Regulations for the Use of Theses

Unpublished theses submitted for the Master's and Bettor's degrees and deposited in the Georgia Institute of Technology Library are available for inspection and circtiation in accordance with Library regulations governing materials of this type and with due regard for the rights of the authors. If potential financial gain is involved, no copying from, or publication from, any thesis may be don without written permission from the author. If such copying or publication is solely for scholarly purposes and does not involve potential financial gain, permission may be obtained from the professor under whose direction the thesis was written, or, in his absence, from the Dean of the Graduate Division of the Georgia Institute of Technology. In all cases, proper credit must be given in subsequent written or published work.

This thesis by George Forrostor has been used by the following persons, moose signatures attest the rr acopptanoe of the above restrictions. A library which borrows this thesis for use by its patrons is expected to secure tho signature of asch user.

NAME AND ADDRESS OF USER

"In pesenting the disservation ag a partial fulfillment of the requirements for an advanced degree from the Georgia Inatitute of Teahnology, I agree that the Libxary of the Ingtitution ahall make it available for Inspection and circulation in accordanee with its regulations governing materials of thla type. I agree that pexalaaion to copy from, or to publish from, this digaertation may be granted by the professos undex whose direction it was written, or, in tis absonee, by the Doan of the Graduate Dividion when such copylng or publication is solely for scholarly purposes and does not involve potential finanelal gain. It is undergtood that any copylng from, or publication of this digaertation which involves potential finanoial gain will not bs allowed without witten permission.

A STATTETCAL ANALYSIS OF SORE O THE CAUSES

A THESTS

Presentad to the Faculty of the Graduate Divieion
by

Georg Formeater

In Partial Fulfilment
of the Requirements for the Degree

Hastor of Science

Georgia Institute of Technology
June 1953

A STATISTICAL MALISIS OF SOHIR OF THE CAUSES

 OF TIMED VARLANCE IN STOP WATOH TTNE STUXY
Approvad

Date Approved by Chairmant © OUHE 52

AOKNOWLTMUHENS

The writer wishes to express his gratitude to Dr. R. 解。 Wehrer for his guidance and patient encouragenent during the course of thin study. Thanks are also due to Dr. J. Foder and Mr. Wycott, the tinu study observer, whose results were used in this analysis, for their valuable assistance.

TABE OF CONTEMS

Page
APPROVAL SHEET. $i 1$
ACRMOLLSOMENAS 111
LIST OF TABLES v
IITT OF FTGURES 41
ABSTRACT vii
Chapter
I. IMTRODUCTION 1
II. MRUEE OF TRE LTPRRATURS 3
III. PMOCRDUR 6
IV. STATESTICAL TECHITGUSS USED IN ANALXZTNG
THE DATA 9
V. RESULTS 13
VI. SU解ARY AND CONGLUSTONS 16
VIT. BECOHENDAT TOUS 21
BTBLIOGRAPMY 22
APPEMDTX I 23
APPENDIX II 25
Apphata ITI 29
FITURES 45

LIST OF TABLES

Table Page

1. Mundel's Secondary idjustment Values 23
2. Observed Tims for Element Number 1 29
3. Observed Times for Element Huber 2 30
4. Observed Times for Flement Number 3 31
5. Observed Times for Elenent Muber 4 32
6. Observed Times for element Mumber 5 33
7. Ooserved Times for Element Number 6 34
8. Observed Times for Elenent Number 7 35
9. Observed Tines for 1 lenent Number 8 36
10. Observed Times for Element Number 9 37
11. Observed Times for Eloment Mumber 10 38
12. Observed Times for Element Fumber 12 39
13. Observed Pines for Element Number 12 40
14. Observed Times for Element Number 13 41
15. Observed Tines for Element Number 14 42
16. Observad Times for Element Number 15 43
17. Timed Variance, Length and Complexity for Each Elament 44

IIST OF FIGURES

Figure Page

1. Histograms Showing Distributions of Observed Times for thements 1,2 and 3 45
2. Histograms Showing Distributions of Observed pimes for 3 lements 4, 5 and 6 46
3. Histogrons Showing Distributions of Observed Thmes for migments 8, 9 and 10 47
4. Histograms Showing Distributions of Observed
Tisues ior Elements 11 and 12 48
5. Histograms Showing Distributions of Observed Times for Elements 13, 14 and 25 49
6. Graphs of Timed Variance Plotted Against the Length and Complexity of the Elements 50

ABSTRAOT

One of the causes of randon variation in observed alenent times in ston match tine study is timed variation. Timed variation is due to a host of chance happenings in observer performance. wach of these chance happenings ic so minor by itself that it is aceopted as normal and is ofton not even detected. These may anise from fortuitous variations in the methods, materiala, perator perforances, the objective of thas thesis was to evaluate the eflect, if any, on the timed yartance of the length of an element and its complexity.

