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SUMMARY 

This thesis presents methods for developing multi-function, multi-GHz, FPGA- 

based test modules designed to enhance the performance capabilities of automated test 

equipment (ATE). In recent years technological advancements in semiconductor 

technology have outpaced advances in ATE testing capabilities, thereby causing 

significant challenges for new high-speed device testing. The main motivation of this 

research was to develop solutions that address these challenges. 

The methods shown in this thesis are used to develop a design approach that 

utilizes a test module structure in two blocks.  A core logic block is designed using a 

multi-GHz FPGA that provides control functions. Another block called the “application 

specific” logic block includes components required for specific test functions. Six test 

functions are demonstrated in this research: high-speed signal multiplexing, loopback 

testing, jitter injection, amplitude adjustment, timing adjustment. Furthermore, the test 

module is designed to be compatible with existing ATE infrastructure, thus retaining full 

ATE capabilities for standard tests. Experimental results produced by this research 

provide evidence that the methods are sufficiently capable of enhancing the multi-GHz 

testing capabilities of ATE and are extendable into future ATE development.  

The modular approach employed by the methods in this thesis allow for flexibility 

and future upgradability to even higher frequencies. The methods allow a next-generation 

FPGA to be quickly integrated into a test module to increase performance. Similarly, new 

components can be designed into the “application specific” block for additional test 

functionality. Therefore the contributions made in this thesis have the potential to be used 

into the foreseeable future for enhancements to semiconductor test capabilities. 
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CHAPTER 1    

                                          INTRODUCTION                                                         

 

The objective of this research is to develop feasible and economical solutions to 

testing high-speed digital devices at multi-GHz rates. Testing high-speed digital devices 

at full speeds is essential to assure that manufactured devices meet design specifications 

and function properly throughout the entire range of intended operation. Increases in 

device performance and functionality have resulted in challenging problems pertaining to 

testing them effectively. Many current methods of testing are either inefficient or 

prohibitively expensive. This research presents methods to develop an efficient test 

system to cost-effectively test high-speed semiconductor devices. 

Technology roadmaps have accurately predicted rapidly increasing clock and data 

rates of electronic devices [1]. Current roadmaps indicate this trend will continue into the 

foreseeable future [2]. Gordon Moore states in his famous 1965 article [3] – the basis for 

the well-known “Moore’s Law”- that the number of components that can be placed into a 

device nearly doubles every two years. This “law” has been upheld for nearly half a 

century, despite meeting many physical limitations on the way. Furthermore, this trend is 

expected to continue without major obstacles until at least the year 2015 or perhaps later 

[4], thereby producing exponentially complex, higher-performance devices. 

Automated Test Equipment (ATE) has generally been used to test high-volume semi-

conductor devices over the last four decades. Over this period, ATE performance has 

improved and new capabilities have been added. However, the advances in many ATE 

performance measures and capabilities have not kept up with the advances in semi-
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conductor technology [1][2]. One commercially available system can run up to 12.8Gbps 

after installing add-on instrumentation [5]. Typical base systems are limited to lower 

speeds [6]. This situation has resulted in the production of advanced, complex devices, 

but not a feasible way to test their complete functionality. This problem has become so 

critical to the development of higher performance devices, that the paradigm in which 

design is associated with research and development and testing is associated with 

manufacturing no longer stands [7]. Design and test can no longer be dealt with as 

separate issues – they must be approached hand in hand in order to efficiently develop 

next generation high-performance devices.  

Design for Testability (DFT) incorporates certain testability features into the 

design stage of semiconductor devices. These improvements typically include design 

modifications and enhancements such as serial scan, boundary scan, and built-in self-test 

(BIST) [7]. Most DFT and BIST methods can be used to verify internal logic and 

structural connectivity, thereby simplifying external testing required.  

As the complexity of devices increase, testing the entire device globally becomes 

inefficient and complex. Incorporating DFT techniques into various components of 

devices produces substantial benefits [8][9]. This has caused most semiconductor 

manufacturers to incorporate DFT features into complex device design. Assuming there 

is a practical degree of DFT and BIST methods on the device, its testing complexity can 

be reduced to a subset of traditional testing [10]. However, functional testing at full clock 

speeds remains as one of the most critical tests required as DFT and BIST generally do 

not operate at these speeds. Furthermore, environmental and parametric testing is still 

required, as these tests are not covered by DFT and BIST methods. Therefore, although 
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the required external tests are reduced by incorporating DFT, high-performance devices 

still require high-speed functional tests and traditional testing such as environmental and 

parametric testing.  

ATE have traditionally been able to perform most semiconductor testing 

requirements mentioned above. Parametric tests are performed by elaborate parametric 

measurement units (PMUs) within an ATE. Reliability tests are performed by an ATE’s 

full suite of sophisticated instrumentation and software. These tests do not fundamentally 

change with increasing clock and data rates. Functional testing, on the other hand, is 

limited by an ATE’s performance capabilities. Purchasing new ATE systems when 

higher-performance testing is required can be cost prohibitive (historical ATE buy rates 

have been reduced by a factor of two since 1981 [11]). Upgrading existing ATE 

performance with additional pin electronics cards (PECs) from its manufacturer is a 

cheaper option when available. Therefore there is a need for a test system that can 

perform functional tests beyond the performance capabilities of available ATE. Based on 

technology road maps, test systems will be required to test devices running at speeds in 

excess of 10Gbps. 

To approach the problem of increasing test performance requirements, a modular 

test system is presented in this thesis. The test system is used to enhance specific ATE 

performance criteria such as high-speed signal generation, high-speed loop-back testing, 

etc. The test system is designed with a core component that aims to exploit state-of-the-

art field programmable gate array (FPGA) technologies. Current FPGA performance 

exceeds many performance criteria of ATE [6][12]. Furthermore the use of an FPGA 

allows the test system to operate independently of the ATE and without any of its 
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resources which tend to be relatively expensive. With the FPGA, the core component 

controls and generates many test functions itself. However, for comprehensive testing, 

test functions such as parametric measurement and reliability testing are required. As 

discussed above, these traditional, lower-speed parametric tests are better handled by and 

ATE. Hence, to retain full testing functionality, the designed solutions must be 

compatible with existing ATE infrastructure.  

In addition to a core component, the test system can be designed with logic to 

enhance ATE capabilities based upon specific test application requirements. For instance, 

typical ATE are limited in signal speeds up to 3.2Gbps. If higher speed test signals are 

required for the test application, logic can be added to the test module to increase signal 

speeds to above 3.2Gbps. Similarly, if other test capabilities are required such as jitter 

injection, additional logic can be added to the test module.  

Therefore the objective of the research presented in this thesis is to develop 

feasible methodologies for extending ATE performance capabilities using multi-GHz 

FPGAs. The research develops an approach that can be adapted as new functionalities are 

required and further technological advances take place. The approach consists of the 

design of a test system in separate blocks, specifically a core logic block and an 

application specific block. When higher performance is required of the test system, the 

core logic block can be redesigned independently of the application specific logic. 

Similarly, the application specific logic can be redesigned or additional logic added to 

accommodate new or improved test applications. By limiting the solution to focus on 

specific enhancements, the methods presented in this thesis allow ATE performance to be 

extended in a feasible, timely and cost-effective manner. 
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The organization of this thesis is as follows. In Chapter 2, technology roadmaps 

are presented and discussed. Also the history of ATE is given and the evolution of testing 

with concepts such as DFT and BIST is described. Two different methods of previous 

work done in the area to enhance high-speed digital testing capabilities are presented in 

Chapters 3 & 4. Chapter 3 presents modular extension techniques of ATE to 

accommodate high-speed digital testing. This method of test enhancement extends 

resources from the ATE to produce higher performance test capabilities. Chapter 4 

presents a FPGA-based stand-alone test system that is capable of operating independently 

of an ATE and providing high-performance test capabilities.  

The reaming research presented in this thesis uses the lessons learned in both 

Chapters 3 and 4 and develops an FPGA-based modular extension test system designed 

to work within existing ATE infrastructure, but not to use ATE resources. The test system 

can be operated with the FPGA, thus allowing operation independent of an ATE. Chapter 

5 discusses in detail the concept and design of the test system. As the FPGA in the test 

system is a critical component of it, the selection, design, and use of the FPGA is 

discussed in Chapter 6. Designing high-speed digital systems requires additional 

considerations versus designing at-speed systems. At higher speeds, passive system 

elements can cause undesirable effects, essentially altering system performance. These 

additional considerations are discussed in Chapter 7 and the physical design of the test 

system is presented. In Chapter 8, the experimental results of this thesis are presented and 

the developed test system is characterized. Finally in Chapter 9, conclusions of this work 

are presented and future work discussed.  
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CHAPTER 2          

 

                              BACKGROUND AND HISTORY 

 
 
 

In the semiconductor industry, specialized computers are used to test devices. 

Over the past 50 years or so, these specialized computers, or ATE as they are formally 

known as, have become bigger, faster and offer more functionality than ever before. This 

chapter aims to present a background on testing and the history of ATE evolution. 

Semiconductor testing is largely driven by the technological trends of the 

semiconductor industry. Various technologies, such as digital, optical, MEMS, RF, etc. 

require different testing methodologies. Furthermore, technological advancements in 

these fields merit different methodologies of test techniques due to the complexities 

imposed by these advancements. Therefore it is relevant to discuss these technological 

advancements to fully understand the nature of modern day semiconductor testing. Due 

to this reason, in this chapter, technology roadmaps are discussed first. ATE are the 

primary tools used in testing semiconductor devices, thus after presenting technology 

roadmaps, the history and development of ATE is discussed. The last section of this 

chapter discusses general testing methods and how they have been developed along with 

ever increasing semiconductor device functionality. 
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2.1 Technology Roadmaps 

Over the past few decades, the ever increasing performance and transistor count 

of semiconductor devices has caused a phenomenal change in semiconductor test 

requirements. Consumer demand during the 80s and 90s focused mainly on increased 

performance of electronics. However the last decade witnessed a fundamental shift in 

market demand, as technological advancements allowed the integration of various 

semiconductor technologies. These technological advancements include technologies 

such as Multi-chip modules (MCM), Multi-chip package (MCP), System-on-a-Chip 

(SoC), System-in-a-Package (SiP) and 3D packaging, which have allowed the integration 

of various semiconductor technologies such as digital, RF, optical, MEMS, etc. devices 

into one system [13]. Based on these capabilites, consumer demand has shifted from not 

only higher performance from electronic devices, but more functionality as well. 

The demand growth of simple one function devices has been steadily declining. In 

many cases, such as the point-and-shoot digital camera, sales have actually been 

declining since 2008 [14]. Current market demand indicates that consumers prefer to use 

their smartphone devices, and demand that a smartphone also function as a high-

resolution camera, GPS device, motion sensor, etc. This level of integration has caused 

significant challenges in testing as it is ultimately the application requirements or 

specifications that determine test requirements. Furthermore, each technology requires 

different test methodologies. Along with testing requirements for various technologies, 

increased device complexity has increased test complexity, which further translates to 

increased test cost. The cost of testing a device is now a large part of its total 

manufacturing cost [15]. Fabrication costs per function have generally decreased 25-30% 
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annually, while test cost per function has decreased only 5-10% annually [16]. Given that 

test costs are already a large part of the total manufacturing cost; the statistics indicate 

that testing costs will soon be the majority of a device’s final cost. Figure 2.1 shows a 

plot of manufacturing and test costs per function over the past 40 years and predicted for 

the next 20 years. It is expected that the cost of testing a device will become the majority 

of a device’s cost shortly within this decade [17].  

 

Figure 2.1 Semiconductor test cost vs. manufacturing cost [17]. 
 

According to the International Technology Roadmap for Semiconductors (ITRS), 

the capital cost for a test cell is the following: 

CCELL = CBASE + CINTERFACE + CPOWER-SUPPLIES + CTEST-CHANNELS + COTHER 

Where CBASE is the cost of the base system (channels not included), CINTERFACE  is 

the cost of interfacing devices, CPOWER-SUPPLIES is the cost of power supplies, CTEST-

CHANNELS is the cost of channels, and COTHER is the remaining costs such as floor space, 

cooling systems, etc.[1]. The total cost of a test cell can be broken down into more 

meaningful figures by dividing costs by testing throughput, to result in a per device test 
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cost. The current top drivers of test cost and future test cost drivers according to the ITRS 

are shown in Table 2.1. 

Table 2.1 Test Cost Drivers [1]  

Current Top Test Cost Drivers Future Test Cost Drivers 

ATE Capital Expenditures Device Performance Metrics 

ATE Interface Expenditures New Defects and Reliability Problems 

Cost of Test Program Development Known Good Die Requirement 

Test Time an Test Coverage Test Requirements of Packaging 

 

Device performance metrics will be one of the main future test cost drivers. The 

cost of testing high-speed I/O has become very significant [1].  High frequency I/O 

technology continues to show significant growth in speed and port count. Trends such as 

these are expected to continue as technology roadmaps clearly predict rapidly increasing 

clock and data rates into the foreseeable future.  Table 2.2 shows the ITRS Test and Test 

Technology Roadmap from 2005. It can be noted from the table that not only are the data 

rates for future semiconductors expected to increase, but their feature sizes are expected 

to decrease. 

Table 2.2 ITRS Test and Test Technology Roadmap 2005 [2] 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Wafer Test - 
number of Sites 8 8 8 16 16 16 16 32 32 

Half Pitch size 
(nm) 90 78 68 59 52 45 40 36 32 

Chip-to-board (off-
chip) speed (high-
performance, for 
peripheral buses) 
(MHz) 3125 3906 4883 6103 7629 9536 TBD 14901 18626 

I/O data rate 
(GT/s) 

0.1 - 
3 

0.1 - 
6 

0.1 - 
6 

0.1 - 
6 

0.2 - 
12 

0.2 - 
12 

0.2 - 
12 

0.2 - 
15 

0.2 - 
15 
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Based on this roadmap and technology trends, there are a few important areas of 

concern regarding test. The first is the rampant data rate increase. Due to higher data 

rates, test systems must be capable of such high-speed data rates. Second, test systems 

must be able to accommodate the increase in pin counts enabled by the lower feature 

sizes. In 2009, up to 250 pairs of 7Gbps backplane style SerDes channels were found in 

some applications [1], however most applications will have 32 channels or less. The third 

area of concern is test system bandwidth.  At 10Gbps, the bandwidth requirement 

becomes 20GHz or higher and providing such an interface including connections through 

PCB, cables, connectors, etc. becomes a monumental engineering task. The fourth area of 

concern is jitter, and this becomes a significant concern at multi-GHz data rates. At a 

10Gbps speed, bit periods are 100ps and only 50ps of jitter can render half that bit period 

useless. Dealing with such high-speed signals and introducing low amounts of jitter is not 

a trivial task. The final area of concern is the cost factor. Traditionally high-speed devices 

were designed as high-performance high-priced devices. This has been rapidly changing 

as the thirst for high-speed data in commoditized hand-held devices has been insatiable. 

Furthermore, with accelerating technology improvements, product lifecycles have 

become shortened, which has made cost savings from “mature” technologies very 

difficult to achieve. 

The concerns discussed above indicate a need for a test system that: 

i) is capable of multi-GHz I/O 

ii) is capable of accommodating multiple data channels 

iii) is capable of high bandwidth through all components 

iv) adds low jitter to the test signal 
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v) feasibly and economically tests devices 

In addition to the new requirements for a test system discussed above, a 

comprehensive test system should always be capable of standard tests functions such as 

timing adjustment, voltage adjustment, parametric tests, etc. Taking all these concerns 

into consideration, multi-dimensional challenges arise when developing new test 

instrumentation. Semiconductor testing is generally done using ATE. The next section 

discusses the history and development of ATE systems. 

 

2.2 Automated Test Equipment 

The roots of modern ATE were developed in the 1960s by Nick DeWolf, a well-

known test engineer during that era, and often referred to as the father of ATE [18]. 

DeWolf and Alex d’Arbeloff together founded a company called Teradyne whose 

business plan was to manufacture and design semiconductor test equipment. In 1966, 

Teradyne introduced an integrated circuit tester, the J259, which was the first tester to use 

a minicomputer for control, thus launching the first ATE [19].  

The first generation of ATE was comparatively primitive to modern day ATE. It 

wasn’t until the late 70s and early 80s that ATE started to achieve complex functionality 

and the use of automatic handlers and probers. During this time multi-function ATE were 

being introduced that could test mixed-signal, RF, optical as well as digital components.  

In the mid-to late 80s digital devices were rapidly evolving into the GHz range. 

This required test systems capable of testing at GHz rates. Many manufacturers 

developed systems using various techniques to increase speeds. For instance, the 

Megatest MegaOne and the Tektronix S-3295 used multiplexing concepts on adjacent 
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pins to double output frequencies [20]. However these systems could operate at only a 

few hundred MHz, with timing accuracy of only 0.5-1ns, and above all, cost nearly $3M 

for a 256-pin system.  Therefore around this time, ATE functionality could not keep pace 

with the rapid advancements of semiconductor technologies. In order to achieve GHz 

speeds and keep up with technological trends, test engineers either developed custom test 

heads for existing ATE or developed extension systems to produce GHz signals. These 

enhancements are the topic of the next chapter. 

Despite the lack of performance during this period, a significant shift did occur in 

ATE architecture. Up to this point, most ATE systems used a “shared resource” 

architecture, where a few dedicated “per-pin” electronics, such as formatter or 

comparator served as an interface to the device under test (DUT). When lower pin counts 

were required, this allowed a cost advantage. However as more and more switching and 

multiplexing techniques were employed, issues such as test calibration and programming 

became very tedious due to signal routing. Also, at higher speeds bandwidth limitations 

produced undesirable results. To overcome these issues, manufacturers introduced “per-

pin” architecture [20]. Under this architecture, each tester pin included its own dedicated 

pin electronics such as pattern generation, timing control, etc. This eliminated the 

complex switching algorithms and timing issue between pins, and created a more 

simplistic, efficient and easy to use system as each channel could be controlled 

independently. This architecture in turn reduced the cost of the base system, and allowed 

users to purchase additional channels when required. An overview of the shift from 

shared resource architecture to per-pin architecture is shown in Figure 2.2. 
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Figure 2.2 ATE Architecture Change 
 

Hewlett Packard released its first series of testers based on this new “per-pin” 

architecture in the 90s. The 83000-F660 was the state-of-the-art tester at the time. 

However, it could not reach 1GHz; its highest speed was 666MHz. The cost of the 

system ranged between $1-3M and despite the cost and performance limitations, these 

systems were the industry leader and quite popular.  

Other players in the market included Teradyne, Advantest and Credence systems. 

All had their own custom systems, but none running above 1GHz. However around this 

time, a new standard for modern ATE architecture did evolve which included a test 

mainframe/test head, a development workstation, and power supplies. Much of the testing 

done on ATE was power intensive and generated much heat. Thus most ATE were 
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equipped with efficient cooling systems, for example the HP8300 was equipped with 

water cooling features.  

Despite the fact that tester performance could not keep pace with device 

performance, many additional functions were added and improved. These included 

elaborate parametric measurement units, sophisticated test pattern generation algorithms, 

large amounts of memory, etc. Adding such additional functions to ATE have kept their 

costs around the same level. ATE cost per pin for high-end systems still hovers around 

$3,000-$10,000 per channel. Therefore a 256 channel ATE can easily range from $1M to 

above $5M.  

In order to lower ATE costs, manufacturers pushed the concept of open-

architecture test platforms in the early 2000s [13]. The concept of open-architecture 

testers is similar to that of building a custom PC, in which one can purchase a 

motherboard, a processor, a video card, etc. separately in order to build one system.  

Similarly ATE manufacturers developed base test systems to which PECs could be added 

to. The idea was that consumers could purchase a base system and only the cards they 

required, thus keeping costs down [21]. Furthermore this allowed the design of higher 

end cards that could be sold to consumers that required high-performance testing. For 

example Verigy (formerly HP’s Test Systems division) develops a base system called 

V93000 SOC (the latest system evolved from the HP83000). The system can accept cards 

with functions such as digital nano-electronics testing, high-speed digital testing, high-

end consumer mixed-signal testing, etc. [5]. Despite this new model, the demand for 

higher-performance, greater accuracy and increased vector memory have offset most cost 

savings achieved. The base system for the V93000 costs well over $1M, and adding 
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PECs for required high-speed testing can create a total price tag well into the $3-5M 

range. Furthermore, there haven’t been significant third-party efforts to develop PECs for 

ATE due to their complexity and performance requirements. Independent PEC 

development by third-parties could have lowered costs. Therefore the ATE industry is yet 

to experience significant cost reductions.  

The latest development in the ATE industry is what has been termed Protocol 

Aware ATE (PA ATE). PA ATE came into prominence in 2007 and was formally 

debuted in [22]. The concept for PA ATE arose as higher levels of integration allowed 

the manufacture of diverse devices using technologies such as SoC. Device 

manufacturers with substantial IP libraries could develop an entire true system with 

diverse IP blocks in a single process on a single die with minimal development time. 

Each IP block could have different protocols such as JTAG, PCI, PCI-E, USB, SATA, 

serial flash, SRAM/DRAM, etc. And each protocol would require its own test strategy, 

thus testing the entire device on a global level would be high inefficient if not impossible. 

PA ATE aims to solve this problem by essentially natively emulating, in real time, chip 

I/O at the protocol level. Programmable interfaces in PA ATE are used to perform real-

time state detection to handshake with a device using its native protocol. Test strategies 

are developed for each protocol, and once a communication link to the device is 

established, testing is performed in a more efficient manner.  

PA ATE enables cooperative test between an ATE and a DUT with realistic 

device activity, thus improving the quality of test [23]. The ATE provides a suitable test 

environment with infrastructure such as power supplies, cooling systems, DUT 
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interfaces, probe cards, etc. Furthermore, the ATE controls overall test flow, I/O levels, 

I/O timing, etc.  and manages results. 

PA ATE is most effective when used with DFT techniques. DFT is used to 

provide access to internal chip resources and allows the ATE to perform low-level 

structural tests using the required protocol. Low-level structural tests require less ATE 

complexity and simpler use, which results in lower cost and higher reliability [24]. In fact 

much of the cost savings in testing have been afforded by DFT techniques. Therefore the 

next section discusses the evolution of DFT standards and usage in detail.  

 

2.3 Design for testability (DFT) 

In the semiconductor industry, testing is the process by which stimuli is applied to a 

circuit in order to demonstrate its correct operation [25]. Traditional testing of 

semiconductor devices can generally be divided into three broad categories [26]: 

 

i) Functional tests: these tests comprise of testing input/output pins on the 

device, its timing characteristics, proper logic handling, behavior, etc. 

ii) Environmental testing: tests include operation characteristics under various 

power and temperature conditions. 

iii) Reliability testing: these tests characterize a device’s quality, reliability, life 

expectancy, failure rates, etc. 

 

Out of the above three categories, functional tests are the most involved as they are 

required to test the proper logic functioning of the device. Comprehensive functional tests 
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should be able to verify the proper function of all components in a device. A typical 

modern semiconductor device can contain hundreds of millions of transistors and wires. 

Every one of these transistors and wires can contain defects that manifest themselves as 

incorrect opens or shorts. These defects can only be tested via device I/O pins, which 

there are only a few hundred of. Therefore there is a gap between the large number of on-

chip components that need to be tested and the relatively small number of pins through 

which these test can be performed. This gap necessitates design modifications to improve 

accessibility from external pins to all internal logic. DFT addresses this problem and is 

the design of additional on-chip hardware to improve accessibility to internal logic. 

Improving accessibility is used as a generic term here, as DFT techniques can provide 

accessibility in a variety of ways from physically providing access to internal logic to 

generating tests on internal logic and providing access to results.  

Modern trends in DFT techniques can be distinguished into three general roles 

[27]. The first role of DFT is to enable high-quality testing, through the use of additional 

internal modules designed on-chip. The second role is to provide access to embedded 

modules within a DUT. The third role is the on-chip generation of stimuli and/or the 

evaluation of test responses.  These roles are discussed further below. 

