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 SUMMARY 

 

This research is concerned with the self-adaptive numerical solution of the neutral 

particle radiation transport problem. Radiation transport is an extremely challenging 

computational problem since the governing equation is seven-dimensional (3 in space, 2 

in direction, 1 in energy, and 1 in time) with a high degree of coupling between these 

variables. If not careful, this relatively large number of independent variables when 

discretized can potentially lead to sets of linear equations of intractable size. Though 

parallel computing has allowed the solution of very large problems, available 

computational resources will always be finite due to the fact that ever more sophisticated 

multiphysics models are being demanded by industry. There is thus the pressing 

requirement to optimize the discretizations so as to minimize the effort and maximize the 

accuracy.  

One way to achieve this goal is through adaptive phase-space refinement. 

Unfortunately, the quality of discretization (and its solution) is, in general, not known a 

priori; accurate error estimates can only be attained via the a posteriori error analysis. In 

particular, in the context of the finite element method, the a posteriori error analysis 

provides a rigorous error bound. The main difficulty in applying a well-established a 

posteriori error analysis and subsequent adaptive refinement in the context of radiation 

transport is the strong coupling between spatial and angular variables. This research 

attempts to address this issue within the context of the second-order, even-parity form of 

the transport equation discretized with the finite-element spherical harmonics method.  



 xiv

The objective of this thesis is to develop a posteriori error analysis in a coupled 

space-angle framework and an efficient adaptive algorithm.  Moreover, the mesh 

refinement strategy which is tuned for minimizing the error in the target engineering 

output has been developed by employing the dual argument of the problem.  This 

numerical framework has been implemented in the general-purpose neutral particle code 

EVENT for assessment.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Particle transport problems arise in many different areas of engineering physics.  

For example, nuclear reactor physics, radiation therapy applications, and astrophysical 

phenomena can all be modeled by radiation transport theory.  Computational radiation 

transport has steadily gained acceptance in the last decade as a viable modeling tool due 

to the rapid advancements in computer software and hardware technologies.  However, 

ever-increasing problem complexity and size easily exceed the capability of the existing 

hardware.  Thus, efficient use of the computational resources is the key to success for 

radiation modeling and this has been the major thrust of the modern numerical transport 

methods research. 

1.2 Computational Methodologies in the Radiation Transport Modeling 

There are two main types of simulation approaches in radiation transport 

modeling: stochastic (Monte Carlo) and deterministic [1].  The Monte Carlo method 

simulates directly the physics of the neutral particles.  Despite its severe demands on 

computational effort, in particular with regards to CPU usage, the Monte Carlo method is 

often considered as the analysis tool of choice, due to its geometrical flexibility and 

availability of a measure of statistical error.  This feature of the Monte Carlo method is 

particularly valuable when the main quantity of interest in a problem is a specified 

engineering output (functional), especially at a localized neighborhood, as may be the 

case in determining the magnitude of the radiation dose to a part of a problem domain.  

However, recent new advanced reactor designs require detailed coupled multi-physics 

analysis everywhere within the system and because of this, the Monte Carlo method may 

not be the best choice. 
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Deterministic radiation transport has gained popularity in recent years as a 

consequence of continuous advancements in computer technology and numerical 

algorithmic development.  Nonetheless, the success of deterministic methods is largely 

dictated by its accuracy and numerical efficiency.  The brute-force, trial-and-error 

analysis is a foolproof procedure to ensure accuracy although at a cost of dedicated 

human intervention. This iterative procedure of intervention is clearly a wasteful and 

inefficient method for solving radiation transport problems.  Thus, a numerical algorithm, 

which ensures the quality of numerical solution with minimal user intervention, is 

necessary requirement for deterministic methods to become practical design tools. 

1.3 Trend and Challenges in Radiation Transport Simulations 

Clear understanding of the reactor behavior is crucial in developing the next 

generation reactors.  Physical behavior during operational and transient conditions is 

dictated by strong non-linearly coupled multi-physics phenomena which include radiation 

transport, fluid dynamics, heat transfer, and structural mechanics.  The required spatial 

and temporal resolution to predict the proper feedback mechanisms can differ 

significantly among these physical phenomena.  Because the accurate prediction of 

proper feedback is the key to the successful design, the current research trend is to 

develop high-fidelity numerical methodologies based on the fundamental principles. 

Radiation transport already plays a key role in the multiphysics simulation of 

nuclear reactor systems.  However, current reactor analysis calculations apply a series of 

physical and geometrical approximations in order to ease the computational demand to a 

manageable size.  The uncertainty that originates from these simplifications has been 

somewhat reduced by extensive operational experiences; however, it is unlikely that the 

experience acquired from the current LWR technology is applicable to the next 

generation reactors to the full extent since the next generation reactors are likely to have 

highly heterogeneous cores, which, if analyzed via the conventional two step (diffusion + 
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transport) approach will lead to a deterioration in accuracy.  Therefore, the current trend 

in computational radiation transport is to develop high-fidelity computational tools which 

are solely based on the transport theory. 

Another active area of application for radiation transport is in the field of medical 

physics.  Therapeutic use of radiation doses to the patients requires the optimization of 

dose delivery to tumors while minimizing damage to the healthy neighboring organs. A 

detailed modeling of the radiation field distribution and interaction with the human body 

is required to optimize the therapeutic plan of the radiation treatment.   A unique feature 

of medical physics modeling is the mono-directional, narrow beam sources which are 

often applied to the human body.  Consequently, large gradients of the radiation intensity 

in the transverse direction and highly forward peaked angular profiles are observed.  The 

boundary between target and “radiation-sensitive” organs often lies on these large-

gradient regions. Therefore, inaccurate resolution of the radiation profile will result in 

very conservative and inefficient treatment plans.  Due to the large pool of cancer 

patients that are treated on an everyday basis, and the large number of the beam 

configurations used for each patient, efficient and accurate dose estimates are crucial 

components in the success of the radiation treatment planning. 

The difficulty in developing high-fidelity radiation transport solutions is caused 

by the large number of independent variables characterizing the radiation transport 

equation.  Discretization of the six independent variables (three-dimension in space, two-

dimension in directional dependence, and one-dimension in the energy) for practical 

problems inevitably leads to coupled systems of linear equations of intractable size.  

Parallel computation can alleviate this problem to some extent; however the optimum use 

of computational resources by means of adaptive refinement is the only way forward to 

accomplish this difficult task.  Moreover, an adaptive algorithm together with a posteriori 

error analysis provides the framework for estimating the discretization error and thus 

enabling the elimination of excessive iterative cycles.   
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Adaptive mesh refinement together with a posteriori error analysis has gained a 

great deal of popularity in other fields of engineering over the last 20 years. Yet in 

radiation transport, the concept of an adaptive method has not become prevalent, mainly 

due to the difficulty in applying the well-established a posteriori error analysis to the 

strongly coupled space-angle phase-space. However, the development of mathematical 

and physical adaptivity frameworks and error control algorithms in the context of 

deterministic radiation transport has recently become a priority so that the developed 

algorithms can contribute towards realistic nuclear engineering design analyses.  

An alternate approach to making error estimation more relevant to engineering 

applications is to seek the error in a functional (goal) representing a desired output.  For 

example, the multiplication factor (keff) might be a key quantity for criticality 

calculations, or the dose rate to a specified organ might be the one for medical physics 

applications.  A key step of a goal-oriented adaptivity is to solve the dual (adjoint) 

problem to map the importance and estimate the error in the functional output.  This 

method, although at a cost of doubling the computational effort, can provide the (near) 

optimum discretizations which are particularly tuned to minimize the desired engineering 

output, and furthermore a reliable error indicator.  

1.4 Literature Review on Adaptivity 

All numerical methods are susceptible to numerical (discretization) errors.  

Practitioners have been aware of this fact since the early days of numerical simulations; 

therefore, experimental judgments and the trial-and-error approach have often been 

employed to ensure the quality of a numerical solution.  In this section, a literature review 

is conducted which is split into three subsections.  Firstly, we review the development of 

a posteriori error analysis based on the global norm.  Next, literature on adaptive mesh 

refinement that is specially tuned to minimize a certain functional is reviewed.  We 

conclude with a review of adaptivity research in the context of radiation transport. 
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1.4.1 A Posteriori Error Analysis and Adaptive Mesh Refinement 

A rigorous a posteriori error analysis was first introduced in the pioneering work 

of Babuska and Rheinbolt [2]. The discretization error for elliptic problems was 

estimated by solving local Dirichlet problems in the patch of elements surrounding each 

vertex in the finite element mesh.  Since then, especially from late 1970’s to early 1980’s, 

a large number of papers regarding a posteriori error analysis have been published (e.g. 

[3, 4, 5]). 

 Demkowicz et al. [6] was the first to introduce a posteriori error estimates derived 

from the local finite element residuals and discontinuity in the normal derivative along 

the element interfaces. The developed error estimator was exploited to adaptively refine 

the polynomial order of the hierarchical finite element basis functions (p-adaptivity).  At 

the same time, Bank and Weiser [7, 8] derived a posteriori error bounds by solving the 

local Neumann problem in each finite element.  This local residual-based error estimation 

technique has become popular because of its computational efficiency compared to 

solving the local Dirichlet problems.   

 Another method of a posteriori error estimation is to recover the gradient of the 

solution.  The recovery-based error estimator does not employ any information about the 

original problem, but only considers the difference in high- and lower-order solutions 

and/or gradients.  This is both an advantage and disadvantage of recovery-based error 

estimators.  Zienkiewicz and Zhu [9, 10] established the “super-convergence patch 

recovery technique (ZZ-estimator)”.  Their strategy was to compare the higher order 

interpolated solution computed by numerical quadrature to the lower order (original) 

solutions in the local finite elements.  Because of the simplicity of the technique and its 

robustness, the ZZ-estimator quickly gained popularity. 

 A considerable body of literature is available on the subject of a posteriori error 

analysis and adaptive mesh refinement.  Ainsworth and Oden [11] published an extensive 

survey of a posteriori error analysis with a large number of references.   
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1.4.2 Goal-Oriented Adaptivity 

 One of the main challenges of adaptivity is the development of reliable error 

indicators.  In the previous section, a posteriori error analysis, which focused on the 

global error norm, was discussed; in the case of elliptic problems discretized by finite 

elements, this provides rigorous error bounds in both global energy and L2 norm.  

However, for many realistic engineering applications, the quantity of interest is an 

integral quantity representing an engineering output. Thus, the error measured in the 

energy norm provides little relevant information about accuracy.  Therefore, it is natural 

to seek the specific error measure in predicting the accuracy of some desired engineering 

outputs [12, 13, 14, 15].   

 An adjoint error correction method [16, 17] has been proposed, which yields 

super convergence in the target functional by utilizing the finite element residuals 

computed by higher-order interpolation.  In their approach, accuracy of the method is 

dictated by the efficiency of the interpolation scheme.  Despite the great success of the 

adjoint error correction scheme for simple problems, its use is discouraged due to the 

computational effort sometimes becoming prohibitively large for multi-dimensional 

problems. 

 Goal-oriented adaptivity generally employs the dual argument of the problem.  

The computational effort thus increases by a factor of two.  However, the primary benefit 

of invoking the dual problem, in the context of error estimation, is that the error in a 

chosen functional can be directly related to local residual errors of the primal solution 

through the adjoint variables.  More precisely, the error can be expressed as an inner 

product of the local residual errors and the adjoint variables. This property elucidates the 

potential for devising optimal grid adaptive strategies designed to produce specially-

tuned grids for maximizing the accuracy of a particular functional. 

 



 7

1.4.3 Adaptivity in Radiation Transport 

 Establishing a bound for the solution has been of interest to numerical 

practitioners for a long time.  In the field of radiation transport, the variational method 

has long been studied to produce the higher-order estimates for the solution [18].  Since 

the appearance of the Vladimirov’s even-parity variational principle [19], a large research 

effort has been spent to obtain a functional bound via the transformation of the variational 

principles [20].  The upper and lower bounds of region-wise absorption rates for transport 

problem was established by Davis [21], where the even- and odd parity PN approximation 

was used to find the error bounds.  Buslik investigated the same problem with a slightly 

different approach [22], which was to employ the adjoint equation and variational 

principle to establish the solution bounds.  Later Ackroyd and Splawski [23] derived the 

bounds for any finite element solution for neutron transport.  Their method seeks the 

upper and lower bounds of local characteristics (functionals) by using bi-linear functional 

which utilizes both the forward and adjoint trial functions, and the method does not rely 

on either the variational method or spherical harmonics angular expansions.  However, no 

activity has taken place to combine the bounds of solution with adaptive mesh 

refinement.   

 As mentioned earlier, the adaptivity trend in the field of radiation transport has 

not become as widespread as in other areas of engineering. Nevertheless, several 

publications are available in this subject.  One popular approach is to utilize a posteriori 

error analysis in the context of neutron diffusion problems [24, 25, 26, 27].  Zhang and 

Lewis have applied the hierarchical p-refinement strategy to the variational nodal 

method.  In their approach, the interface scalar flux error was estimated by the higher 

order interpolated solution, which was computed by the ZZ-estimator, with the current 

lower order approximation.  Later, Zhang and Lewis [24] generalized the concept and 

applied it to the variational nodal PN method.  Ragusa [26]developed the three 

dimensional, non-conforming finite elements code with an h-adaptive mesh refinement.  
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Recent work by Wang and Ragusa [27] has demonstrated the use of the hp-adaptive 

refinement strategy for the one-dimensional, one-group diffusion problem. 

Another approach was to employ the spatial adaptivity to the context of the 

discrete ordinates (SN) methods.  Fuhrer and Rannacher [28] analyzed a posteriori error 

estimation for radiative transfer.  The Fredholm integral form of transport equation with 

the finite element discretization was used.  Rigorous a priori and a posteriori error 

estimates for the global scalar flux error and local angular flux error based on the residual 

were derived.  Warsa and Prinja [29] investigated the use of the p-adaptivity in the first-

order form of transport equation, which was discretized by the linear and bi-linear 

discontinuous SN finite element method.  In their work, the difference in outgoing flux of 

the solution and higher-order interpolated solution was used to judge the quality of 

polynomial orders. Automatic mesh refinement (AMR) has been used in the context of 

SN methods with some success [30].  The mean-free path rule was used as an automatic 

guidance of refinement criterion.  Aussourd has developed the tree-based AMR applied 

to the finite volume discretization (diamond differencing).  All of above methods use a 

fixed angular discretization and concentrated on the spatial adaptivity.   

 In case of the angular variable refinement, there are only a few publications 

available.  The method of composite solution was employed to vary the orders of the 

spherical harmonic expansions from region to region [31, 32]. Transition from low- to 

high-order expansions is overcome by using the discontinuous finite element formulation 

with penalty functions.  However, the region-dependent angular expansion orders were 

chosen by intuition, and not by physical principles.  In recent work by Stone and Adams 

[33], a novel approach which employs the local angular quadrature refinement for the SN 

method was developed.  This new approach splits the spatial domain into “quadrature 

regions”, where each region uses different angular quadrature sets.  The convergence in 

the angular flux is checked by comparing the flux evaluated at a set of ‘test-directions’ 

against the angular flux obtained by interpolation from neighboring directions.  The 
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numerical results have demonstrated the elimination of ray-effects and angular 

discretization error.  Park and de Oliveira [34] presented the adaptive angular refinement 

strategy for the finite element spherical harmonics (FE-PN) method.  In this work, an 

angular truncation error was estimated by inverting the point-wise block PN matrices.   

 It is well known that both the spatial and angular resolution are strongly coupled 

to the accuracy of the numerical radiation transport problem e.g. for a given angular 

resolution therefore becomes a point where increased spatial resolution has little impact 

on solution accuracy. Thus, it is crucial that a self-adaptive methodology also adapt in the 

direction of radiation travel. It is only when this happens that the true potential of self-

adaptive techniques in radiation transport can be realized. Yet, there is no existing 

literature that presents the methodology for the space-angle adaptivity; therefore 

developing an integrated space-angle adaptivity strategy lies at the core of this research. 

1.5 Research Objectives  

The objective of this work is to perform a comprehensive study of coupled space-

angle adaptive mesh refinement and error control strategies in the context of deterministic 

radiation transport.  The first goal is to derive a posteriori error estimates for the (even-

parity) angular flux, the solution of second-order, even-parity form of transport equation, 

in the form of the global L2 and/or energy norm.  The main task here is to extend the 

well-established a posteriori error analysis to space-angle variables and to develop an 

adaptive refinement algorithm for both spatial and angular discretizations. 

 The second goal is to extend the adaptive methodology to a goal-oriented 

adaptivity, which measures and controls the error of a desired output using the dual 

(adjoint) solutions.  The numerical schemes developed will be implemented in the 

general multigroup radiation transport code EVENT [35] in order to assess the numerical 

efficiency and accuracy. 
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 1.6 Outline 

We have briefly discussed the importance and difficulty in developing accurate 

and reliable numerical schemes for the radiation transport calculations. The adaptive 

finite element framework offers one of the most promising routes for achieving this goal.  

This thesis will thus focus on the development of a coupled space-angle adaptive 

algorithm for radiation transport calculations based on this framework.  

 In Chapter 2 we introduce the second-order, even-parity form of transport 

equations.  The first-order linear Boltzmann transport equation is first introduced. The 

second-order, even-parity form of the transport equation is derived via the canonical 

transformation.  The multigroup approximation in energy is briefly discussed.   

The finite element-spherical harmonics discretization of the even-parity transport 

equation is discussed in Chapter 3. The discretization results in nested block-structured 

sparse linear systems.  We discuss the global structure of the whole discretized system 

and solution and preconditioning techniques for this particular system of algebraic 

equations. 

 A posteriori error analysis and development of the error estimator based on the 

global norms is presented in Chapter 4.  We closely follow the residual-based a posteriori 

error analysis introduced by Babuska and Rheinbolt [2] and extend the concept to the 

coupled space-angle formulation.  A strategy to separate the error components between 

spatial and angular variables, and use of the explicit, and implicit error estimators will be 

given.  Then, the general adaptive mesh refinement algorithm is formulated. 

 In Chapter 5, we extend the developed adaptive strategy to the goal-oriented 

adaptivity.  The variants of the extremum variational principle are introduced in order to 

obtain the functional bound.  Incorporation of a posteriori error analysis and the 

variational estimates provides the error estimates of the arbitrary functional output. 

 The validity of the developed algorithms is assessed through the solution of 

representative numerical examples.  The developed algorithms have been implemented in 
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one- and two-dimensional finite element codes.  To verify the behavior of adaptive 

algorithms, the Method of Manufactured Solution (MMS) is introduced.  Selected one-

dimensional calculation results are compared to the (semi-) analytical result so that the 

effectiveness of the developed error indicator can be validated.  The adaptive algorithm is 

also implemented in the general purpose radiation transport code EVENT [35] to test the 

validity of the realistic two-dimensional problems.  
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CHAPTER 2 

FIRST- AND SECOND-ORDER FORM OF THE RADIATION 

TRANSPORT EQUATION 

In this chapter, the governing integro-differential equation for the radiation 

transport problem is introduced.  The radiation transport equation characterizes a simple 

balance of the particles within a differential volume of phase space.  Simplification of 

transport problems by means of a steady state, multigroup approximations is introduced 

in the section 2.  In section 3, the alternative (second-order, even-parity) form of the 

transport equation is derived via the canonical transformation. The numerical and 

mathematical analyses in this thesis rely deeply on the elliptic property of the even-parity 

equation. 

The second-order form of the transport equation has nice mathematical and 

numerical properties.  First of all, the even-parity transport equation separates the angular 

flux into even- and odd parity components.  Together with the orthogonal relations of the 

spherical harmonics, the resulting discretized form of the transport equation only requires 

half of the angular unknowns.  Moreover, the collision operators, expanded in Legendre 

polynomials, allow an implicit treatment of the scattering kernel; i.e. no scattering source 

iteration is needed.  Finally, the finite element discretization of the even-parity equation 

through the Ritz-Galerkin procedure results in block-symmetric positive definite matrix 

equations, which are amenable to solution by the well-known preconditioned conjugate-

gradient solution algorithm [36].   

2.1 The Radiation Transport Equation 

 We are interested here to identify the mean or expected behavior of a particle 

migrating through participating media using radiation transport theory.  The state of 

particle is characterized by its position (r), direction of travel (Ω) and energy (E) at given 
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time (t).  This six-dimensional space is commonly referred to as the “phase-space.”  The 

dynamics of the neutral particle distribution can be represented by the linear Boltzmann 

transport equation [1] which describes the rate of change in the particle number 

distribution, ( , , , )n E tr Ω in the differential phase-space dVdΩdE about a phase-point 

(r,Ω,E): 

 

0 4

( , , , ) ( , ) ( , )

' ( , ' ' ) ( , ', ', ) ( , t)

t

s

n r E t t t
t

dE d t S
π

ψ Ε σ ψ Ε

σ Ε Ε ψ Ε Ε
∞

∂
⋅∇ −

∂

′+ Ω → → +∫ ∫

Ω = −Ω Ω, , Ω, ,

Ω Ω, Ω Ω, ,

r r

r r r
 (2.1) 

where, ( , , , ) ( , , , )E t vn E tψ =r rΩ Ω is the angular flux, 

 v is the velocity of the particle, 

 ( , )tσ Εr  is the total cross section, 

 ( , ' ' )sσ Ε Ε→ →r Ω Ω,  is the scattering cross-sections, and  

 ( , )S tΕ,r Ω, is the extraneous source term. 