Fron data obtained in a factory, the variance in the observed times and the average length of each elenont were calculated. Tables of secondary adjustment values were used in evaluating the complextity of each element.

The single, multiple and partial correlation coefficients between the throe variablea wer calculated and tested for significance. There was no evidence of a relationship existing between the timed variance and the length of the elenent, but the correlation between the thed variance and the alonent complexity was, statistically, highly nignipicant. However, this significant relationship between the thed variance and element complexity would have to be inve日tiated further before any definite statement about it could be made, since the range of values of gleasat coaplexity applicable to the elements used in this study, mas linited.

GAAPTBR I

INTRODUCTI OM

The study has boen defined as a procedure for detemining the ampunt of time required, under certain standerd comditions of measurement, for tasks involving sone human activity (1). However, oven in the nost carefully controlled situations, completely standardized conditions of measurement cannot be obtainad. One appreach to reducing the anount of human judgmant, and as a consequence the muan error, in work measurement has been the development of synthesized time standards. Theae synthesized time standards may remove the exror involved in the practice of ratiag, but their final accuracy is still a function of the accuracy of the thme studies used to compile them, and within evory tume study there is random variation in the element times due to departures from the standard conditions.

This variation may be due to chance variability or assignable variability, the assignable variability being caused by some circumstances which are noticeable, like fumbles, change in operator's method, etc. The effects of the assignable variability can be eliminated from the study before using the data for setting standards. The chance variability may be considered to be due to either tining variation or timed variationg the timing variation in characteristic
of the tirming device used (2), while the timed variation has been denined In the following worde (3):
fimed variation is dus to host of chance happenings in observed pertormanoe. Bach of these chance happenings is so minor by itselif that it is accepted ms nombland is often not even detected. These may amise from fortustous variations in the methods, materials, equipment, performance, tools, workplace layout operatar actions, etc.

This paper is an attempt to oxamine and evaluate otatistically some of the factors causing this timed variation in time studee plore ppecifically, the causes of timed variation which tere stadied were: the random variations in the element lengths and the randora rariations In the elenent complexities.

CHAPTUR II

GITHRATURE SURUEY

In time study practice, it is usual to get namber of different observed tine for the same eloment or group of elementa. Even after eliminating those tines which were alfected by some noticeable occurrence such as change in operator pace or method, missed time, fumble, ete., there are still variato ons in the tures considered walid in the study.

There are different opinions amonget varione authors as to the procedure which should be followed to determine the "beat time for an element from data of this nature. Lowry, Maynard and Stegemerten (4) advocated disearding abnormal readings, that is, "oneg which are extremely high or low and hence easy to pick outn. Another author, attempting to be more specific; suggeste that all rewdings that vary by more than twenty-five per cent from the average reading must be discarded (5).

Kowever, this viempoint that umasually high or Low readigs should be elimated from the study is not adnered to by all who mrite on the topic. Presgrave (6) says that, "any recording that is beyond the normal range cannot be ignored ulth safoty, in spite of the comnon practice of discarding extremes. He continues by saying that unsually lou timings are especially open to conjectare, since they may provide the
key to the whole gtudy. Abrurgi (7) also suggests that tit is bad pnactice to elininato unusual olement tines arbitwaxily. ile atabes

Wo empirical justification exiets for disearding zeadings mexely because of their magnitude, especially in the indiscriminate manner reconmended in so many teate, In facts this in likely to degenorate into a completely arbitrary procedure, whose sole apparent function is to reduce the vamability of the reading arbitraxily. The only gafe procedure, then, is to discard reading onyy when it is known to be biased because af sone specific ocourrence duming the tine stady.

Mundel (8) doss not regard element thmes wich seen too hith or lov as abnormal. Instead, it is his opiaion that me mast invamably expect sone variation from reading to reading for ay olement, even if the worker is not attempting to vary his pace. He suggests that this saristion will be caused by, among other causes, the following

Randon variations in operator movement and pace.
Bandom variationg in the positions of the parts worked with.
Randon varistions in the positions of the bools used.
Random variations in the olight errows in watoh reading.
The variation in the errorg in watch reading has been studied by Lammas (9). Pe found that the timing variation using the decimal. minute stop watch, hed a standard deviation of aproximetely 0.008 minutes for elthor the smap-back or continuous method of timing. As an estimate of the timed variation esuced by a host of chance heppenings in observed performance, Lehrer and Moder (10) easumed, as a firet approach, that the timed vaxtation is of approximately the same magnitude as the timing variation. This assumpton was qualified in the following ways

The assumption af timed variation being equal to timed variation may not be absolutely correct. There is strong evidence to indicate that timed variation may be a fayction of the characteriatice of the worle being performed, the operator being observed, and the organization where the worit and observation take place.

