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CATION EFFECTS IN ORGANOALKALI METAL CHEMISTRY 

ERLING GROVENSTEIN, JR. 
School of Chemistry 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

I. INTRODUCTION 

Organoalkali metal compounds can be regarded as substances Fri which the 

organic anion is joined to the counter alkali metal cation primarily by 

electrostatic forces between cations and anions. This generalization [1] is 

believed to hold even for organolithium compounds with localized negative 

charge, although here some small carbon-lithium covalency may enhance bonding 

[2]. From the simplified structure RM + , it is tempting to think that the 

nature of M+  is unimportant, in other words, that one is concerned only with 

the chemistry of "carbanions" in discussing the reaction of R - M+ . 

As the Arrhenius theory of ionization emphasizes, the chemistry of salts 

in dilute aqueous solution can be discussed in terms of kinetically "free" 

cations and anions; however, organoalkali metal compounds have inappreciable 

lifetimes in protic solvents and ordinarily are studied in ethereal or 

hydrocarbon solvents. In such media organoalkali metal compounds exist as 

ion pairs and aggregates of ion pairs as Michael Szwarc [3] and others have 

emphasized (see Scheme 1). It should be understood that, in ethereal 

Scheme 1 

(R: - M+ ) n 

 ionic aggregate 

R: - M+  

contact ion pair 

or 

 

R: -  I NI+  

solvent-separated 
ion pair 

 

   

peripherally solvated 
contact ion pair 

solvents, all of these ionic species are solvated such that the coordination 

shell of the alkali metal cation is normally filled. Thus the contact ion 

pair of lithium would be expected to contain three ethereal oxygens in its 

periphery. 
Published 1987 by Eldevii, 	 in 
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Some of the most informative studies concerning cation-anion inter-

actions have come from careful measurements upon the physical properties of 

organoalkali metal compounds in ethereal solvents. For example, in the 

pioneering work of Hogen-Esch and Smid [4] upon the absorption spectra of 9- 

fluorenyl salts in tetrahydrofuran (THF) at 25°, the absorption maximum 

shifted from 374 to 349 nm in going from the free anion to the contact ion 

pair with lithium cation. This spectral shift most likely results from 

greater stabilization of the ground state than the excited state by the 

counter cation. A spectral shift from 374 to 349 nm is an energy change of 

5.4 kcal/mole brought about by the lithium cation. This is a significant 

energy change which if operating in an equilibrium or rate process can effect 

a 104  fold change. Hence cation effects and the related factor of solvation 

or complexation of cations with ligands should be of great importance in the 

chemistry of organoalkali metal compounds. 

The following is a brief summary of examples of cation effects in 

organoalkali metal chemistry. For convenience many of the examples will be 

taken from work in the author's laboratory. The first area for consideration 

will be chemical studies upon equilibria. 

II. CHEMICAL STUDIES UPON EQUILIBRIA 

(A) Reaction of Alkali Metals with Carbon  

Lithium and sodium when heated with carbon form the acetylides Li 2C2  and 

Na2 C2. The heavier alkali metals including cesium react with carbon but give 

non-stoichiometric interstitial compounds where the metal atoms enter between 

the planes of carbon atoms in the lamellar graphite structure [5]. 

Thermodynamic calculations suggest that Cs 2 C2 is unstable relative to its 

elements and attempts to make it have not met with success [6], contrary to 

early reports in the literature. 

(B) Metalation of Hydrocarbons by Alkali Metal Alkoxides  

The metalation of hydrocarbons by alkali metal alkoxides [7,8] in tetra-

hydrofuran (eq. 1) is an equilibrium process whose equilibrium constant 

Ph 3 CH + MOC(CH 3 ) 3  <--1 Ph3 • C -- 144-  + HOC(CH 3 ) 3 
	(1) 

increases with the alkali metal M along the series Li < Na < K < Cs. While 

exact values of the equilibrium constant are not known, the differences are 

quite large between lithium t-butoxide and cesium t-butoxide. 
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(C) Metalation of Hydrocarbons by Alkali Metal Amides 

From studies upon equilibria in the reactions of diphenylmethane with 

alkali metal amides in liquid ammonia or diethyl ether (eq. 2), the alkali 

Ph
2
CH

2 + MNH2  < Ph2 CH: -M+  + NH 3 
	

(2) 

amides increase in metalating power along the series: Li < Na < K. With 

respect to kinetic basicity, cesium cyclohexylamide is up to 35,000 times 

more reactive than lithium cyclohexylamide in cyclohexylamine as solvent 

[9]. 

