aT. We will proceed by using induction. The basis is
trivial, a depth—first traversal is minimal for a tree with just one node. Assume that it is
still true for all trees with size less than or equal to N —1 (N > 1), we will now prove it for

16

N. Let s be an arbitrary complete serial traversal of T ending at u. It is easy to see that
(see figure 2)

S = Si • Luaus • Lu2,u

where u1 is also a leaf node of T and al is a serial traversal ending at u i , and where
V(L u,,u,) C V(si), such that if v E V(Lu2 ,u) — {u2} then v is a first visit in s. It is easy to
see that all nodes v in Lu2,u (except possibly u2) have at most one direct descendant. Thus
u1 is the last leaf node which is a first visit in s besides u. Let T1 be the tree resulting from
T after the removal of V(L u2 ,u) — {u2}. Then al is a complete serial traversal of T1. We
would thus have

as = 	 E 	i(.90
vEv(L.2,0-{u2}
t(Lu2 ,u) _i

= aal + E (i(s)—
i=0

Let s' be a depth—first serial traversal ending at u. Then we can also write

"1 ."u3,u2 Lu2,U

Let T2 be the subtree rooted at u2 formed by all descendants of u2 except V(Lu 2 ,u) — {u2 }.
Then u3 would be a leaf node of T2 and .91 would also be a depth-first traversal of T1. Thus,

i(Lu2 ,n)-1

Cre = cral 	> 	0
1=0

By the induction hypothesis a„ > agt, and from 7 and 8, A(s) > t(s'). Thus we get
as > cre = aT, which completes the proof. 	 ■

Notice that although in the above lemmas and in the theorem we have assumed that
c(e) = 1, the results also hold for any other constant value for c(e).

4.3.2 General Tree Networks

In a general tree network, the order in which a serial traversal visits the nodes depends on
the link costs and the. distribution II. A serial traversal starts at the root and expands the
search by visiting nodes until the resource is found. At any point, the set of nodes visited'
by the traversal will contain the root node and it is easy to see that the subgraph defined
by the visited nodes will be connected. In fact, this subgraph will be a subtree of the tree
network. The next definition formalizes some properties of these subtrees which are used
in the development of the algorithm which finds an optimal serial traversal.

Definition 2 Given a rooted tree G(V, E) with root r E V, we say that B C V is a border
of G if for all v,w E B, v V(L ro„). A frontier of G(V,E) is an ordered pair f = (B,v)
where B is a border and v E B.

17

U3

Figure 2: Decomposition of a serial traversal in a tree

In figure 1, the sets {2}, {2, 6} and {1} are valid examples of borders. The set {2, 4}
however is not a border because 2 E V(L1,4). ({2, 6), 2) is an example of a frontier in this
tree. In general, if G(V, E) is tree with root r, the set of leaf nodes of any subtree of G(V, E)
which is also rooted at r will define a border. Similarly, a border defines a unique subtree
of G(V, E) which is rooted at r. This subtree consists of the nodes that are on the path
from r to a node in the border. If B is a border and V(B) denotes the set of nodes in the
subtree defined by B then V(B) = Iviv E V(L r,,„) and w E Bl.

Since the nodes visited by a serial traversal that starts at r (not necessarily a complete
traversal) also induce a subtree of G(V, E) rooted at r, we can associate a border with a
serial traversal. If s = (vo ,..., in) is a serial traversal (s may not be complete) then vi is a
first visit, which means there will be no i # 1 such that vt E V(L,.,„;) and hence vi belongs
to the border of s. If we denote by B(s) the border of s (note V(B(s)) = V(s)), we can
associate a frontier with s, as captured in the following definition.

Definition 3 We define the following,

• Given a serial traversal starting at the root, s = (v o , 	vi), we define the frontier
associated with the traversal by F(s) = (B(s),

• Given a frontier, f, we define S(f) as the set of serial traversals whose frontier is f;
i.e., S(f) = Isis starts at r and F(s) = fl.

• We also define 0(f, II) = {s E S(f)I= mine Es(f) C,111. Thus, 0(1,11) contains
minimum cost serial traversals for a given frontier f.

18

• Finally, we define the optimal cost,11f, as ,1If= CI, 1 for s E 0(f,11).

For instance, in figure 1, traversals s i = (1,2, 1,3,6) and 32 = (1,3,1,2,1,3,6) are
such that F(si) = F(s2) = f = ({2,6}, 6). Furthermore, S(f) = {3 1 ,32 } and, assuming
a uniform II and unit costs for the links, using (6) we get Gig = 2,4 and C82 = 34, thus

0(f, 11) = {si }.

If s E S(f) for some f = (B, v), B 	{r}, then, by lemma 3, s = s' • L.„,,„ with
V(s') = V(s) — {v} = V(B) — {v}. Since F(1) = f' = (B', v') where B' is the border of s',
V(B') = V(s') = V(s) — {v}. When s' is extended by composing L.„,,„ with it to form s,
the increase in the average cost due to this extension only depends on the frontier f' and
not on s'. To show this, we first need to modify the expression for Cr: in (6) when a serial
traversal may not be complete. In the case when s may not be complete, the cost incurred
when the resource is not found at nodes in V(s) will be i(s). The probability of this is
(1 — EuEv(„) II(u)) and hence CP can be written as

CP = E €(.9.)11(u)+/(s)(1 — E II(u))
u€V(al 	 uEV (a)

Since s = s' • L„,,„ and V(s') = V(s) — {v}, we have

C1,1 = E t(sitz)11(u)+,e(soll(v)+ i(s)(1 — II(v) — E 11(u))
uell(e) 	 uEV(e)

It can be easily derived from the above and the facts that V(s') = V(B') and t(s) = t(s,„) =

Cn = 	 E II(u))
uEv (w)

Since the second term in the expression for the cost of s does not depend on the particular
s' selected, but only on the frontier f', the increase in the average cost only depends on
frontier f' when a serial traversal is extended as given in the lemma. This allows us to
establish the following result.

Theorem 8 Let f = (B,v), and let s E 0(1, II) then there is an f' = (B', v') and s' E
0(f', II), such that s = s' • L„ , ,„ and V(s') = V(s) — {v}.

Proof: Let s' be constructed from s as in the proof of lemma 3. Since s' ends at v',
= (B', v') where B' is the border of s'. We will prove that such s' belongs to 0(f', II)

if s E 0(1,11). Assume to the contrary that s' O(f', II), then there is an s" E 0(fl , II)
such that CIL < Cr.). Let us now consider the following traversal s" = s" • L(v', v). By (9)
we would have

Cr)„ = 	 E 11(w)) < 	 — E 11(w)) = Cn
weV(B1 	 toeV(W)

(9)

19

But the above cannot be true because s is assumed to be optimal. Thus such an s" cannot
exist and s' itself has to be optimal. 	 ■

Using this theorem, we can now give an algorithm based on dynamic programming to
find an optimal serial traversal of a tree. It starts with frontiers for which the set of nodes
in subtrees defined by their borders has cardinality 1, until it gets to those with cardinality
N. The algorithm also finds an optimal serial traversal for each frontier of the tree using
the results of theorem 8. The frontier with minimal cost among those with cardinality N
is selected and the serial traversal corresponding to it is the optimal.

In the algorithm to follow, Fi stands for the set of frontiers for which the cardinality
of V (B) is i where B is the border of a frontier in Fi, and S f will represent an optimal
traversal for frontier f, i.e., Si E0(1,11).

Algorithm 1

Precompute i(L,„,„,) for all pairs {v, v'};
f := ({r},r) ; (* note F1 = {f} *)
R.(:= 0;
S 	(r);
for i := 2 to N do

Find the set F1 , based on F1_1;
for each f E F1 do

(B, v) := f;
Let D(B, v) be the subset of F1_ 1 whose frontiers

f' = (B', v') are such that V(B') = V(B) — {v};
ft f 	minfiED(B,v0P i(L„,, v)(1 — II(V(//1)))};
(B,„,v„,):= fm ; (* the frontier yielding the above minimum. *)

:= Sim
endfor

endfor
return(S/), where f is a frontier in FN

with minimum Of.

The correctness of the algorithm follows from theorem 8, which guarantees that to find
an optimal traversal f = (B, v), only the frontiers f' = (B', v'), with V(B') = V(B) — {v}
have to be inspected. The above algorithm represents a general procedure to solve the
problem in trees. However, its execution time in the general case will be exponential in
the number of nodes since the number of frontiers could be exponential. For particular
subclasses of trees, the algorithm can be specialized to increase its efficiency. For instance,
when the only nodes with non—zero probability are the leaves of the tree, the only frontiers
that have to be considered are those whose border contains only leaf nodes. Similarly, in
a star network with b branches and maximum branch length of h, the maximum number
of frontiers will be bounded by (h 1)" • b. Thus for constant b the algorithm will run

20

in polynomial time. A path graph is a special case of a star with at most two branches.
The borders of a path graph consist of at most two nodes, each at a different branch from
the root. Thus the total number of frontiers will , be bounded by N 2 , making algorithm 1
polynomial. Although a bidirectional ring is not a tree, the following lemma shows how
algorithm 1 can be adapted for rings.

Lemma 5 Given a bidirectional ring network G(V, E, c) and a complete serial traversal s
for the ring, there is one link (edge) in E which is not traversed by s.

Proof: Let s = (v0,..., vi_i, vi). Each node in a ring network is attached to two different
links. hi particular, vi is attached to two links, one of them is {14_ 1 , v/}. If s traverses all
the links in the ring, then it will traverse the other link attached to vi, which means that
there is an i such that 0 < i < 1 and {vi—i, vi} is the other link attached to vl. But this
means that vi E 	which implies that vi is not a first visit, thus contradicting the
hypothesis that s is a serial traversal. 	 ■

Thus, if s is an optimal serial traversal and e is one of the unused edges, s would also
be an optimal serial traversal for the line graph obtained by eliminating e from E. Thus
the previous algorithm can be modified in the following way:

Algorithm 2

for each e E E consider G,(V, E — {e}, c)
Find an optimal traversal se for Ge applying algorithm 1;

endfor
Let s = se such that Call = minei€E C 1,11 ;
return s

It is possible to make use of algorithm 1 in a general network as a heuristic. For example,
a particular path in a network could be selected as the set of name servers, holding references
to resources in the network. The algorithm presented here could be used to find a resource
reference. As a more concrete example, let us consider bidirectional manhattan networks
[16,17]. In such networks, nodes could transmit references for their resources to all the nodes
in their column (row). To locate a resource a node would then apply algorithm 2 to its row
(column). This scheme to distribute the references to resources in a Manhattan network is
similar to that presented by Mullender and Vitanyi in [3]. Thus, it is possible to apply the
results in this section to construct heuristics for graphs other than "polynomial-frontier"
trees.

4.3.3 Numerical Examples

We now show how algorithm 1 can be used to find optimal serial traversals in tree net-
works. Let us consider the tree in figure 1 and assume that the search starts at node 1.

21

We will use the notation II to represent the vector II = (142), ...,I1(8)). When II is uni-
form we get the optimal traversal presented in figure 3-(a). We notice that the optimal
traversal is a depth-first serial traversal of the tree as was expected from theorem 7. When
II = (0.01, 0.01,0.01,0.2425,0.2425,0.2425,0.2425), that is, the leaf nodes have a higher
probability than the internal nodes, the optimal traversal presented in figure 3-(b) goes
first to the subtree containing the largest number of leaf nodes, then proceeding with the
other subtree. For the same probability distribution, when we make the costs of the edges
{4, 7) and {4, 8) equal to 2, we get the traversal in figure 3-(c), which decides to leave
the traversal of the heavier weights until the end. Finally, for the probability distribution
II = (0.5, 0.4, 0.002, 0.08, 0.014, 0.002,0.002), we get the optimal traversal in figure 3-(d).
This traversal visits higher probability nodes first.

If we consider a ring consisting of 8 nodes, and we start the search from node 1, when
the probability distribution is uniform, the optimal traversal, as shown in figure 4-(a),
traverses the ring in one direction without turning back. When the probability is 0.3 for
both neighbors of node 1 (nodes 2 and 8), and 0.08 for the other nodes, the optimal traversal,
as shown in figure 4-(b), first visits the two highest probability nodes and then proceeds
with the rest of them.

5 Concluding Remarks

The average cost incurred by a searcher node which has no knowledge about the location
of the resource is high in large networks. In this situation, the cost of serial search is
SI(riAN) and this bound has also been shown to hold for various other methods (two of
the forwarding address protocols [5] which are also serial in nature as well as the scheme in
[3]). The conclusion that we draw is that it is necessary to possess more knowledge about
the location of a resource to make the process of finding it sufficiently efficient.

We have studied the problem of finding an optimal serial traversal when the searcher
has the distribution for the well-informed set at request time. In particular we have looked
at the case when the well-informed set is a singleton. The results show that such a problem
is NP-hard even for complete graphs in which all links do not have the same cost (in fact,
when there are only two different values for the link costs). Thus the existence of an efficient
algorithm to find an optimal serial traversal is very unlikely. In the last sections we have
shown that the problem can be solved in polynomial time for some classes of trees, and
based on it we have shown a polynomial algorithm for ring networks.

References

[:L] A. D. Birrel, R. Levin, R. M. Needham, and M. D. Schroeder, "Grapevine: an exercise
in distributed computing," Communications of the ACM, vol. 25, pp. 260-274, April
1982.

22

[2] D. Terry, "Caching hints in distributed systems," IEEE Transactions on Software En-
gineering, vol. SE-13, pp. 48-54, January 1987.

[3] S. J. Mullender and P. M. Vitany, "Distributed match-making," Algorithmica, no. 3,
pp. 367-391,1988.

[4] R. Fowler, "The complexity of using forwarding addresses for decentralized object find-
ing," in Fifth ACM Symposium on the Principles of Distributed Computing, (Calgary,
Alberta, Canada), pp. 108-120, ACM, August 11-13 1986.

[5] R. Fowler, "Decentralized object finding using forwarding addresses," PhD Thesis 85-
12-1, University of Washington, December 1985.

[6] B. 0. Koopman, Search and Screening. Pergamon Press, 1980.

[7] L. D. Stone, Theory of Optimal Search. Vol. 118 of Mathematics in Science and Engi-
neering, Academic Press, 1975.

[8] L. D. Stone and J. A. Stanshine, "Optimal search using uninterrupted contact investi-
gation," SIAM Journal of Applied Mathematics, vol. 20, pp. 241-263, March 1971.

[9] Y. Kan, "Optimal Search of a Moving Target," Operations Research, vol. 25, pp. 864-
870, September-October 1977.

[10] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriu, "The complexity
of searching a graph," J. ACM, vol. 35, pp. 18-44, Jan. 1988.

[11] T. D. Parsons, "Pursuit-evasion in a graph," in Theory and Applications of Graphs,
(Y. Alavi and D. Lick, eds.), pp. 426-441, Berlin: Springer-Verlag, 1976.

[12] T. D. Parsons, "The search number of a connected graph," in Proceedings of the 9th
South Eastern Conference on Combinatorics, Graph Theory and Computing, (Win-
nipeg, Canada), pp. 549-554, Utilitas Mathematica, 1978.

[13] M. Ahamad, M. Ammar, J. Bernabeu-Auban, and Y. Khalidi, "Using Multicast Com-
munication to Locate Resources in a LAN-Based Distributed System," in Proceedings
of the 13th Conference on Local Computer Networks, IEEE, October 1988.

[14] J. Bernabeu, M. Ammar, and M. Ahamad, "Optimal selection of multicast groups for
resource location in a distributed system," in Proceedings of IEEE INFOCOM, IEEE,
1989.

[15] K. Trummel and J. Weisinger, "The complexity of the optimal searcher path problem,"
Operations Research, vol. 34, pp. 324-327, March-April 1986.

[16] N. M. Maxemchuck, "Routing in the manhattan street network," IEEE Transactions
on Communications, vol. 35, pp. 503-512, May 1987.

[17] F. Borgonovo and E. Cadorin, "Routing in the bidirectional manhattan network," in
Data Communications Conference, (Rio de Janeiro), 1987.

23

ir .

	

/ 	1 	-- / 	. 	 , 	1
 . 	 / .

	

/ 	 /

	

/
/

2 	3 \ 	 / 2 40 ,
, 	 41 	

1 	
/ 	

.
N.. 4 .

/ 	 1
/
/

4 	 5 I
it, A 	

6 N
1 	 / 	e • . „) , 	 / 	.

	

. ‘ 	„
,

,

7 	 ilk 8

4) \ **-
\

0 \
/ ■ • / 	 . • i \

. -

(a)

Uniform II
c(e) = 1 for all e E E.

•

(b)

II(v) = 0.01, for v E {2,3,4}
II(v) = 0.2425 for v E {5, 6, 7, 8}
c(e) = 1 for all e E E.

e
5

.. 	 / / / 	 •••
-.. -..
	 / / 	 1 	N /-.. 	

/ / 	
N., 	

N

6 NI

	

/
k? r/2 4- 	"

 4 	
,*)...) I

/ 	. 	.

.
■—.

/ 	le 	.

.

/

.4\
01 4\

■
 6

 r— .
. 	.

3 i

.... 	st

(c)
	

(d)

= 0.01, for v E {2,3,4}
	

II = (0.5,0.4,0.002,0.08,0.014,0.002,0.002)
= 0.2425 for v E {5,6,7,8}

	
c(e) = 1 for all e E E

7}) = c({4,8}) = 2
1= 1 for all other e E E

Figure 3: Example of optimal traversals in tree networks

3

24

AC41 	7; ac: 7-7) *0-1,1 ()Ai.