The first two terms of the RHS of Eq. (2.1) represent the losses mechanisms due to 

leakage and interaction with the host medium, and last two terms are the source terms due 

to the inward scattering rate to the phase space element dΩdE  from the all elements 

dΩ′dE′ and the extraneous source.  We denote the non-reentrant convex region, where the 

transport equation is solved, as V and its surface as Γ.   

 Proper initial and boundary conditions must be prescribed for the problem to be 

well-posed.  The angular flux at time t=0 (i.e. ( , , ,0)Eψ r Ω ) must be defined everywhere 

in V.  An inward flux on Γ also needs to be defined.  In the next four subsections, we 

describe the two boundary conditions and material interface condition that are used. 

2.1.1 Vacuum Boundary Condition 

The most commonly applied boundary condition in the transport problem is the 

vacuum boundary condition.  We denote the boundary corresponding to the vacuum 
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boundary as Γb.  The vacuum boundary condition is prescribed at locations where the 

system interfaces with a non-participating media represented by following:  

  ( , , , ) 0 0
b

E t   for ψ Γ = <ir nΩ Ω  (2.2a) 

where, n denotes the outward normal vector on Γ. 

This boundary condition can be generalized to an incoming flux 

  0( , , , ) ( , , , ) 0
b b

E t E t   for ψ ψΓ Γ= <ir r nΩ Ω Ω  (2.2b) 

where, Γb denotes the surface with the vacuum boundary condition. 

2.1.2 Reflective Boundary Condition 

 The second common boundary condition is the (specular) reflective boundary 

condition which is applied to surface Γr.  The reflective boundary condition is often 

employed when the geometry of the problem has a plane of symmetry.  It enables a 

reduction of problem size.  The perfect reflector boundary condition can be imposed by 

the following equation: 

 ( , , , ) ( , , , ), 2( )
r r

E t E t  where ψ ψ ∗ ∗
Γ Γ= = − ir r n nΩ Ω Ω Ω Ω  (2.3) 

2.1.3 Continuity Conditions at Material Interfaces 

 Material discontinuities often arise in the transport problems.  In the transport 

equation, a continuity condition holds along the direction of the particle travel.  At a 

material interface γ with no sources, the angular flux and current continuity conditions 

are satisfied by:  

 (i) angular flux continuity: 

 
0

lim ( , , , ) ( , , , ) 0E t E tγ γε
ψ ε ψ ε

→
 + − − = r rΩ Ω Ω Ω  (2.4) 

which implies 

 (ii) current continuity: 

 ( )
0

lim ( , , , ) ( , , , ) 0 0E t E t   for γ γ γ γε
ψ ε ψ ε

→
 + − − = ≠ i in r r nΩ Ω Ω Ω Ω Ω  (2.5) 
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where, nγ  denotes the normal vector on the interface γ. 

 The schematic of the system is illustrated in Figure 2.1.  The term T(rγ,Ω,E,t) 

represents the surface source term in Figure 2.1. 

 

Figure 2.1: Schematics of problem definition 
 

 In this thesis, we are mainly concerned with the computational methodology 

based on steady-state (time-independent) systems.  The steady-state transport equation is 

obtained by simply setting the LHS of Eq. (2.1) to be zero: 

 

0 4

( , ) ( , ) ( , )
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sdE d S
π
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. (2.6) 

2.2 Multigroup Approximation 

 Analytical or closed form solutions are rarely possible for transport problems. 

Hence, numerical approximations through the discretization of the independent variables 

or Monte Carlo are the only practical means for obtaining the neutral particle 

distributions in the system.  In this fashion, the continuous energy variable is often 

γ 

nγ 

Γb 
Γr 
 

T 

n 
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y 

z 
r 

dVdΩdE 
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discretized by the multigroup approximation.  The multigroup approximation partitions 

the energy domain into the G number of bins with intervals of [Eg+1,Eg], for g=1,G.  

Integrating energy variable over the predefined bins, results in the energy discretized 

transport equation: 

 
,

4

( , ) ( , )

' ( , ' ) ( , ') ( , ) for g=1,G
g tg g

sg g g g effd S
π

ψ σ ψ

σ ψ Ε→

⋅ ∇ + =

Ω → +∫
r r

r r r

Ω Ω Ω

Ω Ω Ω Ω,  (2.7) 

where variables with the subscript g denote the integrated values in energy group g.  For 

example, the energy-integrated angular flux ψg(r,Ω) is defined as: 

 
1

( , ) ( , , )
g

g

E

g
E

dE Eψ ψ
+

= ∫Ω Ωr r  (2.8) 

The group-dependent cross section is the integrated cross section value weighted by the 

angular flux: 

 1
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 (2.9) 

Eq. (2.9) preserves the reaction rates in the system.  Since in many engineering 

applications the main quantities of interest are the measured by reaction rates (i.e. power 

distribution in the reactor core, dose rate in the target organ). This definition of the multi-

group cross-section is exact.  The last term of the Eq. (2.7) is the effective group source 

term which is the contribution to group g due to the up- and down-scattering and the 

extraneous source: 

 , ' '
' 1
'

( , ) ( , ) ' ( , ' ) ( , ')
G

g eff g sg g g
g
g g

S S d σ ψ→
=
≠

= + Ω →∑ ∫Ω Ω Ω Ω Ωr r r r  (2.10) 

Since the energy dependence of the exact angular flux is, in general, not known a 

priori, we must introduce an approximated angular flux to obtain the group dependent 
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cross-sections—hence the multigroup approximation.  In this thesis, we assume that the 

multigroup cross-section data are given for the problems of interest.  If we assume the 

effective source term to be a known quantity, the multigroup transport equation can be 

treated as a series of energy-independent, mono-energetic transport problems.  The 

mathematical analysis presented in the following chapters is based on the one-speed or 

one-group transport equation.  The subscript g will be thus omitted unless it needs to be 

expressed explicitly. 

2.3 Second-Order, Even-Parity Form of the Transport Equation 

 In this section, we derive the second-order, even-parity form of the transport 

equation for a given energy group by the canonical transformation of Eq. (2.7).  First, a 

set of Eq. (2.7) is written for the +Ω and -Ω  directions: 

4

( , ) ( ) ( , ) ' ( , ' ) ( , ') ( , )t sd S
π

ψ σ ψ σ ψ Ε⋅∇ + = Ω → +∫Ω Ω Ω Ω Ω Ω Ω,r r r r r r  (2.11) 

 
4

( , ) ( ) ( , ) ' ( , ' ) ( , ') ( , )t sd S
π

ψ σ ψ σ ψ Ε⋅∇ − + − = Ω → − + −∫−Ω Ω Ω Ω Ω Ω Ω,r r r r r r (2.12) 

The canonical form of the transport equation is obtained by adding Eq. (2.11) and Eq. 

(2.12): 

4

( , ) ( , ) ' ( , ' ) ( , ') ( , )t sd S
π

φ σ φ σ ψ Ε− + + +⋅∇ + = Ω → +∫r r r r rΩ Ω Ω Ω Ω Ω Ω,  (2.13) 

and, by subtracting Eq. (2.11) from Eq. (2.12) 

  
4

( , ) ( , ) ' ( , ' ) ( , ') ( , )t sd S
π

φ σ φ σ ψ Ε+ − − −⋅∇ + = Ω → +∫r r r r rΩ Ω Ω Ω Ω Ω Ω,  (2.14) 

where, [ ]1( , ) ( , ) ( , )
2

φ ψ ψ± = ± −r r rΩ Ω Ω  are the even- and odd-parity components of 

the angular flux, or ( , ) ( , ) ( , )ψ φ φ+ −= +r r rΩ Ω Ω , 

1( , ) [ ( , ) ( , )]
2

S S S± = ± −r r rΩ Ω Ω  are the even- and odd-parity components of the 

source term, and 
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( , ' ) ( , ' ) ( , ' )s s sσ σ σ± → = → ± → −Ω Ω Ω Ω Ω Ωr r r are the even- and odd-parity 

components of the scattering phase function.  

The angular flux term still remains in the scattering integral; however, if we assume that 

the scattering kernel is invariant under the rotation, (i.e. the scattering does not depend on 

the incoming angle, but only depends on the angle between Ω and Ω′) the term can be 

simplified by recognizing the odd function vanishes with integration over all directions 

4π, (i.e.
4

' ( , ' ) ( , ') 0sd
π

σ φ±Ω =∫ ∓iΩ Ω Ωr r ).  Thus Eq. (2.13) can be written as: 

 
4

( , ) ( , ) ' ( , ' ) ( , ') ( , )t sd S
π

φ σ φ σ φ Ε− + + + +⋅∇ + = Ω +∫ iΩ Ω Ω Ω Ω Ω Ω,r r r r r  (2.15) 

Let us define the two collision operator G and C as: 

 1

4

( ) ( ) ' ( ') ( ')t sG f f d f
π

σ σ− − − − −= − Ω∫ iΩ Ω Ω Ω Ω   (2.16) 

 
4

( ) ( ) ' ( ') ( ')t sCf f d f
π

σ σ+ + + += − Ω∫ iΩ Ω Ω Ω Ω   (2.17) 

Due to the assumption of rotational invariance, the scattering kernel can be expanded in 

terms of Legendre polynomials:  

  0
0

( )

2 1( , ') ( ) ( )
4s l sl

l
even

l Pσ µ σ
π

∞
+

=

+
= ∑ir rΩ Ω   (2.18) 

  0
1

( )

2 1( , ') ( ) ( )
4s l sl

l
odd

l Pσ µ σ
π

∞
−

=

+
= ∑ir rΩ Ω   (2.19) 

where, µ0 is the cosine of the angle between Ω and Ω′. 

In order to simplify the collision operators, first we recognize that the delta function can 

formally be represented by the infinite sum of Legendre polynomials: 

 0
0

2 1( ') ( )
4 l

l

l Pδ µ
π

∞

=

+
− = ∑Ω Ω  . (2.20) 

Utilizing the delta function property, the total interaction term becomes: 
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  0
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4t l t
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lf d P f
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π

∞

=

+′ ′= Ω ∑∫Ω Ω   (2.21) 

Therefore, the collision operators can be expressed as: 

  1
0

1 4
( )

( ) ' ( ) ( ')t s
l
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G f d f
π

σ σ µ
∞
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=
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  0
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π
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=
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Eq. (2.13) and (2.14) are then expressed in terms of G and C: 

  1( , ) ( , ) ( , )G Sφ φ+ − − −⋅∇ + =r r rΩ Ω Ω Ω  (2.24) 

  ( , ) ( , ) ( , )C Sφ φ− + +⋅∇ + =r r rΩ Ω Ω Ω   (2.25) 

The inverse of the operator G exists [37, 20]. As a result, Eq. (2.24) is rearranged in terms 

of the odd-parity flux:  

  ( , ) ( , ) ( , )G Sφ φ− − + = − ⋅∇ r r rΩ Ω Ω Ω  (2.26) 

Substituting Eq. (2.26) into Eq. (2.25) finally yields desired even-parity transport 

equation: 

  G C S GSφ φ+ + + −− ⋅∇ ⋅∇ + = − ⋅∇Ω Ω Ω   (2.27) 

The boundary and interface conditions can be prescribed by the linear combination of 

even- and odd-parity fluxes. 

2.3.1 Vacuum Boundary Condition 

 The vacuum boundary condition for the even-parity transport equation is an exact 

analogue to the first-order form of the transport equation.  Since the angular flux is 

represented by the sum of the even and odd-parity fluxes, the vacuum boundary condition 

can be written as:  

  ( , ) ( , ) 0 0
b b

  for φ φ+ −
Γ Γ+ = <ir r nΩ Ω Ω   (2.28) 

or utilizing Eq. (2.26) with disregarding for the moment the odd-parity source: 
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  (2.29) 

Since the vacuum boundary condition employs both the even-parity flux and its 

derivative, it is commonly referred to as a Robin boundary condition. 

2.3.2 Reflective Boundary Condition 

 The reflective boundary condition can be easily introduced by recognizing the 

characteristics of the parity flux: 

 
( , ) ( , ),

( , ) ( , ), where 2( )
r

r
  

φ φ

φ φ

+ + ∗
Γ Γ

− − ∗ ∗
Γ Γ

=

= − = − i

Ω Ω

Ω Ω Ω Ω Ω

r r

r r n n
 (2.30) 

As we shall see in the next chapter, the reflective boundary condition is also called 

essential boundary condition. 

2.3.3 Material Interface Conditions 

At a material interface, both even- and odd-parity flux are continuous along the 

direction of particle travel.  Therefore, the interface conditions can be represented as: 

 (i) flux continuity:  

 
0

lim ( , ) ( , ) 0γ γε
φ ε φ ε+ +

→
 + − − = r rΩ Ω Ω Ω  (2.31) 

 (ii) current continuity: 

 
0

lim ( , ) ( , ) 0γ γε
φ ε φ ε− −

→
 + − − = r rΩ Ω Ω Ω  (2.32) 

Eq. (2.27) has several advantages over the first-order form of the transport equation.  

First of all, the solution of Eq. (2.27) requires only half of the angular unknowns 

compared to the first-order formulation.  This is particularly useful when spherical 

harmonics functions are employed as the angular basis functions; the odd angular basis 

functions identically vanish due to the orthogonal property of the spherical harmonics.  

Moreover, since the operators G and C are positive definite operators [37]; the well-
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established mathematical framework can be adapted to the problem, and the finite 

element-spherical harmonics (FE-PN) formulation gives rise to symmetric positive 

definite (SPD) matrices. 

 A main drawback in the even-parity formulation is the dependence on the 

reciprocal of the cross section that appears in the operator G.  This dependence leads to 

ill-posedness for the problem when the region becomes highly transparent.  In particular, 

the even-parity equation is not valid for vacuum regions (σ = 0).  Systems with very 

small cross sections often have very large condition number for the resulting matrix 

formulation, which makes the iterative scheme difficult to converge.  One way of 

overcoming this difficulty of treating the vacuum or nearly vacuum regions is adopting a  

“ray-tracing” method [38] for those regions.  In the ray-tracing method, the (nearly) 

vacuum regions are treated separately from the rest of the system, and artificial surfaces 

are created to connect the two systems.  The radiation transport problem in the vacuum 

region is then solved by connecting the surfaces through discrete rays.  The coupling 

between the vacuum and rest of the system is done by exchanging surface sources, and an 

iterative procedure is performed until the surface sources have converged. 

 2.4 Summary 

In this chapter, we have introduced the governing integro-differential equation for 

the radiation transport problem.  Simplification of transport problems by means of a 

steady state, multigroup approximations was presented.  The second-order, even-parity 

form of the transport equation, which is the basis of our numerical method, was derived 

via the canonical transformation.  We have also shown the collision operators, expanded 

in Legendre polynomials, allow an implicit treatment of the scattering kernel. The elliptic 

property of the even-parity transport equation allows us to use strong mathematical 

theory developed over the years, and mathematical formulations that will be presented in 

the later chapters deeply rely on this elliptic property of the governing equation. 
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CHAPTER 3 

THE FINITE ELEMENT SPHERICAL HARMONICS METHOD 

In this thesis discretization of the spatial and angular variables is achieved via the 

finite element-spherical harmonics (FE-PN) method.  Finite element analysis has become 

popular tool for the engineering analysis due to its flexibility in representing arbitrary 

geometries.  Spherical harmonics expansions of the angular variables provide a natural 

treatment for the scattering operators.  In this chapter, we discuss the FE-PN discretization 

of the even-parity transport equation through the well-known Ritz-Galerkin procedure.   

3.1 Even-Parity Variational Principle  

A large number of variational principles have been proposed in the context of the 

transport theory.  In this chapter, we employ the extremum variational principle of the 

even-parity transport equation which was first introduced by Vladimirov [19].  This 

variational principle has the even-parity transport equation as its Euler equation, and can 

be derived by the systematic methodology suggested by Pomraning [39]], Lewins [40], 

and Stacey [18].  

First, we introduce the adjoint problem corresponding to Eq. (2.26): 

 * * * *G C S GSφ φ+ + + −− ⋅∇ ⋅∇ + = − ⋅∇Ω Ω Ω  (3.1) 

where, *φ +  is the even-parity angular flux of the adjoint problem, and 

*S ±  are the parity components of the adjoint source terms. 

Since the adjoint source term is arbitrary, it is, in general, possible to express the quantity 

of interest by the inner product between the even-parity flux and the adjoint source term.  

Suppose that we are interested in identifying the quantity of interest defined by the 

following functional: 

 ( ) ( )* * * *[ ] , , ,sF T S GSφ φ φ φ+ + + + + −= + − ∇iΩ   (3.2) 
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where, ( )
4
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π

≡ Ω∫ ∫ , 

 
4

.,.
V

d d
π ∂
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T* is the adjoint surface source. 

In practice, Eq. (3.2) can represent the various reaction rates in the system when the 

adjoint source term is set to a cross section of interest (S*=σ), or the leakage rate through 

the particular surface if the adjoint surface source term is the unit surface source.   

The variational principle corresponding to the functional (3.2) is then obtained by 

adding the inner product between the adjoint solution and the original governing equation 

(2.26).  As a result, we obtain the following variational priciple: 
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 (3.3) 

The last equality is obtained from the divergence theorem.  Vladimirov’s variational 

principle can be easily constructed from Eq (3.3) by equating the adjoint problem to the 

original problem. Eq. (3.3) can then be rewritten as the following quadratic variational 

functional: 
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In order to show the Eq. (3.4) has the original equation as its Euler equation, we take the 

first variation with respect to ψ: 
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For the first variation δK[ψ] to vanish under arbitrary variations of δψ, the following two 

equations have to be satisfied: 

 G C S GSψ ψ + −− ⋅∇ ⋅∇ + = ⋅∇Ω Ω − Ω  on V (3.6) 

 G S Tψ ψ− + − ⋅∇ = Ω  on Γ  (3.7) 

Therefore, the function at which Eq. (3.4) gives the extremum value satisfies the even-

parity transport equation.  The second variation of the Eq. (3.4) is a positive quantity; 

therefore, the quadratic variational functional (3.4) has a characteristic such that the 

function, which minimizes the functional (3.4) within a given set of functions, is the best 

possible solution in least-square sense.  Figure 3.1 illustrates that the geometrical 

interpretation of the variational principle [37]. 

 

 

 

Figure 3.1: Illustration of the extremum variational principle [37] 
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3.2 The Finite Element-Spherical Harmonics Discretization 

The finite element method is a powerful analysis tool for obtaining the numerical 

approximations of partial differential equations.  The basic philosophy behind the finite 

element method is to discretize the problem domain into number of sub-regions, and 

approximate the solution by a collection of the simple piecewise functions which 

minimize the corresponding functional.  The finite element method is thus closely related 

to the variational methodology.  In particular, rigorous mathematical analysis is available 

to prove its convergence and uniqueness of the numerical solutions [41] for the case of 

elliptic-type problems.  In addition to the strong mathematical framework, the main 

advantage of the finite element method is its geometrical flexibility; complex domains 

can be handled readily and the boundary conditions can be treated in a systematic way.  

In deterministic radiation transport modeling, angular variables are often 

discretized via (a) discrete ordinates (SN) or (b) the classical spherical harmonics (PN) 

method.  This gives a set of coupled PDE’s which can be solved by conventional 

numerical schemes.  There are several advantages using the PN method over the SN 

method; (1) the spherical harmonics allows the natural treatment of the scattering kernel 

[42], and (2) no ray effect is observed [1].  In the next section, we briefly introduce the 

spherical harmonics angular approximation.   

3.2.1 The Spherical Harmonics Angular Approximation   

The angular flux can be expanded by: 

 
0

( , ) ( ) ( )
l

lm lm
l m l

Yψ ψ
∞

= =−

= ∑ ∑Ω Ωr r   (3.8) 

where, Ylm is the l- and m-th moment of the spherical harmonics function, which is 

defined as [1]: 

 1/ 2( ) ( )m im
lm lm lY C P e ωµ=Ω   (3.9) 
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where, (2 1)( )!
( )!lm

l l mC
l m

+ −
=

+
 is the normalization constant,  

( )21( ) 1
2 !

l

l l l

dP
l d

µ µ
µ

= −  is the l-th moment of the Legendre polynomials, and 

2 / 2( ) ( 1) (1 ) ( )
m

m m m
l lm

dP P
d

µ µ µ
µ

= − − is the l- and m-th moment of the associated 

Legendre functions. 

