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SUMMARY

Sounds can change simultaneously along many dimensions. This includes

changes in pitch, loudness, timbre, or location. Despite this, humans are still able to

successfully integrate these different cues and use them to identify, categorize, and

group sounds [4]. Human performance on such tasks continues to far exceed that

of computational models, especially under certain conditions, such as noise, speaker

change, and speaker variability. Humans, unlike many computational models, are

able to easily account for speaker variability along with changes in other auditory

percepts. Even in extremely noisy environments, we find ourselves able to relatively

easily follow and understand the conversations that we are carrying on with others.

One classic example of this is the “cocktail party problem” reported on by Cherry in

1953 [7]. Cherry investigated questions of how humans are able to selectively attend

to a particular talker even in very noisy situations where multiple talkers are speaking

at the same time.

In this thesis, we are concerned with identifying the sounds that grab a listener’s

attention. These sounds that draw a person’s attention are sounds we consider salient.

The focus here will be on investigating the role of saliency in the auditory attentional

process. In order to identify these salient sounds, we have developed a model inspired

by our understanding of the human auditory system and auditory perception.

By identifying salient sounds we hope to obtain a better understanding of auditory

processing, and in particular, the key features contributing to saliency. Additionally,

studying the salience of different auditory stimuli can lead to improvements in the

performance of current computational models in several different areas, by making

use of the information obtained about what stands out perceptually to observers in a

xii



particular scene. Auditory saliency also helps to rapidly sort the information present

in a complex auditory scene. Since our resources are finite, not all information can be

processed equally. Therefore, we must be able to quickly determine the importance

of different objects in a scene. Additionally, an immediate response or decision may

be required. In order to respond, the observer needs to know the key elements of the

scene. The issue of saliency is closely related to many different areas, including scene

analysis.

The thesis provides a comprehensive look at auditory saliency. It explores the

advantages and limitations of using auditory saliency models through different ex-

periments and presents a general computational auditory saliency model that can be

used for various applications. We begin by first defining specifically what we mean

when we say something is salient in audio. From there, we present the model for

auditory saliency that was developed based on research into saliency models for the

visual domain. Finally, we consider the issues of evaluating auditory saliency as well

as investigating the key features contributing to salience. We evaluate our model

using several experiments which show that the model matches well with human per-

formance in detecting salient auditory events in a complex scene.
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CHAPTER I

INTRODUCTION

The auditory system performs many intricate steps involved in sound processing lead-

ing to our ability to hear and perceive various sounds. The sounds that we hear change

constantly, and these changes can occur simultaneously along many dimensions. This

includes changes in pitch, loudness, timbre, or location. Even with these changes,

we are still able to successfully integrate the different cues and use them to correctly

identify, categorize, and group sounds [4].

Despite the vast amount of research that has been done, humans continue to

outperform machines in many auditory processing tasks, particularly in the presence

of noise and other factors. For example, most of the existing computational models

are still not able to match human performance when faced with certain issues, such

as, speaker change or variability, in addition to changes in the other auditory percepts

mentioned above. Humans, on the other hand, are able to deal well with the presence

of noise, in such a way that we are able to successfully follow and understand the

conversations we engage in with others even in extremely noisy environments. One

classic example of this is the “cocktail party problem” reported on by Cherry in

1953 [7]. Cherry investigated the question of how humans are able to selectively

attend to a particular talker even in extremely noisy conditions with multiple talkers

present. This selective attentional process helps us to determine where our attention

should be directed, and it can be either intentional (top-down, task-dependent) or

involuntary (bottom-up, saliency-driven process). The bottom-up, saliency driven

process does not require attention and occurs very rapidly and effortlessly. The top-

down, task dependent process, on the other hand, occurs more slowly and involves

1



the higher-order processes and attention.

This thesis explores the concept of auditory saliency and presents a computational

model for auditory saliency similar in function to the bottom-up, saliency-driven

aspect of our attentional process. As it is commonly believed that attention is limited

and we can only fully attend to one thing at a time, there must be some mechanisms

by which attention can be switched [65]. Auditory saliency can explain how the

involuntary part of selective attention occurs. Here, the focus is on identifying the

sounds that grab a listener’s ear or attention. For example, if we are currently engaged

in a task, and we hear an alarm clock ringing, we are likely to stop what we are doing

and look up. Thus, a salient sound is one that draws our attention away from where

it is currently directed. In this way, salient sounds can drive attention by causing us

to change our focus.

Auditory saliency also acts as a filter where important or salient elements of

a scene can be passed on for additional processing. It suppresses the less salient

stimuli as well, thereby reducing the amount of interference during the higher-order

processing of the salient sounds. This can explain how we are able to quickly sort

all the information present in any given complex auditory scene. Since our resources

are finite, it is impossible for us to process everything equally. Therefore, we must be

able to identify what is important in a particular scene. A recent study by Mesgarani

and Chang in [49] reinforces the idea of an early filtering process being used by the

human auditory system in order to ensure that only relevant information is passed

on for higher level processing. Additionally, an immediate response or decision may

be required from us. In order to respond, we need to be aware of the most important

elements of the scene. The computational auditory saliency model mimics this part of

the attentional process and provides us with an auditory saliency map which indicates

the areas of a particular auditory scene that stand out perceptually to observers. This

information can then be used to improve the performance of current computational

2



models in many different areas, including noise suppression, audio classification, and

speech recognition.

The computational auditory saliency model is analogous to visual saliency models

that are used to identify what areas of an image stand out to observers. Much more

saliency research has been done in the visual domain, and there are many existing

visual saliency models that are used for various applications, such as detection or

recognition. Therefore, we begin with a brief overview of visual saliency and some of

the existing visual saliency models. We will then follow with a discussion of some of

the challenges encountered in going from visual saliency to auditory saliency. Finally,

we conclude this chapter with some of the main contributions of this thesis along with

an outline of the thesis.

1.1 Visual Saliency Models

The vast majority of all saliency research has been focused on the visual domain.

One reason that may explain why visual saliency has been much more researched

than auditory saliency is that the primitives for vision are better understood, thus

making the concept of saliency more easily definable. Another reason is that the

evaluation of visual saliency is more straight-forward as there is a physical correlate,

eye-tracking, that can be used. Eye-tracking, which has been shown to correlate with

stimulus salience [17], allows us to physically measure or quantify visual saliency. In

this section, we provide an overview of some of the motivations behind looking at

salience and the current research in this field with regards to visual saliency.

Humans use a saliency-driven attentional process in order to identify objects that

stand out in a visual scene. Based on psychological and physiological experiments,

it is believed that bottom-up visual saliency is what drives this attentional process

allowing us to rapidly scan an entire visual scene and then highlight a small area of

the scene as being salient [44, 73, 29]. This highlighted information can then passed

3



on for higher level visual processing, allowing us to filter out less important aspects

of the scene and reducing the computational load to our systems [43]. This filtering

process is often referred to as “selective attention” [43].

The goal of visual saliency research is to create a computational model that can

determine where an observer’s attention will be directed when they are initially con-

fronted by a visual scene [38, 57]. These models can also identify the order in which

an observer’s gaze will be drawn to different objects in the visual scene. The ma-

jority of existing visual saliency models are pre-attentive models that drive attention

as opposed to being determined by attention. They were inspired by Treisman and

Gelade’s “Feature Integration Theory” presented in [73]. Here, Treisman and Gelade

proposed that features come before perception, and early visual features are regis-

tered automatically in parallel across the visual field [73]. It is then only later, with

attention, that the features can be identified as objects.

The feature set of the saliency models include simple visual attributes that neurons

in early visual processing are tuned to [37]. Luminance or intensity, along with

orientation and color, are three main features typically used in the feature set of all

visual saliency models. For example, the model by Itti in [38], extracts these three

features, in parallel, along various scales. The different scales are then compared using

a center-surround mechanism to obtain the feature maps, where the finer scale is the

“center” and the courser scale is the “surround.” The feature maps are then combined

into a two-dimensional “saliency map” corresponding to the points within an image

that are salient. The idea of having a saliency map that corresponds directly to an

image may be easier to visualize as opposed to the concept of having a saliency map

for audio, which may be another reason that visual saliency has been more widely

researched.

The saliency of a particular object will depend on a variety of features, and differ-

ent features contribute with varying degrees or weights to the overall saliency map [3].
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The feature set selected for the saliency models attempt to capture the main features

contributing to object salience. Below in Figure 1 is a simple example of the strong

pop-out effect of bottom-up visual saliency. One of the bars immediately stands out

from the rest of the scene and is considered salient due to its different color and

orientation. The pop-out effect of bottom-up saliency demonstrated here works pre-

attentively, and it is the salience of the stimulus that drives or directs attention. It

occurs very rapidly and requires no effort on the part of the observer to identify the

salient stimulus. As illustrated by this example, how different an object is from the

rest of the surrounding scene will be an important factor contributing to salience from

this bottom-up view.

Figure 1: Simple example demonstrating the pop-out effect of bottom-up visual
saliency.

By contrast, in Figure 2, we show an example of a conjunctive search problem

which results in no pop-out effect. A conjunctive search problem is one where the

target cannot be defined by a single unique feature which results in a longer search

process as saliency plays a smaller role in guiding our attention. In this case, we have

one bar that again differs from the other bars, but it does not stand out to us like

the green bar from the previous example. Here, the observer must search through the

entire image in order to find the target, which is the one red bar with the different

5



orientation.

Figure 2: Example demonstrating no pop-out effect when saliency does not guide
attention.

The visual saliency models have been evaluated in various experiments by com-

parison to human observers and have been shown to perform well on certain types

of tasks [38, 73]. One method of evaluation that is very commonly used in visual

saliency is eye-tracking, and one advantage of this method is that it does not allow

observers the time or opportunity to consider their responses. It simply follows where

an observer’s gaze is naturally drawn, as opposed to requiring an observer to report

on what they view as most salient in a scene. Here, the order in which they look at

different objects in the scene is also noted and provides information on the degree of

saliency. It is important to remember as well that there is no truly objective measure

for evaluating saliency, since saliency can vary among different observers and will also

be influenced by top-down or task-dependent information.

Since the development of the first computational visual saliency models, the focus

of many visual saliency researchers has expanded to include applying the models to

various applications. Some of these applications include: video compression, video

processing, background subtraction, and 3D visual saliency. There also continues to

be a large amount of research focused on further developing the feature set of these
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models. For example, many of the recent visual saliency models now incorporate

motion and features such as eye and head movement animation [36], along with the

three basic features mentioned previously. Adding motion as an additional feature

allows the visual saliency models to be applied to not only images, but also to video

segments as well, where the models can be used to track salient targets in a video

scene. Finally, another area for continuing research in visual saliency is creating visual

saliency models that take into account both top-down and bottom-up processing. One

top-down implementation that has been introduced is the one by Peters and Itti in [58]

where “gist” features are used to capture the top-down information.

The concept of auditory saliency is analogous to that of visual saliency, although

creating such a model for the auditory domain is a relatively novel and recent idea. We

first started investigating the idea of an auditory saliency model, based on studying

visual perception [23, 34]. In particular, different visual saliency concepts and models

were examined, such as the one by Itti in [38]. Additionally, observations made from

work in other related areas also indicated that an auditory saliency model would be

useful [50, 61] for various applications. Studying visual saliency models is a good

starting point, as auditory and visual systems are similar in many ways, and the idea

of applying a saliency model for other modalities, such as the auditory domain, had

not yet been extensively studied. In particular, several different studies have found

similarities in the cortical processing for both the visual and auditory systems [70, 18].

A model of auditory saliency is interesting as it can be used to help expand our

understanding of auditory perception and attention. The auditory saliency model

would be able to detect and rank sounds that are perceptually salient to listeners,

much the same way that the visual saliency models can detect the salient points or

regions in an image or video. There are also many possible applications that could

benefit from applying information provided by our computational auditory saliency

model on the saliency of different objects. This includes applications in the areas of
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surveillance, noise suppression, auditory scene analysis, and audio classification.

1.2 From Visual Saliency to Auditory Saliency

Several considerations make studying auditory saliency a challenging task. The first

issue that must be considered is how auditory saliency is defined. At the time we be-

gan researching auditory saliency and applying the concept of saliency to the auditory

domain, there were no existing auditory saliency models. One of the key questions

asked was what is auditory saliency and, more specifically, what is meant when we

say that something is salient in audio.

A second issue to consider is the feature set that should be used by the auditory

saliency model. Unlike with vision, where many of the basic features used in early

auditory processing have been determined, the primitives in audio are not as well

understood. This can make it more difficult to determine the appropriate feature set.

A third issue that makes auditory saliency different than visual saliency is the fact

that audio has a temporal component that must be taken into account. In the past,

with the visual saliency models, the input image was an instantaneous presentation

that did not vary with time. Here, we have an auditory scene that is constantly

changing with new sounds being introduced over time. How this time component

will be incorporated and whether or not a new sound is now more salient than the

previous sounds will need to be considered. Having this time aspect, in some ways,

is more natural as when we encounter “scenes” in the real world, we are not just

viewing an instantaneous snapshot in time, such as the static images, but instead, we

are seeing events occurring continuously over a span of time.

Finally, how to evaluate the performance of the auditory saliency model also needs

to be considered. The evaluation of auditory saliency is slightly more complicated

than that of visual saliency as the auditory system does not have a physical correlate

that can be easily measured, such as eye-tracking, to use for evaluation. Therefore,
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it will be necessary to determine a method that can be used to measure auditory

saliency. In the next chapter, we will address some of these concerns as well as

present the current auditory saliency research.

1.3 Thesis Contributions and Outline

In this section, we state some of the main contributions of this thesis and provide

an outline of the thesis. This thesis involves contributions in several different areas,

leading to an overall, comprehensive look into computational auditory saliency.

The first contribution of the thesis is presenting a novel computational auditory

saliency model. The model presented here uses features that are generated from a

cortical model to extract information on spectral and temporal modulations. One

novel contribution of our model is it takes into consideration the fact that certain

frequencies can be perceived as louder, and as result, be more salient. This is some-

thing that can greatly influence what is salient to the model, but it is not accounted

for by any of the existing auditory saliency models. Additionally, the model is a

general auditory saliency model that matches well with results from human subjects

on selecting salient sounds from a scene. One advantage of the model is that it can

be applied to a variety of applications. Many of the other currently existing models

are tailored towards a specific application and have only been evaluated for that par-

ticular task. Therefore, we do not have any knowledge of its overall performance in

selecting or ranking the saliency of different sounds from the various sounds present

in complex auditory scene. This model was evaluated using experiments with human

subjects that involved making comparisons between different stimuli and selecting

the one that is most salient.

The question of how to evaluate auditory saliency is an ongoing issue as there

are no easily measurable physical correlates. The use of the dual task experimental

paradigm to evaluate auditory saliency is a new contribution. Dual task experiments
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have long been used in various studies involving attention in the different modalities,

but it has never been used to investigate auditory salience. The saliency model

presented in this thesis is meant to mimic the function of the bottom-up, saliency-

driven part of our attentional process. From this perspective, sounds are considered

salient if they can be noticed without our attention. Therefore, we show that dual

task experiments are an appropriate and useful tool for evaluating this bottom-up

auditory saliency process.

Another contribution of the thesis is the exploration into the dimensions or fea-

tures contributing to the salience of different sounds. This information can then

be used to create a more comprehensive feature set. In particular, we were able to

improve our auditory saliency model by adding a pre-processing stage based on the

results of this analysis. The new stage resulted in a significant improvement in the

correlation values between the model’s responses and subjects’ responses. Our exper-

iment and the analysis performed using multidimensional scaling (MDS) is the first

of its kind, as there is no existing research on identifying the factors the contribute

towards making a sound salient.

There are many applications that the auditory saliency model can be used for. In

this thesis, we apply the auditory saliency model to the novel application of selecting

salient auditory segments from video. Here, the stimuli used are two-channel audio

inputs. The current auditory saliency models have all been used and tested primarily

on monaural sounds. Thus, another novel contribution of this thesis is the use of the

model on two-channel input sounds. While the model was not created for binaural

sounds, this experiment shows how it can also be useful for identifying salient stimuli

from binaural inputs. We include discussion on how the model can be applied to

binaural sounds and show that the model performs as well in selecting salient segments

for two-channel input sounds as it did in previous experiments on monaural sounds.

This thesis is divided into seven chapters. In the introduction, we provided some of
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the background and motivations for research in saliency. Following the introduction,

in Chapter 2, we define the concept of auditory saliency. We also address some of

the challenges of creating an auditory saliency model. In Chapter 3, we then present

the computational auditory saliency model. This auditory saliency model focuses

on the bottom-up processing aspect of our attentional process and uses inhibition

of features obtained using auditory spectro-temporal receptive fields to compute a

saliency map. This saliency map identifies the sounds that are most salient in a

complex auditory scene. We also provide some examples of saliency maps for various

auditory stimuli that demonstrate our model is able to replicate some well-known

psychoacoustic experimental results. This chapter concludes with an introduction to

the auditory saliency tool that we use to easily generate saliency maps for different

sounds.

Chapter 4 deals with addressing the issues involved in evaluating or quantifying

auditory saliency. Here, we present results from two different types of experiments

that were performed. These two experiments are both appropriate for evaluating

auditory saliency. The first experiment is a dual task experiment which involves per-

forming two tasks simultaneously. The subjects were asked to attend to one task,

while the second task was occurring simultaneously in the background. It is the

subjects’ performances on each of the tasks when performed separately and simulta-

neously, which indicate whether or not a stimulus is salient. The second experiment is

the saliency scene comparison experiment. In this experiment, we presented subjects

with various auditory scene pairs and asked them to indicate which scene from the

two scenes contained the most salient element. The results of these two experiments

show that our model matches well with subjects’ responses regarding the saliency of

different stimuli.

In Chapter 5, we investigate what features contribute towards making a sound
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perceptually salient. Here, we discuss using the statistical technique of multidimen-

sional scaling (MDS) to analyze subjects’ ratings of saliency for different auditory

scene pairs. We demonstrate how this technique can be used to identify the underly-

ing dimensions of sound that may affect salience. From the results of this experiment,

we examine if there are any additional features that make a sound salient that could

be added to the existing feature set. This is the first experiment of its kind to try to

identify the dimensions of sound that affect saliency.

