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SUMMARY 

An attempt is made to make —dse of a non-linear approach for pre-

dicting 24-hour ground temperature. The model used does not make use 

of any specific non-linear formula. Instead, the technique of Piecewise 

Linear Regression is used. In other words, the space G of all sample 

points is divided into groups G. and the regression function in each 

group is approximated by a collection of linear relationships. 

First, the original piecewise linear regression program was 

translated from Scatran to Algol. To investigate the efficiency of this 

technique as a tool for non-linear regression, the program was first run 

on a set of artificially selected data samples. 

In selecting predictors for predicting temperature, two entirely 

different approaches were taken. These are here called "local" and 

"global" variables. In the former, the predictors are values of a 

selected set of weather elements at the station under consideration, 

and in the latter, the predictors are the temperatures at a few sur-

rounding stations. To make predictions using the above model and 

compare with the linear predictions, a program was developed, which 

also calculates the error mean square. 

The results of the analysis of the weather data do not show a 

significant reduction in residual variance. It is concluded that 

temperature does not exhibit enough non-linearity to warrant the use 

of a complicated non-linear model. However, a comparison of the 

results of the local and global variables shows that the latter 
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easily leads to better predictions. Also, it will always be advan-

tageous to use a minimum number of predictors to check the reduction 

in degrees of freedom. 



CHAPTER I 

INTRd&CTION 

Statistical forecasting, usually classified under the general 

field known as objective forecasting, is more or less equivalent to 

forecasting by the systematic use of empirical knowledge. An objective 

forecasting system may be defined as any method of deriving a forecast 

which does not depend for its accuracy upon the forecasting experience 

or the subjective judgment of the meteorologist using it. Strictly 

speaking, an objective system is one which can produce one and only one 

forecast from a specific set of data. 

The goal of objective forecasting is simply to eliminate, as 

many as possible, the subjective elements which enter into the fore-

casting procedure. Objective forecasting is not so much concerned 

with the source of hypothetical relationships as it is with the prac- 

tical value of the ideas and the extent to which they contribute to the 

accuracy of the forecasts. Hence, objective forecasting studies are 

characterized by the use of historical data to demonstrate the relia-

bility of forecasting relationships, and the expression of the forecast 

itself in quantitative terms. 

From the standpoint of discovering and understanding the rela-

tionships which hold in the atmosphere, forecasting investigations have 

been relatively ineffective because of their stress on lag relation-

ships, and it seems clear that only a complete physical explanation of 
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the atmosphere, together with complete observational data will make it 

possible to produce perfect weather forecasts (1). Practically, how-

ever, uncertainties exist which make the maximum attainable accuracy 

something less than perfection. The forecasting problem is thus, in 

essence, one of estimating what is likely to occur with any given state 

of the atmosphere and its environment. More precisely, the problem is 

to state the probability that any specified event will occur within 

any specified time interval. 

Historical Background  

One of the earliest forecast techniques, which did not involve 

the prognosis of the pressure pattern, was that developed by Russell 

(8) and described as an objective method of predicting precipitation. 

Schuster (8) in 1898 introduced harmonic analysis of the predictions 

within weather elements. His periodogram illustrated the systematic 

recurrence of a parameter, after fixed periods of time, and formed the 

basis of extrapolating into the future. 

Besson (8) in 1905 introduced statistical graphical techniques 

to meteorology for the first time. One of the first attempts to break 

away from purely synoptic forecasting was by Rolf (8) in 1917, wherein 

he expressed the probability of rain as a function of selected meteoro-

logical parameters. 

Statistical methods applied to meteorology lay practically dormant 

until the mid 1940's. Schuman (10) in 1944 presented a detailed explana-

tion of the regression equation applied to meteorological forecasting. 

Since then, statistical forecasters have devoted a major portion of 
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their efforts to the realm of determining mathematical formulas giving 

predicted numerical values of weather elements as functions of observ-

able values of chosen predictors. Most of the formulas have been linear, 

and have been established by standard linear regression methods. 

Statement of the Problem  

Linear forecasting has been popular, both due to its simplicity 

and availability of a highly developed mathematical theory. However, 

there is no reason to assume that we have reached the ultimate plateau 

of predictability and that there is very little to be done. The problem 

under study, therefore, can be generally stated as that of investigating 

the use of non-linear methods for purposes of predicting values of 

weather elements or combinations of weather elements. 

Objectives  

The principal objective of the present research is to investi-

gate the feasibility of using a non-linear model for predicting maximum 

temperature 24 hours in advance. However, the method employed does not 

make use of any specific non-linear formula. Instead, the technique of 

"Piecewise Linear Regression" developed by Hanken (5), as elaborated in 

Chapter III, is used. In essence, this consists of breaking down the 

data space into several groups and performing linear regression in each 

of these groups, instead of linear regression on the whole data space. 

The linear regression equation corresponding to the whole data space is 

here called linear model, and the collection of linear regression equa-

tions corresponding to all the groups is called non-linear model. 
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The original piecewise linear regression program written by 

Hanken in Scatran is translated into Algol. Initially, to test the 

applicability of this technique as a tool for non-linear regression, 

analysis is made of a set of arbitrary data generated by a non-linear 

surface. 

The efficacy of this non-linear model in predicting temperature 

is tested by comparing the non-linear and linear predicted values 

against the actual values. In other words, the error mean squares in 

either cases are compared. 

Hand calculation of the above values for several sets of data, 

especially of locating the points under consideration in its proper 

group, could get highly involved and tedious. In order to eliminate 

this difficulty, another program written by the author is used for 

calculating various values on the computer. 

Scope and Limitations  

The present research does not delve into the actual screening 

of predictors for predicting 24-hour maximum temperature. However, a 

rough screening of a number of arbitrarily selected predictors is done 

by using the partial correlation coefficient as a criterion. For this 

purpose, initially, a standard multiple linear regression program is 

run on the data. Obviously, this does not give an exact partial corre-

lation coefficient, corresponding to the variable under consideration, 

when the actual non-linear model is taken into account. For instance, 

there could be a strong non-linear correlation between two variables, 

and yet the linear correlation coefficient could be near zero. However, 
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this could serve as a mere guideline for cutting down the large volume 

of data. 

The suggested model is not meant to eliminate, at least, some 

of the inadequacies of the linear Model, namely, the use of less 

important and insufficient number of parameters and the inaccuracies 

in the actual data. 



CHAPTER II 

LITERATURE SURVEY 

If we regard the atmosphere as a dynamic model, it soon becomes 

apparent that the whole process behaves as a complicated mechanism in 

which past and present values do not determine the future, as in most 

linear processes, but they themselves have an effect upon the system, 

which in turn produces non-linearity of a very peculiar nature. 

The Forecasting Problem  

Basically, the meteorological prediction problem boils down to 

the following: Given an initial state of the atmosphere with all its 

ramifications, details and complexities at some particular time, deter-

mine what its state would be at some subsequent time. In principle, 

the problem lends itself to solution, provided the following conditions 

are satisfied: 

(1) The initial state can be specified precisely and in detail. 

(2) The physical process by which one state is transformed into 

another is thoroughly understood. 

(3) The process can be cast in mathematical form. 

(4) The mathematical representation of the physical process can 

be dealt with numerically. 