(D) Metalation of Hydrocarbons by Alkali Metal Acetylides  

The equilibrium of equation (3) is shifted toward the right [10] by 

+ PhC 7=C7. 101+  7te-! + PhCBCH (3) 

 

Ph 

 

Ph H 

  

increasing the size of the alkali metal cation and by increasing the solvat-

ing ability of the solvent [Et 2 0 < Me0CH 2 CH20Me < MeO(CH 2 CH2 0) 2 Me < 

(Me2 N) 3 P0]. 

(E) Metal-Metal Exchange of Organolithium Compounds with Alkali Metal  

Alkoxide, Amides, and Halides  

Organosodium and potassium compounds may be formed by reaction [11] of 

sodium and potassium alkoxides with organolithium compounds in hydrocarbon 

solvents (eq. 4). The conversion of organolithium compounds to organosodium, 

RCH2 -' - Li +  + 	 RCH2* 	+ R'0: - Li + 
	

(4) 

-potassium, and -cesium compounds by sodium, potassium, and cesium t-butoxide 

respectively in THE is evidently the basis for catalysis of the rearrangement 

of organolithium compounds by alkali metal alkoxides [12-14]. 

The cation effects on the equilibrium of eq. 4 and also that on the 

reactions of eq. 1, 2, and 3 may be summarized by a simple generalization. 
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For the chemical equilibrium, 

R: -M 1 + R'Z: - M 2  	R: - M2 +  + R'Z: - M 1 + 
	

(5) 

the larger cation prefers to be associated with the larger anion (frequently 

an anion with delocalized charge) and the smaller cation with the smaller 

anion (frequently an anion with localized charge). This generalization also 

rationalizes the reactions of alkali metals with carbon given above. 

An explanation for this generalization can be found in electrostatic 

attraction between cations and anions. If for simplicity we assume that 

cations and anions behave electrostatically as point charges centered on the 

atoms which bear the charges in their usual structural formulas, then we can 

calculate the change in electrostatic energy (in atomic units) for equilib-

rium (5) from the expected interionic distances of the ion pairs as given in 

equation (6), where R p  is the distance (bohr units) between centers of 

-AE = 	S 1 
	

- 	S. 

1 	 (6) 

P 	p 	r 	r 

positive and negative charge in the product p and R r  is the similar distance 

in the reactant r, the summations being over all ion-pair products and 

reactants. We take 1.65 A for the bond radius of carbon in an anion [15], 

1.26 A for the radius of oxygen in an alkoxide [16], and Pauling's crystal 

radii of the alkali metal cations [17]. If we assume that these radii are 

constant in all compounds, then -AE for equilibrium (4) may be calculated to 

be 8.4, 14.2, 15.8, and 17.8 kcal/mole for M equal to Na, K, Rb, and Cs 

respectively. These values appear adequate to account for the large values 

of the equilibrium constants of these synthetically useful reactions. 

For the related reaction of eq. (7), if we take the anionic radius of 

RCH 2: - Li +  + R'N. M+ 	<----1  RCH 2:  M+  + R'N. L +  
' 	' ( 7 ) 

nitrogen in an amide [18] to be 1.40 A and the other values as previously 

specified, the calculated values of -AE are 4.8, 8.3, 9.2, and 10.4 kcal/mole 

for M equal sodium, potassium, rubidium, and cesium respectively. These 

numbers are about 58% of the corresponding values calculated for equilibrium 

(4) and help show how sensitive the calculation is to the separation of 

charge in the ion pairs. The data cited for equilibrium (2) is in qualitative 

agreement with this calculation but involves the diphenylmethyl anion which 

has a delocalized charge. Such charge delocalization effectively increases 

the radius of the carbanion and drives equilibrium (7) further to the right. 
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Another metal-metal exchange reaction is the conversion of organo-

