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SUMMARY 

In this dissertation a new suboptimum intersymbol interference 

detector is developed that could be applied to channels whose memory 

is represented either by a finite duration impulse response model or by 

a state variable model. The detector utilizes channel state estimates 

to reduce computational complexity and also generates, at little addi

tional cost, an estimate of error rate. 

A set of discrete time state and observation equations, represent

ing the functional relationship between the information bit stream and 

the sequence of observations, is derived for use in the detector al

gorithm. This derivation holds for any modulation/demodulation scheme 

which can be represented by signal space techniques, for any set of linear 

receiver sampling filters, and for any linear, time-varying bandpass 

channel filter. In addition, a set of sufficient statistics for band

pass channels whose memory is represented by linear, time-invariant state 

variable models is defined. 

Monte Carlo simulation results for the new detector are reported 

on and show that for three specific channel models the new detector per

forms close to the optimum detector performance but is considerably less 

complex. 



1 

CHAPTER I 

INTRODUCTION 

Problem Description and Contribution 

The problem of limited available spectrum has in recent years 

forced digital communication system designers to attempt to transmit over 

their allocated channels at higher and higher symbol rates and cope with 

intersymbol interference. This has made the tradeoff of higher signal

ing rate for increased receiver complexity appear more and more attrac

tive [9,10,15,16,19,20]. 

For the case of linear dispersive channels considered here, the 

underlying cause of the intersymbol interference problem can be described 

in either the frequency or time domain. From a frequency domain view

point, intersymbol interference occurs either because the amplitude re

sponse of the channel filter is not flat or because the phase character

istic is not linear over the frequency band occupied by the spectrum of 

the signaling pulse. 

From a time domain viewpoint, the problem occurs because the 

impulse response, which indicates the memory of the channel, has a dura

tion on the order of a signaling interval or longer. The channel output, 

obtained by convolving the channel impulse response with the signaling 

pulse, thus lasts significantly beyond the signaling interval. 

In most previous research a time domain viewpoint has proven 

valuable. Two canonic channel models have been used--a finite duration 
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impulse response (FDIR) model [1,2,3,4,5,6,8,9,10,12,13,15,16,17,18,19, 

20,21,22] and a continuous time state variable model [11]. A time domain 

approach has been taken in this report and the techniques developed can 

be used with either model. The discrete time recursive equations which 

relate the observation to the input symbol and which form a part of the 

detector algorithm unify the two approaches to channel modeling. 

Specifically, the contributions of this research are: 

1. The development of a new suboptimum intersymbol interference 

detector using state estimates to reduce computational complexity and 

generating, at little additional cost, a measure of error rate. 

2. The derivation of a set of discrete time state and observation 

equations, representing the functional relationship between the informa

tion bit stream and the sequence of observations given to the detector. 

The derivation holds for any modulation/demodulation scheme which can be 

represented by signal space techniques; for any set of receiver sampling 

filters, matched or not; and for any linear, time-varying bandpass channel 

filter, either symmetric or unsymmetric about the carrier. 

3. The derivation of a set of sufficient statistics for bandpass 

channels whose memory is modeled by linear, time-invariant state variable 

models. A derivation for FDIR channels is also developed for complete

ness but Forney [16] has previously considered this case. 

History of the Problem 

Probably the earliest approach to amelioration of the intersymbol 

interference problem in digital communications was to view the problem in 

the frequency domain and to correct for nonideal frequency characteristics 
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of the channel by means of fixed compensators. Correction of amplitude 

response was emphasized over correction of phase response. This method 

proved to be adequate for speech transmission. 

With the advent of high speed data transmission, more stringent 

requirements were placed on digital communication systems. To meet these 

needs, a number of different approaches were taken in designing more so

phisticated receivers [l-22]. These approaches can be conveniently classi

fied as linear or nonlinear processors of the observed noisy samples. 

Linear Detectors 

The linear intersymbol interference detector that optimizes almost 

any reasonable criterion, such as probability of error, or mean square 

error, was shown by Ericson [l] to have a certain canonic structure. 

This structure consists of a filter matched to the channel output pulse 

followed by an infinite length transversal filter whose tap delay is 

equal to the signaling interval. 

Aaron and Tufts [2] specified the number of delay elements in the 

filter and obtained the optimal tap gains as solutions of a set of non

linear equations. Recently Lawrence and Kaufman [3] assumed a discrete 

time state variable (delay line) model for the channel and used a Kalman 

filter to estimate the channel state from noisy measurements. Berger and 

Tufts [4] compared performance of their detector with the rate distortion 

bound and found that the suboptimality of m.m.s.e. linear detectors was 

pronounced at high SNR since performance improved as the reciprocal of 

SNR rather than exponentially. Additional references, which present work 

very similar to that listed above, are [5,6,7,8], 
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Nonlinear Detectors 

It became apparent, after experiments with linear detectors, that 

detectors for intersymbol interference channels which could operate well 

at high SNR would have to be nonlinear [4]. Chang and Hancock [9] were 

the first to publish a deeper recognition of the underlying statistics of 

the problem. They developed the Bayes detector that assumed a channel 

impulse response of finite length and made a decision concerning a block 

of symbols. 

Several approaches have been considered for reducing the complex

ity of the optimum detector. Austin [10] considered approximating the 

maximum likelihood (ML) detector by feeding back previous decisions as if 

they were errorless. His detector was developed for FDIR channel models 

and consisted of a matched filter followed by a feedback loop with two 

transversal filters. The forward line acted in the same manner as earlier 

equalizers, and the feedback path filtered previous decisions. Bershad 

and Vena [ll] also used a hard decision directed (HDD) approach for 

channels with state variable models but considered only the realizable 

case. 

A simple soft decision directed (SDD) approach was used by Taylor 

[12,13] to obtain better results than those for an HDD detector. Here 

the hard decision was put through a nonlinearity such as the hyperbolic 

tangent to generate a hedged decision for feedback. The relationship 

between Taylor's work and earlier research by J. W. Mark is described in 

[14]. 

Neither of the approximate detectors listed above was operated 
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with delay nor did they approximate the optimum MAP detection algorithm, 

In order to achieve good results at moderate-to-low SNR, more complex 

algorithms were necessary. Abend and Fritchman [l5] developed a minimum 

probability of symbol error detector that was realizable with a delay of 

D signaling intervals and was optimum in the limit as D increased. For

ney [16] developed an ML receiver employing the Viterbi algorithm as the 

nonlinear processor. The Viterbi algorithm is optimum for making sequence 

decisions if delay is infinite ; however, for finite D it is suboptimum, 

Both Abend and Fritchman and Forney assumed an FDIR channel model, 

Other references are [17,18,19,20,21,22], These are included in 

the list of references for completeness but report on detectors of the 

same form as those mentioned above. 