Multi-Dimensional Voting*

Mustaque Ahamadt
Mostafa H. Ammart

Shun Yan Cheungt

t College of Computing

Georgia Institute of Technology, Atlanta, GA 30332

tDepartment of Mathematics and Computer Science
Emory University, Atlanta, GA 30322

Abstract

We introduce a new concept, multi -dimensional voting, in which the vote and quo-
rum assignments are k-dimensional vectors of non-negative integers and each dimension
is independent of the others. Multi-dimensional voting is more powerful than traditional
weighted voting because it is equivalent to the general method for achieving synchro-
nization in distributed systems which is based on sets of groups of nodes (quorum sets).
We describe an efficient algorithm for finding a multi-dimensional vote assignment for
any given quorum set and show examples of its use. We demonstrate the versatility
of multi-dimensional voting by using it to implement mutual exclusion in fault-tolerant
distributed systems; and protocols for synchronizing access to fully and partially repli-
cated data. These protocols cannot be implemented by traditional weighted voting.
Also, the protocols based on multi-dimensional , voting are easier to implement and/or
provide greater flexibility than existing protocols for the same purpose. Finally, we
present a generalization of the multi-dimensional voting scheme, called nested multi-
dimensional voting, that can facilitate implementation of replica control protocols that
use structured quorum sets.

This work was supported in part by NSF grants NCR-8604850 and CCR-8806358, and by the University
Research Committee of Emory University.

1 Introduction

Distributed systems offer many advantages, including resource sharing and fault-tolerance.
The latter can be achieved by replicating a resource at nodes with independent failure
modes. Replication can also improve performance when load is shared among the nodes
that have instances of a resource. In many applications, users need to synchronize ac-
cess to shared resources. For example, when data is replicated to improve its availability,
updating the data requires mutually exclusive access. This is necessary for maintaining
data consistency. The synchronization technique should work in the presence of node and
communication failures.

Quorum consensus is a general class of synchronization protocols for distributed systems.
An operation proceeds to completion only if it can obtain permission from nodes that
constitute a quorum group [3]. Quorum groups used by conflicting operations have non-
empty intersections to guarantee proper synchronization. The collection of quorum groups

used by an operation is known as a quorum set. When each group intersects with every
other group in a quorum set, it is called a coterie [4, 5] and it can be used to achieve mutual
exclusion in distributed systems. The general method to define quorum sets is by listing
them explicitly. A well-known method for defining quorum sets is weighted voting [6] which
is a generalization of the majority consensus method [7]. In voting, each node is assigned a
number of votes and each operation must obtain a pre-defined quorum of votes before it is
allowed to execute to completion. Voting can be used for achieving mutual exclusion and
synchronizing reading and writing of replicated data. In mutual exclusion, each operation
must obtain a majority of the votes assigned before it can proceed. In reading and writing,
the read and write quorums must be such that theii sum is more than the total number
of votes and when version numbers are used to identify the most recent update, the write
quorum should be at least a majority of all votes.

Implementing quorum sets in general requires that each node maintain a list of member
groups. A decision on whether a quorum has been collected is achieved through a search
of that list. In general, to determine if a group of nodes that responded to a request is a
quorum group is time consuming because the size of the quorum set can be exponential.
Weighted voting, on the other hand, is easier to implement as each node has to maintain its
own vote assignment. An operation can proceed if the number of votes collected is at least

1

the required quorum. Also, addition and removal of nodes may cause the quorum sets to be
purged and replaced by new ones but will only require a change in the quorum assignment
when voting is used.

It was shown in [5] that the method of quorum sets is more general than voting by
showing quorum sets which cannot be obtained from any vote assignment. Quorum sets
that are not obtained from vote assignments can be used to achieve better performance by
reducing the number of messages. The quorum consensus methods proposed in [8], [9], [10]
and [11] organize the nodes in a logical structure. The quorum groups that are derived from
such structures can be smaller than those defined by voting and have lower communication
cost. These structured quorum sets are usually not defined by vote assignments.

We present in this work a new unifying voting-based method that is as powerful as the
method of quorum sets and has the flexibility and ease of implementation of voting. In
multi-dimensional (MD) voting, the vote assignment to each node and the quorums are
k-dimensional vectors of non-negative integers. Each dimension of the vote and quorum
assignment is similar to voting and the quorum requirements in different dimensions can be
combined in a number of ways. This makes multi-dimensional voting more powerful than
standard voting. We will discuss a number of applications which can be implemented with
multi-dimensional voting but not with standard voting.

Methods based on coteries or voting when the quorum or vote assignment does not
change are static because the groups of nodes that can allow an operation to complete do
not change. Thus, systems that use a static method do not attempt to adapt to continuously
varying system state. Dynamic protocols in contrast react to changes in the state of the
system and adapt the synchronization procedure accordingly. The system can use the state
information to determine the best quorum set or to reconfigure itself in anticipation of future
failures. Several dynamic quorum consensus methods have been proposed (see for example
[12], [13], [14] and [15]). These protocols can use different quorum sets at different times
and the various pairs of read and write quorum sets used must satisfy additional constraints
to guarantee data consistency. In this paper we focus on the description of MD-voting and
its use in static quorum consensus protocols. A dynamic MD-voting method similar to the
quorum inflation/deflation technique in [13] has been presented in [16].

The paper is organized as follows. In Section 2, we introduce the concept of a multi-

2

dimensional vote assignment. In Section 3, we show that every quorum set can be repre-
sented by a multi-dimensional vote assignment and present an efficient algorithm for finding
one. Sections 4 and 5 discuss the use of multi-dimensional voting for mutual exclusion and
reading and writing of replicated data, respectively. In Section 6 we consider the use of
MD-voting for maintaining the consistency of partially replicated data where individual
nodes may not contain the entire replica. Such a scheme is described in [17]. By applying
the MD-voting paradigm to the problem, we develop a more flexible scheme that provides
higher availability in some instances. Finally, we present in Section 7, a generalization called
Nested MD-voting and provide an example of its use. We conclude the paper in Section 8.

2 Multi-Dimensional Voting

We consider a distributed system of N nodes which are numbered as 1, 2, ..., N. In
multi-dimensional (MD) voting, the vote value assigned to a node and the quorum are
k-dimensional vectors of non-negative integers. Formally, the MD vote assignment VN,k
is a Nxk matrix where uid represents the vote assignment to node i in the jth dimension
and vij > 0 for i = 1, 2, ..., N and j = 1, 2, ..., k. The votes assigned in the various
dimensions are independent of each other. The quorum assignment x i; = q2, gk) is
a k-dimensional integer vector, where q1 > 0, for j = 1, 2, ...,k. In addition, a number 1,

1 < l < k, is defined which is the number of dimensions of vote assignments for which the
quorum must be satisfied. Thus, there are two levels of requirements: vote and dimension.
At the vote level, the number of votes received for a dimension must be greater than or

equal to the quorum requirement in that dimension. At the dimension level, the number
of dimensions for which a quorum is collected must be greater than or equal to 1. As we
show in the next section, this extra level of flexibility makes MD-voting more powerful than
standard voting. We denote MD-voting with quorum requirement in £ of k dimensions
as MD(/, k)-voting and the term SD-voting (single dimensional voting) will refer to the
standard voting method described in [6]. In fact, MD(1,1)-voting is the same as SD-voting.

Synchronization methods developed from MD-voting operate in a similar manner as
SD-voting. Each node stores its vote which consists of k integers and each operation has a
quorum requirement for each dimension and the value of /. An operation requests permission
from the nodes by sending a voting request to them. When a node receives a vote request, it

3

votes "reject" if it wants to disallow the operation to proceed (e.g., due to locking conflict)
or replies with its vote in all dimensions. Each operation maintains k independent variables
which accumulate the votes received in each dimension. When a response containing a
vote is received, the operation adds the vote in each dimension to the appropriate variable
and when the sums in at least / variables are greater than or equal to the quorum in the
corresponding dimensions, the operation can proceed.

Figure 1 shows an example of how MD-voting works in a system of six nodes. Let us
assume that in response to a request, the votes of nodes.1, 3 and 4 are received. These vec-
tors are added up and the vector sum is then compared with the vector quorum assignment.
The compare operation is performed per dimension and the results zero and one represent
quorum deficiency and sufficiency, respectively. In this case, the quorum requirement is sat-
isfied only in the fourth dimension. If MD(1,4)-voting is used, then an operation collecting
the votes shown in Figure 1 will be allowed to proceed. However, the operation cannot be
executed when MD(/, 4)-voting, for = 2, 3, and 4, is used.

Nodes responding to 	 Multi-dimetuional
a quorum collection request 	time assignment

Node I 12 0

3 1

• 	 Node 3 0 1

Node 4 1 0

1 0

I 0 1

2 2 2 0 2 	2

0 0 Votes received

0 2 --•• 0 1 0 	2

1 1 --•• 1 0 1 	1

1 1

2 0

3 1 3 	S sum of vote: collected

Compare 5 3 S 	5 Quorum vector

I 	0 0 0 	1'

Number of dimensions satisfied is one

Figure 1: Voting procedure in multi-dimensional voting

One way to implement MD-voting is for each node to store the k integers representing
its vote and quorum assignment. In response to a voting request, a node sends the integers
representing the vote assignment of the sending node. An alternative implementation is to

4

have all nodes store the quorum vector and the vote assignment matrix. Voting messages
in this case contain only the identifier of the sending node; thus trading off storage with
message length. When a large number of dimensions is used, the voting messages can be

long or significant storage space may be required. In the next section, we will present a
method for finding MD vote and quorum assignments which tries to reduce the number of
dimensions.

3 Finding a Multi-Dimensional Vote Assignment

3.1 Definitions and Notation

Let U = {1,2, ..., N} be the universe set of all nodes and we will refer to sets of nodes
as groups. A quorum set Q is a set of groups of nodes in U and these groups have the
minimality property [3]:

YG,HEQ: GZH

The synchronization requirements define what groups are included in the set. For example,
if mutual exclusion is desired, this set is a coterie and any two of its members must have a
non-empty intersection (see Section 4).

A number of quorum sets can be represented by SD-voting. Each node i in SD-voting is
assigned vi votes (1 < i < N) where vi is a non-negative integer and a quorum q is defined,
such that nodes in each group of the set have at least q votes. Specifically, with the vote
assignment v = v2 , ..., vN), the members of the set defined by (v, q) are tight groups of
nodes which have at least q votes. A group G is tight with respect to quorum q if,

• EgEG Vg q and,

• any proper subset of G has less than q votes

The set of tight groups Q defined by (jz, q) is,

Q = {G I G is a tight group with respect to quorum q}

and this set has the minimality property since if there would exist G, H E Q such that
G C H, then H would not be tight. Hence, a vote and a quorum assignment (v, q) defines

a unique quorum set. For instance, the vote assignment (1,1,1) to a three node system with
q = 2 defines the quorum set {{1,2},{1,3},{2,3}}. The same set can be represented by the
vote assignment (2,2,3) and q = 4. In fact, if a quorum set is SD-vote assignable, there is
an infinite number of vote and quorum assignments that may be used to represent it.

In a similar manner, an MD(t, k) vote and quorum assignment also defines a unique quo-
rum set. A group G is a tight group in MD(t, k)-voting with respect to quorum requirement
q if

• EgeG vgd,> q11 for at least t distinct dimensions j 1 ,j2,...,ji and,

• any proper subset of G satisfies quorum requirements in strictly less than t dimensions

The set (21,k(VNA, i k) of tight groups represented by the MD(t, k) vote and quorum assign-
ment (VN,k,g.k) is,

Qt,k(VN,k, Ik) = {G I G is a tight group in MD(t, k)-voting with respect to i k }

Similar to SD-voting, the same set of tight groups can be represented by different MD(t, k)

vote and quorum assignments. The set of tight groups for the special cases where t = 1
(any dimension) and t = k (all dimensions) can be given as follows,

Qi,k(VN,k, 4k) = {G I G is a tight group such that: 3j : 1 < j < k : 	vg ,3 > q1}
gEG

Qk,k(VN,k,gk) = {G I G is a tight group such that: Vj : 1 < j < k E vg, > qj}
gEG

In MD(1,k)-voting, an operation can proceed if quorum is available in any dimension and
in MD(k, k)-voting, quorum requirements in all dimensions must be satisfied. For MD(1,k)-
voting, we can also write,

k 	 k

Q 1,k(VN,k 2A) = {GIGEUCJAVHEUCi: HOG} 	 (1)
j=1 	j=1

where Ci is the set of tight groups defined by the j ih dimension of vote and quorum assign-
ment, i.e, Q 1,k(VN ek gic) is all the minimal groups in 14=1 Ci.

Table 1 presents a two-dimensional vote and quorum assignment to a system of four
nodes. The sets C1 and C2 are the sets of tight groups corresponding to the first and
second dimension of the MD vote and quorum assignment, respectively.

6

1 1

1 1
v4,2 = 2=(2,3)

1 1

0 2
C1 = {{1,2},{1,3},{2,3}}, C2 = {{1,{2, 4}, {3, 4}, {1, 2, 3}}

Q1,2074,2,20 = {{ 1 , 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
Q2,2(V4,2,q2) = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

Table 1: An example of multi-dimensional vote assignment

3.2 The Existence of MD Vote Assignments

We show that any quorum set Q can be represented by an MD(1,k) vote and quorum
assignment.

Lemma 3.1: Let Q be a set of groups satisfying the minimality property such that

V G,HEQ: GZH

Then Q can be represented by an MD(1,k) vote and quorum assignment where k = I Q I-

Proof: Let Q = {G1,G2,...,Gk} so that I Q I= k. We construct the following k-dimensional
vote assignment: the vote value of node i in the jth dimension, i = 1,2, ...,N and j =
1,2, ...,k is given by,

Vid = 1

yid = 0

for i E Gi

for i

with qi =1G2 I. We will show that Q = Qi,k(VN,k,g.k).

From the construction of the MD(1,k) vote and quorum assignment that yields ch,k(vN,k, g k),

it is trivially true that H E Q 	HE Q1,k(VN,k,g4), i.e., QC. Qi,k(V .N,k,2k)• (When
H = Gi, votes from nodes in H satisfy the quorum requirement in the j th dimension and
H is also tight.) Consider the Ph dimension of the MD vote assignment that is derived
from the group Gi E Q. The set of groups Ci represented by this dimension is equal

7

to {G,} and since Q i ,k(VNA,u) is all the minimal groups in U9L Ci (see (1)), we have

Qi,k(VN,k,l k) g

Lemma 3.1 guarantees that an MD(1,k) vote and quorum assignment can be found for

any set of minimal groups Q. In the constructive proof, since each group is represented by

a separate dimension, the number of dimensions used is equal to IQ I, which may be large.

We present in what follows a technique that tries to represent several groups by a single

dimension of an MD vote and quorum assignment. Therefore, in practice, the number of

dimensions needed to obtain an MD(1,k) vote assignment could be much less than I Q I.

3.3 Algorithm for Finding an MD Vote Assignment

The proof of Lemma 3.1 provides an MD(1,k) vote and quorum assignment with k equal to

the number of groups in the quorum set. In this assignment, each dimension represents one
quorum group and vice versa. Since all groups of an SD -vote assignable quorum set can

be represented by a single dimension, MD(1,1) voting can be used to represent such sets.

For quorum sets that are not SD-vote assignable, we use a single dimension to represent as

many groups as possible to reduce the number of dimensions.

In [18], a technique is described for testing if a set of groups Q is SD-vote assignable.
A linear program, LP(Q), is set up using the groups in Q and solved using the Simplex

method. If LP(Q) does not have a feasible solution then Q is not SD-vote assignable.
Otherwise, a rational solution is found which can be converted to an integral vote and

quorum assignment. We have extended the algorithm to find an MD(1,k) vote and quorum

assignment for a quorum set Q. The new algorithm is illustrated in Figure 2 and is described

in detail in Appendix A. It finds an MD(1,k) vote assignment by testing to see if the initial

quorum set Q is SD-vote assignable. If so, the algorithm outputs the MD(1,1)-vote and

quorum assignment found by the Simplex method. Otherwise, a group A is removed from Q

and the quorum set Q — {A}, consisting of the remaining groups of Q, is tested to see if it is
SD-vote assignable. This process is repeated until the groups that remain form an SD-vote

assignable quorum set. The vote and quorum assignment for this quorum set is the first

dimension of the MD-vote and quorum assignment. The groups that were removed in the

process are stored in the temporary variable D and used as input in a second iteration to

find the second dimension of vote and quorum assignment. This is repeated until all groups

Not feasible

Done Choose a group A in Q;
Q:=Q- (A);

D := D +

Q := D;
D := empty set;

k := 0;
Q := input quorum set;
D := empty set; * *(D is the set of deleted groups in an iteration.)

Setup and solve LP(Q);
k := k + 1;
Output solution Yk and qk;

Feasible

are represented by the MD-vote and quorum assignments. Since a quorum set consisting of
a single group is SD-vote assignable, at least one group of Q is represented and removed in
each iteration, and the algorithm is guaranteed to terminate.

This algorithm will be used to find MD(1,k) vote and quorum assignments for several
non-SD vote assignable quorum sets in the following sections.

