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Our greatest weakness lies in giving up. The most certain way to succeed is always to try

just one more time.

Thomas Edison
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SUMMARY

By assisting in household chores, robotic home assistants hold the potential to

significantly enhance the quality of human lives. Mobile manipulation tasks can serve as

test beds for evaluating the capabilities essential to the development of robotic home

assistants: perception, language understanding, navigation, manipulation and common-

sense reasoning. However, it is imperative to use settings that closely resemble real-world

deployment to ensure that progress made on these tasks is practically relevant.

The thesis introduces three tasks with the objective of realising the different

dimensions of realism critical for evaluating embodied agents. These dimensions are: 1)

autonomy, the ability to operate without very specific instructions (e.g. the precise

locations of goal objects), 2) exposure to realistic novel multi-room environments, 3)

working with previously unseen objects, and 4) extended durations of deployment.

The first task, HomeRobot Open Vocabulary Mobile Manipulation, involves moving a

novel object from one receptacle to another based solely on its name. The HomeRobot

stack allows a simulated agent to be benchmarked on a real robot operating in a real home.

The second task, “GO To Any Thing”, entails navigating to a series of multimodal goals

in unseen environments by leveraging past experience in the same environment. The last

task, Housekeep, focuses on tidying up a household without any instructions. For solving

this task, the agent must reason if an object is misplaced and identify correct locations for

it. The thesis explores the extent to which these tasks fulfill the dimensions of realism.

The thesis proposes baselines for solving these tasks incorporating heuristic and

learned components, and using large-scale pretrained models for detecting novel objects

or reasoning about them. These baselines solve each task to a varying degree and their

shortcomings underscore the open challenges of open-vocabulary object detection and

common-sense reasoning. By using test scenarios closer to real-world deployment, this

work attempts to advance research in the development of robotic assistants.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Picture this: you’ve just thrown a major party, and the aftermath is clear — plates and

wine glasses scattered around the dining table, some on the floor near the couch, and a

board game left on the coffee table. Now, imagine the ease of a robotic assistant

autonomously cleaning up the mess, putting plates and glasses in the kitchen sink and

neatly storing the board game in the bedroom cabinet. Imagine its capability to help you

locate a misplaced medicine bottle given an image or verbal description amidst the chaos.

And wouldn’t it be ideal if these assistants benefit from their experience within the

environment, reducing the need for extensive exploration the next time they need to reach

previously visited destinations like kitchen sink?

Achieving this vision involves requires creating a capable mobile manipulator that can

interpret multi-modal goal specifications, understand a wide variety of objects, interact with

the environment, intelligently explore a world with limited sensing and retain memory of

the environment as it explores. Rearrangement tasks [1], wherein the agent must transform

an environment from one state to another by moving objects, can serve as effective test

beds for assessing progress across a combination of these abilities.

Although previous studies have introduced various rearrangement tasks [2, 3, 4, 5, 6],

their realism is compromised by their evaluation in simulated scenes, reliance on single-

room environments, adoption of a closed object category set, limitation of episode length to

pick-place interactions, or dependence on geometric coordinates for target specification. To

tackle this challenge, four desiderata are established to enhance the realism in evaluations:

• Autonomy: Compared to Geometric Goal-based benchmarks [2, 4], it is crucial to
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assess the robotic assistants’ ability to rearrange goals with minimal supervision,

showcasing their independence and decision-making skills.

• Real-robot benchmarking: To bridge the gap between simulation and the real

world, evaluation results should not only be limited to simulation environments but

also demonstrate adaptability to real robots operating in real environments.

• Novel object categories: The agent should be capable of handling previously unseen

instances and categories. The ability to handle objects extends beyond rearranging

them, including tasks such as recognizing objects, understanding their properties,

and effectively manipulating them to achieve the desired rearrangement.

• Lifelong evaluation: Assessing whether the agent improves over time with

familiarity in the environment requires evaluations on longer-horizon tasks.

To address these challenges, three tasks have been proposed, aiming to realize the notions

of realism in the evaluation process. We provide an overview of these tasks next.

1.2 OVMM: Reproducible sim2real benchmark

Let’s delve into the scenario of cleaning up a post-party mess from above. Imagine the

difficulty of specifying instructions to an assistant using geometric coordinates, such as

saying “Pick the object 2m to the east and 3m north” to pick up a plate on the dining table.

Instead, we explore a benchmark called HomeRobot Open Vocabulary Mobile

Manipulation (OVMM) where the agent is tasked with rearranging an object, identified by

its name from one receptacle to another (e.g. Move a plate from dining table to sink). This

benchmark enables zero-shot sim2real benchmarking to ensure that progress made in

simulation is practically meaningful. In simulation, we use a dataset of 60

human-authored interactive 3D scenes [7] instantiated in the AI Habitat simulator [8, 2] to

create a large number of challenging, multi-room OVMM problems with a wide variety of
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Figure 1.1: GOAT (GO to Any Thing) task. The GOAT task requires lifelong learning, meaning
taking advantage of past experience in the environment, for multimodal navigation. The robot must
be able to reach an object specified in any way and remember object locations to come back to them.

objects curated from a variety of sources. Some of these objects’ categories have been

seen during training; others have not. In the real world, we create an equivalent

benchmark, also with a mix of seen and unseen object categories, in a controlled

apartment environment.

1.3 GOAT: Multimodal lifelong evaluation

Again consider the running example of cleaning up the post-party mess, imagine if you

could just ask the a freshly deployed agent to reach a dining table for tidying just by

providing an image (e.g. captured via an AR headset) of it (goal 1 in Figure 1.1).
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Navigating to this goal requires recognizing that the picture shows a dining table and

having the semantic understanding of indoor spaces to efficiently explore the home (e.g.

dining tables are not found in the bathroom). Next, you ask the robot to Go to the potted

plant next to the couch (goal 2), for picking up the wine glasses placed close by. This

requires visual grounding of the text instruction in the physical space. The next instruction

could be to Go to a SINK (goal 3), the capitalization emphasizing that any object of the

category SINK is a valid goal. In this example (Figure 1.1), the robot has already seen a

sink in the house during the first task, so it should remember its location and be able to

plan a path to reach it efficiently. This requires the robot to build, maintain and update a

lifelong memory of the objects in the environment, their visual and linguistic properties

and their latest location. Given any new multimodal goal, the robot should also be able to

query the memory to determine whether the goal object already exists in the memory or

requires further exploration. We develop the GOAT: Go To Any Thing task, where the

agent is given a sequence of goals specified via language, images or category names, to

evaluate the multimodal perception, exploration and lifelong memory capabilities.

