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SUMMARY 

The problem of wave propagation and choking has been examined 

analytically for gas-liquid flows. A drift-flux (mixture) model is 

employed and the solution is provided by the method of characteristics. 

The main thrust of the research is to produce a model which can 

predict the critical flux in two-component gas-liquid flows in conduits. 

The characteristics of the set of equations are examined and compared 

with speed of sound data and conclusions are drawn between the conditions 

at the critical point and the speed of pressure pulses in the system. 

While the main emphasis of the research is on two-component flows some 

one-component work is presented. 
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CHAPTER I 

INTRODUCTION 

The purpose of this research is to produce a unified approach to 

wave propagation and choking in two-phase (gas-liquid) flow using a diffu-

sional or drift model. The solution of the equations is by the method of 

characteristics with the main emphasis on two-component mixtures. 

1. Significance of the Problem 

Transient phenomena are often observed both in nature and in en

gineering systems. In many cases a knowledge of how rapidly pulses travel 

through the system is a prerequisite to being able to describe the transient 

behavior of the system. Thus in fluid flows a knowledge of the propagation 

of pressure pulses in the fluid is often required. 

Additionally, in some flow systems, it is observed that lowering 

the downstream back pressure does not increase the flow rate through the 

systems. This is referred to as choking and is very important for the de

sign of nuclear reactor safety systems, refrigeration devices, chemical 

process units, pipe lines, etc. 

The relationship between longitudinal pressure pulse propagation 

and choking is well understood in single phase flow [l] since choking occurs 

when some point in the flow is at the sonic speed and pressure pulses are 

unable to propagate further upstream. The situation is not so clearly de

fined in two-phase flow. 

Unfortunately, most analyses of choking in two-phase flow have 
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attempted to draw no parallels with wave propagation. This is due both to 

the incompleteness and incorrectness of the governing differential equations 

used to describe the phenomenon as well as the inadequacy of the mathemat

ical method of attack. 

It is therefore very important that a consistent and complete model 

be constructed which can describe both wave propagation and choking in two-

phase flow. This is important not only to provide the predictive power so 

necessary for flow system analysis, but also to establish correctly the 

connection between wave propagation and choking. This investigation con

cerns itself with the development of such a model. 

2. Objectives of the Investigation 

The present investigation has the following thesis objectives: 

1. To apply a consistent one-dimensional mixture model for two-

phase choking flows and wave propagation with an emphasis on two-component 

mixtures. 

2. To compare solutions provided by the model in order to estab

lish connections between choking and wave propagation in two-phase flows. 

3. To compare the results predicted by the model to available data. 
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CHAPTER II 

STATE OF THE ART 

In single phase flow a direct connection can be made between the 

classical one-dimensional analyses for wave propagation and steady-state 

choking (i.e., the choking point occurs when the mean mass velocity equals 

the velocity of propagation of pressure pulses). In multiphase flow the 

investigators of choking flows have often not attempted to connect the two 

phenomena, which is a consequence of the various methods of attack adopted 

by the investigators. The literature on each subject will therefore be 

reviewed separately, drawing parallels where possible. 

1. Categories of Models 

Field Equations 

In order to describe a two-phase flow system by a one-dimensional 

analysis, three broad approaches may be used. The first is to describe the 

system as a homogeneous single phase analogue with one overall continuity 

equation, one momentum equation, and one energy or entropy equation. 

The second approach is to write a two-fluid model using separate 

continuity, momentum, and energy equations for each phase [2]. The jump 

conditions at the interface are also required to define the system properly. 

It must be noted that some authors use a hybrid model combining, for ex

ample, one continuity equation, two momentum equations, and one energy 

equation [3]. This hybrid approach is however inconsistent. A good listing 
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of the variety of equation groupings used by investigators is found in [4]. 

The third approach is to use the drift-flux model in which one over 

all continuity equation, one overall momentum equation, one overall energy 

equation, and an additional continuity equation for one of the phases, all 

of which are written with respect to the center of mass of the mixture are 

employed. This is the approach outlined in this thesis. 

Once the field equations have been established, thermodynamic, 

thermal, interphase transfers, and mechanical constitutive equations are 

needed to effect closure or, at least, assumptions about those equations. 

As in the case of field equations, a large variety of different sets of 

constitutive equations have been used by investigators. One comment should 

be made; many authors refer to their assumptions of flow evolution as in 

thermodynamic equilibrium which means that (T-*-),- and (~) were evaluated 
dv f dv'g 

along the saturation line. In fact, a two-phase flow system can only be 

in thermodynamic equilibrium if not only the pressure and temperature are 

equal, but if the kinetic and potential energies and surface forces are 

equal across the interface [5]. This essentially never occurs in practice. 

2. Methods of Solution for the Choking Problem 

There are four general strategies that have been used in an attempt 

to solve the choking problem. These are the experimental correlation, di

rect assumptions about the choking condition, the wave front model, and the 

determinant method. Each will be covered separately. 

Empirical Correlations 

This is the oldest method and, of course, does not require the 

establishment of the proper field equations. Burnell [6] developed an 
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equation for predicting the critical discharge through square-edge orifices 

Gc</r/c4i-~ Y ^ ^ c ff. LRjesTReA* ^ CI''SAT) 

where C1 is an empirical constant. Zaloudek [7] examined choking flow in 

short pipes and found a correlation in the form: 

<W<i= c * l / ^ P f C W * * " ^ 
C9 was a correlation constant. 

A number of other correlations exist [8,9], but all suffer from the 

defect inherent in a model which does not utilize proper field equations; 

that is, a question of the utility of the correlations for other fluids 

and flow conditions. 

Direct Assumptions About Choking 

This is a large category embracing quite a varied group of litera

ture. The formulations begin with a highly simplified set of field equa

tions which are often incomplete or incorrect and assumptions about the 

conditions at the choking point are then made which allow a solution to 

be found. The difficulty with these approaches is incompleteness and ar

bitrariness. Full sets of equations are not easily handled by these methods, 

which often impose arbitrary choking conditions. This raises serious 

questions about the applicability of the results. 

The simplest model is the homogeneous equilibrium model (no slip, 

thermodynamic equilibrium) resulting in: 
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where 

G* - (-) 

v-H^z ( / -x ) 1% +ZVi 
J 

The derivatives of P with respect to v are then evaluated along the 

saturation curve for single component media or isentropically or isotherm-

ally for two-component flows. Unfortunately, while the procedure is simple 

it is inaccurate, always underestimating the observed critical mass flux. 

It has been used as a reference for correlations [9]. Reference [10] in

cludes a section on making the necessary calculations. 

Many authors have arrived at a similar form for the choking mass 

flux, i.e.: 

G1 '•- J ^ \ 

The differences in the models of this form involve the definition of v and 

the assumptions used in evaluating the partial derivatives. Seldom do the 

authors try to connect their (5"") with the speed of sound (squared) because 

of the lack of a formal consistent approach. 

Isbinjet al. [9] used a relation 

\y.Tt*- vi'O-x)' ^ = ^ +. J£'--J* 
<* o - *o 

file:///y.Tt*-
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and the Lockhart-Martinelli correlation for the void fraction to evaluate 

the choking conditions. Massena [ll] employed the modified Armand correla

tion for void fraction. Both assumed thermodynamic equilibrium. It must 

be noted that v is not the proper mixture specific volume [2], 
m 

Faletti and Moulton [12] used a homogeneous approach and supplied 

a direct functional correlation based on steam table correlations. An in

teresting part of their experimental work was the use of a surface active 

agent (detergent) to reduce the surface tension. They noted no significant 

change in the value of the choking mass flux, although the static pressure 

at the choking point changed. 

Moody [13] wrote energy and continuity equations and claimed at the 

hG ?sG 
choking point that (r-r) and (r—)c = 0. This assumed among other things 

do p op « 

that the slip ratio S and the pressure are independent which they are not. 

Moody arrived at an expression for the slip ratio which is identical to 

3/H 
Ziv i ' s [14] , i . e . , S = \l • He was then able to solve the equations using 

w Li 

the upstream stagnation conditions for the critical mass flux. In a later 

paper Moody [15] used momentum and energy equations as well as a friction 

factor to extend this idea. Moody's most recent work is discussed under 

the wave front model. Unfortunately in no instance does the author present 

a complete set of mixture field equations as a solid basis from which to 

start. 

Cruver and Moulton [16] wrote overall mass, momentum, mechanical, 

and total energy equations, and then defined four specific volumes: 

Area specific volume: 

t-C^L""^1 
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Momentum specific volume: 

± 
/c Arc 

Kinetic energy specific volume: 

«. - Dk isv3dAlK 

Velocity-weighed specific volume: 

J VdA 
trv _ OATO ^ 

They also assumed that the change in mixture entropy (incorrectly 

defined) was equal to zero. 

Fauske [10] using simple momentum and continuity equations and the 

?̂G 
condition (r—) = 0 arrived at a formulation which included a fixed slip 

dp' 

ratio of 1/ • This form corresponded with the experimental data better 

than most of the past analyses. But Cruver and Moulton [16] showed that 

this slip ratio did not produce the maximum Fauske thought it did. Fauske 

in conjunction with Henry [17] later modified his analysis to include in

terphase transfers and for one component flows at higher pressures a no 

slip condition at the critical point. Additional assumptions of somewhat 

dubious accuracy were also needed to effect closure. 

Levy [18] evaluated (r^ ) such that ds = 0 at the choking point. 
"v

m m 
However, his equation for the mixture entropy was not correct [2], 
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A vapor choking model was used by R. V. Smith [19] to obtain a 

relation for the critical mass flux. He assumed the choking condition oc

curred when the vapor velocity was at its local sonic value. This completely 

arbitrary supposition is made less realistic by several of the experimental 

speed of sound investigations for annular dispersed flow [20] which recorded 

lower velocities than the speed of sound of the gas. 

Wave Front Models 

Several models have been formulated which assume a wave front at 

the critical point. Conservation equations are written across the front 

and the choking condition is determined. 

Moody [21] derived overall continuity, momentum, and energy balances 

across the wave face along with four mixture specific volumes: 

v£ = v*z(xf ±^) 

where 

u * = xi^fd-x)/^ 

and two mixture enthalpies: 
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i* = xig. + Q-zOJif. 

I = x L} + Q-xO <-Sr 

He arrived a t : 

^ CAiTSCAL V d Dn̂ v / 

where v is not the true mixture specific volume. He assumed frozen condi-
m 

tions and either an isentropic change for each phase or homogeneous flow. 

Moody's results were in reasonable agreement with the data used. 

Another wave front model was proposed by D'Arcy [22]. After writing 

continuity and simplified momentum equations for each phase across the wave, 

the equations were solved assuming an isentropic change for each phase and 

frozen flow (no mass transfer). D'Arcy employed the empirical void frac

tion correlation of Semenov and Kosterin [35] to complete his set of equa

tions. His results showed only fair correspondence with the data. 

Determinant Method 

Several recent investigators have begun examining choking in two-

phase flow by the necessary condition that the determinant of the coeffi

cients of the partial derivatives of the field equations goes to zero at 

the critical point. Mathematically this is an offshoot of the method of 

characteristics [23]. The advantages of the procedure are twofold: it is 

a degenerate case of the wave propagation situation and hence the two phe

nomena may be investigated easily simultaneously and it is a procedure 
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which allows difficult sets of equations to be handled simultaneously and 

with relative facility,, 

Giot and Fritte [24] proposed a two-fluid model (six field equa

tions) and investigated the choking condition. Numerical integration of 

the equation for several interfacial shear expressions showed only fair 

agreement with the data. The authors also proposed a mixture model which 

was not written with respect to the center of mass. 

Katto's [25] model included an overall continuity equation, separate 

momentum equations for each phase, an overall energy equation and an energy 

equation for the vapor phase. Thermodynamic equilibrium was assumed. The 

results of the analysis showed fair agreement with data from Faletti, 

Zaloudek, Fauske, and Moy. This "mixture" model is however not consistent [2] 

and cannot properly account for nonequilibrium effects. 

Ogoasawara [3] wrote an overall continuity equation, two momentum 

equations, and a total energy equation. This model like Katto's is not 

complete in the sense that nonequilibrium between the phases cannot be prop

erly accounted for, and in fact, thermodynamic equilibrium was assumed. In 

addition the equations were not written in a properly integrated mixture 

form. 

Boure,, et al. [4] examined a two-fluid model including the appropri

ate jump conditions. The authors imply that a mixture model is, of necess

ity, incomplete; which is not true if all of the proper constitutive equa

tions are known. In fact fewer constitutive equations are required for a 

mixture model than for a two-fluid model, presumably making it easier to use. 

An examination is made by the authors into the consequences of 
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assuming different forms for some of the constitutive equations. A very 

good discussion of single phase choking is presented with some interesting 

ideas that tend to dispel earlier ideas on isentropic evolution. 

3. Methods of Solution of the Wave Propagation Problem 

It must be mentioned that the problem of interest is the determina

tion of average wave speeds and not such effects as scattering. Four methods 

cover the majority of approaches in the literature; the single equation 

"thermodynamic" model, the wave front model, the linearized plane wave model, 

and the method of characteristics. 

Single Equation "Thermodynamic" Model 

Writing a continuity equation and simplified momentum equation for 

the mixture and assuming a mixture equation of state of the form 

• r-Kr~>i) 

with constant q, yields upon a small amount of manipulation, 

with q normally being the entropy s. The form of the equation is identical 

to the single phase case, as well it should be, due to the obvious and un

fortunately incorrect [2] similarities between the single phase and two 

phase sets of equations used in the derivation. The differences between 

analyses of this type center on the evaluation of (:-*-) and, except for the 
dp 

case of a quiescent mixture, which is essentially impossible to obtain, the 
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analyses fail to mention what this velocity is with respect to. This is 

a serious defect when high speed flows with the possibility of choking occur. 