Outline of the Dissertation 

In Chapter II the class of problems addressed in this dissertation 

is defined, and two sets of discrete time equations, used in the new de

tector algorithm, are derived from continuous time channel models, 

Chapter III discusses three canonic approaches to the design of 

nonlinear detectors for the intersymbol interference problem, A descrip

tion is given of the advantages of the detector presented here, 

In Chapter IV results of the Monte Carlo simulation of three dif

ferent channel models are presented, along with comparisons of the results 

for the detectors developed here and a number of detectors mentioned in 

Chapter III. 

Chapter V summarizes the conclusions resulting from this research 

and presents recommendations for extensions to the work. 
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CHAPTER II 

DERIVATION OF THE MATHEMATICAL MODEL 

Introduction 

In this chapter the discrete time equations that relate the 

information symbol to the channel state vector and to the observation 

vector are developed. The derivation postulates the Hilbert space rep

resentation of the signaling waveforms and the complex envelope represen

tation for the bandpass channel filtering, and, after a series of con

ceptually simple manipulations, the required equations are obtained. 

Sets of equations for both a state variable channel model and for 

an FDIR channel model are obtained. (Some special cases for the FDIR 

channel model are given in [15] and [2l].) The observation vector can 

be generated by sampling a bank of matched filters, a bank of suboptimum 

filters, or the incoming waveform without filtering. A set of optimum 

filters is derived in Appendix A. 

A functional block diagram of the class of digital communication 

systems considered in this research is shown in Figure 1. The functions 

are defined so that correspondences between Figure 1 and the low-pass 

equivalent block diagram in Figure 2 can easily be seen. 

The M-ary information source sends to the baseband modulator an 

M -dimensional vector, u, g [A-,A9,. . .,A }, whose components are the 
k 1 £. M 

f-Vi 

coordinates of the k signaling pulse. The baseband modulator selects 
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the corresponding waveform u(t) by an operation which can be represented 

as 

u(t) =J,(t-(k-l)T)uk (k-l)T < t < kT (2.1) 

where cg(t) is a vector whose components form a basis set for the complex 

signal space, T is the signaling interval, and the prime denotes matrix 

transpose. c£(t) contains information on both the modulation used, e.g., 

ASK, PSK, or FSK, and on the basic signaling pulse shape, e.g., NRZ or 

split phase. The upconverter generates the RF pulse 

jcu t 
u(t) = Re {u(t)e C ] . (2.2) 

The channel produces an RF output, 

r(t) = y(t) + n(t) , (2.3) 

and the downconverter generates 

r(t) = Re [r(t)e C } . (2.4) 

This complex waveform is then filtered by the bank of filters {g.(t)} to 

generate the observation vector, X, . 
—k 

To illustrate the model, parameters for BPSK and QPSK are given 

below: 
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BPSK: M = 2 

u k e { [ J ] , [°]} 

JTT/2 

i(t) = -JTT/2 
0 < t < T 

u( t ) = i ' ( t ) u = [ e ^ 2 e - ^ / 2 ] u . 

JOJ t 
u( t ) = Re {u(t)e C } = Re {[e 

j(<l) t+Tl/2) j(aj t-TT/2) 

^ 

= [COS(OJ t+n/2) COS(OJ t-TT/2)]^ 

QPSK: M = 4 

u. e 
—k 

» — . \ 
1 0 0 0 
0 1 0 0 

> 0 J 0 J 1 J 0 > 

0 0 0 1 
L J 1 J 

cg(t) = 

JTT/2 

,JTT 

J 3TT/2 

J2TT 

0 < t < T 

u(t) = i'(t)uk = [ e^/2 ejTT" ei3TT/2 e ^ 2 " ] ^ 

jao t 
u( t ) = Re {u(t)e C } 

= [cos(aj t+rr/2). cos (cu t+n) cos (aj t+3-rT/2) cos (ajct+2rT)]uk 
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Under the assumption that the RF carrier component is much larger 

than any significant components of the baseband modulator output, the model 

in Figure 1 may be replaced by the complex low-pass equivalent model shown 

in Figure 2. This is the specific model used in this chapter in the deri

vation of the discrete time state equations. 

In addition to the above the following assumptions are made in the 

derivation: 

k 
1. The sequence u, = {u.} is a statistically independent 

k l i=i 
sequence. 

2. n(t) is complex WGN with spectral density N . 

3. The receiver has exact knowledge of the RF carrier frequency 

and phase. 

4. The receiver has exact knowledge of bit timing. 

5. Each of the receiver filters is dumped after the output is 

sampled. 

6. All channel filter parameters are known. 

These assumptions are warranted in order to limit to manageable propor

tions the scope of this research. 

The output of the baseband modulator can be written 

k 

u(t) = Y i'(t-(j-l)T)u, . 0 < t < kT (2.5) 

J=l 

Under the assumption of a high frequency carrier, the complex envelope of 

the channel filter output can be written 

y(t) = 
t 
h(t,T)u(T)dT , (2.6) 

o 
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where 

h(t,T) = Re {2h(t,T)e ° ] . KI"n 

Now a specific channel model must be chosen. 

Derivation of the Equations for State Variable Channels 

Assume that the dynamic behavior of the filter portion of the 

channel can be represented by 

x(t) = Fc(t)x(t) + G^tyuCt) (2.8) 

Z(t) = Hc(t)x(t) , (2.9) 

where x(t) is the complex state of the filter. 

A discrete time state equation can be obtained by writing the 

complete solution to the continuous time state equation, with 0 being the 

state transition matrix, 

t 

x(t) = 0(t,t.)x(t,) + f ?(t,T)G (T)u(T)dT , (2.10) 

i 

and setting t. = (k-l)T and t = kT, so that 

rkT ~ 
x =x(kT) = 0(kT,(k-l)T)x, .- + I 0(kT,T)G (T)u(T)dT . (2.11) 

". " i ^(k-DT "° 

Substituting (2.5) into the above gives 
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r k T • _ 

x = j?(kT,(k-l)T)x + $(kT,T)G (T)i '(T-(k-l)T)dT u . (2.12) 
k K - i J

( k . 1 ) T - c K. 

The change of va r iab les , 

Tx = T-(k-l)T , 

in (2.12) gives 

T 
S^ = ^ k T . C k - l ) ^ ^ + J ?(kT,T1+(k-l)T)G c(T1+(k-l)T)i ,(T1)dT1uk .(2.13) 

By defining 

Fk ='jif(kT,(k-l)T) (2.14) 

rT „ „ „ 
Gk = J 0(kT,T1+(k-l)T)Gc(T1+(k-l)T)cB

/(T1)dT1 , (2.15) 
o 

(2.13) becomes 

^ = A 4 - i + 5 A <2-16> 

The output of the i data f i l t e r at t = kT, i . e . , the i com

ponent of i. , i s then 

ri = r 9 t = | r(T+(k-l)T)g (T-T)dT , (2.17) 
o 

rT 

= J ty(T+(k-l)T) + -n(T+(k-l)T)]g (T-T)dT . 
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From (2.9) . 

