AEROPLANES. PABT, PRESEMT。 A H D

A THESI8
SUBTITEEDFCR THE DURTRE OF A.S.IK MDCHANICAS MOIHESEIHO ET

1925

The acroplane is antural outcone of eatantifie invertigHthom. Ingluting the theory of ofolutiong man firot a0m quifed oontrol over land and ock motion in Ferion mano.
 drawn land veactio or baxiote tot. What ise way there i Iot hith to do bett to want matexy of the airt tie could ge on land, on tea, and under den, ob that ar Fehtode mera loglank outcome of pregzesulve dinds.

Haturally the fingt meane of propulition on land wag obtaknof by hand powex. Jan nocm learnet that enimale eould be used vith great maving of hia miph enoxgy, to the developer
 of machincuy- mogt mitably tho stem agino-mentintenily operated enginew moon muporerad the older eopetrwetione. The fiset Iow agines were very Inaficicut aesording to
 marikel ohinge in mothode.
 DeAng promithy the bat example of a coubination of mad and hand powes before wean ughmen wert introdue et.

Yow what in more matural than to bro atr vohtole tollem-
 sypen when aros

1. The 1ighter-thamalis cxatt
2. The helloopter
3. The ornd thopt est
4. The seroplane
5. The lifiter-than-aix type, or beliocn, was the firat witin which man suocoeded in eustalaing hineelf in the aty 10% con oldorable periode of time. The ensential elements are
(a) Apeee oocupl ed by momething lighter-thanaits
(b) Heevien-than-ali nen oge.

These must be acoduated that the lifting foree is mificile nt to orereone the welght of the encelope. The firnt of this type was non-4ixigible, of merely deacence for acecnaion and 2lotation in the air. This left it to the maxey of the provaliling wine, so that it was reelly of no practical impoxtanoe for looometion; - momitimee days had to be opent waitivg on a favorabio wind. It bas been ouggeated that at aiverorent heighte in the atmosphore the wind direetion changee. With thite varified it might be poselble to rise to the hatght giving the best available dirootion, that proceeding to the desirsd cestinetion. It is reoorted that belloone were used by the Ohlatese at the corenation of the zmperez Jo-II ex, at Pokis, in 1303, and it wes thore ateted to be a oustom, so that the first mes probably mon eerlier.

A fom yoars aftof davendich publishod his reanite on the weight of hydrogen (1768), Hberixe Oxvalle Iatlated moap bubbles with this gas: thef theated upwayd until thoy burat.

The fixite ballocal are genexally agsibed to the Montgolst ed brothere, who produced their apparatue in 2783. Thelr method was to hare a large paper beg with a bole at tho base. They then 11ghted a 11 re of ohopped strawn underncath it, and, © couree, the balleon moon roee. strange to my, howerer, the

Montgolfiere did not realize for rome time that the lifting power was due to the heating of the air, and not to the amoke.

It was a mattex of only a few weeks after this that hydrogen belloons were used. These developed until it was thought expedient to have enginee installed. This wae a great forward etride, as the behicle was no longer left to overy whim of the wind God. so long as the engine pull was more porerful than the force of the wind the operator had oontrol. In any ordinary wind now dirigible balloons are quite safe, as thoy oan attain a speed of $60-\mathrm{mil}$ les per hour without difficulty.

Although these have been auccessful it is evident to a thinking man that there is very little future for the balloon. It requires costly material, has great bulk, is unioldiy and has great cost of upkeep. It afforda probably a better speoteole than the aeroplane, but its usefulness is nearly at its senith. The common gas used was hydrogen, but due to its inflammability modern tendenoy is to replace this with helium making the initial cost still higher, and inoreasing the volume of the balloon.
2. The second type of air vehicle is the helicopter. This utilises the lifting power of propellere so as to rise vertically. It is a heavier-then-aix machine. There has alwaye been some controversy about this type, as aefety does not feel entirely satisfied with relying wholly on the engine. If the engine stopped there is really nothing to keep the maohine from falling abruptly. True, the propellerz theme olves may be utilized for this purpose, but these are generally not sut-
fiol ant. With inorsaeling dependebility of caginen this is becoming an moreasingly important branoh. It would beoome even more so if an arrangesent oould be continued for stopuing quick descent. This wight be wocomplished by a sudden opening of a parachute, by quiok opening of adjustible winge, or bop blaste of alr or other gas downwarde. The perfection of any of thase would increase the feeling of respect towards the helioopter. A ocatinuation of this frincipleis given at a later past of the theais.

The combination of the helloopter and the aeroplane is very successful ralatively, as in the Bertin, and it is this onn bination which will probably survive all others for oity use, although perhape not for comomy ia full flight.
3. The thixd type mentioned is the ornithoptex, which trite 0 to immitate bl xd aotion, ic. by flapping mings. It wes expeotea that beoauae birde have parfeot mechanign that this should be aimed at in practice. However, this does not soem to fit manmade articles. Man's greates power is obtainod by rotary

As the oraithoptex followe bire and insect motion it would be expeoter that it was the firet type of heaviem-than-aix mohin inventec, History goes back a long way with atterpte to make a aucomesful one, but the lizet to produce sustent1an of any appscolable amount was Deger's in 1809, when, by vigoroualy napping large very oonoave wing he managed to

Fise 84 foet in the air. He was helped in his rioting by a balloon, or by comptoxweights passing orer a pulloy, whioh IIfted 80 Ibs.
 Yed coninnation of the ornthopter and the aezoplane as he used the llapping viage for propuiaion only.

The oxnithogter so faz han not proved suocessful; the only enes tant heve been a0 are modelie.
4. Oar noxt type is the aeroplane. This has proved very nuoe cesatul in practice, for sises varying iraw modele to tho oarrying 8 or 9 pastengert (In Britula there are amoplanem otyrying at poeplel Ao oeriy an 1910, the Rregnot oarried 8 pansengere.

Suocessful aeroplanea have becn in use for a leag time, tut the sizat ilight of am oarying powerm propelied aeroplane was in 1890, when a mehine destgned by clemat dier flem for a aistance of 104 I eet.

The oxnithopter was a logteal outoone of sow, Happing, wird T11ght; to thexe is the antoplas the macescoz of guick bird soaring. This ghenoncon of soaring is 1ittie undoratood et preecnt. elthough vartore theosien have bean put lexward to axplain it. One view is to hold that zieing ourzonte hold tho of rit ust anether is that the bird usen the internel energy of
the wind . It in quite probable, or at least posalible, thet the real molution ilea in oombining the rising ourrent idea with that of gliding mowly from a higher to a lowar plame.

The propellar aotion, of oourae, is wholiy man-rases, with no analogy in matura of which the authos in atace. Tain ia probably dut to $i t 8$ imposal bility, as a propellez requires two separate paxts for operation. Otherwite the whole mimal would have to keop refolving at tha $\begin{gathered}\text { ame apeed as the pro- }\end{gathered}$ poller. This animal has nerer yot boen found, but it io olem ariy shown in the oase of falling leaves; the whole leaf turne round repidiy, tious atopping aveden deachint. This same primoiple is sometime used in the nolicoptexf-o.1. having the gropellerg turned round by the roxed of the wind, or asconcing air curfents, thot Ietmating the detecat.

The problem of indefinito scering is cae whoh thould be ine Ventigated as thoronghly as poseible, as it has been held by many very able sci entimet that it is practised by birds. If man oould depise a monine whereby he oculd travel over
 to lift hin up, present day vohioles would neariy all be esrapped, thut adding atill more to the eorap heap of the univereo.

Qlidex wer uacd for many yearn before the ider of motor pre

Wateat of these was found. e.g. the bill enthal gilder of 1891. in which he performed very many ancessiul gildes of maximum 1 ength 1000 feet and maximum speed of 22 miles per hour. problbly the first real suooese was the experiment In dallfornia. A gilder, desigaed by profecsor Montgomery and movated by paniel yalomey, wes raised 4000 feet by a balloon, At this height it was cut loose, and the glider began to deneend, undez oomplete ogntrol sil the time, it was finally brought to reat on the spot deaignated. The apped attained wa estinated to reach a maximum of 68 miles an hour, ahich it that tire was truly remaxkeble.

It is rather atrange that after the arolopment that has taken place in the earopiane there should atill be the interost felt in the gilder, but even yet there is a great anoumt of work being done on this apparatus. It wight be duet to the hope of diecovering perfeet otroam-lina form, with ocasequently a nearex approach to bira socring. or it may be that interonted amateurs with neither the capital nor the ambition for awroplane filght axe ettorpting to oatabliah it as a meparate mechine from the eeroplame, for $\mathbb{E 1}$ nenoial or othay conciderations, In spite of the aupcessen these have made there would seem to be little future for the glider as a thaide for the everate man. It noede a hight to etart from, unlese it be flrat towed, and oamot fyy mom oastuly for any great lagth of time. This is oonstantly improring, but it is not possible (oz at leat highly improb-
 out thif the gifdar mould bete to demead ao often curing a 1.ong titp that it mould be impacticel, as oompered with the
 acooxd ath prosent day ideas.

It ray be noted hexe that a $30 \mathrm{mb} \mathrm{m}_{\mathrm{i}} \mathrm{p}$ per hour wind on ground
 this my be utilized by glidere - by firat rising to an enormows height, growez then usualiy ettergted with gildexp, than oraploying the wind to propel then on their way.

Glidere baye boen of fidely varying formg. The earlient one naturaliy tonk bixd lown, the popular bird being the bat. Nomuday: the ghat folaow momoplane chatgn, and thus woring bifde. A fove are Aplane. and soxe are double monopifnef iout in general they are exghinel ain monoplanes.

The Ader "Aviog" of 1897 was one of the firat seroplanes to 17. It mas of a bat-like form with twin propollere, and, juiging tron ith great angle of inoidunco it mat hava requined great porez to trayal at any maderate mpeed.
 motor. The pllot wien plaosd out in Iromt. expoged to all the rimat and the eold at the helght renohed, It might be noted that the Wrighte had no groat muocess with thedr machines motsi aftex Professor 組tgomery of onlloxnia had publithed he artiele on wing maxping. The wrighte produe ed a
type of working very similar to this shortiy after, this being not at all like that apecified in their pateat. A leason learnt. preausably, from whion they profited unduly.