1.4 Housekeep: Complete autonomy but otherwise not realistic

In OVMM and GOAT tasks, the agent operates solely in response to the user’s commands,

relying on goals expressed in language, image, or as a category. However, consider the

scenario where the agent could independently tidy up the post-party mess from the

recurring example without explicit instructions: spotting dirty dishes on the dinner table

and moving them to the sink, recognizing a displaced board game on the coffee table and

relocating it to the cabinet. We introduce the Housekeep task to benchmark the ability of

embodied AI agents to use physical commonsense reasoning and infer rearrangement

goals that mimic human-preferred placements of objects in indoor environments. A robot

is randomly spawned in an unknown house that contains unseen objects. Without explicit

instructions, the agent must then discover objects placed in the house, classify the
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misplaced ones, and finally rearrange them to one of many suitable receptacles. Given the

challenging nature of task, to scope the problem and focus on planning and

common-sense reasoning, we take a step back from strict realism and mitigating certain

aspects of it. Specifically, we assume privileged access to instance and semantic sensor

among other assumptions and restrict evaluations to simulated environments.

1.5 Solutions and results on mobile manipulation tasks

Our proposed solutions mainly involved frontier-based exploration and semantic

mapping [9]. In the context of OVMM, we additionally explore training navigation and

manipulation policies via reinforcement learning (RL). We use DETIC [10] to detect

open-vocabulary of objects in OVMM and MaskRCNN [11] to detect the fixed set of

COCO categories used in GOAT. In GOAT, we make use of a map-based instance memory

to track all detected instances across different goals in an episode, while language goal

matching uses CLIP [12], and image goal matching utilizes SuperGLUE [13]. In

Housekeep, we attempt to leverage models pre-trained on large-scale internet data to

extract commonsense reasoning on likely locations of objects.

In experimental comparisons spanning over 90 hours in 9 different homes consisting

of 675 goals selected across 200+ different object instances, we find GOAT achieves an

overall success rate of 83%, surpassing previous methods by 32% (absolute improvement).

On OVMM, our RL-based baseline achieves a 20% success rate on real robots and our

modular baseline for Housekeep achieves 23% object success rate for correctly rearranging

misplaced unseen objects. However, the performance of our proposed approaches remains

modest on OVMM and Housekeep. The baselines struggle with detecting open-vocabulary

of objects and identifying human-preferred locations for misplaced objects respectively.

These findings show that the baselines require further advancements, mainly in perception

and commonsense reasoning skills for realizing autonomous household robotic assistants.

The thesis makes the following key contributions:
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• Outlines dimensions of realism critical to evaluating mobile manipulators, namely:

autonomy, handling unseen object categories, real-robot and lifelong evaluations.

• Introduces the first reproducible sim2real benchmark, HomeRobot Open Vocabulary

Mobile Manipulation, along with two other tasks GOAT and Housekeep, aimed at

realizing the different dimensions of realism.

• Proposes baselines for solving these tasks, notably achieving 83% success rate (32%

absolute improvement over prior work) on the real-world GOAT task benefiting from a

semantic-aware instance memory for navigating to a series of multimodal goals.

1.6 Thesis Outline

The rest of thesis is aimed towards introducing the tasks, discussing the baselines and key

results. This is followed by a discussion around the key learnings from these works and the

remaining challenges that need to be addressed for building fully autonomous agents. The

thesis is structured as below:

• Chapter 2: Related Work explores existing research in embodied AI tasks, real-world

benchmarks, and commonsense reasoning.

• Chapter 3 delves into HomeRobot: Open Vocabulary Mobile Manipulation, detailing the

task, baselines, reinforcement learning, and results.

• Chapter 4 presents the “GOAT: GO To Any Thing” task, methodology, and results,

emphasizing impressive performance in the real world.

• Chapter 5 discusses the Housekeep task, human preferences dataset, baselines, and

results, showcasing the application of LLMs for commonsense reasoning.

• Chapter 6: Discussion critically examines different tasks along the dimensions of realism.

• Chapter 7: Conclusion summarizes key findings and contributions of the thesis.
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CHAPTER 2

RELATED WORK

2.1 Embodied AI Tasks

In recent times, we have seen a proliferation of Embodied AI tasks. Benchmarks on indoor

navigation use point-goal specification [8, 14], object-goal [15, 16], room navigation [17],

and language-guided navigation [18, 19]. Some interactive tasks study the agent’s ability

to follow natural language instruction such as ALFRED [20] and TEACh [6] while others

focus on rearranging objects following a geometric goal or predicate based specification [3,

4, 2, 21]. [1] provides a summary of rearrangement tasks. All these tasks require an explicit

goal specification lifting the burden of learning semantic compatibility of objects and their

locations in the house from the agent, like in GOAT and OVMM. In contrast, Housekeep

deals with tidying up the house without requiring an explicit goal specification.

2.2 Real World Benchmarks

RoboTHOR [22] provides a common set of scenes and objects for benchmarking

navigation. RB2 [23] ranks different manipulation algorithms in a local setting.

TOTO [24] takes a step further by providing a training dataset and running the

experiments for the users. However, training and testing happen in the same environments

and are limited to tabletop manipulation. Finally, the NIST Task Board [25] is a successful

challenge for fine-grained manipulation skills [26], also limited to a tabletop context.

