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SUMMARY 

 

Quaternary ammonium compounds (QACs) are widely used in commercial and 

consumer applications as disinfectants, fabric softeners, hair conditioners, and 

emulsifying agents. The massive production and utilization of QACs has led to their 

extensive discharge into the environment, raising concerns globally. Several studies have 

reported on potential risks and detrimental effects of QACs on the natural environment 

and public wastewater treatment plants. Biological treatment has been found to be an 

effective way to remove QACs and especially aerobic treatment processes can provide 

rapid biodegradation via a consortium of bacteria. Although extensive research has been 

conducted on the fate and effect of QACs, relatively little is known about their effect on 

aerobic biological treatment processes, especially on nitrification.  

 Research was conducted on the fate and effect of alkyl benzyl dimethyl 

ammonium chloride (AB), a QAC widely used as disinfectant, in mixed aerobic and 

nitrifying cultures. The results of this study demonstrated that up to 50 mg/L AB was 

efficiently degraded in a mixed aerobic culture fed with dextrin and peptone, although 

trace residual AB levels were observed. Nitrification of the produced ammonia was 

complete at an AB concentration of 20 mg/L after an acclimation period, but was almost 

completely inhibited at 50 mg/L. Mixed aerobic cultures maintained only with AB as 

external nitrogen and carbon source achieved a high degree of AB degradation at both 20 

and 50 mg/L. 

 Ammonia oxidation by a nitrifying culture, enriched with ammonium chloride 

and sodium bicarbonate, was inhibited with increasing AB concentration and completely 



 xii

ceased at 15 mg/L AB. Degradation or utilization of AB was not observed for all tested 

AB concentrations between 2 to 20 mg/L. Based on these experimental results, and 

assuming non-competitive inhibition, a relatively low value of the AB inhibition 

coefficient was obtained, which indicates a relatively high susceptibility of the ammonia 

oxidizers to AB. The results of this study have significant implications for both 

engineered and natural systems relative to the fate and effect of QACs. 
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CHAPTER 1 

INTRODUCTION 

 

 Quaternary ammonium compounds (QACs) play an important role in many 

industrial fields due to their versatile physico-chemical properties. Such widespread uses 

as disinfectants, fabric softening agents, foam depressants, and antistatic agents lead to 

massive discharge into the environment with its associated concerns (Wee and Kennedy, 

1982). Potential risks have been reported in many previous studies that repeated exposure 

to QACs can induce microbial resistance against antibiotics in many pathogenic 

microorganisms (McDonnell and Russell, 1999). In addition, discharge of QACs can 

disturb the purifying activities of natural aquatic systems or public wastewater treatment 

plants because of their toxicity to microbial life (Laopaiboon et al., 2002; Tubbing and 

Admiraal, 1991). 

 The possibility to effectively eliminate QACs-related pollution has been 

investigated in many ways. As one of the most economical means, biological treatment of 

QACs is found to be an effective way to remove QACs and especially aerobic treatment 

processes can provide rapid biodegradation via a consortium of bacteria (Scott and Jones, 

2000). There are also different types of treatment approaches using advanced oxidation 

processes. For example, UV radiation resulted in 20 to 30 % of COD removal for a series 

of alkyl benzyl dimethyl ammonium chloride and the biodegradation rate of QACs could 

be greatly enhanced when combined with an advanced oxidation process (Adams and 

Kuzhikannil, 1999; Ikehata and El-Din, 2004). 
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 Although extensive research has been conducted on the fate and effect of QACs, 

relatively little is known about their effect on aerobic biological treatment processes, 

especially on nitrification. Limited information found in the literature shows that QACs 

are highly toxic on the nitrification process, but their detrimental effect could be 

mitigated as a result of the biodegradation by heterotrophs (Munao et al., 1990). 

Therefore, an in-depth study of the effect of QACs on aerobic mixed biological treatment 

systems, their biodegradability, and the extent of inhibition on the nitrification process is 

needed. 

 Alkyl benzyl dimethyl ammonium chloride (AB), one of the commonly used 

QACs in many industrial fields, was selected for this study. Two aerobic, mixed cultures 

-- a heterotrophic and a nitrifying (autotrophic) culture -- were developed and used to 

assess the biodegradation of AB and its long-term effect on aerobic biological treatment 

processes.  
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CHAPTER 2 

BACKGROUND 

 

2.1. General Aspects of QACs 

2.1.1.  Production and Uses 

The term surfactant refers to substances that interfacially congregate when added 

to a solvent. This distinguished trait is contrary to that of other solutes which generally 

activate solute-solvent interaction. The origin of surfactants’ interesting properties comes 

from the existence of two distinct parts of the molecule, a hydrophilic and a hydrophobic 

moiety. Since the surfactant molecules are large enough (typical molecular weight of 

between 300 and 400), two zones are able to act independently. When the hydrophilic 

region contains a positively charged group, the molecule is referred to as a cationic 

surfactant. The center of cationic surfactants consists of one or more sulfur, phosphorus, 

arsenic, or nitrogen atoms. However due to the significantly lower cost to produce 

nitrogenous cationic surfactants, other types are rarely found in the market. Quaternary 

ammonium compounds, abbreviated as QACs or quats, are the most prevalent forms of 

cationic surfactants used today. Cationic surfactants have been important since their 

bactericidal properties were recognized in the 1930s. Production of cationic surfactants 

accounts for only 8% in the surfactant market (estimation of cationic surfactants 

produced worldwidely in 1986 was more than 250,000 metric tons), but they hold a 

substantial position in a variety of applications. 

Reviews of cationic surfactants and their numerous applications have been 

presented before (Linfield, 1970; Richmond, 1990; Rubingh and Holland, 1991). QACs 
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can be used for many purposes such as cosmetics, pharmaceuticals, and sanitizers. The 

wide range of QACs applications is attributed to their adsorption onto a variety of solid 

surfaces. The majority of minerals and organic substances are hydrophilic and polar in 

general. Silica contents of minerals possessing hydroxyl group and carboxylate groups of 

organic substances result in highly negative charges on their surfaces where cationic 

surfactants can bind strongly. The usage of QACs can be described as follows (%): fabric 

softners, 66; coated clays, 16; biocides, 8; oil-field chemicals, 6; asphalt additives, 2; and 

textiles, 1. Therefore,  the use of cationic surfactants as fabric softeners significantly 

dominates over all other applications. Fabric softeners function to make clothes and 

fabrics soft and pleasant while in use, to dry easily, to reduce electrical charge, and to 

maintain the fragrance for a long time. Although QACs have many applications in 

addition to their biocidal properties, the large amount of QACs released from laundries to 

sewage systems appears not to cause serious problems in the purification and nitrification 

of wastewater treatment plants (Gerike et al., 1978). This might be explained by the fact 

that QACs can lose their toxicity upon interaction with anionic surfactants and adsorption 

on particulate matter. Cationic surfactants have a crucial role in metal separation during 

mining in that the adsorption of a surfactant on the polar surfaces of minerals is essential 

in order to make mineral particles hydrophobic and hence afloat in the solution.  

Organophilic clays are produced by displacing inorganic cations of clay particles 

by large organic cations, using exclusively QACs with more than one long alkyl chain 

and most commonly dimethyl (dihydrogenated-tallow) ammonium or dimethyl 

(hydrogenated-tallow) benzyl ammonium. Since this type of clay has great properties in 
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lubrication and prevention of pigment settling, organophilic clays containing QACs are 

widely added in lubricants, paints, printing inks, oil-drilling mud, etc. 

Another use of cationic surfactants is to enhance the binding ability between 

asphalt/bitumen and crushed rock. The hydrophilic surface of crushed rock results in less 

affinity to apolar asphalt/bitumen matrix. The bonding power, however, can be 

considerably improved by the addition of cationic surfactants whose polar moieties are 

adsorbed onto the mineral surface whereas their hydrophobic chains freely spread over 

bitumen. 

QACs have a broad spectrum of microbiological activities over wide pH ranges. 

As a result, they are used in many fields including industry, agriculture, hospitals, and 

housekeeping. They are very effective agents against bacteria, fungi, and viruses although 

there are few signs of posing threats to mankind and other higher forms of life. 

 

2.1.2. Properties 

QACs are produced by the nucleophilic substitution reaction of tertiary amines by 

an alkyl halide, benzyl chloride, or similar material (Fredell, 1994). The general feature 

of QACs as shown in Figure 2.1, is that the R1 - R4 groups are covalently bonded alkyl 

and/or benzyl groups and the X represents the anion which is a halide, usually a chloride. 

The central nitrogen atom generates a positive charge which is the functional region of 

the molecule. The structure and chain length of the R groups can vary. QACs are 

basically odorless and have no malignant effect on synthetic materials including plastics, 

rubber, ceramic, and stainless steel. QACs have a number of versatile properties such as 

surface-activation, detergency, and bactericidal ability, all of which bring QACs into 
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N+R2 R4
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Figure 2.1. General structure of quaternary ammonium compounds (R1 – R4 represent 
alkyl and/or benzyl moieties). 
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wide uses and popularity throughout the world. Structural features and industrial usage of 

several QACs are represented in Table 2.1. The largest application of QACs is now for 

sanitation and disinfection. The first report regarding the antibacterial properties of QACs 

was announced in 1915 and then in 1935 another milestone demonstrating the 

antibacterial activity of long chain QACs took place. According to previous studies, the 

bactericidal efficiency of QACs is dependent on the length of the alkyl chain. 

Experiments conducted with homologues of alkyl benzyl dimethyl ammonium chloride 

demonstrated that the compounds containing alkyl chains with 12 to 16 carbon atoms had 

the greatest bactericidal activity (Fredell, 1994; Petrocci, 1983). Consequently the 

majority of QACs consist mainly of C12 to C16 alkyl chains, C14 is the most common. 

Table 2.2 shows the minimum inhibitory concentrations for ten QACs. From these data, it 

can be concluded that QACs are generally more effective against Gram positive bacteria 

(i.e., Bacillus subtilis and Staphylococcus aureus) rather than Gram negative bacteria 

(i.e., Escherichia coli, Pseudomonas aeruginosa, and Aspergillus niger).  

The antibacterial property of QACs is closely linked with the chemical properties 

of cationic surfactants. QACs are positively charged compounds that are naturally 

attracted to negatively charged substances such as bacterial proteins essential for the 

structure and enzymatic activities of the cell. QACs are known to exert their antibacterial 

activity by disorganizing and denaturing these proteins. The mechanisms of the biocidal 

action of QACs are schematically depicted in Figure 2.2 (Gilbert and Moore, 2005).  

QACs start their inhibitory action with binding to the cell surface. Resulting 

changes at the outer layer, cytoplasmic membrane, or within the cytoplasm are related to 

the antibacterial effect of QACs. For instance, benzalkonium chloride, one of the most 



 8

 
 
 
Table 2.1.  Structural features of QACs and their industrial usage 
 

QAC Group Molecular Structure Applications 

Alkyl trimethyl ammonium R N+

CH3

CH3

CH3

X-

 

Organoclays, 
phase transfer catalyst, 

oilfield applications 

Dialkyl dimethyl ammonium R N+

CH3

CH3

R

X-

 

Biocides, 
wood preservatives, 
oilfield applications 

Alkyl benzyl dimethyl 
ammonium 

R N+

CH3

CH3

H2C

X-

 

Biocides, cosmetics, 
wood preservation, 

phase-transfer catalyst, 
organoclays 

Alkyl pyridinium 

R

N+
X-

 

Phase transfer catalyst, 
pesticides 

Diethylester dimethyl 
ammonium 
(Esterquat) 

CH3 N+

CH2CH2OCR

CH3

CH2CH2OCR
X-

O

O  

Active ingredient in fabric 
softeners 
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Table 2.2. Minimum inhibitory concentration (ppm)a of QACs for several bacteria and fungi (Cords, 1983) 
 

 Organism 

Compound Escherichia 
coli 

Pseudomonas 
aeruginosa Bacillus subtilis Staphylococcus 

aureus 
Aspergillus 

niger 

One R group is fatty acid      

Benzalkonium chloride 200 300 3 4 60 

Dodecyltrimethylammonium chloride 500 500 5 5 500 

Tetradecyltrimethylammonium 
chloride 150 100 1.5 5 50 

Hexadecyltrimethylammonium 
chloride 5000 5000 5 5 5000 

Dodecylbenzyldimethylammonium 
chloride 750 750 2 2 75 

Two R groups are fatty acids      

Dioctyldimethylammonium chloride 40 75 20 20 225 

Didecyldimethylammonium chloride 225 750 > 0.7 7 75 

Ditetradecyldimethylammonium 
chloride 2250 > 2250 225 750 2250 

Three R groups are fatty acids      

Tri(octyldecyl)methylammonium 
chloride 500 500 3 5 150 

Tridodecylmethylammonium chloride > 5000 > 5000 500 1500 1500 
aValues in ppm are for bacteriostatic or fungistatic activity, not cidal
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Figure 2.2. Mechanisms of biocidal action of QACs: physical disruption of the membrane 
(A), dissipation of the proton motive force (B), inhibition of membrane-associated enzyme 
activity (C). 
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widely used QACs, was observed to alter the hydrophobicity of Pseudomonas aeruginosa 

(El-Falaha et al., 1985), which may promote damage of the cell wall and outer membrane 

of bacteria. However, the extent of the biocidal effect varies depending on the species of 

bacteria. Gram-negative bacteria are in general less sensitive to biocides than Gram-

positive bacteria due to the existence of their outer membrane. The cytoplasmic membrane, 

surrounding the cytoplasm of a cell and comprised of a phospholipid bilayer with 

embedded proteins, is commonly regarded as the main target site of biocides. The 

cytoplasmic membrane can be disrupted leading to the leakage of intracellular components, 

which is thought as a means of disruption of the cell permeability barrier (Lambert and 

Hammond, 1973). Previous studies proved that QACs induced leakage of intracellular 

components and subsequently damaged the cell membrane (Figure 2.2A) (Davies et al., 

1968). In addition, QACs primarily affect the membrane phospholipids leading to cell lysis 

(Gilby and Few, 1960; Takasaki et al., 1994). 

