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Summary 

Chronic, polymicrobial respiratory infections remain the primary driver of morbidity and 

mortality in cystic fibrosis (CF). This thesis leverages experimental data and large-scale public 

datasets to investigate the relationships between microbiome structure, pathogen abundance and 

host health.  

First, using a machine learning framework, we show that off-the-shelf machine learning 

methods can recover known clinical and microbial predictors of lung function from a set of 77 

sputum composition profiles. These methods recover known demographic predictors of lung 

function and further identify novel taxonomic predictors, highlighting the utility of simple 

machine learning methods for microbial biomarker discovery.  

Second, we develop a synthetic infection microbiome model representing CF 

metacommunity diversity, and benchmark on clinical data.  Using this synthetic microbiome 

system, we provide evidence that commonly used CF antibiotics can drive the expansion (via 

competitive release) of previously rare opportunistic pathogens and offer a path towards 

microbiome-informed treatment strategies.  

Last, we manually curated a microbiome dataset of over 4000 sputum samples 

representing more than 1000 people with CF (pwCF), matching samples with corresponding 

metadata from 36 publications and standardizing bioinformatic analyses with a single common 

pipeline. We fit Sloan Neutral Community Models to each study and find a consistent set of 

neutral and non-neutral taxa.  Using Dirichlet Multinomial Mixture modeling, we partition non-

neutral CF lung microbiomes into 14 distinct pulmotypes. Integrating longitudinal data, we find 

that not all Pseudomonas-dominated pulmotypes are dynamically equivalent, which carries 

important implications for infection management in cystic fibrosis 
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Chapter 1: Introduction 

 

1.1  Background and Significance 

Chronic bacterial infections are characterized by the persistence of bacterial pathogens in 

a host, despite ongoing antibiotic treatment. From a host perspective, chronic infections impose 

elevated risks of morbidity and mortality (Persoon et al., 2004). These infections often fail to 

clear even with appropriate antibiotic treatment (as defined by antibiotic susceptibility testing), 

and the expansion of at-risk populations coupled with a drying antibiotic pipeline pose an 

increasing burden to global healthcare systems(Guest et al., 2017). From a microbial perspective, 

these infections commonly feature changes in pathogen growth mode promoting antibiotic 

tolerance (e.g. biofilm formation (Malone et al., 2017)) and additional microbial species 

acquisition, forming complex multispecies communities (Stacy et al., 2016) or infection 

microbiomes.  

Cystic fibrosis (CF) is an autosomal recessive disease characterized by decreased lung 

mucociliary clearance and mucus accumulation (Henke & Ratjen, 2007; Perez-Vilar & Boucher, 

2004; Rubin, 2010). The resulting environment provides both nutrients for bacterial growth and 

protection from host immune responses(Bals et al., 1999; Dickson et al., 2014; Rieber et al., 

2014; Yonker et al., 2015), facilitating chronic microbial infections (Conrad et al., 2013; Fodor et 

al., 2012; Frayman et al., 2017; Lucas et al., 2018). Accessible 16S rDNA microbiome profiling 

has shifted CF airway microbiology research away from a historically single-pathogen focus. 

Sequencing expectorated sputum has revealed diverse communities of tens to hundreds of taxa, 

including numerous non-pathogenic bacteria (Frayman et al., 2017; Huang & LiPuma, 2016; 

Whelan et al., 2020). However, in practice clinical microbiology analysis continues to focus only 

on the “usual suspects” of established human pathogens such as Pseudomonas aeruginosa, 

Staphylococcus aureus, and other organisms with well-established health risks. This disconnect 
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between diverse infection microbiomes and limited clinical microbiology profiling may overlook 

important risk markers.  

 

1.2  High-Dimensional Infection Data and Machine Learning 

Healthy human microbiomes are diverse and person-specific. Microbiome composition 

varies across body sites and over both short and long timescales. Despite numerous microbiome 

association studies linking community composition with disease phenotypes(Anand & Mande, 

2018; Russell et al., 2013; Stokholm et al., 2020), in most contexts the clinical implications of 

this variation remain unexplained. A number of studies have used machine learning methods to 

predict clinically-relevant host phenotypes from microbiome variation(Beck & Foster, 2014; 

Feng et al., 2015; Stokholm et al., 2020; C. Y. Zhao et al., 2021), and interpretable algorithms 

show promise in tackling the complexities and high dimensionality of microbiome datasets. 

Identifying phenotype predictors generates a set of candidate taxa to experimentally interrogate 

for underlying causal pathways governing associations, potentially offering insight for individual-

tailored microbiome therapies. These methods fall under two general categories of either 

classification (e.g. identifying gut microbiome enterotypes (Arumugam et al., 2011) or classifying 

“diseased microbiomes”) or regression (i.e. linking microbiome compositions to continuous 

disease metrics(Subramanian et al., 2014)).  

Microbiome datasets are high-dimensional – typically having few samples but many 

taxonomic features. Additionally, microbiome data has challenging characteristics, such as zero-

inflation, overdispersion, and compositionality. While there are numerous methods to address the 

challenges of analyzing high dimensional datasets, few have been rigorously benchmarked on 

microbiome-like data. Regularization and feature selection methods (ElasticNet, LASSO) or 

dimensionality reduction methods (PCA, NMDS) are often used in microbiome analyses but 

these challenging characteristics may influence model accuracy and robustness. To mitigate the 

challenge of compositionality, many pipelines recommend non-linear data transformations such 
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as centered-log-transformations (Gloor et al., 2017), to transform microbiome count data into a 

form more compatible with off-the-shelf statistical analyses. To address zero-inflation and 

overdispersion, algorithms analyzing RNAseq datasets, which share some distribution 

characteristics such as dropouts (Qiu, 2020), may also be applied to polymicrobial infection data. 

 

1.3  Polymicrobial Infections in Cystic Fibrosis 

Microbiome analyses indicate that CF respiratory communities consist of tens to 

hundreds of species. Cross-sectional and longitudinal studies in CF tend to be sample-limited, 

with the largest cohorts consisting of around 100 individuals with CF (Li et al., 2016; Zhao et al., 

2021). Recently, Hampton et al. reported a cross-sectional study characterizing the sputum of 167 

pwCF and used clustering analysis to identify five pulmotypes (Hampton, Thomas, van der Gast, 

O’Toole, & Stanton, 2021). However, the identification of potential causal links between CF lung 

microbial communities and overall clinical health metrics still presents a unique set of challenges. 

In this thesis, I propose to overcome the challenge of limited microbial samples in two ways: 

dataset augmentation (Chapter 2) and dataset augmentation (Chapter 4). In addition, I pursue 

causal investigation via experimental manipulation of synthetic CF microbiome communities 

(Chapter 3). 

There are numerous published observational studies of the CF lung microbiome, but only 

a handful have taken a large-scale data science approach to interrogating patterns across CF 

sputum profiles (C. Y. Zhao et al., 2021). There is a striking lack of curated aggregate 

microbiome datasets in CF for benchmarking and algorithm development. Such datasets should 

include dense longitudinal sampling to characterize between-person variations and daily 

fluctuations. These datasets would allow for microbiome-specific algorithm development, 

analogous to CIFAR-10 or MNIST datasets for computer vision research. 

Data augmentation is a common practice in machine learning pipelines. Computer vision 

problems often incorporate image flips and rotations to expand limited datasets, as such 
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transformations are information-invariant (Giuste et al., 2020). The analogous transformations in 

microbiome contexts are poorly characterized. Recently, Rong et al., have developed a generative 

adversarial network method augment microbiome datasets (Rong et al., 2021). Additional 

methods include subsampling or resampling, although method comparisons are needed to 

determine best practices. 

 

1.4  Thesis Overview  

1.4.1  Chapter 2: The relationship between microbiome structure and lung function 

We begin by mapping microbiome structure to one of the central clinical indicators of 

health in pwCF (lung function) to identify potential microbial biomarkers. Expectorated sputum 

samples were obtained from 77 pwCF attending Georgia Tech and Emory-affiliated CF Care 

Centers and16S rDNA sequenced for airway microbiome compositions. De-identified clinical 

information including age, sex, height, BMI, CFTR genotype, degree of glucose control (HbA1c), 

and lung function (ppFEV1) for each sample were also obtained.  

We employed simple machine learning methods to predict lung function from augmented 

microbiome and clinical information and compared extracted informative features from the best-

performing models. We found that models trained on clinical vs microbiome subsets returned 

comparable performance, while training on all available data led to the best model performance. 

Our analysis shows that non-pathogen data improves prediction of lung health, with the most 

accurate models selecting a combination of clinical data, pathogen quantitation, and non-

pathogen features. Our inclusive ‘all data’ models additionally point to a predictive role for 

specific non-pathogen taxa, in particular the oral anaerobe genera Rothia and Fusobacterium. 

Interestingly, our models select Haemophilus, a canonical CF pathogen, as a positive predictor of 

health. We consider alternate hypotheses for this effect, including confounding by age (although 

age is retained in our best model) and protection by Haemophilus against more damaging 
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pathogens. However, we are unable to further assess causality given our limited sample size and 

lack of longitudinal data. 

Despite the significant contribution of non-pathogen data, our results are still broadly 

consistent with what might be termed the ‘traditional’ view of CF microbiology. Established CF 

pathogens (P. aeruginosa, S. aureus, H. influenzae, B. cenocepacia) are the major drivers of 

clinical outcomes, as evidenced by substantial improvement in predictive outcomes whenever 

pathogenic microbiome data is included over the relatively weak improvements from the addition 

of non-pathogen taxa. Our results suggest that the composition of non-pathogenic taxa contains 

important information about the lung health of pwCF, and support full-microbiome screening 

over the current pathogen-centric clinical microbiology focus. 

 

1.4.2 Chapter 3: Analysis of synthetic microbiome responses to antibiotic perturbation  

 From Chapter 2, we identify putative associations between microbes and health, 

including a puzzling links between Haemophilus, Rothia, and Fusobacterium with better lung 

function. To experimentally investigate microbial interactions our group has developed a 

synthetic 10-species CF microbiome community, guided by data generated in Chapter 2. Such in 

vitro approaches complement observational data analyses by allowing for hypothesis testing and 

validation of the putative interactions proposed by data mining algorithms. 

 Using this in-vitro system, we find evidence that under certain conditions, commonly 

used CF antibiotics may drive expansion of otherwise rare pathogens via competitive release. 

Specifically, we show that in the absence of antibiotics, communities tend towards states 

dominated by oral commensals, with very low variability between replicates. In contrast, 

antibiotic perturbations generate alternate pathogen-dominant end states, enriched with drug-

resistant taxa. The results highlight the potential importance of non-evolutionary (community-

ecological) processes in driving the growing global crisis of increasing antibiotic resistance and 

offer a path towards microbiome-informed conditional treatment strategies. 
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1.4.3 Chapter 4: Revisiting clinical data on a larger scale 

One critique of our synthetic community in Chapter 3 is that while our observed end 

states have clinical relevance, the initial conditions used do not reflect the composition of any 

individual sputum sample or pwCF. This leads to the question: what is a representative 

community in CF? Given the challenges of inter- and intra-individual heterogeneity, the aim of 

Chapter 4 is to establish the largest microbiome database of pwCF to date, and use this data to  

identify common community types in CF. We hypothesize that taxa driven by non-neutral 

ecological processes can be grouped into meaningful classes of microbial communities, or 

pulmotypes, based on their co-occurrence patterns. 

Pulmotype identification using unsupervised learning or clustering algorithms require 

large, representative datasets. To date, the largest publicly available CF sputum dataset represents 

299 pwCF across 13 CF centers worldwide (Cuthbertson et al., 2020). We curate a microbiome 

dataset of over 4000 sputum samples representing more than 1000 people with CF (pwCF) from 

36 published studies on the NCBI Short Read Archive (SRA). We matched SRA studies with 

corresponding publications and standardized sequence analysis using a common pipeline. 

We identify a common set of ecologically relevant CF taxa by removing taxa that are 

neutrally distributed as predicted by the Sloan Neutral Community Model (SNCM) (Sloan et al., 

2006). We find that across studies, common CF pathogens are identified as non-neutral more 

often than neutral.  

Dirichlet Multinomial Mixture modeling on non-neutral taxa partitions CF lung 

microbiomes into 13 pulmotypes, which we further group pulmotypes into three categories: 

Pseudomonas-dominant (PA), oral anaerobe dominant (OA), and other pathogen dominant (OP). 

We show that these pulmotypes are clinically and compositionally distinct with unique transition 

patterns. Specifically, we find differing transition frequencies between each PA pulmotypes and 

pulmotypes dominated by end-stage CF pathogens such as Burkholderia and Achromobacter. We 
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find that across a broad cohort of pwCF, Pseudomonas-dominated samples are not equivalent. 

These differing pulmotype transition frequencies provide important insight for infection 

management in cystic fibrosis. Chapter four represents the transition between my current and 

future work on CF microbiome dynamics, as the unique dataset established in this chapter will 

provide the baseline for continued microbiome benchmarking and algorithm development.  

 

1.5  Other Work 

In addition to my research focus on CF microbiomes, I have engaged in a range of more 

distantly related research during the course of my Ph.D. This work spans one publication in 

medical AI (Giuste et al., 2020), a manuscript each on CF infection microbiology (O’Connor et 

al., 2021) and a CF case study, and three contributing authorships on COVID epidemiological 

modeling publications (Farrell et al., 2021; Kraay et al., 2021; Weitz et al., 2020), and 

manuscripts in prep on infection microbiomes in the pediatric ICU as well as additional synthetic 

community modeling work.  
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Chapter 2: Microbiome data enhances predictive models of lung function in 

people with cystic fibrosis1 

 

2.1  Summary 

Microbiome sequencing has brought increasing attention to the polymicrobial context of 

chronic infections. However, clinical microbiology continues to focus on canonical human 

pathogens, which may overlook informative, but non-pathogenic, biomarkers. We address this 

disconnect in lung infections in people with cystic fibrosis (CF). We collected health information 

(lung function, age, BMI) and sputum samples from a cohort of 77 children and adults with CF. 

Samples were collected during a period of clinical stability and 16S rDNA sequenced for airway 

microbiome compositions. We use Elastic Net regularization to train linear models predicting 

lung function and extract the most informative features. 

Models trained on whole microbiome quantitation outperform models trained on 

pathogen quantitation alone, with or without the inclusion of patient metadata. Our most accurate 

models retain key pathogens as negative predictors (Pseudomonas, Achromobacter) along with 

established correlates of CF disease state (age, BMI, CF related diabetes). In addition, our models 

select non-pathogen taxa (Fusobacterium, Rothia) as positive predictors of lung health. These 

results support a reconsideration of clinical microbiology pipelines to ensure the provision of 

informative data to guide clinical practice.  

  

 
1 This chapter was adapted from the following reference: Zhao, C. Y., Hao, Y., Wang, Y., Varga, J. J., 
Stecenko, A. A., Goldberg, J. B., & Brown, S. P. (2021). Microbiome Data Enhances Predictive Models of 
Lung Function in People With Cystic Fibrosis. JID, 223(Supplement_3), S246–S256. 
https://doi.org/10.1093/infdis/jiaa655. Reused with permission. I was the primary author of this work. 
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2.2 Introduction  

Bacterial infections often resolve rapidly given effective immune responses, independent 

of antibiotic treatment. However, in chronic (long-lasting) cases, infections fail to clear even with 

appropriate drug treatment. Chronic infections impose an elevated morbidity and mortality risk to 

the individual (Persoon et al., 2004) and an increasing burden on global healthcare systems as at-

risk populations grow (Guest et al., 2017). Chronic infections typically arise due to deficits in 

host barrier defenses and/or immune function, and commonly feature changes in pathogen growth 

mode (e.g. biofilm formation (Malone et al., 2017)) and additional microbial species acquisition, 

forming complex multispecies communities (Stacy, McNally, Darch, Brown, & Whiteley, 2016).  

Microbiome sequencing has increasingly underscored the polymicrobial context of 

chronic infection. However, clinical microbiology analysis continues to focus only on the ‘usual 

suspects’ of established human pathogens – a relatively short list of organisms with well-

established patient health risks. This disconnect between diverse ‘infection microbiomes’ and 

limited clinical microbiology profiling may overlook clinically important risk markers. To 

address this, we focus on chronic lung infections in people with cystic fibrosis (CF).  

Cystic fibrosis is an autosomal recessive disease characterized by decreased lung 

mucociliary clearance and mucus accumulation (Henke & Ratjen, 2007; Perez-Vilar & Boucher, 

2004; Rubin, 2010). The resulting environment provides both nutrients for bacterial growth and 

protection from host immune responses (Bals, Weiner, & Wilson, 1999; Dickson, Martinez, & 

Huffnagle, 2014; Rieber, Hector, Carevic, & Hartl, 2014; Yonker, Cigana, Hurley, & Bragonzi, 

2015), facilitating chronic microbial infections (Conrad et al., 2013; Fodor et al., 2012; Frayman, 

Armstrong, Grimwood, & Ranganathan, 2017; Lucas, Yang, Dunitz, Boyer, & Hunter, 2018). 

Accessible 16S rDNA microbiome profiling has shifted CF airway microbiology research away 

from a historically single-pathogen focus, as sequencing expectorated sputum has revealed 

diverse communities of tens to hundreds of taxa, including numerous non-pathogenic bacteria 

(Frayman et al., 2017; Huang & LiPuma, 2016; Whelan et al., 2020). 
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Numerous lung microbiome studies have linked community composition to disease 

progression and overall patient health (Acosta et al., 2018; Coburn et al., 2015; Hahn et al., 

2020). Cross-sectional studies have shown severe disease is associated with pathogen dominance 

and loss of taxonomic diversity (Acosta et al., 2018; Coburn et al., 2015; Muhlebach et al., 2018). 

Longitudinal studies have associated decreasing microbiome diversity with declining lung 

function (Zhao et al., 2012). Additionally, abundance of non-pathogenic fermentative anaerobes 

(Veillonella, Prevotella, Fusobacterium) is associated with higher lung function (O’Neill et al., 

2015; Zemanick et al., 2015).  

While these associations are observed across multiple studies, their causal interpretation 

is the subject of some controversy. These results may reflect community ecological processes 

within the lung, where species interactions govern community structure and subsequent harm to 

the host (Conrad et al., 2013; Klepac-Ceraj et al., 2010; Quinn et al., 2016). Conversely, these 

patterns could result from oral anaerobe contamination during sample collection (Goddard et al., 

2012; Jorth et al., 2019). Under this contamination model, increasing pathogen load compared to 

a constant background of oral microbiome contamination generates a spurious link between oral 

microbes, microbiome diversity, and patient health (Jorth et al., 2019). While recent paired 

sputum-saliva sampling analysis indicates that oral sample contamination is not a substantial 

contributor to sputum microbiome profiles in people with established CF lung disease (Lu et al., 

2020), these conflicting hypotheses highlight the uncertainty in the role specific taxa present in 

sputum. 