 

2.3.1 Additional Module based DFT 

This technique of DFT requires the inclusion of additional modules into devices 

to enable external testing. The most common methods of this style of DFT are scan-based 

designs which allow the access and control of device components connected to internal 

registers through scan chains. Various types of scans exist based on the depth of the 
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testing required such as full serial scan, partial serial scan, non-serial san, and system 

level scan [28]. The most popular scan-based design is the Joint Test Action Group 

(JTAG) Boundary Scan Standard (IEEE Standard 1149.1) [29]. A serial scan architecture 

is shown in Figure 2.3. 

 

Figure 2.3 Serial Scan Architecture 
 

As shown in the figure, the architecture requires four additional pins. In the JTAG 

standard these signals are defined as Test Data In (TDI), Test Data Out (TDO), Test 

Clock (TCK) and Test Mode Select (TMS). Test data and instructions are sent through 

the TDI pin to internal registers in the device. Each register has certain test functions 

implemented in it, and the TMS pin is used to select these registers. Once tests are 

performed, results are sent back over the TDO pin. A clock input is required for the 

internal logic and provided through the TCK pin. The advantage of using the JTAG 
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standard is that is allows the scan of multiple circuits. For example a flash memory 

device connected to eight FPGAs can be scanned at once using this standard.  

 

2.3.2 Embedded Module Access based DFT 

 Complex devices can be composed of multiple logic modules. Testing these 

modules in a similar fashion, i.e. modular testing, is an efficient approach to testing as it 

reduces test generation time through reuse and concurrent engineering [27].  Modular 

testing requires an on-chip test infrastructure in the form of test wrappers and Test Access 

Mechanisms (TAMs) [30]. The test wrappers are used to provide access to the targeted 

module and the TAMs are used to transport data to and from external pins. Therefore, a 

small number of external pins can access a much larger number of internal signals, thus 

allowing testing to be performed using external test equipment.  The IEEE describes a 

standard for test wrappers called the Standard for Embedded Core Test (SECT – IEEE 

Std. 1500) [31]. The standard is similar to the JTAG standard, however slightly different 

and allows for some customization. This makes SECT a better standard for use with 

various TAMs.  

 

2.3.3 Self-Test 

Test stimuli and response evaluation has traditionally been performed by an external 

tester. As devices became more complex and access to embedded components became 

more difficult, external testers could not perform comprehensive testing. To solve this 

problem, internal test modules are designed onto the device itself in a technique called 
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BIST. This technique was first applied to memory devices in the late 80s [32]. Additional 

on-chip circuitry is added on to devices that generate test stimuli and evaluate responses 

to verify operation.  

BIST is generally of two types, online and offline. Online BIST is designed to 

function when a device is in normal operation, thus being able to detect errors in real-

time. Offline BIST is designed to perform testing functions when the device is not in 

operation mode, such as on power up [28]. Both types of BIST require similar 

architecture. The main components of BIST are test pattern generators (TPGs) and output 

response analyzers (ORAs). A BIST controller component controls operation of the TPGs 

and reads output from the ORA to determine test results. These components can be built 

using registers and finite state machines.  

The complexity of BIST depends on the amount of test patterns required and the 

number of circuits under test (CUTs). BIST has been an efficient method of DFT for the 

last 20 years [27]. Miniaturization of transistor features has allowed additional circuitry 

to be built into devices without much imposition on the devices performance. However as 

device complexity increased exponentially, employing BIST has become more 

challenging. Therefore in 1999, Credence Systems Corp. introduced the concept of built-

off self-test (BOST) [33]. In this DFT technique, additional self-test circuitry is added to 

a device, but built off of the device such as on a load board, test fixture, etc. Typically a 

FPGA is used to control the test circuitry and generate test patterns. This technique 

permits tremendous flexibility, as it removes physical limitations of BIST. Furthermore, 

the use of high-performance FPGAs can develop elaborate, high-performance testing 

solutions.  
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 The three techniques of DFT can be mixed according to testing needs to design 

optimal results. Using any form of DFT techniques does add additional costs to a 

semiconductor device. However there are definite economic benefits that justify the use 

of DFT [8]-[10]. Therefore most semiconductor manufactures employ some level of 

DFT. While DFT can do a variety of testing, it cannot replace all traditional required 

testing functions. Environmental and reliability testing still needs to be handled by an 

external tester. External functional testing can be reduced, but not eliminated by using 

DFT. For example at-speed tests and characterization may not be handled by DFT. 

Therefore DFT is often designed to complement the use of an ATE. This has led to the 

development of low-cost testers by ATE manufacturers [34]. These low-cost testers work 

adequately provided one is willing to rely on DFT to compensate for reduced tester 

capability. Although, this solution addresses the concerns of cost, it does not address the 

concerns of higher performance test requirements. By relying on DFT, a similar argument 

can be made to develop higher-performance test systems. The development of higher 

performance test systems is presented in the following chapters.  
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CHAPTER 3       

 
 

MODULAR EXTENSION OF ATE TO MULTI-GHZ SPEEDS 
 

Testing electronic devices has been challenging due to their exponential growth in 

complexity [3]. When next generation devices are developed, a test engineer may only 

have current generation technologies available for devising test strategies. For instance, 

when the first generation of GHz capable devices are developed, the only resources 

available to test may be limited to MHz speeds. In terms of clock and data speeds, this 

issue was first addressed in the 80s. During that era, standard ATE had testing 

capabilities up to 200 Mbps [35], however many GaAs devices and high-end application-

specific integrated circuits (ASIC) were developed to operate above 1000 Mbps, thus 

creating a need for multi-GHz testing equipment. Therefore, the first substantial attempts 

to enable testing capabilities into the Gbps range were seen in the late 80s [35]-[43].  

The need for high-speed testing has typically been limited to newer devices and 

ASICs. Furthermore, these devices may require high-speed testing limited to only a few 

pins. These new devices are often manufactured in smaller quantities. In the fast paced 

technology industry, new devices have a limited a “window of opportunity” in which to 

make an impact, thus requiring a shorter testing turnaround time. As such, purchasing an 

entire new test system is difficult to justify from a business point of view. Also 

developing a custom platform to test these devices is not feasible in order to take 

advantage of the window of opportunity. Taking these concerns into consideration, test 

engineers have developed solutions extending ATE resources. These solutions involved 
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developing test electronics that used ATE resources to produce higher-performance tests. 

In [36]-[40], high-speed ATE extension is demonstrated using custom design test heads. 

Although this approach is certainly a possibility, designing custom test heads for today’s 

complex ATE systems is a more challenging task. Furthermore, developing custom test 

heads for specific ATE does not allow portability of the solution to other ATE systems. 

Building on this approach, [35] & [41]-[43] demonstrate extension of ATE through the 

development of modular electronic cards using similar principles. These modules are 

compatible with the existing ATE test head - through a device interface board (DIB) or 

similar interface; thus allowing portability to other ATE systems. Initial modular 

extensions developed for GHz speeds included drivers/receivers [35][41], pattern 

generators [42], clock distribution networks [43], and others. Essentially, these works laid 

the foundations of using modular electronics card to extend ATE performance. 

 In this chapter, a number of selected modular ATE extension methods pertinent to 

this research are presented. In the first section high-speed signal generation using driver 

and receiver modules is presented. The next section discusses loopback modules, 

followed by jitter manipulation modules. Modules capable of timing and skew control of 

high-speed signals are presented and finally high-speed signal switching modules 

presented. 

 

3.1 High speed signal generation 

ATE systems may not have a single signal running in the multi-GHz range, 

however many have multiple signals running in the GHz range. It is not uncommon for 

an ATE to have 64 channels or more, each capable of producing up to 1Gbps. The sheer 
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aggregate bandwidth of these signals can be awesome, however available only in parallel 

format. Harnessing a few of these signals into one high-speed signal using careful 

techniques is an approach to generating high-speed data. In this approach a large number 

of low-speed signals are taken from the ATE and interleaved or multiplexed into a 

smaller number of high-speed signals. Although not a trivial task by any means, this 

becomes especially challenging when attempting to generate multi-GHz speeds. For 

instance, the bit period of a 5Gbps is 200ps. This requires the ATE to maintain very tight 

timing accuracies across very long test sequences and over multiple channels. Further the 

electronics used to multiplex these signals must be capable of producing high-speeds 

without significantly distorting the signal by adding unwanted elements such as jitter, 

noise, etc. 

In [44] and [45], Keezer et al demonstrate the extension of ATE using test-support 

modules. The modules are designed to work with a DIB. The DIB is an interface between 

the test-support module and the ATE. DIBs are designed to fit a specific ATE test head. 

Since DIBs do not have any active components, they can be quickly designed for another 

test system, thus allowing a test extension module to be ported to another test system. 

Figure 3.1 illustrates how these test-support modules are used with the DIB. In this 

research, an Agilent 93000-P1000 ATE with about 900 channels was used. 
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Figure 3.1. Top-level system view of modular extension approach to ATE[44] 
  

To generate and receive high-speed signals from existing ATE signals, typically a 

driver and receiver module is required. The driver module synthesizes low-speed signals 

from the ATE into high-speed signals through multiplexing using various logic and 

control functions from the ATE. These signals are delivered to the DUT. The receiver 

card performs the opposite function; it takes high-speed signals from the DUT and de-

multiplexes them into a larger number of slow speed signals which the ATE can handle. 

Depending on the application requirements, numerous driver and receiver modules can be 

used. However care must be taken to order to maintain tight timing accuracy across the 

ATE and the modules. For temperature stability, the driver and receiver modules have 

water-cooled plates sandwiched around them as shown in the figure.  

A typical application test configuration is shown in Figure 3.2. A DUT may 

require several multi-GHz test signals. To produce these signals, several high-speed 

signals are synthesized by the driver modules from incoming low-speed ATE signals and 

delivered to the DUT. The DUT performs its designed function with the signals and 
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produces output signals, which are also running at multi-GHz. These high-speed outputs 

from the DUT are then input into the receiver modules. Since the ATE is also not capable 

of receiving high-speed signals, the DUT output is de-multiplexed by the receiver module 

in multiple lower speed signals and relayed back to the ATE. This approach provides a 

low-cost solution to obtaining high-speed signals from an ATE using little or no external 

instrumentation. The benefits of this approach include flexibility, customization, and 

compatibility [44].  

 

 

Figure 3.2 Typical application test configuration [44]. 

 

Basic driver and receiver modules are designed using multiplexing logic with 

additional ancillary logic devices. Figure 3.3 shows a logical overview of a basic driver. 

Multiple data channels from the ATE are supplied to multiplexing logic in the driver 

module. A multi-GHz clock is used as the select signal on the MUX and multiplexes the 

input signals into a higher-speed signal. The signal then passes through a buffer where it 
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is re-clocked; and also allows for amplitude control. Relays are present on this driver 

module which allow for switching between high-speed and low speed signals (switching 

is discussed further in Section 3.5). Figure 3.4 shows a basic receiver module designed in 

a similar fashion. High-speed data from the DUT passes through relays and a buffer after 

which it enters de-multiplexing logic. Similar, but opposite to the driver module, a multi-

GHz clock is used to de-multiplex the signals into multiple lower speed signals which can 

then be received by the ATE. 

Several driver and receiver modules were demonstrated in [44] including 4:1, 8:1 

and 16:1 multiplexing schemes. Figure 3.5 shows an output signal produced from a driver 

using a 16:1 multiplexing scheme to generate a 5Gbps signal. The eye opening is about 

0.75UI and can be used for certain test applications. The results clearly demonstrate that 

external electronic modules can be used feasibly to generate high-speed signals from 

lower speed ATE resources. 

 

Figure 3.3. Multi-GHz driver module logic [44]. 
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Figure 3.4. Multi-GHz receiver module logic [44]. 

 

 

Figure 3.5. High-speed data signal from driver module at 5.0Gbps [44]. 
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3.2 Loopback Testing 

As the drive for higher bandwidth has made its way into almost all computing 

devices, there has been a push for high-speed serial interfaces similar to those found in 

communication devices [46]. Testing communication devices requires large throughput 

bandwidth on the order of terabits per second. Generating such tests can involve highly 

expensive custom ATE equipment and require long test times [47]. Test costs and times 

for high volume manufactured computing devices have been pressured lower. Therefore 

using expensive ATE equipment for elaborate tests is not a feasible option. Due to this, 

DFT methods such as BIST have been pursued. Self-test indeed reduces the full test 

support required from an ATE. However internal BIST does not accurately reflect a 

realistic operating environment a device may face [48]-[49]. Furthermore, I/O parametric 

and signal characterization cannot be validated using BIST. Therefore an external 

loopback path is ideal in order to test a device under a real world environment.  

In 1999, Credence Systems Corp. introduced the concept of BOST [33]. BOST 

implemented self-test circuitry using FPGAs built off the device and on the test fixture. 

Test patterns were delivered to the device through load boards, essentially creating an 

external loop back path. This concept was extended to multi-GHz rates and demonstrated 

in [50]-[51]. However, multi-GHz devices now produce multi-GHz self-test signals. 

Therefore when multi-GHz BIST is present in a DUT, its internal BIST circuits generate 

multi-GHz test patterns that can be used to test itself. Modular test cards can be built to 

simply loopback the test patterns generated by BIST back into the DUT.  
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Designing a simple loopback path to handle multi-GHz data rates is not a trivial 

task. Due to the high-speed nature of the signals, small amounts of jitter and noise from 

the path can cause undesirable results on the output signal. Furthermore, a loopback path 

spanning across an ATE test head can cause undesirable attenuation of the signal. In [52] 

& [53], modular high-speed loopback paths are demonstrated with capabilities up to 

12.8Gbps. The modules are designed to connect to an ATE via a DIB similar to the setup 

shown in Figure 3.1. An overview of a minimal loopback path is shown in Figure 3.6. In 

addition to loopback testing, low-speed functional tests and parametric measurement may 

also be required. Therefore relay switches are implemented on these modules to select 

between loopback signals and ATE signals (switches further discussed in Section 3.5). 

High performance connectors and relays are utilized in order to support high bandwidth 

required for multi-GHz signals. 

 

Figure 3.6. Overview of minimal loopback testing [52] 
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Loopback paths can be either active or passive. Passive loopback paths simply 

relay the signal through an external path back into the DUT. The signal may suffer 

attenuation travelling through longer paths and may be the test of choice for many 

applications. Active loopback paths generally re-clock the DUT’s test signal for sharper 

edges. In addition to re-clocking, advanced features can be added onto active loopback 

cards. Depending upon application requirements, loopback cards can be designed with 

active logic components such as high-speed buffers, jitter manipulation, skew adjustment, 

amplitude adjustment, etc. Both types of paths are demonstrated in [52] & [53]. Figure 

3.7 shows the output from an active loopback path with an input signal running at 

10.0Gbps. Jitter is measured at 20ps (p-p), out of which only 6ps is attributed to the 

loopback path. The data eyes are open with 0.80UI, thus producing usable output data. 

 

 

Figure 3.7 Active loopback path measured at 10.0Gbps [53] 
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3.3 Timing Skew adjustment 

The ability to adjust the relative timing or phase between signals is often desired 

during testing.  Timing adjustment can be used to ensure the consistent sampling of test 

signals. For example the phase of an ATE’s sampling clock can be adjusted such that it 

samples at the center of an input signals’ bit period, thus producing more reliable results. 

Most ATE have some form of timing adjustment available, such as the Teradyne Tiger 

offers timing adjustment capabilities with a resolution of 100ps [18]. Considering a 

10Gbps signal whose bit period is only 100ps, this resolution is inadequate. Furthermore, 

when dealing with parallel data signals, it is necessary to ensure that all signals arrive at 

the destination at the same time. Multi-GHz signals highlight this necessity as the 

slightest mismatch in path lengths can cause timing misalignment between signals. 

Therefore, there is a need for timing adjustment on a finer picosecond scale. 

Adjusting the phase of a constant-frequency clock signal for sampling purposes or 

to generate high-speed data is generally simpler than adjusting the phase of the incoming 

data signal itself. Many techniques utilizing VCOs and PLLs/DLLs have demonstrated 

this functionality [54]-[58]. However, timing adjustment is much more challenging when 

the problem at hand is to align multiple multi-gigabit data signals to arrive synchronously 

at the DUT. In [59], a method for adjusting the phase of multi-GHz test signals using 

stages of variable gain buffers is demonstrated on signals running up to 6.4Gbps. The 

variable gain buffers used are off-the-shelf buffers that contain a VCTRL input pin.  The 

pin accepts input voltages ranging from 0-3.3V in order to determine the amplitude of the 

buffer’s output signal. Essentially, by increasing the output voltage amplitude, the signals 

rise time is increased. This in effect causes a delay in the signal, thus by varying the 
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output amplitude, delay can be finely varied.  A stage of the delay circuit is shown in 

Figure 3.8 consisting of a buffer with an adjustable VCTRL pin. An output stage buffer is 

shown after the adjustable buffer. The purpose of the second buffer is to recover the full 

amplitude of the signal.  

The research done in [59] shows that one buffer allows a range of up to 10ps of 

delay. Although the ability to finely adjust the phase of a high-speed signal is an 

achievement, a 10ps range may not be sufficient for many applications. Therefore the 

paper presents a 4-stage fine delay adjustment which allows a theoretical range of 40ps (4 

adjustable buffer offer 10x4 = 40ps). In order to allow a larger range of delay adjustment, 

a finite delay circuit is used in conjunction with the 4-stage fine delay adjustment circuit 

as shown in Figure 3.9. Discrete delay is added to the signal by using a multiplexor as 

shown in the figure, to select between 4 signal paths. Each path varies in length and is 

designed to add a discrete amount of delay to the signal, in this case 0ps, 33ps, 66ps, and 

99ps. A fan-out buffer provides the input signal onto each of the paths, and the path with 

the desired amount of delay is selected.  

The module developed in [59] is demonstrated to have a range of 95ps and the 

fine-delay stage demonstrated with a range of 50ps. Figure 3.10 shows the delay circuit 

with an input clock signal at 6.4 GHz. The circuit is used to delay the signal 32.5ps. Total 

jitter of the output signal is measured to be 10.5ps. Since the fine delay range is greater 

than the finite delay steps, this module can be used on ATE test signals to provide a fine 

delay range of up to 145ps, while adding minimal jitter to the signal. 
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Figure 3.8 One stage variable delay circuit [59] 
 

 

Figure 3.9 4-stage fine delay circuit with finite delay circuit [59] 
 



 35

 

Figure 3.10 Output from delay circuit at 6.0 GHz showing a delay of 32.5ps [59] 
   

 

3.4 Jitter Manipulation 

Jitter is a critical issue when dealing with multi-GHz systems. Jitter is defined as 

“short-term non-cumulative variations of the significant instants of a digital signal from 

their ideal positions in time” [60]. Jitter on the order of a few tens of picoseconds can 

pose to be a challenge on high-speed signals. For example on a 8Gbps signal – or 125ps 

bit period, p-p jitter of only 25ps can reduce the open eye to 0.80UI. Therefore it is 

imperative to be able to control jitter on the picosecond scale on test support cards.  

Adding more features to a system generally increases jitter. Therefore logic used 

to improve jitter can in fact add jitter to the system. This makes jitter improvement quite 

challenging, and it cannot be eliminated completely – especially when dealing with 

complex multi-GHz. However, in [61] a novel method for jitter reduction is introduced. 
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In this method, real time averaging is performed on a pair of identical signals. In theory 

this reduces the total jitter of the signal. Results presented in [61] agree with theoretical 

calculations.  A simple circuit used to average high-speed signals in real time is shown in 

Figure 3.11. 

 

Figure 3.11. Simple jitter reduction circuit [61] 

In addition to jitter reduction, many test applications require jitter injection. For 

example stressing test input jitter tolerance may require controlled jitter injection. 

Injecting jitter in a controlled and feasible manner is also a challenge especially when 

very small (picosecond) finite increments are required. In [62] & [63], a method of jitter 

injection employing passive filters on SerDes I/Os on high-speed communication devices 

is demonstrated. In another approach [64], Shimanouchi introduces periodic jitter 

injection for SerDes. However injecting jitter in finite controlled amounts still remains 

challenging. 

In [59], a new technique for injecting jitter into a system using variable output 

buffers is presented. The jitter injection function is an offshoot of a timing adjustment 
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function discussed in the section above. The variable output buffers are primarily 

designed to vary the output amplitude of the signal, however in doing so, cause timing 

skew on the output signal as shown in Figure 3.8. Adding AC coupled noise on the VCTRL 

input essentially randomly skews the delay of the output signal, thus causing jitter. The 

amount of jitter injected is a function of the amplitude of noise applied. A higher voltage 

noise causes longer random timing skew, which translates to higher injected jitter. 

Characterizing this relationship allows for controlled jitter injection onto the signal.  

Figure 3.12 and Figure 3.13 show the operation of this circuit at 3.2Gbps. Figure 

3.12 is an eye diagram of the input signal to the jitter injection circuit with jitter measured 

at 28ps and Figure 3.13 is the output signal. Here, jitter is measured at 69ps total jitter, 

showing the circuit adding 41ps of jitter onto the input signal. This new method is a cost-

effective method for injecting jitter and can be easily incorporated into modular extension 

cards for ATE. 
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Figure 3.12 Input signal into jitter injection circuit at 3.2Gbps with 29ps of total jitter 
[59] 

 

Figure 3.13 Output signal from jitter injection circuit at 3.2Gbps with 69ps of total jitter 
[59] 
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3.5 Switching 

The modules to extend ATE performance discussed in Sections 3.1 and 3.2 

incorporated the use of relay switches. In many test applications, in addition to high-

speed tests, the DUT may require other low-speed tests such as parametric testing, 

continuity checks, stress testing, etc. Generally, most ATE have numerous features and 

are better equipped to perform such tests. Testing time on an ATE can be very expensive 

in a production environment. Switching between testing using modular extension cards 

and testing using the ATE may not be feasible in many cases. Therefore it is ideal to 

design modular extension cards that allow direct connections between the DUT and ATE. 

To accommodate this, the modules presented were equipped with relay switches. This 

allows the extension module to perform the required high-performance tests and also the 

ATE to perform any additional tests as necessary.  

Generally a relay would be the last component a signal passes through before 

being input to a DUT or the first component the output signal passes through on an 

extension module. Furthermore relays are used on extension modules with other 

functionalities such as high-speed signal generation, loopback testing, etc. as shown in 

[44] & [52]. The function of the relay is similar to the function of a multiplexor in that it 

selects either to pass a signal from the extension module or from the ATE. Although this 

may be a simple task, when dealing with multi-GHz signals, the relay used must be 

chosen with care to support such high-speed signals.  

In [52], a mechanical RF relay capable of multi-GHz signals is demonstrated. The 

switch is a reed type relay and simply consists of two input signals and one output signal 
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along with two voltage terminals. When a prescribed voltage is placed across the voltage 

terminals, a mechanical switch closes the path to select one input signal as the out signal 

– this is used as the high-speed path. In a normal state, when there is no voltage 

differential across the pins, the mechanical switch closes the circuit on the other input 

which is used for the slow-speed path. Therefore, when the switch is off, i.e. no voltage 

applied across the terminals, it passes ATE signals directly to the DUT. When turned on, 

the extension module is active and provides the signals to the DUT. Figure 3.14 shows 

the performance of this switch on an extension module. The output signal of a 3.2Gbps 

input signal measures a total jitter of 32ps, adding 11ps of jitter to the signal. At 5.0Gbps, 

the measurement taken shows an addition of 10ps of total jitter, however it can be noticed 

that at this speed, the rise time of the switch is not fast enough to achieve full amplitude 

swing. Regardless, the switch demonstrated sufficient performance for testing 

applications.  
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Figure 3.14 Mechanical relay performance [52] 
  

 

The size of a mechanical relay package measures approximately 0.4 inches and is 

shown in Figure 3.15. These switches are relatively large and can consume too much 

board space on an extension module which is limited in size. Thus, when multiple test 

signals are required on an extension module, this size can be a limiting factor. Also 

shown in Figure 3.15 is a similar function MEMS based relay switch which is 

approximately half the mechanical relay’s size. This MEMS based switch utilizes a 

device-on-package construction which fabricates the MEMS device directly onto its 

ceramic (alumina) wafer via conductive metal vias, thus allowing a much smaller form 

factor [52]. Furthermore, the use of an alumina substrate and minimizing the path 

between the device and printed surface by conductive vias, reduces insertion loss, thus 
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allowing better propagation of high-frequency signals [65]-[66]. These factors make 

selecting a MEMS based switch ideal when multiple high-speed signals are required on 

an extension module. 