Figure 2: Algorithm for finding MD(1,k) vote and quorum assignment

3.4 Using MD-Voting for Distributed Synchronization

MD-voting is a powerful concept and has a wide range of applications. The subsequent sec-
tions (Sections 4, 5 and 6) illustrate the versatility of MD-voting by using it to implement
solutions to a variety of synchronization problems in distributed systems. Although any
quorum set can be represented by an MD(1,k) vote and quorum assignment, finding such
a representation, however, requires listing the quorum set and using the algorithm in the
previous subsection. For certain replica control protocols producing the listing is imprac-

9

tical. In such situations, we would like to be able to determine the MD-voting parameters
from the description of the protocol. In some instances, as will be seen in Section 5.2,
MD(t, k)-voting parameters may be found from the protocol description. In other situa-
tions, this may not be possible. We introduce a generalization of MD-voting, called Nested
MD-voting, which will help us in determining the MD-voting parameters for a hierarchical
quorum consensus method.

4 MD-Voting for Mutual Exclusion

The problem of mutual exclusion arises in many applications where a process must acquire
exclusive access to a shared resource. In distributed systems, the synchronization method
used must tolerate node and link failures. The general method for achieving synchronization
in a distributed system is the use of coteries. The definition of a coterie is given in [5] and
it is repeated here for completeness.

Definition 4.1: Coterie [5]. A set of groups Q is a coterie under U = {1,2, , N} iff

1. GEQ 	GCE/ A GOO

2. (Intersection property) V G, H E Q: GnHOO

3. (Minimality property) V G, H E Q: G%H

A process synchronizes with other processes by obtaining permission from nodes that form
a group of the coterie. A node gives permission to only one request at a time and the
other requests are kept pending until the request that was given permission completes. The
intersection property guarantees that only one process will succeed at a time and mutual
exclusion is achieved. However, in the general case, implementation of the method based
on coteries could be complex. It will require that processes keep a list of the groups in the
coterie and a comparison of the responses against this list is made to determine if a process
can proceed. To determine if a set of nodes form a group in a coterie can be computationally
expensive because the size of a coterie can be exponential.

SD-voting can also be used to achieve mutual exclusion when the quorum used is a
majority of the votes. The SD vote assignment to the nodes uniquely determines a coterie

10

and we will call coteries that have an SD-voting equivalent SD-vote assignable. There exist
coteries that cannot be obtained from SD vote assignments, thus the method of coteries is
more general than SD-voting [5]. SD-voting also requires a relatively large number of nodes
to participate in the execution of the protocol. For example, to achieve mutual exclusion,
nodes that have more than half the votes must participate. Consequently, each mutual
exclusion request generates a large number of messages which have a significant impact
on response time. Coteries that are not SD-vote assignable can achieve mutual exclusion
using a lower number of messages (e.g. [8] and [9]). However, such coteries cannot be
implemented by SD-voting. The following corollary shows that MD-voting is as general
as coteries and can be used to implement mutual exclusion methods with the desirable
properties of SD-voting.

Corollary 4.1: A mutual exclusion coterie Q of N nodes can be represented by an MD(1,k)
vote and quorum assignment.

Proof: Since Q satisfies the minimality property (Q is a quorum set), the claim follows from
Lemma 3.1.

Table 2 shows a coterie which was described in [5] and it was shown to be non SD-vote
assignable. The table presents an MD(1,4) vote and quorum assignment for the coterie.
(Notice that the number of dimensions, 4, is smaller than the number of groups in the
coterie which is 7.)

Q = {{12},{134},{135},{146},{156},{236},{245}}

(2 0 2 2
3 1 0 0
0 1 0 2

V6,4 =
1 0 1 1

1 q
-4

= (5,3,5,5)

1 0 1 1

\ 0 1 2 0 /

Table 2: A non SD-vote assignable coterie and its multi-dimensional vote assignment

11

A structured coterie approach organizes nodes in some logical structure and groups in
the coterie are derived from this structure. In [9] the nodes are organized into a binary tree
structure and groups of nodes that form a path from the root to a leaf define a group in the
coterie. If some node on a path fails, it is replaced by two paths starting from the children
of the failed node. The tree-based method can achieve mutual exclusion using as few as
log(N) messages when there are few failures. Table 3 shows the MD(1,5)-vote and quorum
assignment, produced by the algorithm in Section 3, for the coterie that is derived from a
binary tree of depth three. Alternatively, we can find, by inspection, the MD(2,3)-vote and
quorum assignment in Table 4 to represent the same coterie.

Q = {{124},{125},{136},{137},{145},{167},{2346},{2347},
{2356},{2357},{2467},{2567},{3456},{3457},{4567}}

/0 0 0 2 2 \

0 2 2 0 1

1 1 1 1 0

V7,5 = 2 0 2 0 1 , 	is = (6,6,6,4,4)

2 2 0 0 1
1 1 1 1 0

`1 1 1 1 0 /

Table 3: A tree-based coterie and its MD(1,5)-vote and quorum assignment

V7,3 =

/1

0
0
0
0
0

\0

0
1
0
2
2
0
0

0\
0
1
0
0
2
2

, 	q = (1,3,3)

Table 4: MD(2,3)-vote and quorum assignment for the tree-based coterie inTable 3

12

5 MD-Voting for Reading and Writing Replicated Data

We examine the use of MD-voting to implement read and write quorum sets which corre-
spond to replica control protocols that cannot be implemented using SD-voting. We assume
that a node stores only a single version of the replica and version numbers are used to iden-
tify the most recently updated replicas. The method described can easily be modified when
timestamping is used instead of version numbers. A read operation returns some value and
a write operation installs a new value. To ensure one-copy serializability [19], we do not
allow a read and write operation and two write operations to execute concurrently 1 . In
general, synchronization of read and write operations to replicated data can be ensured by
requiring that each operation obtain permission of *a group of nodes and the groups used
by conflicting operations have non-empty intersection. Minimal groups of nodes that can
allow a read and write operation to complete are called read and write groups respectively.
The read and write quorum sets R and W are the sets of read and write groups used. (W
is a quorum set and R is its anti-quorum set [3].) The synchronization requirements given

above are satisfied if,

1. (Read/write intersection property) V G E R, HE W:Gn H # 0, and

2. (Write/write intersection property) V G, HE W:GilHO

R and W have the minimality property and W also has the intersection property (W is
a coterie). Since read operations can be executed concurrently, the set R need not satisfy
the intersection property, i.e., in general R is not a coterie. For a given R, to maximize
write availability, W equals the maximal set of minimal groups that have read/write and
write/write intersection property. The set W, in general, is not unique for a given R. For ex-
ample, let R = {{1,2}, {3,4}}, then the sets {{1,3},{1,4},{2,3,4}} and {{1,3},{2,3},{1,2,4}}
can both be used as write quorum sets.

A replica control protocol corresponds to a read and a write quorum set which satisfy
the synchronization requirements. Thus, in the general case, consistency of replicated data

1 In addition to the replica control protocol each node uses a local synchronization protocol (e.g., two-
phase locking or timestamp ordering) to achieve one-copy serializability. Note that single writer/multiple
readers synchronization is sufficient but not necessary for achieving one-copy serializability.

13

is maintained using two possibly different sets of groups (one for reading and the other for
writing) which have the minimality property. It is straightforward to see that MD vote
assignments can be obtained for each of them, one is used for reading and the other one is
used for writing. In the general case, the MD vote assignments obtained for the read and
write quorum sets may be different. Consequently, a node must use the appropriate MD
vote assignment (based on the type of the request) to vote on each request. Thus, votes
obtained for a read request cannot be used for a write request. Although it is feasible to
implement read and write quorum sets with separate MD vote and quorum assignments,
it is simpler and more efficient to allow votes obtained for reading to be augmented to a
quorum for writing because transactions usually read the data before updating it. This will
be similar to SD-voting where the same vote assignment is used to define both read and
write quorum sets. In the next subsection, we describe a replica control protocol that uses
a single MD vote assignment to define both read and write quorum sets and allows a read
quorum to be augmented when the read data items are also updated.

5.1 A Replica Control Protocol Based on MD -Voting

In the design of a replica control protocol under the assumption that read transactions
are predominant, an appropriate read quorum set that provides high read performance is
chosen and the corresponding write quorum set is computed to satisfy the synchronization
requirements. In general, the read quorum set can be represented by an MD(1, k) vote
and read quorum assignment. Let VN,k and 7: k = (ri,r2,...,rk) be the vote and read
quorum assignment for an MD(1, k)-voting system used in reading and Qt,k (vN ,k , _tic) rep-
resents the set of minimal groups defined by the assignment. To allow write operations to
synchronize using the same vote and read quorum assignment, we define the write quorum
tsk = (wi , w2, . wk) to be,

N

Wi = 	 7-1 + 1, 	for j = 1,2,...,k

Since, as explained later, the write/write intersection is achieved in another manner, we do

not require 	•that wi > 1-1-01=i vi' +1 1 votes, for j = 1,2, ..., k. The write 	•quorum wi will 2

only ensure that groups that satisfy the write requirement intersect with all read groups
of the j gh dimension of the MD vote assignment. Since the read quorum set is defined

14

by MD(i,k)-voting, we must use MD(k - l + 1, k)-voting for writing to ensure that the
read/write intersection property holds. Let Q k+1-1,k(VN Mk) be the set of tight groups

represented by the MD(k 1 - 1, k) vote and write quorum assignment. The following

lemma shows that Qt,k(VN,k,rj,) and Qk+i-e,k(VN,kosk) have the read/write intersection

property.

Lemma 5.1:

V G E QtA(VN,k Ek) , H E k4-1 -1,k(VN,k, Mk): G n H OO

Proof:

Let G and H be two arbitrary groups in Qt,k(VN,kti:k) and Q k+1-1,k(VN,k, VA) respec-
tively. Since (1)4- (k 1 - 1) > k, there is some dimension s such that,

E vg,, ra
gEG

and E vh,, >
hEH

Since ra tv, > 	there must be a common node in G and H and hence Gn H # 0. ❑

Although the sets Qe,k(VN,k,7_:k) and Qk+i-e,k(VN,k, tij) ;) have the intersection property
which is necessary for read/write synchronization, Qk +i _t,k(VNA, tsk) may not be a write
quorum set for Q t,k(VN,k7 7-:k) because it may not have the write/write intersection property
which is required when version numbers are used. To achieve this, we can augment each
group of Q k4-1-1,k(VN,k7 Mk) to include a group of Q 1,k(VN,k7 . We define the write quorum
set W which is derived from Qt,k(VN,kt1:k) and Qk+i-e,k(VN,k,u).k) in the following way:

W= {A Li./31AUB is minimal and A E Qt,k(VN,k,1:k),B E Qk+i-t,k(VN,ktMc)}

The set W is unique for a given pair (Qt,k(VNA,r k) --t,k(VN,k, Mk)) and it can be
constructed by first forming the set of all groups {A U B}, where A E Qt,k(VN,k,rk) and
B E k+1_0(VN Mk), and then removing all the groups that are supersets of some other
group in the constructed set. It can be easily seen that when Qt,k(VN,k,7_:k) and W are

15

used for reading and writing, both the read/write and write/write intersection properties
are satisfied. The latter property follows from the read/write intersection of groups in

Ql,k(VN,k,Tk) and Qk+1-t,k(VN,k,3_4k)•

The replica control protocol used is thus as follows: when reading, the operation obtains
a read quorum in at least l dimensions and when writing, it must obtain a read quorum
and a write quorum in and k 1 — I dimensions, respectively. If reading of the data is
followed by its write (which is the typical case), the write operation only needs to obtain a
write quorum and the method thus allows the read quorum to be augmented.

A special case of the protocol is when MD(1,k)-voting is used for reading. Then, we can
use the method in Section 3 to find an MD(1,k) vote and read quorum assignment for any
given read quorum set. The corresponding write quorum set will be represented by using an
MD(k, k) vote and write quorum assignment. In this case, the read operation can proceed
if it can obtain a read quorum in any one dimension. If the transaction wishes to update
the data after reading it, the votes received for the read request must be supplemented with
additional votes such that in each dimension the number of votes received is greater than
or equal to the write quorum for that dimension. The general case where MD(i, k)-voting
(arbitrary i) is used, is more difficult as we do not yet have an algorithm to find an MD(i, k)

assignment when 0 1. However, if the read quorum set used is derived from some logical
structure, such as the example described in the next subsection, we may be able to use the
structure to formulate an MD assignment.

5.2 Example - The Grid Protocol

As an example, we consider the replica control method presented in [10] which organizes
the nodes of the system into a logical grid consisting of m rows and n columns. A read
quorum group contains n nodes where one node is selected from each column and a write
group consists of nodes in a read group and all nodes in a column of the grid (the quorum
sets used in this method are generally not SD-vote assignable). For example, Figure 3
shows a six node system organized into a 2x3 grid. The read and write quorum sets used
are {{1,2,3}, {1,2,6}, {1,5,3}, {1,5,6}, {4,2,3}, {4,2,6}, {4,5,3}, {4,5,6}} and {{1,4,2,3},
{1,4,2,6}, {1,4,5,3}, {1,4,5,6}, {2,5,1,3}, {2,5,1,6}, {2,5,4,3}, {2,5,4,6}, {3,6,1,2}, {3,6,1,5},
{3,6,4,2}, {3,6,4,5}}, respectively. Notice that a read and a write quorum group and two

16

Figure 3: A Grid Network

write quorum groups have non-empty intersection.

The read quorum groups of the grid protocol can be represented by the following MD-
vote and quorum assignment. The MD-vote assignment used for an mxn grid network
consists of n dimensions and a node i has vi = 1 if it is in column j, otherwise v1 ,3 = 0, for
j = 1, 2, ..., n. For instance, the MD-vote assignment of the 2x3 grid system in Figure 3 is
given in Table 5. Nodes in the first column (i.e., nodes 1 and 4) are assigned one vote in the

V6 ,3 =

I 1 0 0

0 1 0

0 0 1

1 0 0 	
= 1 , 1 , 1 	= (2, 2, 2)

0 1 0
o 0 1.

Table 5: Multi-dimensional vote and quorum assignment for the 2x3 grid system

first dimension and zero votes in the other dimensions. Similarly, the nodes in the second
and third columns are assigned one vote in the second and third dimensions, and zero votes
in the other dimensions, respectively. The read quorum vector used is r n = (1, 1, ..., 1) and
the voting method is MD(n, n)-voting (i.e., quorum requirement must be satisfied in all n
dimensions). The number of votes collected in dimension j is at least one if and only if
some node in column j responded positively to a voting request. If the quorum requirement
is satisfied in all dimensions, then there is at least one node in each column that responded
positively, and vice versa. Thus, the MD(n, n)-voting method represents the read quorum
set of the grid protocol.

There are many write quorum sets possible for a given read quorum set of the grid

17

protocol and the one proposed by the previous subsection is defined using the write quorum
vector wn = (wi , w2, , wn) where wi = vij — 4-1, for j = 1, 2, ..., n. Since ri = 1,
for all j, and only nodes in column j have non-zero votes in the jgh dimension, we have that
wi = m, for all j. A write quorum group consists of the union of a read quorum group and a
group in the set Q i ,n(VN,„,z,) which is the set of tight groups defined by MD(1,n)-voting.
A group in 00 (V - N,„, gin) satisfies the quorum requirement in at least one dimension. Since
wi = m and only nodes in column j have non-zero votes in dimension j, for j = 1, 2, ..., n,
the quorum requirement in dimension j is satisfied only when all nodes in column j respond

positively. Hence, a write quorum group consists of a read quorum group and all nodes in
a column of the grid which is the case in the grid protocol.

The grid protocol is based on the structured quorum set concept discussed in Section
4. The size of the read and write groups in a square grid is of the order 0(1k), where
K is the number of nodes with replicas and it can be smaller than quorum groups in SD-
voting. A simulation study in [10] showed that the response times of transactions in systems

using the grid protocol are significantly lower than those that use SD-voting for the same
number of nodes. It also showed that an increase in the number of nodes in a system
using SD-voting will not result in much reduction in response time because the load is not
shared effectively. Systems using the grid protocol have higher maximum throughput and
lower response time. Notice that in the MD-voting method, operations are unaware of the
topology and the position of the nodes in the grid.

6 Partially Replicated Data

6.1 Background

Fragmentation is a technique where a file is divided into fragments and different fragments
may be stored on different nodes. Fragmentation may be necessary because the amount
of storage space needed to store a file exceeds the capacity of a node. Also, transactions
at a particular node often access a specific portion of the data and storing the frequently
accessed part locally will effectively reduce network traffic and delay.

Fragmented data can also be replicated and the fragments can be replicated a different

18

number of times and stored at a different set of nodes. A single node may not necessarily
hold all the fragments of a file. The schemes that can be used to maintain data consistency
in such environment are called partial replication methods since nodes may maintain only
a fraction of the file. Partial replication complicates access to the file because subsets of
nodes must be identified that will constitute a complete and current copy.

6.2 Maintaining Partially Replicated Data

A scheme that can be used for maintaining the consistency of partially replicated data is
described in [17]. The system consists of N nodes and to reduce storage, only M replicas
(M < N) are distributed among the nodes. Each replica is subdivided into N fragments,

where f,, denotes the Ph fragment of the ith replica, i = 1,2, ..., M and j = 1, 2, N.

Each node stores M distinct fragments of the file. The fragments stored at a particular node
are identified as a segment. The Full Copy Equivalent (FCE) of a file is the least number of
segments necessary in the worst case to reconstruct the file. As an illustration, we consider
a five-node system with three replicas. Each replica is subdivided into five fragments and
the fragments are stored as shown in Figure 4. Note that the segments in nodes 1 and 3 are
sufficient to reconstruct the entire replica. However, the segments in nodes 1 and 2 are not
sufficient. Note also that any three segments are guaianteed to contain enough fragments
to reconstruct the replica. Thus, in the worst case, any three segments are required and
FCE = 3. In general, the FCE in the distribution scheme in [17], is equal to N — M 1.