T 

^ k = J *c(T
+(k-U*)x(T+OL~l)'£)%1(T-*)dT' (2.18) 

o 1 

T 
+ F n(T+(k-l)T)g. (T-T)dT . 

o x 

The continuous time state equation (2.10) states that 

x(T+(k-l)T) = #(T+(k-l)T,(k-l)T)x(k-l)T) (2.19) 

fT+(k-l)T 
+ \ ?(T+(k-l)T,T J G , (Tju^JdT . 

J(k-1)T l c l 1- ! 

The change of variables 

T2 = Tx - (k-l)T 

applied to the integral in (2.19) produces 

x(T+(k-l)T) = ̂ (T+(k-l)T,(k-l)T)x((k-l)T) (2.20) 

+ J P(T+(k-l)T,T2+(k-l)T)Gc(T2+(k-l)T)u(T2+(k-l)T)dT7 o z ^ 

Since 

u(T2+(k-l)T) = i ' C T ^ , 0 * T 2 * T * T, (2-21) 

(2.20) becomes 
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x(T+(k-l)T) = j?(T+(k-l)T,(k-l)T)x((k-l)T) (2.22) 

+ J ?(T+(k-l)T,T2+(k-l)T)Gc(T2+(k-l)T)(g
,(T2)dT2 u^-.O * T * T. 

Equation (2.18) then becomes 

T 
l \ = f 5 (T+(k-l)T)^(T+(k-l)T,(k-l)T)x((k-l)T)g,(T-T)dT (2.23) k v c o 

T T 

+ J Hc(T+(k-l)T)[J 0(T+(k-l)T,T2+(k-l)T)Gc(T2+(k-l)T) 

T 
xS/(T2)dT2Ji(T-T)dTuk+ \ n(T+(k-l)T)gi(T-T)dT . 

~1 ~2 
Define two observation matrices H, and H, such that 

the i th 
~1 rT ~ 

row of ^ =vj Hc(T+(k-l)T)^(T+(k-l)T,(k-l)T)gi(T-T)dT, (2.24) 

i = 1, . . .,Nf, 

and 

th ~2 P ~ r P̂  
the i row of \ = \ Hc(T+(k-l)T)gi(T-T)| J #(T+(k-l)T,T2+(k-l)T)(2.25) 

o o 

X Gc(T2+(k-l)T)i
/(T2)dT2]dT, i = 1, . . ., N . 

Also, define a discrete time noise vector nfc whose i
th component is 

~i PT 
nk = J ^-(T+Ck-U^g^dT-, 1 = 1 , . . ., N . (2.26) 
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The noise s t a t i s t i c s are then 

E [n. ] = 0 , (2.27) 

T 
K. . = Effi.nT] = N f g. (T)gT(T)dT , 

1.J "T-~J O «J ° 1 ° J ' 
(2.28) 

where 

and 

X T = ( * ) ' , 

EE.fi ' . ' ] = 0 . 
- 1 - 3 

(2.29) 

Insert ion of the defined parameters into (2.23) produces the ex

pression for the vector of s t a t i s t i c s , 

h = Q\-l+K\ + % (2.30) 

Derivation of the Equations for FDIR Channels 

A set of discrete time equations, having the same form as those 

developed previously for state variable model channels, (2.16) and (2.30), 

is developed in this section for FDIR channel models. The state of an 

FDIR channel is defined to be the (L X M) X 1 vector 3^, which in par

titioned form is 

% Vi 
(2.31) 

Vw 

EE.fi'.'
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The submatrices are the present symbol and the previous L-1 symbols, 

where LT is the length of the zero state response of the channel to a 

single pulse. 

The continuous time output of the channel filter is given by 

y(t) = J h(t,T)u(T)dT . (2.32) 

t k 

y(t) = J h(t,T) £ i/(T-(j-l)T)dTuj, (k-L)T < t < kT (2.33) 

Substituting (2.1) into the above and using the FDIR assumption, 

k 

I 
j-k-IrU 

is obtained. Interchanging integration and summation, 

k 
y(t) = ) | h(t,T)^/(T-(j-l)T)dTuj , (k-L)T<t<kT (2.34) 

j=k^Ul o 

where 

k 
Y £'(t) u. , (k-L)T < t < kT, (2.35) 

j=k^L+l J J 

£j(t)=J h(t,T)5(T-(j-l)T)dT. (2.36) 

The set of M x 1 vectors, 

U (t+(n-l)T)) , (2.37) 
L J Jn=l 
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represent the L vector chips of the zero state response of the channel 

to cg(t). 

Each filter in the bank of matched filters has an impulse response 

which is related to the chip by 

KjW-Ejd-t) 0 < t < T (2.38) 

The output of the i filter can be written, 

x x 
£ k = J 2i ( T" T ) Y 2 ^ ( ^ ) ^ 1 1 + 1 £i(T-T)n(T)dT, 

° j=k-L+l ° 

(2.39) 

1 — 1 j . . • , Li 

Substituting (2.38) into (2.39), 

T = 
2-k 

*T 
£*(T) Y £'(T)dT u. + J ij_(T)fi(T)dT , 

j=k-L+l J J ° 
(2.40) 

I — j., . . .. Li. 

Interchanging integration and summation in the first term of 

(2.40), 

x x 
^k = I J 2 I ( T ) Zj(T>dT u + J i*(T)n(T)dT, 

j=k-L+l ° ° 

(2.41) 

l — i . , . . . , i-i« 



Breaking out the k term of the summation, 

k-1 

^k = I I Zi(T) * i ( T ) d T ^j + J Sj(T) ̂ (T)dT ̂  
j=k-L+l o • o 

2̂ (1-) ff(T)dT, 1 = 1 , • . ., L. 

This set of equations can be written as 

I. = U. x,' + H 0 u. + n, , —k 1 —k-1 2 —k • —k ' 
1 •— 1 , • • • , Li , 

where 

H7 = 

I I ' 1 
gi,l j gi,2| , , , |gi,L-l( Q 

J I l I ' I X » J 
, (M X (M X L)) , 

"lJ = 1 ^ i ( T ) XJ(T)dT, 1 — 1 , . . .,L, j — 1 , . • ., 

T 
5 2 = J 2i ( T ) £k<T>dT> 1 = 1/- . ., L, 

T 
*£ = J 1± (

T) " (T)dT » i = 1, . . ., L. 