In practice, none of these requirements can be rigorously satis-

fied. However, encouraging progress has been made in recent years in 

dealing quantitatively with meteorological prediction. This progress 
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has been along two converging lines, namely, the dynamical approach and 

the statistical approach. Oftentimes one thinks of these two methods 

as conflicting programs, but actually they are trying to get at one and 

the same thing. In the dynamical approach, the laws connecting various 

meteorological phenomena are investigated. These laws are considered 

to be precise in action, even though the data are subject to fluctua-

tions which are random and are thus necessarily incomplete. On the 

other hand, in the statistical approach, the quantities are taken as 

they are found and the distributions examined both singly and in such 

combinations as one chooses for purposes of investigation. In an ideal 

survey all possible statistical parameters would be considered and not 

merely a partial selection, but such an undertaking would be impractical 

because of the sheer magnitude of the task. 

It is clearly beyond the scope of this thesis to go into the 

details of the dynamical approach. 

Time Series Analysis  

The meteorologist is primarily interested in the behavior of 

his phenomenon as a function of time, and all his observations are 

taken either continuously in terms of this variable or are taken at 

discrete points in time. Each one of the series, therefore, which are 

considered in the problem of prediction of single meteorological 

elements or combinations of them can be looked at from the time-series 

point of view. The analysis of stationary time series, of late, has 

been highly aided by generalized harmonic analysis. In the case of 

stationary time series, the actual dynamics which motivates the series 
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itself is assumed constant from one period of time to the next. 

Considering the characteristics of these time series, we note 

that the sequence of observations has certain inherent dynamic proper-

ties as well as a superimposed random component. In the case of 

weather phenomena, the thing that we observe contains the original 

signal plus a random noise, and the problem is to locate the signal. 

In other words, if we know the past performance of some meteorological 

phenomenon a from some period of time in the past up to the present 

time t
o , we want to determine the predictable part of this sequence. 

The predictable part represents the dynamical component, and it is this 

component which permits one to extrapolate into the future to give a 

prediction. Naturally, the further one extends this prediction the 

worse the agreement is between the predicted and actual values, if 

there exists a random component. 

Unfortunately, the basic arguments and ideas are true only if 

the process or processes are stationary. This, of course, cannot be 

true in the case of meteorological phenomena, since the basic movements 

of the weather systems certainly are different, at least from season to 

season, and this seriously hampers progress in this direction (3). 

Analogue Method  

A great deal of thought has been given by many meteorologists to 

the use of analogues as a method of forecasting. This is based on the 

premise that if the same weather situation should be observed twice, 

either it will develop the same way on both occasions, so that the 

analogue method will give the correct forecast, or else it will develop 
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differently on the two occasions, and no method of forecast will give 

the correct forecast. The basic argument against the use of analogues 

is that the weather never follows exactly the same pattern. We can 

try to get around this difficulty by being very liberal in deciding 

when two situations are analogues, but then we may find that analogues 

are not enough alike to behave similarly. 

Regression Methods  

Usually, the statistical approach involves the use of mathe-

matical statistics to establish a functional relationship between a 

set of parameters characterizing the initial state of the atmosphere 

and the probability distribution of a weather element or combinations 

of weather elements in some subsequent state. The immediate goal of 

this is to determine relationships which will be valid for independent 

data and will minimize the uncertainty in the probability distributions. 

The ultimate goal is to put these functional relationships in a form 

amenable to physical interpretation and thereby shed some light on the 

nature of the physical processes which determine the successive states 

of the atmosphere. 

Surprisingly little has been done to obtain realistic proba-

bility distributions using statistical methods. The most commonly used 

procedure is to apply regression methods relating a continuous predictand 

as a linear function of a set of continuous predictors, and to assume the 

errors to be normally distributed about the predicted value. 

Recently, two statistical techniques which separate the informa-

tion in a set of data into independent components were adopted for 
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application to meteorological prediction problems and were programmed 

for use with electronic computers. The two techniques are stepwise 

regression, also called screening, and factor analysis, which employs 

empirical orthogonal functions (2). These techniques express the pre-

dictand as a linear combination of a set of predictors. It is claimed 

that they are superior to ordinary multiple linear regression, since 

they make use of a large set of predictors and express the information 

which is pertinent to the predictand by a smaller set of predictors. 

Factor Analysis Method  

In the factor analysis method, a matrix of normalized pre- 
dictor values with o columns corresponding to o predictors and 
T rows corresponding to T observations in time, generates a 
coefficient matrix with o columns and T rows, where the column 
vectors are normalized and are mutually orthogonal. The columns 
of the coefficient matrix are used as new predictors where each 
new predictor contains only information which is independent of 
the other predictors and where the total set of new predictors 
contains all the information in the original set of predictors. 
Each normalized predictand is expressed as a linear combination 
of the new predictors, and a linear operator for each predictand 
is computed using the least squares principle. The contribution 
of each new predictor toward the prediction of the predictand is 
revealed by the square of the coefficient corresponding to that 
predictor in the linear operator. The square of the coefficient 
represents the per cent reduction of predictand variance attribu- 
ted to the predictor. Those predictors which do not reduce the 
predictand variance by more than a predetermined minimum value 
are withdrawn from the prediction equation. The procedure 
usually greatly reduces the effective number of predictors 
appearing in the prediction equation and is the major justifi-
cation for using the factor analysis method. To facilitate 
day-to-day use of the prediction equation, the equation obtained 
above is converted back in terms of the o original predictors, 
where the coefficients in the final linear operator are based 
on the reduced number orthogonal predictors. 

Extracted from Aubert, p. 438. For details of the factor 
analysis method see Aubert, pp. 438-442. 
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Screening Procedure  

The screening procedure, originally due to Miller (7), is an 

objective method of selecting from a set of those predictors which 

contribute most significantly to the forecast of a predictand. The 

forecast equation is a linear regression equation which contains 

only the selected predictors. 

The procedure screens a large set of normalized potential 

predictors and chooses as the first predictor that one which is most 

highly correlated with the predictand. The square of the correlation 

coefficient represents the per cent reduction in predictand variance due 

to the first predictor and the correlation coefficient itself is the 

coefficient of the predictor in the linear-forecast operator. The 

remaining potential predictors are orthogonalized with respect to the 

first predictor and are screened again in their new form. The ortho-

gonalized predictor which is most highly correlated with the predictand 

is chosen as the second predictor, and again the square of the correla-

tion coefficient represents the per cent reduction in predictand vari-

ance due to the second predictor while the correlation coefficient 

appears as the second coefficient in the linear-forecast operator. The 

remaining predictors are then orthogonalized with respect to the second 

predictor which automatically makes them orthogonal to the first, and 

the procedure is repeated to obtain the third predictor and its coeffi-

cient. By repeatedly orthogonalizing the remaining predictors to the 

preceding predictor and screening them for the best correlation, a 

forecast equation is generated by increments, which has the properties 

that each predictor is independent of all the other predictors and that 
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the contribution of each predictor to the reduction of predictand 

variance is given by the square of its coefficient, the predictors 

appearing in order of their importance. An F-test is used as a guide 

to stop the screening when the contribution of a predictor is judged 

to be not significant. To facilitate use of the forecast equation, 

the orthogonalized predictors are converted back in terms of the 

original unnormalized predictors. 

Non-linear Regression  

It is likely that linear forecasting procedures are popular 

since they are much simpler than non-linear procedures, and their 

mathematical theory is more highly developed. Occasionally, a joint 

frequency distribution indicates that the relation between the variates 

is definitely not linear. In such cases the linear correlation coeffi-

cient will be lower than the degree of relationship one might expect. 