 

 
Figure 3.15 Size comparison of mechanical relay and MEMS relay [52] 

 
 

In [52], an extension module using MEMS based switches is presented. 

Performance of this module is shown in Figure 3.16. At 3.2Gbps, the module adds 6ps of 

total jitter, and performs better than the mechanical relay switch. At 5.0Gbps, the module 

is demonstrated to add 13ps of total jitter on to the input signal. This performance is 

comparable to the performance of the mechanical relay shown at 5.0Gbps. However the 

power dissipation characteristics were measured to be much lower on the MEMS switch 

compared to the mechanical switch [52].  
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Figure 3.16 MEMS switch performance [52] 

 
 

In this chapter previous research is shown to demonstrate modular extension of 

ATE targeting five specific applications – high speed signal generation, loopback testing, 

timing adjustment, jitter manipulation and switching. All of the applications shown are 

capable of multi-GHz speeds, although some were not demonstrated at speeds above 

5Gbps. Despite this, the principles used are still valid for extending ATE performance. 

By slightly modifying the methods used greater performance can be achieved. In the next 

chapter, a different approach to extending ATE performance is discussed, in which stand-

alone mini-testers are developed. The principles learned in the research discussed in this 

chapter helped the development of the systems in the next chapter. 



 44

CHAPTER 4        

                      STAND-ALONE MINIATURE TESTER 

 

In Chapter 2, methods for enhancing test capabilities are presented consisting of 

modular electronic cards used in conjunction with ATE. The modular cards use resources 

from the ATE along with on-card electronics to produce higher performance test 

capabilities. This method of enhancing test capabilities is limited by the performance of 

available ATE resources. Some test applications may require test capabilities not 

achievable using these ATE resources alone. For example, consider the case when a 

10Gbps test signal is required for testing purposes. A modular extension card capable of 

doubling data rates would require 5Gbps input signals to produce this rate. Performance 

of ATE not capable of producing required input rates cannot be enhanced to target rates. 

Therefore modular enhancement methods may not be feasible solutions for certain test 

requirements.  

Another method of enhancing test capabilities is to develop a custom test system 

capable of operating independently of an ATE. This method of enhancing test capabilities 

involves designing custom test electronics that do not rely upon ATE resources. Early 

work to extend testing capabilities to the GHz range using this method ranged from  

developing custom test heads for existing ATE [39]-[40] to developing proprietary test 

systems [38] & [67]. Developing proprietary test systems to rival current ATE is not 

feasible because ATE have become exceedingly complex and extremely costly to 

develop. However custom test systems designed address specific applications with 

limited test functions can be used to enhance testing capabilities.  
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In this chapter a custom test system specifically designed to test wafer-level 

package (WLP) devices is presented. Various testing functions can be addressed with this 

test system; however the particular test system presented is intended to enhance high-

speed testing capabilities. The test system is designed with an FPGA that allows it to 

operate independently of an ATE, and additional logic to produce high-speed testing 

capabilities. Before the details of this test system are presented, wafer-level testing is 

briefly discussed to introduce the probing technologies the mini-tester is designed to 

work with. Subsequently, the design of the mini-tester is discussed in detail. An 

experimental demonstration and performance characteristics of the test system are 

presented in the final section. 

 

4.1 Wafer-Level Testing 

Miniaturization of portable hand-held electronic devices has stimulated the need 

for IC packages of even smaller size than conventional ball grid array (BGA) and chip 

scale packages (CSPs). This has led to the development of advanced packaging 

technologies such as WLP, MCM, SiP, SoC, etc. These new packaging technologies have 

allowed for smaller device sizes and more integration.  

A WLP is a chip size package. The area that it occupies when mounted onto a 

system level board is as small as the size of the IC itself. WLP devices offer minimum 

size and weight for a given die, and cost is also expected to be lower than for traditional 

IC packaging [68]. WLP technology has been developed with a density of up to 12,000 

leads/cm2 [69] [70]. Many of these leads are for power and ground, thereby reducing the 

number of signal pins to only a subset of this number. Despite the reduced number of 
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signal pins, many problems still arise in testing wafer-level packaged devices due to their 

high I/O densities, microscopic pad sizes, and high-speed testing requirements.   

As package sizes have become smaller, more functionality continues to be 

demanded from devices. For example, consumers now want a mobile phone not only to 

be able to make phone calls, but also function as a camera, music device, GPS, etc. This 

may require multiple technology components such as MEMS, optical components, RF 

components, digital components, etc. to be integrated into one device. Such levels of 

integration and complexity exacerbate the testing problem. 

To address the problem of testing complex WLP devices, a miniature tester has 

been developed that can be customized to the testing needs of a DUT [71]. These “mini-

testers” can be designed for specific testing purposes such as high-speed testing, 

loopback testing, jitter injection, etc. The goal is to keep the mini-testers simple and small 

enough that they can be used to test devices in wafer form, yet provide easily 

customizable performance not available on general-purpose ATE. Additionally, these 

mini-testers are designed to function independent of ATE, thus requiring no (or very 

little) expensive ATE resources.  

This mini-tester requires the use of wafer-level probers (interposers) in order to 

make physical contact with the device when it is still in die or wafer form. Generally the 

mini-tester is designed independently and then used with an appropriate interposer based 

upon the type of packaging technology or compliant leads present on the device. This 

solution allows a variety of devices with high-density leads to be tested. Furthermore, this 

approach can allow device components to be tested individually. For example the digital 

components of a device can be tested as they are fabricated, before they are packaged or 
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interconnected with other components. This is a relatively simpler task than testing its 

functionality within a fully integrated and packaged device. Undertaking such an 

approach reduces the complexity of testing the complete integrated device as a whole. 

This approach can also reduce test time and overall manufacturing cost as defective 

devices identified early in the fabrication process can be removed from further fabrication 

and packaging processes.  

   

4.2 Wafer-Level Probing 

Several different WLP technologies are available, including Bed of Nails (BoN) 

[72], Multiple copper columns (MCC) [73] Solder Bumps (SB), Stretched solder column 

(SSC) [74], and Sea of Leads (SoL) [69]-[70]. The fabrication processes for each of these 

technologies have varying degrees of cost and difficulty associated with them. The SoL 

approach uses low-cost lithographic fabrication of very high density compliant leads [69].  

The SoL process is actually a continuation of the IC fabrication process and may be done 

without adding significant cost to the device [75]-[76].  

In [71], the mini-tester is successfully demonstrated with BoN structures. The 

BoN is a novel compliant interconnect structure with limited z-axis compliance. To 

enhance this limitation, a compliant interposer is used and discussed in the next section. 

Since a higher column height would result in higher compliance, lower stress, and hence, 

longer fatigue life, interconnections as high as 50um are developed.  

Single layer BoN wafer level interconnects have been successfully fabricated with 

a nail height of 50µm. These are designed to fulfill the following electrical requirements: 

DC resistance ≤ 25mΩ, inductance ≤ 50pH and capacitance ≤ 10-15fF. These 
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requirements were based on the fact that the package using such interconnects must 

support high frequency performance applications (e.g., microprocessors, high pin count 

logic devices, etc.). 

The BoN fabrication process flow consisting of six steps is illustrated in Figure 

4.1. Metal layers of Ti/Ni/Au are first sputter deposited onto the WLP pads. A thick 

photo-resist is then applied and patterned using Ti/Ni/Au etching one by one and resist 

removal. Secondly, BCB dielectric polyimide is spun to passivate the daisy chains and 

pattern the dielectric layer using UV lithography to open the pads. A Ti/Cu or Ti/Au seed 

layer is then sputtered. The bottom Ti layer is applied to improve the adhesion between 

dielectric and Cu or Au. Then a thick photo-resist is spun, soft-baked, UV patterned, and 

developed. The copper post is electroplated. Solder is then electroplated at the tip of the 

copper post for bump formation. Thick photo-resist is then removed and Ti/Cu or Ti/Au 

seed layer is etched away to complete the interconnect structure. Finally, solder is 

reflowed in N2 atmosphere. This fabrication process is based on photolithography and 

electroplating processes which are compatible with the conventional IC fabrication and 

the fabrication is integrated into wafer-level processing as batch process [77]. Additional 

masks are not needed as the UBM mask can be used to pattern the photo resist for copper 

column deposition.  
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Figure 4.1 Process flow of bed of nails wafer level interconnects by photo resist method 
 

The mini-tester does not make direct contact with the DUT, but requires a wafer-

level prober such as an interposer to make physical contact with the device. This allows 

mini-testers to be generically designed, and then use customized interposers to make 

contact for actual testing. This parallel development approach greatly enhances the 

usability of the mini-tester, since it can be used with almost any WLP technology as long 

as an interposer to connect to it is available. In the next section, a few notable interposers 

are described. 

4.2.1 Interposer 

An interposer is similar to a probe card and serves as an electromechanical 

interface between the DUT and the mini-tester. A major role of the interposer is to serve 
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as a space transformer. To accomplish this, the interposer has large pitch metal bump 

pads on one surface to connect to the tester and fine pitch compliant interconnects on the 

opposite surface to make contact with the WLP device.  

There are currently a few approaches used to construct an interposer. A MEMS 

based interposer, is proposed in [78] and shown in Figure 4.2. Another approach uses 

MEMS based spring probes, as discussed in [79], to make electrical contacts with the 

DUT. The spring interposer allows for a non-destructive low resistance contact with the 

wafer leads [79]. FormFactor, Inc. uses a proprietary technology called MicroSpringsTM 

[80] optimized to provide low contact force and low contact resistance with over 900,000 

touchdown rates [81]. 

 

 

Figure 4.2 Interposer incorporating vertically connected signal traces created using 
through wafer vias. 

 

Mini-testers may be connected to an interposer to make electrical contact with the 

wafer [82]. As illustrated in Figure 4.3, an interposer is used to redistribute the high-
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customized version of the mini-tester is illustrated as a self-contained module mounted to 

the top side of the interposer.  The interposer has a contact interface that is designed to 

make contact with the appropriate complaint leads on the wafer. This allows testing to 

take place, if necessary, directly on the wafer chuck and even in-between fabrication 

steps. The mini-tester shown does not require an ATE or its resources to perform testing. 

Due to its stand-alone nature, connections to the miniature tester are limited to:  DC 

power, USB, and a high-performance (low-jitter, multi-GHz) clock input. 

 

 

Figure 4.3 Testing of wafer-level packaged (WLP) devices using a “miniature tester” and 
a high-density interposer. 

 

Using similar concepts as described above, the mini-tester may be used to perform 

parallel testing. When parallel testing is required, the miniature tester may be replicated 

in array form as illustrated in Figure 4.4. The complexity of the PCB is minimized by 

using only a small number of signals for each mini-tester, thereby taking advantage of 

BIST features of the DUT. This strategy is a logical extension of existing parallel tests 

(such as used in memory testing) employing highly aggressive WLP testing techniques 

[83]. As testing is done on multiple devices at the wafer level, manufacturers gain 

significant cost and time savings. 
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Figure 4.4 Parallel high-speed wafer probing using multiple miniature testers. 
 

In [71], wafer-level probing is done by cantilever probe needles in a bare-die test 

socket. For testing purposes, signals from the mini-tester are relayed to the bare-die test 

socket, which then probes the DUT using cantilever probe needles to deliver the test 

signals. The probing method is discussed in the following section. 

4.2.2 Bare-die test Socket 

Cantilever probe needles [84] have traditionally been used for testing wafer level 

devices. They are mostly useful for frequency applications below 100MHz due to long 

lead inductances. Coaxial probes [85] are available with multi-GHz performance for pad 

pitches as small as 120 micron and have been used for probing solder bumps. However, 

coaxial probes do not scale well for higher I/O density, fine pitch packages. 

In [77], a novel approach based on metallized elastomer mesh which meets the 

small size, high frequency and compliance requirements of WLP is described. The 

elastomer mesh has coplanar contact probes that make the actual contact between it and 

the DUT as shown in Figure 4.5. Each probe location consists of three fingers that 
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correspond to ground-signal-ground (GSG) placed at a pitch of 100 microns. Gold plated 

metallization is used for the signal and ground contacts. The metallization lines are screen 

printed on the elastomer in the form of tapered GSG probes. The thickness of the mesh is 

50 microns. The probes make contact with BoN copper column interconnects on the 

DUT. 

 

Figure 4.5 Layout of elastomer coplanar contact probe. 
 

A prototype of the test fixture is shown in Figure 4.6 & Figure 4.7. The design 

consists of two parts. First an elastomer mesh provides an electrical and mechanical 

interface to the WLP. The elastomer material is itself in mesh form. Metal lines are 

screen printed on the mesh on both sides. The signal wiring pitch is 100 micron (not 

discernable in the figure). The compliance achieved depends on the mesh thickness. For 

the prototype used, the compliance is on the order of 2 µm/gF. Secondly a multilayer 

PCB substrate made of BT resin material provides support for 3.5mm SMA connectors 

for use up to 6 GHz. One side of the mesh connects to the device under test while the 

opposite side makes contact with the PCB. The PCB connects to the mini-tester through 

the SMA connector. 
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Figure 4.6. Prototype Test Socket 
 

 

Figure 4.7. Elastomer Coplanar Contact probes inside test socket. 
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The multilayer PCB has four metal layers, two of which form signal trace layers 

on either side of the board with 50Ω transmission lines and the other two are buried 

layers used as ground planes. The PCB serves as a space transformer between the fine 

pitch WLP (at the 100 micron level) and the instrumentation connectors (millimeter 

scale). 

The contact probes are made by screen printing metallization lines onto the 

elastomer mesh. Some areas of the metallization are patterned to from the ground and 

power grids, while others provide short signal traces and contact pads forms in the sparse 

elastomer matrix. The contacts can be densely populated to test fine pitch, high I/O 

density WLP devices. The elastomer mesh material has spaces into which metallization 

can be plated. This arrangement contributes towards the necessary compliance while 

maintaining low contact resistance.  

A diced WLP device is placed inside the socket on the test hardware. Connectors 

surrounding the WLP device are connected to measurement instruments. The coplanar 

transmission line on the substrate printed circuit board and the probe on the mesh provide 

efficient high frequency transmission. 

4.3 Miniature tester 

The concept of a “test support processor” (TSP) was introduced earlier [82] and is 

the precursor of the mini-tester. A TSP is a customized circuit that can be included in a 

testing environment to enhance an ATE’s performance or functional capabilities. 

Customizing the TSP to the DUT’s testing needs could be done quickly by reusing a core 

logic structure called the Digital Logic Core (DLC - discussed in the next section) and 
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adding specialized components. In this way the TSP could rapidly and economically 

address new test requirements. However, the TSP was technically still a “support” 

processor, i.e. it used significant resources from the ATE in order to create specialized 

test signals. This limited TSP performance, as many of its functions were limited by 

performance characteristics of the ATE. Furthermore, the TSP approach was not so 

inexpensive, since it needed many very expensive ATE resources. 

The main purpose of the DLC in the TSP was to provide control functions 

between the TSP and the ATE. It served as a critical component of the TSP as it acted as 

in interface between the TSP and ATE, and also the user. Additionally, it could be used 

to control peripheral logic used in the TSP as necessary. The main component of the DLC 

was an FPGA. As FPGA technology started to advance ahead of ATE performance in 

some respects, it was realized that a DLC could be designed with a state-of-the-art FPGA 

that could control the TSP without the need for resources of an ATE. This was achieved 

by extending the basic TSP by adding connections for a PC controller, RF clock source 

and DC power sources [86]. The DLC now controlled the TSP’s test functions via a PC 

through which users could enter commands. These developments set the stage for a 

stand-alone mini-tester to be designed.  

Using this DLC, a customized mini-tester was deigned at low cost, since it did not 

have all of the general purpose features found in traditional ATE [87]. It was designed to 

provide only the specific test features needed for a particular application. Furthermore, to 

keep costs low, off-the-shelf chips are typically used for constructing the mini-tester. The 

main component of the mini-tester, the DLC is presented in detail in the next section. 
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4.3.1 Digital Logic Core (DLC) 

The central component of the mini-tester is known as the Digital Logic Core - DLC. 

The main component of the DLC is an FPGA, which can be programmed to serve as a 

test controller. In [86], a Xilinx Virtex XCV300E FPGA was used which had over 150 

available I/Os, each capable of running up to 400 Mbps. In some applications, these 

signals could serve directly as I/Os for testing the DUT. However, in this design, these 

I/O signals were supplied to additional logic to enhance performance. A top level 

schematic of the mini-tester is shown in Figure 4.8. In addition to the FPGA, the DLC 

includes a specialized microcontroller chip for interfacing to a USB. A personal computer 

communicates through the USB with the DLC, and provides high-level control of the 

tests (which otherwise are synthesized in the DLC).  Supporting these are a 12 MHz 

crystal oscillator, and a flash memory chip to store the FPGA programming information. 

FPGA programming can be quickly changed by overwriting the flash. An RF clock 

source is also required to provide a low-jitter (picoseconds) timing reference. 

In this mini-tester, signals from the FPGA are formatted and supplied to 

additional PECL logic. The PECL devices take the formatted signals and create multi-

Gbps. State machines encoded in the FPGA, together with higher speed PECL 

multiplexers and sampling circuits synthesize the desired tests in real time. This process 

is discussed in detail in the next section. 
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Figure 4.8. Miniature tester with high-speed PECL for testing multi-GHz DUTs (DLC 
enlarged). 

 

 

Figure 4.9. Prototype miniature tester with embedded DLC. 
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A photograph of the mini-tester prototype board is displayed in Figure 4.9. 

Although the prototype is large compare to the devices it is designed to test, this 

prototype can be used to aid design of an ASIC-based mini-tester, reducing its size by an 

order of magnitude. Each mini-tester ASICs can be integrated onto an interposer to test 

one die site in an array (see Figure 4.4). The tests are designed to demonstrate high-speed 

signal propagation through the compliant lead structures. The mini-tester produces a 

programmable data source up to 8.0Gbps with 10ps timing resolution (see Section 4.3.2).  

A high-speed PECL sampling circuit is designed to capture the returned signal, also with 

a 10ps resolution (see Section 4.3.3). 

4.3.2 High Speed Signal Generation 

The DLC frequency is limited by the chosen FPGA to about 300-400Mbps, 

therefore PECL is used to produce higher speed signals as shown in Figure 4.10. The 

high-speed signal generation logic includes a multiplexer that allows the user to choose 

between two input clock sources. This source clock is then fanned-out into two 

programmable clock delay chips, which are controlled by the DLC. Two parallel-to-serial 

converters are used to convert 8-bit words from the DLC into a serial data stream. Test 

signals are independently programmed in the DLC and sent to the individual serial 

converters. The clock outputs from the delay chips are used by the serial converters. 

These signals are then sent to the next stage where they are logically combined using an 

XOR gate to produce even higher speeds. This method creates a double data rate. The 

signal is then fanned out to four separate channels. 
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Figure 4.10. PECL logic used in mini-tester for high speed signal generation. 
 

4.3.3 High Speed Signal Sampling 

For capturing the DUT output signals, PECL devices allow the DLC to sample 

one bit at a time from the high-speed incoming signal. The receive side of the mini-tester, 

as shown in Figure 4.11, can receive up to 4 high-speed signal channels. Data capture 

takes place using a high-speed flip-flop that is clocked by another programmable delay 

chip. The delay chip is used to sweep the sampling time across the received signal. 

Sampled data is then accessed by the PC though a USB link and used to plot a 

reconstructed waveform. 
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Figure 4.11. Logic used in mini-tester for high speed signal sampling. 
  

4.4 Experimental Demonstration of the Mini-Tester 

At speeds above 5Gbps the mini-tester is required to produce bit periods shorter 

than 200ps. Most PECL devices are not sufficient for this application as they have rise 

and fall times above 100ps [86]. They cannot achieve full amplitude swings when 

running at such high speeds. In order to accommodate higher speeds, the mini-tester was 

redesigned using SiGe logic devices [88]. To demonstrate the high-speed signal 

generation capability, a pseudo-random data pattern was generated with the mini-tester, 

using an LFSR encoded into the FPGA. An oscilloscope was used to measure eye 

diagrams from one of its output channels. Figure 4.12 shows an eye diagram at our target 

rate of 5.0Gbps.  The eye diagram shows eye openings of about 0.8UI and sharp logic 

transitions.  
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Figure 4.12. 5.0Gbps eye diagram produced by mini-tester. 
 

Figure 4.13 shows an eye diagram at 6.4Gbps. Again open data eyes were 

obtained, with about 0.75 UI. Even at such high speeds, sharp transitions and full 

amplitude swings can be obtained using SiGe devices. Jitter was measured on the 

6.4Gbps signal to be about 35ps (including 6σ random jitter and deterministic effects). 

 

Figure 4.13. 6.4Gbps eye diagram produced by mini-tester. 
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The mini-tester was able to exceed its 5Gbps goal and reach speeds up to 

8.0Gbps. Figure 4.14 shows an eye diagram at this speed. Signal speeds were even 

pushed up to 9.6Gbps, where the eyes entirely collapsed. Jitter was measured on the 

8.0Gbps signal and found to be about 40ps (including 6σ). By using SiGe devices in this 

design, a significant reduction in p-p jitter was achieved compared with earlier designs 

that used standard PECL technologies. However the programmable delay chips are 

known to add picosecond range random and deterministic jitter [17]. Despite this fact the 

jitter observed was at acceptable levels, producing eye openings of 0.75UI. 

 

 

Figure 4.14. 8.0Gbps eye diagram produced by mini-tester. 
 

To demonstrate the receive side of the mini-tester, a 6.4Gbps signal (Figure 4.15) 

was generated using the testers output channel and looped-back to the input channel. The 

DLC was then used to program the receiver sampling delay to sweep across the signal in 

10ps intervals and record the values. However, the delay chip itself exhibits non-linear 



 64

behavior, which can be minimized using a previously reported calibration process [88]. 

Using the raw data measured by the mini-tester, a received signal waveform was 

reconstructed by graphing software as shown in Figure 4.16. Better accuracy can be 

obtained by using the calibration method described in [88]. 

 

Figure 4.15. 6.4Gbps signal to be received. 

 

Figure 4.16. Bit pattern plotted with sampled data. 
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4.5 Experimental Demonstration of the Bare-die Test System 

The high-speed signals from the mini-tester must pass through an interposer to 

test WLP devices. Signals passing through the interposer may experience some quality 

loss. To characterize this effect, high-speed signals from the mini-tester are passed 

through the interposer and a test sample DUT. One high-speed mini-tester channel was 

connected to the oscilloscope directly (as a reference), and its compliment was connected 

to the interposer. The output of the interposer/DUT was then connected to another 

channel of the oscilloscope. The setup is shown in Figure 4.17. 

 

 

Figure 4.17. Lab setup showing high-speed signal from mini-tester prototype passing 
through interposer prototype to oscilloscope. 
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Figure 4.18 shows two eye-diagrams at 5.0Gbps, the bottom one is produced 

directly from the mini-tester high-speed data channel, and the top one is produced from 

its complementary signal passed through the interposer/DUT. From the two eye 

diagrams, it can be noticed that the signal from the interposer/DUT is slightly attenuated. 

