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 SUMMARY 

Injuries to the marrow cavity result in rapid endosteal bone formation followed by 

bone remodeling and regeneration of the marrow. It is not known whether this process is 

affected by age, although the quality of marrow is markedly different in young and old 

animals.  Whereas young animals have red marrow and comparatively high levels of 

mesenchymal stem cells, old animals have yellow marrow characterized by increased 

levels of fat cells and they have fewer mesenchymal stem cells. To test if marrow 

restoration differs as a function of age, we used the rat tibial bone marrow ablation 

model, which has been used to examine calcification during osteogenesis, effects of metal 

implants on osteointegration and remodeling of bone graft substitutes during marrow 

cavity restoration.  These previous studies were conducted in 3-month old 

immunocompetent rats but analysis of many biomaterials requires the use of immune 

deficient animals; however, it is not known whether this will affect the healing process.  

Accordingly, we assessed bone marrow healing in nude rats aged 1 month, 3-months and 

10-months using micro-CT and histomorphometry, and compared the results to our 

previous work using Sabra strain rats.  Thus, we determined if restoration of bone 

marrow is age dependent; if differences in healing can be detected by micro-CT; if the 

quality of marrow differs in young and old rats; and if the time course of healing in 3-

month immunocompromised animals is comparable to that seen in normal rats of the 

same age. After determining that there was a difference in the kinetics of the healing of 

aged rats we tested a new biomaterial which is suppose to induce the healing in aged rats. 

Porcine Bone Marrow Matrix (PBMM), is a material produced by decellularizing porcine 

bone marrow matrix. Boston Scientific provided it to us in a sterile liquid suspension. We 
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hypothesized that PBMM would provide a growth factor enriched scaffold that would 

enhance repopulation of the marrow cavity with multipotent stem cells.  

Methods: Marrow was ablated in the left tibia of seven rats (rNu/rNu) per time 

point.  At 0, 7, 14, 21, 28, 35 and 42 days post-surgery, the treated tibia and the 

contralateral tibia were harvested, fixed in 70% ethanol for 24 h and post-fixed in 

buffered formalin.  Both tibias were scanned using microCT and trabecular BV/TV 

calculated.  Mid-sagittal sections of decalcified paraffin embedded bones were stained 

with haematoxylin and eosin.  BV/TV was calculated using ImagePro. Left tibias from 

untreated animals were used as controls for histology. Using this software we were also 

able to determine fat cell number per marrow cavity. Pilot study using PBMM was also 

conducted in aged rats and was part of the aged group study. From this pilot study we 

chose one time point to test the PBMM as an enhancer of bone marrow restoration. For 

this study we used five different groups testing the PBMM in a dose dependent study. As 

mention above, left tibia was treated while the right served as a control and was not 

treated.  

Results:  Micro-CT analysis for the 1-month animals showed high increase in 

bone formation and on day 21 the marrow was restored. High increase in bone formation 

was also noticed in 3-month animals on days 7 and 14, however their bone formation was 

significantly lower compared to 1-month old animals.  By day 21 remodeling had 

reduced the area of trabecular bone by 50%.  10-month animals had less trabecular bone 

at days 7 and 14, the levels were sustained through 21 days.  Histomorphometry indicated 

that bone formation peaked at day 7 in 1-month old rats with remodeling underway by 

day 14, as noted previously for Sabra strain rats.  For 3-month old rats bone formation 
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peaked at day 7 as well, but restoration occurred only on day 21. However, in 10-month 

rats, peak bone formation occurred on day 14, with remodeling on day 28. In the pilot 

study of PBMM we got promising results for enhanced bone marrow restoration as we 

saw a significant decrease in trabecular bone when compare to day 42 control (No 

PBMM). However, when we proceed to the next study did not see this effect again. 

PBMM had an effect on the marrow cavity but it was not significantly different than with 

our control group.  

Discussion: The significance of this study is in the development of a model that 

enables us to view bone marrow restoration in aged rats. Using this model we can 

examine various materials such as implants and bone grafts to learn more about bone 

recovery processes in general and also to test materials that might induce healing in older 

populations, in particular. As science advances so does human life expectancy.  The aged 

population around the world is growing; in order to guaranty quality of life one will need 

to fully understand bone healing in elderly populations.  

Conclusions: Endosteal bone formation and remodeling in 3-month nude rats is 

comparable to 3-month immunocompetent rats.  Aged animals produce less primary bone 

that younger animals and remodeling is initiated later.  Differences in micro-CT and 

histomorphometric analyses may reflect a reduction in calcification of the osteoid in the 

10-month old animals. PBMM des not appear to enhance marrow restoration in aged rats.  
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CHAPTER 1 

INTRODUCTION 

Injuries to Bone Marrow 

Injuries to the bone marrow initiate endosteal bone formation.  This process is 

characterized by primary bone formation, resorption and marrow restoration (Boyan, 

1993). The bone building cells that conduct primary bone formation are the osteoblasts. 

These cells derive from mesenchymal cells that are located at both the periosteum and the 

endosteum. They lay down osteoid, which is the organic matter of the matrix that 

eventually becomes calcified (Schwartz, 1995). Bone resorbing cells called osteoclasts 

are then recruited through osteoblast secretion of growth factors.  They remodel the 

newly formed trabecular bone, leading to marrow tissue restoration.  Pro-inflammatory 

mediators at the fracture site are also play an important role for signaling those cells to 

proliferate and differentiate. Cytokines such as IL-1, TNF-alpha and IL-6 promote 

osteoclast function. In contrast, Th2 cytokines such as IL-4 and IL-13 suppresses 

osteoclastogenesis (Datta, Ng et al., 2008; Mountziaris and Mikos, 2008). 