In the current study, we side-step this causal inference problem and instead assess how 

expectorated sputum microbiome data (including potential oral contaminants) can predict patient 

lung health using a machine-learning framework. We hypothesize that the addition of non-

pathogen data improves the prediction of patient lung function, compared to established pathogen 

data alone. To address this hypothesis we train predictive models on both lung microbiome and 

electronic medical record data for a cohort of CF patients. We find that compared to the 
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benchmark of pathogen data alone, model performance was consistently improved by the addition 

of non-pathogen taxa.  

 

Table 2.1. Summary of patient clinical data, stratified by lung function. Lung function 
classes are defined as follows: Normal (ppFEV1 > 80); Mild (60 < ppFEV1 < 80); Moderate (40 
< ppFEV1 < 60); and Severe (ppFEV1 < 40). Quantitative metrics are reported using the median 
and ranges. *Median reported values. **Two patients did not have reported HbA1c values. 
Significant differences between lung function categories tested by ANOVA, p-values shown. BC: 
Burkholderia, AX: Achromobacter, STE: Stenotrophomonas 
 

 Severe Moderate Mild Normal  P 
N 14 25 15 23  
ppFEV1*  
      (RANGE) 

32.9 
(19.7-39.2) 

46.5  
(40.8-59.6) 

74.9  
(61.6-79.8) 

101.2  
(80.4-119.5) 

 

Age* 
      (RANGE) 

31.5 
(21-61) 

32 
(10-63) 

24 
(17-51) 

20 
(9-66) 

0.007 

Male 6 11 7 11  
CFTR Genotype      
      Homo-dF508 5 12 7 13  
      Hetero-dF508 9 10 8 10  
      Other/other 0 0 3 0  
BMI*  
      (RANGE) 

19.43  
(16.27-25.69) 

20.73 
(16.70-29.81)  

22.23 
(19.38-26.07) 

21.51 
(16.65-33.91) 

0.094 

CF-related diabetes  
      (%) 

11 
(78.6) 

14 
(56.0) 

8 
(53.3) 

6 
(26.1) 

0.015 

HbA1c* 
      (Range) 

6.25 
(5.3-11.9) 

5.9** 
(4.9-8.4) 

5.7 
(5.0-7.6) 

5.5 
(5.1-7.1) 

0.009 

Clinical Micro      
       PA (%) 10 (71.4) 20 (80.0) 10 (66.7) 5 (21.7) <1.1e-4 
       SA (%) 8 (57.1) 12 (48.0) 10 (66.7) 16 (69.6) 0.454 
       MRSA (%) 4 (28.6) 6 (24.0) 6 (40.0) 4 (17.4) 0.486 
       BC (%) 0 (0.0) 1 (4.0) 1 (6.7) 0 (0.0) 0.553 
       AX (%) 3 (21.4) 1 (4.0) 0 (0.0) 2 (8.7) 0.147 
       STE (%) 0 (0.0) 1 (4.0) 3 (20.0) 2 (8.7) 0.191 
16S metadata      
       % pathogen 0.857 0.589 0.532 0.195 9.05e-5 
       % Non-pathogen 0.135 0.404 0.597 0.783 3.01e-5 
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Figure 2.1. CF lung microbiomes are dominated by oral anaerobes and opportunistic 
pathogens We analyzed CF sputum expectorate (N=77) using 16S sequencing and an in-house 
QIIME 2-based bioinformatics pipeline to resolve strain-level OTUs. Samples were rarefied to 
17000 reads. We identified 217 OTUs across 59 genera and at least 81 species. Overall, we find 
that CF sputum samples are dominated by oral anaerobes and opportunistic pathogens. a) 
Sequences mapped to 14 genera comprised 90% (red line) of the total reads obtained. 95% (blue 
line) of all reads mapped to 21 genera. Total cumulative read fraction represented in shaded 
region. Pseudomonas was the most prevalent genus, followed by Streptococcus and Veillonella. 
b) Binning reads by sample shows variation in relative abundance. Pseudomonas comprises 
>10% of reads in the majority of our samples. While over 6% of the total reads mapped to 
Achromobacter, only 4 samples were comprised of >10% Achromobacter. 
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2.3 Results 

2.3.1  Clinical and microbiome data summary 

 In total, we obtained sputum expectorates from 77 CF children and adults. Pulmonary 

function, measured by percent predicted forced expiratory volume in 1 second (ppFEV1), was 

stratified into four categories from Severe to Normal. A summary of patient information is 

presented in Table 2.1. As expected, increasing age correlated with worsening lung function 

(ANOVA; p < 0.01). Culture-based detection of Pseudomonas aeruginosa correlated with 

decreasing lung function (ANOVA; p<0.001), as did (log-scaled) bacterial load (p < 0.05).  

The majority (>90%) of reads from our sequencing analysis mapped to one of 13 genera 

(Fig 2.1a), consisting of both recognized CF pathogens (red) and orally derived bacteria (black). 

Pseudomonas sequences accounted for 30.4% of all reads, and were detected in every patient 

sample. Other established CF pathogens (Staphylococcus, Achromobacter, Haemophilus, and 

Burkholderia) collectively represented 19.3%, while oral taxa account for over 45% (Fig 2.1). 

Total pathogenic and non-pathogenic taxa abundance were both found to vary significantly (p << 

0.001) with lung function (Table 2.1). 

 

2.3.2 Microbiome Composition Varies with Lung Function 

 We analyzed microbiome compositions across broad lung function categories to examine 

the relationship between sputum taxonomic profile and patient health. Figure 2.2a highlights the 

relative compositions of six canonical CF pathogens. As expected, Pseudomonas was more 

prevalent in lungs with reduced function, whereas in normal lungs Haemophilus and non-

pathogen taxa (gray) were more prevalent. The non-pathogenic composition is consistently 

dominated by Veillonella and Streptococcus regardless of lung health or pathogen status (Fig 

2.2b). Shannon diversity calculated with all taxa present is significantly greater for normal lung 

function (p<0.01, Fig 2.S1a), in line with multiple other studies (Carmody et al., 2013; Flight et 

al., 2015). While Principle Coordinate Analysis (PCA) did not qualitatively separate 
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compositions by lung function category, we found ppFEV1 was significantly associated with 

microbiome composition (Mantel test, r=0.195, p<0.001, Fig 2.S1b).  

 

 

Figure 2.2. CF Lung microbiome composition varies with lung function and pathogen 
dominance. Relative abundances of (a) 6 canonical CF pathogens and (b) other taxa (the grey bar 
taxa in (a)). Microbiome compositions grouped by disease severity, classified by ppFEV1 score: 
normal (80+), mild (60-80), moderate (40-60), and severe (<40).  
 

2.3.3 Integrating microbiome and patient meta-data 

To examine multiple confounding variables such as patient age, BMI or CF-related 

diabetes (CFRD), we calculated Spearman correlations across 14 microbiome, 11 patient 

metadata, and 6 clinical microbiology features (Fig 2.3). Hierarchical clustering reveals a 

complex autocorrelation structure, but with many expected consistencies. Overall, there are two 

main clusters of correlated variables. One correlated with ppFEV1, and included Shannon 

diversity index as well as 16S quantitation of Fusobacterium, Haemophilus, and Neisseria. The 

other anticorrelated with ppFEV1, and included ppFEV1 decline, pathogen abundance, CFRD 

and 16S quantitation of Pseudomonas and Achromobacter. Unsurprisingly, FEV1 and ppFEV1 

cluster together and are inversely correlated with ppFEV1 decline rate (an average per year loss 

in ppFEV1 since birth). Additionally, 16S results for Pseudomonas, Staphylococcus, 
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Burkholderia, and Achromobacter cluster with their respective culture-based clinical 

microbiology results. This does not hold for Stenotrophomonas, potentially due to its infrequent 

detection. 

 

Figure 2.3. Lung function varies with patient meta-data. Spearman correlations (R::corrplot) 
across all patient metadata (blue), clinical micro results (maroon), and microbiome data (orange, 
clr-transformed) reveal a complex correlation structure. We used a centered-log transform on 16S 
data to mitigate compositional effects. Rows and columns were ordered by hierarchical 
clustering, which identified clusters of metadata and microbiome variables with similar 
correlation patterns. 
 

2.3.4 Dimensionality Reduction 

The correlation matrix in Figure 2.3 highlights the statistical challenges for identifying 

meaningful lung function predictors. Such challenges include high between-feature correlations 
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and relatively few independent patient observations (N=77) compared to the initial number of 

available predictors (86 total, including 59 bacterial taxa). To mitigate this dimensionality 

problem, we first restrict our microbiome analysis to only the top 23 genera in our dataset. These 

top 23 encompass 97% of the total sequenced reads (Fig 2.1). We also calculate three additional 

summary statistics: % pathogen, % oral taxa, and Shannon diversity. As our clustering analysis 

shows reasonable agreement between clinical microbiology detection and rDNA sequencing, we 

exclude the binary detection results in favor of 16S quantitation. To address compositionality of 

16S data, we incorporate total bacterial load (universal 16S primer qPCR) as a predictor. In 

addition, we use a centered log-ratio (clr) transform on our genus-level relative abundance data 

before standardizing to mean zero, unit variance inputs. We refer to this final combination of 

metadata and 16S data as our “All Features” dataset. 

 

2.3.5 Training Machine Learning Models 

To assess if non-pathogenic taxa contain informative biomarkers, we split our samples 

into 53 training and 24 testing samples. ElasticNet was used to train predict lung function while 

performing feature selection (see methods, Fig 2.4). We expect that the addition of patient 

metadata (age, BMI etc) will improve our ability to predict lung function given the progressive 

nature of CF. Our null hypothesis, following the work of Jorth et al. and others(Goddard et al., 

2012; Jorth et al., 2019) is that the taxa targeted by clinical microbiology provide adequate 

explanatory basis for lung function outcomes, and that the addition of non-pathogen 16S data will 

not improve model predictions.  

We test this hypothesis by generating four additional feature subsets (CF Pathogens, All 

16S Data, Metadata, and Metadata + Pathogens) and comparing the performance of models 

trained on each datasets. Initial-pass, non-bootstrapped model training results are shown in 

Figures 2.S2 and 2.S3.  
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Figure 2.4. Machine Learning Overview. Machine learning models are trained on different 
input data tables using varying data resampling methods. (a) Features are categorized by 
information source (microbiome or patient metadata). The 16S data is further split into pathogens 
and other taxa in agreement with Figure 2.2. We use elastic net regularization to select 
informative features that predict ppFEV1. (b) We randomly selected 24 patient samples to 
withhold as a test set and train our models on the remaining 53 samples. To assess overfitting, we 
use leave-one-out cross validation on our training set. (c) We additionally implement 1000-fold 
bootstrap resampling to assess the robustness of our model fits. 
 

2.3.6 Model Generalizability 

We assess overfitting using leave-one-out cross-validation and compare the prediction 

error across folds against the test set error. For model robustness, we use 1000-fold bootstrap 

resampling to fit both a baseline and ensemble of models. Robust features selected by the baseline 

model will also be selected by a large portion of the bootstrapped ensemble. We additionally 

standardize all features (mean=0, S.D.=1) to allow for cross-feature comparability. As an 

additional point of comparison, we generate a non-informative control dataset from the All 
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Features set using within-feature shuffling, scrambling between-feature correlations while 

preserving the mean zero, unit variance within-feature structure. Figure 2.5 shows the results of 

our baseline (black points) and ensemble (boxplots) approaches.  All models using patient 

metadata or microbiome data outperform the negative control.  

 

 

Figure 2.5. Bootstrapped ElasticNet-identified predictors of lung function. ML models were 
trained using varying input datasets. a) 1000-fold bootstrapping and b) leave one out cross-
validation (LOOCV) were used to generate prediction error (MSE) ranges across feature subsets. 
Models trained on all of the data show lower error compared to other feature subsets. Adding 16S 
pathogen quantitation decreases model error. Models trained on all 16S data outperform models 
using only 16S quantitation (p < 0.01, t test). Regardless of input features, models trained on the 
full sample set (black points) are greater than median LOOCV MSEs (boxplots). c) Coefficient 
ranges for train/test (black points) and bootstrapped models (boxplots) trained on standardized 
input datasets (blue: metadata, orange: 16S pathogens, yellow: 16S other taxa) show consistency 
between both machine learning strategies. Both cases select Pseudomonas and Achromobacter as 
negative predictors.  
 

2.3.7 Addition of non-pathogen data improves model performance 

To address the key question of relative model performance, we find that the addition of 

non-pathogen taxa significantly improves performance (significantly reduces bootstrapped MSE; 
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Fig 2.5a), with or without the addition of patient meta-data. Models trained on all 16S 

quantitation significantly outperform models trained only on pathogen quantitation. Interestingly, 

while microbiome-only and metadata-only models achieve comparable performance, the 

combined model achieves greater model performance. Looking broadly across models, we find 

reasonable consistency in positive and negative predictor selection between our baseline and 

bootstrapped models (Fig 2.S4).  

We find multiple features selected across all training sets. Pseudomonas, Achromobacter, 

age, and diabetic status are consistently selected as negative predictors, while Haemophilus, 

Fusobacterium, Rothia, oral taxa abundance, and BMI are consistently positive predictors. All 

informative features selected in the independent models (Fig 2.S4c) were also selected in the All 

Features model (Fig 2.S4g). A small subset (< 50%) of the bootstrapped models also selected a 

handful of oral taxa, bacterial load, and CFTR mutation type as positive predictors of lung 

function (Fig 2.5c, gray boxplots). However, a majority of bootstrapped models and the train/test 

model did not select these as informative features.  

As an additional check against overfitting, we obtain ranges of model errors (measured 

by mean squared error of predicted ppFEV1 values) using leave-one-out cross validation (Fig 

2.5b).  We do not find significant differences between cross-validated model errors across our 

training sets, suggesting that despite the difference in number of available predictors, our models 

are not overfitting.  

 

2.4 Discussion 

Individuals with CF face the challenge of managing long-term chronic infections. Current 

respiratory management practice is driven by clinical microbiology identification of specific 

pathogens in throat cultures or expectorated sputum samples, alongside measures of respiratory 

status (changes in symptoms, signs, and/or lung function). In the current study, we used 16S 

sequencing to assess sputum microbiome content more broadly and ask whether the addition of 
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non-pathogen taxa improves our ability to predict patient lung health, with or without the 

inclusion of patient health data. To address this question, we applied machine learning tools to an 

integrated 77 patient lung microbiome and electronic medical record dataset. Our analysis 

revealed that the addition of non-pathogen data improves prediction of patient health, with the 

most accurate models selecting patient metadata, pathogen quantitation, and non-pathogen 

information. Our inclusive ‘all data’ models additionally point to a predictive role for specific 

non-pathogen taxa, in particular the oral anaerobe genera Rothia and Fusobacterium.  

Despite the significant contribution of non-pathogen data, our results are still broadly 

consistent with what might be termed the ‘traditional’ view of CF microbiology. Established CF 

pathogens (P. aeruginosa, S. aureus, H. influenzae, B. cenocepacia) are the major drivers of 

patient outcomes, as evidenced by substantial improvement in predictive outcomes whenever we 

include pathogen data (Fig 2.5a), and by comparison, the relatively weak contribution of the 

addition of non-pathogen taxa. Note that we specifically use quantitative 16S measures of 

pathogen composition to provide a level playing field in the comparison of pathogen and non-

pathogen predictive contribution. Figure 2.3 highlights that quantitative 16S and qualitative 

(presence/absence) clinical microbiology data are in general agreement.  

The traditional role of CF pathogens as the central predictors of patient outcomes has 

been challenged over the past decade by the advent of microbiome sequencing. Extensive surveys 

have documented an association between CF lung function and microbiome diversity, also 

evident in the current study (Fig 2.2). At face value, these results suggest a biological role for 

these non-pathogen taxa, potentially competing with (Quinn et al., 2016) or facilitating (Flynn, 

Niccum, Dunitz, & Hunter, 2016) pathogen taxa and therefore indirectly shaping disease 

outcomes. Jorth et al. recently published a forceful rejection of this ‘active microbiome’ view, 

stressing the potential causal role of changing pathogen densities in shaping disease outcomes and 

viewing shifting diversity metrics as a simple statistical ‘relative composition’ artifact of shifting 

pathogen numbers against a roughly constant oral contamination background (Jorth et al., 2019). 
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While our analyses provide some support for this view, in particular the constancy of the non-

pathogen microbiome across patients (Fig 2.2b) and the lack of substantial predictive 

improvement on addition of non-pathogen data (Fig 2.5b), we also see lines of evidence against 

the contamination hypothesis. First, our use of center log transformations mitigates the risk of 

spurious associations due to compositionality (refs) and yet non-pathogen taxa are still 

consistently retained. Second, the contamination hypothesis predicts total bacterial burden to be 

an important predictor, and yet burden was not retained in our models. Third, our observation of a 

consistent retention of specific non-pathogen taxa across multiple models (with and without the 

addition of potentially confounding EMR features, including age and BMI) points to the potential 

for a distinct causal pathway that is orthologous to age or BMI. We note that the interpretation 

that oral bacteria are active players in the lung environment is further buttressed by a recent study 

on people with established CF disease (Lu et al. 2020) that used paired sputum and saliva samples 

to infer the presence of substantial populations of oral bacteria in the lung.  

Our ‘all data’ models highlight Rothia and Fusobacterium as positive predictors of lung 

function across our 77 patients, in models that already take into account pathogen data. When we 

include features already known to correlate with lung health, such as age, BMI, and CFRD status, 

our models not only these features, but additionally retain Rothia and Fusobacterium as positive 

predictors. The retention of these specific taxa in both this full model and in partial models (Fig 

2.S4) suggests that these taxa provide potentially valuable predictive information on current 

patient health. Of course, this analysis does not allow inference to causal mechanism or even 

direction of causality. It is entirely possible that these taxa are simply bio-markers of dimensions 

of improved health that are largely independent of age, BMI, and other established positive 

predictors that are already accounted for in the model. It is also possible that these specific taxa 

play a more active causal role, for instance holding specific pathogens at bay via competitive 

interspecific mechanisms (McNally & Brown, 2015). 
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 Interestingly, our All Features models also highlight Haemophilus, a canonical CF 

pathogen, as a positive predictor of lung function. Haemophilus influenzae infections are most 

common in younger CF patients (Bals et al., 1999; Bogaert et al., 2011), hence we would expect a 

positive association in a model that is not controlled for age (Fig 2.S4c, S4d). However we see 

that the positive weighting on Haemophilus is retained in models that also account for age as a 

positive predictor of lung function. A second possibility is that the positive weighting of 

Haemophilus is due to pathogen-pathogen competition and the relatively less severe nature of 

Haemophilus infections in adults (i.e., Haemophilus is ‘best of a bad job’). Figure 2.2a illustrates 

that we only appreciably detect two and rarely three coexisting pathogens of the six we find 

across all patients. The relative scarcity of multi-pathogen communities implies that Haemophilus 

presence coincides with the absence of other more severe pathogens – and indeed we see a 

dominance of negative correlations among pathogens (Fig 2.3). In this context we cannot 

preclude a protective role of Haemophilus against more severe pathogens in older patients. 