The noise statistics are given by 
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E[n£] = 0 (2.48) 

and 

Kij = E [ ^ k ^ ^ = N Q J i.(T)ij
t(T)dT, (2.49) 

Etn.1 n.j] s 0. —k —k (2.50) 

The recursive equations are then 

^k = 

M X (L-l) 

2k-1 + 

\ 

(2.51) 

h = Hl ^k-1 + «2 H k + Ek » i = 1. • • -, L. (2.43) 
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CHAPTER III 

DEVELOPMENT OF THE ESTIMATE FEEDBACK DETECTOR 

Introduction 

In this chapter the suboptimum detector developed in this research 

is defined. First the optimum detector is specified. 

The optimum detector is defined here to be the detector with mini

mum probability of symbol error. This detector generates the posterior 

probabilities 

Pd^ = AjJrCt), 0 < t < (k+D)T), i = 1, . . ., M, (3.1) 

f.t_ 

and if the j probability is the largest of the set, the decision is 

*<\> = A • 0.2) 

D is a parameter that represents the ability of the detector to delay 

the decision for D signaling intervals after the onset of energy from 

the k pulse. 

As shown in [23], for the WGN case with no channel memory, it is 

possible to substitute conditional dependency on a sequence of sufficient 

statistic vectors, 

hc+D - a , J ^ • (3-3) 
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for conditional dependency on the waveform r(t) over [0, (k+D)T]. A 

similar derivation for the channel models considered here of sufficient 

statistics in Appendix A shows that a set of sufficient statistics is 

generated as the sampled outputs of a bank of N matched filters. For ex

ample, consider the case of a time-invariant state channel model whose 

frequency response is properly symmetric (amplitude response even and 

phase response odd about f ) and in which the modulation is BPSK. The 

number of required matched filters is N = Nu+1 "~ Nu filters matched to 

the N, homogeneous solutions of the state equation and one matched to the 

forced response of the channel. 

For the FDIR channel model case, a set of L matched filters, where 

L is the length of the zero state response, will generate a vector of suf

ficient statistics for the detector. Each filter is matched to a chip of 

the zero state response [16]. Next, various detector algorithms are dis

cussed. 

Development of the Estimate Feedback Detector 

for FDIR Channels 

The optimum detection algorithm for FDIR channels, assuming a delay 

D and a channel response to a single signaling pulse of integer length L, 

was developed by Abend and Fritchman [15], They obtained a recursive al

gorithm for generating the posterior sequence probability, 

p(\+D-Ul* ̂ k+1' * ' " ^k+olW • .<3-4> 

To generate this density a dynamic model for the channel memory is re

quired. In the FDIR case a discrete convolution is used in the algorithm 
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to generate these sequence probabilities. 

The decision is then made based on the A. that maximizes 

* < 4 - ± J W • (3-5) 

For the case of most i n t e r e s t , in which D ^ L-l , 

pCi^ - A J ^ + D ) = c o n s t <3-$> 

X (I ' ' ' 1 1 ' ' ' I P̂ k+D-Lfl' • '^+DI W ) 
^k+D-Lfl ^ - 1 ^ + 1 ^k+D 

In general one would like to keep D as small as possible. With 

mayfL TVj-l "\ 

the Abend-Fritchman (A-F) algorithm, however, M *• ' J probabilities 

must be generated after every signaling interval. In a real situation L 

could be 10 or larger so that the algorithm can be computationally com

plex even when D is chosen to be small. 

A reasonable approach to reducing the complexity of the A-F al

gorithm is to use an estimate of the symbol a . as if it were the correct 

symbol and thus only the probabilities of*1 in number) corresponding to 

all possible combinations of sequences, 

* V ^k+i W » <3-7> 

are needed. 

A number of ways of generating such an estimate exist. In a hard 
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decision-directed (HDD) approach, all previous decisions are assumed to 

be correct, and the algorithm for the decision on u, is computed based on 

the hypothesis that 

\-l = d ( i Ik-l' ) * ( 3 , 8 ) 

where the carat denotes an estimate and the function d is the decision 

function. This philosophy is used in [10,11]. For large SNR this de

tector works well, but it is marginally effective at lower SNR because 

errors tend to avalanche [10]. This detector, however, is less complex 

than most other suboptimum detectors. The canonic HDD structure is shown 

in Figure 3. 

In Figure 4 the soft decision-directed (SDD) canonic form is 

shown. Here the detector output (in the binary antipodal signaling over 

a carrier symmetric channel case) is passed through an N1NM device such 

as one whose characteristic is a soft limiter or a hyperbolic tangent 

[12,13]. 

If one of the posterior probabilities is close to one, essentially 

a hard decision is made. If no probability is close to one, the estimate 

is a number between (-1) and (+1) -- i.e., a hedged decision. Better 

results are obtained by using an SDD approach than by taking an HDD ap

proach, particularly at low SNR [12]. 

The approach put forward here is to use the basic A-F algorithm 

but to reduce its complexity by combining the posterior probabilities 

into an estimate of u, .. , 
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V i ' - ' t v J W • (3-9) 

or 
M 

i i • IM<4-I -^JWi* • 
i=l 

Of course, it would be nice to have the exact posterior probabilities, 

but these are not available from a suboptimum algorithm. Nonetheless 

this detector has a number of desirable properties: 

1. It is computationally simpler than the A-F algorithm in that 

the number of sequences considered is n rather than M when D < L-.l. 

2. The posterior probabilities needed for the calculation of the 

estimate are already being generated as part of the detection algorithm. 

3. The detector is theoretically optimum in the limit as D in

creases. Therefore, the way to modify the detector for better performance 

and the cost in complexity to get that performance are clear. 

In summary, for FDIR channel models, the estimate feedback detector 

uses the basic A-F algorithm but reduces complexity by shortening the se

quence lengths and adjusting for the loss in performance with feedback of 

approximate MAP estimates of symbols that are no longer a part of the 

sequence. The general canonic structure of this detector is shown in 

Figure 5. The estimate feedback algorithm is given in Appendix C. 

Development of the Estimate Feedback Detector 

for State Variable Channels 

In this section the estimate feedback detector developed previously 

for FDIR channel models is applied to state variable channel models. The 

motivation is the desire to develop a detector that could be implemented 
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by using estimates of the channel state to reduce computational complexity 

Assume that the filter portion of the channel can be modeled by 

the state equation developed in Chapter II, 

\m ?A-i + S A > (3-10) 

and that the observation vector (each component being the sampled output 

of one of the filters in the bank of matched filters) can be written 

4 = fe-i+ \ \ + \ • (3-u) 

Consider the case where D = 0. It can be seen from the state 

equation that if the state of the channel filter, x, -, is known at the 

beginning of a signaling interval, the channel output caused by all pre

vious symbols can be subtracted out. In other words the intersymbol 

interference problem would reduce to the simple detection problem of 

testing between M known signals with observation, 

4= K\ + K > (3-12) 

where n, is Gaussian with known mean H, x, .. . 