This is due to the losses through the interposer board material, the traces on the elastomer 

mesh, the connectors, and the DUT itself. The high-speed signal through the interposer 

exhibits an increase in jitter. The jitter is at acceptable levels, as the eyes are still open. 

 

 

Figure 4.18. 5.0Gbps eye diagrams. Bottom signal directly from mini-tester, top signal 
via interposer. 

 

Figure 4.19 is a comparable eye diagram at 6.4Gbps. The high-speed signal 

through the interposer (top) again exhibits some attenuation. Also, at such high speeds, 

the signal is not exhibiting full amplitude swing. The interposer rise and fall times start to 

limit amplitude swing, thus at higher rates we are rise-time limited. 
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Figure 4.19. 6.4Gbps eye diagrams. Bottom signal directly from mini-tester, top signal 
via interposer. 

 

At 6.4Gbps the mini-tester, jitter was measured to be about 35ps (including 6σ). 

Jitter increases on the signal when it is passed through the interposer, due to the inherent 

properties of the interposer itself. The jitter through the interposer was measured to be 

about 65ps (including 6σ) as shown in Figure 4.20. However usable eye openings can be 

seen. In order to fully utilize the high-speed capabilities of the mini-tester, an interposer 

with improved rise and fall times must be developed.  
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Figure 4.20. Jitter measurement of 6.4Gbps through interposer. 
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CHAPTER 5        

 

ENHANCED TEST MODULE USING MULTI-GHZ FPGA 

TECHNOLOGIES 
 

 

In the Chapters 3 & 4, two distinct approaches to enhancing ATE test 

performance were presented. The first approach consisted of designing modular test 

electronics to be used within ATE infrastructure in order to enhance test performance. 

The modular test cards use resources from the ATE, such as multiple high-speed 

channels, to generate higher-performance test capabilities. This approach was 

demonstrated to be highly effective for many test applications (see Chapter 3). However, 

this approach was limited by ATE resources, which could only be enhanced to a certain 

degree. 

A second approach to enhancing ATE performance is presented in Chapter 4, in 

which stand-alone test systems are developed with higher performance test capabilities. 

Although designing a test system can be an arduous task, it can be achieved in a feasible 

timeframe by limiting functionality. The chapter demonstrates a mini-tester to perform 

wafer-level testing at multi-GHz rates. By limiting the function of the mini-tester to only 

produce high-speed test signals, it is developed within a reasonable time-frame and at a 

reasonable cost using off-the-shelf components. However, the mini-tester does not 

provide the complete test solution by itself. Another (low-cost) test system is required to 

perform traditional tests such as DC parametric measurements, reliability testing, etc.  
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 The research presented in this thesis aims to take advantage of both approaches to 

enhancing ATE performance by developing a stand-alone test module in the form of an n 

ATE plug-in module. A state-of the-art multi-GHz FPGA is used in the test module, 

which allows it to operate independently of the ATE. Designing the test module as a 

plug-in module allows it to operate within ATE infrastructure, thus permitting full use of 

ATE resources when required. Therefore the test module is designed to enhance test 

capabilities within ATE infrastructure, while not using any of its resources. They can be 

designed to enhance various ATE performance criteria based upon DUT test 

requirements, thus allowing much flexibility.  

This chapter presents the test module in detail. The test module’s concept and test 

methodology are discussed in the next section. Next, its design is presented. The design 

of the test module is separated into two blocks, the core logic block, and the application 

specific block. The application specific block is designed based on specific test functions. 

In this research, six functions are demonstrated – specifically: high-speed signal 

multiplexing, loopback testing, amplitude adjustment, timing adjustment, jitter injection, 

and low speed testing. These functions are discussed in the final section. 

5.1 Concept 

Over the past four decades, ATE performance has improved and new testing 

capabilities added. However, the advances in many ATE performance measures and 

capabilities have not kept up with the advances in semi-conductor technology [1]. While 

device data and clock rates have surpassed that of most ATE, some ATE manufacturers 

offer add-on instrumentation to generate higher speed signals. For example, Verigy has a 

high-speed extension card to generate signals up to 12.8Gbps [89]. Credence offers a card 
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to extend signal generation up to 6.4Gbps [90]. Both these cards are ATE specific. If a 

designer is using another manufacturer’s ATE, a huge capital outlay would be required to 

access such instrumentation. Therefore this research presents the development of generic 

(ATE independent) test modules that interface, not directly with the ATE, but through a 

device interface board (DIB - explained below). 

The concept of the test module is a generic electronic module designed to enhance 

certain testing capabilities within ATE infrastructure. This concept allows the 

enhancement of specific performance criteria of ATE quickly and feasibly. For instance, 

most existing ATE are limited in signal speed to 6.4Gbps. Limiting the solution to focus 

on increasing the high-speed capability of the ATE, a test module can be developed to 

generate signals above 6.4Gbps. Since the test modules do not connect directly to an 

ATE, they can be used with multiple ATE systems via specific DIBs. This also permits 

full access to ATE testing resources, as the designed solutions are compatible with 

existing ATE infrastructure. 

The DIB acts as an interface between the ATE and the DUT. It is basically a PCB 

that is designed to meet the mechanical and electrical requirements of a particular ATE 

test head and provide the electrical interconnect paths between ATE and DUT. Most ATE 

have “pogo” pins or similar compliant contacts on their test head to support signal 

connections. The DIB makes physical contact to these pogo pins and routes these signals 

to a more central or convenient location where they are delivered to the DUT. In this 

case, the DIB is also designed to accommodate specific test enhancement modules. The 

test modules fit directly into the DIB and are in between the signal path from the ATE to 

the DUT. Therefore signals from the ATE to the DUT must pass through the test 
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modules. Developing a DIB is much easier than redesigning a test module for a specific 

ATE test head. Therefore, generically designing a test module with the notion of using a 

DIB greatly enhances its portability across various ATE platforms.   

Figure 5.1 shows a conceptual cut-away view of an ATE test head, with a multi-

layer PCB DIB. Multiple test modules are shown to connect on the top side of the DIB 

and can be controlled synchronously by an external PC. However, in most production 

testing environments, where robotic handlers are used, the test modules would connect to 

the bottom side of the DIB.  

 

Figure 5.1 ATE test head shown with device interface board. Test modules are designed 
to plug into DIB. 

 

In most test applications simple DC tests such as I/O voltage and current 

measurement are also required and are better handled by existing ATE. Therefore the test 

module is designed with provisions to allow ATE signals to pass directly to and from the 

DUT. Low speed data and control signals connect between the test module and ATE, 

while high-performance test signals connect between the module and DUT. This is done 
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using high-performance RF switches and allows the full suite of ATE functions to still be 

available for use on the DUT. 

 

5.2 Methodology  

The test module itself is designed in two blocks (see Figure 5.2). The first block is 

a core component that exploits state-of-the-art FPGA technologies. The use of an FPGA 

allows the test system to operate independently of the ATE. Also with the FPGA, the 

core component controls and generates many test functions itself.  

 

 

Figure 5.2 Block diagram of test module design with DIB and ATE. 
 

In addition to a core component, the test module is designed with logic to enhance 

ATE capabilities based upon specific test application requirements. This block is called 

the application specific block. The primary enhancement targeted in this research is high-

speed testing. This is the most critical enhancement due to rapidly rising clock and data 
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rates. Based on this requirement, the application specific logic is designed to perform the 

following six functions: high-speed signal multiplexing, loopback testing, amplitude 

adjustment, timing adjustment, jitter injection, and low speed parametric testing. Both of 

these blocks are discussed in detail in the next section. 

Designing the test module in separate blocks allows for greater flexibility, 

customizability and future upgradability. The test module can be adapted as new 

functionalities are required and further technological advances take place. When higher 

performance is required of the test system, the core logic block can be redesigned 

independently of the application specific logic. Similarly, the application specific logic 

can be redesigned or additional logic added to accommodate new or improved test 

applications. By limiting the solution to focus on specific enhancements, the methods 

presented in this research allow ATE performance to be extended in a feasible, timely 

and cost-effective manner. 

 

5.3 Test Module Design 

 In this section the design of the test module is described. The test module is 

divided into two blocks, namely the core logic block and an application specific logic 

block. The core logic block is designed by leveraging previous work done developing 

stand-alone mini-testers as described in Chapter 4. The application specific logic block is 

developed by leveraging previous work done in the development of modular ATE 

extensions cards as described in Chapter 3. This approach allows for more flexibility 

when upgrades are required and more customizability. Figure 5.2 shows a block diagram 

of the test module and how it connects to the DIB. The core logic block and the 
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application specific block are distinctly shown. The details of both these blocks are 

provided in the following sub-sections.  

5.3.1 Core Logic Block  

  The core logic block consists of an FPGA that controls testing functions. In 

addition to the FPGA, The core- logic block includes a specialized microcontroller chip 

for interfacing to a USB. A personal computer communicates through the USB with the 

core-logic block, and provides high-level control of the tests. Supporting these are a 12 

MHz crystal oscillator, and a flash memory chip to store the FPGA programming 

information. An RF clock source (usually an external instrument) provides a low-jitter 

(picoseconds) timing reference. The core logic block can be seen in the left-hand side of 

Figure 5.2 within the light-blue dotted box. 

 The latest core logic block design exploits new advancements in FPGA 

technology to reduce and/or eliminate dependence on ATE. For example, recent Xilinx 

FPGAs can produce and capture high-speed signals up to 6.25Gbps using RocketIOTM 

multi-gigabit transceivers (RIO MGT) [91]. Each RIO MGT block in the FPGA has two 

TX and two RX channels. The particular FPGA used in this design contains 4 RIO MGT 

blocks, which implies that each test module can have up to 8 high-speed TX and RX 

channels. These transceivers are basically dedicated high-speed serializers/deserializers. 

Internal logic in the FPGA takes a 20-bit wide parallel data bus, sends it to the SerDes 

and converts it into a serial data stream. Therefore, internally, the data bus is required to 

run at only 1/20th of the serial output data rate. The slower internal data rates allow the 

test data manipulation, either algorithmically, comparatively or randomly, to be done 

inside the FPGA in parallel fashion. This allows data to be manipulated (transferred 
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to/from memory, or algorithmically-generated or compared) at the full sustained rate 

needed by the multi-Gbps serial channels.  Only within the dedicated RIO MGT logic are 

the extreme, mutli-Gbps serial rates encountered.   

How specific stimulus and response data is produced and manipulated within the 

FPGA is flexible and depends upon the intended application.  Therefore the details of this 

are not shown in the figure, but discussed in detail in the next chapter.  Typically the 

parallel data is stored, at least temporarily in RAM and/or registers within the FPGA.  

The data could represent deterministic test patterns, or could be produced in real-time 

using programmed logic to implement algorithms related to the DUT.  The obvious 

example of algorithmic pattern generation is for memory testing, but the available FPGA 

logic can accommodate even complex logic functions. 

 On the other hand, certain aspects of the FPGA RIO MGT are common across 

many applications.  Each RIO MGT block requires a reference clock that determines both 

the frequency and phase of the generated (or captured) serial data.  The FPGA supports a 

number of possible modes.  In this particular case, a 1/20th rate reference clock is used.  

For example, to produce a 5Gbps signal, a 250MHz reference clock is supplied.  

Internally the RIO MGT circuitry phase-locks to this reference clock and synthesizes a 

high-speed clock for the serializers and/or deserializers.  This approach greatly reduces 

the need for high-speed clock distribution external to the FPGA.  Nevertheless, the SiGe 

clock networks in the development platform work extremely well for distributing the 

250MHz reference clocks, providing very stable (low-jitter) signals to the modules. 

 In the core logic block, the reference clock is delivered to a 1:4 SiGe fanout buffer 

in the module.  Each of the four buffered outputs pass through a programmable delay 
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chip. The FPGA is used to program these delays chips with a 10-bit word. Delay can be 

set in 10ps increments. However these delay chips also include a fine tuning input port 

that takes an analog voltage input from 0-3.3V and allows the tuning of the delay 

between 0-60ps, thus allowing a much finer control of the delay. Programmable DACs 

can be added to the core logic block (not shown), and controlled by the FPGA, to achieve 

such precise timing control.  

 Since the clock is relatively slow (<500 MHz), and does not have “data 

dependant” properties, these delay elements pass the reference clocks with only minimal 

added random jitter – 3ps as per manufacturers specifications.  Notice in the Figure 5.2 

that each of the four RIO MGT channels has its own reference clock, with an 

independently-programmed phase.  This degree of control allows the channel-to-channel 

skew across all channels to be adjusted independently, providing maximum flexibility for 

testing. 

For communication to the external world, a microcontroller is used in the module 

to allow control from an external PC via a USB port.  A flash memory device is included 

for programming the FPGA. These features are described in the next Chapter discussing 

the FPGA design.  

Figure 5.3 shows a photograph of the test module. In this figure the core logic 

block consisting of the FPGA, USB microcontroller, flash, etc. can be seen in the central 

and right side of the board, along with four programmable delay chips (for the reference 

clocks) and the multi-pin Gbps signal connectors.  Application-specific logic is seen on 

the left side of the board, including the SiGe select logic, adjustable-amplitude buffers; 

fan-out buffers, relays and SMP connectors. 
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Figure 5.3 Photograph of the FPGA 5/10Gbps Module. 
 

The application specific logic shown in Figure 5.3 is a critical component of the 

test module design. The concept of designing the application specific logic as a separate 

block, allows many different applications to be designed. They must be designed to be 

compatible with the core logic block. If an application is desired that is not compatible 

with the core logic block, provisions can be made in the core logic block and the test-

module redesigned. The application specific block is discussed below. 

5.3.2 Application Specific Block 

 The application specific block can be seen within the green dotted box in Figure 

5.2.  Signals from the core logic block are passed to the application specific block where 

they are either manipulated or passed through to the DUT based on the application. In 

this particular design, each of the RIO MGT TX signals are passed  through a 2:1 fan-out 

multiplexer that allows the selection of either the core signal or the application specific 

signal.  This signal is then passed through a variable-amplitude SiGe buffer (where the 

amplitude can be adjusted between 100mV and 700mV), and then through an RF relay to 

SMP connectors.  When the relay switches pass these signals, the FPGA controls the test 
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module independently, and an ATE (if present) is idle. This is the most novel mode. 

Also, using similar modular extension principles in [44], the application specific block is 

designed to extend its signals from the core logic block, without needing critical ATE 

resources. This allows for increased customization as various ATE enhancements can be 

developed depending upon specific needs. 

Still another possibility is to use the alternate signal paths for in-situ calibration.  

In past modules this flexibility has been well-worth the extra cost of the relays.  On the 

other hand, it is critical for these high-speed applications that the relays be carefully 

chosen to support the extreme bandwidth requirements.  The ones used in this card have a 

bandwidth well above 10GHz, and work down to DC. 

  

5.4 Applications 

 

The application specific logic can be designed based upon the desired testing 

needs. This feature removes many limits on what types of tests can be done with the test 

module. Demonstrating all the test functions the test module can be designed to perform 

would not be a feasible task and outside the scope of this research. Therefore in this 

research, six commonly required test functions have been targeted. The test functions are 

described in the following sections. 
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5.4.1 High Speed Signal Multiplexing 

 The first function developed was high-speed signal generation. There are many 

techniques to generate higher-speed signals from slower-speed signals, such as 

serializing, multiplexing, etc. However this task becomes very difficult when the slower-

speed signals are running at multi-GHz rates. At these speeds, jitter is a concern, and 

must be minimized to retain signal integrity [92]. Also at such speeds, precision timing 

becomes a critical issue, as control of signals must be established on the pico-second 

level.  

In this research, high-speed signal generation is achieved by multiplexing high-

speed data signals from the core logic block and producing a double data rate signal. This 

is done by selecting both the RIO MGT TX channels through the muxes. The signals are 

passed through ultra-precision buffers to sharpen their edge rates, and then multiplexed 

through a high-performance InP XOR gate. As shown in [71] it is possible to create a 

double-rate serial pattern by encoding two normal-rate signals each offset by half a clock 

period simply by combining them with a high-performance XOR gate (as configured in 

Figure 5.4-(b)).  This is a well-known logic technique for DDR generation.  However, its 

success for synthesizing multi-Gbps test signals has met resistance due to the extreme 

timing accuracy requirements of sub-nanosecond bit periods.  Therefore, the FPGA in the 

core logic block is used to set the proper timing offsets on the programmable delay chips 

and also to select the proper mux channels. 
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(a) 

 

(b) 

Figure 5.4 Multiplexing high-speed signals from core logic block to produce a double 
date rate signal. (a) shows a timing diagram to generate a double date rate. (b) shows 

logic components used. 
 

 Since the simplicity (and low-cost) of the XOR multiplexing method is retained 

when the high speed data is not re-clocked, any jitter present on either input shows up on 

the XOR gate output.  So, the first requirement for success is that the two input signals to 

the XOR have minimal jitter.  Furthermore, XOR gates have historically been notorious 

for adding data-dependant jitter (DDJ), not to mention the unavoidable increase in 

random jitter.  One must further recognize that the timing accuracy demands for DDR 

signals are generally about twice as tight as for the normal-rate signals.  Therefore the 

Delay 1

Delay 2

RIO MGT TX1

RIO MGT TX2

XOR (DDR)

Time 1 2 3 4

Delay 1

Delay 2

RIO MGT TX1

RIO MGT TX2

XOR (DDR)

Time 1 2 3 4



 82

tendency of the XOR to increase timing errors is heading in just the wrong direction 

(increasing errors rather than decreasing them).  Furthermore, the XOR mux technique 

requires careful calibration at each frequency, since the optimal delay offset is frequency-

dependent.   

 Even with all these potential difficulties, the promise of a 2x increase in data rate 

can be worth the effort.   Many of the timing errors can be minimized through calibration 

techniques.  However, those inherent to the XOR itself cannot be corrected (without re-

clocking).  So an XOR gate with minimal inherent timing errors must be utilized.  For 

signals above 10Gbps, this means only a few picoseconds of allowable DDJ, and well 

under 1ps of random jitter.  In this test module an InP technology XOR for exactly these 

reasons has been used.  The specific part shown here is intended for low-jitter 

applications up to 13Gbps (although good performance up to 20Gbps has been 

demonstrated).  As such, it works extremely well at the demonstrated 16Gbps speed (see 

Chapter 8). 

 

5.4.2 Loopback Testing 

Another test function the test module addresses is a high-speed low-jitter adding 

loopback path. BIST allows a device to test itself. However, a device testing itself within 

its own packaging does not resemble real world operating conditions. Therefore routing 

self-test stimulus through an external loopback path back into the device is preferable, 

and creates a more realistic test environment [93]. At multi-GHz speeds, the simple 

routing of a signal, while maintaining its integrity, is not a trivial task. The loopback path 

must have enough bandwidth to support the multi-GHz signal while adding minimal jitter 
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and minimizing losses and signal distortion. Such a loopback path has been developed 

and is discussed in the next section. 

 Loopback paths may be either passive or active. In this test module an active 

loopback path is designed using a RF relay, a mux, and finally a high-speed variable 

amplitude SiGe buffer to sharpen signal edge rates. This is shown in Figure 5.5, along 

with its typical setup.   

 

 

Figure 5.5 Typical loopback path for external loopback test. 
  

 To implement the loopback path, a copy of the RX channels (coming from the 

SiGe 1:2 fanout buffer) is taken and rerouted to the mux inputs of the core logic block. 

The core logic block selects the proper mux channel to allow the loopback signal to pass. 

As the signal is passed through the SiGe buffers, its final output amplitude going to the 

DUT input is adjustable (100mV-700mV).  This permits dynamic input sensitivity 

characterization/test and allows the DUT to perform self-test through an exterior path. 

The test module can also sample RX data to verify that the DUT is responding correctly 

if desired.  
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5.4.3 Amplitude/Voltage Adjustment 

When testing high-speed digital circuits, there is often a need to adjust the 

amplitude/voltage of the test signal. For example, a circuit designer may wish to 

determine the upper and lower threshold voltage of a circuit. Amplitude adjustment may 

seem like a trivial task, however at high-speeds becomes quite challenging. The device 

used for amplitude adjustment must be able to handle high-speed data rates. However, 

adding another component into the signal path can add unwanted jitter to the signal. 

On the test module, the high-speed variable-gain SiGe buffers used in TX1 and 

TX2 are capable of amplitude adjustment. The devices contain a voltage input pin used to 

modify the bias voltage supplied to the buffer. Figure 5.6 shows the schematic for the 

output buffer. Modifying the bias voltage subsequently modifies the output signal 

amplitude. This allows amplitude adjustment without introducing another device into the 

test module. The operation of these buffers is demonstrated up to 10Gbps; therefore 

amplitude adjustment is also available on 10Gbps signal. 

 

 

Figure 5.6 Variable-gain output buffer. 
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The output buffers have a VCTRL input voltage pin that operates between the range 

of 2.375-3.465V. The input voltage is directly proportional to the output amplitude. The 

input voltage can be modified with a potentiometer as is designed currently on the board. 

However, this requires manual adjustment during testing. To automate this process, a 

DAC can be used as shown in Figure 5.7. 

 

 

Figure 5.7 Variable-gain output buffer controlled by a DAC. 
 

In Figure 5.7, the variable-gain buffer is controlled using a DAC. The DAC is 

programmed to output a voltage between the range of 2.375-3.465V. The DAC is 

controlled using the FPGA. The FPGA can be programmed to output 12-bit words to 

control the DAC. This allows for full automation during test cycles. In the current design, 

DACs have not been included. The inclusion of DACs is planned for the next iteration of 

the test module. 
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5.4.4 Timing Skew Adjustment 

Testing high-speed digital circuits often require the need for timing or phase 

adjustment relative to one another. There may be a variety of reasons to desire this 

functionality. One reason may be to adjust the center of the data signal eye to align with 

the clock signal at the receiving end. This would ensure more consistent sampling of the 

high-speed data signal.  

Another use for timing adjustment is with parallel data buses. When dealing with 

high-speed signals, the slightest path length mismatch between multiple high-speed 

signals can cause them to arrive at the destination at different times. Timing adjustment is 

required to ensure that the data signals arrive at the destination at approximately the same 

time. This is a common problem seen with ATE, where multiple test signals must be 

aligned at the DUT input. Generally ATEs have a feature of programming delays on each 

channel, thus allowing for timing adjustment. However, the precision of timing 

adjustment is limited by the ATEs programmable resolution. For example the Teradyne 

Tiger ATE has a timing resolution of 100ps [94], which may be adequate for many 

applications. However, a 10Gbps signal has a bit-period of 100ps, thus an adjustment 

resolution of 100ps is not adequate. In these situations, a picosecond timing control is 

required for accurate alignment of high-speed data signals. 

Picosecond timing control in the test module is achieved using off-the-shelf 

programmable delay chips.  The delay chips have a digital finite timing precision of 10ps 

and a range of about 10ns which is more than adequate for high speed signals. In order to 

set the delay, a 10 bit delay word is loaded onto the chip by the DLC. The schematic for 

delay chip used is shown in Figure 5.8.  
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Figure 5.8 Schematic of 10-stage delay chip 
 

The delay chip has ten distinct stages of delay. Each stage has a delay of 10x2nps, 

where n ranges from 0 to 9. At each stage, a multiplexer is present that is used to select 

the delayed value or the non-delayed value. The multiplexer select lines are set by 

loading the 10-bit delay word onto the chip.  Thus any multiple of ten between 10-

10240ps can be programmed on the chip. In addition to the finite delay increments, the 

programmable delay chip allows for more resolution via a FTUNE analog pin. This pin 

basically supplies a bias voltage to an output buffer. Modifying the bias voltage of the 

output buffer adjusts the amplitude of the signal, changing the time the signal reaches the 

50% threshold, thus adjusting its skew. The FTUNE pin allows an analog timing 

adjustment of an additional 60ps. Generally a programmable DAC is used to modify the 

voltage supplied to FTUNE, however a potentiometer can also be used to adjust the voltage 
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manually. A potentiometer has been used in the current design of the test module. Future 

iterations will include programmable DACs controlled by the core logic block. 