In sumariming the sritings on the subjact of variability in alenent times, it appears that the proper way to consides and allow fow this variability has not yet been conclusively determined. To the writer's knowledge, no experimental work has been done as yet, with the object of determining and evaluating geme of the causer of the timed variation in olemental stop watch study.

PROGEDURE

Stop match data actaally being used in the setting of standards for wage payment were obtained from factory. This procedure had the advantage that the data was obtat ned under acturl operating conditions and raty be considered as a representatswe sample of the type of deta which we could nomally expect to Ind in practice. Neither the time study observor who compiled the data used, nor the operator whose pexformance was obeerved, knew that the resulte of the time gatise ware to be subject to a statistical analysis. The element times used In this stady were aceeptable to the company concerned as a basis for their seandards. The writer could not deternine what level of reguirements the time studies had to meet to be considened acceptable by the company.

Selection of Data. - Some restrictions wore placed on the selection of the data to be ueed. All operations considered were completely manual and an attempt was made to collect data which had all been compiled by the same time study man while the operations vere being perfomed by the one operator. All the data used was collected from one factorys at similar job locations and under simiar wowing conditions. These restrictions were placed in order to minimize the affeots on the observed
elemantal times which may be due to variations resulting from different observers, operators and woriding conditions.

The recorded element times wore checked, and any which had been affected by an observed assimable cause such a fumble; or change in methodg were oliminateds the remaining times which had no aseigned cause of variability were used in the statistisal analysie. For each element, the observed times mere separated according to the rating factor wich the tim stody man had assignad to each tumes that is, all times for an element wich had a ratag of, say, 110 , were grouped together and considered as bample of observations. The length of each element was taken to be the average of the time values remaining.

In order to owaluate the complexity of the elemonts it was decided to use Mundel's tubles of secondary adjustunente (11) as a messure of elenent complextys. A brief extract of hundel's explanation of this concept of element complexity is gaven below

Some joss are more dificicult than others, and these job difference will place different limite on the pace possible on each job with firad rato of exartion relative to the maxdmum possible on the job, but they may be objectively evaluated. The method eonsists af determining the various inctors that would make for difficulty in the job, evaluating thelr effect, and expressiag this effeot as a secondary adjustment or allowanee. The fectore affecting yob pace are:

1. Total amount of body involved in the element.
2. Foot pedals used during the element.
3. Bimanualness of the element.
4. Eye-hand co-ordination required to pexform the element.
5. 絃dling or sensory requirement of the element,
6. Resistance that must be overeone on the eloment, that is, thmest on levers or weight lifted.

Tables of per cent adjustments for different degrees of each of these factors have been prepared mandel. and a copy of thess tablos is shom in Appendix I. It wes decided to exclude classifiostion number six, the weight or thrust factor, from the estination of elenent complexity, as the weight or thrust involved in the element we net constiered to affect the unned variation in this ease.

A description of the elements with thear secondaxy adjustment values is shown in Appendux II. The olements had been tirned using the snap-back method with a decimalminute stop watch, and the se times are tabulated in Appendix III. Appendix III also includes a table of the total variance and the timed variance in the times for each elemont.

CHAPTER TV

The total variance in the times for each element mas calculated from the following equation:

$$
\sigma_{\text {total }}^{2}=\frac{t^{2}-n(\bar{t})^{2}}{n-1}
$$

where $\sigma_{\text {total }}^{2}=$ total variation in element times.
t $=$ individual time values for each element.
n = number of observations for each element.
t. $=$ average time for each element.

Then the total variance is the sum of the tinging variance and the timed variance, assuaging that these two axe independent.

Since the times had been obtained using a decimal-minute stop watch, the value for the standard deviation was taken as 0.008 minutes (12).
that $1 s$,

$$
\begin{gathered}
\sigma_{\text {timing }}=0.008 \text { minutes } \\
\sigma^{2} \text { timing } 0.00064 \\
\sigma^{2} \text { tines } \frac{2}{\sigma_{\text {total }}}-0 \times 000064
\end{gathered}
$$

The linear correlations between the timed variance and average element length, and between the timed variance and the element complexity were calculated and tested. The linear correlation com officients were calculated using the equations

$$
\begin{aligned}
& r_{y}=\frac{\left[\sum x_{1} y-\sum x_{1} \sum y\right.}{\left[\sum x_{1}^{2}-\left(\sum x_{1}\right)^{2}\right]\left[y y^{2}+\left(\sum y\right)^{2}\right]} \\
& r_{y x_{2}}=\frac{\sum \sum x_{2} y-\sum x_{2} \sum y}{\left[\sum x_{2}^{2}-\left(\sum x_{2}\right)^{2}\right]\left[N \sum y^{2}-\left(\sum y\right)^{2}\right]}
\end{aligned}
$$

in which y refers to the values of the timed variance, $x, ~ r e f o r s ~ t o ~$ the average element length e and x_{2} to the element complexity values. " is the total number of elements correlated. To estimate the level at which these coefficients were significant, the test was used. ${ }^{1}$