Node 1 Node 2 Node 3 Node 4 Node 5

f12 f13 114 f15-

122 123 124 125 121

133 135 131 132

Figure 4: Distribution 1 of fragments over the nodes

The read and write quorums r and w must satisfy the following constraints:

• N—M+1<r<N

• max(N — M 1, [1-4-11) < w < N

19

• N (N — M 1) < r -F w < 2N

The read and write quorum combinations that can be used for the system in Figure 4 are
(r = 3, w = 5), (r = 4, w = 4) and (r = 5, w = 3). For instance, if (r = 3, w = 5), then the
read and write quorum sets R 1 and W1 are given by:

Ri = {{123},{124},{125},{134},{135},{145},{234},{235},{245}, {345}}

= {{12345}}

Note that this particular quorum selection (r = 3, w = 5) is the most desirable from a
performance point of view if read operations are predominant.

6.3 Using MD-Voting for Maintaining Partially Replicated Data

Consider the distribution of fragments given in Figure 4. For a read operation, it is possible

to access a smaller group of segments than the ones in R 1 to reconstruct the complete replica.
For instance, R2 = {{13}, {14}, {24}, {25}, {35}} can be used as the read quorum set when
the write quorum set W2 = W1 = {{12345}}. Since each group of nodes that constitute a
quorum group in R1 is also a quorum group in R2, R2 provides better availability than R1.
This is due to the fact that if the file can be read using R 1 , it can also be read when groups
in R2 are used. (R2 is said to dominate R 1 [3] since each group in R 1 is a superset of some
group in R2.) The reason the more desirable quorum sets are not possible in [17] is because
R2 is not vote assignable using traditional SD-voting. It is however , possible to obtain R2
and W2 above using MD(5,5)-voting and the vote and quorum assignments in Table 6.

175 5 =

1

0

0

1

1

1

1

0

0

1

1
1

1

0

0

0

1

1

1

0

0

0

1
1

1

, r 5 = (1,1,1,1,1) and .u 5 = (3,3,3,3,3)

Table 6: An MD(5,5)-vote and quorum assignment for partially replicated data

20

The above observation forms the basis of our partially replicated data scheme described
below which is based on MD-voting. Assuming that each file is subdivided into k fragments
(the scheme in [17] uses k = N):

• Assign the vote uji, a positive integer, to fragment f,,, for i = 1,2, ..., M and j =

1,2, ..., k, and define the vote assignment VNk as follows:

— vai = uji, if the segment at node a, a = 1,2, ..., N, contains the fragment fii
for some i = 1,2, ...,M and j = 1,2, ..., k.

— vat = 0, otherwise.

• For each dimension j, j = 1,2, ..., k, we define the quorums ri and w3 such that
r-■ N

[Li esti + 1 1 	 %—,
4
JV and rj 	V.7j == 2_ =.1 trij 4- 1. of > 0, wi > 	2

• Read and write accesses to the partially replicated file use the MD(k, k)-voting pro-
tocol and the read and write quorum sets used are:

R = {G I G is a minimal group in MD(k, k)-voting with respect to r k }

W = {H I H is a minimal group in MD(k, k)-voting with respect to wk }

The following lemmas show that R and W defined above will correctly synchronize read
and write operations, and read operations will return the most recent copy of the data.

Lemma 6.2:

Let:

Rt = {G I G is a minimal group in MD(i, k)-voting with respect to Lk}

Wt = {H J H is a minimal group in MD(t, k)-voting with respect to w k }

If t 	, then:

VG E Rt, H Wt : GnHoo
and

VG,H E Wt : Gn H 4

21

Prof:

Let G E 14 and H E Wt, then G and H satisfy the vote requirements in at least
dimensions with respect to rk and wk , respectively. Since l > [411, there is at least one
dimension j such that EaEG Val > ri and EaEH Vaj > wj. Since rj wj > 	vi j, we
have that Gni/0 0.

If G, H E Wt, then we have that E aEG vai > wj and EaEH Vai > w1, for some dimension

j. Since 2w3 > E;.1=1 vii, we have that G n H # 0. ❑

From Lemma 6.2 and the fact that k > PV-1, we have that:

VGER, HEW: Gn11015

and
V G,HEW: GnI100

The following lemma guarantees that a read operation access a complete replica.

Lemma 6.3:

Each read operation will access a complete replica.
Prof:

Let G E R and H E W. Since R and W satisfy read and write quorum requirements
in all k dimensions, we have that EaEG Vaj > rj and EaEH vaj > wj. for dimension
j = 1,2, ..., k. Since rj wi > E iN_i vij, each read quorum group contains a fragment j

that has been updated by the most recent write operation, for j = 1,2, ..., k. Hence, the
read operation will obtain the most recent copy of data. ❑

6.4 Properties of the MD -Voting Approach

The MD-voting scheme assigns votes to fragments in contrast to the scheme presented in [17]
which assigns votes to segments. The finer granularity of vote assignment in the MD-voting
method allows the system to recognize more available system states in some instances. This
has been demonstrated in our previous example (see Section 6.3) where through the use of

22

MD-voting one can obtain a better read quorum set. This property is formalized in the
following lemma.

Lemma 6.4:

For the MD-voting partial replication scheme described in Section 6.3, let R be the read
quorum set obtained by setting /hi = 1 and ri = 1, for i = 1,2, ..., M and j = 1, 2, ..., k.

Let G be an arbitrary group of nodes that contains a complete replica. Then,

3HER: HCG

Proof:

In order to construct a complete replica, the segments in G must contain a fragment f,,,
for each j = 1, 2, 	k and for some i = 1, 2, ..., M. Then the sum of votes r 1...a€G Val 	1,

for j = 1, 2, ..., k and hence G or a subset of G is a group in R.CI

We know from Lemma 6.4 that with MD-voting, it is possible to identify the minimal set of
segments that constitute a complete copy of data and allow the system to access the data
when minimal groups of nodes are operational. In contrast with [17] where a voting scheme
is used to identify the set of segments, it is possible to first find the set of of minimal groups
of segments and then construct an MD-vote assignment to represent it.

Another advantage of using MD-voting for maintaining partially replicated data is
greater flexibility. Different fragments can be replicated a different number of times and a
node can store an arbitrary number of fragments. Distribution of fragments of the repli-
cas is not subject to any constraint which is not true for the scheme in [17]. The correct
operation of the protocol is still guaranteed through Lemmas 6.3 and 6.4.

For instance, we can fragment three replicas into four fragments each and distribute
the fragments over five nodes in the manner given in Figure 5. The votes assigned to
different fragments can be different. For instance, in Table 7, we allocate fragments at node
1 two votes each and fragments at others nodes receive one vote each. Using the quorum
assignments given in the figure, the corresponding read and write quorum sets are {{124},
{125}, {145}, {2345}} and {{124}, {125}, {1345}} respectively.

Choosing the optimal fragment distribution, fragment vote and quorum assignment

23

Node 1 Node 2 Node 3 Node 4 Node 5

112 121 113 114

122 123 132 124 133

134 fai

Figure 5: Distribution 2 of fragments over the nodes

2 2 0 2

1 1 1 0

V54 = 1 [1 0 0 , /14 = (2,2,2,2) and tut = (3,3,2,3)

0 0 1 1

0 0 1 1

Table 7: An MD(4,4)-vote and quorum assignment for partially replicated data

when storage per node and node availabilities are given, is an interesting problem for future

research.

7 Nested Multi-Dimensional Voting

In this section we present another representation method for the multi-dimensional voting

scheme. Recall that a quorum group in MD(i, k)-voting satisfies the quorum requirements

in any t of k dimensions. Another multi-dimensional voting method uses an explicit list

of groups of dimension indices called index set I for which quorum requirements are to

be satisfied. Figure 6 shows an example of the voting procedure using this MD-voting

method in a system of six nodes. The index set I used is {{1,2}, {1,3}, {1,4}, {2,4},

{3,4}}. Suppose the votes of nodes 1, 2, 3 and 4 are received. The vector sum of votes

is determined and compared to the quorum vector. The quorum requirements in the first

and fourth dimensions are satisfied. The voting procedure now proceeds to check if {1,4}

is an index group or a superset of an index group in I. Since {1,4} is a group in I, the

procedure returns successfully. In this technique, the set I represents an explicit listing of

24

dimension requirements. MD(1, k)-voting is a special case of this MD-voting method since
it uses the index set that consists of all subsets of size l of the set {1, 2, ..., k}. Note that

each member of I should be a minimal group and I satisfies the minimality property (see

Section 3.1).

Nodes responding to 	Generalized multi-dimensional
a quorum collection request 	

vote assignment

1 --.- 	2 0 2 2 	—■ 2 0 2 2

Node 2 	 3 1 0 0 3 1 0 0 Votes received --a■

3 	 0 Node 1 0 2 0 1 0 2

(

Node

4 Node 	 1 0 1 1 1 0 1 1

1 0 1 1

0 1 2 0

6 2 3 5 Sum of votes collected

Compare 5 3 5 5 Quorum vector

I 0 0 1

Index set of dimension requirements:

(1,4), 12,4 Poe)

(I, 4)

Success

Figure 6: Generalized multi-dimensional voting

A drawback of this new MD-voting scheme is the use of an explicit list of index groups
I. Since I is a set of minimal groups under the universe {1, 2, ..., k} (k is the number of
dimensions in the MD-vote assignment), it can be considered as a quorum set for a system
of k "nodes". Consequently, we can define I by using AID(e, k') -voting. For example, the
index set I in Figure 6 is a quorum set of 4 "nodes" defined by the MD(2,3)-vote and
quorum assignment in Table 8.

Figure 7 demonstrates the operation of the system shown previously in Figure 6 with
the index set replaced by its MD(2,3) representation. Notice that there are two levels of
MD-vote and quorum assignments. At the first level, votes are assigned to the nodes and

25

2 1 0
1 0 2

v4,3 =
0 1 1 '

= (2,2,2)

1 2 1

Table 8: MD-vote and quorum assignment for index set I in Figure 6

the second level vote and quorum assignment is used to represent the index set. First,
the votes of nodes 1, 2, 3 and 4 are received and added. The vector sum of votes is then
compared to the quorum assignment and it is found that quorum requirement in the first
and fourth dimensions are satisfied. Then, the voting procedure uses the index group {1,4}
to select the vote values in the second level of the assignment. Rows one and four of the
second level vote assignment are added and compared to the quorum requirement of that
level. The quorum requirements in the first and second dimensions are satisfied and since

the second level uses MD(2,3)-voting, the procedure returns successfully.

Although in the above example the index set I was represented by an MD(2,3)-vote
assignment, it could have been represented by MD-voting with another index set I' and so
on. For example, I can be represented by the MD-vote assignment

1 0 0 0

0 1 0 0
v4,4 =

(

and index set I' = {{1,2} , {1,3} , {1, 4} , {2,3}, {2,4},{3,4}}
0 0 1 0

0 0 0 1

Notice that I' itself is representable by an MD(1,1) assignment. 2 We call this multi-level
MD-voting technique nested multi-dimensional (NMD) voting.

An NMD-voting technique is defined by the number of levels K, a set of multi-dimensional
vote and quorum assignments (q) ko lti.)), for i = 1, 2, ...K and a number N1 is always
equal to the number or replicas N and ki = N1_1 for i = 2,3, ..., K. For example, in
Figure 7, the number of levels K = 2, the number of nodes at level 1 N1 = 6, the number of
"nodes" at level 2 is equal to the number of dimensions at level 1; N2 = k1 = 4, the number

2 /' can be obtained by assigning one vote to each node and setting the quorum to two.

26

Nosier responding to
a quorum collection request

Nested inidli-thmatsional
vote assigiunent

2 	0 	2

3 	1 	0

0 	1 	0

1 	0 	1

1 	0 	1

0 	1 	2

.2

0

2

1

1

0

Compare

•••■•■••... 2

3

0

1

0

1

1

0

2

0

0

1

2

0

2

I

MN/

Votes received

Stan of votes collected

Quorum vector I

Level 1

Node 1
•■••• Node 2

Node 3 ••■•••

Node 4 •■■•■•

11

5

2

3

3

5

S

5

1 0 0 1

2

1

0

1

0

1

2
)

(0

2

1

1

2

1

1

2

0

1

Second level mies
calculation

auorion vector

Lewd 2

1

Compare
3
3

3
3

1
3

1

Number of thmentions satisfied is nvo
Number of dimensions required is two

Quonset collection procedure is successful

Figure 7: Two level nested multi-dimensional voting with t = 2 at level 2

of dimensions at level 2 k2 = 3 and i = 2. The vote and quorum assignments at the two

levels (1414) ,q(41)) and (17,0 , 2), are shown in Figure 7. 	.

7.1 Example - Hierarchical Quorum Consensus

As an illustration, we present an example of the application of the NMD-voting technique

which results in a generalization of the Hierarchical Quorum Consensus (HQC) method

presented in [11]. The voting procedure in the HQC method uses a hierarchy of vertices

organized into a tree. The highest and lowest levels of the hierarchy contain the root vertex

and the leaf vertices, respectively. The leaf vertices are nodes with replicas and constitute

the first level of hierarchy (level 0). The non-leaf vertices are logical and they are used only

to define the quorum set. The votes from the replicas (at the lowest level) are propagated

up the hierarchy along the branches of the tree. A vertex at level i will vote positively if

27

the number of its child nodes at level i — 1 that voted positively is greater than or equal to
the required quorum. Otherwise it votes negatively. Thus, a read (write) quorum group at
the hierarchical level i consists of ri (wi) vertices at level i — 1. The outcome of the voting
procedure is determined by the vote of the root vertex.

Figure 8: A two-level hierarchical quorum set

As an example, consider the nodes in Figure 8 which are organized into a two-level
hierarchy. The read and write quorums at level i are ri = 2 and wi = 2, for i = 1,2. The
level 1 quorum sets are:

R211 W21

R22, W22

R231 W23

• {{12},{13},{23}}

{{45},{46},{56}}

• {{78},{79},{89}}

For instance, the left most vertex in level 1 will vote positively if at least two nodes in {1,
2, 3} vote positively, otherwise it votes negatively. The quorum groups at level 2 (the root
of the tree) consist of groups from two different level 1 quorum sets because the quorum
requirement at level 2 is equal to two. The read and write quorum sets defined by the
hierarchical structure in Figure 8 are thus equal to:

Q2 = {{1245}, {1246}, {1256}, {1345},03461, {1356},

{2345}, {2346}, {2356}, {1278},{1279}, {1289},

{1378}, {1379},{1389},{2378},{2379},{2389},

{4578}, {4579},{4589},{4678},{4679},{4689},

{5678},{5679},{5689}1

28

V9,3 =

1

1

0

0

0
0
0

k 0

0

0

0

1

1

1
0
0
0

0 N

0

0

0

0 	= (2,2,2)

0
1
1
1 /

Each group of Q2 consists of four nodes which is not a majority group. But notice that any
two groups in Q2 have a non-empty intersection.

Table 9: MD-vote and quorum assignment for a two-level HQC quorum set

Q2 can be defined using (non-nested) MD(2,3)-voting with the vote and quorum assign-
ments in Table 9. The number of dimensions of MD-vote assignment is equal to the number
of hierarchical groups (vertices) at the level 1 which is 3. The vote assignment is derived
from the structure of level 0 and 1 with the vote vii of node i being one if i is a member
of hierarchical group j and being zero otherwise. For instance, node 4 is a member of sec-
ond hierarchical group and correspondingly, its vote assignment is (0, 1, 0). The quorum
assignment g is the vector (2, 2, 2) and is derived from the fact that for a vertex at level 1
to vote positively, at least two of its children have to return positive replies. The value of
is equal to two because for the vertex at level 2 to return a positive vote, at least two of its
children have to vote positively. The MD-vote assignment in Table 9 thus represents the
two level hierarchical quorum set defined by the structure in Figure 8 in a natural manner.
In general, any quorum set defined by a two-level hierarchy can be represented in a similar
manner by the use of MD(1, k)-voting.

Quorum sets that are defined using three or more hierarchical levels do not have a natural
MD(L, k)-voting representation and NMD-voting must be used. 3 For instance, Figure 10

3We emphasize that one can always find an MD(1,k)-vote and quorum assignment for a HQC quorum
set. This will require the list of the quorum groups which may be quite large. For example, the read and

29

represents a quorum set from a system with 27 replicas which is defined by a three-level
hierarchical structure using read and write quorums of two at each level. This hierarchical
quorum set can be defined by using a two level NMD-voting with.the voting parameters
((41491)), (14,2242)), t). The vote vli) (the vote assignment to node i in dimension

j at level 1) in 473 is one if node i is a member of hierarchical group j at level 1, for

i = 1, 2, ..., 27 and j = 1, 2, ...9, and zero otherwise, and gi) = (2,2,...,2). Val) and 4)

are equal to V9,3 and 13 in Table 9, respectively, and l = 2.

k vertices

Level

v = 1

va"b = 0

quorum assignment

Figure 9: Relationship between the NMD vote and quorum assignment, and the hierarchical
structure

The above NMD-vote assignment is obtained by considering the hierarchical structure in
Figure 10. Each level of MD-vote and quorum assignment represents one level of hierarchy
and the topmost level is represented by the parameter 1. For the hierarchical level i, except
for the highest level, the number of rows and columns in the MD-vote assignment is equal
to the number of vertices at levels i — 1 and i, respectively. The sizes of the quorum groups
at level i — 1 form the quorum vector for level i (see Figure 9). For instance, to represent
the level 1 hierarchical quorum sets defined by the structure in Figure 10 we use a vote
assignment with 27 rows (number of nodes at level 0) and nine columns (number of nodes
at level 1). The vote value va(sb.) = 1 if vertex a at level i — 1 is a child of vertex b at level i,

and otherwise vab = 0. The quorum vector at level i is derived from the quorum required
(number of children voting positively) for a node at level i to vote positively. For example,
if node b requires at least four of its children to return positive votes, then e (the quorum
requirement at level i in the bth dimension) will be equal to four. Finally, the parameter

write quorum sets for the system in Figure 10 contain 81 groups of 8 nodes each.