Each stage of the programmable delay chip ideally provides a finite amount of 

delay. However the actual measured delay may differ at some points. A sample of three 

delay chips was taken and their programmed delay versus their measured delay was 

plotted in Figure 5.9. As can be seen from the graph, the relationship between these two 

values is not linear. Lower delay values have higher percentage discrepancies. However, 

these differences are similar throughout the chips used. Since every delay value is made 

up by a combination of these ten delay values, a calibrated table can be constructed, in 

which the programmed delay corresponds to an actual delay. Alternatively, the FTUNE 

feature can also be used to calibrate the actual delay to the programmed delay. 

 

 

Figure 5.9 Measured delay plotted against programmed delay for three delay chips. 
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It is generally easier to adjust a narrow-bandwidth clock signal rather than a wide-

bandwidth data signal. Similarly, it is easier to adjust a slower speed signal rather than a 

higher speed signal due to device limitations. Therefore in the test module, the 

programmable delay chips are used on the reference clock inputs for each RIO MGT as 

shown in Figure 5.10. The core logic block requires a clock input that is fanned out via a 

low-jitter SiGe 1:4 buffer. The output of the buffer is passed on to the programmable 

delay chip. The FPGA is used to control the delay chip and program the desired delay 

value onto it. The adjustable output of the delay chip is used as the reference clock for the 

RIO MGT blocks in the FPGA. The speed of the reference clock is usually 1/20th the 

speed of the RIO MGT output signal. Internally the RIO MGT synthesizes a higher speed 

clock from the input clock to serialize the RIO MGT data (this process is discussed in 

detail in the FPGA section). Thus adjusting the clock input of the reference clock to the 

RIO MGT, causes a timing adjustment in the RIO MGT output signal. 

 

 

Figure 5.10 Delay Chip used with clock input for RIO MGT 
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5.4.5 Jitter Injection 

Jitter is a critical issue with high-speed data signals. Amounts as small as 50ps 

can render a 10Gbps signal useless. In most cases test designers strive to minimize jitter 

on test signals. However in many causes the ability to add controlled amounts of jitter is 

desired. For example, data signals are subject to various sources of noise, such as 

crosstalk, simultaneous switching noise, etc. These sources are greatly amplified at higher 

speeds. Therefore input jitter tolerance testing is required. 

 The test module has provisions for adding controlled jitter by slightly modifying 

devices already used on the board. There are two methods by which this can be done. In 

the first method, the output SiGe buffer is modified. As discussed under the amplitude 

adjustment section above, the SiGe buffers have a VCTRL input pin that allows the user to 

adjust the bias voltage of the buffer for output amplitude adjustment (see Figure 5.6). 

Controlled jitter can be injected onto the signal by AC-coupling a voltage noise source 

onto the VCTRL input. The voltage noise is injected by an external source via an SMP 

connector present on the board. However, adding a noise source to VCTRL will adjust the 

amplitude of the output signal. This effect may not be desired in some test cases. 

In another method, jitter injection is achieved in the test module by slightly 

modifying the use of the programmable delay chips in the core logic block. As discussed 

above, the programmable delay chips have a FTUNE input for analog timing control. 

Varying the voltage input on FTUNE, the phase of the output signal is shifted.  If an AC 

signal or noise is placed on the pin, the output signal shifts back and forth, causing jitter, 

as shown in Figure 5.11. This allows the addition of jitter onto the reference clock for the 

RIO MGTs. Since the reference clock is used in the serializing logic of the MGT, this 
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jitter is ultimately transferred to the output data signal. The RIO MGTs have internal 

logic that will remove small amounts of jitter and even reject very larger amounts using 

PLLs. This limits the amount of jitter that can be added to the output signal. However, for 

high speed signals, large amounts of jitter are not required e.g. a 10Gbps signal will close 

off with only 50ps of jitter added to it. Therefore adding jitter through the programmable 

delay chips is preferred to first method described. 

 

 

Figure 5.11 Jitter injection using FTUNE pin 
 

5.4.6 Low Speed/Parametric/ATE Testing 

 The test modules are designed to target specific enhancements for an ATE. As 

such, they are not designed to handle all testing requirements a manufacturer may desire. 

Additionally, there are tests that an ATE can perform more efficiently and precisely than 

the test module can be designed to perform, such as DC parametric testing, low speed 

testing, etc. Since the test modules are designed to interface with existing ATE 

infrastructure, it is advantageous to allow ATE tests through the test modules. Therefore 

the test modules are designed with RF relay switches that allow signals from the ATE to 

pass through the test module to the DUT. The RF relays are used to select external 
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signals to replace those from the module.  These external signals may be connections to 

DC parametric test instruments.  Alternatively, the relays may be used to connect to 

moderate-speed (<1Gbps) ATE functional test channels.   In the low-speed mode, the 

four relays connect the DUT signals directly to ATE channels, via the DIB.  This mode 

allows the ATE to control the test directly.  Thus, standard ATE tests can be performed.  

This mode is valuable for debug. 

 

 

Figure 5.12 Low speed/ATE testing 
   

 Figure 5.12 shows the logic used to implement ATE testing. Test signals from the 

ATE are passed to the DIB, which passes them to the test module through a 40-Pin 

connector. These signals are routed to the RF Relays. When these relays are switched off, 

they pass the signals from the ATE to the DUT. Similarly the return signals from the 

DUT are passed through the receive relays, routed through the test module, and returned 

to the ATE via the DIB. In this mode the test module behaves as a passive component. 
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CHAPTER 6       

 

                  FPGA DESIGN AND IMPLEMENTATION 

 

FPGAs generally keep pace with electronic device trends, i.e. as newer faster 

electronic devices are developed; newer faster FPGAs in comparable ranges are 

developed. ATE have been comparatively slower to advance performance and features 

[2]. Current FPGA performance, in terms of speed, already exceeds that of the fastest 

available ATE [89] & [95]. This fact has made FPGAs an ideal choice in developing 

custom testing systems. Recent advancements in FPGA technology have allowed them to 

be used for many testing purposes [52]-[53], [71], [86]-[88], [96]-[98]. These 

applications include the development of stand-alone test systems, test modules and even 

test platforms. The ease of usability and flexibility of FPGAs allows for the addition of 

high-performance circuitry to enhance and add functionality to them that may be required 

for certain test applications. The FPGA along with its support circuitry alleviates the 

reliance on ATE, thus making testing more efficient and cost effective. 

This chapter discusses the selection criteria of the FPGA in order to develop a 

suitable test module. Based on these criteria, a suitable FPGA and its features are 

discussed in detail. Furthermore, the design and development of the FPGA in order to 

support a test module and achieve testing functionality is discussed. This includes 

communication to the FPGA, FPGA firmware development and a software interface for 

user control. 
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6.1 FPGA Selection 

This research aims to exploit new technological advancements in FPGAs to 

enhance the performance of ATE. The selected FPGA provides many of the functions 

necessary in order for the test module to operate. Therefore, the FPGA is a critical 

component of the test module. Its performance determines much of the high-speed 

performance of the test module. As such, the incorporated FPGA must be chosen 

carefully based up on four main criteria: 

i) I/O compatibility 

ii) performance 

iii) capacity 

iv) physical size 

I/O compatibility between the ATE, FGPA, application logic and ultimately the 

DUT is the most critical criteria. The test module is not designed for any specific ATE, 

but instead should be able to enhance ATEs from most manufacturers with various I/O 

standards. Application specific logic for certain applications may include several devices 

with several different I/O standards. And finally the DUT may require another I/O 

standard. Therefore the FPGA should be compatible with most available I/O standards in 

order to increase flexibility. 

The performance of the FPGA dictates the ultimate high-speed performance of 

the test module. For example, in this research, application specific logic is used to 

produce a double data rate signal from the signals generated by the FPGA. Therefore, if 

the FPGA is limited to 5Gbps, a maximum speed of 10Gbps can be generated from two 

5Gbps signals. Obviously FPGAs capable of higher speeds are thus preferred. 
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The capacity of the FPGA is another issue of consideration. Much of the test 

generation logic, control logic, test pattern storage, etc. is stored in the FPGA. Therefore 

the chosen FPGA must be able to accommodate all the necessary logic and storage 

requirements. 

Finally, the physical size of the FPGA is another factor that must be considered. 

In production environments, robotic handlers are usually used to load and unload DUTs 

onto the ATE’s test head. The test module must be designed to fit underneath the load 

board on the test head of the ATE, where it cannot interfere with the robotic handlers. 

Accommodating this limitation severely restricts the maximum physical size of a test 

module as the available area between the test head and load board is relatively small. In 

this research, the available space between the test head and the load board is 1.5 inches; 

therefore the test module is required to be slightly less than this height.  

In addition to the criteria mentioned above, the concerns for power consumption 

and heat dissipation are always present. Power consumption must be kept low in order to 

minimize resource usage, while high performance must be maintained. Lower power 

consumption also generates lower heat within the device, and subsequently the test 

module. In previous ATE enhancement modules, water cooling has been used [99], and is 

still an option on most ATE. An excess build-up of heat can cause undesirable test results 

and in some cases an unrealistic testing environment. Therefore lower power consuming 

and low heat dissipating devices are ideal.  

Considering all the above criteria, the Xilinx Virtex-5 family of FPGAs was 

selected for used in the designed test module. The Xilinx Virtex 5 family is discussed in 

the next section. 
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6.1.1 Xilinx Virtex 5 

The Virtex-5 family is representative of leading edge FPGA technology. It 

provides some of the most powerful features available in the FPGA market including 

high-speed transceivers with I/O speeds up to 6.25Gbps. The Virtex-5 FPGAs contain 

many hard-IP system level blocks, including powerful 36-Kbit block RAM/FIFOs, 

second generation DSP slices, SelectIO™ technology with built-in digitally controlled 

impedance, ChipSync™ source-synchronous interface blocks, system monitor 

functionality, enhanced clock management tiles with integrated digital clock managers 

(DCMs) and PLL clock generators, and advanced configuration options [100]. They are 

manufactured using a 65nm copper process technology and have an internal core voltage 

requirement of 1.0V, thus consuming relatively low power and dissipating low heat. 

The Virtex-5 family was also a suitable choice as it supports most widely used 

single-ended and differential signaling I/O standards. This feature allows for the design 

of a generic test module that can be compatible with most available ATE platforms and a 

vast majority of devices. Table 6.1 summarizes the I/O standards supported by the 

Virtex-5 family. In this research the LVCMOS standard was mainly used and sufficient 

to demonstrate compatibility with other devices.  
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Table 6.1 Virtex-5 Family supported I/O standards [100] 

Single-ended Standards Differential Signaling Standards 

LVTTL LVDS and Extended LVDS (2.5V only) 

LVCMOS (3.3V,2.5V 1.8V, 1.5V and 1.2V) BLVDS 

PCI (33 and 66 MHz) ULVDS 

PCI-X HypertransportTM 

GTL and GTLP 
Differential HSTL 1.5V and 1.8V (Class I 
and II) 

HSTL 1.5V and 1.8V (Class I, II, III and 
IV) 

Differential SSTL 1.8V and 2.5V (Class I 
and II) 

HSTL 1.2V (Class 1) RSDS (2.5V point-to-point) 

SSTL 1.8V and 2.5V (Class I and II)   

 

 

As an additional benefit, the Virtex-5 family supports numerous widely used 

serial protocol standards. The protocol encoding is done in the RIO MGT blocks after the 

transmit data has been serialized. This feature is helpful for testing devices such as 

network controllers, bus controllers, etc. that require specific I/O protocols such as PCIE, 

XAUI, etc. [101]. Additionally, the FPGA allows the user to use a custom protocol, or no 

protocol at all. This research mainly used the no protocol option to demonstrate proper 

functioning of the output. The XAUI protocol with 8B/10B was also tested to determine 

the feasibility of the using protocols directly from the FPGA. 

The Virtex-5 FPGA family consists of 4 main platforms: the LX, LXT, SXT and 

FXT. The LX platform does not have any RIO MGT available, thus was not considered. 

The LXT and SXT platforms contain RocketIO GTP transceivers; however these 

transceivers are designed to run up to 3.75Gbps. The FXT platform was the only platform 

to contain RocketIO GTX transceivers capable of running up to 6.5Gbps, and therefore 

the FXT platform was selected to be used in this design.  
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The FXT platform is available in 5 models, out of which the XC5VFX30T model 

was selected. This was mainly due to the fact that the model’s physical package size was 

the largest of the models that fit within the physical constraints of the underside of an 

ATE test head and could be mounted on the test module PCB board. The XC5VFX30T 

contained 8 RocketIO GTX transceivers, each capable of running up to 6.5Gbps and 360 

user I/O pins. Additionally it contained 5,120 Virtex-5 slices (each Virtex-5 slice consists 

of four LUTs and four flip-flops) and 2,448 Kb of RAM blocks. As the RocketIO GTX 

transceivers are a critical component of the FPGA and the test module, they are discussed 

in detail in the next section. 

6.1.1.1 RocketIO GTX Transceivers 

The RocketIO GTX transceiver is essentially a high-speed serializer/deserialzier 

(SerDes) developed by Xilinx for its Virtex-5 family of FPGAs. It is a power-efficient 

highly configurable module that can produce line rates up to 6.5Gbps [102]. The 

transceivers support transmit pre-emphasis and receive equalization programming for 

optimized signal integrity. Additionally, the transceivers have built-in support for 8B/10B 

encoding, comma alignment, channel bonding, clock correction and PCIE interfacing.  

Xilinx has designed the GTX transceivers into dual transceiver columns and 

placed them strategically close to other logic blocks in order to minimize size and power 

consumption. Figure 6.1 shows an example block diagram of a dual GTX transceiver 

column in a Virtex-5 FXT device (used in this design). Adjacent to each GTX transceiver 

is a cyclic redundancy check (CRC) block to provide data validation. Integrated blocks 

for interfacing with PCIE and Ethernet MAC are also present. The configuration and 

clock block provides access to the clock and configurable ports on the GTX transceivers. 
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Clock Management Tiles (CMTs) are used to manage the synchronization and routing of 

clocks and clocking parameters. Two embedded processor blocks are also present for 

each GTX dual column containing a PowerPC 440x5 32-bit embedded processor 

developed by IBM. Each processor contains a dual-issue, superscalar, pipelined 

processing unit, and other functional elements required to implement embedded system-

on-chip solutions [103]. Although, these processors are not used in the current designs, 

their high-performance and flexibility may come in handy in future designs requiring 

more on board processing power. Finally there are two I/O columns that have direct 

access to the GTX transceivers. These are used to load configuration blocks, interface 

with the embedded processors and general communication with the GTX transceivers. 
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Figure 6.1 Example of GTX Transceiver Tile column in a Virtex-5 FXT device [102] 
 

GTX transceivers are built into GTX_DUAL tiles, with each tile containing a pair 

of GTX transceivers as shown in Figure 6.2. Each GTX transceiver has a pair of 

differential transmit and receive pins which are directly accessible on the FPGA package, 

as seen on the left-hand side of the figure. Furthermore, each GTX_DUAL tile has five 

analog voltage pins and one clock input pin shared by both GTX transceivers. Sharing a 
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single clock source in each GTX_DUAL tile allows both transceivers to be synchronized, 

and also reduces size and power consumption of the FPGA. On the right-hand side of the 

figure, the GTX_DUAL tile’s interface signals to the FPGA can be seen. Data and 

control signals from the FPGA are passed via these pins. 

 

 

Figure 6.2 GTX_DUAL Tile block diagram [102] 
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As mentioned above, each GTX transceiver is divided into a transmit block and a 

receive block. Figure 6.3 shows a diagram of the transmit block in a GTX transceiver. As 

shown in the figure, data flows from the right to left. On the furthest right-end, is the 

FPGA TX interface, where parallel transmit data and configuration parameters are 

supplied. An 8B/10B encoder is built into each TX block, which allows 8B/10B encoding 

by simply setting an input parameter. Similarly, the TX Gearbox can encode the signal 

based on a 64B/66B scheme which is preferred on some high-speed data protocols. 

Another useful feature of the TX block is it’s built in pseudo-random binary sequence 

(PRBS) generator which can produce 27-1, 223-1 and 231-1 PRBSs internally. A loopback 

path is also available in each TX block, which takes deserialized data from the receiver 

and queues it for transmittal. This feature is useful for characterizing the performance of 

the transceiver and debug purposes. Based upon the configuration parameters provided 

from the FPGA, multiplexors in the TX block select the particular data path to be 

serialized. This data is then sent to the parallel in serial out unit (PISO) in the TX block 

and serialized. The TX driver is configurable, allowing pre-emphasis voltages to be set as 

well as PCIE options. After serialization, data is supplied directly to the GTX TX pins on 

the FPGA package. 

 

Figure 6.3 GTX TX block diagram [102] 
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The GTX RX block in shown in Figure 6.4. The flow of data in this diagram is 

from left to right. Serial high-speed data is directly input to the RX block from pins on 

the FPGA package. The RX data driver has built-in circuits to terminate the incoming 

signal and an equalization circuit to compensate for high-frequency losses. A clock data 

recovery circuit is also present to extract an embedded clock in the received signal. The 

serial data is then passed to the serial in parallel out unit (SIPO) where it is parallelized 

for further processing. A comma detect block is present to align the input signal 

accordingly. A Loss of Sync state machine alerts the FPGA if the RX channel is out of 

sync and malfunctioning. 10B/8B and 66B/64B (via RX Gearbox) decoding is available 

and can be selected in the RX block. Similar to the TX block, configuration parameters 

from the FPGA set multiplexor select signals in the RX data path to select a particularly 

processed data signal. The processed high-speed received data, now in parallel, is then 

provided to the FPGA through the FPGA RX interface. 

 

Figure 6.4 GTX RX block diagram [102] 
 

In addition to the above functions, the FPGA contains many more functional 

blocks that can be used for in the future as necessary, such as DSP blocks, MicroBlazeTM 

processors, elementary logic blocks, complex logic blocks, etc. Controlling and designing 
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functionality for these complex devices is not a trivial task. The FPGA can be 

programmed to perform a variety of functions using hardware description languages 

(HDLs) such as VHSIC hardware description language (VHDL), Verilog, and schematic 

entry. Very complex designs can be developed for this FPGA, however the goal of this 

research is to design a generic control structure that can easily be ported onto other 

FPGAs when needed. The design of the FPGA design logic is described in the next 

section. 

 

6.2 FPGA Implementation 

The FPGA is the main component of the core logic block in of the test module. It 

is tasked with ensuring the proper functionality of the test module.  It is the actual 

interface between the user and the DUT through which commands are sent and executed. 

Furthermore it is used to control the functionality of the application specific logic for 

testing purposes. Figure 6.5 shows a logical overview of the FPGA in the core logic 

block of the test module and its surrounding components. An external PC can be seen on 

the left of the FPGA which is required to communicate with the FPGA. However, unlike 

a specialty workstation as an ATE requires, the test module requires only a typical off-

the-shelf PC with standard features. The PC is used for two main functions, the first of 

which is to program the FPGA with its internal logic. The second function of the PC is to 

control the FPGA, which is done through a custom software interface. Therefore the three 

main stages of implementing the FPGA are communication, internal FPGA logic, and 

software interface. These stages are discussed in the following sections.  
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Figure 6.5 Logical overview of FPGA in core logic block and surrounding components 
 

6.2.1 Communication  

The PC communicates with the FPGA for two primary purposes. The first 

purpose is to program the FPGA with its internal logic or FPGA firmware. The FPGA 

firmware is designed on the PC using FPGA designs tools and will be discussed in 

greater detail the next section. Once the FPGA firmware code has been developed and 

compiled for the correct device, it is downloaded to the FPGA. The firmware is 

downloaded via a JTAG link [104]. Since a PC generally does not have a JTAG port, this 

process is usually done using a serial port or USB JTAG adapter.  

Once a proper functioning FPGA firmware has been developed and tested, a user 

need not continuously download to the FPGA, unless upgrades/modifications are 

required. However FPGAs do not store programming on power downs, therefore when 

the test module is powered down, the FPGA loses its programming. To solve this 
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problem a flash memory device is used as an intermediary storage device. The chosen 

flash device must be compatible with the FGPA and large enough to store the FPGA 

programming information. In this research a Xilinx XCF32P In-System Programmable 

Configuration PROM is used [105].  The flash device is linked to the FPGA via a JTAG 

chain, therefore the FPGA is essentially programmed directly from the flash device. The 

test module developer simply programs the flash device with the desired firmware, and 

upon every power up, the FPGA is reprogrammed. 

The second purpose the PC communicates with the FPGA is to control its 

functioning. Once a functioning FPGA firmware has been loaded onto it, the FPGA can 

be communicated to for application purposes. This entails many options - a standard PC 

generally has many communication ports such serial, parallel, PS/2, USB, Firewire, etc. 

The FGPA can communicate with any of these ports given the correct resources. For this 

research, large amounts of data may need to be transferred to and from the FPGA. Large 

test sequences, real time test data at gigabit/second speeds, sampling high-speed data, etc. 

can be potential applications that require large amounts of data to be transferred between 

the PC and FPGA. Therefore a communication port capable of high-speed data 

transmission is required, and as such, the USB port was chosen. 

The USB is a communication standard between two devices. The USB 1.0 

standard can communicate up to 12Mbs and the USB 2.0 standard can communicate up 

to 480Mbs [106]. The newest standard USB 3.0 can communicate up to 5.0Gbs, but 

requires additional pins [107]. USB 1.0 and 2.0 require a 4-pin cable consisting of power, 

ground and a differential data bus.  The USB provides a communication link between a 

host device and a USB function on another device. USB device communication is based 
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on pipes of logic channels. A pipe is a connection from the host device to a logical entity, 

found on a device, and named an endpoint [108]. A pipe is formed when a host makes a 

connection to an endpoint. The host controller manages all the traffic to the devices and 

can manage up to 32 endpoints. On a PC, a host controller is usually a separate device on 

its motherboard, with which the operating system interacts. The host controller uses a 

serial interface engine (SIE) to access the physical bus. The SIE is responsible for 

converting the serial USB packets into valid bytes for the host controller. The SIE is 

required to meet the bit timing requirements of the bus and handles signal level and 

connections/disconnections of devices, i.e. creating endpoints. Once a USB device is 

connected to a PC, the PC’s host controller starts an enumeration process in which a reset 

signal sent to the device in order to read its device class code [109]. If a valid device class 

code is read by the PC’s operating system, it loads the proper device drivers and creates 

an endpoint. Once an endpoint is detected, a valid pipe can be created. This pipe can now 

be available through the PC’s operating system, and client software can be used to access 

the pipe. Despite all these levels of protocol, once a valid pipe is established, 

communicating to a USB device becomes a seamless process.  

In order for the FPGA to communicate via USB, it needs a SIE. Theoretically, 

this can be programmed onto the FPGA; however this process is cumbersome requires a 

lot of on-chip processing. Also, using an FPGA as an SIE uses much of its resources and 

a reliable connection is generally not achieved using it. Dedicated USB controller devices 

offer a more reliable and more efficient solution to communicating via USB. Therefore, 

in this research a Cypress Semiconductor EZ-USB FXTM USB microcontroller [110] was 

used to handle USB communication from the FPGA to the PC. This microcontroller has 
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an integrated USB transceiver which handles the complex USB standards and an 

enhanced 8051 microprocessor which makes accessing it simple and streamlined. The 

particular microcontroller used operates the USB 1.1 standard which is much slower than 

the USB 2.0 standard, however was sufficient for evaluation purposes. The 

microcontroller simply requires a 12MHz crystal oscillator, which has been designed on 

to the test module specifically for this purpose and a 3.3V power supply.  