For D > 0 it is appropriate to generate an estimate of the state 

of the channel D signaling intervals behind the incoming data. The se

quence length, D+l, of the detector algorithm can be kept small without 

severe performance degradation if a reasonably good state estimate is 

employed. 



29 

In developing a suboptimum detection algorithm employing a state 

estimate, a number of approaches are possible. In an HDD approach, the 

detector output is assumed to be correct, and the algorithm for the de

cision on u, is generated based on the hypothesis that 

ti-U.2 + iidw- (3-13) 

The functional block diagram for this case is shown in Figure 6. The 

case of D = 0 was treated in [11], 

In Figure 7 the SDD canonic structure is shown. In a manner 

similar to that for an FDIR channel model, the detector output is passed 

through an NLNM device, then through a state model representing the chan

nel memory. 

The optimum Bayes estimate of the state of a system at time k, 

given observations up to and including L, is given by 

M k + D 

%,- I P<4 - A j l w ^ k • V W • <3-14> 

Here, each of the expected values represents a special case of a 

Kalman smoothing estimator for the problem in which the first order den

sity of the system excitation process is given by a linear combination 

of M Gaussian densities, i.e., a mixture, but in which each density has 

zero variance. 

Ackerson and Fu [24] first developed the least squares estimate 

for the D = 0 case and also considered a suboptimum estimator. They 
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applied their results to a controls application, but their work provided 

the original motivation for this research into a possible digital com

munications application. It soon became apparent that to extend their 

approach to the realizable-with-delay case (D > 0) would lead to a quite 

complex fixed lag smoothing algorithm and would thus not be profitable. 

The basis for this research is to feed back posterior probabilities 

in a Bayesian type of estimate rather than the information lossy HDD ap

proach or an ad hoc SDD approach. Figure 8 shows the canonic structure 

of the detector developed in this report. 

The A-F algorithm can be applied directly to channels with state 

variable models. The basic A-F algorithm generates M estimates of what 

the observation should look like conditioned on a particular input se

quence. It then compares the conditional estimates with the actual ob

servation and generates M posterior sequence probabilities. A dynamic 

model of the channel memory must be a part of the detector algorithm in 

order to generate an output from a conditional set of inputs. In Abend 

and Fritchman's original work [15], a sampled data model for the channel 

output was assumed (the FDIR assumption), and outputs were calculated by 

discrete convolution. 

In Chapter II a recursive state and observation equation pair was 

derived from the discrete convolution model of channel dynamics. The 

state and observation equations could thus be used in the A-F algorithm. 

Also, in Chapter II, a pair of state and observation equations was de

rived under the assumption of a continuous time state model channel. The 

form and function of these equations were identical to the set of equa

tions derived under the FDIR assumption. Consequently they could be 



r ( t ) 

MF - o 

MF - o 

ffj o 
H 
CJ 
W 
H 
W 
Q 

f> 

\ 

H±h <V 

ii Channel 
Dynamics 

Figure 8. Estimate Feedback Binary Detector for Sta 
te Variable Channels 



33 

incorporated into the A-F algorithm as the dynamic model. 

Since the estimate feedback detector uses a channel model for the 

same purpose as does the A-F detector, i.e., to generate outputs based 

on conditional input sequences, it can likewise use either channel model. 

The channel state estimate is produced by calculating a symbol estimate 

by 

M 

4-1 - I h it^i-kWn-i) • (3'15) 
i=i 

and driving a recursive state model with the sequence of symbol esti

mates. Thus the estimate feedback detector can be used with state 

variable channel models. The estimate feedback algorithm is given in 

Appendix C. 

Comparison of the A-F Detector with the Viterbi Detector 

The Viterbi algorithm (VA) can also be used as a detector for dis

persive channels [16], If delay is infinite, it is optimum but for finite 

fixed delay D it is suboptimum just as the A-F and estimate feedback de

tectors are. Other disadvantages are that: 

1. it has been applied only to FDIR channel models, and it uses 

sequences of length L just as the A-F detector does. 

2. to modify it for minimum symbol errors rather than sequence 

errors considerably increases complexity [28]. 

3. there is no simple relationship between the state metric and 

the quality of the detection [28] for the VA as there is with A-F or esti

mate feedback detection. 
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An Error Rate Estimate 

It is important in many operational situations to have a per

formance monitor that indicates the status of the link. Such an indica

tion in present day systems has usually come from a channel error decoder 

or perhaps from a frame synchronizer in the receiver. 

When detectors that generate fairly accurate posterior probabil

ities are used, an estimate of the error rate is presented here that from 

the simulation results appears to be quite accurate. Consider the binary 

case. The estimate is based on the expression for symbol error rate de

rived in Appendix B. Equation (B1.10) states that for any detector, 

pe = \+DfTp<% = ^ i w ] • <3-16> 

The estimate for error probability is 

MIt^"4lV' (3-17) 

namely the sample mean of the smaller of the two poster ior symbol proba

b i l i t i e s . This estimate should converge in the m.s. sense to p as 

k -» » if 

• a k - 0 (3.18) 
P6 

as k -» » according to the Markoff law of large numbers [27]. However 

this appears impossible to ascertain because of the complexity of (3.17). 

Simulation results for this binary case are presented in Chapter IV. 
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CHAPTER IV 

RESULTS OF THE COMPUTER SIMULATIONS 

Introduction 

The purpose of this chapter is to present the computer simulation 

results for the detector algorithm developed here and for a number of 

other detectors found in the literature. Exact analytical results for 

error rate have not been obtained for this problem although approximate 

results and upper and lower bounds have been determined in some cases; 

e.g., [11,16]. Since Monte Carlo simulations give an accurate indication 

of performance for specific cases, they were used to generate comparisons 

among the various detectors. 

Three specific channels were simulated to determine results of 

this detector algorithm. Each was a WGN channel with channel filtering 

modeled as 

1. a one pole Butterworth state variable model with T = 1 and 

ID — 1 , c 

2. a two pole Butterworth state variable model with T = 1 and 

UJ = TT, 
C 

3. an FDIR model, used by Abend and Fritchman [15], representing 

a channel response measured on a Bell System data line; the sampled chan

nel response is (-0.077,-0.355,0.059,1.000,0.059,-0.273). 

Binary PSK signaling with NRZ pulses is used in all simulations. 
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The energy in the channel response is defined to be that over [0,°°). In 

each case a set of discrete time equations representing the evolution of 

the state of the channel filter and of the observation is developed. The 

input to the recursion is a sequence of symbols and the output is a se

quence of observations L, . 