Chapter 6 explores applying the auditory saliency model to video scenes with their

corresponding soundtracks. The goal is to explore whether or not the most salient

auditory segment of a video scene can be used to provide a summary snapshot that is

representative of the entire video scene. The stimuli set for this experiment is different

from the one used in previous experiments in that the inputs are two-channel, stereo

sounds, as opposed to monaural sounds. In addition, the soundtracks include speech,

which was not included as part of the stimuli set in previous experiments. We present

results comparing the model’s responses to subjects’ responses in selecting segments

containing the most salient sound for when only the audio soundtrack is presented

and also for when the video is shown with the corresponding audio.

Finally, in Chapter 7 we conclude with a summary of the main contributions of

this thesis. We also briefly discuss the possibilities for further research in the area of

auditory saliency.
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CHAPTER II

DEFINING AUDITORY SALIENCY

In this chapter, we address some of the issues and challenges involved when applying

the concept of saliency to the auditory domain. The first issue that we needed to

address was how auditory saliency is defined.

2.1 Auditory Saliency Definition

Saliency defines what is obvious or striking about a particular feature. We found that

auditory saliency could be looked at from two different perspectives. The first is a pre-

attentive or bottom-up processing perspective, similar to that used by many visual

saliency models. This perspective seeks to model the saliency-driven portion of the

attentional process, which occurs rapidly and effortlessly. It focuses on the physical

attributes of a sound that make it salient, and the main goal of the bottom-up models

is to identify sounds that stand out and grab a listener’s ear or attention. If we look

at saliency from this bottom-up view, we define salient sounds as those sounds that

can be noticed without attention. These sounds draw a listener’s attention and can

cause them to shift their attention from the currently attended task. For example,

regardless of the task a subject may be attending to, an alarm sound such as a

fire alarm ringing would be considered salient. Although there is also a top-down

component that makes an alarm or siren especially salient to us (we have learned

they can indicate danger), many of these types of warning sounds have been designed

to grab our attention and are inherently salient based on the attributes of the sound

itself.

On the other hand, we can also consider saliency from a top-down perspective.

In this case, higher level information biases the bottom-up cues, thereby changing
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what is considered salient. Sounds stand out due to their meaning despite the fact

that they may not be acoustically significant. It involves the higher level processes

and takes into consideration our prior knowledge or learning from past experiences.

Thus, top-down auditory saliency models need to incorporate some type of learning

mechanism for the top-down input or feedback. Here, we consider that humans create

different models for various situations based on their past experiences. They then use

these previously learned models to understand and interpret complex auditory scenes.

Salient sounds would be defined as those sounds that violate these models. From a

top-down perspective, sounds that are unexpected for a particular situation would

be very salient, while sounds that are typical of or expected will become part of the

background and less salient. For example, if you are attending a basketball game,

even though the sounds of the crowd cheering or the band playing can be very loud,

they do not stand out to us here, since they are all things that we would expect to

hear in this environment. Therefore, in this case, these sounds are not salient. On

the other hand, if you are in the classroom and you suddenly hear people cheering or

a band playing, these same sounds are now much more salient. This is because these

sounds are unexpected for the classroom setting. Therefore, saliency from a top-down

perspective will depend on the particular context of a scene or task. As illustrated by

this example, despite the fact that they are the same sounds, the degree of saliency is

dependent on the situation and whether or not the sound is expected for that scene.

Top-down input can also result in certain sounds becoming more salient to only

particular individuals based on what they have learned from their past experiences.

For example, one person that has an extreme fear of dogs, due to receiving a dog bite

as a child, may find the sound of a dog barking much more salient than someone who

does not have this same fear. Some other examples of top down feedback making

various sounds more salient to different individuals include our name and the sounds

of a baby crying. If we hear someone calling our name, it is likely to draw our
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attention regardless of any task we may be currently occupied with. Similarly, the

sound of a baby crying is particularly salient to mothers, although there may also be

aspects of a baby’s cry that are salient due to bottom-up cues as well. Overall, as

for the siren and baby cry, our perception of sounds will involve a combination of the

bottom-up and top-down cues.

The question of how heavily we rely on each of these cues, and how these different

cues interact with one another in the attentional process is still largely unanswered.

One recent paper demonstrates the importance of attention and both top-down and

bottom-up saliency on how we perceive complex auditory scenes [25]. In Figure 3,

we provide a block diagram showing how the top-down and bottom-up cues could

potentially interact in the control of auditory attention as proposed by our model [22].

Here, the sound input undergoes processing by the peripheral auditory system where

different frequencies are resolved by the cochlea. The output of this stage is then

transmitted by neurons to the central auditory system for further processing. This

processing results in the multi-scale feature maps used by our computational auditory

saliency model and discussed in detail in the next chapter. While our auditory saliency

model focuses on identifying the sounds that grab our attention based on bottom-up

cues, we also show in Figure 3 where top-down cues could bias the bottom-up cues

in the evaluation and feature combination stage, thereby influencing where attention

will ultimately be directed.

Sound

Saliency Map
(Attended Location)

Top Down Feedback

Auditory
Spectrogram

Feature
Maps

.

.

.

Bottom-up Cues

Central Auditory ProcessingPeripheral Auditory Processing Feature Selection/Combination

Figure 3: Block diagram of processes involved in auditory attention as proposed by
our model [22].
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2.2 Feature Set Selection

In creating an auditory saliency model, we needed to determine the main features

that make a sound salient. This information is important in ensuring that a proper

feature set can be chosen. As we started our research into selecting a feature set for the

auditory saliency model, we first considered using a combination of simple features,

such as, pitch, zero crossings, intensity, and frequency centroid to form the feature

set. Although these simple features do provide information important in auditory

processing, we were interested in using features similar to those the brain potentially

uses in processing auditory sounds. Since human performance continues to exceed

computers in many areas, we wanted to first start by matching human performance

by using biologically plausible features. Thus, instead of using a collection of simple

features to generate the feature maps for the auditory saliency model, we chose to use

a cortical model which works in the spectrotemporal domain and uses various scales

of temporal and spectral resolution. The cortical model represents the role of the

central auditory system where similar processing is thought to occur on the inputs

from the cochlea. The cortical model proposed in [77] was developed based on both

psychoacoustical and physiological results. It is based on data obtained from primary

auditory cortex neural responses of ferrets to various stimuli [19, 45, 46]. One reason

for using this model to generate the feature set is that it extracts many of the cues

important in auditory perception, including the spectral and temporal modulation

information, both of which play a key role in sound perception and segregation [53,

52, 1]. The cortical features have also been used with success for several other related

applications [60, 50, 51, 24].

In the next section, we present models for both the peripheral and central auditory

systems, including more details about the cortical model. Exactly how the cortical

model is used to generate the feature maps will also be discussed further in the next

chapter, where the current computational auditory saliency model is presented. In
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addition, in Chapter 5, we present an experiment performed that was specifically

aimed at improving the feature set of the model.

2.3 Modeling the Auditory Pathways

Sound is created by the vibration of objects, and the sounds that we perceive are

a result of complex processing performed by our auditory system. These vibrations

result in changes in pressure creating the waves that carry the sound signal. These

pressure waves are then later converted into nerve impulses by the peripheral auditory

system.

In this section, we provide a brief overview of the processing performed by the

peripheral auditory system. We then present a model used to represent the early

auditory processing completed by the peripheral auditory system. We use this model

to create two-dimensional auditory spectrograms that are used as an input “image”

to the auditory saliency model. This “auditory image” is analogous to the images

used as the inputs to visual saliency models and is one way we incorporate the time

component of audio. Finally, we finish the section by presenting the cortical model

that represents central auditory processing.

2.3.1 Peripheral Auditory System

The peripheral auditory system consists of the outer, middle, and inner ear. Figure 4

shows the structure of the human ear. Sound pressure waves enter the ear and travel

down the auditory canal. These waves cause the eardrum to vibrate, and one of the

main functions of the middle ear is to transmit these vibrations from the eardrum

to the cochlea and inner ear. The middle ear is made up of three small bones: the

malleus, incus and stapes. These three bones together are referred to as the ossicles,

and they perform impedance matching to ensure the efficient transfer of the sound

pressure waves from the air into the cochlea.

The sound waves that enter the cochlea will ultimately be converted into neural
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Figure 4: Structure of human ear showing outer, middle, and inner ear. Adapted
from [10].

spikes that travel to the brain for further processing. These waves enter through the

oval window and cause the fluid in the chambers of the cochlea to vibrate and move.

This motion of the fluid leads to pressure changes resulting in the displacement of the

basilar membrane. Figure 5 shows a cross-section of the cochlea. As shown here, the

cochlea is made up of three fluid-filled chambers (scala vestibuli, scala tympani, scala

media) that are divided by two membranes, Reissner’s membrane and the basilar

membrane.

The basilar membrane plays an important role in the frequency resolution and

analysis occurring in the cochlea. It varies in width and flexibility along its length,

and this property is what allows it to resolve different frequencies. At the base, it is

narrow and stiff, gradually becoming wider and more flexible as you move down the

length towards the apex. Thus, different frequencies cause peaks at varying locations

on the basilar membrane. For example, high frequencies will result in maximum

displacement near the base of the basilar membrane, while lower frequencies will
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Figure 5: Cross-section of cochlea.

travel further down the length and cause maximum displacement near the apex. As

shown in Figure 5, there are hair cells that lie along the top of the basilar membrane.

These hair cells, particularly the inner hair cells, are very important in the conversion

process of pressure waves into action potentials. This conversion takes place in the

organ of Corti, located between the tectorial and basilar membranes.

The conversion process begins when movement of the basilar membrane causes

displacement of the stereocilia on top of the hair cells. This movement opens the

ion transduction channels, allowing potassium ions to enter the cell, leading to a

voltage difference across the membrane of the cell. This voltage difference is what

eventually results in the firing of action potentials by the auditory nerve neurons. This

information is then transmitted from neuron to neuron until it reaches the cochlear

nucleus in the central auditory system for further processing.

In the following section, we discuss modeling the peripheral auditory processing

using mathematical models.
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2.3.2 Modeling Peripheral Auditory Processing

The models of the auditory system are typically separated into three different stages [79]:

1. Analysis stage - Models how the basilar membrane spatially separates different

frequencies along its length

2. Transduction stage - Models how the hair cells convert waves along the basilar

membrane into nerve impulses

3. Reduction stage - Models the lateral inhibition thought to be performed in the

cochlear nucleus [66].

One such biologically motivated model of early auditory processing is proposed

by Yang et al in [79]. A block diagram of this model with the three different stages

is shown in Figure 6. This model is briefly discussed here, since the auditory spec-

trograms that are used by the auditory saliency model are generated based on this

model. In addition to being physiologically inspired, another advantage of the model

presented in [79] is that it has been shown through various experiments to be robust

to noise [79, 76]. This is important as our auditory system has been shown to be

quite robust to noise compared to its current computational counterparts.

S(t) g(.) max()?th(t; x) ?tW (t)∂

∂t

∂

∂x
?xV (x)

∫
T

cochlea

filters
hair cell stage lateral inhibition network

Figure 6: A block diagram of the mathematical model of the peripheral auditory
system by [79].

The frequency resolution and analysis performed by the cochlea can be thought

of as a bank of bandpass filters, where each point along the basilar membrane has a

different transfer function. In this model, the analysis stage is modeled using a parallel
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bank of asymmetrical bandpass filters that are uniformly spaced on a logarithmic axis.

The output of the analysis stage is given by Equation 1.

yCF (t, x) = s (t) ∗ h (t; x) (1)

yHC (t, x) = g (∂tyCF (t, x)) ∗ w (t) (2)

yLIN (t, x) = max (∂xyHC (t, x) , 0) (3)

yAS (t, x) = yLIN (t, x) ∗ [e
−

t

τ u (t)] (4)

The transduction stage is modeled in three different steps. First, a time derivative

is used to model the coupling of the fluid and stereocilia. This is done as it is the

flow (velocity) of the fluid, due to the waves, that causes the transduction channels

to open. Secondly, the ion channels are modeled using an instantaneous non-linear

sigmoidal function, represented by g(.) in Equation 2. In the third step, a low pass

filter, w(t), is used to model the ionic leakage in the hair cells.

Lastly, for the reduction stage, a lateral inhibition network is thought to produce

a spectral profile of the sound [66]. Equation 3 shows the output for this stage, which

is modeled in three steps. The first step is a spatial derivative followed by local

smoothing, v(x), to model the lateral inhibition properties between neurons, as this

serves to highlight the spatial discontinuities in the auditory nerve patterns [79]. This

is then followed by a half-wave rectifier to represent the non-linearity of the neurons

and an integrator function to represent the poor response of central auditory neurons

to rapid changes.

The final output of this model, yAS, is an auditory representation or spectrum of

the signal, which can then be used for further processing and for various applications.

In the next section, we present a cortical model that models the role of the higher

order processes, such as those that occur in the primary auditory cortex.
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2.3.3 Modeling Central Auditory Processing

The auditory representation obtained by the early auditory processing model in the

previous section is thought to be similar to the inputs to the cortex, but exactly

how the cortex uses this information for further processing is still uncertain [77,

39]. One cortical model, shown in Figure 7, was proposed by Wang and Shamma

in [77]. It models spectral shape analysis and the role of central auditory processing.

The model was developed based on both psychoacoustical experimental results with

human subjects [8] and neurophysiological experimental results in animals [45, 46].

Physiological experiments in the primary auditory cortex of ferrets and cats have

confirmed that cortical cells have response properties matching those of this model [5,

30, 39].

Scale Axis

Symmetry Axis

Tonotopic Axis

high center frequencylow center frequency

narrowly tuned

broadly tuned

Figure 7: Schematic of the cortical model. Adapted from [77].

As shown in Figure 7, according to the cortical model, the response areas of cortical
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neurons in the primary auditory cortex (A1) are organized conceptually along three

spatial axes:

• Tonotopic axis - Along the tonotopic axis, neural response areas are tuned to

different center frequencies.

• Scale axis - Along the scale axis, the response fields vary in bandwidth from

broadly tuned to narrowly tuned.

• Symmetry axis - Along the symmetry axis, the asymmetry of the neural response

field varies.

The asymmetry of the response field is based on experimental data showing that at

the center of A1, cortical neurons have an excitatory center and symmetric inhibitory

side bands, but moving away from the center of A1, the response field becomes more

asymmetric with stronger inhibitory side bands in one direction [68].

The output of the cortical model is a multi-resolution representation simulating

the response properties of cortical neurons. Performing this cortical analysis on the

auditory spectrum can provide us with information on spatial and temporal modula-

tions, both of which are important in auditory perception [2, 60, 9].

This cortical model has been used successfully in many different auditory pro-

cessing applications. Some of these applications include speech processing, audio

classification, and noise suppression [50, 51, 24, 60].

In the next section, we present a summary of some of the current research in

auditory saliency.

2.4 Auditory Saliency Models

Using a saliency model for the auditory domain is still a relatively new area that has

not been studied extensively the way visual saliency has. There was no existing work

in auditory saliency when we first began researching the idea creating a saliency map
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for the auditory domain. Since then, particularly within the past year, there has been

continually growing interest in the idea of auditory saliency maps and using auditory

saliency models for various applications. Recently, several new auditory saliency

models have been proposed, although many of these saliency models are application

specific [12, 11, 35] and do not provide a “saliency map”. They have been tailored

for and tested on a specific task, such as speech recognition, or onset and syllable

detection, as opposed to being a general auditory saliency model that can be used

for a variety of applications. Concurrent to the development of our auditory saliency

model [22] were also two other auditory saliency models. There is the model presented

by Kayser et al. [42] and the model presented by Kalinli and Narayanan [40]. These

three models comprise the first auditory saliency models to be introduced, and all

three provide a auditory saliency map of the input.

The three auditory saliency models are all bottom-up processing models, and they

follow the same general architecture as the visual saliency models discussed in the

previous section. The model presented by Kayser et al. in [42] is very strongly based

on the visual saliency models. It mainly differs from the visual saliency models in its

interpretation. The features used are generated and processed in very similar ways

to that of the visual saliency model. The model presented in this thesis differs from

Kayser’s model by the features chosen and the processing of the features to form

the saliency map. Our model relies on inhibition of feature maps generated from

auditory spectro-temporal receptive fields (STRFs) and also takes into consideration

the spectral-temporal orientation which represents the ripple selectivity in A1 of the

primary auditory cortex. In addition, all the feature maps are generated using the

STRFs, and it does not require normalization to account for differences resulting from

various maps being generated by different methods. Our model also differs from the

model in [42] in that the features are generated from an auditory spectrogram, which

is a time frequency representation modeling early auditory processing [80], as opposed
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to an “intensity image.”

The model presented by Kalinli and Narayanan in [40] also utilizes an auditory

spectrogram. They claim the use of the auditory spectrogram as one of the contri-

butions of their model, but an auditory spectrogram has been used as part of our

model, which was presented at various workshops and meetings, well before that

publication [21, 20]. The model presented by Kalinli and Narayanan also differs from

our model and the one proposed by Kayser in that the model’s performance was

not evaluated using any psychoacoustical experiments involving results from human

subjects. Therefore, how it compares to our model and Kayser’s model for selecting

salient sounds in general is not known. Instead, the model was evaluated based on

performance on a specific speech task referred to as prominent syllable detection. The

model presented by Kalinli also differs from Kayser in that there are some additional

features that have been added to the feature set.