The proton motive force (PMF), which is initiated by a proton gradient across the 

cytoplasmic membrane, is involved in all forms of respiratory and photosynthetic 

processes, such as active transport, oxidative phosphorylation, and ATP synthesis. QACs 

and some organic acids were found to inhibit ATP synthesis by neutralizing the PMF and 

denaturing responsible proteins (Figure 2.2B). For instance, Denyer and Hugo (1977) 

observed that cetyl trimethyl ammonium bromide (CTAB) discharged the membrane 

potential and led to  PMF dissipation.  

Many enzymatic proteins, anchored in the cytoplasmic membrane, are involved in 

the electron transport chain. Certain types of biocides inhibit these kinds of proteins so that 
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many vital processes, for example glycolysis, fatty acid and phospholipid synthesis, and 

solute uptake, are significantly blocked (Figure 2.2C). Other biocidal agents react with the 

thiol group in proteins which is necessary for many enzymatic activities. These reactions 

also lead to cell inhibition or cell inactivation (Maillard, 2002). 

The thermal stability of QACs varies depending on the associated counterions. For 

example, alkyl trimethyl ammonium chlorides are stable up to 130°C, above which they 

start breaking down, but their homologues substituted with bromide and iodide become 

unstable at a lower temperature (Laughlin, 1991). More important is the fact that the anion 

affects the phase equilibrium between the surfactants and water due to hydration of the 

entire QAC compound within the liquid and liquid crystal phase. In dilute solutions, 

moreover, the anion has a remarkable impact on the micelle formation (Zana, 1991). Other 

physico-chemical properties, such as viscosity and solubility are influenced by the anion as 

well. Chloride and methosulfate are representative anions commonly used (Cross, 1994). 

 

2.1.3. Toxicity 

The high toxicity of cationic surfactants against microorganisms, in contrast to the 

relatively low toxic effect on humankind and mammals, has justified the use of these 

compounds as disinfecting and sanitizing agents. Nevertheless, it is evident that QACs can 

create toxic effects to humans and animals by all ways of exposure including inhalation, 

ingestion, dermal absorption and irrigation of body cavities. Condensed solutions of QACs 

can cause burns to skin and mucosal membrane, whereas diluted solutions result in benign 

irritation. QACs are known to create systemic toxicity and allergic reactions as well. 
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Among the numerous QACs, benzalkonium chloride (BAC), also called alkyl benzyl 

dimethyl ammonium chloride, is the most comprehensively investigated compound.  

Exposure to QACs can happen even in an ordinary life via several routes as 

described below. QACs have been used in cosmetics, ophthalmic medications, contact lens 

solutions, hand washes, antimicrobial soaps, skin wound cleanser, and preoperative skin 

preparation solutions (Drobeck, 1994). Such uses thus result in frequent contact with body 

surfaces and cavities, increasing the likelihood of absorption, inhalation, and unexpected 

ingestion. Oral ingestion is the most common way for QACs to enter. Used widely in 

inhalers and nasal sprays, as wetting agents and preservatives, QACs can be easily inhaled. 

In addition, dermal contact by accidental spillage of QACs on skin or clothes is usual since 

they are present in a number of domestic chemicals like shampoos, detergents, cleaning 

agents, or disinfectants, although adsorption can rarely occur unless there is wounded skin. 

In addition, eye contact, irrigation of body cavities, or parenteral exposure could be other 

means of entry. It has been estimated that 100 to 400 mg/kg (oral) or 5 to 15 mg/kg 

(parenteral) dose of QACs could be fatal to human adults (Ellenhorn et al., 1997), and 1 to 

3 g was regarded as a fatal dose (Arena, 1964). The LD50 of benzalkonium chloride varies, 

depending on the animal species and the route of exposure (Wade and Weller, 1994), as 

follows (in mg/kg): guinea pig, oral 200; mouse, intraperitoneal 10; mouse, intravenous 10; 

mouse, oral 175; mouse, subcutaneous 62; rat, intraperitoneal 14.5; rat, intravenous 13.9; 

rat, oral 240; rat, subcutaneous 400; rat, skin 1,560. 

Acute poisoning by QACs may bring about diverse symptoms depending on the 

route(s) of exposure. Acute (single-dose) toxicity of the QACs, at lethal level, is usually 
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defined by peripheral paralysis and central nervous system stimulant-like effect, whereas 

chronic (multiple-dose) toxicity is characterized by body weight loss, reduced food 

consumption, dehydration, and increased mortality. Ingestion of benzalkonium chloride in 

higher concentrations results in caustic burns on the lips, tongue, mouth, throat, or stomach, 

all of which can come along with hypersalivation, vomiting, diarrhea, and confusion. Much 

lethal symptoms, such as hypotension, shock, respiratory paralysis, and coma, may also 

happen (Mathieu-Nolf et al., 1985). In case of inhalation,  bronchoconstriction by BAC-

containing medications was reported (Graf et al., 1995; Hallen and Graf, 1995), and nasal 

stiffness as well as nasal mucosa swelling are other potent side effects. Dermal burnings 

caused by concentrated cetrimide and caustic actions with benzalkonium chloride  are the 

effect of skin exposure (Mercer, 1983; Nicola et al., 1997). Eye contact with QACs is likely 

to generate mild discomfort (0.1% solution) to fatal corneal damage (10% solution) 

depending on species and concentration. There have been some reports proving the 

occurrence of ocular inflammation in human eyes (Reynolds, 1996; Swan, 1944). 

When it comes to chronic poisoning, in contrast, QACs have relatively not been the 

topics of interest. Since usual kitchen detergents contain QACs, low amounts of them can 

be easily ingested. Experimental measurements as well as estimations expect that an 

average oral intake of surfactants would reach about 100 mg/man-year but this value does 

not produce a toxic effect (Gloxhuber, 1974). Analogous to acute poisoning, it is reported 

that those who were exposed to QACs, especially to benzalkonium chloride, showed 

occupational asthma or irritable dermatitis.  
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Poisonings due to diluted solutions can be of little concern and easily dealt with, but 

those in high concentrations can be sometimes lethally dangerous if urgent and proper 

treatments are not given. Death due to heavy exposure is associated with cardiorespiratory 

collapse, bronchoconstriction, or acute pulmonary oedema (Ellenhorn et al., 1997). Patients 

can die within 1 to 3 hours after ingestion. 

 

2.1.4. Biodegradation 

Biodegradation is the major means of removing cationic surfactants in wastewater 

treatment plants and the environment. In spite of frequent releases of cationic surfactants 

into wastewater treatment plants, little damage has been reported, which is attributed to the 

fact that not only are the influent concentrations low but also cationic surfactants tend to be 

strongly adsorbed on particulate matter, to form charge-neutralized complexes with anions, 

and to lead to microbial acclimation by extended exposure to microorganisms. Nonetheless, 

accidental discharge of these compounds can lead to temporal disturbance of treatment 

systems, especially for nitrification, which is known to be sensitive to inhibition (Boethling, 

1984). The removal rate of cationic surfactants in wastewater treatment plants reaches 90%. 

As these compounds are immediately adsorbed, most degradation processes take place on 

suspended solids. The susceptibility of cationic surfactants to biodegradation was first 

reported in the 1950s. Gerike (1982) confirmed this previous study, using activated sludge 

and cetyl trimethyl ammonium bromide (CTAB), dodecyl benzyl dimethyl ammonium 

chloride, and didecyl dimethyl ammonium chloride. Adsorption accounted for 8 to 29% 

removal, and the previously reported removal efficiency (more than 90%) provided a good 
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evidence of biodegradation as reported in previous studies (Fenger et al., 1973; Janicke and 

Hilge, 1979).  

A general agreement was made in terms of what type of cationic surfactants was 

readily degradable, or which one was most obstinate (Dean-Raymond and Alexander, 1977; 

Larson and Vashon, 1983; Masuda et al., 1978). Mono alkyl quaternaries are exceedingly 

favorable to biodegradation, and alkyl pyridinium classes are least degraded. Alkyl benzyl 

dimethyl and dialkyl dimethyl ammonium compounds are placed in the midst of them.  

Biodegradation appears to lie under the effect of various factors besides chemical 

structure. Studies done by Ruiz Cruz (1979; 1981) assessed  the influence of several 

parameters on the biodegradation of cationic agents in river water. The variables adopted 

were biomass concentration, acclimation, temperature, aeration, and nutrients. It was 

evident in these studies that biomass concentration as well as temperature was positively 

correlated with biodegradation of QACs, and that the presence of nutrients and pre-

acclimation enhanced the microbes’ degrading ability. The role of aeration was also 

regarded as beneficial, although to a lower degree. Ventullo and Larson (1986) investigated 

the effect of pre-exposure to alkyl trimethyl ammonium chloride at a lake ecosystem in 

southern Ohio.  

Studies on the biodegradation pathways have been conducted for various QACs so 

far. The utilization of tetramethyl ammonium chloride by Pseudomonas sp. was described 

by Hampton and Zatman (1973). According to their work, the oxidation of this compound 

is initiated by splitting the C-N bond, therefore producing methanal and trimethyl amine. 

The intermediate trimethyl amine is oxidized to trimethyl amine N-oxide (Large et al., 
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1972) or transformed to methanal and dimethyl amine (Colby and Zatman, 1973; Meiberg 

and Harder, 1978). The trimethyl amine N-oxide is further converted to dimethyl amine 

(Large, 1971; Myers and Zatman, 1971), followed by the generation of methanal and 

methyl amine (Colby and Zatman, 1973). Methyl amine is then converted to methanal and 

ammonium. Based on an investigation of the utilization of alkyl trimethyl ammonium 

bromides by microorganisms derived from sewage and soil, Dean-Raymond and Alexander 

(1977) demonstrated that the first step of degradation occurs with hydroxylation of the 

terminal carbon of the alkyl group and the resulting carboxylic acid undergoes β-oxidation. 

Another study dealing with hexadecyl trimethyl ammonium chloride suggested a central 

fission of Calkyl-N bond as the first step of degradation (van Ginkel et al., 1992). Not only 

hexadecyl trimethyl ammonium chloride, but also hexadecanal and hexadecanoate 

produced as metabolites, were all utilized by Pseudomonas sp. In contrast, this strain did 

not grow on trimethyl amine, suggesting that other species of microorganisms must get 

involved for the complete degradation of this compound (Figure 2.3). The degradation 

mechanism of alkyl benzyl dimethyl ammonium chloride, the target compound for this 

study, was proposed in recent years (Patrauchan and Oriel, 2003). Dodecyl and tetradecyl 

benzyl dimethyl ammonium chloride were completely metabolized by Aeromonas 

hydrophilia sp. K. The suggested pathway is shown in Figure 2.4. It is believed that the 

central Calkyl-N bond fission is first carried out by an oxygen dependent dehydrogenase as 

suggested for alkyl trimethyl ammonium compounds (van Ginkel et al., 1992) and then 

intermediates such as benzyl amines and benzoic acid, are formed consecutively by N-

demethylation reactions while Aeromonas hydrophilia sp. K is utilizing all these 
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Figure 2.3. Proposed degradation pathway of hexadecyl trimethyl ammonium chloride by 
Pseudomonas sp. monooxygenase (1), and alkanal dehydrogenase (2) (van Ginkel et al., 
1992). 
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Figure 2.4. Proposed degradation pathway of alkyl benzyl dimethyl ammonium chloride by 
Aeromonas hydrophilia sp. K (Patrauchan and Oriel, 2003). 
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intermediates as carbon and nitrogen source. Also the fact that this strain cannot utilize 

alkyl dimethyl amines firmly demonstrates that Cbenzyl-N bond fission is indeed hard to 

occur. In contrast to the previous findings, however, a recent study proposed the 

degradation of dodecyl trimethyl ammonium chloride by Pseudomonas sp. strain 7-6, 

isolated from a wastewater treatment plant, via dual pathways, which besides an initial 

attack on the Calkyl-N bond also initiates  degradation via cleavage of a Cmethyl-N bond, 

hence producing dodecyl dimethyl amine as an intermediate (Takenaka et al., 2007). 