The bone healing process includes a replacement of the marrow tissue and the 

trabecular bone within it, to a new tissue. Injury to the marrow actually involves two 

processes: bone healing of the cortical bone and marrow tissue restoration. Therefore it is 

important to understand the consequences of both processes in order to better assess their 

effect in clinical applications. Any procedure that occurs today and involves either dental 

implant or joint replacement will involve restoration of the lost marrow and healing 

around the implant.  
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Bone Marrow Ablation Model 

Bone marrow ablation mimics the process of injury to the marrow. In this model 

part of the marrow in the tibial cavity is removed initiating the endosteal bone formation 

(Bab, 1995). Age is known to be an important physiological factor that affects the healing 

process (Schwartz and Boyan, 1994). This model is well suited to study the differences in 

the healing process by looking at restoration of the marrow.  By comparing different age 

groups it can be learned whether bone marrow ablation can induce systemic effects 

(Schwartz, Sela et al., 1989; Gazit, Karmish et al., 1990). This model was used 

previously to study various processes, for example: calcification and changes in 

extracelullar matrix vesicles during healing of the bone; the study hypothesis being that 

matrix vesicles play an important role as an initiation site for crystal formation. Indeed a 

change was found in matrix vesicles during the healing process that took place on day six 

in the vicinity of the vesicles closest to the calcification front. However, by day 21 they 

had lost their enzymatic activity and were comparable to those on day 0, indicating that 

once crystals have been formed their function ends (Schwartz, Sela et al., 1989; Marshall, 

Schwartz et al., 1991). Another study examined primary bone formation around dental 

and orthopedic implants: when the marrow is removed from the rat it mimics the process 

of ablation after joint replacement and new primary bone fills up the cavity. The ability of 

cells to act fast and to synthesize and mineralize osteoid is critical for long-term 

acceptance of implant materials (Schwartz, Amir et al., 1991; Kohavi, Schwartz et al., 

1992; Schwartz, Braun et al., 1993; Sela, Gross et al., 2000).  

In an additional study bone remodeling with or without bone substitutes was 

examined. Most of the available bone substitutes have this quality, but an additional 
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desirable character would be for the materials to resorb as new bone forms. By using 

bone marrow ablation models researchers are able to detect differences in bone 

formation, remodeling and marrow regeneration due to different bone grafts (Schwartz et 

al., 2008). Bone marrow ablation was also adopted by other groups with some variation 

in the procedure to study the role of insulin-like growth factor (Tanaka, Barnes et al., 

1996); to study the effect of glucorticoid on marrow generation (Kondo, Tokunaga et al., 

2006); for characterizing the transcription factor Runx2/Cbfa1 (Tsuji, Komori et al., 

2004), and to learn about patterns of gene expression during imtramembranous bone 

regeneration (Kuroda, Virdi et al., 2005).  

Bone Marrow 

The bone marrow is a connective tissue consisting of two components: the 

hematopoeta and the stroma. The first gives rise to red blood cells and precursors of 

white blood cells. The second is composed of mixtures of pluripotent cells from the 

mesodermal tissue, which today is termed marrow stromal cells (MSCs). Those cells 

differentiate to different cell lineage such as osteoblasts, chondrocytes and adipocytes 

(Black and Woodbury, 2001) . There are two types of marrow tissue: red marrow, which 

consists of a majority of hematopoietic cells and yellow marrow, which consists of 

mainly fat cells (Blebea, Houseni et al., 2007; Fan, Hernandez-Pampaloni et al., 2007). 

The ratio between the two different marrows alters with age with a normal physiological 

progressive conversion of red to yellow marrow (Ricci, Cova et al., 1990). A normal 

development of bone cannot occur with the stroma compartment alone. Osteoclasts 

develop from the hematopoietic precursor cells and they have an essential part in braking 

down the bone and recycling the calcium in the body. Moreover, in vitro studies have 
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shown that there is no MSC differentiation without having both compartments working 

together (Boyle, 2003; Datta, Ng et al., 2008). The MSCs are responsible in time of 

injury to proliferate and differentiate to new bone building cells. Consequently, if those 

cells, for some reason lose their ability to differentiate, healing might stall or stop. Many 

researchers are trying to find out the role of the adipose tissue as well. For a long time the 

tissue was considered to have no role other than filling out the empty spaces as the bone 

density in older people decreases with age. The role of the adipose cells is being 

investigated and researchers are trying to identify other functions for those cells (Gimble, 

Robinson et al., 1996; Gimble and Nuttall, 2004).  

Aging and Its Impact on Bone Healing  

Some important questions concerning aging still remain without any clear answer. 