 A caveat of this analysis is the dependency of machine learning performance and 

robustness on particular distributions of data, and the failure of linear algorithms such as LASSO 

and ElasticNet on microbiome-like data (Banerjee, Garai, Mallick, Chowdhury, & Chatterjee, 

2018; Leng, Tran, & Nott, 2014; Rush, Lee, Mio, & Kim, 2016). This is in part due to the 

compositionality constraint of microbiome data, which can be mitigated by using absolute 

quantitation (Jian, Luukkonen, Yki-Jarvinen, Salonen, & Korpela, 2018). However, training on 

absolute abundances introduces additional caveats, as order-of-magnitude differences in qPCR 

sample quantitation can in turn over-represent samples with higher bacterial loads. We address 

these issues by using a centered-log transform on relative abundance data and including log-

scaled bacterial load as a potential feature to select. While some bootstrapped models selected 

bacterial load as a positive predictor (Fig 2.5c), the majority of models did not. This further 

suggests that the majority of microbiome information is encoded in the relative ratios of taxa 
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abundance, which is broadly consistent with previous findings (Goddard et al., 2012; Jorth et al., 

2019). 

 Finally, our study is limited to a cross-sectional analysis, limiting us to making 

predictions on lung function state at the same time-point as microbiome sample and patient 

medical record collection. Assessing and refining our predictive machine learning algorithms on 

subsequent lung function data is an important future goal. Our primary objective is to predict 

future disease states and preemptively identify patients in need of medical intervention using 

early warning microbiome markers. To this effect, we plan to continue our analysis on a cohort of 

patients across time to evaluate predictive capacity for future health status. 

We note that the major predictors identified in our models have been identified in various 

studies, and taken piecemeal there is less insight. The value of this work lies in the systematic 

integration of these multiple data sources (from both EMR and microbiome data sources). Our 

model comparisons (with / without EMR predictors) allow an assessment of the impact of oral 

bacteria, with and without key potential confounds. Ignoring these confounds could lead to 

spurious retention of microbiome taxa that correlate strongly with e.g. age or BMI. In addition, 

our analyses allows assessment of disparate factors on a common predictive scale – indicating for 

example that the impact of 1 standard deviation shift in Fusobacterium abundance is comparable 

to a 1 S.D. shift in BMI. Our model comparison approach lends more confidence to the 

conclusion that the retained oral taxa are associated with patient outcomes via causal pathways 

that are largely independent of age or BMI, being robust to their presence or absence in the 

predictive models. The research agenda of pursuing the nature of the causal pathways linking oral 

bacteria in the lung with patient outcomes is now on a firmer footing as a result of our study. 

 In summary, our study finds that inclusion of non-pathogenic taxa significantly improves 

model prediction accuracy of patient health status. We identify two oral-derived taxa 

(Fusobacterium, Rothia) that are independently informative of lung function, which may be either 
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biomarkers or potential probiotics. Our results call attention to the potential predictive utility of 

oral microbes (regardless of their functional roles) in the clinical assessment of CF patient health. 

 

2.5 Methods 

2.5.1 Subjects 

All procedures performed in studies involving human participants were in accordance 

with the ethical standards of the institutional and national research committees.  Authorization 

was obtained from each patient enrolled according to the protocol approved by the Emory 

University Institutional Review Board (IRB00042577).   

 

2.5.2 Sample collection and 16S analysis 

Expectorated sputum samples were obtained from CF patients attending the Children's 

Healthcare of Atlanta and Emory University CF Care Center from January 2015 to August 2016.  

De-identified patient information including age, sex, height, BMI, CFTR genotype, degree of 

glucose control (HbA1c), and ppFEV1) were obtained (Table 2.1).  Among these CF patients, 39 

were diagnosed with CF-related diabetes patients (CFRD) by a CF endocrinologist.  HbA1c value 

was missing for one CFRD subject.  

All patients were clinically stable, defined as having no increase in respiratory symptoms 

compared to baseline, and no acute illness or new medication for three weeks prior to sputum 

collection. Upon collection, sputum samples were diluted 1:3 (mass:volume) with PBS 

supplemented with 50 mM EDTA.  Diluted samples were then homogenized by being repeatedly 

drawn through a syringe and 18-gauge needle.  The resulting sputum homogenates were aliquot 

and stored at -80 °C until all 77 samples were collected. Microbiology culture results were 

obtained for sputum samples sent to the Clinical Microbiology laboratory on the same day as 

samples for sequencing were collected. 
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DNA was purified from sputum homogenate with the MoBio Power Soil kit (MoBio, 

Carlsbad, CA).  The 16S V4 region was amplified and sequenced using Illumina MiSeq, yielding 

an average of 137,708 sequences per sample. Sequences were quality filtered and amplicon 

sequence variants were obtained using the QIIME2 deblur plugin. Taxonomic assignments were 

classified against both SILVA and Greengenes 16S reference databases and assigned based on 

highest taxonomic resolution. To mitigate compositional effects, 16S data were center-log 

transformed prior to all analyses. Nucleotides are uploaded to BioProject accession no. 

PRJNA666192. 

 

2.5.3 Statistical and Quantitative Analysis  

Patient samples were binned by ppFEV1 (Normal: >80%, Mild: 80-60%, Moderate: 60-

40%, Severe: <40%). Variance across lung function categories in patient metadata and 16S 

metadata was tested using ANOVA. Variation between microbiome composition and ppFEV1 

was tested using Mantel tests on Bray-Curtis distances at 9999 permutations. Within-sample and 

among-sample diversity was calculated using the Shannon diversity index and Bray-Curtis based 

PCoA on 16S quantitation agglomerated to the genus level (McMurdie & Holmes, 2013). 

Associations between continuous variables were tested using Spearman correlations. A full 

pairwise correlation matrix was calculated, with rows and columns ordered by hierarchical 

clustering (Wei et al., 2017). 

 

2.5.4 Machine Learning 

We use ElasticNet to fit regularized linear models predicting lung function (ppFEV1) 

from patient metadata, microbiome composition, and clinical microbiology results (Yuan, Ho, & 

Lin, 2011). ElasticNet solves a penalized linear regression model using a weighted average of L1 

(LASSO) and L2 (ridge regression) penalties. This limits over-fitting by penalizing non-zero 

coefficients. We split our samples using a simple 70:30 train-test holdout, where models are 
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trained on 53 samples and used to predict on the remaining 24. All input features were 

standardized (mean=0, S.D.=1) prior to model training to allow between-feature interpretability. 

From our full dataset, we create 4 additional data subsets: CF Pathogens, All 16S Data, Metadata, 

and Metadata + Pathogens. We include within-feature shuffling on the full set as a non-

informative negative control.  

We employ two methods to assess model robustness, and compare model performance 

using mean squared error (MSE). We generate 1000 bootstrap resampled sets from the training 

set and fit an ensemble of regularized linear models to obtain distributions for each model 

coefficient. We identify key metadata and taxa robustly selected (nonzero coefficients) across the 

ensemble of models. We assess model generalizability using leave-one-out cross-validation on 

the training set and compare resulting MSE ranges. 
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Chapter 3: Antibiotics drive expansion of rare pathogens in a chronic 

infection microbiome model2 

 

3.1 Summary 

Chronic (long-lasting) infections are globally a major and rising cause of morbidity and 

mortality. Unlike typical acute infections, chronic infections are ecologically diverse, 

characterized by the presence of a polymicrobial mix of opportunistic pathogens and human-

associated commensals. To address the challenge of chronic infection microbiomes, we focus on 

a particularly well-characterized disease, cystic fibrosis (CF), where polymicrobial lung 

infections persist for decades despite frequent exposure to antibiotics. Epidemiological analyses 

point to conflicting results on the benefits of antibiotic treatment yet are confounded by the 

dependency of antibiotic exposures on prior pathogen presence, limiting their ability to draw 

causal inferences on the relationships between antibiotic exposure and pathogen dynamics. To 

address this limitation, we develop a synthetic infection microbiome model representing CF 

metacommunity diversity, and benchmark on clinical data. We show that in the absence of 

antibiotics, replicate microbiome structures in a synthetic sputum medium are highly repeatable 

and dominated by oral commensals. In contrast, challenge with physiologically relevant antibiotic 

doses leads to substantial community perturbation characterized by multiple alternate pathogen-

dominant states and enrichment of drug-resistant species. These results provide evidence that 

antibiotics can drive the expansion (via competitive release) of previously rare opportunistic 

pathogens and offer a path towards microbiome-informed conditional treatment strategies. 

 

 
2 This chapter was adapted from the following reference: Varga, J. J., Zhao, C., Davis, J. D., Hao, Y., 
Farrell, J. M., Gurney, J. R., Voit, E., & Brown, S. P. (2021). Antibiotics drive expansion of rare pathogens 
in a chronic infection microbiome model. BioRxiv, 2021.06.21.449018. Reused with permission. John 
Varga, Jacob Davis, and I were joint primary authors of this work. 
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3.2 Introduction 

Physicians face two growing crises that impact their ability to treat bacterial infections.  

The first is widely recognized – the evolution of antibiotic resistance (Laxmin arayan et al., 2013). 

The second receives less attention – chronic (long-lasting) infections that are more difficult to treat 

(Filkins et al., 2015; Siddiqui et al., 2010; Young et al., 2002).  Chronic infections are globally a 

rising burden on health-care systems due to increases in populations at risk (e.g., the elderly, 

people with diabetes or other chronic diseases) (Guest et al., 2017). At-risk populations have 

deficits in host-barrier defenses and/or immune function that provide an opening for the 

establishment of infections, and these chronic infections are further complicated by changes in 

pathogen growth mode (e.g., formation of multicellular biofilm-like aggregates (Bjarnsholt et al., 

2013; Darch et al., 2017; Kragh et al., 2014)) and development of complex multispecies 

communities (Stacy et al., 2016). 

 To address the global challenge of chronic infections, we focus on a particularly well-

characterized disease, cystic fibrosis (CF), where bacterial infections can persist for decades. CF 

is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an 

ion channel that conducts chloride and thiocyanate ions across epithelial cell membranes, leading 

to defective mucociliary clearance and polymicrobial infection (Henke & Ratjen, 2007; Perez-

Vilar & Boucher, 2004), resulting in eventual pulmonary failure (Surette, 2014; Yonker et al., 

2015).  

Traditionally, CF research and patient care have focused on a small cohort of 

opportunistic pathogens, highlighting a distinct successional pattern (CFF, 2019) characterized by 

peak prevalence of Haemophilus influenzae in childhood, Staphylococcus aureus during 

adolescence and Pseudomonas aeruginosa in adulthood. In addition to the core pathogen species, 

16S rDNA amplicon sequencing of expectorated sputum samples has revealed much more diverse 

communities including numerous bacteria that are considered non-pathogenic in CF and that are 

normally associated with oral and upper-respiratory environments (Filkins et al., 2012; Fodor et 
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al., 2012; Frayman et al., 2017; Huang & LiPuma, 2016; Lucas et al., 2018). The functional role 

of these non-pathogenic taxa in CF lungs is currently disputed (Caverly & LiPuma, 2018). 

Epidemiological analyses have identified potentially positive roles, as higher lung function 

correlates with higher relative abundance of oral bacteria in sputum samples from both cross-

sectional (Acosta et al., 2018; Coburn et al., 2015; Muhlebach, Zorn, et al., 2018) and 

longitudinal studies (Zhao et al., 2012). In contrast, in vitro experimental studies have suggested 

health risks of specific oral bacteria in the lung, due to the potential facilitation of pathogen 

growth (Adamowicz et al., 2018; Flynn et al., 2016). A third interpretation is that oral bacteria 

found in sputum are simply the result of sample contamination with oral microbes during 

expectoration (Goddard et al., 2012; Jorth et al., 2019). A number of approaches to address the 

sputum contamination issue have been taken, including mouth cleaning and sputum rinsing 

(Rogers et al., 2006), as well as more invasive sampling techniques (subject to clinical need 

(Hogan et al., 2016; Jorth et al., 2019; Muhlebach, Hatch, et al., 2018; Zemanick et al., 2015)). 

Most recently, computational analysis of paired sputum and saliva samples from adults with 

established CF lung disease has demonstrated that saliva contamination during sample collection 

has a minimal quantitative impact on the community profile (Lu et al., 2020).  

As a result of long-term bacterial infection, people with CF are exposed to high levels of 

antibiotics (Chmiel et al., 2014), both as maintenance therapy (Waters, 2018) and as treatment for 

exacerbations. In the context of a critical health challenge (an acute pulmonary exacerbation), 

health outcomes are variable – lung function can rapidly increase back to baseline values or 

remain at a new, lower baseline following antibiotic intervention. Unfortunately, a recent 

systematic review of 25 articles indicated little correlation between these variable clinical 

outcomes and antibiotic susceptibility test results for the target pathogen (Somayaji et al., 2019).  

Several factors for this disconnect have been proposed, including differences in bacterial 

physiology (Kidd et al., 2018), non-representative infection sampling (Darch et al., 2015; Jorth et 

al., 2015) and polymicrobial interactions (Waters et al., 2019). In a microbiome context, 
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epidemiological studies indicate variable outcomes of antibiotic treatment, ranging from minimal 

impact on microbiome structure (Cuthbertson et al., 2016; Fodor et al., 2012; Price et al., 2013) to 

target pathogen declines, microbiome structural changes (Hahn et al., 2019; Nelson et al., 2020; 

Smith et al., 2014; Zemanick et al., 2013) and risk of subsequent infection (Taccetti et al., 2012). 

However, there is a fundamental confounding factor in these epidemiological studies, as 

antibiotic exposures are themselves dependent on the microbiome state of the patient. 

Specifically, the detection of pathogens within the microbiome will dictate antibiotic choice 

(Morley et al., 2019). 

Here we seek to overcome this confounding impact of pathogen detection through the 

development and benchmarking of a clinically relevant experimental infection microbiome 

model. Using this model we seek to address a number of broad and overlapping questions 

concerning the determinants of infection microbiome structure: (1) Can a single experimental 

model generate multiple alternate infection microbiome states? (2) What are the impacts of 

independent pathogen and antibiotic manipulations on microbiome structure? (3) Can antibiotics 

drive pathogen expansion and community diversification, via competitive release? (4) Do 

antibiotics promote facilitatory species interactions? 

While most experimental polymicrobial models of CF have focused on two species 

pathogen interactions (Hotterbeekx et al., 2017; Limoli et al., 2017; Nguyen & Oglesby-

Sherrouse, 2016), some studies have developed up to 6-species models (Vandeplassche et al., 

2017; Vandeplassche et al., 2020). These more complex models have demonstrated that species 

antibiotic susceptibility is not impacted by community context (Vandeplassche et al., 2020), but 

their use of rich media (to facilitate single-species comparisons) raises the issue of relevance to 

the in vivo context of growth in sputum (Jean-Pierre et al., 2021). Our experimental approach 

begins with a “synthetic sputum” that recreates the biochemical and physical conditions of the 

sputum found in CF lungs (Palmer et al., 2005; Turner et al., 2015). We then add defined 

combinations of the 10 most abundant bacterial species on the meta-community scale: 10 species 
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that together account for over 85% of the observed bacterial diversity within the CF lung in a 77 

person cohort (Zhao et al., 2020). Five of these species are established human pathogens (S. 

aureus, P. aeruginosa, H. influenzae, Burkholderia cenocepacia, and Achromobacter 

xylosoxidans), while the rest are oral microbes frequently found in CF lungs. To underline that 

our 10 bacterial species model captures observed CF diversity at the meta-community (multi-

patient) scale, we refer to this model as the CF meta-community model (see schematic Fig 3.1). 

We hypothesize that this single experimental model can self-organize into multiple alternate 

community states that approach the diversity of microbiome states observed across individuals 

with CF.  

 
Figure 3.1 Schematic outline of the CF meta-community approach. All experiments are 
derived from a 10 species menu that captures the majority of CF microbiome diversity across a 
cohort of 77 people with CF (Zhao et al., 2020), and is consistent with microbiome content across 
the CF literature (Acosta et al., 2018; Coburn et al., 2015; Filkins et al., 2012; Fodor et al., 2012; 
Frayman et al., 2017; Huang & LiPuma, 2016; Lucas et al., 2018; Muhlebach, Zorn, et al., 2018; 
Zhao et al., 2012). The 10 species meta-community is exposed to 10 treatments (in 5x 
replication), propagated for 5 serial passages. The experimental design results in 250 individual 
synthetic microbiome observations.  

 

Replicate communities are cultured anaerobically to capture oxygen-depleted conditions 

within mucus plugs (Cowley et al., 2015; Kolpen et al., 2010; Worlitzsch et al., 2002).  We show 

that under our in vitro model infection conditions, oral bacteria form stable communities that 

suppress the growth of multiple pathogen species, and this competitive suppression is reduced by 

controlled antibiotic exposures, leading to multiple alternate pathogen-dominant outcomes, the 

emergence of facilitatory species interactions and the non-evolutionary enrichment of antibiotic 

resistance.  
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3.3 Results 

3.3.1 In the absence of antibiotics, commensal anaerobes dominate over CF pathogens 

Experiments performed in the absence of antibiotics demonstrated a consistent and 

reproducible community structure, characterized by population expansion during the initial 48 h 

and a composition primarily consisting of P. melaninogenica, H. influenzae, and V. parvula (Fig 

3.2). At 48 h, the total bacterial density averaged about ~7.7×106 CFU/ml (+/- 2.0×106 SD), 

which falls within the broad range of reported bacterial densities in sputum in clinical studies 

(typically between 104 and 109 CFU/ml (Tunney et al., 2008; Wong et al., 1984; Zhao et al., 

2020)). From passage 3 onwards, each replicate showed a high degree of stability through time, 

both in terms of total abundance and relative composition. Across replicates, we also see a 

striking convergence in microbiome structure. To assess consistency across the 5 replicates, we 

calculated coefficients of variation (CV = standard deviation / mean) for each species’ total 

abundance, all showing under-dispersion (i.e. standard deviation less than the mean, with an 

average species CV of 0.46 at end of the experiment, see Fig 3.S1), consistent with stabilizing 

ecological forces limiting variation in species densities across replicates.  
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Figure 3.2.  Five-fold replicated synthetic CF microbiomes converge toward a single stable 
state in the absence of antibiotic perturbations. 5 replicate synthetic microbiomes were grown 
anaerobically in artificial sputum medium. The community composition was estimated by 16S 
rDNA amplicon sequencing at time zero and at every two-day passage (x-axes) into fresh 
medium (10% transfer of 2 ml culture volume).  The colored bars represent relative abundance of 
each species in the community (left y-axis), while the black line represents the total bacterial 
abundance per mL (right y-axis, log scale). Each panel represents a separate replicate experiment. 
Strain information is provided in Table 3.1 (our default P. aeruginosa strain is mucoid PDO300). 
 