Overall, general degradation pathways of cationic surfactants shown in Figure 2.5 indicate 

that biodegradation is mostly commenced with cleavage of the Calkyl-N bond irrespective of 

the type of QACs and the degradation of the produced alkanals proceeds via β-oxidation for 

complete mineralization (van Ginkel, 2004).  

Because of the surfactants’ amphiphilic (i.e., both hydrophilic and hydrophobic), 

character and the limited enzymatic ability of individual microorganisms, only a few 

known surfactants, alkane sulphonates, alkyl sulphates, and alkyl amines, are completely 

degraded by a single microorganism (van Ginkel, 1996). For this reason, consortia of 

microorganisms are highly efficient, as well as necessary for the complete degradation of 

surfactants (Scott and Jones, 2000; van Ginkel, 1996). Such consortia of microorganisms 

are classified as either commensal (one benefits, whereas the other is not affected) or 

synergistic. An example of commensalism is found in the case of hexadecyl trimethyl 

ammonium chloride degradation (van Ginkel et al., 1992). A Pseudomonas sp. attacks the 

Calkyl-N bond of the compound and releases trimethyl amine on which methylotrophs can 

grow together. As mentioned above, Aeromonas hydrophilia sp. K was not capable of 
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Figure 2.5. General degradation pathway of cationic surfactants. The alkanals formed 
through the oxidation of the α-carbon of the alkyl chain are further metabolized via β-
oxidation (van Ginkel, 2004). 



 22

utilizing alkyl dimethyl amine produced as a result of the aerobic degradation of alkyl 

benzyl dimethyl chloride. The complete degradation of this compound requires three 

microorganisms that metabolize the alkyl chain, the aromatic moiety, and dimethyl amine 

(van Ginkel, 2004). On the other hand, the degradation of decyl trimethyl ammonium 

bromide assessed by Dean-Raymond and Alexander (1977) exhibited synergistic relation. 

Decyl trimethyl ammonium chloride was extensively utilized by two microorganisms, 

Pseudomonas sp. and Xanthomanas sp. Interestingly, any one of these strains did not grow 

when inoculated separately, but together growth and metabolism took place without the 

addition of growth factors. Such results suggest that the products of partial degradation by 

one strain were necessary for the survival and growth of the other one.  

 

2.2. Problem Identification 

Despite the considerable number of studies covering various kinds of cationic 

surfactants, especially for quaternary ammonium compounds (QACs), relatively limited 

information is available with respect to the effect of QACs on nitrification. Nitrification is a 

crucial step in wastewater treatment systems since such process is the starting point of 

biological nitrogen removal. However, nitrifiers are more sensitive than other heterotrophic 

microorganisms and thus susceptible to inhibition by toxic chemicals (Boethling, 1984). 

Pitter (1962) found that 3 mg/L of both hexadecyl pyridinium bromide (HPB) and 

hexadecyl trimethyl ammonium bromide (HTMAB) strongly inhibited nitrification and at 6 

mg/L nitrification completely failed. In another study, the inhibition of nitrification was 

observed at 16 mg/L of dioctadecyl dimethyl ammonium chloride (DODMAC) in the 
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presence of 20 mg/L linear alkyl benzene sulphonate (LAS) (Gerike et al., 1978). Although 

these previous studies can provide general insights on the effect of QACs on aerobic 

biological treatment systems, detailed information about the fate and effect of alkyl benzyl 

dimethyl ammonium chloride (benzalkonium chloride), popularly used as a disinfectant 

agent currently, on a mixed aerobic heterotrophic culture and its nitrification process is still 

scarce. To this end, this study was initiated with the goal of understanding the fate, 

biodegradability and toxicity of alkyl benzyl dimethyl ammonium chloride in mixed 

cultures representative of aerobic treatment processes. 

 

2.3. Research Objectives 

 Based on the above-presented literature review, information about the inhibitory 

effect on mixed aerobic heterotrophic cultures and their nitrification process by alkyl 

benzyl dimethyl ammonium chloride has been relatively insufficient. Furthermore, the 

biodegradation pathway of this compound was unveiled relatively recently as compared to 

that of other QACs. Thus, further study on the biodegradability of this compound under 

various culture conditions is warranted. Therefore the main goal of this study was to assess 

the fate and effect of alkyl benzyl dimethyl ammonium chloride on mixed aerobic cultures 

with respect to both heterotrophic and autotrophic (i.e., nitrifying) metabolism. 

 The specific objectives of this study were to: 

1. Assess the fate and inhibitory effect of alkyl benzyl dimethyl ammonium 

chloride on both heterotrophic and nitrifying mixed cultures. 
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2. Investigate the effect of microbial acclimation on the biodegradation of alkyl 

benzyl dimethyl ammonium chloride and its use as the sole source of carbon 

and nitrogen. 

 3. Determine the toxicity of alkyl benzyl dimethyl ammonium chloride and its 

biotransformation products. 
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CHAPTER 3 

MATERIALS AND ANALYTICAL METHODS 

  

3.1. pH 

All pH measurements were performed using the potentiometric method with a 

Model 370 digital pH meter (Orion Research, Inc., Boston, MA) and a gel-filled 

combination pH electrode (VWR International, West Chester, PA). The meter was 

calibrated weekly with pH 4.0, 7.0, and 10.0 standard buffer solutions (Fisher Scientific, 

Pittsburgh, PA). The electrode was rinsed with deionized (DI) water before sample readings 

and stored in an electrode storage solution (Fisher Scientific, Pittsburgh, PA) of pH 4 when 

not in use. Although the sensitivity of the meter display was 0.01 units, the limit of 

accuracy was taken to be only 0.1 pH units (Eaton et al., 2005).  

 

3.2. Dissolved Organic Carbon (DOC) 

 DOC measurements were performed using a Shimadzu TOC-5050A Total Organic 

Carbon Analyzer (Shimadzu Scientific Instruments, Inc., Columbia, MD) equipped with a 

non-dispersive infrared detector for the analysis of total, organic (by difference), and 

inorganic carbon of liquid samples. Autosampler tubes were washed with weak bleach 

solution, rinsed with deionized (DI) water and baked at 300°C for 30 minutes before use to 

ensure the absence of any residual carbon. In order to measure DOC, liquid samples were 

filtered through 0.2 μm membrane filters (Fisher Scientific, Pittsburgh, PA) and acidified 

(pH < 2.0) using a 0.2 N HCl solution. Then, 4 mL of acidified samples (3.6 mL 0.2 N HCl 
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solution + 0.4 mL sample) were transferred to autosampler tubes. Triplicate measurements 

were performed for each sample. The injection volume was 25 μL. Carbon analysis was 

based on catalytic combustion of the sample at 680°C. A calibration curve was prepared 

using standard solutions of potassium hydrogen phthalate (KHP). 

 

3.3. Chemical Oxygen Demand (COD) 

 COD of the samples was measured using the closed reflux, colorimetric method as 

described in Standard Methods (Eaton et al., 2005). An aliquot of 3 mL digestion solution 

was transferred to HACH COD digestion vials (HACH Company, Loveland, CO) and then 

2 mL of pre-filtered sample was added to the vial. After shaking, the vials were heated at 

150°C for 120 minutes and then cooled down to room temperature. Absorbance was 

measured at 620 nm with a Hewlett-Packard Model 8453 UV/Visible spectrophotometer 

(Hewlett-Packard Co., Palo Alto, CA) equipped with a diode array detector, deuterium and 

tungsten lamps and a 1 cm path length. All samples were prepared at least in duplicate and 

a calibration curve was also prepared using standard solutions of potassium hydrogen 

phthalate (KHP) 

 

3.4. Ammonia 

 The ammonia distillation method as per Standard Methods (Eaton et al., 2005) was 

used to determine the liquid phase ammonia concentration in the cultures. Culture samples 

were centrifuged at 12,000 rpm for 15 minutes and filtered through a 0.2 μm membrane 

filter (Fisher Scientific, Pittsburgh, PA). Then, the samples were added to an ammonia 
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distillation apparatus (Labconco Corp., Kansas City, MO). The pH of all samples was kept 

at 9.5 by addition of 6 N NaOH and borate buffer was added to increase hydrolysis of 

organic nitrogen compounds (Eaton et al., 2005). Ammonia vapors from the boiling 

samples were condensed and captured through the immersed outlet of the distillation 

apparatus in indicating boric acid solution. Ammonia captured in the solution was 

quantified titrimetrically with 0.2 N H2SO4. 

 

3.5. Gas Composition 

 The gas composition was determined by an Agilent Technologies Model 6890N GC 

unit (Agilent Technologies, Inc., Palo Alto, CA) equipped with two columns and two 

thermal conductivity detectors.  Oxygen (O2) was separated with a 15 m HP-Molesieve 

fused silica, 0.53 mm i.d. column (Agilent Technologies, Inc.); carbon dioxide (CO2) was 

separated with a 25 m CP-PoraPLOT Q fused silica, 0.53 mm i.d. column (Varian, Inc., 

Palo Alto, CA). Both columns were operated with helium as the carrier gas at a constant 

flow rate of 6 mL/min. The 10:1 split injector was maintained at 150°C, and the detector 

temperature was set at 150°C. All gas analyses were performed by injecting a 100 μL gas 

sample. Calibration curves were prepared using the above-described procedure and pure 

gas standards. 

 

3.6. Total and Volatile Suspended Solids 

 Total suspended solids (TSS) and volatile suspended solids (VSS) were determined 

according to procedures described in Standard Methods (Eaton et al., 2005). All filters were 



 28

washed with deionized (DI) water and ignited at 550°C for 20 minutes in a Fisher Isotemp 

Model 550-126 muffle furnace (Fisher Scientific, Pittsburgh, PA) before use. The filters 

were then cooled in a desiccator and weighed using an Ohaus AP250D analytical balance 

(Ohaus Corp., Pine Brook, NJ). Culture samples of known volume (typically 10-20 mL) 

were filtered through 47 mm diameter Whatman GF/C glass fiber filters (1.2 μm nominal 

pore size; Whatman, Springfield Mill, England). The filters were then rinsed with equal 

volumes of deionized (DI) water to remove dissolved organic carbon, residual inorganic 

carbon, and salt. The filters containing the samples were dried at 105°C for at least 1.5 

hours in a Fisher Isotemp Model 750G oven (Fisher Scientific, Pittsburgh, PA). After 

cooling in a desiccator, the dry weight was recorded and the filters containing the dry 

samples were transferred to a Fisher Isotemp Model 550-126 muffle furnace and ignited at 

550°C for 20 minutes. After ignition, the samples were cooled down in a desiccator. The 

residual solid weight was measured, and then the TSS and VSS concentrations were 

calculated. 

  

3.7. Nitrite and Nitrate 

 Nitrite (NO2
-) and nitrate (NO3

-) concentrations were determined using a Dionex 

DX-100 ion chromatography unit (Dionex Corp., Sunnyvale, CA) equipped with a 

conductivity detector, a Dionex IonPac AG14A (4×50 mm) precolumn, and a Dionex 

IonPac AS14A (4×250 mm) analytical column. The unit was operated in autosuppression 

mode with 1 mM NaHCO3/8 mM Na2CO3 eluent with a flow rate of 1 mL/min. The 

injection volume was 1 mL. Calibration curves were prepared using standards prepared by 
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dissolving reagent grade sodium salts of each analyte in deionized (DI) water. All standards 

and samples were filtered through 0.22 μm membrane syringe filters (National Scientific 

Company, Rockwood, TN) prior to injection. 

 

3.8. Dissolved Oxygen (DO) 

The DO concentration of the cultures used in this study was measured using the 

polarographic method (Eaton et al., 2005) with a YSI Model 58 oxygen meter in 

conjunction with a YSI 5750 oxygen probe (Yellow Springs Instrument, Yellow Springs, 

OH). The instrument was calibrated to water-saturated air (at a given temperature) before 

each use and the probe electrolytic solution and membrane were changed periodically.  