Panofsky and Brier (9) suggest two ways in which a valid rela-

tionship between the variates could be discovered. According to them, 

either a general form of the relationship can be assumed and the coef-

ficients determined by least squares, or a stepped function could be 

fitted on the data. Although these methods are time consuming, they can 

be used with advantage when there is a theoretical reason to assume a 

certain form of relationship between the variates. However, it needs 

to be mentioned that it becomes highly difficult to visualize any 

existing relationship when there are more than two variates. 

The establishment of non-linear formulas of specified analytical 

form for purposes of meteorological prediction has met with little suc-

cess. Attempts to express predictands as quadratic functions of 
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predictors have led to formulas which have equaled the linear formulas, 

but have not surpassed them. 
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CHAPTER III 

THE NON-1INEAR MODEL 

Piecewise Linear Regression  

The theory of piecewise linear regression is based on the 

premise that a complicated relationship between a set of independent 

variables and the corresponding dependent variable can be considered 

as a collection of several linear relationships. In other words, the 

space G of all sample points is divided into groups G i , and the regres-

sion function in each group may be approximated by a linear relation-

ship. Thus the residual variance could be reduced by making the group 

as small as possible. 

To carry out this method an algorithm is needed which partitions 

the set S into subsets S.. This should satisfy a number of practical 

requirements. First, the algorithm should be an automatic procedure 

capable of digital computer operation. Secondly, the number of points 

in each group should be decided by the situation under consideration. 

However, there should be enough points in each group to perform a linear 

regression with reasonable accuracy, but the total number of points 

would be limited to avoid problems of bad fit. Finally, the boundary 

between two adjacent subsets should be clearly delineated by a cutting 

plane, which separates two adjacent sets. The actual theory of piece- 

1 
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wise linear regression will not be discussed here. 

The Piecewise Linear Regression Program written by Hanken (5) 

is based on an algorithm which will satisfy the above requirements. 

However, since the program is in Scatran, it cannot be used in most 

of the present day computers. Hence, it was first translated into 

Algol after removing the time lag incorporated in it, which was not 

needed for the present research. (See Appendix A.) 

Analysis of Arbitrary Data  

In order to test the applicability of the technique of piecewise 

linear regression as a tool for non-linear analysis, the program was 

first run on a set of arbitrary data generated by a non-linear surface. 

To generate the arbitrary data sample the non-linear equation 

2 
y = x

1 
 + x

2
2 

+ x
3
2 

was chosen, where x1 , x
2 
and x

3 
are three independent variables and y, 

the dependent variable. Now x
1, 

x
2 

and x
3 
were assigned random values 

(x
1 

and x2, between 0 and 10 and x3, between 0 and 5) and the corre-

sponding values of y were calculated. In order to achieve this for a 

data sample of 1000, an Algol program was written incorporating a 

standard random generator procedure (see Appendix B) and the data were 

generated by the computer. 

For a complete development of the theory of piecewise linear 
regression, see Hanken, pp. 53-94. 
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The translated piecewise linear regression program was then run 

on the data. A set of 50 data points each, at the beginning and end, 

was excluded from the actual analysis. The maximum number of data 

points in any group was limited to 49. The results of the analysis 

are displayed in Table 1. (See Appendix D for actual computer output.) 

In Table 1, level 1 corresponds to linear regression on the whole 

data space. This is then cut into groups 2 and 3 using the A
max 

cri- 

terion, and regression performed in each of these groups. These are 

now cut into groups 4 and 5 and groups 6 and 7, and regression performed 

again. Generalizing, the mth group is cut into groups (m x 2) and 

(m x 2)+l. Cutting is stopped when either the number of data points 

in all the groups is less than 50 or the group number exceeds 128. The 

level number thus indicates each successive stage of cutting. 

The degrees of freedom are calculated from the formula (5), 

d.f. = N - m(k + 1), 

where N = the total number of data points on which regression 

is performed, 

m = the number of groups in the level under consideration, and 

k = the number of independent variables or predictors. 

The residual sum of squares corresponds to the total of all the 

groups and, hence, also the residual variance. 

The regression equation corresponding to level 1, namely, 

See Hanken, pp. 69-76. 



Table 1. Piecewise Linear Regression on Arbitrary Data 

SSY = 6,203,640.00 

= 75.42 

17 

Level 
Number of 	 Residual 

Groups 	d.f. 	SS Residuals 	Variance 

1 1 896 107,233.00 120.00 

2 2 892 35,427.20 39.80 

3 4 884 26,121.08 29.60 

4 8 868 20,173.96 23.40 

5 15 840 13,326.78 14.70 

6 16 796 9,887.66 12.40 

7 27 792 9,684.72 12.20 
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y = y + b1(x1  - x1 ) + b2(x2  - x2 ) + 
b3(x3 

- x
3
), 

where y = the dependent variable or predictand, 

x
1, 

x
2 

and x
3 
= the independent variables or predictors, 

y

- 

 = the mean of all the y's, 

xl ,

- 

	x
2 

and x
3 
= the means of x1 's, x

2
's and x 3  's, 's respectively, 

and 	b1 , b
2 

and b
3 
= the respective regression coefficients, 

is called the linear model, and the collection of all the equations 

of the same form corresponding to all the groups in the level having 

the minimum residual variance, along with the equations for the required 

number of cutting planes, which are of the form 

e
l
x
l 

+ e
2
x
2 

+ e
3
x
3 

- CP = 0, 

where e l , e 2  and e 3  are the coefficients of the respective x's and CP, 

the direction coefficient, constitutes the non-linear model. 

All the information necessary for evaluating the models, namely, 

y, xl , x2 , x 3 , b l , b 2 , b 3 , CP, e l , e 2  and e 3 , are available in the com-

puter output. (See Appendix D.) 

Analysis of Weather Data  

For the purpose of the present research, maximum temperature in 

Atlanta, 24 hours in advance, was taken as the predictand, since data 

pertaining to this were available in a convenient form (11). As far as 

Evaluation of the models and calculation of the predictands for 
given values of predictors will be discussed later in the chapter. 
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the predictors were concerned, two entirely different approaches were 

taken. 

Local Variables 

In this, the maximum temperature 24 hours in advance was con-

sidered as a function of local variables, namely, maximum temperatures 

of the day, average cloud cover of the day, average dew point of the 

day, average pressure of the day, average east-west component of the 

resultant wind and the average difference in pressure between the day 

and the previous day. A total of 880 data points were considered, 

starting from January 1, 1965 to June 30, 1967. Out of these, 40 data 

points, each at the beginning and end of the time period, were set 

apart, without being included in the actual analysis. This was with a 

view to making predictions using the values of these predictors and 

comparing with the actual values of the predictand later. 

Actually the variables mentioned above were selected after run-

ning the standard multiple regression program of the Burroughs Corpora-

tion on a set of data with a larger number of predictors. These vari-

ables have a partial correlation coefficient equal to or greater than 

0.1. The results of the piecewise linear regression are displayed in 

Table 2. 

