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"NOMENCLATURE

area

érray coefficients defined in Appendix B

< $.83>-< §>3< &>

leading edge pressure pulse vélocit&'

apecific heat at constant pressure |

inside pipe'diametef

mass flux (p, Vﬁ?

acceleration due:to.gfévity

intérfacial energy term due to sﬁrface tension

enthalpy

volumetric flux of k-th phase qeighed-by the total cross

sectional area

volumetric flux of the mixture weighed by the total cross
sectional area

wave number , Boltzmann's constant, or isentropic coefficient
unit vector in z direction

mit normal vector

pressure
heat flux.
. Vz. _
slip ratio (57)
1
entropy
temperature
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NOMENCLATURE (Continued)

time

drift velocity of k-th phase with respect to the center of
volume of the mixture :

drift velocity of k-~th phase with respect to the center of mass
of the mixture . .

mass averaged velocity of k-th phase

mixture velocity as applied to the center of gravity of the

.mixture

specific volume

spatial coordinate

~ volume concentration of lighter phaee

Kronecker delta

stress temsor dﬁe to.surface“tension at interface
diffusion stress tensor

deneity =

surface tension

viscOpe stress tensor

wail Shear“

irreversible inerease of tﬁermal energy
reveraible increaae of thermal energy

quality

mass formation rate of k-th phase weighed by the total mixture
volume .
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NOMENCLATURE (Concluded)

Subscripts

thermodynamic equilibrium

1iquid phase

gas pﬁase

homogeneous

interface

mixturé

part of function ﬁith no derlvatives in it
constant entropy |

total cross section

wall |

component in z direction

mass weighed average

average:with réspect to cross sectiomal area of fluid
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SUHMARY

The problem of wave propagation and choking has been.exnmined
anaiytically for gas-liquid flows. A dfift-flux (mixture) ﬁodeliis
employed aﬁd'thé.sdlﬁtién”is proﬁided by fhe method of characteristics.

The main thrust of the research is to produce.a model which can
predict the critical flux in two-cﬁmbanent gas~liquid flows in conduigs.
The characteristics of the set of equations are examiﬁed and compared
with speed of soqnd_data and conclusions arezdrawn between the conditibns

at'thé_critical point and the speed of pressure pulses in the system.

While the main emphasis of the research is on two-component flows some

one-component work is presented,

PR
SN
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CHAPTER I
INTRODUCTION

The purpose of this research is to produce a unified approach to
wave propagation.and choking in two-phase (gas-liquid) flow using a diffu-
sional or drift model. The solution of the equations is by the method of

characteristics with the main emphasis on two-component mixtures.

1, Significance of the Problem |

Transient phenomena are often_obsérved both in nature and in en-
gineering systems. In many ﬁases a-kndﬁledge of how rapidly pulses travel
through the system is a prerequisi;e to being able to describe the transient
behavior of the system. Thﬁs in fluid flows a knowledgé of the propagation
of pressure ﬁtiées in the fluid is often reqﬁired. |

 Additionally, in some flow sysﬁems, it is observed that lowering
the downstteam back preésure dbeé not increase the floﬁ réte'through the
systems., This is referred to as choking and is ﬁery.importaﬂt for the de-
sign of nuclear reactor safety systems, refrigeration devices, chemical
process units, pipe-lines, etc.

The relationship between iongitudinal pressure pulse propagation

~and choking is well understood in single phase flow [1] since choking occurs

when some point in the flow is at the sonic speed and pressure pulses are
unable to propagate further upstream. The situation is not so clearly de-
fined in two-phase flow.

Unfortunately, most analyses of chqking in two-phase flow have
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_ical method of attack.

attempted to draw no parallels with wave propagation. This is due both to

the incompleteness and incorrectness of the governing differential equations

used to describe the phenomenon as well as the inadequacy of the mathemat-

It is therefore very important that a consistent and complete model
be constructed which can déécribe both wave propagation.and-choking in two-
bhase flow. This is important not only to proﬁide the predictive power so
necessary for flow system analyéis, but also to establish correctly the
connection between wave propagation and choking. This investigation con-

cerns itself with the devéelopment of such a model.

2, Objectives of the ;gvestigation

The present investigation has the follqwiﬁg thesis objectives:

1. To appiy a consigtent one-dimensional mixture model for two-
phase choking flows gnd waﬁe propagation with an emphasis on two-component
mixtures, | . |

2, To compare soiutions provided by the model in order to estab-
lish connections between choking and wave propagﬁtion in two-pﬁase'flows.

‘3. To compare the results predicted by the model to available data.
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In single phase flow a direct connection can be made between the
classiéal one-dimensional analyses for wave propagation and steady-state
choking ti.e;, the choking point coccurs when the ﬁean mass velocity‘gquals
the velocity of-propggation of pressure pulses). In multiphase flow the _
investigators'df choking fIOﬁs have often not éttgmpted to connect thé two
phenomena, which is a consequence of the variqus methods of attgck adopted
by.the investigatﬁts. The literature on each subject will therefore be

reviewed separately, drawing parallels where possible.

1, Categories of Models

Field Equations

In order to deécfibe a two-phase flow §yé£em by a one~dimensional
anaiysis, three quad'approaches may be used. The first is to describe the
system as é homogeneous single phase analogue with one overall continuiﬁy
equation, one momentum equation, and one energy or entroﬁy equation,

The'secoﬁd approéch is to wfite a twq;fluid model using separate
continuity, momentum, and energy equations for each phasé [2]. The jump
conditions at the interface afe also reduired to défine the.system proﬁerly.
It must be noted that some authors use a_hybrid model combining, for ex-
ample, oné continui#y equation, two momentum eqpations, and one energy

equation [3]. .This hybrid aﬁproaph is however inconsistent. A good listing




of the variety of equation groupings used by investigators is found in [4].
The third.approach ié to use the drift-flux model in which one over-

511 con;inuity equatioh, one overall momentum equation, one overall energy

equation, and an additional continuity equation for one of the phases, all

of which are written with respect to the center of mass of the mixture are

employed. This is the approach outlined in this thesis.

Once the field equations have been established, thermodynamic,
thermal, interphase transfers, and mechanical constitutive equations are
ngéded to.effect closure or, at least, assumptions about those equations.
As in the case of field equations, a large variety of different sets of
constitutive'equations have been used by investigators, One comment ghodld
be made; many authors refer to their.assumptions of_flcw evolution as in
thermodynamic qui1ibrium which means that (%%)f and (%%)g were evaluated
along the saturation line. 'In.fact, a tw05phase flow system can only be
in thermodyﬁamic:equilibfium'if not bnly the pregsure_and temperature are
equal, but if the kinetic and potential energles and surface forces are

equal across the inte:face [5]. This essentially never occurs in practice.

2. Methods of Solution for the Choking Problem

"~ There are four general strategies that have been used in an attempt
to solve the choking problem. These are the experimental correlation, di-
rect assumptions about the choking condition, the wave front model, and the

determinant method. Each will be covered separately,

Empirical Correlations
This is the oldest method and, of course, does not require the

establishment of the proper field equations. Burnell [6] developed an
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equation for predicting the critical_discharge through square-edge orifices:

G?:@:r)cm.z \/ '?-gc f}. _(%rsmeam“ (’ —CI)EN)

where ¢, is an empirical constant aloudek [7] examlned choking flow in

short pipes and found a correlation in the form:

Gc-s:ncu. . \/2'3 c Fj‘- ( uys-mznu | 5-"7 )

'Cz was a correlation constant, |

A number of other correlations exiéﬁ [8,9], but all suffer from the
defect inherent in a model which doeé'not_gtilize proper_field equétioné;
that is, a question 6f thé utiliiy of the cofrelations for other flui&s

and-floﬁ conditions.

Diréct.Assuggtions About;Chokingg

.This is a large catégory embracing quite a varieﬁ group'of litera-.
ture, . The formulétibns begin with a highly simplified set of field equa-
tions which are often inéomplete or incorrect #nd assumptions abdut the
conditions at the choking'point are then made which allow ; solution to

be found, The difficulty with these approacheé is incompleteness and ar-

bitrariness. Full sets of equations are not easily handled by these methods,

which often impose érbitrary choking conditions. This raises serious
questions about the applicability of the results.
The simplest model is the homogeneous equilibrium model (no slip, .

thermodynamic equilibrium) resqlting in:
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CRITICAL

where
Y= (-0 v LYy

The derivatives of P with réspect'to v are then evaluated along the
satuf&tion curve for single component media or iéentropihally or isotherm-
ally for two-compoment flows, Unfortunately, while the procedqre is simple
it is inaccurate, always underestimating the observed critical mass fiux.
It has been used as a reference for correlations [9]._ Reference [10] in-
cludes a section on making the pecessar& calculagions.

Many authors have arrived at a siﬁilar’form for the'choking mass

. a _ JP)_
chr(cj:." —'(s{)‘

flux, L.e.:

The differences in the models of this form involve the definition of v and’

the assumptions used in evaluating the partial derivatives, Seldom do the

authors try to connect their (gﬁ) with the speed of sound (squared) because

of the lack of a formal consistent approach.
Isbin,ét al, [9] used a relation

v X uz(i~2)*
_ — _Jr_- —
R x T (1=-4)
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~Area specific volume ;

and Ehe'Lockhart-ﬁartinelli correlation for the void fracﬁion to evaluate
the choking conditions. Massena [11)] employed the modified Armand.cqrrela-
tion for void-fraction.._Both assumed thermodynamic equilibrium. It must
be noted that vﬁ is noﬁ the proper mixture specific volume [2].
| Faletti and Moulton [12] used a homogeneous approach and supplied

'é direct functional correlation based on steam table correlations. An in-
teresting parﬁ of their experimental ﬁork was the use of a surface active
agent (detergent) to reduce the surface tension. They noted no significant
change in the value of the choking mass flux, although the static pressure
at the choking point changed,

Moody-[lB] wrote energy and continuity.equatiqns and claimed at the
choking po;nt that.(%%)P.and (%%)S = 0, This assumed among other things
that the slip ratio S and the pressure are independent which they are not.
Moody arrived at an expression for the slip ratio which is identical to

o 3f v S
Zivi's [14], i.e., S =E. He was then able to solve the equations using
the upstream stagnation conditibns_for the critical mass flux. In a later
papér Moqdy [15] uged momentuh and energy equations as well as a friction
factor to extend this idea. Moqdy's.most recent work is discussed under
the wave front modgl. Unfortunately in no.instance does the author present
a complete.set of mixture field equations-as a solid basis from which to
start,

Cruver and Hdultqn (18] wroté_overall mass, mbmentum,_mechaniéal,
and to;al energy equations, and then defined four specific volumes:

o : v '-51
v = (A S, £d4)

R

Al

G A L




Momentum specific volume:

S S
VUm = G*A, IAEFV dA

Kinetic energy specific volume:

o 5
Uee © G3Arc.£l (Dv dd

TC
Velocity-weighed specific volume:

1 SAVdA

U; = GAre Te

They also assumed that the change in mixture entropy (incorrectly
defined) was equal to zero.

Fauske [10) using simple momen tum and continuity equations and the
condiﬁibn C%gﬂ = OIarrived at a formulation which included a fixed slip
ratip of ;& ; This form éorreSpbnded'with the experimental data better
than mbSt of_the past analyseg., But Cruver and Moulton [16] showed that
this slip ratio did not produce the maximum Fauske thought it did, Fauske
in conjunction with Heﬁry {17] later modified his analysis to include in-
terphase transfers and for one component flaws_at higher pressures a no
slip condition at Fhe critical point. Additional assumptions of somewhat
dubious accuracy were also needed to effect closure.

Levy [18] evaluéted (%% } such that-ds = 0 at the choking point.
_ m
However, his equation for the mixture entropy was not- correct [2].
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A vapor choking model was used by R. V. Smith [19] to obtain a

‘relation for the critical mass flux. He assumed the choking condition oc-

curred when the vapor velocity was at its local sonic value. This completely

arbitrary supposition is made less realistic by several of the experimental |

speed of Sound investigations for annular dispersed flow [20] which recorded

lower velocities than the speed of sound of the gas.

Wave Front Models _

| Séveral models have been formulated which assume a wave front at
the.critical poinf. Conservation equations are written across the front
and the choking condition is determined;

Moody [21]-derived overall continuity, momentum, and energy balances

~across the wave face along'with four mixture speciffc volumes:

A VVC y 4 hS*Ci-z))
U = UR(x+ ""'%)
'U'; .= ’”(z + ,S"')

where

U = ]L'EEi + (l"ﬂi)(S’Z)'

and two mixture enthalpies:

'_:‘.!4.\;-',;_.\.;. T
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. He arrived at:

S

Gc.a:ncu. - _(évm

Vo

[1‘“r

where vm:is not the true mixture specific volume, He assumed frozen condi-

;' tions and either an-isentroPic change for each phase or homogeneous flow,

Moody s results were in reasonable agreement with the data used.