 

3.9. QACs 

 Barquat MB-80™ was used in this study. Barquat MB-80™ (Lonza, Inc., Fair 

Lawn, NJ) is comprised of three alkyl benzyl dimethyl ammonium chloride compounds and 

ethanol as follows (molecular formula, % w/w): dodecyl dimethyl ammonium chloride 

(C21H38NCl, 40%), tetradecyl dimethyl ammonium chloride (C23H42NCl, 50%), hexadecyl 

dimethyl ammonium chloride (C25H46NCl, 10%), and ethanol (C2H5OH, 10%). A stock 

solution (10,000 mg/L) was prepared based on the active ingredient purity and 

concentration.  Quantification of QACs was accomplished using the modified disulfine blue 

(DSB) method (Tezel et al., 2006). The basis of this method, schematically shown in Figure 

3.1, is the reaction of QACs with an intensively colored anionic dye resulting in the 

formation of an anionic dye-QAC ion pair which is extracted with a solvent and then the 



 

30 

 
 
 
 
 
 

 

Disulfine blue 
anion

Methylene 
chloride

++ +
++ +

Cationic 
QAC

Acetate buffer 
(pH 5)

QAC-DSB 
ion pair

Formation of ion pair Solvent extraction

Disulfine blue 
anion

Methylene 
chloride

++++ ++
++++ ++

Cationic 
QAC

Acetate buffer 
(pH 5)

QAC-DSB 
ion pair

Formation of ion pairFormation of ion pair Solvent extractionSolvent extraction  
 
Figure 3.1. Schematic of the disulfine blue (DSB) method. 
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color intensity in the solvent phase measured spectrophotometrically (HMSO, 1981; Waters 

and Kupfer, 1976). Analyses were carried out in 25 mL test tubes by adding 5 mL of 

acetate buffer, 2 mL of disulfine blue dye solution, 10 mL methylene chloride, and 2 mL of 

the sample. The acetate buffer was made by adding 115 g anhydrous sodium acetate and 35 

mL glacial acetic acid in 1 L deionized (DI) water. The dye solution was prepared by 

dissolving 0.16 g of Patent Blue VF (Acros Organics, Morris Plains, NJ) in 2 mL ethanol 

and diluting it to 250 mL with deionized (DI) water. After 24 hours of tumbling at 6.9 rpm, 

the bottom solvent layer was transferred into a 2 mL clear glass vial and the color intensity 

was measured with a Hewlett-Packard Model 8453 UV/Visible spectrophotometer 

(Hewlett-Packard Co., Palo Alto, CA). The QAC concentration was quantified based on 

sample absorbance at the characteristic maximum wavelength of 628 nm and a previously 

prepared calibration curve at a concentration range 0 to 30 mg/L (Figure 3.2). The 

minimum detection limit was estimated as 0.2 mg/L. 
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Figure 3.2. UV spectra (A) and calibration curve (B) of alkyl benzyl dimethyl ammonium 
chloride based on absorbance at 628 nm. 
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CHAPTER 4 
MIXED AEROBIC CULTURES 

 

4.1. Introduction 

 Quaternary ammonium compounds (QACs) are massively produced throughout the 

world and used extensively in both industrial and household applications as fabric softners, 

antibacterial agents, paint additives, and cosmetics (Games et al., 1982). As a result, 

worldwide consumption of QACs amounted to 0.5 million tons in 2003 (Hauthal, 2004). 

Such a widespread use of QACs causes them to be released and accumulate in aquatic 

environments as well as wastewater treatment plants. However, their biocidal property can 

impact natural purification processes mainly driven by microorganisms. Previous research 

has pointed out that QACs may not be a threat to microorganisms under normal 

circumstances in wastewater treatment systems (Boethling, 1984) and, at nontoxic levels, 

they can be removed at about 90% (Boethling, 1994). However, only limited research has 

been performed to investigate the effect of QACs on aerobic biological treatment processes, 

especially on nitrification. It was revealed in a literature that QACs inhibit nitrification and 

they are more toxic than anionic surfactants (Munao et al., 1990).  

The objective of this study was to assess the biodegradation and toxicity of alkyl 

benzyl dimethyl ammonium chloride, one of commonly used QACs as a sanitizer, on an 

aerobic heterotrophic and nitrifying mixed culture.  
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4.2. Materials and Methods 

4.2.1. Alkyl Benzyl Dimethyl Ammonium Chloride (AB) 

 A stock solution of 10,000 mg/L AB stock solution was diluted to 200 mg/L and 

was used to measure both soluble COD and DOC according to the corresponding methods 

described in Chapter 3. Samples were run in triplicate and the obtained experimental values 

were expressed as mean ± error. For reference, theoretical values were calculated based on 

a stoichiometric equation and composition ratio.  

Physico-chemical properties of AB were estimated with a software package named 

Estimation Programs Interface (EPI) Suite™, Version 3.12. EPI Suite™ is an interface 

program developed by the US Environmental Protection Agency’s Office of Pollution 

Prevention & Toxics and Syracuse Research Corporation (SRC). With this software using 

structure information of a compound, several properties, such as melting and boiling point, 

vapor pressure, octanol-water partition coefficient (Kow), water solubility, and 

biodegradability, were estimated to enlighten the inherent characteristics and environmental 

behavior of AB. 

 

4.2.2. Control Mixed Aerobic Culture 

 A suspended growth, mixed aerobic culture was developed from a contaminated 

sediment sample obtained from Bayou d’Inde, a tributary of Calcasieu River near Lake 

Charles, LA. The location and details on the sediment sampling and analysis have been 

reported elsewhere (Gess and Pavlostathis, 1997; Prytula and Pavlostathis, 1996). The 2 L 

culture was semi-continuously fed twice a week, at intervals of 3 and 4 days, with peptone 
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(Sigma-Aldrich, Inc., St. Louis, MO), dextrin (Tate & Lyle PLC, London, UK), and yeast 

extract (Becton, Dickinson and Company, Sparks, MD) dissolved in deionized (DI) water. 

The initial loading of peptone, dextrin, and yeast extract was 250, 250, and 50 mg/L-day, 

respectively. Before each feeding, 500 mL of culture mixed liquor was removed and 

replaced with fresh culture media. The composition of the culture media and the trace metal 

solution is shown in Table 4.1 and Table 4.2, respectively. The culture solids retention time 

(SRT) and hydraulic retention time (HRT) was 14 days. Pre-humidified air passed through 

a water tap was supplied through a fine pore diffuser in order to maintain DO at or above 6 

mg/L. The culture was maintained at room temperature (22 to 23oC), stirred continuously 

with a Teflon-coated stirring bar over a magnetic stir plate, and its pH maintained at 7.6 ± 

0.5 (mean ± standard deviation) with sodium bicarbonate (0 to 1 g/L-media depending on 

culture condition). The following analyses were periodically performed according to the 

procedures outlined in Standard Methods (Eaton et al., 2005) (see Chapter 3): pH, total and 

volatile suspended solids (TSS, VSS), soluble COD, DOC, ammonia, nitrite, and nitrate. 

 

4.2.3. AB-amended Cultures 

 Starting with the control culture, four AB-amended cultures were developed and 

were divided into two groups, depending on whether they were fed with organic carbon 

sources, other than AB. One group was fed with dextrin, peptone, and yeast extract as well 

as AB, whereas the other group was only fed with AB. For each group, one culture was 

amended with an initial AB concentration of 20 mg/L, whereas the second culture was 
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amended with an initial AB concentration of 50 mg/L. A summary description of the AB-

amended cultures is given in Table 4.3. 

The dextrin/peptone fed AB20 culture (denoted as AB20+D/P) was prepared first 

by using the waste from the control culture as inoculum. The duration of each feeding cycle 

of AB20+D/P varied in the first 10 days in order for the culture to acclimate to AB. After 

10 days of operation, all culture conditions, such as feeding cycles, HRT/SRT, and feed 

composition, were exactly the same as in the control culture, except that 20 mg/L of AB 

was added at the beginning of each feeding cycle. The dextrin/peptone fed AB50 culture 

(denoted as AB50+D/P) was developed using the waste from the AB20+D/P which had 

been in operation for 10 days. After 21 days of acclimation, all culture conditions were 

exactly the same as in the control and AB20+D/P cultures, except the initial AB 

concentration, which was equal to 50 mg/L. 

Two additional cultures maintained without dextrin/peptone addition (denoted as 

AB20-D/P and AB50-D/P), were developed from their counterpart cultures enriched with 

dextrin/peptone and AB (AB20+D/P and AB50+D/P, respectively). The two 

dextrin/peptone-free cultures were initially maintained with minimal wastage, except for 

regular samplings and analyses, in order to preserve most biomass and the only externally 

added growth and energy source was AB. However, after 53 and 39 days of operation of 

the AB20-D/P and AB50-D/P, respectively, both cultures were subjected to wasting twice a 

week, hence imposing an HRT/SRT value of 14 days. 

For all AB-amended cultures, at the end of each feeding cycle (3 or 4 days), the 

appropriate volume of mixed liquor was removed and replaced by an equal volume of 
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Table 4.1. Composition of the stock culture media 
 

Component Concentrationa 

1. K2HPO4 600 mg/L 

2. KH2PO4 335 mg/L 

3. CaCl2·2H2O 67.5 mg/L 

4. MgCl2·6H2O 135 mg/L 

5. MgSO4·7H2O 267.5 mg/L 

6. FeCl2·4H2O 67.5 mg/L 

7. Tracer metal stock solutionb 0.67 mL/L 
a Based on the total feed volume (i.e., nutrients plus media) per feeding 
b Composition given in Table 4.2 
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Table 4.2. Composition of the trace metal stock solutiona 

 

Component Concentration (mg/L) 

1. ZnCl2 25 

2. MnCl2·4H2O 15 

3. H3BO3 150 

4. CoCl2·6H2O 100 

5. CuCl2·2H2O 5 

6. NiSO4·6H2O 10 

7. NaMoO4·2H2O 15  
a Adopted from Wolin et al. (1963) 
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Table 4.3. Description of AB-amended cultures 
 

AB-Amended Cultures 
Parameter 

AB20+D/P AB50+D/P AB20-D/P AB50-D/P 

Main carbon source(s) Dextrin/Peptone AB 

Total volume (L) 1.6 1.6 1.6 1.6 

AB conc. (mg/L) 20 50 20 50 

HRT/SRT (days) 14a 14b Phase 1 & 2c Phase 1 & 2c 
a After 10 days of stable operation 
b After 21 days of stable operation 
c Phase 1: minimal biomass waste; Phase 2: 14 days of HRT/SRT 
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culture media and an aliquot of AB solution. The following analyses were periodically 

performed: pH, TSS, VSS, soluble COD, DOC, ammonia, nitrite, and nitrate. 

 

4.2.4. Toxicity Assessments 

4.2.4.1. Oxygen Consumption 

 The inhibitory effect of QACs on the oxygen utilization of the mixed aerobic 

control culture was assessed at different QAC concentrations. Various concentrations (i.e., 

0, 10, 20, 30, 50, 75, 100 mg/L) of QAC solution were prepared by diluting 1000 mg/L 

QAC stock solutions with culture media. Along with AB, three other QAC species were 

tested as well: didecyl dimethyl ammonium chloride (denoted as Didecyl), dioctyl dimethyl 

ammonium chloride (denoted as Dioctyl), and octyl decyl dimethyl ammonium chloride 

(denoted as Octyl decyl). An aliquot of 200 mL control culture was transferred to an 

Erlenmeyer flask where the DO was monitored until zero. Then, aliquots of 5 mL oxygen-

free culture were transferred into 14.5 mL glass vials, and 5 mL prepared QAC solution 

was added into each vial. The vials were then sealed with rubber stoppers and aluminum 

seals and 5 mL fresh air was injected to the headspace of each sealed vial. The vials were 

then placed on a tumbler (6.9 rpm) and incubated at room temperature (22 to 23oC). The 

oxygen concentration in the headspace of each vial was measured every six hours up to 24 

hours (i.e., 0, 6, 12, 18, and 24 h), while the carbon dioxide concentration was measured 

only at the end of the assay (i.e., 24 h). Due to the limitation of wasted culture volume, an 

assay for each QAC was conducted at a different time. Prior to the initiation of each assay, 
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however, the oxygen uptake rate (OUR) of the culture sample was measured to obtain an 

OUR in a close range for all tested QACs. 

 

4.2.4.2. OUR/SOUR 

The effect of AB and its products on oxygen uptake rate (OUR) of the control 

culture was investigated. To assess the effect of the products of AB, enough volume of each 

culture (control, AB20+D/P, AB50+D/P) was taken at the last day of a feeding cycle in 

order to assure that all degradable soluble COD and residual QAC were removed. Culture 

aliquots were stored under sufficient aeration until the next step. Aliquots of AB20+D/P 

and AB50+D/P cultures were centrifuged for 10 minutes at 12,000 rpm to obtain 

supernatants which were then filtered with 0.2 µm membrane syringe filters. An aliquot of 

30 mL of the control culture was mixed with fresh media and the filtered supernatant of 

both AB20+D/P and AB50+D/P cultures, in a ratio of 1:1, respectively. After mixing well, 

each sample was aerated for about 5 minutes to achieve oxygen saturation and then 

transferred to a 50 mL tapered-neck Erlenmeyer flask which was baked before at 350oC to 

remove all organic carbon. The DO probe was inserted and the DO concentration over time 

was recorded.  

The influence of AB on OUR was assessed in a similar manner. AB solutions of 20, 

50, and 100 mg/L were prepared by mixing fresh media and a stock AB solution. The 

control culture was combined with the same volume of respective AB solutions, hence 

resulting in half of original concentration. The well-mixed sample was aerated and 
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transferred to a 50 mL tapered-neck Erlenmeyer flask to measure DO. The same 

experimental procedures were repeated with AB+20 and AB+50 cultures. 