In 1908 the santop-punont box-kite was flown. It had a long body in front with praotically nothing bebind the operator, and, of course, was not vexy stable unl ese flying in the sane direction as the mind.

In 1907 a great many mahines were put on trial. The noost important of these were the "righte, Voicon, Farman, Avro, Bleriot, F.E.P. eto. It is peculiar that nearly all of the aeroplanea built round this time were of the "Canard" type, 1.e. hed the longitudinal stabilising surfane placed out in frant of the machine. This was used by oome meohines as late ae 1913. psobably the eight of the controls gave a heartemink offect to the pilot.

The real dramback to the "Ganeru" bype is te followe. The mein gurfee in this is the tril surface whioh hes to be set at a lees angle of incidenco than the forwara stabilizint: nufface. Thie means that if the main ounifoe is set at 5° to give ilft, the formard atabilizer ainat be sot at say 15°. This gives a tery poor list-drift ratio and oonsequently poor officiency at present dey spasds. With the lour apeode of tine firat aeroplane this wes not noticed 20 man, but ave epeeds increased the "Cenard" type had to give way to the preseat model.

It wae in 1909-1809 that the blggest advanoes mere made. The tyiplane was a teature of 1908, but so fay it has not been developed to any great extent. The Blexiot machinew were grectIy improved about this time, and in 1809 oame in model XI which is the prototype of all nis later guoceres. Hi also brought out the "paranol" type, so named boonuse the winga ere plaped abowe the observer, giviag him a clearex viow of the grownd.
frou BIariot's type $X I$ to the present duy there hee been no maxked inprovement in monoplane demign. woh part hea been 1mproved, as for example, ohape of vinge, improved buliding material, better enginee, mare erifioient aontrol, etc., but In gemeral, the shape is the same now ts the 1900 model.

Is it not rather peculiax that monoplanes sinould develop quiokly in a 1 ew years from a very orude bagkaning to this Blariot model and then atay with this form for about 18 year: longext it is an obsiove deduction that this is not the bewt shape poseible. The biplane is practically a replica of the momplane in oheraotexietions, so they are both trented as one. If this is not the beat colution of the problem, then what ia? This will be discusted a ilttlo later.

Dearly ofery one has seen acroplanes within the lagt fex Yeare, so it would be waste of time to deecribe then. The proveliling typee are moplanes and biplanes, descriptione of thioh ean be had frem eny aviation magezine or book. One maried tendenoy is to enolose or exything poesible - there are practionily no maninea of the present day which have bodies not encloeed, valeng, perhape, a Per experimental one built for conomy. This make neater looking maohine and, althoagh inerecting the waight silghtly. improve the effioleney by guppiying o otrean line form ingtead of mumerous ettaye and orose bara.

Propilision ie obtained by agine varying in H.P. from 16 to 1000 (The liapier Cub). of what partioular adrentage is thita veriationt The autorobile of today has power plante varying Iroan about $10 \mathrm{H} . \mathrm{P}$. to $100 \mathrm{H.P}$. approcimately, but the average 1e falxiy etendard round 20 to $40 \mathrm{H.P}$.

Would it not be an asset in aexoplane denign to standaralige the power plante for pleaure ozaft in a Ilte manner?

In the automobil the graciline engine is the cat most oommanly uoed, but there are other types in use, e.g. oltotrie motort and stam angines. Eixilaxiy in the aroplano, although the ges. onginais in use in moet oaces the ftoan engine aleo hat been wed. A Iomarirably Light oongtzuotion of guan is thet

pound. without weter, and det eloped 363 herseponer, or about E-lbe, per horsepower. This has been considerably yo due ed in some of the latest Fresen oteam power plant deagne.

It may be noted that mont of the recont advaroee have bean made in France. Tith the development of ateam turbines the nae of these might be qaventhgeous due to the pouer obtained for light weight, but, 60 far, for mell power they have proved quite ineffioicot.

The aleotric motor mas not ben anplied to the aeroplane With any sucoesi, due to the weigit involved, the lowest yet zeoorded, we belleve, belng in excees of 6-1be. per horeem poner. The earoplana gasoline motor 18 vexy deadedly lower than this, verying from 1.8 to 3-lbs. pex hore peter genereily. Varicus other methods have ben ueed.

Oompresced aix, enclosect in steel oylingers under hieh preasure, has been ueed with modela, but, on account of welght it has becn practicaliy dropped from aeroplane work. Indead any method of areating pressure of a gas then suddealy letting it expand under o surface would mexe the sixfaon rise. Thus ohemioal aotion could be used. Verinus other deviese axe diem cussed in the later part of the thesis.

To digeuse possiole future developmente of the aeroplane intellignetiy, and to put forth prediotions xequires a rnowledese
of the exematial pointe of stabilisy in deaign. If these are not eatiafled, the aeroplanes no mattor how well it may look, if doomed to failure, mothat ien notee on stability here rould be adyisable.

The stability of an aexoplane can be aivided into 3-clasaen
(1) Langiturinal stability.
(2) Lateral etability
(3) Direotional stablitity.

Thie in protty woll morked out in aeropianes. It hat boon underntiod by mont, if not ail, of aexoplane experimenters. and very fe have overiooked it antirely.

It can be explained by reference to the diagram. A is the lifting muxface of the acropiane. At the noxmal angle 'A'

It in gurficient to iftt the whole mohine. B is the tall or etabillating surfiace, set to produoe no lift at the normal angle. If the manine were to pitoh nose upsards as show in seoond sketch thro' angle ${ }^{\prime} 6$ ' $^{\prime}$, the center of presaure of 'A' mould move foxwaxd, which ill tand to ingrease the pitohing. The sail surface B, howerer, come into play. It now has an angle 6 and consecquently a lift, tendine to ouing the tall
 down affect. Fine total ilift on A as the meohine pltohee nope upwayd will not inotense mon as the apeod will alow down due to the inarenaed resiatanoer Thia is the prinoiple montly used in prention.

It in rexulred thet the engle of inoidenoe of the tatl surfece should be ate at a leas angle than that of the main murface, at just explained: but it dow not mean that it mat be ent at a less angle sith reapeot to tite oenter line of the machine,
 thous altesing the angle with whioh it moete the tail. If this dafleation be auffiolent the tail man main suxisces masy be set et the same angle. TMe give a molativaly amiler angle of incidancet.

The following method is sometinee ueed. If ilireoticn of motion

18 we ghown, and winge tippat book, then the ant affeot is obtalnet.

If the centsr of beed repletance ia abore the canter of gravity of the matine an and on guet wil? tend to throw up the nose, and duxing itn dying atay to dip the noce, thus exagrorating the nor emente the to the stabiliaing foree. This is obfeotionable If the centex of had retistanoe is below
the ecater of gravity the foxeen will oppose the atabiliz lag offet. This is dangerous. It is obricuat then that the conter of total head reaketane of the woohine should be an nearly as possible in the same horisontal line as the ocmter of grayity.

TO canuse that the mehine taker up ite natural gilaing ancle If the engine were to etop it is neceasary to have the center of grapity a littie in adrance of the center of lift, wo as to give the nose-heavy offent required. If the ceater of grevity were behind the oent or of 1ist, the mehine woule slow up, turn vortioal and fall traight down.

The maximut offiol mey is obtainod from the propoller whin the thruet is horisontal. It is therefore dealimble to hise the thruat hoziscontal and a 14 tile below the ocater of dzift to overvome the nowo-heary ofteot when fiying. Immealately the engine stop: the meohine maturally take up ite gliding angle at above, 1 eaving the pllet free from this worry.

(8) Laternictabs 1ity

This ia the foxm of atability whion anaes that an oxen kech Lis attainod on remoral of atsturbing foreos. If the winge are plaoed with dihodral angle, as show, this is obtained provided that the ontex of gravity of the mohine is not too high.

In the normil poatition A the Emohing is atable. If it is

silted to B there is a groater leagth on the right than on the left gide, so that there if a greater IIft, the lift varying With the horizontel component of the wing suxface. Thin therefore bringe back the meonine to an efen keel. If the engine atope when the machine is as at E there $\begin{gathered}\text { will be greater rosistanoe to downurd motion at }\end{gathered}$ the right than at the 1 eft. so wo have atability as before.

If the raohine tilted as shown the center of lift C L oinange the vextioal line for the Iift through C I. will weet the center line of the anoinge (on which the oenter of gravity mast ile) at 14 C . As
before, if C. G. is below H.C. atability wil realit, but if it is above, the machine will oapsite. If the O. G. is too low the mahine ats lize pendulup, but this is not dangercug, 80 is prafexable to the other. It will be notioed that if a guat of mind blows Inom the Fight X will be raised up and I lowered, as X hat a poettive angle of incidence and I a nagative one. This could be cosrected by puttinf a fin or extioal piane bolow the center of gravity. The iln could be ade large onough to oounterect the atde fores. The keel surfeoe should be equally divided sbove and below the horizontal turning axiag

(3) paxcetcenal atepulity

If an arropian had net this otability it vould be delieted from itic ooure by wery guet of wind, whioh is by no meana a dealrable zeature. An end-on gust, of couries doen not alter the oourse, but alde wind will give inozeased zeliutane to the moh oldad ming. Thi whd alse will tend to turn roumd the body, pine eto.

It is opricun, theretores that the 1ine of action of the total rearltant aide preasure mast aet through the emater of gravity of the machine. This rebulte in more bodily motion
 matififetory state matil it in realized that the ocater or side pretaure vant on wh the atreation of tho gust. Oomplete bakane mader all ocndition it thorekore inpomethle.

It the enter of uld pzoseure is torward of the onter of gravity the nose of the mahine will tush with the gunt, and the mahine will rin alth the wind. Thie olll momentarily reduo the atr speed, whion in ungereme, on the other man, If the center of tide preasura is biaind the onter of gravity the mone of the machine Fill tum 1nto the wind and thate
 matter. It in thozetore denirable to have the lattor efteot $\mathrm{X} \cdot \mathrm{e}$
alwey to have the ounter of alde preature bohtad the o. of gravity. This ocald bo holyed by hayiag koel ourfoe bohiad.