The simplest formulation for this model is the homogeneous assump

tion utilizing an equation of mixture specific volume of the form 

vrH •=•• ti-£yvs -hX^ 

and either thermodynamic equilibrium or an isentropic assumption ds = 0 

and an equation of mixture entropy of the form 

^ = 0-*)-*$ + ' K - ^ 

Karplus' report [26] is typical of this analysis and his agreement with the 

data appears reasonable largely because of the large scatter in the data. 

The homogeneous assumption (i.e., V = V^ is never found in practice and 

will only approximate real behavior in the case of low void fraction bubbly 

flows. 

Grolmes and Fauske [27] employed the correct definition of the mix

ture density, but then made a homogeneous assumption with either frozen or 

equilibrium evolution. The frozen, homogeneous model showed good agreement 

with their data. ' • ' 

Henry, et al. [28] incorporated the slip ratio into the evaluation 

but since the original equation = (r^)* is not derived from a complete, con-
P 

sistent set of equations and since the wrong mixture density was used, the 

results must be viewed with skepticism. 
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Radovsky [29] considered a phenomenological relationship for the 

non-equilibrium thermodynamics of a multiphase mixture experiencing a pres

sure transient, and was able to provide results analogous to the frozen 

and equilibrium sound speeds of a reacting mixture of gases, including the 

effects of dispersion. 

The Wave Front Model 

The basis for the model is the concept of a linear velocity trans

formation equal in magnitude to the speed of the traveling wave superimposed 

on the system so that the wave is effectively frozen. As a minimum, con

tinuity and momentum equations are written across the interface and either 

a differential (wave) or a finite (shock) change in the variables is con

sidered. 

Henry, et al. [28] is typical of the formulation using both mixture 

and separated flow models to describe the flow. Unfortunately, as pointed 

out in [2], the equations as written are not sufficient to encompass thermal 

non-equilibrium effects and do not form a properly integrated, properly 

averaged set of equations. Their formulations however do take into account 

the various flow regimes and show reasonable correspondence with the data. 

D'Arcy [22] used a separated flow model employing continuity and 

momentum equations for each phase and solved the set by establishing the 

compatibility condition that the determinant of the coefficients is equal 

to zero. Except at very low void fractions (< .1) and for stratified flow, 

correspondence with the data was not good. D'Arcy did however indicate 

reference velocities for the wave motion. 

The Linearized Plane Wave Model 

This model proceeds by writing separate continuity, momentum, and 
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energy equations (two-fluid model) for each phase along with assumptions 

about the interphase energy and momentum transport and then linearizing the 

equations. The standard acoustic assumption that the perturbations can be 

expressed in the form 

^ „ i Ciot - k z ) 
CLC 

is applied to the equations and a speed of sound, including dispersive ef

fects, is the result. 

The advantages to the method lie in establishing the speed of sound 

as a function of frequency (dispersion). The disadvantages are that small 

perturbations only may be considered and explicit relations for the inter

phase transport normally used only apply to small bubbles. In addition in 

no instance are the initial equations the true integrated balance conditions 

over the phases with the associated jump conditions at the interface [2]. 

Mecredy, et al. [30] calculated the dispersion effects for small 

bubbles with a low relative velocity or slip (stokes flow). Their high 

frequency limit corresponded reasonably well with established data. 

Hsieh, et al. [31] considered only homogeneous flow and defined an 

average mixture specific heat and coefficient of heat conduction of dubious 

accuracy. No comparison with available data was made. 

The Method of Characteristics 

The method of characteristics is a powerful mathematical tool which 

is used in the solution of hyperbolic differential equations. To apply the 

method to two-phase flow wave propagation either a diffusional (mixture) 
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model or separated flow (two-fluid) model is established with the appropri

ate constitutive conditions and equations of variation. The necessary con

dition, that the determinant of the coefficients of the partial derivatives 

is zero is formed, and the characteristic velocities are obtained. 

The advantages are that complex sets of equations may be solved 

simultaneously (albeit numerically), the technique is a direct extension 

of single phase experience without the necessity to make too many debili

tating assumptions, and both the propagation velocities and the velocities 

with which the wave motion is referenced are obtained. 

Several European investigations [4,32] have been published on the 

method as applied to a separated model. The equations used by Boure, et al. 

[32] are exact integrated formulations with the appropriate interfacial 

jump conditions. The work is still in progress and no published comparisons 

with data exist at present. 

It is the purpose of this investigation to apply the method to a 

diffusional model proposed by Zuber and Koca [2]. Their diffusional model 

is mathematically less complex than the separated flow system (four equa

tions vs. six) and internally includes the explicit effects of interphase 

momentum transport and heat transfer. 

4. Conclusions 

A few final observations should be made on the state of the art of 

two-phase flow wave propagation and choking. The approach to these problems 

has often been haphazard and interconnections tenuous. In the case of wave 

propagation seldom is a flow velocity given as a reference for the propa

gation. This is a consequence of the fact that the majority of the 



investigators have not used the method of characteristics as the solution 

tool. When the method of characteristics was used, it was either with a 

two fluid model or with an improperly formulated "mixture" model. It is 

felt that a properly derived set of mixture field equations coupled with 

a solution by the method of characteristics would provide an advancement 

in the understanding of the complex phenomena of wave propagation and 

choking in gas-liquid flow. 
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CHAPTER III 

ANALYSIS: FORMULATION OF THE PROBLEM 

The purpose of the analysis is to apply a consistent mixture model 

to the problems of both choking and wave propagation in gas-liquid mixtures. 

This chapter discussed the governing set of equations, the assumptions made, 

and the solution technique by the method of characteristics. 

In the present analysis the two-phase flow is represented by a set 

of four one-dimensional mixture field equations derived by Zuber [33] and 

Kocamustafaogullari [2]. These equations are time smoothed and space aver

aged and are written with regard to the true center of mass of the flowing 

mixture. Reference [2.] contains an excellent discussion of the advantages 

of using such a formulation to describe the system dynamics. This formu

lation has been successfully applied by Ishii [34] and Saha [35] to the 

problem of flow stability in a duct with boiling. 

The equations in general form (with the assumption of no suction 

or injection at the flow boundaries) are as follows: 

Overall conservation of mass: 

^ 4-ijCf-v^) = -P-V^-a^CM/J ( i ) 

Void propagation: (conservation of mass for the vapor phase) 
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where: 

— * • = - s — J . \ / -s— 

(2) 

and 

•BL _ -^- l l / r ^ T 
£>t - «^t + Vs 2? 

Momentum equation for the mixture: 

«L % ^ ;•=• - | y V i j X + &> ga (3) 

+ fccJftV-5-^^. ^ ^ <^(^-r) 

" " t c f e ^ J X O P K W J ~ ^ w ) ' ^ K w ] - ^ } d i 

i 

I. ! i 
! >i 

w h e r e i, 
ui 

— MI'II 

I 

Ml 
I1' 

Mlf 
jil 
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Energy equation for the mixture: 

ifr"?. (4) 
sy 

- ^y { LCl-*) P* t * t U + °< P ^ , ^ ~ J 

- L o - ^ v w ^ ^ r ^ l } 

- p̂  v^ - Cc'-rftevi** 4- ^P|. Vj*J 

CVHOJ i»c^^re> -fe. ̂ ^ ^ 
•f- e*. CoV 

"a'.i'jj :*y 

- I5" i i [ w ^ ] ^ : + ^ , - ^ e ^ ^ ^ ^ 

It must be noted that these equations are written in terms of the 

true velocity of the center of mass 

U-A) fr *"* l°£ 
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We will now simplify the equations by assuming: 

(a) The velocity, temperature, and pressure profiles are suffi

ciently flat across each phase (turbulent flow) so that the covariant terms 

are zero. This may not be a good assumption for choking flows in sharp 

edge orifices [50 J'or converging-diverging nozzles [47,48] with a small 

radius of curvature in the axial direction at the throat. The possibility 

of using a covariant correlation term to correct for the two-dimensionality 

of the flow is discussed in the next chapter. 

(b) The interfacial source terms are negligible. This implies 

that the surface tension is not important to the flow dynamics. Under this 

condition: 

$u fc *) ij - ° 
and 

Jj. YS * Qm**» "3R* - o 

(c) Axial conduction is negligible. This means 

35 O 

(d) The viscous terms within the fluid are small so that 

T^K ~o 
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and 

w 

•^/hitA 

(e) A uniform pressure exists at any cross section, therefore 

This is a good assumption if the surface tension effects are small, the 

amplitude of the pressure pulses is small, and the flow geometry is such 

that the flow is substantially one-dimensional, 

In addition, to effect closure, the following equations are needed. 

These are 

The definition of the mixture density 

f~.-0--0-fr + olfy 

with a thermal equation of state for each phase 

(5) 

h" ff<?>r*> (6) 

and 

u -- e*0>,T*) (7) 
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The definition of the mixture enthalpy 

C/n. *"" 
<< fr c> +.0-*). h is. 

~ " Aw <8> 

with a caloric equation of state for each phase 

and 

it - i* & r*) 

(9) 

(10) 

Constitutive equation for phase change 

P^i - f j (ID 

In the case of a two-component flow f, = 0, which neglects the effect of 

dissolved gases in the liquid phase. For one-component flow, one possible 

model for T is discussed in Appendix A. 
g 

Kinematic constitutive equation for V.. which depends on the flow 
6J 

regime 

**> sVrJ = ri+^O'-in- (12) 

and either a slip function. 
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or 

S - SM 

" $ * * $ < < * * , * % > * • , % ) 

Def in i t i on of VV fm 

* « * V , - ^ « -T^ ?±V%-t 

Definition of V 
gm 

. _£ s It V 

(13a) 

(13b) 
) 

(14) 

V<?"* = V3- " V"* " ~fc~ VP <"> 

The equation for the drift stress 

Definition for the reversible conversion of flow work into thermal 

energy, 

§ L * = - G - °o « ?, *• Kf» - * « Pj !?• v5» (17a) 

where 
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and 

An equation for the wall shear 

v - s-

$W - ?* 

(17b) 

(17c) 

W ~ ~>3 (18) 

The relation between V£,V , and V . 
f m'. gj 

v>* V ^ - i - A . i f c . ^ ; (»> 

The relation between V , V , and V . 
g m' gj 

An equation for the heat transfer at the wall 

- S-LL (2D 
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Geometrical equations defining 

dA 
dy - h (22) 

and (for circular geometry) 

d — *?* 
^l {JUATC) - l>e <»> 

(23) 

with De a known function of z. 

After the initial simplifications, twenty-four variables remain, 

dA d i n ATC 
pc, p , p , V., V , V , V ., V. , V , P, T_, T , a, q_ , T ., "T", ^ — — , j, 
Hf Hg Km f g* m* gj fm gnr '• f' g* ' v w* dz* dz J' 
T ., $ _, TT_, i£, i , and i . gi mR D f g m 

Twenty-three equations (four field, nineteen other) have been 

enumerated although the specific forms of f_, f„, V ., or S have not been 

given yet. In addition to the aforementioned quantities an equation of 

thermodynamic constraint is needed to complete our system. 

Two cases are considered: thermal equilibrium 

-r T £5: £R 
'* ' d- AND <&> " ^ P (24) 

and the polytropic case 

? 

p > 

r* •- (LOhlSTMr (25) 

where n may vary between 1 and k. The effect of these constraints is dis

cussed in the next chapter on results and conclusions. 
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Since the method of characteristics is to be used as -the solution 

tool, we do not have to specify the exact relation for the wall shear or 

the heat transfer (f~ and f.). Rather, since the available data are for 

essentially adiabatic systems, we may neglect the wall heat transfer, 

i.e., f 4= 0. 

The wall shear determines the axial location of the choking point, 

but if the equation for the wall shear has no partial derivatives in it, 

it does not determine the conditions at the choking point since the method 

of characteristics examines the requirements for discontinuities of deriva

tives. Therefore, we need only specify that f,. have no partial derivatives 

in it, i.e. : 

K> - h C ?,v<~, V&j *j- - - ) (26) 

We are still left with the determination of the slip function or 

V .. It has been mentioned [45] that a two-fluid model is inherently 
gJ 

superior to a diffusion model because the additional two field equations 

do not require the assumption of a specific slip function (or a function 

of V .) or an equation for the thermodynamic evolution of one phase. This 
6J 

is misleading, because two additional constitutive equations, one for the 

interfacial shear and one for the interfacial heat transfer, are required 

to complete a two-fluid formulation. 

It is felt that it is both easy and reasonable to specify the 

thermodynamic constraint as opposed to the actual interfacial heat transfer, 

In addition for several flow situations, particularly in slug and bubbly 
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flow either V . ( in vertical flow) or the slip function (in horizontal 
gj 

flow) is known with better accuracy than the actual interfacial shear. 

In fact in the same paper [45] that advocated the superiority of the two 

fluid model over mixture models, three undefined functions existed in the 

interfacial shear term with an additional two in the interfacial heat 

transfer relations. 

For low velocity bubbly flow in a vertical column, Zuber, et al. [46] 

showed that the correlation 

V-j = A ¥/ W ^frCftz&I 
(27) 

provided a good fit for the data. Since most of the speed of sound data 

available in bubbly flow were taken at low mass fluxes in a vertical chan

nel, Equation 27 was employed under these conditions in the model. 

The majority of the critical flow data involves a type of bubbly 

flow [50] in horizontal tubes. As the void fraction increases, a transi

tion to an annual wave and annular mist flow develops [49], but at no time 

has pure annular flow with a flat interface been observed. 