In the state variable model case the observations are the sampled 

outputs of a bank of filters, derived in Appendix A, which are a set of 

sufficient statistics for this problem. In the FDIR case, the recursion 

output is selected to be the sequence of samples of the channel output 

(no filtering) so as to agree with Abend and Fritchman [15]. 

A uniform pseudo random number generator is used to generate the 

data sequence, and a Gaussian pseudo random number generator is used to 

generate the WGN. A number of statistical tests and histograms were run 

on different generators to obtain a good generation algorithm and to 

determine good starting numbers. For the case in which a bank of filters 

is used, the noise portions of the filter outputs are correlated for a 

given k, and a linear transformation of a vector of independent Gaussian 

variables is necessary to obtain the proper correlation. 

The detector is initialized so that the errors counted are steady 

state errors. For example, in simulating the D = 2 detector, the detec

tor for D = 0 is first used. It combines two prior probabilities of 0.5 

with JL. and produces two posterior probabilities. Next the D = 1 detector 

is used. The four prior probabilities it requires, one for each possible 

sequence of u, and u~, are generated from the two posterior probabilities 

produced by the D = 0 detector. The D = 1 detector combines these four 
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priors with Z_~ and generates a set of four posterior sequence probabili

ties. In a similar manner these four probabilities are transformed into 

eight priors that are combined with L by a D = 2 detector to yield a set 

of eight posterior sequence probabilities. The D = 2 detector is used 

exclusively from this point on in the recursion. It takes the eight pos

terior sequence probabilities, combines them with i , , and produces eight 

posterior sequence probabilities that may be assumed suitable for error 

count. The eight posterior sequence probabilities are combined so that 

all probabilities with a (-1) in the k = 1 position are added together 

and those with a (+1) are added together. This produces the two posterior 

symbol probabilities from which a decision about the k = 1 symbol is made. 

The decision is compared with the actual symbol used to generate the ob

servations, and an error count is kept. 

It is obvious from the above that the detector algorithm could be 

stopped after the calculation of the posterior sequence probabilities and 

the decision made based on the largest posterior sequence probability. 

This points out the fact that the detector developed here could also be 

used in a minimum sequence error mode if so desired to save complexity. 

All results shown were obtained by actual simulation using the 

same pseudo random number sequences. No results generated from different 

sequences of PN numbers were copied from the literature so that as accu

rate a comparison as possible is obtained. 

Presentation of Monte Carlo Results 

Figure 9 shows the simulation results for a one pole Butterworth 

filter channel. The vector of sufficient statistics is generated by cor

relating the input waveform with the two time functions, 
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Figure 9. Error Rate of a One Pole Butterworth Filter 
with f = 1/2TT and T = 1 
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gx(t) = C^l-e'
1*) , 0 < t < T 

g2(t) = C2e 
-pt 0 < t < T, 

(4.1a) 

(4.1b) 

where p is the pole location of the channel filter, and C. ,C? are nor

malization constants. The filters are sampled and dumped every T seconds 

The state and observation equations for this example with p = 1, 

T = 1, are, 

x^ = 0.368 x + 0.632 / ? u 

4 = 
0.487 

0.658 Vi + 
1.000 

0.741 
^ \ + \ 

(4.2a) 

(4.2b) 

The correlation matrix of the observation noise n, is 
—k 

R = 
1.000 0.741 

0.741 1.000 'J 
(4.2c) 

The error rate estimate shown in Figure 9 and all following error rate 

performance curves are obtained using the estimate discussed at the end 

of Chapter III, namely 

1 "T min r A / 

k L i [ p ( u i 
A j lLW ] (4.3) 

The error rate monitor approximates the expected value, over all L, _, 

by a sample mean. In addition it uses approximately correct posterior 

symbol probabilities. 
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Figure 10. Error Rate of a Two Pole Butterworth Filter 
with f = .5 and T = 1 
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R 

1.000 0.402 0.747 

0.402 1.000 0.824 

0.747 0.824 1.000 

(4.4c) 

Once again the benefit in performance gained by delaying a decision 

is evident. The performance of the detector is effectively optimum for 

D = 2. Also, the error rate estimate demonstrates excellent results. 

The detector developed here is also applicable to FDIR model chan

nels. Figures 11 through 16 present the results of applying this detector 

to the Bell data line model and comparing the results with those obtained 

with the A-F detector. It should be noted that their detector is more 

complicated than the one developed here in all cases where D < L-l. 

This is because the A-F detector always generates 2 sequence probabilities 

D+l 
while the estimate feedback detector generates 2 sequence probabilities. 

In the figures the error rate and the error rate estimate for the 

estimate feedback detector are compared with results using the A-F detec

tor and with the error rate estimate using the A-F posterior symbol prob

abilities. Results are shown sequentially for values of D from zero to 

five. Note that for D s 3 the estimate feedback detector performs as well 

as the A-F detector. For D » 3, the A-F detector generates four times as 

many sequence probabilities as the estimate feedback detector. 

Figures 17 and 18 present a comparison between six different de

tectors for the one and two pole channel models, respectively. Results 

are shown for the following detectors: 

1. a detector which thresholds the sampled output of a filter 

matched to the signaling pulse (an NRZ pulse in this case) , 
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Figure 17. Monte Carlo Error Rates for One Pole Butterworth Channel 
Model with fco = 1/2TT and T = 1; Comparative Results for 
a Number of Detectors 
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2. a linear detector that uses a steady state Kalman type of 

estimator similar to one used in Lawrence and Kaufman [3], 

3. a hard decision directed detector that feeds back decisions 

rather than estimates, 

4. an A-F detector using a truncated channel output response of 

length 3 and delay D = 1. 

5. estimate feedback detectors with delays D = 0,1. 

In these figures one can see the advantage gained by using a rather 

complex detector such as the A-F or the estimate feedback detector over 

simple detectors such as the hard limiter. The advantage that the esti

mate feedback detector has over a detector of the A-F type is also made 

clear in Figures 17 and 18. The estimate feedback detector for D = 1 uses 

half as many sequence probabilities as the A-F detector with L = 3 yet 

has up to 1 dB better performance. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This dissertation presents a new suboptimum detector for detecting 

digital data being transmitted over a WGN channel with memory. The sali

ent features of the algorithm are that: 

1. The decision can be postponed to obtain better performance and 

the trade between performance and complexity is clearly evident. 

2. The detector is nonlinear for good performance at high SNR. 

3. The detector feeds posterior probabilities, in the form of a 

hedged decision, back for good performance at low SNR. 

4. The algorithm can be applied to channels with either FDIR or 

state variable models. 

5. The algorithm generates a measure of performance with a very 

slight increase in complexity. 