A muph moxe important aspeot arise when the machine is turn ing mader the metion of the ruider. If the muder it turned
 -s mom la bketen, a foreo T will ast. This will maxe the manine mare a little sidewayt, thut couning side prearuxe to act. The turning effeet due to theie two forces cave the machine so zovelve. whioh immedietely introduo et the att on of the Contriturgal fore through the orator of gravity. When the three faree asting are in equilibrum the mehine turn gicedit and, on removal ol $R_{\text {; }}$ the othere dieappear.

Suppote now that the ofnter of fide presaure in in fra* of the 0 of G. Imediataly R acts the three toxee tend to maze the mahine rovelve and thexe axe no belaneing forcen, so that one if R vore taken away the mohine would mill keep zevolving fatest and fater. It hould sleo be noted thet at tho turasigy increaset the oenter of st de pressure moved forward, thus inereating etill more the couple appli ed.
 meomine is benked, i.e. hat one side risen highes then the

attivg, and also the inextia of the manime. The turning of
 12 this in not obtainable from the machine it must be tainen from gravity; thas wie hate the deadiy apiral nose dive. It
 gad to have the 0 . of pregeure of the vertionl fine behind the C. of G. of tho momine. Vartical fing above the O. of Q.
 above. It aluould be noted that it the fing are placed too fer beek a gret foree on the rudder will be nooersasy to keop equilibrium, to that some jsidgment whould be used in determining its pontsicm.
guoh then if a single explanation of the estentlala of aeroplane dealga. ${ }^{\text {de }}$ not aome to a digoussion of future machinet.

F日T 日

The mathemetical atudy of aeroplanep is not an exact maience, exoept in some very few serte the formulae ued is aexoplaze deaign are ompirioal: even our master mathotioiane are content to wocept these in preference to thelr unproved theoretioal ones. If suoh then is the case, is it not manh better to treat thie subject in the light of proftora performance then to applif theoretionl lormalae in parta and prootioal knowledge at other plecent suol is our method of dealeng with the gubjeet.

The pover-dziven aeroplane of today has only been on the market mocossafully for a very fem years. It is an yet only in its infaney, and is stilit resarded in som quaxters, as al orer experinental pisoe of work: fortunately thata foeling is not prefralent in intelleotual oiroles. But we thank the pubiia chovid realise that the aeroplane is the probable vehiele of the future, or at least, some renoh of power dzivea heeriez-than-air machine will gur aly eupozoede the preacht day 1000 motive, street cars, automobiles, ets.

For a long time after the introduotion of aaroplanes the mere mentice of the subjeet wae cuffiodent to bring an ioy ohill to the beok of the limeterer, with thoughts imediately oonjured up of a daremedil pilot eteering a maky monstroalty ekymards, and the audden dropping to earth from a tremendoun
height, with dixoful remolta. This feeling is still murpxis ingly pepalar. The same smatinente wors folt at the introfrotion of the otem lecomotive and the automoblle, though, of ocures, in a munh leas degree. but these feellage nhow the inertia of the publie- it taken a lang tame for a n on 1den to scak in.

One of the main cacinion of aeroplane adrance is this same trait of lear, which, to a eertain extent, in a habit of mind. Aa an examplo, curing the firet \mathcal{Z} em yeari of the automobile it was looked on as a death-dealing instruments es a matter of fact, oomparing the pessenger- mile of auto, and horad dram vehicles the latter is responsible f for far more fatalities than the former. Suoh is the oase rith the aeroplame and the auto. incept in cases of warfare the aeroplane has far fewer fatelities per passenger mile than the automobile, but to say so to an euto. driver meraly gete a pitifying look. To see of an aexoplane crash in the papers ia cuits an ex ent, and to $2 i f t$ up one without seeing three or four auto. crachen in aleo quite an erent. Femiliarity with oxdianery travel mon breeds contempt of its danger. Thus, although tene of thousands of people are killed per year by antos, nc more is thought of riding in one than is walkigg round a blook. If the aeroplane were brought more inte public notice with actual statietice on acoldaete ae compared with other modee of travel it mould very quickly pick up trede and popralarity. This cow not mean, howerer, that the eeroplane
is not dangerous. It is, bat Felatively it is not.

There are aome Fery sound reasoas for predioting that alr Tohtal ate the arang of locomotion of the futuret- these axe at tollew.
(1) Inisial oost of 11ght acroplane is gech lege than that of motor oax.
(2) Upkeep per mile of travel is lead.
(3) Hightr apect is obtained for mame power.珄tha 1Ight plane of type explained in (f) 88 mien per hour maa obtained.
(4) The antomobil operate on one plane only but the asx hat an inflnt te maber of planes, thus aongeation would be avoided to a great extent.
(5) The wear and tear of roade would be leas, thut road rpkeep expenten would Iall, and theretoze thoae tanet paid by private auto. omecte mould practionlly be ollminated. of course, oonmerelal oare nitht atill be in ute, and there would have to bear the burden of road upkeop. The amount per persen rould be very little more than now.
(6) The wefght nepeseary for paseenger carying in dopidedly redued from autos, which weigh from 1000 lbo. upwards, negienting pascengers, whie the light monoplane go from 200-2be. up. It is true that the motor oar is uecd tox more than one or swo pagsengere, but tery oftem, as with coupes 1t is ung for tma purpoes only.
(7) similax to (2), but not quite the same; the gasoline and ofl oonmaption per aile with good soaring light plane would
 milen per gilion of fucl was obtained. Automoble give ganexally 20 miea to the gailcm, although some give a ilttle more.
(8) Inoreased aefoty. Thif has already becn explained.
(9) Inoxeased oomfort. There would be oomparativ liy little dust or exhauat gases from vehicien in Iront.
(10) Increased pleacure in aurrounding socnery. Is it not true that we adcy the vien from the top of a momala better than from the bottont
(11) Great cleanliness of the atmosphere due to practical ellmination on ground level of the retuse of gacoline motors.
(12) With more advanced knowledge of bird acticn and an intemal and external characteristion of the wind, it is proballe, and, indeed, a certainty, that nearer appromeh of aeroplane kight to bird searing oan be reeohed with correaponding losa in fuel or increase in comomy.
(13) W1th the type of aeroplane the author has dealgned, ceroplanes could be used in cities, letilns houge tops aot as landing and starting fieldo. instead of having axtos. atrem all rovad the bualness centers. Inst ged of this, they could be parked at the cide of the streat an autos, are at present, as stweet cars wovild to a great extent be out-or-date.
(14) Bue to the variour factors maintained, an inores.se in health would oome maturaily.

These reasons oould be fept up for a long tize, but enough has been sald to bhow why aviation is the probable future mode of travel.

FIE now oome to the dealica or apronlanes.

The ifrst requifelte is wings, If an attempt at eckazing is to be made. (iater on we will dicouse deslgas negleoting anage)
aince wings are a necesity, lat them first of all be as almple as possimie. i.e. let there be anty one plane. Alse wil be required place for the pilot to sit. (In the firat case, for slimplitity, we negleot any pabsemgers). To have hin sittiag domn in the open weuld be unpleasant, se we chall cover him uy meir as is done in the present aeroplane. The restit is as an earoplane minue the tail. The shape of the body will be much like a shall, beek ilyst. It was farmerly
thought that having a pointed front was an advantage in reduoing air resistanoo, but this hes been proved a taliacy. The rensem for this is possibly thet the body osrries in front of it a come of air mioh remeina ther just an an integral pert of the body. thus doing ewey with the necensity of having a pointed nese. There bas to be a meane of propulsica. Let us take for this a small geocline engine of light veight, and a propeller. rhis propaller can te put elther at the tront or the re if of the whinine, but for the iirst defign it if deairable to have it at the rear. The reacar for that will be plain whem the reteraing gsex is explained. Ke nor have the x eault shown.

To control the machine we munt have a rudder and an elevator. This is where standard practioe is very dooidedly obanged and 4mproved. 时th the present day aeroplane the controls axe an ahown. The mall vertioal plams a is the rudder, Fhich givan the directionsl control, inile is is the el frutor. Hou instoad of having one plane A, lat there be two, roime little distance apert, and let these be of triangulax form. We then have acuething like thia, looking from the reaz.
simiariy, ingtead of B, I the moztsoatal plames be
 unci, with the amme ctictane botwene shom at the malghe of piane A. We then have this, a squme lookitg from the beek, ow
tati of mohta. From the alde we awe A.A. ae tirtangle

 be berme in mind that Mplanem have been dereloped mingy to give a greater 118tstr power pez eq.foot of hativental axing and thas retume the grone melght per aq. foot of aurface, It is then erldum that if the feur

 the mais plames and ecmeter of gravity es ie umal, a greater kowe would be meded to hold them in pouktion whon twratys or olimblys, but with two plamet an A, tho fore an eag would be haived and vould cotatareot this cefont.

It we now tudta thene to the mahime we got the folleutig remat. The mothod of fecterting then to the mohine is of no cemanarme. in the mantime. thay would promebly mave to to fatimet to the bedy, but for ocup ent mee ve show then

The mephine is now a prinue mopepiano. guppoe rumbing sur
 ganaline co. ase sdded, we ate now Itady to etagt. That
advantago, you nay ak, hat this inomated oontrol ared givel The reascat are these.

If the asmeplate in goint to mow forwand the Sour titemgviar plate axe open, sa chomp above. with the agino etaxtad the monhine would move forwaxh, and at the sight tian the I platen would be mer od wowe olighty, and the asreplane would zise from the ground. yow all thoue tyianglee ase axh that they oan chther mo moved suparetely, or the twe A's or twe ste msped togther. If the direetion needs to be oharged,
 the ropalt is a closed hediven mquare pyraud do The propollor is conthmaliy turntug, but the atz fyow it is belng publed Into the pyimeld, so that inatiod of puahing Iocward, the propelier is praming the mandine beokwazio: if a quitol atop is requized ape the mahing han towiond the ground, the pyraind onn be formed and the agreplane atopped preotioally at onem. rifis is a divided atcot.