For these conditions a slip correlation based on Zuber and Findlay's 

[46] model is appropriate. The equation that they derived is 

, 0-*)-
-A = ~~I _ — ( 2 8 > 

Co + <*>fri> V 
<UXJ> 

<av . > 
The effect of — j™̂ . . ̂  has been shown to be small at high values of the 

< ot > <_j > 
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volumetric flux j [46] and this term is therefore neglected. C will be a 

function of the flow regime and pressure at the choking point, but a value 

in the range 1.1 ^ C :s 1.2 was shown in the paper by Zuber and Findlay to 

provide good correspondence with data in bubbly flow. 

One difficulty with this correlation is that for a given value of 

C there is some value of the void fraction at which the slip ratio becomes 
o r 

infinite. From a physical standpoint C will be a function of void fraction 

and changes in C will occur with flow regime changes. To simplify the 

computation of the slip ratio the slip was allowed to vary as Equation (28) 

demands with a given fixed C until a value of eighty or ninety percent 

of this cutoff void fraction was reached. Then the slip condition was 

frozen at that value for the remainder of the range of void fraction. This 

procedure provided reasonable agreement with Henry's [50] air-water critical 

flow-data as shown in Figure 1. 

After substitution of the Equations (5-11 and 13-23) back into the 

field equations, our reduction is complete with the exception of the spe

cific form of V . and the specific thermodynamic relation between P, Tf, 

and T . Recognizing that these two relations will be inserted at the time 
8 

of calculation in the computer program, the equations then have dependent 

variables V , or, P, T,., and are as follows: 
m . ' • f • 

Void propagation equation: 

t „< sgij*£ <- tit.-<»Uj.(s^-fc(&}i]5S! 

(29) 
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•H^GWfc *KC*XtH 

- „/ y • --S- °IDe 
- ~ * V # t>e ^T> 

Overall continuity equation: 

Ik-*) 6 * * 4 11^ *• ify - M M (3o> 



=. - £ f^v^ "De 3 ~dry 

Overall momentum equation: 

fi.*fe* ffc.iL* -Sr^fr^CSli:)}^ «» 

v^^^bU-^^t^jiii 
• U^ijfr^CvCJt-^K^ 

- ^)c#-v * iGswjm J *$. 
^C^^L^-ci-fc)^). 

-t^-Sr^^i*^ 

ffc.iL*
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Overall energy equation: 

to-H H.n»fr« "**£*-V&Dlift „2 

- «»)£** ^ _ C4T)3} % ^->L%(#)P 

• '«<*W • * t$ C5H * h ̂ V J H 
^v-LO-^CfcC^W^O^W 
- ? C ^ ) > ^ 5 ^ - W ) , 
• (i» - i* ) ̂ « W r <i|" ^ X ^ X & X j l 

4 -̂ 01-*> L « ^ ) r • t^Xfcg 1 §* 

•^^^L-^^^-i,)^^] 
• - Nt tri'WWt '& - *•* Lt>c* 
<• ^ t f t U S & ^ V ^ y * * ^ , ] 

<- I ^ G , - ^ ) ^ ) ^ ) , }f* --ko-^fei, 
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The equations may be non-dimensionalized by using the following 

parameters: 

tV 

P 
P* = -

P v2 

Kmo o 

a* = a 

p* = 
m o Kmo 

Kmo 

T 
T* = —8-
g T 

go 

r .L 
r* = — £ i — . 
gi V p 

moKmo 
T 

T* = - " 
P V2. rmo mo 

"i-i 
o 
t -if 

Ai* = - 4 ^ 
o 

z* = z 
L 

V* = 
m 

V 
m 

V 
o 

V* = 
g j 

Zsi 
V 

o 

A p * = 
P 8 - P f 

"mo 

P 8 - P f 

"mo 

p* = y g ^mo 

TJ = 
Tf 

g * = 
v 2 

0 

i * = 
m 

i 
m 

V2 

O 

i ? = *f 

v2 

O 
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where V , p , T , and Tf are any representative velocity, density, 

length, and temperatures, respectively. 

The following dimensionless numbers may be defined: 

^CSfc) "w^C^) 

The dimensionless expanded field equations are: 

Dimensionless void propagation equation 

f^C-^LIfM^^Jflg1 
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*-

« 

""U^-^Ot 

'^'Vv^*^ 
- - «*# fr^fif n;; 

Dimensionless continuity equation 

£A* 

* 

+- VST Lt I-*•)*?, f * * M | } - | K 

+ J6-**)f^'j0 f {eCi-^H,}|5 
3> 

; * 
* 

= -* 0* dlDl" f/vw V,w J>* -gp-

(34) 
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Dimensionless momentum equation 

av£ c * ..* . <** tftf. *.. ? n •« 

u^s at* ¥ t ^ ^ + i-# 1& ty j M ^3* OS) 

,(ji*_Yp£P* / * x r - ^ c -A£1^2^\, "l&L* 

*^*J "%r v»* L ** c w#) "fr % tyJ ̂  
• 5 !• f&r ^ V$j Lvjj Cfc - ^ K 

* V3^t* ~%)M9 + aA/*J* M* 
^ ^ 3 ? «S - ̂  %HV^ I ^ - I J - U "sp - tvi-^ "K 'j 

- ^V-^v^JJl f * 

Dimensionless energy equation: 

(36) 
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-tf^^^Up^f, 

.'* ^ 1 ! IK + tv i Lc i ^oc^^ 

4- * * V̂  

^ M * j ] J I P + ! o ^ L « c ; ' * « ^ i j ^ 

+ ^^TtJ 1 « ^ ^ ^ * ; f A/ ?£* 
R«-^ A/^J * ' ^ fyfJfef "Sp-

^ ^ L f ^ ^ A i ^ } ^ , ^ , ^ ^ 

+ i* MP91 4- i ^ L T f* P*e* ¥ Ai2 ipk#L ~\ 
+ LdNry * HgHLff ft < V £ . I S T ^ * V 
f «<ffp/A"t« ..... AJL ?»7y---

* ̂  NffiHqJsffi. -
' i rttSto 
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-IviG-iOp/tf + vi ^eftf 

The specific form for V . and the thermodynamic constraint have of 
6J 

course not been included and are left as separate entities for flexibility. 

Equations (33-36) may be simplified in various ways which depend 

on the fluid properties at the point of interest, the range of void frac

tion of interest, and the type of phenomena considered (i.e., wave propa

gation is a transient phenomenon which may occur at low mass fluxes, while 

the critical flux phenomenon occurs at relatively high mass fluxes). For 

example, the compressibility of the liquid may be neglected under most 

conditions, but if alpha is very small (a -* 0) the compressibility becomes 

important. The complete equations were used for the numerical computation 

of the choking mass flux and propagation velocities, but a highly simpli

fied analysis of the choking phenomenon will be considered in the next 

chapter. This was obtained by considering only the first order terms in 

the void propagation, continuity, and momentum equations. 

The formulation of the problem is now complete. The next section 

considers the solution technique; the method of characteristics. 
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CHAPTER IV 

METHOD OF SOLUTION 

The formulation to the problem using the mixture model resulted 

in a set of four first order differential equations. The solution pro

cedure to determine the local critical conditions and the average propaga

tion speeds will be the method of characteristics. 

1. The Method of Characteristics 

If a differential equation or set of differential equations with 

the appropriate boundary conditions is solved, the solution takes the form 

of an integral surface or series of integral surfaces in a space formed by 

the variables. If the solution is everywhere analytic, then the Taylor's 

theorem may be used to extend the solution in a process referred to as 

analytic continuation. If however, the derivatives are discontinuous, the 

solution may not be extended across the discontinuities by Taylor's theorem 

and the solution space is not everywhere analytic. 

Strictly analytic integral surfaces are characteristic of steady 

state equilibrium problems (elliptic differential equations) while those 

involving propagation phenomena (hyperbolic equations) possess discontin

uities in the derivatives. It is to this latter group of problems that 

attention is now devoted. 

The equations which evolve under the conditions described in the 

preceding chapter are of the first order and it is therefore the conditions 
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under which discontinuities in first derivatives arise which is of interest, 

The following sections will examine a formal method for determining the 

characteristics, the application of this procedure to single phase wave 

propagation and choking, and finally the application to the present 

problem. 

Matrix Method: Consider a set of n first order differential equa

tions with two independent variables z, t 

a 
dXi 

II *y 
I 
» 

f cti-*_Tt ¥ - — v a,m., by 
\ 

Q 

i 
gXi 

mi $y + (XKIL 1ft ^ * - - - + a f * * * - | 
dfe-t 
3 i ~ ^ 

The equations do not need to be linear, but it is assumed that the a..'s 
ij 

are not a function of partial derivatives. Then we may write the system 

in matrix form as: 

11 

l n l 

12 

ln2 

l l n - l 

1 i nn-1 

0 

dz 

l ln 

nn 

d t 

>X 

I 

&Xt* 

dt. 

n 

d*, 

N 
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The second set of n equations represent the equations of variation 

for the dependent variables and express the fact that 

9\/*. t t dX 
dt ̂  dt 

To attempt to solve the set of equations for the values of the 

partial derivatives at a point in space and in time, Cramer's rule could 

be used. For example: 

?>X tK 

* * 

all 

a i nl 

dx 

0 

l x i 

dx 

Det a 

In 

nn 

dt 

where Det a. . = the determinant of the coefficients of the partial deriva-

tives. If the value of this determinant is zero, then the r~—'s and r — 's 
gZ ot 

are indeterminant and this condition represents the necessary condition 

for the propagation of discontinuities in the first derivatives (zeroth 

order discontinuities). 

In order for the derivatives to have a relationship to one another 

along the propagation paths it is necessary and sufficient that the de

terminant representing the numerator also be equal to zero. This holds 
dx. dx. 

true for the entire set of partial derivatives r—- and rr— . The expan
ds ot 

sion of the numerators yields sets of ordinary differential equations 

valid along the characteristic paths. 
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2. Single Phase Flow; Wave Propagation and Choking 

In single phase flow the wave is considered to be a small pressure 

perturbation which is mathematically represented as a discontinuity in the 

first derivatives of the dependent variables. Abbott [23^ has a good 

discussion both of the method of characteristics in general and this prob

lem in particular. 

The one-dimensional continuity and momentum equations for a pure 

fluid (in the absence of body forces and shear terms) may be written: 

it . v f t +. f *v 
at 

a O *" V "§£ + T d> ° (37) 

av. . .pwdv. • 2 £ . . _ n <38) 

In addition an equation of s t a t e i s reqtiiredlc 

t> = PCf,-*} 

and the assumption that the process is isentropic 

Expanding (39) 

(39) 

(40) 

and substituting back into (38) yields 
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P $ , fv%«m£ 
(41) along with (37) and the two equations of variation 

may be written in matrix form 

V 

a* 
o 

i e' o 

o ev T 

at 
a* ^t 

r ^ " 
V "1 

o 

..ft 
am-

O 

ap 

a* 
L At. 

dv 
• • m 

(41) 

(42) 

(43) 

(44) 

If the determinant of the left hand array is set equal to zero and 

expanded the characteristic directions 

*X - y t\/m 
are obtained. Boure, et al. [4] showed that the isentropic assumption is 

not required per se, and in fact, that the overall flow may not be isen

tropic to allow the propagation of the discontinuities to be an isentropic 
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evolution. It is also possible to write the continuity, momentum, and 

energy equations for single phase flow and if internal shear stresses and 

conduction are ignored, the same result [8] is obtained without the ne

cessity of formally assuming an isentropic process. 

The critical condition for single phase flow occurs when the fluid 

at some point reaches the sonic velocity and pressure pulses can no longer 

propagate upstream to affect the flow. This may be examined for the steady 

state case by considering the condition that 

V f 

(81 N 
or 

Vcs/r,c«. ~ V v t ) * , 

Thus, the method of characteristics provides a bridge between the examina

tion of pressure pulses and critical flow. This technique, well proven 

in single phase flow, can be extended to the more complex two-phase flow 

situation. 

3. Two-Phase Flow: Wave Propagation and Choking 

The employment of the mixture or diffusional model to two-phase 

flow problems results in a system of fdur field equations. Four variables: 

V , a, P, and T p remain after the constitutive equations are inserted. 

= o 
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The problem then assumes the form 

Void 
Propagation 

Continuity 

Momentum 

Energy 

all a12 a13 a14 a15 a16 a17 ai8 

a21 a22 a23 a24 a25 a26 a27 a28 

a31 a32 a33 a34 a35 a36 a37 a38 

a41 a42 a43 a44 a45 a46 a47 a48 

d t dz 0 0 0 0 0 0 

0 0 d t dz 0 0 0 0 

0 0 0 0 d t dz 0 0 

0 0 0 0 0 0 d t dz 

r av& 
~5t* 

dV& 

"W 
at* 

(45) 

AT 
dt* 

*?» 
"H* 
3]£ 
dt* 

djfc 

I *V. 

dv 
m 

da 

dp 

dT, 

whe re the a ^ ' s a r e l i s t e d in Appendix B and 

F i = 

F 2 = 

F = *3 

^ ' ^ o * v ^ ^ * ' 
* 

^ ft? dy* 

- ?/v̂  VAW "5| -gfpi 

- t-P/^""TTb J t>* <k§* +" D ^ ^ V0o 
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F4 = 

If the determinant of the coefficient array in (45) is expanded 

dz* 

about the last four rows a quartic equation in -rrr results. The coeffi

cients of the quartic expression are of course functions of the a..'s. 

The roots of the fourth order polynomial are obtained numerically and 

represent the characteristic directions for the mixture model. 

Steady state choking conditions were obtained by considering the 

reduced array of the coefficients of the spacial derivatives. 

a12 a14 a16 a18 

a22 a24 a26 a28 

a32 a34 a36 a38 

a42 a44 a46 a48 

= 0 (46) 

The mixture mass velocity V was iterated for a given set of condi-
m 

tions (pressure, temperature, and void fraction) until condition (46) was 

satisfied. 
Although other values of V might satisfy (46) (the trivial solution 

V = 0 exists if the slip function is used to provide a value of V .)» the 
m r g j " 
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procedure used provides the value of V and hence G (i.e., o V ) most 
m rm m 

representative of the critical condition. 