 Once the microcontroller is connected to the PC, the PC detects a default Human 

Interface Device (HID) and loads the proper drivers. Two endpoints are created, one for 

the write buffer and one for the read buffer on the microcontroller. At this point, the 

microcontroller is ready for USB communication, but not much else. The host computer 

simply polls the read buffer at regular intervals and the microcontroller accesses an 

interrupt routine when new data is pushed to it.  

 In order for usable communication to be established between the PC and the 

microcontroller, the microcontroller must be programmed with a core. This core is 

programmed in assembly language and runs on the 8051 processor available in the 

microcontroller. The microcontroller core is programmed to be an interface between the 

software client on the PC and the FPGA firmware, however is independent of both. It 

simply relays commands and instructions from the PC to the FPGA. As such, the 

microcontroller core is not expected to change unless significant changes are made on 

both the client software and the FPGA firmware.  

Foundations of the microcontroller core were developed in [111]. The core allows 

simple commands and data to be written to the microcontroller’s write buffer, which are 

then taken by the processor and processed accordingly. The microcontroller takes data 
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from the USB buffer and extracts instructions from the data. Essentially there are two 

commands that are sent to the microcontroller, read and write. The read and write 

commands refer to a memory block within the FPGA and discussed in the following 

section. Commands are sent by the client software interface hosted on the PC and 

discussed in Section 6.2.3. Each command is sent along with an address and a data value. 

When a write command is received, the microcontroller separates the address and data, 

and writes the data to the FGPA memory block. Similarly when a read command is 

received, the microcontroller reads the appropriate address from the FGPA memory block 

and writes the data to the USB buffer, from which the PC SW client can read it. A logical 

overview of the process is shown in Figure 6.6. 

 

 

Figure 6.6 Logical overview of communication to test module 
 

In Figure 6.6, the SW client resides on a PC connected to the test module, but 

specifically to a microcontroller on the test module. The microcontroller is physically 
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connected to the FPGA. Commands sent from the SW client are passed onto a memory 

block in the FPGA via the microcontroller. The memory block is a dual port memory 

block that can be accessed by additional FPGA logic. Once data is written to the memory 

block, the FPGA firmware can access and process it accordingly. The FPGA firmware is 

discussed in the following section. 

 

6.2.2 FPGA Firmware 

The internal logic of the FPGA, or firmware as referred to in this research, is 

developed on a PC using an FPGA development tool. For this research, since a Xilinx 

FPGA was used, the Xilinx ISE Design Suite was used to develop the FPGA firmware. 

The ISE Design Suite is a powerful package that allows the development of HDL logic 

for Xilinx FPGAs. It provides many additional design functions such as simulation tools, 

chip-verification/debug tools, optimization tools, etc. The ISE Design Suite also comes 

with an IP Solutions package. The IP Solutions package allows a developer to access 

Xilinx’s library of pre-built logic components. The library includes a vast selection of 

components from as simple as 2-bit counters to as complex as DSP cores and RIO MGT 

blocks. These tools make a developer’s task much easier, especially when portability is a 

concern, as the tools modify the compile logic based on the specific FPGA device 

chosen.  

 The main function of the FPGA firmware is to control the functioning of the test 

module. In essence, the FPGA firmware is the test module’s central processing unit 

(CPU). Therefore it is tasked with reading instructions from memory registers and 

executing these instructions. In order to carry out these functions, a simple state machine 
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is designed in the FPGA firmware. The simple state machine implements a pseudo 

instruction set architecture (ISA). In its default state the state machine reads from a 

designated memory register in the FPGA. Data in this memory block are assumed to be 

instructions. After each valid memory word is read, the state machine decodes the 

instruction and carries out the designated function. Each instruction requires 

supplementary logic to implement and must also be designed in the FPGA firmware. 

Figure 6.7 shows a conceptual state machine that represents the logic implemented in the 

FGPA firmware and is discussed below. 

 

 

Figure 6.7 State machine implemented in FGPA firmware to execute instructions 
 

Figure 6.7 shows an overview of a state machine implemented in the FPGA to 

control the functioning of the test module. The state machine is programmed to 
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continuously read an instruction register. An empty register or zeros in the register cause 

the state machine to continue reading the register in a loop, i.e. nothing different is done. 

Similarly, if an unknown instruction is read, the state machines clears out the register, 

and resumes to continuously reading it. In the case of a valid instruction, the state 

machine enters into a sub-routine to carry out the said function. Upon completion of the 

function, the instruction register is cleared out and the loop sequence resumed, unless 

overridden by the sub-routine. 

In this research a few instructions were implemented to prove the concept of 

using a state machine for control architecture of the test-module. The first instruction 

implemented is a sub-routine that loads delays onto the programmable clock-delay 

devices on the test-module. The clock-delay chips require a 10-bit delay word and an 

enable signal to be pulsed in order for the delay to be loaded. Specific addresses are 

reserved in a memory block that stores the delay words for each delay chip. Since the 

delay chips require a load enable signal to be pulsed, a common 10-bit bus is used to 

route the delay words to each chip. Once the load delay instruction is received, the state-

machine accesses the memory addresses for the first delay word and places it on the bus, 

while pulsing the load enable signal for Clock Delay 1. The next delay word is then 

accessed and a similar process repeated for each clock delay chip. Figure 6.8 shows a 

logical overview of this process. 
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Figure 6.8 FPGA clock delay control logic overview 
 

The second instruction implemented in the FPGA firmware is an instruction to 

reset all the clock-delay chips. This was a simple function to implement and used the 

same logic as the shown in Figure 6.8. However, instead of accessing the proper memory 

registers to load programmed delay values, the 10-bit delay word bus is set to zero and all 

the load enable signals are pulsed sequentially. The third instruction implemented is 

loading data from the memory onto the transmit data bus of a RIO MGT. When this 

instruction is sent to the test module, the state machine simply accesses data in specified 

locations and forwards them to the transmit data bus. This is a simple, but necessary 

instruction to demonstrate that specific data structures can be transmitted via a RIO 

MGT. This instruction can be extended in future designs to transmit blocks of data 

sequentially through the RIO MGT, thus sending test patterns to the DUT. Further, if 

automatic test pattern generation (ATPG) logic is implemented in the firmware, test 

patterns can be sent to the DUT via this instruction.  
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 Instructions to the test module are issued from the SW client on the PC, therefore 

the FPGA firmware must also to able to communicate with the SW client.  As discussed 

in the previous section, this is done via a USB connection and through a microcontroller. 

The microcontroller is physically connected to the FPGA. The connections of the 

microcontroller are routed to access a dual port memory block designed in the FPGA. 

Among other functions, the memory block in the FPGA is designed to function as an 

instruction register. Specific addresses in the memory are designated for specific 

purposes.  The first two addresses are designated for instruction words; each address 

holds an 8-bit word, therefore allowing storage of a 16-bit instruction word. When 

instructions are sent from the PC via the USB connection, they are written to these two 

addresses automatically through one port of the dual-port memory in the FPGA firmware. 

The state-machine in the FPGA hardware is constantly reading these addresses for new 

instructions via the other port of the dual-port memory block.  

Figure 6.9 shows a map of the memory block implemented in the FPGA 

firmware. The memory block is a dual port memory block that is pre-designed in the 

Xilinx ISE software suite [112]. One port of the memory is connected to a 

microcontroller on the test module, while the other port is accessed through the internal 

FGPA firmware. This establishes a communication link between a user and the FPGA, as 

both entities can access the same data. Specifying memory addresses for specific uses 

simplifies the communication process and also allows the creation of an instruction 

register. In this research, Addresses 0 and 1 are reserved to instruction storage purposes 

only, i.e. an instruction register. Addresses 2-5 are reserved for future purposes. The 10-

bit clock delay values for the four clock delay chips are stored in addresses 6-13. The 
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remaining addresses are currently available to the user. Therefore the user has access to 

nearly 2K-bits of memory storage for test patterns, etc.  

 

 

Figure 6.9  FPGA firmware memory map 
 

 Implementing the memory block as an instruction register greatly simplifies the 

development of new instructions. Two 8-bit locations allow for a total of 255 

instructions. Most instruction set architectures do not have nearly as many instructions. If 

additional functionality is required, another four locations have been reserved to meet 

needs. The logic to execute each instruction is handled by the state-machine and 

implemented in the FPGA firmware. Developing new functions for the test module is 

done incrementally. This significantly reduces implementation time and does not require 

a complete design overhaul. 
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6.2.3 Software Client 

As discussed above, a user interfaces with the test-module through a PC software 

client. Once the test module is connected to a PC with a USB cable, the host PC detects a 

HID and creates two end points and loads the proper drivers, which allow access to the 

microcontroller on the test module. As communication is established with the 

microcontroller, a simple core is loaded on to its 8051 processor (Section 6.2.1), which 

makes it ready to read and write commands. These commands are issued by a software 

client on the PC that can access the HID device detected. Figure 6.10 shows the client 

software screen developed for this research. 

 

 

Figure 6.10 Client software screen 
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The client software is the interface with which a user will control the test module. 

It is tasked with issuing the commands that are sent to the FPGA via the USB. As such, it 

is usually developed in tandem with the FPGA firmware. When new 

instructions/functions are added to the FPGA firmware, the software client simply needs 

to be updated with a method for executing them. To facilitate usability, much of low level 

communication is hidden from the user. For example, in the previous section, it was 

mentioned that Addresses 6-13 are the storage areas for the delay values. These addresses 

are pre-programmed into the software client such that a user would simply enter a delay 

value and click a button. The software converts the delay value into a 10-bit word, writes 

the delay value into the proper memory location, and writes the instruction word to load 

delays into the instruction register.  

In this research a basic software interface was developed to handle the 

instructions and functions available by the FPGA firmware, as seen in Figure 6.10. The 

top section is where delay values are entered in nano-second units up to two decimal 

places (the delay chips accept values in 10ps increments). Below that section are the 

buttons to load and reset the delay values on the test module. The third section is where a 

user can enter transmit data onto the RIO MGT channels (binary input only allowed in 

the text boxes). In, the following section, clicking on the “READ RX” button causes the 

FPGA to sample the RIO MGT RX channels, and write the data to a memory block, from 

which the software client reads and displays it. The final section of the window is 

primarily for setting optional parameters such as using the RIO MGT on the output 

channels or the loopback path. Future functionality can also be placed in this section. 
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 This chapter described the implementation of an FPGA for the test module, 

starting from selecting an appropriate one to the software required to operate it. The 

previous chapter described the logical design of the test module. Once the stages have 

been completed, the next stage consists of physically designing the hardware of the test 

module. Since high speed signals require special considerations, hardware design for the 

test module is not a trivial task and is the topic of the next chapter. 
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CHAPTER 7       

 

                PHYSICAL DESIGN AND BOARD LAYOUT 

 

The design of high-speed digital systems requires additional considerations versus 

designing at-speed digital systems. Passive circuit elements such as wires, circuit boards, 

device packages, etc. cause undesirable effects on signals such as ringing, reflections, 

crosstalk, electromagnetic interference, etc. In the case of at-speed signals, these passive 

circuit elements simply act as an extension of the device’s package. At higher speeds, the 

effects of these same passive circuit elements are accentuated, such that the electrical 

performance of the signal is directly affected [113]. Therefore careful consideration of 

the effects of these elements must be taken when high-speed digital systems are designed.  

In this chapter the physical design of the test module is discussed. Since the test 

module is designed to operate at multi-GHz speeds, special considerations are made in its 

design. These physical design considerations are discussed in the first section. In the next 

section, the actual physical design of the test module is presented and discussed. 

 

7.1 Physical Design Considerations 

All electrical signals travel over wires as analog signals, and are thus affected by 

the analog limitations of the wires upon which they travel. As frequencies increase, 

electric charges migrate to the edges of the wire, and essentially reduce the cross 

sectional area available for carrying current. This phenomenon is known as skin effect, 
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and is mainly due to the larger magnetic fields in higher frequency signals pushing 

current flow in the perpendicular direction towards the perimeter of the conductor. The 

effect increases the resistance and parasitic capacitance of a wire while reducing its signal 

to noise ratio. This effect is more pronounced as frequency increases and limits the 

throughput of a wire, i.e. the maximum bandwidth it can carry. Skin effect is also a 

contributor to energy loss at speeds in the multi-GHz range. The knee frequency 

(discussed below) of a digital signal determines the bandwidth required to carry said 

signal. Wires upon which skin effect does not start to limit bandwidth up to the desired 

knee frequency are required to carry high-speed signals. 

The equivalent sine wave frequency of a digital signal can be approximated by its 

“knee frequency”. Signal edges contain frequency components called harmonics. Each 

harmonic is a multiple of the signal frequency and has significant amplitude up to a 

certain frequency. The knee frequency is the frequency above which harmonics present in 

the signal pulse can be ignored. The knee frequency of a signal is related to the 3-dB 

frequency of the signal and determined by a constant and the signal’s rise/fall time as 

shown in Equation 7.1.  

���� ≈ �
�                                                           (7.1) 

Where K is the constant of proportionality related to the pulse shape, equal to 0.35 for 

exponential rise, and 0.337 for Gaussian rise. T is the smaller value of the signal rise (Tr) 

or fall (Tf) time. 

The faster the rise/fall time of a signal, the higher its knee frequency is. This 

requires a higher bandwidth to carry the signal, and ultimately materials capable of 

carrying such bandwidths. Resistive losses at higher frequencies increase the rise and fall 
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times of a signal as the amplitude of higher harmonics are decreased, with the highest 

frequency harmonics most affected. Resistive loses can fundamentally change a signals 

performance, and therefore need to be minimized. 

In addition to frequency effects, transmission line effects also need to be 

considered when designing high-speed digital systems. In an at-speed system, as long as 

the round trip propagation delay of a signal trace is small comparable to its rise time, the 

reflections generated by the signal can be ignored and not terminated [113]. This assumes 

that the path of the signal is infinitely short, as no reflections can occur on an infinitely 

short line since there is no propagation time between the signal and its reflection from the 

end of the line. A transmission line is said to be short if its electrical length (lelectrical) is 

less than 1/6 of its rise time [114]. The electrical length of a transmission line is 

calculated by dividing its physical length (lphysical) by the propagation velocity (νpropagation) 

of the signal. The Equations 7.2 and 7.3 define these relationships. 
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The maximum speed a signal can travel is limited by the speed of light which is 

84.7ps/inch. In physical media (besides air), this speed is much lower. Realistically, on 

transmission lines, the propagation velocity is closer to 66-75% of the speed of light, or 

closer to 120-180ps/inch. The propagation velocity of a transmission line is dependent on 

its effective dielectric constant [115] (discussed below) as shown in Equation 7.4. 
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In high-speed systems, when the transmission line is not infinitely short, a 

reflection of the signal travels back. This happens when there is a change in the 

characteristic impedance on a line, for instance when a line is routed to a device pin. 

These reflections can be minimized by placing a terminating resistor in parallel to a fixed 

voltage source and the signal. To achieve maximum minimization, the resistor must have 

the same characteristic impedance value as the transmission line [113]. Using the 

equations above, it can be seen that a high-speed signal with 100ps rise time travelling 

through an FR4 medium (dielectric constant ≈ 4.5) has a maximum allowable 

unterminated line of less than 10mm. This is an extremely short distance when designing 

physical circuit boards; hence practically all high-speed signals must be terminated with 

impedance matched resistors.  

In most digital systems, PCBs are used, and signal traces are designed on them. 

Any transmission medium is lossy, and at multi-GHz speeds these effects are 

emphasized. Therefore the choice of PCB materials can have a large impact on the 

performance of a high-speed system [102]. The parameter used to describe the 

performance of PCB materials is its dielectric constant. The dielectric constant of a 

material is its relative permittivity for frequency 0. Relative permittivity is a measure of 

the effect of the dielectric on the capacitance of a conductor. Higher dielectric constants 

cause signals to travel slower in a medium, thus lower dielectric constants are almost 

always preferred. 

FR4 is the most commonly used substrate material for PCBs. Standard FR4 with a 

dielectric constant of 4.5 provides good performance when basic design rules are 

followed. However, FR4 is available in a wide range of dielectric constants, 2.8-4.5 
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[113]. Lower dielectric FR4 materials are generally more expensive, however preferable 

when designing high-performance high-speed digital systems [102]. 

In PCBs, additional metal layers are placed around the signal layer. Changing 

currents on any metal wire produce magnetic fields through induction which can generate 

undesirable electric currents. This is true for traces on a PCB and the effect is known as 

crosstalk. To mitigate this effect, the additional layers placed around a signal layer are 

generally used as ground or voltage planes, upon which the effects of crosstalk are 

negligible. These layers are often referred to as reference layers. 

The characteristic impedance for a trace in a PCB is dependent on its stack up as 

well as its geometry. The impedance of a trace is determined by its inductive and 

capacitive coupling to nearby conductors, such as other traces, other layers, pads, vias, 

connectors, etc. Other factors also contribute to the final impedance of the trace such as 

substrate properties, conductor properties, distance to nearby conductors, etc. Two of the 

most commonly used configurations on PCBs are microstrip and stripline; these are 

shown in Figure 7.1. When a trace is routed on the outer most side of a PCB, i.e. does not 

have two reference layers around it, the configuration is known as microstrip. 

Conversely, when a trace is routed in an inner layer of a PCB, i.e. the trace does have two 

reference layers around it, the configuration is known as stripline. Based on these 

definitions, there are obviously more stripline traces available versus microstrip traces in 

a multi-layer PCB. Striplines are generally preferred to microstrips as striplines have two 

reference layers providing radiation shielding. Microstrips leave one side exposed to the 

environment, however the upper and lower layers are preferred to minimize via stubs, 

and therefore both configurations have distinct advantages. 
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Figure 7.1 Microstrip and stripline configurations 

 

The characteristic impedance of each configuration depends on its form. When a 

signal passes through a trace in either configuration, there is a difference between the 

trace voltage and the layers around it. This difference in voltage forms a capacitive effect 

which varies depending on the height, width and length of the trace. The equation to 

calculate the characteristic impedance of a trace is shown in Equation 7.5. 

)* = +,/�%�.//�%�.0
1
2

                                                  (7.5) 

As seen in the equation, the characteristic impedance of a trace is a function of its 

inductance and capacitance, and not dependent on the signal frequency. However this 

constant ratio is a function of the physical geometry of the transmission line. The 

equations to find the characteristic impedance of a trace based on geometry are shown in 

Equations 7.6 and 7.7 [113][12]. 
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Characteristic impedances commonly range from 10Ω to 300Ω in transmission 

lines, and are typically between 50Ω to 75Ω in PCB traces [113]. When using FR4 based 

substrates in a PCB, Equations 7.6 and 7.7 can be simplified to find the following 

impedance approximations shown in Equations 7.8-7.11. 

J = 2ℎ							�?@	50Ω	MNO@?PQ@NR    (7.8) 
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J = ℎ										�?@	75Ω	MNO@?PQ@NR   (7.10) 

J = .
U 									�?@	75Ω	PQ@NR�NDS        (7.11) 

Standard resistors are easily available in 50 Ω and 75 Ω values on the market.  

Using the above equations, trace widths can be calculated to result in these standard 

values. The actual impedance value of the trace will vary slightly than calculated using 

these equations. Therefore when using such standard resistors as termination resistors, 

minimal reflections may be seen. This may cause a marginal change in resulting voltage 

swing of the signal compared to the original voltage swing. 

Traces that are routed in straight lines have a constant width (w). When a trace is 

turned or bent, its width can change. In order to keep the width constant, and thus the 

impedance of a line constant, straight lines are preferable. However routing signals with 
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all straight line traces is simply not realistic. When turns and bends in signal traces are 

required, right-angle bends must not be used. At a 90˚ bend, the effective width of the 

trace changes, causing an impedance discontinuity due to the capacitive coupling of the 

additional conductor area to the reference plane. This change in impedance can cause 

undesired reflections on the signal depending on the amount of impedance mismatch. 

Instead mitered 45˚ bends should be used, which keep the width and thus the impedance 

of the trace constant.  

 

7.2 Test Module Physical Layout 

Since the goal of the test module is to enhance ATE performance, maximum 

digital performance is desired from the PCB. Therefore the test module is designed by 

paying careful attention to the physical design considerations discussed above. Ideal 

performance could be achieved by following the considerations literally, for example by 

using custom termination resistors to match trace impedance exactly, routing signals 

straight lines only, not using vias, etc. For obvious reasons, this is not feasible or realistic. 

Furthermore, there are physical restrictions that must be followed. 

Chapter 5 discussed the physical width and height restrictions imposed on 

designing an ad-on module to fit within existing ATE infrastructure. In addition to width 

and height restrictions, there is a thickness restriction imposed on the module in order for 

it to connect to the DIB. In this research, the maximum thickness available for designing 

the test module was 0.062 inches. This allowed for a design using ten layers. Figure 7.2 

shows the PCB stack up for the test module.  
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Figure 7.2 Test module PCB stack up 

  

All of the active device components used in the test module are surface mounted 

on the top side of the PCB. Therefore the top layer is used to route the highest-speed 

signals. The top and bottom layers are both microstrips. Although using stripline to route 

higher speed signals may have been preferred, via transitions would have been required 

that would have distorted signal performance. When transitions were required on the 

high-speed top layer signals, they were routed directly to the bottom layer. This was to 

minimize ringing effects potentially caused by mid-board via stubs. Since the 

performance of the top and bottom layers was critical to the performance of the test 

module, a high performance dielectric was used for these layers. The dielectric used was 

R04350B, a glass-reinforced hydrocarbon and ceramic dielectric which had a dielectric 

constant of 3.66 [116] compared to 4.5 for standard FR4, thus providing greater 



 128

bandwidth. This dielectric can be fabricated on PCBs using standard FR4 processes, 

however is more expensive than standard FR4 materials. Two more layers are used as 

signal routing layers – layers 3 and 8. These layers were used to route non-critical signals 

such as control signals. Since the signals routed on these layers were not critical to the 

high-speed performance of the test module, standard FR4 was used for these layers. 

 For each signal layer, a ground layer is present as a reference plane. Reference 

planes should be contiguous for the length of a trace and splits should be avoided. Splits 

on the reference plane cause impedance discontinuities on the trace above or below them, 

as the coupling effects to the reference plane are changed abruptly [102]. Routing over 

plane splits also causes issues with return currents. Due to skin effect, return currents also 

travel near the surface of tightly coupled reference planes and have a tendency to follow 

the original signal carrying trace. At plane splits, return currents must find alternative 

routes, causing suboptimal current return paths and increasing the current loop area [102]. 

This effect increases the inductance of the trace at the split, and should be avoided. 

Therefore contiguous ground planes are used as reference planes and placed adjacent to 

the signal routing layers in the test module, layers 2, 4, 7 and 9. Also ground planes are 

preferred to contiguous power planes as power planes tend to be noisier and can cause 

undesired crosstalk effects [102].  

 Using four layers for routing signals requires an additional four ground layers as 

reference layers for optimal performance. This leaves only two layers left on a ten layer 

board. In the test module, the two remaining layers are used as power planes – layers 5 

and 6. The test module requires six separate power supplies. Supplying six power 

supplies over only two planes becomes a challenging task. In the test module, these two 
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planes are carefully divided in four split planes where the voltage sources are needed. It 

should be noted that the power planes are in the middle of the PCB and well isolated 

from the signal layers, thus minimizing undesirable interference. The remaining two 

power sources were required for only a few pins. Since the two power planes could not 

be feasibly split to accommodate these additional supplies, they were routed as traces on 

the inner signal planes. Again, care was taken to keep them as far away as possible from 

high-speed signals. 

The exact dimensions of each layer are typically optimized by the PCB 

fabrication house. A CAD tool, such as Mentor Graphics PADs, is commonly used to 

design PCBs. Trace widths for each layer are set with the CAD tool to result in the 

desired impedance values. On the test module, 50Ω traces were used. Once the design is 

complete, CAD files of the design are sent to the fabrication house. The fabrication house 

sets the thickness of each layer based on the total board thickness specification – 0.062”. 