If the plane vere acying at ite maximu apoed in the afz and it come mudionly on 10 gome obptrole 12 k a ohureh
 to tum away or tum upwaxds. dare ahould be takm, howoren, on slouing down in the alx that tho opeed coee not get bo10w the ufnimain apoch, othervias the toroplane would Arop. This oould be reotifice by turning the mahtine vertioally and uning it at helicopter. Then again a mudden lowing dewn if dangeroun wille in the eix, so perhepe after all it mould not be advisable to une it mach when at a helfht.

II automobil we were built whthout buiken what havee would be wreught no ear could go et a groeter speed than one or two milee per bour in a olty, otherwise an aeoldent would be bound to take place at atmeot ocrness. If we vanted to stop at eone partioular place we would need to shut off the ongine or put it tato nertral, and ooast along until the manine atoped. This yould bo an intolerable state of affalre and, to un, is leughebie. Yot this is the aese with the modern aroplanc. It bas no braken, and is allowed to coant until is stope. The method of stopining is to "benk" the plane, ox lower the tall, thue givince a creater head realetenas. Tith oxdinary plicnas this in not ouffiolent to atop is whthin an oxcinary eorm-aore ziald. Tith gome of the bent light pianes recmily tected at lympre, in pritmin, they managed to
etop ia Fowgante, or about gio zeet, and to ziee in 220 raze or 450 feet, thene are quite ameptionsh. A good Dit moxe could be coocmplimhet in the dirention by a

 great banking vere made it would nof be opuivelent in any way to the offent of the revernatig eantgel already demazibete care mat be takn that the zationg of the controle cone not give more keel murfaec above than beo Iow the koogitwainal line of motion.

But qutor ntopping is not the caly fupotion of thit apparatua. It oan be prew ed that if inntead of a meare pyrantis a housephere is ured, the beokwend ralooity attained would be $33 \mathrm{I} / 3 \%$, but 20% could be appeoted whth good ahapeo.

ABse pyramd

and see what happene. Let the backrexntepeed $=\times$ feat/ex The rellative volceity of aiz and mehine is now (20-x) foet/ace.. The asz is acoplotely revorech and brought to
a standetill, if porisot meokaniak. For maximmaffioienoy $X=\frac{1}{2}$ where $V=r a l a t i v e$ tolume of air and meshive $\because 10-x=\nabla_{0} \cdot$. For mandman officienoy, $10-\frac{x_{n}}{2}=x$ ** $3 x=10$. or $x=331 /$ 形 of forvard maximum apeod. but this shape of reversing mechanian doee not conform to beet preetice in aaroplene design. The elevatora should not be plane triangles, otherwise the lifting power of these would be very greatly reduoed, wo that it if adviseble to modify the by witng ouxyed suxface like the main winge. The rudiens are not extraordinery, and if made of plane surfaces would be no great ohange, as they do no lifting. The ghape mould now be this.

0 would be approximately afdway between D and E, so that ceoh el erator would move nearly the same amount. The curved surface $A D$ and $B E$ could be mate of standard dealgn for tail gurfaces. The ourte BC is made in auch a way that when $B E$ is fully olosed it will coinelde with BO. stmiarly for 10 . The ohozde AD and $B F^{t}$ would be set at a gmaller angle of inoldcuee than the min ilfting awfaces for lomgitudimi stability, ae expleined
in ohapter relating to that branoh. Although this dengr ie all right from a theoretical point of view, the probebility ife thet elther the elevetore or the ruidere would be too emall, es it rould be prearming too mach to essume that they should be equal. If the mwiders ase too small compsed with the elcrators the difficulty oan be got orer in the following manner. If AB and Fi were ginilar. as in the 2iret
 oese, thes CO and DH , the pexpendiculers on to the evival af would not be equal in 1 ength and on closing the ruddere the pointi C on enoh would not toush. This could be
reatifiod by having AB lancer than FE awoh that when fully olosed $\mathrm{gtog}_{\mathrm{O}}^{\mathrm{E}} \mathrm{E}$ rill lie on a plane parallel to af. If the ol erators need to bo rede lmager than the ruddrese the aame process could be followec.

We heve non eettled the shape to a oertain extent, so we oan proeed to the olculation, ualag apirioximato welghts. Fer thee it would be edvigable to uee figuree gimilar to theae in uee for materiales, atruotures, oto., as it is the
intention a the author to make his preaiotione on present day periestion, and not en some tenoiful Ifgures which may now er be realised.

The motor deoided on for first consideration is the parraey, which wetige 66-Ibs. and der olops 35 H.P. The deotelica was made on account of lightness. other mohinee oan be deaigned with a heavier and more powerful ongine, ut. of engine -66-1be. With oil, gawoline, to. for say 3 -hours journey the vetght yould probabiy be brought up to round 130-1be. Weight of propeller and haib equal 10-1bs. rotal engine weight $=140-1 \mathrm{bs}$. for 3 -houre journar. Groas waight mesights of engine + pessenger + seating + body + minge + instruments + landing gear + oontrole + refereing gear.

According to 0 . D. Haneoom in Xent's Mechenical moineer's Handbook the following figures give apmoximate valmen. Feight of body 9-1bs.
\#it. of ringe with braoing - 1-1b./aq.ft.
This is for a plane heavier than ours, ao we can masume . 8 -lbs./ eq.ft.
Treight of equipment - 4\% of gross weight.
Telght of lending genx $=6 \%$ (maximum) of groos Filght.
Felght of tail struoture including ping and tudders equal 1.2 (raximum) ipe./8q.foot.

Grose woldht $=140 \div 160+10+10+$ winge $+10 \%$ of gross whight + tail etruoture.

Ansume that the monine lifte p-lbc. per equit. of wing area. (The Bristol monoplene lifts 8.9-1bs. and the Looming m 8 monoplene lifte 9.9 lbs. /scift., so 7-1bs. per eq. ft. is a reesonalle aesumption

Assume tell gtruoture weigh 20-1bs. ••. 90 ross weight equal $140+160+10+10+\left(.8 \times 1 x_{f}-\right.$ 地 $)+20=340+$. 11 Gx. 㫙.
\because Gzoes ultght - $\frac{340}{78} 430 \mathrm{ibs}$.
This imoludes passenger of 160 lba . weight . ${ }^{\circ}$. not weigl aggine, all, egoline for 3 hrs. $=270$ lbs.

It will be realized that this is outtine very close to the 1infts attainable, 00 for safety and to pacily any scoffera we shall raias the grose welght to 460 1bs., or an increase of 30 lbe. over our aaleulated veight. Surely this nocovats for more than the slight errors tue to inaocuraoy in average tigure of aeroplanes.

Frou the figuree given abova, the wing area $=460=66$ eq.ft. afprox. ut. of wings $=66 \times .8-83$ lbs. If aspeot ratio $=7$ then $7 d^{2}=66 \cdots d^{2}=9.43 . \quad \therefore d=3.074$ span $=7 \times 3.07$ equal 22.51. 2°. ang is $21 \frac{1}{2}$ feet $\times 3$ foet. \therefore niag area $=21.5 \times 3=64.5$ sq.feet. \therefore Lift $-\frac{460}{64.5}=7.1 \mathrm{1ba} . / \mathrm{sq} . \mathrm{ft}$.

This is a light monoplase, and to oarry $7.1 \mathrm{iba} / \mathrm{sq} . \mathrm{ft}$. is perhape acking too mach of the filmay winge, so we shall increase the Fing arect to 80 sq. Ioet. Thin inoreases the wt. © ${ }^{1}$ ringe to 63-1bs.
If espeot ratlo - 7
$7 d^{2}=80 \quad d^{2}=80=12.43 . \quad 2 \cdot d=3.38$
"ing opan $=3.38 \times 7=23.7 \%$

 Feight has to be inoreased to 470 lbs , due to increase in wing axea. The lift /horse power $=\frac{470}{35}=13.4 \mathrm{lbe}$. The lift obtainable in mome Bxitiah light plames is 80 Ibs. per h. P., mo no difficulty would be experianod in obtaining 13.4 Ibs./K.F.

It should be taken into account that the aritish and the French axe some years in advance of kmerica in light plane design.

L1ft $=\mathrm{Ky} \mathrm{AY}^{2}=>470 \mathrm{Ibs}$.
Where $\mathrm{Ky}=$ Coefficient for the mechine
$A=a r e s$ of wings.
$V=$ folative velooity in feet/8ec. of wind and manins.
Ky is nearly independent of A \& V if the angle of incidenes remain ocostant.
LLft $=\mathrm{L}=\mathrm{N} A \mathrm{y}^{2}$
DIE1t - $D=x_{x} A V^{2}$
From" Aercplaze Denign"
by F. S. Bacmell, for a lead of 5.9 lbe./ag.ft.
Ky for a monoplane $=.00207$ for minimax apeed.
$\therefore E=.00207 \times 80 \times \nabla^{2}=480 \mathrm{lbc}$. asy.
$\therefore \nabla^{3}=2900 \quad \therefore \nabla=53.8 \mathrm{ft} / \mathrm{sec}$.
\therefore. mintiman apeed $=37 \frac{1}{2}$ adier per hour.
It may seem that the high aepeot ration is unneoensary -
1t wes choeen for cocnowy ill flight. Leen fuel would be necessary for this machine then with a 5 ; 1 aspeot ratio. The latter ia the average for monoplanes, and gives a higher Velooity acquired due to the lessened head resietance. It is obvious that elther ong could be obosen, depending on the ultimate remult doaired.

The author has deoided, for first estimate, to compare with monopianea already deaigned and vexifled as to apeed,

The Monent lisht Monoplang.
wing epan 24 fect.
Leagth or erall 15 feet and 2 inchef.
Fing chord 40"
Wing aection adialar to Kartin HO. 2
Fing area 80 eq. ft.
Helght ampty 230 1bs.
Cruiting range 300 milet.