VSS of the cultures and pH of all samples were recorded before measuring DO. 

Based on DO changes over time, linearized OUR values were estimated and specific OUR 

values were calculated based on OUR and VSS values. 

 

4.2.4.3. Microtox® Test 

The acute toxicity of AB and its aerobic degradation product(s) in the AB-amended 

and dextrin/peptone fed cultures was assessed using the standard Microtox® test. The 

Microtox® system consists of the Azur Environmental M500 Analyzer with Microtox® 

Omni Software (Strategic Diagnostics Inc., Newark, DE). The acute toxicity is measured by 

detecting the change in luminescence of Vibrio fischeri, a marine bacterium that naturally 

gives off luminescent light. All samples were adjusted to 2% NaCl before analysis in order 

to have the proper osmotic pressure for the bacteria and different sample dilutions were 

tested in 15 minutes. The luminescence given off by the different dilutions of the sample 

was compared to that of the control, which consisted of 2% NaCl in DI water (pH 6.5). The 

effective concentration of an analyte (i.e., AB in this case) that causes the bacteria to emit 

light at 50% of their maximum response is the EC50 concentration. The 95% confidence 

range and R2 values were calculated by linear regression of the data (x-axis: log of the 

concentration; y-axis: log of the fractional change in fluorescence after the sample is added 

and incubated for 15 minutes taking into account the change of fluorescence in the control). 

The linear regression line is extrapolated to calculate the EC50 value when the sample 
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concentration is not high enough to depress the florescence by 50%. Five samples were 

tested in this study: culture media, supernatant from the control, AB20+D/P and AB50+D/P 

cultures, and a 20 mg/L AB solution in culture media. All samples were filtered through 0.2 

μm membrane filters (Fisherbrand, Pittsburgh, PA, USA). Samples from AB-amended 

cultures were taken at the last day of the feeding cycle in order for all AB to have been 

removed and transformed to byproduct(s) at the time of the analysis.  

 

4.3. Results and Discussions 

4.3.1. Alkyl Benzyl Dimethyl Ammonium Chloride (AB) 

 The general formula of AB is represented as Cn+9H2n+14NCl, where n refers to the 

number of carbon on the alkyl chain. With this formula, the stoichiometric oxidation 

equation for AB can be expressed as 

HClOH)n(CO)n(NHOnNClHC nn +++++→
+

+++ 22321429 59
2

233  (4-1) 

Barquat MB-80™, a commercial sanitizer that was used for this study, mainly 

consists of three different AB homologues with C12, C14, and C16 alkyl groups, respectively. 

A detailed description of Barquat MB-80™ is given in Table 4.4. Based on the composition 

ratio and theoretical values in terms of organic carbon and oxygen demand for each 

component, the estimated values of organic carbon and oxygen demand were 0.651 g C/g 

mixture and 2.44 g O2/g mixture, respectively. The experimental values of DOC and COD 

were 0.693 ± 0.003 g/g mixture and 2.52 ± 0.11 g/g mixture, which agree well with the 

calculated values. 
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Table 4.4. Characteristics of the AB mixture (Barquat MB-80™) 
 

 Active ingredients Inert ingredients 

Components C12-AB C14-AB C16-AB Ethanol Water 

Ratio 
(%, w/w) 32 40 8 10 10 

Molecular 
formula C21H38NCl C23H42NCl C25H46NCl C2H5OH H2O 

MW 
(g/mol) 339.99 368.04 396.09 46.07 18.02 

ThOC 
(g/g) 0.742 0.751 0.758 0.521 - 

ThOD 
(g/g) 2.72 2.83 2.87 2.08 - 

 



 45

Summarized physico-chemical values of three AB compounds are shown in Table 

4.5, estimated using the EPI Suite™ software. This estimation program employs a chemical 

notation system called SMILES (Simplified Molecular Input Line Entry System) to depict 

the molecular structure of a target compound and SMILES covers all information about 

atoms, bonds, and branches of a compound. Because of its amphiphilic character having 

both an apolar and a polar functional group, octanol is a versatile solvent that embraces any 

kind of solutes (Schwarzenbach et al., 2003) and in turn octanol-water coefficient Kow plays 

a good role to predict partitioning of a compound between organic and aqueous phase. The 

Kow values of AB compounds listed in Table 4.5 are quite large and tend to become larger 

by an order of magnitude as the length of alkyl chain gets longer, meaning that the alkyl 

chain of an AB compound increasingly affects its hydrophobicity. Nevertheless, predicted 

or experimental Kow values are confined to limited practicality in that cationic surfactants 

inherently accumulate at the interface between two phases. For this reason, the accurate 

measurement of the Kow for a surfactant is difficult and, even if the accuracy of 

measurement can be assured enough, Kow is not a proper indicator of hydrophobicity for 

predicting environmental behavior because cationic surfactants are likely to form 

complexes immediately in contact with negatively charged constituents in soil, sludge, and 

sewage in the environment (Boethling, 1984). Estimation of boiling/melting points as well 

as vapor pressure is computed with a methodology based on group contributions of a 

molecule (Stein and Brown, 1994). Not to mention their large molecular sizes and 

complexity of AB compounds, high melting/boiling points and substantially low vapor 

pressures are indicative of their non-volatility. As for water solubility, it decreases 
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Table 4.5. Summary of physico-chemical properties of AB homologuesa 
 

 C12-AB C14-AB C16-AB 

Octanol-water partition 
coeff. (Kow) 8.51E+02 8.13E+03 7.76E+04 

Boiling/Melting point 
(ºC) 537.63 / 230.18 560.84 / 241.02 584.04 / 251.86 

Vapor pressure 
(mm Hg) 1.88E-11 3.53E-12 9.28E-11 

Water solubility 
(mg/L at 25 ºC) 22.47 2.203 0.215 

Soil adsorption coeff. 
(Koc, mL/g solid) 8.424E+05 2.865E+06 9.747E+06 

aEstimated using the EPI Stuie™ 
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approximately by an order of magnitude as the alkyl chain length increases and these 

predictions are consistent with increasing hydrophobicity of a longer alkyl chain AB 

compound. However, it should be noted that these estimations are poorly comparable with 

those, ranging from 0.85 to 75% w/v for C12 to C16-AB, in a previously published work 

(Linfield, 1970). An experimental result conducted with the homologues of dialkyl 

dimethyl ammonium chloride and alkyl trimethyl ammonium chloride demonstrates that 

water solubility decreased by about an order of magnitude as their alkyl chain(s) became 

longer (Kunieda and Shinoda, 1978). Koc, referred to as soil adsorption coefficient, can be 

defined as 

w

oc
oc C

C
K =          (4-2) 

where Coc is the amount of chemical adsorbed per unit mass of organic carbon in the soil or 

sediment and Cw is the concentration of chemical in the solution at equilibrium 

(Schwarzenbach et al., 2003). Koc provides information of the extent to which a chemical 

partitions between solid and aqueous phases in soil, or between sediment and water in 

aquatic environments. The results in Table 4.5 indicate that soil adsorption of AB is also 

closely associated with alkyl chain length, namely hydrophobicity. The tendency that 

adsorption of AB largely increases as the alkyl chain increases is consistent with some 

studies (Garcia et al., 2004; Kwolek et al., 2003) suggesting that Van der Waals 

hydrophobic interaction is a major driving force for the adsorption of long-chain AB 

homologues. 
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4.3.2. Control Culture Performance 

4.3.2.1. Culture Monitoring 

 The control culture was maintained in excess of 230 days. Throughout this period, 

its pH was 7.6 ± 0.5, and was adjusted with sodium bicarbonate providing alkalinity 

consumed by nitrification.  

The TSS and VSS concentration, measured over the last 140 days was equal to 3310 

± 190 mg/L and 2640 ± 170 mg/L, respectively. As seen in Figure 4.1, both TSS and VSS 

were stably maintained over the measurement period. Every week, 1 L of culture volume 

was wasted, thus resulting in 14 days of SRT. As a result, it is expected that approximately 

2640 mg microbial mass should be reproduced weekly to maintain the reported VSS 

concentration and this value accounts for about 190 mg VSS produced/L-day. Combining 

with the widely-used empirical formula for bacterial cells (Rittmann and McCarty, 2001), 

that is C5H7O2N, 23 mg/L-day of nitrogen is required to synthesize the above-stated 

biomass. The nitrogen content of the peptone and yeast extract used in this study is reported 

as 8.0% and 10.9% (w/w), respectively. Based on these values and taking into account the 

feeding protocol of the control culture, 25.5 mg N/L-day should be released in each feeding 

cycle, assuming that all organic nitrogen is bioavailable and therefore degraded. Upon a 

simple assumption that there is no decay of microorganisms, 2.5 mg/L-day of nitrogen 

which is the difference subtracting 23 from 25.5 mg/L-day is expected to remain in the 

culture. 

The soluble chemical oxygen demand (sCOD) and the dissolved organic carbon 

(DOC) were measured in samples taken at the last day of each feeding cycle and results are 
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Figure 4.1. Suspended solids in the control culture over the test period. 
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shown in Figure 4.2. The soluble COD values varied more than the DOC values. Over the 

last 100 days of operation, the mean ± standard deviation of the soluble COD and DOC 

values was 205 ± 43 mg/L and 43 ± 6 mg/L, respectively. Because, as it is shown below, all 

degradable organic material was removed within the first 24 hours of each feeding cycle, 

the soluble COD and DOC values shown in Figure 4.2 are attributed to dissolved non-

biodegradable, or inert organic materials. 

The ammonia, nitrite, and nitrate concentrations, measured at the end of each 

feeding cycle and at the beginning of the subsequent feeding cycle, over time are shown in 

Figure 4.3. Ammonia, produced as a result of peptone degradation, was always low (less 

than 13 mg N/L). The highest nitrite concentration (40 mg N/L) was detected at the initial 

feeding cycles, but with increased time, nitrite was not detected most of the time and when 

detected was below 12 mg N/L. The culture nitrate concentration increased constantly 

during the first 15 days of operation and ranged between 110 and 185 mg N/L for the next 

65 days of operation. During the last 100 days, the nitrate concentration ranged between 65 

and 135 mg N/L. The frequent swings in the nitrate concentration are due to culture 

wastage and feeding every 3 or 4 days. Based on the above observations, it is concluded 

that the enriched mixed culture degraded the organic feed (dextrin and peptone), and 

converted the resulting ammonia to nitrate without any significant accumulation of either 

ammonia or nitrite. The high nitrification capacity of the control culture is attributed to the 

fact that its SRT value of 14 days was significantly higher than the typical design SRT 

values of 4 to 7 days of nitrifying activated sludge systems operated at 20ºC (Metcalf & 

Eddy Inc., 2003).  
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Figure 4.2. Soluble COD and DOC in the control culture over the test period. 
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Figure 4.3. Profiles of the three nitrogen species in the control culture over the test period. 
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Lower SRT results in a washout of nitrifying bacteria due to their relatively low growth rate 

(Campos et al., 1998). 

 

4.3.2.2. Feeding cycle characterization 

 A detailed characterization of a typical, 4-day feeding cycle (between 61 to 65 days) 

was conducted to better understand the dynamics of feed degradation, ammonia production 

and nitrification. Just before the initiation of this feeding cycle, 500 mL of culture mixed 

liquor was replaced with an equal volume of culture media containing 1g/L sodium 

bicarbonate to provide alkalinity. The following parameters were monitored over the 4-day 

feeding cycle: pH, DOC, soluble COD, ammonia, nitrite, and nitrate. The results of pH, 

soluble COD, DOC and three nitrogen species variation during the feeding cycle are shown 

in Figure 4.4. Within 24 hours, the pH increased from an initial value of 7.2 to 7.8 as added 

sodium bicarbonate dissolved in the culture and then gradually decreased to 7.4 by the end 

of the cycle, a result of nitrification of ammonia released by the degradation of the feed 

organic nitrogen (Figure 4.4A). The pattern of soluble COD and DOC decrease over the 4-

day cycle is shown in Figure 4.4B. All degradable organic feed was removed within the 

first 24 hours and a certain fraction, considered to be non-biodegradable remained. 

Therefore, the heterotrophic population of the mixed culture underwent endogenous 

respiration for the remaining three days of the cycle. The pattern of the three nitrogen 

species is shown in Figure 4.4C. Ammonia was released, but its concentration was kept 

below 8 mg N/L as a result of oxidation to nitrate, which increased from an initial value of 

130 mg N/L to 187 mg N/L. Very low concentrations (below 6 mg N/L) of nitrite were 
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Figure 4.4. pH (A), soluble COD and DOC (B), and three nitrogen species (C) variation in 
the control culture during one feeding cycle. 
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observed. Combination of the results shown in Figure 4.4 supports the successful activity of 

nitrifiers in the culture. It should be also deduced that heterotrophs in the culture recovered 

the loss of biomass caused by wastage within a short time and underwent endogenous 

respiration after 24 hours, while nitrifiers were active throughout the entire feeding cycle. 