30

is set to the quorum required at the root vertex.

1 25 26 27

Figure 10: A three-level hierarchical quorum set

One of the advantages of the use of NMD-voting in representing HQC quorum sets is

flexibility. We can define more general hierarchical structures where a quorum group at

level i consists of subgroups of level i — 1 of various sizes, i.e., different subgroups of level

i — 1 can use a different quorum. For instance, the quorum set in Figure 11 is defined by

a three-level hierarchical structure where all subtrees do not have the same height and all

nodes do not have the same number of children. Assuming that each level in the hierarchy

uses the majority quorum, then the quorum set defined by the hierarchical structure can be

represented by the NMD-vote assignment in Table 10. The NMD-vote and quorum assign-

ment is obtained by applying the technique described above after extending the hierarchical

structure so that each node is a leaf at level 3.

With the NMD-voting technique, determining whether a group of nodes constitutes a

quorum group is similar to weighted voting. In particular, the quorum collection method,

i.e., querying nodes for their votes, can be quite general and is not confined to the polling-like

approach described in [11].

8 Concluding Remarks

In this paper, we have introduced the concept of a multi-dimensional vote and quorum

assignment which is a generalization of standard voting. In multi-dimensional voting, the

vote assigned to a node and the quorum assignment are vectors of non-negative integers

31

Level 1

Level 0

Figure 11: A general three-level hierarchical quorum set

and each dimension is similar to standard voting. We have shown that any set of minimal
groups can be represented by multi-dimensional voting and thus MD-voting is as powerful
as the quorum set concept, which is the general approach for achieving mutual exclusion in
distributed systems. Multi-dimensional voting has the advantage that it is flexible and can
be easily implemented.

We have developed an efficient algorithm for finding a multi-dimensional vote and quo-
rum assignment for any set of minimal groups and its use was demonstrated by finding
multi-dimensional vote assignments for some non SD-vote assignable quorum sets. We de-
scribed distributed synchronization methods based on multi-dimensional voting which are
easier to implement and/or are more flexible than existing schemes for the same purpose.
For example, the multi-dimensional voting scheme for maintaining partially replicated data
has no restrictions on the placement of the fragments and a node can store an arbitrary
number of fragments. Finally, we presented the nested multi-dimensional voting technique,
which is a generalization of multi-dimensional voting, and showed that it may be better
suited for representing structured quorum sets in some instances.

We have demonstrated that MD-voting can indeed be used to implement a wide range
of replica control protocols. Future research needs to consider the performance implications
of the additional flexibility provided through the use of MD-voting.

32

/ l 	0 	0 	0 0 	0 0 	0 	0 ■
1 0 0 	0 0 	0 0 	0 	0

1 0 0 	0 0 	0 0 	0 	0

0

0

1

0

0 	0

1 	0

0 	0

0 	0

0 	0 	0

0 	0 	0
vg9= 0 0 0 	1 0 	0 0 	0 	0 , 4) = (2,1,1,1,1,1,1,1,1)

0 0 0 	0 1 	0 0 	0 	0

0 0 0 	0 0 	1 0 	0 	0

0 0 0 	0 0 	0 1 	0 	0
0 0 0 	0 0 	0 0 	1 	0

`0 0 0 	0 0 	0 0 	0 	1 !

/ 1 0 0 \

1 0 0

1 0 0

0 1 0

4,23) = 0 0 1 , q?) = (2,1,3), 	and i = 2

0 0 1

0 0 1

0 0 1

\ 0 0 1

Table 10: MD-vote and quorum assignment for the three-level HQC quorum set in Figure

11

33

References

[1] S. Davidson, H. Garcia—Molina, and D. Skeen, "Consistency in partitioned network,"
ACM Computing Survey, vol. 17, no. 3, pp. 341-370,1985.

[2] M. Ahamad and M. Ammar, "Performance characterization of quorum-consensus al-
gorithms for replicated data," IEEE Transactions on Software Engineering, vol. 15,
no. 4, pp. 492-496,1989.

[3] D. Barbara and H. Garcia—Molina, "Mutual exclusion in partitioned distributed sys-
tems," Distributed Computing, vol. 1, pp. 119-132,1986.

[4] L. Lamport, "The implementation of reliable distributed multiprocess systems," Com-
puter Networks, vol. 2, pp. 95-114,1978.

[5] H. Garcia—Molina and D. Barbara, "How to assign votes in a distributed system,"
Journal of ACM, vol. 32, no. 4, pp. 841-860,1985.

[6] H. Gifford, "Weighted voting for replicated data," in Proceedings of 7th Symposium on
Operating Systems, pp. 150-162, ACM, 1979.

[7] R. H. Thomas, "A majority consensus approach to concurrency control for multiple
copy databases," ACM Transactions on Database Systems, vol. 4, pp. 180-209, June
1979.

[8] M. Maekawa, 	N/TV algorithm for mutual exclusion in decentralized systems," ACM
Transactions on Computer Systems, vol. 3, pp. 145-159, May 1985.

[9] D. Agrawal and A. El Abbadi, "An efficient solution to the distributed mutual exclusion
problem," in Proceedings of Principles of Distributed Computing, pp. 193-200, ACM,
1989.

[10] S. Y. Cheung, M. H. Ammar, and M. Ahamad, "The grid protocol: A high performance
scheme for maintaining replicated data," in Proceedings of 6th International Conference
on Data Engineering, pp. 438-445, IEEE, 1990.

[11] A. Kumar, "Performance analysis of a hierarchical quorum consensus algorithm for
replicated objects," in Proceedings of 10th International Conference on Distributed
Computing Systems, pp. 378-385, IEEE, 1990.

[12] D. Eager and K. Sevcik, "Achieving robustness in distributed database systems," ACM
Transactions on Database Systems, vol. 8, no. 3, pp. 354-381,1983.

[13] M. Herlihy, "Dynamic quorum adjustment for partitioned data," ACM Transactions
on Database Systems, vol. 12, pp. 170-194, June 1987.

34

[14] S. Jajodia and D. Mutchler, "Dynamic voting algorithms for maintaining the consis-
tency of a replicated database," ACM Transactions on Database Systems, vol. 15, no. 2,
pp. 230-280,1990.

[15] D. Barbara, H. Garcia-Molina, and A. Spauster, "Increasing availability under mu-
tual exclusion constraints with dynamic vote reassignment," ACM Transcations on
Computer Systems, vol. 7, pp. 394-426, Nov 1989.

[16] M. Ahamad, M. H. Ammar, and S. Y. Cheung, "Optimizing the performance of quorum
consensus replica control protocols," in Proceedings of the Workshop on Management
of Replicated Data, pp. 102-107, IEEE, 1990.

[17] D. Agrawal and A. El Abbadi, "Reducing storage for quorum consensus algorithms,"
in Proceedings of Very Large Databases Conference, pp. 419-430,1988.

[18] S. Y. Cheung, M. Ahamad, and M. H. Ammar, "Optimizing vote and quorum assign-
ments for reading and writing replicated data," IEEE Transactions on Knowlegde and
Data Engineering, vol. 1, pp. 387-397, September 1989.

[19] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

35

Appendix A: Algorithm for Finding an MD-vote assignment

In [18], a technique is described for testing if a set of groups Q is SD-vote assignable.
The linear program LP(Q) shown in Figure (12) is set up using the groups in Q. The

Minimize:

s .t .

N

E tli+ q
i=1

VGEQ:
gEG

V H E st—TgQIU)u psub(Q) :

> 0, i = 1, 2, ..., N

q> 1

(2)

E vh 5_ q — 1
hEH

(3)

Figure 12: LP(Q): Linear program corresponding to Q

following notations are used:

• sup(Q U) is the set of all groups that are subsets of U (= {1, 2, ..., N}) and not
supersets of any group in Q, and

• psub(Q) is the set of all groups that are proper subsets of the groups in Q.

If LP(Q) does not have a feasible solution then Q is not SD-vote assignable. Otherwise a
rational solution is found and can be converted to an integral vote and quorum assignment.

Unlike [18], in this paper we are dealing with quorum sets Q that have the minimality
property. This allows us a further refinement of LP(Q) which is a result of the following
lemma.

Lemma A.1: Let Q be a set of groups satisfying the minimality property, i.e., V G, H E
Q: G % H. Then,

psub(Q) C st—rp(QIU)

Proof: The proof is by contradiction.

36.

Assume there is a group X that is in psub(Q) but not in iT'uji(Q U). Since X E psub(Q),

X is a proper subset of some group A E Q. Furthermore, X stp(QIU) so it is a superset

of some (other) group B such that B E Q. However, then Q would violate the minimality

property because the above facts imply that B C A. This contradicts the premise. ❑

We can thus substitute constrain (3) in LP(Q) with,

V H E st-V1(Q I U) : > vh < q -1 	 (4)
hEH

We extend the SD-vote finding procedure to find an MD(1,k) vote and quorum assign-
ment for a quorum set Q. The algorithm (illustrated in Figure 2) constructs an MD(1,k)-
vote assignment by testing to see if Q is SD-vote assignable. If not, groups are systematically
removed from Q until the groups that remain form an SD-vote assignable quorum set. The
votes and quorum obtained from the solution form the assignment in the first dimension.
The set of groups removed from Q to make it SD-vote assignable are then used as input
to a second iteration to find the second dimension of vote and quorum assignment. This
is repeated until all groups are represented by the MD-vote assignment. Since a quorum
set with a single group is SD-vote assignable, in each iteration at least one group of Q is
removed, and the algorithm is guaranteed to terminate.

In what follows, we address the following two elements of the MD-vote finding algorithm
in more detail.

1. The use of the Simplex tableau of LP(Q) to decide which group to remove when
LP(Q) is infeasible.

2. A method by which the effort expended to determine that LP(Q) is not feasible is
used to facilitate the solution of LP(Q - {A}) when group A is removed from Q.

A.1 Choosing a Group for Removal

In the first phase of the Simplex method, artificial variables are added to the constraints
(2) of LP(Q) to obtain a basis and each of these constraints correspond to one quorum
group in Q. These artificial variables are pivoted out of the basis during this phase (i.e.,

37

the artificial variables are eliminated) and if this cannot be achieved, it is an indication that
Q is not SD-vote assignable. In this case, a row that contains a basic artificial variable is
selected and removed. Since only the rows that correspond to groups of Q contain artificial
variables, we will always remove a constraint that corresponds to a group A E Q. If there
are several rows with basic artificial variables, one is chosen arbitrarily for removal.

A.2 Reusing Computational Effort Spent in Solving LP(Q)

In the MD-vote finding algorithm, several related linear programs may need to be con-
structed and solved until a feasible solution is found. Since the linear programs are derived
from one another, the computational effort expended to detect feasibility of one linear pro-
gram can be used in the next and need not be wasted. The removal of a group A from Q

will result in the deletion of one constraint from (2), namely,

E vg q
	

(5)

gEA

However, since the set of constraints (4) is derived from ."-firp(Q IU), the removal of a group
from Q will cause significant changes in this set. The new linear program to determine if
the quorum set Q — {A} is SD-vote assignable is LP(Q — {A}) given in Figure 13. The set
sm-sp(Q I U) is a proper subset of .wp(Q — {A} I U), this is because any group that is not a
superset of groups of Q is also not a superset of groups of Q — {A} . Also, A is a group of
3w(Q {A} IU) but not a group of .Wcp(Q IU). The set [Cp(Q {A}IU)-31 -4 -9(Q I U)], which
represents the new constraints in LP(Q — {A}), contains only groups that are supersets of
group A. Therefore, LP(Q —{A}) has one less constraint (namely constraint (5)) and several
new constraints that are derived from groups that are supersets of A.

We derive a lemma that shows how to obtain the set of constraints that must be added
to LP(Q) to obtain LP(Q — {A}) so that the solution procedure (Simplex method) can be
continued from the point where it was detected that LP(Q) was not feasible. Let Q\A be
the set of groups obtained from Q by taking the difference of each group of Q and the group
A, i.e.,

Q\A={(G—A)IG EQ}

For instance, let Q = {{1,2}, {1,3},{2,3}} and A = {3}, then Q\A = {{1,2}, {1},{2}}.
The following lemma gives the groups that must be added to LP(Q) to obtain LP(Q — {A}):

38

N
Minimize: E 	q

s.t. 	YGEQ—{A}: Ev g q
gEG

V H .stp(Q — {A}IU) E vh < q — 1
hEH

(6)

(7)

> 0, i = 1,2,...,N

q > 1

Figure 13: LP(Q — {A}): Linear program corresponding to Q — {A}

Lemma A.1: Let Q be a set of groups that satisfy the minimality property, then,

twv9(Q — {A}IU)=.9 . p(QIU)u{GuAIGE.31—ip(((Q — 1/11)\A)IU— A)}

Before we can show Lemma A.1, we need to show the following auxiliary lemma.

Lemma A.2: Let Q be a set of groups that satisfy the minimality property. If G E
-.172((Q — {A})\AI U — A), then G U A E Yirp(Q — {A} I U).

Proof: The proof is by contradiction.

Each group G E Q — {A})\A I U — A) is a subset of U — A and not a superset
of any group of (Q — {A})\A. Suppose there exists a group G such that it is a group in
Ttii5((Q — {A})\A I U — A) and G U A is not a group in :§laTo(Q — {A} J U). Then it must be
that G U A is a superset of some group B E Q — {A} and thus,

BcGUA 	B—ACG

G is a superset of B — A

Since B — A is a group of (Q — {A})\A, this implies that G -.9TAT4(Q — {A})\A I U — A)
and it contradicts the fact that G E .31—sp((Q — {A})\A U — A). ❑

39

The set Titp((Q — {A})\ AI U — A) is the set of groups that are subsets of U — A and
not supersets of any group of (Q — {A})\A. Lemma A.2 states that when we add A to a
group G E ,szp((Q — {A})\AIU — A), the resulting group G U A will not be a superset of
any group of Q — {A} under the universe of nodes U. These are precisely the groups that
will be added to LP(Q) to obtain LP(Q — {A}) which was given in Lemma A.1 above. Now
we can show the correctness of Lemma A.1.

Proof of Lemma A.1: We will show that LHS C RHS and RHS C LHS.

Let X be an arbitrary group in 81.- •(Q — {A} I U). If X E W(Q I U), then LHS C RHS
is trivially true. Let X st;)(Q I U), then it must be that X is a superset of A and X is
not a superset of any group in Q — {A}. We can write X as,

X=YUA

where Y is not a superset of any group in (Q — {A})\A under the universe U — A. Thus,
X which is equal to Y U A is a member of {G U A I G E .31 —sp((Q — {A})\A I U — A)} because

Y E st..)((Q — {A})\A I U — A) and hence LHS C RHS.

Since st(Q I U) c . -11)(Q — {A} I U), we can show that RHS C LHS by showing
1G UAIGE .sp((Q — {A})\A I U — A) c st-7-ip(Q - {A} I U). Let X be an arbitrary group
in {G U A I G E s'ip((Q — {A})\A I U — A), then X can be written as,

X=YUA

for some Y E st—spl(Q — {A})\A I U — A). By Lemma A.2, we have X E .91-47(Q — {A}IU).0

The constraints that must be added when A is removed are derived from groups of the
set {G UAIGE s-Tir)((Q — {A})\A U — A)}. Notice that this set always contains A as an
element because the empty set is an element of TtT((Q — {A})\A' U— A). Lemma A.1 thus
defines the set of constraints that are added to LP(Q) to obtain LP(Q — {A}) when group
A is removed from Q and provides us with a method to convert LP(Q) to LP(Q — {A}).

40

Distributed Computing (1990) 4:69-80 [31127E[11 	[Di
1CDRUNI-111M
0 Springer-Verlag 1990

Fault-tolerant atomic computations
in an object-based distributed system *
Mustaque Ahamad, Partha Dasgupta, and Richard J. LeBlanc, Jr.

School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received December 22, 1988/Accepted February 20,1990

Mustaque Ahamad received his
B.E. (Hons.) degree in Electrical
Engineering from the Birla Insti-
tute of Technology and Science, Pi-
lani, India. He obtained his M.S.
and Ph.D. degrees in Computer
Science from the State University
of New York at Stony Brook in
1983 and 1985 respectively. Since
September 1985, he is an Assistant
Professor in the School of Informa-
tion and Computer Science at the
Georgia Institute of Technology,
Atlanta. His research interests in-
clude distributed operating sys-
tems, distributed algorithms, fault-

tolerant systems and performance evaluation.

Partha Dasgupta is an Assistant
Professor at Georgia Tech since
1984. He has a Ph.D. in Computer
Science from the State University
of New York at Stony Brook. He
is the technical project director of
the Clouds distributed operating
systems project, as well as a co-
principal investigator of Georgia
Tech's NSF-CER award. His re-
search interests include building
distributed operating systems, dis-
tributed algorithms, fault-tolerant
systems and distributed program-
ming support.