Span 31 feet. length 18 feet.
Ting are 114 sq. fot. Uneful load 220 1be.
Feight with 16 日.p. Vaalin sotor 275 ibs.
Total relght 495 1be. Hi. of fral 351 bs.
Crutating range 3 to 4 houra.
High apeed 74 mele / houx.
"ith a groas wh. of 495 lbs . and a motor of only 16 H.P. thic mohlae atifine e opeed of 74 mileo/bour. If the grome Eeight be reduced 40 t70 lbs. and the power inorensed to 35 H.P. it would aerm fairly plausible to assume that the apeed woulo be increabed very apmreotably.

The resiatance varies approxdmately as the square of the velocity, so if the resistance at 74 willea jer howr fore aach plane is the sene, then the gpeed abtalnable eith
 a matter of fact the resiatance of the avis would probably be greater than that of the other due to its laxger ajag area and tail. However, even if this mpeed zore not railized, and only 100 stpol . onuld be got, it vould be cuite suffioient for the purpose for mhioh it sea deaignod. sut this is all the Iunation required of an aeroplane, - belng able to rise off the ground and to 12y at a zeasonable pace toarazde the dealred demtination.

Another ample of the nature is the German monoplene "Liet Coluci". the general informasion on which is as follews:

Sran i2 feet 10 inohes. Iedght 6 Ieet.
Irencth 18 faet. \quad innas ar 38135 eq. feet.
Teicht empty 330 lbs.
"eight lokied E5O 1 be.
ing londinz 4. 1 2bs./aq.It.
sigine gro co rourlae.
Fuel ceperity 4 houme.
Syecas 75 to $31 \mathrm{milles} / \mathrm{hour}$.
Gijmb to 3300 feet in 8 minut es.

power lasding $30 \mathrm{lbB} / \mathrm{h} . \mathrm{P}$.

How we come to the helloopter principle. This is, by having propellere of other rotating elemente on verticle axes, to enable the machine to rise perpendieutariy to the ground. The helicopters of todey ere of magy end varied designe. The min drawbek semb to bef thet no reliance cra be put on the machine if the ngine wers to stop; with some the enornous propellers eat as the eafeguerd ageinet falling, While with one of the bust (the Berlingr), the Iifting sorewa are on the wines end tall of the wechine, whic. is in reality a combination of reroplanc and helioepter. It 1s of prostionily standard txiplane deaten except for the lifting eoxem.

Con of the man obicotione is the tromendour power nesearary to 11tt the mahine againgt the resistende of the wing arem nad bedy. Fould it not be deelded adyantegs if the whole triplane could be turned on ond, and let the winge pioxee tio
 is not praotical with any of the modem typen, but with the deatga mubatited a fem pagen bofore the tail is not loag enorgh to preaent any difisculty. Theals ox gide could be piaod behind the ruddere so that the maohine oould stand nose up. The chord of the winge was wade 40 inones, and the totel 1 angth would be maxr 8-iogt. on diticulty in uning tha oongtructicn in that tho propel ex most exfiotent for taling the eexoplane horigontally would not be the beet for verticel filght. a oonpromse mould have to be made.

The Berlinter Helicopter wetige 1950 lbs. with pilot and fuel Ior 20 minutes 111 ght , and has a $280 \mathrm{H} . \mathrm{P}$. engine. (Taken fron the $\begin{gathered}\text { ath } \\ \text { Now }\end{gathered}$ The two nir acress are 15 Ieet diametcr and tura at 560 K .P. M.翟: gee gome difficulty in the gise of progellext. If they were to be greatiy redused in alge the officimey world fail, but it mould materisily help onr oase. It it obvious that the Berliner give a 11ft of about 9 Ibso/t.P. The other dengen mould need a 11ft of abort $\frac{40}{3} 5^{\circ}$ or 13.4 Ibe./H.P.

The resistance to vertioal notion is greatiy deorensed so that a higher rate that gilbs./H.P. could be expeeted. The very high rate of 13.4 Ibs./H.P. might not be reashed at the meme rete fo speed as the Berliner, but a little ancxifice of a fow feetsoc. in virtian flight is of very ilttio consequence when the extrems elimplicity and econong are eongidered.

If Damblance helioopter had not been mrecked before ite 4igures were vextil ed we rifith have been tempted to take his oaloulations to ghow the poesibility or our orn. Whith his mahing the gross whght $=2040$ 2bs., and the power of the engines $=110 \mathrm{H}$ P.
 exoese of what would be requized for our orm design, but of eourse his propellers would be moh roxe gifiaient dup to thedy enormone aizee. pamiolano cetianted We initial ci.2mbing speed at 10 ft. $/ \mathrm{sec}$.

The vaxioum other helloopters Exe of too oomplicated a design to be at all a comarciai nuccemb, althourch tomy way bo more effective for thely purpose.

If we asouma that our design could be used a heliooptar me can perform a fem oalculations to gee what ialght be axpeoted with regerd to epeed, ete. Let the propelier be

 Lestrog we hava the Iolloming.

जaxse power avalable $=35$.

P = power rearatred
彆 - Iever per segona.
T = thrant to bo overoome.
B ata. of properisu
$V=$ leloatty in feet/serd

- $7=0.269 \times 35 \times 4=16.14$ feet aseond.

 emall that the figures used pould probebly not apply too
 in the Ifne.

It It one of the ersential prinotplec In vextican nitght that the propellems ohomit be latege while with morlzontal fitght very large propgligs are nunaly avolded. The dia. of a 4 Ieet chosen 1 s possibly toe gmall for vertiead inght, but 14 tt were Lareaced to 8 fest prent idvantages prout mane
in Ryling upwatif. If this be too Hig for the R.P.M. of the motor it could be geared dom by a simple chatin and sprookets to the repuired spoed. The size of mudders and olevatore would then haw to be slichty inoreaced, although not nuseseaxily to 8 leet gquare.

Theat figures above have been rorked out for vertionl filght caly. It it the general prestice ot meliooptese to rise in a vertionl direotion without any prolindnayy alde motion or t forward f1ight. with the conbluation heliogpter and aeropiane the liftlng power would be very appreciebly increased by firet muning along the ground and attaining a horizontal veloalty. This wowid have the asme effeot ns rising on a ateep angle after loaving the ground. Fith our destga thit matter in eagily attainable, as we only need to rest the mechine at an angle with respeot to the hoxizontel or Vextioal. The timunt of the propeller coind be resolved Into its hozizontal and vertieal compoments. the borizontal part scodarating tho mohime slowe the ground wetil the Ifft if euffiet ont to Xatse the machinc. Fhte sethod of Tiating in a vexy atecp angle mould probably give better regulte for the type of eroplane than vertioni finght, as it would very likely be more stable, and mon more casily brought into the hoilzantal plaze in the aiz. There night be some difficulty in deternining the vactove factors for

 angle to the vertioal of about 10° the lititng pemer etw to

 guste omparamble with tivoxable wing mapoe. seme an 10°. 1757 there mat be quite a ble foxe quiling

 so no fear noed be hold on this aqoonst. It mat be taxtat Into aocount however that on omangtug taom howtiontal to

 it net, it porid be rectitied vy maing morable wights.

 weald have to be altersede

 in this ifne.
 Bems 1 uft ort of ondideration.

We have noe oompltod the mough deng of the mathen, and

Onerg - -mmon 40 Ineher.

Oroos wetgh Impluding pat ungen of 160 1bw, otl and gego

1.13t $\quad 5.01 \mathrm{be} / \mathrm{og} . \mathrm{It}$.

net wight 828 to ant Ibit. Whthout pascoget ofl of Inat.

Total leasth modes ineet.
proball mpeat mange ay to 200 mile pet hour formerib.
 be Fex (ion).

Power neomssaxy for this olimbing $=30$ H.P.
роиет of engine $=85$ H.P.
Tht. of engine, dry $=66 \mathrm{ibs}$.
Two cylinder barracg iype.
It must be admitted that titis conforme faliry closeiy to atanderd design in the matter of ilft, reight. etc., but it iflli be seen that there is a geinosia ail rounc improvement die to its lightaess, high horse futer for ε given wt., and its culok rieing, etop;ing nä reveraing prizciple.

To yight how a few figures to derive the probrble space neossaary to stop the machine after towning the troum.

Assume that the apead on olighting is 25 miles per hour. This is quite within resson as it Lisll have been etopfed elightly bofore tonaming groumd. On touching assume thet the angine is suddenly acoel srated up to its maximin; 32 wile per hour ie obtainable backwarte.

Te have then to find cut what distance would be traversed forwaid bofore the asohine would come to rest.
23 nales /hr. $=32.3$ feet/se0.
fiecistance mast be R, where $R \times 32.3=35 \times 550$.

winga, otc., as urae mainain of A 600 lbs .
Brow force $=$ Mass x asoeleration.
$\because 600 \times 32.3=470 \times x^{\prime}$
$\therefore \alpha=41.21 \mathrm{eet} / \mathrm{sco}^{2}$.

25 mise /hy. 36.7 it. $/ \mathrm{sce}$.

 ${ }^{n}$. . Aster tovehing fromed all the mpaep neocemacy for runing is < 80 2eet. phe is a ment maked sodrantage
 upmard to staxt and ubout 80 ynxde to 240 font upwamite to atop. How mane aooldente would have been avoided bed thita bech fitted botorot if a pilot etops within 20 foek of a hedge the gmerally imaginge he hav just evoaped irom xangdom eome. How would be feel if he caly towebed ground: theset
 the zixut paisen for quiok etezting and etopping were givem fox approximately zio yarde and 70 yazde rempetively. sheae are Vexy exeoptional, the genaral manboxing maoh Migher than shis.

The zent atamee we forfa to be about 600 Ibs. It may sean that thie is a tremendeus foree and would be beyond the operator's controil in mandiligg. sueftel at leverage oould be brought into play howner to onable him to move coph ecatrol. As he culy moves two at a time the zentatance offered to the Ifyt iwo mould be considerably loen than this, and it se coly with the lat two that the big proasure would be requitred.

Thas tiseta there would be Iome Tomere P asting to oormtrantave the rual otamet. tot θ : angle elverman

 *anis $\boldsymbol{P} \boldsymbol{z}$.

If P it in the ounter of pronowre of triengiog then both forect eot through ene polyt.
. $\frac{\boldsymbol{Z}}{\mathbf{x}}=\boldsymbol{\operatorname { T a n }} \theta$ 。

$\therefore \quad-\quad-\frac{19}{x+}$
 Talw oan be tound from trite oquition.

 then the ecuter of prosoure in $1 / 3$ of the Malght from the bate.