 

4.3.3. AB-amended Cultures 

4.3.3.1. AB20+D/P 

 Initially developed from the control culture, a culture designated as AB20+D/P, was 

amended AB resulting in an initial AB concentration of 20 mg/L and was fed similarly to 

the control culture. After an initial operation of 10 days in which ordinary wastage and feed 

were suspended until AB was removed, the culture was fed every 3 or 4 days and 

maintained with a 14-day SRT. At the beginning of each feeding cycle, sodium bicarbonate 

(up to 0.4 g/L-media) was added. The mean pH of the culture was 7.5 ± 0.6 throughout the 

entire test period.  

Figure 4.5A shows the pattern of multiple AB additions at an initial concentration of 

20 mg/L. In all cases, AB was completely removed by the second day of the feeding cycle 

without any sign of inhibition. The soluble COD and DOC concentrations within a feeding 

cycle were monitored and shown in Figure 4.6. Like in the control culture, all degradable 

feed was utilized within 24 hours. In comparison with Figure 4.4B, soluble COD of 1800 

mg/L and DOC of 700 mg/L at the beginning were higher than those of the control culture 

because of the contribution of added AB, but residual values after 24 hours were similar. 
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Figure 4.5. AB (A), TSS and VSS (B), soluble COD and DOC (C), and three nitrogen 
species (D) in the AB20+D/P culture over the test period. 
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Figure 4.6. Soluble COD and DOC variation in the AB20+D/P culture during one feeding 
cycle. 
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These results show that 20 mg/L AB did not have any inhibitory effect on the culture and 

the degradation of AB took place simultaneously with the degradation of the feed.  

The culture VSS concentration dropped to about 1900 mg/L between 25 and 50 

days of operation, but in the latter 50 days of operation, the VSS concentration increased to 

about 2500 mg/L, a value similar to that of the control culture (Figure 4.5B). The culture 

soluble COD concentration shown in Figure 4.5C, measured at the end of the feeding 

cycles, for the initial test period (i.e., up to 50 days) ranged between 205 and 338 mg/L, but 

towards the end of the test (around 125 days), the mean soluble COD concentration was 

about 200 mg/L. The culture DOC concentration, measured at the end of the feeding cycles, 

over the entire test period ranged between 31 and 65 mg/L, respectively. The initial 

decrease in VSS and increase in soluble COD suggest that significant cell lysis was caused 

by AB (McDonnell and Russell, 1999). However, with prolonged culture operation, 

selection of more resistant species took place. A previous study dealing with dodecyl 

trimethyl ammonium chloride (DTMAC) also reported the selection of more tolerant 

bacterial species by chronic exposure and recovery of heterotrophic activity (Ventullo and 

Larson, 1986). 

The concentrations of all nitrogen species measured in the AB20+D/P culture over 

the duration of this test are shown in Figure 4.5D. Initially, the ammonia concentration 

increased and remained around 33 mg N/L for about 11 days, and then decreased and 

remained below 17 mg N/L for the entire test period. The nitrite concentration was about 8 

mg N/L for 11 days, suddenly increased to as high as 111 mg N/L for a period of 12 days, 

and then decreased to and remained at non-detectable levels for the rest of the test. The 
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nitrate concentration decreased initially and remained between 29 and 65 mg N/L for about 

23 days of operation, and then increased again following a pattern similar to that of the 

control culture as discussed above. Towards the end of this test, the mean nitrate 

concentration was about 46 mg N/L. These results indicate that initially, while 

ammonification was not inhibited, both nitrification steps (i.e., ammonia to nitrite and 

nitrite to nitrate) were inhibited. However, with prolonged culture operation, complete 

nitrification was achieved, more likely as a result of acclimation and/or selection of 

nitrifying bacterial species more tolerant to AB. In a previous study (Pitter, 1962), the 

QACs hexadecyl pyridinium bromide (HPB) and hexadecyl trimethyl ammonium chloride 

(HTMAB) strongly inhibited nitrification at 3 mg/L and completely blocked the process at 

6 mg/L. However, these results were conducted for a relatively short period (8 hours), 

which probably precluded any culture acclimation to these QACs. Another study conducted 

with an acclimated sewage sludge showed that nitrification was not impacted at 16 mg/L of 

AB (C12 alkyl chain) (Gerike et al., 1978). 

 

4.3.3.2. AB50+D/P 

 This culture, developed with mixed liquor from the AB20+D/P culture which had 

been maintained for 10 days, was amended with AB resulting in an initial AB concentration 

of 50 mg/L at each feeding cycle. After a period of minimal culture wastage for 21 days, 

the culture was maintained with an SRT value of 14 days. Although sodium bicarbonate 

was not added to this culture, its pH was 8.3 ± 0.4 as a result of almost complete inhibition 

of the nitrification process as discussed below.  



 60

Figure 4.7A shows the pattern of multiple AB additions at an initial concentration of 

50 mg/L. With the exception of the second and fourth feeding cycle, AB was degraded 

without any delay. However, after the fifth feeding cycle, the disulfine blue method used 

for the quantification of AB yielded a low level of absorbance equivalent to about 3 to 7 

mg/L AB. Based on HPLC analysis it was shown that these residual values were indeed C12 

and C14 AB homologues. The culture biomass concentration varied between 810 and 1430 

mg TSS/L and between 610 and 1070 mg VSS/L (Figure 4.7B). These values are 

significantly lower than those of the control and AB20+D/P cultures. The mean soluble 

COD and DOC values, shown in Figure 4.7C, were 420 ± 60 mg/L and 100 ± 20 mg/L, 

respectively, which again are much higher than the values observed in the control and the 

AB20+D/P cultures. These results show that AB at an initial concentration of 50 mg/L 

resulted in a high extent of cell lysis.  

 Figure 4.7D shows the concentration of all nitrogen species measured in the 

AB50+D/P culture over the test period. After about 5 days, the ammonia concentration was 

first decreased and then gradually increased and remained between 63 and 123 mg N/L 

after 40 days of operation. For the first 30 days of incubation, nitrite was the predominant 

ammonia oxidation product reaching a value as high as 100 mg N/L, and then decreased to 

non detectable levels after 38 days of operation. Nitrate decreased initially and its 

concentration was below 9 mg N/L for the entire test period. In spite the fact that 

AB50+D/P started with mixed liquor from the AB20+D/P culture, which achieved 

complete nitrification of the ammonia released due to ammonification of the organic feed, 
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Figure 4.7. AB (A), TSS and VSS (B), soluble COD and DOC (C), and three nitrogen 
species (D) in the AB50+D/P over the test period. 
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AB at an initial concentration of 50 mg/L resulted in severe inhibition of the nitrification 

process.  

 

4.3.3.3. AB20-D/P 

 This culture, which was developed using AB20+D/P culture mixed liquor after the 

culture had been in operation for 38 days, was maintained similarly to the AB20+D/P 

culture, except that it was fed with culture media and AB was the only externally added 

carbon source. The mean pH of the culture was 6.8 ± 0.3 throughout the entire test period 

and was periodically adjusted with the addition of sodium bicarbonate (up to 40 mg for 

each feed).  

Figure 4.8A shows the pattern of multiple AB additions at an initial concentration of 

20 mg/L. As was the case with culture AB20+D/P, AB was completely removed by the 

second day of the feeding cycle. The TSS and VSS concentration of the culture decreased 

over time as a result of biomass decay because of the low external carbon source (i.e., AB), 

as well as cell lysis (Figure 4.8B). A further decrease in the culture solids concentration at 

53 days of operation is due to the fact that the culture was wasted frequently to maintain an 

SRT of 14 days. Under these conditions, the culture VSS concentration reached a final 

value of about 50 mg/L. In spite of this low biomass concentration, this culture was able to 

degrade AB as well as to achieve nitrification as discussed below. The culture soluble COD 

and DOC, measured at the end of the feeding cycles, declined over time but to a lower 

degree as compared to the decline of the culture VSS, indicating that a significant fraction 

of the cell lysis products was either slowly degraded or non-degradable (Figure 4.8C).  
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Figure 4.8. AB (A), TSS and VSS (B), soluble COD and DOC (C), and three nitrogen 
species (D) in the AB20-D/P over the test period. 
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The ammonia concentration was about 10 mg N/L for the first 20 days and 

gradually declined to non-detectable levels (Figure 4.8D). The nitrate concentration 

decreased constantly as a result of culture volume loss due to regular samplings and 

replacement with fresh media, and reached a steady state value of about 2 mg N/L. Nitrite 

was not detected throughout the test period. Note that the only external nitrogen source for 

this culture was AB. For the level of AB fed, the expected nitrogen released upon AB 

degradation is about 1 mg N/L. Therefore, during the last 20 to 30 days, this culture must 

have been nitrogen-limited. In spite of such conditions, this culture was consistently able to 

degrade AB at an initial concentration of 20 mg/L over a long period. 

 

4.3.3.4. AB50-D/P 

 This culture, which was developed using AB50+D/P culture mixed liquor after the 

culture had been in operation for 42 days, was maintained similarly to the AB50+D/P 

culture, except that it was fed with culture media and AB was the only externally added 

carbon source. After 39 days of operation, the culture was maintained at an SRT of 14 days. 

The mean pH was 6.9 ± 0.1 adjusted with sodium bicarbonate (up to 80 mg for each feed).  

The pattern of AB additions at an initial concentration of 50 mg/L and its removal 

are shown in Figure 4.9A. With the exception of two feeding periods (day 55 to 67 and 105 

to 116) where the AB removal was slow, 50 mg/L of AB was removed within the feeding 

cycle. As was the case with the AB50+D/P culture, a residual AB concentration between 3 

and 12 mg/L was observed. The slow period of AB removal, which resulted in relatively 

high AB concentrations for a significant time, were accompanied by excessive cell lysis 



 

65 

0 20 40 60 80 100 120

AB
 C

O
N

C
. (

m
g 

/L
)

0

20

40

60

80 A
C

O
N

C
. (

m
g/

L)

0

200

400

600

800

1000
TSS
VSS

B

C
O

N
C

. (
m

g/
L)

0

100

200

300

400

500
soluble COD
DOC

C

TIME (Days)

0 10 20 30 40 50 60 70 80

C
O

N
C

. (
m

g 
N

/L
)

0

10

20

30

40

50

60

NH3-N
NO2-N
NO3-N

D

 
 

Figure 4.9. AB (A), TSS and VSS (B), soluble COD and DOC (C), and three nitrogen 
species (D) in the AB50-D/P over the test period. 
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demonstrated by both a sudden decrease of the culture biomass concentration and an 

increase of the soluble COD concentration (Figure 4.9B and Figure 4.9C). However, it is 

remarkable that even at a very low biomass concentration, the culture was able to recover 

and resume fast AB degradation.  

The concentration of the three nitrogen species in the AB50-D/P culture over time 

are shown in Figure 4.9D. Nitrite was not detected and the concentration of both ammonia 

and nitrate decreased over time and were not detected after 60 days of operation, indicating 

that all nitrogen made available by the degradation of AB was used for cell synthesis. 

 

4.3.4. Toxicity Assessments 

4.3.4.1. Oxygen Consumption 

 The first work of this assay was to estimate OURs of the control culture which was 

used for each QAC assay. OUR values in Figure 4.10 were observed to be in a close range 

so the profiles of oxygen consumption for all tested QACs could be comparable. As shown 

in Figure 4.11A, in the case of AB, the rate of oxygen consumption was low until 12 hours 

as the AB concentration increased and then the rates were similar for all AB concentrations. 

In the case of didecyl (Figure 4.11B), the difference in oxygen consumption was evident 

until 18 hours, but the amount of headspace oxygen measured at 24 hours was the same in 

all tested concentrations. In contrast to the results obtained with AB and didecyl, the 

addition of dioctyl decreased the oxygen consumption of the culture significantly at 75 

mg/L and above (Figure 4.11C). For octyl decyl, Figure 4.11D shows that the difference in 

oxygen consumption between the various concentrations were clearer than for other tested 
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Figure 4.10. DO profile of the control culture samples used to test the oxygen consumption 
rate with different QACs (numbers represent OUR values in mg/L-min for each test). 
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Figure 4.11. Oxygen consumption in the headspace of aerobic mixed culture samples 
amended with AB (A), Didecyl (B), Dioctyl (C), and Octyl decyl (D). 
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QACs over time. At 24 hours, the ratio of oxygen in headspace changed from 21 to 15% at 

100 mg/L whereas it decreased to 2% at 0 mg/L (i.e., control). For all tested QACs, the 

rates of oxygen consumption were distinctly affected with increasing concentrations and 

the headspace oxygen decreased very slowly at higher QAC concentrations, especially 

during the early test period. After between 12 to 18 hours, depending on a species, 

however, the consumption rates tended to increase even at high QAC concentrations.  