First, what is the effect of aging on bone marrow stem cells? Second, how important and 

to what extent do stem cells contribute to tissue repair (Rando, 2006)  With aging there is 

regular conversion from red to yellow marrow. In the long bones, the replacement starts 

first in the diaphysis with relative preservation of metaphyseal hematopoietic tissue 

(Ricci, Cova et al., 1990). Aging is also associated with decreasing bone formation and 

bone mass (Xiao, Fu et al., 2007), delay in fracture healing (Bak and Andreassen, 1989; 

Fan, Crawford et al., 2008) and decline of regenerative properties (Conboy and Rando, 

2005).  Also, it has been identified as one of the risk factors for osteoporosis. Bone 

turnover is a coupled event of osteoblasts and osteoclasts, such that when one increases 

or decreases the other usually follows (Harada and Rodan, 2003). With age the balance is 

disrupted and bone lose becomes a major problem for the elderly population (Duque, 

2008). It is not clear whether the ability to form bone tissue is lost because there is less 
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osteoblast cells in the marrow tissue or do they merely lose their ability to function, that 

is, to build bone. Some studies suggest that there is a small number of osteoblast cells but 

that they succeed in preserving their function, still the result is less bone formation 

(Stenderup, Justesen et al., 2003). Other studies show that loss of bone comes from 

impaired cellular activity in bone signaling, showing decrease of autocrine and paracrine 

factors such as IGF-I IL-6 and TGF-B (Tanaka, Barnes et al., 1996). In a different study 

it was noted that over time in the MSCs DNA that has been damaged and not repaired 

causes over time adult stem cell exhaustion that translates to loss of marrow cellularity 

and erthopoiesis (Nijnik, Woodbine et al., 2007). Preclinical studies testing materials for 

use in bone tend to be performed in young adults animals, yet many of the clinical 

applications for those materials are for older patients. Therefore, there is a great need for 

materials that will promote faster healing in the aged group, as if they were young adults.  

Porcine Bone Marrow Matrix (PBMM) 

Porcine bone marrow matrix (PBMM) is a material produced by decellularizing porcine 

bone marrow matrix. Boston Scientific provided it to us in a sterile liquid suspension. We 

hypothesized that PBMM would provide a growth factor enriched scaffold that would 

enhance repopulation of the marrow cavity with multipotent stem cells. This was based 

on our studies using fetal porcine tooth germ derived enamel matrix derivative (Schwartz 

et al., 2000), which is also a decellularized matrix material that has been shown to 

promote periodontal regeneration in animals and humans (Venezia et al., 2004; Boyan et 

al., 2000). Moreover we hypothesized that the quality of the marrow produced in the 

presence of PBMM, in aged animals, would more closely resemble that seen in young 

animals. Because PBMM is a biomaterial, it was necessary to define the kinetics of 
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marrow restoration in immunocompromised rats. To test our hypothesis that PBMM 

would result in “young” marrow it was necessary to determine if kinetics of bone marrow 

restoration varied as a function of age.  

 

Specific Aims and Experimental Design 

 The overall goal of this thesis was to investigate whether the primary bone 

formation of bone and its remodeling in the bone marrow ablation model is age 

dependent, and to establish a new way for measuring bone formation and resorption using 

µCT analysis. Also, to study the effect of a novel biomaterial on the marrow restoration 

in aged rats.  The general hypothesis was that bone formation and its remodeling 

following bone tibia marrow ablation will be slower in aged animals and that porcine 

bone marrow matrix (PBMM) will enhance the restoration of the bone marrow tissue. 

 

Aim 1: To study whether the induction of bone and its remodeling in the bone marrow 

ablation model is age dependent. The objective of this study was to examine the effects 

of age on marrow restoration and to compare µCT and histological methods. Our 

hypothesis was that bone formation and its remodeling following bone tibia marrow 

ablation will be slower in aged animals. To address this question we have used the bone 

marrow ablation model on three different age groups; young, adults and aged (one, three 

and ten) months rats.  We then measured both primary bone formation and resorption 

using both methods; µCT and histological analysis.  

Aim 2: To study the effect of PBMM on bone marrow restoration following ablation in 

aged animals. The objective of this study was to assess the effect of PMBB on marrow 
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restoration in aged rats. Ten-month-old nude rats were tested. The hypothesis for our 

study was that PBMM would enhance bone marrow regeneration. The rats had to be 

immunocompromised since a xenograft biomaterial was inserted to the tibia and we 

wanted to avoid the rejection of this material. A pilot study was done first in order to 

choose one time point that would then be used to test the material in a dose dependent 

manner.  
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CHAPTER 2 

REGENERATION OF BONE MARROW AFTER TIBIAL 

ABLATION IS AGE DEPENDENT 

 

Introduction 

Injuries to the bone marrow initiate endosteal bone formation. This process is 

characterized by primary bone formation, resorption and marrow restoration (Boyan, 

1993).  The bone building cells that conduct primary bone formation are the osteoblasts.  

These cells derive from mesenchymal cells that are located at both the periosteum and the 

endosteum. They lay down osteoid, which is the organic matter of the matrix that 

eventually becomes calcified (Schwartz, 1995). The osteoclasts, bone resorbing cells, are 

then recruited through osteoblast secretion of growth factors to resorb the bone, leading 

to marrow tissue restoration. Bone turnover is a coupled event of osteoblasts and 

osteoclasts. With age, the balance is disrupted and bone lose becomes a major problem 

for the elderly population (Duque, 2008). However, it is not clear whether endosteal bone 

formation is affected by age although it is known that there are differences between the 

quality of the marrow within different age groups such as young adults and aged ones.  

The bone marrow is a connective tissue consisting of two components: the 

hematopoieta and the stroma. The first gives rise to red blood cells and precursors of 

white blood cells. The second is composed of a mixture of multipotent cells from the 

mesodermal tissue. These cells differentiate to diverse cell linages such as osteoblasts, 

chondrocytes and adipocytes (Black and Woodbury, 2001). There are two types of 

marrow tissue; red marrow which consists of a majority of hematopoietic cells and 
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yellow marrow, which consists of mainly fat cells (Blebea, Houseni et al., 2007; Fan, 

Hernandez-Pampaloni et al., 2007). The ratio between the two different marrows changes 

with age in a normal physiological progressive conversion of red to yellow marrow 

(Ricci, Cova et al., 1990).  