In addition, a pair of discrete time equations is derived that 

allows an A-F type of detector to be used with any linear, time-varying 

carrier or baseband channel whose memory is represented by a state vari

able model, and with any modulation scheme for which all signaling wave

forms belong to a linear space. 

By simulation of three specific channels the estimate feedback 

detector developed here is shown to exhibit performance that approaches 

the no memory case at moderate to high SNR. 
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Recommendations 

There are a number of extensions of this research that should be 

studied. 

In the analytical area it would certainly be desirable to analyze 

the error rate performance of the detector, possibly relating the mean 

square error of the symbol estimate to the error rate of the detector. 

In addition the error rate estimate should be analyzed. 

In the area of learning with and without a teacher, it would be a 

significant contribution to make this algorithm adaptive to the extent 

that it could learn channel filter parameters as well as signal parameters 

and noise statistics. 
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APPENDIX A 

SUFFICIENT STATISTICS FOR THE INTERSYMBOL 

INTERFERENCE PROBLEM 

Introduction 

In this appendix a set of sufficient statistics for the intersymbol 

interference problem is developed. Only the time-invariant case is con

sidered. First, consider the memoryless WGN channel problem. Wozencraft 

and Jacobs [23] derive a set of sufficient statistics for this problem, 

and the gist of their argument is as follows: 

The detector is assumed to be designed for minimum probability of 

symbol error. There are M possible signaling waveforms, and all are as

sumed to belong to a Hilbert space S of dimension N s M and associated 

s s 
interval T. 

Since S is a finite dimensional linear space, a set of N linearly 
s s 

independent basis functions exists such that any s(t) e S can be written 

as the finite sum 

Ns 

s(t) = Y s i b i ( t ) • ( A I- I : ) 

i=l 

This basis set is assumed to have been orthonormalized using the Gram-

Schmidt procedure. 

The noise, however, lies in an infinite dimensional space S , and 

an infinite number of basis functions are required to write the expansion 
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n(t) = Y ni bi ( t ) " (A1'2) 

i=l 

It can be shown [23] that for WGN, for any choice of basis set, n. and n. 
1 J 

are statistically independent for i ̂  j. A convenient choice here is the 

set consisting of the orthonormal basis set for the signal space, aug

mented by an infinite number of orthonormal square integrable functions 

such as to make the basis complete (i.e., that every sample function of 

n(t) over an interval of length T has a representation in terms of the 

basis). The specific selection of the augmenting functions is of no con

cern here. 

Recall from Hilbert space theory that knowledge of the coefficients 

x. is completely equivalent to knowledge of the corresponding x(t) e S , 
1 - X 

where S is any finite or infinite dimensional space; the waveform can be 
obtained from the coefficients by the series (Al.l) or (A1.2), and the 

coefficients can be obtained from the waveform by the inner product 

N s 

< b (t),x(t) > = < b (t), Y xi bi ( t ) > " .' (A1.3) 
i=l 

The inner product is linear so that 

N. 
s 

< b (t),x(t) > = y x < b (t),b (t) > , (A1.4) 
J i=l J 

and orthonormality implies 

< b (t),x(t) > = xt . (A1.5) 
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This inner product for S can be written either as a correlation or a 

filtering operation 

< Xl(t),x2(t) > = j Xl(t)x2(t)dt , (A1.6) 
^o 

or 

rT 

<xx(t),x2(t) > = J x2(t)Xl(T-t)dt . (A1.7) 
o 

The argument is then made that a set of sufficient statistics for this 

problem is the set of coefficients of r(t) = s(t) 4- n(t) along the signal 

space basis. Two facts support this: 

1. The only portion of r(t) that depends on the signal is that 

part lying in S . 
s 

2. The portion of r(t) not lying in S contains only noise, and 

this noise is statistically independent of the noise in S since n(t) 

is WGN. Consequently the noise energy lying outside S is irrele

vant to the decision and may be removed with no loss of signal informa

tion. 

Sufficient Statistics for State Variable Channels 

Consider now the extension of the above arguments to the case of 

a WGN, state variable channel model. The dynamical model for the filter 

is 

x(t) = Fcx(t) + Gcu(t) , (A1.8) 

y(t) = Hcx(t) , (A1.9) 

NOTE: xr(T-t) A x^t). 
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where x(t) is the state of the channel and y(t) is the channel filter 

output. The filter output can be written for an input pulse in [0,T], 

t 

y(t) = Hc0(t-(k-l)T)x((k-l)T) + Hc J ^(t-T^u^dT , (ALIO) 

(k-l)T 

(k-l)T < t < kT , 

where 0 is the state transition matrix for the channel. The first term 

f-h 

represents the zero input response for the k signaling interval; that 
f"V» 

is, it is a function of all symbols through the (k-1) as summarized by 
f"V» 

the channel state at the end of the (k-1) interval. The second term 
f"Vi 

in (A1.10), the zero state response, depends on the k symbol since 

u(T) = cg'(t-(k-l)T)uk , (k-l)T < t < kT . (Al.ll) 

The sufficient statistics for this problem can be obtained by 

making a Karhunen-Loeve expansion for r(t), retaining only those coeffi

cients that depend on y(t) and discarding components with noise only. 

Any set of basis functions will produce statistically independent w. so 

that the form of y(t) dictates the choice. The representation developed 

here is based upon properties of the solution to the linear state equation 

It is known [26] that all zero input responses, namely all solu

tions to the homogeneous equation, 

x(t) = Fcx(t) , (A1.12) 
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N, 

form an N dimensional linear space. Thus a basis set |b.(t)j 

space exists. 

for th 
1=1 

Let ib.(t)J- be a set of N basis functions for the signal spac<s 
li J. , s 

i=l 

and let Ay. (t) f- be the zero state responses corresponding to jb. (t) i 
1=1 1 i=4l 

•• * s s 
The members of Ay.(t)r are in many cases linearly dependent. 

i=l 

Consider now the composite set S given by 

. N , N 

(A1.13) 

A set of N (N, < N < N ) linearly independent functions, denoted 

{ 
c ^N 

Wi-l 
(A1.14) 

can always be generated from S . These functions form a basis set for a 

Hilbert space over [o,T] which includes the collection of all channel 

filter output waveforms as a subset. The set of all outputs is not a 

linear space, but the need here is to be able to expand any channel output 

in a finite series. 

The set of basis functions can be correlated with a T second seg

ment of r(t), the observation, to produce a vector of sufficient statis

tics. 
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Sufficient Statistics for FDIR Channels 

In this section the sufficient statistics for the FDIR channel 

model are developed for completeness. The results are the same as in 

[16]. 