Once the individual layer thicknesses are set, trace widths may need to be slightly 

modified in order to result in specified impedance. This is all handled at the fabrication 

house by automated optimization software and seamless to a board designer. 

The PCB design for the test module was done using a PCB CAD tool called 

Mentor Graphics PADS Suite. The first step of the process involved entering all the 

devices and components into a schematic editor. Once the schematic is complete, the 

pads of all the components are exported to a layout editor. The layout editor can attempt 

to auto-route the schematic connections is desired. However for high-speed performance, 

manually routing each signal produces more efficient results. By entering the design into 

a schematic editor first, manual routing of the traces is simplified. The software also has 
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the capability to check the schematic version against the layout version, to ensure that 

signals are routed to their proper destinations. Figure 7.4 shows the physical layout 

design of the test module. Based on the physical limitations imposed by ATE 

infrastructure, the height of the test module is set to 1.5” and its length set to 12”. Signal 

propagation in the test module can be said to move from the right side of the board to the 

left, i.e. input ports are on the right side of the board and outputs on the left. For greater 

clarity, Figure 7.3 is divided and enlarged into three sections – starting from the right – 

and shown in Figure 7.4-Figure 7.6. The figures are discussed below.  

 

 

Figure 7.3 Test module PCB layout using CAD software. 
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Figure 7.4 Right-most section of test module layout 

 

Figure 7.5 Mid-section of test module layout 
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Figure 7.6 Left-most section of test module layout 

 

Figure 7.4 shows the right-most section of the board. This section contains two 

40-pin connectors which connect to an ATE through a DIB. These connectors can be 

used for control and communication, such as test commands, FPGA programming, USB, 

etc. Eight pins from the 40-pin connectors are routed directly to the RF switches (shown 

in Figure 7.6) for low-speed testing purposes. A few of the pins on the 40-pin connectors 

are designated as power input pins for the test module. For development purposes, 

redundant power supply posts are also present on the test module, such that it can be used 

on a laboratory bench. In the lower right hand-side of the figure, the USB connection can 

be seen. This feature is also redundant and for development purposes. Adjacent to USB 

connector is the microcontroller and crystal oscillator. To the left of that is the 

programmable flash chip. Most of the components provide an I/O interface to the test 
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module, and interact with each other. Thus keeping them close to each other simplifies 

trace routing in this section.  

Figure 7.5 shows the midsection of the test module. The jitter injection subsection 

contains two SMP connectors. Next to it is the differential clock input to the test module. 

A fan-out chip supplies the clock to four delay chips in the clock delay network 

(discussed in Chapter 5). Clock signals are routed to the left into the FPGA. Since the 

clock signals are in differential pairs, the lengths of the pair must match in order for the 

signals to arrive in phase at the destination. The FPGA is where the first high-speed 

signals are generated. These signals are routed to the left into the application logic area 

and are routed with great care. 

Figure 7.6 shows the left-most section of the board. The Channel 1 subsection 

contains four SMP connectors, two for differential transmit, and two for differential 

receive of high-speed signals. The SMP connectors are routed directly to a pair of RF 

relays. High-speed RIO MGT signals from the FPGA are routed directly to a MUX, 

where they are then passed to SiGe buffers (discussed in Chapter 5). All these signals are 

critical high-speed signals and routed only on the top and bottom layers for optimal 

performance. Furthermore, great care is taken to match the lengths of the differential 

high-speed signal pairs. Even a slight mismatch in length can cause one end of the signal 

to be slightly out of phase, and cause significant jitter. The Channel 2 subsection is 

similar to the Channel 1 subsection and contains all the same components. The left part of 

the figure consists of the components required for high-speed signal multiplexing. This 

subsection consists of four SMP connectors; only two are currently used for high-speed 

signal transmission. Two buffers in this subsection each receive a RIO MGT signal from 
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the Channel 1 & 2 networks. The signals are then multiplexed using a high-precision 

XOR gate and routed to the SMP connectors (see Chapter 5). All these signals are also 

critical signals, and are thus length matched and routed only on the top and bottom layers. 

 Routing all the required signals within the physical dimensions of the board by 

using only four signal planes in the PCB proved to be quite a challenge. First the critical 

signals were all routed only on the top and bottom layers, while trying to avoid transitions 

and length matching signal pairs. When a transition could not be avoided, a top layer 

signal was transitioned all the way to the bottom layer through a via, and vice versa. By 

transitioning the signal to the other side of the via, signal deterioration due to via stubs is 

minimized. Once the high-speed signals were all routed, the remaining signals were 

routed using the available area layers. 

As shown in Section 7.1, high-speed signals over 10mm in length must be 

terminated. On the test module, all high-speed and clock signals are terminated using 

impedance matching resistors. In addition to resistors, numerous decoupling capacitors 

are strategically placed around the board to filter both high-frequency and low frequency 

noise. Furthermore, an elaborate network of inductors and capacitors is used to filter the 

power planes close to the FPGA, thus providing it with highly filtered power supplies. 

All this is to reap the maximum performance allowable through the system. Complete 

schematics for the test module design are included in Appendix C. The appendix also 

includes the entire layouts for all ten layers of the board. 
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CHAPTER 8       

 

TEST MODULE PERFORMANCE AND CHARACTERIZATION 

 

In this chapter the performance characteristics of the test module are presented 

and discussed. The core logic block is the main driver of the performance of the test 

module, thus its performance metrics are critical to the overall performance of the test 

module. In order to properly characterize the performance of the test module, the 

performance of the core module is presented first. Additional test functions such as high 

speed multiplexing, loopback testing, etc. devised within the application specific logic 

block utilize resources from the core logic block, thus their performance is directly 

related to that of the core logic block. The performance of these additional functions are 

discussed after the results section of the core logic block. 

 

8.1 Core logic block –characterization 

The core logic block is responsible for the control of the test module; however it 

also produces output signals. These output signals can be directly used for testing 

purposes. The output signals are produced from the RIO MGT of the FPGA within the 

block as described in Chapter 5. The output signal performance is mainly determined by 

the FPGA’s RIO MGT characteristics; however the signal must pass through additional 

logic elements before reaching a DUT which can alter the signal’s performance. The 

performance characteristics of these output signals are measured by connecting them to 
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an oscilloscope through the SMP connectors on the test board.  A 50GHz oscilloscope is 

used that requires SMA inputs; therefore a SMP to SMA converter is used to connect the 

test module to the oscilloscope. An overview of the connection path is shown in Figure 

8.1. High-speed test signals are generated by the FPGA through its RIO MGT ports. 

These signals are passed through 2-to-1 fan-out MUX, where they are selected using 

control logic. The signals then pass through high-performance SiGe buffers to remove 

any attenuation that may have occurred and produce sharper edge rates. Finally, the 

signals pass through an RF relay switch, which passes the signal on to the SMP 

connectors on the test module (TX1). A SMP to SMA cable is used to connect the signal 

to the oscilloscope where it is characterized. 

 

Figure 8.1 Test setup to measure core logic block performance. 
 

 
Figure 8.2 shows the output of the core logic block at 5Gbps. This speed is below 

the maximum speed the RIO MGT blocks are specified to operate. The signals produced 

have relatively low jitter, are symmetric, and have wide eye openings. A rough 
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measurement of jitter showed the signal carried ~20ps (p-p) jitter. It should be noted that 

portions of the measured jitter are contributed by the additional components within the 

signal path in addition to the native jitter produced by the FPGA. 

 

Figure 8.2. Core logic block output @ 5Gbps 
 

Figure 8.3 shows a rise time measurement of the core logic block output signal at 

5Gbps. The 20-80% rise time for this signal is measured at ~40-42ps, which is typical of 

SiGe technology. According to the driver’s manufacturer, the maximum input data rate 

for this part is up to 12Gbps and it’s typical rise/fall time is 40ps [117].  

Figure 8.4 shows output from the core logic block at 6.25Gbps. This is a 

significant level as the Xilinx Virtex-5 RIO MGT is specified to operate reliably up to 

this speed. The results show wide open eyes. Jitter is measured to be ~22ps (p-p), and a 

rise-time measurement (not shown here) indicates the same SiGe driver rise-time of ~40-

42ps.  
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Figure 8.3 Core logic block output rise time measurement @ 5Gbps 
 

 

Figure 8.4 Core logic block output @ 6.25Gbps 
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Once operation of the RIO MGT was established at its specified maximum 

reliable rate, the output limits were pushed for further performance. Figure 8.5 shows 

output of the core logic block at 9Gbps. At this speed, wide open eyes are shown. 

However the p-p voltage swing of this signal was slightly limited to achieve this speed.  

 

 

Figure 8.5 Core logic block output @ 9.00Gbps 
 

Figure 8.6 shows a jitter measurement on the 9Gbps signal. Jitter is measured to 

be ~30ps (p-p). Although jitter has increased from the 6.25Gbps output signal, the added 

jitter is well within acceptable limits. As mentioned above, this data rate is in excess of 

the maximum reliable output specified by the FPGA manufacturer. However, these 

results were produced consistently numerous times by providing a clean low-jitter clock 

input and filtered low-noise (laboratory grade) power sources. Given the same quality 

inputs, these results should be reproducible in other environments, i.e. production testing.  
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Figure 8.6 Core logic block jitter measurement @ 9.00Gbps 
 

After functionality of the core logic block was demonstrated at 9.0Gbps, it was 

further pushed to determine its maximum output capabilities. Figure 8.7 shows output 

from the core logic block at 10Gbps. At this speed jitter is measured at 38ps (p-p). The 

eyes shown are open, but starting to close off. 38ps of jitter on a 10Gbps - 100ps bit 

period signal produces a roughly 0.60UI eye opening. This signal may be used for certain 

testing applications. Pushing the test module to further speeds produced unstable results. 
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Figure 8.7 Core logic block output @ 10.00Gbps 
 

8.2 High-speed signal multiplexing –characterization 

In this section the results of the high-speed signal multiplexing application are 

presented. The setup to take measurements of the performance characteristics of the high-

speed multiplexed signals is similar to that as described in the previous section using an 

oscilloscope. However, in this case, additional logic is used to synthesize signals 

produced by the core logic block as described in Chapter 5. The core logic block is used 

to produce two RIO MGT high-speed signals. These signals are available after they have 

passed through a 2-to-1 fan-out multiplexor. One output of the fan-out multiplexor is 

routed to ultra-precision drivers which sharpen the signals edges. These signals are then 

passed through an InP XOR gate which is used to multiplex the signals. An overview of 

the signal path and test setup is show in Figure 8.8. Given the signals are offset in time by 
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half a bit period; a double output data rate is produced by the InP XOR gate. Timing 

offsets of the RIO MGT signals are controlled by using clock delay chips in the core 

logic block, also described in Chapter 5.  

 

Figure 8.8 Test setup to measure high-speed signal multiplexing performance 
 

Figure 8.9 shows a multiplexed signal at 10Gbps. This signal is produced by 

using two 5Gbps RIO MGT signals and appropriately offsetting them in time. The output 

signal exhibits wide eye openings. Jitter as measured on the signal, is 32ps. However 

much of the jitter can be attributed to the input signals from the FPGA. The manufacturer 

of the XOR gate estimates the gate adds <10ps of data dependent jitter [118]. This is an 

appropriate estimation as the RIO MGT input signals at 5Gbps measured 20ps (p-p) jitter. 

The performance demonstrated by the XOR gate at 10Gbps is within manufacturer 

guidelines and can be seen up to a speed of 13Gbps per manufacturer specifications.  
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Figure 8.9 High-speed signal multiplexing output @ 10.00Gbps 
 

Figure 8.10 shows a rise time measurement of a 10Gbps multiplexed signal. Rise 

time for this signal can be seen to be 24ps, which is typical for InP technology and in line 

with manufacturer specifications. The manufacturer also indicates a faster fall time, 

which is typical for InP technology [118]. Faster fall times for this signal can be seen in 

the figure above. 

Figure 8.11 shows a multiplexed signal at 15Gbps. This signal is produced by 

using two 7.5Gbps RIO MGT signals and appropriately offsetting them in time. This test 

was done to demonstrate how far the performance of the XOR gate could be stretched. 

15Gbps is beyond manufactures reliable guidelines of 13Gbps, however output is still 

produced. The results show data eyes are still open, however closing off. Jitter is 

measured around 35ps (p-p), which produces a less than 0.5UI open eye.  
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Figure 8.10 High-speed signal multiplexing rise-time measurement @ 10.00Gbps 
 

 

Figure 8.11 High-speed signal multiplexing output @ 15.00Gbps 
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Figure 8.12 shows multiplexed output from the XOR gate at 16Gbps. It is similar 

to the output at 15Gbps, but mainly presented to show the upper limits of the XOR gate. 

Jitter on this signal is measured to be approximately the same as the 15Gbps signal 

shown above at 35ps (p-p). The jitter is mainly dominated by the RIO MGT input signals 

which measured a jitter of 28ps (p-p). Furthermore, on a 62.5ps bit period signal 

(16Gbps), a rise time of 24ps becomes inefficient. This can be seen in the figure, as full 

amplitude on the high side can only be sustained for a short period of time. Pushing the 

XOR gate further did not produce useful results. 

 

 

Figure 8.12 High-speed signal multiplexing output @ 16.00Gbps 
 

8.3 Loopback Path – characterization 

In this section the results of the loopback path on the test module are discussed. 

The test module is designed with a high-speed loopback path to allow for loopback 
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testing of devices. Test signals enter the test module through SMP connectors. The 

signals are passed through a high-speed fan-out buffer, with one set of differential outputs 

routed to the loopback path and the other directly to the core logic block. The loopback 

path continues to a 2-to-1 fan-out mux, where it can be selected as the output signal, thus 

creating a loopback path as discussed in detail in Chapter 5.  

The loopback path is characterized using two experiments. In the first experiment, 

the output of the core logic block is used as shown in Figure 8.13. The output of TX1 is 

set to use the output signal produced by RIO MGT TX1 in the FPGA by setting the upper 

mux (as pictured in the figure) to 1. TX1 is then physically connected to RX2 using a 

SMP cable. The output of TX2 is then set to use the loopback input by setting the lower 

mux to 0, thus establishing a loopback path between TX1 and TX2. The output of TX2 is 

connected to an oscilloscope, where it is analyzed.  

 

 

Figure 8.13 Test setup to measure loopback path using RIO MGT signals. 
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Figure 8.14 shows results of the loopback path using a RIO MGT signal at 

6.25Gbps. The upper portion of the figure shows the signal before it enters the loopback 

path for reference purposes, while the lower portion of the figure shows the signal after it 

has travelled the loopback path. The reference signal at 6.25Gbps measures jitter at 

~22pp (p-p). After going through the loopback path, jitter on the same signal is measured 

at ~42ps (p-p), thus the loopback path at 6.25Gbps is adding ~20ps (p-p) jitter to the 

signal. Nonetheless, the output signal exhibits wide open eyes with a ~0.75UI opening. 

 

 

Figure 8.14 Loopback path results using RIO MGT @ 6.25Gbps 
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Figure 8.15 shows a similar plot of the loopback path results using RIO MGT 

input signal at 9.0Gbps. The reference input signal is shown above and the output signal 

is shown below. The input signal measures ~28ps (p-p) of jitter, whereas the output 

signal measures ~46ps (p-p) of jitter. The jitter added to the signal at this speed is similar 

to jitter added at 6.25Gbps. However since the input signal already measures jitter of 

28ps (p-p), adding another ~20ps (p-p) starts to close the data eyes as seen above.  

 

 

Figure 8.15 Loopback path results using RIO MGT @ 9.00Gbps 
 



 149

Higher speed input signals were used to determine the loopback path’s limits. In 

Figure 8.16, a 10Gbps signal from the RIO MGT is input to the loopback path. The 

reference signal measures ~35ps (p-p) jitter. The lower portion of the figure displays the 

same signal output from the loopback. The output signal measures jitter above 50ps (p-p) 

with data eyes that are mostly closed (less than 0.50UI opening). Adding another 20ps of 

jitter in this case would not be an acceptable solution. 

 

 

Figure 8.16 Loopback path results using RIO MGT @ 10.00Gbps 
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The above results indicated that using a low-jitter high speed signal would better 

demonstrate the performance characteristics. Since all the output signals produced by the 

test module measured at least 20ps (p-p) jitter, an external source was used. In [98] a 

serializer module is demonstrated that can output high-speed data up to 10Gbps with 

jitter under 20ps (p-p). This module was available to be used as an external source to test 

the test module’s loopback path. The test setup for this experiment is similar to the above 

experiment and shown in Figure 8.17. Instead of the RIO MGT output from TX1, the 

external high-speed source from the serializer module is input into RX2. The mux on the 

TX2 path is set to choose the loopback path and the output signal measured with an 

oscilloscope. In this experiment, the mux, buffer and relay switch on TX1 path are 

bypassed. Each of these components has the propensity to add small amounts of jitter to 

the signal used, which accumulate and affect the final output signal. Thus by bypassing 

these components, lower jitter can be seen on the output of the loopback path.   

 

 

Figure 8.17 Test setup to measure loopback path using an external high-speed signal 
source. 
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Figure 8.18 shows results of the test module’s loopback path using an external 

signal at 9.28Gbps. Jitter measured on the input signal is ~11ps (p-p), as shown in the 

upper portion of the figure. After this signal is output from the loopback path, jitter is 

measured at ~18ps (p-p). In this case, the loopback path on the test module is adding only 

7ps of jitter to the input signal. The results of the loopback path using an external source 

at this speed are certainly promising.  

 

 

Figure 8.18 Loopback path results using external source @ 9.28Gbps 
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In the final loopback path experiment, an external source at 10Gbps is used as 

shown in the upper portion of Figure 8.19. Jitter on the input signal is measured at ~16ps 

(p-p). The same signal output through the loopback path measures ~32ps (p-p). At this 

speed, the loopback path is adding 16ps of jitter. In this case the loopback path adds 

lower jitter compared to using a RIO MGT input signal at the same speed. However, the 

output signal is distorted and not symmetrical. These results may not be ideal for most 

test applications, but can be used for some, such as at-speed testing. 

 

 

Figure 8.19 Loopback path results using external source @ 10.0Gbps 
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8.4 Amplitude Adjustment – characterization 

Amplitude adjustment features are available on two channels of the test module – 

TX1 and TX2. This is achieved by using variable output drivers on the output signals and 

discussed in detail in Chapter 5. By adjusting a control voltage input to the driver, the 

output amplitude can be varied. The test module is designed with a potentiometer for the 

purpose of adjusting the control voltage. The output driver is capable of varying the 

output amplitude from 100-700mV, when input control voltage range is between 2.375-

3.465V [119]. A simple lab experiment is setup to test the amplitude adjustment 

performance of the test module as shown in Figure 8.20. A RIO MGT signal is output 

onto TX1 and connected to an oscilloscope. Control voltage on the buffer in the TX1 path 

is systematically incremented while the output signal amplitude is monitored on the 

oscilloscope.  

 

Figure 8.20 Test setup to measure amplitude adjustment performance of test module. 
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Figure 8.21 shows a plot of the measured amplitude of an output signal from TX1 

versus the control voltage applied to the output driver. The input signal used is one 

produced by a RIO MGT channel at 6.25Gbps. The p-p amplitude measured varied from 

70mV to 725mV and is very similar to the range specified by the device manufacturer. 

The driver varied the output amplitude while the control voltage was within 1.70-3.00V, 

which is slightly offset from the manufacturer’s data sheet. Regardless, the device did 

provide the variable amplitude range as specified and is sufficient for this function on the 

test module. The control voltage offset can be noted and proper adjustments made to 

achieve the desired amplitude in a testing environment. 

 

 

Figure 8.21 Amplitude adjustment results from TX1 
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8.5 Timing/Skew Adjustment – characterization 

Timing/skew adjustment on the test module is available on two channels, TX1 

and TX2. Adjustments are made using a programmable delay chip as described in 

Chapter 5. The RIO MGTs require a clock input, which also determines the output phase. 

Therefore, by adjusting the phase of the input clock to the RocketIO, the phase of its 

output data can be adjusted. This feature can be tested by setting various delay values on 

the programmable delay chips, and monitoring the change in phase of the output signals. 

An overview of the test setup is shown in Figure 8.22.  

 

 

Figure 8.22 Test setup to measure timing/skew adjustment. 
 

 Figure 8.23 shows finite timing adjustment using the programmable delay chip. 

Edge 1 is the reference edge at 0ps. The device is then programed to delay the signal 

10ps, and the actual delay is 14ps as seen in edge 2. Edge 3 delayed by 38ps is produced 

by programming 20ps of delay. Edge 4 is programmed to be delayed 30ps, a combination 

of 20+10ps. Its actual delay is 52ps (38+14ps). A programmed delay of 40ps produces an 

actual delay of 38ps, and overlaps edge 3. Edge 5 measured at 66ps delayed, is 
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programmed to be 50ps delayed. These delay non-linearities are well documented in the 

programmable delay data sheet [120]. Also, Chapter 5 discusses this issue in detail as 

well and calibration methods to obtain better results. 

 

 

Figure 8.23 Finite timing adjustment with delay chip 
 

In addition to finite timing adjustment, the programmable delay chips are capable 

of fine analog timing adjustment using its FTUNE input as discussed in Chapter 5. Figure 

8.24 shows the performance of the fine adjustment. A total range of about 60ps is 

achieved using this method. A table can be constructed measuring the voltage applied on 

the FTUNE input and the delay measured. Using this table in conjunction with the 

calibrated values for the finite delay discussed in Chapter 5, accurate and finite timing 

adjustment can be achieved from the range of 0 to 10ns. 
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Figure 8.24 Timing adjustment using analog FTUNE input on delay chip 
 

8.6 Jitter Injection – characterization 

The test module allows jitter to be injected onto its output signals through two 

methods. The first method by which jitter can be injected is directly into the output signal 

through the final stage driver. The second method to inject jitter into the system is 

through the clock source, i.e. the programmable delay chip. Both options are discussed in 

detail in Chapter 5. The second method allows a larger range of jitter injection and is 

preferable to the first method. In this option an external signal generator is used as a jitter 

injection source to input jitter directly onto the programmable delay chips as shown in 

Figure 8.25. 
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Figure 8.25 Test setup to demonstrate jitter injection. 
 

The signal generator can produce a variety of signals with various amplitudes and 

frequencies. It can also produce a plain noise signal. Various signals result in different 

amounts of jitter injection. Figure 8.26 shows jitter injection using a 0.5V amplitude 

noise signal, which produces 16ps of jitter. Similarly, Figure 8.27 shows 52ps of jitter 

added by increasing the noise amplitude to 2.0V. Using a sine wave instead of plain 

noise, higher jitter can be injected. Figure 8.28 shows 30ps of jitter injected using 0.5V 

amplitude 20MHz sine waves. Similarly, Figure 8.29 shows 81ps of jitter injected using a 

2.0V amplitude 20MHz sine wave. All these signals were applied onto to 6.25Gbps data 

signal that measured a base jitter of 27ps (p-p). 
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Figure 8.26 0.5V noise signal injecting 16ps (p-p) of jitter 
 

 

Figure 8.27 2.0V noise signal injecting 52ps  (p-p) of jitter 
 



 160

 

Figure 8.28 0.5V 20MHz sine signal injecting 30ps (p-p) of jitter 
 

 

 

Figure 8.29 2.0V 20MHz sine signal injecting 81ps  (p-p) of jitter 
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Injected jitter is a function of both the amplitude as well as the frequency (when 

not plain noise) of the added signal. Therefore signals of various amplitudes and 

frequencies were injected into the system, and the total jitter measured. Figure 8.30 

shows the relationship between signal characteristics and total p-p jitter, while Figure 

8.31 shows the same relationship with the standard deviation of the jitter. The same 

reference signal running at 6.25Gbps with a base jitter of 27ps (p-p) was used. Figure 

8.31 shows linearly increasing jitter with signal amplitude up to about 1.25V. After this 

point the added jitter starts to taper off, also seen in Figure 8.30. The highest amount of 

jitter added is about 81ps (p-p) (shown in Figure 8.29), therefore the range of jitter 

injection using this method is 0-81ps (p-p). Data from Figure 8.30 and Figure 8.31 can be 

used to created tables that allow the finite injection of jitter close to the picosecond scale. 