The purpose of this research was to study the effect of age on bone marrow 

restoration and to propose a new model that will be based upon both µCT and 

histological analysis. In our study we used a bone marrow ablation model that mimics the 

healing process post injury to the marrow tissue. According to this model a part of the 

marrow in the tibial cavity is removed and endosteal bone formation is initiated (Bab, 

1995). The model consists of four steps: at first blood clots to fill the marrow cavity; 

primary bone then replaces the blood; next remodeling of the primary bone by osteoclasts 

and then the marrow is then restored. Formerly, bone marrow ablation has been used in 

various ways to examine calcification during osteogenesis (Schwartz, Sela et al., 1989; 

Marshall, Schwartz et al., 1991), to study the effect of metal implants on osteointegration 

(Schwartz, Amir et al., 1991; Schwartz, Swain et al., 1992; Schwartz, Braun et al., 1993; 

Sela, Gross et al., 2000), and to investigate the effect of bone graft substitutes during 

marrow cavity regeneration (Schwartz et al., 2008).  

Age is known to be an important physiological factor that affects the healing 

process (Bak and Andreassen, 1989; Schwartz and Boyan, 1994; Fan, Crawford et al., 

2008). Most clinical studies to date test adults, but the healing process among different 

age groups is clearly not the same.  We therefore decided to test three age groups: young, 

adult and aged.  By adjusting this model for the employment of µCT in addition to 

traditional histological methods we gained the ability to compare these age groups. Thus 
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we were able to look at both bone formation and remodeling and as a result of that at the 

marrow restoration in an age dependent manner.  

Understanding the progression in the elderly can give us an insight regarding the 

biological process of bone marrow restoration.  New knowledge concerning the process 

could help in the development of new materials, which may be more suitable for the aged 

group, hopefully to be tested in clinical trials in the future.  

 

Methods 

Surgical Procedure 

Total of 154 athymic male rats were used for the experiments. 56 ten-month-old 

retired breeder athymic rats were grouped as aged rats. 49 three-month-old rats were 

grouped as adult rats and 49 one-month-old rats were grouped as young rats. The 

Institutional Animal Care and Use Committee (IACUC) of the Georgia Institute of 

Technology approved the surgical protocol. Rats were anesthetized using 5% isoflurane 

inhalation.  Once they were asleep, sleep was maintained with 2-2.5% of isoflurane. An 

intra-patellar incision was made on the left limb and a sub-periosteal flap was raised to 

expose the proximal aspect of the tibia. Using a #4 water-cooled dental burr at 20,000 

RPM, a cavity was made in the proximal aspect of the tibia to allow access to the marrow 

cavity. Marrow was evacuated by repeated irrigation with saline solution. Bleeding was 

controlled using sterile gauze pads as needed. For our preliminary study of PBMM one 

group of the aged rats was injected with 0.2cc of PBMM in the marrow cavity. Wax was 

applied to this group only in order to keep the PBMM in the marrow cavity. Following 

the ablation of the marrow the periosteum and skin were closed using absorbable sutures 
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and wound clips. Rats were immediately given a pain killer shot and were place in a new 

cage. The right limb served as a control limb and was not operated on. 

  

µCT Analysis 

We evaluated the regeneration of the bone marrow tissue using µCT analysis. 

µCT is a method in which slides are reconstructed from a large number of projections at 

different angles using convolution projection algorithm, resulting in a high-resolution 3D 

image. It uses a focused X-ray beam, which passes through the sample and a computer 

creates an image depending on differences in sample density. Bone is very dense and 

absorbs a great deal of the X-rays. Measurements were done on a specific area of the 

tibial marrow cavity. From the middle of the whole tibia we took 50 slides up the 

metaphysis and 200 slides down the diaphysis. This is the area of the defect site where 

the new tissue was formed, and in which we were interested. The microarchitecture at the 

trabecular sites was determined. Parameters derived at the metaphysis and intramedullary 

canal included: tissue volume (mm3), bone volume (mm3), bone volume to tissue volume 

(BV/TV: %), trabecular number (#mm), thickness (mm) and spacing (mm).  Harvest of 

the rats was done at 7 different time points: 0, 7, 14, 21, 28, 35 and 42 days. Both tibias 

were harvested. The left was the ablated one and the right was used as a control. Samples 

were placed in tubes with 70% ethanol for 24 hours. Then the samples were placed in 

formalin for at least 48 hours in room temperature. The samples were then scanned while 

in formalin for future histological analysis.  

Histomorphometric Analysis 
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After the tibias were scanned they were placed back in formalin. The treated tibias 

were then prepared for histological analysis. The samples were first decalcified and then 

were embedded in paraffin. Two mid-sagital sections were made per tissue. The sections 

were stained with haematoxylin and Eosin. The first is a basic dye that has an affinity for 

the nuclei in the cell. Eosin is an acidic dye that will dye the cytoplasmic particles in the 

tissue including protein and extracellular matrix. For the histomorphometric 

measurements we used the computer program Image pro plus version 4.5.1. The area of 

interest was calculated from µCT measurements. Since every slice of the µCT was 21 

micrometers we could calculate the length from the top tibia to where the defect area was. 