The results in Figure 3.2 point to a robust community structure in the absence of 

perturbations, consistent with the frequent dominance of oral bacteria in individuals with higher 

lung function but far from capturing the diversity of microbiome structures observed across the 

broader CF community, in particular our results do not recapitulate the common observation of 

variably pathogen-dominated microbiomes (Coburn et al., 2015; O'Neill et al., 2015; Zemanick et 
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al., 2015; Zhao et al., 2020; Zhao et al., 2012). To assess the role of variable pathogen strain 

identity or presence / absence, we repeated the experiments in Figure 3.2 with wildtype (non-

mucoid) PAO1, and also with variation in the presence or absence of S. aureus. In light of 

previous experimental work demonstrating that single-locus changes impacting biofilm 

phenotypes (like mucoidy) can have dramatic community ecological impacts exceeding the 

impact of species removal (McClean et al., 2015), we hypothesized that the presence/absence of 

mucoidy would generate substantial community shifts, exceeding removal of S. aureus and/or P. 

aeruginosa. In contrast to this hypothesis, we found very small quantitative variations in 

community structure under all pathogen manipulations (Fig 3.3), and no support for the 

prediction of a greater impact of mucoidy versus species removal (Table 3.S1). Across all 

pathogen treatments we observed overall the same qualitative pattern as in Figure 3.2 with 

consistent dominance by H. influenzae, P. melaninogenica, and V. parvula (Fig 3.3, Figure 

3.S2).  

 

3.3.2 Antibiotics skew community structure toward pathogen expansion and dominance  

Having established the repeatability and stability of the community in the absence of 

antibiotics, we then assessed the impact of antibiotic treatment on community structure. To test 

our hypothesis that antibiotic exposure will induce substantial community perturbations, 

communities were continually challenged with 3 individual antibiotics and 2 pairs commonly 

used in the CF clinic (tobramycin, meropenem, ciprofloxacin, tobramycin and meropenem, 

tobramycin and ciprofloxacin) (Chmiel et al., 2014; Doring et al., 2012) in physiologically 

relevant concentrations (Cipolla et al., 2016; Kuti et al., 2004; Moriarty et al., 2007; Ruddy et al., 

2013; Wenzler et al., 2015).  Consistent with our hypothesis, antibiotic exposures resulted in 

dramatically different outcomes across treatments and replicates, compared to the antibiotic free 

communities (Fig 3.4, S1). To quantify community-scale impacts of antibiotic perturbations 

(compared to to the no antibiotic control treatment, Figure 3.2) we use the analysis of similarity 
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(ANOSIM) R metric, revealing significant impacts on community structure, exceeding the 

impacts of pathogen treatments (Fig 3.S3). Antibiotic effect sizes range from modest impacts of 

tobramycin (mirroring clinical data (Heirali et al., 2020; Nelson et al., 2020) to substantial 

impacts for treatments involving meropenem.  

 

 
Figure 3.3. Varying the pathogen composition has minimal impact on community 
composition. Each panel represents the average of 5 replicates in the absence of antibiotics, the 
mucoid PA with SA panel is the average of Figure 3.1. Figure details are the same as described 
for Figure 3.1.  Data on individual replicates per treatment are presented in Figure 3.S2.  Mucoid 
and non-mucoid PA = P. aeruginosa strains PAO1 and PDO300, respectively.  SA = S. aureus.  
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Figure 3.4.  Antibiotic treatments produce large community fluctuations and alternative 
community states.  Columns represent distinct antibiotic treatments (the first ‘no antibiotics’ 
control column is reproduced from Figure 3.1), rows represent 5 replicates. The left axes 
measure community composition (bar charts), the right axes measure total bacterial abundance 
per mL (black lines). Experimental procedures, sampling, and analysis were performed as 
described in Figure 3.1.  Fresh antibiotics were re-supplemented at each passage. Total 
abundance data by species is presented for each treatment and timepoint in Figure 3.S3.  
 

The compositional presentation in Figure 3.4 highlights that the same antibiotic 

treatment often leads to distinct pathogen dominance across replicates. For example, under 

meropenem 4 out of 5 replicates result in persistent S. aureus dominance, while one replicate 
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shows persistent B. cenocepacia dominance. One possibility is that these distinct endpoints 

represent alternative stable states, implying stabilizing ecological forces sending separate 

replicates towards B. cenocepacia dominance (and S. aureus absence) or S. aureus dominance 

(and B. cenocepacia absence), dependent on fluctuations in initial conditions (Estrela et al., 

2022). To further investigate this claim, we turn to taxon absolute abundance data to test the 

‘alternative stable states’ prediction of a negative correlation between B. cenocepacia and S. 

aureus absolute abundances, across replicates. Figure 3.S4 presents absolute abundance data for 

each taxon, treatment and replicate through time. Under the meropenem data (Fig 3.S4C) we can 

see substantial variation in the final abundance of B. cenocepacia and S. aureus (see also Figure 

3.S1). However, across final abundances of these two taxa, there is no negative correlation 

between the absolute density of B. cenocepacia and S. aureus (Pearson’s correl coeff = 0.026, p = 

0.967). Under the meropenem/tobramycin treatment we see a similar pattern of variable 

dominance between A. xylosidans and B. cenocepacia (see Figs 3.4, 3.S1 and 3.S4F), but again 

no negative correlation across replicates in final absolute abundances (Pearson’s correl coeff = 

0.310, p = 0.611). In light of this analysis, our data rules against alternative stable states, and 

indicates that the variable dominance across replicates under drug exposure is a result of relaxed 

ecological regulation resulting in increased cross-replicate noise.  

Figure 3.4 indicates large shifts in response to antibiotic treatments, but compositional 

analysis alone cannot separate the relative importance of differential survival versus differential 

expansion. Using absolute abundances (Fig 3.S4), we can now test whether pathogens undergo 

competitive release (expansion, following removal of competitors (Aspenberg et al., 2019; de 

Roode et al., 2004; Wale et al., 2017)) in response to antibiotic exposure, by assessing whether 

the final pathogen density is greater in the presence of antibiotic compared to its absence (Fig 

3.5). Comparing densities in the presence/absence of antibiotics, we find evidence for significant 

and substantial (>100-fold in some replicates) antibiotic-dependent amplification via competitive 

release of S. aureus, B. cenocepacia and A. xylosoxidans under specific antibiotic exposures (Fig 
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3.5). In contrast, there is evidence of significant suppression of H. influenzae and P. aeruginosa 

in all antibiotic treatments (Fig 3.5; two-tailed Wilcoxon test, p < 0.01), together with N. subflava 

in all treatments as well as V. parvula and P. melaninogenica in all meropenem treatments (Fig 

3.S5).  

 

3.3.3 Antibiotic susceptibility explains community composition on a functional scale, but not 

on a taxon scale. 

The simplest hypothesis to account for the substantial impacts of antibiotic exposures on 

community structure (Figs 3.4, 3.5, 3.S4) is that antibiotics present a survival filter through which 

only resistant organisms can pass. Under this model, the community structure after antibiotic 

treatment is simply the product of whether or not each taxon can grow in the antibiotic (s) 

administered.  

To assess the survival filter hypothesis, we derived antibiotic susceptibility measures 

(minimal inhibitory concentrations, MICs) under standard growth conditions that allowed the 

more fastidious strains to grow independently (Table 3.S2) and used these data to predict 

experimental responses to defined antibiotic exposures (Fig 3.6). Figure 3.6 illustrates that the 

drug susceptible P. aeruginosa lab strain PDO300 behaves as predicted by the survival filter 

hypothesis – it is present in the absence of treatment but then absent (average relative abundance 

is <1%) in the presence of antibiotics. The same is true for H. influenzae.  
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Figure 3.5. Absolute pathogen densities are variable and often increased under antibiotic 
exposures. Each dot corresponds to the fold-change difference of an individual replicate of 
species-specific final time-point absolute density under defined antibiotic treatments, compared to 
the mean value of the no antibiotic control (data redrawn from Figure 3.3). Mer = meropenem, 
cip = ciprofloxacin, tob = tobramycin. Asterisks denote significantly higher final densities in 
presence of antibiotic, compared to antibiotic-free controls (competitive release; one-tailed 
Wilcoxon test * p < 0.05, ** p < 0.01). 
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Figure 3.6. Antibiotic resistance testing does not consistently predict species 
presence/absence in a community context. For each species / drug combination, we assessed 
predicted survival (MIC in rich medium (Table 3.S2) > experimental concentration) and observed 
survival (relative abundance of at least 1% averaged across all five replicates at the final time 
point (Fig 3.4)). True positive cases (predicted and observed present) are coded in grey, true 
negatives (predicted and observed absent) in white. False positives (predicted present, observed 
absent – evidence for competition) are in red, and false negatives (predicted absent, observed 
present – evidence for facilitation) are in blue. Species order was determined through clustering 
via stringdist (van der Loo, 2014). In the discussion we address the caveat that single species MIC 
measures are taken under distinct growth conditions.  
 

However, for multiple examples the ability to resist antibiotics (in a standard clinical 

assay (European Committee for Antimicrobial Susceptibility Testing of the European Society of 

Clinical & Infectious, 2003; McKenney et al., 2012)) did not predict the presence / absence of the 

species after treatment. In red, Figure 3.6 displays cases where the species was predicted to be 

present (given MIC resistance data, Table 3.S2), but was nevertheless absent in the final 

community. This pattern is suggestive of an additional role for microbe-microbe competitive 
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interactions in shaping community structure, and was observed for 6 of the 10 taxa, and most 

often in the absence of antibiotics. Conversely, blue regions in Figure 3.6 identify cases where 

the pathogen was predicted from MIC data to be unable to grow in the allocated antibiotic, and 

yet was present in the multi-species community experiment in at least 1 community. This pattern 

is indicative of antibiotic-dependent faciliatory interactions, where other species aid the focal 

species to survive under antibiotic insult, for example via antibiotic detoxification (Brook, 2004; 

Brook et al., 1983; Dugatkin et al., 2005; Estrela & Brown, 2018; Hackman & Wilkins, 1975; 

Tacking, 1954).  

To assess the role of antibiotic-dependent facilitation, we focus on the meropenem 

treatment (far right column, Fig 3.6), which indicates that the ability of S. aureus to grow in an 

otherwise lethal dose of meropenem is due to facilitation by B. cenocepacia. B. cenocepacia 

encodes multiple β-lactamase enzymes (Holden et al., 2009) that are potentially capable of 

degrading meropenem and therefore enable S. aureus to grow in this environment.  To test the 

facilitation hypothesis, we culture B. cenocepacia and S. aureus alone and in co-culture (using 

rich media to allow monoculture comparisons), in both the presence and absence of meropenem 

(Fig 3.7). In monoculture we find that S. aureus growth is limited by meropenem (paired one-

tailed t-test on S. aureus final density +/- meropenem, p = 0.003), consistent with MIC data 

(Table 3.S2). In contrast in co-culture we find that S. aureus growth in meropenem is rescued by 

co-culture with B. cenocepacia (paired one-tailed t-test on S. aureus final density in meropenem, 

+/- B. cenocepacia, p = 0.020), consistent with antibiotic-dependent facilitation.  
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Figure 3.7. S. aureus growth in meropenem is facilitated by co-culture with B. cenocepacia. 
Experiments were conducted in rich media (TSYE broth) in room air, in the presence or absence 
of 10 μg/ml meropenem and for each species either grown alone (mono-culture) or together (co-
culture) in a 96 well plate with hourly shaking. At zero and 48 hours, cells were serially diluted 
and plated at concentrations of 10-2 to 10-7 onto either Mannitol Salt Agar (for S. aureus) or LB 
Agar with 500 mg/L Gentamicin (for B. cenocepacia).  
 

In light of the inability of antibiotic resistance data to reliable predict community 

structure at the species scale (Fig 3.6), we next asked whether the resistance data is predictive at a 

broader, functional scale. Pooling drug resistant pathogens together (S. aureus, B. cenocepacia, 

and A. xylosoxidans) we find consistent enrichment (19- to 41-fold on average per treatment) 

across all drug exposures (Fig 3.8), indicating a consistent enrichment of more problematic 

organisms following antibiotic exposure. In the discussion we explore potential contributing 

reasons other than community ecological interactions for the disconnect between MIC predictions 

on the species scale and observed community presences (Fig 3.5).  
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Figure 3.8.  Drug-resistant pathogens are consistently enriched as a functional class, across 
all drug treatments. Fold-change differences for the sum of drug resistant pathogens (B. 
cenocepacia, A. xylosoxidans, and S aureus) compared to no antibiotic control, details as in 
Figure 3.4. Asterisks mark significant competitive release; one-tailed Wilcoxon test * p < 0.05, 
** p < 0.01.  
 

3.3.4 Community compositions across all antibiotic treatments are consistent with diversity 

across clinically observed in vivo communities  

We finally ask, how do our in vitro synthetic microbiomes compare with the diversity of 

microbiome structures observed in people with CF? We begin with a PCA ordination plot to 

visualize experimental data (initial and final timepoints from Figure 3.4) alongside clinical data 

(Fig 3.9).  

Figure 3.9A illustrates that our initial 10-species inocula (colored squares) are not 

representative of individual patient microbiome states (grey/black circles), reflecting their 

derivation from the typical meta-community state of populations with CF (Fig 3.1). Figure 3.9B 

highlights the repeatable end-point microbiomes in the absence of antibiotics (blue triangles), 

approaching commonly observed oral microbe dominated states (Zhao et al., 2020). Figure 3.9C 

illustrates the more divergent states resulting from antibiotic perturbations. Contrasting clinical 

versus pooled experimental data we see intermediate levels of community differentiation 

(ANOSIM R = 0.28), intermediate between the impacts of pathogen (Fig 3.3) and antibiotic (Fig 

3.4) manipulations (Fig 3.S3). 
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Figure 3.9.  Antibiotics drive pathogen enrichment in experimental microbiomes, producing 
community structures that overlap with clinical sputum communities. PCA visualization of 
experimental microbiome data (colored triangles and squares, summarizing data in Figure 3.4) 
plus clinical microbiome data across a cohort of 77 people with CF (grey/black circles, 
black/severe signifies low lung function (Zhao et al., 2020)). (A) Squares illustrate experimental 
initial conditions, (B,C) triangles are final compositions after 5 serial passages (10 days), in the 
absence (B) or presence (C) of antibiotics. Colors denote experimental condition (see key). Each 
experimental treatment is replicated 5-fold, producing highly repeatable dynamics in the absence 
of antibiotics (blue triangles, B) and variable pathogen enriched outcomes following antibiotic 
treatment (C). Antibiotics were supplemented at each passage at clinically relevant concentrations 
(meropenem, 15 μg / ml; tobramycin, 5 μg / ml; ciprofloxacin, 2.5 μg / ml). Each point is a single 
microbiome sample (species resolution for clinical samples via the DADA2 plugin in QIIME 2 
(Callahan et al., 2016; Zhao et al., 2020)). Ordination is PCA of centered log-ratio transformed 
relative abundances. 
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Figure 3.10.  Most end-point experimental taxa fall within the range of clinically observed 
relative frequencies.  The relative abundances of taxa in synthetic microbiome inocula and end 
points (30 samples) compared to 77 clinical cohort observations (Zhao et al., 2020).  The box 
represents the interquartile range (from 25%-75% of samples) with the horizonal line at the 
median. Outliers are represented as dots (two-tailed Welch’s t-test versus clinical data with 
Bonferroni multiple testing correction: * corrected p < 0.001). 
 

Building on the overview provided by Figure 3.9, we now look at a more granular level 

and ask for each taxon whether species relative abundances in our experimental model fall within 

the range of clinical variation from our previous clinical study (Zhao et al., 2020). In Figure 3.10 

we first assess our metacommunity inoculum condition (time zero in Figures 2,4) against the 

yardstick of clinical variation, and unsurprisingly see a substantial number of taxon ‘misses’ (5 

out 10 species abundance in the inocula is distinct from clinical data; Welch’s t-test, p < 0.001), 

reflecting that our metacommunity initial conditions are not well matched to the typical profiles 

of individual sputum samples (Figs 3.1, 3.9). We next assess experimental community states after 

5 serial passages (final timepoints across all treatments) and find a better match with clinical data. 

3 of the 5 taxon ‘misses’ move within clinical variation, while one taxon (P. melaninogenica) 

moves outside of clinical variation, resulting in 7 out of 10 taxa where our experimental model 

produces ranges of relative abundances that do not significantly differ from benchmark clinical 

data (Fig 3.10). We find that our model significantly over-represents Prevotella and under-

represents Pseudomonas and Rothia. These misses provide an opportunity to improve our model 

in future work, by pointing towards an environmental mismatch on oxygenation (with the strict 
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anaerobe P. melaninogenica benefitting and the facultative anaerobes P. aeruginosa and R. 

mucilaginosa suffering from the anaerobic atmosphere). This pattern of misses suggests that the 

distribution of oxygenation experienced clinically by CF microbiomes is more oxygenated than 

that provided by our anaerobic chambers with only brief exposures to oxygen every 48 h.  

 

3.4 Discussion 

Our results show that in the absence of antibiotic perturbations, our defined 10-species 

synthetic CF microbiome community follows a highly repeatable path to a stable community 

composition (Fig 3.2, 3.3, 3.9B). In contrast, antibiotic treatments resulted in substantial 

community shifts (Fig 3.4), featuring both competitive release of previously rare pathogens (Fig 

3.5) and emergent facilitatory interactions (Fig 3.7). Under antibiotic treatment we observed 

distinct trajectories across both drugs and replicates (Figs 3.S2, 3.S4), dispersed through a broad 

range of observed CF community structures, including alternate pathogen-dominant states (Fig 

3.9). Table 3.S3 summarizes our results in light of motivating hypotheses.  

Our results highlight that standard antibiotic resistance MIC data (Table 3.S2) often fails 

to predict individual species presence following antibiotic exposure (Fig 3.6), with predictions 

showing both false positives and false negatives. A simple general explanation for departures 

from the ecological filter hypothesis is the presence of significant ecological interactions among 

species. Under this framework, false positives are evidence for suppressive interactions, 

suggesting that for example S. aureus fails to grow in the antibiotic free environment because it is 

out-competed by one or more of the other taxa. Conversely, false negatives are evidence of 

facilitation, suggesting for instance that the ability of S. aureus to grow in an otherwise lethal 

dose of meropenem is due to facilitation from another species in the community. In agreement 

with this hypothesis we find that B. cenocepacia shows meropenem-dependent facilitation of S. 

aureus growth, of sufficient magnitude to rescue S. aureus growth in super-inhibitory 

concentrations of antibiotic (Fig 3.7).  
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While the combination of antibiotic resistance and species interactions is a candidate 

explanation for our results (Fig 3.7), other factors are potentially at play. First, we again note the 

important caveat that the MIC estimates were derived using standard growth-promoting rich 

culture assays, which are known to generate estimates that tend to under-estimate the resistance 

of cells under more physiologically relevant conditions (Brown et al., 1990; Gilbert et al., 1990). 

If our MICs are under-estimates of resistance, then we would anticipate more ‘false positive’ 

evidence of competition in our experimental community. A second possibility for divergent 

results is the presence of physiological or evolutionary adaptation to the community conditions, 

across the 10 days of serial passaging. The stability and repeatability across replicates in Figure 

3.2 argue against a major role for genetic evolution in steering community dynamics – consistent 

with recent work on the suppressive impact of community interactions on bacterial evolution 

(Baumgartner et al., 2020).  