The first three auditory saliency models all rely solely on bottom-up processing

cues. In the last year, there has been increasing interest in looking at how top-down

input can be incorporated along with the bottom-up processing models. One such

model is a top-down, task-dependent model proposed by Kalinli and Narayanan for

use on the same task of prominence detection in speech that the bottom-up model

was used for [41]. Another recent model using top-down information was proposed

by Coensel and Botteldooren in [12, 13]. The model is an auditory saliency model for

use on environmental noise, in particular, transportation noise. It is inspired by the

three models discussed above, but also incorporates top-down cues using information

about which stream is currently being attended to from multiple streams. There is

not yet a general auditory saliency model incorporating both top-down and bottom-

up processing components into the same model that can be used for a variety of

applications. This may be due to the fact that top-down input tends to be very task

dependent. Therefore, how the top-down cues will be added and the type of top-down

25



feedback that will be used varies based on the specific task, making a general model

for use on many different tasks difficult.

In the next chapter, we present the bottom-up computational auditory saliency

model developed to identify salient sounds. It is inspired by our understanding of

the human auditory system and human perception. It is physiologically motivated,

and thus, may more typically represent human audio analysis. One key difference in

our model from the other auditory saliency models is that it takes into account that

fact that different frequencies can be perceived as louder. We show in Chapter 5 how

including this information can make a significant difference in what is considered to

be salient by the model.

The model presented in this thesis does well in matching humans’ selections of

salient sounds based on results from several different experiments. We found a strong

correlation between subjects’ selections and the model’s selections of salient scenes

in both a saliency scene comparison experiment presented in Chapter 4 and a video

summary experiment presented in Chapter 6. In the saliency scene comparison exper-

iment, subjects were asked to choose the most salient scene from a pair of scenes. The

correlation values we found between subjects’ responses and our model’s responses

were slightly higher than the correlation values found in [42] for a similar experiment,

although it would be better to evaluate both models using the same set of stimuli

and subjects to make a direct comparison.
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CHAPTER III

COMPUTATIONAL AUDITORY SALIENCY MODEL

In this chapter, we present the computational auditory saliency model which can be

used to identify salient sounds that grab our attention. We begin by first providing

an overview of the model. This is then be followed by the more detailed discussions

explaining how the feature maps are generated and how the saliency map is formed.

Several examples of saliency maps for different auditory stimuli are also presented

to show that the model is able to replicate some well-known experimental results.

Finally, we conclude the chapter with an introduction to the a MATLAB auditory

saliency tool that can be used to easily generate saliency maps for various auditory

scenes.

3.1 Computational Auditory Saliency Model Overview

The auditory saliency model presented here is a bottom-up processing model, which

performs the same function as the bottom-up, saliency-driven portion of our atten-

tional process. This bottom-up attentional process occurs very quickly and helps us

to sort through the information present in a complex scene. It can drive attention

by drawing our attention to the sounds that stand out from the rest of an auditory

scene. It can also be a method by which the auditory system selects important fea-

tures and sounds to be passed onto the higher-level stages for further processing.

Here, sounds that are not salient are suppressed, thus causing less interference for

the salient sounds that will passed to higher-order processes in the brain. In this

way, selectively attending to a particular stimulus allows the attentional process to

allocate the resources necessary to maintain our focus on the stimuli belonging to the

stream of interest [1].
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The auditory saliency model presented here uses inhibition of multi-rate, multi-

scale cortical feature maps obtained using auditory spectro-temporal receptive fields.

The feature maps are used to compute an overall two-dimensional, time-frequency

saliency map that identifies what is most salient to observers in a complex scene. The

saliency map also indicates the degree of salience for different sounds in a complex

auditory scene.

Sound Input

Auditory Spectrogram

Feature Extraction

Global Energy
(24 maps)

Temporal Modulation
(18 maps)

Spectral Modulation
(24 maps)

High Temporal &
Spectral Modulation

(18 maps)

Inhibition

Saliency Map

.

.

.

.

.

.

.

.

.
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.

.

Inhibition Inhibition Inhibition
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Linear Combination

Figure 8: General architecture of the computational auditory saliency model.

The general architecture of the computational auditory saliency model is shown

in Figure 8. The sound input is first converted into an auditory spectrogram, which

is obtained using a model for early auditory processing that mimics the processing

performed by the peripheral auditory system. The feature maps are then generated

from the spectrogram and grouped into 4 broad feature classes. Individual feature

maps within each class respond to varying rates of change depending on the filter
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used. Next, each individual map undergoes inhibition, resulting in the demotion of

feature maps with no features that stand out locally. These demoted maps provide

minimal contribution to the overall saliency map. The individual feature maps in

each of the 4 categories are then combined into a ‘global’ feature map for each class.

Finally, the 4 global feature maps are again subjected to inhibition and summed to

form the final saliency map.

The computational model for bottom-up auditory saliency presented here is sim-

ilar in structure to the visual saliency models, as well as the other existing auditory

saliency models [38, 42, 40]. The model can be divided into two main stages:

1. The feature extraction stage where the feature maps are generated

2. The inhibition (or suppression) stage where certain features are promoted or

suppressed determining their overall contribution to the final saliency map.

Each of these two stages will be explained in more detail in the next sections.

3.1.1 Generation of Feature Maps

Many different attributes of sound can affect how it is perceived. In selecting the

feature set for the auditory saliency model, we wanted to use features similar to

those our brain potentially uses in processing sounds. Two cues used by the auditory

system that are known to play an important role in auditory perception are spectral

and temporal modulations. Some other features that can also influence how a sound

will be perceived are its direction, location, frequency, and intensity. In addition, it is

generally accepted that both timbre recognition and pitch perception can significantly

influence auditory perception [71].

In the previous chapter, we introduced a cortical model, proposed by Wang and

Shamma in [77]. It models the responses areas of cortical neurons and extracts

spectral and temporal modulation information. We selected a cortical model ( [77, 9])

to use in generating the feature maps, since the cortical features are thought to be
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similar to those the brain uses in the central auditory system. The cortical features

capture many of the attributes of sound that are important in perception. Recent

experiments support this as it was found for speech that the cortical representation in

the posterior temporal lobe provided not only information on the acoustical properties

of the speech, but it was also strongly related to how the speech was perceived [49, 6].

Timbre is one attribute that can be difficult to define, compared to pitch and

intensity, but spectral shape has been found to be an important physical correlate for

timbre discrimination [59, 69, 31, 67]. Timbre information is well-represented by the

cortical model which simulates the spectral shape analysis performed by the central

auditory system. One attribute of sound that the cortical features do not provide

information on is the location of a sound. While traditional spatial localization cues,

such as the inter-aural intensity difference (IID) and the inter-aural timing difference

(ITD), are not included in the feature set of our model, in Chapter 6, we demonstrate

how the model can be used on binaural sounds as well. The results of that experi-

ment show the model performs well in selecting salient sounds, not only on monaural

sounds, but also for two-channel, stereo input sounds.

As shown in the schematic of the model in Figure 8, we start by first converting

the sound input into an auditory spectrogram. The auditory spectrogram is a time-

frequency representation modeling early auditory processing [80]. More details on the

implementation of the early auditory processing model used to generate the auditory

spectrogram can be found in the previous chapter. Here, a filter bank of 128 constant-

Q bandpass filters is used to model the frequency analysis done by the cochlea. The

center frequencies of these filters are uniformly spaced in frequency on a logarithmic

axis. Using an auditory spectrogram on the sound input allows us to create an

“auditory image” analogous to the static images that are used as the input for visual

saliency models.

In the next step, we generate the feature maps using the cortical model in [77]. The
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auditory spectrogram is decomposed into its spectral and temporal components using

a bank of spectro-temporally selective filters, whose impulse responses are represented

by 2-D Gabor functions. By doing this, we obtain features that estimate the spectral

and temporal modulations. Each filter has a spectro-temporal receptive field (STRF)

centered at a different center frequency (CF). In addition, the receptive fields also

take into account the response of cortical neurons to spectral shape, bandwidth,

movement, and directionality [77].

The feature maps are obtained by performing a convolution of the auditory spec-

trogram with each STRF filter. This cortical output is a multi-dimensional represen-

tation varying along four different dimensions: time, frequency, rate, and scale. Here,

the rate corresponds to the center frequency of the temporal filters, and the scale

corresponds to the center frequency of the spatial (frequency) filters.

Receptive fields with varying rates and scales were chosen in order to capture

different aspects of the sound. Using a range of rates and scales leads to information

on the temporal and spectral modulations, respectively. For example, some of the

filters used respond to rapid changes while others respond to slower changes. The

filters also differ in how widely or narrowly tuned they are.

Fourteen temporal filters (rates) from ±0.5 to ± 32 Hz, and six spectral filters

(scales) from 0.25 cycles/octave to 8 cycles/octave were used. For each scale and rate,

we generate one feature map, resulting in a total of 84, 2-D (time/frequency) feature

maps. The map size will vary depending on the length of the input auditory stimulus.

For example, since there are 128 frequency channels, for a 1 second stimulus, the maps

are of size 125 x 128.

Figure 9 demonstrates how different aspects of a sound are captured in different

feature maps due to the response of the filters. In Figure 9 (b), we show a sample of 6

of the 84 feature maps for the auditory scene which has auditory spectrogram shown

in Figure 9 (a). The sample scene consists of an upward and downward chirp that is
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(a) (b)

Figure 9: Example showing how feature maps capture different aspects of sound. a)
Auditory spectrogram for a sample stimulus b) Six of the 84 feature maps for the
sample stimulus.

interrupted by a noise burst. Some clicking noises can also be heard throughout the

duration of the scene. Here, we see that the top two feature maps capture the chirp,

with one focusing on the upward sweep and one on the downward sweep. Similarly,

the middle two feature maps focus on the noise, while the last two feature maps

capture the clicks.

Once all the feature maps have been generated, they are divided and grouped into

four different feature classes, depending on the rate and scale of the filter used to
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obtain the map:

1. A set of feature maps (24 maps) focusing on the overall energy distribution

2. A set of feature maps (18 maps) focusing on the temporal modulations

3. A set of feature maps (24 maps) focusing on the spectral modulations

4. A set of feature maps (18 maps) focusing on areas of both high temporal and

spectral modulations.

3.1.2 Formation of Saliency Map

We now have 2-D (time/frequency) feature maps that were generated using the

spectro-temporal receptive field filters. The next step is to perform inhibition on

each individual feature map. The goal of the inhibition stage is to promote feature

maps containing features which stand out locally on the map and inhibit or suppress

feature maps without any prominent local peaks. We want to promote maps that

have areas of high activity (large global peak) compared to rest of the map, so that

these maps make a larger contribution to the overall saliency map. In order to achieve

this, each feature map, Mi, is scaled by a factor, Di. The new scaled feature maps

will be denoted Mi
∗.

Mi
∗ = Di ·Mi (5)

Di = (Gi − Li)
2 (6)

where Gi and Li are defined as follows:

Gi = Global peak of map i

Li = Average of all other local peaks on map i.

Scaling each individual feature map by this factor, Di, promotes maps with a large

global peak compared to the rest of the activity on that map. This is demonstrated
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Figure 10: Inhibition of feature maps. a) Feature map with single prominent peak
is promoted b) Feature map with many peaks and no prominent peaks is suppressed.

in Figure 10 (a). Conversely, feature maps with high activity everywhere on the map

are suppressed (Figure 10 (b)). Using this method, we preserve the general shape

of each feature map, while ensuring that feature maps with prominent peaks make

larger contributions to the overall saliency map. After this scaling, the feature maps

in each respective category are combined to form one global feature map for each

category. Each of the four global feature maps are scaled again by Di before being

summed to form the final saliency map.

Several variations of the auditory saliency model were investigated. One variation

was to perform the inhibition stage locally rather than globally. We wanted to consider

using the local inhibition, since auditory percepts can be more greatly influenced or

affected by other auditory events or cues that are occurring closer in time or frequency.
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For the local inhibition, the feature extraction stage remains the same as previously

outlined. The difference is that once the feature maps have been obtained, each

feature map is divided into several non-overlapping 2-dimensional areas. These 2-D

areas cover approximately 200 ms in time and 1/3 octave in frequency. In order to

retain the peaks for each local area, we take an average of the signal in that area,

which is then subtracted from the signal. This is then followed by the previously

described method of scaling used to promote the maps with prominent peaks. The

differences between the two versions of the model, which we will refer to as Model 1

(global) and Model 2 (local), are summarized in Table 1.

There are advantages and disadvantages to each of the two variations of the au-

ditory saliency model, and depending on the application, one might find one model

more useful than the other model. In the saliency scene comparison experiment pre-

sented in the next chapter, we find a fairly strong correlation between the responses

for both models with the subjects’ responses, but there was a stronger correlation

to Model 2, where the local inhibition was performed. Although Model 2 performed

better on this particular experiment, one advantage of Model 1 is that performing the

inhibition globally preserves the shape of each feature map. In Model 2, performing

the inhibition locally can cause large parts of the overall saliency map to be lost. In

some instances, the saliency map can be comprised of only a few scattered points. In

the scene saliency experiment, the loss of this information from the saliency maps for

each auditory scene was not important as we were only interested in the most salient

point on the map to determine the saliency of that particular scene. In tasks where

we would like to use the entire saliency map and where the map is visually important,

then Model 1 will perform better.
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Table 1: Summary of Model 1 (global) and Model 2 (local) differences.

Model Description
1 Promotes or inhibits entire feature maps

using scaling by Di

2 Uses local inhibition and then
scaling by Di

3.2 Saliency Map Examples

Now that we have presented the computational auditory saliency model, we will show

some examples of different saliency maps. These examples show that the model is

able to replicate some known psychoacoustic experimental results.

The auditory system is well-versed in change detection. From an auditory scene

analysis perspective, older sounds that remain relatively constant and unchanging

will tend to become part of the background. As they fade into the background, these

sounds become less salient, while new sounds will stand out from the background and

are more salient [4].
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Figure 11: Auditory saliency map for amplitude modulated tone. a) Auditory spec-
trogram of amplitude modulated tone b) Auditory saliency map of amplitude modu-
lated tone shows the modulated part is salient.

Two change detection examples are presented here where new sounds stand out
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perceptually from the other unchanging “background” components. In the first ex-

ample, there is a tone complex where part of one of the four tones in the complex

is amplitude modulated. This particular auditory scene is also used as the periph-

eral task in the dual task experiment that will be discussed in the next chapter. It

is expected that the modulation is salient, since it is known that an amplitude or

frequency modulating a tone will make it stand out perceptually from the other un-

changing tones, as the modulation helps us to perceptually segregate it from the rest

of the complex [53, 48, 54]. In Figure 11, the auditory spectrogram and corresponding

saliency map for this example are shown. From the saliency map, we see that the

modulated part is, as expected, what is most salient and the rest of the tone complex

except for the onsets are suppressed.
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Figure 12: Auditory saliency map for mistuned harmonic. a) Auditory spectrogram
of 200 Hz tone, with 6 harmonics, where the 4th harmonic is mistuned by 48 Hz
for 0.5 s b) Auditory saliency map of 200 Hz tone, with 6 harmonics, where the 4th
harmonic is mistuned by 48 Hz for 0.5 s.

The second change detection example shows the well-known experimental result

of hearing out a mistuned harmonic from the rest of the complex [55, 32, 33]. In this

example, the 4th harmonic of a 200 Hz tone is mistuned by 48 Hz for 0.5 s causing

the mistuned harmonic to pop-out. The mistuned harmonic is heard separate from

the rest of the complex, since it stands out perceptually. The auditory spectrogram
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and saliency map for this example are found in Figure 12. The saliency map shows

that the mistuned harmonic is salient and stands out from the rest of the complex.

One interesting thing to note is that when the mistuned harmonic is in the middle of

the signal, the duration of the mistuned harmonic can greatly influence how salient it

is to a listener. For example, if we increase the duration of the mistuned harmonic to

0.8 s, such as shown in the auditory spectrogram in Figure 13, the mistuned harmonic

will gradually become less salient to listeners. We see in Figure 13 (b), the saliency

map for this example indicates that the signal is most salient and the onset and

offset of the mistuned harmonic. Specifically, we see that the first 200-300 ms of the

mistuned harmonic is salient, and then the degree of saliency gradually decreases.

Then for the last 100 ms of the sound, when the harmonic is no longer mistuned,

it again becomes very salient. This is what we would expect, since the longer the

duration of the mistuned harmonic, the more likely it is to blend into the background.

Therefore, the mistuned harmonic gradually becomes less noticeable, and therefore

less salient to listeners. It then becomes salient again when we hear the transition

going from mistuned to no longer mistuned. Similarly, if we mistune the harmonic for

a very short duration (50 ms), then this mistuned harmonic will be extremely salient

compared to the rest of the tone complex. The saliency map for this example, seen in

Figure 14 (b), verifies this as we see the mistuned harmonic is salient while the rest

of the tone complex has been suppressed.

A third example shows two 250 ms, 2 kHz tones in white noise. In Figure 15,

the auditory spectrogram and saliency map for this example show that the noise is

suppressed while the two tones are emphasized. From this, there are some possi-

ble applications of auditory saliency in the area of noise suppression that could be

explored.

In one final example, shown in Figure 16 (a) and (b), a gliding tone is interrupted
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Figure 13: Auditory saliency map for mistuned harmonic. a) Auditory spectrogram
of 200 Hz tone, with 6 harmonics, where the 4th harmonic is mistuned by 48 Hz
for 0.8 s b) Auditory saliency map of 200 Hz tone, with 6 harmonics, where the 4th
harmonic is mistuned by 48 Hz for 0.8 s.

by a noise burst. From the continuity illusion, it is expected the tone will be per-

ceived as continuing through the noise [78, 4]. The saliency map for this example

(Figure 16 (b)), reflects the perceptual continuity of the tone through the noise, and

this continuity is indicated as being salient.

The four examples presented above are used to demonstrate how the saliency maps

from our model is able to predict several known experimental results from auditory

scene analysis.

3.3 Auditory saliency map tool

There are many possible applications and uses for auditory saliency maps in compu-

tational auditory scene analysis and other areas. In order to easily generate saliency

maps for use in the experiments and applications presented in the following chapters,

we created an MATLAB GUI interface for our auditory saliency model. In this sec-

tion, we discuss the MATLAB GUI created for the computational auditory saliency

model that can be used to obtain auditory saliency maps for various auditory stimuli.