The spherical harmonics functions obey the following orthogonality relations: 

 *
' ' ' '( ) ( )lm l m ll mmd Y Y δ δΩ =∫ Ω Ω   (3.10) 

where ( )* ( ) 1 ( )m
lm lmY Y= −Ω Ω  is the complex conjugate function. 

The spherical harmonics (3.9) can be split into even and odd components with respect to 

the azimuthal components ω: 

 ( ) ( ) ( )e o
lm lm lmY Y iY= +Ω Ω Ω , (3.11) 

where, 1/ 2( ) ( ) cos( )e m
lm lm lY C P mµ ω=Ω , and 

1/ 2( ) ( )sin( )o m
lm lm lY C P mµ ω=Ω . 

The parity components of the spherical harmonics in turn obey the following 

orthogonality relations: 

 ' ' 0 ' '
1( ) ( ) (1 )
2

e e
lm l m m ll mmd Y Y δ δ δΩ = +∫ Ω Ω   (3.12) 

 ' ' 0 ' '
1( ) ( ) (1 )
2

o o
lm l m m ll mmd Y Y δ δ δΩ = −∫ Ω Ω  (3.13) 

Representation of the angular dependence by the even and odd spherical harmonics 

functions turns out to be a convenient choice [42]. For example, the addition theorem can 

be represented as: 

 
0

4( ) ( ) ( ) ( ) ( )
2 1

l
e e o o

l lm lm lm lm
m

P Y Y Y Y
l
π

=

′ ′ ′= +
+ ∑iΩ Ω Ω Ω Ω Ω   (3.14) 

Then, the collision operator G and C can be written as: 
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 (3.16) 

Therefore, the integral collision operators are reduced to the summation over the 

spherical harmonics moments. 

3.2.2 The Finite Element Approximation   

The spatial dependence of the even-parity flux can be approximated by the 

piecewise continuous functions;  

 
1 1 1

( , ) ( ) ( )
eNE M

e e
j k jk

e j k

B Qψ ψ
= = =

= ∑∑∑Ω Ωr r  (3.17) 

where, E is the number of non-overlapping elements connected together at N nodal 

points. 

  Ne is the number of spatial basis function for the element e, 

 M is the number of moments in the angular expansion, 

 e
jB  is the j-th spatial basis function for the element e, and 

 Qk is the k-th angular basis function. 

This expansion can be expressed in a more compact tensor notation: 

 
1

( , )
E

eT T e

e

B Qψ ψ
=

= ⊗∑Ωr  (3.18) 

where, eψ is a (MNe x 1) column vector of unknown nodal fluxes, 

BeT is a (Ne x 1) column vector of finite element shape functions, and 

Q(Ω) is a (M x 1)  column vector of normalized spherical harmonics functions.  
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The spatial basis functions used in the finite element method are characterized by their 

locality.  In other words, they are defined such that they only span the interior of an 

element and vanish on the outside.  Figure 3.2 illustrates the typical linear basis function 

in two dimensional problems. 

 

Figure 3.2: Typical two-dimensional triangular element and its linear basis 
functions 

 

3.2.3 Ritz-Galerkin Procedure 

Numerical solutions for the variational principle (3.4) are possible via the well-

known Ritz-Galerkin procedure. Substituting Eq. (3.18) into (3.4), we obtain the reduced 

(or discretized) variational functional: 
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where,  
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and 

 ( ) ( ), , ,e eT T eT T eT Tb B Q S B Q T B Q G S+ −≡ ⊗ + ⊗ + ⋅∇ ⊗ ⋅∇Ω Ω  (3.21) 

are the elements of the stiffness matrix and load or force vector, respectively.  These 

require the evaluation of several spatial angular integrals.  Table 3.1 summarizes these 

spatial and angular integral tables. 

 

Table 3.1: Spatial and angular integral tables used in the FE-PN method 
 

Physics Spatial Integral Angular Integral 
 

Leakage 
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Parity Source 
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Surface Source 
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Γ∫ r r  

 

 

2
l ld n Q Q

π
′Ω Ω ( ) ( )∫ i Ω Ω  

 

In Table 3.1, n and m denote the index of the basis function related to the local node 

number, i and j denote the orthogonal components of the spatial coordinates, and l and l′ 

denote the moment of spherical harmonics.  The angular basis functions with prime (Q′) 

are the odd-moments of the spherical harmonics functions. 

Making use of nodal compatibility, and requiring the first variation of Eq. (3.19) 

to vanish, we obtain the linear system of equations of the form [43]: 
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 ψ =A b  (3.22) 

where, ψ is a (MN x 1) unknown column vector, 
1=

= ∑
E

e

e
A A is a (MN x MN) symmetric 

positive definite (SPD) matrix, and 
1=

= ∑
E

e

e
b b is a (MN x 1) source vector. 

3.3 General Solution Strategy Applied to the FE-PN Method 

Thus far, we have reviewed the discretization scheme used in the FE-PN 

formulation.  The resulting matrix A is sparse due to the locality of the finite element 

basis function.  However, for large problems, the explicit assembly of the matrix A soon 

becomes prohibitive since the matrix size increases as O(M2), not taking into account the 

energy dependence in the problem.  To overcome this problem a special sparse iterative 

solution strategy needs to be considered.  This strategy is based on the preconditioned 

conjugate gradient (PCG) method [44] which is popular iterative scheme to solve the 

SPD system.  The algorithm of the PCG is shown in Figure 3.3.   

 

 

Figure 3.3: The preconditioned conjugate gradient algorithm 

Given A, b and x(0), compute r(0)=b-Ax(0) 
DO i=1, 2 … until converges 

Solve Mz(i-1)=r(i-1) 
ρi-1= z(i-1)T r(i-1) 
if i=1 

p(i)=z(i-1) 

else 
βi-1 = ρi-1/ρi-2 

p(i)=z(i-1)+βi-1 p(i) 
endif 

 
q(i)=Ap(i) 
αi=ρi-1/(p(i)Tq(i)) 
x(i)=x(i-1)+αip(i)

 

r(i)=r(i-1)+αiq(i) 
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In the PCG algorithm, the only matrix operation which involves matrix A is the 

matrix vector product.  Therefore, the explicit assembly of the matrix A is not necessary 

so long as the matrix vector multiplication can be performed efficiently.  The crucial step 

to the success in the PCG method is a choice of the preconditioner M.  This has to be as a 

close as possible approximation to the matrix A but easier to invert. The condition 

number of the PCG is dictated by the condition number of M-1A.  The closer 

preconditioning matrix being A, the higher the convergence rate becomes.  Naturally, if 

the preconditioner is the exact matrix A, the PCG iteration converges at the first step.   

Taking into consideration above mentioned two issues (storage requirements and 

convergence rate of the PCG), a Moment-by-Moment (MBM) SSOR preconditioner [36] 

is a strong candidate of the solution of the FE-PN equations. In the MBM method the 

matrix A is partitioned into M x M sub-matrices of dimension N x N: 
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 (3.23) 

where each block matrix All′ contains the spatial finite elements connections of angular 

moment l and l′.  Then, the MBM preconditioner can be written as the following form: 

 −= + +1 TM (D L)D (D L )  (3.24) 

where, 

  
0

 if moment i > j  if moment i=j
               

0         otherwise         otherwise
ij ij

ij ij

A A
L D 

= = 
 

 

The MBM preconditioning stage is solved by the block forward-backward sweep. The 

advantage of this preconditioner is the storage cost: only the block diagonal sub-matrices 

need to be explicitly assembled.  Matrix-vector multiplications regarding the off-diagonal 

matrices are carried out via the tensorial operations of the space-moment matrix stencil.  

The tensorial nature of the FE-PN formulation allows storing the angular integrals and 
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spatial element integrals separately, and this allows a considerable reduction in the 

storage cost with little expense in the computational cost at the preconditioning stage. 

 3.4 Summary 

In this chapter, we have derived the even-parity variational principles by utilizing 

the adjoint problem.  The finite element-spherical harmonics discretization is then 

introduced through the Ritz-Galerkin procedure.  The resulting discretized system is 

symmetric positive definite, which naturally suits to use of the well-known 

preconditioned conjugate gradient.  A Moment-by-Moment SSOR preconditioner for the 

coupled space-angle matrices and a general solution strategy were briefly discussed.  

 



 33

CHAPTER 4 

A POSTERIORI ERROR ANALYSIS AND ADAPTIVITY 

FRAMEWORK FOR RADIATION TRANSPORT PROBLEMS 

 In the previous chapter, the development of the finite element-spherical 

harmonics discretization method was discussed.  The FE-PN method based on the Ritz-

Galerkin procedure yields the best approximate solution (in a global least-square sense) 

within the approximation space.  However, the numerical solution is always susceptible 

to the discretization error, whose quantity is not known a priori.  Identification and 

minimization of the discretization errors are of utmost importance for simulations to 

become reliable analysis tools.  Although a discretization resulting from an experienced 

engineering judgment sometimes gives an acceptable result, minimization of the 

discretization error within a framework of the available computational resources requires 

a strong mathematical framework.  A posteriori error analysis is potentially capable of 

providing a powerful framework estimating the discretization errors.  In this chapter, we 

derive a posteriori error estimates and develop an adaptivity framework for the radiation 

transport problems. 

4.1 A Priori Error Estimates 

An important feature of any numerical algorithm for approximating PDEs is the 

convergence property.  Suitable numerical schemes should have a property such that the 

numerical solution converges towards the exact solution as the spatial mesh size h and 

angular expansion orders N tend to 0 and ∞, respectively.  The convergence property of 

the finite element method has been studied extensively.  Especially, for the elliptic 

problems with linear basis trial functions, the following a priori error estimates holds [45, 

41],: 

 
2

2
1h L

u u c h− ≤   (4.1) 
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 2hu u c h− ≤   (4.2) 

where, c1 and c2 are the constants depending only on the size of the problem, 
2L

u and 

( ) ( ), ,u u G u u Cu= ⋅∇ ⋅∇ +Ω Ω denote the L2 and energy norm, respectively.  Figure 

4.1 illustrates the general trend between the numerical error and the mesh size. 

 

 

Figure 4.1: Illustration of relationship between numerical error and mesh size 
 

 A priori error estimates are difficult to use in practice due to the presence of the 

unknown constant.  Desirable error indicators should be able to estimate error bounds 

only from known quantities, where a posteriori error estimates come into play.  There are 

two main types of a posteriori error estimates: (gradient) recovery-based and residual-

based.  The philosophy behind the (gradient) recovery-based a posteriori error analysis is 

to project the gradient of the solution onto the higher order finite element space, and 

identify the error by comparing two gradients.  On the other hand, the residual-based a 

posteriori error estimate uses the finite element residual of the problem to identify the 
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discretization error.  The next section discusses the residual-based a posteriori error 

analysis applied to the FE-PN methodology, and derives error bounds based on the L2 

norm and the energy norm. 

4.2 Residual-Based a Posteriori Error Analysis 

 Our a posteriori error analysis is based on the weak formulation of the problem.  

The weak form of the even-parity transport equation is equivalent to the quadratic 

variational principle (3.4).  The even-parity variational principle developed in the 

previous chapter can be split into two functionals: 

  [ ] [ ][ ] , 2 sK F Fψ ψ ψ ψ= −   (4.3) 

where, 

  [ ] ( ) ( ), , , ,F G Cφ ψ φ ψ φ ψ φ ψ= ⋅∇ ⋅∇ + +Ω Ω   (4.4) 

  [ ] ( ) ( ), , ,sF S T GSφ φ φ φ+ −= + + ⋅∇Ω  (4.5) 

The FE-PN method then seeks the solution ,h N h NV xPψ ∈  such that: 

  , , ,( , ) ( )h N h N s h NF Fφ ψ φ=  for all ,h N h NV xPφ ∈   (4.6) 

where, ,h Nψ  and ,h Nφ are the trial and basis functions.  Vh and PN denote the spatial finite 

element space and the angular expansion spaces, respectively.  Eq. (4.6) minimizes the 

even-parity extremum variational principle (3.4) for given set of basis functions. Hence, 

this finite element formulation results in the same discretized equations as the Ritz-

Galerkin procedure.  

4.2.1 A L2 Norm A Posteriori Error Estimator 

 In order to characterize the discretization error in L2 norm, we employ the dual 

problem.  The dual problem of Eq. (4.6) can be expressed as: 

  *( , ) ( )F z w L w=  (4.7) 
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where, z and w are the solution and basis functions of the dual problem, respectively.  

Since Eq. (4.4) is self-adjoint, F*(. , .) = F(. , .).  It is a common practice to exploit the 

adjoint source term to characterize the desired quantity.  Suppose we are interested in 

characterizing the discretization error in the L2 norm.  If we choose an arbitrary adjoint 

source term ( )L w to be the even-parity angular flux discretization error in the forward 

problem , ,h N h Ne ψ ψ= − , then the adjoint source term can be expressed as: 

  ,
4

( ) h N
V

L w d dVe w
π

= Ω∫ ∫  (4.8) 

The L2 error norm can then be expressed by substituting the discretization error into the 

adjoint basis function: 
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Ω

− = −   (4.9) 

Utilizing the Galerkin orthogonality, 

  ( ), , ,, 0h N h N h N h NF  for all V xPφ ψ ψ φ− = ∈   (4.10) 

and self-adjointness of Eq. (4.4), the error in the FE-PN approximation can be written as 

the following form: 
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 (4.11) 

Note that the error in the even-parity flux of the FE-PN approximation is 

expressed only in terms of the discretization error of the adjoint problem (εh,N=z-zh,N) and 

the FE-PN solution.  Clearly, it is impractical to use Eq. (4.11) directly since obtaining the 

solution and error of the adjoint problem requires the same computational effort as 

obtaining the forward solution.  The philosophy behind a posteriori error estimation is to 

restate the LHS of Eq. (4.11) by only using the known quantities such as the finite 
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element approximation and the mesh size.  To eliminate the unknown adjoint solution 

terms from the expression, first Eq. (4.11) is rewritten as a sum of integrals over 

elements: 
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Applying the chain rule, 
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and Green’s theorem, 
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to Eq. (4.12) gives: 
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where, , , ,( )h N h N h NR S GS G Cψ ψ ψ+ −= − ∇ + ∇ ∇ −i i iΩ Ω Ω  is the finite element residual, 

and  

 ( ) ( ), , ,h N h N h NI J
G G G

γ
ψ ψ ψ ⋅∇ = ⋅ ⋅∇ + ⋅ ⋅∇ Ω Ω Ω Ω ΩI Jn n  is the 

discontinuity in the odd-parity flux along the element edge γ which separates the 

elements I and J.  

Note that the interior surface integral is calculated twice during the sweeping the 

elements.  If the surface residual term is defined as: 

  , ,
1( ) \
2h N h N ER G  on Vγ γ

ψ ψ γ = − ⋅∇ ∈∂ Γ Ω   (4.16) 

  ( )( ), , ,( )h N h N h NR T G  on γ ψ ψ ψ γ= ⋅ − + ⋅∇ ∈ΓΩ Ωn   (4.17) 

Eq. (4.15) may then be simplified to: 
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Clear physical meaning can be observed in Eq. (4.18). ,( )h NR ψ  measures the local 

particle conservation property within the volume element, whereas ,( )h NR ψ  can be 

thought as the discontinuity in the current along the element edges.  The transport 

problem, in theory, conserves the particle balance and interface continuity.  The 

(continuous) FE-PN method conserves the particle conservation globally, but not locally.  

In order to conserve the global particle balance, the FE-PN discretization introduces an 

artificial surface source and sink.  Clearly, this artifact is the source of the discretization 

errors.  Applying the Cauchy-Schwarz inequality in Eq. (4.18) gives: 
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where, hE is the mesh size for the element E.  The parameter hE is introduced in Eq. 

(4.19) for the later derivation which bounds the interpolation error by the semi-norm.  To 

eliminate the norm in the adjoint error term, we make a few assumptions.  The first 

assumption is that the solution of the adjoint problem is a square integrable function and 

equipped with the following semi-norm: 

   ( )2

1/ 2
22
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4

H Ex
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z d dV z
π

Ω

 
= Ω ⋅∇ < ∞ 

 
∫ ∫ Ω  (4.20) 

Subscript H2 indicates that the function in this space is twice differentiable in the 

direction of the particle travel.  Then, the L2 norm error of the adjoint problem is bounded 

by [46]: 
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and 
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where πh is the interpolation operator and c is the constant independent of element size 

hE.  The interpolation operator πh is the Lagrange interpolation, which can be defined as: 

  ( ) ( )h i iz x z xπ =  (4.23)  

where xi is the Lagrange interpolation node.  Then the error in the finite element 

approximation is bounded from above by the Lagrange interpolation because of the 

minimization property of the finite element: 

  
22

, ( )( )h N h L ExL Ex
z z z zπ

ΩΩ
− ≤ −  (4.24) 

Inequalities (4.21) and (4.22) may be formulated by applying the Cauchy-Schwartz 

inequality and recognizing the fact that the second derivative of the finite element 

solution identically vanishes in the linear case.  Secondly, the following inequality is 

assumed to hold: 

  2
2( ) ( )hH Ex L Ex

z c ψ ψ
Ω Ω

≤ −  (4.25) 
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Eq. (4.25) states the regularity and smoothness of the problem.  Using equation (4.19)-

(4.25), the error in the L2 norm of the angular flux of PN approximation can be expressed 

as: 

 
2 2 2

2 3/ 2
, , ,( ) ( ) ( )

1( ) ( )
2h N E h N K h NL Ex L Ex L Ex

E
c h R h Rγψ ψ ψ ψ

Ω Ω ∂ Ω

 − ≤ + 
 

∑   (4.26) 

Thus, we can define the local error indicator (ηΕ) and global error indicator as follows:  

  
2 2

3 222 4
, ,( ) ( )

( ) ( )
2
E

E E h N h NL Ex L Ex

hh R Rγη ψ ψ
Ω ∂ Ω

= +  (4.27) 

  2 2
E

E

η η= ∑   (4.28) 

4.2.2 An Energy Norm A Posteriori Error Estimator 

A similar, but simpler, argument can be applied to derive a posteriori error 

estimator based on the energy norm.  The discretization error can be described by using 

the following weak formulation: 

 , ,( , ) ( ) ( , )h N s h NF e F Fφ φ φ ψ= −  (4.29) 

Explicitly writing out the RHS of Eq. (4.29) gives: 
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ψ φ
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Γ
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+ Γ Ω ⋅ −

∫ ∫

∫ ∫

Ω Ω Ω

Ω n
(4.30) 

Applying the chain rule (4.13) and the Green’s theorem (4.14) to obtain the expression: 
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n (4.31) 

Utilizing the Galerkin orthogonality: 

 , ,( , ) 0h N h NF φ ψ ψ− =  (4.32) 

and applying the Cauchy-Schwarz inequality gives: 
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 (4.33) 

assuming that the following Clement type interpolation [46]  

  1
2 ( ) ( )Eh L Ex H Ex

Chφ π φ φ
Ω Ω

− ≤  (4.34) 

and 

  1
2

1/ 2
( ) ( )Eh L Ex H Ex

Chφ π φ φ
∂ Ω Ω

− ≤  (4.35) 

applies to the problem. The semi-norm 1 ( )H Ex
φ

Ω
 is now defined as 

 ( )1

1/ 2
2

( )
4

H Ex
E

d dV
π

φ φ
Ω

 
= Ω ⋅∇ 

 
∫ ∫ Ω  (4.36) 

The explicit expression of the energy norm is: 

 ( ) ( ), ,G Cφ φ φ φ φ= ⋅∇ ⋅∇ +Ω Ω  (4.37) 

Due to positive definiteness of the operators G and C, we immediately see: 
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 ( ) 2
,Gφ φ φ⋅∇ ⋅∇ ≤Ω Ω  (4.38) 

Writing the operator G explicitly, we get:  

 ( ) 0
1

2 1 1, ( )
4

odd

l
l l

lG dV d d Pφ φ φ µ φ
π σ=

+ ′ ′⋅∇ ⋅∇ = Ω ⋅∇ Ω ⋅∇∑∫ ∫ ∫Ω Ω Ω Ω  (4.39) 

Similarly, we can write the semi-norm (4.36) as: 

 ( ) 0
0

2 1, ( )
4 l

l

ldV d d Pφ φ φ µ φ
π

∞

=

+ ′ ′⋅∇ ⋅∇ = Ω ⋅∇ Ω ⋅∇∑∫ ∫ ∫Ω Ω Ω Ω  (4.40) 

Now let us denote the maximum cross section as σmax 

 max max( ),l  l=1,L, oddσ σ=  (4.41) 

where, L is the number of moments in scattering cross section.  In the case of isotropic 

scattering, max tσ σ= .  Then we can obtain the lower bound of (4.39) as: 

 ( ) ( )
max

1 , ,Gφ φ φ φ
σ

⋅∇ ⋅∇ ≤ ⋅∇ ⋅∇Ω Ω Ω Ω  (4.42) 

Finally, we can bound the semi-norm in terms of the energy norm as follows: 

and we  recognize the fact that the energy norm is greater than the semi-norm (4.36): 

 1 max( )H Ex
φ σ φ

Ω
≤  (4.43) 

Finally substituting the discretization error ,h Ne  into the basis function φ , we obtain the 

energy norm expression: 
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 (4.44) 

Thus, we can define a posteriori error estimator based on the energy norm to be: 

 ( )
2 2

222 2
max , ,( ) ( )

( ) ( )E E h N E h NL Ex L Ex
h R h Rγη σ ψ ψ

Ω ∂ Ω
= +  (4.45) 
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4.3 Separation of the Error Components 

In the previous section, we have derived a posteriori error estimators based on the 

global L2 and energy norms that are dependent on both spatial and angular 

discretizations.  In order to apply a posteriori error estimates in the context of adaptivity, 

the error indicator must distinguish the error components of each independent variable.  

