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SUMMARY

In this dissertation a new suboptimum intersymbol interference

;
b
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F

detector is developed that could be applied to channels whose memory

- mesme T

= ";":i_’“? et

is represented either by a finite duration impulse response model or by

& state variable model. The detector utilizes channel state estimates

T

to reduce computational complexity and also generates, at little addi-

tional cost, an estimate of error rate,

e TR T T
TR L

; A set of discrete time state and observation equations, represent-
h: : ing the functional relationship between the information bit stream and
‘the sequence of observations, is derived for use in the detector al-

gorithm. This derivation holds for any modulation/demodulation scheme

which can be represented by signal space techniques, for any set of linear

receiver sampling filters, and for any linear, time-varying bandpass

chanvel filter. In addition, a set of sufficient statistics for band-

3 pass channels whose wmemory is represented by linear, time-invariant state

i X -_-f""" » ™

s

- variable modgls is defined.

F Monte Carlo simulation results for the new detector are reported
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on and show that for three specific channel models the new detector per-

forms close to the optimum detector performance but is considerably less

complex,
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CHAPTER I

INTRODUCTION

W Problem Description and Contribution
N The problem of limited available spectrum has in recent years

¥ forced digital communication system designers to attempt to transmit over

%2 ' their dallocated channels at higher and higher symbol ratés.and cépe with
-intersymbol interference. This has made the tradeoff of higher signal-
ing rate for increased receiver complexity appear more and more attrac-
tive [9,10,15,16,19,20]. |

For the case of linear dispersive chanﬁels considered here, the
underlying cause of the intersymbol interference problem can be described
in either the frequency of_time domain., From a frequency domain view-
point, intersymboi interference occurs either because the amplitude re-
sponse of the cha_:_me.i filter is not flat or because the phase character-
istic ié not linear over the frequency band occupied by the spectrum of
the signaling pulse.

From a time domain viewpoint; the problem occurs because the
impulse response, which indicates the memory of the channel, has a dura-

tion on the order of a signaling interval or longer. The channel output,

obtained by convolving the channel impulse response with the signaling
pulse, thus lasts significantly beyond the signaling interval.
In most previous research a time domain viewpoint has proven’

g valuable., Two canonic channel models have been used--a. finite duration




impulse response (FDIR) model [1;2,3,4,5,6,8,9,10,12,13,1.5,16,17,18,19,
120,21,22] and a continuous time state variable model [11]. A time domain Lé
approach haé been taken in this repoft and the techrniques developed can
be used with either model. The discrete time recursive.equations which
relate the observation to the input symbql and which form a part of the
detectof algorithm unify the two approaches to chamnel modéling.

Specifically, the contributions of this research are:

1., The development of a new suboptimum intersymbol 1nterferencé
detector using state estimates to reduce computational complexity and
generating, at little additional cost, a measure of error rate.

2. The derivation of & set of discrete time state and observation

equations, representing the functional relationship between the informa-
tion bit stream and the sequence of observations given to the detector.

The derivation holds for any modulation/demodulation scheme which can be

repfesented by signal space techniques; for any set of receiver sampling

filters, matched or not; and for any linear, time-varying bandpass channel

filter, either symmetric or unsymmetric about the carrier,

3. The derivation of a set of sufficient statistics for bandpass

channels whose memory is modeled by linear, time-invariant state variable
-f; models. A derivation for FDIR chamnnels is also developed for complete-

ness but Forney [16] has previously considered this case.

History of the Problem

Probably the earliest épproach to amelioration of the intersymbol
interference problem in digital communications was to view the problem.in

the frequency domain and to correct for nmonideal ffequenéy characteristics
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of the channel b& means of fixed compeﬁs&fors. Céfrection of amplitude
responsé was emphasized over @orrection of phase response. This method
prqved to be adequate for speech transmission.

With.the advent of.high speed data tranémission, more stringent
requirements were placed on digital comﬁunication systems. To meet .these
needs, a number of different approaches were taken in designing more so-
phisticated receivers [1-22]. Tﬁese approaches can be conveniently classi-
fied as linear or nonlinear processors of the observed noisy samples.

Linear Detectors

The linear intersymbol interference detector that optimizeé almost
any reasonable criferiqn, such as probability qf error, or mean square
error, was shown by Ericson [1] to have a certain camonic structure.

This structure consists of a filter matched to the channel output pulse

followed by an infinite length transversal filter whose tap delay is

" equal to the signaling interval.

Aaron and Tufts [2] specified the number of &elay elements in the
filter and obtained the optimél tap gains aslsolutions of a set_of non-
linear equations. Recently Lawrence and Kaufman [3) assumed a discrete
time state variable (delay line) model for the channel and used a Kalman
filter to estimate the channel state from noisy measurements. Berger and
Tufts (4] compared perforﬁance of their detector with the rate distortion
bound and found that the suboptimality of m.m.s.e. linear detectors was
pronounced at high SNR since performance improved as the reciprocal of
SNR rather than exponeﬁtially. Additional references, which present work

very similar to that listed above, are [5,6,7,8].




Nenlinear Detectors

It became apparent, after experiments with linear detectors, that

detectors for intersymbol interference channels which could operate well

£: at high SNR would have to be nonlinear [4]. Chang and Hancock [9] were

.the first te publish a deeper recognition of the underlying statistics of
the problem. They developed the Bayes detector that assumed a channel
impulse response of finite length and made a decision concerning a block

of symbols.

&?
i
i
|

Several approaches have been considered for reducing the complex-
ity of the bptimqm detector. Austin [10] considered approximating the
maximum likelihood (ML) detector by feeding back previous decisions as if
they were errorless. Hié detector was developed for FDIR channel models
and consisted of a matched filter followed by a feedback loop with two
transversal fiiters;_ The forward lipe acted in the same manner as earlier
eqﬁalizers, and the feedback path filtered p;evious decisioné. Bershad
and Venal[lll also used a hard decision direc;ed (HDD) approach for
channels with state variable models but considered only the realizable
case.

A simple soft decision directed (SDD) approach_was used by Taylor
[12,13] to obtain better results than those for an HDD detector. Here

the hard decision was put through a nonlinearity such as the hyperbolic

tangent to generate a hedged decision for feedback. The relatibnship
between Tayloer's work and earlier research by J. W. Mark is described in

[14].