The GUI, shown in Figure 17, takes an input sound file (.wav) and processes it into
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Figure 14: Auditory saliency map for mistuned harmonic. a) Auditory spectrogram
of 200 Hz tone, with 6 harmonics, where the 4th harmonic is mistuned by 48 Hz for
0.05 s b) Auditory saliency map of 200 Hz tone, with 6 harmonics, where the 4th
harmonic is mistuned by 48 Hz for 0.05 s.

the corresponding saliency map.

The drop down box lists all the .wav files available in the present directory. First,

you begin by selecting the sound file for which you would like to generate a saliency

map and press load. If new sound files have been added to the directory that are

not appearing in the drop down list, the refresh button can be used to update the

available sound files in that directory. Next, using the AudSpec button will generate

a plot of the auditory spectrogram for the sound file. From here, you want to then

use the auditory spectrogram to create your feature maps by pressing the Features

button. The next step is to perform the suppression, which as discussed earlier in

this chapter can be done either locally or globally. Here, you can select which of the

two suppression methods you would like to use, and then press the suppress button.

As we find in the next chapters, depending on the stimuli, task, or application, one

type of suppression may be more suitable than the other. It should be noted that

the local suppression often results in many parts of the saliency map being lost or

suppressed. Thus, if a visual of the saliency map is important, it is best to use the

global suppression option as it provides a more complete picture of the saliency map.
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Figure 15: Auditory saliency map for two tones in white noise. a) Auditory spectro-
gram of two 2 kHz tones in white noise b) Auditory saliency map of two 2 kHz tones
in white noise.

Finally, pressing the saliency map button will return a plot of the auditory saliency

map. The GUI also displays the value of the most salient point on the map, which

may be useful for various applications. For example, we use this value to evaluate our

model to human subjects in the scene saliency experiment presented in next chapter.
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Figure 16: Auditory saliency map for the continuity illusion. a) Auditory spectro-
gram of gliding tone interrupted by a noise burst b) Auditory saliency map of gliding
tone interrupted by a noise burst.

Figure 17: Tool for creating auditory saliency maps.
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CHAPTER IV

EVALUATING AUDITORY SALIENCY

There is no easily trackable physical correlate that can be used to evaluate auditory

saliency the way eye-tracking is often used to evaluate visual saliency. In this chapter,

we focus on the issue of how to evaluate or measure auditory saliency and what types

of experiments can be used to do this. We found that we could approach this problem

from two different perspectives. In this chapter, we present two types of experiments

performed that are appropriate for evaluating auditory saliency and the performance

of our computational auditory saliency model. The first experiment is a dual task

experiment, and the second experiment is a paired comparison experiment that we

refer to as the saliency scene comparison experiment.

4.1 Dual Task Experiments

One way to determine the saliency of a particular stimulus is by looking at it’s ability

to grab a listener’s attention, even when their attention is currently directed else-

where. Dual task experiments involve dividing a subject’s attention by asking them

to perform two tasks simultaneously. The subject is asked to attend to a primary

task while a secondary task is occurring at the same time in the background. In terms

of auditory saliency, it is the subject’s performance on this secondary task that will

determine the saliency of a particular auditory stimulus. Dual task experiments are

a good method for evaluating bottom-up auditory saliency, since salient stimuli are

defined as those stimuli that can be noticed without attention.
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4.1.1 Subjects

Results were obtained from 18 (9 female, 9 male) undergraduate students at the

Georgia Institute of Technology under IRB approval. The students received course

credit for participation in the experiment. Normal hearing was determined by self-

report. Subjects were informed about the general aim of the experiment, but were

naive to the exact purpose of the study.

Subjects listened through headphones (Sennheiser HD 280 pro) to auditory stimuli

presented using MATLAB and then entered their responses into a MATLAB GUI

interface shown in Figure 18.

Figure 18: Dual task experiment interface.

4.1.2 Experimental Procedures

As is typical in all dual task experiments, subjects were asked to perform two different

tasks, a primary task and a secondary or peripheral task, simultaneously. The primary

task is the task which will require the subject’s attention, while the performance on

the peripheral task will be the one that will indicate whether or not a particular

auditory stimulus is salient.

Subjects were given a short training prior to beginning the experiment. In the

training, they were given short sample trials of the tasks that they would be asked

to perform. In particular, we wanted to accustom the subjects to the primary task,

as the task can be extremely difficult to perform when hearing it for the first time.
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After the short training, they were then asked to perform each of the primary and

peripheral tasks separately before completing both tasks simultaneously in the dual

task.

The primary task stimulus for this experiment was a random sequence of twenty-

five 100 Hz and 200 Hz tones, each 250 ms long with a 2 ms pause between each

tone. Subjects were asked to count the number of low (100 Hz) tones present for each

sequence.

For the peripheral task, the stimulus consisted of a target sound and some inter-

ferers, and subjects needed to identify whether or not the target was present. The

stimulus was a tone complex made up of four tones (not harmonic) centered at Bark

filter center frequencies of 570 Hz, 700 Hz, 840 Hz, and 1000 Hz; the target was a

tone in the four tone complex that was amplitude modulated to varying degrees. The

tone complex for the peripheral task was designed so that there were no harmonic

relationships that could generate a pitch percept. Five different modulation depth

levels were tested. The entire stimulus was four seconds long but the modulated tone

was only modulated for one second and modulation onsets and offsets were gradual

over 35 ms.

Several considerations were made in setting up the primary and peripheral tasks.

The two tasks were chosen such that they were not spectrally co-located to avoid

masking problems. In the peripheral task, the tone complex was chosen such that

there were no harmonic relationships. This was done to ensure a missing fundamental

would not interfere with the primary task. The spacing of the tones also prevented

beat tones and avoided any two tone masking issues.

In dual task experiments, the difficulty level of the primary and secondary tasks

chosen is important. Performance on each of the individual tasks and the ability to

perform both tasks simultaneously is dependent on the task difficulty and the amount

of attention that is required by each of the individual tasks.
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For the primary task, the task difficulty is influenced by a number of factors

including the number of tones used, the duration of the tones, and the duration of

the pause between each of the tones. The level selected for the task difficulty is

extremely important as the primary task is the task that demands or require the

subject’s attention. If the primary task is too easy, then subjects would not need to

actively attend to the task in order to achieve high performance. In this case, they

would be able to also attend to the peripheral task which would likely result in high

performance on both tasks. This would then provide us no information about the

salience of the test stimulus.

For this reason, performance on the primary task when performed alone was cal-

ibrated so that the performance was between 80-90%. Making the primary task

difficult enough when the task is performed alone will ensure that subjects need to

actively attend to the primary task when they are asked to perform both tasks simul-

taneously. If a subject does shift his or her attention away from the primary task, it

should be reflected by a large drop in the primary task performance.

In the dual task experiment, the primary and peripheral tasks occur simulta-

neously. In this experiment, both the primary task and the peripheral tasks were

chosen to be auditory tasks. We selected two auditory tasks as we wanted to be con-

sistent with the idea that salient sounds will divert or interrupt our attention from

other sounds or stimuli that are present in an auditory scene. Using this dual task

paradigm, a sound is defined as salient depending on whether or not a subject’s per-

formances on the primary and secondary tasks are affected. If performance remains

high on both tasks, this means the sound is salient as this indicates that the sound is

noticeable in the peripheral task even when attention is directed elsewhere. Subjects

performed 5 trials of each task.
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4.1.3 Primary Task and Peripheral Task Trade-offs

As previously mentioned, task difficulty for each of the primary and peripheral tasks

is important in dual task experiments as it will affect a subject’s ability to perform

the two tasks simultaneously.
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Figure 19: POC curve showing trade-off between primary and peripheral tasks.

Performance operating characteristic (POC) curves can be used to evaluate the

trade-off between the two tasks. The POC curve for this experiment is shown in

Figure 19. On the far right of the plot, where there are the lines for 0.9 and 0, moving

up and down vertically, this is the area of high performance on the primary task.

Performance in this region shows that the subjects’ attentions were completely focused

on the primary task. Moving along the top of the plot, going across horizontally, is the
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area of high performance on the peripheral task. Performance in this region, during

the dual task, indicates that the peripheral task takes priority over the primary task.

The top right corner of the plot is the area indicating high performance on both the

primary and peripheral tasks. Salient sounds will have dual task performances in this

region. Here, subjects are completely focused on the primary task, but they are still

able to achieve high performance on the peripheral task. The fact that the peripheral

task can be noticed while the subjects’ attentions were focused elsewhere shows the

peripheral task sound is salient.

In Figure 19, the 5 curves each represent one of the different modulation depths

that are used in the peripheral task. There are three points on each curve, which

represent the average performance on each task for all subjects. One point represents

performance on the primary task alone, one point is for the peripheral task perfor-

mance alone, and one point is for the performance on both primary and peripheral

tasks when the two tasks are presented simultaneously. The exact values can be found

in Tables 2 and 3. These different curves also correspond to the task difficulty. For

example, at modulation depth of 0.9, the signal is highly modulated. We would ex-

pect this to be salient and easily noticed even while attention is directed elsewhere.

As the level of modulation decreases, we expect the modulation to gradually become

less salient, therefore, making it more difficult to notice the peripheral task stimulus

without attention, leading to a drop in the peripheral task performance when the two

tasks are presented simultaneously.

The decrease in saliency that is expected as we decrease the amount of modula-

tion is reflected in the shape of the POC curve. We can see that there is a higher

degradation in performance on the peripheral task as the task difficulty increases. For

instance, at modulation depth 0.3, there was the largest degradation in performance.

At this modulation depth, the difficulty of the peripheral task has increased to the

point where subjects were not able to perform both tasks simultaneously. Thus, when
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attention is engaged on the primary task, for this modulation depth, the stimulus in

the secondary task could not be noticed. From this, we conclude that the stimulus

was not salient, since subjects were not able to notice it without attention.

4.1.4 Results and Discussion

The results summarizing overall performance on the peripheral and primary tasks

when they were performed alone can be found in Table 2. The ”% correct” is an

average of the number of correct responses from all subjects. For the primary task,

we allowed for a margin of error of one tone. Therefore, a response was counted as a

correct response if the subjects were able to come within one tone of the actual tone

count.

The results of the dual task are shown in Table 3. For all modulation depths,

performance on the primary task remained relatively high. This indicates that the

subjects were attending to the primary task as asked. There were some slight drops

in performance at two of the modulation depths, but the drops were not large enough

to indicate that the subjects were not attending to the primary task. We would

expect to see a much larger degradation in performance if the subjects were no longer

attending to the task. From the results, as expected, the highly modulated signal

(modulation depth 0.9) was extremely salient. From the table, we can see that for

this modulation depth, performance on both the primary and peripheral tasks remains

high. The high performance on the primary task shows that subjects kept their

attention focused on the primary task, and the high performance on the peripheral

task indicates that the target in the peripheral task could be noticed while attention

was directed elsewhere. Therefore, at this high modulation depth, the modulated

target was noticeable without attention and is considered extremely salient.

As the modulation depth decreases, the salience of the modulated signal also

decreases. At a modulation depth of 0.7, performance on both the primary and
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peripheral tasks drops slightly, showing that while it may still be considered salient,

it is less salient than at a modulation depth of 0.9. As we continue to further decrease

the amount of modulation, we see that the salience continues to decrease as well. At

a modulation depth of 0.3, the signal is not salient at all. Here, peripheral task

performance is only 30% compared to 86.2% when the peripheral task was performed

alone. Performance on the primary task has also dropped slightly. This large drop

in peripheral task performance indicates that the sound is not salient, since subjects

were not able to notice it while their attention was directed elsewhere. At modulation

depth 0.5, the peripheral task performance was also greatly reduced in the dual task

(63.3% compared to 97.1%), although the primary task performance remained high.

As expected, the case where there was no modulation was easily observed by subjects.

Table 2: Overall performance on the primary and peripheral tasks when performed
alone.

Task % Correct
Primary task 86.3

Peripheral task 0.9 100
Peripheral task 0.7 100
Peripheral task 0.5 97.1
Peripheral task 0.3 86.2

Peripheral task no modulation 84.62

Table 3: Performance on the primary and peripheral tasks when performed simulta-
neously in the dual task.

Modulation Depth Primary task % Correct Peripheral task % Correct
0.9 86.7 93.3
0.7 73.3 83.3
0.5 83.3 63.3
0.3 73.3 30
0 86.7 86.7

A look at the saliency maps generated by our computational auditory saliency
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model shows that the saliency maps for the different dual task scenarios are consistent

with the results found in the experiment. In Figure 20, the saliency map for the dual

task experiment when modulation depth of 0.9 was used is shown. At this high

modulation depth, the experimental results showed that the modulated signal was

extremely salient. The saliency map is consistent with these results, and we can see

on the map that the modulated part stands out from the rest of the tone complex in

the peripheral task. In addition, the saliency map also indicates that the modulated

part is more salient than the primary task as well, which reinforces what was observed

in the experiment, as the modulated tone was easily noticeable while attention was

focused on the primary task.
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Figure 20: Auditory saliency map for dual task at modulation depth 0.9.

At a modulation depth of 0.7 (Figure 21), the modulation in the peripheral task

still remains somewhat salient, but it is less salient than at a modulation depth of 0.9.

In addition, the saliency map here shows that the the primary task on this saliency

map is more salient than on the saliency map for modulation depth 0.9. Again, this

is consistent with the results obtained from the experiment, where performance here

dropped slightly compared to modulation depth 0.9, indicating it is less salient.
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Figure 21: Auditory saliency map for dual task at modulation depth 0.7.

Finally, we can look at the saliency map for modulation depth of 0.3. In the dual

task experiment, it was found that at this modulation depth, the modulated signal

was not considered salient. The saliency map reflects this finding, and in Figure 22,

the peripheral task has been almost completely suppressed leaving nothing, including

the modulated tone, salient in the peripheral task. On the saliency map here, it is

actually parts of the primary task that are most salient.
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Figure 22: Auditory saliency map for dual task at modulation depth 0.3.
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Dual task experiments are a very useful technique for determining the salience

of a particular stimulus. The advantage of the dual task setup is that it provides

strong evidence for whether or not a particular stimulus is salient. It is also a very

focused experiment, which allows the experimenter to determine the degree of salience

as well as where the boundary between salient and not salient lies. With dual task

experiments, the experimenter is able to make one small change at a time to see the

effect of that particular change on the salience of a particular stimulus. Using this

method, we can determine the degree of change needed for a target to become salient.

For example, in the experiment we performed, we saw the amount of modulation that

we needed to use on the tone to make the modulated tone salient.

Some disadvantages of using dual task experiments are that it would be difficult

and time-consuming to perform the experiment for a large range of stimuli. For exam-

ple, in this one experiment, we were only testing the effects of amplitude modulation

of a tone in a tone complex on salience, so running the whole experiment provides

us with information only on the salience of this one particular type of stimulus. The

experiment presented in the next section will allow for comparison of the saliency for

a larger variety of different sounds.

4.2 Saliency Scene Comparison Experiment

The primary goal for the auditory saliency model is for it to be able to select the

sounds that are perceptually salient to observers in an auditory scene. After this

goal is achieved, we can then consider tailoring the model to the specific applications

that it would be used for. In this way, the model could potentially exceed human

performance on a specific task. In order to evaluate the model performance with

regards to the primary objective, we need to see if the model can successfully match

human performance in identifying salient sounds from various auditory scenes. Thus,

a second way we can evaluate auditory saliency is to look at which sounds humans
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consider salient when presented with a variety of different sounds. We can then

directly compare our model’s selections of salient sounds to that of human subjects.

In this section, we discuss the saliency scene comparison experiment, which uses

pairwise presentation of different auditory scenes in order to determine which sounds

human subjects find salient. In this experiment, subjects were also asked to give sub-

jective ratings on the saliency for different auditory scene pairs. The same scene pairs

were then presented to our computational auditory saliency model for comparison.

Using this technique, we can evaluate the model’s performance by determining how

well it does in selecting the scenes that subjects found salient.

4.2.1 Subjects

Results were obtained from 14 (10 female, 4 male) university students of the Georgia

Institute of Technology with IRB approval. Normal hearing was determined by self-

report. Subjects were informed about the general aim of the experiment, but were

naive to the exact purpose of the study.

Subjects listened through headphones (Sennheiser HD 280 pro) to auditory stimuli

presented using MATLAB and then entered their responses into a MATLAB GUI. The

response interface for this experiment can be seen in Figure 23. The sound card on the

PC used is AD1981A AC’97 SoundMAX Codec (Full-duplex with variable sampling

rates from 7040 Hz to 48 kHz with 1 Hz resolution). This same equipment and set-up

is used for all subsequent experiments presented in this thesis. The experiment took

each subject approximately 50 minutes to complete.

4.2.2 Experimental Procedures

Each subject was presented with a total of 162 scene pairs created from 50 unique

target sounds. The auditory scenes consisted of a target (one second) sound on a

background (4 seconds). We wanted to test our model on a wide range of stimuli, so

the target sounds were randomly selected from a library containing a range of different
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types of sounds, including animal sounds, sirens, noise, and music. The background,

which was the same for all of the scenes, consisted of white noise combined with a

randomly selected sample of the target sounds.

Subjects were presented with each of the different auditory scene pairs. Each scene

pair consisted of listening to two 4 second scenes that were separated by a 1 second

pause between each of the two scenes. Subjects were then asked to indicate on a

MATLAB GUI interface whether the first or the second scene they heard had the

most salient element or if the saliency of the two scenes was equal. After selecting

which of the two scenes was more salient to them, subjects were also asked to give

a rating from 1 to 5 indicating how much more salient they found the scene they

selected compared to the other scene. Subjects were told that a rating of 5 meant

the scene was much more salient than the other scene, making the decision of which

scene was more salient an easy one. A rating of 1, on the other hand, meant that

the two scenes were very close in saliency, making the decision of which scene was

more salient much more difficult. As the experiment was quite lengthy and repetitive,

we divided the experiment up into 6 different tests or segments. The subjects were

required to complete each test in its entirety from start to finish once they started it,

but they were allowed to take a short break before starting the next segment if they

chose to. Each individual test consisted of 27 scene pairs and took approximately 8

minutes to complete.