For example if the defect was around 300 slices- on histology it was: 21*300=6300 

micrometer= 6.3 mm. This length was marked on the histological slide. Using the 

microscope 5X images were taken. Morphometric measurements were done on these 

areas. We measured the areas of the bone marrow, trabecular and cortical volumes and 

compared them to the total volumes of the frame. We took 6 samples per time point.  

We were also interested in the fat content in the marrow cavity. Fat cells were 

seen as small blank circles.  These were counted using the computer program by count 

objects tool.  

Statistical Analysis 

Statistical analysis of the results was made using analysis of variance (ANOVA). 

Differences between groups were determined using Bonferroni’s correction to Students’s 

t-test.   
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Results 

The results of this study prove that marrow restoration is age dependent. This is 

truly important since many clinical trials generally use young and adults populations even 

though there is a significant difference in healing when it comes to aged population. In 

the future this should be taken into consideration when materials are being manufactured 

and marketed by the industry. There is a need for new materials that will specifically aim 

at the aged group.  

 

µCT Analysis 

µCT showed a lower amount of trabecular bone for the one month old rats 

compared to three and ten months old on day 0 controls (Figure 1). At day 7 there was a 

peak of trabecular bone formation in the one and three months old rats. However, the 10 

month old rats exhibited peak bone formation on day 14.  This suggests that bone 

formation and remodeling occurred more quickly in the younger animals.  

This was confirmed by quantitative analysis.  There was significant primary bone 

formation in the one-month-old rats on day 7 (Figure 2a).  No differences were observed 

in the contralateral limb between days 0 to day 7 (Figure 2b). Comparison of treatment to 

control limbs again showed that peak bone formation was on day 7 and remodeling of the 

bone occurred by day 21 (Fig 2c).  

Bone formation in the three months old rats also peaked on day 7, but remodeling 

occured between day 14 and day 35 (Fig 2d). No changes in the contralateral limb were 
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observed (Fig 2e), resulting in treatment/control ratios comparable to the treatment limb 

(Fig 2f).  

Ten-month-old rats had a delay in bone formation when compared to adults and 

young rats. Peak bone formation was at day 14 (Fig 2g). There was no change in the 

contralateral limbs (Fig 2h). However, when we compared treatment limbs to the control 

limbs, bone formation was increased on days 7 and 14 and remodeling occured on day 28 

(Fig 2i).  

Micro-CT Analysis of Ablated Limb
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 Figure 1: µCT images of trabecular bone in treated limb 
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μCT Analysis
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Figure 2: Effect of age on trabecular BV/TV of the rat tibial marrow canal; increase in bone 
formation on days 7, 14 and 42 in 1 month old (2A), Control limb (2B), increase in bone formation on 
days 7 and 14 only when compared to contralateral tibia in 1 month old (2C), Increase of bone 
formation on day 7 up to day 28 in 3 month old (2D), Control limb (2E), increase in bone formation on 
day 7 up to day 28 compare to contralateral tibia in 3 month old (2F), increase bone formation starts on 
day 14 and lasts until day 21 only in 10 month old (2G) Control limb (2H),  increase in bone formation 
from day 7 to day 21 when compare to contralateral tibia in 10 month old (1I). Data are means + SEM 
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Histomorphometric Analysis 

Figure 3 is a representative micrograph demonstrating the presence of primary 

bone. It can be seen that the older animals have more fat cells compared to young ones. 

Histomophometric analysis demonstrated peak bone formation on day 7 in the young 

animals (Fig 4a), and complete restoration of marrow on day 14 (Fig 4b). For the adult 

group the peak of bone formation also occured on day 7, but on day 14 bone formation 

was further increased (Fig 4c). The marrow was restored by day 21 (Fig 4d). In the aged 

group there was increased bone formation on both days 7 and 14 (Fig 4e). The aged rats 

restored their marrow on day 28 (Fig 4f).  

 

 

 

 

Figure 3: Histological images of trabecular bone in treated limb 
stained with H&E 
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Figure 4: Effect of age on trabecular restoration (BV/TV) and marrow restoration 
(BM/TV) of the rat tibia; increase of trabecular formation on day 7(4A), deceases of 
marrow tissue on day 7 in 1 month old (4B), Increase of trabecular formation on day 7 and 
day 14 in 3 months old (4C), decrease in marrow tissue on day 7 and day 14 in 3 month 
old (4D), increase in trabecular on day 7, 14, 21 and 28 in 10 months old (4E) decrease in 
marrow tissue on day 7, 14 and 21 in 10 month old (4F). Data are means + SEM N=6 
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Age Dependent Changes in Fat Cell Number 

The fat content per marrow cavity increased as the animals aged. For the young 

group only a small amount of cells appeared to be fat cells as part of the whole marrow 

cells diversity. On day 21, there was an increase in the fat cell numbers whereas on day 

28 there was significant difference among the different age groups.  Adults and aged rats 

appeared to have the same number of fat cells. This might suggest that the conversion to 

fat marrow occurs around three months old.  