[^0]The multiple correlation coefficient was calculated from the equation ${ }^{2}$

$$
r_{y, y_{1} x_{2}}=\sqrt{1-\frac{n}{a_{y y}}}
$$

where

$$
\mathrm{R}=\left|\begin{array}{lll}
r_{y y} & r_{y x_{1}} & r_{y x_{2}} \\
r_{x_{1} y} & r_{x_{1} x_{1}} & x_{x_{1} x_{2}} \\
r_{x_{2} y} & x_{x_{2} x_{1}} & r_{x_{2} x_{2}}
\end{array}\right|
$$

and $\mathrm{R}_{y} y$ is the minor of $r_{y y}$ in this determinant.
$r_{y y}=x_{x_{1}} x_{1}=x_{x_{2}} x_{2}=1$, while $x_{x_{i} x_{2}}$ was calculated in the same why as the other zero order coefficients, $\boldsymbol{r}_{y \mathrm{x}}$, and $\boldsymbol{r}_{\mathrm{yx}}^{2}$.

The partial correlation coefficient for timed variance and average element length was calculated using the equation

$$
x_{y x_{1}} x_{2}=-\frac{R_{y_{i}}}{\sqrt{R_{y y} R_{x_{1} x_{i}}}}
$$

2Hoel, P. G. Introduction to Mathematics Statistics, John Wiley \& Sons. Inc. New York. pe 110-120.
where $R_{y x}$, and $R_{x_{1}, x_{1}}$, are the cofactors of $r_{y x}$, and $x_{x_{1}}$, in the above determinant.

The partial correlation coofticient for timed variance and olement complexity, $T_{y r_{2}} \times$, was found in a similaz maner.

GHAPPER

RESULTS OF THE ANALISIS

The correlation coefficianta and the prebabiliby levels at which they are statistically significant are insted below.

Oorrelation Coefficient	Velue	Significance Level
$r_{y x_{1}}$	-0.518	0.06
$r_{y x_{2}}$	-0.75	0.01
$r_{y o x_{1} x_{2}}$	-0.804	0.005
$r_{y x_{1}} \times x_{2}$	-0.435	0.15
$r_{y x_{1} .} x_{2}$	-0.72	0.005

where:
$r_{y x}$ is the gero order cooffeient showing tha relationsaip between tined variance and the varietions in elenent lengths when the element complexity also varies.
$r_{y x_{2}}$ is the zere order coefficient showing the relationship between tined variance and the alement complexity, when the element lenethe also vary.
$Y_{y} x_{1} x_{2}$ is the multiple correlation coefsicient showing the relationship betwen the tined varlance and the varlations in alement lengthe and complaxities actins together.
$x_{\mathrm{yx}_{1}}, x_{2}$ is the partial correlation coeffietent shomine the relationship which mould exist between the timed variance anci the elemat lengths, if the elemont conplexities were held constant at thair mean volue.
$F_{y x_{2}}$, is the partial correlation coeficiont showiag the relationship which would exiat between the timed varianet and the element complexities, if the eloment lengths were held constent at their man value.

The significance level is the fraction of the time we could axpect a sample, dram from a population with zexo correlationg to give 3 correlation cueflicient as high as that actually obtained.

From the values of $r_{y x_{1}}, x_{y x_{2}}$, and $r_{y, x_{1} x_{2}}$ there seens to be a stimificmt relationship axisting betwean

1. Thied variance and average elewent lengh.
2. pimed vaxiance and elenent complexity.
3. Timed variance and the average slement longth and complextty when these are acting jointly.

However, the simple correlation coeflicient between any two of the variables does not give the true relationship betwem them A better estiative of the true relathonship betwen them is the partial correlation coefficient, in which the third variable is held fixed
at Its mear value.
The parelal correlation coefficient $x_{y x}, x_{2}$ has a value of -0.435 which is only significant at the 0.15 level, so this analysis does not prove that a definite relationship existe betreen the timed variance and the average length of the element. In order to test further the affect, in any, of the average olement longh on the timed varlationg, the Linear cormelation cooficient was calculated for thone points which have a comion value for their olement complexity There are ten points which have complextty value of seven the linear correlintion coeffictent for these ter values of timed variance and glement length was calculated to bo -0.427 . This is statistically elenificant only at the 0.25 leval thus again there is no evidence of any relationship between the timed variation and the length of the olement.