-Another wave front model was proposed by D'Arcy [22] After writing
continuity and simplified momentum equations for each phase across the wave,
the equations were solved assumiﬁg an isentropic change for each phase and
frozen flow (no mass trensfer); D'Arcy employed the empirical void frac~
tion correlation of Semenov and Kosterin [35] to complete his set of equa-
tions. His results showed only fair correspondence with ihe data.

P Detefminahi Method

Several recent inﬁescigators have Begun'examining chbking in two-~
phase flow by the necessary condition that the determinant of the coeffi-
i cients of the partial derivatives of the field equetions goes to zero at
the critical_poiﬁt} Mathematically this is an offshoot of the ﬁethod of
1 characte;istics [23]. fhe_advantages of the procedure are twofold: it is
3 a degenerate case of the wave propagation situation and hence the two phe-

; nomena may be investigated easily simultaneously and it is a procedure
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which allows difficult sets of equations to be handled simultaneously and
with relative facility.

Giot and Fritte [24] proposed a two-fluid model (six field equa- ?

tions) and investigated the choking condition. Numerical integration of
the equation for several interfacial shear expressions showed only fair
agreement with the data. The authors also proposed a mixture model which
was not written with respect to the center of mass;

Katto's [25] model included an overall continuity equation, separate
momentum equations for each phase, aﬁ overall energy equation and an energy
equation for the vﬁpor phase. Thermodynamic equilibrium was assumed. The
results of the analysis showed fair agreement with data from Faletti,
zaloudek, Fauske, and Moy. This "mixture” model is however not consistent [2]
and cannot proPefly'account for nonequilibrium effects,

Ogoasawara [3] wrote an overall continuity equation, two momentum
equations, and a total energy equation, This model like Katto's is nof
complete in the sense that nonequilibrium between the phases cannot be ﬁrop-
erly accounted for, and in fact, thermodynamic equilibrium was assumed, In
addition the equations were not written in a properly integrated mixture
form,

Boure, et.ai.[#] examined a two-fluid model including the apﬁropri—
ate jump conditions, The authors imply that a mixture model is, of necess-
ity, incomplete; which is not true if all of the proper constitutive equa-
tions are known, In fact fewer constitutive equations are required for a
mixture model ﬁhan for a two-fluid model, presuﬁably making it easier to use.

- An examination is made by the authors into the consequences of
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.% assuming different forms for some of the constitutive equations. A very
g- good discussion of single phase choking is presented Qich gome Iinteresting f
? ideas that tend fo dispel earlier ideas on isentropic evolution. %
fﬁ 3. Methods of Solution of the Wave Propagation Problem 13
E; It must be mentioned that the problem of interest is the determina- :
E tion of avérage wave speeds and not such effects as scattering. .Four methods
i :
E; cover the majority of approaches in the literature; the single eduation
} "thermodynamic™ model, the wave front model, the linearized plane wave model,
%? and the method of characteristics.
o
% Single Equation "Thermodynamic” Model
g : Writing a continuity equation and simplified momentum equation for

~ the mixture and assuming a.mixture equation of atate of the form

with'constanf q, ylelds upon a small amount of manipulation,

<=\ (3%),

e P Loy T - e
e L B £ AN e T et FREELL 4E WS Sl B R ;‘u‘kﬁ#’-*—_

e P

1 -with q normally being ﬁhe entropy s. The form of the equation is identical
| to the single phase case, as well it.shOuld be, due to the obvious and un-
fortunately incorrect [2) similarities between the single phase and two
phase sets of equations used in the derivation. The differences between
aqalyses of this type center on the evaluation of (QR) and, except for the

dp

case of a quiescent mixture, which is essentially impossible to obtain, the
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analyses fail to mention what this velocity is with respect to. This is

a serious defect when high speed flows with the possibility of choking'ocdur.

L e B ey

The sfmﬁlest formulation for this model is the homogeneous assump-

? tion utilizing an equation of mixture specific volume of the form

Rl b

AR (i-x.)_vis +X V3

2 and either thermodynamic equilibriﬁm or an igentropic assumption ds = 0

and an equation of mixture eatropy of the form

PLTLIM

s e

4 = (1-1)4_; +Z-d,,, -

e MDY G

Karplus' report [26] is typical of this analysis and his agreement with the

M

data appears reasonable largely beéause of the large scatter in the data.

TR

The homogeneous'assumﬁtion (i.e., Vg==-Vf} is never fbund in practice aﬁd-
will only approximate real behavior in the case of low void ffaction bubbly
flows.

Grolmes and Fauske [27) employed the correct definition of the mix-

ture density, but then made a homogeneous assumption with either frozen or

equilibrium evolution, The_ffozen, homogenebus mpdel showed good agreement
n with their data.

. o Henry, et al. [28] incorporated the slip ratio into the evaluation
but since the original equation = (%E)% is not derived from a complete, con-
sistent set of equa;ioné'and since the wrong mixture density was used, the

results must be viewed with skepticism.
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‘out in [2], the équations as written are not gufficient to encompass thermal

momentum equations for each phase and solved the set by establishing the

EER

14

R B i

TN

Radovsky [29] cousidefed a phenomenological relationship for the

non-equilibrium thermodynamics of a multiphase mixture experiencing a pres-

sure transient, and was able to provide results analogous.to the frozen
and equilibrium sound speeds 0f a reacting mixture of gases, including the
-effects of dispersion.

The Wave Ffoné Model

The basis for the model is the concept of a limear velocity trans-
formation.equal in magnitude to the speed of the traveling wave superimposed
on the system so that the wave is effectively frozen, As a minimum, con-
tinuity and moméntum equations are written across the interface and either
a differential (ﬁave) or a.finite (shock) change in the variables is con-
éidered.

.Henry,et'al. (28] is typical of the formulation,using both mixture

and separated flow models to describe the flow, Unfortunately, as pointed

non-equilibrium effects and do not form a properly integrated, properly
averaged set of equations. Their formulations however do take into account
the various flow regimes and show reasonable correspondence with the data,

D'Arcy [22] used a separated flow model employing continuity and

compatibility condition that the determinant of the coefficients is equal
to zero. Except at very low void fractions (< .1) and for stratified flow,
correspohdence_with the data was not good, D'Arcy did however indicate

reference velocities for the wave motion.

The Linearized Plane Wave Model

This model proceeds by writing separate continuity, momentum, and
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energy equations (two-fluid model) for each phase along with assuﬁptions

about the interphase energy and momentum transport and then linearizing the
equations, The standard acoustic assumption that the perturbations can be

expressed in the form o i

ael (wt -kz)

is applied to the equations ahd a speed of sound, including'dispersive ef-
fects, is the reéult.

The advantages to the method lie in establishing the speed of sound
as a function of f:equency (dispersion). The disadvantages are that small
‘perturbations only'may be considered and expliﬁit relations for the intér-
phése transport nbrmally used only apply to small bubbles, In.addition in
no instance are the initial equations the true integrated balance conditions
‘over the phases with the associated jump conditions at the interface [2].

_ Mecredy, et al. [30] calcﬁlated the diépersion effects for small
bubbles with a low relative velocity or slip (stokes flow). Their high
frequency limit corresponded reasonably well with established data.

Hsieh, et al. [31] considered only homogeneous flow and defined an
average mixture specific heat and coefficient of heat conduction of dubious
accuracy. _No comparison with available data was made,

The Method of Characteristics

The method of characteristics is a powerful mathematical tool which
is used in the solution of hyperbolic differential equations. To apply the

method to two-phase flow wave propagation_either a diffugional (miiture)
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model or separated flow (two-fluid) model is established with the appropri-~
ate constitutive conditionq and equations of variation. The necessary con-
dition, that the determin&nt ﬁf the poefficients of the partial derivatives
is zero is formed, #nd the characteristic velocities are obtained.

The adQéntages are that complex sets of equations may be solved
simultaneously {(albeit nﬁmerically), the technique is a direct extension
of single pﬁaée experience without the necesgsity to make.too many debili-
tating assumptipné,_and both the propagation velocities_#nd the velocities
with which the wave motion is referenced are obtained.

Several ﬁuropean investigations [4,32] have been published on the
method as applied to a separated model, The equations used by Boure, et al.
[32] are exact integrated formulations with the appropriate interfacial
jump conditiﬁns. The ﬁork is_still in progress and no pubiished.comparisons
with data exist at present. |

| It is the purpose of this investigation to apply the méthod to a
diffusidna1 mode1 propoaed by Zuber and Koca.[2].' Their diffusional model
is mathematically léss complex than the separated flow system (four equa-
tiona V8. six) and internally includes the explicit effects of interphase

momentum transport and heat transfer.

4, Conclusions

A few final obsefvations should”be-made on the state of the art of
two-phase flow wave propagation and chokiﬁg; ‘The'ﬁpproach té these problems
has often been_haphézard aﬁd interconnections tenuous. In the case of wave
propagation seldom is a flow velocity given as a referencé for the propa-

gation, This is a consequence of the fact that the majority of the
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investigators have not used the method of characferistics as the solution
tool. When the method of chgracteristics was used, it was either with a

two fluid model or with an 1mpr6p¢r1y formulated "mixture" model, It is

felt that a properly derived sé% of ﬁixture field equations coupled with

a solution by the method of characteristics would provide an advancement

in the underatanding §f the complex.phenomena“of wave ﬁropagatibn and

choking in gas-liquid flow.
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CHAPTER III
ANALYSIS: PORMULATION OF THE PROBLEM

The purpose of the analysis is to apply a consistent mixture model

to the problems of both choking and wave propagation in gas-liquid mixtures..

and the'sdlution technique by the method of characteristics.

In the preseﬁt analysis the two-phase flow is represented by a set
of four one-dimensional mixture field equations derived by Zuber [33] and
Kocamustafaogﬁllari-[Z]L These equations are time #moothed and space aver-
aged and are ﬁfitten with regard to the ﬁrue center 6f mass of the flowing
mixture, .Réferenﬁe-[ZJ éohtﬁinslén exdellent.di3cussion of the advantages
of ﬁsing such a formulatibn to -describe thé system dynamics. This formu-
lation has been successfully applied by.Ishii [34] and Saha [35] to the
problem of flow stability_in a.duct with boiling, |

The eduatiﬁhs in general form.(with thg'assumption of no suction
or injection at the flow boundaries) are as follﬁws:

Overall conservation of mass:

ot

Void prbpagation: _(consérvation of mass for the vapor phase)




~ where

and
. 2. /. - -
Be = o€ T Vsdy
Momen tum ‘equa t-io'r; for .'t_he mixture

P DE—

_5,, +.>}773 "'ﬁm?e - @

....['.pm- 7. +7)’° + C.ov(mo.-mT)_] 5}@-444&)

Arc,5 V_, m%; 93’ cov(omom T)

Avc z fx {L(Pkw_ 7;'W) ;“W].h}g%'

De -. t + Vo é}
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(2)
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Energy equation for the mixture:
-gg.(f,,,_,;,..g + (r,..v,.*L ) =~ —;351 | @
'+§-§"—_ (P Va..) + émn + imi&

- 51 [(r-a).r; L Vom + % By lg Va"“J

- [6-0R Vem ¢ 4B YT

= L P Vi b + [cl-—az) e (s Vomn + & Fy g Vom ]
B Vi = [c:-.,a)&vm + aPy ng_]

+ cw(&:uer) - r_Cl-a()“\’ (Ps- VS'

R Km(ra "3’]} % (2wAre) - 2= A S&cre

- 45 (BuRadiy s El 1 cov( s covi )]

4

It must be noted that these equations are written in terms of the

true velocity of the center of mass '

: - (I-_*.e() s Ve + & P
VmE U0 R v a Pf“’
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We will now simplify the equations by assuming:
(é) The velocity, temperature, and pressure profiles are suffi-

ciently flac_acrosé each phase (turbulent flow) so that the covariant terms

. are zero. This may not be a good assumption for choking flows in sharp
- edge orifices [50] or converging-diverging nozzles [47,48] with a small

radius of curvature in the axial direction at the throat. The possibility

of ugsing a covariant correlation term to correct for the two-dimensionality
of the flow is discussed in the next chapter.
{b) The iuterfacidl source terms are negligible. This implies

that the surface tension is not important to the flow dynamics. Under this

condition: L : : _
5t (I'E')_'%%f =o
and |
i Vs Cmem U0
(c). Axial conduction is negiigible. This means:
(d) fhé.viscous ;erm; %ithin the fluid are small so that:

Tom %0
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and

$ .. *o
MR
" (e). A uniform pressure exists at any cross section, therefore:

Fo=hy =l =V

This is a good assumption if the surface tension effec;s are small, the.
amplitude of the pressure pﬁlses is small, and the flow geometry is such

that the flow is substantially one-diménsional.

In addition, to effect closure, the following equations are needed.