Neither of the approximate detectors listed above was operated
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with delay nor did they approximate the optimum MAP detection algorithm,

In order to achieve good results at moderate-to-low SNR, more complex
algorithms were ﬁecessary. Abend and Fritchman [15] developed a minimum
probability of symbol error detector that was realizable_with a delay of
D signaling intervals and was optimum in the limiﬁ as D increased.' For- .
vney [16] developed an ML receiver employing the Viterbi algorithm as the
nonlinear processor., The Viterbi algorithm is optimum for making sequence
decisions if delay is infinite; however, for finite D it is suboptimum.
Both Abend and Fritchman and Forney assumed an FDIR channel model,

Other references are [1?,18,19,20,21,223. These are included in
the list of references for completeness but report on detectors of the

same form as those wmentioned above,

Qutline of the Dissertation

In Chapter II the class of problems addressed iﬁ this dissertation
is defined, and two sets of discrete time equatiomns, used in fhe new de-
tector algorithm, are derived from continuous time chammel models.

Chapter III discusses three canonic approaches to the design of
nonlinear detectors for the intersymbol interference problem. A descrip-
tion is given of the advantages of the detector presented here. |

In Chapter IV results of the Monte Carlo simulation of three dif-
ferent channel models are presented, along with COmparisonQ of the resuilts
for the detectors developed here and a number of detectors mentioned in
Chapter III, |

Chapter V summarizes the conclusions resulting from this research

and presents recommendations for extensions to the work.
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CHAPTER 11

DERIVATION OF THE MATHEMATICAL MODEL

Introduction

In this chapter the diécrete time equations that relate the
information symbol to the channel state vector and to the observation
vector are developed. .The derivation postulates the Hilbert space rep-
resentatioh of the signaling waveforms and the complex envelope represen-
tation for the bandpass channel filtering, and, after a series of con-
ceptualiy simple manipulations, the required equations are obtained.

Sets of_equations for both a state variable channel model and for'
éﬁ FDIR channel model are obtained. (Some special cases fdr the FDIR
channel model are given in [15] and [21].) The observation vector can
be generated by sampling a baﬁk of matched filters, a Bank of suboptimum
filters, or the incoming waveform without filtering. A set of optimum
filters is derived in Appendix A. |

A functional blqck diagram of the'class.of digital communication
systems considered in this researéh is shown in Figure 1. The functions
are defined so that_correspondgnces between Figure 1 and the low-pass
equivalent block diagram in Figure 2 can easily be seen.

The M-ary_informatioh source sends to the baseband modulator an
M’-diﬁensional vector, u, ¢ [51,§2,. . "APJ’ whose components are the

coordinates of the th signaling pulse, The baseband modulator selects
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the corresponding waveform {i(t) by an operation which can be represented

as

ﬁ'(f:) = ¢’ (t- (’k-l)T)gk (k-1)T < t < kT : (2.1)

where i(t) is a vector whose_componenﬁs form a basis set for the complex
signal space, T is the signaling interval,.and the prime denotes matrix

transpose. é(t) contains information on both the quulation used, e.g.,
ASK, PSK, or FSK, and on the basic signaling pulse shape, e.g., NRZ or

split phase. The'upconverter generates the RF pulse

jw t : .
u(t) = Re {ii(t)e 1. S (2.2

The channel'produces an RF output,

r{t) = y(t) + n(t) , . _ (2.3)

and the downconverter generates

-jwct
T(t) = Re {r(t)e 1. L (2.4)

.This complex waveform is then filtered by the bank of filtefs [gi(t)} to

~

generate the observation vector, &k'

To iilustrate the model, parameters for BPSK and QPSK are.given

below:




BPSK:

QPSK:

M=2

w1021, 10

ej1'r/2
a(t) = g2 | 0<e<T
5©) =5 Ou = 972 I
. ot | j(wct+ﬂ/2) j @ t-n/ 2)
u{t) = Re {{i(t)e } = Re {[e ' e _ ]gk]
= [cos(wct-l~n/2) cos (wct-ﬂ'/Z)]Ek
M=4
u e([1] [o] [o] o
= "1l (1] |o] o
ol’lo(*|1|* |0
o| jo| lo| |1
rejnfz i
é(t) = 'ejﬁ R 0<t<T
o an/2
L
O T P S A ™
' jwct
u(t) = Re {l(t)e 1

10

[cos (w_t+n/2). cos(ytim)  cos(u t+3n/2)  cos(w M I,

e ke o e A

P A
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Under the assumptioﬁ thatlthe.RF carrier component is much larger
than any.significant components of the baseband modulatﬁr output, the model
in Figure i may be replaced by the complex low-pass equivalent model shown
in Figure 2. This is the specific model‘uée& in this chapter in fhe deri-

vation of the discrete time state equations.

In addition to the above the following assumptions are made in the

derivation:

.1._ The sequence u, = {21}

k is a statistically independent
i=1 _

sequence.

.2. _ﬁ(t) is complex WGN with gpectral density No.
3. The receiver has exact knowledge of.the Rf carrier frequency
and phase.
"4, The receiver has exact knowledge of bit timing. 
5. Each of the réceiver fiitefs is dumped after the ocutput is..
s#mpled. |
. 6. All channel filter parameters are known.
These assumptions are warranted in order to . limit to manageable propor-
tions thg scope of this research..
The output of the baseband modulator can be wfitten
k _ T _ - .
g(t) = E §’(t-(j-1)r)y_j . D <t < kP (2.5)
j=1 . :
ﬁnder the éssuﬁptidm of a high frequéncy carrier, the éomplex envelope of

the channel filter output can be written S

| t .
5@ = [ fe,namar (2.6)
0.
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where
- Jw_(£-7)
n(e,t) = Re {2h(t,me © 1. (2.7)
Now a specific channel model must be chosen.
Derivation of the Equations for State Variable Channels
Agsume that the dynamic behavior of the filter portion of the
channel can be represented by
E(e) = F_()E(e) + G_(£)T(r) | (2.8)
Jey = B (OF@®) , | (2.9)

where X(t) is the complex state of the filter.
A discrete time state equation can be obtained by writing the
complete solution to the continuous time state equation, with 6 being the

state transition matrix,

. t .
20 = feeprep + [ Bemdmime, @
i

and setting ti.= tk—l)T and t = kT, so that
. | KT _
%, = 50D = JeT, (- DDE_, + f( FOmnE mamen . 2
_ S | _ k-1)T -

Substituting (2.5) into the above gives
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ER a(kT,(k-l)T)gk;l + I(R_I)TB(kT,T)QC(T)gf(w-(k-l)m)dx u. (2.12)

The change of variabfgs,
v, = (DT,

in (2.12) gives

T . : :
& = 6T, 0-DDE, ) + Ioatkr,-rl+(k-1)r)9_c(71+<k-1)r)g'(-rl)a-rlgk.(z.m)

‘By defining

F, = $(T, (k-1)T) | (2.14)

~ T - .
Gk =.Io a(kT,Tl+(k-l)T)§c(T1+(k-1)T)9'(¢1)dTl , (2.15)

(2.13) becomes

- Bt Gy (2.16)

h

The output-of the it data filter at t = kT, i.e., the ith com-

ponent of £ , is then
T

Fo [ #eeGeDDE (e - 2.17)
o : .