 

 

 

 

 

 

 

 

 

 

 

Table 1: Fat cell number within the marrow cavity. On day 0, 7 and 14 
there is a lower amount of fat cells for 1 month group when compare to 3 
and 10 months. On day 21 the number of fat cells is increasing for the 1 
month old. On day 28 there is no significant difference between the 3 age 
groups.  Data are means + SEM N=6.
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Cortical Bone 

Remodeling occurs constantly throughout life. However, fast remodeling occurs 

when growth to form a mature bone is still ongoing. Bone marrow ablation might 

interfere with this process as the hole that is being drilled is on the axis at the time that 

remodeling is active, thus we would expect to see an effect of our treatment when we use 

young rats. There was an increase in the total volume of cortical bone in one-month-old 

rats. On day 42 the volume of the cortical bone was restored to its normal volume. 

However, in adult and aged rats there was a delayed increase of total volume and bone 

volume remained high (table 2). Interestingly, the young rats did not exhibit increased 

bone formation that remained elevated as was the case with total bone volume. In 

contrast, the new bone formation in adult and aged rats remained longer and the cortical 

bone volume also remained elevated (table 3). 
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Tables 2, 3; cortical analysis; total volume treated over 
contralateral limb (2) bone volume treated over contralateral (3)  
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Discussion 

Endosteal bone formation and remodeling are age-dependent. Aged rats have a 

delayed response in new bone formation and resorption. Young rats respond faster in 

both formation and resorption. Decline in tissue repair could arise from age related 

changes in the environment or in the niche of the stem cells, for example an increase in 

fat cells (Rando, 2006). Therefore, there is a clinical need for new materials that can 

induce healing in aged population. It is well documented that this process in older 

population takes longer and is often not fully successful. In this study we compared the 

capability of rats to restore marrow after marrow removal. We looked at two processes: 

primary bone formation, and the remodeling of the bone resulting in marrow restoration. 

In this study we used µCT for the first time to evaluate the calcified bone after removal of 

marrow. We were concerned about the limitation of this method as for its ability to detect 

primary bone formation since it may not be as calcified as trabecular bone. We found that 

µCT is highly sensitive to small changes in tissue calcification; therefore we were able to 

follow trabecular bone restoration as a function of time and age. We scanned both the 

treated limb and the untreated limb to make sure that an ablation effect and not natural 

limb growth, was investigated. The control limb was also used to eliminate an effect of 

position, since the hole where the marrow was aspirated was positioned at slightly 

different locations from animal to animal.  The µCT provided us with important 

information that has not been formerly noticed using histological sections alone. The 

µCT also gave us the total volume of the tibia, which helped to determine the complete 

area of the calcified tissue in the marrow cavity. Choosing a threshold that will represent 

all age groups was necessary. This was not an easy task since tissue calcification varies 
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with age. For that reason we looked at several thresholds, finding that there is no 

difference in the course of bone formation. Thus we were assured that no bone was lost 

or that no extra bone was counted thus avoiding background artifact. Our histology 

analysis corresponded with our µCT data. However, we were able to determine the 

quality of the marrow itself. Using H&E stain we were able to detect trabecular as well as 

bone marrow cells such as red cells and fat cells. We were unable, however, to 

distinguish between the calcified and non-calcified tissue, consequently we can only 

point to the formation of a new bone. The formation of the bone and its remodeling was 

delayed in aged rats but with the control limb, focusing on fat cells, a significant 

difference between adult and aged groups was not detected. This might suggest that there 

are several additional factors that determine the restoration of marrow not only fat. One 

should perhaps investigate more in depth marrow quality after being restored in terms of 

its full potential to function as new bone marrow. It would also be interesting to look at 

the mesenchymal stem cells (MSC) specifically to see whether they express MSC 

characteristics. The composition of the marrow may also change with age and it may be 

important to see if new marrow regains its younger look or will it advance to a more 

mature phenotype. Various studies are currently trying to identify whether the numbers of 

MSC’s are decreasing with age or do they merely lose their ability to dedifferentiate to 

bone building cells. Interestingly, the cortical bone analysis gave us new information. 

Whereas for the young rats the total volume of cortical was significantly increase at the 

early time points of our study the total volume was reduce to its normal volume. When 

we then looked the bone formation only, their bone formation was not as high as we 

expected it would be, which means that the young animals compensate in their total 
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volume for their lost of marrow. However, for the adult and aged there might be a lower 

amount of total volume increase but this is a real increase in the bone formation and we 

believe this is the reason that the cortical formation stays high throughout this process.   

The significance of this study is in the development of a model that enables us to 

view bone marrow restoration in aged rats. Using this model we can examine various 

materials such as implant and bone grafts to learn more about bone recovery processes in 

general and also to test materials that might induce healing in older populations, in 

particular. As Science advances so does human life expectancy, the aged population 

around the world is growing, in order to guaranty quality of life one will need to fully 

understand bone healing in elderly population.  
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CHAPTER 3 

THE EFFECT OF PORCINE BONE MARROW MATRIX ON 

MARROW RESTORATION 

 
Introduction 

There is a great clinical need for materials that can either augment or substitute for 

autologous bone graft.  A goal for those materials is that they be osteogenic, causing bone 

to form across defects that are poorly apposed. Many of the currently available bone 

substitutes, including allografts, xerographs and alloplasts, meet this goal, providing 

adequate osteoconductive surfaces to support migration of osteoblast progenitor cells and 

their differentiation into bone forming secretory osteoblasts.   