In order to develop an experimentally tractable model, we made a number of choices 

regarding specific experimental conditions (e.g. nutrients, initial community structure, strain 

identity) that likely influenced our specific results. The healthy lung is evidently an oxygen rich 

environment, however during the course of tissue degradation in the CF airways, the sputum 

environment can become oxygen deprived due to the combined forces of mucus plugs, along with 

oxygen consumption by immune cells and microbes (Cowley et al., 2015; Kolpen et al., 2010; 

Wu et al., 2018). To capture an oxygen stressed environment, we performed our experiments 

under static anaerobic conditions that were only subjected to oxygenation during bench passaging 

every 48 h.  While all bacteria in the community are capable of either fermentation, anaerobic 

respiration, or both, the largely anaerobic condition represents a potential to bias the results 

towards strictly anaerobic bacteria. Our clinical benchmarking exercise indicates that the 

distribution of oxygen exposures in the clinic is less biased towards anaerobic conditions, as our 

three endpoint taxon ‘misses’ (Fig 3.10) consisted of over-representation of an anaerobe (P. 

melaninogenica) and under-representation of two aerobes (P. aeruginosa, R. mucilaginosa). This 
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pattern is also consistent with recent transcriptomic analyses of P. aeruginosa from CF sputum, 

highlighting a transcriptional response indicative of reduced oxygen, but not necessarily 

anaerobic conditions (Cornforth et al., 2020). In future work we will investigate synthetic 

community dynamics in static communities with partial exposure to room air, following recent 

experimental ex vivo (patient sputum) models (Flynn et al., 2020; Quinn et al., 2018).  

Turning to our choices regarding synthetic community composition, by focusing on the 

most abundant bacterial taxa, we ignored the potential for rare keystone species to shape 

community dynamics (Banerjee et al., 2018). We also overlooked the potential importance of 

interactions among strains within each species (Allen et al., 2016; Pollitt et al., 2014). Concerning 

specific strain choices, Figure 3.3 illustrates that replacing mucoid P. aeruginosa PDO300 with 

an otherwise isogenic non-mucoid strain (PAO1) produces little dynamical change. However 

other studies in different environmental contexts have demonstrated substantial dependency of 

interactions on strain identity (Limoli et al., 2016; Maliniak et al., 2016), leaving open the 

importance of specific strain identities in governing community outcomes. More broadly, we did 

not include other potentially critical players in the lung microbiome, spanning human epithelial 

and immune cells, fungal species, and viruses of all the above. We note that our experimental 

platform is amenable to the addition of these players and additional manipulation of timing and 

order of introductions in future controlled experiments.  

Our results demonstrate the power of a model 10-species system for the study of chronic 

lung infection dynamics.  This model provides a platform to assess the community ecological 

impacts of currently deployed antibiotic treatments (Figs 3.4-3.8) and novel treatments – from 

different compounds to different strategies of their implementation.  Current practice is to ‘hit 

hard’ with an antibiotic that is effective against a target pathogen (Read et al., 2011). In the 

context of our model community, detecting drug susceptible P. aeruginosa would typically 

trigger combination treatments that lead in our example to rapid emergence of more dominant and 

more resistant pathogen replacements (Figs 3.4, 3.8) (Halpin et al., 2016).  One avenue to 
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improve on this picture is to run community-scale resistance diagnostics, and in turn use this 

diagnostic information to optimize antibiotic (and probiotic) choices (McAdams et al., 2019). 

While simple in outline, identifying optimal treatment choices in the context of complex multi-

species communities poses a substantial computational and experimental challenge. 

 

3.5 Materials and Methods 

3.5.1 Bacterial strains  

Table 3.1 outlines the specific strains in our 10-species community.  Species choices 

were initially informed based on our previous study of a 77-person CF cohort with samples taken 

during periods of clinical stability (Zhao et al., 2020).  Our 10 species represent the most 

abundant genera from our 16S rDNA analyses (together accounting for over 85% of reads). Note 

that these species are collectively representative of the ‘metacommunity’ (the community of 

communites (Leibold et al., 2004)) of microbes across a population of people with CF, and are 

not necessarily representative of individual community states. We view this metacommunity as 

the menu of organisms from which individual communities are sampled.  

 
Table 3.1. Experimental model organisms used in synthetic community experiments. * 
indicates pulmonary source, x indicates oral source. Red font indicates established CF pathogen 
(CFF, 2019). # Isolate from Children’s Hospital of Atlanta. Collectively, these organisms 
represent over 85% of clinical sequence reads across a 77-person CF lung microbiome study 
(Zhao et al., 2020). 

Species Experimental Strain 
Relative abundance of the 
genus in clinical samples (%) 

Pseudomonas aeruginosa PDO300 (mucoid) 
PAO1 (wildtype) 

29.7 

Veillonella parvula Clinical# 9.8 

Rothia mucilaginosa ATCC49042* 9.1 

Prevotella melaninogenica ATCC25845* 8.4 

Streptococcus mitis ATCC49456x 7.9 

Haemophilus influenza ATCC10211 5.8 

Staphylococcus aureus SAJE2 5.6 

Achromobacter xylosoxidans ATCC27061 4.8 

Neisseria subflava ATCC49275x 1.8 

Burkholderia cenocepacia  K56-2 1.1 
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To guide our experimental species choices, we turned to existing CF metagenome 

sequencing data (Moran Losada et al., 2016), which provided high confidence for all but one of 

our species calls (Table 3.1). The exception is Streptococcus, where reads are distributed across a 

range of species. We chose S. mitis because it is present in sputum metagenomic profiles (Moran 

Losada et al., 2016), and it is an experimentally tractable organism that is typically considered to 

be non-pathogenic (Mitchell, 2011). 

 Within each species, we focused on well-characterized reference strains, as far as these 

were available, including American Type Culture Collection (ATCC) strains. For the dominant 

pathogen P. aeruginosa (PA), we used both the reference strain PAO1 and its mucoid derivative 

PDO300 (Mathee et al., 1999). Our default experimental choice is PDO300, as this strain better 

reflects the mucoid phenotype prevalent in chronic CF (Martin et al., 1993; Mathee et al., 1999).   

 

3.5.2 Community growth medium  

Our Artificial Sputum Medium (ASM) is based on the benchmarked synthetic CF sputum 

medium 2 (SCFM2 (Palmer et al., 2005; Turner et al., 2015)), but with differences in the 

preparation of the mucin and DNA macro-molecules. Specifically, mucins were ethanol washed 

and autoclaved (not UV sterilized, due to larger volume requirements), and the entire medium 

was filter sterilized following addition of DNA. Given the potential for differences in preparation 

methods to impact the results, we refer to our medium under the more generic name of ASM to 

underline these differences from the reference recipe for SCFM2 (Palmer et al., 2005; Turner et 

al., 2015). 

  

3.5.3 Bacterial pre-culture and community construction  

Before the experiment, all bacterial strains were revived from frozen stocks by streaking 

on rich media agar plates (chocolate or BHI agar, depending on the species, see Table 3.S4) and 

cultured at 37°C for 48 hours (microaerophilically (for H. influenzae and N. subflava) or 
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anaerobically (for P. melaninogenica and V. parvula, in GasPak jars). Five colonies were then 

picked from each plate and used to inoculate specific monoculture rich medium, which was 

cultured for a further 48 h; specific culture conditions are detailed in Table 3.S4.  

The bacterial cultures were then washed in a defined ASM buffer base (ASM minus all 

carbon sources), OD600 values were measured with a Hidex plate reader (Hidex Oy, Finland) and 

adjusted to 0.5 for each species and diluted 10-fold in ASM. These standardized bacterial 

dilutions of equal volume were mixed and antibiotic stocks were added according to the 

experimental design for each treatment. The bacterial mixtures (plus antibiotics, dependent on 

treatment) were homogenized with pipetting, then divided into five replicates of 2 ml each in 24-

well plates. An additional 0.5 ml of the initial inoculum mixture was stored at -80°C to assess 

community composition at time zero by subsequent genomic analysis.  

 

3.5.4 Treatments and passaging  

To measure the impact of exposure to antibiotics, we tested three antibiotics that are 

widely used in CF therapy: tobramycin (5 μg / ml); meropenem (15 μg / ml); ciprofloxacin (2.5 

μg / ml), and two widely used combinations; tobramycin and meropenem; tobramycin and 

ciprofloxacin (adding the concentrations above). The specific concentrations used reflect 

measurements of antibiotic concentrations in CF sputum (Cipolla et al., 2016; Kuti et al., 2004; 

Moriarty et al., 2007; Ruddy et al., 2013; Wenzler et al., 2015).  Our choice of 5 μg / ml 

tobramycin is low when compared to peak concentrations measured immediately following 

inhaled therapy (Lam et al., 2013; Somayaji & Parkins, 2015). Even in this immediate post-

treatment context, the concentrations we used are within the range of their reported measured 

concentrations at 30 minutes point treatment (Somayaji & Parkins, 2015).  Concentrations are not 

reported for any longer duration in these studies.  All experiments were performed with 5 

replicates of 2 mL cultures in 24-well plates cultured at 37°C in anaerobic GasPak jars. Every 48 

h, bacterial cultures were mixed by pipetting, and 10% of the volume was transferred to fresh 
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ASM (with fresh antibiotics as defined by the treatment). 0.5 ml of the culture was stored at each 

passage at -80°C for later DNA purification and amplicon sequencing. Each experimental line 

was maintained for 5 passages (10 days).  

To assess the role of pathogen characteristics, we conducted 5 pathogen manipulations 

(presence/absence of P. aeruginosa mucoidy (PDO300 versus PAO1) x presence/absence of S. 

aureus, plus a no P. aeruginosa + no S. aureus treatment).  These experiments were done in the 

absence of antibiotics, but otherwise with the same conditions as above. 

 

3.5.5 16S rDNA sequencing and qPCR.   

DNA purification, sequencing, and qPCR were performed by MR DNA Lab 

(Shallowater, TX).  Briefly:  DNA was purified from sputum homogenate after mechanical lysis 

with the MoBio Power Soil kit (MoBio, Carlsbad, CA).  The 16S V4 region of the resulting DNA 

was amplified with 515F and 806R primers incorporating the barcode in the forward primer and 

subjected to Illumina sequencing (Caporaso et al., 2011).  The sequence data were generated in a 

total of 6 MiSeq runs.  Total 16S abundance in each sample was determined by qPCR using 

standard 515F/806R primers (Caporaso et al., 2011). 

 

3.5.6 16S rDNA sequence analysis 

To generate taxa counts from the sequence data, we processed each run independently 

and combined the results.  Across the 6 sequencing runs, a total of 15,347,658 sequence reads 

were generated, with a median of 59,686 sequences per sample (minimum 22,707, maximum 

126,680).  All sequence processing was done through QIIME2 2019.10.0. Unless otherwise 

noted, we left parameters as defaults based on the Moving Pictures workflow. Samples were 

demultiplexed using the cutadapt plugin in QIIME2. We found that some of the barcode 

sequences were also found in the 16S region of several taxa. To mitigate this confounder, we 

removed from each metadata file the first four nucleotides in the 515F primer and added it to the 
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barcode. For example, the barcode "GAGATGTG" was remapped as "GAGATGTGGTGC" and 

the primer became "CAGCMG…".  

Reads were denoised using the deblur plugin, and resulting sequences were trimmed to 

250 bp. Taxonomic assignments were classified against the greengenes 16S database. Some 

assignments were not possible at a level of genus resolution, so we interpreted reads mapping to 

"o__Lactobacillales" to "g__Streptococcus", "f__Burkholderiaceae" as "g__Burkholderia", and 

"f__Pseudomonadaceae" as "g_Pseudomonas". Finally, for each sample we removed spurious 

(and rare) taxon calls that did not map onto our experimentally defined communities. Sequence 

data have been deposited to the SRA (Accession # deposit pending).  The analysis pipeline is 

available on GitHub (github.com/GaTechBrownLab/Varga-et-al_CompetitiveAbxRelease_SRA-

upload). 

Absolute abundances were determined by proportion of the total 16S count and then 

normalized to species-specific 16S rDNA copy counts (Stoddard et al., 2015; Zhao et al., 2020). 

 

3.5.7 Statistical analyses 

All analyses and plots used the R programming language (R Core Team, 2018; Wickham, 

2016). Tables and scripts can be found at (https://github.com/GaTechBrownLab/Varga-et-

al_CompetitiveAbxRelease_SRA-upload). A nonparametric Wilcoxon rank sum test was used to 

test for differences in absolute species abundances across experimental conditions, using a two-

tailed test for change in abundance and a one-tailed test to assess competitive release (testing for 

increases only).  A t-test with a Bonferroni multiple testing correction was performed to compare 

relative abundances of the 10 species under experimental conditions with clinical samples from 

the 77-patient cohort.  To compare experimental treatments (and clinical benchmark data) at a 

community scale, we calculated ANOSIM R values on Bray-Curtis dissimilarity matrices for 

each treatment using the vegan package (Bray & Curtis, 1957; Clarke, 1993; Oksanen et al., 

2019). The R statistic is a ratio of within-treatment differences to between-treatment differences 
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on a scale of -1 to 1, where a value of 1 would mean that all dissimilarity is between treatments, 

indicating completely different communities.  

To visualize community-scale differences we constructed ordination plots for combined 

clinical and experimental compositional data. Clinical and experimental observations were 

center-log-transformed first (Kassambara & Mundt, 2020; Van den Boogaart et al., 2020), then 

standardized before principal component analysis (Kassambara & Mundt, 2020; R Core Team, 

2018). 
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Chapter 4: Non-neutral Taxa Partition Into 13 Pulmotypes Across 1000 

people with CF3 

 

4.1 Summary 

 We manually curated a microbiome dataset of over 4000 sputum samples representing 

more than 1000 people with CF (pwCF), matching every sample with corresponding metadata 

from 36 publications and standardizing bioinformatic analyses with a single common pipeline. 

We apply the Sloan Neutral Community Model (SNCM) to each dataset and find a consistent set 

of neutral and non-neutral taxa. We find that common CF pathogens are generally identified as 

non-neutral across studies, even though neutrality varies by study. We hypothesize that taxa 

driven by non-neutral ecological processes can be grouped into meaningful classes of microbial 

communities, or pulmotypes, based on their co-occurrence patterns. Dirichlet Multinomial 

Mixture modeling on non-neutral taxa partitions CF lung microbiomes into 13 distinct 

pulmotypes. Overall, we find that these pulmotypes differ by composition and clinical 

associations.  Transition patterns between pulmotypes from longitudinal data further reveal 

different transition frequencies between pulmotypes. Specifically, we find that the five 

Pseudomonas-dominated pulmotypes are differentially linked to pulmotypes dominated by the 

end-stage CF pathogens Burkholderia and Achromobacter. Our findings suggest that 

Pseudomonas-dominated samples are not necessarily equivalent in community trajectory over 

time, which carries important implications for infection management in cystic fibrosis.  

 
3 Coauthors: Elijah Mehlferber, Haojun Song, Jinyeong Eum, & Sam P. Brown 
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4.2  Introduction 

Cystic fibrosis (CF) is a genetic disease affecting more than 30,000 people in the US and 

70,000 globally. CF is characterized by chronic, polymicrobial infections of the respiratory tracts. 

Culture-independent sequencing methods of sputum samples from people with CF (pwCF) have 

identified thousands of taxa including common CF pathogens (most notoriously, Pseudomonas 

aeruginosa (Cystic Fibrosis Foundation, 2021)) in addition to taxa often associated with 

commensal oral and nasopharyngeal microbiomes (Huang & LiPuma, 2016; Lucas et al., 2018). 

Numerous cross-sectional and longitudinal CF studies have drawn associations between 

lung microbiome composition and disease progression, finding that loss of taxonomic diversity is 

consistently associated with severe disease and antibiotic use (Coburn et al., 2015; Cuthbertson et 

al., 2020; Widder et al., 2022; J. Zhao et al., 2012a). Lower diversity is also associated with 

increasing pathogen load and decreased abundance of oral anaerobes (Cuthbertson et al., 2020). 

Further, high-density and long-term longitudinal sampling studies have found large between-

individual variation in microbiome composition (Blainey et al., 2012; Stressmann et al., 2011, 

2012). This variation is expected, given the clinical and treatment differences found across pwCF 

including variation in therapy (antibiotics, CF correctors), disease state (Cystic Fibrosis 

Foundation, 2021; Konstan et al., 2009), or lifestyle factors (Caverly et al., 2019; J. Zhao et al., 

2012b). However, this makes inferring ecological rules governing microbial dynamics in the lung 

difficult, as broad signals are often washed out by this individual-specific variation. 

One common approach to handle high variability across individuals is to focus analyses 

on ‘core’ taxa that exceed defined thresholds of prevalence and/or abundance (Cuthbertson et al., 

2020; Van Der Gast et al., 2011). Here we evaluate a distinct approach, focusing instead on taxa 

that show evidence of non-neutral ecological dynamics.  Hubbell’s neutral biodiversity theory 

poses that ecological communities can be well-explained by stochastic processes, where 

taxonomic distributions are governed by random dispersal, birth and death events (Hubbell, 

2001). Sloan extended this theory to prokaryotes and showed that these stochastic neutral 
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processes can explain the patterns of abundance found in many (but not all) microbial 

communities (Sloan et al., 2006). We propose that the neutral model can be used to identify taxa 

that are more likely to be ecologically significant members of the CF microbiota, based on 

whether they are non-neutral or neutral respectively. This approach may additionally allow for a 

reduction in the between-individual variation, as the bacteria that are randomly acquired from the 

environment via neutral processes will be removed, and only those with non-neutral patterns will 

be evaluated. 

Employing this neutral model, Venkataraman et al. found that while non-CF airway 

microbiota distributions were consistent with neutral biodiversity, CF lung communities poorly 

fit neutral models (Venkataraman et al., 2015). They further hypothesized that departures from 

neutral distributions are associated with pulmonary disease states, and that the extent of departure 

correlates with disease severity. However, samples from only nine pwCF were considered for this 

analysis, and this sample-limitation is common across CF microbiome studies. 

While individual studies generally have low sample size, the field of CF respiratory 

microbiomics is highly active and has produced well over 100 lung microbiome studies, primarily 

focused on 16S amplicon sequencing of expectorated sputum samples. These include numerous 

association studies tracking community composition as well as various health metrics, 

interventions, and disease states. However, studies vary in methodological details, such as study 

inclusion criteria, 16S region and primers used, and pipelines used for downstream bioinformatic 

analysis. This poses further challenges to extracting broadly applicable conclusions from each 

individual study.  