potassium [19] or organocesium [20] compounds to organolithium compounds by 

reaction with lithium bromide (eq. 8) in ethereal solvents. If we take 

-C: M
+ 
 + Li

+ 
 Br --> -C: Li

+ 
 + M

+ 
 Br- 

 1 

Pauling's crystal radius of bromide (1.95 A) and the other values as 

previously specified, the calculated values of -AE from eq. 6 for equilibrium 

(8) are 4.1, 7.2, 8.0, and 9.2 kcal/mole for M equal Na, K, Rb, and Cs 

respectively. Again the calculated values appear large enough to agree with 

the synthetic utility of eq. (8). 

It must be emphasized that, in addition to the approximations already 

cited, these calculations assume that the ion pairs are in the vapor phase at 

infinite separation from one another. In practice the ion pairs are located 

in a solvent whose dielectric constant is larger than that of free space; 

this factor will somewhat decrease the exothermicities which have been 

calculated from equation (6). Also the solvent, in principle, may prefer-

entially solvate either the products or the reactants. A more important 

problem is that of aggregation. Since aggregation is but further Coulombic 

interaction between ions, the ions which form tighter ion pairs would be 

expected to form tighter and larger aggregates. Aggregation, therefore, 

would be expected to increase further the exothermicities which have been 

calculated by equation (6). In extreme cases the aggregates may become so 

large that insoluble products precipitate from solution and drive the 

equilibria further to completion. 

(F) Ring-Chain Tautomerism of Unsaturated Organoalkali Metal Compounds  

4,4-Diphenyl-3-butenylalkali compounds undergo reversible cyclization 

[19] as shown in eq. (9). For M = Li in diethyl ether as solvent only the 

Ph2 C=CHC H2CH2 M 	Ph2P—C1{......,  I 
M+CH  

(9) 

open form of the organometallic is observable at equilibrium (near room 

temperature) while with M = Na or K only the cyclic (cyclopropyl) compound is 

detectable. In THE only the cyclic compound is detectable with any of these 

cations. Equilibria of this type are not only cation and solvent dependent 

but also temperature and structure dependent. For example reaction (10) is 

( 8 ) 



H 3C 	CH 3  

H 3C • CH3 

M +  

Ph 

H 3CCCH 3  

H3 CC CH3 

THE  

Ph 

C =C \ 
CH3 CH2 M 	 CH3 	H 

H H, 	CH9 M 
,C= — (12) 

found [21] to give the cyclic compound with lithium in diethyl ether at 

	

CH2C1 	Li, Et2 0 	Li +  CH 2 

	

Ph 2 C =CH —CHC H 	 Ph26-1  
CHC H3 

3 _75 0 

(10) 

-75°C. Also in the system [20,22] of eq. (11) in THE at -75°C, with M = Li 

8 

only the open organoalkali compound is observed while with M = Cs about a 30 

to 70 ratio of open to cyclopropyl compound is found. These equilibria 

exemplify well the generalization given above: the larger cation prefers to 

be associated with the larger anion, i.e. the anion with delocalized charge, 

and the smaller cation with the smaller anion with localized charge. Also 

alkali metal cations can be made effectively larger by solvation which is 

enhanced by lowering the temperature. These equilibria are also affected by 

substitution, methyl groups on the cyclopropyl ring (especially gem-dimethyl 

groups) help stabilize the cyclic structure and cycloaddition to a double 

bond is more favorable than to an aromatic ring. 