Kadian et al. [27] propose the Habitat-PyRobot bridge (HaPy) to allow real-world testing

on the locobot robot; their framework is limited to navigation, and doesn’t provide a

generally-useful robotics stack with visualizations, debugging, motion planner or tooling.
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2.3 Commonsense Reasoning

Prior work in Natural Language Processing has studied the problem of imbuing

commonsense knowledge in AI systems, from social common-sense knowledge [28, 29,

30, 31, 32, 33] to understand the likely intents, goals, and social dynamics of people,

abductive commonsense reasoning [34], next event prediction [35, 36], to temporal

common sense knowledge about temporal order, duration, and frequency of events [37,

38, 39, 40]. Most similar to our work is the study of physical commonsense

knowledge [41] about object affordances, interaction, and properties (such as flexibility,

curvature, porousness). However, these benchmarks are static in nature (as a dataset of

textual or visual prompts). On the other hand, in this thesis, we consider tasks that are

instantiated in an embodied partially-observed environment, and the agent has to explore

unseen regions, discover misplaced objects and use common-sense reasoning to infer

compatibility between objects and receptacles.

8



CHAPTER 3

HOMEROBOT: OPEN VOCABULARY MOBILE MANIPULATION

In this work, we define Open-Vocabulary Mobile Manipulation as a key task for in-home

robotics and provide benchmarks and infrastructure, both in simulation and the real world,

to build and evaluate full-stack integrated mobile manipulation systems, in a wide variety

of human-centric environments, with open object sets. Our benchmark will further

reproducible research in this setting, and the fact that we support arbitrary objects will

enable the results to be deployed in a variety of real-world environments.

3.1 Task

Formally, our task is set up as instructions of the form: “Move (object) from the

(start receptacle) to the (goal receptacle).” The object is a small and

manipulable household object (e.g., a cup, stuffed toy, or box). By contrast,

start receptacle and goal receptacle are large pieces of furniture, which

have surfaces upon which objects can be placed. Figure 3.1 shows instantiations of our

OVMM task in both the real-world benchmark and in simulation.

The agent is successful if the specified object is indeed moved from a

start receptacle on which it began the episode, to any valid goal receptacle.

We give partial credit for each step the robot accomplishes: finding the

start receptacle with the object, picking up the object, finding the

goal receptacle, and placing the object on the goal receptacle. There can

be multiple valid objects that satisfy each query.

Crucially, we need and develop both (1) a simulated version of the Open-Vocabulary

Mobile Manipulation problem, for reproducibility, training, and fast iteration, and (2) a

real-robot stack with a corresponding real-world benchmark. Our simulated environments
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REALSIM

Figure 3.1: A low-cost home robot performing tasks in both a simulated and a real-
world environment. We provide both (1) challenging simulated tasks, wherein a mobile
manipulator robot must find and grasp multiple seen and unseen objects, and (2) a
corresponding real-world robotics stack to allow others to reproduce this research and
evaluation to produce useful home robot assistants.

allow for varied, long-horizon task experimentation; our real-world HomeRobot stack

allows for experimenting with real data.

The Robot. We use Hello Robot Stretch [42] with DexWrist as the mobile manipulation

platform, because it (1) is relatively affordable at $25k USD, (2) offers 6 DoF manipulation,

and (3) is human safe and human-sized, making it safe to test in labs [43, 44] and homes [9],

and can reach most places a human would expect a robot to go.

Objects. These are split into seen vs. unseen categories and instances. In particular, at test

time we look at unseen instances of seen or unseen categories; i.e. no seen manipulable

object from training appears during evaluation.

Receptacles. We include common household receptacles (e.g. tables, chairs) in our dataset;

unlike with manipulable objects, all possible receptacle categories are seen during training.

Scenes. We have both a simulated scene dataset and a fixed set of real-world scenes with

specific furniture arrangements and objects. In both simulated and real scenes, we use

a mixture of objects from previously-seen categories, and objects from unseen categories

as the goal object for our Open-Vocabulary Mobile Manipulation task. We hold out

validation and test scenes, which do not appear in the training data; while some receptacles

may re-appear, they will be at previously unseen locations, and target object instances will
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Figure 3.2: HSSD scenes.

be unseen.

Scoring. We compute success for each stage: finding object on

start receptacle, successfully picking up object, finding goal receptacle,

and placing object on the goal. Overall success is true if all four stages were

accomplished. We compute partial success as a tie-breaker, in which agents receive 1

point for each successive stage accomplished, normalized by the number of stages.

3.1.1 Simulation Dataset

The Habitat Synthetic Scenes Dataset (HSSD) [7] consists of 200+ human-authored 3D

home scenes containing over 18k 3D models of real-world objects. Like most real houses,

these scenes are cluttered with furniture and other objects placed into realistic architectural

layouts, making navigation and manipulation similarly difficult to the real world. We used

a subset of HSSD [7] consisting of 60 scenes for which additional metadata and simulation

structures were authored to support rearrangement For our experiments, these are divided

into train, validation, and test splits of 38, 12, and 10 scenes each, following the splits in

the original HSSD paper [7].

Objects and Receptacles. We aggregate objects from AI2-Thor [45],

Amazon-Berkeley Objects [46], Google Scanned Objects [47] and the HSSD [7] dataset

to create a large and diverse dataset of real-world robot problems.
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Figure 3.3: An example of the robot navigating to a goal receptacle (sofa) and using
the heuristic place policy to put down the object (stuffed animal). Heuristic policies
provide an interpretable and easily extended baseline.

In total, we annotated 2,535 objects from 129 total categories.We identified 21

different categories of receptacles which appear in the HSSD dataset [7]. We construct our

final set of furniture receptacle objects by first automatically labeling stable areas on top

of receptacles, then manually refining and processing these in order to remove invalid or

inaccessible receptacles. In addition, collision proxy meshes were automatically generated

and in many cases manually corrected to support physically accurate procedural

placement of object arrangements.

3.1.2 Real World Benchmark

Real-world experiments are performed in a controlled 3-room apartment environment,

with a sofa, kitchen table, counter with bar, and TV stand, among other features. We

documented the positioning of various objects and the robot start position, in order to

ensure reproducibility across trials. Images of various layouts of the test apartment are

included in Figure 3.1, and task execution is shown in Figure 3.3.