These are

The definition of the mixtgre dénsity
P = (l'f L) fe + d Pg, )

with a thermal équation of state for each phase

fg ty @, 7;) | i : .

and

Ps (P, Ts) - | .. (7

s

- ._‘eu:-_f.‘ 5t

st g nggds |
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;tj The definition of the mixture enthalpy

[ = A fgtg +(1-2) fe s |

£ . . ;
ii ‘with a caloric equation of étate for each phase :
§ tg T 4 (7’/7:9 ) (9

? and

Lg = Ls (_P, ) - (10)

Constitutive'equation for phase change

o T s T e ST e AT

Tge = £1 )
' In thé case of a two-component flow f1 = 0, which neglects the effect of
disgsolved gases in the liquid phase. For one-component flow, one possible
model for Fg is discussed in Appendix A.
Rinematic cdnstitutive.equation for ng which depends on the flow
? regime g
Ve -Vg-'J = ~('“")(‘5"21)'V”" _ ' | -
33 it ' - 1 . o(!:! ( s,_ J - (12)
B [- + 1 ) : 1) : .;
F .
and either a slip function, gﬁ
| | I
f&i
f:ﬁ
T L - e e e e e e
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5= ) | | o s
Ve = Vgi(Ryfy,059) - | am

Definition of ¥

Vim = Vs-Vm= —T-2 vy

- L |
Vam‘ - v; - Vm - é V3_J | (15)
The equation for the drift stress

_% _ -_.._..’ - P;f Vg..; 6

Definition for thé reversible conversiop of floﬁ work into thermal
energy.
¢ .= ()€ B V-V = d‘«% V;‘@>> (172)

mR

where
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An equation for the wall shear

The relation between Vf,Vh, and ng

Vo= Vo= 1-a @2 \ﬁ}J

The relation between Vg, V> and V

8j

\49. ::.\/;n‘ *’ f:n~ ‘ﬁ?’

An equation for the heat transfer at the wall

25

(17b)

(17¢)

- (18)

(19)

(20)

(21)
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Gedmetfical equatiohs defining
dA £ |
- s (22)

and (for circular geometry)

2 dbe |
%(&Arc)'; De d3 (23)

with De a known function of 2.

After the initial simplifications, twenty-four variables remaiu,

_ d in ATC
Pgr Pg’ p' ’ Vf, Vg’ vm’ ng fm’ ng P, T T g” dsqw W’ dz T dz s J»

I‘ .

gi’ i > T if, 18, and 1m'

Twenty-three equations (four field, nineteen other) have been

enumerated although the specific forms of f2’ f3, ng, er S have not been

given yet. In addition to the aforementioned quantities an équation of

thermodynamic'constraint is needed to complete our system.

Two cases are considered: thermal equilibrium

Tz 73 |
7_;'-':7-3. AND g;, '3";, o (24)

ahﬂ the polytropic case

——

Pm = CONSTANYr - (23)

where n may vary between 1 and k. The effect of these constraints is dis-

cussed in the next chapter on results and conclusions.
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Since the method of characteristics is to be used as the solution

tool, we do not have to specify the exact relation for the wall shear or 3

the heat transfer (f3 and f4). Rather, since the available data afe for

essentially adiabatic systems, we may neglect the wall heat transfer,

SR

i.e., £, = 0.

e

4

The wall shear determines the akial location of the choking peint,

PR

R 5

but if the equation for the wall shear has no partial_derivatives'in it,

it does not determine the conditions at the choking point since the method

;é éf characteristics examines the requiremeﬁts for discontinuitiés of deriva- i
?% tives. Therefore, we need only specify that fS have no partial derivatives ﬁ
t in it, d.e.:
ié _ %
¥ :
Tw = 5-3(_va) VSJ) ‘*)---) | (26)
g- We are still left with the determination of the slip function or

g? ng. _It has been mentioned [45] that a two-fiuid model is inherently |

13

superior to a diffusion model because the additional two field equations
do aot require the-assumption of a specific slip function (or a function
of ng) or an equdtion for the thermodynamic evolution of one phase. This

is misléading, because two additional constitutive equations, one for the

interfacial shear and one fof the interfacial heatftransfer, are reduired
to complete a two-fluid formﬁlation;

It i{s felt that it is both'easy and reasopable to specify the
thermodynamic constraint as opposed to :he actuai interfacial heat transfer.

‘In addition for several flow situations, particularly in slug and bubbly
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nel, Equation 27 was employed under these conditions in the model.

The effect of Z5l— has been shown to be small at high values of the
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flow eithéf ng ( in vertical flow) or the élip function (in horizontal
flow) is known with better accuracy than the actual interfacial shear,
In fact iﬁ the same paper [45] that advﬁcated the'superiority 6f ﬁhe two
fluid model over mixture models, three undefined funptiona existed in the
interfacial shear term with an édditional two in the interfacial heat
transfér felations,. | |

For iow vglocity bubbly flow in # vertical column, Zuber, et al., [46]

showed that the correlation

| o ;
o L fe-Pa)
vy =\ -

* (27)
fe
provided a good fit for the data. Since most of the speed of sound data

available in bubbly flow were taken at low mass fluxes in a vertical chan-

The majority of the critical flow data involves a type of bubbly
flow [50] in horizontal tubes. As the void fraction increases, a transi-
tion tb an annual wave and annular mist .flow develops [49], but at nd time
has pure annular flow with a flat interface been observed.

For_thesg conditions a slip correlatioﬁ based on Zuber and Findlay's
[46]) model is.appropriate. The equation that they derived is.

| G-o)
S = - _ .
- Co +1<ow3-,>_ - X

: Lol><J)>

(28)

‘<-av . >




: and Tg. Recognizing that these two relations will be inserted at the time

-infinite. From a physical standpoint Co will be a function of void fraction

29
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volumetric flux j [46] and this term is therefore neglected. C, will be a

function of the flow regime and pressure at the choking point, but a value

in the range 1 1= C s 1.2 was shown Ln the paper by Zuber and Findlay to
provide good correspondence with data in bubbly flow.'
One difficulty with this correlation is that for a given value of

C, there is some value of the void fraction at which the slip ratio becomes

and changes in Co will occur with flow regime changes. To simplify the
computation of the élip ratio the siip was allowed to vary as Equation (28)
demaﬁds with a given fixed C0 until a value of eighty or ninety percent
of this cutoff void fraction.was reached. Then the éiip condition was
frozen at thaﬁ value for the remainder of the rénge of vbid fraction. This
procedure provided reaaﬁnable agreement with Henry's [50] air-water critical
flow-data as shown in Figure 1. |

After subétitution of the Equatioﬁs (5-11 and 13-23) back into the
field equations, our reduction is complete with the exception of the spe-
cific form of ng and the specific thermodynamic.relation between P, Tf’
of calculatibn in the computer program, thg equationg then have dependent
variables Vm,-a, f,_Tf, and are as follows:

Void propagation'equation:

w BE T35 43 Y o
INCIAY oP
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Figure 1. Slip Ratio
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Overall energy equal:ion
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The equations may be non~dimensionalized by'us'ing the following

parameters:

tv
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where Vo, Pmo? Tgo’ and Tfo are any representative velocity, density,

length, and temperatures, respectively, : : ’;

The following dimensionless numbers ﬁay be defined: ':

Nyim= (3 - Na, - B ( ‘Sﬂ‘*) |
Ngia= U (58] iy =3Py
Nyso = @5@ MG Ve (9;@},
Neg = (‘Q&) | Nps - &&)

o = Cr 'si* Gy cpal@— |

2 The dimensionless expanded field equations are:

Dimensionless void propagation equation
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Dimensionless continuity equation
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.37
 Dimensionless momentum equation
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" The specific form for ng

course not been Included and are left as separate entities for flexibility.

and the thermodynamic constraint have of

Equations (33-36) may be simplified in various ways which depend
bﬁ the fluid properties at the point of interest, the range of void frac-
o tion of interest, and the type of phenomena considered (i.e., wave propa-
; | gatiﬁn is é transient phenomenon which may occur at low mass fluxes, while

5 ' the critical flux phenomenon occurs at relatively high mass fluxes). For

example; the-compressibili;y of the liquid may be neglected under most

conditions, but if.alpﬁa is.vety small 0& - 0) the compressibility becomes

‘; ' iﬁportaqt. The complete equétions were used for the numerical computation
of the.choking mass flux and propagation velocities, buf a highly simpli-
fied analysis of the choking phenomenon will be considered in the next

. chapter. This was obtained by gonsidering only the firgﬁ order terms in
the void pfopagation, continuity, and momentum equations,

The formulation of the problem is now complete, The next section

considers the solution téchnique;_the method of characteristics.
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CHAPTER 1V
METHOD OF SOLUTION

The formulation to the problem using the mixture model resulted
in a set of four first order differential equations. The solution pro-
cedure to determine the local critical conditions and the average propaga-

tion speeds will be the method of characteristics.

e l. The Method of Characteristics

ﬁ? ifla differential equation or set of differential equations with

:? tﬁe appropriate boundary conditions ié golved, ;he sdlution takes the form
;% | of an integral surface or series of integral suffaces in:a space formed by
o : o :

the variables. 1If the solution is everywhere analytic, then the Taylor's
theorem may be used to extend the solution in a process referred to as
'analycip céntinuation. If however, the derivatives are discontinuous, the

solqtion may not.be extended across the discontinuities by Taylor's theorem

—

and the solution spaée is not evervwhere analytic.

L

Strictly analytic integral surfaces are characteristic of steady

e T

state equilibrium problems (elliptic differential equations) while those
involving propagation phenomena (hyperbolic eqnations)_posaésa discbntihT

uities in the derivatives. It is to this latter group of problems that

attention is now devoted.

Pp——

The equations which evolve under the conditions described in the

precediﬁg chapter are of the first order and it is therefore the conditions;
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under which discontinuities in first derivatives arise which is of interest,
The follawing sections will examine a formal method for determining the
characteristics, the application of this procedure to single phase wave

propagation and choking, and finally the application to the present

problem,

Matrix Method: Coﬂéider a set of n first order differential equa-

tions with two indeépendent variables z, t

}Xm

Ay 53 + an. St FTT ¢ am"_l }""a‘”" ot "i
) : : L
| |
' t ! '

The equations do not need to be linear, but it is assumed that the aij's

are not a function of partial derivatives. Then we may write the system

in matrix form as:

all 812' - L] - E ) - - - - - - .aln-l - aln . % Fl
- [ - a‘x

- L] - ) Fz
- L] > ' z .
a © a ' a 'y | F
nl nz. - L] - ] - - - - - - - nn-l nn n
L
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. . o
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The second set of n equations represent the equations of variation
for the dependent variables and express the fact that
Sa 2% ET R

AdXm = ¥

To attempt to solve the set of equations for the values of the

partial derivatives at a point in space and in time, Cramer's rule could

be used; For example:

all’ v s s e s fFl aln
anl Fn aan
dx dxl
0  dx_ at
ti
;;)(n\'
S 3’ Det aij.

where Det aij = the determinant of the coefficients of the partial deriva-

. 3xX X
tives. If the value of this determinant is zero, then the Szi‘s and szi's

are indetermiﬁant and this condition represents the neéessary condition
for.the propagation of discontinuities in the firat derivatives (2eroth
order discontinuities).

| In order for the derivatives to have a relationship fo one another
along the propagation paths it is necessary ana sufficient that the de-

terminant representing the numerator also beé egual to zero., This holds

: ox Ox
true for the entire set of partial derivatives'szl and 5E£ . The expan-

sion of the numerators yields sets of ordinary differential equations

valid along the characteristic paths.
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2, Single Phase Flow: Wave Propagation and Choking -

L.» In single phase flow the wave is considered to be a small pressure r

[ perturbation which is mathematically represented as a discontinuity in the

| .

'1:_-;_' : first derivatives of the dependent variables. Abbott [23] has a good

l dis.cus_sion both of the method of characteristics in general and this prob-

lem in particular.

‘ _ The one-dimensional continuity and momentum equations for a pure

ki fluid (in the absence of body forces and shear terms) may be written:

s‘;f" 3 d )V =0 - ' -

7 3 =° a1

? DV + eV v, v | (38)

st TV s} | 3’ \

1 In addition an equation of state is required:

- P=PLR) (39)

l ' ‘and-tl.ié assumption that the process is isentropic

: A9 =0

:

! Expanding (39) _

o | A& de s ( _ ) Q/ |

' d‘ P (a ) P (40) .