Abstract. A distributed system can support fault-tolerant
applications by replicating data and computation at
nodes that have independent failure modes. We present
a scheme called parallel execution threads (PET) which

* This work was supported in part by NSF grants CCR-8619886
and CCR-8806358, and RADC contract number F30602-86-C-
0032

Offprint requests to: M. Ahamad

Richard J. LeBlanc, Jr. re-
ceived the B.S. degree in physics
from Louisiana State University in
1972 and the M.S. and Ph.D. de-
grees in computer sciences from the
University of Wisconsin — Madison
in 1974 and 1977, respectively. He
is currently a Professor in the
School of Information and Com-
puter Science of the Georgia Insti-
tute of Technology. His research in-
terests include programming lan-
guage design and implementation,
programming environments, and
software engineering. Dr. LeBlanc's
current research work involves ap-

plication of these interests in distributed processing systems. As
co-director of the Clouds Project, he is studying language concepts
and software engineering methodology for utilizing a highly reli-
able, object-based distributed system. He is also interested in speci-
fication-based software development methodologies and tools. Dr.
LeBlanc is a member of the Association for Computing Machinery,
the IEEE Computer Society and Sigma Xi.

can be used to implement fault-tolerant computations
in an object-based distributed system. In a system that
replicates objects, the PET scheme can be used to repli-
cate a computation by creating a number of parallel
threads which execute with different replicas of the in-
voked objects. A computation can be completed success-
fully if at least one thread does not encounter any failed
nodes and its completion preserves the consistency of
the objects. The PET scheme can tolerate failures that
occur during the execution of the computation as long
as all threads are not affected by the failures. We present
the algorithms required to implement the PET scheme
and also address some performance issues.

Key words: Fault-tolerant computing — Atomicity — Dis-
tributed systems and replication

70

1 Introduction

Distributed computing systems offer many advantages
which include resource sharing, parallelism and the po-
tential for increased availability due to multiplicity of
components. A distributed implementation of an appli-
cation can exploit the concurrency available in the appli-
cation by executing parts of the computation at different
nodes. However, it is possible that some components
of the distributed system (nodes or communication links)
fail while others remain operational. This could result
in an inconsistent system state where the results of a
computation are reflected at some nodes but not at
others. Atomic actions (we refer to them simply as ac-
tions) provide a mechanism which guarantees that a
computation either completes at all nodes or it has no
effect on the state of the system.

The atomicity property provided by actions masks
failures from users by undoing a partially completed
computation when a failure is detected. This ensures that
the system will remain in a consistent state; however,
actions do not promise forward progress. Thus, though
failures do not cause inconsistent executions, they can
lead to repeated aborts of an action. Although the failure
of an arbitrary set of system components can make pro-
gress impossible, we would like to guarantee that a com-
putation, once started, will complete when not more than
a certain number of node or communication failures oc-
cur in the system. The failures may occur either before
the computation was started or during its execution.

If a data item is replicated at a number of nodes
with independent failure modes then an action that needs
to access the item can make progress even when some
of the nodes where the item is stored have failed. How-
ever, care must be taken to ensure the consistency of
such data replicas. Many consistency maintenance algo-
rithms have been proposed for use with replicated data
[9, 13, 4].

In an object-based system, data is encapsulated in
objects which define the operations that can be used
to access the data. An action may invoke operations
defined by many objects during the course of its execu-
tion. When objects are replicated, it must be ensured
that any replica touched (read or written) by the action
is not outdated. When a node that stores a touched repli-
ca fails, the action must be aborted even when nodes
having other replicas are operational. In this case, the
action can be repeatedly tried until it completes. The
failed nodes can be avoided by the system in successive
tries. However, this increases the time between the start
and completion of the action, which increases the proba-
bility of further node failures occurring during its execu-
tion. An alternative to the sequential repetition is to
replicate the computation of the action. Conceptually,
the action computation is executed by many parallel
threads (a thread represents an independent execution
of the action) and each thread executes as if there is
no replication. The action can be completed when at
least one thread does not encounter failed nodes and
a wirteient number of replicas of each touched object
ate avatiabie. "I -he latter condition is necessary for main-

taining consistency. In this paper, we present such a
scheme which we call parallel execution threads (PET).
The set of parallel threads executing on behalf of an
action are called a PET computation.

The replication of computation in an object-based
system presents problems that do not arise when repli-
cated data is accessed by non-replicated computations.
Since objects are accessed by arbitrary operations, in
the general case, the execution of an operation on an
object can change the state of the object in a non-deter-
ministic fashion. Thus, executing an operation separately
at all replicas even with the same input parameters may
lead to a situation where the states of the replicas are
no longer the same. Such a state can result in inconsistent
executions. In addition, the invocation of an operation
can lead to more nested invocations. These situations
do not arise in maintaining consistency of replicated data
(as opposed to objects) because the only operation that
updates the data is a write (as is the case when files
are replicated). Similar problems do arise when processes
that encapsulate data are replicated.

We describe how replication of data and computa-
tion is handled in the PET scheme, giving rise to an
implementation of fault-tolerant actions in an object-
based system. We present the assumptions about the
system in Sect. 2. The problem of computation replica-
tion is described in Sect. 3. The PET scheme in presented
Sect. 4 and the implementation issues related to PET
are presented in Sect. 5. Sections 6 and 7 address the
correctness and performance of the PET scheme. Related
work is described and compared with the PET scheme
in Sect. 8. The paper is concluded in Sect. 9.

2 System model

We consider replicated computations in an object-based
system. The model used is similar to the one which is
provided by the Clouds operating system [7]. Clouds
supports objects and threads. An object is a persistent
instance of an abstract data type. The data encapsulated
in an object can be accessed by a number of operations
defined by the object. Thus, objects provide storage for
both data and the code to be executed when computa-
tions invoke the objects. To support fault-tolerance, ob-
jects may be replicated.

A computation is executed in Clouds by one or more
threads. A thread is an active entity that can invoke
operations defined by a set of objects, which may reside
at many nodes. The state of an object is defined by the
data encapsulated in it ; threads transform the object
state by possibly changing the values stored in its data
items. We allow non-deterministic operations and hence
when the same operation is executed at two replicas of
an object with identical states, the resulting states may
be different. This has implications on what kind of
schemes can be used for implementing replicated compu-
tations.

We assume objects to be relatively heavy-weight
compared to the notion of objects in the programming
language parlance (e.g. Smalltalk). A Clouds object is

71

a long-lived virtual space and the data defined by the
object resides permanently in its virtual space until the
object is deleted. Objects correspond to entities such as
queues, directories, page maps, text files, database rela-
tions, and libraries; not to fine-grained entities such as
integers. However, an object logically belongs to a single
node even though parts of the object may be temporarily
moved to other nodes. A large amount of data and/or
code that needs to be stored at several nodes should
be viewed as a collection of objects.

We will consider two mechanisms for implementing
invocations of remote objects:

1. An object is invoked at the node where it exists by
a remote procedure call (RPC) mechanism. In this case,
conceptually, the caller thread moves to the node where
the object is stored and hence the computation is distrib-
uted.
2. The invoked object is brought to the invoking node
(via demand paging) and computation proceeds at the
invoking node. This mechanism can be supported by
the distributed shared memory (DSM) abstraction [12]
and is useful in a data servers/workstations environment
in which the objects are stored at the data servers but
the computation must take place at the workstations.

The PET scheme provides fault-tolerance by execut-
ing a computation using several replicated threads. It

guarantees consistency by using quorum protocols and
it uses commit protocols to ensure that changes made
by a single thread are reflected at all touched objects.
To achieve this, substantial amount of communication
overhead is incurred. Although it may be possible to
use it in a wide-area network, it is better suited in a
local-area network environment where hardware sup-
port for multicast can be exploited to reduce the commu-
nication overhead. Furthermore, the latency in the DSM
approach can become unacceptable in a wide-area net-
work. To keep the description of the algorithms simple,
we assume reliable message delivery but it can be easily
seen that in many cases, communication failures can be
handled in a manner similar to failures of nodes. Node
failures are assumed to be fail-stop. Furthermore, we
assume that when an invoked object is at an operational
node, the invocation will return in a fixed time with
a high probability. Thus, timeouts are used to deal with
node or communication failures. Our scheme can deal
with network partitions and we do not require that node
and communication failures be distinguishable.

Each object has a permanent copy on stable storage
which is updated only when a thread commits. Since
the copy of the object in volatile memory is lost when
a node fails, a thread that has not copied its state to
stable storage is aborted when a node it touches fails.

3 Replicating objects and invocations

In the object/thread model, a thread executes by invok-
ing operations of a set of objects which may be stored
at many nodes. When objects are replicated for fault-

tolerance, several approaches are possible for executing
the computation represented by a thread. For example,
a thread can execute with a single replica of an invoked
object. In this case, computation is not replicated and
it will fail if the thread invokes a replica at a failed node
or a node participating in the execution fails before the
thread terminates. Such an approach was used by ISIS
[5] but to provide fault-tolerance, checkpointing and
restart of threads was used. In another approach, compu-
tation itself can be replicated whenever a replicated ob-
ject is invoked. In the CIRCUS approach [6], when a
thread invokes an object having n replicas, n threads
are created and each thread executes with a separate
replica. Thus, the invocation of a replicated object results
in replication of computation. When several objects are
invoked in a nested manner, this can lead to a large
number of threads and a replica can receive multiple
invocation requests when a single invocation is to be
executed. This requires that nodes collate invocation re-
quests and results returned by them. The ISIS and CIR-
CUS approaches can be contrasted in the sense that
one does not replicate computation while the other repli-
cates computation to the maximum possible degree.

The CIRCUS approach offers the advantage that an
invocation of an object can return successfully even when
some of the called replicas are at failed nodes. Thus,
fault-tolerance can be provided without using other
mechanisms such as checkpointing. However, when op-
erations defined by objects are non-deterministic, execu-
tion of an operation at each node separately may not
work because the same operation invoked at two identi-
cal replicas may produce different results. The use of
a single thread as in ISIS does not have this problem
because execution is done at a single node and the updat-
ed state of the replica is copied to other nodes.

Our goal is to provide a method for implementing
computations in an object-based system which has the
following properties.

1. A thread is a basic entity in the system and its imple-
mentation should remain simple and efficient even when
objects are replicated.
2. A computation should be able to complete even when
failures occur either prior to or during its execution. This
can be achieved by using replication, but the system state
and the results returned when a computation completes
must be the same as in a failure-free system that uses
no replication.

We present a scheme that replicates computation to
provide fault-tolerance but works even when object op-
erations are non-deterministic. Our approach is based
on a synthesis of the methods proposed in [5] and [6].
For each top-level fault-tolerant computation, we create
several threads and each thread executes independently
as in a non-replicated environment. Thus, a thread in-
vokes only one replica of each replicated object it
touches. When one or more threads return successfully,
one of them is committed and the rest are aborted. The
details of the scheme, the necessary algorithms and per-
formance issues are considered in the following sections.

Thread i11 , 1 	 Thread Ai,2

Object 01

 (3 Replicas)

Object 02

(2 Replicas)

Object 03

(3 Replicas)

Fig. 1. Parallel execution threads

72

4 The PET scheme

In the PET scheme, which is intended to be used in
a system that replicates objects, a computation is execut-
ed by a number of parallel threads. Each thread begins
execution by invoking the same operation of an object
but further invocations may be different because object
operations can be non-deterministic. The execution of
a thread proceeds as if there is no replication of objects
because a single replica of each invoked object is used
by the thread.

We denote by 	 fl) the jth thread of the PET
computation A.. The node where the computation A i
starts is called its coordinator and we denote it by C(A i).
C(A i) decides the number of threads to be created and
chooses a node for each thread where its execution be-
gins. We call this node the home of the thread and use
H(A,, i) to refer to the home node of thread A 1 , ; . When
/1 1 , i invokes an object, a single replica of the invoked
object is chosen (see Sect. 5.1). A i , i executes with a copy
of the replica which is obtained from the permanent state
of the replica. Also, the thread does not request any
locks at this time and hence can execute without delay
when the node is operational (locks are obtained when
a thread is committed). If all, nodes where replicas in-
voked by A 1 , ; exist are operational and this thread can
get access to the replicas, then 24 1 , completes and returns
success to its home node H(A i , j). We use 01 to refer
to the rth replica of object

In Fig. 1, two threads are created for executing the
computation A i which begins execution by invoking an
operation defined by object 0 1 . The replica of 0 1 invoked
by each thread is chosen from the replicas that exist
at nodes which are thought to be operational using a
scheme considered in a later section. Since each thread
executes as if there is no object replication in the system,
no further parallel threads are created when the threads
invoke objects 02 and 03 . In the example, both A 1 , 1
and A 1 , 2 invoke the same set of objects but they execute

with different replicas of each object. The latter may not
be possible when the scheme used to choose replicas
does not know about the replicas that have been invoked
by other threads of the same action or when the degree
of replication of an invoked object is smaller than the
number of threads. In such a case, we allow multiple
threads belonging to the same action to invoke a single
replica.

Although the PET computation is executed by many
threads, its result should be the same as if a single thread
executed the computation in a failure-free environment.
Since the execution of each thread may not be identical
because of non-deterministic operations, the PET com-
putation should be completed by committing a single
thread and undoing the effects of all other threads. A
thread that returns successfully to its home node may
not be able to commit when it is chosen to do so because
failures can occur after the thread returns to its home
node. To provide fault-tolerance, the commit protocol
used by the PET scheme must try to commit threads
until it is successful or all threads encounter failed nodes
while invoking the replicas or in the commit phase. In
the latter case, the PET computation is aborted.

We take an optimistic approach in which at invoca-
tion time, a thread only needs to get access to a single
replica and not be aware of the other replicas of the
object. To preserve consistency of objects, concurrent
PET computations must be synchronized with respect
to each other. Furthermore, the changes to the state of
each object cannot just be applied to a single replica,
rather, they have to be reflected at other nodes where
replicas of the object exist. We use a quorum-based
method [9] for synchronization and copy the updated
replica to nodes which store other replicas of the object.
Since updates made by a single thread are copied to
other nodes, non-deterministic execution does not pres-
ent any problems. Furthermore, the quorum method en-
sures consistency even when the network is partitioned.

5 Implementation of PETs

The implementation of the PET scheme requires algo-
rithms for choosing the replicas to be invoked by a
thread, for synchronization of the threads, and for propa-
gation of replica states when a thread is committed. Since
the execution of each of the threads proceeds as if there
is no replication, either RPC or the DSM mechanisms
can be used to implement it. When RPC is used, the
thread computation is done at each of the nodes where
a replica touched by the thread is stored. In the other
case, the computation is done at a single node but it
uses replicas which are stored in stable storage at other
nodes. The algorithms are similar for both mechanisms,
any differences will be considered in the following discus-
sion.

5.1 Choosing a replica

When a thread invokes an object, the choice of the repli-
ca of the called object for executing the invocation can

affect the number of failures that can be tolerated by
the action. If the object has been previously invoked
by the thread, the replica that was used for the earlier
invocation must be chosen for correct execution of the
thread. Otherwise, though it is possible to choose any
of the replicas that exist at nodes thought to be opera-
tional, a better scheme will choose one that permits a
greater number of failures to be tolerated. Since the fail-
ure of a node where an already touched replica exists
will abort the action, it is better to choose a replica
at one of these nodes, thus minimizing the number of
nodes touched by the thread. If such a replica does not
exist then the chosen one should be at a node that is
not touched by other threads, thus minimizing the
number of threads aborted by the failure of a single node.
We propose the following scheme for choosing replicas.

1. If the object was invoked by the thread previously,
use the same replica that was used before to execute
the invocation.
2. Otherwise, if a replica exists at the node where the
thread is currently executing, the invocation is executed
using the local replica of the called object.
3. Otherwise, determine if a replica exists at any of the
nodes already touched by the thread. If such a node
exists then use the replica at that node.
4. Otherwise, choose the replica at a node that is thought
to be operational and has been touched by the smallest

number of other threads of the same action. (This may
not be known accurately and hence the decision must
be based on what is known to the caller node. The cor-
rectness of the PET scheme does not depend on the accu-
racy of this knowledge.)

The proposed scheme is applicable in both cases
when the computation is distributed (RPC) and also
when it is done at a single node (DSM). In the first
case, since the computation is distributed at nodes where
touched replicas are stored, minimizing the number of
such nodes increases the probability that the thread is
not aborted due to a failure. In the second case, all repli-
cas are brought at a single node and the computation
is done locally. However, the replicas should be stored
at their source nodes at the time the thread commits.
This is necessary in a workstation/data server environ-
ment where the workstations do not have enough stable
storage or are diskless. Thus, again, minimizing the
number of nodes that participate in the execution of
a thread provides a higher degree of fault-tolerance.

5.2 Invocation of a replica by multiple threads

It can be seen that when the above scheme is used to
choose a replica, more than one thread of an action
may invoke the same replica. Since object operations
can be non-deterministic, the calls to the replica can have
different parameters and hence cannot be collated; they
must be executed separately. For this purpose, we use
the following scheme. The two threads are treated as
different computations and when a thread invokes the
replica for the first time, it is given a copy of the replica

73

state from stable storage which it uses for all calls. We
can do this because threads belonging to the same action
do not need to communicate or share. Thus, each thread
works with its own copy of the replica. When one of
these threads is committed, the copies belonging to the
aborted threads are discarded.

A number of volatile copies of a replica will be creat-
ed at a node where a replica is invoked by multiple
threads of a PET computation. These copies must be
retained until the PET computation terminates because
any future invocation by a thread must execute with
its volatile copy. The use of techniques such as copy-on-
write can reduce the storage cost since only those parts
of the replica that are updated need to be stored sepa-
rately.