During real-world testing, we selected object instances that did not appear in

simulation training, split between classes that did and did not appear. We used eight

different categories: five seen (Cup, Bowl, Stuffed Toy, Medicine Bottle, and Toy Animal),

and three unseen (Rubik’s cube, Toy Drill, and Lemon). We performed 20 experiments for

each of our two different baselines and with seven different receptacle classes: Cabinet,

Chair, Couch, Counter, Sink, Stool, Table.
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3.2 Baselines

3.2.1 Baseline Agent Implementation

Crucially, we provide baselines and tools that enable researchers to effectively explore the

Open-Vocabulary Mobile Manipulation task. We include two types of baselines in

HomeRobot: a heuristic baseline, using motion planning [9] and simple rules for

manipulation; and a reinforcement learning baseline. We implement a high-level policy

called OVMMAgent which calls a sequence of skills one after the other. These skills are:

• FindObj/FindRec: Locate an object on a start receptacle; or find a

goal receptacle.

• Gaze: Move close enough to an object to grasp it, and orient head to get a good

view of the object, to improve the success rate of grasping.

• Pick: Pick up the object. We provide a high-level action for this, since we do not

simulate the gripper interaction in Habitat. However, our library is compatible with

a range of learned grasping skills and supports learning policies for grasping.

• Place: Move to a location in the environment and place the object on top of the

goal receptacle.

Specifically, OVMMAgent is a state-machine that calls FindObj, Gaze, Pick, FindRec,

and Place in that order, where Pick is a grasping policy provided by the robot library in the

real world. The other skills are created using the approaches given below:

3.2.2 Heuristic Baseline

We implement a version using only off-the-shelf learned models and heuristics, noting that

previous work in mobile manipulation has used these models to great effect (e.g. [48]).

Here, DETIC [49] provides masks for an open-vocabulary set of objects as appropriate for

each skill. The start receptacle, object,goal receptacle for each episode
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is given. Figure 3.3 shows an example of the heuristic navigation and place policy being

executed in the real world.

3.2.3 Reinforcement Learning Baseline

We train the four skills: FindObject, FindReceptacle, GazeAtObject, and

PlaceObject in our modified version of Habitat [2].

Action Space

• Navigation Skills FindObject and FindReceptacle are, collectively,

navigation skills. For these two skills, we use discrete action space. We found that

discrete action space was better at exploration and easier to train.

• Manipulation Skills For our manipulation skills, we using a continuous action space

to give the skills fine grained control. In the real world, low-level controllers have

limits on the distance the robot can move in any particular step. Thus, in simulation,

we limit our base action space by only allowing forward motions between 10-25 cm,

or turning by 5-30 degrees in a single step. The head tilt, pan and gripper’s yaw, roll

and pitch can be changed by at most 0.02-0.1 radians in a single step. The arm’s

extension and lift can be changed by at most 2-10cm in a single step. We learn by

teleporting the base and arm to the target locations.

Observation Space

Policies have access to depth from the robot head camera, and semantic segmentation, as

well as the robot’s pose relative to the starting pose (from SLAM in the real world), camera

pose, and the robot’s joint states, including the gripper. RGB image is available to the agent

but not used during training.
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Training Setup

All skills are trained using a slack reward (-0.005 per step), incentivizing completion of

task using minimum number of steps. For faster training, we learn our policies using

images with a reduced resolution of 160x120 (compared to Stretch’s original resolution of

640x480).

• Navigation Skills: We train FindObject and FindReceptacle policies for the

agent to reach a candidate object or a candidate target receptacle respectively. The

training procedure is the same for both skills. We pass in the CLIP [12] embedding

corresponding with the goal object, as well as segmentation masks corresponding

with the detected target objects. The agent is spawned arbitrarily, but at least 3 meters

from the target, and must move until within 0.1 meters of a goal “viewpoint,” where

the object is visible.

• GazeAtObject: The GazeAtObject skill starts near the object and provides

some final refinement steps until the agent is close enough to call a grasp action, i.e.

it is in arm’s length of the object and the object is centered and visible. The agent

needs to move closer to the object and then adjust its head tilt until the candidate

object is close and centered. It makes predictions to move and rotate the head, as

well as to center the object and make sure it’s within arm’s length so that the discrete

grasping policy can execute. The GazeAtObject skill is supposed to start off from

locations and help reach a location within arm’s length of a candidate object. This is

trained by first initializing the agents close to candidate start receptacles. The agent is

then tasked to reach close to the agent and adjust its head tilt such that the candidate

object is close and centered in the agent’s camera view.

• PlaceObject: Finally, the robot must move its arm in order to place the object

on a free spot in the world. In this case, it starts at a viewpoint near a

goal receptacle. It must move up to the object and open its gripper in order to

15



Table 3.1: Partial and overall success rate (SR) (in %) for different combinations of skills
and perception systems. The partial SR for each skill is dependent on the previous skill’s
SR. The partial SR for the place skill is the same as the overall SR. The partial success
metric is calculated by averaging the 4 partial SRs.

Simulation Results Skill Partial Success Rates Overall

Success Rate

Partial

Success MetricPerception Navigation Gaze Place FindObj Pick FindRec

Ground Truth Heuristic None Heuristic 54.1 48.5 31.5 5.1 34.8

Heuristic RL RL 56.5 51.5 42.3 13.2 40.9

RL None Heuristic 65.4 54.8 43.7 7.3 42.8

RL RL RL 66.6 61.1 50.9 14.8 48.3

DETIC [10] Heuristic None Heuristic 28.7 15.2 5.3 0.4 12.4

Heuristic RL RL 29.4 13.2 5.8 0.5 12.2

RL None Heuristic 21.9 11.5 6.0 0.6 10.0

RL RL RL 21.7 10.2 6.2 0.4 9.6

Table 3.2: Success Rate (in %) for heuristic and RL baselines for real world OVMM.

Real World FindObj Pick FindRec Overall Success

Heuristic Only 70 35 30 15

RL Only 70 45 30 20

place the object on this surface. The episode succeeds if the agent releases the

object and the object stays on the receptacle for 50 timesteps.

3.3 Results and Discussion

We first evaluate the two baselines in our simulated benchmark, followed by evaluation in

a real-world, held-out test apartment. These results highlight the significance of OVMM

as a challenging new benchmark, encompassing numerous essential challenges that arise

when deploying robots in real-world environments.