-; |

£ and substituting back into (38) yields
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(41) along with (37) and the gwo eéuations of variation

dg- -(B)dy +BDax

Av = ( )o\} "'Lat) dt

ﬁay be written in matrix form

v 1 & o©
@) o ev €
dz:. d&& o o

:C> B (5'- .Cli& C*i: _

4
o

Sk gx ¥
O

"

ap
Av

Y,
o
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(41)

(42)

(43)

(44)

If the determ1nant of the left hand array is set equal to zero and

expanded the characterlstlc directLOns

vzV @r)

t

are obtained. Boure, et al, [4] showed that the isentropic agsumption is

not required per se, and in fact, that the overall flow may not be isen-

- tropic to allow the propagation of the discontinuitieé to be an isentropie
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evolution. It is also possible to write the cOntinuit&; momentum, and
energy equations foi single phase flow and if internal shear stresses and
conduction are ignored, the same feSult [8] is obtained without the ne-
cessity.of'formally assuming an isgntfop{c process,

The critical condition for single phase flow occurs when the fluid

at some point reaches the sonic velocity and pressure pulses can no longer

propagate upstream to affect the flow. This may be examined for the steady

state case by considering the condition that

v ¢l

| = 0
%%L oy y

or

Vc.man._. = V (%%)4,

Thus, the method of characteristics provides a bridge between the examina-

tion of pressure pulses and critical flow. This techrique, well proven
in single phase flow, can be extended to the more complex two-phase flow

situation,

3. Two-Phase Flow: Wave Propagation and Choking -

The employment of the mixture or diffusional model to two-phase

flow problems results in a syétem of fdur field equations. Four variables:.

V> @ P, and Tg remain after the constitutive equations are inserted.

e mme e e e ————— e =
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The problem then assumes the form i

| |
void (e 1t e f1s f16 fi tis]] ¥R EN
Propagation | 11 12 | 1=

Continuity | ap; 2 323 224 225 %26 227 228

53&
Momentum a | a a a 4a a a a EA: ¥
31 32 33 34 35 36 37 38 ot 3

Sa*

of
f=1
=]

@& dz 0 0 0 0 %?, do

Energy 1. %2 %3 fwe %45 fwe %7 sl Sy || Te

= | ws)
& & @ o o o o o o ||2% e

IS o "

4.

|:.li.. .

A -

i o

%

T | QT;

0 0 0 0 dt d o o |lE& |l
»

iR 6o 0 0 © 0 0 dt d= '5"‘"_,~ dT
- L33 )
;l where the aij's are listed in Appendix B and

:E:_ )

_PE ot L g%yr o dDd
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If the determinant of the coefficient array in (45) is expanded

o _ ' 2% '
about the last four rows a quartic equation in EE; results. The coeffi-

cients of the quartic expression are of course functions of the aij

The roots of the fourth order polynomial are obtained numerically and .

represent the characteristic directions for the mixture model

Steady state choking conditions were obtained by considering the

reduced array of the coefficients of the spacial derivatives.
12 %1 *16 %18

%22 %2s %26 %28

i
o .

(46)
32 ‘334 336 338

%42 %4 46 s

‘The mixture mass velocity Vﬁ was iterated for a given set of condi-

tions (pressure, temperature, and vold fraction) until condition (46) was

satisfied.

Although other values of Vﬁ might satféff (46) (thé trivial solution
Vﬁ = 0 exists if the slip function is used to provide a value of V

gj)._the
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procedure used provides the value of Vm and hence G (i.e., pmvm) most I

i friadd

.

representative of the critical condition.

it b

The range of hyperbelicity was also determined by an iteration

technique to determine (for a given set of conditions) at what mass flux

the characteristic directions became complex. This information is needed

if the equations are to be integrated by the method of characteristics

since the roots must be real for the method to apply.

i poar et 8

i ' ' 4,  Program Wave

T P

;= The determination of the critical mass flux,'the characteristic

e e

directions, and the ténge of hYperbolicity wasg accompligshed by a computer

program written in Fortran IV for use on a Univac 1108, The program is

straightforward and a copy appears in Appendix C. The rather lengthy

nature of the main body of.ggzg was dictated by the desiré to incorporate
several slip modelé'and thermodynamic constraints into the program., The
subroutine ggggg generated the values of the four by four determinants
needed in the expansion of (45) and (46) and the subroutine Dat proﬁided
the thermodynamic information needed. Thg ideal gas equation of staée
was used for the calculation of the vaﬁor properties for two-compbnent

L (air-water) flow., The effect of relative humidity in the gaseous phase

| : was considered.f‘81ngé single-component (steam-water) flow was to be ex&mQ
4 ined in Appendix A, the propertiés of steam were included in subroutine

i _ Dat, The equations of state for steam and for the liquid were calculated
on the basis of the equations.appearing in Keengn and Keyés Steém Tables_[53]._

The actual solution for the roots of the quartic equation, necessary
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to deﬁermine the characteristic directions, was provided by a packaged
root finding subroutine which is a part of the computer library for the

Univac 1108. This obviated the need to write a separate subroutine to

perform this function.
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CHAPTER V

RESULTS AND CONCLUSIONS

The results of the analysis are presen?ed in separate sections for
wave propagétion, choking, and the range of hyperbolicity for two-component
(air-water) flow, The section on.the results for critical flow also in-
cludes a discussion on the relationship between critical flow and pressure

pulse probagation in two-component flows,

1, Pressure Pulse Propagation in Two-Component Flow

a. Bubbly Flow

Henry, et al, [28] have taken data on pressure pulse propagation
in vertical tubes under bubbly flow conditions, The speeds recordedlrepre-
sent leading édge data and thé results presented in-tﬁis section ignoré
such effects aé.dispersion and scattering.

Using Equation (27) for ng, thé.four rodté representing the char-

acteristic directions are always real under the conditions tested o<a<l,

25 psia s P = 65 psia, T = 70°F)'even vhen the mass flux inputed is in-
creased well beyond the expected critical flux for a given value of void
fraction and pressure. |

One root was always the mass averaged velocity of the liquid Vf and
one was always the mass averaged velocity of the gas Vg. The other two
roots werg_assumed, froﬁ the single phase analogue to represent Vh-c and
VP+C, respectively, where Vp.is the velocity relative to which the wavés

were propagating, C would therefore be the speed of sound.
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~velocities are somewhat below the isentropic values and most of the data
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It was mentioned in the literature review that many of the models e
used to predict ﬁhe_speed of pressure pulse propagation do not indicate
what the fluid reference velocity is. This could prove to be a major flaw
if anything other than very low fluid velocities are considered.

For the specific function of V . used in this model (Equation 27)

g

Vp was exactly (ﬁithin'the accuracy of the root finding program) Vﬁ, the

B A A A
SR P TN S

velocity of the center of mass of the mixture, This was true even at low

B

values of Vm and relatively high values of the void fraction where the

f'ﬁ< Vm

so that a clear determination of_vp could be made. In addition the prop-

predicted slip ratio might rise to a value of two, and where V

&gation velocitf C was independent of Vo
- It must be stated, however, that the model does not require this

particglér function for Véj tq prove effective. If hne assumes homogeneOué
flow (8§ = 1) or the Armand slip model (with 1< Co < 1.2, the ptqpagation
speed results reproduce those 6btained.with Equation (27) within 4 percent
for the_rﬁnge.qf pressure and void fractions (@ < .5) tested,

In any eﬁeht it was determined that the best results over the widest
range of a_ocpurred when an isentropic_evﬁlution {polytropic exponent
n= k= 1.4) was assumed for the gaseous phase, Figufes 2 through 5 show

the correspondence of this drift flux model with the data.

oT aT
If either a complete thermal equilibrium model (TS = Tf, S;& = szi,
oT AT, - '
and Szg?é 3 ) or an isothermal.modell(n = 1) is assumed, the predicted

(see Tables 1 end 2). However, the advantage of the isentropic condition
over the isothermal becomes less apparent Qt Ibw values of the void frac-

tion and in fact as the bubble size decreasés ka'< .05), the isothermal
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AiffWater Bubbly.Flow Data from Ref. (28)
{p = 35 psia)

Author's Model

C (Fps)
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Alr- Water Bubbly Flow Data from Ref. (28)
(p = 45 psia)
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Figure 4, Two-Component Pressure Pulse Speed
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il limit appears to be more appropriate since the thermal response'of the

vaper should become more pronounced. Presumably a continuous transition

;% exists between the.polytropic exponent of 1, (v - 0) anﬂ the isentropic
£ ' expanénp Qw - .1). Sufficient scatter existed in the data to obscure the
8 exact functional form of n(eo) so no attempt was made to provide one., This
S same effect was.noted in féferenﬁe [28] for examplé.

| The thermal eqﬁilibrium model provides values essentially identical

to those produced by the isothermal assumption. This occurs because the

liquid acts as a large thermal reservoir and hence the gas temperature

varies little when complete thermal equilibrium is used as the thermo- ' ?5
dynamic constraint, _ ' : ﬁﬁ
. : . *

Fof all of the results presented, the thermal approximation Tf = Tg

- was employed for the purpose of calculating the property values of the

T T T I

T BRE

components. The small degree of static temperature nonequilibrium (a few

i degrees F) which may exist in the actual system does not affect either the .

thermodynamic quantities or the results very much (on the order of 1 per-

T R

cent, see reference [24]), and since the actual amount of thermal nonequi-

librium is not known this assumption is almost a requisite. The assump-

tion of the particular thermodynamic evolution does however affect the

% results and ;he iéentrOpic assumption may be thought of in the same sense
? that simple heating or cooling results are\uséd.in 1-D Fanno line flow [1],
% This implies that whatever heat transfer does occur through the passage

E of the wave froﬁt'velocity which is the measured quantitf. fhis is analo-
? gous to the concept of frozen'waﬁe speédsgiéfédmbustion processes with

E the bulk of the wave traveling at a speed:mofe in line with.the equilibrium
£ - a '

L '

(thermal) velocity.

P it e
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The effect of static values of rélative humidity on the predicted
wave speeds was expected to be small. In fact the variation in predicted.
propagaﬁion velocities at low pressure ﬁith a variation of relative humid-
ity from 0% to 95% was smaller than the tolerance of the root fiﬁding
program.

‘Since the exact slip relationship (or relation for V ) deces not.
affect the predicted velocity of sound propagation very much at low mass
fluxes as long as the value of the slip ratio remains in 2 range reasonable
for bubbly flow at low void fractions (S = 1.2), it would appear that the
non-dimensional field equations could be reduced to provide a simple ap-
proximate relationship for the speed of sound.

If we limit our attention to relatively low mass velocities and
use the iéothermal.speed of sound as our reference velocity v,» we:may
simplify Equations (33)-(35). If we consider only the highest order terms
the equations become:

Void propagation

¥ 1 ap# |
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Actually the terms involving the temperature are of order (&), but
it should be récognized that under our:isentfopic assumption thé tempera-.
ture terms combine with the pressure terms in Equations'(47).and (48) to
yield the iseﬁtropic speed of sound of.the gas rather than the iscthermal

' speed of_soﬁnd as a reference. Also, the highest ofder liquid compressi-
bility terms we?e included so the result remaing finite as o - 0,
The energy equation is not needed for this simplified analysis be-

cause we are specifying the théfmodynamic constraint on the gaseous phase

ané the liquid téﬁperature does not appear in the reduced equations. This

is similar to the situation in single phase flow when

ole clP

is used rather thaﬁ the.more general form
- (28) ar + (&)

along with the energy equation.
Combining (4?) and (48) and invoking the isentropic con&ition we

may examine the characteristics of the system by writing the resulting

equations in matrix form
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a.__,,--’ o-(*Mjg [1-—(\- A *) Aé‘*_] (5D

b a3 Ta e ok A8

the characteristic directions are (returning to a dﬁhensional'form)

‘ . C= %—% = tt‘*@%i .+ %L (52)
-~ o ar
C+0-03Y), + 'L———é&—‘)“ ‘l)§ : @5?%1"4]'/&

E;Z This result is identical to the standard homogeneous form used in the
93 . : ' o '

1 literature. For example, Henry, et al. [28] provide a form under the
; same general assumptioﬁs
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C= 't ):-‘*L (%%')4 r d(l-d)%(%%)-o 3)
rG-042%), + (- B30 17

Equation (52) is exactly equivalent to (53) as a simple expansion of the

terms in (52) will show, !
Tables 1 and 2 show a comparison of the full drift flux model with

the simplified analysis. It is evident that the results of Equation (52)

" (or 53) correspond almost exactly with the more detailed analysis. Under

these circumstances it would appear that the simplified model can success-
fully calculate wave propagation speeds at low mass fluxes,

Experience with the full drift flux modei suggéSts that the appro-
priate fluid reference velocity for either Equation (52) or (53) is Vh,
the velocity of the center of mass of the system,

However, this is true only at relatively low mass velocities. 1f
the modified Armand correlation is used, as the assumed mass flux increases
Vp deviates more and_more from Vm and the speed of sound C becomes a weak
function o# Vm._ This suggests that simplified relations such as (52) and
(53) will deviate (as in fact the assumptions used to produce their deriva-
tions imply) mﬁre_and more from the data as the fluid velocities increase.
To the author's knowledge.nﬁ pressure pulse data have been taken in high
séeed bubbly flow so that this remains an area lafgely unexplored at

present.

b. Separated and Mist Flow

While the correspondence of the drffﬁ-flux model with wave speeds

S LraT SIS TmRATTRA et e
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Table 1. .Air-—Water Bubbly Flow

“f o ._ng defined by Equation (27} c

'cisentrOPic Cisothermal ' Equation (52) or (53)

005 S T16.4 605.6 717.9
?f .05 234, - 197.7 233.9
' .1 170.1 43,7 170.0
.2 127.6 - 107.7 127.5
" 3 1114 9.0 111.3
: 4 104.1 87.9 | | 104.1

- 5 . 102.0 86.1 101.9

i P = 25 psia
' T = 709F
The speed of gsound C is in FPS
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Table 2. Air-Water Bubbly Flow

o ng_defined by Equation (27) c
| Equation (52) or (53)

B ' - ' Ciéentropic Cisothermal

.005 ' 11364 962.3 O 1144,2
I .05 : ) 367.7 318.2 _ 367.7
1 274.0 231.4 273.9

<2 205.6 ' 173.6 205.4

1 | 3 179.4 151.5 193
" 167.7 141.6 167.6

.5  164.2 138,7 164.1

P A U S

P = 65 psia
T = 70°F _
The speed of sound C is in FPS
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in bubbly flow is good, auccéss wasg ﬁot achieved in providing pulse propa-
gation speeds for separated or mist flowé. In these cases, experimenters
(287 have recorded single speeds of sound either at exactly.the isentropic
sonic velocity of the gas phase (purely separated) or just under the gas
sonic velocity (in mist flows). This has been noted.even though in sep-
arated flow the existence.of a continuous liquid layer suggests that two
speeds of sound should be observed with one representing propagation at
the speed of sound of the.liquid.