5.3 Committing a PET computation

Consider a PET computation that has been started as
a set of n threads. These threads start executing at their
home nodes and some of the threads return successfully.
We now describe the commit protocols which can be
used to ensure that the results of a single thread are
applied to the replicas of the objects invoked by that
thread.

The commit protocol takes any one completed
thread, and for each object touched by the thread, it

tries to apply the updates made by this thread to a ma-
jority of the replicas of the object (copying from the
updated replica is used for this purpose). This is done
atomically, and all the other treads are aborted. Since
the PET computation can be completed successfully if
a single thread can be committed, the commit can be
done sequentially, that is try to commit one thread, and
if it fails, repeat the same for another thread. This can
also be attempted in parallel; that is, try to commit all
the threads, and finally elect one of the successful
threads and apply its updates. The sequential commit
is simpler and cheaper because the protocol necessary
to do it can be executed by the coordinator node. How-
ever, it requires that the coordinator remain operational
until the PET is committed. A decentralized commit pro-
tocol can be used to tolerate failure of the coordinator.
We discuss both types of protocols.

To commit a thread, we first make a list of the objects
touched by the thread, regardless of whether the object
replica was read or updated. This list (and a list of nodes
visited by the thread) can be built as the thread traverses
various replicas and it can be returned to the home node
of the thread when the invocation returns. We then ob-
tain quorums for each of the touched objects [9]. A
quorum is obtained if at least a majority of votes are
collected and the replica touched by the thread has the
latest version number. When there are few failures (the
typical case), the number of nodes that respond to a
quorum request will be higher than a majority. In the
commit protocol, the replica state is updated at all these
nodes. This is done to maximize the likelihood that
threads execute with the most up-to-date state of an in-
voked object. Since a thread touches a replica without

74

checking if it is current, updating as many replicas as
possible will increase the probability that replicas
touched by the thread are not found to be outdated
when the quorum is collected.

We choose majority quorums for both read and up-
date operations to provide maximum fault-tolerance for
both types of operations. When operations that only
read are more frequent, a smaller read quorum can be
used to reduce the cost of implementing them. However,
the fault-tolerance for update operations will decrease
because a higher write quorum will be required. If a
lesser degree of fault-tolerance is acceptable for update
operations then a smaller quorum for read operations
can be used when most operations are of the type read.
Thus, an arbitrary quorum assignment can be used in
place of the quorum used in this and the following sec-
tions.

After all the quorums are successfully obtained, the
updates to replicas touched by the thread are propagat-
ed. This is done by copying the updated state of the
touched replica to the corresponding state of all replicas
that constitute the quorum for the object. Note that we
could have obtained a read quorum when the object
replica was touched, and a write quorum when the repli-
ca is finally updated. We choose to use an optimistic
approach and obtain quorums only after the execution
of the thread has terminated. Thus, the quorum collec-
tion is done only for committing threads and not for
all threads of a PET computation.

A node starts quorum collection for an object by
sending a message to all nodes that store replicas of
the object. This message identifies whether the quorum
is being collected for a read or write operation. An opera-
tional node responds to such a request by sending a
response and it also places a lock on the replica. A read
lock is placed when the quorum collection is for a read
operation, otherwise a write lock is placed. A node re-
sponds only when the appropriate lock can be obtained.
For example, if some thread belonging to a different
computation already has a write lock on a replica, the
node will not respond to quorum requests for threads
of other computations until the write lock is released.
Since read locks can be granted to any number of threads
belonging to the same or different computations, a node
can respond to a read quorum request immediately when
a write lock does not exist on the replica. Thus, read
locks by different threads are compatible. Furthermore,
write locks are compatible when they are requested by
threads of the same computation. If a write lock is
granted to thread A i , i and then a write or read quorum
request arrives from A ,, k (Ai , i and Aid, both belong to
the same computation A i), then also the node can re-
spond to the request. We can do this because only one
of the threads will commit successfully. Notice that no
lock is placed on a replica when it is touched. A lock
is placed only when a quorum request is received.

Let RT(A,, i) be the set of replicas which have been
invoked by thread A,, ; . We also define the set of objects,
0 T(A,, ;), which are invoked by the thread as follows.

OT(A i , j)= {01 101 , r e RT(A,, j)}

Each replica 0/ , r of object 01 has a version number,
VN (0 1 ,) associated with it. All version numbers are set
to zero when the replicas are created and VN(0 1 ,,.) is
incremented each time a thread that updated 01,, is com-
mitted.

Centralized commit protocol. We assume a PET computa-
tion A i is under execution. At some point, a thread 21,,. ;

 completes by returning to its home node H(A,, i) which
informs the coordinator node C(A,) of the completion
of the thread. Suppose A i , is the first thread to notify
C(A,). Now C(A,) executes the following steps to see
if the thread can be committed. The algorithm used is
a general version of the 2-phase commit protocol.

• C(A,) sends a pre-commit message to nodes where
replicas in RT(A,, J) are stored. On receiving a message,
each node creates a stable version of its data segment(s)
of the replicas in RT (A id) and replies with a positive
acknowledgement.
• If all nodes that store replicas in RT (A i , j) reply with
positive acknowledgements, C(A 1) proceeds, else it aborts
this thread (as in the pre-commit phase of the 2-phase
commit protocol). If no message is received from a node,
the coordinator timeouts and assumes a negative ack-
nowledgement (assumes that the node has failed).
• Now, C (A,) must collect quorums for touched objects.
This is done by sending a request to all nodes that store
replicas of each object touched by the thread. That is,
the request is sent to nodes where replicas in
{01 ,,.10i e 0 T(A,, i)} are stored. The quorum message re-
quests a read lock for object 0, if the thread did not
update the object state. Otherwise, a write lock is re-
quested. If a lock cannot be obtained due to a conflict,
then the quorum request is kept pending. When the lock
is obtained, then the node having replica 0, , r replies to
this request with the version number VN(0,,).
• The coordinator is successful in getting the quorum
if:

V 01 e 0T (A i, ;) {CARD (Qset) > MAJ (WI

Where CARD denotes the cardinality,

Qset = {0/ „.1 VN(0 1 , r)_VN (0,,,) 01 ,,E RT (A i , ;)}

and MAJ (01) = CARD ({O/ , J)/2 -1- 1.

That is, for all the objects touched by the thread, at
least a majority of the replicas should be in the quorum
with appropriate locks placed on them, and the version
numbers of these replicas must be less than or equal
to the version number of 0,, „ the replica touched by
A,, J . Since at least a majority of the replicas of an object
and their version numbers are updated when a thread
commits, the version numbers of replicas not in the quor-
um cannot be higher than VN(0,,). Thus, when a quor-
um is collected successfully, A,,. ; has executed with the
most up-to-date state of the object.

• If the quorum cannot be collected, the thread is
aborted and the locks are released by sending a message
to the nodes that responded positively to the quorum

75

request. Otherwise, the coordinator records this on stable
storage and for each object in OT(A,, i), it asks the nodes
that participated in the quorum to commit. Let t denote
the replica of 0, that is touched by the thread A i , ; of
PET A i which is being committed. That is, if Ol e OT(A i , j)
then 01 ,,ERT(A i , j). The commit is done as follows.

for all {01 ,, I node storing 01 ,, participated in the quorum}

if r t then the data segments of 01,, are replaced with
the data segments of 01 ,„ and the version number of
0/ , is set to the new (incremented) version number
of 01,,.

if r = t then the pre-committed version is made perma-
nent and VN(0,,,.) is incremented.

The state of a touched replica is made permanent
and this state is propagated to the replicas that consitute
the quorum. The version number of each updated replica
is set to the new version number of the touched replica.
The failure of a node that participated in the quorum
before the termination of the commit protocol will delay
the completion of the commit protocol until the node
recovers even if a majority exists without it (the protocol
can be easily modified so it can terminate when the state
has been propagated to a majority of nodes). Since the
locks are recorded in stable storage and the segments
of touched replicas are also stored in stable storage at
the nodes where the thread executed, the replica state
will be propagated when nodes recover from failures.

If A o is aborted, any nodes that sent messages are
informed so they can release locks. The coordinator
waits for another thread to complete and repeats the
algorithm. When a thread is committed, the coordinator
informs the home nodes of remaining threads, which are
then aborted. If all threads get aborted, the PET fails.

In the above algorithm, the decision to commit or
to abort a thread is made when the quorum is collected.
The locks prevent any of the participants in the quorum
from responding to conflicting quorum requests of other
computations. If messages get lost, the participants re-
main blocked and have to check back with the coordina-
tor after timeouts. If the coordinator fails during commit,
the home nodes of completed threads may have to wait
for the coordinator to become operational again. The
decentralized commit protocol avoids this by allowing
the home nodes to coordinate between themselves to
reach a decision.

Decentralized commit protocol. The decentralized commit
protocol does not require that the coordinator remain
operational until a thread is committed. The coordinator
starts the computation at the home nodes but does not
have to participate in the committing of a thread. Each
home node receives a list containing all the home nodes
of the threads that execute the PET computation. The
home node of thread A i , ;, H(A i , j) takes the following
actions when A i returns successfully.

• H(A i , ;) sends a pre-commit message to nodes storing
all replicas touched by the thread A i 1 , that is RT(A i , j).
A node responds to such a message immediately. If

H(A i , J) does not receive a response from some node then
it assumes that the node has failed and the thread is
aborted. This decision is recorded by H(A i , j).

• When all nodes storing replicas in RT(A f , j) respond
positively, H(il f , i) attempts to obtain a quorum. The
quorum is obtained in the same way as before. Since
a lock granted to a thread does not conflict with threads
of the same PET computation, each replica may partici-
pate in the quorum of many threads of a single PET
computation.

• If H(A i , j) succeeds in obtaining a quorum, it asks
nodes that store replicas in RT(A i, ;) to propagate the
updated data segments of the touched replicas to the
replicas participating in the quorum. Since each replica
may participate in several quorums, it is possible for
it to receive several different data segments. It stores
all these data segments separately, tagged by the thread
identifier. It is not required that the data segments be
stored in stable storage.

• After successful state propagation, H(A,, i) decides to
attempt to commit A i , J . At this point, we use an election
protocol [8] among all H(A,, k) such that fli , k has com-
pleted. The elected node is chosen to be the candidate
for commit, and it executes a 2-phase commit with the
participants in its quorum as the cohorts. The cohorts
make the state of the committed thread permanent, and
discard any data segments received from other threads.

• If the elected node fails, or is unable to commit be-
cause a node in its quorum fails, an election is conducted
again and the new winner is chosen from the home nodes
of the remaining threads. This is repeated until a thread
is committed. If all home nodes fail or are unable to
commit their threads, the PET fails.

After successful commit of A i , ; , 11(A,. ;) informs all
the other home nodes, which abort the threads con-
trolled by them.

The decentralized commit protocol uses a greedy al-
gorithm since it attempts to propagate the states of all
completed threads before making the commit decision.
On the other hand, the centralized commit protocol
takes a lazy approach for state propagation since it is
done only after a commit decision has been reached.
The greedy state propagation requires that a larger
number of messages are sent but it commits a thread
when the centralized commit protocol cannot do so be-
cause of a particular sequence of failures. Several varia-
tions in between these two algorithms can be easily de-
rived. Also, many optimizations are possible in the algo-
rithms presented in this section.

We use an optimistic approach and do not lock repli-
cas constituting a quorum set at the time a replica is
invoked. Therefore, it is possible that threads executing
on behalf of two actions can execute with different repli-
cas of an object and consequently neither of them can
collect the required quorum. In this case, both coordina-
tors will abort after a timeout period because they will
assume that the nodes that do not respond have failed.
Thus, timeout by the coordinators prevents deadlocks.

76

6 Correctness

The correctness of the PET scheme will follow if it can
be shown that the execution of an action is single-copy
serializable with respect to other actions. Furthermore,
the state of the object replicas resulting from the action
using PET should also be obtainable when the action
is executed by a single thread. Since an action commits
when a thread is committed after collecting an appro-
priate quorum, one-copy serializability follows. We do
allow conflicting locks on a replica to be granted simulta-
neously to threads of the same computation. This does
not affect correctness because the commit protocols en-
sure that a single thread is committed even when quor-
ums are obtained by home nodes of multiple threads.

The permanent state of the replicas is changed only
when a thread commits and since a single thread is com-
mitted, the result is the same as if the action was executed
by a single thread when no communication takes place
between the different threads. If two threads do not in-
voke a single replica then there will be no communica-
tion between them. In the case when a common replica
is invoked, each thread gets a private copy from the
single permanent state of the replica and works with
its own copy. Thus, there cannot be any communication
between them. The PET scheme can handle non-deter-
ministic computations because the effect is the same as
if a single thread executes the action.

7 Performance issues

The system is available to an action if for each object
touched by the action, the number of replicas of the
object at operational nodes is equal to or greater than
the number required for the completion of the action.
Availability, which is used as a measure of fault-toler-
ance, is defined as the steady state probability of a system
being available to an action. Using the quorum consen-
sus method, an action can commit only if the set of
operational nodes that store replicas of an object
touched by the action constitute a quorum. Thus, when
the quorum is q, the availability of an object to the action
is limited by the probability of having at least q replicas
at operational nodes. To be able to tolerate maximum
number of failures for both read and write operations,
the value of q is set to the majority of N, which is the
total number of replicas of an object. Thus, we define
system availability as the steady state probability of hav-
ing at least a majority of replicas at operational nodes.

In a system state in which each object invoked by
an action is available (at least a majority of its replicas
are at operational nodes), the scheme used for executing
the action should be able to commit it when problems
such as locking conflicts do not arise. In the PET scheme,
this may not be possible if all threads of an action en-
counter failed nodes. Thus, an action is committed with
the probability that at least one thread does not invoke
a replica stored at a failed node. It can be easily seen
that as the number of threads is increased, this probabili-
ty will increase because each thread tries to execute with

a different set of replicas. Since each thread makes re-
mote calls (when necessary) independently of others, the
communication cost of executing the action computation
will increase with the number of threads. In this section,
we develop a simple model to estimate the number of
threads that need to be created to achieve a given degree
of fault-tolerance. The communication cost of the PET
as well as other schemes is considered in Sect. 8.

7.1 Number of threads

If each node in the system has up-to-date information
about failures and the operational nodes constitute a
quorum for each object to be touched by a thread, a
single thread can execute with available replicas and the
action can be committed when no transient failures occur
(nodes storing replicas touched by the thread do not
fail before it is committed). The use of multiple threads
by the PET scheme guards against transient failures
while not requiring accurate information about failed
nodes because each thread potentially executes with a
different set of replicas.

We use a simple model to study the relationship be-
tween the probability of committing an action and the
number of threads. We assume that the steady state
probability of a node being operational is p. We also
call p the reliability of each node. Let Psue (X, N, 1, m)
be the probability of committing an action when each
object is replicated at N nodes, 1 nodes are visited by
a thread and m threads execute the PET computation.
The parameter denotes the scheme used for choosing
replicas invoked by a thread which has an impact on
the probability of success. The action can be committed
only when at least one of the m threads returns success-
fully (it invokes replicas which are at operational nodes)
and quorums are available for objects touched by the
threads. To make the analysis feasible, we will compute
Psue (R, N, 1, m) where M is the scheme in which a node
storing a replica of the invoked object is chosen random-
ly when such a replica is not available at the nodes al-
ready visited by the thread. Thus, each replica is chosen
with the same probability and no information about cur-
rently operational nodes is needed. It can be easily seen
that /L c N, 1, m) Psuc q, N, 1, m), where 99 is the
scheme described in Sect. 5.1. Thus, Ps„, , N, 1, m) pro-
vides a lower bound for Psue (.9', N, 1, m), and typically
the number of threads required to get a certain level
of fault-tolerance will be smaller than the number de-
rived from the analytical results. We also assume that
when a thread touches replicas of two objects which
are at different nodes, the sets of nodes storing replicas
of each object are disjoint. This implies that such objects
are replicated at nodes with independent failure modes.
This allows us to assume that the probabilities of success-
ful quorum collection for objects invoked at different
nodes are independent. It may not be true for real sys-
tems but Psuc (g N, 1, m) will still be a lower bound for
ps,, e (Y, N, 1, m) when the assumption is relaxed.

Let 1 be the number of nodes at which a given thread
executes. (In the DSM approach, 1 is the number of nodes

• 77

that supply replicas to the thread.) With the assumptions
that objects invoked on different nodes do not have repli-
cas at common nodes and when N = 2 k +1, the probabil-
ity of success is,

13,„c (R, N, 1, m)
N 	N 	 N

=Pilaff- E 	E 	Q.,_,
n1--=k+1 n2=k+1 	ni=k+1

(i - n N

where

Prnai = 	(1\1) 114 (1 - p)N "'
nr=k+1 n i

and

Q., =() P"' (1 P)N ni

A detailed derivation of Ps„c (-1, N, 1 , m) can be found
in the Appendix.