First, we expand the L2 error norm in terms of spherical harmonics: 
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∑ ∑∫

Ω Ωr r r

r r

 (4.46) 

where elm(r) is the error in l-th and m-th spherical harmonic moment at position r.  The 

second term represents the angular truncation error.  The last line of Eq. (4.46) is 

obtained by utilizing the orthogonality relationship of the spherical harmonics.  The term 

elm(r) includes both spatial and angular discretization errors up to PN; therefore, it does 

not provide useful information whether the element requires spatial or angular 

refinement.  In order to obtain a more useful expression for the adaptivity, we compare 

the FE-PN solution with the spatially continuous PN solution: 

 
2

2

, ,
, , ,( )

, ( )

1/ 2
, 2,

,0
, 0

( ) ( ) ( )

1 (1 ) ( )
2

N
l m l m

N h N l m h NL Vx
l m L Vx

N even
l m

m
l mV

Y

dV e

ψ ψ ψ ψ

δ

Ω
Ω

=

 − = − 

 
 = +  

 

∑

∑∫ �

Ω r r

r

 (4.47) 

where , ( )l me r�  is the l,m-th spherical harmonics moment spatial discretization error of the 

PN approximation.  Note that the Eq. (4.47) contains only the spatial discretization error 

of FE-PN approximation. The spatial discretization error in PN approximation can be 

approximated by substituting Eq. (4.47) into the RHS of Eq. (4.26).  In this case, the 

finite element residual term RN(ψh,N) is computed by the following: 
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N h N l h N h N
l

lR d P S G C
π

ψ µ ψ ψ
π

+ + +
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+
= Ω + ⋅∇ ⋅∇ −∑∫ Ω Ω   (4.48) 

Eq. (4.48) is substituted to estimate the spatial discretization error of PN approximation.   

 The angular truncation error of the PN approximation is then found by projecting 

the spatially converged solution onto the higher order angular space (i.e. PN+2 space).  In 

theory, if the finite element residual term in Eq. (4.26) is replaced by RN+2(ψh,N), we can 

estimate the angular truncation error.  However, because the explicit error estimator 

heavily depends on the mesh size, it is not suitable for estimating the angular truncation 

error.  In the next section we shall discuss the specific strategy to estimate the angular 

truncation error by an implicit error estimator.   

4.4 Treatment of the Angular Variables 

4.4.1 Implicit Error Estimator for the Angular Variables 

Once spatial convergence is achieved, the angular truncation error can be 

estimated using RN+2(ψh) as the FE residual term in Eq. (4.26). Higher-order spherical 

harmonic moments are then added to the angularly non-converged elements.  In theory, 

this approach gives the strategy to refine the angular variable.  There is a difficulty, 

however, using Eq. (4.26) as the error indicator for the angular variable.  Since the 

required angular order is dependent solely on the physical problem, not on the spatial 

discretization, the desirable angular error indicator should be independent of the mesh 

size.  Eq. (4.26) strongly depends on the mesh size and, therefore, it is not the best error 

indicator.  In this sub-section, we introduce an alternate approach in which the error 

indicator does not depend on the mesh size.  The approach is called an implicit error 

estimator, as opposed to an explicit estimator derived in the previous section, due to its 

use of solution of the element-wise matrix equation. 
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 To formulate an efficient implicit error estimator, we make use of the hierarchical 

property of the spherical harmonics functions.  Taking into account the smoothness of the 

finite element approximation on the element interior, the error in even-parity flux may be 

written as: 

 , , , ,h N h N h N h NG e Ce S G Cψ ψ+− ⋅∇ ⋅∇ + = + ⋅∇ ⋅∇ −Ω Ω Ω Ω  (4.49)  

The corresponding natural boundary condition may be written as: 

 ( ) ( ) ( )( ), ,h N h NG e G Gψ ψ⋅ ⋅∇ = ⋅ ⋅∇ − ⋅∇Ω Ω Ω Ω Ωn n  (4.50) 

Clearly, imposing an appropriate boundary condition Eq. (4.50) is not possible due to the 

unknown term ψ. However, it is possible to approximate the gradient term by the finite 

element approximation: 
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  (4.51) 

Now the weak formulation of the local element residual problem can be written as the 

following boundary value problem: 
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  (4.52) 

Eq. (4.52) is valid for any basis function φ. The error term can be estimated by solving 

the local finite element matrix with the Neumann boundary condition developed by Bank 

and Weiser [47]. To obtain the angular truncation error of PN approximation, we simply 

place the N+2th order spherical harmonics functions as the basis function of Eq. (4.52) 

and solve the problem. Notice that the solution of Eq. (4.52) is independent of 

discretization and only depends on the angular expansion orders if the gradient term is 

well recovered by the averaging Eq. (4.51).  
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4.4.1.1 Reliability of the Implicit Estimator 

 In order for the residual equation (4.29) to produces the exact error, an infinite 

dimensional space is required.  Clearly, it is impossible to use such a space; hence we 

must approximate the error in the smaller discretized space, and hope that the estimated 

error mimics the true error sufficiently close.  In order to estimate the angular truncation 

errors in the PN approximation, we have decided to use the PN+2
th order of spherical 

harmonics basis function.  Since we implicitly assume that the solution changes only 

slightly with the addition of the higher order angular basis, we hope that the minor 

change can be approximated by the localized subspace.  The following discusses the 

validity of the developed implicit estimators.  The hierarchical property of the spherical 

harmonics basis function allows us to analyze the implicit error estimator using the 

methodology introduced by Bank and Smith [47].  

First, we recognize that any function 2Nψ + that lies on the space 2 2N N NP P P+ += ⊕ �  

can be decomposed with two components: 

 2 2N N Nψ ψ ϕ+ += +  (4.53) 

where, N NPψ ∈ , and 2 2N NPϕ + +∈ � .  We then make an assumption that the following 

“saturation assumption” holds: 

 , 2 ,h N h Nψ ψ β ψ ψ+− ≤ −   (4.54) 

where β < 1.  Eq. (4.54) simply states that the higher-order angular approximation 

converges to the exact solution more rapidly than the lower-order approximations.  Then 

we apply the Galerkin orthogonality to form following equality: 

 
2 2 2

, , 2 , 2 ,h N h N h N h Nψ ψ ψ ψ ψ ψ+ +− = − + −  (4.55) 

Due to the Galerkin orthogonality, the error components are orthogonal with respect to 

the energy norm.  Incorporating with (4.54), Eq. (4.55) can be modified as: 

 ( ) 2 2 22
, , 2 , ,1 h N h N h N h Nβ ψ ψ ψ ψ ψ ψ+− − ≤ − ≤ −   (4.56) 
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Therefore, the reliability of the error indicator calculated from the PN+2 space depends on 

the difference in the convergence rates between the PN and PN+2 approximations.  

Because the lower bound behaves quadratically in β, we expect that it is relatively close 

to the true solution.  Our error estimator uses further simplified angular basis functions.  

In order to derive the bound, we assume a strengthened Cauchy-Schwarz inequality [47]: 

 [ ]2 2,N N N NF  ϕ ϕ γ ϕ ϕ+ +≤   (4.57) 

The term is γ  < 1 and it can be seen as the generalized cosine angle between the NP  and 

2NP +
� with respect to the energy norm.  By utilizing Eq. (4.57), one can write the following 

error bounds: 

 ( )( ) 2 2 22 2
, , 2 ,1 1 h N h N h Neβ γ ψ ψ ψ ψ+− − − ≤ ≤ −   (4.58) 

where, , 2h Ne +  is the solution of the residual equation (4.52) with the basis function being 

2 2N NPϕ + +∈ � .  The lower bound of Eq. (4.58) can be obtained by combining Eq. (4.57) and 

the following Young’s inequality: 

 
1 1 1

p qa bab
p q

p q

≤ +

+ =
 (4.59) 

Eq. (4.58) shows that the error estimates is smaller than the true error.  On the 

other hand, the error estimate using local residual problem with a proper boundary 

condition is shown to overestimate the true error [11, 48]: 

  ( )( ) 2 2 22 2
, , 2 , ,1 1 h N h N h N h N E

E

eβ γ ψ ψ ψ ψ+− − − ≤ − ≤ ∑� �   (4.60) 

where, ,h Ne�  is the solution of the local residual problem (4.52).  We hope then that our 

error estimate is closer to the true error.   



 48

4.4.2 Surface Angular Integrals 

Both the explicit and implicit error estimators involve the computation of volume 

and surface integrals over the element.  The volume integrals are also used in the FE-PN 

formulation; therefore, there is no need for the extra integral evaluations.  Conversely, the 

surface integrals in Eq. (4.27), (4.45), and (4.52) involve the half-range angular integrals 

along all element edges, which do not appear in the FE-PN formulations.  The error 

estimators require the evaluation of the following integral: 

 ( ) ( ) ( ), ,
4

2h N h Nd G d G
π

φ ψ φ ψΩ ∇ = Ω ∇∫ ∫
i

i i i i
Ω

Ω Ω Ω Ω
n<0

n n  (4.61) 

The surface integrals must be evaluated on each element edge, and the integrand contains 

the inner product between the direction Ω and the normal vector to the surface n.  Thus, 

the surface integral depends on the orientations relative to the reference coordinate 

system. Moreover, the angular integral does not generally have an analytical expression 

since the integration limits of one variable are a function of the other angular variable 

[42].  The evaluation of the surface angular integral is, therefore, cumbersome and may 

become expensive. 

 This extra computational effort, however, can be greatly reduced if the surface 

normal is aligned along one of the reference coordinate system.  In particular, the 

analytical expression of the angular integral exists when the surface normal vector is 

perpendicular to the x-axis (Figure 4.2). The integration limits then become independent 

of one another and have the following expression:  

  ( ) ( )
1

2
, ,

0 1

1h N h Nd G d d G
π

φ ψ ω µ µ φ ψ
−

Ω ∇ = − ∇∫ ∫ ∫
i
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Ω

Ω Ω Ω
n<0

n  (4.62) 
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Figure 4.2: Illustration of angular coordinate relative to the element edge in the case 
of normal vector being parallel to the y-axis 

 
 
In this case, the integral with respect to the variable µ can be evaluated by the following 

expression [42]: 
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 (4.63) 

and the integral with the azimuthal angule ω becomes: 

( ) , 1 , 1

, 1 , 1,00

0sin
sin sin cos

0cos 4 2
m m m m

m m m mm

m
d m m

m

π δ δω πω ω ω ω
δ δω δ

′ ′+ −

′ ′− +

−′   
=    −′ −   

∫ (4.64) 

The angular integral of an arbitrarily oriented surface can be evaluated by the 

rotation of the coordinate system.  For two-dimensional x-y geometry, there is no need for 
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the rotation of polar angle.  The rotation of the azimuthal angle is defined such that the 

new x-axis is aligned to the element edge (Figure 4.3).   

 

Figure 4.3: Illustration of the half-range surface integral in new coordinate system 
(x′,y′,z′). New coordinate system is rotated counter clockwise by angle α about z-axis 
 
The following addition formulas of the sine and cosine functions are then utilized to 

evaluate the integral with respect to the original reference coordinate system: 
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and 
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where ω'=ω+α are the azimuthal angle in the new rotated system and R(α) denotes the 

rotation matrix.  Then, the surface integral with respect to the original coordinate system 

can be evaluated as: 
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  (4.67) 

Therefore, in order to evaluate the surface angular integrals, it suffices to calculate the 

rotation matrix, Eq. (4.63) and (4.64).  Then, the original integral can be calculated by 

performing a double matrix product shown in Eq. (4.67). 

4.5 Spatial Mesh Refinement Strategy in Two-Dimensional x-y Geometry 

For each stage of the finite element calculation, the convergence of the spatial 

discretization is tested via the explicit error estimator.  In this section, we discuss a local 

spatial mesh refinement strategy used on this thesis.  We assume that the problem 

consists of the two-dimensional x-y geometry, and it is meshed with the triangular 

elements.   

Let us denote the tolerance of the problem by TOL.  Then, the adaptive refinement 

should terminate when a posteriori error estimate fulfills the following condition: 

 TOLη ≤  (4.68) 

where η is the estimated global error defined by Eq. (4.28).  Let us denote the number of 

elements in the current FE-PN calculation by NELM.  Further refinement for the element 

E is not required when the following condition is satisfied: 

 
2

2
E

TOL
NELM

η ≤  (4.69) 
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It is easy to see that Eq. (4.68) is automatically fulfilled if Eq. (4.69) is satisfied 

for all the elements.  When the local error is large, the element is subdivided into smaller 

elements.  Two simple subdivision schemes can be: (a) cell-based subdivision, and (b) 

edge-based subdivision.  Figure 4.4 illustrates both subdivision schemes. 

 

Figure 4.4: Element refinement strategy 
 

It is clear that the cell-based subdivision is simpler refinement strategy than the edge-

based subdivision.  Main advantages of the cell-based methods are: 

(i) only one new nodal point is required for refined elements, and  

(ii) no hanging nodes are created. 

However, the cell-based methods are difficult to keep the aspect ratio close to a unity.  

Therefore, the accuracy of the adaptive refinement may deteriorate due to the heavily 

skewed elements. 

On the other hand, the edge-based refinement strategy produces the three 

additional nodal points on the element edges.  Thus, the strategy produces the hanging 

nodes, which do not have proper finite element connections, when the adjacent element 

(a) cell-based subdivision (b) edge-based subdivision 
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does not require a further refinement.  However, one of the advantages using the edge-

based refinement is that the each local refinement creates the four similar triangles to the 

original element if the edges are bisected; therefore, the computations of the integrals, 

which are the main process of the finite element setup, can be greatly simplified, and 

storage requirement reduced.  For this reason, we employ the edge-based refinement 

strategy for the spatial mesh refinement.   

Unrefined elements possibly have one or two hanging nodes when the adjacent 

elements are selected for the refinement.  There are two refinement possibilities for the 

elements with two hanging nodes.  Let us assume that edges 1 and 2 are marked for the 

bisection in the element E.  Then, the element E can generate three elements shown in 

Figure 4.5. 

 

Figure 4.5: Two different subdivisions for element with two hanging nodes 
 

It is clear that the resulting elements with the longer edge subdivision (Figure 4.5(b)) 

have better element qualities.  Therefore, we employ the longer edge subdivision scheme 

(a) shorter edge subdivision (b) longer edge subdivision 

Edge1 

Edge2 

Edge3 
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for the element with the two hanging nodes.  For the element with the one hanging node, 

we can simply connect the new nodes to the one on the opposite side (Figure 4.6).    

 

Figure 4.6: Subdivision of element for one hanging node 
 

Finally, the total number of new elements and nodes can be calculated as follows: 

 
Total number of nodes Total number of nodes Number of

 =  + 
in the next calculation in current calculation  edges bisected

     
     
     

  (4.70) 

 
NELM

E=1

Total number of elements Number of edges bisected 
=  +1

in the next calculation in the element E
   
   
   

∑  (4.71) 

4.6 Coupled Space-Angle Adaptive Strategy 

Thus far, we have developed the residual-based error estimators and mesh 

refinement strategy.  The developed coupled space-angle adaptivity algorithm is 

summarized in Figure 4.7.  The basic strategy is to march through from the lower order 

angular approximation to the higher order approximations.  At each PN approximation, 

the spatial convergence is first sought.  Then, the spatially converged solution is 

projected onto the higher order angular spaces to estimate angular truncation errors. 
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Figure 4.7: A coupled space-angle adaptive strategy 
 

4.6.1 Consideration to the Eigenvalue, Fission Source Problem 

The adaptivity algorithm was developed under the basic assumption that the 

source term is known.  When fissions are present in the system, an iterative procedure 

must be employed to determine the fission source.  The even-parity source term with 

fissions can be written as: 

 ( ) ( ) ( )
4

1, , ,
4 fS s d

π

υσ φ
π

+ + +′ ′= + Ω∫Ω Ω Ωr r r  (4.72) 

Strictly speaking, the fission source term is also prone to the discretization error due to 

the dependence on the even-parity flux term; however, in this thesis, we assume that the 

error in the fission source is negligible such that the same adaptivity framework can be 

applied as for a fixed source problem.  The spatial discretization errors are then estimated 

when the fission source is converged for a given mesh. 

0. Set the angular order to be P1 (N=1) 

1. Calculate the FE-PN solution ψh. 

2. Compute the FE residual and estimate the spatial discretization errors (ηE). 

3. Refine the spatial element where the error indicator is greater than the 

specified tolerance, and take care of the hanging nodes produced. 

4. If all the spatial elements satisfy the convergence criteria, go to Step 5, else 

go to Step 1. 

5. Project the spatially converged PN solution to the PN+2 angular space and 

solve local residual problem to estimate angular truncation errors. 

6. Increase the angular expansion order to N+2 where the angular convergence 

is not satisfied. 

7. If all the elements are angularly converged, or the angular order reaches the 

specified maximum angular order, stop, else go to Step 1. 
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4.6.2 Consideration to the Multigroup Problem 

Most of the real-life applications are the multigroup problem.  The even-parity 

transport equation in the matrix multigroup form is not self-adjoint; therefore, a 

posteriori error analysis of this chapter is not exactly valid.  However, if we consider the 

problem as a series of one group problems, then within each group, the problem is self-

adjoint.  In this case, we can perform a similar treatment to the multigroup problem as we 

treated fission—ignore the discretization error caused by the group-to-group scattering 

source and estimate the error.   

There are two main possible mesh refinement strategies for the multigroup 

problems.  One possible strategy is to apply the adaptive refinement separately on each 

group.  An alternative strategy is to treat a whole group as the one problem and apply 

adaptive refinement.  It seems that the first method is more efficient since the refinement 

is tuned to a specific group as it is well known that the physics of the fast and thermal 

groups have different characteristics.  The drawbacks of this methodology are the 

complicated interpolation scheme for the group-to-group scattering and cumbersome data 

management system.  Since a number of groups can easily exceed one hundred, having  

different meshes for each group may not be feasible.  Therefore, we choose to use the 

unified mesh.  The total errors are computed by the sum of the group-wise errors.  

    4.7 Summary 

 In this chapter, we have derived a posteriori error expression for the even-parity 

transport equation in terms of the global L2 and energy norms.  In order to use the error 

indicators in the context of the adaptivity, the spatial and angular error components were 

separated by first seeking spatial convergence in given angular expansion order.  Then, 

the angular truncation error was estimated by projection of the spatially converged 

solution onto the higher order angular space.  The difficulty obtaining the surface angular 
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integral was overcome by the rotation of the coordinates system.  General spatial mesh 

refinement method through edge bisection was also discussed.    
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CHAPTER 5 

GOAL-ORIENTED ADAPTIVITY AND ERROR CONTROL 

In the previous chapter, we have derived the global error indicators based on a 

posteriori error estimates for the L2 and energy norms.  The adaptive strategy together 

with the error estimates can optimize the computational effort whilst minimizing the error 

in the global even-parity flux.  On the other hand, it is often the case that the physical 

parameters of interest in engineering practice are described by local (or global) integral 

quantities (functionals).  For example, the power distribution, leakage rate or the effective 

multiplication constant are often sought for the design of nuclear reactors, while the dose 

rate to a particular organ may be the most important quantity for the medical physics 

applications.  Therefore, an error indicator with respect to some prescribed engineering or 

physical output may be more relevant to real-life applications.  Recent development of a 

“goal-oriented” adaptive strategy [14, 12] provides the methodology to estimate the error 

in functional outputs due to discretizations.  The basic philosophy of goal-oriented 

adaptivity is to characterize arbitrary target functionals by utilizing the dual problem.  

Bounds for linear functionals can be computed through variational methods.  