The partial correlation coefficient $F_{y x} \|_{2}$ has a value of -0.72 mith a sfgnificanoe level of 0.005 . This would augeest that the thened variance and the olament complaxity are finterdependent. However. this coeffioient aan only be interpreted rather cautiousiy as a moasure of the relationship beaase of the Limited range of the values for alanent complaxity applicable in this study. The total raye of \quad secondary adjustnent values which conld be applied to varloug elemants is $0-28$, but the nature of the elemonte studied here oniy gave values of five, six and seven. This is such a mall part of the totol range that no general conclusion can be dram.

CHAPTER VI

COMABMS AND COMCLUETONS

Gertatn limitations nust be placed on any comelusions drawn from this study, mainly because of the difficulty in collecting data and the tope of data collocted. As stated, the procedure was to collect data compilad by on tue study observer from namual operations betug dona by one operator. The amount of such data availsble was himted, and had been collected over a period of two years, so that the experience of the observer and operator had increased, with a probably incroase in ability of both. This may have introduced extra varibblex of which no account was taken in the malysis.

Aleo, while usting data from a factory had the advantage that it could be considered a representative sample of the type of data nomally obtained under woridag condthons, it had the disadvantage that sowe variabla factors affecting the data may not have been considered worthy of note by the tive study obgervex. In other wordes wo do not knows all the facts bout the condition prevaling when each of the studies were made. These external unrecorded vanable conditions, if any existed, could probably have been better controlled if the tine stadiea had been perfomed under experimental condtilons. Furtherwore, in an experiment, more data covering a gremter range of values could
have been compiled, resulting in a more concluaive statietical analysisy there world then be difflealty though, in ascertaining the extent to which the results from a controllad experiment were related to the corresponding results that would be obtained from actual operating conditions.

To consider the type of data collected, for each olement a histogram was prepared ghowing the distribution of the varying observed times. These histograms are ohom in Pige. $1,2,3$ and 4 . If each group of recordings had been affected by only minute randow variations in the method, pace, ets., a normal distribution of element thes symmetrical about the mean ralue mught reasonably have been expected these himtograms zeem to show that a degree of inconsistoney oxisted, since nons of then resemble the typical norasi dietribution. This suggests that an undue variation in conditione was peaent fram tho point of view of obtaining atatietically gtable datay bur these vartations must haw been acceptable to the company concerned. As Was stated previously, the writer had no way of evaluating what level of conditions was regarded by the company as standard. slenonta numbere three and twelve in the study partieularly give histograms wich suggest that variable conditions existed without being noted by the the study observer. But although these histograws ahow a measuwe of inconsistencyg the values for these elements were not excluded from the prenent stady as this is an analyaic of typical samples of time gtudy data acceptable under normal operating conditions.

One set of values that pas excluded from the statistical analyais was that of elament number seven. In this case the total
variance was 0.00003 minuter, which is lese then the typleal biring variance value of 0.000064 minutes. The reason fugsested for this occurrence is that the average length of thitelentent was 0.026 minutes, which is below the recomended minimum element lengeh or 0.04 minutes measurable with a decimal minute stop watch. slements shorter then 0.04 minutes are nemsurable with the decimal minute stop matoh only at a eacrifice of accuracy and rellability. There iss no evidence that the timing varlance value of 0.000064 manutes applies to such a short element, so it was decided to exclude this alement from tho statistical malysis.

Although the element complexaty seamed to beve a hitehy gignificant correlation with the tuad varlance, thi correlation must be regarded canthously becane of the hatted range of the values and alse because of the technique used to meanure the complerity of
 difficulty of an element; not its complexd by aven if the secondery adjuetments did give measure of the pomplexty of an element, the work of developing these secondary adjutments is, in wandel's worde, 'by no mane complete (13)'. Honever; the we of secondary adustrients in this stady is justified by expedienoy since no other technique for measuring eleant complexity existe to the knowledge of the 至stiter. This means of ovaluating element complexity, crude as it may be, io more reliable than any mental evaluation, whon would betpurely subjective.

The use of the modal value an a measure of the tumbe element length may be a bettor estimate than the arithmetical average eloment
lembh in the ase of eloments which have isolated valuen or wide range of values, for example, elerent number three; but THes 2; 4 and 5 shor that there would have been difficulty in selecting the nodal values for elements numbered four, five, thirteen and fifteen. To achieve consistency in method, the arithmetical average lement length ซan used in all cases as measure of the true aloment longth.