$200 \mathrm{z} \boldsymbol{H} \cos \theta=p \times \frac{1}{8} \tan \theta$
$\because 50 \cos \theta-\frac{1}{2} \sin \theta$

$$
\because F=\frac{700}{70}
$$

 ostengy.

There at the apan, $150 \times \frac{1}{3}$ cos $\theta=P \times M$ ain θ
 of P.

It moula therefore ceem desimble to hate the foroes placed ao as to ast through the apetit on accond thoughts the additional 1. F erage will be found to exartly counterbalanse this advaringe $s 0$ it meraly comes to a dobate on whioh would be prefexable high 1 ererage and lom preasure or low leamge with high preseuxe.

If it is deolded to mere a high leverage thon it would be foolith to obtain it by placing P at the apex. The caloulaticas ehown above would be equaliy applicable if the lererage vere obtained in the ocatiroi I or or with P acting through the center of preasure of the trianglen. The increased P woald give the sand thing as the inarseased lororago Thue with a reduction af fozec of $2: 1$ or an inorsese of leverage of 100%, $P_{2}=\frac{180}{15 \theta} \div 2$. or $\frac{75}{\tan \theta}$
With $\theta=45^{\circ}, P_{1}=75$ Ibs., whioh is sesily obtaimable $f_{2}=$ foree on 1 ever betare being inoresed to p by leverage
redumtion. P of couree, as before is at onte; of pregsure and if $=\frac{250}{2 \underbrace{2}}$.

With P at ocater of prescure amon atronger ocnatruption for the same welght of metarial in obtained, as bending
 a fairly atrong congtruetion would be required.

The mot nctabie imnediase offeota of this is that oity diellers could use acroplanes. 11 housen were buite aith flat roofe. This only takes care of the landing, and to uet roofe we mast be able to get off into the air in as smal a apaot. The holicopter prinetple already aplatned doen aray with the neoesitit for a gtarting field.

It is eurely then no great atep from thi to the prectetion That aviation fili be the main mothod of travel in the mear future. 经保 if the deaign summitted la not wortable for some reason on other not notioed by the deeigner it is evident that vexy shortiy a euccesstul deatgn will be fanuftetured which will serve the sxampurpose.

A11 thee 1 igures have been worked out for a monoplane. The game procegs would be employed in calculating the varicus factora for \& biplane. Indeed is would seen prefarable to hate biplane, as this would allow a reduotion in Ting
spread. If the mpen were raduon from 24 feat to 18 fet great cooncmi in spoce would be entailed, fhitoh is very dealzable for our purpose.

Let us congider now what worla happen if we uacd a heplane ingtead of a monoplane.

As we have already oalculeted the welghte for a monoplane the gross wedght will be readily found for a biplane. Grose wte of bipianc $=$ wt. of monoplane - wt of monoplene wing \mid its. of biplane wing + additsomel struts. $=470$ mina $64+$ two finge + otrute. Fer ordinaxy biplance the
 It would socn reesunable to tare $5-1 \mathrm{bs} / \mathrm{deq}$.ft. för our
 for blplenes. stzute welgh leas than 20-1bs. - Grose matght $=\frac{483}{.84}=486$ 1be。

This inoludee pilot, fuel, oil, ate. Leaving out these three ve hove. Net quidht $=$ z7sile (For the monoplane the correepending wto was 335 Ibue. The erea of the winge from the above $=0$ greperit $=100$ gisfte If the upper and lower whags are of equal shape and ares, we heve then 80 aq. feet $\mathcal{L o r}$ each plane. If aspeet ratio 7 as before, $74^{3}=50 . \quad{ }^{4} d=2.67$ feet. $7 d=18.7$ It.

- . Wing epread - $18 \frac{3}{4}$ reet
" oherd $=3^{\circ} 8^{n}=32^{n}$
List par sq. foot =5-1be。

Unite as betore.
foF 5 1bedeq.ft. ty maximul 5.00149 at 98 1t./eco.
- Tor mintman valootity V

$$
800=.00149 \times 100 \times v^{2}
$$

$$
\begin{aligned}
\bullet v^{2} & =\frac{5}{0013}=3380 \\
\therefore v & =57.8 \mathrm{ft./sec} . \\
& =40 \mathrm{melec} / \mathrm{hr} .
\end{aligned}
$$

 W111 probebly be about the aame as that olencuted for the monoplene, t.e. 100 mites / hous. The reault for the blplane now obtelner are the folloming:
Fing erea -mmon 100 eq. $100 t$.
" epen manm- 183 Eeet.

- chore -mome 32 inches.

Power 2ift-ame 14.3 2bE. / $\mathrm{H}_{*} \mathrm{P}$.
Minimum specd- 40 miles/hour.
Gross weight-m 500 1be. tmolualig pilot of 2601 bs . . oll and gasoline for 3-hourf. journay.

Het Telght $=250$ to 280 Ibe. 1 inoluding pilot, ofl and full. Total 1 angh under 7 3eet.

Compare then figure with thoge of the biplane balle by Li gut. D. B. Philifpt.

Wing epread 18 feet.
Speed dereloped 115 miles per hour.
Cruising apoed 90 alle per hour.
Hes Lavimos 8moylinder $60 \mathrm{H} . \mathrm{P}$. sadial engine.

450 rilo onvisting radiv.
Landing spead 50 mile per hour.
7 ofght, less mgine, 305 Ihs.
" of angine 175 2bot.
" ${ }^{*} 180$ lbs.
" 4 Incl 120 1bs.
Total wetght earxied 780 2be.
Wing seesion U. B.A. 27.
Upper ming 36*
Ohord, lower wing, $30^{\prime \prime}$
Climb $600 \mathrm{ft} . / \mathrm{min}$. to celling at $12,000 \mathrm{ft}$.
Faetor of safety 6.
Gasoline sapeodty 22 gellonse
Qil $\quad 9 \quad 9$ guarts.

a Iight biplave with the following oharactexistice.
76 ou. in. Indien Ohi of engine, titted with a Ther reduetion geaz.

Span 18 fect. Ohord 40°. Aree 119 sq. It.
Took off Et 30-35 M.P. H.
Filghed 475 lbe. grose.
ving loading 4 Ibs. eq. ft .
pones $\quad 33$ Ibed/H.P.

Mr. Snyder"e mohtue is as follewas
Etplane. Span $21^{\circ} 7^{\prime \prime} \quad$ Chord $3^{\circ} 9^{\prime \prime}$.
Area 147 mq . It. Woight empty 314 Ibs.
\#t. full 500 1bs.
Fingine was Indian ohi of ruaning at 2500 R. P. hio
Ghain driven reduotion gear to 1200 F.P. E. at propeller. It cen be aeed that our own deaden oomperes farorably fith these, and thees have been teated out.

It mould perhapa be adrantageous to aee to what axtent light planea oan go. 姑. Mx of Chicago deaigned a biplene, the ditunsions of which axe as followe:

Span 12 ft. Area $84 \mathrm{sq.ft}$.
arese veight 360 1bs.
Indian 8malve xmoing motor, dxiving propeller direot at 2700 R.P. 2.
rith a mall machine of this sort aerial mayigation becomee es axto. driving. The aren ocoupl od is just the same an thet for an auto, and it could atop just an quicky ath onx
epeoisl derice. It is mach easier handied, as one men could lift it ware such a thing dealred. If the fings wore wade renovable the whole maohina could be parked ingidethe nouse:

One Carman plane has wings which oen be removed and hitehed to the aide in two minutes by one man. Hinat an aecet in stormy weather if no garage is available i yo more tiresome sprending out of the wing and body oovers and laching of ocntrol: at tho silghtest ign of ratn.

It would now be beneficial to calculate the size of sudders \& elevatora approximately.
(1) We shall first oonsider the monoplane. socording to Kant's Bechenical magineer't Handbook, an avarage of 8 monoplanes was taken, and it was found that the horlycntal tail
 of momoplane was 80 sg. it.
\therefore A rea in hoxizonta? tall suxfaoes $=00 \times-14 \times 8$ equal 11.8 gq . feet.
This is in two pisoes, so ash would have eay 6 sq.ft.
 SB is 4-icet, or the game size as the propeller. $\quad \therefore \quad D C=\frac{6}{4}=3$ feet. This assumos that the triangle form is used. Any other mape would be oaloulated in moh the same way. From the same table, the arer in the vertical tell murfacee- 6.1%
 used, then each is $4: 1.38$ Reet. The two homizeatill tall surfuces are 3-feet long and the Vertieal enes about $1 \frac{1}{4}$ fect. Thase obviously mould not do. so me oan take an avorage end mare ach approximitely $8 \frac{2}{2}$ lect long. It math bo obsexted that the uppar horizental tail murface is longer than the lower ab shown on a previons page, so at feet for these is the moen of the two.
(2) for aingie seater biplemeg, the Bree in bozizontal tail murfaces $=12.8 \%$ of wing axen $=\frac{1182}{200} \times 100=11.8$ eq.It. as before.

- Sane atye of hoxisontill tall gurface would do hore, Area in vertioal tail carreaeen $=4$. 4 传 of wing aree equal . 044 $\times 100=4.4 \mathrm{sq} .1$.

This gives two trianglea of 4 feet $\times 1.1$ feet. A compronte for the biplane would therefore be triangles of $4^{\prime \prime} \times 2^{\circ} .05^{\circ}$ or $4^{\prime \prime} \mathrm{x}\left(2^{4}-\frac{1}{2}{ }^{n}\right)$ apt. This would ebviouly not do, as the triangles woula just barely obose, which would require an infinitely great foxe to do. It migt shen be obvicus that the tall gurfaece would have to be increased for the ofplane up to what ther Fere for the monoplane, en this is about the minimam which conld be used. of ocurise, this has sll been done assuming that the base of the equare pyravid is equal to the dise. of the propliner, but this is not neoessary;
the area of the tail surfaoes oould be rede lover by redueing the size of the base and keoping the hoight the some. In this way the calculated biplane tail auxface atges could be accomodated at the expense of a slight loas in quioi stopping. This zemaction would lessen the foxce on the oontrols and 1ighten the whole rers cad, whoh is a desirable mater.