Two different types of catch trials were also included in the experiment:

• Type 1 - Identical scene pairs where both scene 1 and scene 2 of the scene pair

were made up of the same scene

• Type 2 - Duplicate scene pairs where scenes pairs presented earlier in the ex-

periment are presented again later

For type 1 catch trials, subjects should be able to correctly indicate that the two
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Figure 23: Saliency scene comparison experiment interface.

scenes are of equal saliency. These are used to determine if a subject is properly

attending to the task and not just entering random responses. Type 2 catch trials

were included to try to get an indication of how consistent a subject was.

4.2.3 Results and Discussion

Results for the correlation of the model’s selections and subjects’ selections are shown

in Table 4. Here, scenes pairs where subjects indicated that the two scenes were

equally salient were excluded from the results. This was done as the objective here

is to evaluate how the model performs in selecting scenes that are salient to humans.

Thus, we are mainly interested by the scene pairs where the subjects considered one

scene more salient than the other scene. Additionally, we are particularly interested

in the scenes where there is subject agreement on the saliency. These are scene pairs

where the majority of the subjects agree on which of the two scenes is more salient.

The scenes with subject agreement are not affected by excluding the scene pairs where

subjects found both scenes equally salient from the analysis. Removing the scenes

56



that subjects found equally salient also allows us to make a more direct comparison

to our model, since the model always selects one scene as being more salient than the

other, unless the two scenes are exactly the same.

Table 4: Correlation between subject and model responses for saliency scene com-
parison experiment.

Correlation to
Subject Model 1 Model 2

1 0.7297 0.8725
2 0.4499 0.5297
3 0.4137 0.5309
4 0.7724 0.7856
5 0.0399 0.0131
6 0.0573 0.1079
7 0.3917 0.4680
8 0.4040 0.4147
9 0.5950 0.7014
10 0.5961 0.6895
11 0.4198 0.4198
12 0.6188 0.6753
13 0.6131 0.6300
14 0.5411 0.5519

Average 0.4745 0.5272
Std Dev 0.2166 0.2392

We found a significant correlation between scenes that subjects selected as being

salient and scenes that our computational model chose as being salient. All 162 scene

pairs were presented to both Model 1 and Model 2. The differences between these

two model variations were discussed in the previous chapter and the differences focus

mainly on the area on which the inhibition is performed, globally or locally. For Model

1, where the inhibition is performed globally, the average correlation from all subjects

was 0.4745 (p=0.08) with a standard deviation of 0.2166 and for Model 2, where the

inhibition was performed locally, the average correlation was 0.5272 (p=0.05) with a

standard deviation of 0.2392. These results can be found in Table 4.

It is important to remember that saliency can also vary greatly depending on the
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top-down input or feedback. Therefore, what is salient to one observer may be very

different from what is considered salient by another observer. The computational

model we presented in the previous chapter is a bottom-up processing model, and as

such, it does not take into account the top-down input. This could be one reason

why two of the subjects’ responses (5, 6) had almost no correlation with the model’s

responses. Additionally, subject 6 was also one of the three subjects who had poor

performance on the catch trials compared to the other subjects (see Table 7), indi-

cating that they may not have been properly attending to the given task. It is also

interesting to note that subjects 5 and 6 along with subject 1 were the only three

subjects that performed the experiment in the evening. Several studies have shown

that time of day can affect subject performance given the type of task being per-

formed and also given a subjects’ own circadian type [27, 28, 47, 56]. Since the task

does require a subject’s attention, performing the experiment later in the day when

they are more likely to be tired or lacking in concentration or patience may affect the

results. Later, we present results of an outlier analysis to see if these two subjects

should be removed.

As the computational auditory saliency model is a strictly bottom-up processing

model, we were particularly interested in comparing the model’s performance for

scenes where there is some agreed salience among the observers. To determine scenes

where there was agreed salience, we looked at the scene pairs where the majority of

the subjects were in agreement that one of the two scenes was more salient than the

other.

By looking at the scenes where there is subject agreement on saliency, we can

eliminate some of the individual variation that may result from top down input which

can cause certain types of stimuli to be salient only to particular observers. Out of the

162 scene pairs, there were a total of 118 scene pairs where there was agreed salience.

The results for these scenes are shown in Table 5. For these 118 pairs, the results
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show a strong correlation between the subject and model responses. The correlation

was 0.7652 for Model 1 and 0.8494 for Model 2.

Table 5: Correlation between subject and model responses for scene pairs where
more than 50% of subjects agreed on salience.

Model Number Model Description Correlation
1 Scaling by Di on entire feature maps 0.7652
2 Local inhibition 0.8494

For completeness, in Table 6 we show the average correlations of the subjects to

the model for all scene pairs, which includes the scene pairs where subjects indicated

the two scenes were equally salient. From this table, we can see that there is very little

difference in the correlation values, regardless of whether or not the equally salient

scene pairs are included or removed. We also tried applying a threshold to our model

where saliency differences below the threshold were considered equally salient. For

the threshold, we found the median number of scenes that subjects chose as equally

salient. We then set the threshold, such that, the model also responded with the

same number of scenes being equally salient. There was little to no change in the

correlation values when this threshold was applied.

Table 6: Average correlation of the model to the subjects when all scenes were
included in the analysis.

Description Correlation
Model 1 all scenes 0.44
Model 2 all scenes 0.49

Subject accuracy on the catch trials (both types 1 and 2) presented in the exper-

iment is shown in Table 7. All subjects had performance on the catch trials greater

than 50% and only three subjects (6, 7, and 12) had performance lower than 70%

correct on these trials. Poor performance on catch trials can be indicative of several
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things. For example, it can be a sign that a subject was not focusing on the given

task, was randomly selecting answers, or did not understand what they were asked to

do in the experiment. All subjects correctly identified the catch trials where the same

scene was presented twice as being equally salient. We did not exclude any subjects

based on their performance on the catch trials as all subjects had performance greater

than 50%.

Table 7: Subject performance for both type 1 and 2 catch trials.

Subject % Correct
1 88.9
2 72.2
3 94.4
4 88.9
5 77.8
6 64.7
7 66.7
8 83.3
9 94.4
10 82.3
11 94.4
12 64.7
13 83.3
14 83.3

In this experiment, the scene that the model considers as the more salient of the

two scenes in the scene pair is given by evaluating the saliency difference values of

the most salient points from the saliency map for each scene. We wanted to see if the

saliency maps generated from the model were representative of the auditory saliency

of a scene and also if the maps corresponded to the degree of saliency of that scene.

From this, we expect that the scene pairs where there is subject agreement on which

scene was more salient of the two scenes presented would result in higher saliency

difference values from the model, as opposed to the scene pairs where subjects could

not agree on which scene was more salient. We would expect to see lower saliency
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difference values from our model for the scene pairs where there was no subject

agreement, as this may indicate that the two scenes were close in saliency with no

clear choice for which scene is more salient.

Looking at the saliency difference values from the model for these scene pairs,

we did find a statistically significant difference in the average saliency differences

for scenes where there was subject agreement as opposed to the average saliency

differences for scenes where there was no agreement. For this analysis, we excluded

the same scene catch trials as the saliency difference for these is zero. For the saliency

difference values, we took the absolute value of the saliency differences, since the sign

is only an indication of which scene between the first or second one presented was

more salient. Table 8 shows the results of this analysis. We found that the average

saliency difference for scene pairs where there was subject agreement on saliency was

greater than the average difference for scene pairs with no subject agreement. For

scene pairs with agreed salience, the average saliency difference was 0.0159 with a

standard deviation of 0.04, while the average saliency difference for scene pairs where

there was no subject agreement was 0.00517 with a standard deviation of 0.009.

Table 8: Saliency difference values for various scene pairs.

Description Average Saliency Difference
Scene pairs with agreement on saliency 0.0159

Scene pairs with no agreement 0.00517

To determine if this difference is statistically significant, we performed a z-test,

where the null hypothesis is that there is no difference between the two means. We

find that the test statistic, z, is 2.63. The critical z value for rejection of the null

hypothesis is z < -1.96 and z > 1.96 for alpha = 0.05. Since z=2.63 is greater than

1.96, we can reject the null hypothesis. Therefore, we can conclude that there is a

statistically significant difference (p=0.008) between the average difference values for
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scenes with subject agreement from the scenes with no agreement. This shows that

our model and the saliency maps generated do encompass the features that contribute

to saliency and are representative of what humans perceive as being salient. The maps

are also representative of the degree of saliency of the scene pairs. The scene pairs

with a smaller saliency difference value from the saliency map were closer in saliency,

and corresponded to the scenes where subjects were not in agreement as to which of

the two scenes was more salient. On the other hand, the scene pairs that had larger

saliency differences, resulted in subject agreement on which scene was more salient.

We found that there was a strong correlation between subjects’ responses and our

model. The next question that needs to be considered is how closely we can expect the

model to match a subject’s responses. It is not reasonable to expect the bottom-up

saliency model to be able to predict with 100% accuracy what one person determines

is salient, since saliency is a subjective measure that will vary from one individual to

another. One measure we used to determine how closely we can expect the model

to match subjects’ responses was to look at the correlation values for each individual

subject with the rest of the subjects. By looking at how correlated one subject is

to another subject, we obtain a measure for how high of a correlation value we can

expect to achieve between the correlations of the model to the subjects. Figure 24 is

a correlation matrix showing the correlation of each of the subjects to one another.

The shades of green used show the strength of the correlation. The correlation values

for subjects that are highly correlated to one another are shown in darker green.

Subjects with lower correlation values are shown in lighter shades of green. The last

two columns on the right of the figure, labeled MG and ML, for the global and local

models, respectively, show the correlations of each subject to the model. This same

information can also be found in Table 4. Finally, the last row in Figure 24 shows

the average correlation for each subject with the rest of the subjects. Overall, the

average correlation of the subjects to one another is 0.4402 with a standard deviation
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of 0.1270. We can see that the correlation of the model to the subjects is actually

slightly higher than the average correlation of the subjects to each other.

Figure 24: Correlation matrix showing the correlation values of each subject to the
other subjects as well as to the model.

From this, we hypothesize that our model’s performance on this task is the same

as that of the human subjects and that the model is not distinguishable from the

subjects. Using hypothesis testing, our null hypothesis is that there is no difference

between the average correlation of the model with the subjects and the average cor-

relation of the subjects to each other. The alternative hypothesis is that we are able

to distinguish the model from the subjects, as there is a statistically significant dif-

ference between the correlation of the model to the subjects and the subjects to each

other.

Using a t-test, we find the test statistic, t, is 0.51 (p<0.61) for the global model and

1.20 (p<0.24) for the local model. Looking at the t distribution tables, the criteria

for rejection of the null hypothesis is t < -2.06 and t > 2.06 for alpha = 0.05. Since

t is within the acceptable range in both cases, we cannot reject the null hypothesis.
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Therefore, we can say there is no difference between the average correlation of the

model to the subjects and the average correlation of the subjects to each other.

Next, we investigate whether or not there are any outliers in the data that should

be removed.

4.2.3.1 Outlier Analysis

While no subjects were excluded based on the catch trial performances, we did note

that two of the subjects (5,6) had extremely low correlation values compared to

the rest of the subjects that participated in the experiment. Therefore, we performed

outlier analysis to determine if these two subjects should be excluded from the results.

Here, we used Tukey’s fence method to identify possible outliers [74]. Figure 25 shows

the box plots for the data.

Figure 25: Box plot showing outliers in the saliency scene comparison experiment.

Here, the first box is for the correlation values of the subjects to the global model,

the second box is the correlation of subjects to the local model, and the last box is

the correlation of subjects to each other. The line in each box represents the median

and the top and bottom edges of the boxes represent the 25th (Q1) and 75th (Q3)
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percentiles, respectively. The outliers, shown as a red +, are the points that are more

than 1.5 times the interquartile range (IQR) below Q1 and above Q3, where IQR =

Q3 - Q1. The box plots indicate that these two subjects are indeed “possible” outliers

in the data.

Table 9 presents the results of the correlation values between the model’s and

subjects’ responses without the two subjects that were identified as possible outliers.

We see an increase in the average correlation of model and subjects’ responses from

0.47 to 0.55 for the global model and 0.53 to 0.60 for the local model. Looking at

the correlation values for the scenes where the majority of subjects agreed on which

scene was more salient, we see a very strong correlation to both the global and local

model. For the local model, the correlation is now 0.92. Comparing these correlation

values to the average correlation of subjects to each other, we see that the average

correlation values to model are slightly higher than the average subject-to-subject

correlation which is 0.54, but a t-test found no statistically significant difference, so

again we can say subjects were as correlated to the model as they were to each other.

Table 9: Correlation between subject and model responses with outliers (subjects
5,6) removed.

Model Correlation
Global inhibition 0.5454
Local inhibition 0.6049

Agreed salience - Global 0.8262
Agreed salience - Local 0.9227

Subject-to subject 0.5380

Finally, we perform a power analysis to look at how much power there is in our

experiment. The results of the power analysis will also serve as a guideline for the

number of subjects that should be used for subsequent experiments that will be

discussed in the next chapters.
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4.2.3.2 Power Analysis

A power analysis provides information on the probability of finding an effect that is

present. In other words, it is the probability that we will be able to detect a statisti-

cally significant difference when such a difference exists. Therefore, if an experiment

does not have enough power, there is a higher chance to miss finding an effect even

though one is present.

The information from this power analysis can be used in planning future experi-

ments. Many factors can affect the power. The three main variables that will affect

the power are: sample size, effect size, and significance level. The significance level,

also known as alpha, represents the probability of a Type I error. A Type I error is

when an effect is falsely detected. A commonly used and acceptable value for alpha

is 0.05, which is what we have selected to use for this power analysis. This indicates

that there is 5% chance of rejecting the null hypothesis when we should not. Of the

different variables that much be specified in performing a power analysis, the effect

size, which measures the strength of the relationship we are looking at, may be the

most difficult to estimate. Cohen’s conventions are used as a general guideline in

many psychological studies [14, 15]. For correlation coefficients, Cohen considers 0.1

to be a weak effect, 0.3 medium correlation, and 0.5 or greater a strong correlation

or effect. Based on these guidelines, in our experiment, we found a strong effect,

especially for the scene pairs where there was subject agreement. For these pairs, the

correlation was over 0.8 for the local model. In a similar experiment in [42], they

also found a moderate to strong effect. Based on this information, for the following

studies, we will look for an effect size of around 0.5.

Depending on the type of experiment, a generally accepted value for the power is

0.8 or greater. A power of 0.8 would mean that there is an 80% chance of correctly

rejecting the null hypothesis, or a 20% chance of accepting the null hypothesis when

we should not.
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In Figure 26, we show a plot of power versus effect size for a sample size of 14,

which is the number of subjects used for this experiment. The two curves on the plot

represent significance levels of 0.05 and 0.1. Looking at the scene pairs where there

was subject agreement on saliency, for alpha of 0.05, we found that for 14 subjects

and the effect size found, we have a power of 0.9871 for the local model and a power

of 0.920219 for the global model. Based on these power numbers, the relatively low

number of subjects appears to have been sufficient, due to the fact that such a strong

effect was found.
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Figure 26: Plot of power vs effect size for sample size, n=14.

The next plot, Figure 27, is a plot of the number of subjects versus effect size for

power levels 0.8, 0.85, and 0.9 and significance level of 0.05. As we can see, if we are

looking for an effect size of 0.5 and power of 0.9, we would need at least 37 subjects.

For power of 0.85, we would need at least 32 subjects and for power of 0.8, we would
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need at least 29 subjects. The information from this power analysis is helpful for

determining the number of subjects that should be used for other experiments. From

this analysis, we chose to have at least 32 subjects for any following experiments.
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Figure 27: Plot of sample size vs effect size for various power levels.

The results found in this experiment (Tables 4, 5, and 24) shows that our model

performs well in predicting which scenes humans consider salient. In the next chap-

ter, we will use a similar experimental setup to further explore what features may

contribute to saliency. This information can then be used to determine if there are

any additional features that could possibly be added to the current feature set.
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CHAPTER V

MULTI-DIMENSIONAL SCALING

Multi-dimensional scaling (MDS) is a statistical technique used to investigate the

similarities or dissimilarities of a set of objects. It is also often used as a tool for

creating a visual representation or perceptual mapping of the relationships between

different variables within a set of data. The different objects are represented by points

in typically a two or three dimensional space. For example, two points closer together

in the multidimensional space would represent similar objects while two points that

are further apart would represent objects that are less similar. Here, we use the novel

approach of applying the MDS technique to explore auditory salience. The goal of

using the MDS technique to analyze saliency ratings is to determine the features that

contribute to the salience of a stimulus. We also use this analysis to determine if there

are any additional features contributing to saliency for humans that could be added

to the existing feature set of the computational auditory saliency model presented in

Chapter 3.

5.1 Multi-dimensional scaling and auditory saliency

Multi-dimensional scaling is now widely used in many different disciplines, but it

was first introduced in psychometrics as a way to understand and interpret subjects’

ratings of similarities for a set of objects [72, 64]. As multi-dimensional scaling relates

to the similarities and dissimilarities of a set of variables, we determined that it

could be a useful tool for analyzing the subjects’ ratings of saliency obtained in our

experiment.

There are two main types of multi-dimensional scaling: metric MDS and non-

metric MDS. These two types differ mainly based on the type of data that will be
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used or collected during the experiment. Metric MDS deals with quantitative (interval

or ratio) data while non-metric MDS involves qualitative (ordinal) data.

There are no known experiments using multi-dimensional scaling to investigate

the salience of different stimuli. Here, we use it to determine what some of the

dimensions (features) contributing to the saliency of a particular stimulus are. This

is a new and novel contribution, since there have not been any other studies or

experiments performed that focus specifically on saliency and exploring the underlying

factors that make a sound salient. The goal of performing this MDS analysis on our

experimental data will be to use this information about the factors contributing to

saliency to determine if there are any significant features not accounted for by the

model. Additionally, the analysis may reveal new features that could be added to our

existing feature set.