In any event the drift-flux model seriously underpredicted the
propagation speeds when Equation (28) was gsed for the slip function with
various values of Co'

Since neither a good dynamic relationship for v

gJ

in separated or annular mist flow, it remains to be seen whether the de-

or the slip exists

velopment of such a function would improve the results, It is possible
that the mathematical coupling inherent in the drift flux model (both Vm

and ng afe functions of both Vg and Vf) is responsible for_the poor

agreement since the successful analytic predictions in this type of flow
topology have all resulted from two fluid models which essentially un-
coupled [287] or lightly coupled [30] the interphase momentum exchange dur-
ing the wave pasSage; Fortunately, however, this problem is not signifi-

cant with regard to critical flow results for reasons to be explained later.

2, Choking in Two-Component Flow

Henry [50] has takén data on air-water critical flow in a straight
duct with a slightly flared end. The critical pressure was 17 psia and

the void fraction was measured by gamma-ray attenuation. In order to
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accurately check any properly formulated critical flow model, accurate data
on the void fraction at the cﬁoking point are necessary, This is true
because the mass flux (pmvm), which is the predicted quantity, is a strpng
function of o 6ver most of the void fraction range, especially at low
pressures where thé density difference between the phasés is large. If
only the quality X is measured, a reasonable vncertalnty in the value of

« exists since the slip ratio § is not accurately known. This occurs

through kinematic considerations since
1+ @.'_&) P
R s

Gamma ray attenuation provides a reasonably accurate means of measuring

K = (54)

the void fraction and the data by Henry are therefore probably quite good.

An isengropic evolution was used for the model along with the Armand
correlation fo; the slip ratio (C°:= 1.15) which was depicted in Figure 1.
The results of the analyéis.are'shown in Figure 6. Table 3 lists the

actual data along with the predictions and relative error. It may be

- seen that quite good agreement exists between the model and the data with

the error increasing slightly at higher void fractions,

I1f the mass flux predictions for a given o are used as an input to
determine the characteristic directions, one root apprOaches.iéro. This
indicates that froﬁ thé standpoint of the model the rarefaction waves no .
longer propagate upstream at the critical point. This is mathematiéally
anélogous to the single phase critical ;ondifibn and indicates that the

normal single phase relationship exists between the characteristic

%
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Table 3, Air-Water Critical Flow

o 6 ' : G

_ (measﬁred) (pre&?cﬁéd) EE{%£59 X 100 SEqn. (52)_ SEqn. (g:? " X 100

% %
277 4500 4382 - 2.6 4235 - 5.9
.336 4000 3860 - 35 3685 R
405 3300 3353 + 1.6 3178 - 3.7
474 3100 2969 - 4.2 | 2763 . - 10.9
.528 2800 2720 - 2.9 2480 14
.558 2600 2603 T T 2335 - 10.2

| .689 2100 2151 + 2.4 1764 T
b 768 . 1800 | 2014 | +11,9 1444 . - 19.8
| 817 1600 1733 o+ 83 1244 | - 22.3
f 860 - 1450 1409 - 2.8 1061 - 26.8
| 913 1100 989 - 10.1 815 - 25.9
964 640 552 - 13.8 s, - 19.4

99
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directions and the latent roots of the steady state system_(see Abbott [23] 1

for example).

At low to moderate values of the void fraction the same drift-flux
model predicts both wave propagation speeds and choking conditions ac-

curétély. This suggests physically that the mechanism for choking is

i&entical for bﬁﬁbly flow to tﬁe single phase analogué.

At high values of o where an annular mist condition probably exists
the drift flux model predicts the critical condition with reasonable ac-
curacy, but noﬁ the corresponding wave speeds., However, if the air-water
choking data ﬁi.Henry are analyzed in the high vbid fraction range, they
indicate that the speed of the gas in what should be a mist or annulér
mist regime is lesé than the speed of sound information indicates fof wave
propagation results., For example, at a void fraction of ,964, the recorded

quality was .0827, and the mass flux G = 640 lbm/ftz-sec. Since

Z = T = 08217 = Q‘?G‘f%&g)\!}_
' C;TDTAL : _

then

\fg = b3t FPs

or significantly less than the sonic velocity of the gas. 1If these data
are accurate, specifically, if the measured void fraction is accurate,
then the choking mechanism which is mathematically related in the drift

flux model to wave propagation may not. however be physically related to
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measured wave propagation results under stratified or annular mist condi- _ @;

tions.

Several researchers [19,22] have tried to conneét speed of sound
information with the critical conditions at high values of the void frac-
tion, but Henry'é'experimental evidence suggests that this is in error,
Mdte-good.data in.which both ﬁoid fracfion and quality are accuratély
measured may be ﬁeeded to clarify this point.

It does, therefore, appear that the single phase analogy between
wave propagation and choking holds for at least the bubbly flow regime in
two-cbmpOnent flow. The one-component situation is somewhat more compli-
cated, however, due to the relative impdrtance.of flashing. This point
~ is discussed in more detail in Appendix A. |

In order to formulate a simplified model to predict choking in.two-
component flow, the non-dimensional equations (33-35) were again examined,
this time using Vm as the referenée velocity Vo{_'After some rearrangement,
a fopm idenﬁical to Equation (52) was derived for vmcrit and the results
. tabulated in Table 3. It ﬁay be noted that in this case, at high mass
velocities, the effect of slip becomeé more pronounced than in the low
speed wave propagation case, and hence the more complete drift-flux mbdel
: pfovides a much better fit of the data.

If the éame.model is applied to Vogrin's [49] air-water critical
flow data, a large overprediction of the mass flux results; Vogrin took
his data in a convérging-divergihg nozzle using gamma-ray attenuation to
measure the void fraction. However, the éééie drawing ofltﬁe noz#le in-

dicates a very small axial radius of curvatﬁre'at the throat of the nozzle.
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This éuggests that two-dimensional effects may play a significant role in
the flow field in the vicinity of the critical point. This same pheﬁomenon
has been noted in siﬁgle phase flqw in converging-diverging nozzles [47;48)
-where the two-dimensiouél aspect§ of &he flow became important 1f the fatio
of the axial radius of curvature at the throat to the throat diameter was -
less than 1. As this ratio decreased,.so did the ratio of the actual
single phase mass flux to the mass flux prediction, based on a one-dimen-~
sional analysis [a7].
This suggests that the inclusion of a covariant term to account

for the two-dimensionality of the velocity profile in the vicinity of the
critical point migﬁt be useful in correlating not only Vogrin's data, but
]algo critical flows in sharp edged orifices. It is assumed that the most
significant covariant term is the one appearing in.ﬁhe momentum equation
(Equation'(3)) since this term accounts for ;he main_éffect of the two-
dimensionality in phe velocity profile, 1In fact, the as;umption of a
uniform pressure across the cross section wogld also break down, but this
would require at least ome additional constitutive equation for the preé—
sure variation along ﬁith at least one more covariant term., This informa-
tion is not presently available.

The additional term in the momentum equation is

33 Cov Cmr)
.

C.oV Qw.om T) | = (-a) {’s_-cov Ve ve) + A 93, 60vag- V)
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The individual covariance terms represent the difference between
the average of the velocity squared and the square of the mass averaged

velocity (a positive quantity in cocurrent-flaw)
| T AV S
Cov (VL'VK) = <VK K™

These terms may be approximated as some constant b times the mass averaged

velocity squared or
Cov (v W) = b < Vid® = by v

(In laminar single phase fully developed flow, b would equal 1/3. 0f
course, in fuliy developed flow which is not cur condition here, -

§; cov (mom T) = 0 by definition,) If in additiom, it is assumed that
the primary regime of interest is a turbulent bubbly flow at intermediate

values of the void fraction, we should be able to use a single constant

to describe both covariant terms, Therefore

cov (Vs vs) = bV
and
CovV (_\ﬁg' \i;;) - ED\Jé;'

S0
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a'ég \-_C.ov Cmom T)] = %} L( 1 =ol) PS- b V; |

ropgbve]

If these additional terms are added to the momentum equation with b = .8,

¥
3

|
5
it

]

significantly improved correspondence exists with Vogrin's data. What

this implies is that as the critical point is approached the velocity pro-

files become more irregular, which would appear to be a reasonable assump-

gt tion. Table 4 lists the results of the original choking model (Isentrépic

et em b et o e e P

i flow, Armand correlation)jcthe improved model (inclusion of covariant term),
and some predictions Vogrin included in his report.
£ While it must be noted that the correspondence of the modified pre-

diction is still far from excellent, it is clearly better than either the

PR TR A T

éé : original drift-flux model or the two predictions included in Vogrin's re-
o port. Iﬁ would be expected that a better fit of the data would occur if

b were assumed to be a function of void fraction and pressure, or possibly
simply P .Howevee, the purpose of this is to show that for a giﬁen ori-
fice orlnozzle a covariant correlation coefficient may prove (in the same
sense that nozzle discharge coefficients are used) to be useful in accommo-
dating theIEWe-dimensional aspects of the flow.

It should also be pointed out that the insertion of the covariant

S T R U PR

term is related to the inclusion of partial derivatives in the interfacial

shear stress relationship used by some investigators [45] with a two-fluid

B

a1 ' model, However, it is felt that the formulation suggested in the preceding
section is more representative of the correct reason for the inclusion of

the derivative term than that advanced by Boure, et al. [45].

e O Ykt P U -t L e


fj.Lt

| G.,-@
f P!:hroat paia czt:hl:'e:)at: Gdata Gpl : Gp2 _szi;T]2 X 100 GhomogeneOus GFauske
| _*
19.9 .47 2119 3232 2410 + 13,7 990 4400
- | 33.8 640 2140 3255 . 2422 +13.2 1200
. 52.8 O .698 2119 3734 2784 +31.4 1380 6950
| 31.6 .568 2960 3494 2602 - 12.1 | 1546 |
28.4 . .839 1280 2000 1492 + 16,6 710 2380
ﬁ 46.8 .878 1305 2025 1510 + 15,7 876
f 31.5 540 . 2960 3632 2712 - 8.4 1500 4690
Tow 709F

G in lbm/ftz-sec o . _
Gpl was calculated on the basis of an isentropic assumption with the Armand correlation
sz same as .(';]?1 with covariant coefficient of .8 '

! Chomogeneous _ X _ '

: : G two predictions included in Vogrin's report

Fauske

(43
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'3.__Range of ngérbolicitx
Fdr a givéﬁ set of pressure, temper#tﬁte, fluid constituents, and
void fraetion, an iﬁerative procedure (starting at G = 0) was used to
determiné the rénge of mass fiux'over which the characteristic directions
were real, This establishes the extent of the region over which the method
of characteristics can be gpplied.ahd also seems related to tﬁe'stability

of the solution obtained when other methods of finite difference integra-

- tion are employed.

For two-component air water flows at low préssutes the roots were
always real'whén Equation {27) was used for ng even_wheﬁ thg mass flux
was increased to twice the value of thé critipai condition for the given
gituatibn.._lf the Armand correlaﬁion was_used (co = 1.15), the absolute

range of hyperbolicity was reduced to less than the critical value of the

mass flux as low o's, but the value of the imaginary part of the roots was -

on_the order of 10-?. Under these conditious the complex roots were also
not conjugate and due to the_small magnitude of the imaginary part (wuch
smaller'.thap' the accuracy of the root finding subroutine) it is suggested
that this represgnﬁs a numerical aberration in the root solution. If a

value of 10™° for example is established as the minimum magnitude of the

. imaginary part of the characteristics for the purpose of determining the

range of hypérbolicity, then the required mass flux is much larger than
the predicted c;itical flux for the given set of.conq1tidns.