=2
I

T _
I [F(r+(k-1)T) + ﬁ(T+(kfl)T)]§i(T-T)dT .
o _ : '

i3

e
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~d T o
i = jo H (14 (- DD EC+ (- DD, (T-1) dr (2.18)
T )
+ I B(r+ (k-1)T)g. (T-1)dr .
" The continuous time state equation (2.10) states that
F(r+(k-DT) = G+ (&-1)T, (k-1)T)E (k-1)T) | (2.19)
t+(k-1)T L
"'J' ' a(‘!"*(k-l)T.'r'l)Gc(’rl)'_ﬁ('rl)d'f'l .
The change of variables
Ty =Ty - (k-1)T
. applied to the integral in (2.19) produces
E(+&-DTD = Flre (-DT, (k-1 DE((k-1)T) - (2.20)

T .
+ J'Oa(w(k-l)T,12+(k51)1')cc (1 (- DD (1 y+ (k-1) T .

.Since

B(r,+(k-1)T) = 5'_(72)9« » 0Sr,srsT,  (2.21)

{2.20) becomes

L
i
I
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B(r+-DD = Fr (-DT, G-DDEE-DD @2

T : - o .,
+ J‘ a(-r+(k-l_)T,'rz+(k-l)T)_Gc(¢2+(k-1)T)9 (Tz)d¢2 w, 0sTsT,
_ o _ . |

El
1
-

i

L
i
li-
i
|
[

Equation (2.18) then becomes -

| : | | |
I = [ 8 (14 0-DDP (e - 1T, R-DDE(R-DDE, T-1)dr (2.23)
‘o _ .

T. T &
+I Hc(T'-"(k'l)T)[.;r ¢(¢+(k-1)T,72+(k-1)T)§c(-rz-&('k-l)‘r)
) ] S o
X 8/ (r,)dr, B(T-T)dru + | H(r+(k-1)T)E, (T-1)dr .
2 2}1( e Lt
Define two observation matriceé ﬁ; aﬁd ﬁz such that

T _ .
the 1" row of i = | H (1 (=D DF(r+ (k- DT, - DDE, (Tomydr,  (2.26)
0 .

i=1,_o - .,Nf’

- and

. T o '
the 1 row of “E = dr ﬁc(rr+(1;-1_)cr)§i('r-ar)[] 1+ (1) T, 7p+ (k-1)T X2.25)
o] . ]
X éc('rz+(k-1)T)§’('rz)d¢2:] dr, i=1,..., N

Also, define a discrete time noise vector _i':_‘k whose ith component is

T | -
i 3 . e .
AL = Jl'o B(r+(k-DTE, (1)d7 1=1,...,n. (2.26)




16

The noise statistics are then

E[ﬁgl] =0, o : (2.27)
t T o g
Ky = EMBnl] = N, .[6 g (ME, (Mar (2.28)
ﬁherg | o gT = (§f)' .
and - Blf;#,’] = 0 . . (2.29)

Insertion of the defined parameters into (2.23) produces the ex-

pression for the vector of statistics,

AL Y S (2.0

Derivation of the Fquations for FDIR Channels

A get of discrete time equations, having the same forﬁ as those
developed previously for state variable mbdel channels, (2.16) and (2.30),
is dgvéloped in this section for FDIR channel models. The state of an
FDIR channel is defiﬁed to be the (L x M) X 1 vector X s which in par-

titioned form is

. : (2.31)

_“k@-l |
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The submatrices are the present symbol and the previous L-1 symbols,
where LT is the length of the zero state response of the channel to a
single pulse,

The continuvous time output of the channel filter is given by
t L
¥(t) = I h(t,T)a(T)dr . (2.32)
N '
Substituting (2.1) into the above and using the FDIR assumption,

t
F(t) = J' B (e, ) z ' (- (§-1)T)dry,, &-L)T < t <kT  (2.33)
o 3=kt

| is obtained., Interchanging integration and summation,

F(t) = Zu I h(t 'r)gg ('r (3-1)T)dTu, , &-L)T < r_.< kT (2.34) -

k
= T Fo(e) u, , (k-L)T < t < kT, _ (2.35)
j=k-L+1 ] J ' ' I
where
- _
ij(t) = I h(t,T)§(¢-(j-1)T)dT. (2,36)
o _

The set of M x 1 vectors,

{ b
F.(e+(m-1)T) ’ (2.37)
J “n=1
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represent the L vector "chips" of the zero state response of the chanmel
to (t).
Each filter in the bank of matched filters has an impulse response

which is related to the chip by
gj(t)'= z;(T-t), 0<t<T. (2.38)

The output of the ith filter can be written,

k

.”i T T o
it =_J; g T g;(dr u, + I; E (T-mE(mdr,  (2.39)

j=k-L+1

i=1,...,L.

Substituting (2,.38) into (2.39),
L, = J'o g, _I Fi(mdr u, + _r Y, (Ma(r)dr, | (2.40)
I=k14l : o

i=1,ao|,Lo

Interchanging integration and summation in the first term of

(2'40) E
& = Ej I ii(T) ij(T)d? Ej + I ii(T)ﬁ(T)dT ’ (2.41)
j=k-L+1 © o

i=1,_no-,Lo

o —ma 4 mms i e me i m e




O e

19

Breaking out the kth term of the summation,

k-1
- T T oy o
i= ) [ dogmes ] gogory e
j=k-I+1 © - : ° -
+ ,[ i:("l') ﬁ(T)dT s i- = 1.9 o+ vy Lo o Qr
o

This set of equations can be written as

~“i ~i . ~i el -
&k lek-l'l"HZE-k*Ek’ .1=1, e v sy L, (2.43)
where
o o ! - :
gt o= Eel a2 gl ol mx ex ), (2.44)
L A | | 1 l ) i ‘

_ . |
~i -

1, L] L] .y L, j = 1’ - .I L3 | L-l,(z.QS)

T :
}12. = -[0 zi(-r) zl:(-r)d-r, o i=1, ..., L, (2.46)

T

E]i( - L f:(¢) fear,  1=1,..., L (2.47)

The noise statistics are given by
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(2.48)
(2.49)

gi(‘r) ‘ij.r (T)dr >

9
T
]=N0L

E[
= o1 “"jT
Elf B

Kij

and

(2.50)

R R .
E[Ek Ek] =0,

The recursive equations are then .

(2.51)

(2.43)

2|_.t'k+ﬁk,i=ll,...,1..