The range of hyperbolicity was also determined by an iteration 

technique to determine (for a given set of conditions) at what mass flux 

the characteristic directions became complex. This information is needed 

if the equations are to be integrated by the method of characteristics 

since the roots must be real for the method to apply. 

4. Program Wave 

The determination of the critical mass flux, the characteristic 

directions, and the range of hyperbolicity was accomplished by a computer 

program written in Fortran IV for use on a Univac 1108. The program is 

straightforward and a copy appears in Appendix C. The rather lengthy 

nature of the main body of Wave was dictated by the desire to incorporate 

several slip models and thermodynamic constraints into the program. The 

subroutine Deter generated the values of the four by four determinants 

needed in the expansion of (45) and (46) and the subroutine Pat provided 

the thermodynamic information needed. The ideal gas equation of state 

was used for the calculation of the vapor properties for two-component 

(air-water) flow. The effect of relative humidity in the gaseous phase 

was considered. Since single-component (steam-water) flow was to be exam

ined in Appendix A, the properties of steam were included in subroutine 

Pat. The equations of state for steam and for the liquid were calculated 

on the basis of the equations appearing in Keenan and Keyes Steam Tables [53]. 

The actual solution for the roots of the quartic equation, necessary 
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to determine the characteristic directions, was provided by a packaged 

root finding subroutine which is a part of the computer library for the 

Univac 1108. This obviated the need to write a separate subroutine to 

perform this function. 
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CHAPTER V 

RESULTS AND CONCLUSIONS 

The results of the analysis are presented in separate sections for 

wave propagation, choking, and the range of hyperbolicity for two-component 

(air-water) flow. The section on the results for critical flow also in

cludes a discussion on the relationship between critical flow and pressure 

pulse propagation in two-component flows. 

1. Pressure Pulse Propagation in Two-Component Flow 

a. Bubbly Flow 

Henry, et al. [28] have taken data on pressure pulse propagation 

in vertical tubes under bubbly flow conditions. The speeds recorded repre

sent leading edge data and the results presented in this section ignore 

such effects as dispersion and scattering. 

Using Equation (27) for V ., the four roots representing the char-
5J 

acteristic directions are always real under the conditions tested (0 < a < 1, 

25 psia s P s 65 psia, T = 70 F) even when the mass flux inputed is in

creased well beyond the expected critical flux for a given value of void 

fraction and pressure. 

One root was always the mass averaged velocity of the liquid Vf and 

one was always the mass averaged velocity of the gas V . The other two 
© 

roots were assumed, from the single phase analogue to represent V -C and 
P 

V +C, respectively, where V is the velocity relative to which the waves 
P P 

were propagating. C would therefore be the speed of sound. 
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It was mentioned in the literature review that many of the models 

used to predict the speed of pressure pulse propagation do not indicate 

what the fluid reference velocity is. This could prove to be a major flaw 

if anything other than very low fluid velocities are considered. 

For the specific function of V . used in this model (Equation 27) 
gj 

V was exactly (within the accuracy of the root finding program) V , the 

velocity of the center of mass of the mixture. This was true even at low 

values of V and relatively high values of the void fraction where the 

predicted slip ratio might rise to a value of two, and where V£ « V 
1 m 

so that a clear determination of V could be made. In addition the prop

agation velocity C was independent of V . 

It must be stated, however, that the model does not require this 

particular function for V . to prove effective. If one assumes homogeneous 
oj 

flow (S = 1) or the Armand slip model (with 1 < C < 1.2), the propagation 

speed results reproduce those obtained with Equation (27) within 4 percent 

for the range of pressure and void fractions (or < .5) tested. 

In any event it was determined that the best results over the widest 

range of a occurred when an isentropic evolution (polytropic exponent 

n = k = 1.4) was assumed for the gaseous phase. Figures 2 through 5 show 

the correspondence of this drift flux model with the data. 
oT dTf 

If either a complete thermal equilibrium model (T = T^, r—*• = r—, 
dT dTf g f oz oz 

and r—* = - — ) or an isothermal model (n = 1) is assumed, the predicted 
ot ot 

velocities are somewhat below the isentropic values and most of the data 

(see Tables 1 and 2). However, the advantage of the isentropic condition 

over the isothermal becomes less apparent at low values of the void frac

tion and in fact as the bubble size decreases (or < .05), the isothermal 
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Air-Water Bubbly Flow Data from Ref. (28) 
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Figure 2. Two-Component Pressure Pulse Speed 



53 

Air-Water Bubbly Flow Data from Ref. (28) 
(p = 35 psia) 
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Figure 3. Two-Component Pressure Pulse Speed 



54 

Air-Water Bubbly Flow Data from Ref. (28) 
(p = 45 psia) 
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limit appears to be more appropriate since the thermal response of the 

vapor should become more pronounced. Presumably a continuous transition 

exists between the poly tropic exponent of 1. (ex -» 0) and the isentropic 

exponent (pt -» .1). Sufficient scatter existed in the data to obscure the 

exact functional form of n(o/) so no attempt was made to provide one. This 

same effect was noted in reference [28] for example. 

The thermal equilibrium model provides values essentially identical 

to those produced by the isothermal assumption. This occurs because the 

liquid acts as a large thermal reservoir and hence the gas temperature 

varies little when complete thermal equilibrium is used as the thermo

dynamic constraint. 

For all of the results presented, the thermal approximation Tf = T 

was employed for the purpose of calculating the property values of the 

components. The small degree of static temperature nonequilibrium (a few 

degrees F) which may exist in the actual system does not affect either the 

thermodynamic quantities or the results very much (on the order of 1 per

cent, see reference [24]), and since the actual amount of thermal nonequi

librium is not known this assumption is almost a requisite. The assump

tion of the particular thermodynamic evolution does however affect the 

results and the isentropic assumption may be thought of in the same sense 

that simple heating or cooling results are used in 1-D Fanno line flow [l], 

This implies that whatever heat transfer does occur through the passage 

of the wave front velocity which is the measured quantity. This is analo

gous to the concept of frozen wave speeds in combustion processes with 

the bulk of the wave traveling at a speed more in line with the equilibrium 

(thermal) velocity. 
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The effect of static values of relative humidity on the predicted 

wave speeds was expected to be small. In fact the variation in predicted 

propagation velocities at low pressure with a variation of relative humid

ity from 0% to 95% was smaller than the tolerance of the root finding 

program. 

Since the exact slip relationship (or relation for V .) does not 
OJ 

affect the predicted velocity of sound propagation very much at low mass 

fluxes as long as the value of the slip ratio remains in a range reasonable 

for bubbly flow at low void fractions (S ̂  1.2), it would appear that the 

non-dimensional field equations could be reduced to provide a simple ap

proximate relationship for the speed of sound. 

If we limit our attention to relatively low mass velocities and 

use the isothermal speed of sound as our reference velocity V , we may 

simplify Equations (33)-(35). If we consider only the highest order terms 

the equations become: 

Void propagation 

Continuity 

f* I f *>P»fe%t*M^^)^]^ (48) 
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Actually the terms involving the temperature are of order (6), but 

it should be recognized that under our isentropic assumption the tempera

ture terms combine with the pressure terms in Equations (47) and (48) to 

yield the isentropic speed of sound of the gas rather than the isothermal 

speed of sound as a reference. Also, the highest order liquid compressi

bility terms were included so the result remains finite as a -» 0. 

The energy equation is not needed for this simplified analysis be

cause we are specifying the thermodynamic constraint on the gaseous phase 

and the liquid temperature does not appear in the reduced equations. This 

is similar to the situation in single phase flow when 

•'*e(&\lr' 

is used rather than the more general form 

a* « & ) , < » ' + &>r«h-

along with the energy equation. 

Combining (47) and (48) and invoking the isentropic condition we 

may examine the characteristics of the system by writing the resulting 

equations in matrix form 
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a„ 0 o P* " atf" "o" 
0 

4t* 

l 

d>* 

P* 

o 
o 
o 

aP* 
*F* 
&v£ 
"9t« 

— 

o 
dP* 

0 o dt* 
< # . 

dx* 

where 

aii^M^Li-O-**)^] 

the characteristic directions are (returning to a dimensional form) 

(51) 

c 
... .v,~ . x -fe. 

(52) 

H.^^J-^^J* 
This result is identical to the standard homogeneous form used in the 

literature. For example, Henry, et al. [28] provide a form under the 

same general assumptions 
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(53) 

- K 

Equation (52) is exactly equivalent to (53) as a simple expansion of the 

terms in (52) will show. 

Tables 1 and 2 show a comparison of the full drift flux model with 

the simplified analysis. It is evident that the results of Equation (52) 

(or 53) correspond almost exactly with the more detailed analysis. Under 

these circumstances it would appear that the simplified model can success

fully calculate wave propagation speeds at low mass fluxes. 

Experience with the full drift flux model suggests that the appro

priate fluid reference velocity for either Equation (52) or (53) is V , 

the velocity of the center of mass of the system. 

However, this is true only at relatively low mass velocities. If 

the modified Armand correlation is used, as the assumed mass flux increases 

V deviates more and more from V and the speed of sound C becomes a weak 
p m 

function of V . This suggests that simplified relations such as (52) and 

(53) will deviate (as in fact the assumptions used to produce their deriva

tions imply) more and more from the data as the fluid velocities increase. 

To the author's knowledge no pressure pulse data have been taken in high 

speed bubbly flow so that this remains an area largely unexplored at 

present. 

b. Separated and Mist Flow 

While the correspondence of the drift-flux model with wave speeds 
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Table 1. Air-Water Bubbly Flow 

a V . defined 
gj 

by Equation (27) C 

lsentropic isothermal Equation (52) or (53) 

.005 716.4 605.6 717.9 

.05 234. 197.7 233.9 

i-i 170.1 143.7 170.0 

•2 127.6 107.7 127.5 

.3 111.4 94.0 111.3 

.4 104.1 87.9 104.1 

.5 102.0 86.1 101.9 

P = 25 psia 
T = 70°F 
The speed of sound C is in FPS 
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Table 2. Air-Water Bubbly Flow 

a V . defined 
gj 

by Equation (27) C 

C. 
lsentropic 

isothermal Equa tion (52) or (53) 

.005 1136.4 962.3 1144.2 

.05 367.7 318.2 367.7 

i-i 274.0 231.4 273.9 

.2 205.6 173.6 205.4 

.3 179.4 151.5 179.3 

.4 167.7 141.6 167.6 

.5 164.2 138.7 164.1 

P = 65 psia 
T = 70°F 
The speed of sound C is in FPS 
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in bubbly flow is good, success was not achieved in providing pulse propa

gation speeds for separated or mist flows. In these cases, experimenters 

[28] have recorded single speeds of sound either at exactly the isentropic 

sonic velocity of the gas phase (purely separated) or just under the gas 

sonic velocity (in mist flows). This has been noted even though in sep

arated flow the existence of a continuous liquid layer suggests that two 

speeds of sound should be observed with one representing propagation at 

the speed of sound of the liquid. 

In any event the drift-flux model seriously underpredicted the 

propagation speeds when Equation (28) was used for the slip function with 

various values of C . 
o 

Since neither a good dynamic relationship for V . or the slip exists 
5J 

in separated or annular mist flow, it remains to be seen whether the de

velopment of such a function would improve the results. It is possible 

that the mathematical coupling inherent in the drift flux model (both V 
m 

and V . are functions of both V and V-) is responsible for the poor 
gj g f v v 

agreement since the successful analytic predictions in this type of flow 

topology have all resulted from two fluid models which essentially un

coupled [28] or lightly coupled [30] the interphase momentum exchange dur

ing the wave passage. Fortunately, however, this problem is not signifi

cant with regard to critical flow results for reasons to be explained later. 

2. Choking in Two-Component Flow 

Henry [50] has taken data on air-water critical flow in a straight 

duct with a slightly flared end. The critical pressure was 17 psia and 

the void fraction was measured by gamma-ray attenuation. In order to 
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accurately check any properly formulated critical flow model, accurate data 

on the void fraction at the choking point are necessary. This is true 

because the mass flux (p V ), which is the predicted quantity, is a strong 

function of a over most of the void fraction range, especially at low 

pressures where the density difference between the phases is large. If 

only the quality X is measured, a reasonable uncertainty in the value of 

<y exists since the slip ratio S is not accurately known. This occurs 

through kinematic considerations since 

*- d. (.4* $ 
Gamma ray attenuation provides a reasonably accurate means of measuring 

the void fraction and the data by Henry are therefore probably quite good. 

An isentropic evolution was used for the model along with the Armand 

correlation for the slip ratio (C = 1.15) which was depicted in Figure 1. 

The results of the analysis are shown in Figure 6. Table 3 lists the 

actual data along with the predictions and relative error. It may be 

seen that quite good agreement exists between the model and the data with 

the error increasing slightly at higher void fractions. 

If the mass flux predictions for a given a are used as an input to 

determine the characteristic directions, one root approaches zero. This 

indicates that from the standpoint of the model the rarefaction waves no 

longer propagate upstream at the critical point. This is mathematically 

analogous to the single phase critical condition and indicates that the 

normal single phase relationship exists between the characteristic 
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Table 3 . Air-Water Cr i t i ca l Flow 

Of- G 

(measured) 

G 
P 

(predicted) 

G = G 

- J Lc- Ex ioo 
m 

GEqn. (52) V . (52) - Gm x 10Q 
m 

?° % 

.277 4500 4382 - 2.6 4235 - 5.9 

.336 4000 3860 - 3,5 3685 - 7.9 

.405 3300 3353 + 1.6 3178 - 3.7 

.474 3100 2969 - 4.2 2763 - 10.9 

.528 2800 2720 - 2.9 2480 - 11.4 

.558 2600 2603 + .1 2335 - 10.2 

.689 2100 2151 + 2.4 1764 - 16 

.768 1800 2014 + 11.9 1444 - 19.8 

.817 1600 1733 + 8.3 1244 - 22.3 

.860 1450 1409 - 2.8 1061 - 26.8 

.913 1100 989 - 10.1 815 - 25.9 

.964 640 552 - 13.8 516 - 19.4 

P = 
T = 

17 psia 
70°F 

552 - 13.8 516 - 19.4 

<r> 
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directions and the latent roots of the steady state system (see Abbott [23] 

for example). 