We break down the results by sub-task in addition to reporting the overall performance

in Tables 3.1 and 3.2. The columns FindObj, Pick and FindRec refer to the first 3 phases
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of the task mentioned in the scoring section (Section 3.1), and succeeding in the final Place

phase leads to a successful episode.

Simulation. We evaluate the baselines on held-out scenes, with objects from unseen

instances of seen classes, and unseen instances of unseen classes, as described

in Section 3.1.1. We show results with two different perception systems: Ground Truth

segmentation, where we use the segmentation input directly from the simulator, and

DETIC segmentation [10], where the RGB images from the simulator are passed through

DETIC, an open-vocabulary object detector.

We report results on HomeRobot OVMM in Table 3.1. RL policies outperformed

heuristic methods for both navigation and placement tasks. However, all policies declined

in performance when using DETIC instead of ground truth segmentation. Heuristic

policies exhibited less degradation in performance compared to RL policies: when using

DETIC, the heuristic FindObj policy even outperforms RL. We attribute this to the

heuristic policy’s ability to incorporate noisy predictions by constructing a 2D semantic

map, which helps handle small objects that are prone to misclassification. Furthermore,

using the learned gaze policy led to improved pick performance, except when used in

combination with the Heuristic nav with DETIC perception. Example simulation

trajectories can be found in Figure 3.4.
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 Pick a box from a stand and place it on a chair. 

Episode start Find object Find receptacle Place object

 Pick a multiport hub from a stool and place it on a table. 

 Pick a toy from a table and place it on a stool. 

Figure 3.4: We show multiple executions of the Open-Vocabulary Mobile Manipulation
task in a variety of simulated environments.



CHAPTER 4

GOAT: GO TO ANY THING

In OVMM task, the goals were specified using object names and receptacle categories.

However, general-purpose agents will need to handle multimodal goal specifications, such

as language descriptions or video demonstrations. Likewise, agents deployed in real homes

will be required to perform tasks that extend beyond a single OVMM pick-place episode.

Towards building such lifelong multimodal agents, we propose the GOAT: Go To Any

Thing task.

4.1 Task

We formalize the Go to Any Thing task T as follows. We construct navigation episodes

consisting of a sequence of unseen goal objects to be reached in unseen environments.

The robot is spawned at a random location. At every timestep t, the robot receives

observations consisting of an RGB image It, depth image Dt, and pose reading xt from

onboard sensors, as well as the current object goal gk, k ∈ {1, 2, .., 5 − 10}, which

consists in an object category (SINK, CHAIR), an image or language description (the

potted plant next to the couch, the black and white striped bed) uniquely identifying an

object instance in the environment. The robot must reach the goal object gk as efficiently

as possible within a limited time budget. As soon as it reaches the current goal or when

the time budget is exhausted, the robot receives the next goal to navigate to, gk+1. In

searching for this sequence of goals the agent is allowed to maintain a memory computed

using incoming observations. In this way, if gk+1 has been observed during the process of

reaching gk the agent can often more efficiently navigate to gk+1.
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4.2 Method

GOAT Agent As the agent moves through the scene, the perception system processes

RGB-D camera inputs to detect object instances and localize them into a top-down semantic

map of the scene. In addition to the semantic map, GOAT maintains an Object Instance

Memory (see Figure 4.1) that localizes individual instances of object categories in the map

and stores images in which each instance has been viewed. This Object Instance Memory

gives GOAT the ability to perform lifelong learning for multimodal navigation. When a new

goal is specified to the agent, a global policy first searches the Object Instance Memory to

see if the goal has already been observed. After an instance is selected, its stored location

in the map is used as a long-term point navigation goal. If no instance is localized, the

global policy outputs an exploration goal. A local policy finally computes actions towards

the long-term goal.

Instance Matching Strategy The matching module of the global policy has to identify

the goal object instance among previously seen object instances in the Object Instance

Memory. We evaluated different design choices and settled on the following: match

language goal descriptions with object views in memory using the cosine similarity score

between their CLIP [12] features, match image goals with object views in memory using

keypoint-based matching with SuperGLUE [13], represent object views in memory as

bounding boxes with some padding to include additional context, match the goal only

against instances of the same object category, match the goal with the instance with the

maximum matching score across all views.

4.3 Results

Experimental Setting We evaluate the GOAT agent as well as three baselines in nine

visually diverse homes with 10 episodes per home consisting of 5-10 object instances

randomly selected out of objects available in the home, representing 200+ different object
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Figure 4.1: (A) Object Instance Memory. We cluster object detections, along with image views in
which they were observed, into instances using their location in the semantic map and their category.
(B) Global Policy. When a new goal is specified, the global policy first tries to localize it within the
Object Instance Memory. If no instance is localized, it outputs an exploration goal.



instances in total. We selected goals across 15 different object categories (‘chair’, ‘couch’,

‘potted plant’, ‘bed’, ‘toilet’, ‘tv’, ‘dining table’, ‘oven’, ‘sink’, ‘refrigerator’, ‘book’,

‘vase’, ‘cup’, ‘bottle’, ‘teddy bear’), took a picture for image goals following the protocol

in Krantz et al. [50], and annotated 3 different language descriptions uniquely identifying

the object. To generate an episode within a home, we sampled a random sequence of 5-10

goals split equally among language, image, and category goals among all object instances

available. We evaluate approaches in terms of success rate to reach the goal and SPL [51],

which measures path efficiency as the ratio of the agent’s path length over the optimal path

length. We report evaluation metrics per goal within an episode with two standard

deviation error bars.

Baselines We compare GOAT to three baselines: 1. CLIP on Wheels [52] - the existing

work that comes closest to being able to address the GOAT problem setting - which keeps

track of all images the robot has ever seen and, when given a new goal object, decides

whether the robot has already seen it by matching CLIP [12] features of the goal image or

language description with CLIP features of all images in memory, 2. GOAT w/o

Instances, an ablation that treats all goals as object categories, i.e., always navigating to

the closest object of the correct category instead of distinguishing between different

instances of the same category as in [53], allowing us to quantify the benefits of GOAT’s

instance awareness, and 3. GOAT w/o Memory, an ablation that resets the semantic map

and Object Instance Memory after every goal, allowing us to quantify the benefits of

GOAT’s lifelong memory.