(G) cis, trans-Equilibria of Allylic Anions 

The equilibrium Z/E isomeric composition of various 2-alkenylmetallic 

compounds is dependent upon the metal. Thus for the 2-butenyl system [23] of 

eq. (12) the % (Z)-isomer increases as M = H, MgBr, Li, Na, K, and Cs, the % 

(Z)-isomer being 23, 54, 67, 93, 96, and 99.9 respectively in hexane 

(except for lithium in diethyl ether). The larger cation favors the (Z)-

isomer. In THE Li gives 85% and K 99.2% of (1)-isomer; again increased 

solvation makes the cations effectively larger. The larger cations give 
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decreased electrostatic stabilization of the anion which accordingly must 

rely more on its internal structure for stabilization. The (Z)-isomer is 

likely stabilized by charge-induced dipole interaction of the anionic center 

with the cis-methyl group [24]. It should be noted that according to ab 

initio  calculations [25] monomeric allyllithium in the vapor phase has 

structure (1) whereas crystalline allyllithium as the tmeda complex [26] has 

tmeda• L. 
Li -- - 

H 	C 
\ ---- `N, ...--H 
	 ....f.rCH, ::,... 

C 	C 	 CH:, 	- CH2 ■Liei 	e 

1-1 	H 	 - -- Li 
• tmeda 

(1) 	 (2) 

the polymeric structure (2). If the butenyllithium in the equilibration 

studies under discussion here has a structure similar to (1), then for the 

(Z)-isomer the methyl group would NOT be in the plane of the allylic carbon 

atoms and would be on the side of the allyl group away from the negative 

charge which is located largely near lithium. In this conformation charge-

induced dipole interaction with the methyl group would be minimal. 

III. CHEMICAL STUDIES UPON RELATIVE REACTION RATES 

(A) Isotopic Exchange between Deuterium and Cyclohexylamine  

Deuterium exchange in cyclohexylamine, eq. (13), is catalyzed by 

NH2 + 02 

 

NH M t 

NHD + DH 
(13) 

   

cyclohexylamide alkali metal salts (MCHA) with the observed order being 

LiCHA « NaCHA < KCHA < CsCHA. The cesium salt is at least 10 3  times more 

reactive than the lithium salt [27). The exchange likely proceeds via a 

transition state such as (3) in which the metal to nitrogen bond is stretched 

and the metal to deuterium bond is also extended. Hence more electrostatic 

energy is required to stretch the tight bonds of the smaller alkali metals to 

attain the transition state structure than the loose bonds of the larger 

alkali metals and little of this energy difference is offset by forming new 



1 0 

metal to deuterium bonds in the transition state. 

(3) 

(B) Relative Rates of Migration of Aryl Groups in Organoalkali Metal  
Compounds  

In ethereal solvents the relative rates of [1,2] and [1,4] migration of 

aryl groups, eq. (14), versus the rate of protonation of the organoalkali 

4. 

M 

0 
z 

I * 	( 
M 

(14) 
—H> 

compound by solvent increases [12,28] along the series: Li << Na << K or 

Cs. This order seems likely to be the same as the relative rate of 

rearrangement of the organoalkali compounds themselves. Thus 2,2,2- 

triphenylethyllithium rearranges [29], eq. (15), with a half-life of about 40 

THE 
Ph 3 CCH 2 Li Ph 2 CCH 2 Ph 

0°  

Li+ 

min. in THE at 0°; whereas 2,2,2-triphenylethylpotassium rearranges [30] as 

rapidly as it is formed, eq. (16), even at -75°. The qualitative explanation 

KO-t-Bu 	 <10 min 
Ph 3 CCH 2 Li 	> Ph 3  CCH 2  K ---> Ph2.  CCH 2 

 Ph (16) 
 

THE,-75° 	 -75° 	--+ K 

of these results is that given in the prior example (A). Of course the 

chemistry of organoalkali compounds is complicated by aggregation into 

dimers, trimers, tetramers, etc.; however the most tightly bound aggregates 

are expected to be formed from the tightest ion pairs. The aggregates are 

(15) 
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expected to be less reactive than the monomeric ion pairs. 