~1i

1 %1+ H
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~ CHAPTER III
DEVELOPMENT OF THE ESTIMATE FEEDBACK DETECTOR

Introduction _
Iﬁ this chapter the suboptimum detector developed in this research
is definéd. First ;he opfimﬁm detector is specified, |
The optimum detector is defined here to be the detector with mini-

mum probability of symbol error., This detector generates the posterior

probabilities

ry = gj_l'r(t), 0<t< G, L =1, .. ., N, (3.1)

and if the jth probability is the largest of the set, the decision is
A =4 . (3.2)

D is a parameter that represeﬁts the ability of the detecter to delay
the decision for D signaling intervals after the onset of energy from
the_kth pulse. |

As shown in [23], for the WGN case with no channel memory, it is

possible to substitute conditional dependency on a sequence of sufficient

statistic vectors,

Leep = 53500 » (3.3)
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for cqnditionh_l dependency on the w.g\iefom r(t.). over [0; (k+D)T). A
similar derivation for the channel models considered here of sufficient
atatistics in Apéendix A shows that.a set of sufficient statistics is
generated as the sampled'outputs_of a bank of N matched filters. For ex-
amplé, consider the case of a time-invariant st&ﬁe channel model whose
frequency response is properly symﬁetr{c (amplitude-respﬁnse even and
_phasé response odd about fc) and in which the modulation is.BPSK.- The
.number of required matched filters is N = Nh+1 - Nh filters matched to
the Nh hompgéneous solutions of the state equation and ome matched_to the
forced response of the chanmel.
For the FDIR channel model case, a set of L matched filters, where

L is the.length of the zero state response, will gemerate a vector of suf-
ficient statistics for the detector. Each filter is matched ﬁo-a chip of
the zgro state respdnse [16]; Next, various detector algorithmslare dis-

cussged.

Development of the Estimate Feedback Detector

for FDIR Channels

The optimum detection algorithm for FDIR channels, assuming a delay
D and a channel response to a single signaling pulse of integer length L,
was developed by Abend and Fritchman (15]. They obtained a recursive al-

gorithm for generating the posterior sequence probability,

POy pr41® Yoyt * - - !kmll-k@) . : (3.4)

To generate this density a dynamic model for the channel memory is re-

quired. TIn the FDIR case a discrete convolution is used in the algorithm
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to generate these sequence probabilities.

The decision is then made based on the éi that maximizes

For the case of most interest; in which D = L-1 ,

P = &l = conet 0.

X(Z z z . Z PO prars * *Sespl _I‘k+D))
Been-1al Se-1 el Hk_+1:»

In general one would like to keep D as small as possible, With
the Abend-Fritchman (A-F) algorithm,.however, Mmax{L,D+1} probabilities
must be generﬁted after every signaling interval. In a real aituafion L
could be lo.or larger so that the.algorithm can be cuﬁpufétidnally com-
plex even when D is chosen to be small,

A reasonable approach to reducing.the complexity of the A;F al-
gérithm 1s to_uée an estimate of the symbol Y .q @8 if it were the correct
symbol and thus only the probabilities 0{”1 in number) corresponding to

all possible combinations of sequences,

(s Byas -+ o Yupl ER)

. are needed.

- A number of ways of generating such an estimate exist. In a hard




" proach, particulariy at low SNR [12],
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decision-directed (HDD) approach, all previous decisions are assumed to 5

be correct, and the algorithm for the decision on Hk is computed based on

the hypothesis that

=d@ ;) » 3.8)

where the carat denotes an estimate and the function d is the decision
function., This philosophy is used in [L0,11], For large SNR this de-
tector works well, but it is marginally effective at lower SNR because
errors tend to avalanche [10}. This detector, however, is less complex
than most other'suboptimum detecters, The canonic HDD structure is shown
in Figure 3.

In Figure 4 the soft decision-directed (SDD) canonic form is
shown. Here the detector output (in the binary antipodal gignaling over
a carrier symmetric channel case) is passed through an NINM device such
as one whose characteristic is a soft limiter or a hyperbolic tangent
(12,13].

If one of the posterior probabilities is close to one, essentially
a hard decision is.made. If no probability is close to one, the estimate
is a number between (~1) and (*1) -- i.e., a hedged decision. Better

results are obtained by using an SDD approach than by taking an HDD ap-

The approach put forward here is to use the basic A-F algorithm
but to reduce its complexity by combining the posterior probabilities

into an estimate of weo1e
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Yeop E{Hk-lll‘kw] ’ | | ' (3.9)
or ' '

-~

L

[
=

by By = Al p) -

Of course, it would be nice to have_the gﬁact posterior probabilities,
but thésé are not available from a subppﬁimmm algorithm. Nﬁnetheless :
this detector has a number of desifable properties:

1. It is computationally simpler than the A-F algorithm in that
the number of sequences considered is HD rather than ML when D < L-1.

2, The posterior probabilities néeded for the calculation of the
estimate are already being generated as part of the detection.algorithm.

3. The detector is theoretically optimum in the limit as D in-
creases. Therefore, the wﬁy to modify the.detector for better performance
and the cost in cdmplexity to get that performance are clear.:

.In summary, for FDIR'channel models, the estimate feedback detector
uses the basic A-F algorithm bﬁt reduces complexity by shortening the se-
quence lengths and ﬁdjusting for the loss in performance with feedback of
approximate MAP estimates of symbols that are no longer a part of the

sequence, The general canonic structure of this detector is shown in

Figure 5. The estimate feedback algorithm is given in Appendix C.

Development of the Estimate Feedback Deteétor

for State Variable Channels

In this section the estimate feedback detector developed previously

for FDIR channel models is applied to state variable channel models. The

motivation is the desire to develop a detector that could be implemented

L
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by using estimates of the channel state to reduce computational complexity.

Assume that the filter portion of the channel can be modeled by

‘the state equation developed in Chapter 1I,

B =FE_+ Gy G

and that the observation vector (each component being the sampled output

of one of the filters in the bank of matched filters) can be written

o ~

o~

I =%  +Hu +8 . | @A

Consider the case where D = 0. It can be seen from the state
equation that if the state of the channel filter, gk_l, is kﬁown'at the
beginning of a signaling interval, the chamnel output.caused by all pre-

- vious symbpls can be subtracted out. In other words_the inﬁersymbol

interference problem would reduce to the simple detection problem of

testing between M known signals with observation,

S =2 o,

&k = Hu + o, | (3.12)

where ik is Gaussian with known mean H;Ek-l'

For D > 0 it is appropriate to generate an estimate of the state

e e T e

of the channel D signaling intervals behind the incoming data. The se-

quencé length, D+1, of the detector algorithm can be kept small without

FUNpE—

severe performance degradation if a reasonably good state estimate is

employed.