 With greater understanding of bone biology and bone repair, it has become 

desirable to identify materials that resorb as new bone is formed, thereby facilitating the 

restoration of normal bone contours and biomechanics. Most bone graft materials that are 

used in dental implantology and oral and maxillofacial surgery, as well as orthopaedics, 

are placed in sites that normally remodel once bony union has been achieved, resulting in 

restoration of the marrow cavity and regeneration of marrow. The resorption of primary 

bone within the marrow cavity can occur more rapidly than the remodeling of primary 

bone into lamellar bone in the cortex, and recent studies show that bone graft materials 

can impact this both positively and negatively (Doukarsky et al., 2008). Thus, it is of 

importance to develop materials that can promote marrow restoration at an appropriate 

rate, resulting in normal healthy marrow.   
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 Preclinical studies testing materials for the use in bone tend to be performed in 

young adults animals, yet many of the clinical applications for these materials are in older 

patients. The quality of bone marrow changes with age, becoming fattier and the type of 

marrow fat that is present in older individuals tends to be “yellow”. Moreover, there is a 

reduction in the number of mesenchymal stem cells present in the marrow stroma. It is 

not known if there are age dependent differences in the rate of marrow restoration or in 

the quality of the marrow that forms. It also is not known if materials used to enhance 

bone healing alter the quality of marrow.  

 To address these questions, we took advantage of the rat tibial marrow ablation 

model developed by us previously to study endosteal bone formation and remodeling 

adjacent to biomedical implant materials (Schwartz, Amir et al., 1991; Boyan, Schwartz 

et al., 1993; Schwartz, Braun et al., 1993), and by others to assess the effects of bone 

anabolic and catabolic agents (Suva, Seedor et al., 1993). In this model, the tibial marrow 

is removed and a blood clot and granulation tissue from within the marrow cavity over 

the first three days of healing. In 300g Sprague Dawley rats, by day 6, primary bone 

forms on the endosteal surface and eventually fills the marrow cavity. Beginning at day 

12 and continuing through day 25, remodeling occurs, resulting in resorption of the 

primary bone. By day 35, replacement of the primary bone with bone marrow is 

complete, resulting in regeneration of the normal marrow tissue.  

 Porcine bone marrow matrix (PBMM) is a material produced by decellularizing 

porcine bone marrow. Boston Scientific provided it to us in a sterile liquid suspension. 

We hypothesized that PBMM would provide a growth factor enriched scaffold that would 

enhance repopulation of the marrow cavity with multipotent stem cells. This was based 
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on our studies using fetal porcine tooth germ derived enamel matrix derivative (Schwartz, 

Carnes et al., 2000), which is also a decellularized matrix material that has been shown to 

promote periodontal regeneration in animals and humans (Boyan, Weesner et al., 2000; 

Venezia, Goldstein et al., 2004). Moreover we hypothesized that the quality of the 

marrow produced in the presence of PBMM, in aged animals, would more closely 

resemble that seen in young animals. Because PBMM is a biomaterial, it was necessary 

to define the kinetics of marrow restoration in immunocompromised rats. To test our 

hypothesis that PBMM would result in “young” marrow it was necessary to determine if 

kinetics of bone marrow restoration varied as a function of age.  

Methods 

 This study was conducted in two parts: characterization of aged rat model and 

assessment of PBMM effectiveness. The first part was conducted as a preliminary study 

where aged rats were studied and PBMM was injected to one group and was also 

characterizes. From the results of this study we chose one time point for the main 

experiment where the effective of PBMM was tested. In both parts the marrow 

restoration was characterized using both µCT and histological slides methods. The 

surgery was conducted in the same way in both experiments. A total of 99 ten-month-old 

retired breeders nude rats were used.  

Animal Model 

Male nude rats one, three and 10 months of age were purchased from Harlan. 

Marrow was ablated in the right hind tibia and at 0, 7, 14, 21, 28, 35 and 42 days, rats 

were euthanized, and treatment and control tibias harvested.  In addition, we assessed the 
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handling properties of PBMM and the biological response to PBMM in a preliminary 

study using a high dose of PBMM.  This group of 7 aged rats was euthanized at 42 days.   

Test Article 

For the pilot study, PBMM was supplied to us at a concentration of 31.3 mg 

PBMM/ml PBS.  This was diluted to a concentration of 20 mg/ml and each rat received a 

dose of 0.2 ml/marrow cavity.  For the dose-response study, PBMM was provided at a 

concentration of 20 mg/ml was used in its undiluted form or was diluted 1:10 v/v with 

PBS. Once a time point was chosen for the dose-response study, a total of 5 groups were 

used for the experiments. The first was control ablation on day 0. The second was the 

control of the specific day of the study- an empty group, the third was a vehicle that 

contained the PBS only. In the forth a low dose of PBMM 2mg/ml was used and in the 

fifth a high dose of PBMM 20mg/ml per marrow cavity was used.  

Surgical Procedure 

 The surgical protocol was approved by the Institutional Animal Care and Use 

Committee at the Georgia Institute of Technology.  This protocol has been described in 

detail in previous studies (Schwartz, Amir et al., 1991; Boyan, Schwartz et al., 1993; 

Schwartz, Braun et al., 1993).  Rats were anesthetized using isoflurane.  An intra-patellar 

incision was made and a sub-periosteal flap was raised to expose the proximal aspect of 

the tibia.  Using a #4 water-cooled dental burr at 20,000 RPM, a cavity was made in the 

proximal aspect of the tibia to allow access to the marrow cavity.  Marrow was evacuated 

by repeated irrigation with saline solution.  PBMM was inserted by injection into the 

marrow cavity eight of the rats (0.2 ml/marrow cavity).  Bone wax was used to seal the 

bone in the PBMM treated animals, both in the pilot study and in the dose-response 
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study.  In addition, in the dose-response study, all control animals also received a bone 

wax seal at the drill site.  Bleeding was controlled using sterile gauze pads as needed.  At 

the end of the surgical procedure, the periosteum was closed using 4/0 absorbable sutures 

and the skin was closed using wound clips.  Buprenorphine was given as a post-operative 

analgesic.   