This indicates that the drift-flux model may Ee successfully used
in thé numerical integratiﬁn of two-component flow problems up to and in-
cluding thé critical condition. Some investigators have had difficulty

with specific two-fluid models due to a_limtted-range'of hyperbolicity.
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4, Conclusions

The following conclusions may be drawn from the present investiga-
tion.

1. The drift-flux model can sucecessfully predict leading edge
pressure pulse velocities in bubbly two?comppneﬂt floﬁ. At low mass
fluxes the simplified form (Equation (52)) is very accurate and may be
substitutéd for the full_model.. Af higher mass fluxes then it would be
expected that moré and more.deviation from Equation (52) would result
although no data exist to support this conclusion.

2., At low mass fluxes in bubbly blow Vm is the.appropriate refer~
ence velocity for the pulse propagation. As the mass flux increases, the
model suggests that the ﬁropagation reference velocity may deviate from
Vm. Again, data taken at high mass fluxes are needed to verify this
assumption.

3. The drift-flux model will not provide the meésured propagation

velocities in separated or annular mist flow. This may result from the

' lack of a good dynamic expression for ng or the slip under these condi-

tions,

4, The model does provide good agreement with the critical flux
in straignt pipes for two-component flqw. The correspondence of the model
with both critical flow and wéve propagation in Subbly flow indicates that
the Reynolds mechanism for’ichoking occurs in bubbly flow. ~In annular flow
the choking mechanism is 3uggested by the Reynolds mechaniém'with the

éonic condition of the mist being the criteria, but more good two-component

. data are needed to clarify this point.

o =z
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5. The two-dimensional aspects of a flow in sharp edged orifices
and nozzles can be successfully handled by a covariant correlation.
6. The_rénge of hyperbolicity appears sufficient to allow the

successful numerical integration of the equations up to and including the

ceritical condition.
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APPENDIX A . &

WAVE PROPAGATION AND CHOKING IN ONE-COMPONENT FLOW |

. If the model employed for two-component flow is applied to one-

component (steam-water) wave propagation in a bubbly mixture, the picture %

becomes less clear. The frozen isentropic model corresponds reasonably

well to data taken by Karplus [26] and Henry, et al. [28] (see Figures 7
and 8), but the large amount of scatter makes it difficult to conceive of

any sort of model making accurate predictions. If the same formulation is

used on data by DeJong, et al, [44], the model seriously underpredicts their

14 _ results, except at very low o, even though the regime should clearly be

ﬁ{ " bubbly flow, The effect of non-equilibrium may account for the discrep-

L

: ancies and large scatter, although this is still to be determined.

.[;: : .

£ - If the same frozen isentropic model is applied to the critical flow

fi:  situation the results consistently overpredict by wide margins the avail- T

i [ able data (see Figures 9-11). This suggests that the effect of the flash- i3
:. ing pregent in critical flow contributes significantly to the conditions - ﬁ
at the critical point. 1In general, it appears that while the wave front

in one-component wave'propagation travels in a substantially frozen manner,

T

o

the critical condition is representative of non-equilibrium flashing even

o joicunan:

though, as previously mentioned, the large degree of scatter and inability

of a frozen model to predict some of the available wave propagation data

leave some room for doubt. This difference between wave propagation and

criticai fldeconditions is however physically appealing. The wave front

PRI 5 DU SR el e T P T U U S S,
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Steam-Water Data from Ref. (26)
: (p = 10 psia)

-Author's Frozen Model
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400 4
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C(FPS)
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Figure 7. One-Component Pressure Pulse Speed
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Steam-Water Data from Ref. (28)
(p = 40 psia)

Author's Frozen Model
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é: - represents the leading edge of the pressure pulse in a mathematical sense

- although in actual fact some effect of the pulse may be felt ahead of what

il
(.
»

N .

by the 1-D model predicts as the wave front, due to the fact that the isen-
[ . .

|

L

e
piyivy

o= tropic speed of sound of both vapor and liquid are higher than the observed

oy

ﬁ. and predicted average velocities of the pressure pulse (except at high o's

i b

Wr

i~ and as @ » 0). 1In the case of critical flow the observed choking point
;? however is situated near the center of a region in which there is a large

:§ ' pressure drop, This suggests that in the case of one-component choking {

ir _ the concept of frozen equilibrium cannot be supported as indead the data ﬁ
indicate, Numerous authors (for example [51)) have suggested that such

non-equilibrium effects are important, :

In order to account for the effect of flashing in one-component
flow, J. Boure, et al. [45) have suggested a constitutive equation of the

form

e P

o daig | dati
= o + G4 Ta3” + C2 743 @

RS

T,

where

f&l.é}_ S - Iigi (fip’};‘) i'. i:}.4urt (.7’).

Alg= = ts (PyTe) + ‘:S-éai: ) | it

However, no mention of the functional form of C1 or C2 was made nor were i'

any results presented, If elementary kinetic theory is examined, a simpli-

fied more explicit form of Al may be deduced, The net vaporization flux
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in evaporization_from reference [52) is
Jv = oy (Psyr =P) f o Vo |
v v {Fsar C2rmmkr) (42)

where @, is an evaporization coefficient = 1. However A2 is derived on
the assumption that the external pressure field has no steep pressure

gradients in the region of interest, If we define

AP = P-Psar

and consider a region where such steep pressure gradients exist, but where -
variation in T’% is small compared to this pressure variation, then from

a first order Taylor approximation

.PS ‘tc.?z?mkr)%T_S AP +'S-(dap )%] “

If we assume in the vicinity of the critical point that

é%% » constant, then A3 may be rewritten as

ﬁu.ﬁ(v

3 pa_,o + ATC(S dA) U.Tfml('l')"". daéi? . (a4)

where

| 1 m.dv dA
Mo = Ac  (@WmxT)2 Si; AP a5
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If we assume further that the pressure non-equilibrium AP is small

Py
i
!
i
SL
4
A

and consider the isothermal process (almost isentropic) at Tg between Psat

'and P then

rm

Tdd/ = AL - pgc_lP "‘-‘uAi.--i-;é_Ap %o

-

555 R R T

or AP = Pg Ah where Pe is assumed to vary less than bh,

TR
i

=@
"

et
P

Since Kl_ I gdAs should be a strong function of the void fraction
: Tc * :

we have upon conversion to British erigineering units

A LT LR
ARl

: . C:v erﬁ) (’ﬂl Ci.(ll. s .
% Thie ¥ “GROR dp® 00w

where Cv is a constant for a given critical pressure.

. This is;of course a-highlj simplified analysis, but if

F) = Cr-a)'? 6
and Cv is-aIIOWed_go be a function of the pressure at the criticai point,
reasonable correspondencé with the da;a is showm {(Figures 9, 10, and li).
of course,.only the second paft.of.Equation AS entérs into the détefminant
which.provides a prediction of thé coﬁditions_at the critical point.

For the meodel diaplayéd in Figures 9-11, é valug of'Co = 1,1 was
used with a cutoff alpha ofHBO% of the value at which the slip ratio be-

comes infinite. The reason that the reduced cutoff was used (rather than

the 907 used previoﬁsly) was because-a.slight hook occurred in the prediqted

' s gr iemao oy
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Steam-Water Data from Ref, (50)
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Figure 9. One-Componént Critical Flow
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curve in the viéinity of the cutoff alpha if the 90% figure was used. In
additio-n’,'a ¢, of 1.1 pro.vidéd a slightly better fit of the data than the
Co of 1.15 used eariier and, of course, provides a slip ratio in Ehe same
range'as that suggested by Hénry, et al, [50]. While a.mofe complex func-

tibn of o might provide a somewhat better fit of thé data, it was felt

- that .the simplicity of A6 outweighed any gain in aceuracy achieved through

greater complexity. Also, 1if more good data were available (where o is

" measured directly) at varying pressures, :hen a functional relationship

could be derived for C_ and of course provide a better test for what is

admittedly a highly simplified model of a complex phenoﬁenon,

The suggestioﬁ here is that in single component flow wave propaga~

tion informatiqn may not be ﬁirectly related to the critical condition

as it apparently.can in tﬁo—component bubbly flow. In single component
floﬁ, the critical mass Veloéity is smaller (except as o - 0, 1) than that
predicted by the sort of frozen model ﬁhich.may be used to predict wave
speeds in most of the available data. ThisléhOWS the importance of flash-
ing iﬁ critical flow although from the standpoint of the model, the Rey-

nold's analogy still holds up.
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'APPENDIX C

PROGRAM WAVE

DINERSICN 51050981 151, G0 1512 AU B o XU 4D
DIMENSICN ALLL4AD)
DIMEYSISH ABtIS)
DIMERSION XYL S35Fs YMVMI 5051
DIMENSICH CE 481+ Ef 614 Bl 40 4)
DIMNENSICN XX14)
COMPLEX AsX
REAL K1
EPS=+ 0000
) KMAT=ZC0 :
(" Ia=isAIR NEt STEAM
WRITES God771
477  FORNATUIHe 23HIPPoKRE 2 120 IXK» T2 RHIM }
BREADt 52098 TPPskKE s I Zo JEKe I Yy RH UM
TR EEUN.LT-2.S10C TC 6780
IMmi
- BT TC 679
e7as IA=g
€792  IPU1Z=316777+ 6677 6777

6677  WRITBI6,9930) :

8% FCRMATUIR+Z5A HYPERBCLICITY TCLERANCE )
READL 5,998 EPZ
errr CONTINUE
998 FCRMATL)
_WRITEL 6, 20230 _
7855 FORNATOIB 1SH CONe C20 CUTSRF ?
READ! 5+ 55681 05Ny ALBs COFF :
IF(CCHLT+3+108 TC 6708
IJK=1 '
I1=Z .
_ 60 TC 5K
8S  CONTINUE
T 1=z
8530  CORTINUE
2 FORMAT (8FI1S.3)
. NRITELG.4700)
4700 TCRMATUIH+OH GAS EXP H
READI 5»998)K1
IFUIJE-CT=1)GC TC 476
"WRITE( 6+ 475)
475 FORNATO V4 EASIGHA )
" READC 5,990 56
476  Dim.1€67 .
. WRITE{ 689201 -
800C  FORMATIIHS26H CHoCFs DHC/DPs ALewy AL 14
READI 5+ 9981 SC25 A 12+ TTT3 TTAL» TTALI
PMIT2=C.s
TTT4=2.3
IFUIKE-E0- 1) GC T¢ 345
YRITE( 6+ 479)
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42¢
4207

4508
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"IFLIRJSGT.2968 T2 178

821
8c3

8cz

23

PCRMATLIH, 4HRCTH )
READI E+$38) RCYH
IFLIPP-GT« )G TO 4000
WRITEt 6 4201}
FCRMATY IA=80 PsTheTZ )
READI 5,900 Py T4+ T2 .
DS 1820 EJ=ieKKK - : , N
IFCIPP-GTs HIGD TO 40085 - '
TFUIPP-EQ- 1IGS TC 1234
T IRKIGT+ 136G 10 1856 ) . _
DS 1444 [=)1.KEK
READ( Bs 20ALLCDY S _ : N
AL=ALLLKJ)
Go 70 4508
READA 5+ 21 AL
GO TC 402
WRITEL 6+ 43271
FCRMATUIHA88 PsTeAl )
READU 509000 P+ TI+ AL
T2=1)
CONTINDER _
CALL DATtRHUMs Py The TZs AR)
CTI=ABI 1y
ROTI=ABI 2}
CTiml s A 4209220 )
CTZ=ARI M
ROTE=AB(4)
Di=ABL 5
UZ=A D1 6)
Ri=ARLT)
AZ=ABra)
CPImABI{D}
CP2=ABL I3}
ROL=ABTA 1Y _ - |
RE2=APL 12} : ' . ' . J
AN ImRTZR CT29% .58 _ : _
EJl=) _ it
IXJ=2 :
1I%=1 _
ITCIY-RB 1) €S 15 177 : !
101=AL :
AL=«C2T _ : '
IFIIKI-EO-I-CR-IZ-BOOSJGC '1'0 5“4
GC 0 164
RCM= (3.
COw32. 174

IFUIIK+ B0+ 12GC TS 170
IT(CONSGTs 4 4)GC TC 803
WRITEC 8:851) 00N
FCRNATL IRy 7725X | GISLIPut RSV /RC2)08 3 F3.2)
GC TC 175
IF(CON<CToZ+} GO TC 804
WRITEL 628521
FCRMATE 1My 2220 I9HH OLOGENCDS FLOW )
e TS 176 :
ALCUTCCFF/ALD