Table 1 shows Psuc for various values of m when 1=1
(replicas of objects invoked by a thread are available
at a single node). To illustrate how guc depends on the
degree of replication, N, and the reliability of each node,
p, several combinations of values for these parameters
are considered. We see that when N =3 and p= 0.9 (on
the average, each node is operational 90% of the time),
the probability that a single thread can be used to com-
plete the computation successfully is 0.891. This proba-
bility is slightly lower than p because not only the node
storing the chosen replica must be operational but a
quorum must also be available for successfully complet-
ing the computation. It can be seen from the formula
for Ps„, that when / = 1, the probability of success is
bounded by Pmaj which is the probability that quorum
is available. For N = 3 and p= 0.9, Pmaj is 0.972 and it
is not necessary to create a large number of threads to
achieve a probability of success close to Pmaj . Puy > 0.96
even when p= 0.9 and three threads are used to execute
the action. This is true for both N = 3 and N = 5. If
p = 0.99, psuc > 0.998 when three threads are used to exe-
cute the computation. Since nodes are highly reliable
in practical systems, it is not necessary to have a large
degree of replication to ensure that a majority of replicas
are available with a very high probability. It can be seen
from Table 1 that in such systems, a PET computation
can be committed with a probability that is close to
the availability of the system with a modest number of
threads.

In Table 2 we illustrate the impact of distribution
on ps„, by considering the case when 1=3. Thus, each
thread executes at 3 different nodes because replicas of
the objects invoked by the threads are distributed. There
are several reasons why replicas of all objects cannot
be stored at a single node. These include limitation on
storage space at each node, ownership of objects and
the need to keep them at nodes where they are used

Table 1. Puy for 1=1

Number
of
threads
(m)

PR

N =3 N =5

p=0.9 p =0.99 p=0.9 p=0.99

1 0.8910 0.98990 0.89667 0.98999
2 0.9450 0.99643 0.96665 0.99791
3 0.9630 0.99861 0.98415 0.99954
4 0.9690 0.99933 0.98904 0.99988
5 0.9710 0.99958 0.99058 0.99996

Table 2. P for 1=3

Number
of
threads 	N =3 	 N=5
(n)

p = 0.9 p=0.99 p=0.9 p=0.99

1 0.70734 0.97000 0.72093 0.97028
2 0.82831 0.98908 0.87691 0.99338
3 0.87683 0.99559 0.93195 0.99839
4 0.89772 0.99783 0.95417 0.99955
5 0.90742 0.99862 0.96412 0.99984
6 0.91225 0.99891 0.96893 0.99992

most often. It can be seen that a higher number of
threads are necessary for achieving a given probability
of success for a PET computation when 1 is increased
from 1 to 3. Since Psue is the probability when the replica
to be used by a thread is chosen randomly, we see that
when p -= 0.9 and N = 3, a computation executed by a
single thread will complete successfully only with proba-
bility 0.707. This is due to the fact that all three nodes
chosen to execute the thread computation must be oper-
ational and quorums must be available. In fact, Pita; ,
which is the probability that quorums are available for
all objects is only 0.918 for this system. The probability
of success can be made close to 0.918 by using 5 threads.
When each node is highly reliable (p = 0.99), we see that
Rue will be greater than 0.995 when the number of
threads in 3 and each thread invokes replicas stored at
3 nodes (in this case, gni a is 0.9991). Similar conclusions
can be drawn about the system when N = 5.

Since 	N, 1 , m)Ps„c (R, N, 1, m), the number of
threads required to get a desired probability of success
will be no greater (and usually less) when the scheme
of Sect. 5.1 is used to choose replicas. For example, in
a system with p =0.9, N = 3 and 1=2, it can be seen
from the formula for Rue that 3 threads are needed to
ensure that Ps„, is higher than 0.90. However, if no two
threads invoke replicas stored at the same node (the
scheme of Sect. 5.1 tries to ensure this), gue >0.90 can
be achieved with only 2 threads for the same values of
p, N and 1. This can be shown easily because if quorums
are available, both threads will fail only when one replica
of each invoked object is at a failed node (since 1=2,
objects at two distinct nodes are invoked). Since two
threads do not invoke the same replicas, each thread

78

must invoke replicas at one operational and one failed
node. In this case the probability of success is greater
then 0.92 which is much higher than .13,„c (R, 3, 2, 2)
= 0.887.

When the DSM mechanism is used to implement
object invocation in a workstation/data server environ-
ment, a thread will complete successfully if its home node
and the data server nodes that supply replicas used by
the thread do not fail. Since the number of data servers
is small, each data server will contain replicas of most
objects when the degree of replication is high. If all repli-
cas used by a thread are available at a single data server,
only two nodes will be touched by a thread when scheme
9' is used (home node and a data server) and hence
1= 2. In such a system, fewer threads will be needed be-
cause I will be smaller.

The analysis presented in Sect. 7.1 for the steady
state, but in practical systems, there are periods when
a large number of failures occur followed by a relatively
stable operation of the system. If information exists
about the frequency of failures, it can be used to decide
the number of threads that need to be created. In many
distributed systems, there exists a monitoring service that
allows each node to maintain approximate information
about the state of other nodes. For example, in Clouds,
such information is already maintained for reconfigura-
tion purposes. If the node where an action originates
believes (based on the information available at it) that
there are no or a very small number of failures, it can
create a small number of threads. This will reduce the
computation and communication load in the system. On
the other hand, if there are many node and link failures,
a large number of threads should be created to avoid
the failed nodes and links. Similarly, the use of a large
number of threads is desirable if an action must commit
with a very high probability. Thus, not only can the
system use the available state information to reduce com-
munication and computation costs, but the PET scheme
also provides a trade-off between the degree of fault-
tolerance and its cost (computation and communication).

8 Comparison with related work

A large number of algorithms have been proposed to
maintain the consistency of replicated data but most of
them do not address the problems that can arise when
computation is also replicated. In this section, we only
describe the ones that address the object and computa-
tion replication problem in distributed systems. Other
schemes such as multi-version programming (e.g., triple
modular redundancy [2]) which have been proposed for
handling program faults are also not discussed.

• Replicated programs in CIRCUS
The CIRCUS system [6] addressed the problem of repli-
cated distributed computation. In CIRCUS, when a call
is made to a program module that has n replicas, n paral-
lel threads are created and each executes independently
with a single replica. It can be easily seen that the caller
can receive multiple results, and hence it must collate

them. Furthermore, a replica can receive a call multiple
times when the caller module is itself replicated and
hence the callee also needs to collate. In the PET scheme
each thread executes as if there is no replication, thus
the collation problem does not arise. Furthermore, the
CIRCUS scheme requires that the computation defined
by each replica be determinisitc because the changes in
the state of the replicas are done by executing the opera-
tion independently at each replica. This is not required
by the PET scheme because it commits a single thread
and the effects of the other threads are undone. Thus,
it can be used even when computations are non-deter-
ministic.

The CIRCUS scheme has a high communication over-
head because the number of messages needed to execute
a replicated computation will be 2N 2 1 (N is the degree
of replication and there are 1 nesting levels) because each
caller replica will invoke all the callee replicas. On the
other hand, in the PET scheme only 21m messages are
generated for executing the m threads. For guaranteeing
atomicity and consistency, CIRCUS requires that each
server communicate with the clients to determine if the
results of the computation should be committed. This
is done by using the same mechanism except that the
servers make replicated calls to the clients and hence
the additional communication cost of the commit algo-
rithm is 2N 2 1. In the PET scheme, quorums and a com-
mit protocol are used to ensure atomicity and con-
sistency. The overhead of these algorithms for commit-
ting a thread will be less than 4 NI. Although the PET
scheme does need to send the updated state of modified
replicas, that is made necessary because we want to han-
dle non-deterministic computations.

• Fault-tolerant distributed objects
The algorithm presented by Birman [5] for implement-
ing fault-tolerant objects does not replicate the computa-
tion when a call is made to a replicated object 0. The
call is executed at a single node called the coordinator.
If the execution of the call changes the state of 0, the
replica at the coordinator is copied to all other nodes
where O's replicas exist. If a node fails while it is execut-
ing the operation on 0, another node where a replica
of 0 exists is chosen to execute the operation. To ensure
forward progress, the coordinator sends periodic check-
points to other replicas and hence a new coordinator
can resume a partially completed computation. The fail-
ure of the coordinator must be detected and a single
other node must be chosen to execute the operation.
Algorithms for checkpointing and finding another node
that can resume a computation after a failure are not
required by the PET scheme but an action needs to be
restarted when all threads encounter failed nodes.

The execution of a computation in ISIS in done by
a single thread which requires 21 messages but there
is an overhead of sending checkpoints to all operational
nodes that store replicas of an invoked object (other
messages are needed to inform nodes when they can
discard retained results of calls). The checkpoints can
be sent infrequently when there are few failures but in

79

such a case, the PET scheme can also use fewer threads.
In ISIS as with PET, a commit protocol is used when
an action completes. Although the overhead of collecting
quorums is not there, the concurrency control scheme
which is based on the available copies method [4] cannot
deal with network partitions. The available copies meth-
od can be adapted to the PET scheme but quorums
allow it to tolerate partitions.

• Fault-tolerant RPC
The scheme presented by Yap et al. [14] for fault-toler-
ant RPC avoids the collation problem of CIRCUS by
sending a call to a process associated with the primary
replica of a module. However, the call must be executed
by each replica sequentially before the primary is allowed
to return the results. Although the communication cost
of executing a computation is 4N1, it can only be used
when computations are deterministic and network parti-
tions do not occur.

• View-stamp replication
The view-stamp replication algorithm [11] can be used
in a system that replicates objects. In this scheme, opera-
tion calls are sent to a primary which then propagates
the relevant events to other replicas. These updates can
be normally sent asynchronously. However, there is a
single execution thread and failure of an invoked primary
leads to an abort of the action. Other transient failures
may be tolerated depending on the new view that results
from the reorganization. Similar to the PET scheme,
when nodes storing a majority or more of the replicas
have failed, actions cannot be committed. Since an action
can only be committed when a view contains at least
a majority of the replicas, the communication cost asso-
ciated with propagation and committing the action is
similar to the PET scheme.

In all schemes other than the view-stamp and PET,
the communication cost of executing the computation
depends on N which can only be changed by reconfigur-
ing the system by changing the number of replicas (such
a cost may be incurred by the view-stamp algorithm
for propagating the state even when the action is
aborted). The PET scheme offers the advantage that this
cost can be controlled at the time the action is created
because it depends on the number of threads and not
N. The cost of the quorum and commit protocols and
state propagation does depend on N but these are
needed with the assumption about the system. Non-de-
terministic computations require that changes to objects
must be copied at other nodes and network partitions
require communication with a majority of the nodes.
A scheme presented in a recent extension [10] of our
earlier work [1] also has some of the advantages offered
by the PET scheme. It presents similar algorithms for
choosing replicas and a commit protocol.

9 Concluding remarks

An object-based distributed system can use object repli-
cation to provide fault-tolerance. If computation of an

action is not replicated in such a system, the action will
fail when it either invokes a replica at a failed node
or a node fails during the execution of the computation.
This leads to an abort of the action. The PET scheme
reduces the probability of an action being aborted due
to failures by replicating the computation. The scheme
is simple because each computation thread executes as
if there is no replication. Furthermore, the computation
and communication costs of executing a fault-tolerant
action will be higher only if a greater degree of fault-
tolerance is desired.

The implementation of the algorithms required to
support the PET scheme will be undertaken after the
basic system objects that support the Clouds operating
system functions are implemented. The Ra kernel, which
will provide the necessary mechanisms to support the
system objects, has already been implemented [3] and
debugged. In future, we want to explore the implementa-
tion of fault-tolerant services using the PET scheme.

References

1.Ahamad M, Dasgupta P, LeBlanc R, Wilkes T.: Fault-tolerant
computing in object based distributed operating systems. In:
Proc 6th Symp on Reliability in Distributed Systems, March
1987

2.Avizienis A: The n-version approach to fault-tolerant software.
IEEE Trans Software Eng 11(12): 1491-1501 (1985)

3. Bernabou Auban JM, Hutto PW, Khalidi MYA, Ahamad M,
Appelbe WF, Dasgupta P, LeBlanc RJ, Ramachandran U: The
architecture of Ra: a kernel for Clouds. In Proc 22nd Annu
Hawaii Int Conf on System Sciences, January 1989

4. Bernstein PA, Goodman N: An algorithm for concurrency con-
trol and recovery in replicated distributed databases. ACM
Trans Database Syst 9(4):596-615 (1984)

5. Birman K, Joseph T, Raeuchle R, El Abbadi A: Implementing
fault-tolerant distributed objects. IEEE Trans Software Eng
11(6):502-508 (1985)

6. Cooper E: Replicated distributed programs. In: Proc 10th
ACM Symp on Operating Systems Principles, December 1985

7. Dasgupta P, LeBlanc RJ, Appelbee W: The Clouds distributed
operating system. In: Proc Int Conf on Distributed Systems,
June 1988

8.Garcia Molina H: Elections in a distributed computing system.
IEEE Trans Comput C-31(1):48-59 (1982)

9. Gifford D: Weighted voting for replicated data. In: Proc 7th
Symp on Operating Systems (Pacific Grove, California). ACM,
December 1979

10.Ng TP, Shi SSB: Replicated transactions. In: Proc 9th Int Conf
on Distributed Computing Systems, pp 474-480. IEEE, June
1989

11.Oki B, Liskov B: Viewstamped replication: a general primary
copy method to support highly-available distributed systems.
In: Proc 7th Symp on Principles of Distributed Computing,
August 1988

12.Ramachandran U, Ahamad M, Khalidi MY: Unifying synchro-
nization and data transfer in maintaining coherence of distrib-
uted shared memory. In: Proc Int Conf on Parallel Processing,
August 1989

13.Stonebreaker M: Concurrency control and consistency of multi-
ple copies of data in distributed INGRES. IEEE Trans Software
Eng 5(3): 188-194 (1979)

14.Yap KS, Jalote P, Tripathi S: Fault tolerant remote procedure
calls. In: 8th Int Conf on Distributed Computing, June 1988

80

Appendix

We now present the derivation of 11,,. As in Sect. 7, we assume
that all threads invoke replicas stored at 1 distinct nodes. Further-
more, when replicas of two objects are invoked at different nodes,
the sets of nodes that store the replicas of the two objects are
disjoint. This will allow us to assume that when a thread needs
to invoke a replica at a node that has not been visited by it, the
probability that it will choose an operational node is independent
of the nodes that have been visited by the thread. We assume
N = 2k + 1 and the steady state probability of a node , being opera-
tional to be p.

We define the state of the system in which a PET computation
executes in terms of the number of operational nodes that store
replicas of objects touched by the threads of the computation. In
particular, when threads execute at 1 distinct nodes, let S
=(n 1 , n 2 , n,) be a given system state in which n,(0 < n i <N) of
the N replicas of the group of objects are at operational nodes.
This group of objects is defined by the replicas touched at the

node. Let d be the set of possible system states. As defined
in Sect. 7, the probability of successful completion is Pm,c (A , N, 1, m),
where m is the number of threads and 1 and N are as defined
above. Since a computation can be committed only if at least one
of the thread returns successfully and quorums are available for
all touched objects (e.g., majority of replicas are at operational
nodes), we can express FL (R, N, 1, m) as follows:

Ps.,(gf, N, 1, m)

= E Prob. [S] Prob. [at least one of m threads succeeds
SEA

in state S and quorums are available
for all touched objects in state S]

We compute 1 — Pm,c (R, N, 1, m) and denote it by
n.„(ge, N, 1, m). Thus, 11.„(9 , N, 1, m) is the probability that the
computation is not successful either because quorum was not avail-
able for some touched object or all threads encountered failed
nodes. To compute Pfaii, we partition the states in the set 4. Let
4 + be the subset of states such that each state in it has at least
a majority of replicas of each touched object at operational nodes.
Therefore, if S=(1 1 , n 2 , ..., n i)e + then n i > k for 1 < i< /. Let
=z1-4 k , which is the subset of states in which quorums are not
available for one or more objects. Since a computation must fail
when a quorum is not available for some object that it touches,
all states in z lead to failure. Furthermore, the computation can
fail even in a state that belongs to 4 + because all threads may
encounter failed nodes. Thus, we can write,

N, 1, m)
= E Prob.[S]

564 -

+ E Prob. [5] Prob. [all m threads fail in state S]
5€4'

We first compute E Prob.[S].
5.4

E Prob. [S] =1— E Prob. [S]
5.d- 	 5E4.

N 	N

=1- E 	E • • • E Q., Q., - •
n, =k +1 n2=k+1 	n,=k+1

where

(2 k + 1) 	 p)2k + 1 - n,

ni

Since Q 	not depend on nj when j+ i, the above can be simpli-
fied to,

E Prob. [5] =1— P„Im;
Sed -

where

= 	2k+1\

n=k+1 	n

is the probability that at least a majority of replicas of an object
are at operational nodes.

To complete the derivation of .1L it (9, N, 1, m), we now derive
the probability that the computation fails even when quorums are
available for all touched objects. In state S=(1 1 , n2 , ..., ni), the
probability that a thread executes at operational nodes is

1
—
ni

• —
n2

 N N
...—

N • 	 N
ni

Thus a thread fails with probability (1 — n -rA). Since
i = I.

threads choose replicas independent of each other, the probability
n.1"'

• that all m threads fail is simply (1 — H N
Therefore,

E Prob. [S] Prob. [all m threads fail in state S]
5E2+

1 	m
E • • • E Q„, Q„, - • • • Q.(1

	

n1=k+1 n2=k+1 	n/=k+1 	 1=1 N

Therefore,

11..(9P, N, 1, m)= 1 —)3.'1(1, N, 1, m)
=1 — (1 — P„;aj)

N 	N 	 m

- E E • E 'AN) n, -=k+1 n2=k+1 	m=k+1 	 i=1

N 	N 	 N 	 1 	\ n,

= 	E 	E • • • E 	Qkl - 	12 .1 	 .A)
n,=k+1 n2=k+1 	ni=k+1 	 i=1

1=1

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129