In this study, we leverage this community effort by building a single standardized and 

publicly available dataset of 16S CF lung microbiome studies published on the NCBI Short Read 

Archive. For each study, we identify their corresponding publications, match all samples with 

existing metadata, and process all reads using a single common bioinformatic pipeline. To 

examine the value of our expanded dataset, we revisit central questions in the CF field: what are 
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the key functional taxa in the CF lung microbiome (Layeghifard et al., 2019; Quinn, Whiteson, et 

al., 2016)? Are there distinct microbiome profiles (or pulmotypes) among pwCF, and do these 

pulmotypes correspond to different clinical trajectories? (Hampton, Thomas, van der Gast, 

O’Toole, & Stanton, 2021; Widder et al., 2022) pulmotypes across pwCF. We find consistent 

signatures of non-neutrality among all leading CF pathogens together with other non-pathogenic 

organisms, indicating they are governed by deterministic (non-neutral) forces. Using these taxa 

we partition our 1000+ pwCF into 13 pulmotypes that collectively identify leading pathogen-

dominant states and are separable by compositional, clinical, and transitional differences, 

indicating that there are distinct community composition types across CF patients. 

 

4.3 Results 

4.3.1 A Standardized CF Microbiome Database 

We curated a database of 4171 sputum compositions across 1175 individuals with CF 

from 36 published studies (median 53 samples per study; 1-163 samples per individual pwCF) 

representing 26 CF centers across 14 countries (Fig 4.1A). In light of variation in inclusion 

criteria and methodological choices, we hypothesized that methodological and regional 

differences will result in compositional differences among studies. Consistent with this 

hypothesis, we see significant differences in composition in multiple pairwise study comparisons 

(Fig. 4.1C, Analysis of Similarity ANOSIM R p < 0.05 Bonferroni corrected), yet effect sizes 

rarely met our threshold for a substantial effect (ANOSIM R > 0.4). In one-versus-all 

comparisons (Fig 4.1B,D) we did not identify samples from any individual study or center with 

substantial (ANOSIM R > 0.4) and significantly different (p < 0.05 Bonferroni corrected) 

composition from the rest (Fig 4.1B-D). The most compositionally distinct study (ANOSIM R = 

0.391, p < 0.05 Bonferroni corrected) was reported from N.F. Gamaleya in Russia 

(PRJNA544655 (Voronina et al., 2020)). While we did not identify major methodological 

differences, the study is characterized by a strikingly high representation of Burkholderia in 
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Russian pwCF. Of the fifteen samples that passed our quality filter, six contained over 75% 

Burkholderia (33.3% samples Burkholderia dominant). For comparison, of the 77 samples from a 

survey across individuals attending Emory and Georgia Tech affiliated clinics analysed in 

Chapter 2 (PRJNA666192, (C. Y. Zhao et al., 2021)), only one sample contained over 75% 

Burkholderia (1.3% of samples Burkholderia dominant). 

 

Figure 4.1 Study Characteristics. (A) We analyzed 36 studies across 26 CF centers from 14 
countries worldwide. Three studies (PRJEB30646, PRJEB38277, and PRJNA207555) are split 
across more than one study site. (B) One-vs-all ANOSIM of CF sputum sequence repositories 
deposited to NCBI-SRA (BioProject numbers provided) do not identify any studies with 

NA EU/AS AU 

SA 
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substantial (ANOSIM R > 0.4) and significantly different (p < 0.05, Bonferroni corrected) 
composition. One study, PRJNA544655, returned an ANOSIM R of 0.392 (C) Pairwise 
ANOSIM for studies grouped by CF center that uploaded the study. White spaces denote pairs 
that were not significantly different (p > 0.05, Bonferroni corrected). (D) One-vs-all ANOSIM, 
for studies grouped by CF center. (E) Mean relative abundance by genera. (F) Mean prevalence 
by genera. Canonical CF pathogens (Pseudomonas, Staphylococcus, Burkholderia, 
Stenotrophomonas, Achromobacter, and Haemophilus) are highlighted in red. 

 

Post-rarefaction, 95% of reads came from 19 taxa. Pseudomonas was the most abundant 

taxa detected, followed by Streptococcus, Prevotella, and Staphylococcus (Fig 4.1C). 

Streptococcus was the most prevalent taxa, occurring in 95.3% of all samples, followed by 

Prevotella, Veillonella, and Pseudomonas (Fig 4.1D).  

 

4.3.2 Canonical CF Pathogens are Consistently Non-Neutral 

Neutral models of taxa distribution have been found to be consistent with observed 

community compositions in various microbiome contexts (Burns et al., 2016; Shade & Stopnisek, 

2019; Venkataraman et al., 2015). To assess neutrality in CF, we apply the Sloan Neutral 

Community Model (SNCM) across individual studies in our dataset and recover varying degrees 

of fit (Fig 4.2A). We use R2 = 0.7 as our threshold for a good fit, which is consistent with the 

model interpretations from Venkataraman et al. While overall we observe poor fits to SNCMs, we 

identified seven studies with taxon distributions consistent with SNCM predictions (R2 range: 

0.72-0.93; BioProject IDs in order of increasing fit: PRJEB8060, PRJNA645089, PRJNA666192, 

PRJNA662963, PRJNA360332, PRJNA234009, and PRJEB31332).  

Turning to individual taxa, across all studies we find 46 neutrally distributed taxa 

comprising 20.2% of all reads (grey points in Fig 4.2A). The most abundant neutral genera were 

Streptococcus, Enterococcus, Gemella, and Escherichia. In contrast, 28 taxa deviated from 

neutral model predictions in the majority of studies that they were detected in (blue/red points, 

Fig 4.2A), including all 6 canonical CF pathogens (Fig 4.2B).  



61 
 

Additionally, all models were fit with a low immigration probability (m < 0.1, Fig 4.2C). 

The immigration parameter m represents the probability that a new cell is sourced via 

immigration, versus local reproduction (Sloan et al., 2006). Our results therefore imply that local 

reproduction consistently and substantially dominates immigration across all studies, but we note 

that ecological interpretations of our model fits are sensitive to the adequacy of our model 

assumptions (see discussion).  

 

 

Figure 4.2. Neutral models identify non-randomly distributed taxa across studies. (A) Sloan 
neutral models were fit to abundance-occupancy curves (AOCs) across all 36 studies. Grey lines 
represent best model fits for each individual study. Only the first available sputum sample for 
each pwCF was used to generate AOCs. Taxon abundance and occupancy data for the composite 
dataset (all 1088 samples) are shown. AOC data points for individual datasets are not shown. 
Colored points represent taxa identified as non-neutral. (B) Across all studies, 28 taxa did not fit 
neutral distributions as predicted by the Sloan model. Taxa that did fit were excluded from further 
analysis. All 6 canonical CF pathogens (red font) are identified as non-neutral and below 
prediction. The most common commensal genus Streptococcus was identified as neutral. (C) 
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Summary of model fits for all 36 studies. All models were fit with a low immigration probability 
(m < 0.1), consistent with a low dispersal rate. 

 

 Many studies partition CF microbiota into core and transient species, defined by 

prevalence and/or abundance measures. Core taxa are ones that are both highly prevalent and 

abundant, and therefore more likely to drive disease ecology whereas transient ones drive 

metacommunity diversity (Cuthbertson et al., 2016, 2020; Van Der Gast et al., 2011). 

Cuthbertson et al., defined core taxa as those in the top quartile by prevalence and found that core 

taxa are more highly represented in more severe disease, with a greater proportion of variability 

in microbial diversity attributed to satellite taxa rather than core.  

Rather than applying an arbitrary cut off to assign important taxa, we utilize a model to 

identify taxa that show patterns of abundance and dispersal that indicate ecological relevance in 

the CF environment. Specifically, we assume that neutral taxa detected in sputum samples are 

neither interacting with the host lung environment (e.g. consuming nutrients or being suppressed 

by host immune activity within the lung), nor with other taxa (e.g. competition or facilitation) to 

an extent that is enough to overcome the effects of random dispersal and drift in the lung.  

In this study, we address partitioning into core and transient taxa by using inferred 

neutrality as our partitioning criterion. We should note that we are not the first to apply neutral 

models as a filtering mechanism. Venkataraman et al., used inferred neutrality to filter putative 

sequencing contaminants by fitting SCNMs to known sequencing controls (Venkataraman et al., 

2015). We extend this method and remove all reads from taxa that were identified as neutral taxa 

in the majority of the included studies. We further excluded samples with fewer than 1000 reads, 

yielding 3585 sputum samples across 1088 pwCF.  
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Figure 4.3. Cystic fibrosis sputum microbiomes separate into 13 pulmotypes. Clusters 
(k=1…25) were calculated using DMMs on individual snapshot data (N=1088) of non-neutral 
taxa, rarefied to 2000 sequences each. (A) Using the Laplace approximation of the negative log 
model evidence, we find a minimum at k=13 clusters (pulmotypes). (B) Boxplots of the top 10 
taxa grouped by 13 pulmotypes. (C) Overall frequency of each pulmotype across the initial 1088 
samples. (D) Pulmotypes represented in each study are shaded in. Studies are ordered by number 
of samples included. 

 

4.3.3 Non-neutral CF microbiomes partition into thirteen pulmotypes 

 Using the distributions of only non-neutral taxa, we next apply a common clustering 

method to assess whether our microbiome data can be adequately represented by a limited 

number of distinct clusters or “pulmotypes” (Holmes et al., 2012; Widder et al., 2022). 
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Comparing the performance of one to 25 clusters, we find that non-neutral CF lung microbiomes 

are best partitioned into thirteen pulmotypes (Fig 4.3), in contrast to prior studies identifying 5 

(Hampton et al., 2021) or 8 (Widder et al., 2022) pulmotypes. To avoid over-representation by 

longitudinally tracked pwCF, pulmotypes were calculated from a single initial sputum sample per 

subject with neutral taxa excluded (N=1088 pwCF, Fig 4.3). The resulting distribution of samples 

(one sample per pwCF) across pulmotypes ranges from 21 to 161 samples (Fig 4.3C). The 

relative abundances of the top genera for each pulmotype are shown in Figure 4.3B. Using the 

highest median relative abundance taxa, we further group pulmotypes into three categories: 

Pseudomonas-dominant (PA), oral anaerobe dominant (OA), and other pathogen dominant (OP).  

 The majority (67.6%) of the 1088 training samples are categorized as one of six PA 

pulmotypes (I-IV, VI, and XI).  The most common pulmotypes represented are p-I and p-II 

(N=161 samples each), which consist of samples with high Pseudomonas relative abundance. 

Type II is the most homogeneous (DMM homogeneity score, θII = 44.3; higher θ is more 

homogeneous) and consists of samples with 70.2-99.0% Pseudomonas. Pulmotype IV is the least 

homogeneous (θIV = 1.52) and contains samples with varying abundances of Pseudomonas. 

Pulmotype XI is the least frequent PA pulmotype and characterized by Pseudomonas-

Staphylococcus co-domination, a condition that has received significant research and clinical 

attention (Limoli et al., 2016, 2017). The PA pulmotypes also vary in overall Pseudomonas 

relative abundance (from lowest to highest: IV, III, XI, VI, II, and I). This pattern is consistent 

with a continuous gradation of Pseudomonas across samples arbitrarily clustered into distinct 

pulmotypes. The two OA pulmotypes (V and VIII), comprise of 161 (14.8%) samples with 

varying Prevotella, Veillonella, and Neisseria relative abundances. Pathogen levels in the OA 

pulmotypes are generally low. OP pulmotypes (VII, IX-X and XII-XIII) consist of samples 

dominated by non-Pseudomonas pathogens, namely Staphylococcus, Haemophilus, Burkholderia, 

and Achromobacter. Notably, we do not find a single OP pulmotype comprising of 

Stenotrophomonas-dominated cases, despite loads of higher than 30% in eleven samples and over 
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90% in five. Instead, ten of these samples are grouped into the PA pulmotype IV and the 

remaining one into OP pulmotype IX.  

For comparison, we applied the same clustering method without a neutral filter (Fig 4.S1) 

and identified 12 all-data pulmotypes. We find five Pseudomonas, three Streptococcus, one 

Veillonella, one Burkholderia, one Staphylococcus, and one Haemophilus pulmotype. We 

observe many similar patterns of pulmotypes (including a Pseudomonas-Staph codominant 

pulmotype). At face value, non-neutral pulmotyping yields a better model fit (Fig 4.S1A and Fig 

4.3A) as well as a greater number of pathogen-dominated pulmotypes. In particular, we identify a 

Achromobacter dominant pulmotype p-XIII (Fig 4.3B), whereas without neutral filtering, 

Achromobacter-dominant samples are distributed throughout multiple pulmotypes (Fig 4.S1B). 

 

4.3.4 Pulmotypes are represented across studies 

 To examine the validity and distinctness of these pulmotypes, we first analyze their 

representation across included studies. A risk of our multi-study approach is that clustering will 

simply separate pwCF by study. In contrast, we find that every pulmotype is represented in at 

least seven studies, and one study contained all thirteen pulmotypes (Fig 4.3D). The top five 

studies by number of pulmotypes represented (in decreasing order by total number: PRJEB30646, 

PRJNA423040, PRJNA666192, PRJEB38277, and PRJNA756039) were larger cross-sectional 

studies (pwCF > 57), including two that were used in prior pulmotyping analyses (Hampton, 

Thomas, van der Gast, O’Toole, & Stanton, 2021; Widder et al., 2022). To further assess the 

validity of these pulmotypes, we turn to three additional lines of evidence: compositional 

differences, clinical similarity, and dynamical transition patterns. 

 

4.3.5 Pulmotypes differ in composition but not generally in lung function  

Next, we looked at the similarity between pulmotypes by assessing compositional 

similarity and lung function (Fig 4.4). We used ANOSIM to compare pulmotype compositional 
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similarities and found that most pairwise comparisons yielded significant differences in 

composition (Fig 4.4A, p < 0.05, Bonferroni corrected), largely exceeding an established 

threshold of R > 0.4 for a meaningful effect size. 

Turning to differences in lung function between pulmotypes, we found in contrast that 

most pairwise comparisons did not yield significant differences in lung function (Fig 4.4B).  In 

Fig 4.4C we offer a summary of both compositional and lung function differences, highlighting 

12 pairs of pulmotypes that are both compositionally and clinically similar (yellow boxes) and 9 

pairs that are substantially (large effect size) distinct on both measures (blue boxes). The 

remaining 57 pairs show mixed results, typically reflecting substantial differences in composition 

(Fig 4.4A) combined with insignificant and/or small differences in lung function (Fig 4.4B).  

Of the twelve pairs of pulmotypes that are compositionally and clinically similar, nine 

include p-IV, a PA pulmotype with the lowest homogeneity score. Within the rest, we find three 

sets of two pulmotypes that are compositionally and clinically similar: I-II, III-VI, and V-VIII. 

Pulmotypes I, II, III, and VI are all PA pulmotypes with relatively high Pseudomonas abundance. 

Pulmotypes V and VIII are both OA pulmotypes. 

 

4.3.6 Transition patterns in longitudinal data differentiate similar pulmotypes 

 Finally, we assess pulmotype robustness by looking at transition patterns across 

longitudinal samples. While we can infer ordinality (which sample came first, second, etc…) 

across all subjects with longitudinal samples, we do not have information on between-sample 

duration for every subject. Using the 13-component DMM trained on cross-sectional data alone, 

we classify the remaining 2497 longitudinal samples (representing transitions across 356 pwCF). 

Across all pairs of consecutive samples, 1456 (58.3%) are the same source and target pulmotype. 

Across all individual trajectories, we find that 95 pwCF (26.7%) do not transition to a new 

pulmotype during their surveillance period, and 138 pwCF (38.8%) do not change their 

pulmotype group (i.e. remaining with the broad classification of PA, OA or OP dominated 
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pulmotypes). Taken together, these indicate substantial longitudinal stability in our pulmotype 

classifications. 

 

Figure 4.4. Compositional and clinical similarity between pulmotypes. (A) We calculated 
compositional differences between pairs of pulmotypes using ANOSIM. Colors represent 
magnitude of differences (ANOSIM R values). Dark grey boxes denote pairs that were not 
significantly different (p > 0.05, Bonferroni corrected). (B) We calculated clinical differences 
between pulmotypes by comparing lung function score (ppFEV1, data available for 542 out of 
1088 pwCF). Significant differences were determined using the Wilcoxon rank-sum test (p > 
0.05, Bonferroni corrected). (C) We then assessed agreement between clinical and compositional 
similarities. We define similar pulmotypes (yellow) as pairs that are both compositionally similar 
(R < 0.4 or p > 0.05) and clinically similar (ppFEV1 difference < 5% or p > 0.05). We define 
distinct pulmotypes (blue) as pairs that are both substantially compositionally distinct (R > 0.4 
and p < 0.05) and clinically distinct (ppFEV1 difference > 5% and p < 0.05). All other pairs are 
shaded in grey. 

 

 We next analyze the characteristics of pulmotype transitions between consecutive 

samples (Fig 4.5). For each pair of pulmotypes we report the number of individuals in which we 

find that given transition across two consecutive samples (Fig 4.5A). We hypothesized that 

transitions in pulmotype state would result from either misclassification (samples drifting along 
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pulmotype boundaries) or progressive (directional) community shifts. If misclassification is a 

substantial issue, we would expect to see a negative association between assignment confidence 

(the likelihood of observing a given sample in its maximally likely component in the fit DMM 

model) and the likelihood of a shift in pulmotype in the subsequent sample. In contrast, we find 

that sample-pulmotype assignment confidence and distance between consecutive samples are 

unrelated (R = -0.04, Fig 4.5B), and that within-pulmotype and between-pulmotype transitions do 

not differ in sample-pulmotype assignment confidence (p=0.556, Wilcoxon W=18300, Fig 4.5C), 

suggesting that pulmotype transitions are not due to misclassification. We also assess whether our 

classification supports a proximity model, where transitions are more common among 

pulmotypes that are more structurally similar (and thus have a smaller between-pulmotype 

distance). Consistent with this model we find that pairs of pulmotypes with lower Bray-Curtis 

dissimilarity experience more frequent transitions (R = -0.50, Fig 4.5D).  

We assess directionality by identifying pairs of pulmotypes with the highest between-

pulmotype transition frequency. We visualize these observed transitions by generating a 

bidirectional network (Fig 4.6). We threshold based on pulmotype assignment confidence, only 

including transitions where the product of source and target confidences exceeded 80%. This 

removes 878 transitions (35.2% of total transitions). Applying this confidence threshold, we find 

that the majority of consecutive samples did not change pulmotypes (N=1130 samples, 69.8%), 

supporting substantial structural persistence on the pulmotype scale. To avoid individual over-

representation, edges in the network are scaled by the number of pwCF for which a given 

transition was observed rather than the total number of instances each transition was observed 

across our dataset. Node sizes are scaled by frequency across the initial DMM training set (Fig 

4.3C). 