In developing a suboptimum detection algorithm employing 2 state

estimate, a number of approaches are possible. In an HDD approach, the

detector output is assumed to be correct, and the algorithm for the de-

cision on Uy is generated based on the hypothesis'that

o~ o = .
NIRRT WP R ICHPIE (3.13)

The functional block diagram for this case is shown in Figure 6. The

case of D = 0 was treated in [11].
In Figure 7 the SDD canonic structure is shown. In a manner

similar to that for an FDIR channel model, the detector output is passed

e through an NINM device, then through a state model representing the chan-
i nel memory.
The optimum Bayes estimate of the state of a system at time k,

given observations up to and including §k+D is given by

Mk+D

- o jzi Py = A,lL DB [ = 4,0 0. (3.14)

Here, each of the expected values represents a special case of a

s

Kalman smoothing estimator for the problem in which the first order den-
sity of the system excitation process is given by a linear combination

of M Gaussian densities, i.e., a mixture, but in which each density has

Ll s e ey 2R ad

zerd vatriance,

Ackerson and Fu [24] first developed the least squares estimate

for the D = Q0 case and algso considered a suboptimum estimator. They
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applied their results to a controls application, but their work provided
the original motivation for this research into a possible digital cﬁm-
munications application. It soon became apparent that to extend their
approach to thé realizable-with-delay case (D > 0) would lead to a quite

complex fixed lag smoothing algorithm and would thus not be profitable.

The basis for this research is to feed back posterior probabilitles

in a Bayesian gyﬁe of estimate rather than the information lossy HDD ap-
proach or an ad hoc SDD approach. Figure 8 shows the canonic structure
of the detector developed in this report.

The A-F algorithm can be applied directly to channels with state
-variable models, The basic A-F algorithm generates ML estimates of what
the observation should look like conditioned on a particular input se-
queﬁce. It then campares.the conditional estimates with the actual ob-
servation and generates ML'posterior sequence probabilities. A dynamic
modellof the channel memory must be a part of the detector algorithm in
order to.generate an output from a conditional set of inputs. In Abend
and Fritchman's original work [15], a sampled data model for the channel
output was assumé& (the FDIR assumption), and outputs were calculated by
discrete convolution.

In Chapter 11 a recursive state and observation equation pair was
derived from the discrete convolution model of channel dynamics. The
stare and observation equations could thus be used in the A-F algorithm.
Algso, in Chapter II, a pair of state and observation equations was de-
rived under the assumption of a continuous time state model channel. The
form and function of these equations were identical to the set of equa-

tions derived under the FDIR assumption., Consequently they could be

R
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incorporated into the A-F algorithm as the dynamic model.

Since the estiﬁate feedback detéctof uses a channel model for the
same purpose as does the A-F_detectdr, i.e., to QEnerate outputs based
on conditional input sequences, it can likewise use either channel model,
The channel state estimate is produced by calculating a symbol estimate

by.

iml

M
LA Z A By =A L 0y s (3.15)

and driving a recursive state model with the sequence of symbol esti-
mates. Thus the estimate feedback detector can be used with state .

variable channel models. The estimate feedback algbrithm is given in
Appendix C. -

Comparison of gpe A-F Detector with the Viterbi Detector

The Viterbi algorithm (VA) can also be used és a detector for dis-
persive channels [16]. If.delay is infinite, it is optimum but f?r fiﬂite
fixad.delay D it is suboptimum just as the A-F and estimate feedback de-

.tectors are. DOther disadvantages are that:

1. it has béen applied only to FDIR channel models, and it uses
sequences_ﬁf ieﬁgth L just as the A-F.detector does.

2. to modify it for minimm symbol errors rather than sequence
erfots considerably increases cam#lexity [28].

3. there is no simple relationship between tﬁe state metric and

the quality of the detection [28] for the VA as there is with A-F or esti-

mate feedback detection.

ey e e
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An Frror Rate Estimate

It is important in many operational situvations to have a per-
formance monitor thaﬁ indicates the status of the link.. Suéh,an indica~
tion in present.day systems has usually come from a chanﬁel error decoder
or perhaps ffom.a frame synchronizer in the receiver.

 When deteﬁtors that génefaﬁe fairly accurate poéﬁeribr probabil-
ities are used, an estimﬁte of the error rate is presentéd here.that from
fhe simulatioﬁ_results appears to be quite accurate. Consider the binafy'
case, The estimate is based on the expression for.symbol error rate de-

rived in Appendix B, Equation (Bl.10) states that for any detector,

in _ _
Pg T ELk-i-D i Py =4 0L 01 . - G.16)
The estimate for error probability 1is

in . )
* B =_éi|1-j_m)., - (3.17)

namely the sample mean of the smaller of the two posterior symbol proba-
bilities. This estimate should converge in the m.s., sense to p, as '

k - if

o0 - . (3.18)

Pe

as k » = according to the Markoff law of large numbers [27]. Howéver
this appears impossible to ascertain because of the complexity of (3.17).

Simulation results for this binary case are presented in Chapter IV,




CHAPTER IV

RESULTS OF THE COMPUTER STIMULATIONS

Introduction

The purpose of this chapter is to present the computer simulation
results for the detector algorithm developed here and for a number of
other detectors found in the literature. Exact analytical results for
error rate have nﬁt been obtained for this problem although approximate
results and upper and lower bounds have been determined in some cases;
e.g., [11,16]. Since Monte Carlo simulations give an accurate indication
of performance for specific Eases, they were used to generate comparisons
among the ﬁarious detectors.

Three Specific channels were simulated to determine results of

this detector algdrithm. Each was a WGN channel with channel filtering

modeled as

1. a one pole Butterworth state variable model with T = 1 and

w =1,

2. a two pole Butterworth state variable model with T = 1 and

w =1,

3. an FDIR model, used by Abend and Fritchman [15], representing
a channel response measured on a Bell System data line; the sampled chan-
nel response is (-0,077,-0.355,0.059,1.000,0.059,-0.273).

Binary PSK signaling with NRZ pulses is used in all simulations.
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The energy in the channel response is defined to be that over [0,©). 1In
each case a set of discrete time equations representing the evolution of
the state of the channel filter and of the observation is developed. The
input to the recursion is a sequence of symbols and the output is a se-
quence of observa;ions Lk'

In the state variable model case the observations are the sampled
cutputs of a.bank of filters, derived in Appendix A, which are a set of
sufficient statistics for this problem. In the FDIR case, the recursion
output is selected to be the sequence of samples of the channel output
(ﬁo filtering) s0 as to agree with Abend and Fritchman f15].

A uniform pseudo random number generator is used to generate the
data seduence, and a Gaussian pseudo random number generator is used to
generate the WGN. A number of statistical tests and histograms were run
on different géneraturs to obtain a good generation algdrithm and to
determine good starting numbers., For the case in which a bank of filters

is used, the noise portions of the filter outputs are correlated for a

- given k, and a linear transformation of a vector of independent Gaussian

variables is necessary to obtain the proper correlationm.