At low to moderate values of the void fraction the same drift-flux 

model predicts both wave propagation speeds and choking conditions ac

curately. This suggests physically that the mechanism for choking is 

identical for bubbly flow to the single phase analogue. 

At high values of a where an annular mist condition probably exists 

the drift flux model predicts the critical condition with reasonable ac

curacy, but not the corresponding wave speeds. However, if the air-water 

choking data by.Henry are analyzed in the high void fraction range, they 

indicate that the speed of the gas in what should be a mist or annular 

mist regime is less than the speed of sound information indicates for wave 

propagation results. For example, at a void fraction of .964, the recorded 

2 
quality was .0827, and the mass flux G = 640 lbm/ft -sec. Since 

£ . %** = 0 .8*7- ( - * » * i * " ) V * G TOTAL 

then 

V« * &3i Fps 

or significantly less than the sonic velocity of the gas. If these data 

are accurate, specifically, if the measured void fraction is accurate, 

then the choking mechanism which is mathematically related in the drift 

flux model to wave propagation may not however be physically related to 
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measured wave propagation results under stratified or annular mist condi

tions. 

Several researchers [19,22] have tried to connect speed of sound 

information with the critical conditions at high values of the void frac

tion, but Henry's experimental evidence suggests that this is in error. 

More good data in which both void fraction and quality are accurately 

measured may be needed to clarify this point. 

It does, therefore, appear that the single phase analogy between 

wave propagation and choking holds for at least the bubbly flow regime in 

two-component flow. The one-component situation is somewhat more compli

cated, however, due to the relative importance of flashing. This point 

is discussed in more detail in Appendix A. 

In order to formulate a simplified model to predict choking in two-

component flow, the non-dimensional equations (33-35) were again examined, 

this time using V as the reference velocity V . After some rearrangement, 

a form identical to Equation (52) was derived for V and the results 
crit 

tabulated in Table 3. It may be noted that in this case, at high mass 

velocities, the effect of slip becomes more pronounced than in the low 

speed wave propagation case, and hence the more complete drift-flux model 

provides a much better fit of the data. 

If the same model is applied to Vogrin's [49] air-water critical 

flow data, a large overprediction of the mass flux results. Vogrin took 

his data in a converging-diverging nozzle using gamma-ray attenuation to 

measure the void fraction. However, the sclaie drawing of the nozzle in

dicates a very small axial radius of curvature at the throat of the nozzle. 
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This suggests that two-dimensional effects may play a significant role in 

the flow field in the vicinity of the critical point. This same phenomenon 

has been noted in single phase flow in converging-diverging nozzles [47,48] 

where the two-dimensional aspects of the flow became important if the ratio 

of the axial radius of curvature at the throat to the throat diameter was 

less than 1. As this ratio decreased, so did the ratio of the actual 

single phase mass flux to the mass flux prediction, based on a one-dimen

sional analysis [47]. 

This suggests that the inclusion of a covariant term to account 

for the two-dimensionality of the velocity profile in the vicinity of the 

critical point might be useful in correlating not only Vogrin's data, but 

also critical flows in sharp edged orifices. It is assumed that the most 

significant covariant term is the one appearing in the momentum equation 

(Equation (3)) since this term accounts for the main effect of the two-

dimensionality in the velocity profile. In fact, the assumption of a 

uniform pressure across the cross section would also break down, but this 

would require at least one additional constitutive equation for the pres

sure variation along with at least one more covariant term. This informa

tion is not presently available. 

The additional term in the momentum equation is 

" ^ Cx>\) C^^O^-T) 

but 

CJOSJ ((Yvcfrm T ) 
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The individual covariance terms represent the difference between 

the average of the velocity squared and the square of the mass averaged 

velocity (a positive quantity in cocurrent flow) 

cov Cvfc- vO - <V<> - ^ V ^ 

These terms may be approximated as some constant b times the mass averaged 

velocity squared or 

CovCv*-vK) = bK<Vx>i = ^V^; 

(In laminar single phase fully developed flow, b would equal 1/3. Of 

course, in fully developed flow which is not our condition here, ^ 
p\ 
— cov (mom T) = 0 by definition.) If in addition, it is assumed that 

the primary regime of interest is a turbulent bubbly flow at intermediate 

values of the void fraction, we should be able to use a single constant 

to describe both covariant terms. Therefore 

cov CVs.-v>) - bV£ 

and 

C O V C V A - VV) - bVq" 

so 
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f r [cov C^o^T)! = f j . L t » -d.) Pj. I V£ 

4.* fjbVj*3 

If these additional terms are added to the momentum equation with b = .8, 

significantly improved correspondence exists with Vogrin's data. What 

this implies is that as the critical point is approached the velocity pro

files become more irregular, which would appear to be a reasonable assump

tion. Table 4 lists the results of the original choking model (isentr&pic 

flow, Armand correlation)}ethe improved model (inclusion of covariant term), 

and some predictions Vogrin included in his report. 

While it must be noted that the correspondence of the modified pre

diction is still far from excellent, it is clearly better than either the 

original drift-flux model or the two predictions included in Vogrin's re

port. It would be expected that a better fit of the data would occur if 

b were assumed to be a function of void fraction and pressure, or possibly 

simply p . However, the purpose of this is to show that for a given ori

fice or nozzle a covariant correlation coefficient may prove (in the same 

sense that nozzle discharge coefficients are used) to be useful in accommo

dating the two-dimensional aspects of the flow. 

It should also be pointed out that the insertion of the covariant 

term is related to the inclusion of partial derivatives in the interfacial 

shear stress relationship used by some investigators [45] with a two-fluid 

model. However, it is felt that the formulation suggested in the preceding 

section is more representative of the correct reason for the inclusion of 

the derivative term than that advanced by Boure, et al. [45]. 

fj.Lt


Table 4. Vogrin s Air-Water Critical Flow Data 

PfcU _ psia 
throat throat data G i Pi V G P 2 -

% 

G 
— X 100 

% 

homogeneous 
Q 
Fauske 

19.9 .473 2119 3232 2410 + 13.7 990 4400 

33.8 .640 2140 3255 2422 4- 13.2 1200 

52.8 .698 2119 3734 2784 + 31.4 1380 6950 

31.6 .568 2960 3494 2602 - 12.1 1546 

28.4 .839 1280 2000 1492 + 16.6 710 2380 

46.8 .878 1305 2025 1510 + 15.7 876 

31.5 .540 2960 3632 2712 - 8.4 1500 4690 

T « 70°F 
G in lbm/ft -sec 
Gpl w a s c al c ul a t e a on.the basis of an isentropic assumption with the Armand correlation 

G - same as G , with covariant coefficient of .8 

homogeneous! 
Q r two predictions included in Vogrin's report 
Fauske 
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3. Range of Hyperbolicity 

For a given set of pressure, temperature, fluid constituents, and 

void fraction, an iterative procedure (starting at G = 0) was used to 

determine the range of mass flux over which the characteristic directions 

were real. This establishes the extent of the region over which the method 

of characteristics can be applied and also seems related to the stability 

of the solution obtained when other methods of finite difference integra

tion are employed. 

For two-component air water flows at low pressures the roots were 

always real when Equation (27) was used for V . even when the mass flux 
oj 

was increased to twice the value of the critical condition for the given 

situation. If the Armand correlation was used (C = 1.15), the absolute 

range of hyperbolicity was reduced to less than the critical value of the 

mass flux as low cf's, but the value of the imaginary part of the roots was 

on the order of 10 . Under these conditions the complex roots were also 

not conjugate and due to the small magnitude of the imaginary part (much 

smaller than the accuracy of the root finding subroutine) it is suggested 

that this represents a numerical aberration in the root solution. If a 

value of 10 for example is established as the minimum magnitude of the 

imaginary part of the characteristics for the purpose of determining the 

range of hyperbolicity, then the required mass flux is much larger than 

the predicted critical flux for the given set of conditions. 

This indicates that the drift-flux model may be successfully used 

in the numerical integration of two-component flow problems up to and in

cluding the critical condition. Some investigators have had difficulty 

with specific two-fluid models due to a limited range of hyperbolicity. 
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4. Conclusions 

The following conclusions may be drawn from the present investiga

tion. 

1. The drift-flux model can successfully predict leading edge 

pressure pulse velocities in bubbly two-component flow. At low mass 

fluxes the simplified form (Equation (52)) is very accurate and may be 

substituted for the full model. At higher mass fluxes then it would be 

expected that more and more deviation from Equation (52) would result 

although no data exist to support this conclusion. 

2. At low mass fluxes in bubbly blow V is the appropriate refer

ence velocity for the pulse propagation. As the mass flux increases, the 

model suggests that the propagation reference velocity may deviate from 

V . Again, data taken at high mass fluxes are needed to verify this m 

assumption. 

3. The drift-flux model will not provide the measured propagation 

velocities in separated or annular mist flow. This may result from the 

lack of a good dynamic expression for V . or the slip under these condi-
BJ 

tions. 

4. The model does provide good agreement with the critical flux 

in straignt pipes for two-component flow. The correspondence of the model 

with both critical flow and wave propagation in bubbly flow indicates that 

the Reynolds mechanism for choking occursJin bubbly flow. In annular flow 

the choking mechanism is suggested by the Reynolds mechanism with the 

sonic condition of the mist being the criteria, but more good two-component 

data are needed to clarify this point. 
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5. The two-dimensional aspects of a flow in sharp edged orifices 

and nozzles can be successfully handled by a covariant correlation. 

6. The range of hyperbolicity appears sufficient to allow the 

successful numerical integration of the equations up to and including the 

critical condition. 
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APPENDIX A 

WAVE PROPAGATION AND CHOKING IN ONE-COMPONENT FLOW 

If the model (employed for two-component flow is applied to one-

component (steam-water) wave propagation in a bubbly mixture, the picture 

becomes less clear. The frozen isentropic model corresponds reasonably 

well to data taken by Karplus [26] and Henry, et al. [28] (see Figures 7 

and 8), but the large amount of scatter makes it difficult to conceive of 

any sort of model making accurate predictions. If the same formulation is 

used on data by DeJong,etal. [44], the model seriously underpredicts their 

results, except at very low a, even though the regime should clearly be 

bubbly flow. The effect of non-equilibrium may account for the discrep

ancies and large scatter, although this is still to be determined. 

If the same frozen isentropic model is applied to the critical flow 

situation the results consistently overpredict by wide margins the avail

able data (see Figures 9-11). This suggests that the effect of the flash

ing present in critical flow contributes significantly to the conditions 

at the critical point. In general, it appears that while the wave front 

in one-component wave propagation travels in a substantially frozen manner, 

the critical condition is representative of non-equilibrium flashing even 

though, as previously mentioned, the large degree of scatter and inability 

of a frozen model to predict some of the available wave propagation data 

leave some room for doubt. This difference between wave propagation and 

critical flow conditions is however physically appealing. The wave front 



Steam-Water Data from Ref. (26) 
(p = 10 psia) 

Author's Frozen Model 

78 

C/3 

eu 

m 
< 

500 -

400 . 

300 . 

1' 
200 -

\ , 

100 . 

• 

^ t 
• » 

0 . • 

^ t 

• 

» 

0 .1 .2 .3 .4 .5 .6 
a 

Figure 7. One-Component Pressure Pulse Speed 



Steam-Water Data from Ref. (28) 
(p = 40 psia) 

Author's Frozen Model 

79 

PW 
&4 
v-^ 
CJ 

900 4 

800 

700 

600 

500 -J 

400 

300 

200 -

100 -

0 i 
—j r 

.1 .2 
I » 

.3 .4 
a 

-r 
.5 

Figure 8. One-Component Pressure Pulse Speed 



80 

represents the leading edge of the pressure pulse in a mathematical sense 

although in actual fact some effect of the pulse may be felt ahead of what 

the 1-D model predicts as the wave front, due to the fact that the isen-

tropic speed of sound of both vapor and liquid are higher than the observed 

and predicted average velocities of the pressure pulse (except at high or's 

and as a -» 0). In the case of critical flow the observed choking point 

however is situated near the center of a region in which there is a large 

pressure drop. This suggests that in the case of one-component choking 

the concept of frozen equilibrium cannot be supported as indeed the data 

indicate. Numerous authors (for example [51]) have suggested that such 

non-equilibrium effects are important. 

In order to account for the effect of flashing in one-component 

flow, J. Boure, et al. [45] have suggested a constitutive equation of the 

form 

n - n , c dAL&\ c, **f *-» ^i - ifco + c± ^CT *• c2. ^T> (Al) 

where 

A t . = - L}(P>rj.) *~ ^-"ttC?) 