Maximum and minimum variational principles have long been used to determine upper 

and lower bounds for local characteristics of solutions [20]. More recently, adjoint error 

correction schemes have been proposed which yield super convergence in the target 

functional by utilizing the finite element residuals computed by higher-order interpolation 

[16, 17].  The objective of this chapter is to develop reliable error bounds for functional 

outputs of interest by combining variational principles and a posteriori error analysis. 

5.1 Different Forms of the Extremum Variational Principles 

Variational methods have long been used in the field of nuclear engineering, and 

they can be used to estimate many desired engineering outputs with high-order accuracy 
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[18].   In this section, we review the extremum variational principles that are equivalent 

to the second-order form of the transport equation.  The derivation presented here closely 

follows the methodology of Kaplan and Davis [37]. 

We start with the quadratic variational principle derived in the Chapter 3 [Eq. 

(3.4)]: 

 
[ ] ( ) ( )

( ) ( )
, , ,

2 , 2 , 2 ,

K G C

S T GS

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ

+

+ −

= ⋅∇ ⋅∇ + +

− − − ⋅∇

Ω Ω

Ω
  (3.4) 

The function that minimizes the functional (3.4) is the best approximated solution in a 

least-squares sense.  The canonical and involutory transformations of Eq. (3.4) yield 

different forms of the variational principle.  The following subsections discuss main 

results of the canonical and involutory transformation of the even-parity extremum 

principle.   

5.1.1 The Canonical Form of the Even-Parity Variational Principle 

The first variant of the even-parity variational principle is of the canonical form.  

In order to obtain it, let us denote the streaming term to beξ ψ= ⋅ ∇Ω .  Then, Eq. (3.4) 

may be rewritten as: 

 
[ ] ( ) ( )

( ) ( )
2 , , , ,

2 , 2 , 2 ,

K G C

S T GS

ψ ξ ξ ξ ψ ψ ψ ψ

ψ ψ ξ

+

+ −

= + +

− − −
 (5.1) 

The variational problem corresponding to Eq. (5.1) is seen as seeking a set of trial 

functions ψ  and ξ , which minimize Eq. (5.1).  The functional (5.1) has the same 

minimum value as Eq. (3.4) when ξ ψ= ⋅∇Ω .  This canonical form of the variational 

principle is employed to form the mixed finite element formulation [41].   
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5.1.2 The Canonical Variational Principle with Lagrange Multiplier  

The canonical variational principle can be extended to the Lagrange multiplier 

form of the equivalent variational principle.  Denoting χ as Lagrange multiplier we can 

write the following variational principle: 

 
[ ] ( ) ( )

( ) ( ) ( )
3 ( ) , , , ,

2 , 2 , 2 , 2 ,

K G C

S T GS

χ ψ ξ ξ ξ ψ ψ ψ ψ

ψ ψ ξ χ ξ ψ

+

+ −

= + +

− − − + − ∇iΩ
 (5.2) 

This Lagrange multiplier form of the variational principle can be used to derive the mixed 

finite element formulation employed in the VARIANT code [49].  By taking the first 

variation of Eq. (5.2), we obtain the following Euler-Lagrange equations: 

 1 0G GSξ χ−− + =  (5.3) 

 0C Sψ χ+− + ∇ =iΩ  (5.4) 

 Tψ χ+ =  on Γ  (5.5) 

Eq. (5.3), (5.4) and (5.5) comparing with Eq. (2.24) and (2.25) reveals that the parameter 

χ  is, in fact, the odd-parity flux.  The Lagrange multiplier can be used to form the 

Mortar finite element method, which is a popular non-conforming finite element 

methodology [41].   

5.1.3 Involutory Form of the Variational Principle 

The fourth form of the variational principle is obtained by the involutory 

transformation of Eq. (3.4). It uses the relationship between the even- and odd parity flux 

given by Eq. (5.4): 

 `C Sψ χ− + = − ∇ iΩ   (5.6) 

By substituting Eq. (5.6) into the Lagrange multiplier form of the variational principle 

(5.2) and rearranging we get: 
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[ ] ( ) ( )
( ) ( )

1 1

1

, , ,

2 , 2 , 2 ,

( , ) ( , ) 2 ,

K C G

S T C S

S GS S CS T T

χ χ χ χ χ χ χ

χ χ χ

− − −

− − +

= − ⋅∇ ⋅∇ − −

+ + + ⋅∇

+ + +

Ω Ω

Ω  (5.7) 

5.1.4 Extremum Value of the Variational Principle 

The functionals (3.4), (5.1), (5.2), and (5.7) are all equivalent; therefore, they all 

have the same extremum value.  Due to the self-adjointness of the operators G and C, and 

the second variation being positive, the extremum value of the functional (3.4) , (5.1), 

and (5.2) represents a minimum.  On the other hand, the extremum value of the 

variational principle (5.7) represents a maximum.  Let the extremum value of the 

functional (3.4), (5.1), (5.2), and (5.7) be γ.  Τhen, γ is bounded by: 

 [ ] [ ]K Kχ γ ψ− +≤ ≤   (5.8) 

The equality holds only when the ψ and χ are the exact even- and odd-parity solutions of 

the system.  Figure 5.1 illustrates the relationship among [ ]K ψ+ , [ ]K ψ−  and γ.   

 

Figure 5.1: Illustration of the original and involutory form of the variational 
principles 

 

γ 

[ ]K ψ+

[ ]K χ−
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5.2 Bounds on Functionals 

In the previous section, we derived different forms of the extremum variational 

principles by the canonical and involutory transformations.  Furthermore, we have shown 

that the extremum value can be bounded between the original (3.4) and the involutory 

form (5.7) of the variational principle.  Although the functional K+ represents the 

physical quantity [37] for special cases, the K+ variational principle generally lacks a 

physical meaning.  Thus, a methodology which offers the bounds for an arbitrary 

functional is desired.  We start by rewriting Eq. (3.4) in terms of a linear combination of 

the bilinear functionals introduced in the previous chapter: 

 [ ] [ ] [ ], 2 sK F Fψ ψ ψ ψ+ = −   (4.3) 

When the trial function ψ is the true solution φ+ of the even-parity transport equation (Eq. 

(2.27)), then the RHS of Eq. (4.3) may be simplified as: 

 

, 2

, 2 ,

,

sK F F

F F

F

φ φ φ φ

φ φ φ φ

φ φ

+ + + + +

+ + + +

+ +

     = −     
   = −   

 = −  

  (5.9) 

Since the [ ]K ψ+  principle takes the minimum value at the true solution, the [ ]K ψ+  

principle bounds the bilinear functional F[. , .] from above: 

 [ ],F Kφ φ ψ+ + + − ≤   (5.10) 

Similarly, the lower bound of F[. , .] is found by applying the 4 [ ]K χ+  principle. 

 [ ] ,K Fχ φ φ− + + ≤ −    (5.11) 

Now, let us consider the dual problem corresponding to Eq. (3.4) .  Due to the self-

adjointness of the one-group, even-parity transport equation, the variational principle 

corresponding to the dual problem of Eq. (3.4)  can be written as: 
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where ψ* is the trial function in the dual problem, 

*S ±  are the even- and odd components of the prescribed source in the dual 

problem, and 

T*
 is the surface source in the dual problem. 

Since the adjoint source is arbitrary, the target functional quantity of interest can be 

represented by the product between the even-parity flux and the adjoint source term 

*[ ]sF ψ .  For example, a reaction rate for a particular region can be expressed by setting 

S+*=σ, S-*=0 and T*=0: 
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The leakage rate through a vacuum surface can be expressed as: 
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 (5.14) 

The exact value of the target functional quantity is, then, expressed by the product of the 

forward and adjoint solutions: 

 * *[ ] [ , ]sF Fφ φ φ+ +=  (5.15) 

Making use of the bilinearity of the functional F[.,.] 

 * * * * *[ , ] [ , ] 2 , [ , ]F F F Fφ φ φ φ φ φ φ φ φ φ+ + + + + ± ± = ± +    (5.16) 

 ( )* * * * *1, [ , ] [ , ]
4

F F Fφ φ φ φ φ φ φ φ φ φ+ + + + +  = + + − − −   (5.17) 
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Then the RHS of the Eq. (5.15) may be rewritten as the following linear combination of 

the quadratic functional: 

 
( )

* *

* * * *

[ ] [ , ]
1 [ , ] [ , ]
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sF F

F F

φ φ φ

φ φ φ φ φ φ φ φ

+ +

+ + + +

=

= + + − − −
 (5.18) 

Finally, by utilizing Eq. (5.10) and Eq. (5.11), the target functional value can be bounded 

by the linear combination of the extremum principles: 

 * * * *[ ] [ , ] [ ]a aK F Kψ ψ φ φ φ φ χ χ+ + + + + −− + ≤ + + ≤ − +  (5.19) 

` * * * *[ ] [ , ] [ ]b bK F Kψ ψ φ φ φ φ χ χ+ + + + + −− − ≤ − − ≤ − −   (5.20) 

 ( ) ( )* * * * *1 1[ ] [ ] [ ] [ ] [ ]
4 4a b s b aK K F K Kψ ψ χ χ φ ψ ψ χ χ+ − + + −− + + − ≤ ≤ − − +  (5.21) 

The subscripts a and b in Eq. (5.21) indicate the difference from the original variational 

principles.  The source functionals in these variational principles are represented by the 

linear combination of the forward and adjoint source terms.  Note that in order to obtain 

the bound in Eq. (5.21), one must solve four problems (forward and adjoint problem of 

the even- and odd-parity equations).  

5.3 Goal-Oriented Error Bounds 

We have derived the bounds of an arbitrary functional using the dual problem.  

However, the drawback of this methodology originates from the fact that the bound 

contains four unknown functions.  The computational effort to solve the four problems 

may become prohibitively large, and the method thus may not be practical.  In the 

previous chapter, we have derived a posteriori error bounds based on the global L2 norm, 

which also utilized the adjoint problem.  The methodology can be generalized to express 

an arbitrary functional quantity.  The goal-oriented error bound [14, 12] utilizes the 

various norm inequalities in the course of the derivation. 

The starting point of the derivation of the goal-oriented error bounds is Eq. (5.15): 
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 * *[ , ] [ ]sF Fφ φ φ+ +=   (5.15) 

We have also characterized the discretization error in terms of the residual equation 

(4.29) 

 [ ], ,, ,h N s h NF e F Fφ φ φ ψ   = −      (4.26) 

A residual equation in the adjoint problem can be introduced as: 

 [ ] *
, ,, ,h N s h NF w F w F wε ψ   = −      (5.22) 

where εh,N  is the discretization error in the adjoint problem, and w is the basis function in 

the adjoint problem. 

The error in the (linear) target functional output is represented as: 
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  (5.23) 

Utilizing a similar bilinear property to Eq. (5.18), the error in the target functional can be 

rewritten as: 
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  (5.24) 

where ( )
( )

1 / 2

1 / 2

[ , ]
[ , ]

F
s

F e e
ε ε

= . The parameter s is introduced so that the error in forward 

(e) and adjoint (ε) problems scale equally.  Different a posteriori error estimates give the 

upper and lower bounds of the energy norm. Let us denote the upper and lower bounds of 

the energy norm be and+ + - -
low up low upη , η , η ,  η , which consist of the following bounds: 

 ( ) ( )2 2
,low upF se se

s s
ε εη η+ + ≤ + + ≤  

 (5.25) 
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 ( ) ( )2 2
,low upF se se

s s
ε εη η− − ≤ − − ≤  

 (5.26) 

By using Eq. (5.25) and (5.26), the bound in the error in the target functional (5.24) can 

be expressed as: 

 ( ) ( ) [ ] ( ) ( )2 2 2 2*1 1 1 1
4 4 4 4low up s up lowF eη η η η+ − + −− ≤ ≤ −   (5.27) 

Due to the positivity of the quadratic functional, another wider bound can be developed 

by taking the maximum values of Eq. (5.25) and (5.26): 

 ( ) [ ] ( )2 2*1 1
4 4up s upF eη η− +− ≤ ≤   (5.28) 

In fact the upper bounds and+ -
up upη   η  can be estimated by the developed a 

posteriori error estimators, which is the solution of the local residual problem defined by 

Eq. (4.52) [14, 12].  The error bound (5.28)  therefore requires only the linear 

combination of the even-parity forward and adjoint solutions. 

5.4 A Posteriori Error Bounds by the Extremum Variational Principles and Goal-

Oriented Error Bounds 

In the previous two sections, we have derived the expression which bounds the 

arbitrary functional quantities by means of the variational principles and a posteriori 

error analysis.  In this section, we introduce new functional error bounds by integrating 

both concepts.  The extremum variational principles applied to the residual equation can 

provide the following functional bounds: 

 [ ] [ , ] [ ]a aK e F e e K eε ε ε ε+ − − −− + ≤ + + ≤ − +� �� �� �  (5.29) 

 [ ] [ , ] [ ]b bK e F e e K eε ε ε ε+ − − −− − ≤ − − ≤ − −� �� �� �  (5.30) 

 ( ) ( )*1 1[ ] [ ] [ ] [ ] [ ]
4 4a b s b aK e K e F e K e K eε ε ε ε+ − − − + − − −− + + − ≤ ≤ − − +� � � �� � � �� � � �  (5.31) 
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The variational principles with symbol “~” indicate the maximum principle of the even-

parity residual equations.  For example, the residual form of the K+ principle is expressed 

in the following form: 

 
( ) ( )

( ) ( )
[ ] , , ,

2 , 2 , 2 ,

K e e G e e Ce e e

e S e T e GS

+

+ −

= ⋅∇ ⋅∇ + +

− − − ⋅∇

�

� ��
Ω Ω

Ω
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where, hS S Cψ+ += −�  

hS S ψ− −= − ∇� iΩ , and 

hT T T= −� . 

Then, [.]aK ±�  and [.]bK ±�  are the extremum principles related to the linear combination of 

the forward and adjoint residual equations.  Recognizing that the lower bounds of the 

functionals [ , ]F e eε ε± ±  consist of the K+ principle, and implicit error estimator 

provides the upper bound of the same functional, we are able to form new error bounds 

from the combination of Eq. (5.25), (5.26), (5.29) and (5.30) as follows: 

 ( )2
[ ] [ , ]a upK e F e eε ε ε η+ +− + ≤ + + ≤� ��   (5.33) 

 ( )2
[ ] [ , ]b upK e F e eε ε ε η+ −− − ≤ − − ≤� ��   (5.34) 

 ( )( ) ( )( )2 2*1 1[ ] [ ] [ ]
4 4a up s up bK e F e K eε η η ε+ − + +− + − ≤ ≤ + −� �� �� �   (5.35) 

Therefore, the error in the functional output is bounded only by the error estimates of the 

forward and adjoint problem.  Then, the true error can be estimated by taking the average 

of (5.35): 

 ( ) ( )( )2 2* 1[ ] [ ] [ ]
8s up up b aF e K e K eη η ε ε+ − + +≈ − + − − +� �� �� �   (5.36) 

5.5 Summary 

In this chapter, we have extended the concept of a posteriori error analysis to the 

target functionals.  Different forms of the even-parity variational principles were first 
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derived via the canonical and involutory transformations.  The bounds on an arbitrary 

linear functional was obtained by the combination of the forward and adjoint problems of 

the even- and odd-parity variational principles. The reliable, yet easily computable, 

functional error bounds were then derived by integrating the concept of the variational 

bounds and finite element a posteriori error estimates. 
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CHAPTER 6  

NUMERICAL RESULTS 

In the last three chapters, we have developed a posteriori error estimators and a 

coupled space-angle adaptivity algorithm based on the second-order, even-parity form of 

the transport equation.  This adaptive algorithm has been implemented in the general 

purpose neutral particle radiation transport code EVENT [35] and is numerically assessed 

in this chapter. We begin by employing the Method of Manufactured Solution (MMS) to 

validate the adaptivity algorithm.  This is followed by the solution of several one- and 

two-dimensional problems by both the adaptive and standard finite element method. 

6.1 The Method of Manufactured Solution 

The implementation of an adaptive algorithm can enhance the performance of the 

existing computer code to a great extent.  However, without proper verification of the 

new numerical implementation, the computer code may have its performance deteriorated 

due to the extra complexity added by the new subroutines.  In radiation transport, the 

verification of a computer code is often carried out by benchmarking solutions against the 

Monte Carlo method [50].  Due to the nature of the Monte Carlo method, the benchmark 

result is often in a form of some local integral quantity such as pin power or dose rate, or 

some global characteristic parameter such as the effective multiplication constant (k-eff).  

This type of the benchmarking effort is often sufficient to check the capability and 

accuracy of the code.  However, it may experience difficulty in assessing the theoretical 

properties of the new algorithm in view of the lack of fine solution detail.   

The method of manufactured solution (MMS) [51] provides an excellent 

alternative way to verify the theoretical properties of numerical schemes.  The philosophy 

behind the MMS is to calculate the source term from a pre-manufactured solution.  Thus, 



 70

large groups of the analytical solutions can be made available for numerical tests.  In this 

section, we introduce the MMS for the even-parity transport equation.   

 The second-order, even-parity transport equation introduced in the chapter 2 is: 

 G C S GSφ φ+ + + −− ⋅∇ ⋅∇ + = − ⋅∇Ω Ω Ω   (2.27) 

By simply comparing the RHS and LHS of the Eq. (2.27), the parity components of the 

source terms may be computed from the even-parity flux as: 

 S Cφ+ +=  (6.37)  

 S φ− += ⋅∇Ω  (6.38)  

We also need to specify the boundary conditions for the problem.  Let us denote the 

even-parity flux at boundary Γ as φΓ.  Then, a proper boundary condition can be provided 

by setting the surface source term T to the boundary flux φΓ,:  

 T φΓ=  (6.39)  

Reflective boundary conditions can be introduced along lines of the symmetry.  

6.2 Verification through the Method of Manufactured Solutions  

In this section, the developed adaptivity algorithm is verified by the MMS.  As 

mentioned previously, the adaptivity algorithm provides the error indicators for the 

space-angle discretization.  We define the effective index (EI) [8], which indicates how 

well the estimated error represents the true error, as: 

   ( ) ( )
( )

Estimated Error
 = 

True Error
EI  (6.40)  

It is clear that the closer to unity the effective index is the more effective the error 

indicator is.  Moreover, if the EI is greater than unity, the adaptivity algorithm is 

considered as a conservative procedure.   
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6.2.1 Test Case 1—Measure of Zero Error 

The first test case is considered in order to demonstrate the accuracy of the finite 

element calculation when the basis function can characterize the true solution.  Test case 

1 consists of a 1.0x1.0cm square region.  The corresponding cross sections for the 

problem are 1.0cm-1, 1.0cm-1 and 0.0cm-1 for the total, absorption and scattering 

reactions, respectively.  In this test problem, the following form of the solution is 

considered: 

 ( ), xφ + =r Ω  (6.41) 

Since the linear basis function can characterize the solution exactly and there is no 

angular dependence in this test problem, we expect that no spatial mesh refinement is 

required for and the computation should terminate at the P1 approximation.  The initial 

mesh and the flux distribution are shown in Figure 6.1.  

 

(a) Initial meshes  (b) Flux profile 

Figure 6.1: Mesh and flux profile for Test Case 1 
 

The spatial and angular global L2 errors after the first P1 calculation were 

calculated to be 2.305x10-8 and 1.929x10-8, respectively.  As expected, the estimated 

errors are within the round-off errors; both space and angular error estimators are in fact 

estimated effectively at zero error for this problem.   
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6.2.2 Test Case 2—Measure of Angular Truncation Error 

The second test case is manufactured to check the accuracy of the angular 

truncation errors. The test case 2 has the same configuration as the test case 1, while the 

solution of this problem is modified to: 

 ( )
2,

2
0

, ( )
even

m
m

x Y xφ +

=

= + ∑r Ω Ω  (6.42)  

The true solution can be characterized exactly by a P3 linear finite element 

approximation.  Thus, no spatial mesh refinement is expected and solution should 

converge at the P3 approximation.  The flux profile after P1 approximation and the 

estimated angular truncation errors are shown in Figure 6.2.   From Figure 6.2(a), we can 

observe the asymmetric flux distribution.  This asymmetry is due to the truncation of the 

higher-order odd parity source terms, which couples the P1 and P3 moments.  From 

Figure 6.2(b), we can observe that the local error estimator computes the angular 

truncation errors adequately for each element.  Figure 6.2(c) shows the difference 

between true and estimated errors.  The estimated and true angular truncation errors of 

the P1 approximation were effectively the same for this simple problem.  