The calculation of a linear correlation coefficiont is besed on the "method of least squares", Which give undue weight to isolated サaluem. Fig. 6 shows that element number fisteen, with an ayerage longth of 0.4313 minutes is one such isolated valus. To counteract the excesc effect of the one point, nowe elenenta would be required which have an average length in the range 0.25 minutes to 0.40 mutesi but data of this nature was not avallable under the other limitationa placed on the type of data used.

One other factor which was not taken into consicieration is the possibility of the elements in a cycle of operations not being Independent. Since the assumption in thi study was that the element tinas were independent of the other laments in the etudy there may have been an effect of unknow magniture introduced into the data. This may account for part of the timed vardation.

留ith reference to the tentative estumption of Lehrer and Woder, previously mentioned in Chapter II, that the timed variation has a standard deviation of approxtmately 0.008 minutes, the tined pariations of the elements in this study are much greater. The following table shows the range of values of the standard deviations of the tined variations in this study.

Tined Tariation	Yariance	suandard Devistian
Lowest value	0.000144	0.012
Highest value	0.001161	0.034
Avergge value	0.000527	0.023

This table indicates that assumed standard deviation of 0.008 minutes for the timad variance would have been too low for the elements in thig study. Hence the curves developed by Lehrer and Modsr giving an estinate of the number of ayeles to be observed to obtain accurate alement times, would have given too low a value for the nuber of cycles to bermed. These curves had been developed on the msumption that the thed variation had a gtadarciaviation of 0,008 ninutes.

In briof sumary of this analysts, it has been shown that the timed variation for the range and type of elecante studied has atandard deviation which is in excess of 0.008 ninutes no relationship could be shown to exist between thig tixed variance and the lengths of the olenents being studied. Statistically, michly significant relationship existed between the timed variance and the complexity of the Qlanents studied. But, as etated proviouslyg when attempting to intorpret this relationship, son highly restrictive reservations must be remenbered.

RECOTMENDATTONS

In this u dy, the standard deviation of the timed verigtion in the observec element times vesed from 0.018 to O.O34 minutes. since the timing variation has a typical mbenderd deviation ostimated at only 0.008 minutes. It would appear that in oxder to more fully understand the nature or warigtion in time study data, reseasch should ba concentreted on the timed variation rather thax on the timing variatione

One of the results or this anysta was thet as the complaxity of the element increases the thmed variation decteaseg. Tr order to Investigate this zathes mexpected reanlt, perhape sane controlled experiments should be conducted. A controlled oxperment may show that the megative correlation between the tined variation and tho complexity of the olomente in this gtudy mas due to the cifect of goxe variable condition which was wareotrded when the ata mas collected.

BIBLTOARAPHY

BTBLTOCLAPRT

Ltterature Cited.

1. Mundel, Marrin E. Hotion and Tue Study Princloles and Practige, Hew York; Prentice-RaII Inc. 1950, p. I*
2. Lehrer, Robext M. and Hoder, Joseph Do, "statistics in Tims Study". Journal of Industrial Engtasering: vol. IV. No. 1. Feb. 1953 p. 10.
3. Ibid., pe 10.
4. Lowry, Stevrart Mo, Farcld B. Haynard, Thae and Motion Stuay. New York: McGraw-14 11 Book Co. 2 Inc., 1940 , pp. 228-229.
 Hill Book Co. Inc. T143, pp. 56-59.
5. Presgrave, Ralph, The Dyamics of Time Stucy, The Univeraity of Toronto Preas, 1940, p. 185.
6. Abruzzi, Adan, Mork Maasurement: Men Principles and Frocedures. Coluabia Univervity Press, 1952, p. 226.
7. Mundel. op. qit.s p. 295.
8. Lazarus, I. Po Mine Inture of Stop Watch Emrors Anong Experienced Incustrial 鹃ineers." A Master of Science Thesis, Purcus Universitys 1950.
9. Lehrer and Hoder, ope ait., p. 11.
10. Munde 1 , 92. cit., p. 329.
11. Lasarus, op git.
12. Mundel, op. citos p. 331.

APP WDIX I

Table 1. Handel's Secondary Adjustmeats for Time Studies

Gategory Wo. Description Condition	Per Cent Adjustment

$1 \quad \begin{aligned} & \text { Amount of } \\ & \text { body used }\end{aligned}$

Pingers ased.	0
Wrist and	
fingors.	
Elbor, mist	1
and fingers.	2
Arn, etc,	5
Irunk, etc.	8

2 Foot pedals Ro pedals or one pedal with fulcrum under foot.

0
Pedals or pedals
with fularum outside foot.

5

3
Binanualness
Hande help each other. 0
Hends work
shantameously. 10

4
Bye-hand
coordination

Rough work.
0 coordination

Hoderate vision, 2
Constant but not close

4
Fairly close
7
Within 1/64" 10

Table 1. Hundel's Secondary Adjustments for Timo Studies (Con't)

Category Wo. Description Goudition	Per Cent Adjustient

3 Randind $\quad \begin{aligned} & \text { Requirementa. }\end{aligned}$

Can be handled	
roughly.	0
Only gress	
control.	1
Must be controlled	
but may be squeezed.	2
Handle carefully.	3
Fragile.	5

APPEHDIX IT

GLEMENTARY DESCRTPTIONS AMD SECONDARY ADJUSTHENE VALUES

The general description of the operationa frotia which the elements were trken is:

Bundles of shirt parts such as collars, cuffs and gugsets, were picked up from a storage benchy placed on a work bench, tied into lots of 120 dozen with taper and then placed aside in a stack.