(C) Variation of Migratory Aptitudes of Groups in Organoalkali Rearrange-

ments with Alkali Metal Cation and Solvent  

1. Competitive Rearrangement of Phenyl versus Benzyl  

Benzyl migration in 2,2,3-triphenylpropyllithium has been shown [31] to 

proceed by cleavage of benzyllithium followed by its readdition to 1,1- 

diphenylethene, whereas phenyl migration proceeds via an intramolecular 

process as shown in Scheme 2. The organolithium compound undergoes exclusive 

Scheme 2 

M +  

Ph2C'-'C H2 	PhCH2 M 	P h2C=C H2 

PhC H2 
Ph2CCH2CH2Ph 

PhCH2CH2M 	M+ 	 M+ 
Ph  M+ 

PhCH2C —CH2 —> PhCH2CCH2Ph 
Ph 	 Ph 

benzyl migration in THE at 0 ° , as does the sodium compound in THE at -75° or 

the potassium and cesium compounds which are complexed with 18-crown-6. In 

contrast the lithium compound rearranges in diethyl ether at 35° with 

exclusive phenyl migration and the cesium compound in THE at -75 °  with 

predominant (72%) phenyl migration. These results [13] can be understood on 

the basis that benzyl cleavage occurs in a loose or solvent-separated ion 

pair whereas phenyl migration proceeds in a tight ion pair. Thus conditions 

which favor loose ion pairs (small alkali metal cations, good solvents or 

ligands, low temperatures) favor benzyl migration whereas conditions which 

favor tight ion pairs (large alkali metal cations, poor solvents, high 

temperatures) favor phenyl migration. 

2. Competitive Rearrangement of Phenyl versus Alkynyl  

5,5-Dimethy1-2,2-dipheny1-3-hexynyllithium undergoes exclusive migration 

[32] of the alkynyl group by addition to the triple bond as shown in Scheme 

3. Ir contrast the corresponding cesium compound undergoes phenyl migration 

[32] by addition to the phenyl group with no detectable (< 2%) migration of 

the alkynyl group (Scheme 3). 



M+ 
.1>tHcH 3  

CH2M 	
Ph 

Ph2C, 	 Ph  
(4) 

HACH 

Ph2CCH2t ,H 

H'C'CH 3 

 (5) 

H2 Ph 
Ph0,c_ H 
M+—  

c,
CH3 

(7) 

CH 
Ph C' 3  

M + 	A 

(6) 
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Scheme 3 

Ph2CCH2CEC- 1- Bu > 
Ph 0) 	't-Bu 

Ph Li +  

M = Li IT H F, 

CH2M 

0C —C=C -  

Ph 

0°  

M = Cs 

Cs+  

Cs+  

C=C-t-Bu -4 PhCH2CCEC•1 Bu 

Ph 
THF 
— 75 °  

3. Competitive Rearrangement of Phenyl versus Alkenyl  

In diethyl ether at 35°C trans-2,2-diphenyl-3-pentenyllithium undergoes 

propenyl migration to give (5) versus phenyl migration to give (7) (see 

Scheme 4) in a ratio of 92 to 8. In the solvent THE at 10°C this ratio 

Scheme 4 

becomes 54 to 46. The corresponding potassium compound rearranges in THE at 

-75°C to give the product of phenyl migration (7) with no detectable propenyl 

migration [33]. 

According to Scheme 4 propenyl migration occurs via an intermediate (4) 

with essentially localized negative charge while phenyl migration occurs via 

intemediate (6) with delocalized charge. Similar intermediates are suggested 

in Scheme 3 for alkynyl versus phenyl migration. These results suggest a 

simple generalization. Rearrangements of organoalkali metal compounds tend 

to occur in the sense that compounds with large alkali metal cations 

preferentially rearrange via transition states (or reactive intermediates) 

with delocalized negative charge whereas compounds with small alkali metal 

cations rearrange via transition states (or intermediates) with localized 
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negative charge. This generalization is similar to that suggested earlier 

for cation effects upon equilibria and has a similar rationale. With small 

cations and carbanions of localized negative charge, the transition state or 

intermediate is stabilized by strong electrostatic interaction between cation 

and anion. With large cations, cation anion interaction is greatly reduced 

and hence the anion must rely on its own structure for stabilization; such 

stabilization is generally greater in a delocalized anion. However, the 

effective size of an alkali metal cation is dependent upon its state of 

solvation. Thus the effect upon trans-2,2-diphenyl-3-pentenyllithium of 

rearrangement in diethyl ether at 35 °  versus rearrangement in THE at 10° is 

that under the later set of conditions increased solvation is expected and 

hence more phenyl migration should and does occur. Increased solvation 

implies a "looser" ion pair, not necessarily a solvent-separated ion pair. 