Sofar we have settied a feg of the points in tho rough dengen of monnolane and biplane, using e single propeliez dsiven by a swall 35 M.P. engine.

When aviation wan in ita infarey it was the genaral thing to have all planes $10 w$ porerred for the almple reanon that tont wen all that wal avallable, Being underpowered they were dangerous; so that it whe oustomary to add more powex. forgetting antirely the light plane. This was the easient way out, but in the last year or two coonomy and oommon sense hate taken a hand, and light plane of 10 to 20 R.P. have been developed with remariteble succeas. It is in this ohmp artiol that comaeroial exsoees mill uitimateiy be attained.

If we want more powar then $35 \mathrm{~K} . \mathrm{P}$. and thus greater mpeed, Fic con increase the power of the ongine and wet two propellers. It is the general prastice in aeroplane wosk pinare two propeliers are uned, to heve twin enginge. In helicopter however, it is cutte often the onse that two propellext are run from the eame agine.

Fith aom the propellers are a diatanoe apart and are driven by ohain or belt on vertion axen, while ofhers axe on the same axis. If the angine used were of the ordinary fixed type and the propelisy rotated in the ekre dirwotion, then there would be a tenderoy for the maontno to turn routad. This would be balancesin a great degree by ony ving muxfae oppeating the motion, but this atistrubing fores in not at all deaimble.

This is orercore in practice by having cos wing "yashed in" 1.e. by increcing the angis of inotcence; the other aing may de "washod out" or dooreased. The increased lift due to the "wasb-in" exactly counterbalances the tandenoy to rotate.

It is obfious that fox proper equilibxium the propillerg should revolve in op omite direotions. For both propellera to give a Formaxd motion thay must be aat so that the blade angles Are opposite in value, as shown in
 sketch.
co apply this painoiple to ous ceroplane necescitatee (I) That one of the propellars at leset Le at the back so that the re yersing geat may operato perfectiy.
(2) That they comnot be an tine one shaft; one asn ather be

Driven by belte, ohalng, or gearlig, whioh involve additional Felght.
(3) If there is ane at the frant then it mist be ocnsidermbly smallex than the xeat one, or it mut have eluteh. The explanntion of thege facte is almple,
(I) is telt axplamatory. If one were not at the baok than the ouszent of ais gotng through the propeller would very 1ikely be ocnaiderably diverted inom ite couree before it reached the zuddert, owe, and the stop ing porer rould be greatly reduecd. If very quiek etoppling were not required as, for ingtance, where landing apace were aillable, then placing the propelier in front inght be deairable, as it Fould greatiy redue the pretoure on the ocntrole, and would allow a reduetion in meight of the rear mombers.
(2) 1e obviare.
(3) Sollowa from (1). If the front propallor were an bit 2a the rear cne then these vould be greater foree pulling fomward than there would be pughing beokward, (wleas the engine were fopped). 60 the gahine would keop can ruming ferward alang the ground. To renove this difficulty the formard one could have a clutoh mioh would be rel ceped on reaching ground, then allsadigg only the back ane to operate; or the frcat propeller eould be made maller then the rear one to that the baokmard pull is moh tho greater.

It monid be noted that far quicker and better dontrol onn be oftained with this tyingular fcem than noually, if
$1 f$ the propeliet is at the beox. The inil foree of the air coung from the prepailes play on the ruddere or elaratore, so that the allghteet moverent of efthor would reeult in a big foxe an the tall.

It the rear propelle were to aot in the mamorisontal ince as the ofntex of 111t, then the other propellor would give the thruet neocesary to pull the nose havy machine up to its normal Ievel whic 1nying. It has alreedy been axplained in ohapter on thanilty why the reaulsant propoller thruet ghould be bolen the cunter of 119t. The amount obtained in thite mannex may be excesalve but the ounter linee of the propellere eould be
 the oluten would anly be used on etoppligg it could heve a devioe for holding is in position while Nying, thur relieving the pilot of anxiety in this zonpoot. But it would meen that if it is to be uned for thit purpose only it would probably be diecarded, and the angine stopped for landing, trusting that the olosed tasl muriaces would offer great mough realstanoe ithb ont the help of a propeller. The landing distance in this osse would have to be inoreased.

Far stopping by banking, (as in present-day aeroplanes), the Lee exponed to the atr for this purpose is roughly the (aren of wings x ain θ) f reaiatance of body taile, to.. The latter is negligible for our vexy rough oaloulations, to the Lozmer give i $\alpha 100 \times \sin 25^{\circ}$ tay. $\theta=15^{\circ}=$ angie of inchdence.
$100=$ wing area in eq.it.
$\therefore 1 \mathrm{R} \propto 26 \mathrm{mq}$. feet, for 15° angle..
$R=$ resistanoe to moticn.
Instead of offering a plane surface to divert the air through ($15^{\circ} \times 2$) we now offer a olosed area of 16 sq.feet + this realatance already obtained.
(It will be noted that if angle of incidence is 15° the wind will be diverted roughly 30° for a flat surface. For the ourved aurface of an aeroplane wing this is not so, but we assume the surface flat for our oaloulations).

The air in the one oase is driven downwards, while in the other the direotion is fowrarde with reaultant reaction beckwards.

The probability is that the resistance to forward motion would be increaled many fold, and the increase in resistance variea inveresly as the diatance required for atopping. The exaot amount of realstance is unobtainable until the aeroplane has been actually dram and built, but this merely ludicatea the trend of thought.

After all our other assumptionsit is now quite in order to take up the case of the aeroplane where the reveraing gear does not completely olose. Unlese reveraibility is required, or very quilok etopping eseential, it outht to be quite eufficient to close it only partiy. This would allow a atronger rear end for the same weight,
and would allow a greater leeverage for the game hand mor oncht on the controle, that making the paiot's job eagier phyetoally. If we have each tiflengle mor od lamarda for 10° there ahould be approzimately the sase resiatence as that offered a plane of the same area sloping upwarde at 15°, so that by varying the angle we can atop in the distance required, from 20 feet upwards to the present day reculrement.

He have an analogy to thie in the automobilo. ather it can be atopped within 20 feat by the emergmoy brice or it oan be allowed to const until motion oceasen. This finighes the deatgn of the ILrat type.

In all of our prowioug work we bave left out the allexons which play aveh a big part in aeroplane control. It was not our inteat ion to do eo from our mohine, the putting off merely being for the reagon that we are now in a man better poaltion to discuas and understand more olearly any alteration. We ghall deal a litile more thoreughly with thig.

A BCis a Ang Beotion.
EC is aileron which is hinged
to the malin eurfaee at B. By
 moving 0 up and dom Fe oan get inpreased dalift or increaged 1ift, whicheret ve anat. As a matter of fact, both pootition give inozeased dxilt, but the
zatio $\frac{\text { 2ift }}{\text { difit }}$ is all we vant. The aileron on the other wing is oporated in the oppoaite alicoticn to thie one, ao that it is easy to gatn lateral control.

After all ve have said, however, on quiok etopping, it it obrion that relyiag on a aloping shape to give xentetmee If not the bent thing to de. The following in a ruggented construotion for mpealal allexom.

Let the matn gurface be contimued
 1ts tull 2ength, and 1 ot the alleren be entirely soparate wing. malle than noum. and looated below the main gurfoot. If it is in its proper position it act: as a mall lifting gusface. If we now vant reatatamoe on the one alde we oan pull P upwarda and oloe the end of the wing. 1.e. D moven to A. It will be obvious that the inorease in Feaistance 18 tremendous, vary many timen That in maily attained. The other aileron as the aame time mould be noted in the oppesite dircotion, giving inereesed 15ft.

The greatiy shercased reatetance night not be neeseary, to the area of the alleron could be out dom, thut inoreaging iti stremgth. At the same time il the realstance is wanted large, the atea of the rear controle for quiter etopping need not be so 1axge
as the ailerons could be ued for this purposes (essuring that they oan be moved in oppoaite or in the aame direoticose). If the reer controle are kept the ame area, then thoy need not be entirely ologed to gtop, than again reduaing the welght and the loree neoessary ty the pilot.

It is obvious that by a istitle judicioue planaing we can get a very afficient combination between thene two retarding mo0hanismas.

The adventages are very wident. Our whole conetruotion is now of a meohine ralike any yet attempted. Ae with all radical inveations the oppositions to its ume will be very ntroag, but if dere oomideration be given to it very deoided marits, it will be realized that it xepresents a big atzide towarde better aeroplanes.

We have a fow oases in mind where imagimation plays atronger part than reacon. - fileghts of fanoy with enough common mease bohind them to avoid the Iudicrous.

For thie last iliteen yeara or more it has been common praetioe for youngaters to make paper gilders or darte abo 8 to 12 inches loag in the fallowing shape approximately. Some axe

joined at A while otherv are quite looae here. The caly differenoe socme to be that the 10030 ones have not the seme

stanilis mor do they glide so
far as those that are ifxed.
It may be that if a fow tray
or strute were provided to keop
the alden a fixed diatonoe apart that the gilding would be

 comricn glidex practiee, but it mus be adxitted that most aeroplane moxters are vexy averse to leaving gtandsed practioe for the simple Ieseon that thri kpor thengrart Sentorsory. If Iteriginal Ldess rere proved meriable the inertia of the public, and en of the acroplane axporta, would dowly be overoome until theae new ideas took their place beslde, or corpletely grperseded, the old caes. The aeroplane has paesed through various stage of this, e.g. the old hat-11ke form was onanged to tho box11ke type, then the blplane, txiplane and monoplane, eto.. The winge of all these differed so some extent, so it should

After the vaquegtioned moceas of roughly maie papex gilderis of the form shom, is it not posaible that mamoarrying die et
ehoula prove of at anoh value i Whem compared with models of the same sile made in standard glider form (monoplene uevaliy). it oan be aeen that the standard one has possibly a ilttle more stability due to ita relatively complisated dealgn and controle, but the other maken up for this in ite anootimeea of filght and apeed attained. Frach oonee to reat gracefully and without jax.