Table 6.1 gives the estimated and true angular truncation errors for both the P1 

and P3 approximations.  The effective index is found out to be 1.001 when the angular 

truncation error of the P1 approximation is estimated by projecting the P1 solution to the 

P3 local finite element problem.   The estimated angular truncation error of the P3 

approximation is computed to be 4.006x10-8, which is within the range of the round off 

errors. 
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(a) Flux profile after the P1 approximation 

 

 (b) Estimated angular truncation error 

 

(c) difference between true and estimated error 

Figure 6.2: Flux and estimated angular truncation error in Test Case 2 
 

Table 6.1: Result for Test Case 2 
Angular 

Approximation 
Estimated Angular 
Truncation Error 

True Angular 
Truncation Error 

Effective Index 

P1 2.822x10-1 2.820x10-1 1.001 
P3 4.006x10-8 0.0 -- 

 

6.2.3 Test Case 3—Measure of Spatial Discretization Error 

In the previous subsection, we have demonstrated the validity of the angular error 

estimator.  In this subsection, we investigate spatial adaptivity.  The geometry and cross 
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sections of the problem are identical as the test case 1.  Here, we consider the following 

spatially-dependent solution: 

 ( ) ( )3 2, x y yφ + = −r Ω  (6.43) 

The spatial convergence criterion is set to 1.0x10-4.  In all example problems presented 

here, we are considering the absolute errors.  The linear basis function can not represent 

the solution exactly in this case.  Figure6.3 illustrates the flux profile and both estimated 

and true error distribution at each refinement stage.  By comparing the Figure6.3(b), we 

can observe very similar error distributions.  After five spatial mesh refinement steps, the 

estimated error has fallen below the prescribed tolerance.  The true and estimated error 

and the effective indices for the each refinement stage are presented in Table 6.2.  

 

(a) Flux profile of the test case 3 

Mesh # Estimated Error True Error 
 
 
 
 
 
1 

  
Figure 6.3: Flux profile and the estimated (left) and true (right) errors 
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Mesh # Estimated Error True Error 
 
 
 
 
 
2 

 
 
 
 
 
 
3 

  
 
 
 
 
 
4 

 
 
 
 
 
 
5 

(b) Estimated and true errors for each of the spatial refinement steps 

Figure6.3: Continued 
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Table 6.2: Effective index of the spatial mesh refinement 
# of Refinements Estimated Error True Error EI 

1 1.27x10-2 2.60x10-3 4.91 
2 3.78x10-3 7.18x10-4 5.27 
3 1.03x10-3 1.88x10-4 5.74 
4 2.65x10-4 4.76x10-5 5.56 
5 7.32x10-5 1.22x10-5 6.00 

 

As can be seen, the effective indices have values around 4.0-6.0 for this problem, which 

implies that the explicit error indicator gives the conservative estimates.  In fact, the true 

error has fallen below prescribed tolerance (1.0x10-4) after four refinement steps. 

However, the adaptive algorithm performed one extra refinement step.  This is a result of 

the unknown constant introduced for the explicit estimators (Eq. (4.26)) and is one of the 

drawbacks of the explicit estimator.   

Another observation can be made regarding the relation with a priori estimates.  

The finite element residual R(ψh,N) is defined as: 

 , , ,( )h N h N h NR S GS G Cψ ψ ψ+ −= − ∇ + ∇ ∇ −i i iΩ Ω Ω  (6.44) 

In the previous section, we have identified the even- and odd-parity source terms for the 

MMS as: 

 S Cφ+ +=    (6.1) 

 S φ− += ⋅∇Ω  (6.2) 

Thus as ψh,N approaches the true solution φ+, the finite element residual does not 

approach zero but rather a constant value: 

 

( )
, ,

, , ,lim ( ) lim
h N h N

h N h N h NR S GS G C

GS
G

ψ φ ψ φ
ψ ψ ψ

φ

+ +

+ −

→ →

−

+

= − ∇ + ∇ ∇ −

= − ∇

= − ∇ ⋅∇

i i i

i
i

Ω Ω Ω

Ω

Ω Ω

 (6.45) 

We can relate this term to a priori error estimators by using Eq. (6.45). The explicit 

indicator (4.27) thus becomes: 
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γη ψ ψ

φ

Ω ∂ Ω

+

Ω

= +

≈ − ∇ ⋅∇

=

iΩ Ω  (6.46) 

Therefore, we rediscover the expression which is consistent to a priori error estimation 

(Eq. (4.1)). 

The next step is to take into account the higher order angular terms such that the 

effective index of the angular truncation error can also be tested.  We seek the following 

form of the even-parity flux: 

 ( ) ( ) ( )
4,

3 2 3 2
2

0
, ( )

even

m
m

x y y Y x y yφ +

=

= − + −∑r Ω Ω  (6.47) 

The angular truncation error distributions for both the P1 and P3 approximations for this 

manufactured solution are depicted in Figure 6.3(a) and (b), respectively.  The RHS 

picture illustrates the true error distribution and the LHS illustrates the estimated errors.  

The asymmetric nature of the error along the y-axis again originates from the truncation 

of the odd-parity source coupling among the different angular moments.  Similarly to test 

case 2, the odd-parity source term produces the asymmetric source distribution for the 

lower-order calculations.   

Figure 6.5 illustrates the distribution of the angular expansion used in this 

computation.  It can be clearly seen that the higher order angular moments are truncated 

for the region where the flux is relatively low (i.e. x<0.2).  The asymmetric flux produced 

by the odd-parity source truncation causes the non-uniform angular order distributions.  

Lastly, effective indices of the P1 and P3 approximations are listed in Table 6.3.  Both 

effective indices are very close to unity.  We conclude that the angular truncation error is 

estimated sufficiently well using the implicit estimator. 
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(a) Angular truncation error of the P1 approximation 

 

(b) Angular truncation error of the P3 approximation 

Figure 6.4: Profile of the angular truncation error for Test Case 3 (right=true error, 
left=estimated error) 

 

 

Figure 6.5: Distribution of the angular order used in Test Case 3  (red=P5, green=P3 
and blue=P1) 
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Table 6.3: Effective index of the angular truncation error for Test Case 3 
Angular 

Approximation 
Estimated Angular 
Truncation Error 

True Angular 
Truncation Error 

Effective Index 

P1 3.38x10-2 3.55x10-2 0.95 
P3 4.36x10-2 4.64x10-2 0.94 
P5 1.48x10-5 2.00x10-5 0.74 

6.2.4 Test Case 4—Goal-Oriented Adaptivity 

In the previous subsections, we have tested the adaptivity algorithm and the error 

measure based on the global L2 norm.  In this subsection, we assess the goal-oriented 

adaptivity.  The problem objective in this case is to estimate the reaction rate of a deep-

penetration problem.  The problem consists of the 3.0x4.0cm rectangular region with an 

isotropic beam source shining on the left surface (at x=0.0cm).  The region consists of a 

homogeneous purely absorbing medium with cross section of 1.0cm-1.  The quantity of 

interest is the absorption rate within the region [0.0,1.0], and [2.0,3.0]x   y∈ ∈ .  The 

problem geometry and cross sections are shown in Figure 6.6. 

 

Figure 6.6: Problem description of Test Case 4 
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Due to the specular reflective boundary condition applied at y=0.0 and 4.0cm, this 

problem can be considered infinite in the y-direction.  Therefore, the problem effectively 

reduces to the following one-dimensional problem: 

 
0

1(0, ) ( 0)
2

x

  

ψµ σψ

ψ µ µ
π

∂′ + =
∂

′ ′= ≥
 (6.48) 

where, xµ′ = iΩ Ω . 

By solving Eq. (6.48), the angular flux of the problem is found out to be: 

 
1 0( , ) 2

0 0

x

e   x  
            

σ
µ µψ µ π

µ

−
′


′ >′ = 

 ′ ≤

 (6.49)  

The reaction rate can be computed by integrating Eq. (6.48) over the phase space: 

 

3.0 1.0 1 1.0 1

2.0 0.0 0 0.0 0

3 3

1( , )
2

(0.0) (1.0)

x

dy dx d x dx d e

E E

σ
µµ σψ µ µ

−
′′ ′ ′=

= −

∫ ∫ ∫ ∫ ∫  (6.50) 

The exact reaction rate of the problem is found out to be 5.5052x10-2.  The adjoint 

problem has the even-parity source of the following form: 

 * [0.0,1.0] and [2.0,3.0]
( , )

0 otherwise                       
a  x  y

S x y
          

σ+ ∈ ∈
= 


 (6.51) 

Figure 6.7(a) and (b) illustrates the forward and adjoint solution of the problem.  The 

location of the adjoint source was chosen so that the adjoint problem would have a 

dependence on the y-direction which reflects on the adaptive mesh generation regardless 

of the forward problem being effectively one-dimensional.  The initial and final adaptive 

meshes of the problem are shown in Figure 6.8. 
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(a) Forward scalar flux (b) Adjoint scalar flux 

Figure 6.7: Forward and adjoint scalar flux for Test Case 4 
 
 
 

Figure 6.8: Initial and finial mesh of Test Case 4 
 

A clear difference in the final meshes between the goal-oriented and the global L2 

adaptivity can be observed from Figure 6.8.  As we expected, the adaptivity based on the 

global L2 norm has generated the symmetric mesh.  On the other hand, it can be clearly 

 

(a) initial mesh 

 

(b) final mesh of the goal-
oriented adaptivity 

(6057 elements) 

 

(c) finial mesh of the global 
L2 norm adaptivity 
 (9918 elements) 
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seen that the goal-oriented adaptivity is able to identify the region that influences the 

target functional output.  The total number of elements used in the calculations were 6057 

and 9918 for the goal-oriented and the global adaptivity, respectively.  Both computations 

were run up to a P15 approximation to obtain the error in the reaction rate of ~1.0x10-4.  

About 60% less elements were used in the goal-oriented adaptivity.  This difference does 

not appear to be too significant; however, we expect that efficiency of the goal-oriented 

adaptivity to increase for more complex and larger problems.   

An important advantage of the goal-oriented adaptivity is the availability of an 

error indicator with respect to the target functional.  In fact, in order to obtain the reaction 

rate error of 1.0x10-4 by the global L2 norm adaptivity, a series of calculations with 

different error indicators were performed.  On the other hand, the goal-oriented adaptivity 

provides the reliable error bounds which can be used as guidance for the termination of 

the calculation.  A summary of the goal-oriented error estimations is listed in Table 6.4 

(without K+ principle) and Table 6.5 (with K+ principle).  The last column of Table 6.4 

and Table 6.5 gives the effective indices calculated with respect to the lower bound.  In 

both cases, we observe that the effective indices have become increasingly small.    

As we expected, the inclusion of K+ principle produces sharper bounds.  The 

effective indices computed with K+ principles are about 20% smaller than that without K+ 

principle.  For the higher angular orders (i.e. P13 and P15), we observe the effective index 

has fallen below 1.0.  This is a consequence of the upper bound of quadratic functionals 

[ , ]F e eε ε+ + , and [ , ]F e eε ε− −  being computed by the restricted angular basis 

functions, which appear to underestimate the true upper bound for the higher angular 

order.   
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Table 6.4: Error bounds for Test Case 4 without K+ principle 
Angular 
Order 

Lower 
Bound 

Upper 
Bound 

True 
Error 

Effective Index 
(w.r.t. lower bound)

P1 -1.572E-02 1.322E-02 -7.168E-03 2.19 
P3 -2.830E-03 1.914E-03 -1.878E-03 1.50 
P5 -1.061E-03 8.483E-03 -6.899E-04 1.54 
P7 -5.177E-04 4.534E-04 -3.469E-04 1.49 
P9 -2.955E-04 2.702E-04 -2.206E-04 1.33 
P11 -1.883E-04 1.755E-04 -1.604E-04 1.17 
P13 -1.301E-04 1.224E-04 -1.243E-04 1.05 
P15 -9.508E-05 9.000E-05 -1.007E-04 0.94 
 

 

Table 6.5: Error bounds for Test Case 4 with K+ principle 
Angular 
Order 

Lower 
Bound 

Upper 
Bound 

True 
Error 

Effective Index 
(w.r.t. lower bound)

P1 -9.353E-03 6.541E-03 -7.168E-03 1.30 
P3 -2.243E-03 6.061E-04 -1.878E-03 1.19 
P5 -8.609E-04 4.714E-04 -6.899E-04 1.25 
P7 -4.287E-04 3.102E-04 -3.469E-04 1.23 
P9 -2.490E-04 2.020E-04 -2.206E-04 1.13 
P11 -1.617E-04 1.376E-04 -1.604E-04 1.01 
P13 -1.137E-04 9.902E-05 -1.243E-04 0.91 
P15 -8.458E-05 7.463E-05 -1.007E-04 0.84 

 

Table 6.6 and Table 6.7 show the average error and the difference in the reaction 

rate between the subsequent angular orders.  Comparing Table 6.6 and Table 6.7, 

although the effective indices are relatively small for all the cases, it can be clearly seen 

that the average errors computed by the bounds with K+ principles do indeed represent 

the difference better.  Thus, the inclusion of the K+ bound does not only sharpen the error 

bounds, but also shifts the error bounds in the right direction. 
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Table 6.6: Average error computed by the bounds without the K+ principle 
PN Average 

Error 
PN+2-PN EI 

1 -1.25E-03 -5.290E-03 0.24 
3 -4.58E-04 -1.188E-03 0.39 
5 -1.06E-04 -3.430E-04 0.31 
7 -3.22E-05 -1.263E-04 0.25 
9 -1.27E-05 -6.020E-05 0.21 
11 -6.40E-06 -3.610E-05 0.18 
13 -3.85E-06 -2.360E-05 0.16 
15 -2.54E-06   

 

 

 

Table 6.7: Average error computed by the bounds with the K+ principle 
PN Average 

Error 
PN+2-PN EI 

1 -1.41E-03 -5.290E-03 0.27 
3 -8.18E-04 -1.188E-03 0.69 
5 -1.95E-04 -3.430E-04 0.57 
7 -5.93E-05 -1.263E-04 0.47 
9 -2.35E-05 -6.020E-05 0.39 
11 -1.21E-05 -3.610E-05 0.33 
13 -7.34E-06 -2.360E-05 0.31 
15 -3.86E-04   

 

     

6.3 One-dimensional Examples 

In this section, a few one-dimensional, one-group test problems are analyzed in 

order to assess the potential applicability of a posteriori error estimates and the space-

angle adaptivity developed in the previous chapters.  We take the angular convergence 

criteria to be 1/10th of the spatial convergence criteria in order to avoid faulty angular 

convergence. 
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 6.3.1 Modified Reed’s Problem 

The first problem is a variation of Reed’s problem [52].  The geometry, 

corresponding cross-sections, and source strength of the problem are listed in Table 6.8.  

In order to overcome the difficulty of treating the void region in the even-parity 

formulation, a nominal cross section of 1.0x10-6 is assumed for the voided region.  Figure 

6.9 depicts the scalar flux solution and the angular expansion orders used in the 

calculation.  From Figure 6.9, it can be seen that all regions with the exception of the two 

left-most slabs (#1 and #2) required the P19 angular expansions. The left-most slab only 

required a P1 expansion and the slab #2 required a P11 angular expansion. In the left-most 

slab, the isotropic source strength and absorption rate are identical, which creates 

essentially an isotropic flux.  The requirement of smaller angular expansion orders in slab 

#2 is a result of the magnitude of the flux being small due to the heavily absorbing media.  

This small magnitude in the flux and hence the error have little effect on the overall 

accuracy.  The angular flux is highly anisotropic in this problem due to the presence of 

purely absorbing materials.  Thus, high-order angular expansion orders are required to 

solve the problem accurately. 

A reference scalar flux solution was obtained by using the converged SN method 

developed by Ganapol [53].  Figure 6.10 and Figure 6.11 show the relation between L∞ 

error and total number of degrees of freedoms (DoFs) used for both uniform and adaptive 

refinement calculations of the P7~P19 angular approximations. The maximum L∞ error 

occurs at x=2.0cm.  At this location, the large material properties and source discontinuity 

make it difficult to obtain very accurate numerical solution.  It can clearly be seen that 

there are points where the L∞ error stalls for each angular approximation. At this point, a 

true spatial convergence is obtained and only the angular truncation error remains.  Table 

6.9 shows the L∞ error for the both adaptive and uniform refinement case with up to P19 

approximation.  In order to achieve a similar L∞ error, the adaptive refinement strategy 

only requires about 1/8th of total number of DoFs. 
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Table 6.8: Specification of modified Reed’s problem 
# Thickness 

(cm) 
σt (cm-1) σs (cm-1) S 

1 2.0 50.0 0.0 50.0 
2 1.0 5.0 0.0 0.0 
3 2.0 10-6 0.0 0.0 
4 1.0 1.0 0.9 1.0 
5 2.0 1.0 0.9 0.0 

 

 

 

Figure 6.9: Scalar flux solution (left y-axis) and angular expansion used (right y-
axis) for the Reed’s problem 
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Table 6.9: Comparison between adaptive and uniform refinement strategies for the 
modified Reed problem 

Angular Order # of Elements Total DoFs Estimated Error True L∞ Error 
Adaptive Refinement 

P1 70 70 0.362 0.422 
P3 70 128 0.186 0.127 
P5 114 314 0.114 0.0673 
P7 189 705 0.0797 0.0476 
P9 189 872 0.0606 0.0378 
P11 189 1049 0.049 0.0305 
P13 265 1754 0.0413 0.0246 
P15 265 1997 0.0358 0.0202 

Uniform Refinement 
P1 315 315 0.366 0.426 
P3 800 1115 0.187 0.136 
P5 800 1915 0.114 0.0772 
P7 3200 5115 0.0797 0.0468 
P9 3200 8315 0.0606 0.0369 
P11 3200 11515 0.0489 0.0297 
P13 3200 14715 0.0411 0.024 
P15 3200 17915 0.0356 0.0196 

 

 

Figure 6.10: Total number of DoFs versus maximum error of P5-P9 approximations 
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Figure 6.11: Total number of DoFs versus maximum error of P11-P15 
approximations 

 

6.3.2 Fission in a Slab Problem 

This problem is presented in order to demonstrate a potential applicability of the 

goal-oriented adaptivity, which is used to estimate the error in the leakage rate.  The 

parameters of the problem are listed on Table 6.10.  The isotropic source with unit 

strength is shining on the left face of the slab.  The quantity of interest is the leakage rate 

at the right face of the slab.  The adjoint source term of this problem is defined by: 
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The leakage rate was again computed by the converged SN calculation developed 

by Ganapol [53], and found out to be 0.349509.  Table 6.11 shows the comparison 

between the adaptive mesh and uniform mesh solutions.  The uniform mesh case requires 

twice as many elements as that of adaptive refinements.  It appears that the adaptive mesh 

is not as effective as in the previous examples as indicated by the EI.  One of the reasons 
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is that in this case the flux distribution in this problem is relatively linear.  Hence, there is 

no need for the local refinement a particular region.   

The finite element solution overestimated the leakage quantity, and the error 

indicator successfully estimates the error as being a negative quantity.  Relatively large 

values for the effective indices are observed for the low order angular expansion which 

eventually settles to a value around 1.5.  The large values of effective indices in the lower 

order PN approximation is due to the treatment of the vacuum boundary condition.  It 

seems to have a difficulty representing the vacuum boundary with the low order PN 

approximation.  Thus, for the higher order PN, the error became much smaller and EI 

approaches close to unity.  

 

Table 6.10: Problem parameters for fission in a slab problem 
Thickness 1.853722 cm 

σT 0.248006986 cm-1 
σa 0.022790986 cm-1 
νσf 0.010390634 cm-1 

 

Table 6.11: Summary of fission in a slab problem (True Leakage = 0.34509) 

PN 
# 

ELM 
Leakage 

Computed 
Estimated 

Error 
Effective 

Index 
Adaptive Mesh 

1 30 0.360847 -2.70E-01 23.85 
5 52 0.350272 -3.52E-03 4.62 
9 66 0.349748 -4.51E-04 1.89 
13 69 0.349666 -2.10E-04 1.34 
17 69 0.349621 -1.75E-04 1.57 
21 69 0.349589 -1.12E-04 1.39 

Uniform Mesh 
1 137 0.360847 -1.60E-01 14.08 
5 137 0.350272 -3.47E-03 4.55 
9 137 0.349748 -4.59E-04 1.92 
13 137 0.349666 -2.11E-04 1.34 
17 137 0.349621 -1.77E-04 1.58 
21 137 0.349588 -1.12E-04 1.42 
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6.4 Two-dimensional Examples 

6.4.1 The Azmy Benchmark Problem 

This benchmark problem consists of  a two-region, one group, deep-penetration 

problem and was developed by Azmy [54].  The geometry and corresponding cross 

sections of the problem is shown in Figure 6.12.  The dashed lines in Figure 6.12 are 

located at x=5.84375, 7.84375, and 9.84375 cm, respectively, and we analyze the scalar 

flux along these lines for the solution convergence.  All the calculations for this problem 

were performed up to the P11 approximation since higher-order angular approximations 

provided little effect in the solution.  The reference solution was computed by the 

EVENT calculation with a very fine mesh (43372 elements and 21885 nodes).  The scalar 

flux of this problem is shown in Figure 6.13.  Due to the large absorption cross section in 

the outer region, the flux exhibits a large gradient along the material interface. 