The detector is initialized so that the errors ;ounted are steady
state errors. For example, in simulating the D = 2 detector, the detec-
tor for D = 0 is first used. It combines two prior probabilities of 0.5
with 21 and produées two posterior probabilities, Next the D = 1 detector
is used. The four prior probabilities it requires,zpne for each possible
sequence of u, and.gz, are generated from the two posterior probabilities

produced by the D = 0 detector, The D = 1 detector combines these four
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priors with &2 and generates a set of four posterior sequence probabili-
. ties., In a similar manner these four probabilities are transformed into
eight priors that are combined with £3 by a D = 2 detector to yield a set

of eight posterior sequence probabilities. The D = 2 detector is used

exclusively from this point on in the recursion. It takes the eight pos-
terior sequence probabilities, combines them with &4, and produces eight
posterior sequence probabilities that may be assumed suitable for error

count. The eight posterior sequence probabilities are combined so that

L
F

b
b
E._.
%z-

all probabilities with a (-1) in the k = 1 position are added together
and those with a (+1) are added together. This produces the two posterior
symbol.probabilities from which a decision about the k = 1 symbol is made.
The decision is.coﬁpared with the actual symbol used to generate the ob-

servations, and an error count is kept.

It is obvious from the above that the detector algorithm could be

stopped after the calculation of the posterior sequence probabilities and
the decision made based on the largest posterior sequence probability.
This peoints out the fact that the detector developed here could also be
used in a minimum sequence error mode if so desired to save complexity.
All results shown were oﬁtained by actual simulation using the
same pseudo random number sequences. No results generated from different
vséquences of PN numbers were copied from the literature so that as accu-

rate a comparison as possible is obtained.

. Presentation of Monte Carlo Results

Figure 9 shows the simulation results for a one pole Butterworth
filter channel. The vector of sufficient statistics is generated by cor-

felating the input waveform with the two time functions,

et e —
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gz(t) =C, s 0<t<T,
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where p is the pole location of the channel filter, and Cl’CZ are nor-
malization constants. The filters are sampled and dumped every T seconds.
The state and observation equations for this example with p =1,

T =1, are,

X, = 0.368 x,_, + 0.632 {E u, (4.2a)
0.487 1.000 ®
£, = + Eu +n . (4.2b)
k| 0.658 LS I PO ko Tk

The correlation matiix of the observation noise n, is

1.000 0.741
R = (4.2¢)
0.741 1.000 | .
The error rate estimate shown in Figure 9 and all following error rate

performance curves are obtained using the estimate discussed at the end

of Chapter III, namely

o
3
4
Al
[~i=

1 " By = AL T (4.3

3

The error rate monitor approximates the expected value, over all Lk+D’
by a sample mean. In addition it uses approximately correct posterior

symbol probabilities,
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One can see from the results how the error rate decreases as D is
increased. It is also clear that the error rate estimate tracks the

Monte Carlo results with good accuracy.

In Figure 10 the simulation results for the two pole Butterworth

filter are shown. The sufficient statistics in this example are gener-

#f ated by correlating r(t) with the three waveforms, E
w :
1 Stk o .
cefi T (BB e
% gl(t) 1 l-e cos 2 t + sin 5 t s 0=<t<T, i
w .
-?ct w, ®, |
_c C N <e<
gz(t) e cos 2 t + sin 5t} 0<t<T,
®
B ?f ¢ Pe
=C in — :
gg(t) 3¢ s:.nzt,. 0<t<T,

where w, 1s the radian cutoff frequency and 01,02,C3 are normalization
constants. The filters are sampled and dumped every T seconds.

The state and observation equations for this example with w, = 1,

T=1, are,

[6.021  0.039 0.980 E
= p. + Eu (4 . 43)
T Lo.ses  -o.152] <1 Jo.agyl |k
0.233  0.079] 0.61
L, = (0.580 0.087) x . + [0.247 (Euk +n . (4.4b)
0.478  0.106 0.459

The correlation matrix of the observation noise n

le
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1,000 0.402 0.747
0.402 1.000 0.824| . (4.4c)
0.747 0.824 1.000

R

Once again the benefit in performance gained by delaying a decision
is evident, The performance of_the detector is effectively optimum for
D = 2, Also, the error rate estimate demonstrates excellent results.

The detector developed here is also applicable to FDIR model chan-
nels, Figures 11 through 16 present the results of applying this detector
to the Bell data line model and comparing the results with those obtained
with the A-F detector. It should be noted that their detector is more
complicated than the one developed here in all cases where D < L-1,

This is because the A-F detector always generates 2L sequence proﬁabilities
while the estimate feedback detector generates 2D+l sequence probabilities.

In the figures the error rate and the error rate estimate for the
estiﬁate feedback detector are compared with results using the A-F detec~
tor and with the error rate estimate using the A-F posterior symbol prob-.
.abilities. Resuits are shown sequentially for vaiues of D from zero to
five. Note that for D = 3 the estimate feedback detector performs as well
as the A-F detector. For D = 3, the A-F detector generates four times as
many sequence probabilities as the estimate feedback detector.

Figures 17 and 18 present a comparison between six different de-
tectors for the one and two pole channel models, respectively. Results
are shown for the following detectors:

1. a detector which thresholds the sampled output of a filter

. matched to the signaling pulse (an NRZ pulse in this case),
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(O Hard Decision Directed (Bershad & Vena)

—

H Estimate Feedback, D = 0
O Estimate Feedback, D =1
A (A-F) with L, =3, D = 1
° ’ 2E in dB i
N
[a]

Figure 17. Monte Carlo Error Rates for One Pole Butterworth Chamnel

Model with f., = 1/2nm and T = 1; Comparative Results for
4 Number of Detectors

i mem—
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Error Rate

No
Intersymbol
Interference

| wHard Limit of Matched Filter Output Vf \ \

® Optimum Linear Detector
[) Hard Decision Directed (Bershad & Vena)

AEstimate Feedback, D = 0 :
[~ O Estimate Feedback, D=1
A Abend-Fritchman witlil L = 3, D=1

0 _ %

12

\ Figure 18. Monte Carlo Error Rates for Two Pole Butterworth Channel

Model with f, = .5and T = 1; Comparative Results for a
\ . Number of Detectors
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a linear detector that uses a steady state Kalman type of
estimator similar to one used in Lawrence and Kaufman [3],

a hard decision directed detector that feeds back decisions
rather thaﬁ_estimates,

an A-F detector uéing a truncated channel output response of
length 3 and delay D = 1. |

estimate feedback detectors with delays D = 0,1.