The linear model is given by 

y = y + h 1 (x
1 
 - x1 ) + h

2 
 (x

2 
 - x2 ) + b

3
(x

3 
- x

3
) + b

4
(x

4 
- x

4 ) 



Table 2. Piecewise Linear Regression on Weather 
Data,Local Variables 

SSY = 4,026,420.00 

Y = 69.35 

Level 
Number of 

Groups d.f. SS Residuals 
Residual 
Variance 

1 1 793 30,680.80 38.60 

2 2 786 30,078.00 38.20 

3 LI. 772 29,116.48 37.70 

4 8 744 28,101.25 37.70 

5 15 695 26,113.99 37.60 

6 22 646 25,090.60 38.80 

7 25 625 23,448.17 37.40 
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where y = 24-hour maximum temperature in Atlanta, 

x
1 

= maximum temperature of the day, 

x = average cloud cover of -Lhe day in tenths, 

x
3 

= average dew point of the day, 

x
4 

= average pressure of the day, 

x
5 

= average east-west component of the resultant wind, and 

x
6 

= average difference in pressure between the day and 

the previous day. 

The non-linear model is a collection of equations of the same 

form corresponding to all the groups in the level having the minimum 

residual variance with the equations for the required number cutting 

planes. 

Global Variables  

In this, the maximum temperature in Atlanta 24 hours in advance 

was considered as a function of maximum temperature in Atlanta and a 

few stations around Atlanta within a radius of about 300 miles, namely, 

Raleigh, North Carolina, Mobile, Alabama and Nashville, Tennessee, and 

also the average east-west component of the resultant wind in Atlanta. 

Here also the screening of the variables was done as in the previous 

case and only variables of better correlation were used for the piece-

wise linear regression. The results of the analysis are displayed in 

Table 3. 

The linear model is given by 

y = y + 
b1(x1 

- x
1 

+ 
b2(x2 

- X
2
) + b

3
(x

3
- x3 )+ b 4

(x
4
- -X

4
)+1.15(x 5 - 5 ) 



Table 3. Piecewise Linear Regression on 
Weather Data,Globai Variations 

SSY = 4,028,080.00 

Y = 69.35 

22 

Level 
Number of 

Groups d.f. SS Residuals 
Residual 
Variance 

1 1 794 25,992.40 32.70 

2 2 788 24,319.65 30.80 

3 4 776 23,859.73 30.70 

4 7 758 22,63989 29.80 

5 11 734 21,305.77 29.00 

6 19 686 21,252,45 31.00 

7 21 674 19,221-97 28.60 
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where y = 24-hour maximum temperature in Atlanta, 

xi  = maximum temperature of the day in Atlanta, 

x
2 = average east-west component of the resultant wind in 

Atlanta, 

x
3 = maximum temperature of the day in Raleigh, North Carolina, 

x4 = maximum temperature of the day in Mobile, Alabama, and 

x
5 = maximum temperature of the day in Nashville, Tennessee, 

and the collection of all the equations of the same form corresponding 

to all the groups in the level having the minimum residual variance, 

along with the equation for the required number of cutting planes, con-

stitutes the non-linear model. 

Comparison of Linear and Non-linear Predictions  

As mentioned earlier, in each of the above two runs on weather 

data, 40 data points each were left out at the beginning and end of the 

time period under consideration, without being included in the actual 

analysis. Predictions were made using the values of these predictors 

with both linear and non-linear models and compared with the actual 

values of the corresponding maximum temperature. Also the square of 

the residuals for each prediction and the error mean squares were cal-

culated. The results are displayed in Tables 4 and 5. Although the 

calculations were done on 80 sets of data in either case, only 20 sets 

are shown in the above tables. However, the mean square errors corre-

spond to the complete set. 

In order to do the above calculation an Algol program was writ-

ten (see Appendix C) which could calculate the values for both the 



Table 4. Comparison of Linear and Non-linear Predictions, Local Variables 

Linear 	Error Mean Square = 58.35 
Non-linear Error Mean Square = 78.75 

Maximum 
Temper- 
ature 

Cloud 
Cover in 
Tenths 

Dew 
Point Pressure 

E-W Com- 
ponent 
of Wind 

24-Hour 
Pressure 
Duff. 

Actual 
24-Hour 
Temp. 

Linear 
Predic- 
tion 

Non-linear 
Prediction 

62.00 
55.00 
51.00 
59.00 
63.00 
58.00 
68.00 
60.00 
43.00 
49.00 
76.00 
59.00 
56.00 
75.00 
84.00 
87.00 
88.00 
89.00 
88.00 
85.00 

9.00 
10.00 
3.00 
7.00 
9.00 

10.00 
8.00 
7.00 

10.00 
0.00 

10.00 
10.00 
10.00 
0.00 
0.00 
0.00 
0.00 
5.00 
5.00 
2.00 

50.00 
32.00 
19.00 
27.00 
41.00 
45.00 
54.00 
45.00 
31.00 
30.00 
59.00 
54.00 
49.00 
50.00 
54.00 
58.00 
61.00 
63.00 
62.00 
62.00 

29.03 
29.11 
29.29 
29.21 
29.09 
29.14 
29.03 
28.91 
29.06 
29.11 
29.01 
28.80 
28.85 
28.95 
28.99 
28.98 
29.00 
28.95 
28.81 
28.77 

-5.21 
-7.20 
4.79 

-2.91 
-4.89 
4.89 

-1.32 
-8.76 
-2.95 
2.91 
7.14 

13.44 
11.00 
2.02 

-5.21 
-7.27 
-6.04 
-4.83 
-3.25 
-2.96 

-0.23 
0.08 
0.18 

-0.08 
0.12 
0.05 

-0.08 
-0.12 
0.15 
0.05 

-0.02 
-0.21 
0.05 
0.10 
0.04 

-0.01 
0.02 

-0.05 
-0.14 
-0.04 

55.00 
51.00 
59.00 
63.00 
58.00 
67.00 
60.00 
43.00 
49.00 
55.00 
59.00 
56.00 
75.00 
84.00 
87.00 
88.00 
89.00 
88.00 
85.00 
81.00 

61.78 
55.47 
55.83 
58.82 
63.64 
61.32 
68.58 
59.30 
46.83 
54.70 
75.80 
59.91 
58.60 
76.34 
82.98 
85.31 
87.08 
85.82 
83.26 
82.29 

61.41 
55.73 
53.49 
57.17 
62.83 
55.70 
67.1Ei 
57.2i" 
45.16 
58.95 
74.82 
63.00 
62.27 
74.00 
83.07 
82.49 
87.05 
85.44 
84.17 
86.28 



Table 5. Comparison of Linear and Non-linear Predictions, Global Variables 

Linear 	Error Mean Square = 48.28 
Non-linear Error Mean Square = 151.09 

Max. 	Temp. 
Atlanta, 

Ga. 

East-West 
Component 
of Wind 

	

Max. 	Temp. 
Raleigh, 

	

N. 	C. 

Max. Temp. 
Mobile, 
Ala. 

Max. 	Temp. 
Nashville, 

Tenn. 

Actual 
24-Hour 
Temp. 