A if.- - tiCf*,^)'<-. tf^at CPV 

However, no mention of the functional form of C. or C was made nor were 

any results presented. If elementary kinetic theory is examined, a simpli' 

fied more explicit form of Al may be deduced. The net vaporization flux 
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in evaporization from reference [52] is 

Jv = «v C TSAr - P]/(11tAKKr^ (A2) 

where a is an evaporization coefficient « 1. However A2 is derived on 
v 

the assumption that the external pressure field has no steep pressure 

gradients in the region of interest. If we define 

AP - ¥~?s AT 

and consider a region where such steep pressure gradients exist, but where 
. . ' • . . _ i . .. 

variation in T * is small compared to this pressure variation, then from 

a first order Taylor approximation 

n . _ J - £*«v _ [ f A t > d A , r (cUPci-Ao^ -] (A3) 

If we assume in the vicinity of the critical point that 
J^Ap 

-r— « constant, then A3 may be rewritten as 
dz 

r, n -L / f , \ _"*-*v oiAP 
P$l ~ PftO + A T c l i f . c l A ; (atT/vnKT)^ d > (A4> 

where 

_L J2±£x _ r ' cU 
rjlo v Arc .(3i*m,kT^ JjL A p B > 
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If we assume further that the pressure non-equilibrium AP is small 

and consider the isothermal process (almost isentropic) at T between P 
g sat 

and P then 

TdU/ = di - p£<iP *AI--^A? * 

or AP w p Ah where p is assumed to vary less than Ah. 
O O 

Since -.dA. should be a strong function of the void fraction 
ATc J ? s 

we have upon conversion to British engineering units 

where C is a constant for a given critical pressure. 
v 

This is of course a highly simplified analysis, but if 

(A5) 

(A6) 

and C is allowed to be a function of the pressure at the critical point, 

reasonable correspondence with the data is shown (Figures 9, 10, and 11). 

Of course, only the second part of Equation A5 enters into the determinant 

which provides a prediction of the conditions at the critical point. 

For the model displayed in Figures 9-11, a value of C = 1.1 was 

used with a cutoff alpha of 807o of the value at which the slip ratio be

comes infinite. The reason that the reduced cutoff was used (rather than 

the 907o used previously) was because a slight hook occurred in the predicted 
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curve in the vicinity of the cutoff alpha if the 90% figure was used. In 

addition, a C of 1.1 provided a slightly better fit of the data than the 

C of 1.15 used earlier and, of course, provides a slip ratio in the same 

range as that suggested by Henry, et al. [50], While a more complex func

tion of a might provide a somewhat better fit of the data, it was felt 

that the simplicity of A6 outweighed any gain in accuracy achieved through 

greater complexity. Also, if more good data were available (where a is 

measured directly) at varying pressures, then a functional relationship 

could be derived for C and of course provide a better test for what is 

admittedly a highly simplified model of a complex phenomenon. 

The suggestion here is that in single component flow wave propaga

tion information may not be directly related to the critical condition 

as it apparently can in two-component bubbly flow. In single component 

flow, the critical mass velocity is smaller (except as or -» 0, 1) than that 

predicted by the sort of frozen model which may be used to predict wave 

speeds in most of the available data. This shows the importance of flash

ing in critical flow although from the standpoint of the model, the Rey

nold's analogy still holds up. 
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APPENDIX C 

PROGRAM WAVE 

DIMENSION SI IO).tt IO)»G(IO)»A!5)tXI4> 
DIMENSION ALLC4C) 

DIMENSION AB(I5) 
DIMENSION XYC505).VM7MC5C5) 
DIMENSION CC4.8).EC6)»BC4.4> 
DIMENSION XXU) 
COMPLEX A.X 
HEAL KI 
EPS"*wwvl 

KMAX=200 
C I A« It AIR NEI STEAM 

WRITEC 6.477) 
477 FCRMATUH.23HIPP.KKK.IZ.I1CK.IY.HHUH ) 

PEAD( 5.99811 PP.KKK. IZ, IKK. IY. RH UM 
IF(RHUM.LT»O.C»CC TO 678C 
I A-1 
CO TO 6790 

6780 I A « 2 

679C IFUZ-3) 6777.6677* 6777 
6677 WRI TEC 6.99001 
9900 FORMAT! IH.25H HYPERBCLICITY TOLERANCE 

READ(5.99a»EPZ 
6777 CONTINUE 

998 FORMAT*) 
WRITE! 6.7800) 

7800 FCRMATCIB.ISA CON.CO.CUTOFF 1 
READ* 5.998) CON. ALB. CCFF 

IFCCCN.LT.3.)CC TO 67CC 
UK-1 
IY»2 
CO TO 55C0 

6700 CONTINUE 
IJK-2 

65CC CONTINUE 
2 FORMAT I8FI0.3) 

WRITEt 6.4700) 
4700 FORMAT! IH.9H CAS EXP ) 

READ(5.998)KI 
IFUJK'GT. DCC TO 476 
WRI TEt 6.475) 

475 FORMAT! IH.5BSIGMA ) 
READC 5.998) SO 

476 DE»«I667 
WRI TEC 6.8900) 

8900 F0RMATHH.26U CM.CF.DHC/DP.AL**.ALI** 
READC 5.998) SC2.AAI2.TTT3.TTAL.TTALI 

TTT2-CC 
TTT4»0«0 
IFCIKK.EO. I) GO TO 1545 
WRITEC 6.479) 



479 FCRMATMH.4HRCW I 
READI5.998JRCVH 

346 IFCIPP.GT. I ICC TC 4CCC 
WRITE* 6.4001) 

4001 FORMAT* IH.8H P.TI.T2 I 
READI5.998JP.TI.T2 

4CCC DC ICCC KJal.KKK 
lF(IPP«OT«ncC TC 4CC5 

IFIIPP.IQ. MCC TC 1234 
IFIKJ.GT.IJGC TC 1656 

DC 1444 I=I.KKK 
1444 READ(6.2)ALL(I) 
1566 AL-ALLCKJ) 

GC TC 4006 
1234 READI5.?)AL 

GC TC 4006 
4005 WRITE*6t40C7) 
4007 FCRMATIIH.8H P.TtAL I 

READ* 5.998) P. Tit AL 
T2=TI 

4CC6 CCNTIHOE 
CALL DATIRHUM.P.TI.T2.AB) 
CTI=ABII) 
RCTUAB<2) 
CTI»I»/(42C0«**2») 
CT2-ABI31 
RCT2»AB(41 
UI=AB(5) 
U2^ABC6) 
HNAPC7) 
H2-ABC8) 
CPI-ABI9) 
CP2»ABMC) 
RCI«AB(II) 
RC2»AB«I2) 
AAAI.=RC2*ICT2**.5) 
KJI«I 
IKJ-2 

IIK-I 
IFCIY-HE.I» GC TC 177 
XOIsAL 
AIi* • i / w I 

177 IF(IKK*EO.l*CR*IZ*£p.3)GC TC 544 
GC TC 164 

544 RCW»IC 
164 GC-32.174 

IF(IKJ.GT«2)GC TC 175 
IFIIJK.EQ. IIGC TC 171 
IF<CCN«GT.I«)GC TC 803 
WRITE* 6.801 )CC(J 

801 FCRMATHH.//20XI6HSLIP-IRCI/RC2)** »F3«2) 
GC TC 175 

803 IFCCCN.GT.2.) GC TC 804 
WRITEI 6.802) 

802 FCRHAT(IH*//20XI9HHCMCGEHCUS FLCV I 
GC TC 175 

804 ALCOT-CCFF/ALB 
WRITEI 6.805) ALB. CCFF.ALCUT 

805 FCRMATI IB.//I0X4H CC» *F4*2*SXIIH CDTCFF * ». F4«2.5X3BAL«.F5.3I 
GC TC 175 



171 WRITE «6f346) 
346 FCRMATUHC.35X16HBUBBLY FLOW I 
175 CONTINUE 

H«4 
DC 3 I» I • IC 
SUJeC.C 
0<I)=C.C 
CII)»CC 

3 CONTINUE 
ALI=I»C-AL 

ABCB=(AL**TTAL)*(ALI**TTALII 
RCM»AL*RC2+CI —ALI*RCI 

AL»=AL/ALI 
SC21«SC2*RCVH 
VM-RCVM/RCH 
IP JIJK.EQ.IJGC TC 69 
AL3=AL**.5 
AL4»AL3/H.+ AL3I 
IFICCt»«OT»l«>GC TC 156 
SL«((RCI/RC2J**CCHJ 
SLAL=C«C 
SLRC« = CCN*SL/RCI 
SLRC2»CCN*(-SL/RC2) 
CC TC 157 

156 IFICCN.CT.20GC TC 159 
Sl»I.C 
SLAL«C»C 
SLRCI=»CC 
dunss&Zx** %* 

CC TC 157 
• 59 ALOCCFF/ALB 

IFCAL.GT.ALOGC TC 2CCC 
SL*ALI/CI./ALB-ALI 
SLAL»-SL/ALI+SL*ALB/II.-ALB*AL» 

w Iw u u o w 

2CCC SL»M— ALO/J L/ALB-ALCl 
SLAL*-SL/< |.-ALCl+SL*ALB/« l.-ALB*ALCI 

3CCC RLR_C.I»CC 
SLRC2»CC 

157 SI=SL-I. 
DN*I«+AL*RC2*SI/RCM 
IFJSI'LT'CCCCCCII GC TC 154 
?2YM=ALI*SI/DN 
V2R7=(ALI*VM*RC2*SI*SI/ (DN*DN*RCMI) 

?2R8=RCM*DN/« RC2*SI*SI >-AL/SI 
V2AL=«-|.*S«*VW/DN>+V2R7*f(AL*JRC2-RCI>/RCHI-|.+ V2B8*SLALl 
V2RCI = T2R7*((AL*ALI/RCH»+V2R8*aRCI) 
V2 R C2* V2 R7* {( AL* AL /RCM) -1 AL / RC21 + ?2 R8* SL RC21 
GC TC 155 

154 Y2AL»C«C 
¥2RCI«CC 
?2RC2e«*w 
?2VM=C.C 

155 ?2J*ALI*SI*VM/DN 
GC TC 71 

69 V-(I-4I >*UGC*GC*SGI**«25) 
V2J=«V*C(«RCI-RC2)/IRCt*RCIH**.26» 
V2RC=( 2«5E-»)*««J RCI*RCI I/I RCI-RC2)I**.75I*? 
VPRCI»V2RC*H-|./<RCI*RCIII+2.*RC2/(RCI**3«II 
V2RC2=-T2RC/<RCI*RCII 



?2VM»0»C 
V2AL«D.O 

71 IF(IKJ.CT»2) GC TC 176 
IFUY.NE-I> GC TC 176 
DS=m—XQII/XQI|*( RC2/RCI I * a 
FF=AL-I./(DS+I'I 
FFI=l.+( |./CIDS+I«)**2.>>*DS*SLAL/SL 
AY-AL-CFF/FFI) 
AC=ABSCAY-ALI 
Ai=AY 
IIK»IlK+t 
IF(IIK.GT»2CC> GC TC 19 
IFIACGT»»CCI> GC TC 175 

176 CCHTINUI 
C MAIN BCDY 
C SU>« DIFFERENTIAL TEEMS FCR SHEAR STRESS 
C 0111- DIFFERENTIAL TERMS FCR HEAT TRANSFER 
C OfII- DIFFERENTIAL TERMS FCR MASS TRANSFER 

P«P*I44»*GC 
¥2XX»I./<CT2**«5> 
R>IRCM/lRC!*FC2n 

TTTI=C-AA»2*A6CE*RC2l/(V2XXl 
CCI.I»«RC*GC») 
Clf#2l*RC*GI2)+Al*¥2¥H 
CI I.3)«RC*G13)+I»C 
CUt4l=VM+CRCJ/RCH)*¥2J+RC*GI4HAL*¥2AL 
VT2T»IAL*ALI/RC2I*RCT2 
VT2X=AL*< V2RC2*RCT2-M ALI/RC2I*C VM+I RCI/RCMJ* V2J»*RCT2I 
IFIIA.NE«I> GC TC 664 
ETL=»( H I - 1 .C> /KI 1*( T2/P1 
GC TC 656 

654 E¥L»IT2/IRC2*RC2>>*l-RCT2l/lCP2*778»*GCl 
656 CCNTINUE 

?PT»AL*AL1*1CT2/PC2-CTI/RCII 
VPX»AL*IY2RCI*CTI+V2RC2*CT2)+CAL*ALI/RC2)*(VM+(RCI/RCMi*V2J»»CT2-« 

IAL*ALI/RCM*(VM-(ALD*RC2/RCH>*¥2J>*CTI. 
¥T»T» -IAL*ALI/BCI)*RCTI 
7T1X«AL*l?2RCI*RCT<-(ALI/RCn*(YM-(ALD»RC2/RCH>*¥2J»*RCTI ) 

TTT3»TTT3*778./I44» 
TTT4«=TTT4*778«/I44. 
VT2X-VT2X-C TTT»*CP2I*RC*778.*GC 
¥T»X"TTIX-ITTT2*CPI)*RC*778.*GC 
C¥PI«FC*TTT'I*( l./RC2+(T2*RCT2f/CRC2*RC2l-TTT3l 
C¥PI=C¥PI+FC*TTT2*( |./RCI+(TI*RCT»»/IRC»*RCII-TTT4I 
TTT3»TTT3*l44./776. 
TTT4=TTT4* I 44•/778 . 
¥PX»¥PX-CVPI 

IF IKI.GT.G«C) CC TC 3C 
Cni5l*¥PT+RC*G(5l 
C(«t6l«¥PX+RC*GI6) 
C« It7)-YTIT+¥T2T+RC*GC?> 
CUt8»=¥TIX+¥T2X+ROG<8l 
GC TC 31 

3C C(lt5)»¥PT+E¥L*¥T2T+ROG(5l 
C< It 6»»¥PX+ EYL*YT2X+ RC*Gl 61 
CU»7) = ¥TIT+RC*G«7) 
CI !i8)eVTIX+FC*GCa) 