The headspace CO2 generated after 24 hours of incubation, depicted in Figure 4.12, 

is consistent with the results from the measurements of oxygen consumption. The CO2 

production decreased gradually with increasing octyl decyl concentration although for other 

QAC species the amount of CO2 formed did not differ notably over a certain level of QAC 

concentration.   

 At the end of the test, the QACs in the samples were measured and the results are 

shown in Figure 4.13. Recovery did not reach 100% for all samples, which may be the 

result of partial incorporation and/or biodegradation of QACs. As shown above, the mixed 

culture utilized up to 50 mg/L AB despite the occurrence of significant cell lysis. Therefore, 

partial degradation of QACs at higher concentrations before significant cell lysis took place 

during the relatively short incubation period is possible.  

 

4.3.4.2. OUR/SOUR 

The impact of AB and its product(s) on the oxygen uptake rate of both control and 

AB-amended cultures was assessed. The specific oxygen uptake rate (SOUR) is a useful 

indicator to estimate the microbial activity of a culture in that it considers not only the rate 
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Figure 4.12. CO2 formation in the headspace of the aerobic mixed culture amended with 
AB (A), Didecyl (B), Dioctyl (C), and Octyl decyl (D) after 24 hours of incubation. 
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Figure 4.13. Recovery of the tested QACs after 24 hours of incubation under aerobic 
conditions. 
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of oxygen consumption but also the effect of microbial density. The measured OUR/SOUR 

values are listed in Table 4.6. When mixed with AB or supernatant of AB-amended 

cultures, OUR/SOUR of all tested cultures was found to be higher than only with culture 

media. This observation suggests the utilization of AB and its product(s). Filtered 

supernatant of AB-amended cultures might contain AB product(s) such as amines and 

benzoic acid, residual AB itself, or soluble lysis products all of which could be used as 

organic carbon sources. Moreover, the prepared AB solution also contained a small amount 

of other ingredients like ethanol (Table 4.4) and this can also facilitate microbial 

respiration. In the case of the control culture, the higher organic content in the AB50+D/P 

supernatant led to a higher SOUR than when the AB20+D/P supernatant was used. In 

addition, the SOUR of the control culture increased as the AB concentration increased up to 

25 mg/L, but at 50 mg/L the SOUR value noticeably decreased. These results indicate that 

the microbial activity in this culture was significantly impacted at 50 mg/L in the short 

incubation time. Interestingly, the SOUR of the AB20+D/P culture increased up to 50 mg/L 

but remained about the same at 100 mg/L. In the case of the AB50+D/P culture, the SOUR 

increased steadily with increasing AB concentration, even at 100 mg/L. These results 

demonstrate the effect of the long-term acclimation of the AB-amended cultures, which led 

to selecting AB-resistant species.  

 

4.3.4.3. Microtox® Test 

 Using the Microtox® test, the acute toxicity of five samples was assessed: culture 

media, 20 mg/L AB in culture media, and supernatant from the control, AB20+D/P, and 
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Table 4.6. OUR, SOUR, pH, and VSS values of control culture samples amended with different test solutionsa 

 

CULTURE  MEDIA AB20+D/P 
PRODUCT(S) 

AB50+D/P 
PRODUCT(S) 

10 mg/L  
AB 

20 mg/L 
AB 

25 mg/L 
AB 

50 mg/L 
AB 

100 mg/L 
AB 

OUR 5.3 7.6 11.3 11.7 13.9 6.1 

SOUR 4.0 5.7 8.4 8.8 10.4 4.6 

pH 7.0 7.0 8.5 7.1 7.0 7.0 
CONTROL 

VSS 1340 1340 1340 1340 

N/A 

1340 1340 

N/A 

OUR 3.1 7.3 10.1 11.2 

SOUR 3.2 7.4 10.2 9.7 

pH 6.7 6.7 6.7 6.9 
AB20+D/P 

VSS 990 

N/A N/A N/A 

990 

N/A 

990 1160 

OUR 4.3 8.6 14.9 12.5 

SOUR 8.1 15.9 27.5 40.3 

pH 7.7 7.7 7.7 7.8 
AB50+D/P 

VSS 540 

N/A N/A N/A 

540 

N/A 

540 310 
aUnits: OUR, mg DO/L-h; SOUR, mg DO/g VSS-h; VSS, mg/L  
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AB50+D/P cultures obtained at 121, 49, and 39 days of operation, respectively. The results 

shown in Figure 4.14 point out that culture media and supernatant from both the control and 

the AB20+D/P cultures had no acute toxicity (Figure 4.14A to C). On the other hand, the 

effect of the supernatant of the AB50+D/P increased with increasing supernatant 

volumetric fraction, but did not exceed a 17% effect even at a supernatant fraction as high 

as 45 % (Figure 4.14D). This result is consistent with the previous finding that a trace 

amount of residual AB existed in the AB50+D/P culture. In contrast, 20 mg/L AB in 

culture media exhibited a very high toxicity (Figure 4.14E). The 5-min EC50 was 0.23 mg/L 

(95% confidence range: 0.16 to 0.30; R2 = 0.91) and the 15-min EC50 was 0.15 mg/L (95% 

confidence range: 0.09 to 0.25; R2 = 0.83). Based on the above results, it is concluded that 

although AB has a high acute toxicity, the aerobic mixed culture was able to degrade AB to 

products which had almost insignificant toxic effects. Previously reported acute Microtox® 

15-min EC50 values ranged between 0.07 and 0.16 mg/L (Nalecz-Jawecki et al., 2003) for 

AB compounds and was equal to 0.20 mg/L for C12-AB (Kaiser and Palabrica, 1991). The 

EC50 values measured in the present study agree well with those previously reported. 

  

4.4. Summary 

 Efficient removal and degradation of a mixture of AB homologues was achieved 

with a mixed, aerobic culture at an AB concentration up to 50 mg/L when dextrin and 

peptone were the main carbon and energy source of this culture. Degradation of the added 

protein and ammonification were not impacted by AB even at an initial concentration of 50 

mg/L. Nitrification of the produced ammonia was complete at an AB level of 20 mg/L, but 
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Figure 4.14. Results of the Microtox® test conducted with culture media (A), supernatant of 
the control (B), the AB20+D/P (C), and the AB50+D/P (D) cultures, and 20 mg/L AB 
solution in culture media (E). 
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at 50 mg/L, almost complete inhibition of nitrification was observed. Mixed cultures which 

were maintained with only AB as the externally supplied carbon and nitrogen source 

achieved a high degree of AB degradation at both 20 and 50 mg AB/L. The mixed aerobic 

cultures used in this study were able to degrade AB and eliminate its acute Microtox® 

toxicity. 
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CHAPTER 5 

NITRIFYING CULTURE 

 

5.1. Introduction 

Nitrification plays an important role in wastewater treatment for the purpose of 

nitrogen removal and numerous efforts have been devoted to understand the mechanism of 

autotrophic ammonia oxidation. Oxidation of ammonia is achieved by a group of obligate 

chemolithoautotrophic bacteria which use the obtained energy for the fixation of CO2 

through the Calvin cycle (Bedard and Knowles, 1989; McCarty, 1999). Two different types 

of bacteria are responsible for nitrification, which is accomplished in two steps: conversion 

of ammonia to nitrite, by so-called ammonia oxidizers, and conversion of nitrite to nitrate, 

by nitrite oxidizers. Detailed investigation on the classification, distribution, and 

physiology of nitrifying microorganisms can be found in a number of previous studies 

(Bothe et al., 2000; Koops and Pommerening-Roser, 2001). In spite of its important 

implications, nitrification is a very sensitive process easily affected by external factors such 

as pH, temperature, microbial density, and inhibiting compounds (Anthonisen et al., 1976). 

A number of previous studies were performed with inhibitory compounds to elucidate their 

effect on autotrophic nitrifying bacteria (Dincer and Kargi, 2001; Kelly et al., 2004; Lee et 

al., 2000). 

 In contrast to the work presented in Chapter 4, which involved heterotroph-

dominant cultures, the objectives of the work presented in this chapter were to enrich a 
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nitrifying culture and to assess the biodegradability and the toxic effect of AB on the 

nitrifying activity of the culture. 

 

5.2. Materials and Methods 

5.2.1. Control Nitrifying Culture 

 An aerobic mixed nitrifying culture was developed using as inoculum mixed liquor 

from the activated sludge reactor of the RM Clayton wastewater treatment plant, in Atlanta, 

GA. Initially, the culture was amended with ammonium chloride for about 70 days in order 

to selectively grow nitrifying bacteria. During this initial period, 1.5 L culture was semi-

continuously fed twice a week, following the same intervals as the cultures described in 

Chapter 4. At each feeding, 100 mg N/L NH4Cl and 1200 mg/L NaHCO3 were added. The 

sodium bicarbonate was added to not only provide alkalinity, but also to be used as the 

carbon source. For the purpose of enriching slowly-growing nitrifying bacteria, before each 

feeding time, the culture was settled for more than 30 minutes and then 1250 mL of culture 

supernatant was wasted and replaced with fresh culture media. The stock culture media and 

trace metal solution were as those used with the mixed heterotrophic culture (see Table 4.1 

and Table 4.2, respectively).  A change in the feeding/wasting procedure by which 400 mL 

of culture was wasted before each feeding (twice a week) without culture settling, resulted 

in poor nitrification, more likely caused by accumulated chloride due to NH4Cl addition. 

This modified procedure lasted for 25 days. The culture was then maintained as follows: 

twice a week, the culture was allowed to settle for more than 30 minutes, 1350 mL of 

culture supernatant was wasted and replaced with fresh media. The culture setup is 
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illustrated in Figure 5.1. The culture was maintained in a doubleside arm flask (Wheaton 

Science, Millville, NJ) equipped with a glass and Teflon®-coated paddle blade impeller and 

a Teflon®-coated magnetic stirrer. A HD-pH/P pH controller (Etatron, Italy) was also used 

to maintain stable pH via a pH probe (Orion Research Inc., Boston, MA) and a pump 

connected to a 0.5 N NaHCO3 solution stored in a graduated cylinder. The set pH was 7.5 

and the amount of NaHCO3 solution consumed was recorded. Pre-humidified air was 

supplied through a fine pore diffuser in order to provide a sufficient DO level. The culture 

was maintained at room temperature (22 to 23oC). pH, TSS, VSS, ammonia, nitrite, and 

nitrate were periodically measured following the procedures outlined in Standard Methods 

(Eaton et al., 2005) (see Chapter 3). 

 

5.2.2. Oxygen Uptake Rate 

 At the 85th day of operation of the mixed nitrifying culture, aliquots of this culture, 

which had oxidized all ammonia and undergone starvation, were removed and aerated in 

order to achieve oxygen saturation. Then, aliquots of the aerated culture were transferred to 

a 50 mL tapered-neck Erlenmeyer flask and changes in DO over time were recorded using 

a DO meter (Yellow Springs Instrument, Yellow Springs, OH) equipped with a membrane 

probe (Yellow Springs Instrument, Yellow Springs, OH).  The oxygen uptake rate (OUR) 

was calculated as the slope of the DO vs. time graph. The specific oxygen uptake rate 

(SOUR) was then calculated by dividing the OUR values by the culture VSS concentration. 

Several OUR runs were performed with the addition of either NH4Cl or glucose as 

explained in the Results and Discussion section. 
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Figure 5.1. Schematic of control nitrifying culture setup. 
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5.2.3. Toxicity Assays 

 In order to assess the toxic effect of AB on nitrification, the following assay was 

performed. An aliquot of 200 mL of the mixed nitrifying culture was removed on the 68th 

day of operation immediately after the replacement of the culture supernatant and the 

addition of 100 mg N/L NH4Cl. This culture sample was then transferred to an Erlenmeyer 

flask where it was continuously aerated and mixed. Then, an aliquot of an AB stock 

solution was added to the culture resulting in an initial AB concentration of 20 mg/L. Four 

more culture samples with initial AB concentrations of 2, 5, 10, and 15 mg/L were prepared 

in the same manner after three days. For all five culture samples, the concentration of 

nitrogen species and AB were measured at intervals of 24 hours for 4 days and at each 

sampling time, the pH was adjusted around 7 with a concentrated NaHCO3 solution. 

 

5.3. Results and Discussions 

5.3.1. Culture Monitoring 

 The nitrifying activity of the mixed culture after more than 60 days of enrichment 

was monitored for 89 days. The culture pH was controlled using a controller set at pH 7.5, 

but its pH was 7.6 ± 0.7 (mean ± standard deviation). Stoichiometrically, 100 mg N/L 

requires alkalinity of 14.3 meq/L, which corresponds to a concentration of 1200 mg/L 

NaHCO3 for complete nitrification to nitrate. Experimental values obtained by measuring 

the consumed amount of 0.5 N NaHCO3 agreed well with the theoretical value.  