Linear 
Predic- 
tion 

Non-linear 
Pre-

diction 

60.00 6.60 44.00 73.00 67.00 62.00 64.03 68.98 

62.00 -5.21 63.00 75.00 63.00 55.00 64.57 65.87 

55.00 -7.20 60.00 65.00 44.00 51.00 53.12 47.91 

51.00 4.79 53.00 59.00 50.00 59.00 52.46 52.48 

59.00 -2.91 60.00 70.00 59.00 63.00 61.02 60.67 

63.00 -4.89 53.00 72.00 66.00 58.00 65.50 63.15 

58.00 4.89 56.00 73.00 67.00 67.00 63.79 77.95 

67.00 0.85 69.00 73.00 68.00 68.00 67.58 67. 111 

68.00 -1.32 72.00 75.00 65.00 60.00 67.14 65.89 

60.00 -8.76 60.00 66.00 36.00 43.00 51.58 46.59 

76.00 7.14 68.00 81.00 63.00 59.00 68.87 62.68 

59.00 13.44 56.00 69.00 72.00 56.00 64.95 77.05 

56.00 11.00 63.00 74.00 76.00 75.00 66.74 64.42 

75.00 2.02 69.00 83.00 82.00 84.00 77.25 79.66 

84.00 -5.21 76.00 88.00 88.00 87.00 83.97 82.56 

87.00 -7.27 80.00 91.00 89.00 88.00 85.99 83.85 

88.00 -6.04 86.00 93.00 89.00 89.00 86.60 85.33 

89.00 -4.83 92.00 93.00 87.00 88.00 86.09 84.97 

88.00 -3.25 90.00 90.00 88.00 85.00 85.62 84.54 

85.00 -2.96 67.00 91.00 84.00 81.00 82.66 74.57 
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linear and non-linear cases. In the latter case, the program incor-

porates a method of locating the group to which any particular data 

point belongs. 

This is done by substituting the values of the predictors in the 

equation for the cutting plane between two adjacent groups. For 

example, let 

e
l
x
l 

+ e
2
x
2 

+ e
3
x
3 

+ 	• • - CP = 0 

represent any cutting plane, where e l , e 2,  e 3, etc., represent the 

coefficients of the independent variables x
1, 
 x2,  x3, etc., and CP the 

direction coefficient. Substituting values for x l , x2 , x3 , etc., in 

the first cutting plane will give a result which is either less than 

zero or greater than or equal to zero. In the former case the data 

point under consideration will belong to the group (1 x 2) = 2, and 

in the latter case, to the group (1 x 2)+1 = 3. Generalizing this, in 

the case of the mth group, if the result is less than zero the point 

belongs to group (m x 2), else to group (m x 2)+1. Proceeding likewise, 

when a group with no further cutting is encountered the values of the 

predictors are substituted in the equation for the regression plane of 

the group and the value of the predictand is calculated. 



CHAPTER IV 

DISCUSSION OF RESULTS 

Analysis of Arbitrary Data  

The last column of Table 1 (page 17) shows the residual variance 

corresponding to the various levels of cutting of the arbitrary data 

discussed in Chapter III. 

From SSY, the sum of squares of the dependent variable, s
2
(y), 

the square of the universe standard deviation can be calculated. 

-2 
s 2 (y) 

 - SSN - 1
Y - N•Y  = 1209.27 

where y represents the mean of the dependent variable and N, the total 

number of data points. 

The residual sum of squares, and hence the residual variance, can 

be seen to be decreasing as the number of groups is increasing. How-

ever, the reduction in residual variance may not always stick to this 

pattern, as the reduction in degrees of freedom could more than offset 

the reduction in sum of squares. 

The multiple correlation coefficient for the linear case can be 

calculated as 

R
L 
=1 	

120.00  
1  

1209.20 = 0.946 
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Considering the level with the minimum residual variance, the 

final level in this particular case, the non-linear correlation coeffi-

cient can be calculated as 

12.20  
RNL = 7 1 	1209.20 - 0 . 994 

Analysis of Weather Data  

In considering the applicability of the non-linear model for 

predicting temperature, the two different approaches used for selecting 

the predictors have got to be considered. 

Local Variables  

The last column of Table 2 (page 20) shows the residual variance 

corresponding to the various levels of cutting in the analysis using 

local variables. 

The maximum number of groups in the final level shows up a 

reduction in residual variance of 1.2 from the linear case. It can be 

seen that the residual variance in level 5 is less than that in level 

6. This is because, in this range the reduction in degrees of freedom 

is faster than the reduction in sum of squares. 

After calculating the square of the universe standard deviation, 

the linear and non-linear correlation coefficients can be calculated as 

follows: 

38.60  
R
L 

-7-11 	 - 0.910 
223.20 
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R
NL 

=71 	
37.40  - 

	

 
223.20 	

0.913 

Global Variables  

The last column of Table 3 (page 22) shows the residual variance 

corresponding to the various levels of cutting in the analysis using 

the global variables. 

Here also the residual variance is less in level 5 than in level 

6. The reason is obviously the same as the previous case. It can be 

seen that there is a high reduction in residual variance (4.1) from 

linear to non-linear, and also the actual value of the residual vari-

ance is considerably less in the case of global variables. 

The linear and non-linear correlation coefficients can be cal-

culated as in the previous case. 

=.11 	
32.70  

R 
L 	225.20 - 0.924 

R
NL 

= 11 	
28.60  

- 0.934 
225.50 

Comparison of Linear and Non-Linear Predictions  

It can be seen from Tables 4 and 5 that the non-linear model 

does not offer better predictions than the linear model. In fact, the 

error mean square is considerably greater in the non-linear case. 



Table 6. Comparison of Linear and Non-linear Predictions, Fewer Predictors 

Linear 	Error Mean Square = 63.08 
Non-linear Error Mean Square = 60.66 

Maximum 
Temperature Pressure 

East-West 
Component 
of Wind 

Actual 
24-Hour 

Temperature 
Linear 

Prediction 
Non-linear 
Prediction 

60.00 29.26 6.60 62.00 64.10 64.80 
62.00 29.03 -5.21 55.00 62.55 57.60 
55.00 29.11 -7.20 51.00 56.68 53.83 
51.00 29.29 4.79 59.00 55.98 56.08 
59.00 29.21 -2.91 63.00 61.69 59.54 
63.00 29.09 -4.89 58.00 64.03 60.83 
58.00 29.14 4.89 67.00 61.01 60.92 
67.00 29.11 0.85 68.00 68.48 66.35 
68.00 29.03 -1.32 60.00 68.44 67.24 
60.00 28.91 -8.76 43.00 59.26 51.96 
76.00 29.01 7.14 59.00 76.47 79.28 
59.00 28.80 13.44 56.00 59.80 58.57 
56.00 28.85 11.00 75.00 57.25 56.63 
75.00 28.95 2.02 84.00 74.45 72.93 
84.00 28.99 -5.21 87.00 82.21 81.23 
87.00 28.98 -7.27 88.00 84.62 84.40 
88.00 29.00 -6.04 89.00 85.85 86.69 
89.00 28.95 -4.83 88.00 86.44 90.42 
88.00 28.81 -3.25 85.00 84.44 84.19 
85.00 28.77 -2.96 81.00 81.39 80.59 
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However, this does not entirely rule out the desirability of 

using non-linear models. Table 6 (page 30) shows the results of the 

predictions after non-linear analysis on the same temperature. Here, 

only three predictors are used, namely, temperature, pressure and 

east-west component of the resultant wind. The error mean square in 

the non-linear case is seen to be slightly less than that of the linear 

case. This is because, in the original weather analysis, the larger 

number of predictors used considerably reduce the degrees of freedom, 

and this reduction in degrees of freedom destroys the chances of making 

better predictions. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The results of the analysis of the arbitrary data shows a 

reduction in residual variance from 120.00 in the linear case to 12.20 

in the non-linear case. The correlation coefficient is correspondingly 

increased from 0.946 to 0.994. 

It is obvious from the above that the technique of piecewise 

linear regression is clearly superior to linear regression when the 

data exhibit a reasonable amount of non-linearity. 