YRITE! 6:3551 AL By COFZs ALCUT . _

FCRMATE VB //1CT4H (Om o Pa2o 8X1IH COTCER 3 =y Fde 2, SK M ALw) F5e 3)
GC TS 175 :
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171

156

2050
. Ll
'

157

154

155

o 4]

il S [T S e o

94

VRITE {61 346)

36 FIRRATL IHwMIHﬂUBBLY FLOW !
178 CONTINUE

F=4

b 3 I- 1912
S I1=S.0

Ot )=3.C
GI)1=3.C

3 CONTIRUE

ALVula=AL
ABCH{ ALx*TTAL) o AL i« TTAL 1)
ROMRAL®RE24 ¢ Va=AL IS RTI
ALB=AL 7ALI '
St ZI=SCieROW
VH=R WM /ROH
IF (1JE-EQ. 1} TC 69
ALJ=AL¥%. 5
AL4s LI/ N+ ALT)
IFCCONGTs 14162 TC 156
SLal {RCH/RCZ 144 CCR)
SLAL=S+2 _
SLRSI=COR2SL/R2I
SLR{Z= (Nt~ SL ZRCZ)
60 TC 157
TFICINGT-240G8 12 159 ) .
Stx)el ' C : .
SLAL=ZeD o '
SLACI=S.R
SLRECZ=S.2
&5 T8 157
ALC=CLFF/ALD
IFAL+CT-ALCIGT TC ECC8
SLaAL L /8 0o ZALB~ ALY -
SLALs=SL /AL 1+ SLeALBAT 1 o= ALE= ALY
62 12 X00 .
SLul 1aw ALCY 20 ) o ZALB-ALC)
SLALw=SL /1 | o= ALC)#+ SE#ALB/t | «=ALBRALC)
SLRCI=T+C
SLRSEwS 5
SimSL~1»
D=l ++ AL®RCZ= 51 FROM
TRESI-LT-0.500581) 60 ¥ 154
V2VM=AL %S5t /TH
VER?wl AL 1 TMRRC2e S0+ S0 2 DEs Dl ROHD 2
Y2RI=RCH DR /t RE2% SI%S1I-AL/SY _
TEAL=l= 1o SInYM DN+ YZEPRA 0 ALo( RO2-RC 11 /RON) = ) o T2BA SLAL)
TERSI=VZRPaL CALRAL N ZRCM )+ VERB= SLACH)
r‘n\.‘-unhusun.mcm CAL/ROZ1+ V2B SLRSEY
G T 155
v‘.‘n_-v'v.
TERDI=S.2
V2RLEnl.3
TENIRS S
YeJ=ALI*SIn H/DN
¢TI N _
Vel led] YALIGONGORSCInmES)
Y2 m VL LA RS(=REZ) AARSIRRE) HImn £ 5}
VZROm{ Zo6E~1 148 1€ RGIXRST ) AL BOI~ROZ) P =751 &Y -
VORCImYERCHI A= ) o A RCISRCID I+ Zoa RO/ RO 12 320
Y2R{Zx~YZRC/URSISRSL)

R

U LA . e i i




'Zﬂt-:ou
vaL'v'v .
71 IMIKI-CT-2) GS TC (76
IFLIT«NE=1) G2 T2 176
DS=Lt) e=X01 ) /XQ1IHIROZ/BSN 14 5L
FR=AL~ 1+ DS+ (4}
FRI=lodt e 21 D51 o) eaZe} duD e SLAL/SL
AV AL~tFF/FFU}
ACsABSUAT~AL)
AL=AY
14§ 2381 £X
TFITE«GTs200) 85 TS 19
IFIACSGT=2ZC1) 6L T2 179
176 COHTINUE
MAIN BODY -
S{11=s DITFERENTIAL TERMS FOR SHEAR STRESS
OV It= DIFFERENTIAL TERMS FOR HEAT TRANSFER
. GtI)= DIFFERENTIAL TERMS PCR MASS TRANSFER
Pepwldd-aGl .
Y2XNmd o A CTERw e 5)
ROn{ BOM 2 RCISROZY)
PITI=t < AN 1 26 ABCERRSEY A ¥2XX)
Clin | FuROEGI L)
L1 10 2)mBosGE 214 ALMTZTN
ClIs MaROGIIN+ 1.2
Ot e &1m WU+ RS 7RONINVES+ ROMCE 404 AL Y2AL
. WE2Twt ALaAL | FREZIRROTE
VI2X=ALe{ VZRCZ# ROT24 4 ALY /RC2 144 W RS)/RONI# V2D )ROTRY
IFtIANE: 1} €C 10 654
EVL=(IRT={<3 ATt TE/PY
Go 1T 656 '
€54 EVL=(TZ/1REZEREZ) 10t~ ROTH) /L CP20TT8 o C)
&56 CCRTENUE
YPTwALwAL 1#i CTE/RCZ=CTH/RGH)
VPX=ALel TERCIMCTEH VZROZRCTZH LALSAL 0 /RS2 bt mmcuneu:ﬂdl-crg—t
TAL®AL | FRC1 It Y- AL Do RCZZRON 1A TZS )0 CTL
1141 =§ AL®AL Y 7RSI 1eRCTI
YHX=AL#E FERCINROPE-CAL S /RCUISE VM= AL Du R2E ZRCHIS Y2114 RCTN 3
TTTI=TTTIH770 /1 44+ '
TTT4xTTT4=778+ /) 44~
YT2E=TTEN-C ﬂﬂacrzuno-m--cc
TTIX=TTIN =1 TTTe%CPI 1R RONTTB 0 GC
CYPI=RORTIT IR Lo /RO TR ROT2ZF A RO2aRE2) - TTT&:
CYPIRCYR |+ ROFTY T2 | fn,|+lruscr|mnc|-nc|:-mu
TP TTT 0 1 444 /770
TTT4uTTT4n | 44+ /778
YPYa¥PX-CVPI
1F (K1-CTe540) GO T 30
- Cf LeSImTPTe ROKGL 5)
Tl Ve BYmTPI+ ROCGA 6}
€1 1, 7)=¥THT TTZT+ ROHGA 7Y
€t 1,81=FTIX4 TTZX+RORGLAY
6o 1C 3t
30 CUV5tmVPT* EVL& Y T2 T+ ROWCL 51
C¢ 14 61 VPY+ EYL VTZX+ RO GH 61
CLEeTI=TTIN ROSGLT)
€1 BI=VTIXs RO$GIAY. -
30 CONTINUE.
CLZe 1)l
CLZs ZImBIH

95
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e, LY
B 3

€t 2, 31mRC2-R2I
Cl2e 4t Pt REZ=ROIT
CPXmTMS (AL {4 CTIALRCTES
CPT=ALE#CTI+ALACTZ
CT 1 TeALI*RSTI
CTI X WAL ISROTI
CT2TwAL*ROT2
CTZYX= MFALRROTZ
- ITHEL.QT-2.8) G 10 &2
€12+ 512CPT :
€12+ S¥=CPY
CO20 T1=CTIT+ CT2T
CLZ+81uCTHI+CT2X
8 TC 33
32 Ct2¢51mCP+ EVLACT2T
. ‘ : Cl2+ 6= CPX+ EVLECTEX .
g Ci2s71CN T
: : C Cf2+BI=CTHX
# 33 CANTINUVE
i- : TANLL ¥ £ .i-sc:./z.)
- Ca32e (AL/ALVY R RVII/RE
: : YMSCVMEVMES LA/,
: S LA SYMSCE (RE2-RifL)
.- : SUNSCHIRDE /4.

WRLATY S TWAE T . _.
e e e e T e o Kadalh e e

il SC2)ESCIIROE, b
1 CL3:3)RIMNHL 9.0/ PED ¥S(LY
| CLI,2)SROAXVAEL 4, 0/DEIRSLRYHCI20VAVM
C(33)=L4,0/DEISS(I>
CARNE (ALD/RY I WD 3wa Ju(] ./ (AL R AL~ (csdmu)/kdmnc.smm
CL3, §reCAT (b / DE) ¥5L4)
CAPXzL, +{ALD/RIEVIIR(V2TNLL, /m-.au/séﬂ)*cﬂwznu /R¢2- AL/Rd«

:nm:n $2. MV RGARCTAH 2. RVIEEZ $CT2)
CMPRS CAPK+VASCS (ALRCTA+ALINCTLY
CAMTIX® CALD/REISVIINCVIIN(L. /RILALL/RIM) B CTL 4. BVIL§ANETL)
ENTRXE CALD/RD) AVI I8 (V2 T(L./RI2AL /Réa)urz ‘2.4 mvncm
© CNTIX S CNT I K+VMICAALIARGTA
CATIA = CATIX 4 VASCHALIRI T2
IFL.6T.0.0) G TO 34 , _
£C2, CIFCMPH LA /DEINSEL)
“’-?{5 BT CATAK+EMT X4 /DEINS(8)
e s
B €03, 6 ISCMPRACAT X AEVL (4 /DEIRS(E)
£.03,8) “CMTI X+ LA 7DEYES (B)
35 cu;s se(d, O/BEINS(S)
c, TITlY, /Dy ST
CONTINUE
HITHIAT76. 560
H2sH2H778. 860,
CPARCPiAT7E. #6C
CPARCPINTTE . NG
DHEH2-H1
uuaumamdupumm
PPI=Pi (RJ1L-RP2)/ (RbzaRd1>
C(4;2)= €. /708 (1)
Ce¥,2) SALINRIS ANL4ALE l!bzuuu-(f}./DEM (=3+C4uvzm
Cedy 302 RP2ANZ -ROARNIHL 4 /DEI ¥ HLI)
| CL 433 Y2 TRRIA/ CREW RW)wmmcnpmz-emww-lscﬂ /Dncr.m m

s _ Gl e
ENPT=ALLK (4. +CTA/RET yARET L suxeTA >+Au(.1. +c|-z/a¢ z)wnmmru -1

NP ;mtAm((rukm:zm-rmcﬁin (T 2/RO2 D0 RET 24-H2%CT ) I4-(AL
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ANVLYREN #( CT24R$2 /RILINRGT 2= (rauk$2/ 24D 3 RITIHOH2ALERG LARP 2 €T/ R

2B DHRALIARIL £ REIFCTR/RIM + (AL ¥ D4 /ROI ¥ (VIRGIH CTIwvaRGZHCTL
ENTAT=ALAX (RILACPLHANRAT D
" ENTIXS VMRENTST + (AL# V2X7 ROM) ¢ (- R RO 4CPI4DN #ALIRS 24 REU RET1/RIMY +

AT e
TLTEAL Y (RGN P 2eH 2N .
ENT2X s WEENT 2 T4 ALV ZY/ ROW 4 CRIIRRDZ ACPL+DNRALANRIL ¥ RFSX R T2/ R +

 JALEDHRVRRFRITZ/R
- ENTLX2ENT2X4 TTTARCP 29PPQ
EATI XZENTIX+ TTT262PI¥PPY
ENPX=ENPX+CVRAEPPI/RD
SIFKI.G . 0.0) GP TG 26
Cl4,8) 2ENPT+ (& /DEJHPLE)
£ G1) EILEAPK + (G /DEIHO(S)
Ly A= ENTITHERT2TH ./ PEIRG LY
C-w_i_g)-.-tmr K+ENT2X+Cth/ DEI¥D(B)
G 37 .
36 CUHSICENPTHEVLARNT 2T+{4, /DEMQLS)
CLh &) SEHPREEVLAENT 20+ /D 3]
L4, ISENT) T+ /PEYRGLT) :
CLAE B ENT 1K+ {4 /DR WP CRY
37 CPNTINUE : _
< THI S CYMPLETES THE CALLULATION OF LI, J)
Paps Ol 44, ¥Go)
HAZRA/CT78 . .8GCY
Hazhz/ CT79. %60
CPA=CPI/ CTT8. 5 6CY
CP2=CP2/L77B,#G)
JFCIXE. EQ.2) G3 TP Jéo
IWF(12.GT. 1) &P TP S58
" WRITE(b; 78) _
38 FPORMAT CAROHEKIOR C(LT) >
D 39 T, 4 :
27 WRITE(L, 41 ) (CCT, ki) KKTl) B)
41 FERMAT ( IWO,2X} PBE1IO. 2)
< THE NEXT PART CALCULATES YWNE VALUES SF THE 16 DETERMINANTS
558 CHNTINUE
pé 100 Iri 4 -
BlLrA=CQ(T4)
B(I;z)-.cma')
B DX,
100 BT ¢)xeiz; 7)
CALL DETER(R,D)
ACSDTCMPLX (D O3 0)
D¢ 201 I3 ), 4
201 B(I;3)=C(T,6)
CALL DETERLS,D)
E)=-p
0¢ 202 T, 4
BT 2 =C(T; 4)
22 B DS
CALL DETER(B, D)
B =D
P 23 Isi,4
B(L,2) e, D)
203 B(1,4)=CCI,3)
CALL DETERCEB,D)
EC3a-D
DO 204 Irind-
: BCT,1)=CCT2)
204 B(L.4)=0C1,7)