  

W
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Figure 4.5. Transition frequencies between pulmotypes. We assess transition frequencies 
between pairs of consecutive samples for each pwCF. (A) Matrix of all transitions between 
pulmotypes, colored by the number of individuals a given transition was observed in. Transitions 
with fewer than 3 observations are represented by grey boxes. (B) Pulmotype assignment 
confidence (the likelihood of observing a given sample in its maximally likely component in the 
fit DMM model), does not correlate with distance between consecutive samples (Bray-Curtis 
dissimilarity) for all transitions. (C) Pulmotype assignment confidence is lower in between-
pulmotype transitions than within-pulmotype transitions. (D) The transition frequency between 
two pulmotypes decreases with mean dissimilarity (ANOSIM R). 
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Across all pulmotype transitions, we find a signature of bi-directionality (balanced 

forward and reverse transition rates), indicating a general absence of progressive, directional 

change in pulmotypes through time (Fig 4.5A). A simple binomial fit to the forward and reverse 

transition rates for all pulmotypes show that the forward transition is not more likely than the 

reverse and vice versa. The most frequently observed between-pulmotype transitions were from II 

to I (N=31 pwCF) and from I to II (N=30 pwCF). The most common between-group transitions 

were from Pa to OA (N=87 pwCF), OA to Pa (N=85 pwCF), and from Pa to OP (N=54).  

 Under a progressive, directional model we would expect to see that OP pulmotypes are 

common end-states or sinks, as these pathogens (along with PA) are often associated with end-

stage disease. However, we find 13 pwCF with transitions from OP to OA pulmotypes, 

suggesting that OP pulmotypes are not sinks. Alternatively, this may also be indicative of non-

robust boundaries between pulmotypes, or a result of the substantial heterogeneity within the p-

IV pulmotype (Fig 4.3B). 

At face value the varying levels of Pseudomonas in each of the PA pulmotypes was 

consistent with a continuous gradient of increasing PA dominance. We find some transition 

patterns consistent with this interpretation. Specifically, we find reciprocal transitions between p-

IV and p-III (Fig 4.5A). However, p-III and p-IV have distinct transition patterns (Fig 4.5A, 4.6). 

For example, p-III only transitions to two OP pulmotypes, p-VII and p-X whereas we observe p-

IV transitions between all five OP pulmotypes. Overall, the PA pulmotypes exhibit balanced 

reciprocal transitions. Taken together, the differing transition patterns and lack of directionality 

further refute the continuous gradient hypothesis and suggest that these pulmotypes are 

biologically distinct and adjacent in both composition (Fig 4.4) and transition (Fig 4.6) space. 



71 
 

 

Figure 4.6. Transition network between pulmotypes. We calculate a directed network from 
transition frequencies with confidence scores (product of source and target pulmotype assignment 
confidence) greater than 80%. For each node, we only show the most common incoming source 
node and outgoing target node. Edges are scaled by the number of pwCF for which a given 
transition is observed. Node sizes are scaled by observed frequency in the overall dataset. (Lower 
right) Mean taxa distributions for each pulmotype. 

 

4.4. Discussion 

In this study, we combined publicly available sputum samples with published metadata to 

identify consistent ecological patterns across over 1000 pwCF. We produce two key findings: (1) 

patterns of neutrality across CF microbiota are broadly consistent across studies (Fig 4.1), 

indicating that the CF lung is potentially shaped by deterministic forces as it becomes dominated 
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by pathogens adapted to the lung environment, and (2) CF lung microbiomes partition into 13 

pulmotypes (Fig 4.3) that are separable by compositional, clinical, and transitional differences, 

indicating that there are distinct community composition types across CF patients, with potential 

implications for disease management. The database assembled by this study will be made 

publicly available via GitHub and represents a significant resource to both the CF community and 

for scientists engaged in the study of human associated microbiomes in the context of disease.  

 The field of CF has generated a significant number of microbiome studies. These studies 

have identified complex microbial communities inhabiting CF airways with high between-person 

and even within-person variability. In light of the multitude of generally low sample size studies, 

composite studies are potentially beneficial in identifying broad-scale patterns across numerous 

cohorts. Li et al., previously performed a data mining analysis across 18 studies with 718 sputum 

samples and found that overall, antibiotic treatments for exacerbation management had a large 

impact on commensal taxa but little impact on CF pathogens (Li et al., 2016).  

Across all studies in our analysis we find numerous taxa in addition to canonical CF 

pathogens. Some of these taxa show up at low abundance and prevalence, and drive variability 

between samples and individuals (Cuthbertson et al., 2020). There is debate as to the role of these 

additional organisms (Jorth et al., 2019; Lu et al., 2020). Many of these other bacteria are 

commonly isolated from oral cavities and upper airway sites and are not generally considered 

pathogenic (Filkins et al., 2012; Fodor et al., 2012; Frayman et al., 2017; Huang & LiPuma, 2016; 

Lucas et al., 2018). This leads some to postulate that these organisms are contaminants in the 

sampling process, as both bronchoalveolar lavage and sputum sampling necessarily involve 

traversal through the oral cavity. Partitioning CF lung communities into core and transient taxa 

overcomes this issue by focusing only on taxa posited to have large influences in CF 

pathophysiology, given their substantial presence and/or abundance (van der Gast et al., 2011). In 

a refinement to this method, we utilize neutral community models to identify taxa that show 

ecologically relevant patterns of abundance and prevalence, defining transient taxa as those that 
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are well-fit to neutral processes, and identifying non-neutral taxa which are more likely to interact 

with either the host or other lung microbiota, and that may influence CF disease ecology. 

In evaluating neutral models, we consider two factors: goodness of fit (R2), and inferred 

immigration probability (m), (Fig 4.2). Communities with high fits are consistent with model 

assumptions of both neutral immigration (random dispersion) and neutral selection (no 

competitive advantages). However, there are numerous ways to interpret poor fits. For example, 

non-neutral dispersal (e.g. some more virulent taxa have higher dispersal rates (Chung et al., 

2017)) and non-neutral selection (e.g. certain taxa deterministically outcompete other members 

(Friedman et al., 2017), or host immunity preferentially suppresses certain taxa) are consistent 

with observed deviations from neutrality. 

Application of neutral models across studies identifies canonical CF pathogens as non-

neutral. Specifically, pathogens have abundance patterns consistently below those predicted by 

the neutral model for their given prevalence. In support of this method, we also find that four out 

of the five non-pathogens that were identified consistently below-neutral (Prevotella, 

Porphyromonas, Fusobacterium, and Rothia) have been reported as potential key taxa in CF lung 

ecology. Prevotella and other anaerobic taxa may increase Pseudomonas abundance through 

putative cross-feeding interactions such as mucin degradation (Flynn et al., 2016). A drop in 

Porphyromonas often predicted future Pseudomonas acquisition (Keravec et al., 2019). 

Fusobacterium and Rothia were both identified as positive predictors of lung function (C. Y. 

Zhao et al., 2021), and Rothia has been found to modulate host inflammatory responses (Rigauts 

et al., 2022). 

However, the model does not explicitly predict the cause of their non-neutral distribution. 

These ‘below the curve’ distributions could be a product of selection (e.g. host suppression of 

pathogens), competitive advantage (pathogen expansion post initial seeding), dispersal (increased 

pathogen infectivity and virulence), or some combination of the three. With that in mind, we 

hypothesize that in dispersal-limited (low m) environments, larger deviations in non-neutral 
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dispersal are required to produce the same effect as smaller deviations in non-neutral selection. 

Given the overall lower m values, we therefore suspect that these patterns may be the result of 

low dispersal between patients, with a higher local pathogen competitive advantage.  

We identify two limitations to this analysis. First, we do not have a good comparative 

interpretation of migration rates across other neutral model systems, as few references publish 

their m values (Burns et al., 2016; Sloan et al., 2006; Venkataraman et al., 2015). Thus, further 

work, such as metabolic assays, or experimental interrogation (e.g. in vitro synthetic 

communities, using the platform we develop in Chapter 3) is needed to elucidate these 

mechanisms. 

Second, we assume that the source dispersal is from the metapopulation of CF 

microbiomes, and this source is adequately represented by averaging the taxa abundances across 

all samples. However, physiologically we suspect dispersal to come from the oral cavity as well 

as environmental sources of pathogens. Although are numerous paired studies already included in 

our collated dataset, we’ve removed all non-sputum samples for this analysis. In future work, we 

will revisit these paired saliva-sputum samples to more explicitly model source communities. 

We find that lung pulmotypes can be separated into Pseudomonas-dominant, Oral 

Anaerobe, and Other Pathogen-dominant communities. These pulmotypes are generally 

compositionally distinct, and separatable by transition patterns. We are not the first study to apply 

pulmotyping to CF. Hampton et al. (Hampton, Thomas, van der Gast, O’Toole, Stanton, et al., 

2021) (PRJNA420343 and PRJEB30646, Fig 4.3D) recently identified five pulmotypes across 

167 pwCF: three Pseudomonas-dominant, one oral-dominant, and one mixed bag of people with 

Achromobacter or Burkholderia-dominant microbiomes. However, only the average of all 

communities assigned to these clusters is reported, so it is difficult to determine the individual 

sample composition. The eight pulmotypes identified in Widder et al. (PRJNA423040, PRJNA 

756039, Fig 4.3D) well-align with ours in both composition and frequency. Their analysis 

includes Pseudomonas, Pseudomonas-Staphylococcus codominant, Burkholderia, and 
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Staphylococcus pulmotypes. However, this approach does not capture Achromobacter and 

Haemophilus in separate pulmotypes, likely due to their relatively lower prevalence. Instead, 

samples dominated by Achromobacter and Haemophilus, and potentially other rarer community 

types, are grouped into more heterogeneous pulmotypes. While a priori we may recognize this 

underfitting given prior knowledge of the importance of these pathogens in CF, this presents a 

challenge to novel pulmotype discovery that is likely only overcome by pulmotyping on larger 

and broadly representative sample collections. 

Similar to Widder et al., (Widder et al., 2022) our analysis also finds that samples 

dominated by Pseudomonas can be partitioned into multiple different PA pulmotypes (Fig 4.3). 

The PA pulmotypes often transition into each other (Fig 4.5, Fig 4.6), but are distinguishable by 

their broader transition patterns. For example, p-III is primarily linked to both PA and OA 

pulmotypes, whereas many individuals transition between p-IV and OP states. We speculate that 

the transitions between PA states with higher Pseudomonas loads to lower ones corresponds to 

antibiotic treatment, as similar transitions were identified in Widder et al. This is consistent with 

the notion that antibiotic treatment of Pseudomonas leads to variable outcomes (Chapter 3), and 

may either reduce pathogen loads to a more oral anaerobe-dominant state, or potentially allow for 

competitive release of other pathogens (Varga et al., 2021) and therefore promote transitions into 

distinct pulmotypes. We were ultimately unable to assess this hypothesis given a lack of 

published, standardized antibiotic information, and we suggest that the field move towards 

recording and sharing this data where possible to aid in future studies. 

One advantage of pulmotyping analyses is that they establish general benchmarks for 

synthetic community systems. Reliably inferring community interaction parameters often requires 

a combination of a combinatorial exploration of initial conditions with high sampling density. 

Our pulmotyping analysis has identified candidate initial conditions with known transitions. 

These may provide the foundations for in vitro and in silico experiments to better understand 

microbiome dynamics in CF.  
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In the context of my PhD, this final data chapter represents the threshold from my current 

to future work in this domain. In this chapter we have developed and applied a robust pipeline to 

generate an unprecedented combined dataset representing over 1000 pwCF. Using the dataset,  

we identify ecologically relevant taxa in CF lung microbiota and distill complex, high-

dimensional microbiome data into distinct, globally robust lung community types.  

These pulmotypes form the basis of a universal CF microbiome categorization schema, 

potentially enabling the development of more individualized microbiome therapies. In future 

work building on this thesis, we will use this dataset to assess the value of alternate approaches to 

CF microbiome classification and prediction.  

 

4.5 Methods 

4.5.1  Dataset Curation 

On February 9th, 2022 we searched NCBI-SRA for 16S-sequenced sputum surveys of CF 

lung microbiomes using the following query: 

(((cystic fibrosis OR cf) AND (lung OR respiratory OR sputum OR airway))) AND 
(amplicon[Strategy] OR other[Strategy]). 
 

This returned 107 potential BioProject numbers. We manually searched for corresponding 

publication for each repository and excluded all studies that lacked corresponding methods or any 

information to match sputum samples with sample donor information. BioProjects that were not 

demultiplexed before SRA submission were excluded from this study. 

In total, 36 BioProjects passed our inclusion criteria. For each BioProject, we used the 

same pipeline. All function parameters were set to defaults unless otherwise noted. First, we 

pulled all associated sample fastq files. As studies sequenced different 16S regions using different 

primers, we standardize all sequences by applying a uniform quality filter (maxEE=5) and 

trimming the first 20bp and truncating to 140bp (trimLeft=20; truncLen=140) using the 
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dada2::filterAndTrim function in R, with the remaining parameters set to defaults. Samples for 

which fewer than 20% of the reads passed this sequencing quality filter were discarded.  

To optimize the dada2 error inference step, we included all samples that passed our 

filters, including non-sputum samples. We used dada2::dada to infer sequencing error rates and 

removed chimeras using dada2::removeBimeraDenovo. We assigned taxonomy by BLASTing 

each sequence against the NCBI 16S ribosomal RNA database, identifying the top 10 alignments, 

and reporting the most frequent genus call. All subsequent data handling was built using the 

phyloseq packages in R. We successfully analyzed 5201 samples using this pipeline and 

subsequently removed non-sputum samples such as sequencing controls and paired samples from 

other body sites, as well as non-observational (experimentally manipulated) samples from further 

downstream analysis. 

The resulting dataset contained 4171 sputum samples with manually curated and matched 

sample metadata. Sputum samples contained a median of 20061 reads (median 19497, range 

1045-1264313). DNA sequences were assigned to 1090 distinct genera. To mitigate study-

specific sequencing bias, we only analyze genera that were detected across the majority (>18) of 

studies. This yielded 74 genera across our dataset for downstream analysis. To account for the 

variability in total read output for each individual study, all samples were then subsampled to a 

sequencing depth of 2000 reads; 145 samples were below this read threshold and thus discarded, 

yielding 4026 sputum samples across 1184 subjects. 

 

4.5.2  Sloan’s Neutral Community Model 

 The crux of the Sloan neutral model is the following relationship between the occupancy 

of a species, i.e. how many samples contain reads from a given taxa, and the overall relative 

abundance of that species in the source community:  

𝑥௜ ~ 𝐵𝑒𝑡𝑎[𝑁்𝑚𝑝௜ , 𝑁்𝑚(1 − 𝑝௜)] 
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where 𝑥௜ is the occupancy frequency of the i-th species, 𝑝௜ is the relative abundance of the i-th 

species in the source community, 𝑁்  is the total number of microbes across all samples, and 𝑚 is 

the immigration frequency. Because we can directly measure 𝑁் , our models effectively fit a 

single parameter.  

 We take inspiration from the fitting procedures outlined in Venkataraman et al. and Burns 

et al. (Burns et al., 2016; Venkataraman et al., 2015). For each BioProject, we calculate 𝑥௜ for all 

taxa with a limit of detection of 1/2000. We assume that species abundance in the source 

community, 𝑝௜, is well approximated by the mean abundance across all samples in a community. 

We estimate 𝑚 such that the joint probability Π௜[𝑝(𝑥௜|𝑁்𝑚, 𝑝௜)] is maximized. We also estimate 

95% confidence intervals. Taxa that lie above and below the interval are identified as non-neutral. 

Overall goodness-of-fit is often reported using R2 (values close to 1 imply the taxa distributions 

are consistent with a neutral generative process, but given the nonlinearity of the model, negative 

values can occur). 

 

4.5.3  Dirichlet Multinomial Modeling 

We construct non-neutral microbiomes by removing all reads assigned to neutral taxa 

before rarefaction. Following the procedure outlined in Holmes et al. (Holmes et al., 2012), we 

partition samples into pulmotypes using Dirichlet Multinomial Mixture (DMM) modeling. 

DMMs have been used to perform unsupervised clustering on microbiome datasets across 

numerous contexts (Costea et al., 2017; Holmes et al., 2012; Wang et al., 2022; Widder et al., 

2022). We fit DMMs using the DirichletMultinomial R package (Morgan, 2020). To avoid 

individual over-representation, we only include the earliest available sputum sample for each 

subject during model training. Cluster assignment confidence was calculated as the likelihood of 

observing a given sample in its maximally likely component in the fit DMM model.  
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4.5.4  Compositional and Clinical differences  

We test for compositionally distinct studies using a leave-one-out approach. Analysis of 

similarity (ANOSIM) tests were performed on Bray-Curtis distances between each study and the 

composite of all other studies using the anosim function in the vegan R package (Oksanen et al., 

2019). We then aggregate studies by reporting center and perform both leave-one-out and 

pairwise center comparisons using ANOSIM. We also test pulmotype compositional differences 

using pairwise ANOSIM tests. For each set of comparisons, significance was assessed at p=0.05 

(Bonferroni-corrected). Meaningful effect sizes were assessed at R>0.4, following previously 

established convention (Quinn, Lim, et al., 2016; Roberts et al., 2008).  

To test for clinical differences between pulmotypes, we compare the distributions of 

reported lung function scores (ppFEV1) using a Wilcoxon rank-sum test. Significance was also 

assessed at p=0.05 (Bonferroni-corrected), with meaningful effect size set as a difference in mean 

ppFEV1 > 5%.  

 

4.5.5  Bidirectionality of pulmotype transitions 

We calculate transition pulmotypes by first assigning all longitudinal samples to pulmotypes 

using our trained 14-component DMM. As samples are taken at variable intervals, we infer 

sample order using reported sampling date. We calculate pulmotype transition frequencies by 

assessing changes in pulmotype across consecutive samples. We discard transitions where the 

product of the source and target cluster assignment confidences was less than 0.8. Given the 

variable number of total samples per individual, we avoid overfitting by reporting as the number 

of individuals in which a given transition is observed for each possible pulmotype transition pair. 

To test for bidirectionality of pulmotype transitions, we calculated the likelihood of 

observing the distribution of forward and reverse transitions frequencies as a binomial 

distribution with p = 0.5. All implementation was performed in base R.  
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Chapter 5: Discussion 

 

5.1 Summary of Work 

The overarching goal of this work is to offer clinicians a robust method to integrate CF 

microbiome information into clinical decision-making and ultimately improve treatment 

outcomes. Although advances in sequencing have brought increasing attention to the 

polymicrobial context of chronic infections, clinical integration of microbiome information is 

made difficult by the large between-individual variability. Thus, accomplishing this goal requires 

understanding the array of host-microbiome relationships and ecological processes that shape 

individual CF microbiomes and their impacts on the health of people with CF (pwCF).   

Understanding generalizable host-microbiome relationships requires large, annotated 

datasets as well as robust algorithms to tackle the high-dimensionality of microbiome data. As 

more clinical departments are investing in machine learning (ML) and medical AI resources, our 

approach is to apply machine learning to biomarker discovery. 

In Chapter 2, we show that basic machine learning techniques predicting lung function 

from microbiome composition can identify both known and novel predictors of health, despite 

sample-size limitations. While we use the discovery of known predictors as performance 

benchmarks, the lack of a broad set of gold standards – a common feature of ML/AI applications 

in other fields – limits our ability to draw conclusions from our novel predictors. Consequently, it 

is difficult to estimate the representativeness of our training dataset. Nevertheless, we find one of 

these novel predictors, Rothia, has recently been shown to mitigate host inflammatory reactions 

to Pseudomonas (Rigauts et al., 2022), further supporting the utility of these hypothesis-

generating methods.  