The dealgn for man carrying size, of oouree, would have to be aitered to auit the conditions imposed on 5t. Since the apen 1: relatively amail, to overcome the tendency to tum round due to the rotation of the propellex; the "waab-in" would hare to be increased beyond reascmable lifits, thug redueing the $\frac{\text { iftt }}{\text { difit }}$ ratio. It would thea neem adrisable to use the two propellera rotating in oppogite direotione.

Have the ahet driving the iront propeller opexated atreotly Prom the anglne. (findipal iype). To it wowla be fastaned epur gear A, which mewhea th a seoond spur gear B zerolving round stationasy exis in an mitanion of the ongine oneting.
 therefoze ATroive in the oppoaite itreotion to A. To 0 in attaohed the wings of the propoller I. It should be noted that
 I in provented from coming off by the riag behind I.

The author coes not saggeet for a mimite that this in the beat ocuetruott on possible. He caly Fishes to shor that two propibicis on the one hait aze quite whin reason.

Fith this geaeral ocontruotion the head realstanoe would be coneldorably x eduoed that allowing a greater apsed but iess efilotenoy in gliatng.

As a comblation belloopt er and aaroplane this would probebly offer an many advantaces as rould be posible in ons mantre, due to ite lightneme, Iigidity, oompactnesn, speed aoquired, ete.. On the other hand the epan $i s$ so short that the lift may not be big enough at axdintyy upecis so keep the maphino in horisontal filght unees of very lage engie of inotdonte were ootainable. This could be zaxiad at will, and the monine oculd be moring horisontaliy although the prepeli er may be
tilted at 20° to the horisontel, but we the offiol moy of the propeller is a minimis whon the thruet is hociscatal thie is not deairablo. Also with the increased angle of inoidense there vould be inoreaced drift, thus lemiering the speed of the mohine and coneequentiy the $\frac{11 \mathrm{ft}}{\mathrm{d} I \mathrm{I} t}$ xatio. The IIft would poselibly inorease but not mowh proportionat ely as the drift, so \& falls. In that case we would increase the aapent ratio a little. It might be advantageous to have one of the propellers at the beok. The construotion would then be as
 shom. This i.s also a very light, comprot stroast asroplane, and it would probably be muoh noxe efficiet than the last mentioned. It should be bome in mind thet in the iant two cases the areas of the rudiders and elevators would have to be increased due to thely olosenens to the oenter of gravity of the machine. It will be notioed that birde have loag narrow wings for fast soming, and short broad onea for olow flapping filght. The avergenoes of each type, howerer, are mo great thet we ary led to thiny that actual shape ia of iittie ocnsequence mo long as the aspect retio in Kept constant.
He now come to a molh bofter mohanical ocuctruotion than any yet shown.

The fern mogt favorable to progrege through the atz is the alcageted pearmike form blunt and foremoct. Then 1 et us make a body of this type. Fox propulaton ae there are no winge, we mist havo two propellert. Fixity lat us acosidez the canc of both propeliers in frout. We bave a Vexy compeat mechine, but we have absolute dependenoy on the engine, whioh wurt therefore be of a Texy high grade. To encure that the machine is aboolutely deppendable it would be advienble to mm it at a man smaller speed than ita madran. Thie alvays keepe a cestain reserve in hend for efiexgenote. ginoe there is no wing muritece to maport the mehine. the propellers would mave to bo tilted at an engle to the hoxisontal. thus applying hoxisomal and vextical pulla. It ia then a comination holioopter and seroplane. By having the angle to the horlsontal increaged to its manimp of 90° we have the complete helloopter.

Sinoe the propeliex thrugt is neter hoxisontal, (and therefore Iess efficient). it might be poasible to kave it permanenty get at an angle to the body. this angle boling the rimiman that. the propelier would require to be get at to 1sft the maphine trom the ground. If A angle of thruert to hozf sontal

If the weight the meohine and pilot is about 330 lbs. then the thruat obtainable would have to be a great deal more, (if a reasonable gpeod is required) unleas the machine is set at a vers atemp angle. This mould entail a manh more powertal engine than with the aeroplanes already desoribed, thas bringing up the weight. but an increese of even 800 lbs . in whight would still keep the machine in the light air tohicle oless.

If tise thrust were est permanmily as shown, the aix reaistanee of the body would be greatly deoreased. Mechnnical diffioultien would come in here Fhich would probably overcome the benofits received. It oin be satn that if if mers aut so, the realatanee to motion horizontaily would be decreased, but verticaily would be inoreaced very oligintly. As the vertical motica is enly a firf fest/seo., the added resistance nould be nogligible when the great reaistanoe due to horizontal flight is ao greatiy redueed.

The propeller sizas rould need to be large as alread explained in the chapter an halloopters.

As there ia no gilding aotion, ordinaxy ruddere and elevatore could be used, a reveraing mohanisim being proctically usel ene In the air. If in addition to flying this were so fashicmed that it could be used for land travel, then the reveraing gear vould play a big part in ita funetiona. Al 8 mater of feot this machine rould anke a very presentable subetitute for the
automobile, but as this thenis deals only with ayiation that bzanah will not be expanded.

The acoond one to be oonsidered is where the propeliex: are set at oppent ende al the body. rive meohanival conetruotion Fould be caster as the amular gear of the other syo would be eliminated. There would be little differene in toot. ond the engine porer Fould probably be the same the rear propeller would give a lifting power to the rear end which in not so Fsadily attaineble fith the fommer aonetruction, thue edding still more to the adrantagea of the latter.

So fax the deoucsion of theet two types hat only bem for horimontal and Tertioal Hidght, but nov there oomen the quection of atopping. How ann wo etop axielt with this mehinet There is no ghiding slowly to earth here. Thit is the one real difficuity that would be fornd in realizing our coaign as a comperctal vohtcia.

It might be acoonglished by having the body of a very Ilght clumimum mtzuoture, and, ingtead of having the oovering fixed, have it made in the general fore of a paraohute, folded vp to give the anmelongeted pear like form. minen decoont is required the propaller could be tilted upwarde, and this also the nome, and the parachate conld be opened. This vould only need to be done 12 the ongine had abaclutely stopped; if not, thon it could be rerolved at a elightly less spedd than recuired to 1ift the
mehine, thai regulating the speed of dropping. It would som that this given reasonable solution of the difficulty.

An extension of the perr-like construction principle lean un to the quemtion, "Why should the bod not turn round" If sone ecthod were forme to hold the engine atationayy there Found be no reason thy the whole maine should not turns te the eosatruetion is that of a curiae of revolution, little reaiatame to turning would be pori meat: in addition, the many ntablisting fore e for the ordinary plane would be greatly redneck. With a rotary engine the cylinder: could be fastened treaty to the propellers and body, that g laving only the efrtioulty of molding the crankmait. The pilot of course world have to be put in a non-revolving ohsiz. wither he could bo supported by roller bearing, the roller naming in groove in the body, or else he could be attached in one way to the etationary oranimhaft.

This can be oarxied a fop further. Why have a body at slit Let the body be replaced by big wing rotating round the piet at the center of gravity. In this we can have a minima of mechanism with a maiman of output.

Tie now come to a few designs for which the author is not retponsible. One of there is to have the body and ting as one pie. That ia, to have the wing thick enough 80 as to have
 the pilot, pasacngex and engine all inside 14, as shown.

The deaign goen was of this gemeral foris, with the lower aide practically of the same shape as the upper. This of courae, is not praotical, as ifttle lift would be obtained. If the body Were nhaped 14ke a wing this conotruoticn with be poseible .

Another type is to have a rooket motion, i.e. to be propelled formard by blasts of dounte of other mesna. This may seet absurd at IIrat glanee, bit it hes been proved euoceosful yith modele and with instrument oaryying sizee. It is fiequently used to ilnd out the properties of the rpper layers of ais. round the efth. It has er en been propognd to ghoot a man in one of these to the moon, by having cucoeseive diseharges when the fexce of the last had been apert. A professor of one of our foremost collages agked if any one would be wiling to reice the atterpt-me hed about 20 anarars in the aftixmative. some care-derils would do nathing. Te do not mow yet if a mans of retuming to earth has been found. A sach more reasonable idea is betng morised on in France at preaent. To stop audds descent ohonical neans ia used to give out quiok blests of gases beiow the machine. go lar it han proved fadxy guooneful. If it were absolutely rellable for this purpoes, what then would prevent it irom belng used a a means of propaliatonf In this reapeot it resemblee the last deagn olosely.
gutfe a lot of vork lately has been done on pllotless reroplanes. with remaxable aiccess. A suocesctul floet of these might oheapan trangportation if the oost of operating were found to be

1ens that the gesolino
and 0il, and the pilot'a pay. Gtherwial there ceace to be little
 oun it would have a greater eeope, but with the cafety now attain0 liftle future an be expeoted uith the pilotleas aeroplane, at lasit, at a passenger oarryine vehicle. It is interesting to note, bouefer, that if an aeropiture goes high enough into the air tiae densty of this falls so also mast the reeistence to Plight. Thus tith a steep pitch of the propeller conomoue apeede may be accomplishod providing the neceasery oxyen requirenante for pllot and pasconfers are available. Nhy not have a variable pitch propelidx to ojecute at the variour heigite reachedt

Although it may not be claimed an a pure aix vehicle, still the Iollowing is undoubtediy one taking passengere through the aix. A train, surrounded by steal hoops, and oarrying ita passengere, is aupported high in the aix at the firat atation. The next stotion is aerely a short tunnel. which is oomposed of a great Ho. of insulated wiree ruming rome a dia. a little larger than the stsel hoops on tho train. As the cuxrent in anitohed on in the seoond ataition end off at the first a forve is oxeetoc puiling the trein towarde the seoond station or colenold. similaxly, as it passet (2) the 3 xi is mritahed on and $\overline{2}$ off. The gpeed attained would be mormous, but sc also would the cost. This has Deen tried, we belicere, with a model, and has given satiafactory reaulte, though not what was anticipated.

The proceding cemigua are a fem of those in infoh many poople are interested. We feel mure that one yill sixvito as a mocentul venture.