Quantitative Results Table Table 4.1 reports metrics for each method aggregated over

the 90 episodes. GOAT achieves 83% average success rate (94% for object categories,

86% for image goals, and 68% for language goals). We observed that localizing language

goals is harder than image goals (detailed in the Discussions section). CLIP on

Wheels [52] attains a 51% success rate, showing that using GOAT’s Object Instance
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Table 4.1: Navigation Performance in Unseen Natural Home Environments. We compare
GOAT to three baselines in 9 unseen homes with 10 episodes per home consisting of 5-10
image, language, or category goal object instances in terms of success rate and SPL [51], a
measure of path efficiency, per goal instance.

SR per Goal SPL Per Goal

Image Language Category Average Image Language Category Average

GOAT 86.4± 1.1 68.2± 1.5 94.3± 0.8 83.0± 0.7 0.679± 0.013 0.511± 0.014 0.737± 0.010 0.642± 0.007

CLIP on Wheels 46.1± 1.8 40.8± 1.9 65.3± 1.5 50.7± 1.0 0.368± 0.014 0.317± 0.013 0.569± 0.015 0.418± 0.008

GOAT w/o Instances 28.6± 1.7 27.6± 1.6 94.1± 0.8 49.4± 0.8 0.219± 0.013 0.222± 0.012 0.739± 0.011 0.398± 0.007

GOAT w/o Memory 59.4± 1.5 45.3± 1.6 76.4± 1.3 60.3± 0.8 0.193± 0.020 0.134± 0.022 0.239± 0.021 0.188± 0.012

Memory for goal matching is more effective than CLIP feature matching against all

previously viewed images. GOAT w/o Instances achieves 49% success rate, with 29% and

28% success rates for image and language goals respectively. This demonstrates the need

to keep track of enough information in memory to be able to distinguish between different

object instances, which [53] wasn’t able to do. GOAT w/o memory achieves 61% success

rate with an SPL of only 0.19 compared to the 0.64 of GOAT. It has to re-explore the

environment with every goal, explaining the low SPL and low success rate due to many

time-outs. This demonstrates the need to keep track of a lifelong memory.

4.4 GOAT for Mobile Manipulation

The ability to perform rearrangement tasks is essential in any deployment scenarios for

mobile robots (homes, warehouses, factories) [1, 54, 55, 56]. These are commands such as

“pick up my coffee mug from the coffee table and bring it to the sink,” requiring the agent to

search for and navigate to an object, pick it up, search for and navigate to a receptacle, and

place the object on the receptacle. The GOAT navigation policy can easily be combined

with pick and place skills (we use built-in skills from Boston Dynamics) to fulfill such

requests. We evaluate this ability on 30 such queries with image/language/category objects

and receptacles across 3 different homes. GOAT can find objects and receptacles with 79%

and 87% success rates, respectively.
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CHAPTER 5

HOUSEKEEP: TIDYING VIRTUAL HOUSEHOLDS USING COMMONSENSE

REASONING

We introduce the Housekeep task to benchmark the ability of embodied AI agents to use

physical commonsense reasoning and infer rearrangement goals that mimic

human-preferred placements of objects in indoor environments. Figure 5.1 illustrates our

task, where the Fetch robot is randomly spawned in an unknown house that contains

unseen objects. Without explicit instructions, the agent must then discover objects placed

in the house, classify the misplaced ones (LEGO set and lunch bag in Figure 5.1), and

finally rearrange them to one of many suitable receptacles (matching color-coded square).
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Bottom cabinet
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Figure 5.1: In Housekeep, an agent is spawned in an untidy environment and tasked with
rearranging objects to suitable locations without explicit instructions. The agent explores the scene
and discovers misplaced objects, correctly placed objects, and receptacles where objects belong.
The agent rearranges a misplaced object (like a lunch box on the floor in the kid’s room) to a better
receptacle like the top cabinet in the kitchen.
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5.1 Task Specification

Definition: Recall, in Housekeepan embodied agent is required to clean up the house by

rearranging misplaced objects to their correct location within a limited number of time

steps. The agent is spawned randomly in an unseen environment and has to explore the

environment to find misplaced objects and put them in their correct locations (receptacles).

Scenes and Rooms: We use 14 interactive and realistic iGibson scenes [57]. These scenes

span 17 room types (e.g. living room, garage) and contain multiple rooms with an average

of 7.5 rooms per scene. We remove one scene from the original iGibson dataset

(benevolence 0 int) because it’s unfurnished.

Receptacles: We define receptacles as flat horizontal surfaces in a household (furniture,

appliances) where objects can be found – misplaced or correctly placed. We remove assets

that are neither objects nor receptacles (e.g. windows, paintings, etc) and end up with 395

unique receptacles spread over 32 categories. An iGibson scene can contain between 19-78

receptacles. Overall, there are 128 distinct room-receptacles in the iGibson scenes.

Objects: We collect 1799 unique objects spread across 268 categories from four popular

asset repositories – Amazon Berkeley Objects [46], Google Scanned Objects [58],

ReplicaCAD [2], and YCB Objects [59]. We further categorize these objects into 19

high-level semantic categories such as stationery, food, electronics, toys, etc.

Agent: We simulate a Fetch robot [60], which has an RGBD camera (90◦ FoV, 128× 128

pixels) on the robot’s head. The robot moves its base and head through five discrete actions

– move forward by 0.25m, rotate base right or left by 10◦, rotate head camera up or down

(pitch) by 10◦. The robot interacts with objects through a “magic pointer abstraction” [1]

where at any step the robot can select a discrete “interact” action. When invoked, this

action casts a ray 1.5m in front of the agent. If the agent is not currently holding an object

and this ray intersects with a graspable object, then the object is now “held” by the agent.

If the agent is already holding an object and the ray intersects with a receptacle, then the

object is placed on that receptacle. Rather than place the object at the point selected on the
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receptacle, the object is automatically placed on the receptacle.

Access to privileged information: The task assumes access to egocentric semantic and

instance sensors, in addition to information on whether an object is on top of a receptacle

and the room a given receptacle is located in.