Slement No. 1. Position 6 tapes on table.

Left Hand	Bight Hand
Hold tapes and	Srasp end of one tape.
assist right hand.	
	Spread tape on table.
	Release tape.

Repeat six tines.

Next, the bundles of collare ware picked up fron the storage bench, positioned on the tapes and the tapes tied round asch bundle. The *imes for these were considered to be unsuitable for this analysis due to wide variability in the rating factor used.

Element ho. 2. Aside bundle of collars.
Left Hand Shght Hand Sec. Adj.
Grasp bundle.
Carry to stack. Same as left hand. 6
Drop bunde on stack.

Element No. 3. Position 2 tapes on bench.

Left Hand	R3, cht Hand	Sec. Adj
Holding tapes.	Gresp end of 1 tape.	
Assist right hand.	Spread tape on table.	5
	Releage tape.	
	Repeat with aecond tape, placing it across the first.	

Element Wo. 4. Get bundies of pockets and plece on tapes.
Left Hand \quad Baght Hand
Pick up bundle of
120 dozen pockets.
Flace on tapes.
Adjust position on
tapes.

Blement Mo. 5. Tie first tape.

Left Head Right Hand Sec. Acd.

Grosp tape end.
Lead end around bundle Same as Left Hand. to top of bundle.

Tie knot while pressing down on bundle.

Element Mo. 6. Tie aecond tape.
Same as Element No. 5.
 Same am Element Mo. 2.

Element No. 8. Position 2 tapes on bench.

Left Hand	Right Hand
Holding tapes.	Grasp end of 1 trape.
Assist right hand.	
	Spread tape on table.
	Rolease tape.
	Repeat with second tape, placing it alongaide the first.

Dlement Ho. 9. Get bundles of guscets and place on tapes. Sans anement Mo. 4.
glenent ${ }^{\text {ENo. 10. Tie Jirst tape around bundle of gussets. }}$ Sane as Element No. 5.

Mlement No. 11. Tie second tape.
Sane as Element No. 5.

Element No, 12. Aside bundles of gussets.
Same as Element To. 2.

Element No. 13. Tie bundles of shirt fronts and slide aside.
Left hend Right Eland Sec. Adj.

Grasp tape end. Same as left hand
Lead end around bundle to top of bundle. 7

Tle knot while pressing dom on bundle.

Push bundle to stack on left.

Element No, If. Tie bundles of cuffs.
Same as element No. 5.

Element No. 25. Tie bundle of collars and turn over.
Left Hand
Grasp tape end.
Stght Hand
Lead end around
buadle to top of
bundle.

Tie knot.
Tum bundle over 280°. Ascist laft hand.

APPEMDIX III

Table 2. Observed Times in Decimal minutes for Element Marber 1, Rated at 110

Times

.13	.12	.10	.17
.15	.15	.18	.19
.11	.20	.15	.16
.16		.14	

Table 3. Observed Tines in Decimal mates for Mement Humber 2, Rated at 110

Times

.19	.19	.21	.21
.17	.21	.17	.19
.17	.17	.17	.20
.17	.25	.16	.19
.18	.23	.23	

Table 4. Observed Tines in Decimal Minutes for Element Humber 3, Rated at 110

Ifmed			
.08	. 06	. 09	.06
. 11	. 20	.09	.20
.08	. 09	.09	.15
. 09	. 09	. 08	. 09
.13	. 13	. 13	.14
. 09	.09		

Table 5. Observed Thes in Decimal Minutes Lor Element Number 4, Rated at 210

	Times			
.15	.17	.15	.14	\vdots
. .17	.11	.16	.14	
.16	.25	.15	.17	
.15	.16	.17	.17	
.18	.18	.20	.16	
.19	.18			

Table 6. Observed thimes in Decinal hinuter for Hiement Wumber 5, Rated at 120

Times

.16	.13	.13	.10
.17	.17	.11	.09
.15	.11	.15	.15
.12	.12	.11	.13

Table 7. Observed Tines in Dealnal Mnates for Glement Number 62 liated at 130

Timen

.12	.09	.15	.13
.11	.12	.20	.10
.15	.14	.10	.13
.12	.12	.18	.13
.12	.13	.11	.10
.14	.11		