As we are interested in examining where the model fails (model and subject se-

lections of salient scenes do not match), we have selected as the stimuli for this

experiment the scenes in which the model was not able to match well with subjects’

responses regarding which scene was more salient in the saliency scene comparison

experiment.

The setup for the experiment used for the MDS analysis is almost identical to

the saliency scene comparison experiment described in the previous chapter. One

difference is that, in this new experiment, the subjects were presented with all possible

scene pairings as MDS analysis works best when subjects provide their ratings for all

possible pairwise combinations.

5.1.1 Subjects

Using the results from the power analysis performed for the scene saliency comparison

experiment, we wanted to have at least 32 subjects complete the experiment.

Results were obtained from 34 (14 female, 20 male) undergraduate students at the

70



Georgia Institute of Technology under IRB approval. The students received course

credit for participation in the experiment. Normal hearing was determined by self-

report. Subjects were informed about the general aim of the experiment, but were

naive to the exact purpose of the study.

Subjects listened through headphones (Sennheiser HD 280 pro) to auditory stimuli

presented using MATLAB and then entered their responses into a MATLAB GUI.

The GUI interface used is the same as the one used in the saliency scene comparison

experiment presented in Chapter 4 and is shown in Figure 23. The experiment took

each subject approximately one hour to complete.

5.1.2 Experimental Procedures

Each subject was presented with a total of 198 scene pairs created from 20 unique

target sounds. As before, the auditory scenes consisted of a target (one second) sound

on a background (4 seconds). The scenes used were selected from the scene pairs where

the model failed in the saliency scene experiment presented in the previous chapter.

These failed scenes were the scenes where there was a majority agreement amongst

the subjects as to which scene was the more salient, but the model did not agree with

the subjects’ selection.

Subjects were presented with each of the different auditory scene pairs. As in the

previous experiment, each scene pair was made up of two 4 second auditory scenes

with a 1 second pause between the two scenes. Again, subjects were asked to indicate

which of the two scenes they heard had the most salient element. They were then

also asked to rate from 1 to 5 how much more salient they found that scene compared

to the other one.

Two different types of catch trials were included to check that subjects were paying

attention to the given task. The first type was where the same scene was presented

for both the first and second scene of the scene pair, and the second type was where

71



scene pairs presented earlier in the experiment were presented again later were also

used to get an indication of how consistent a subject was.

5.1.3 Results and Discussion

Subject accuracy on the catch trials is presented in Figure 28. Two subjects (12, 26)

had very low performance on the catch trials (less than 40%). Additionally, three of

the subjects (15, 26, 30) were not able to correctly identify all the catch trials where

the same scene was presented twice as being equally salient.
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Figure 28: Subject performance on the catch trials for the MDS experiment.

Looking at the correlation values between the scenes our model selected as salient

and the scenes that subjects selected as salient, we found that the correlation values

were much weaker than the correlation values found in the saliency scene comparison

experiment discussed in the previous chapter. This result is what we would expect,

since in this experiment, we are using the auditory scenes where the model performed

poorly (model’s selection did not match subjects’ selections in cases where there

was clear agreement amongst subjects) in the previous experiment. The correlation
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results for each subject with both Model 1 (global) and Model 2 (local) can be found

in Table 10.

Table 10: Correlation between subject and model responses for MDS experiment.

Subject Model 1 Model 2 Subject Model 1 Model 2
1 0.2251 0.3822 20 -0.0181 -0.0181
2 0.2724 0.3560 21 0.3505 0.5007
3 -0.1942 -0.1049 22 -0.1450 -0.0604
4 0.0562 0.1682 23 0.2099 0.4401
5 0.1949 0.3457 24 0.2472 0.2407
6 0.0790 0.2317 25 0.1670 0.3241
7 0.0436 0.2354 26 0.1083 0.1943
8 0.1860 0.2826 27 0.0591 0.2093
9 0.1774 0.3612 28 0.1302 0.2434
10 0.3285 0.4129 29 -0.0070 0.0256
11 0.3045 0.3726 30 0.1791 0.2092
12 0.1607 0.2296 31 0.2326 0.2635
13 0.2286 0.3609 32 0.1548 0.2890
14 0.1155 0.2250 33 -0.1753 -0.0242
15 0.1885 0.3317 34 -0.1178 -0.0022
16 0.3865 0.3999
17 0.2803 0.4061
18 -0.1182 0.0585 Average 0.1294 0.2390
19 0.1109 0.2345 Std Dev 0.1512 0.1553

The average correlation for the the model’s responses to subjects’ responses was

much weaker for the global model. The correlation here was 0.1294 (p=0.46) com-

pared to 0.2390 (p=0.17) for the local model. If we remove subjects 12 and 26, due to

their poor performance on the catch trials, we do not see any significant difference in

the average correlation values between each of our models and all the subjects. The

average correlation, without these two subjects, is 0.1291 (p=0.47) for Model 1 and

0.2406 (p=0.17) for Model 2.

As we did in the saliency scene comparison experiment in section 4.2.3, we can

eliminate some of the subjective or top-down component of saliency by examining

only the scenes pairs where more than half of the subjects agreed upon which scene
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was more salient. These scene pairs are of particular interest for comparison to

our bottom-up saliency model, since these are the scenes where there was subject

agreement on the saliency, therefore eliminating some of the individual variation that

may cause some stimuli to be salient to only certain individuals. The correlation of

the model to the subjects for these scenes can be found in Table 11. As expected,

for these scene pairs, the correlation is higher, and we see a correlation between the

model’s responses and subjects’ responses of 0.3590 for Model 1 and 0.5823 for Model

2.

Table 11: Correlation between subject and model responses for scene pairs where
more than 50% of subjects agreed on salience for MDS experiment.

Model Correlation
1 Scaling by Di on entire feature maps 0.3590

2 Local inhibition 0.5823

While the correlation values for this experiment where lower than in the previous

scene saliency experiment, if we look at the correlation of the subjects to each other,

we see that those values are lower as well. Figure 29 is a correlation matrix showing

the correlation of each subject to the other subjects. The strength of the correlation

is represented by the colors, ranging from dark green (high correlation) to white (no

correlation). Subjects that are more highly correlated are shown in darker green, and

subjects that are less correlated are shown in light green. The red is used to indicate

a negative correlation.

The average correlation values for each subject to all of the other subjects can also

be found at the bottom of Figure 29. These values can provide a measure for how

closely we can expect the model to match a subject’s response. Overall, the average

correlation of subjects to each other is 0.2522 with a standard deviation of 0.1047.

Here, we see that the average correlation of subjects to one another is about the same

as the correlation of subjects to Model 2 (local) but is much higher than the average
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correlation of subjects to Model 1 (global).

Figure 29: Correlation matrix showing the correlation of each subject to the other
subjects for the MDS experiment.

The next step will be to perform the MDS analysis on the subjects’ ratings of

saliency. The statistical program Statistics 19 by IBM was used to perform this

analysis. A visual representation of the data resulting from the MDS analysis is

shown in Figure 30 and Figure 31 for two and three dimensions, respectively.

5.1.3.1 Determining data dimensionality

An important step in MDS analysis is to determine the number of dimensions. In

order to determine the dimensionality of the data, we first looked at the Kruskal’s

stress values that were calculated. These stress values serve as an indication of how

well the model fits our data. We plotted the stress values by dimension on a scree plot
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Figure 30: Two-dimensional visual representation of data on subject’s ratings of
saliency.

shown in Figure 32. In general, high stress values can indicate that the number of

dimensions used to represent the data is not sufficient. When using multi-dimensional

scaling in order to create a visual representation, it is common to use at most three

dimensions, it can be very difficult to visualize the data in higher dimensions. De-

pending on the stress values though, it may be such that it is not possible to represent

well the particular data set using only two or three dimensions. As the number of

dimensions is increased, the stress values will either stay fairly constant or decrease.

In general, the point at which the rate of decline in stress slows down (ideally seen

as an elbow in the scree plot) is the point which may be considered as the true di-

mensionality of the data. In this case, the rate of decline in stress slows down at four

dimensions. However, the analysis using four dimensions may not be reliable as we

have only 20 sounds and 190 total scene pairs. Thus, while adding another dimension

does appear to increase the fit of our model, the increase is small enough that it
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Figure 31: Three-dimensional visual representation of data on subject’s ratings of
saliency.

may make sense to remain with only three dimensions, as adding another dimension

can also make it more difficult to interpret the results. We present the results of the

analysis using both three and four dimensions. Additionally, we must also consider

that the stress values obtained may not necessarily be the optimal values as they are

calculated based on the final iteration only. The data itself is fit by minimizing the

S-STRESS loss function. S-STRESS values are calculated as shown in Equation 7

below.

SS1 =




∑
(i,j)

(δ2
ij − d2

ij)
2

∑
(i,j)

(d2
ij)

2




1/2

(7)

5.1.3.2 Hierarchical clustering

Now that we have a visual representation of the data set, the next step is to deter-

mine what the different dimensions may represent. In order to help determine the
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Figure 32: Scree plot showing stress by dimensions.

distances between each of the points, and which sounds should be grouped together,

we considered using several different techniques, including k-means clustering, near-

est neighbor, and hierarchical clustering. As we are not specifically interested in just

clustering the data for this experiment, we chose to use the hierarchical clustering

method to create an hierarchical clustering tree which will help to determine the

distance between these different sounds. Unlike k-means clustering, the hierarchical

clustering method provides more information on the relatedness of the different points

within the clusters and of the clusters themselves to each other.

There are two different approaches to hierarchical clustering, the agglomerative

approach and the divisive approach. In the agglomerative approach, we build the

trees from the bottom up by successively merging smaller clusters into larger ones.

On the contrary, in the divisive approach, we work from the top down. This involves

starting with one large cluster and gradually splitting the large cluster into smaller

clusters.
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For our analysis, we use the agglomerative approach, where we begin by first

considering each point or sound as being in its own separate cluster. Each of the

separate points or clusters are then successively merged with the closest pair of clusters

into larger clusters using Euclidean distance as the distance metric. We continue

this successive merging process until we are finally left with only one large cluster.

The distance used to determine the closest pair of clusters can be defined in several

different ways. The two most common ways to define this distance are known as single

linkage clustering and complete linkage clustering. In single linkage clustering, the

distance between two clusters is defined as the minimum distance between members

of the cluster. It can be defined as shown in Equation 8 below.

d(A,B) , min−→x ∈A,−→y ∈B
||−→x −−→y ||. (8)

Complete linkage clustering, on the other hand, is the exact opposite of single

linkage clustering. Here, the distance between the two clusters is defined as the

maximum distance between members of the cluster. The complete linkage distance

is defined in Equation 9.

d(A,B) , max−→x ∈A,−→y ∈B
||−→x −−→y ||. (9)

The hierarchical clustering trees and plots for both single and complete linkage

clustering for the 3-D data are shown in Figures 33 and 34, and the tree and plots for

the 4-D data are shown in Figures 35 and 36. The numbers on the clustering trees

and plots each represent one of the 20 target sounds used for the experiment. We

show the data grouped into three clusters, but, for our purposes, the exact number

of clusters is less important.

As the structure of the hierarchical clustering trees are all very similar, we will start

by discussing more in-depth the complete linkage tree for the 4-D data (Figure 35).

Table 12 has a brief description of each of the 20 sounds used in the experiment. Here,
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Figure 33: Hierarchical clustering trees for 3-D data.

we first notice that sounds 13 and 14 are each in their own separate cluster and are

less similar or related to the rest of the sounds. Sound 13 is a bird chirping rapidly

and sound 14 is a cymbal creating a bell-like sound. Both of these sound very different

from all the other sounds in the set, in particular sound 14. Cymbals are known as

non-pitched or indefinite pitched instruments as there is usually no discernible pitch.

This is one reason that it may be different from the other sounds. Additionally,

looking at the frequency spectrum for this sound, it covers a wide frequency range

and has many random harmonics. Another consideration is that some of the sounds,

including the cymbal, are salient to us due to a cognitive component that would not

be captured by our bottom-up processing model.
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Figure 34: Plot of complete linkage clustering for 3-D data.

Next, we examine the relatedness of the other sounds. Sounds 3, 2, and 19 were

found to be closely related. Listening to these sounds, all three are low frequency

sounds. These three sounds are most closely related to sounds 4, 9, 12, which are all

also low frequency sounds. In addition, sounds 4 and 9 are long, continuous sounds.

Using this information, if we look at the plot in Figure 36, dimension 1 as you move

up and down along the axis appears to be related to the frequency of the sounds with

low frequency sounds grouped on one end, while at the other end, we have sound 13

which is a high frequency bird chirping sound.

Looking at the next grouping of sounds, we see that sounds 1, 15, and 11 are closely

related to each other and are also related to the sounds 7 and 16. Both sounds 1 and
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Figure 35: Hierarchical clustering trees for 4-D data.

15 have changes in pitch and repetitive elements. Sound 11 is a string instrument with

harmonics. If we look at the frequency spectrum for these sounds, sounds 1, 7, and

15 all have very similar FFT plots with peaks around the same frequencies. Sounds

6 and 10 are the next most closely related cluster to these sounds. Sound 6 is the

tone complex where one tone is amplitude modulated. This is the tone complex that

was used in the peripheral task of the dual task experiment discussed in the previous

chapter. Sound 10 is an animal making a knocking sound followed by a short animal

call at the end. Listening to both sounds, you can hear similarities in the modulated

component.

Looking at the cluster on the far right of the complete linkage tree in Figure 35, all

82



dim1

1

23

4

5

6
7

8

9

10

11
12

13

14

15

16

1718

19

20

−1 0 1 2

1

23

4

5

6
7

8

9

10

11
12

13

14

15

16

17 18

19

20

−1.0 0.0 1.0

1

23

4

5

6
7

8

9

10

11
12

13

14

15

16

1718

19

20

−1.5 −0.5 0.5

−
4

−
3

−
2

−
1

0
1

1

23

4

5

6

78

9

10
1112

13

14

15
16

17

18

19
20

−
1

0
1

2

dim2

1

23

4

5

6

7 8

9

10
1112

13

14

15
16

17

18

19
20

1

23

4

5

6

7 8

9

10
11 12

13

14

15
16

17

18

19
20

−
1

0
1

2

1

2
3

45

6

7

8
9

10
11

12

13

14

15
16

17

18

19

20−
1.

0
0.

0
1.

0

1

2
3

45

6

7

8
9

10
11

12

13

14

15
16

17

18

19

20

dim3 1

2
3

45

6

7

8
9

10
11

12

13

14

15
16

17

18

19

20 −
1.

0
0.

0
1.

0

1

2

3

4

5 6
7

8
9

10

11

12

13
14

15

16

17

18
19

20

−4 −3 −2 −1 0 1

−
1.

5
−

0.
5

0.
5

1

2

3

4

5 6
7

8
9

10

11

12

13
14

15

16

17

18
19

20

−1 0 1 2

1

2

3

4

5 6
7

8
9

10

11

12

13
14

15

16

17

18
19

20

−1.0 0.0 1.0

dim4

Figure 36: Plot of complete linkage clustering for 4-D data.

the sounds grouped within this cluster are animal sounds. Sounds 5 and 8 are closely

related and are grouped together. Both of these two sounds are slightly repetitive

sounds in which several pitch changes can be heard, going up and down several times

throughout the duration of the signal. These two sounds are most closely related

to sounds 17 and 18, which are both also animal calls, but are longer in duration

compared to sounds 5 and 8. Sound 20 is the next sound that is most closely related

to these two clusters. It is a screeching animal sound that is higher in pitch than the

other four sounds. It also seems to have some variations in pitch, but they are more

subtle than the ones that can be heard in the other sounds.

In setting up the experiment, we tried to limit the effect of loudness on saliency,
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Table 12: Description of sounds used in MDS experiment.

Sound Number Description
1 Monkey shrieking
2 Monkey call
3 Plane noise
4 Boat horn
5 Bird Chirp
6 Modulated tone complex
7 Bird call (not chirp)
8 Animal
9 Destroyer noise
10 Knocking sound
11 Musical instrument (strings)
12 Horn honking
13 Bird chirping
14 Cymbal
15 Bird call
16 Animal
17 Animal
18 Animal
19 Siren
20 Birds high pitched sound

but despite this, perceived loudness is still a subjective measurement and can vary

between individuals. Some of the factors that can influence perceived loudness are the

sound pressure, the duration, and the bandwidth of a sound. Additionally, it is known

that sounds of the same intensity can still be perceived as louder or softer depending

on the specific frequencies that are present in the sound. For example, sounds that

are lower than 300 Hz are perceived as being softer than sounds at 800 Hz of the same

intensity. This is due to the ear becoming less sensitive at the lower frequencies. The

ear is especially sensitive to sounds in the 3000 to 4000 Hz range, therefore a sound

at 3000 Hz will sound louder than a sound at 1000 Hz at the same intensity [26].

As we move into the higher frequencies, the ear again becomes less sensitive. In

particular, as people age, they gradually lose the ability to hear some of the higher
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frequencies [16, 62]. Looking at the clustering of the sounds along dimension 3, it

appears that this dimension could be related to loudness perception.

The other two dimensions (dimensions 2 and 4) which may contribute to saliency

are more ambiguous, and not as easily definable. They could represent a combination

of several different attributes of sound, since each dimension can represent multiple

attributes. Looking at the plot in Figure 35, some of the attributes dimension 2 could

represent are the onset of sounds or the duration of the sound. It does not hold true

for all the sounds, but in general, as we move along that dimension we tend to first

encounter longer, more constant sounds. In addition, as we move down that axis, the

sounds appear to have more repetitive elements and many onsets, as they have many

starts and stops as opposed to being one constant sound of longer duration. These

two dimensions may also be less clearly definable as they could also relate to aspects

of timbre, which can be harder to define and identify.