 

Figure 6.12: Problem schematic of Azmy benchmark problem 
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Figure 6.13: Flux profile for Azmy benchmark problem 
 

The scalar flux varies more than 8 orders of magnitude for this problem.   This 

large difference in the gradient produces the difficulty of applying the adaptivity 

algorithm based on the global norm since the large relative error of the very low flux 

region has virtually no effect on the overall accuracy.  A representative final mesh based 

on the global L2 error norm is shown in Figure 6.14.  The adaptive strategy successfully 

refined the mesh along the large flux gradient regions; however, this mesh failed to 

produce an accurate flux profile along the lines of interest.   

 

Figure 6.14: Illustration of the adaptively refined mesh based on the global L2 norm 
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To remedy this difficulty, we employed the goal-oriented adaptivity with the 

Gaussian source distributed along the dashed lines in Figure 6.12.  The adjoint source 

term in this case can be expressed by the following formula: 

 
2 2

0( ) / 2
*( , )

2

x xeS x y
σ

σ π

− −
+ =  (6.53) 

where, x0 is the source center, σ is the standard deviation of the Gaussian - a value of 

0.25 was adopted for the purpose of the calculations.  

6.4.1.1 Flux Comparison at x = 5.84375cm 

The distance between the target location and the source region is the shortest of 

all three cases considered; therefore we expect the convergence in the solution to be 

readily obtained. From the series of EVENT calculations, we observe that this is indeed 

the case.  The two meshes shown in Figure 6.15 are the final meshes produced by the 

goal-oriented adaptivity (right) and uniform refinement (left).  As expected, the adaptive 

refinement mainly produced mesh concentration between the source and target regions 

and remained relatively coarse elements elsewhere.  This had been expected since the 

goal-oriented adaptivity utilizes the error measure which is a product between the 

forward and adjoint errors. 

We assess the adaptive mesh refinement by comparing the scalar flux against the 

reference solution.  Figure 6.16 depicts the scalar flux plots produced by the different 

meshes.  Large oscillations are observed for the uniform mesh up to 3462 elements, while 

the solutions of adaptively refined meshes are indistinguishable from the reference 

solution even with the smallest number of elements (801 elements).  The tolerances of the 

adaptive calculations were chosen to be 0.5 and 0.1, which have produced a total of 801 

and 2056 spatial finite elements, respectively. 

 



 93

 

(a) uniform mesh  
(3462 elements, 1764 nodes) 

 

(b) adaptive mesh 
(2056 elements, 1045 nodes) 

Figure 6.15: Illustrative final mesh produced by goal-oriented adaptivity (3362 
elements, 1705 nodes) 
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Figure 6.16: Scalar flux plot along x=5.84375cm 
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Table 6.12 presents the computed L∞ errors and the total DoFs used in each 

computation.  The L∞ errors for the adaptive solutions are about a five times smaller than 

ones for the uniform mesh solutions, and in order to achieve a comparable accuracy, the 

uniform mesh required three times more nodes.   Comparison of the total DoFs used in 

each case reveals the additional advantage of the adaptive method.  The last column of 

Table 6.12 presents the total number of DoFs used in the each calculation.  The numbers 

in parenthesis in the adaptive refinement cases presents the total number of the DoFs 

without the angular order truncation. The total DoFs of the converged solution were 

reduced about a factor of 5 for the adaptive refinement for a similar accuracy. 

Finally, the distribution of the angular expansion orders used for the adaptive 

computation is shown in Figure 6.17.  The tolerance in the angular truncation error was 

set as the 1/100th of the spatial tolerance.  As we conducted the experiments with various 

sets of spatial and angular tolerances, this factor of 1/100th seemed to perform the best for 

most of the cases.  We observe that higher-order angular expansions were required at the 

material interface, and surrounding regions.  The rest of the regions required lower 

angular expansion orders, especially those further away from the source regions. 

    

Table 6.12: Comparison of total degrees of freedom in uniform and adaptive 
calculations 1 

# of Elements # of Nodes L∞ Error  
w.r.t. reference 

DoFs used 

Uniform mesh 
1668 867 3.94x10-3 31212 
3462 1764 1.06x10-3 63504 
7706 3902 5.49x10-4 140472 

Adaptive Mesh 
801 414 7.46x10-4 5375(14904) 
2056 1045 2.76x10-4 25091(37620) 
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Figure 6.17: Distribution of the angular moments used for the goal-oriented 
adaptivity applied at x = 5.84375 cm 

 

6.4.1.2 Flux Comparison at x = 7.84375cm 

The scalar flux along this line is depicted in Figure 6.18.  The spatial tolerances 

adopted were 5.0x10-3 and 1.0x10-4 for the presented adaptive results, resulting in a total 

of 1511 and 4517 elements, respectively.  Again, the oscillations are observed in the 

uniform mesh (1668 and 7706 spatial elements) case, and this time the adaptive mesh 

(1511 elements) case also exhibits smaller, but noticeable oscillations.  Caused by the 

further distance from the source region, the effectiveness of the adaptive refinement is not 

as efficient as the previous case.  Elements with smaller sizes were assigned to a large 

fraction of the system, and relatively uniform spatial meshes were required to solve this 

problem (see Figure 6.19). 

 Table 6.13 lists the computed L∞ errors for each calculation.  We can observe 

slightly more accurate results for the adaptive calculations compared to the uniform mesh 

calculation for a similar number of spatial elements.  On the other hand, the effectiveness 

of the adaptive algorithm is still prominent (a factor of 3~5) if the total DoFs, listed in the 
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last column of Table 6.13, are compared.  The spatial distribution of the angular order 

used in the adaptive calculation and a representative final adaptive mesh is shown in 

Figure 6.19.  Again, higher-order angular expansions were required for the region 

between source and detector locations. 
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Figure 6.18: Scalar flux profiles along x=7.84375cm 
 

 

Table 6.13: Comparison of total degrees of freedom in uniform and adaptive 
calculations 2 

# of Elements # of Nodes L∞ Error  
w.r.t. reference 

DoFs used 

Uniform mesh 
1668 867 2.53x10-5 60048 
7706 3092 4.95x10-6 14072 
14436 7351 2.00x10-6 26436 

Adaptive Mesh 
1511 772 8.23x10-6 14377(27792) 
4517 2283 3.54x10-6 49425 (82188) 
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Figure 6.19: Final Adaptive mesh and the distribution of the angular orders used in 
the adaptive mesh refinement for the comparison at x = 7.84375 cm 

 
 

6.4.1.3 Flux Comparison at x = 9.84375 cm 

This location is at the edge of the system and the magnitude of the scalar flux has 

dropped by a rather large factor; therefore it is difficult to obtain the accurate solutions.  

Since the source and target regions are located at opposite ends of the system, we expect 

further degrading in the effectiveness of the goal-oriented adaptive.  Figure 6.20 depicts 

the flux profile of the calculations.  The tolerances of the adaptive algorithm were 

prescribed as 1.0x10-4 and 2.0x10-5, which resulted in a total of 1870 and 13570 spatial 

elements, respectively.  As expected, a similar accuracy was obtained by the solutions 

with the uniform meshes compared to ones with the adaptive meshes.  The representative 

final meshes for both uniform and adaptive calculations are depicted in Figure 6.21.  We 

can observe that around 3/4 of the system was covered by the adaptively refined 

elements. 
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Table 6.14 summarizes the results for this test case, and the distribution of the 

angular expansion orders is shown in Figure 6.22.  The boundary of the higher-order 

angular expansions is located along the shortest line that connects the source to the corner 

points (i.e. (5.0, 5.0) to (10.0, 10.0) cm).  The reason is clear: the product of the adjoint 

and forward solution produces the region of higher importance in the lower portion of 

this line.  The overall DoFs difference between the uniform and adaptive mesh is still 

about a factor of 2, which continues to indicate the advantage of the adaptive angular 

refinement. 
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Figure 6.20: Scalar flux profile along x = 9.84375 cm 
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(a) uniform mesh (14568 elements) 
 

(b) adaptive mesh (13570 elements) 

Figure 6.21: Final uniform and adaptive mesh 
 

 

Table 6.14: Comparison of total degrees of freedom in uniform and adaptive 
calculations 3 

# of Elements # of Nodes L∞ Error  
w.r.t. reference 

DoFs used 

Uniform mesh 
3462 1764 1.65x10-7 63504 
14436 7351 3.52x10-8 264636 

Adaptive mesh 
1870 954 1.47x10-7 20133(34344) 
13570 6827 1.73x10-8 196717(245772) 
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Figure 6.22: Adaptive mesh and distribution of angular moments for the 
comparison at x = 9.84375 cm 

 

 

6.4.2 Simple 2-Group Eigenvalue Problem 

Our next two dimensional example is a multigroup eigenvalue problem. This is a 

two-group problem and consists of two homogeneous core regions surrounded by a 

reflector [55].  The geometrical configuration for this problem is shown in Figure 6.23, 

and corresponding two group cross sections are listed in the Table 6.15. The purpose of 

this problem is to illustrate how the adaptive mesh differs between groups and how it 

affects overall solution.   
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Figure 6.23: Schematics of the two-group eigenvalue problem 
 

 

Table 6.15: Material cross sections of the two group eigenvalue problem (in cm-1) 
Core1 Core2 Reflector  

Group1 Group2 Group1 Group2 Group1 Group2 
σt 0.2631 0.9416 0.2604 0.8333 0.2950 2.0080 
σa 0.0121 0.1210 0.0100 0.1000 0.0004 0.0200 
νσf 0.0085 0.1851 0.0060 0.1500 0.0000 0.0000 
χ 1.0000 0.0000 1.0000 0.0000 -- -- 

σs11  σs11  σs11  
0.2269  0.2344  0.2453  

σs12 σs22 σs12 σs22 σs12 σs22 

σs 

0.0241 0.8206 0.0160 0.7333 0.0493 1.9880 
 

The physics that drives this problem is the fission source in the core regions and 

the down scatter source in the reflector region.  This produces significantly different flux 

profiles between the two groups.  Figure 6.24 illustrates the flux profiles for this problem.   
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                           (a) Group 1                                                (b) Group 2 

Figure 6.24: Flux profile of the two-group eigenvalue problem 
 

 

Because of the difference in the flux profiles, we expect the adaptive mesh 

refinement to produce the different results in each group.  Figure 6.25 shows the initial 

and final meshes of the diffusion approximation created using different error indicators.  

The adaptive mesh reflects the difference in physics of the groups.  Figure 6.25(b) shows 

the adaptive meshes based on the error in the both groups, which somewhat shows the 

combination of Figure 6.25(c) and (d) as we expected. 

In order to see the effect in the solution due to the different adaptive meshes, the 

number of nodes used for the diffusion approximation solution was compared.  The 

number of the nodes required to converge the effective multiplication constant (keff) 

within the 0.01% of converged value (keff = 1.1422) were 2250, 1778 and 1538 for the 

error measure based on the first group, second group and both groups, respectively.  The 

differences in the number of nodes are not significant; a relatively large number of nodes 

required for the first group originates from the failure of approximating accurate thermal 

sources around the reflector regions.  In order to ensure that all the physics is covered 

with one error measure, we employ an error measure which is a sum of all groups.     
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Figure 6.25: Initial and final mesh for the two-group eigenvalue problem 
 

Secondly, we have assessed the convergence behavior of the keff in terms of 

number of nodes used in both uniform and adaptive meshes.  Figure 6.26 depicts the 

percent difference in keff from the converged values.  In order for keff to converge within 

0.01%, the uniform refinement case has required about a factor of 6 more nodes than the 

adaptive meshes (8717, and 1538 nodes, respectively).  This problem is relative large in 

 

(a) initial mesh 

 

(b) final mesh of adaptivity based on both 
groups 

 

 

(c) final mesh based on group1 error 

 

(d) final mesh based on group2 error 
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size, and the important region is somewhat localized; thus, the adaptive strategy shows a 

greater effect in the mesh refinement.   

 The difference in the total number of nodes between uniform and adaptive mesh 

produces a considerable gain in computational time.  For example, the keff converges to 

the 1.1435 in for a P9 approximation.  To obtain the keff within 0.01% of this converged 

value, the adaptive method took 33.5 seconds, while the uniform mesh case took 185.7 

seconds.  As we see here, the reduction in the number of nodes directly reflects the 

computational time.   
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Figure 6.26: The % keff difference versus number of nodes 
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6.4.3 Gamma Transport in the Simple Fuel Cask Problem 

 The last test problem is a 2D, x-y geometry deep-penetration problem with 20 

gamma energy groups. The problem consists of a circular quadrant with 80cm radius and 

three distinct materials (fuel, water and steel) creating a total of five regions.  The 

problem geometry is shown in the Figure 6.27.  The cross section library used was the 

BUGLE library which has been used extensively for light water reactor shielding and 

reactor pressure vessel dosimetry studies[56].  The detailed cross section used in this 

problem is listed in Appendix.  An isotropic source of strength 0.1 was defined for all the 

groups. 

 

Figure 6.27: Geometry of the gamma transport problem 
 

The relatively wide range of the energy spectrum (14MeV for group 1 and 2keV for 

group 20) provides significantly different radiation flux profiles for the energy groups.  

Our analysis concentrated on assessing the accuracy of groups 1, 17 and 20 since those 

three groups exhibit the distinct flux distributions.  The flux profiles are depicted in 

Figure 6.28(a), (b) and (c). 
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(a) group1 
 

(b) group 17 (c) group 20 

Figure 6.28: Flux profile for the gamma transport problem 
 

We limited the order of the expansion to the P5 approximation in all the 

calculations since higher-order angular expansions showed a negligible effect on the 

accuracy of the solution.  The reference solution was again obtained by a fine mesh 

EVENT calculation (41762 elements and 21060 nodes).  In order to confirm the accuracy 

of the solutions, we compared the scalar flux along y = 5.0cm.  Figure 6.29 shows the 

scalar flux profile of group 1 computed by the reference, adaptive and uniform mesh 

resolutions.  It is clear that the relatively small number of elements (986 and 950 

elements for the  adaptive and uniform mesh, respectively) can reproduce fairly accurate 

results.  Since the solution is relatively smooth throughout the domain, large spatial 

elements can successfully produce acceptable results.  The spatial tolerances adopted 

were 1.0x10-3 for the presented adaptive computations, which resulted in a total of 986 

elements. 
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Figure 6.29: Group 1 scalar flux profile of the gamma transport problem at y = 
5.0cm 

 

 

The group 17 scalar flux is depicted in Figure 6.30.  This group has a sharp flux 

gradient and a peak flux near x = 40.0 cm.   Considering this type of flux shape, we 

expect the adaptive mesh refinement to have a great advantage since a highly resolved 

solution is required to accurately model a narrow, sharp flux peak.  The peak flux of 

4.56009x10-1 was obtained by the reference calculation.  The computed peak flux values 

for the uniform and adaptive mesh cases are summarized in Table 6.16.  The last column 

of Table 6.16 presents percent differences in the peak flux with respect to the reference 

solution.  A considerable improvement in the peak flux accuracy was obtained by the 

adaptive computations, especially in the finer mesh case.  For the coarser mesh cases, the 

accuracy is improved by a factor of 2.  A total of 8584 elements were required to achieve 

a 1.0% difference in the peak flux for the adaptive calculations, while the uniform mesh 

solution with 217712 elements still gave a 2.34% error.  The spatial tolerances of 1.0x10-

5 and 1.0x10-6 were used to produce 3746 and 8584 adaptive elements.  
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Figure 6.30: Group 17 scalar flux profile of the gamma transport problem at y = 
5.0cm 

 

 

Table 6.16: Comparison of the peak flux values for group 17 
(Reference peak flux = 4.56009x10-1) 

Number of Elements Peak Flux % Difference w.r.t 
reference. 

Uniform Mesh 
950 3.613x10-1 26.2% 
3652 4.021x10-1 13.4% 
21772 4.456x10-1 2.34% 

Adaptive Mesh 
986 4.103x10-1 11.16% 
3746 4.379x10-1 4.15% 
8584 4.565x10-1 0.10% 

 

The last comparison discussed is that for group 20.  In this group, the magnitude 

of the cross section is relatively larger and therefore a steep gradient in the flux is 

observed along the interface between the fuel and water regions.  The flux profile of this 
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group is shown in Figure 6.31.  Unphysical oscillations and negative fluxes are produced 

across the material interface when the relatively coarser mesh sizes are employed.  A 

total of 3746 elements were required to eliminate the oscillations by the adaptive 

algorithm, while the uniform mesh calculation with 12270 elements still produced a 

small, but distinguishable negative flux. 

Figure 6.31: Group 20 scalar flux profile of the gamma transport problem at y = 
5.0cm 

 

The angular expansion orders used for each group differ drastically due to the 

wide range of the energy spectrum (~4 orders of magnitude).  We expect that groups at 

the higher energy range to produce an anisotropic forward-peaked angular flux, while the 

groups in the keV range to produce an relatively isotropic flux.  Therefore, higher-order 

angular expansion orders are expected for the group 1 throughout the system, while the 

required angular orders are reduced gradually with decreasing energy range.  Examining 

the angular distributions presented in Figure 6.32, we can see that this is indeed the case.  

Group 1 required the P5 approximations in almost all regions while group 20 required 
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higher order approximations only at the material interface between the fuel and water 

regions. 

Lastly, the total number of DoFs used for the each uniform and adaptive 

calculation are summarized in Table 6.17.  The last column in Table 6.17 presents the 

total CPU time required for each run.  Clearly, the adaptive computation requires a longer 

CPU time for similar number of elements; however, since a similar accuracy can be 

obtained by the much smaller number of DoFs, the computational time is effectively 

reduced by more than a factor of two. 

 

 

(a) Group 1 

 

(b) Group 17 

 

(c) Group 20 

Figure 6.32: Angular expansion orders distribution for the gamma transport 
problem for group 1, 17 and 20 
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Table 6.17: Summary of the gamma transport problem 

Number of 
Elements 

Number of Nodes Total DoFs Used CPU time (sec) 

Uniform Mesh 
950 504 90720 2.0 
3652 1883 338940 10.5 
21722 11065 1991700 135.2  
41762 21060 3790800 318.6 

Adaptive Mesh 
968 505 55729 (90900) 7.4  
3746 1913 277952 (344340) 18.1  
8584 4354 684334 (783360) 138.5  
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CHAPTER 7 

CONCLUSIONS 

“Efficiency” and “accuracy” are the two key aspects for successful computational 

simulations.  These two aspects must go hand in hand; however, at a first glance, the 

simultaneous fulfillment of these conditions is not attainable since they appear to have  

opposite requirements.  The strong theoretical and mathematical framework developed 

over a last few decades together with the rapid advancements in computer hardware 

technologies has bridged the two aspects by means of adaptive mesh refinement strategy. 

Furthermore, it has demonstrated great successes in modeling large, complex problems.  

In this thesis, a self-adaptive numerical framework for the neutral particle 

radiation transport problem was developed based on the residual a posteriori error 

analysis.  The spatial and angular discretization errors were successfully separated by 

initially seeking the spatial convergence for a given angular resolution, and subsequently 

employing a higher-order projection of the spatially converged solution to evaluate the 

angular truncation error.  By utilizing an arbitrary adjoint source, (near) optimal 

discretization, tuned to minimizing the error in the target engineering output, was 

accomplished.  The simple verification step via the Method of Manufactured Solution has 

demonstrated the accuracy of the developed error estimators.  The extra computational 

overhead, which stems from an iterative mesh refinement process, is rewarded by the 

(near) optimum mesh generation.  Consequently, the methodology has provided the 

speed-up in the total computational time for most of the example problems presented.  

7.1. Recommendations for Future Work 

A number of improvements can lead to more practical application of the 

developed methodology.  The following is a list of possible steps for accomplishing this. 
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(i) Extension to three-dimensional and curvilinear geometry 

Adapting the methodology to the more general three dimensional framework is 

considered as the immediate next step.  The mathematical framework developed in this 

thesis is based on the general Cartesian geometry; therefore, it should extend naturally to 

x-y-z geometry.  Refinement procedure in three dimensions is still an active area of 

research, and efficient mesh refinement algorithms must be considered for successful 

implementations.  A posteriori error analysis for curvilinear geometry such as r-z 

geometry also needs to be developed.  However, the basic adaptive strategy should be 

applicable even in this case. 

 

(ii) Rigorous mathematical development for the non-selfadjoint problem 

In this thesis, transport problems were treated as the series of one-group problems; the 

group couplings through the scattering source were assumed to give a negligible 

contribution to the error.  This somewhat ad-hoc assumption seemed to work well for the 

examples presented here.  Nonetheless, more rigorous mathematical support should bring 

the developed adaptive methodology to the next stage.  This can be achieved by means of 

the full phase-space adaptivity, which includes space, angle and energy variables.   