[Tt LA

P Mt - R pirais 3 el R s AP
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CALL DETERCR.DD
EC4)e-p
) YEO'O )
P 56 I=i1,4
50 XwY+4E(1)
AL4)=CHPLY LY, 0.0 ;
gg? ‘g'-c“’ L ' '
< I, i . : : it
301 B eeer &3 B
CALL PETERCLE:«D}
Eé13=p i
DfF 302 Tel, 4
BT, 3)=C({1,5) : -1
302 BCT,4)20C1L,9) o : : 5
GALL DETERCE, D)
EC2)=p )
PP 03 Ts\u 4
BCE.2)»CCL, 3)
803 BLT,3)=C(L &)
CALL DETERL(A,P)
EC3H~O
L) 304 r'l;‘
BLryto=C(X,2)
BLT,2)nlCI,3)
P04 BT nCLE,T)
CaLl, DEYFRCB,D)
£ np
D@ 368 T ,4
BLL,3)LCI,X)
308 (I, g2, M
CALL DETERL(B.:D)
E(3}*D
D¢ 3046 I=1,4
BEI,23=CAT, 4
306 BCS,4y=Ce, T} ) -
CALL PETERLE;P) BN
ECEYP '
Yagd:0
PP EY I8
It YaY+ELD)
AC3) 2CMPLXCY; O, 0)
P 401 T=\,4 :
4ol BCI, 33wCeF, ) :
CAL\ BETERLS, )
B Y =D '
Dd 40% T=l,4
B(r 3 =CLL,S)
462 8L aymCCT,E)
CALL DETERCB,D)
FC2I8-p
‘PP 403 T=i,4
BET 2 »CCT:3)
4033(!;33'#3(1’.6)
CALL DETERLE, D)
ECAyr=pD
0D 404 31=1,4
BT, 1)=CCL, 1)
404 BCL,2)=C(Lsa)
CALL PETERCE,P)
E(8)u-p
"'.o.ﬂ'
b 52 1=1,4
52 Y=Y+R(LY
AL2)=CHPLXLY, 0, 0)
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W 300 1".4
JO0 BLL,1}=CCI,2)
CaLL DETER(B,D)
ACL) =CHPLY (D, 0.0)
(FCIZ.EQ.- ¢80 T sqq
&0 T 16}
160 CONTINUE
PP V6L Ixi,4
BCL,1)sCL1,42)
aLl.2ymeCr. &
BT, 35aLLl, 6)
162 BT, 4)=CLL, R)
CALL, DETERCP.,P) .
TFCARSCLO).LT.0.001) 68 78 163
IFCIKJ 6T.508) 6¢ To n
VHVMCIK I} oV
XX CIM ) uD
XY )exXyead
PekIILFG.-2Y 68 TO 1)
ZeXYCERII /XY LIRI- DD
6 T8 12 .
Yy ZERY (I A XYCIKI-2)
12 IFCZ.LT.0.0)60 T¢ 19
.51 IFCKII.GT- 1360 T¢ &
IF(IKI.GT.505)GF T8 19
VMeVME {0
RO VH=RIMEW
] 813 (AT
VHVMC 1K) wv
G¢ T 1713
17 IF(KJL.GT. 1360 T 1§
T VMR YHVHC IKT=13 Y+,
VHVMC T ) Vi
ROVH» RO W
KJFaKJI+t -
IKSsIns el -
TFCHIT-GT. 01D 64 TP 1q
. 62 16 115
1T VRVH(SKT) VM
- TFCIZ.NE-3)G3 TG 512
C LFIKIT.EG.AYET TP 573
VMEVYNVHCTRT =1 )
G T 18
315 VH-\MVH('IKJ-Z:
: ¥ 1O 15
572 GONTINUE
TFCNIT.EQL2) 60 T 14
VA CVH=VHVML TR D= 1) 3% =K LTI = 1307 (D =XY (I~ 10 ) +VMVMETKI - 1)
"alff(ﬁ:-ﬂl P, ENLTIMS~ L) ]
@ 1% 1S
14 WASCVH-UHVIL IR S=2) TRE=XY¢ rm-annp-:n m-z.nwnmc.ru-z;
WRLTEC &, 41 YD, XY (EKS-R)
15 REVH=ROWMeM _
EFCIZ.EQ. 2008 TP 161
&P TP 163
19 WRITE(6,20)
TFCIZ.EQ. 2360 TO 1000
20 Foauncm,ﬂmuar)
163 CONTINOE
WRITECE, 166) 1K :
166 FERMAT/1¥,20X23HVUMBER OF TTERATIONS = .+ L4)
VRITS(G:!M)W;RWH
144 FRRMATL 1M, 20K 244CHAKING NASS VELICITY = 2FLO. 4, /20X20HEHMING
tHASS FLUX = sFi12. 43 _



lFCKJf-6T.ll

AR

100

161 CONYINUE _
. WRITE (6,555 -
555 FORVAT (TH ,52H ALPHA TEMF1 TEMR] PRESSJURE MASS FLUX

I >
WRITE (6,2) hL:T1,T1,P.ROVM
FET2.6T- 1) 62 T¢ 559
IFCIKK-GT.4) GF TG 356
p@ 307 Ini,4
30T WRITECS, 41D (BT, KLY, KL=h, 4D
556 WRITE (6, 646)

466 FORNAT (I14,51H ROTI Rél DIA ENTHALPYZ ENTHALPY! 3
:’mtr (6,2) ROTY,RBI,DE,HZ,HI '
RVTE (6,255 '

z .

55 rORMATCIN, 424 cpg o2 a3 EXP SIGHA p

WRITEC6,2)CFL, CP2,KT1,38
WRLTE{6, 112)

112 FOMMAT(Z1H, 508 W) VZRY ! VLAO: VIAL Vi )
: K V2,3, VARG , VAROZ ) V2AL, V2VH
TR 113 g Rt VR VAL

T WRITE 6, 25%)

237 FORAAT(/1H,37TH  RiM v Wt _ Az . .Y

WRITE( &, 23R, W, 2L ,REL

11V FORMAT (1id,\P12E10. 3:1)
APl 7CT 1%, i P

JCTL) #e.

RSTBORATY

Q67 FﬂRHhrtllu,loxsuaoc F1.1,5x3HkF= FT.2)

559 CONTINUE
VASVH-ALDSRALAV2)/ ROH
VZIVHRE L V2 )/ REM
VI2AL I3V sAL®V2
SLi1pavzsvy
VJIzALL#VIL
VJZEAL ¥V2
VWiln (V1 sRE | ZAL I SVZSREZSALY 7 (R L 7AL L aROZ/AL)
VVWWa (VI RAL 1/ RP I+ V2RAL/ROZI/ (ALL/ RO AL/ RP2)
VYRxv2-V}
Vi Ju ~ALAVR

V2 )ad), 14 VR,
VIVIiaVi sVO /AL
WRITE (6,333 .
332 FPRHAT (flu,1zu vi ¥n vz

(144
. WRITE (4,3348) w,w\,v:-. suv,w
2334  WEAWATCIM, 6F14.2)
IF(IZ.67.1) & 1O 551
' WRITEC 6, 135) o
135 FORMATC(/ 1M, I8 V13 vag It T

i ¥ .
WRITE (6. 33HVIT,VII, VN, VT2
551 XQ=ALARP2L VL REIVH
WRTTE L6, 339G _
339 FORMATL/1H, 25X OHQUALITY = 1F1. 4
IFCIRT.BT.2) 60 TP 1000

5483 CONTINUF

ACaleA(4) /1 (REAL CA(STIYY
A=A () /(REALCALS YY)
AC2I=A(27/ CREAL LA(S?))

I LT
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ACVI=AC VI 2CREAL (ACS DY)

&LS):CHPLX(I- ,0-0) . .

THLS SECTION CALCULATES THE VELDCITIES OF PROPASATIDN
CALL RPOTCP CA.M, EPS, KMAX, X,4,399)

A=N41 ELEMENTS REPRESENT ING GBEF. PF POLINGMIAL

N= PEGREE PF POLYNOMIAL :

EP3e YWAY DIFFERENCE BEVWEEN SUCESSIVE APPROXIMATIONS OF A ROST
KHAK= MAX NE OF LIERATIONS

X=ROETS OF PoLNEMIAL

J= ROPT COWVERGENCE (WD LCATOR

J*N LF ALL ROATS CONVERGE

IFJ IS LESS T _ _ . _

iF J 15 LESS T HAN W THER JTh geeT FAILED T CaMVER{E,
1I¥ J 1S LESS Thad N THEM JTH ROeT FAILED TO CINVEREE
FOXY= AD 4 ALX "' Vv vy afdeal

TFCIZ.NE. DGO TR 29

po E42 1=21,3

PDZ=ABSCATMAGIXCTI) )Y

1FLDRZ. 6T.EPZ)GD To 17

VM I K D =V

ép T® 571

99 WRITE (6,383 4
88 FORMAT (1H0,20X14,6HRDOTS b

po 95 1-21,.5
XELTIISCABSLX LTI

9% WRITE (6:,97) T, XC1¥2XXCI) .
29T FORMAT C1hy T4, 2XF1 2.5, 201PE1S. 4,2XF12.5)

XX1=XX(1) =V .
XX3= (~KE(Q) #XK(4) 572,
AX4x¢ XKL XX (D I72,
IFCTJK.EQ- 1)62 TO S%9
XX2=XX(Z)=VI=VJI FAL
WRITE (6, 2%9)

389 FORMATL/ 711, 10X80H ROOTI-vy e RERT2-VEISILAL vP
AR _

. G® T 221

SPEES OF SOuMp o ?

-5 BT XX2=XK(2)-V2

WRITEC6,399) -

:aﬁ?l' FORMAT /7 LW, § OXQOM OTL -V . Roorzewz

SPEED QF SounD. ) y

222 WRITE (6,223 YR|, XX2,X%3, KX 4
XA FORMATL(H, 3x4no.£u . !
1000 CBNTINVE

BMD

-

i
I3

:
“
G-
g
i
¥
i
b

¥,
¥
1

1

PR S R T
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_ . SUBROUTINE DETER(B.,0) = _ e e e
DIMENSION Bi{4,4)

e DITBLI1N(BLI,2INBL3IHDLA,4)-8(2,4)4B14,3))-B13,2)¥(8(2,9)4B (4
X14)-Bl2,8)%8(4,3))1B(4,2)¥(B(2,304003,;4)=D(2,4)%B{(2,;3})) _
DZ*8C2, )0 (-B(1,2)%(0(3,3)98(4,4)-B(3,4)7B8(4,3))48(3,23¥(BLL,IBC__
13,80 -B(1,4)%8(2,3))-B(4,2)%(B (1,3 )MB(3,4)~B(1,4)%B(3,31))

e . DBeBU3,2)6(BLL,2IW(BL2,3) #8484 )=BL2 ) INB(4,33)-B(2,2) % (B(1,3)¥B(4
1,4 1-011,4)%8(4,3) 48 (4, 21%(BL1,3)98(2, 4)~BL1,4) ¥3(2,3))) :

. DB(4,1)0 (-B(1)2) ¥LB(2;3)¥B(R,$)=B (2, $)¥B(33)) 98(2,2) #(B(1,3)¥B( ___

T 43,4 )-BU1,4)%8(3,31)7B (3,2)¥(B A, 3)¥B 2,4)-B(1,4) M (1,2 )

OsD14D2ADINDY

RETURN ~ 7~ 7 ;

END

e
4l

MRSy o s L 4 Gl

2t




SUBRIUTINE DATC RHUM, P, 1 5 T2, AB)
1 FCRADM. LT 0. 0) GO TO 1500
1Az
GO TO YE0O
7500 1AL
1500 CONTINUE
DIMEASION ABIS)
IFCTI.6Y.640.) Go 7D 540
H1= 99934307 1-492..)
Cpinted
Haz-4ITH(T=492.341075.8
GO PO GO

500 tF(T™M-GT.760.) GO To 331
Hizi 01 6n{ T =66D-)4 ] 56797
LT AT
H22.IIPNCT =460 )4 1 145,9
&0 TH G

- S84 JFCHTBSO,) GO To 381
12 108 IZRUTI="T60 . )4 203 « 5
eP|2).08
W22 20 ANV~ TED I 1120T
GO YO 600

S8 1FLTI-GNBI0.) o TOSEB
HiT4, 103 M-860:. 3427487
[AJEZPY]

Rac 06u ¥1-Q60. 341201,
G0 To tbo _

523 IF(VI-G™960.) 60 TOSBY
Hix b 15wCTe=9(10:)44 320, |
cPIzie iy
A~ 0NITI-210:) #1204+ 6
Go To 60D

S84 P38, 29200 Ti= 1040 )4 987.8
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