5.1.3.3 Adding to the existing feature set

One of the goals of our MDS analysis is to identify what dimensions are most impor-

tant in determining whether or not a sound is salient. The other objective is to use

the information obtained about the factors contributing to sound saliency to explore

whether or not there are any additional features that could be added to our existing

feature set that would lead to an improvement in our model’s ability to pick sounds

that are salient to humans.

From our analysis, we found that two of the key dimensions contributing to

saliency are related to the frequencies present within the sound and the perceived

loudness of the sound. Using this information, we decided to add an additional stage

to the model. This additional step would involve pre-processing the sound input

by applying a weighting filter before the input is passed on to the feature extrac-

tion stage. Figure 37 shows an updated architecture of the computational auditory
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saliency model. The filter would weight more heavily the frequencies that the human

ear is more sensitive to, and as such, would be perceived as louder. On the other

hand, it would give less weight or attenuate the frequencies (very low and very high)

that the ear is less sensitive to and can be perceived as being softer.
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Figure 37: Architecture for enhanced computational auditory saliency model.

The filter used here is designed to emphasize the frequency ranges that the human

ear is most sensitive to. We use the inverse of the 40 phon curve from the equal

loudness contours first published by Fletcher and Munson in 1933. This type of filter

is referred to as an A-weighting filter. Figure 38 shows the Fletcher-Munson loudness

contours [26] as well the new standard equal loudness contours given by ISO 226:2003.

We can see the 40-phon curve used for the filter matches well with the new standards.

While we base the filter on A-weighting filter specifications, the exact weighting

filter used can be modified based on the type of stimuli or the task that the model is

being applied to. For example, steeper attention can be used for the high frequencies

as many of those frequencies cannot be heard by the ear and would therefore not be
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Figure 38: Comparison of Fletcher-Munson curves with new standard equal loudness
contours (ISO 226:2003).

salient. A plot of the filter characteristic used is shown in Figure 39.

In Figure 40, we show an example of a sound where adding the pre-processing

stage results in a large difference in the saliency map. The sound is similar to what

a person waiting outside of a restaurant located along a busy street would hear. The

background noise is street noise, and the target sound is a police siren. The signal-

to-noise ratio of the siren to the noise is low (-10 dB), but despite this, the siren is

very noticeable and would draw our attention.

The auditory spectrogram for this sound is given in Figure 40 (a) and the cor-

responding saliency map is shown in Figure 40 (b). Due to the low SNR, the siren

sound is suppressed and the noise actually becomes the most salient element on the

map. In Figure 41, we show the auditory saliency map for the model with the new

filtering stage. The filter suppresses the lower frequencies where the noise is and em-

phasizes the frequencies of the siren, as it is within the frequency range that humans
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Figure 39: Pre-processing filter characteristic.

are more sensitive to. Thus, as shown in Figure 41, the siren sound becomes very

salient, and the noise is suppressed, which is more consistent with what an observer

would experience when listening to the sound.

Finally, we needed to determine if adding the new pre-processing stage to the

current auditory saliency model resulted in any increase in the correlation between

subjects’ responses and the model’s responses. We first generated the new model’s

responses for comparison with the subjects’ responses from the experiment. The new

correlation values for each subject to the model can be found in Table 13.

We found that adding the pre-processing stage to our model resulted in a large

improvement in the correlation values of the model to the subjects, particularly in

the case of Model 1 (global model). For Model 1, using a paired t- test, we found

a statistically significant (p=3.35 * 10( − 9)) increase in the average correlation of

subjects’ responses and the model’s responses. For this case, the average correlation

more than doubled, with an increase from 0.1291 (p=0.48) to 0.2749 (p<0.12). For
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Figure 40: a) Auditory spectrogram b) Auditory saliency map without new pre-
processing stage.

Model 2, the local model, there was a slight increase in the correlation from 0.2406

(p=0.18) to 0.2708 (p=0.12). Here, the filtering did not have as much of an effect,

since the filter is applied at the global level.

If we again examine only the scene pairs where more than half of the subjects

agreed on the salience, there is a large improvement in the correlation between the

model and subjects’ responses. For these scene pairs, the model and subjects were

strongly correlated with a correlation value of 0.71 for both Model 1 and Model 2.

Adding the new pre-processing stage to the model resulted in an increase in the

correlation of the model and subjects’ responses, such that the correlation of the model

to the subjects is now slightly higher than the average correlation of the subjects to

one another. The average correlation of the subjects to one another is one measure

that we use to evaluate how well we can expect the model to match subjects’ responses.

We can use hypothesis testing to show that the model is not distinguishable from the

human subjects, in that, the model is as correlated to the subjects as they are to each

other. We can also show that prior to adding this new pre-processing stage, the model

was distinguishable from the subjects, since the average correlation of the subjects to

the model (particularly, Model 1) was significantly lower than the correlation to the
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Figure 41: Auditory saliency map with new pre-processing stage.

subjects to each other.

Our null hypothesis is that there is no difference between the average correlation

of the model with the subjects and the average correlation of the subjects to each

other. The alternative hypothesis is the opposite, which is that we can distinguish

the model from the subjects.

For the hypothesis testing, we use a z-test. First, for the global model without

the new filtering stage, we found that the test statistic, z, is -4.27. Looking at the z

distribution tables, the criteria for rejection of the null hypothesis is z < -1.96 and

z > 1.96 for alpha = 0.05. Since z=-4.27 is greater than 1.96, we can reject the

null hypothesis. Therefore, in this case, we can conclude that there is a statistically

significant difference (p=0.00002) between the correlation of the global model to the

subjects and the average correlation of the subjects to each other. In other words,

the model is distinguishable from the subjects, due to the average correlation of the

model being significantly lower than the average correlation of the subjects to one

another.

90



Table 13: Correlation between subject and model (with new pre-processing stage)
responses for MDS experiment.

Subject Model 1 Model 2 Subject Model 1 Model 2
1 0.3716 0.3037 20 0.1018 0.1349
2 0.4051 0.3956 21 0.4392 0.3890
3 -0.2524 -0.2838 22 -0.0186 0.0205
4 -0.1120 -0.1020 23 0.4137 0.4711
5 0.4394 0.4515 24 0.4337 0.4659
6 0.3403 0.2830 25 0.5395 0.5197
7 0.1097 0.1245 26 0.2253 0.2253
8 0.4598 0.4386 27 0.3123 0.3367
9 0.3079 0.3200 28 0.2313 0.2422
10 0.5045 0.4738 29 0.0459 -0.0413
11 0.5977 0.5851 30 0.3630 0.3727
12 0.3048 0.3759 31 0.3788 0.3306
13 0.2547 0.2893 32 0.4218 0.4551
14 0.1963 0.1820 33 -0.1212 -0.1041
15 0.4720 0.4174 34 -0.0394 -0.0656
16 0.4361 0.4200
17 0.4450 0.4840
18 0.0338 0.0353 Average 0.2749 0.2708
19 0.3058 0.2606 Std Dev 0.2117 0.2127

Next, we can do the same analysis for the global model with the new pre-processing

stage added. Here, the average correlation of subjects to the model is closer to

the average correlation of the subjects, and we expect that the model will not be

distinguishable from the subjects. In this case, the test statistic, z, is 0.48. The

critical z value for rejection of the null hypothesis is z < -1.96 and z > 1.96 for

alpha = 0.05. Since z=0.48 is within the acceptable range, in this case, we can no

longer reject the null hypothesis. We now find that there is no statistically significant

difference between the correlation of the subjects to each other and the correlation of

the subjects to the global model. Therefore, the model is as correlated to the subjects

as they are to one another.

Looking at the local model, we find no statistically significant difference between

the correlation of the subjects to each other and the correlation of the subjects to the
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model both when the pre-processing stage is included and when it is excluded.

We also looked at whether the enhanced model resulted in any improvement in

the correlation values between the model and subjects for the scene comparison ex-

periment presented in the previous chapter. The results comparing the correlation

values with and without the new pre-processing stage can be found in Table 14. Here,

we found using the enhanced model did not result in any significant change to the

average correlation values between the model and subjects, and the correlation values

remained almost the same. The correlation here was 0.4878 (p<0.08) for the global

model and 0.5256 (p=0.05) for the local model.

Table 14: Correlation values between the enhanced model’s responses and subjects’
responses for saliency scene comparison experiment.

Correlation to
Model Enhanced model Original model

1 0.4878 0.4745
2 0.5256 0.5272

One possible explanation for why we did not find any significant improvement

with the enhanced model for the saliency scene comparison experiment is that the

average correlation of the model to the subjects in this experiment was already higher

than the average correlation of the subjects to each other. Thus, this may indicate

that we were already close to or at the threshold for how closely we can expect the

model to match the subjects’ responses. Additionally, there were a total of 20 scene

pairs where the enhanced model resulted in a different response from the previous

model. If we take a closer look at these 20 scene pairs, more than half of these were

scene pairs where there was no subject agreement on which of the two scenes was

more salient. Thus, while there was a large increase in the correlation value for some

subjects, other subjects had a slight decreases, resulting in very little change overall

to the average correlation. For this same reason, there was also almost no change in
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the correlation values for scene pairs where there was subject agreement.

In this chapter, we were able to use MDS analysis to find out more about the

important dimensions contributing to saliency. Based on the results of the MDS

analysis, we added a new stage to our model, which resulted in a large increase in the

correlation values, in particular, for the global model. We found a strong correlation

of 0.72 for the scenes where there was subject agreement on saliency. Although the

correlation values for all the scenes was lower than the correlation values we found

in the saliency scene comparison experiment, the correlation values of the subjects to

each other was also lower for this experiment as well. As a result of this, we would

expect to see lower correlation values, as how correlated the subjects are to each

other provides us with an indication of how closely we can expect the model to match

subjects’ responses.

We were able to show that there was no difference between the average correlation

of the subjects to the model and the average correlation of the subjects to each other

once the new stage was added. Adding the new stage increased the correlation values

of the model to the subjects to the limit that we would expect to match, as there are

other top-down and subjective elements that cannot be accounted for with only the

bottom-up model. In the next chapter, we will apply our model to scenes that have

both an audio and video component. One thing we would like to investigate with this

next experiment is whether or not the most salient audio segment of a movie scene

can be representative of the entire scene.
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CHAPTER VI

AUDITORY SALIENCY AND VIDEO

In this chapter, we apply the computational auditory saliency model to scenes with

both an auditory and visual component. We were interested in determining whether or

not sound, in particular, salient sounds could be used to create a summary of a movie

scene by identifying the best “thumbnail” segment to represent each scene. There

are two key differences in the auditory stimuli used for this experiment compared to

those used for previous experiments. The first difference is that with this experiment,

for the first time, we apply our model to scenes containing speech, so that we could

evaluate how well the model performs in selecting salient elements from speech. Since

the auditory saliency model is a bottom-up processing model, we expect that it may

not perform as well on scenes that are mainly speech, due to the fact that speech

is largely dependent on the context and would involve more of the higher level, top-

down processing mechanisms that are not taken into account by the current model.

The second difference in the stimuli for this experiment is that the soundtracks used

are two-channel, stereo sounds, as opposed to the monaural stimuli used in previous

experiments.

6.0.4 Subjects

Using the results supplied from the earlier power analysis, we wanted to have at least

32 subjects complete the experiment.

Results were obtained from 36 (19 female, 17 male) undergraduate students at the

Georgia Institute of Technology under IRB approval. The students received course

credit for participation in the experiment. Normal hearing was determined by self-

report. Subjects were informed about the general aim of the experiment, but were
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naive to the exact purpose of the study.

Subjects listened to the scenes through headphones (Sennheiser HD 280 pro). A

MATLAB GUI was used to both present the scenes to the subjects and also to record

subjects’ responses. The experiment took each subject approximately 40 minutes to

complete.

6.0.5 Experimental Procedures

Each subject was presented with 70 five-second audio and video scenes. The short

movie scenes were created from 10 movies of different genres which varied from ani-

mated films to action films. We wanted to use movies with interesting audio sound-

tracks. The movies were first broken up into five-second scenes. We then separated

out the scenes with interesting auditory elements, as there were many five-second seg-

ments that contained no sounds and consisted only of silence. For this experiment,

we then randomly selected several scenes for each movie from all the scenes that were

found to have interesting auditory elements.

The experiment itself was divided into two different parts. The first part of the

experiment involved using only the audio soundtrack from each movie scene, while the

second part involved showing the video along with the corresponding audio sound-

track. Each of the five-second scenes were divided into five non-overlapping one-

second segments that were identified by a number from 1 to 5. This number was

displayed at the top left corner of the screen. A sample of one of the movie scenes

used for this experiment is shown in Figure 42.

Subjects were asked to answer a total of three questions, which are summarized

in Table 15. In the first part of the experiment, subjects were presented with only

the audio soundtrack. They were asked to listen to the soundtrack while being shown

a black screen. At the top left corner of the screen, the numbers (1 to 5) identifying

the segments were shown. They were then asked to indicate which number (1 to 5)
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Figure 42: Sample of movie scene used in the experiment.

was displayed when they heard the sound they thought was the most salient sound.

Subjects were allowed to replay each scene as many times as they needed to.

In the second part of the experiment, subjects were shown the video along with

the corresponding soundtrack. Again, there was a number (1 to 5) displayed in the

top left corner of the screen. In this part of the experiment, subjects were asked to

respond to two separate questions. They were first asked again about which segment

had the most salient sound considering both the video and corresponding audio. One

reason we asked subjects to answer this question again is that we were interested

in seeing if being shown the video with the corresponding audio had any effect on

the sound they thought was the most salient. Finally, we also asked subjects to

indicate which numbered segment they felt best represented the video scene. From

the subjects’ responses to this question, we wanted to investigate whether or not the

most salient sound segment is representative of the entire video scene.

Prior to starting the experiment, subjects were also given a brief training session

where they were shown sample scenes in order to acquaint themselves with the task.

The training consisted of three sample audio scenes and three sample video and audio

96



Table 15: Summary of questions asked to subjects in the video experiment.

Experiment part Question
Audio only Which segment contains the most

salient sound?
Audio and Video Q1 Considering both the video and corresponding audio,

which segment contains the most salient sound?
Audio and Video Q2 Overall, which segment best

represents the scene?

scenes.

6.0.6 Results and Discussion

For this experiment, two-channel, stereo audio inputs were used. Although the model

was not created for binaural sounds, this experiment demonstrates how the model

can possibly be useful in selecting salient stimuli from binaural sources as well. Fig-

ure 43 shows a diagram of how the saliency maps are obtained for binaural sounds.

Inputs with multiple audio channels are evaluated by processing each of the channels

separately. Therefore, we obtain one intermediate saliency map from each channel.

In this case, we have two intermediate saliency maps which give the salient elements

from each channel (ear), which are then combined into one final saliency map.

Sound Right Ear

Right Saliency Map

Sound Left Ear

Left Saliency Map

Overall Saliency
Map

Figure 43: Saliency map processing for binaural sounds.

To demonstrate how the saliency maps are obtained for binaural sounds, we show

in Figure 44, the saliency maps obtained for a five-second binaural recording of bird

sounds. With this example, the final saliency map is very similar the the map obtained
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from the right channel. For short natural scenes such as this one, it is often the case

where one channel will make a larger contribution to the final saliency map, since

there may not be salient sounds approaching simultaneously from both directions.

F
re

q
u

e
n

c
y
 (

H
z
)

Time (ms)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

125

250

500

1000

2000
F

re
q

u
e

n
c
y
 (

H
z
)

Time (ms)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

125

250

500

1000

2000

F
re

q
u

e
n

c
y
 (

H
z
)

Time (ms)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

125

250

500

1000

2000

Right Channel Saliency MapLeft Channel Saliency Map

Final Saliency Map

Figure 44: Example of combined saliency map for binaural bird sounds.

Next, we present an example of where the final saliency map differs from the two

intermediate maps. In Figure 45, we show the saliency maps for a five-second binaural

recording of clapping sounds. A total of five claps can be heard on the clip, and the

claps occur at different positions around the listener. They start from the left of the

listener, and they gradually move towards the right.

In Figure 45, looking at the left saliency map, the second clap is the most salient

clap. The third clap occurs from in front of the listener and is not very salient on

either the left or right saliency maps. Moving to the right saliency map, the two

claps to the right of the listener can be seen on the map with the first clap occurring
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Figure 45: Example of combined saliency map for binaural clapping sounds.

from the right being more salient than the second one. The final saliency map shows

all five claps, but the first clap when the sound is to the right of the listener is the

most salient clap. This is expected as the clapping sound is now approaching from

a new direction, and as a result, stands out more perceptually. This example also

demonstrates how some information about the direction and location of sounds can

potentially be incorporated when determining the saliency map.

We will first look at the results from the audio only portion of the experiment.

Table 16 shows the correlation values between the segment that subjects selected as

the most salient and the segment that the model selected as the most salient. The

model used for comparison to the subjects in this experiment is the global model

with the filtering stage discussed in the previous chapter. In general, the most salient

segment selected was the same for both the global model and local model.
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Table 16: Correlation between subject and model responses for audio only portion.

Subject Model 1 Subject Model 1
1 0.4402 19 0.4821
2 0.4313 20 0.5556
3 0.5611 21 0.4646
4 0.5507 22 0.5681
5 0.2800 23 0.5951
6 0.5883 24 0.3266
7 0.5121 25 0.6356
8 0.3525 26 0.5194
9 0.6300 27 0.5595
10 0.5263 28 0.3129
11 0.4292 29 0.4314
12 0.4242 30 0.5917
13 0.4760 31 0.4113
14 0.4672 32 0.3053
15 0.6520 33 0.2265
16 0.6092 34 0.4651
17 0.3986 35 0.3918
18 0.5582 36 0.3934

Average 0.4756
Std Dev 0.1087

When only the audio soundtrack is presented, we found the model does well in

selecting the segment that subjects considered the most salient. The average corre-

lation between the model’s responses and subjects’ responses was 0.4756, which is

statistically significant (p=0.003). The average correlation found is similar to the

correlation we found in the saliency scene experiment. We had expected that the cor-

relation values might be lower for the video scenes, since they are dependent to some

degree on the context of the scene which imply more involvement from the top-down

processing mechanisms, but we found the bottom-up model performs well in selecting

the salient segments.