 With less frequent replacement of the culture volume, which led to a relatively long 

hydraulic retention time (more than 60 days) at the early test period, a sign of nitrification 
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inhibition was witnessed. Figure 5.2 shows a gradual increase in nitrite over time until 

about 20 days. One of the plausible reasons is the increasing chloride concentration which 

has been known to be an inhibitor of nitrification (Cui et al., 2006; Faller and Ilic, 1974). A 

previous study reported that chloride mainly inhibits Nitrobacter, which oxidizes nitrite, 

and a complete inhibition of nitrification was observed at 6 g Cl-/L (Schenk and Hegemann, 

1995). The mechanism of inhibition by chloride is known to be related to the changes in 

osmotic pressure in a cell (Darrah et al., 1987; Darrah et al., 1985; Darrah et al., 1986). The 

concentration of chloride in the culture was predicted by simulating the culture removal and 

feed addition volumes per feeding cycle over 60 days. The results of this simulation are 

shown in Figure 5.3. According to this, the chloride concentration was initially about 0.4 

g/L at steady state. However, after changing the feeding pattern the chloride concentration 

should have doubled in about 11 days of operation and, finally in about 30 days, the 

concentration should have reached 1.1 g/L at steady state. Resuming the previous culture 

wasting scheme, i.e., leaving 250 mL culture after settling, nitrite oxidation was enhanced 

and complete conversion of ammonia to nitrate was observed after about the 55th day and 

lasted till the end of this test (Figure 5.2). 

 Characterization of a feeding cycle was conducted at the 57th day and results are 

shown in Figure 5.4. The culture VSS concentration at the time the feeding cycle 

characterization was conducted was 250 ± 10 (mean ± standard deviation). The data shown 

in Figure 5.4 is a typical nitrification pattern. Ammonia tended to disappear completely 

within 48 hours while nitrite increased until 24 hours and then decreased to none at 72 

hours. Along with the decrease in both ammonia and nitrite, nitrate increased almost 
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Figure 5.2. Profiles of the three nitrogen species in the nitrifying culture over the test 
period. 
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Figure 5.3. Simulation of chloride concentration in the nitrifying culture (Time zero 
signifies the change in feeding pattern). 
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Figure 5.4. Nitrogen species in the nitrifying culture during one feeding cycle. 
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linearly from about 20 to 120 mg N/L within 48 hours. The amount of nitrogen generated 

as nitrate compares well with the ammonia-N fed. The fact that the sum of the three 

nitrogen species in the culture was constant after about 20 hours demonstrates complete 

nitrification as well as low nitrogen utilization for cell synthesis due to the slow growth rate 

of nitrifiers. The lower total nitrogen concentration at the early stage may be due to 

ammonia conversion to hydroxylamine, the first intermediate of ammonia monooxygenase, 

which was not monitored in this study. 

 

5.3.2. OUR/SOUR 

 Measuring oxygen uptake rate (OUR), or specific oxygen uptake rate (SOUR), after 

the addition of a substrate could be an indirect way to assess the activities of relevant 

microorganisms in the culture. Based upon oxygen solubility for which external factors 

such as ambient temperature and altitude were taken into account, an equivalent amount of 

substrate, ammonium chloride and glucose in this case, was added respectively to the 

prepared culture samples and then changes in OUR/SOUR were compared. Initial 

concentrations of ammonium chloride and glucose added were 6.7 mg/L and 7.5 mg/L, 

respectively. The VSS concentration of the culture was 290 ± 30 mg/L and all 

measurements were conducted at the 84th day, the last day of a feeding cycle. 

 Measured OUR and SOUR values are shown in Table 5.1. Under starvation 

conditions, the oxygen uptake rate by the culture was very slow and the DO decreased very 

little within 25 minutes (Figure 5.5A). When ammonium chloride was added, the OUR was 

practically constant and more than 10 times faster than that of the control until about 25 
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Table 5.1. OUR and SOUR values of the nitrifying culture amended with different 
substrates 

aRegression considering DO values up to 14 minutes 
bRegression considering DO values up to 93 minutes 

 Control  
starved 

Ammonium 
chloride 

amendmenta 

Glucose 
amendmentb 

OUR 
(mg DO/L-h) 0.901 11.3 1.08 

SOUR 
(mg DO/g VSS-h) 3.11 39.1 3.72 

R2 0.998 1.00 0.996 
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Figure 5.5. DO profiles of the starved control nitrifying culture (A), culture amended with 
6.7 mg/L ammonium chloride (B), and culture amended with 7.5 mg/L glucose (C). 
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minutes when the availability of substrate and oxygen was limited.  When glucose was 

added, the OUR exerted by the heterotrophs in the mixed culture increased by about 20% in 

comparison with the control, but the rate was still very low and DO was not depleted for 

about 9 hours (Figure 5.5C). Therefore, the fraction of heterotophs in the mixed nitrifying 

culture is considered to be negligible. 

   

5.3.3. Toxicity Assessment 

 The inhibitory effect of AB on the nitrifying culture was assessed at a range for AB 

concentrations from 2 to 20 mg/L and data are shown in Figure 5.6. The nitrification 

pattern at both 2 and 5 mg/L AB was similar to that of the control (i.e., in the absence of 

AB) shown in Figure 5.4 in that most of ammonia was oxidized within 48 hours and nitrite 

accumulation did not occur. These findings suggest that at these AB concentrations, 

nitrification was not impacted, although the rate of ammonia to nitrite oxidation was 

slower. It is generally accepted that ammonia oxidizers are less affected than the nitrite 

oxidizers by toxicants (Carvallo et al., 2002; Selivanovskaya et al., 2004). The inhibitory 

effect of AB was apparent at 10 mg/L at which ammonia was not fully utilized within the 

test period. Nitrification was completely inhibited at 15 mg AB/L and above. Combined 

with the above mentioned observation of no accumulation of nitrite in the AB-amended 

culture series, and in contrast to previous studies on the effect of various toxicants on 

nitrification, it is clear that in our case the ammonia oxidizing bacteria were more sensitive 

to AB than the nitrite oxidizers. Despite the observed variation in the AB concentration 

over time (Figure 5.7), these data indicate that AB was not degraded even at a low 
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Figure 5.6.  Effect of AB concentration on the oxidation of 100 mg N/L NH4Cl at AB 
concentrations of 2 mg/L (A), 5 mg/L (B), 10 mg/L (C), 15 mg/L (D), and  20 mg/L (E). 
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Figure 5.7. Fate of the different concentrations of AB in the nitrifying culture. 
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concentration over the test period. Based on the results of the OUR/SOUR assay, the 

number of heterotrophs in the mixed nitrifying culture is very small, which further explains 

the lack of AB degradation in the nitrifying culture. The process of nitrification involves a 

group of membrane-bound enzymes, such as ammonia monooxygenase (AMO) and nitrite 

oxidoreductase (Kelly et al., 2004; McCarty, 1999). Thus, the sorptive affinity of AB for 

the cell membrane, documented in a number of previous studies, significantly affects the 

enzymatic activities related to nitrification.  

The final step was to establish the inhibition coefficient Ki using the data presented 

in Figures 5.4 and 5.6. Assuming a non-competitive inhibition, the relation between the rate 

of reaction and the concentration of the inhibitor can be expressed with a modified 

Michaelis-Menten equation as, 

)IK)(SK(
KSV

v
im

imax

++
⋅⋅

=        (5.1) 

where 

v = reaction rate (mg NH3-N/L-h) 

Vmax = maximum rate of reaction (mg NH3-N/L-h) 

S = substrate concentration (mg NH3-N/L) 

I = inhibitor concentration (mg AB/L) 

Km = Michaelis-Menten coefficient (mg NH3-N/L) 

Ki = inhibition coefficient (mg AB/L) 
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The inhibition coefficient Ki refers to the inhibitor concentration where the reaction 

rate reaches half of its maximum value. In the case of high substrate (i.e., ammonium 

chloride) concentration, equation 5.1 can be simplified as, 

IK
KV

v
i

imax

+
⋅

=          (5.2) 

The determination of Ki could be done graphically using the linearized version of 

equation 5.2 as follows: 

imaxmax KV
I

Vv ⋅
+=

11         (5.3) 

The reaction rate “v” was calculated with the data from four samples, from 0 (i.e., 

the control) to 10 mg/L AB-amended cultures since the reaction rates of 15 and 20 mg/L 

AB amended cultures were apparently zero. In determining the “v” value in each sample, 

regressions were performed with the experimental data measured up to 48 hours (24 hours 

in the case of the control) in order to exclude the effect of substrate limitation on the results. 

A plot of the data according to equation 5.3 is shown in Figure 5.8. The estimated Vmax and 

Ki values were 3.8 ± 2.3 mg NH3-N/L-h and 1.5 ± 0.9 mg AB/L (mean ± standard error; R2 

= 0.985), respectively. The Michaelis-Menten coefficient (i.e., Km) for nitrification in 

activated sludge is typically between 0.5 and 1.0 mg NH3-N/L (Metcalf & Eddy Inc., 2003). 

When compared with Ki values of various nitrification inhibitors shown in Table 5.2, the Ki 

value of AB suggests a high susceptibility of nitrifying bacteria (mainly ammonia 

oxidizers) to AB. For reference, inhibition coefficients of surfactants, including QACs, on 

denitrifiers were assessed previously by Seifert and Domka (2005) and ranged from 0.2 to 

102 mg/L. 
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Figure 5.8. Nitrification rate versus AB concentration used for the determination of the 
inhibition coefficient Ki. 
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Table 5.2. Nitrification inhibitors and their inhibition coefficient values 
 

Inhibitor Inhibition coefficient 
(Ki, mg/L) 

2-Propanonea 804 

Anilineb 3 

Arsenicc 292 

Chromiumc 50 

Fluoridec 1218 

Formaldehydea 61 

Methanola 116 
aOslislo and Lewandowski, 1985  
bGheewala et al., 2004  
cBeg et al., 1982  
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5.4. Summary 

 A nitrifying culture was enriched by feeding ammonium chloride and sodium 

bicarbonate. Despite an inhibition caused by accumulated chloride at an early stage, 

successful nitrification was observed in the control culture where ammonia at an initial 

concentration of 100 mg N/L was completely oxidized within 48 hours and completely 

converted to nitrate. The results from measuring OUR/SOUR of culture samples fed with 

different substrates indicated that the proportion of heterotrophs in the culture was very low. 

A test to investigate the effect of AB at different concentrations between 2 to 20 mg/L on 

nitrification was conducted and showed that ammonia oxidation was inhibited with 

increasing AB concentration and ceased at 15 mg/L AB. For all tested AB concentrations, 

AB was not utilized or degraded in the nitrifying culture within 4 days of the test period. 

Based upon the above results, the AB inhibition coefficient was estimated as 1.5 ± 0.9 mg 

AB/L, indicating significant susceptibility of the nitrifying culture, especially the ammonia 

oxidizers, to AB. 
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CHAPTER 6 

CONCLUSIONS 

 

 One of the most commercially used quaternary ammonium compounds (QACs), 

alkyl benzyl dimethyl ammonium chloride (AB) was chosen for this study. The 

biodegradation of AB and its effect on nitrification were investigated. Reliable removal and 

degradation of a mixture of AB homologues up to 50 mg/L were observed with a mixed, 

aerobic culture over a prolonged incubation and repetitive feedings. However, nitrification 

in this culture was affected to some extent depending on the AB concentration added and 

the duration of the operation. A short-term experiment with a nitrifying culture fed with 

ammonium chloride and inorganic carbon source showed a significant inhibition of AB on 

the nitrifying activity of the culture. 

 Based on the results of the present study, the following specific conclusions can be 

drawn: 

1. A mixed, aerobic culture fed with dextrin and peptone completely removed 

an initial concentration of 20 mg/L AB without any sign of delay throughout 

the entire period and degradation of the added protein and ammonification 

were not impacted by the AB. 

2. Nitrification was initially affected at 20 mg/L AB but, with prolonged 

culture operation, complete nitrification was achieved as a result of 

acclimation and/or selection of tolerant nitrifying bacterial species. 
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3. An initial concentration of 50 mg/L was degraded without any delay after 

the fourth feeding cycle, but low levels of C12 and C14 were present at a 

concentration range from 3 to 7 mg/L. Complete degradation of organic 

nutrients and ammonification took place. 

4. Nitrification was severely inhibited at 50 mg/L AB and did not recover over 

time. Both nitrite and nitrate were less than 10 mg N/L for the entire test 

period. 

5. The cultures fed with AB as a sole organic carbon and nitrogen source 

utilized AB up to 50 mg/L despite their low biomass concentration. 

6. The relatively lower VSS and higher soluble COD and DOC values of the 

AB-fed cultures than in the AB-free, control culture, indicate the occurrence 

of cell lysis by AB. The degree of cell lysis was significant with increasing 

AB concentration.  

7. The nitrifying culture fed with ammonium chloride and sodium bicarbonate 

over a prolonged incubation period was susceptible to AB. Nitrification 

became noticeably inhibited with increasing AB concentrations and ceased 

at a concentration of 15 mg/L AB. 
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