4. Competitive Rearrangement of Phenyl versus Ally]  

In the solvent THE at -70 to -75°C 2,2-dipheny1-4•pentenylpotassium and 

cesium compounds undergo migration either of the allyl group or the phenyl 

group [14]. With potassium complexed with 18-crown-6 a 92 to 8 ratio of 

allyl to phenyl migration is observed. Without 18-crown-6 this ratio is 32 

to 68 for potassium or 16 to 84 for cesium. These arrangements are believed 

to occur by way of the intermediates or transition states shown in Scheme 5. 

Scheme 5 

* 	 ,,,CH2, 
.CH2 	 CH2 	CH 

C 1-1 2 :',31..1 1,4 -4-  ---) Ph26: 	CH2 
Ph26„ •,/ 	 M 

cH2M 	
T 	 --CH2 
,--'7  

P ri 20. 
CH2CH4- H2 

.N.A% 
THE 

It appears that allyl migration occurs in a highly solvated transition state, 

likely in a solvent-separated ion pair, while phenyl migration occurs in a 

more weakly solvated or tight ion pair. With lithium as counter cation, 

rearrangement does not occur at an appreciable rate at -75 ° C but upon warming 

to near 0° C gives 96% allyl migration and only 4% phenyl migration. At this 

temperature the allyl group breaks free from the diphenylethylene moiety, 

evidently as an allyl anion, such that a carbon-14 label on the terminus of 

the allyl group becomes 67% scrambled and only 33% inverted (unlike the low 

C 
Ph 	--> 	Ph 

PhCH2 

tvi+ CH2CH=CH2 	M +  61-12CH=CH2 
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temperature [2,3] sigmatropic process of Scheme 5 which gives only inversion 

of the allyl group as shown). Yet the non-radioactive lithium compound when 

allowed to rearrange in the presence of a six fold excess of allyl- 14C-

lithium showed only 14% incorporation of radioactive allyl group in the 

product of allyl migration. Hence the cleavage-readdition of allyl anion 

evidently occurs very rapidly largely within a solvent cage. These results 

show how cation and solvent (or ligand) effects can be used to control the 

nature of chemical reactions. 

Since both allyl and phenyl migration in Scheme 5 occur via transition 

states or intermediates with delocalized negative charge, prediction of the 

ratio of allyl to phenyl migration is somewhat difficult. For the low-

temperature [2,3] sigmatropic pathway, the negative charge evidently is 

involved in binding the allyl group to the diphenylethylene group at both 

termini in an aromatic (6 7-electron) transition state in which the negative 

charge is concentrated in the region between the two groups and hence is 

shielded (by carbon and hydrogen) from close proximity to the cation. Hence 

strong solvation is required to attain this transition state which neces-

sarily has the properties of a loose or solvent-separated ion pair. For the 

0' elimination-readdition mechanism, the state of solvation is less clear. 

Perhaps now lithium ion binds the allyl anion at both termini as shown in 

structure (1) in a tight ion pair. Since the allyl anion is smaller than the 

cyclohexadienyl anion and has more concentrated negative charge, lithium 

prefers binding to allyl rather than cyclohexadienyl and thus brings about 

preferential allyl migration. 

(D) The Anionic Oxy-Cope Rearrangement  

In studies upon the oxy-Cope rearrangement Evans and Golob [34] found 

that 1,5-hexadien-3-ols rearranged much more readily in the form of their 

alkoxides than the corresponding alcohols and that the rate of rearrangement 

was both cation and solvent (or ligand) dependent. Thus in Scheme 6 the rate 

Scheme 6 

OM 
—> 

CH 3 

of rearrangement increased along the series M +  = 	« Li +  « Na +  < K+  « K
+ 

- 
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18-crown-6 with the acceleration for potassium complexed with 18-crown-6 10 12 