While our ML approaches can identify host-microbiome associations, these methods are 

unable to directly determine causality. Thus, we turn to experimental interrogation. In Chapter 3, 
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we develop a synthetic microbiome system to study the ecological interactions of common CF 

taxa as well as their community response to antibiotic perturbation. We find that in a controlled, 

antibiotic-free in vitro setting, community dynamics are highly repeatable and tend towards 

commensal-dominated states. In contrast, antibiotic perturbation produces alternate pathogen-

dominated end states. Our in vitro system provides an established baseline for future work that 

may more accurately represent CF lung environment conditions and treatment strategies (e.g. 

addition of  inflammatory biomarkers or testing cycling between antibiotics rather than 

continuous exposure). 

In Chapter 2, we use bootstrapping methods under the assumption that variation across 

the resampled datasets adequately represents the process of sampling from the full population of 

individuals who visit Emory/Georgia Tech-affiliated CF clinics. In lieu of testing additional 

models or applying techniques to estimate out-of-sample variation, we propose additional sample 

collection and collation of published sputum samples into a single standardized repository. In 

Chapter 4, we manually curate such a large CF sputum sample database and demonstrate the 

utility of such an approach. Using this dataset, we identify ecologically-relevant taxa found across 

published studies and show that an unsupervised clustering algorithm partitions microbiome data 

into 13 pulmotypes. Using available clinical metadata, we show these pulmotypes are represented 

across studies, and represent compositionally, clinically, and transitionally distinct communities. 

Our goal is for this dataset to serve as a general benchmarking tool for future CF-specific 

machine learning algorithm development.  

There are additional limitations to this ensemble dataset approach. Non-standardized 

publication procedures created a need for time-intensive manual curation. We developed a 

standardization protocol and automated as much of the analysis pipeline as possible but found 

numerous study-specific record-keeping schema that could not be parsed without user 

intervention. 
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In light of these challenges we suggest a series of practical suggestions to improve data 

re-use. We propose a publication requirement for data columns specifying a unique, HIPAA-

compliant subject identification number for each individual that a given sample came from and a 

separate sample number column. Inclusion of sample collection dates are imperative as well, 

given the changing landscape of available CFTR modulator or effector drugs and their effects of 

CF microbiomes (Sosinski et al., 2021). These standardizations will allow for easier data pooling, 

enabling clinicians and researchers to better access and utilize the existing body of published CF 

microbiome literature. 

 

5.2  Future Work 

We identify three immediate areas of future work from this thesis. First, in Chapter 4, 

we take a neutral model approach to identifying ecologically-relevant taxa. One of our primary 

model assumptions is that dispersal is from the metapopulation of CF microbiomes. However, we 

suspect that dispersal is from a combination of proximal sources, including the nasopharynx, oral 

cavity, and environmental sources. While we can identify pathogens and other taxa that we would 

expect to follow non-neutral distributions, this averaging method presents a limitation to how we 

can interpret our results. 

Venkataraman et al., use paired oral samples as the source community. In our collated 

dataset, we’ve included studies that contain paired saliva-sputum samples, as well as paired 

samples from other sources. We propose using these paired samples to compare dispersal from 

alternate sources to better identify ecologically relevant taxa in CF lung communities. 

Second, our algorithmic results (Chapters 2 and 4) are aimed at elucidating broad 

patterns in the field of CF. However, given the high between-individual variation, these results 

require additional robustness analyses to be clinically applicable. For example, in Chapter 2 we 

utilize a 70-30 train-test split before data analysis. Re-running the initial splits or utilizing nested 
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cross validation and comparing resultant ensemble-selected features for each split or fold would 

lend further credibility to the out-of-sample applicability of the features we selected.   

In Chapter 4, we recognize an additional robustness challenge in the total number of 

pulmotypes selected. In this chapter, we discuss validation methods for individual pulmotypes 

and conclude that while some of the discrete categorizations make sense in light of known CF 

microbiological patterns (e.g. rare, opportunistic pathogens dominate individual pulmotypes), 

others seem to be arbitrarily discretizing a continuous space (e.g. all the Pseudomonas-dominant 

pulmotypes). The latter is consistent with overfitting our data. Looking at fits across all k-

component DMMs, we see that fit values plateau between 8 and 20 (Fig 4.3). We find a similar 

pattern when running our analysis on all taxa, as fits for either 6 or between 9 and 15 have similar 

values (Fig 4.S1).  

These plateaus challenge the notion that there is a singular best fit, and that a measure of 

uncertainty should be included when reporting the number of pulmotypes our analyses return. 

Thus, future work involves applying methods to assess the robustness of the total number of 

pulmotypes we identify. For example, k-fold cross validation or bootstrap resampling may be 

used to generate sets of DMMs which can be compared for overall consistency. Alternatively, we 

may apply machine learning techniques such as bootstrap aggregation to stabilize our results 

while also reducing overfitting. Given the size of our datasets, these methods demand significant 

computational resources and will likely require further dimensionality reduction to achieve 

reasonable run times. 

Lastly, in this thesis, we’ve provided the foundations for applying machine learning to 

CF microbiomics for supervised biomarker discovery and unsupervised pulmotype classification. 

While this approach begins to address sample size limitations, there is still a lack of microbiome-

specific machine learning benchmarks. While these benchmark-driven approaches have come 

under criticism for promoting metric improvements over scientific discovery (Raji et al., 2021), 

they still provide a common ground to evaluate and cross-compare model performances. 
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Microbiome research often lacks these benchmarks, but the tools and datasets we 

developed in this work can be refined to address this. We propose mapping microbiome 

composition onto future lung health as one of these standardized questions. While overall 

individual health is due to a multi-faceted combination of factors, ppFEV1 is the most commonly 

reported health metric. In future work, as publicly available datasets grow, we can begin to assess 

better clinical disease metrics. Nevertheless, this lung-function centric approach provides 

foundational benchmarks for the field. From these foundations, we may begin to assess 

algorithmic improvements while testing the utility other common ML/AI methods, such as 

dataset augmentation or transfer learning, and move towards developing individualized 

microbiome-informed therapies for people with CF. 
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Appendix A: Supplemental Methods - Microbiome data enhances predictive models of lung 
function in people with cystic fibrosis 

A.1.1 Detailed Sequencing Analysis 

Samples were sent to MR DNA Lab (Shallowater, TX) for DNA extraction, sequencing 

library preparation, Miseq sequencing, and absolute 16S quantitation.  Microbiology culture 

results were obtained for sputum samples sent to the Clinical Microbiology laboratory on the 

same day as samples for sequencing were collected. 

The V4 region of the resulting DNA was amplified with the 16S universal primers 515F 

(5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’).  A 

single-step 30 cycle PCR integrating sequencing amplification and library adapter/barcode 

attachment was performed using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) by first 

incubation at 94 °C for 3 minutes, followed by 28 cycles of 94 °C for 30 seconds, 53 °C for 40 

seconds and 72 °C for 1 minute, followed by a final elongation step at 72 °C for 5 minutes.  

Amplification products were then normalized, pooled and purified using calibrated Ampure XP 

beads for Illumina Miseq sequencing.  

Illumina Miseq sequencing generated in a total of 10,603,544 sequences, with an average 

of 137,708 sequences per sample (minimum 76,281, maximum 191,868).  All sequence 

processing was done through QIIME2 2018.2.0.  Raw sequences were firstly de-multiplexed and 

quality filtered on a per-nucleotide basis (min quality: 4, window: 3, min length fraction: 0.75, 

max ambiguous: 0). Reads were denoised using the deblur plugin, and the sequences were 

trimmed at the length of 250 bp (sample stats: T, mean error: 0.005, indel_prob: 0.01, indel_max: 

3, min_reads: 10, min_size: 2, jobs_to_start: 1). Taxonomic assignments were classified against 

both the SILVA and greengenes database and assigned based on their highest taxonomic 

resolution. Discrepancies were resolved manually through BLAST and comparing against the 

non-redundant NCBI sequence database.  
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Based on taxonomic information, microbiome composition data was obtained for every 

sputum sample and a phylogenetic tree was constructed via fasttree. To correct for the variation 

16S rDNA copy number among different taxa, the number of sequences per sample were divided 

by known 16S rDNA copy number of the genus or divided by four (average number of 16S 

rDNA copy number) if the information was missing. Samples were rarefied to 17000 reads to 

guarantee equal sampling for subsequent analysis.  

 

A.1.2: Machine Learning 

To illustrate our machine learning approach, we begin with the model output trained on 

the full dataset (all 16S and metadata predictors, Fig 2.S2). Figure 2.S2a plots predicted versus 

observed lung function, for both the training dataset (data on 53 patients used to train model 

parameters) and the test dataset (data on 24 patients held back during model training). Figure 

2.S2b highlights the parameters retained in the predictive model and their weighting. Our initial 

machine learning analysis (Fig 2.S2) suggest that the addition of non-pathogen 16S data improves 

model performance as evidenced by the retention of non-pathogen predictors in a penalized 

regression, and flags specific taxa as potential predictors. 
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Appendix B: Supplemental Tables and Figures 

 
 
Figure 2.S1. Shannon diversity and ordination. a) Within-sample diversity (Shannon index) is 
lower in severe disease states compared to normal (Kruskal-Wallis, p<0.01). b) Between-sample 
diversity (Bray-Curtis PCoA on top 25 genera, centered log-ratio transformed). PCs 1 and 2 
combined explain ~27% of the microbiome variance, and weakly clusters patients by Lung 
Function. 
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 Figure 2.S2. ElasticNet-identified predictors of lung function. We train a baseline predictive 
model of ppFEV1 using the ElasticNet algorithm (alpha = 0.5) to perform feature selection. We 
assess the train-test holdout method on metadata + all 16S data. The train-test uses a standard 70-
30 split (53 patient training set, 24 patient test set). (a) We plot model-predicted ppFEV1 values 
(scaled) against actual ppFEV1 values and calculate squared errors for each data point. We find 
that the model trained with the full dataset has the highest performance (see Fig 2.S1 for 
prediction subset model performance) and selects features across different input data sources. (b) 
Model coefficients from the train-test holdout show general agreement with CF heuristics. Age, 
diabetes, Achromobacter and Pseudomonas abundance are selected as negative predictors of age 
whereas Haemophilus, Fusobacterium, oral taxa abundance, and as BMI are positive predictors. 



90 
 

 
 

Figure 2.S3. Predicting ppFEV1 from genus data. To obtain baseline models, we assess the 
train-test holdout method on five input data sources: 16S quantitation of CF Pathogens (clr-
transformed), all 16S data (clr-transformed), metadata, metadata + pathogens, and metadata + all 
16S data. 
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Figure 2.S4. Bootstrapped ElasticNet-identified predictors of lung function. ML models were 
trained using varying input datasets. a) 1000-fold bootstrapping and b) leave one out cross-
validation (LOOCV) were used to generate prediction error (MSE) ranges across feature subsets. 
Models trained on all of the data show lower error compared to other feature subsets. Adding 16S 
pathogen quantitation decreases model error. Models trained on all 16S data outperform models 
using only 16S quantitation (p < 0.01, t test). Regardless of input features, models trained on the 
full sample set (black points) are greater than median LOOCV MSEs (boxplots). c-g) Coefficient 
ranges for train/test (black points) and bootstrapped models (boxplots) trained on varying input 
datasets (blue: metadata, orange: 16S pathogens, yellow: 16S other taxa) show consistency 
between both machine learning strategies. Both cases select Pseudomonas and Achromobacter as 
negative predictors. 
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Table 3.S1. Differences in community structures across pathogen treatments. (Fig 3.3 data). 
The analysis of similarity (ANOSIM R) statistic captures the ratio of between-group to within-
group variances; as R approaches 1, more variance is found between groups than within groups 
(Clarke, 1993). Passage 0 (inoculum) is omitted from the analyses. All but one R value is 
significant via permutation tests at p < 0.05. Applying the more conservative convention of R > 
0.4 for significance (Quinn et al., 2016; Roberts et al., 2008), we find no significant effects of any 
pathogen treatment.  
 

Treatment contrast  ANOSIM R (permutation p value)  

Effect of mucoidy (SA present)  R = 0.135 (p = 0.003)  

Effect of mucoidy (SA absent)  R = 0.019 (p = 0.164)  

Effect of SA removal (mucoid PA)  R = 0.068 (p = 0.026)  

Effect of SA removal (non-mucoid PA)  R = 0.080 (p = 0.010)  

Effect of SA and PA removal (mucoid PA) R = 0.193 (p = 0.001) 
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Table 3.S2. Antibiotic susceptibility in rich medium. Minimal Inhibitory Concentrations 
(MICs, in μg / ml) of synthetic community members were determined in rich medium.   
 

 Tobramycin Meropenem Ciprofloxacin 
P. aeruginosa PAO1 1 1 0.125 
P. aeruginosa PDO300 2 1 <0.125 
S. aureus 8 1 64 
B. cenocepacia ≥ 128 32 32 
A. xylosoxidans ≥ 128 4 8 
S. mitis 4 0.25 2 
N. subflava 8 0.125 0.125 
R. mucilaginosa 128 0.125 16 
H. influenzae 4 0.125 0.125 
P. melaninogenica ≥ 128 0.125 1 
V. parvula 32 0.25 1 
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Table 3.S3. Summary of hypothesis tests conducted in this study. Hypotheses (italic text) are 
organized by topic area (underlined text). Hypotheses in grey are rejected under the specific 
experimental conditions outlined in our study and may still apply in other contexts. 
 

Topic and hypotheses (grey/black – rejected/supported under our specific 
experimental conditions)  

Previous literature Key 
figures 

Synthetic microbiome structure and diversity 
Single-locus biofilm mutations can produce large-scale community shifts.  

(McClean et al., 2015) 3.3 

Competitive release / survival filter 
Antibiotics enrich for resistant species (taxon enrichment). 
Antibiotics enrich for the sum of resistant species (functional enrichment). 

(Aspenberg et al., 2019; 
de Roode et al., 2004; 
Wale et al., 2017) 

3.4, 3.6, 
3.8 

Variation and alternative stable states 
Drug exposure increases variability across replicates 
Drug exposure produces alternate stable states 

(Estrela et al., 2022) 3.S1, 
3.S3 

Role of oral bacteria in CF microbiomes 
Oral bacteria facilitate CF pathogens.  
Oral bacteria suppress CF pathogens. 

(Caverly & LiPuma, 
2018; Flynn et al., 
2016) 

3.2, 3.4 

Microbial interactions  
Stressors increase inter-specific facilitation. 
B cenocepacia facilitates S. aureus in a meropenem-dependent manner. 

(Piccardi et al., 2019) 3.7 

Models of CF microbiomes 
Distinct experimental platforms are necessary to produce distinct 
‘pulmotypes’.  
A single ‘meta-community’ experimental platform can approach diverse CF 
‘pulmotypes’, contingent on antibiotic exposures. 
 

(Jean-Pierre et al., 
2021) 

3.4, 3.5, 
3.9, 
3.10 
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Table 3.S4. Monoculture pre-culture conditions.  The atmospheric environment specifies the 
oxygenation used for both the agar plate (Brain Heart Infusion (BHI) or chocolate agar) and 
liquid culture steps. The liquid medium supplements had the following concentrations: hemin, 15 
mg / L; NAD, 15 mg / L; vitamin K1, 1 mg / L; L-lactate, 50 mM.  Note that in subsequent 
experiments we simplified the protocol so that all bacteria were cultured first on chocolate agar 
plates, and then in a common medium of TSYE supplemented with hemin, NAD, vitamin K, and 
lactic acid 
 

Genus Species Oxygen tolerance  Liquid medium Agar plates 

Pseudomonas aeruginosa Aerobic TSYE BHI 

Staphylococcus aureus Aerobic TSYE BHI 

Achromobacter  xylosoxidans Aerobic TSYE BHI 

Haemophilus influenzae Microaerophilic  TSYE+hemin+NAD 
Chocolate 
agar 

Streptococcus Mitis Aerobic TSYE BHI 

Rothia mucilaginosa Aerobic TSYE 
Chocolate 
agar 

Burkholderia  cenocepacia Aerobic TSYE BHI 

Neisseria subflava Microaerophilic  TSYE 
Chocolate 
agar 

Prevotella melaninogenica Anaerobic TSYE+hemin+VK1 
Chocolate 
agar 

Veillonella parvula Anaerobic TSYE+lactate 
Chocolate 
agar 
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Figure 3.S1. Coefficient of Variation (CV) in species abundances, across replicates. CVs 
under different treatments through time. Stacked bars represent the CV of each individual species. 
CV is calculated as the standard deviation (across replicates) at each passage divided by its mean. 
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Figure 3.S2. Compositional and total abundances across all treatments (columns) and 
replicates (rows).  For details, see legend of Figure 3.1. 
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Figure 3.S3.  Differences in community structures across experimental treatments and 
clinical data. The analysis of similarity (ANOSIM R) statistic captures the ratio of between-
group to within-group variances; as R approaches 1, more variance is found between groups than 
within groups (Clarke, 1993). Green boxes are comparisons between absolute abundances of the 
‘no drug’ reference treatment (PDO300 with SA, Figure 3.1) and experimental manipulations 
(pathogen treatments, Figure 3.3, and drug treatments, Figure 3.4). The pink box is the 
comparison between relative abundances of all experimental conditions (Figs 3.2, 3.3, 3.4) and all 
clinical conditions. Passage 0 (inoculum) is omitted from the analyses. All R values are 
significant with p < 0.05 (permutation test). Applying the more conservative convention of R > 
0.4 for significance (Quinn et al., 2016; Roberts et al., 2008), we find that only the antibiotic 
treatments achieve significant levels of community differentiation.  
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Figure 3.S4.  Temporal absolute abundances for all treatments (panels A-F), taxa (sub-
panels) and replicates (colored lines).  Data are plotted for each species under each antibiotic 
condition (A-F). The X-axis represents passage and Y-axis represents absolute abundance per ml. 
Individual replicates are connected by individually colored lines.  
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Figure 3.S5.  Absolute microbe densities across antibiotic exposures. Each dot corresponds to 
an individual replicate of species-specific initial (inoculum) and final time-point absolute density 
under defined antibiotic treatments (data redrawn from Figure 3.4). abx_free = no antibiotic 
condition, mer = meropenem, cip = ciprofloxacin, tob = tobramycin. Asterisks denote 
significantly higher/lower final densities in presence of antibiotic, compared to antibiotic-free 
controls (two-tailed Wilcoxon test, * p < 0.05, ** p < 0.01).  
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Figure 4.S1. All-data clustering identifies 12 pulmotypes. Clusters (k=1…25) were calculated 
using DMMs on individual snapshot data (N=1184) across 74 taxa, rarefied to 2000 sequences 
each. (A) Using the Laplace approximation of the negative log model evidence, we find a 
minimum at k=12 clusters (pulmotypes). (B) Boxplots of the top 10 taxa grouped by 12 
pulmotypes. (C) Overall frequency of each pulmotype across the initial 1184 samples. (D) 
Pulmotypes represented in each study are shaded in. Studies are ordered by number of samples 
included. 
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