The results of the analysis of the weather data (both the local 

and the global case) do not show any significant reduction in residual 

variance. Also the non-linear error mean squares are greater than the 

linear ones in both the original weather data analysis. This implies 

that temperature does not show enough non-linearity to warrant the use 

of a non-linear model. Also, it is not at all profitable to use pre-

dictors which do not have a high degree of correlation. In other 

words, it will be always advantageous to use a minimum number of pre-

dictors to check the reduction in degrees of freedom. 

A comparison of Tables 4 and 5 shows that global variables lead 

to considerably better predictions and this information can be made use 

of while using linear or non-linear models. 

Further research on weather elements like pressure, precipita-

tion, etc., could possibly prove the profitability of using piecewise 
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linear regression. The time differential used in the present models, 

namely, one day or 24 hours, is a factor which could seriously affect 

the predictions. Hence, for better predictions, it is advisable to 

use a time differential of 6 hours. 

It is recommended that the program for comparing the results 

of the prediction using the linear and non-linear methods be combined 

with the original program. This will facilitate handling of a lesser 

volume of data during further research in these lines. 
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APPENDICES 



APPENDIX A 

ALGOL PROGRAM FOR NON-LINEAR ANALYSIS 

BEGIN 
CUMMENT 	NUN LINEAR ANALY51 PROGRAM fRANSLAILU FNUM SCAIRAN 

P K (LORGE; 
INTLGLR 	K , NMPNLPMLAIMPIL; 

K+3; 
NM+1000i 
IM4-50; 
IL4-5U; 
NL+50; 
ML412d) 

BEGIN 
REAL 	 SSY,YmoSESAP.PEOpCPPILAMPrOETi 
INTLGER 	MPI,L,JP; 
REAL ARRAY 	XEUSK+2PO:NM3PIX(04NMj,TCOIKJ,XSCU;KJ,N[0:KPO;KJ, 

SIOI K, U 1 KJ ,0 610:K , 01)rXM(OtKJ,EXS[0:KJAAIOIK o O;Kir 
CEGIKAO : KJpECOIK$0;11PF10:00:1J,G(0:K3,N(0;2*ML+1); 

LAE:ILL 	 STARIPL20,P1,P?,Pe4,L12,,P5PLI6sP6PL5,P7PL19; 
FILL IN 	PKGINt2 , 10); 
FILE (Jul 	PKGUU1 0(2,15); 
FUNMAT 	F1(4(A4PF6.3)), 

F2(//,"SSY=HrE11,), 
F3(//p"GROUP" , X2,"NUnPX1, SIGMA RES",X6,"MEANS",;(3, 
"Y"pA ( p"X 4 " 1, X 7' , ":42 " , X7 , ")(3" , // , X41,"131".0(7,"B2"AX7,"83", 

F 4( // , X 1, 13 , X1 , 1 4, A1,L11,5,X4,4F9,2ft/sX34, 
3F94.2,IPX25,4F9.2)P 
F 5( //rX 1,13, X1 ,14, A1 , 111,54X4.44F9,2,/,X34,3F9.2); 

LIST 	 LST1(PUK H41 sfie 1 UNTIL NM (JO 
FUN 141 S1EP 1 UNTiL K+1 00 XEIPHJ), 
LST2(MAN(M),St_SsYM , FOR 141 STLP 1 UNTIL K DU XME11, 
FUti 1+1 51E? 	UNI1L K U0 811 , 17,CPPFUN 1+1 STEP 1 
UNIIL A U6 LLiPiJ), 



LST3(moNtmLoSES,YMPFOR I+1 STLP 1 UNTIL K DU XMEIJ, 
FUR 1+1 STEP 1 UNTIL K 00 8EI,13).; 

SS A A012 

SI. A A014 

SIAN'S 
	

WRI1E. cerwouT [NUJ)) 
REAL) (PKGINPF1PLST1)) 
CLOSE (PKGINPRELEAbE)) 
M4-1) 
SSY+0.0) 
FUR L 4 114+1 STEP 1 UNTIL NM-IL DO 
SST+SSY+XIK+1,LJxXIK+1,LJ) 
WHIT. (PK(0UT,F2PSSY)) 
WRITE (PK(OUT,F3)) 
NI1I+NM'IIM+IL)) 
FUR L+IM+1 STEP 1 UNTIL NM-IL OU 
IXEL.14-1; 

L20; 
	

FUR I+1 STEP 1 UNTIL K DO 

X$11.1+0.0; 
1(1 j#,; 
FUR ,J4I STEP I UNTIL K OU 
REIPJP, VoU) 

YM+0,0) 
L+IM) 

Pit 	 IF L:NM'IL THEN GU TO P2) 
L+L+1) 
IF IXILJOM THEN GU TO P1) 
YM.YM+XLK+1,1J; 
FUR 141 STEP 1 UNTIL K DU 

ELGIN 
X$III0(5111+XIIPLP 
TIIDTEID'XIIPLJXX[K+1,L)) 
FUR J+I STEP 1 UNTIL K 00 
REI , Ji+RCIAJ1+XIIPL1XX[J,L1) 

ENU) 
GU 10 P1) 

P2: 
	

YM4YM/NIMI) 

00000000 
99999999 
00000000 
99999999 



FUR 1+1 STEP 1 UNTIL K DO 
UEG1N 

611 , 1J+TEI1-XS1I.W04; 
Xt411J+X$111/N(MJ.; 
FUR J+1 STEP 1 UNTIL K DO 

8L61N 
SE 1,4 J + N(1 , 41 - (XSLI)xXSE41/NEM)); 

END; 
END) 

FUN 1+1 STEP 1 UNTIL K DU 
FUR J+1 STEP 1 UNTIL K DO 
5E4,1.1+5(1,4j) 
INVLRT(K , S,UET,PK(iuUT); 
MATPRUD(0101,Spep); 
IF NEHJ<NL THEN GU TO 1.5) 
FUN 1+1 STEP 1 UN1IL K DO 

bEUIN 
EXS111+0,0; 
FUN J+I STEP 1 UNTIL K OO 
AL 1,4.140 0 0; 

LINO; 
SES+0.0; 
L+Iw; 

e3s 	 If L=NM-IL THEN GI.) TO P4; 
0-1.+1; 
IF 1XLLJP1 THEN GU hi P3; 

FUN 1+1 STEP 1 UNTIL K DU 
efe+dLIPljx(X(IPLi - XM(I)); 
x(K+? , LJ 4-(X1K+1,L) - YM-P)*2; 
ss 4- 5Ls+XLK+2,Li; 
FUN 1+1 STEP 1 UNfiL K 00 

dEG1N 
EXSCIDEX5(I1+XLK+4=,, LJxX[I,L1; 
FUN JfI STEP 1 UNIT,.. K OU 

ENUi 
A[I , JJ+ACI , JJ+X(K 4 4tpLixXCIptIxX(J,Lii 

GU TU P3) 
P4; 	 FUN 1+1 STEP 1 UNTIL K DU 

FUN 4+I STEP 1 UNTIL K 00 



L12; 

1 ,5; 

A1I , Jj+A(1,JPPEXSE11(EXSEJJ/SES) 
FUK 1+1 STEP 1 UNTIL K DO 
FUK J+1 STEP 1 UNTIL K DO 
AEJ.IDAII,J1) 
MATPRUD(KoK,K,S,A,C)) 
FUK 1+1 STEP 1 UNTIL K DO 
EEIP1)+1.0) 
MAIPKUD(K , K,1,C,E,F)3 
EW+00) 
FUK 1+1 STEP 1 UNTIL K DU 