 times that of the alcohol (MI-  = e). For a related system (Scheme 6, CH 3 0 

replaced by H) the corresponding acceleration was 10 17  fold. Similar anionic 

rate enhancements are observed in [3,3]-Claisen rearrangements of the 

enolates of a-allyloxy ketones [35], in [1,3] sigmatropic rearrangements 

[36], and in vinylcyclopropane rearrangements [37]. These rate enhancements 

are reminiscent of those discussed earlier for rearrangements of organoalkali 

metal compounds and likely have a similar explanation. Namely the transition 

states for the rearrangements have more charge delocalization than the 

reactants. Charge delocalization is better accommodated by large cations 

than by small since less energy is required to pull negative charge away from 

large than small cations (the proton can be viewed as the smallest cation). 

A related explanation has been given by Steigerwald, Goddard, and Evans 

[38] who by an ab initio method have calculated C-H bond energies (see eq. 

(17) for CH 3OH, CH 3ONa, and CH 30-  of 90.7, 70.6, 79,0 and 74.2 kcal/mole 

respectively. The authors note that the metal ketyl product of cleavage of 

CH 3OM —> -CH2OM + 	H. 
	

(17) 

CH 3OM is a hybrid of the two structures 8 and 9 and hence is charge- 

61 2 -11: -  11 4- 	EH2-0: 

8 	 9 

delocslized whereas the reactant alkali metal alkoxide has its charge 

essentially localized on oxygen. Hence large alkali metal cations offer 

less electrostatic resistance to bond cleavage of the alkoxide than do small 

cations. A similar explanation is proposed to account for cation effects 

upon the anionic oxy-Cope rearrangement. 

(E) NMR Rotational Barriers in Benzylic and Allylic Alkali Metal Compounds  

Rotational barriers about the partial double bonds of benzylic and 

allylic anions are dependent on the counter ion, Some of the available data 

[39-4 .L] for methylene rotation are summarized in Table I. In all cases cited 

the barrier to rotation increases along the series Li < Na < K < Cs. Some-

what similar barriers are found in 9-(1-naphthyl)methyleneoctatrienyl-alkali 

metal compounds [42]. 

Why does the rotational barrier increase or the rate of rotation 

decrease with increasing size of the alkali metal? In the other cation 



Table I, NMR Rotational Barriers in THF 

AG s 
 kcal/mole 

Li 17.0 a  10.7b 12.9c  

Na > 17.8 14.8 

K > 20,1 16.7 (17.8) 

Cs 18.0 

° Ref. 39. 
	b Ref. 40. 	

c
Ref. 41. 

effects [see Sections (A), (B), and (D)J, the opposite order is observed. 

Schleyer and coworkers [43] have made calculations of the reaction barrier 

for ally] compounds based on the mechanism shown in Scheme 7. These 

Scheme 7 

H H, 	,H 
\C 

-NMP.-- H H 	M 

H 
H, 

H 	H * 

calculations pertain to monomeric species in the gas phase. The 

barrier for the free anion is estimated to be 22.2 kcal/mole, a value some-

what higher than that reported in Table I for allylcesium in THF. The value 

for allyllithium is calculated to be 17.7 kcal/mole, a barrier which is 

significantly higher than the observed barrier for allyllithium in THF. The 

value for allylsodium is 11.9 kcal/mole, not far from that which might be 

interpolated for the missing experimental value for allylsodium in Table I. 

Why is the experimental value for allyllithium much smaller than the 

calculated barrier? The effect under discussion is so large that the 

calculated barrier for lithium versus sodium is opposite the general trend of 

Table I. Schleyer and co-workers suggest [43b] that aggregation of 

allyllithium in THF may be responsible for the observed barrier being much 

less than that calculated. The situation may be similar to that in the 

16 
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inversion of alkyllithium for which aggregation has been calculated to lower 

the barrier [45]. The examples cited in this section should serve as a 

warning that the aggregation of organoalkali metal compounds is a factor 

which must be considered sometimes even in simple qualitative discussions. 