31 CCNTINDE 
CI2#I»=C-0 
C(2.2»»RCM 
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CI2t3>»RC2-RCI 
CI2t4l*=VM*<RC2-RCI) 
CPX»VM*(ALI*CTI+AL*CT2I 
CPT»AL»*CTI+AL*CT2 
CTIT=ALI*RCTI 
CTIX»W*ALI*RCTI 
CT2T»AL*RCT2 
CT2X=W*Al*RCT2 
IFCKLCT-CGI GC TC 32 
CC2.5I=CPT 
<M2.6>»CPX 
Cl2t?J«CT»T+CT2T 
CC2.8)»CTIX+CT2X 
CC TC 33 

32 CC2»5»*CPT+EVL*CT2T 
C!2.6»*CPX+EVL*CT2X 
CC2.7)»CT»T 
CC2»BJ*CTIX 

3 3 CflNTlMOE 
VJ Js»Va J>l CI » f S C O / 2 . > 

C 3 2 s ( A L / > t L > ) * 0 « » V J J / R ^ 
V*^SC= YMKVM* S ft-O/a. 
$G^=VMSC»CR^2-(Wi> 
$ C 4 ) * S C 4 ) * P E / 4 . 
5 C a j - S C 2 ) ^ D £ / ^ 

C C 3 . i > « 4 # M + t 4 , 0 / P £ > * S C l > 
C M , a > = R ^ * ^M* C 4 . d / D « * S f X>+C3i«t fa VM 
C O ; 3 ) = C 4 . 0 / D E > * S C 3 > 
CA*VCC*U>/R^>*VJ j*VaJ*a ./«t-*4UL>- C<fctf*-R$4)/*^*)>*C32iM/irfl. 
CC3> 4> *C A 3 4+C4,/ &£> *5 £ </) 

C*P*=1, +CALl>/R^>#Vaj*XV2J»Cl./R^-4U/R^M)^T/^V2J*Cl«/«^-^t/«^ 

i ) * C r i + 2 « * V a i ^ l * C T l 4 2 . # V a ^ 2 # C 7 X ) 
CWXs CMPJT4- VM S t* (A L* CT2+4 L±* CTd > 

C^TTIX* CALD/R#>*\/jJ*CVZJ4(l./f&l*All/&M)*CX±+7.*V2SL4±*CTlt 
CMTXX* tAl*/K.fa*Vj<9*Cinj+CL./ k$*-AL SR4*)4tr2 *2.* WL<f7*CT2) 

CMTlX*CHTn(+VMJC*AtJl*R4T'l 
CKTZK*CMTXX+V*SC*AUte4TZ 

iFoa.err. o*o* G^ T0^4 
cc»> *>*cM**-i'C /̂E>e>j*seo 

C C3, 8> s<W*K+CMra*-K4»/P£)X3C8* 
6? 7# 35* 

34- CC3,tJ=CMPX-vC*TaX*eVi.K4»/DE}*SCO 
CC3^ 8> «CMT1 X + C ^ / O O ^ S C8> 

35" CC3/Sr>»C4.0/D£.>wSCS*> # 

C<3> T>=t <*. / D O * S C7) 

cfiiTtNoe' 
HI «M 1*778 • * & * . 
Ha»HZ*778 .*€<L 
C f > l « t P J ^ 7 7 8 . ? f 6 C 
C p l * CP t # 7 7 9 . # G C 
DW=«2-W1 
C42*AL* R^Uf R 4 2 * 0 « / > ^ M 

PPS=P* cjitfi-tf^vutf i*k4& 
Ct4jA)=(4./D£)#GCl) 
Ct*f/ 2> rAt±^BW*^4-^i#»l*2J<HiVC4./PE>»9Ct) + C42*V!i*»VV 
CC 4/ J) - tt>2 * * 2 - W l M i ^ 4 4 /*>* ) *?C3> 
c C4, 4>* cva^iz^c^^lJ^i^p^i-V/WCR^^ttZ-R^i^^l^^^.tSC^/XJC^C^z* v^4 

. J 1 L • • • . • „ - . - ? • . • . ' ^ • - v ' v r - — 

EA/pr»AU* CA. *<Ti/*** )*epr.i4.wA#cTa )+At*d> tCn/ty #*epra^2#cr2> -i» 
fc/i PJC =VW* ( A U * C C r i / K W # f c 0 W . * t f 4 * C T 3 > 4 4 i , * C O T 2 / * 4 i > * f c $ r 2 * H 2+CT2) J+&W. 
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S* V 2 . ^ # A O * ( CT2*R4t/Jt44)*{i<t>TZ-CTl*k$2/&i4J* W7l40AJa*L¥ft0i*R02#eT.l/fc 

A4WHt>H*4U<*ft4l *£&L#GTV*0*>+0*L * Ml /**> *0/HlU* CTi+\/lR4>Z* C72} 

EWT/ *s VM*ENTf T +C4L* /2j/ffOM)* C-Rto#ft42^M+DW*4L*Rtf 2*/i$2*fc*Tl/R0rfO+ 

4.4L* PW X \fZt#±* R^TlA^ 

EWm-s-At^o^z-jit^i^utfe^rO ^ . „ - . . . 
tHTix* v«*EMr2.T+0ii.»vz7/A^M)* CfcM*fcd>*.« ***+ z>«#4Ld*tfto * «M*ft* T2/,&*d+ 

lAL*PM*VZR4>l*KtTZ/fZ0 
tNTix* EN nx+ rmxcjp I*PP<I 
E/JT7 KTENTIX+ TTT2JKJ Pl*Pt"l 
EtiPX* EHPX+CV>Rt*PP9/A0 

»FtKJ.<irrO.O) G0 T<* ^ 6 
c (4, ,r> =tNpr+ C4*/GE )#?c« 
CC4,6)*tJVP*-K4. /DE>*ptO 
CCVy 7)r £f<r/r+Ei»727*C4k/OCi*9C7) 
CO*; 8> r £ / m x +ENT2* - K ^ / Off ) *b ( 8) 
6 0 T^ 37 

2 6 CC?/3") = E/fPT«*£\/L*C//T2T+C^/p£)*9GS'> 
CC^ 6 ) * SMPX+ £VL.*EN T1X-KA* /0Q*$> U> 
c.L4,i)-i=nr) r+C4./Ptr**9C7) 
C £ / J / 8 ) * £ A J T I X I - C < ^ / 0 E > * ? C & > 

37 c^tfriAjuc 
C TWl3 C^ttpLETFS T«E CAOUmr/^A/ « F CTIyJ) 

p»/y t i * 4 , * & o 
Hi=Hl/C77ft,*&c3 
W2=W2/C77ft.^GO 
CP±PCP1/C77B.*GC\ 
CP^CP2./C778,*GC) 

rFCr*K'£?»i> W r * ifcd 
\?Ci2.*<*T>l> <& T<f>SS8 
WRlTECfc>*a> 

3 8 F^MAT t±H0,4«KIOH CCXjJ) > 
Pf 39 T*lj*+ 

2f WMT£(£,Vl> ( c a ; UK) jKK=/,&) 
41 F0RAAT C W0,-2Xt PBEIO. 2) 

C TM6 NEXT PA£T CALCULATES TWf VALUES *F T/l£ / 6 t>&E**TMtWrS 
sss Cjpttrtuoe 

Pt too i s . i y f 
BCXA)-CC3>1J 
BCJ)2J*C<£>» 
BCX/3>*0CJ,^ 

loo BCXJ40«CCJ>7^ 
CALL DCrF£C|t;D> 
ACS?*CAWJr(DyC!»0.> 
D^ 2PJ r* v ¥ 

TJOI BCT>3) = C t r , 6 j 
CALL OET£SCS/t>> 
D $ ao2 Xsi . / f 
13CI/2J2CCX,^ 

ZOZ &(Xj3>*cXXrS> 
CALUprT£/2CB,D) 
HC2L)i-D 
D# a 3 J * o V 
Bi i^E)= iccr ,3 i 

203 B c i p ^ J - c c r j S ) 
CALL DCTERCB^D^ 
EC3>=-D 
D« 204 I = b V 
BCr, l3~CCl ,2 ) 

204. B<L/4>«C<1«7) 



CALL 0ETEftCBrJ>3 
FC4)» -D 
Ytrfl.O 
00 50 r=M , 4 

50 Y*X*rci3 
A(4)=CMPLX<f,0.0.> 
0 0 301 I»J , 4 

acr,.i>«cci,o 
8<T /2>«<»CT /43 

3oi scr,3^«=cci/65 
CALL DETEHCB«P) 
B.cO»J> 

pp 3oz r*i >4 

3oz &cr,4">»£ci#S) 
CALL PETfftC8,0) 
EC25-P 
0 0 4 0 3 I'M, 4 
8<I ,2>*CCI /3 ) 

3 0 3 B < r , 3 > * C C l i O 
CALL PETEq(6rP) 
£C3>*0 
o * 3 0 4 r » t , 4 
8Cr»0=CCX,2) 
8CT,e )aCCI ,3 ; 

304 BCT>4>«CCifl> 
CALL DETrft<8»P> 
?C*>«J> 
P 0 365 T»l»4 
8ttr3>«ccx,a'1) 

3o5" Bcr*4>*ccr,*) 
CALL prrg-RcajD) 
PCJ 306 i = i , 4 
BCI>fc>»C<r,4> 

306 Bcri4i3Ccr,n? 
CALL pHtPKCPiP) 
FCO"J) 
Ya$,0 
p<jm r* \ j6 

St Y-X+ECrj 
A(3)aCKPLXCYiO»0) 
p? 401 r = i , 4 

4©f BCt,3>»CCT/6> 
CALL PET£*K,6,0> 
E C i > = -C> 
DC* 403, r*i>4 
Bcri3>*ccr, j ; 

402 Bcr,4)«ccr/*) 
CALL p£r£«(S,D) 
ffC2)a-p 
D<J 4 0 3 X«l »4 
B(I,2>*CCr,3) 

403 e<,r ,3i«ccr,o 
C4LL DETERCB/P) 
E<3)*-p 
0 * ^04 l«•> 4 
8 C r , l ) « £ , 0 

4 0 4 8CI;2)*CC1«4) 
CALL PETERCBiP) 
£^4>a-D 
Y»©.0 
*>£ 52. 1*1 /4 

J 2 Y»Y*E(t) 
AC2>-CMrf>LXOfjO,0) 
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M 5 0 0 U \, A 
5 0 0 e c £ i O * c c i i & ) ' 

CAU PETBftCBiD> 
AU)«CHPU<CO*d.O) 
l F U 2 - e Q . 3 ) C * T0 5<?T 
CO 1$ 161 

160 CMTltfUE 
P0 U2, 1 * 1 , 4 
BCX,I)=CC1,2) 
6 c r , 2 ) » c c t . 4 > 
£ c r , 3 > « c t c , *) 

16a 0 c r , 4 ) » c c x , » ) 
CAU p£Tt-RC8,P5 
TFC^B5C0^.UT.O.OOi; $ 4 T0* »*3 
I?CIKJ«CT«50S:> 00 TO l<J 
VMVFlClKi)»Vfi 
XYCXKJ>«P 
XYCU=XY(A) 

rrckjr.ro.a^ orf r0 u 
t»XYClHJ)/KYClKJ-0 
Gfl> T0 11 

i i £«ocY(rKJVXY<r*j-2.> 
12 r r t z . L T . o . o ; c ^ T^ n 

571 rF«kjr .6T. »>G(? T# r 
IF(rKJ.GT.505>G(? ?» 1<J 

VhAsV^+lO. 
RaVMsft0M*V»1 
IKJSIKJ*| 
VMVMCIKJ>«V»1 
60 T0 175 

17 !F(KJX.GT.I)e* T0 I? 
5 VM«<VMVM< I K J - I ) } * ! . 

VMVr1<IK.T)*VM 
R0VH«RPH*VM 
KJl«KJt+l 
lKj*rKJ>l * 
l F C K J f - 6 T . l l ) £4 Tp l<! 
«&. Tp 115 • 

IT VHVHCffcJ>«VM 
IFCU.N£-3^6<> T<J 512 
tF<KJI.EO.a>6<7 T0 573 
VMaVKVM<tKJ-l) 
60 T# 15 

5 1 3 Vrt«VMVM(lKJ-2> 
6« r<p 15 

51a CWUNOE 
I f { K J r . f : a - 2 ^ 6Q Tfl 14 
Vn« ( VM-VMVKC TKJ- I }0 * C -*Y CJKJ - I 5.?' CP -XY CIKJ - O > •VMVW CKJ - 1) 
WRirEC6j4lJPiXYCIKJ-l) 
G0 10 15 

14 VVl»CVH-VrHvMCWJ-2) )*C-XY(IKJ-2)>/ 'P-XttW5-2^)"iVHV«lcrKJ^) 
WRITEU* 40D,XY<rKJ'-2> 

15 R0VH-RPM««V/M 
IFClt.EQ.3)C(fc ?$ l « l 
G0 TO I 63 

iq WRirec«>20) 
1F<'XZ-E'0-3}G9 t « 1000 

20 F&RMATUH,5HAJ30RT> 
1*3 CGNTtMOE. 

VlRlTEC6/\66> IKJ 
166 FPRMATC/rH,20X23HWUHB£R $F n C R A l l W S * #14) 

VJUTEC6, l44)VH,fmH 
144 F0RtfATClH,2OX24UCWSKlWd KA5J VELOCITY * jfK3.4,/2OX2OHCW0k|W0 

IMAS3 FLUX = / F I Q . 4 ) 

lFCKJf-6T.ll


100 

\6\ CqwTiHue. 
W«IT£ <(>,5S5) 