The theoretical analysis of the non-selfadjoint problem also becomes guidance for 

developing the adaptive framework for the first-order transport equation.  The extension 

of adaptivity to non-hierarchical angular discretizations such as the method of discrete 

ordinates should also be considered.   

 

(iii) Parallel implementation of the goal-oriented adaptivity 

The goal-oriented adaptivity utilizes the adjoint problem, which successfully produced 

the optimum mesh tuned to the desired output.  The drawback is that the methodology 

has simply doubled the computational cost due to the requirement of the adjoint problem.  

This extra computation may hold back the practical application of the method.  However, 
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the forward and adjoint problem are essentially two separate problems; thus, the 

problems can be solved by employing parallel computations practically with zero cost of 

the extra complexity and communication time. 

 

(iv) Hierarchical self-adaptive multilevel framework 

For real-life engineering problems, problem size and complexity can become 

prohibitively large regardless of optimal discretizations.  Thus, the solution procedure at 

the finest level is clearly demanding, and obtaining the converged solution at this level is 

not feasible without efficient solution algorithms.  The hierarchical self-adaptive 

multilevel framework is the only way forward to accomplish this difficult task.  Over the 

years, multi-level methods have gained the recognition as the most efficient scalable 

solution algorithms.  We can take advantage of the hierarchical structure of the adaptive 

mesh to develop the general multi-level solution framework.   
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APPENDIX A 

CROSS SECTIONS USED IN GAMMA TRANSPORT PROBLEM 

Table A.1: 20 group cross sections of the fuel material 
 

σt1 σa1   
1.2856436E-01 4.3248954E-05   

'sg g  g'=g,20σ →  
2.2837829E-03 5.6071030E-03 2.9095791E-03 3.0620040E-03 
3.3177622E-03 3.7471522E-03 4.5031784E-03 5.9969765E-03 
4.1288515E-03 5.7492843E-03 3.1569758E-03 1.8927923E-03 
2.1917925E-03 1.4023727E-01 6.9466843E-03 0.0000000E+00

Group 1 
 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

σt2 σa2   
1.2888166E-01 5.4084019E-05   

'sg g  g'=g,20σ →  
3.6522681E-03 4.1208514E-03 4.2224494E-03 4.4465577E-03 
4.8766779E-03 5.6946524E-03 7.3904363E-03 5.0106659E-03 
6.9243545E-03 3.7902410E-03 2.2712543E-03 2.6302999E-03 
1.2363637E-01 8.4808599E-03 0.0000000E+00 0.0000000E+00

Group 2 
 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt3 σa3   
1.2971906E-01 6.5101674E-05   

'sg g  g'=g,20σ →  
3.3515934E-03 5.6319521E-03 5.7833781E-03 6.1708027E-03 
7.0037660E-03 8.8460753E-03 5.8971862E-03 8.0781011E-03 
4.4044689E-03 2.6371044E-03 3.0536975E-03 1.0945316E-01 
1.0003947E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 3 
 
 
 
 0.0000000E+00 0.0000000E+00   

σt4 σa4   
1.3267206E-01 8.1294333E-05   

'sg g  g'=g,20σ →  
2.6106711E-03 8.1065213E-03 8.3453190E-03 9.1025606E-03 
1.1038194E-02 7.1625458E-03 9.6683037E-03 5.2347453E-03 
3.1286515E-03 3.6211477E-03 9.5254652E-02 1.2116414E-02 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 4 
 
 
 
 0.0000000E+00    
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Table A.1: Continued 

 
σt5 σa5   

1.3615146E-01 9.6551987E-05   
'sg g  g'=g,20σ →  

5.2581262E-03 1.0821348E-02 1.1402715E-02 1.3309040E-02 
8.4035266E-03 1.1167203E-02 5.9983828E-03 3.5772941E-03 
4.1370704E-03 8.4730454E-02 1.4096111E-02 0.0000000E+00

Group 5 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
σt6 σa6   

1.4208996E-01 1.2382923E-04   
'sg g  g'=g,20σ →  

8.1866561E-03 1.5948793E-02 1.7511148E-02 1.0540984E-02 
1.3598319E-02 7.1890415E-03 4.2668656E-03 4.9245730E-03 
7.1969517E-02 1.7248239E-02 0.0000000E+00 0.0000000E+00

Group 6 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt7 σa7   
1.5285659E-01 1.7249379E-04   

'sg g  g'=g,20σ →  
1.3402980E-02 2.6396859E-02 1.4675783E-02 1.7907035E-02 
9.1604628E-03 5.3775245E-03 6.1724600E-03 5.7807356E-02 
2.2476153E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 7 
 
 
 0.0000000E+00 0.0000000E+00   

σt8 σa8   
1.7902899E-01 3.0938667E-04   

'sg g  g'=g,20σ →  
1.9868108E-02 2.8838146E-02 3.0718928E-02 1.4247693E-02 
8.0482531E-03 9.0390667E-03 4.2465165E-02 3.4951247E-02 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 8 
 
 
 0.0000000E+00    

σt9 σa9   
2.0611700E-01 5.0584361E-04   

'sg g  g'=g,20σ →  
2.4376355E-02 5.1891696E-02 2.1513708E-02 1.1516063E-02 
1.2488812E-02 3.7899755E-02 4.9281884E-02 0.0000000E+00

Group 9 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
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Table A.1:Continued 
 

σt10 σa10   
2.4530230E-01 9.5612730E-04   

'sg g  g'=g,20σ →  
4.3373935E-02 4.1086107E-02 2.0046156E-02 2.0225944E-02 
4.5919865E-02 7.4082389E-02 0.0000000E+00 0.0000000E+00

Group 10 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt11 σa11   
2.8729516E-01 1.7829406E-03   

'sg g  g'=g,20σ →  
3.6689885E-02 3.7547190E-02 3.5407890E-02 6.8590090E-02 
1.0526291E-01 2.0164663E-03 0.0000000E+00 0.0000000E+00

Group 11 0.0000000E+00 0.0000000E+00   
σt12 σa12   

3.1463978E-01 2.6248128E-03   
'sg g  g'=g,20σ →  

2.8837714E-02 5.3320464E-02 9.4649322E-02 1.2408095E-01 
1.1125814E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 12 
 
 0.0000000E+00    

σt13 σa13   
3.3558810E-01 3.6883431E-03   

'sg g  g'=g,20σ →  
3.7664603E-02 1.2955016E-01 1.4214627E-01 2.2538897E-02 

Group 13 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

σt14 σa14   
3.8497263E-01 7.7467887E-03   

'sg g  g'=g,20σ →  
1.0680378E-01 2.1192509E-01 5.8493722E-02 0.0000000E+00

Group 14 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt15 σa15   
5.2359432E-01 4.2819150E-02   

'sg g  g'=g,20σ →  
2.3935764E-01 2.4142663E-01 0.0000000E+00 0.0000000E+00

Group 15 0.0000000E+00 0.0000000E+00   
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Table A.1: Continued 

σt16 σa16   
9.8399532E-01 3.4020263E-01   

'sg g  g'=g,20σ →  
4.7075158E-01 1.7304881E-01 0.0000000E+00 0.0000000E+00

Group 16 0.0000000E+00    
σt17 σa17   

2.5197797E+00 1.6785032E+00   
'sg g  g'=g,20σ →  

Group 17 7.4346620E-01 9.7807549E-02 0.0000000E+00 0.0000000E+00
σt18 σa18   

7.6898208E+00 6.5476918E+00   
'sg g  g'=g,20σ →  

Group 18 1.1393229E+00 2.6754218E-03 0.0000000E+00  
σt19 σa19   

5.4149189E+01 5.1901657E+01   
'sg g  g'=g,20σ →  

Group 19 2.2113309E+00 3.3278834E-02   
σt20 σa20   

2.2216533E+02 2.1841698E+02   
'sg g  g'=g,20σ →  Group 20 

 3.7436314E+00    
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Table A.2: 20 group cross sections of the water material 
 

σt1 σa1   
2.1497976E-02 1.2740952E-07   

'sg g  g'=g,20σ →  
5.9476047E-04 1.4748238E-03 7.6532090E-04 8.0540759E-04 
8.7268185E-04 9.8562730E-04 1.1844708E-03 1.5773884E-03 
1.0860143E-03 1.5122450E-03 8.3038409E-04 4.9785373E-04 
5.7651068E-04 1.2283050E-02 1.8271270E-03 0.0000000E+00

Group 1 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
σt2 σa2   

2.3159359E-02 1.5823230E-07   
'sg g  g'=g,20σ →  

9.5149252E-04 1.0840170E-03 1.1107037E-03 1.1696679E-03 
1.2828005E-03 1.4980233E-03 1.9441004E-03 1.3180909E-03 
1.8215023E-03 9.9704345E-04 5.9745251E-04 6.9190765E-04 
1.1081919E-02 2.2308729E-03 0.0000000E+00 0.0000000E+00

Group 2 0.0000000E+00 0.0000000E+00 0.0000000E+00  
σt3 σa3   

2.4749333E-02 1.8934900E-07   
'sg g  g'=g,20σ →  

8.7423826E-04 1.4812433E-03 1.5210294E-03 1.6229392E-03 
1.8420032E-03 2.3265504E-03 1.5509223E-03 2.1246006E-03 
1.1583854E-03 6.9355103E-04 8.0313638E-04 1.0099825E-02 
2.6311115E-03 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 3 0.0000000E+00 0.0000000E+00   
σt4 σa4   

2.6929952E-02 2.3450758E-07   
'sg g  g'=g,20σ →  

6.7615625E-04 2.1322225E-03 2.1948542E-03 2.3940050E-03 
2.9031211E-03 1.8837666E-03 2.5428154E-03 1.3767413E-03 
8.2286913E-04 9.5238758E-04 9.1889407E-03 3.1867004E-03 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 4 0.0000000E+00    
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Table A.2: Continued 

 
σt5 σa5   

2.8915983E-02 2.7659996E-07   
'sg g  g'=g,20σ →  

1.3691930E-03 2.8462077E-03 2.9991062E-03 3.5005203E-03 
2.2102850E-03 2.9371090E-03 1.5776557E-03 9.4088464E-04 
1.0881119E-03 8.5748481E-03 3.7075668E-03 0.0000000E+00

Group 5 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
σt6 σa6   

3.1814769E-02 3.5098131E-07   
'sg g  g'=g,20σ →  

2.1329573E-03 4.1950396E-03 4.6059266E-03 2.7725741E-03 
3.5767057E-03 1.8909342E-03 1.1223134E-03 1.2952586E-03 
7.9169357E-03 4.5366553E-03 0.0000000E+00 0.0000000E+00

Group 6 0.0000000E+00 0.0000000E+00 0.0000000E+00  
σt7 σa7   

3.6223304E-02 4.8144682E-07   
'sg g  g'=g,20σ →  

3.4923707E-03 6.9438596E-03 3.8604722E-03 4.7103353E-03 
2.4096763E-03 1.4145101E-03 1.6237075E-03 7.3927562E-03 
5.9124678E-03 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 7 0.0000000E+00 0.0000000E+00   
σt8 σa8   

4.5136757E-02 8.3980910E-07   
'sg g  g'=g,20σ →  

5.1532192E-03 7.5876783E-03 8.0821319E-03 3.7485154E-03 
2.1175197E-03 2.3781869E-03 7.5481995E-03 9.1953538E-03 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 8 0.0000000E+00    
σt9 σa9   

5.3327106E-02 1.3441349E-06   
'sg g  g'=g,20σ →  

6.2921592E-03 1.3653586E-02 5.6601642E-03 3.0297739E-03 
3.2857116E-03 8.6727105E-03 1.2965478E-02 0.0000000E+00

Group 9 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
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Table A.2: Continued 
 

σt10 σa10   
6.3996404E-02 2.4803778E-06   

'sg g  g'=g,20σ →  
1.1165620E-02 1.0818527E-02 5.2767992E-03 5.3240936E-03 
1.1933018E-02 1.9500056E-02 0.0000000E+00 0.0000000E+00

Group 10 0.0000000E+00 0.0000000E+00 0.0000000E+00  
σt11 σa11   

7.4697092E-02 4.7312783E-06   
'sg g  g'=g,20σ →  

9.2196688E-03 9.8888045E-03 9.3151927E-03 1.8045219E-02 
2.7694944E-02 5.2965718E-04 0.0000000E+00 0.0000000E+00

Group 11 0.0000000E+00 0.0000000E+00   
σt12 σa12   

8.1347033E-02 6.9748330E-06   
'sg g  g'=g,20σ →  

6.9715818E-03 1.4024726E-02 2.4848463E-02 3.2575086E-02 
2.9205226E-03 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 12 0.0000000E+00    
σt13 σa13   

8.6584151E-02 9.8202809E-06   
'sg g  g'=g,20σ →  

9.0942858E-03 3.4136470E-02 3.7409335E-02 5.9335767E-03 
Group 13 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

σt14 σa14   
9.7972885E-02 2.1053767E-05   

'sg g  g'=g,20σ →  
2.6762819E-02 5.5795368E-02 1.5393058E-02 0.0000000E+00

Group 14 0.0000000E+00 0.0000000E+00 0.0000000E+00  
σt15 σa15   

1.2221460E-01 1.2488382E-04   
'sg g  g'=g,20σ →  

5.8539510E-02 6.3551515E-02 0.0000000E+00 0.0000000E+00
Group 15 0.0000000E+00 0.0000000E+00   
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Table A.2: Continued 
 

σt16 σa16   
1.5419310E-01 1.1179080E-03   

'sg g  g'=g,20σ →  
1.0692208E-01 4.6151448E-02 0.0000000E+00 0.0000000E+00

Group 16 0.0000000E+00    
σt17 σa17   

1.8344615E-01 6.1398405E-03   
'sg g  g'=g,20σ →  

Group 17 1.5055718E-01 2.6752196E-02 0.0000000E+00 0.0000000E+00
σt18 σa18   

2.2449476E-01 2.6944624E-02   
'sg g  g'=g,20σ →  

Group 18 1.9677544E-01 7.7425875E-04 0.0000000E+00  
σt19 σa19   

5.0921637E-01 2.6562995E-01   
'sg g  g'=g,20σ →  

Group 19 2.3337848E-01 1.0215724E-02   
σt20 σa20   

1.6839091E+00 1.3833390E+00   
'sg g  g'=g,20σ →  

Group 20 2.9902685E-01    
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Table A.3: 20 group cross sections of the steel material 
 

σt1 σa1   
2.2685638E-01 8.3154257E-05   

'sg g  g'=g,20σ →  
3.8248671E-03 9.3767093E-03 4.8656436E-03 5.1205475E-03 
5.5482467E-03 6.2663085E-03 7.5306157E-03 1.0028674E-02 
6.9046305E-03 9.6144555E-03 5.2793720E-03 3.1653030E-03 
3.6653071E-03 2.5820467E-01 1.1616922E-02 0.0000000E+00

Group 1 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

σt2 σa2   
2.2586782E-01 1.0398776E-04   

'sg g  g'=g,20σ →  
6.1164703E-03 6.8911500E-03 7.0610861E-03 7.4358433E-03 
8.1551298E-03 9.5229512E-03 1.2358759E-02 8.3791520E-03 
1.1579340E-02 6.3382857E-03 3.7981512E-03 4.3985643E-03 
2.2739559E-01 1.4182303E-02 0.0000000E+00 0.0000000E+00

Group 2 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt3 σa3   
2.2594951E-01 1.2517256E-04   

'sg g  g'=g,20σ →  
5.6118914E-03 9.4183758E-03 9.6716462E-03 1.0319527E-02 
1.1712512E-02 1.4793418E-02 9.8620066E-03 1.3509095E-02 
7.3656631E-03 4.4100839E-03 5.1067397E-03 2.0103100E-01 
1.6729709E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 3 
 
 
 0.0000000E+00 0.0000000E+00   

σt4 σa4   
2.2953615E-01 1.5630844E-04   

'sg g  g'=g,20σ →  
4.3759332E-03 1.3556480E-02 1.3955994E-02 1.5222344E-02 
1.8459298E-02 1.1978037E-02 1.6168429E-02 8.7541547E-03 
5.2320678E-03 6.0556852E-03 1.7456837E-01 2.0262416E-02 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 4 
 
 
 0.0000000E+00    

 
 
 
 



 124

Table A.3: Continued 
 

σt5 σa5   
2.3432375E-01 1.8564690E-04   

'sg g  g'=g,20σ →  
8.8064428E-03 1.8096549E-02 1.9068779E-02 2.2256711E-02 
1.4053217E-02 1.8674985E-02 1.0031126E-02 5.9823189E-03 
6.9184373E-03 1.5489502E-01 2.3572899E-02 0.0000000E+00

Group 5 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

σt6 σa6   
2.4296764E-01 2.3809829E-04   

'sg g  g'=g,20σ →  
1.3710076E-02 2.6670963E-02 2.9283730E-02 1.7627591E-02 
2.2740379E-02 1.2022154E-02 7.1354327E-03 8.2353596E-03 
1.3095693E-01 2.8844183E-02 0.0000000E+00 0.0000000E+00

Group 6 
 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt7 σa7   
2.5945467E-01 3.3167747E-04   

'sg g  g'=g,20σ →  
2.2445440E-02 4.4142511E-02 2.4541862E-02 2.9945500E-02 
1.5318749E-02 8.9927185E-03 1.0321978E-02 1.0419201E-01 
3.7586082E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 7 
 
 
 0.0000000E+00 0.0000000E+00   

σt8 σa8   
3.0126873E-01 5.9492304E-04   

'sg g  g'=g,20σ →  
3.3295199E-02 4.8223425E-02 5.1368874E-02 2.3825351E-02 
1.3458440E-02 1.5115317E-02 7.4500598E-02 5.8446545E-02 
0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

Group 8 
 
 
 0.0000000E+00    

σt9 σa9   
3.4554198E-01 9.7272015E-04   

'sg g  g'=g,20σ →  
4.0879410E-02 8.6773574E-02 3.5975777E-02 1.9257506E-02 
2.0884154E-02 6.4627148E-02 8.2410790E-02 0.0000000E+00

Group 9 
 

 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
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Table A.3: Continued 

 
σt10 σa10   

4.1072226E-01 1.8386585E-03   
'sg g  g'=g,20σ →  

7.2767735E-02 6.8696626E-02 3.3519059E-02 3.3819713E-02 
7.6931171E-02 1.2387353E-01 0.0000000E+00 0.0000000E+00

Group 10 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt11 σa11   
4.8127833E-01 3.4285404E-03   

'sg g  g'=g,20σ →  
6.1770920E-02 6.2777460E-02 5.9210442E-02 1.1469863E-01 
1.7602265E-01 3.3728210E-03 0.0000000E+00 0.0000000E+00

Group 11 
 
 0.0000000E+00 0.0000000E+00   

σt12 σa12   
5.2752870E-01 5.0474256E-03   

'sg g  g'=g,20σ →  
4.8815750E-02 8.9167379E-02 1.5832642E-01 2.0755884E-01 
1.8611260E-02 0.0000000E+00 0.0000000E+00 0.0000000E+00Group 12 

 0.0000000E+00    
σt13 σa13   

5.6282312E-01 7.0925397E-03   
'sg g  g'=g,20σ →  

6.3768484E-02 2.1658669E-01 2.3768981E-01 3.7686575E-02 
Group 13 

 
 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

σt14 σa14   
6.4694959E-01 1.4896360E-02   

'sg g  g'=g,20σ →  
1.7988706E-01 3.5434926E-01 9.7811230E-02 0.0000000E+00

Group 14 
 
 0.0000000E+00 0.0000000E+00 0.0000000E+00  

σt15 σa15   
8.9052993E-01 8.2329087E-02   

'sg g  g'=g,20σ →  
4.0452936E-01 4.0368786E-01 0.0000000E+00 0.0000000E+00

Group 15 
 
 0.0000000E+00 0.0000000E+00   
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Table A.3: Continued 
 

σt16 σa16   
1.7462558E+00 6.5399212E-01   

'sg g  g'=g,20σ →  
8.0350310E-01 2.8877681E-01 0.0000000E+00 0.0000000E+00

Group 16 
 
 0.0000000E+00    

σt17 σa17   
4.6752820E+00 3.2260878E+00   

'sg g  g'=g,20σ →  Group 17 
 1.2866116E+00 1.6257483E-01 0.0000000E+00 0.0000000E+00

σt18 σa18   
1.4590802E+01 1.2581800E+01   

'sg g  g'=g,20σ →  Group 18 
 2.0043461E+00 4.4061625E-03   

σt19 σa19   
1.0377533E+02 9.9682167E+01 0.0000000E+00  

'sg g  g'=g,20σ →  Group 19 
 4.0332837E+00 5.4243896E-02   

σt20 σa20   
4.2616354E+02 4.1923535E+02 0.0000000E+00  

'sg g  g'=g,20σ →  Group 20 
 6.9205618E+00    
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