The observed order of increasing rotational barriers in allylalkali 

metal compounds can be understood on the basis that the highest barrier is 

expected for the solvent-separated ion pair whose barrier should be nearly 

the same as that calculated for the free anion. Cation-anion interactions 

are expected to lower the barrier because of greater stabilization of the 

transition state (which has localized negative charge) than the reactant 

(which has delocalized negative charge) - this is opposite the general 

situation described for rearrangements in Sections (A), (B), and (D). Two 

(or more) cations should have a greater effect than one in this differential 

stabilization; hence aggregation serves further to lower the barrier. Where 

aggregation stabilizes the reactant more than the transition state as in the 

rearrangements of Sections (A), (13), and (D), it does not have to be invoked 

in simple qualitative arguments since aggregates are likely to be so 

unreactive as to play little role in reaction. The effect of aggregation 

should be greatest for lithium and least for cesium. Thus the observed order 

of rotational barriers is commonly Li < Na < K < Cs. This is not an invari-

ant order. The barrier to rotation of the phenyl group in trans, trans-1,3- 

diphenylallyl anion in liquid ammonia containing 15% of methyl t-butyl ether 

is essentially independent of the counter-ion (Li + , Na+ , K+ ), doubtlessly 

because these compounds exist as solvent-separated ion pairs or possibly free 

anions [46]. Also methylene rotation in 2-methyl-1,3-diphenylally1 anion in 

THE occurs more readily in the potassium salt than in the lithium salt, 

likely because the potassium salt exists as a contact ion pair while the 

lithium salt occurs as a solvent-separated ion pair [47]. Thus both solva-

tion and aggregation play important roles in determining rotational barriers 

in organoalkali metal compounds. 

IV. OTHER EXAMPLES OF CATION EFFECTS 

Many other instances of cation effects in organoalkali metal chemistry 

are known and could have been cited in this brief review. For example, the 

disproportionation of tetraphenylethylene (TPE) radical anion into dianion, 

eq. (18), has a formal equilibrium constant which increases along the series 

2TPE- ,M 	s- TPE + TPE 2 ,2M+ 
	

(18) 

Li < Na < K < Cs in THE and varies with solvent in the order 1,2- 
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dimethoxyethane < THE < diethyl ether [48]. For the disproportionation of 

stilbene radical anion into dianion, the order of cation effects is reversed 

while the solvent effects are similar [49]. Related cation and solvent ef-

fects have been observed in disproportionation of many other radical anions 

[50] 

In another example, alkali metal cations have been found to catalyze the 

reaction of ethylene oxide with fluoradenyl anion, the reaction rate 

increasing at least 10 5  fold from cesium to lithium. The catalysis has been 

attributed to the behavior of alkali metal cations as Lewis acids in 

coordination with the oxygen of ethylene oxide [51]. 

This review has not included cation effects which are combined with the 

differing reducing power of the alkali metals in various solvents. This area 

is rich in possibilities [52]. 

Finally interesting cation effects [53] are observed in anionic 

polymerization but these effects are too well known to polymer chemists for 

discussion here. It is hoped that the examples of cation effects cited have 

been representative of those possible in organoalkali metal chemistry and 

that these examples will encourage chemists, including polymer chemists, to 

use cation effects as a convenient tool to control chemical reactions and 

divert them in directions useful to mankind. 

V. CONCLUSIONS 

The factors involved in "cation effects" in organoalkali metal chemistry 

are diverse and interrelated but include (a) electrostatic attraction between 

cation and anion, (b) the size (distance of nearest approach) of cation and 

anion, (c) the charge distribution and geometry of the anion, (d) solvation 

of cation and anion and the related problem of whether contact or solvent-

separated ion pairs are involved (note that contact ion pairs are frequently 

solvated), (f) specific interactions between cations and anions, including 

mutual polarization and covalent interactions. It frequently is not possible 

a priori  to weigh all the factors and predict the outcome but general 

patterns are beginning to emerge. Cations frequently have large effects 

upon reaction rates and equilibrium constants of anions, sometimes so large 

as to alter the nature of a chemical reaction. Cations suitably coordinated 

to solvent or ligand can be used by chemists to exercise considerable control 

over chemical reactions of anions. More systematic studies on the effects 

of cations upon the behavior of carbanions would likely prove profitable. 
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