MicroCT 

 The extent of endosteal bone formation in the ablated limbs was determined by 

µCT.  Immediately after harvest, the bones were fixed in 70% ethanol for 24 hours and 

post-fixed in neutral buffered formalin.  In order to obtain an accurate assessment of the 

amount of new trabecular bone and its resorption it proved necessary to use the 

contralateral limb as an internal control.  The amount of marrow was assumed to be 

marrow space not filled with trabecular bone. The micro architecture morphology at the 

trabecular sites was determined. Parameters derived at the metaphysis and intramedullary 

canal included: tissue volume (mm3), bone volume (mm3), bone volume to tissue volume 

(BV/TV: %), trabecular number (#mm), thickness (mm) and spacing (mm).  To 

determine if this assumption was valid, histomorphometric measurements were made as 

described below.   

Histology 

 After the tibias were scanned they were placed back in formalin. The treated tibias 

were then prepared for histological analysis. Samples were decalicified and embedded in 

paraffin. Two mid-sagittal sections were made per tissue. The sections were stained with 

haematoxylin and eosin. For the histomorphometric measurements we used the computer 

program Image pro plus version 4.5.1. Fat cell number per marrow cavity was also 
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measured using the Image pro plus version 4.5.1. We first converted the image to black 

and white. Then using the future count object we were able to choose the fat cells only 

using their round feature.  

Results 

Pilot Study 

 Micro-CT analysis showed that PBMM had an effect on marrow restoration 

(Figures 5a, 5b). However, there was no statistical difference between the aged groups 

(control) on day 42 and the ones treated with PBMM of the same day (42). But when we 

examined the effect of PBMM using histological analysis, it looked that the PBMM did 

have a positive effect and indeed the amount of trabecular bone was lower than the 

control of day 42 (Figure 4c, 4d). Bone marrow levels were also significantly higher in 

the PBMM group. Based on these results we chose an earlier time point to investigate 

whether PBMM can hasten bone marrow regeneration. We chose day 28 as our goal, 

since aged rats seemed to restore their marrow already on day 35.  
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PBMM Dose Study 

 In addition, we took measurements of bone formation and marrow restoration 

both above and below the bone wax seal (Figure 6).  This was necessary since the wax 

interfered with bone healing across the defect site. The results of these analyses showed 

us that PBMM had no effect on marrow restoration at that time, either in the diaphysis or 

in the metaphysic (Figure 7).  The µCT data were confirmed by histo-morphometry 

measurements. Moreover, there was no change in fat cell number that could be attributed 

to the presence of the PBMM.  

A

DB

C

Figure 5: analysis of the effect of PBMM; histological section show a 
lower amount of trabecular bone formation on day 42 with PBMM 
compate to control (5A) bome marrow restoration (5B) CT analysis 
show no difference in trabecular boneof the effect of PBMM (5C, 
5D)  



 31

                                                  

 

 

 

 

Figure 7: PBMM dose dependent study show no increase in bone marrow compare to 
empty both using CT and histological analysis 

Figure 6: Different way to assess the bone marrow: purple 
old measurements, brown new measurements. 
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Discussion 

 In the first part of this study we looked at aged rat’s marrow restoration as 

compared to young and adult ones. The results obtained showed, for the first time, the 

existence of differences in the kinetics of endosteal bone formation and remodeling, in 

the tibial marrow cavity of nude rats.  µCT analysis indicated that very young rats exhibit 

rapid bone formation that occurs primarily in the treatment limb, followed by rapid bone 

resorption and restoration of the marrow cavity.  Adult rats exhibited rapid bone 

formation, but remodeling of that bone occurs at a slower rate than in young growing rats 

and the systemic effect of marrow ablation is greater.  Aged rats exhibit delayed bone 

formation coupled with rapid bone remodeling. 

 The µCT and histological results indicate that PBMM does not hinder restoration 

of the marrow within the medullary canal in aged nude rats and that the normal endosteal 

contours are restored as well.  However, the results also show that PBMM does not 

appear to promote restoration of marrow as originally hypothesized. 

 The preliminary study suggested that PBMM caused more rapid restoration of 

marrow than was seen in the untreated animals at 42 days.  In the PBMM treated animals, 

the amount of bone remaining in the marrow cavity at 42 days was less than in the 

untreated animals and was comparable to that seen at time 0.  Histology permitted a 

clearer view of the tissue at the interface of bone and marrow than we were able to 

achieve with µCT, even after using different threshold values, which may have 

contributed to differences in the two data sets.  In addition, we were better able to 

discriminate between pre-existing trabecular bone and new trabecular bone produced as a 

consequence of the ablation.  By comparing the bone volume/total volume in the treated 
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limb to that of the contralateral control limb, we removed some of the potential error in 

the µCT data, but the final assessment afforded by this approach was not as precise as 

could be attained by histology. It is not known whether the result measured at 42 days 

reflected a change in bone resorption that occurred after day 28.  The data from the 

earlier time point clearly failed to show a beneficial effect of the material. 

 At this point in the analysis, we cannot yet state whether aspects of the bone 

marrow other than amount or number of fat cells are affected by PBMM.  
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