5.2 Human Preferences Dataset: Where Do Objects Belong?

The central challenge of Housekeepis understanding how humans prefer to put everyday

household objects in an organized and disorganized house. We want to capture where

objects are typically found in an unorganized house (before tidying the house), and in a

tidy house where objects are kept in their correct position (after the person has tidied the

house). To this end, we run a study on Amazon MTurk [61, 62] with 372 participants.

Each participant is shown an object (e.g. salt-shaker), a room (e.g. kitchen) for context,

and asked to classify all the receptacles present in the room into the following categories:

• misplaced: subset of receptacles where object is found before housekeeping.

• correct: subset of receptacles where object is found after housekeeping.

• implausible: subset of receptacles where object is unlikely to be found either in

a clean or an untidy house.

We also ask each participant to rank receptacles classified under misplaced and

correct. For example, given a can of food, someone may prefer placing it in kitchen

cabinets while others will rank pantry over the kitchen cabinet.

For each object-room pair (268 × 17), we collect 10 human annotations. We collect

human annotations through multiple batches of smaller annotation tasks. In a single

annotation task, we ask participants to classify-then-rank receptacles for 10 randomly

sampled object-room pairs. On average a participant took 21 minutes to complete one

annotation task. Overall, participants spent 1633 hours doing our study.
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5.3 Baselines

5.3.1 Extracting Embodied Commonsense from LLMs

One of the main goals of Housekeep is to equip the agent with commonsense knowledge

to reason about the compatibility of an object with different receptacles present across

different rooms. Large Language Models (LLMs) trained on unstructured web-corpora

have been shown to work well for several embodied AI tasks like navigation [63, 64, 65,

66, 67]. We study whether we can use LLMs to extract physical (embodied) common sense

about how humans prefer to rearrange objects to tidy a house. For this, we build a ranking

module (L) which takes as input a list of objects and a list of receptacles in rooms and then

outputs a sequence of desired rearrangements based on which object receptacle pairings are

most likely. We select the rearrangements that maximize P(receptacle, room|object). We

decompose computing this probability into a product of two probabilities:

• Object Room [OR] -- P(room|object) : Generate compatibility scores for rooms

for a given object.

• Object Room Receptacle [ORR] -- P(receptacle|object,room): Generate

compatibility scores for receptacles within a given room and for a given object.

Both of these are learned from the human rearrangement preferences dataset. From the

compatibility scores in the ORR task, we first determine which objects in our list of objects

are misplaced and which are correctly placed. To do this, we compute a hyperparameter sL

— the score threshold — from our val episodes using a grid search. Receptacles whose

scores are above sL for a given object-room pair are marked as correct, while those whose

scores are below sL are marked as incorrect. We then treat this as a classification task and

pick sL that maximizes the F1 score on the val episodes.

Next, to determine the ranking of receptacles for a given misplaced object, we use the

probabilities from both the OR and ORR tasks. For a given object, we first rank the rooms

in descending order of P(room|object). Then, for each object-room pair in the ranked
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room list, we rank the correct receptacles in the room in descending order of

P(receptacle|object, room). Finally, we place incorrect receptacles at the end of our list.

To learn the probability scores in the OR and ORR tasks, we start by extracting word

embeddings from a pretrained RoBERTa LLM [68] of all objects, receptacles. We

experiment with various contextual prompts [69, 70] for extracting embeddings of paired

room-receptacle (e.g. “<receptacle> of <room>”) and object-room (e.g.

“<object> in <room>”) combinations. Next, we implemented the following 2

methods of using these embeddings to get the final compatibility scores:

Finetuning by Contrastive Matching (CM). We train a 3-layered MLP on top of

language embeddings and compute pairwise cosine similarity between any two

embeddings. Embeddings are trained using objects from seen split. We train separate

models for ORR and OR. For ORR, we match an object-room pair to the receptacle with the

best average rank across annotators. We use contrastive loss [71] to promote similarity

between an object-room pair and the matching receptacle. For OR, we match an object

with all rooms that have at least one correct receptacle for it. In this case, we use the

binary cross entropy (BCE) loss to handle multiple rooms per object.

Zero-Shot Ranking via MLM (ZS-MLM). Masked Language Modeling (MLM) is used

extensively for pretraining LLMs [68, 72], which involves predicting a masked word (i.e.

[mask]) given the surrounding context words. This objective can be extended for

zero-shot ranking using various contextual prompts. For ORR, we use the prompt “in

<room>, usually you put <object> <spatial-preposition>

[mask]” to rank receptacles given an object, a room, and a spatial preposition (e.g. in or

on). For OR, we use the prompt “in a household, it is likely that you

can find <object> in the room called [mask]”. We compare these

ranking approaches with other baselines in Section 5.4.1.
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Table 5.1: We report mAP scores on train, and unseen objects splits of val and test for both OR and
ORR matching tasks.

ORR OR

# Method train val-u test-u train val-u test-u

1 RoBERTa+CM 0.81 0.79 0.81 1.0 0.65 0.65

2 GloVe+CM 0.88 0.76 0.76 1.0 0.65 0.66

3 ZS-MLM 0.43 0.46 0.42 0.51 0.54 0.52

4 Random 0.47 0.47 0.46 0.58 0.52 0.59

5.3.2 High-level planner:

At each step, the planner invokes the LLM-based ranking module function

(from Section 5.3.1) to determine potential rearrangements. It decides to explore (via

frontier-based exploration) only if no rearrangements are pending. It continues to explore

for nϵ (= 16) steps, before checking for rearrangements again.

5.4 Results

We first test whether LLMs can capture the embodied commonsense reasoning needed for

planning in Housekeep. Then we deploy our modular agent equipped with this LLM-based

planner to benchmark its ability to generalize to unseen environments cluttered with novel

objects from seen (i.e. test-seen) and unseen (i.e. test-unseen) categories. Finally,

we perform a thorough qualitative analysis of its failure modes and highlight directions for

further improvements.

5.4.1 Language Models Capture Embodied Commonsense

Methods. We evaluate CM and ZS-MLM using RoBERTa [68] as our base LLM. We also

compare these with GloVe-based [73] embeddings, and a baseline that randomly ranks

rooms (for OR task) and receptacles (for ORR task).
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Table 5.2: Results using our modular baseline on the test-unseen splits. OR: Oracle, LM:
LLM-based ranking, FTR: Frontier exploration.