Table 8. Observed Thee in Deolmal Minute for mement Mumber 7, Rated at 115

Ines

.03	.02	.03	.02
.03	.03	.02	.02
.02	.02	.02	.02
.02	.02	.03	.03
.03	.03	.03	.04
.02	.03	.02	.03

Table 9. Obsarved Thes in Deamal Hinates for miement Rumber 8 , Hated at 110

Tinies

.09	.08	.08	.12
.07	.10	.15	.07
.09	.10	.10	.14
.07	.10	.16	.09
.07	.09	.10	.10
.09	.11	.12	.09
.08	.10	.10	.10
.12	.10	.12	.13
.11	.07	.09	.17
.07	.08	.09	.13
.08	.10	.11	.12
.11	.09	.10	.09

Table 10. Ooserved Thes in Decinal Minutes for Hlement䗑mber 9. Rated at 120

Thes

.29	.25	.32	.27
.26	.25	.27	.29
.27	.28	.29	.28
.27	.30		

Table 11. Observed Tines in Dectral Minutes for deant Munter 10; Ratecu at 120

Tines						
. 16	.19	. 19	.20	.17	.20	
. 19	.19	. 15	. 15	. 22	.15	
.21	. 28	.17	. 19	.20	. 16	
. 21	. 18	. 17	.20	. 22	. 10	
.20	.18	.28	.15	.15	. 19	
.17	.17	. 16	.20	. 22	.15	
. 21	. 18	.17	.16	.17	. 24	
.18	. 22	.28	.19	.17	.18	
.19	. 20	. 15	.19	.19		

Table 12. Observed Times in Deainal Minutes for Element Namber 21, Rated at 110

Timeg

.18	.18	.13	.19	.16	.17
.12	.21	.14	.16	.17	.13
.15	.12	.16	.16	.13	.13
.11	.15	.11	.13	.15	.14
.16	.12				

Table 13. Observed Times in Decizal Hinutes for Whenent Mumber 12, Rated at 110

Tines

.05	.05	.05	.04	.04	.04
.16	.00	.03	.06	.06	.03
.10	.04	.04	.04	.04	.05
.05	.04	.04	.05	.06	.03
.04	.07	.05	.04	.05	.08
.05	.05	.06	.08	.03	.04
.05	.04	.03	.15	.04	.04
.05	.04	.04	.04	.04	.05
.06	.03	.04	.04	.04	.05
.05	.03	.03	.03	.04	.04
.03	.04	.04	.05	.03	.05

Table Lh. Oberved Tines in Decisal litnutes for Blenent Fumber 23. Rated at 225

Tinee

.21	.20	.24	.15	.27
.20	.19	.19	.22	.28

Table 15. Observed Times in Decimal Minutes for blement Wumer 14 , Hated at 90

Thime

.22	.25	.24	.25	.25
.23	.24	.23	.24	.24
.24	.24	.27	.24	.26
.26	.26	.25	.27	.26
.28	.27	.29	.27	

Table 16. Obsorved Times in Deoknal Knutee for Blemat Humber 15, Rated at 130

Timee					
. 40	. 42	.47	.43	.43	
. 41	. 4.4	. 44	. 42	.43	
. 4.5	. 44	.42	.43	. 4	
. 44	. 43	.43	.42	.47	
.40	. 45	. 42	.43		

Table 17. Timed Variance in Kinutes, Length in Deeimal
Minutes, and Complexity Value for Each Element

Element Mumber	$\begin{gathered} \text { Timed Variance } \\ y \end{gathered}$	Average Element length, \mathbf{x}	$\begin{gathered} \text { Complexsty } \\ x_{2} \end{gathered}$
1	0.00062	0.1564	5
2	0.000568	0.1926	6
3	0.000985	0.1027	5
4	0.000314	0.1618	7
5	0.000463	0.1275	7
6	0.000376	0.1227	7
7	Unknowm	c.026	7
8	0.001161	0.097	6
9	0.000308	0.2729	5
10	0.000724	0.1832	7
11	$0.0001 / 4$	0.1492	7
12	0.000627	0.0488	7
13	0.000586	0.1950	7
14	0.000253	0.2529	7
15	0.000252	0.4313	7

Figure 1. Distributions of Observed

Element Times.

Figure 2. Distributions of Observed
Element Times.

$$
\begin{gathered}
\text { Figure 3. Distributions of Observed } \\
\text { Element Times. }
\end{gathered}
$$

Figure 6. Timed Variance Plotted Agalnst Average length of Element and

Complexity of Element.

[^0]: Prenticomail. Inc. p. 681.