The response of an FDIR channel to a given pulse is a waveform 

g(t) of finite duration and the "chips" of g(t) are defined as 

g/(t) = g(t+(i-l)T), i = 1, . . ., L, 0 < t < T , (A1.15) 

so that 
L 

g(t) = T g. (t-(i-l)T) . (A1.16) 
^ l 
i=l 

g1(t) is the zero state response of the filter and the remainder of the 

chips represent the zero input response of the filter--representing the 

interference portion of the waveform. 

Any possible filter response over [(k-l)T,kT] can be written 

L 

y(t) = Y. Vi 8i ( t ) • (AI.17) 
i=l 

The chips may form a linearly dependent set, but a linearly independent 

set can be obtained from them. A set of N orthonormal basis functions 

r iN 

ib.(t)i- over the interval [0,T) can then be generated using the Gram-
L X Ji=l 
Schmidt procedure. Then any channel filter output can be written 

L 

y(t) = T y±h±M . (A1.18) 
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Again, an information lossless way of sampling the input data is to use 

a bank of filters, each matched to a member of (b.(t)}. 
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APPENDIX B 

PROBABILITY OF ERROR FOR THE OPTIMUM DETECTOR 

In this appendix a probability of symbol error expression in terms 

of posterior probabilities is derived for the optimum (minimum probability 

of error) detector. A special case is developed in [25]. 

Consider the set of all possible observations L, , denoted by S. 

The M posterior probabilities, 

P(Hk
 =^ il

L
k +D

) ) i = 1, . . ., M, (Bl.l) 

generated by the optimum detector are defined over S. 

The universe S is partitioned by the detector into M disjoint sub

sets. S.. such that 
1 

P(iik = ^ilLk+D> " P t H k - A j l l W <B1-2> 

for i ^ i and L. _ e S. 
' J k+D 

The c o n d i t i o n a l e r r o r p r o b a b i l i t y i s 

P(e|uk = V " J p (LkjHk = VdLk+D ' (B1 '3) 

Sc 

1 

c 
where S. is the complement of S. in S. The total error probability is then 
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M 

Pe = Y P(e'"k = - i ) p ( -k = V ( B 1 ' 4 ) 

i = l 

(B1.5) 
M 

= J P(Hk = A.) J p(Lk+D|uk = A.)dLk+D , 
1-1 S ? 

1 

M 

= r i p(L
k+D>iik=^>dLk+D• (B I-6> 

i = l SC 

1 

M 

= J J pCSk^lWpcWhc+D ' (BU7) 

1=1 sc 

where the last step results from Bayes Rule. 

In the special case of M = 2, 

P = I P(Hk = A j L ^ p d ^ d L ^ + f p(uk = A2|Lk+D)p(Lk+D)dL 

(B1 .8) 

e ~ J p v - k - 1 ' k + D / F V k+Dy k+D J K V - k - 2 ' k+D y K v k+Dy k+D ' 
S c SC 

S l b 2 

= J T (P(uk - Ai|Lk+D)}p(Lk+D)dLk+D , (B1.9) 

= EL, f m i n P ^ k = 4 l L k + D > ] • <B1-10) 

Tc+D 
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APPENDIX C 

THE ESTIMATE FEEDBACK ALGORITHM 

The estimate feedback detector generates 

P(Hk = W D * ' i = 1, . . ., M, (Cl.l) 

and makes the decision, 

d(uk) = A. , (CI.2) 

if P(Hk = £..) ̂  p(uk = A^, i F* 1, . . ., M . (CI.3) 

The probabilities (Cl.l) are generated from summing sequence probabili

ties, 

<Hk = v L k + D > = I • • • (ci-4> 
"-k+1 

Y P(Hk
 = At'. Hk+1, . . ., ^ W W > i = 1, • • ., M , 

^k+D 

where each summation is taken over M possible symbols. The sequence prob

abilities are obtained from 



64 

?<Hk = A., H k + V • • •• H k + DA k + D) = (C1..5) 

? (4 +D^k
 = A * W •• " ^k+D' Lk+D-1> ' P

(^k = 4' 

J*k+1' " • "' ̂ lAc+D-l* + P^D^k+D-P i = 1, . . ., M . 

The denominator is identical for all i = 1, . . ., M and can be considered 

as a normalization factor C. In this work an independent symbol sequence 

has been assumed, so that, 

B(Hk = A., uk+1, . . ., uk+D/Lk+D-1) = (CI.6) 

PCSk = A., u k + l j . . ., u ^ ^ / L ^ ^ ) - P(uk+D), i = 1, . . ., M . 

Then (CI.5) becomes 

P(uk = A., uk+1, . . ., uk+J)/\+])) = Cp(uk+D) . (CI.7) 

P(W^k = A * W * ' " ̂k+D> W l * ' 

P(uk = A., uk+1, . . ., U ^ V V D - I * ' i = 1, . . ., M . 

The last term of (CI.7) can be rewritten so that 

?(Hk = A.. "k+1. • • -. Hk+D/Lk+D> = <cl'8> 
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C- ?(uk+D> * ?(Ik+D/Hk ̂ ' V r • • •> Hk+D> Lk+D_x) ' 

Y p(Hk-r • • ••' ^ . / V D - P ' ± = I> -. • •• M 

Sk-i 

rm The third term in (CI,8) is a Gaussian density, whose mean, L » is obtained 

by using the state and observation recursions, 

^k-1 ~ ̂ k-1 (CI.9) 

*c ~ ~c ~ 
x. = F. x. , + G. u., i = k, 
-J J -J-l J -J J 

. ., k+D , (CI.10) 

rm -... _ ~1 ~c ~2 
-k+D ~ \+D ^k+D-1 + \+D -k+D 

Hk 

M 

L k P(U*-1 = VLk+D-l> > 
i=l 

(CI.11) 

(CI.12) 

= F ^k = \^k-l + t k H k 
(CI.13) 

and whose variance is the additive noise variance. 

The last term in (CI.8) is available from the previous iteration 

of the recursion. The recursion occurs in the order 

AC _ A 

^k-1 " -k-1 
(CI.9) 

*c 
x. = F. x. , + G. u.. 
-J J -J-l J -J 

j = k, . . ., k+D , (CI.10) 
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Hic+1 

2 P<Hk = A . . ak+1. . . . . Hk+n/^^ ' 

66 

P(Hk = 4 - "k+1, • • •, V A ^ = <C1 '8> 

C • P<Hk+D> • P d k + D / ^ C = AL' J W " « ' " Sk+D' Lk+D-1> * 

2 P<Hk.r • • •- JWlAfc+D-l*' i = 1, • • •» M , 

p(fik = V W " . 1 • • • < c l-4> 

i = 1 , . . . , M , 

•^k+D 

M 

4 = I 4i pX-i = VWi> • <c l-12> 
i = l 

*t = K 1 . 1 + g
t i • (CI.13) - k *k ^k -1 "k - k 
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