In these figures one can see the advantage gained by using a rather

complex detector such as the A-F or the estimate feedback detector over

simple detectors such as the hard limiter. The advantage that the esti-

mate feedback detector has over a detector of the A-F type 1s also made

clear in Figures 17 and 1B. The estimate feedback detector for D = 1 uses

half as many seduence probabilities as the A-F detector with L = 3 yet

has up to 1 dB better performance.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This dissertation presents a new suboptimum detector for detecting
digital data being transmitted over a WGN chamnel with memory. The sali-
ent features of the algorithm are that:

1. The decision can be postponed to obtain better performance and

the trade between performance and complexity is clearly evident.

2. The detector is nonlinear for good performance at high SNR.

3. The detector feeds posterior probabilities, in the form of a
hedged decision,nback for good performance at low SNR,

4, The algorithm can be applied to chamnels with either FDIR or
state variable models.

5., The algorithm generates a measure of performance with a very
slight increase in complexity.

In addition, a pair of discrete time equations is derived that
allﬁws an A-F type_of detector to be used with any linear, time-varying
cafrier or baseband channel whose memory is represented by a state vari-
able.model, and with any modulation scheme for which all signaling wave-
forms belong t6~a linear space,

By simulation of three specific channels the estimate feedback
detector developed here is shown to exhibit performance that approaches

the no memory case at moderate to high SNR.

e
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Recommendations

There are s number of extensions of this research that should be
studied.

In the anaiytical area it would certaiﬁly be desirable to analyze
the error rate performance of the detector, possibly relating the mean
square error of the symbol estimate to the error rate of the detector.
In addition the error rate estimate should be analyzed.

In the area of learning with and without a teacher, it would be a
significant contribution to make this algorithm adaptive to the extent

that it could learn channel filter parameters as well as signal parameters

and noise statistics.
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APPENDIX A

SUFFICIENT STATISTICS POR THE INTERSYMEBOL

INTERFERENCE PROBLEM

Introduction

In this appendix a set of sufficient statistics for the intersymbol
interference pfoblem is developed. Only the time-invariant case is con-
sidered. First, consider the memoryless WGN channel problem. Wozencraft
and Jacobs [23] derive a set of sufficient statistics for this problem,
and the gist of their argument is as follows:

The detector is assumed to be designed for minimum probability of
symbol error. There are M possible signaling waveformé, and all are as-
sumed to belong to a Hilbert space Ss of dimension Ns = M and associated
interval T.

Since Ss is a finite dimensional linear space, a set of Hs linearlﬁ
independent basis;functions exists such that any s(t) ¢ Ss can be written
as the finite sum

Ng

s(t) = E 5,b, (t) . | (Al.1)
i=1 :

This basis set is assumed to have been orthonormalized using the Gram-
Schmidt procedure.
The noise, however, lies in an infinite dimensional space Su’ and

an infinite number of basis functions are required to write the expansion




" basis). The specific selection of the augmenting functions is of no con-

.
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o

n{t) = ET nibi(t) . . . (Al.2)
i=1

1t can_be_shown [23] that for WGN, for any choice of basis set, ni'and.nj
are statistically iﬁdependent for i #’j. A convenient:choice here is the
set consisting of the orthonormal basis set for the signal space, aug-
mented by an infinite number of orthonormal square integrable functions
suéh as to make the basis complete (i.e., that every sample function of

n(t) over an interval of length T hag a representation in terms of the

cern here.

Recall from Hilbert space theory that knowiedge of the coefficients
X is completely equivalent to knowledge of the correspbnding x(t) 3 Sx’
where Sx is any finite or infinite.dimensional space; the waveform can be
obtained from the coefficients by the series (Al.1) or (Al.2), and the

coefficients can be obtained from the waveform by the imner product

N
-
< by (£),%(E) > = < by (e), E b (£) > . @3y
i=1l
The inner product is linear so that
| N,
<hy(O.x(0) >= ) x < by (£),by (1) > , (AL.4)

i=1

and orthonormality implies

(Al,5)

< _Izj(l:) ,x(t) > = x
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This inner product for Sx can be written either as a correlation or a
filtering operation

. T : :

< x, (t),x,(t) >= r x®, (t)x,(t)dt , (Al.6)

1 2 ¥y 1YV7772 :
Cor :
- I : : _
< xl(t),xz(t) > = I; xz(g)xl(r-t)dt . : _ {Al1.7)

The argument is then made that a set of sufficient statistics for this

problem is the set of coefficients of r(t) = s{t) + n(t) along the signal

space basis. Two facts support this;

1. The on1y portion of r(t) that depends on the signal is that
part lying in SS; |

2. The pottion of r(t).not'lying in_Ss contains only noise, and
this noise is statistically independent of the noise in Ss since n(t)
is WGN, Consequently the noise energy lying outside SS is irréle-

vant to the decision and may be removed with no loss of signal informa-

tion.

_Sufficient Statistics for State Variable Channels

Consider now the extension of the above arguments to the case of

a WGN, state variable channel model. The dynamical model for the filter

is

x(t) = F_x(t) + G u(t) , - - (Al1.8)

y(6) = Hx(t) , - (AL9)

NOTE: ;i(T-:) i xl(g).
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where x(t) is the state of the channel and y(t) is the channel filter
output. The filter output can be written for an input pulse in [O,T],'
t .

y(&) = B @(t- (- Dx((k-DT) + H_ I F(t-nG u(rydr , (Al.10)
(k-1)T

(k-1)T <« £ < kT ,

where ¢ is the étate transition matrix for the channel, The first term
represents the zero input responsé far tﬁe kth signaling interval; that
is, it is a funcﬁion of all symbols through the (lc-l)th as summarized by
the channel state at ;he end of the (k-l)th interval. .The second term_

h

in (A1.10), the zero state response, depends on the Kkt symbol since

u(r) = @ (t-(k-1)Ty, ,  (k-1)T <t < kT . |  (Al.11)

“The sufficient statistics for this problem can be.obtained by
making.a Karhunen-Loeve expansibh for r(t), retaining only those_épeffi-
cients that depen& on y(t) and discarding components with noise only.

Anf set of basis functions will produce statistically independent W, 80
that the form of y(t) dictates the choice. The representation devéloped
hefe is based ﬁpon properties of the solution to the linear state equationm.

It is known [26] that all zero input responses, namely all solu-

tions to the homogeneous equation,

x(t) = F x(t) , | (A1.12)
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h
h
form an'Nh dimensional linear space. Thus a basis set {bi(t)} for t :
i=

1
space exists.

N .
s _ :
Let {b:(t)} be a set of Ns basis functions for the signal spac
i=1
' N

N
s
and let {y?(t)} be the zero state responses corresponding to {b:(t)} .
' i=1

i=1
N

. s _
The members of {yg(t)} are in many cases linearly dependent.
i=l

' Consider now the composite set Sc given by

N N :
= [uh i
s = b I l b (E)] . (A.13)
¢ ! i}1=1 vl }i=1 -

A set of N (Nh =Ns= Ns)

e L)

RSN ...np...a. Fdin s = e

i

linearly independent functidns, denoted

{bj(:)}ll, | (A1.14)

can always be generated from Sc. These functions form a basis set for a
Hilbert space over {0,1] which includes the collection of all channel
filter output waveforms as a subset. The set of all outputs .is not a

linear space, but the need here is to be able to expand any channel output

in a finite series.