As saliency can be subjective, it is possible that some of the scenes do not have a

single segment that is clearly salient to listeners. For these scenes, there would be a
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large variation in the subject response, and as a result, they would not be useful for

validating or invalidating the computational saliency model. Therefore, in order to

reduce some of the subject variation, we also looked at only the scenes where there

was agreement amongst subjects on which segment was most salient. We used two

different approaches for this analysis: 1) using the modal value and 2) using the scenes

with majority agreement.

• Modal Value - Segment most frequently selected as salient by subjects for each

scene was compared to the model’s response

• Majority - Scenes where more than half of subjects agreed on which segment

was salient were compared to the model’s response

Table 17 shows the correlation values where there was agreed salience for both

the audio only and audio and video portions of the experiment. Here, we found a

strong correlation between the model’s responses and subjects’ responses. When only

the audio was presented, the correlation between our model and the modal value

of subjects’ responses was 0.7237 and the correlation between the model and the

majority response was 0.7041.

Table 17: Correlation of model to scenes with agreement on saliency.

Correlation Model to
Description Mode Majority

Audio Soundtrack Only 0.7237 0.7041
Audio and Video Question 1 0.6010 0.7320
Audio and Video Question 2 0.4553 0.8683

It should be noted also that the most salient segment for subjects was also typically

considered to be very salient by the model, even if it was not the segment selected

by the model as the most salient segment. One possible explanation for this is that

in several of the scenes, a salient sound would often span across several one-second
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segments, starting in one segment and ending in another segment. In these instances,

the model and subjects could differ in which part of the sound (onset, middle, end)

they found most salient. In order to see how salient the model found the segment

that subjects selected as the most salient segment, we can look at where the model

ranks (from 1 to 5) each segment. A ranking of 1 means that the model agreed with

subjects on which segment was the most salient segment. A ranking of 5, on the other

hand, means that the segment subjects chose as the most salient segment was the least

salient segment for the model. Looking at this, we found that the average ranking was

2.09 with a standard deviation of 0.7. This means that the segment that was selected

most salient by the subjects was on average either the same as the one the model

selected or it was ranked as the second most salient segment according to the model.

If we compare this to a random uniform model, the average ranking for that is 3.0

with a standard deviation of 1.41. To determine if there is a significantly significant

difference between these two means, we perform a z-test. We found that the test

statistic, z, is -4.92. Looking at the z distribution tables, the criteria for rejection

of the null hypothesis is z < -1.96 and z > 1.96 for alpha = 0.05. Since z=-4.92 is

less than -1.96, we can reject the null hypothesis. Thus, we did find a statistically

significant difference (p=9 ∗ 10−7) between the two means and can conclude that

our model performs better than a random model in selecting segments that subjects

found salient.

Figure 46 shows an example of one of the movie scenes from the experiment where

the subjects were divided on which segment contained the most salient audio. Here,

we show the last frame from each of the 5 different segments for this video scene.

This scene demonstrates how the model is able to select the segments that are found

to be salient to subjects. In this example, subjects were almost equally split between

whether segment 1 or segment 3 was the most salient segment. In the audio only

portion, both segment 1 and segment 3 were each selected by 12 different subjects.
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For this same question in the video portion, 11 subjects selected segment 1, and 12

subjects selected segment 3 as the most salient segment. Interestingly, for the second

question regarding which segment was most representative of the scene, subjects were

not divided, and they strongly agreed on segment 3 being most representative of the

scene.

Figure 46: Sample video frames for one of the movie scenes used in the experiment.

The number of subjects that selected each segment as most salient can be used

to create a ranking for the degree of saliency of the different segments. In this case,

segments 3, 1, and 5 were the three more salient segments. Almost no subjects selected

segments 2 or 4 as being the most salient segment, indicating that those two segments

were of lower saliency. We can then compare this information to the auditory saliency

map generated by the model and shown in Figure 47. Here, according to the model,

segment 3 is clearly the most salient segment, but we can see from the saliency map

that segments 1 and 5 are salient as well. Segment 5 was the third most salient

segment for subjects, with 8 subjects selecting it as being the most salient segment
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for them. This example shows how the model is able to match the rankings for the

degree of saliency of various segments.
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Figure 47: Auditory saliency map for the movie scene shown in Figure 46.

In the video portion of the experiment, subjects were presented with both the

video and corresponding audio soundtrack for each movie scene. They were then

required to answer two separate questions. Table 18 shows the correlation values

found between the model’s responses and subjects’ responses for both of the questions

asked. Looking at the responses to the first question, which asked subjects to indicate

the segment with the most salient sound, the correlation value between the model

and subject responses were slightly lower than the correlation found in the audio only

portion. The average correlation found here was 0.4394 (p=0.007) compared to 0.4756

(p=0.003) when only the audio was presented. Similarly, if we look at the scenes where

there was agreed salience, we again see a large increase in the correlation values. The

correlation between the model and the modal value of subjects’ responses was 0.6010

and the correlation between the model and the majority response was 0.7320.

The second question in the video portion of this experiment asked subjects to

choose the segment they considered most representative of the video scene overall.
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Table 18: Correlation between subjects’ responses and the model’s responses for
both question 1 and question 2 of the video portion.

Subject Video Q1 Video Q2 Subject Video Q1 Video Q2
1 0.4378 0.0987 21 0.4182 0.1090
2 0.3457 0.3822 22 0.5374 0.4119
3 0.6457 0.4521 23 0.4203 0.1467
4 0.4915 0.3879 24 0.3806 0.2217
5 0.2312 0.2325 25 0.2451 0.3818
6 0.5399 0.1182 26 0.5296 0.3648
7 0.5989 -0.0088 27 0.4791 0.2151
8 0.3143 0.5338 28 0.4823 0.3971
9 0.5206 0.3429 29 0.2150 0.2000
10 0.5863 0.1035 30 0.5846 0.2978
11 0.3205 0.0639 31 0.4234 0.3161
12 0.4030 0.1620 32 0.4016 0.1893
13 0.3904 0.2203 33 0.3530 0.2029
14 0.4728 0.0941 34 0.4461 0.4055
15 0.4175 0.2730 35 0.4110 0.0132
16 0.6169 0.2524 36 0.4542 0.2405
17 0.3061 0.1804
18 0.3431 0.1382
19 0.5666 0.0310 Average 0.4394 0.2352
20 0.4884 0.2958 Std Dev 0.1093 0.1341

For this question, the average correlation found was much lower. Here, the correlation

between the model’s response and subjects’ responses was 0.2352 (p=0.16). The lower

correlation values here were expected, and one explanation for this is the increased

reliance on top-down cues. To determine which segment is most representative of the

scene, subjects will take into account what the scene is about or in other words, the

context of the overall scene. In addition, this question is more subjective than the

first question, and subjects can consider a segment to be representative of a scene for

various individual reasons. This corresponds with the finding that, for this question,

there was much less subject agreement amongst the subjects. They differed greatly

on which segment they selected as being most representative of the scene, and out of

the 70 scenes presented, there were only a total of 12 video scenes where the majority
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of subjects agreed upon which segment was most representative of the scene. For

these 12 scenes, where there was agreement, there was a strong correlation of 0.8683

between the model’s response and subjects’ responses. This result shows our model

is able to choose the salient audio cues that can be used to summarize or represent a

scene.

In order to determine how well we can expect the model to match subjects’ re-

sponses, we examine the average correlation values for each subject to the rest of the

subjects. Table 19 shows the average correlation values for each subject to all other

subjects. We found that the correlation values for the second question of the video

portion was much lower than the correlation values found for the first question from

the video portion and from the audio only portion. Here, the average correlation of

the subjects to one another was only 0.19 compared to approximately 0.42 for the

responses to the question regarding which segment had the most salient sound. Due

to the large amount of subject variation in the responses for this question, we did

not perform any further analysis on the data collected from this portion of the ex-

periment. The reason for this decision was that we wanted to see if the segment with

the most salient sound would be representative of the scene overall. As the subjects

themselves were not in agreement as to which segment was most representative for

each scene, we could not expect the model to match subjects’ responses.

Table 19: Average correlation of subjects to each other.

Experiment Correlation
Audio soundtrack only 0.4227

Video and Audio Question 1 0.4238
Video and Audio Question 2 0.1850

In this experiment, speech was used as part of the stimuli set, and the model was

evaluated for the first time on its ability to choose salient cues from speech. As speech

can be very contextually dependent, we expected that with speech the saliency of the
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stimulus would start to become increasingly dependent on top-down influences, but

we found that the model performed surprisingly well in selecting salient cues from

speech. There were several movie scenes (39 scenes) where the soundtracks were

comprised of majority speech. Scenes were defined as majority speech if more than

three seconds of a scene involved speech.

Looking at how the model performed on these scenes containing mainly speech,

we found what can be considered a strong correlation by Cohen’s guidelines [?].

In Table 20, we show the the average correlation between the model’s responses

and subjects’ responses for both the audio and video portion of the experiment.

When only the audio was presented, the average correlation was 0.5591, which we

found to statistically significant (p=0.0004). We also found a similar correlation

value when the same question was asked in the video portion. The correlation there

was 0.5431 (p=0.0006). For the second question, regarding which segment was most

representative of the scene, the correlation was again much lower. The correlation in

this case was 0.1850 (p=0.19).

Table 20: Average correlation of model to subjects for majority speech scenes.

Experiment Correlation
Audio soundtrack only 0.5591

Audio and Video Question 1 0.5431
Audio and Video Question 2 0.2211

We can also look at speech scenes where there is subject agreement. Table 21

shows the correlation of the model’s responses to the modal value of the subjects’

responses as well as the correlation for the scenes where there was majority agreement

on the most salient segment. Looking at the correlation for scenes where the majority

of subjects agreed upon which segment was most salient, the correlation value was

extremely high at 0.8956 for the audio only portion and 0.8896 for the when both the

audio and video was presented. For the question 2 of the video portion, there were
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only 5 scenes where the majority of subjects agreed upon which segment was salient.

For all 5 of these scenes, the model was able correctly match the subjects’ responses.

Table 21: Correlation of model to scenes with agreement on saliency for majority
speech scenes.

Correlation Model to
Description Mode Majority

Audio Soundtrack Only 0.8956 0.8857
Audio and Video Question 1 0.7894 0.8896
Audio and Video Question 2 0.4293 1.000

One explanation for why the top-down cues had little effect on the model’s per-

formance in selecting salient sounds is the relatively short duration of the scenes.

With the scenes being only 5 seconds long and divided into 1 second segments, the

context of the speech has less of an effect on saliency than if the scenes were of longer

duration.

We showed in this experiment that the model is able to select salient auditory

segments from video that match well with selections made by subjects. In the next

chapter, we will conclude the thesis by summarizing the main contributions. We

also provide a brief discussion on some areas for continued research into the topic of

auditory saliency.
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CHAPTER VII

CONCLUSIONS AND FURTHER EXTENSIONS OF THIS

WORK

7.1 Thesis Overview

Auditory saliency research is still a relatively new area of research which has been

rapidly gaining interest in recent years. In this thesis, we provide a comprehensive

look at the factors that contribute to saliency for various sounds and present a bottom-

up processing auditory saliency model that does well in selecting sounds that humans

perceive as being salient.

The first contribution of the thesis is our novel computational auditory saliency

model. In Chapter 3, we presented a bottom-up auditory saliency model, which

uses cortical features similar to those our brain potentially uses in processing sounds.

These features were generated using a cortical model that mimics the response proper-

ties of cortical neurons. The model also differs from existing auditory saliency models,

in that it takes into consideration the fact the certain frequencies can be perceived

as louder, and as result, be more salient. This is something not accounted for by the

other auditory saliency models and can make a large impact on saliency. Addition-

ally, our model is a general auditory saliency model that matches well with results

from human subjects on selecting salient sounds from a scene. The model can also

be used for a variety of applications, which we show in Chapter 6, where we apply it

to video scenes. Many of the other currently existing auditory saliency models have

been tailored to a specific task or application and have only been evaluated based

on the specific tasks. As those models have only been tested on the one application,

we do not have any knowledge of the model’s performance on other tasks or how it
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performs, in general, at selecting or ranking the saliency of different sounds from a

complex auditory scene.

Another novel contribution, presented in Chapter 5 of the thesis, is the explo-

ration into the dimensions that contribute to the salience of different sounds. This

experiment and the analysis using multidimensional scaling (MDS) is the first to look

specifically into determining what the key factors are that make a sound salient. The

information from this analysis was then used to improve the auditory saliency model

and create a more comprehensive feature set for the model. In particular, we were

able to improve the model’s performance by adding a pre-processing stage based on

the information obtained through the MDS analysis. The new stage resulted in a

significant improvement in the correlation values between the model’s responses and

subjects’ responses for picking salient scenes.

Presenting the dual task paradigm as a way to evaluate auditory saliency is another

contribution of this thesis. Evaluating or quantifying auditory saliency which was

discussed in Chapter 4 remains a key issue. In auditory saliency, there is no easily

tracked physical correlate that can be used to evaluate saliency the way eye tracking

is used in visual saliency. In this thesis, we presented two different experiments

that were used to evaluate the model, and both of these experiments can be used to

measure the salience of different stimuli. In particular, we show how the dual task

experiment paradigm can be used to evaluate auditory saliency.

Dual task experiments have been used in many different studies involving atten-

tion in the different modalities, but it has not yet been used to investigate auditory

salience. The computational auditory saliency model presented in this thesis models

the bottom-up, saliency-driven part of our attentional process. In this bottom-up

process, sounds that are salient can be noticed without our attention. We show that

the dual task paradigm is a useful way to evaluate this type of bottom-up auditory

saliency. We also show how using a dual task experiment is helpful in determining
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what changes can be made and the degree of change required to make a sound become

salient to an observer. In the second experiment presented in Chapter 4, we use a

pairwise presentation of sounds to evaluate the model’s performance. We show that

model does well in selecting sounds that subjects considered salient. There was a

strong correlation between the model’s responses and subjects’ responses, especially

for the sounds where there was agreed salience among the subjects.

Finally, the use of the auditory saliency model for selecting salient auditory seg-

ments from video is another contribution of this thesis. Here, we show the diverse

applications the model can be used for. The experiment, as described in Chapter 6,

is the first time auditory saliency maps have been used to evaluate salient audio in

movie soundtracks. In addition, the stimuli used in this experiment were two-channel

audio inputs. The use of the model on these two-channel stereo sounds as well as

on binaural sounds is another key contribution of this thesis, since the existing au-

ditory saliency models have all been used primarily for monaural sounds. In this

experiment, we demonstrate how our model can be used on audio inputs with more

than one channel, and we show that the model performs as well in selecting salient

segments for these sounds as it did for the monaural sounds. With this experiment,

we also applied the model to speech for the first time. The results obtained show that

for short video scenes the model does well in selecting salient segments from speech.

7.2 Further Extensions of this Work

The computational auditory saliency model presented here performs well in detect-

ing salient auditory events using only bottom-up processing cues. Although these

bottom-up cues can account for a large portion of what makes a sound salient, there

are still many instances and applications where the saliency of a stimulus will rely as

much, if not more, on the top-down input. In addition, saliency can also be very task
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dependent. The type of stimuli that the model is to be used on and the task or appli-

cation that is being performed with the model can both influence which of the cues

between the bottom-up and top-down are more important. Thus, the applications of

the auditory saliency model is one area for future research. In terms of model devel-

opment, the future direction of this work would be towards incorporating top-down

input into the model depending upon the application the model is to be used for as

well as to further expand the feature set. Below we present a brief discussion on two

possible ways top-down feedback could be incorporated with the bottom-up model

along with some preliminary findings using a boosting algorithm.

In Figure 3, we showed how top-down feedback could interact with the bottom-up

cues in the feature selection and combination stage. One way top-down feedback

could be incorporated here is to use learned weighting of the feature maps. The

information obtained from learning could be used as weights for the individual feature

maps or for the global feature maps prior to combining them into the final saliency

map. In this way, instead of simply summing all the maps as is currently done with

the bottom-up model, each individual map would be weighted differently based on

the weighting parameters obtained from learning. The learned weights would then

influence the contribution of each individual feature map to the overall saliency map.

Using the learned information to as top-down weighting factors also allows us to

tailor the model to promote certain types of sounds depending on the task being

performed. One possible implementation is to use a boosting algorithm, such as

Adaptive Boosting (AdaBoost) [63] to obtain the weights. The idea behind AdaBoost

is for each subsequent weak classifier to focus on the instances where misclassifications

occurred during the previous classifiers. This algorithm was modified by Tieu and

Viola [75] for use as a feature selector by restricting the weak classifier to work on

only one feature at at time [60].

The results from the scene comparison experiment presented in Chapter 3 were
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used to train the AdaBoost based saliency model. The average of the responses from

all subjects were used as the ground truth, and the difference between the features

was used to represent each scene. This enables us to predict what features make one

sound more salient as opposed to another sound. Preliminary runs were performed

where the global feature maps were weighted prior to combination into one final

saliency map. We found there was a slight improvement over the strictly bottom-up

saliency model. One disadvantage to the AdaBoost-based system is that it would

requires a large amount of training data, while the bottom-up model achieves similar

results with no training required.

Another possible way to incorporate top-down input into the model is to use “tem-

plate” matching. Here, we would have various “templates” for different situations.

For example, depending on the task to be completed, we could train the auditory

saliency model to “listen” or look for certain types of sounds or situations. In this

way, we can bias the model such that depending on the task being performed, cer-

tain types of sounds would be much more salient than other sounds. For example,

drums playing during a football game is less salient than drums playing elsewhere.

We could use the template matching to identify the type of sounds or situations, and

then depending on the identification, individual feature maps could be promoted or

demoted.

Finally, as with the visual saliency models, there always remain areas for ongoing

research into how the feature set can be improved to make a more comprehensive

model. As more information becomes known about the primitives for audio, new

features could be considered for the model.
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