BE(iIN 
GII)+FEIP111/FE1,1P 
EQ+01)+ABS(E(I01)-GLI))3 
E(1,11+GEILI 

ENO) 
IF Lwao,01 THEN GU TO L123 
CP+0.0) 
FOK I+.1 STEP 1 UNTIL K DO 
CP+UP+EXSEI]?(EII,1)) 
CP+CP/SES) 
WHITE (eKGOUT,F4,LST2)3 
IF NEMJ<NL THEN GU TO P63 
NE2 ,04J+0) 
NE2xm+1J+03 
L+IM) 
IF L=NWPIL THEN GU TO P63 
TL+0.0) 
L+L+1) 
IF IXELJ$M THEN GU TO P53 
FUK 1+1 STEP 1 UNTIL K DU 
TL+11.+ELI,11xXCI,L)) 
IF TL<CP THEN GO TO L163 
IXLLJ+2xM+13 
NE2*M+1J+N[2xM+114.1 
GO TU P5) 
IXELJ+2)(M3 
NE2xMj+N12xM34, 13 
GU TO P5) 
SES+0.0) 
L+IM; 



PT1 

L19* 
P6$ 

IF 1-x1414•1i. THEN GU TO L19) 
OrL+1; 
IF IXLLJ$M THEN GU TO PT) 
P+0,0) 
FUR I*1 STEP 1 UNTIL K DU 
P+P+BEIP1ix(XEIPLIsXMCI3); 
XIK+2,1J4(X[K+1,Li"YMIPP)*2) 
SES+SES+XLK+2,LJ; 
GU TU PT) 
WRITE (PKGOUT,F5,LST3)3 
M4M+1,1 
MPO4/2) 
MP+ENTIER(MP); 
IF NEWPItNL THEN GU TO L20) 
NEMj+0; 
IF MOIL THEN GU TU P63 

ENO; 
ENO, 



APPENDIX B 

ALGOL PROGRAM FOR GENERATING ARBITRARY DATA 

tiLGIN 
CUMMLNT 	ARdITRARY DATA FOR NON LINEAR ANALYSIS 

P K (ILURGL) 
RLAL 	 UPfHPILi 
INTEGER 	CPTPI; 
RLAL ARRAY 	XL0;4#0;1000]; 
LAtiLL 
FILL IN 
FILL UUT 
FURMAT 
LIS, 

START; 

STANT) 
PKGIN(2,10)3 
PKGUUI 0(2,15); 
F1(4(X4rF8,3)); 
LST1(FUR 141 STEP 1 UNTIL 1000 DU FUR 1+1 STEP 1 
UNTIL 4 DU XEI,T)); 
RLAL PRUCLOURE h; 

BEGIN 
0UUeLt(C)00,0,0,w$4,THrTL); 
DUUOLE(IHRTL,ENTIEK(TH),OP ■ P+PD,TL); 
R#U) 

LNU; 
04549755813885; 
04C/8*13; 
FUR 141 SIEP 1 UNTIL 1000 00 

BEGIN 
X[1,114Rx10) 
X12)11 4 R*10; 
XL3ro1j+Rx53 
Xt4pTi+X(1,T)42+XI4,T)*24X(3,11*2; 

LNO; 
WRITE (PKbiOUT,i;1,0T1); 

LNO• 



APPENDIX C 

ALGOL PROGRAM FOR COMPARING LINEAR AND NON-LINEAR PREDICTIONS 

8EuIN 
PKU(INAM FUR MOANING THE REULIS U MULTIPLE LINEAR 
RtuRt:SSIUN AND FIECEWISE LIN.AH REGRESS1uN 
e K Gt-UNGt.; 
Ksli-MsNURNH; 
K*6; 
4M#19 

Ntii-tNiIEN(N /2); 
dE'01N 

iS 

VCr'smi 
1,J,M; 
YHAILQ:ILM) , XEO:ILMPOIK+1],A1(0INGRO:K+1), 

8 NG , U:K)PE10INHP0SK+1),RSI0:ILM); 
N(0:1+,1j; 
SlAHT , L1/..2PL3PE4; 

(e.,10); 
PMxUUT 6(4,15); 
t1(((X4Pb e 2)), 
1.2(11): 

(-4(6(X2p,2)), 
Fl(9(Xe,1- 712)), 
Fo2(//,x1 ,),"ERRUR MEAN SQUARE :01 ,F10,3)) 
LS11(fUll 141 STEP 1 UNTIL ILM DO 
-UN u#1 STEP 1 UNTIL 1K-e1 DO X(IPJJ) , 

 LST2(UN 1+1 STEP 1 UNTIL NG 00 NUJ), 
L614kFUN 141 STEP 1 UNTIL NG 00 
FUM J(-1 STEP 1 UNTIL K+1 00 XM(I,J)), 
LS14(tUrt 1+1 STEP 1 UNTIL NO DO 
Flit( J4-1 STEP 1 UNTIL K DO BEI,J1), 
LSI5(PUH 141 STEP 1 UNTIL NH DO 

fitAL 

AY 

,0*A 

LA:dLL 
FILE iN 
FiAj. Utif 
FWiM4f 



START: 

Lis 

L2: 

FUR J+1 STEP 1 UNTIL K+1 DO EII,JJ), 
LSTR1(FUR I+1 STEP 1 UNTIL ILM DO 
(FOR J+1 STEP 1 UNTIL K+1 DU X[I,J1,,YHATEI]pRSII13), 
LSTR2(FOR J+1 STEP 1 UNTIL K+1 DO XEI,J1,YHATM,RSII)); 
WRITE (PKGOUT ENO)); 
READ (PKGIN,F1,LST1)) 
READ (PKGIN,F2,LST2); 
READ (PKGIN,F3,LST4)) 
REAL) (PKGIN,F4,LST4); 
READ (PKGIN,F3,LST5); 
CLOSE (PKGIN,RELEASE)1 
FUR I+1 STEP 1 UNTIL ILM DO 

BEGIN 
YHATEI1+0.0) 
FUR 4+1 STEP 1 UNTIL K DO 
YHATEIDYHATII1+BEI,J1*(XII , J3•XMCI,J1)) 
YHATEI1+YHATEI)+XM(1,K+11, 

END) 
FUR I+1 STEP 1 UNTIL ILM DO 
RSEI1+CX(I,K+11-YHATEI1)*2; 
WRITE (PKGOUT,FR1,LSTR1); 
MS+0.0) 
FOR I+1 STEP 1 UNTIL ILM DO 
MS+MS+RS[I]; 
mS+MS/ILM) 
WRITE (PKGOUT,FR2,ms); 
WRITE (PKGOUT (PAGED; 
MS+0.0) 
1+0; 
1+1+1; 
IF IsILM+1 THEN GO TO LA; 
M.1) 
IF NEM101 THEN GO TO L3; 
YCP+0•0; 
FUR J+1 STEP 1 UNTIL K DO 
yCP+YCP+E(M,J]xXII,J]; 
YCP+YCP"EIM,K+11) 
IF YCP<0 THEN 
04+2xm ELSE 
M.2xm+1; 



GU TU L23 
L31 
	

YHATEIP-0100) 
FUR J4-1 STEP 1 UNTIL K DO 
YHATEIDYHATII1+8EM,J]x(XII,JP.XMIM,Ji); 
YHATIII.YHATEIDXMEM,K+1]; 
RSII34, (X[IpK+11 ■ YHATEI1)*2$ 
WRITE (PKGOUTPFRI,LSTR2)3 
M$44S+RS[I]; 
GO TO LI/ 