555 F0RM1 (TH ,5aH ALPHA TE^Pl TFM»2 PRESSURE M*SS FJ.UX 

I 3 
WRITE" ( 6 , 2 ) M.iTl,T2,P,r*0VH 
IFCIZ.&T-O «<? T<* 55? 
fP(IkK.6T. IJ G4 T<? S56 
XX3J 301 1=1 ,4 

301 VKIT£<6,40 C£(X;KIO,KI.:*l,4> 
55 6 WRITE ( 6 , 6*6) 

166 F0RMM OH/51H ROTf R^I 0IA EWTHAL-PY2 eiOTHALPYI 3 

WRiTf C*,2; RfiTl/R^I/PE/HZ/HI 

RtT£<*,255) 
2 

5S ftKHMt\H,A2H C9\ <$Z GKS EXP S> QHh ) 
WR IT£C6\, 2 ) CP I , CP2,KI 4-S6 
WRITE ( 6 / I 12) 

111 FOpjUTf/1H/JOH tfcJ V2R(?I VQ.R01 V2AL V^V^ 5 

• w a n e ( A , I I I ) v i^^v/JR^WViR^i^AL/Vzvn 
VR.\TEU, l i t } RtJTZ 

WR.iTFC6r1£1) 
251 R&Rrt*TC/lH,31R R0H W\ *$* ft*2- * 

WRtTE"(6y2)R^f \m,W>t,R02. 
IM FORMAT C1H,AP12C10-3//) 

AP = ( t . / C T O * f . 5 
A6«CA63CKIVCT'1)*«'.5 

WR1TEC6/<U9)AG,AF 
969 F0RHATC/1H/1OX3HAG* F*J» 2/5X3HAF» F 7 . 2 ) 

5 5 9 CWTlNUC 
V l = Ve\-A LP*fc<ML* V2J/ R0fA 
Vi»V^R0U\ /2j /R«H 
VJ2AU*\M4AL*V2. 
5Llp*Va/Vl 
VJl=ALl#Vl 
VJ2«AL*Ve 
WW»CVuRt5l/ALl *V2*R02/AL>/CR0 l/'AL 1+R^/AL) 
VVvV-» C.V\ ML 1 /R01 W Z J A L / R ^ ) / CALl / R0I+AL/R02.) 
VR*V2-V| 
V l J . - A L * ^ 
V2J«Au*Vft 
Vj\\^»V\+VJl/^u 
WRITE C6/333) 

333 F0RMA-7 C/rw,l2W VI Vr\ V2. 
ILIP J ) 
WRITE C4/33 4) VI , W\, V2.,SL IP, VJ 

33A FflRttATClW, 6F14'3 ) 
IFCI'1.6T<U' €<) T0 551 
WRITEC6,135) 

135 F0Rh\ATC/lH;55H V U V2J .Jl 

I 5 
WRlTf C6,334>VIJ,V2J,VJI,VJ2 

551 XQ*AL*R02*V2/R0VH 
WRITE C6, 339>XQ. 

339 f=0«rtATC/«H,25XtOHaUALlTY ~ ;F7-4> 
I f UK J". GT.2) £0 T£ JOOO 

5^9 C^IINUE' 
A<4)*A(4)/c^eAi.cAcrr)') 
A.C3) *A C 3) /(&£ALCA<5> > ) 
AC2)rA(21/CREALCK^5^>> 
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AO>=*AC n/<REALtA<5>?; 
/VtS)sCKPLXC I . , 0 . 0 ) 

C 1VU.S SECTION CALCULATES THE \&ICC1TX£S 0>F Pf?0PA SAT l«W 
CALL R?0TCP CA>M/EPj,KHAX,X,J,.S9<n 

C A=N-H EL£M£WTvS J?€"ff?f«SEMTlW6 C0E"f» ?F" POlYAfcMtM. 
G W- PE6REE.0F POLfMtfMlAL 
C FPJ* WAX' PfFFfK£*JCff BFTUfgW SUC(s«5SlVE APPROXIKAlI0PS ?F A 
c M A X * MAX N * qt nfRATictfs 
C X = Rfl»*rS C8F PoL>frteMlAL 
C Js R«<2T C0UVE8GEWCE \»b \CAT&H 
C J-N IF ALL RO0TS COMVEfiGE 
C IF J 15 L£53 T 
C I F J IS LES5 T HAtf W TbFM JTH R ^ T FAILED T© CoWVG^G-e 
C IP J 13 LESS THA*i tf THBJ JTH f?C«T FAtLED T© OWVetfeE 
C FCX)» A0-+ A(X 4 ' » ' ' • • • • * A A K * * N 

TPCX2.Ne*3)6* T© gq 
PO S62 1 M / J 
PDZ.3ABS(A1MASCXCI» i 

56? 1FC0PZ. 6T.fPZ)G<D T« n 
Vrt\)M<lKJ>»VK 
Cfl T« 571 

<}q WRITE U , » f t J 
SS FORMAT (lHO,2OXr4/6HR«0T5 ) 

PO 9 M » l , J 
XXCI )=CA6SCXCT>> 

qx WRrre (.6,91) t , xc i ) j xxcx> 
?7 FORMAT U H * r 4 / 2 X F i e . 5 , e x i p e i 5 . 4 / 2 X F i a . 5 } 

XX I=XXCI )~V | 
XX3-C-XXC3; *XXC4) > / 2 . 
XX4*C X X C 3 ; + X X C 4 ) ) / 2 . 
rFCIJK.EQ. 1)6© 70 529 
*X2 .=XX(Z . ; - \ / | -VJJ /AL 
WR1TEC6/3J9) 

3ff<? FORMAT-t/./tHr-t0%$OH fiO«Tl-Vi R « « T 2 - V l - J l / A L VP 
I .SPEED «F 3«UMX> ' I 
6Q T© 2 2 Z 

J M XX2»XXC2)-Va 
WRITEC6,399) 

J**? FORMAT <./ /1 W,»0tfyOW R0©T I - \ / l RPGT2-VZ 
I SPEED 9F 5®0»JP > 

12.2 WRITE (.6,223) YK\ r XX2,XX3, XX4 
^15 FOR^TLtH,3X4P^O. , J> 

loeo CJDWTIWVJE 
S A / D 
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SUBROUTINE 0£T£R(B»D> 
DIMENSION 814,4) 
p |ceCl , l>«rB£2,2j»£BO>3)«Bl4 ,4- ) -B(3 ,4)«B(4 ,a)J-8<3j2)*(8f2 ,9J*8(4 

i i4>-BU,4)*rBf4,3>)t8C4,2>*CBU,3>*Bl3,4)-BU,4>*B<3,3)>) 
P2«B_t2,l)#C-BCl,2)*tBO,3)»&t4,4;-B(3,J:t*St4J»iL>>^(3^2lt(Ba^)*^C 

T4T4^B(a/4>*BC4>3)}-B(4i2J#CB(l ,3y*B(3/4)-B(i>4y*8£3,5n) 
08«Bl3il)*(BU,2>*(8(2>m8C4,4)-BU>4>*S<<J,3^)-BC2,2)*tBaL,3>*BM 

i,4>-8(l ,4}*Bf4>3i)+BC4#a.)*(Bll /3)»BC2/4;-3U,4-)*BC^/3)>) 
P 4 - B ( 4 ; D * C-Bai2)#CBt2,3)#BC3/f)-B (2 ,4 )^813 ,3) )*B(2«2>«CB(lf3)ifW 

13,4 >-8U,4)*&t3,3> >*B C5, l>*£BU,3)*&U,*)-B*U>4)*Ba,3 J)) 
D;D1+P2*»34D4 _ _ _ _ ^ ^ _ _ _ 

~mxaftn ' ~ " 
END 



SOB Wirr t N f BATt RH uw> P, TJ, TO, 4B> 
|fiLtflM.l.T.O.0> GO 70 fSOC 
lArl 
G<> 10 1&M 

1500 IA*% 
16*0 CONTINUE 

DimtWsro* * 8 U 5 ) 
IFCTI.6T,6*0r) (SO To SSO 

*l|=.999?4*CTl-49i*> 
Cf>J3f'6 
Wis . 4 l 7 ^ f 1 - ^ 9 2 ' H I 0 7 5 . 8 
GOTO 600 

£*0 IF(Tl-6r»760.) GO 7*0,58/ 
HI*l*O>tf*(Tl-6600+/67.99 
GW*I*01 
Hl*.393*Cn~t60')+J>4&9 
(ZOTOCyOO 

591 | F C f l ^ f » 8 6 0 . ) GO TO 382. 
Mtef.O^>etCTl-760<Hl89«57 
CPlsJ.Ojr 
U l r t l l MC*ri»76oO-f #'?f»7 
GO r© 6«> 

5JX IFCTI.6T.9I0.) G 0 T O 3 3 3 
Wl««<l03«T'i-d£o.)+»74.97 
CPIrl.J 
Har^£HHlYl-06O*)-Hao/o 
GO TO £00 

583 lFCTl.GT.9G0.) SO T0tf3«f 
H l» •-15#CTt-91OO<4?0. J 
OPls i* !^ 
M«-.06vcri-$ioj4-uo£»4 
G&TO6O0 

584 HI=t^?3*tTi-lo*o.)+4^^8 
cpi=i-as' 
Ha—.JWMCTf-/oto,)+jat)i,7 

0>0 CoUTlNVE 
H l s i T » 4 * « P ( - ( f l - 4 f a J / | 0 i > . ) 
t/a* .oooaS37«c n - H 6 o * ) 4 . 0 7 
TK* On-49* •>**/?* 
PRcp/l<M«? 
TCs»74» / I-1K 
VXt«-.3l4T/j4P«(rc***J33 l>-.«>0|30W7'f*TcK74«08£'i8)#Cro*4,J 
tr« V1.4.134^d?ltCrC4|«.133>-*Odl94G263irrc 
V W r t 3 . l 9 7 5 i - « 0 / V W . 
VLtVu 
R0l = fcl»43/VMC 
I FIT l .&T. 5*?. ) GO TO 6O0O 
ROl=42-3 

8000 CONTlMOe-

Vt.T?C+.89*>a». l47l6*«Cf 9 7 * l-TlOft»—0530)~i . 6 * , 4 * « 3 W . - T * ) * * - J . $ ) 
l«lf>Rr2l».,5)J»S'./7» 
vu»=- »4*t t3dy.*TKj»Hf-1* o 
R0TI»-tROl/Vt)nyLT 
C7i«CR0» /VL)#t.-VlP/M. 174) 
Cr»«CTl/( I4«6*5?#| 4*i) 
TK*CTa-492».>»5;/S» 
TK3*Ttt*a7J<./G 

Ti*»»/CTK*X73«iG? 
C*I»81.51^TI-CIGX#60, >TJ*TI 
0a"^l&3S'UX6370. JfcTlftTl 

IFCTI.6T.9I0
lFCTl.GT.9G0


GS3= •0O03*£r-<S.7SS»<S23 
€3**33 
Bo?/ »8»-26^ • 6zw«< i*>*>ntf3(»7©»»Cn*Ti))J 
Bt I s 80* B0» eo*G 21*T(#PR 
5ai*CBO«H*>*sa*K*l*»tfO*0>*f*3> (? 
p33*UBo*Tl*P*>*#l*0**d*C-&*3) 
Milji(.^555tKHi'n<3/PR)+6H-»^ZW«J 
R02>62*43/VG2, 
0TTs-(TJ*»aO 
siT=C8i-^^6-2.*ci6x^«'# >«*n)*i>rr 
6ne-a.*C»16<970. >#TI*-0TT 
«3Tfe-ay»«<6ii/ru*on5«eM7ta 
BOTrCCBo-l .8? i/rn*DTrKCO-l-e?»0773(-Ai-CCC/0.)^-'^<7^£).K.,r/ 
8risB^*2«*BO»e<>T^a^r/^PR+/3o*»d#6lT»Tl*Pft*-6o«ed#oa»«-MT#PR 
BTi«f8o»«4.) «K»22#( T4W3. J « (PiU»3 J*(4>*B0T/BC>f61l/t«*3.# W V t a J 
8T3s 6334( 13.»B0T/B0+VJT/G3+U* *PTT/T\) 
BTiBTj+BTZ+BTJ 
R0T2«- (R ovVfc aj * (<f *S SVf/PfrGT)*S. Jl • 
BF'Bo* B M H i» mts&*i9 fl., >jffiia4 Cn**-J. > (PA« a»)»3.+B33»i 1,/PK 
CT28-CR02/VCr2)lh(-4» 5y.5T>4«TX3/(PR*PRtt Op)/»A. / 7 ^ 
CT2*Cn/(l'h6tS9*/'W') 
Ctte f | . 4 7 Z « t 7506E-8) #TK3*H'7»8J«»TlMC5*'9J*W»ne 
!F(TA.*£. | ) CO TO fct/ 

U2?C 7Er$J * C n - * 6 * W 37fr?J *UT2Hfc»->»*3U>*'*iH. 
xy«C6*7»a7-TK3) 
2 I »*• 143781 V+»eo£8M 3WC **•(.!170136B* H*)*Q( f**3) 
22»i.+c2<fi7ar£-«>»xy 
z*(xy/rK3)H(z.i/z.z.) 
% * a » 8 . /67KJY» 1)/(JG***Z) 
PVeRHWWG 
WP= U<KT«.662#KJ /£P- PVO 

WFArl./OH-WR) 
Rr V M * $ i . 3** t |«- WW*8r . 76 

Cj'Z;UFA*.2*>+0 .-WjaJfcP*. 
H * • WF* « (T7-41 a.) t ,1W *• U , - VFA>*Hl 

Koi«(P*i44.)A*m) 
CT2»/«0/CR»T2J 

£OT2P- cp*;#j vr/bn*n8) 
Cja*crz/3z.»7f 

64 COHTWUE 
ABU-frCTI 
AB62)=R0T1 
A8C3)sCTl 
AB(*)=ROT;I 
ABC*)^UI 
A8t6)*Ul 
ABC7)tH( 
A8CB>*«X 
A B O >«CP I 
A8CIO>=<*>2. 
ABU DsROJ 
ABCI3.)«R0X 
RETURN 

WD 
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