Modules Rearrange Efficiency

# Rank Explore ES ↑ OS ↑ PPE ↑

t
-
u
n
s
e
e
n

1 OR OR 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

2 OR FTR 0.35 ± 0.02 0.65 ± 0.01 1.00 ± 0.00

3 LM OR 0.02 ± 0.00 0.32 ± 0.01 0.42 ± 0.01

4 LM FTR 0.01 ± 0.00 0.23 ± 0.01 0.35 ± 0.01

Evaluation. We evaluate mean average precision (mAP) across objects to compare the

ranked list of rooms/receptacles obtained from our ranking module to the list of

rooms/receptacles deemed correct by the human annotators. For a given object, a

receptacle is considered correct when at least 6 annotators vote for it, and a room is

considered correct if it has at least one correct receptacle within it. Higher AP

score indicates correct items are likely to ranked higher than the incorrect items.

Results. Table 5.1 shows that RoBERTa+CM outperforms ZS-MLM by a large margin

even when fintuned on a relatively small-sized training set (∼40% of total data). We find

good transfer of results from val to test splits by RoBERTa+CM method on both tasks

demonstrating the better generalization capabilities of LLMs.

5.4.2 Main results for Housekeep

We utilize the best method from Section 5.4.1, RoBERTa+CM as scoring function within

Ranker module to continuously rerank (thus replan) newly discovered rooms and

receptacles while exploring Housekeep episodes. We use the following metrics: Episode

Success (ES): Strict binary (all or none) metric that is one if and only if all objects are

correctly placed when episode ends. Object Success (OS): Fraction of the objects placed

correctly. Pick-Place Efficiency (PPE): The minimum number of picks/places required to

solve the episode divided by the number of picks/places made by agent in the episode.
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We show oracle agent’s performance, by swapping Ranker and Explore modules

with their oracle (perfect) counterparts. Oracle ranker uses the ground truth human

preferences to rank the objects and receptacles found, while Oracle explore knows

complete map of the environment. Compared to oracle ranker (Row 1) language model

(Row 3) impacts object success (OS) by -68%, and episode success (ES) by -98%. The

dramatic drop in ES is expected as Housekeep is a multi-step problem with compounding

errors. Nonetheless, the huge drop in (OS) observed when transitioning from the oracle

ranking module to the LM-based ranking module highlights a substantial opportunity for

improvement in reasoning about the correct locations of objects.
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CHAPTER 6

DISCUSSION

6.1 Dimensions of realism

Table 6.1: Comparison of the tasks introduced in the thesis along the four dimensions
of realism: Autonomy, real robot evaluations, handling unseen object categories, lifelong
evaluations. ✓Partially satisfies ✖Doesn’t satisfy ✔Completely satisfies

Autonomy Real robot Unseen categories Lifelong

OVMM ✓ ✔ ✔ ✓

GOAT ✓ ✔ ✖ ✔

Housekeep ✔ ✖ ✔ ✔

In Table 6.1, we conduct a comparative analysis of the three tasks based on the realism

dimensions introduced in Section 1.1.

6.1.1 Autonomy

All tasks eliminate the need for precise geometric locations as goal specifications. OVMM

uses object names and receptacle categories as goal specifications, while GOAT extends

this by allowing multi-modal goals through images, language, or object category

specifications. However, these tasks aren’t fully autonomous as they still depend on

specification of pick and place locations in in some form from the user. In contrast,

Housekeep evaluates higher autonomy, focusing on agents’ commonsense reasoning to

tidy up households without any explicit instructions.

6.1.2 Real Robots

OVMM evaluates on photorealistic scenes in simulation closely mimicking real-world

settings and also performs evaluations on real robot. GOAT directly conducts evaluations
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on the real robot. However, Housekeep’s benchmark assumes access to privileged

information from simulators, limiting its direct applicability to real robots. Future work

should aim at developing more realistic settings for evaluating tasks that require

commonsense reasoning.

6.1.3 Unseen Categories

OVMM and Housekeep are evaluated using unseen instances of seen and unseen object

categories. OVMM’s challenge lies in detecting open-vocabulary of objects, while

Housekeep requires reasoning about correct locations of objects. However, GOAT uses a

closed set of categories and achieves an impressive 83% success in the real world. Future

work should evaluate GOAT’s performance at reaching an open-vocabulary of objects.

6.1.4 Lifelong Evaluations

OVMM evaluates the lifelong aspect to a limited extent through the agent’s exploration in

the FindObj phase having the potential to benefit the subsequent FindRec phase. GOAT

explicitly assesses lifelong learning by requiring agents to reach a series of goals.

Housekeep, requires rearranging 3-5 objects per episode, providing opportunities for the

agent to improve at finding matching receptacles for misplaced objects as the episode

progresses.

While there is room for improving performance on these benchmarks, especially in

Housekeep and OVMM, future benchmarks could draw inspiration from Housekeep to

create more realistic tasks requiring common-sense reasoning. Additionally, evaluating

GOAT with an open vocabulary of objects could further enhance benchmarking

comprehensiveness. Finally, future OVMM tasks could involve multiple pick-place

interactions to better evaluate the lifelong aspect.
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CHAPTER 7

CONCLUSION

This thesis delves into the potential of robotic home assistants to enhance human life,

using mobile manipulation tasks as crucial benchmarks for evaluating capabilities of these

assistants. These tasks focus on realistic deployment conditions, including autonomy,

exposure to genuine environments, dealing with unseen objects, and extended deployment

durations. While Open Vocabulary Mobile Manipulation involves moving objects based

solely on their names, “GO To Any Thing” requires navigating to sequence of multimodal

goals in unfamiliar environments, and Housekeep focuses on tidying up without specific

instructions. Proposed baselines, incorporating heuristic and learned components,

leverage large-scale pretrained models for open-vocabulary object detection and

reasoning. The impressive performance on the GOAT task — an 83% success rate,

underscores the research’s contribution to the development of more effective robotic

assistants, while also identifying areas for improvement in other tasks.
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