The set of basis functions can be correlated with a T second seg-

ment of r{t), the observation, to produce a vector of sufficient statis-

tics.,
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Sufficient Statistice for FDIR Channels
In this section the sufficient statistics for the FDIR chanmel
model are developed for completeness., The results are the same as in
[16].
The response of an FDIR channel to a given pulse is a waveform

g(t) of finite ﬂuration and the "chips” of g(t) are defined as

i

[
-

-

-

»
-

e
-

gi(t) = g(t+(i-1)T), i 0=t<T, (Al.15)

so that
. L .

< .
g(t) = o gi(t-(i-l)T) . {(Al.16)
i=1
gl(t) is the zero state response of the filter and the remainder of the
chips represent the zero input response of the filter--representing the
interference portion of the waveform.

Any possible filter response over [(k-1)T,kT] can be written

e

y(&) = u & () . (A1.17)

i=1

il

The chips may form a linearly dependent set, but a linearly independent

set can be obtained from them. A set of N orthonormal basis functions

N .

{bi(t)} over the interval [0,T) can then be generated using the Gram-
i=1 '

Schmidt procedure. . Then any channel filter output can be written

L

y{t) = E yibi(t) . : ' (A1.18)

i=1
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Again, an information lossless way of sampling the ipnput data is to use

a bank of filters, each matched to a member of [bi(t)}.
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APPENDIX B
PROBABILITY OF ERROR FOR THE OPTIMUM DETECTOR

In this appendix a probability of symbol error expression in terms
of posterior probabilities is derived for the optimum (minimum probability
of errbr) detector. A special case is developed in [25].

Consider the set of all possibie observations L denoted by S5,

k+D?
The M posterior pfobabilitiea,

p(u, =éi]1.k+D), 1=1,...,M, (81.1)

generated by the optimﬁm detector are defined over S.

The universe S is partitioned by the detector into M disjoint sub-

sets, Si’ such that

Py = AL ,p = Py = 4L, - BLD

for i # j and L ¢ 8.

The conditional error probability is

plelu, =4 = f . Py, ply = ApDdL b, (81.3)
s¢
1

c

where S; is the complement of S

i in S, The total error probability is then

e wmrra s mewk s




7

M
_ v _ 3
P = y p(€|gk = 4)p(y = A) (Bl.4)
i=1
K
= Py =4 I p(Ly,ply, = A)dL, o, (BL.5)
i=1 s¢ -
1
T
=L p(Lk+D’2k =§1)d1‘k+n ’ _ (B1.6)
i=1 S?
1
N
=0 [ e =l e i, (31.7)
i

where the last step results from Bayes Rule,

In the special case of M = 2,

(B1.8)
Pe = I plu = ALy, ey, dly o + {. plyy = A5[T, PPy, pdly .y
s¢ s<
1 2
min . i
= .Jrs i PGy = A ey Dl g (B1.9)
=-E [min

Lo 1 ply, = AL )] - (B1.10)
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APPENDIX C
'THE ESTIMATE FEEDBACK ALGORITHM
The estimate feedback detector generates
“ .
pQy, = A /L), f=1,... M, (€L.1)
and makes the decision,
d(gk) = gj s (C1.2)
-~ [ X
if Ply =A) =p =4), ~ i=1,..., M. (C1.3)
The probabilities (Cl.1) are generated from summing sequence probabili-
ties,
Plu, =4 /L ) = E IR S (€1.4)

S+l

Ej POy =44 Bgs v - s Ek+D/Lk+D)’ i=1,...H4,
Ye+D _ .

where each summation 1s taken aﬁer.M'poasible symbols., The sequence prob-

abilities are obtained from

s am g e T =

iipom mira

2o QT o S e ap e e L T e S
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S(ﬁk = AL Y oo Hk+D/Lk+D) = ' (€1.5)
_ﬁ(ik+D/-‘1k B A T hapr) - POy = 4y
Yegr e oo 5k+DXLF+D-.1_) ;E(ik,rD/Lk;D_l) o '.1 ShooH.
The_denomiﬁgtor is identical for all i =1, . . ., M and can be considered

as a normalization factor C. 1In this work an independent symbol sequence

has been assumed, so that,

Bl T AL vy - e s B lpy) T | (€1.6)
Ply =4 ey, - - - 9k+n-1/L|;+n-1) ' ;(Ek;l-D)’ (1w J
Then (Cl.S)Ibecomes
B luy - Ao wps v v s Y/l = CP (U, p) * (€L.7)
Py p/uy = éi.’ Bep10 0 0 0 Bgpe Lopad)

Py = A ygs v o Bgpy/Mepay)y - 1L ces M

' The last term of (C1.7) can be rewritten so that

p@k =_A_-i’ H’k"‘l’ . v ey Ek-I-D/qu-D) = (C].-B)




"~ ~ ~ .
CoPQy,p) * Py p/M = A5 Bgs « o> Yyups Lyp ) -

uzi_ Pluy. s SR Ek+D-1/Lk+D-1)’ __i =1, « . «, M.
k-1 - . _ :

The third term in (Cl1.8) is a Gaussian density; whose mean,

by using the state and observation reéursions,

j

' 512-1 = &1

Ag 2¢

Ej = 3 gj 1.+ Gj Ej’ FJ=ky, « « 4, k+D ’

=

-m _ =1 -3¢ ~2
lk+D - Hk+D -1 T Hk+D 24D °

T~z

A el g =4 /Nup.y) >

¥

1

&

%= Hk l-."1<-1 + Ek ﬁk :

and whose variance is the additive noise variance.
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I, is obtained

(C1.9)
(C1.10)
(C1.11)
(€1.12)

.(C1.13)

The last term in (C1.8) is available from the previous iteration

of the recursion. The recursion occurs in the order

&c 2

-1 7 By

ot g Lol
51=Fj£j-1+cj‘l_1j’ j=k,ooa,-k+D,

(C1.9)

(C1.10)

ﬁf

=




POy = A, s o oo /L) =
C v Py, ¢ PUy,p/u = Al Byt t 0 Y Depoy)

E Pl g5« « o -‘3&+D-1/Lk+n-1)’

i=1,o.o -,M,
-1 '

E(Ek = éi/Lk-I-D) = ;ET ce

~k+1

12

5 O P W PIRIRIETE YL WS PR T I
=k+D . : '

M
% T 121 A Bl =4y

p
4

LR e

(C1.8)

{Cl.4)

(C1.12)

(C1.13)
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