L4$ 
	

MS4MS/ILM; 
WRITE (PKG0UT•FR2PMS); 

ENO; 
ENO, 



APPENDIX D 

PIECEWISE LINEAR REGRESSION ON ARBITRARY DATA 

ACTUAL COMPUTER OUTPUT 

SSY=6,2036401 +06 

GKUUP NU SIGMA RES MEANS 	V X1 X2 X3 

81 82 83 

CP El E2 E3 

1 900 1.0723301+05 75.42 5,08 4.99 2.39 
10,09 9,94 4,71 

4.62 1.00 •°.67 1,42 

2 428 1,7'353461 +04 73. i9 3,31 6.92 1,63 
7,32 13.40 1,81 

-3.22 1,00 "1.59 2,64 

3 472 1.80065@+04 77.26 6,68 3.23 3,07 
12,64 7,08 7.37 

9.8 1,00 "1.02 1.95 

4 199 3.80738@+03 87.f0 2.80 8.37 1.14 
6,74 16.86 1.92 

-3.19 1,00 "1.27 4.03 



5 229 	70629380+03 60,96 3,76 5.67 2,06 
8,62 11.29 4,22 

0080 1,00 0016 "1096 

6 268 	8,875910+03 75,55 6,15 4.34 2,62 
11,66 8,29 5,89 

6,54 1.00 111,20 2,09 

7 204 	5,80841@+03 79.51 7,37 1,77 3,67 
13.40 4,92 8,27 

32,18 1,00 6.17 3,11 

8 100 	1,84288@+03 90,34 2,30 8,79 0,67 
6,44 17,03 0,99 

.0027 1,00 1'0.59 2,80 

9 99 	1,881830+03 85.03 3,31 7.95 1061 
7,29 16.17 3013 

"'4062 1,00 .1069 3.30 

10 12/ 	1,46713@+03 54,69 2,38 5,84 2,89 
6,84 10.39 6,46 

-0,50 1,00 +0.86 0,68 

11 102 	2,67697@+03 68,16 5,41 5,46 1,03 
8,07 13.85 1.3,20 

15.61 1,00 1053 1.45 

12 126 	3,89071@+03 83,43 6,44 5,19 2.21 
12,21 8078 5,81 

6 0 00 1 ' 00 "1 0,22 0,57 



13 142 4.481830+03 68,56 5,90 3,58 2.98 
11,45 7.92 6.09 

8,87 1,00 "1.14 2.35 

14 158 3, 927570+03 74,25 7,34 1.03 3,46 
13,33 .380,61 "248,43 

"26295,21 1,00 "7892.68 "5259,64 

15 46 5,036050+00 97,54 7,47 4,32 4,38 
14,27 9,60 9.74 

16 63 1.268220+01 18,85 1,17 8,54 0,60 
3,58 16,78 0,04 

.6,81 1,00 "1,15 2,23 

1 31 6,629320+02 110024 4,23 9,21 0,78 
10,65 15.28 14,02 

18 50 9.463080+02 86,98 3,44 8.08 1.28 
7.30 16.40 2,74 

"4,D6 1,0 0  "1.60 3,82 

19 49 9,156700+02 83,03 3,18 7,81 1.96 
6,45 17.29 1.02 

20 17 9,128150+00 64,24 2,15 6,81 3,04 
4,96 13,48 6,22 

"3,96 1,00 .3,42 5,36 

21 50 3,013750+00 39,97 2,75 4,35 2.67 
10,59 8,89 4,75 

0. 6 1 1,00 "2.24 3,47 



22 46 1,209520+00 35,10 4,01 3,83 0,67 
7,88 8.11 1.75 

23 56 6,421500+00 96,41 6,66 6.79 1,33 
12.40 13,83 3.01 

3,',6 1.00 1•0.86 1.58 

24 52 6.591910+02 54,16 4,26 4,53 3.01 
7,87 8.75 5.68 

5,e7 1.00 -0.87 1.64 

25 74 1'078680+03 104,)0 7.98 5.66 1.65 
14,60 9.96 4,54 

6,43 1,00 w0.70 1,34 

26 72 2,060430+03 69,93 6,26 3.57 2,49 
12,70 6,99 8.11 

7,67 1,00 "1.19 2.29 

27 70 2,259140+03 67,15 5,52 3,58 3,49 
11,68 7.30 7,65 

10,10 1,00 "1.12 2.47 

28 68 1,988420+03 62,37 6.53 1.14 3,7? 
12,14 3513.59 2345.75 

4077,60 1,00 1218.53 815,02 

29 90 1,717950+03 83,23 7.95 0.94 3.59 
13,67 1•452,00 -296,09 

-5516,68 1,00 -1658,74 -1104.12 



32 34 1.2140/0+00 97,08 1,10 9,66 0,52 
3,47 43.12 .40,72 

33 29 2,639300.01 57,05 1,27 7.23 0.11 
4,44 16.08 2,42 

36 21 4.165410+02 84,58 3,17 8,10 1.18 
5,89 18,04 -1,73 

37 29 4.677090+02 88.72 3,63 8.06 1.35 
3,83 22,33 10.42 

40 49 5.936280.01 68,17 2,66 7.11 2,60 
4,75 14.03 5.19 

41 28 3,085700.01 57.37 1,24 6,27 3,80 
•184,95 .50,72 7,24 

42 14 1,338690.02 82,60 4,01 7,26 3,40 
62,38 1,16 .14,40 

43 36 6,086280.01 23,40 2,26 3.22 2,39 
132,83 49.51 4,92 

46 33 2,593940.01 104,37 6,89 7,20 1,17 
12,00 14.32 2,11 

47 23 3.333570-01 84,99 6,34 6.21 1.56 
13,16 13.08 4,32 

m 



48 26 3.31367(1 +02 56 0 38 4,28 4.86 2,90 
9.33 7093 7.56 

49 26 2.99810+02 51.95 4,24 4,20 3.13 
4,94 11032 0.90 

50 34 50089480401 110.31 7,53 6083 1.95 
10,15 12.32 3.56 

51 40 5010607@+02 98,64 8.36 4.66 1.39 
13,28 10.78 1,57 

52 33 9074156€402 72.23 6,81 3.50 2,02 
10,82 9.41 2.88 

53 39 9.8528300 +02 67099 5,80 3064 2.88 
13,68 5.79 11.02 

54 37 1.11965E4 +03 69.82 6,03 3.54 3.07 
18.19 0.09 22.50 

55 33 8.75473E1 +02 64,16 4,95 3,62 3.96 
10,77 7,83 8,87 

56 38 1.05799P+03 59.59 6,46 1.42 2,88 
10.27 "1684.27 "1124,60 

57 30 7,48215(402 65.90 6.63 0.79 3.82 
11,98 13907001 9275.47 

CD 



58 20 2.50858@+02 40.70 4,71 0.87 3.70 
9,96 *.8461,00 " 5 6 3 8 e 9 0 

59 TO 7,98056(4 +01 95,38 8,87 0,96 3,55 
16,24 " 7 6 2 • 4 0 •502,32 

13293,20 1,00 3982,51 2658,02 

118 28 2,733490400 93,76 9,11 1,60 2.60 
15,23 '. 727.66 '4481,64 

119 42 5,67790@+00 96,46 8,7'1 0,54 4,19 
16,42 "53.25 '427.82 

I 
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