These tables can be programmed into the software interface of the test module, making 

jitter injection seamless to the user. 

 

Figure 8.30 Jitter injection measurements (p-p) 
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Figure 8.31 Jitter injection measurements (standard deviation) 
 

8.7 Low-speed/parametric testing - characterization 

The test module has special provisions for direct propagation of low speed signals 

from an ATE. This is achieved by the use of RF relays, which when are in the open 

position, can relay signals from an ATE to the output. This application is discussed in 

detail in Chapter 5. 

Testing the low-speed path is a simpler experiment. The purpose of the low-speed 

path is to provide a connection from the 40-pin connector on the test module to the RF 

relays (see  Figure 5.12). Therefore, essentially by checking this path for continuity, it 

can be asserted that the path functions properly. Furthermore, it is expected that the path 

will be used for parametric measurements by the ATE. Thus the low-speed path should 
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input signal to the low-speed path and comparing it to the output signal at the RF relays. 

Given the values are within sufficient tolerance limits, it can be determined that the low-

speed path performs are designed. These tests were conducted and low-speed signal 

path’s operation was verified. 

8.8 Results Summary 

The results presented in this chapter demonstrate satisfactory performance of the 

test module. The high-speed signal generating capabilities of the core logic block greatly 

exceeded expectations. The main component of the core logic block, the FPGA was 

expected to produce reliable results up to 6.25Gbps as per the manufacturer’s guidelines, 

however was pushed to produce results up to 10.0Gbps. The high-speed multiplexing 

feature produced results up to 16Gbps, at which jitter was dominated by the input signals 

produced by the core logic block. The test module does have the ability to multiplex 

external signals. Therefore, if two lower jitter external signals, which are aligned 

precisely for multiplexing, are provided to the test module, better results are potentially 

attainable. The loopback path demonstrated solid capabilities of reliably propagating 

high-speed signals slightly under 10Gbps. Amplitude adjustment and timing/skew 

adjustment results demonstrated the proper functioning of these features. Jitter injection 

was demonstrated with a range of 0-81ps (p-p). Furthermore, the low-speed path on the 

test module performed as designed. Therefore, the results presented in this chapter 

provide sufficient evidence that by using a multi-GHz FPGA based test module according 

the approach described within this research, ATE performance can indeed be extended in 

a feasible and useful manner. 
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CHAPTER 9        

 

                                           CONCLUSIONS 

 

9.1 Summary 

The objective of this research was to develop methodologies for extending ATE 

performance capabilities into the multi-GHz range using FPGAs. In Chapter 1, the 

motivation for extending ATE performance was discussed, and hence the purpose of this 

research was established. The history of ATE development and recent advancements was 

reviewed in Chapter 2. This chapter also examined the progression of semiconductor test 

and how various methods of design and test are used to test today’s complex electronics. 

Furthermore this chapter reviewed technology roadmaps in order to better understand 

industry trends and anticipate future challenges.  

Chapter 3 reviewed research done to extend ATE performance into the GHz 

range. This research mainly consisted of the development of electronic test modules that 

use ATE resources to synthesize higher test performance metrics. Chapter 4 presented the 

preliminary research of this thesis that was motivated by the need to increase high-speed 

testing capability. However unlike the research presented in Chapter 3, the preliminary 

research presented in Chapter 4 focused on the development of a FPGA-based multi-GHz 

miniature tester capable of operating without the need for ATE resources. The research 

presented in this thesis extended the earlier work (presented in Chapters 3 and 4) by 

combining the ideas of modular extension of ATE and stand-alone test techniques using 
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FPGAs. This research focused on methods to enhance ATE performance using multi-

GHz FPGAs to develop test modules capable of independent operation. These methods 

are explored and demonstrated by the design and characterization of a high-performance 

test module in Chapters 5-7.  

Chapter 5 discussed the logical design and methodology of the test module. This 

module consisted to two blocks – the core logic block and the application specific logic 

block. The core logic block was the central component of the module. It was designed 

with a FPGA that allowed it to control test functionality and also provided an interface to 

the outside world. A multi-GHz Xilinx FPGA was used that contained RIO MGTs. These 

allowed the core logic block to produce multi-GHz signals. In addition to the FPGA, the 

core logic block contained a flash memory chip and a microcontroller. The flash memory 

chip was required to program the FPGA on power up. The microcontroller provided a 

USB interface to the FPGA such that it could be controlled using a PC. The core logic 

block required a clock input that was fanned-out to four programmable delay chips. 

These clock delay chips were used in the core logic block to adjust the timing skew of the 

output signals produced by the FPGA.  

The application specific logic block took signals from the core logic block and 

either processed them further or simply passed them through to the DUT, based upon the 

application. In this research six applications were developed. The first application was 

high-speed signal multiplexing to produce DDR signals. The second application 

developed a high-speed low-jitter loopback path. The third application was the ability to 

adjust the amplitude of output signals. Similarly, the fourth application was the ability to 

adjust the timing skew of the output signals. The fifth application was the ability to inject 
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controlled amounts of jitter onto a test signals. The final application was low speed 

parametric testing that was achieved using high-speed RF switches. 

The FPGA used in the test module was a critical design component. Chapter 6 

discussed the selection criteria for this FPGA.  Since the FPGA was used to control the 

test module, its design and development was presented in this chapter. The test module 

required a communication interface to an external control computer (PC). This chapter 

discussed the development of this communication interface and the test module’s 

operation.   

Multi-GHz digital systems require additional design considerations to optimize 

signal propagation and integrity. The test module was developed on a controlled 

impedance multi-layer PCB. Chapter 7 discussed the physical design considerations 

undertaken to achieve multi-GHz speeds. Furthermore the layout of the test module was 

presented in this chapter.  

Chapter 8 presented the experimental results of characterizing the performance of 

the test module. Functionality of the core logic block of the test module was shown up to 

10Gbps with 38ps (p-p) jitter. High-speed signal multiplexing was shown at 10Gbps with 

32ps (p-p) jitter. Multiplexing was also shown using two 8Gbps RIO MGT signals to 

produce a 16Gbps output signal. The loopback path developed in this research was 

demonstrated to work up to 10Gbps while adding only 16ps (p-p) jitter to the input 

signal. Amplitude adjustment of output signals from the test module is demonstrated 

through a range of 100-700mV. Timing control of the output signals was demonstrated in 

10ps discrete increments up to 10ns. A fine scale range of 60ps was achieved using an 

analog control signal. Jitter injection is demonstrated up to 80ps (p-p). Finally, 



 167

functionality of a low-speed path was also demonstrated for use with signals directly 

from an ATE. 

9.2 Contributions 

  The summary given above highlights the achievements of this research. Based 

upon these achievements, the major contributions of this thesis are: 

9.2.1 Modular test enhancement framework for ATE 

A modular test enhancement framework consisting of a core logic block and an 

application specific block is introduced in this thesis. The modular nature of the 

framework allows rapid development of ATE performance enhancing test modules. Since 

the application specific logic block can be designed independent of the core logic block, 

various ATE enhancements can be developed using this framework. Furthermore, since 

the framework is compatible with existing ATE infrastructure, full ATE functionality can 

be retained.  

The modular approach allows for the easy upgradability when next generation 

devices are available. When next generation FPGAs become available, the core logic 

block can be redesigned to achieve higher performance. Similarly when higher-

performance components, such as XOR gates, are available, the test module can be easily 

redesigned to include these, thus not requiring a full redesign. Therefore the framework 

developed in this thesis can be applied into the foreseeable future. 
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9.2.2 Communication and control architecture for test modules 

A command and control architecture for ATE performance enhancing electronic 

modules is presented in this thesis. The architecture consists of software developed for 

use on a PC to interface to the test module through a USB port. A microcontroller 

firmware architecture developed on the test module translates and executes commands 

sent by a user. The PC software and the microcontroller software are developed 

independently and designed to be compatible with each other. 

Since the communication architecture presented consists of two independent 

components, greater flexibility is achieved. When new commands are required, the 

microcontroller architecture can be updated to accommodate them. Similarly, the PC 

software can be updated accordingly to allow new commands. Therefore this approach 

allows for future upgradability and furthermore allows this architecture to be used in 

various similar applications.  

 

9.2.3 High-speed signal multiplexing 

A method for generating high-speed signals through multiplexing lower speed 

signals using an ultra-precision XOR gate is presented in this thesis. A data rate doubling 

is achieved by offsetting the input signals by half a bit-period and combining with an 

XOR gate. This well-established concept has proven to be very challenging, especially in 

cases when the input signals are in the multi-GHz ranges. Therefore a significant 

contribution of this thesis is the exploration, characterization and demonstration of this 

technique in the 5-15GHz range using FPGAs as a data source. 
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The results shown in Chapter 8 demonstrated that the limitations of this 

application were imposed by the XOR gate. Therefore this method can be used in the 

future to produce higher speed signals by substituting higher-speed XOR gates. When a 

higher-performance XOR gate is available, it is designed within the same framework to 

produce even faster test signals. 

 

9.2.4 High-speed Loopback path 

This thesis presents a method for designing a high-speed loopback path using 

active components. The loopback path is shown to add low jitter to an input signal and 

demonstrated up to 10Gbps. Much of the limitations on the loopback path are imposed by 

the active components, i.e. the multiplexor, buffer, fan-out buffer. Using next generation 

devices and employing the methods shown in this thesis will allow even higher 

performance loopback paths. 

 

9.2.5 Jitter Injection 

A method of injecting measured jitter into a high-speed test signal is presented in 

this thesis. Jitter injection is achieved by placing external noise on to the programmable 

clock delay chip that adds it to the output clock signal and ultimately to the output test 

signal. This thesis establishes a relationship between characteristics of the noise applied 

and the jitter produced. Using this relationship, controlled amounts of jitter can be 

injected onto a signal. This method also allows for future upgradability when high-speed 

serializers become available. 
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9.2.6 Low-speed/parametric testing path 

High-performance ATE may perform many standard tests (such as parametric 

measurements) better than custom built test modules. Therefore retaining full 

functionality of an ATE when developing test modules is desirable. A method to allow 

full ATE functionality while using a test module us presented in this thesis. The low-

speed path allows the test module to act as a passive signal transmission path, thus 

allowing test signals from an ATE to be used for standard testing functions. This is 

achieved through the use of high-frequency RF switches, whose functionality is 

demonstrated up to 16Gbps. When higher performance switches are available, the 

switches can be replaced to accommodate higher-speed signals. 

 

9.2.7 Physical design guidelines for high-speed test module  

High-speed digital systems require special physical design considerations as 

discussed in Chapter 7. This thesis presents guidelines for physically designing a high-

speed test-module effectively. Based on these considerations a test module design is 

presented that is within the size and form factor limitations imposed by a target ATE 

infrastructure.  Furthermore the choice of PCB materials makes a significant impact on 

high-speed signal propagation. Therefore when higher performance PCB materials are 

available, a new test module capable of greater speeds can be designed using the same 

guidelines presented in this thesis. 
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9.3 Conclusions 

The objective of this research was to develop methodologies to extend ATE 

performance capabilities into the multi-GHz range using FPGAs. Experimental results 

presented in this thesis demonstrate enhancing six test applications within an ATE 

framework. Therefore these results provide evidence that the methods presented by this 

thesis can be used to effectively enhance ATE performance into the multi-GHz range 

using economical FPGAs. Although specific example test modules are shown, the 

methods presented in this thesis have a broad application to future test scenarios. 

The methods presented in this thesis offer seven distinct contributions discussed 

in the previous section. These contributions extend the applicability of this research to 

future test requirements. As new technological advancements are made, the same 

methods presented in this thesis can be used to extend ATE performance. Chapter 2 

discusses that FPGA performance in terms of speed has increased much faster than ATE 

speeds have increased. Xilinx is introducing a Virtex-7 family of FPGA devices with the 

capability of 28Gbps transceivers very soon [12]. Altera has recently released a line of its 

Stratix V FPGAs equipped with transceivers capable of transmitting data up to 28Gbps as 

well [121]. The test module design presented in this thesis can utilize these new FPGAs 

employing the same principals to achieve 28Gbps data rates, which are far beyond the 

capability of available ATE.  

Similarly when faster components are available, they can be incorporated in to the 

application specific block of the test module. Inphi Corp currently offers a 25Gbps 

precision XOR device [122], other manufacturers offer faster components.  These XOR 

devices can be designed in to the application specific logic block to take two signals from 
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the core logic block and multiplex them to produce a double date rate using the same 

methods presented in this thesis. Therefore the contributions made in this thesis have the 

potential to be used into the foreseeable future to enhance semiconductor testing 

applications. 

 

9.4 Future Work 

This thesis demonstrated several functions of a test module used to enhance ATE 

performance. Much of this work was required in order to demonstrate proof of concept. 

Therefore, there is much immediate work that can be done to further improve current 

performance and usability.  

 The first improvements that can be made are to the software interface. The 

software interface was designed as a minimal interface to demonstrate communication to 

the test module. However, the software interface can readily be designed to do much 

more. For example, the delay non-linearities of the programmable delay chips can be 

programmed into the interface. This would allow the software to correct the desired delay 

based on calibration tables. Furthermore, potentiometers on the test module can be 

replaced with DACs which can be programed automatically by the core logic block. This 

will make delay calibration much more efficient. 

 Jitter injection can also be automated by the software interface. Jitter is injected 

using an Agilent signal source which is controlled through a computer link. The software 

interface can be developed to control the signal source and inject noise according to the 

amount of jitter desired. For example, when 20ps of jitter is required, the software 
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interface would be pre-programed to set the signal source to produce a 600mV noise 

signal to produce the required amount of jitter. 

 The FPGA firmware can also be developed to handle more commands, such as 

cycling through test patterns. Memory structures in the FPGA already exist to 

accommodate pre-determined test patterns. Implementing a command in the FPGA to 

sequentially cycle through a range of memory address is simply a matter of software 

development. 

 All the tasks discussed above will improve the performance of the generic test 

module design. Once specific applications have been targeted, these applications can also 

be built into the application specific logic if necessary and a more targeted test module 

developed. Furthermore, future work on the test module should also be aimed at 

redesigning the core logic block with the new Xilinx Virtex 7 FPGA capable of transmit 

speeds of 28Gbps. Since another Xilinx FPGA is to be used, much of the internal 

firmware can be reused, and most of the communication software will remain unchanged. 

The physical layout of the test module would have to be redone as the new FPGA will 

have to be connected to the other components. However, this entire process would entail 

much less than a complete redesign. Therefore, as discussed above, the modular design of 

the test module greatly simplifies the upgrade process. 
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APPENDIX A 

 

FPGA Firmware 

 

In this appendix details of the FPGA firmware used to control the test module are 

presented. The FPGA firmware is developed using Xilinx ISE software suite. A mixture 

of schematic entry and VHDL entry is used to produce the final firmware. The firmware 

is broken up in to four distinct functions. The first function is the interface to the USB 

port, via the microcontroller. It contains a memory block to read and write to the 

microcontroller, and controller logic to execute the read and write commands. It also has 

pin connections to the microcontroller. This function is developed using the schematic 

editor and shown in Figure A.1.  

The second function deals with loading delay values to the four programmable 

delay chips. It contains pin outs to the delay chips. It also contains logic to read delay 

values from predefined memory addresses and sequentially load them on to the delay 

chips.  This function is also developed using a schematic editor and shown in Figure A.2. 

The third function is the state machine that controls the test module. This function 

is slightly more complex and developed in VHDL. Much of this code has been developed 

with assistance from Carl Gray at the High Speed Digital Test Lab at Georgia Tech. This 

code operates the state machine and executes commands based on inputs to the 

instruction register as discussed in Chapter 6. The code is included after Figure A.1 & 

Figure A.2. 
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The final function of FPGA firmware is to control the RIO MGTs. The RIO 

MGTs are complex structure with over fifty variables. Xilinx provides a RIO MGT 

wizard in its ISE software suite and recommends its use when designing with RIO 

MGTs. Using this wizard, the RIO MGT function was developed in VHDL. The RIO 

MGT code is included after the controller code. 
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Figure A.1 USB Communication logic 
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Figure A.2 Delay load logic 
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Controller.vhd 

 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
--  Uncomment the following lines to use the declarations that are 
--  provided for instantiating Xilinx primitive components. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity controller is 
    Port ( MEM_DATA : in std_logic_vector(7 downto 0); 
           MEM_ADDR : out std_logic_vector(8 downto 0); 
           MEM_WRITE : out std_logic; 
           SLOWCLK : in std_logic; 
           MEM_DATAOUT : out std_logic_vector(7 downto 0); 
     DELAY_WORD : out std_logic_vector(9 downto 0); 
     DELAY_WRITE : out std_logic_vector(2 downto 0); 
     COMMAND_STATE : out std_logic_vector(15 downto 0); 
     DELAY_STROBE : out std_logic; 
     FASTCLK : in std_logic; 
     SYNC_OUT : out std_logic; 
     ERRORS : in std_logic_vector(31 downto 0); 
     RxFrame : in std_logic; 
     BIT_ERR_CLEAR : out std_logic; 
     BIT_ERR_ENABLE : out std_logic; 
     RESET_DCM : out std_logic); 
end controller; 
 
architecture Behavioral of controller is 
 
 
type state_type is (RESET, STANDBY, 
DELAY_LOAD,SYNCHRONIZE,SYNCHRONIZE_DCM,COMMAND_CLR,READ_ERRORS,RUN_TEST); 
signal state : state_type; 
 
signal delay_count : std_logic_vector (2 downto 0); 
signal low_word : std_logic; 
signal sub_state : std_logic_vector(2 downto 0); 
 
signal sync : std_logic; 
signal sync_dcm : std_logic; 
 
signal temp_memaddr : std_logic_vector(7 downto 0); 
signal delay_strobe_out : std_logic; 
 
signal dumb_counter : std_logic_vector(7 downto 0); 
 
signal bit_error_enable : std_logic; 
signal bit_error_done : std_logic; 
signal bit_error_reset : std_logic; 
signal bit_error_temp : std_logic; 
 
signal error0 : std_logic_vector(15 downto 0); 
signal error1 : std_logic_vector(15 downto 0); 
signal error2 : std_logic_vector(15 downto 0); 
signal error3 : std_logic_vector(15 downto 0); 
signal error4 : std_logic_vector(15 downto 0); 
signal error5 : std_logic_vector(15 downto 0); 
signal error6 : std_logic_vector(15 downto 0); 
signal error7 : std_logic_vector(15 downto 0); 
signal error8 : std_logic_vector(15 downto 0); 
signal error9 : std_logic_vector(15 downto 0); 
signal error10 : std_logic_vector(15 downto 0); 
signal error11 : std_logic_vector(15 downto 0); 
signal error12 : std_logic_vector(15 downto 0); 
signal error13 : std_logic_vector(15 downto 0); 
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signal error14 : std_logic_vector(15 downto 0); 
signal error15 : std_logic_vector(15 downto 0); 
signal error16 : std_logic_vector(15 downto 0); 
signal error17 : std_logic_vector(15 downto 0); 
signal error18 : std_logic_vector(15 downto 0); 
signal error19 : std_logic_vector(15 downto 0); 
signal error20 : std_logic_vector(15 downto 0); 
signal error21 : std_logic_vector(15 downto 0); 
signal error22 : std_logic_vector(15 downto 0); 
signal error23 : std_logic_vector(15 downto 0); 
signal error24 : std_logic_vector(15 downto 0); 
signal error25 : std_logic_vector(15 downto 0); 
signal error26 : std_logic_vector(15 downto 0); 
signal error27 : std_logic_vector(15 downto 0); 
signal error28 : std_logic_vector(15 downto 0); 
signal error29 : std_logic_vector(15 downto 0); 
signal error30 : std_logic_vector(15 downto 0); 
signal error31 : std_logic_vector(15 downto 0); 
 
signal total_error : std_logic_vector(31 downto 0); 
 
signal count : std_logic_vector(1 downto 0); 
 
signal eight_count : std_logic_vector(2 downto 0); 
signal packet_count : std_logic_vector(31 downto 0); 
 
signal global_reset : std_logic; 
 
signal toggle : std_logic; 
 
 
begin 
 
total_error <= error0 + error1 + error2 + error3 + error4 + error5 + error6 + error7 +  
    error8 + error9 + error10 + error11 + error12 + error13 + error14 + error15 +  
    error16 + error17 + error18 + error19 + error20 + error21 + error22 + error23 +  
    error24 + error25 + error26 + error27 + error28 + error29 + error30 + error31; 
 
MEM_ADDR <= "0" & temp_memaddr; 
delay_strobe <= delay_strobe_out; 
 
BIT_ERR_CLEAR <= bit_error_temp; 
BIT_ERR_ENABLE <= toggle; 
 
sync_out <= sync; 
reset_dcm <= sync_dcm; 
 
--main state update 
process(SLOWCLK,MEM_DATA,global_reset) 
begin 
  if(global_reset = '1') then 
   global_reset <= '0'; 
  elsif(rising_edge(SLOWCLK)) then 
   case state is 
    when STANDBY => 
     MEM_WRITE <= '0'; 
     case sub_state is 
      when "000" =>   
       temp_memaddr <= "00000010"; 
       sub_state <= "001"; 
      when "001" => 
       COMMAND_STATE(7 downto 0) <= MEM_DATA; 
       temp_memaddr <= "00000011"; 
       sub_state <= "010"; 
      when "010"=> 
       COMMAND_STATE(15 downto 8) <= MEM_DATA; 
       sub_state <= "011"; 
      when "011" => 
       temp_memaddr <= "00000000"; 
       sub_state <= "100"; 
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      when "100" => 
       if(MEM_DATA = "00000010") then 
        state <= DELAY_LOAD; 
        delay_count <= "000"; 
        temp_memaddr <= "00000110"; 
        delay_strobe_out <= '0'; 
        low_word <= '0'; 
       elsif(MEM_DATA = "00000011") then 
          state <= SYNCHRONIZE; 
       elsif(MEM_DATA = "00000100") then 
          state <= SYNCHRONIZE_DCM;  
       
       elsif(MEM_DATA = "00000101") then 
        temp_memaddr <= "00110000"; 
        MEM_WRITE <= '1'; 
        MEM_DATAOUT <= ERRORS(7 downto 
0); 
        count <= "01"; 
        state <= READ_ERRORS; 
       elsif(MEM_DATA = "00000110") then 
        bit_error_reset <= '1'; 
        low_word <= '0'; 
        state <= RUN_TEST; 
       end if; 
       sub_state <= "000"; 
      when others => 
       sub_state <= "000"; 
      end case; -- case sub_sate 
     ------------------- 
     when DELAY_LOAD => 
      if(delay_count = "111") then 
       state <= COMMAND_CLR; 
       delay_strobe_out <= '0'; 
       --delay_write <= "00000"; 
      else 
       if(low_word = '0') then 
        delay_word(7 downto 0) <= mem_data(7 
downto 0); 
        low_word <= '1'; 
        delay_strobe_out <= '0'; 
        temp_memaddr <= temp_memaddr + 1; 
        delay_write <= "111"; 
       elsif(delay_strobe_out = '1') then 
        delay_strobe_out <= '0'; 
        low_word <= '0'; 
        --delay_count <= "00111";  
           
        delay_count <= delay_count + 1; 
       else 
        delay_word(9 downto 8) <= mem_data(1 
downto 0); 
        temp_memaddr <= temp_memaddr + 1; 
        delay_strobe_out <= '1'; 
        delay_write <= delay_count; 
 
       end if; 
      end if; 
     ------------------- 
     when SYNCHRONIZE => 
       bit_error_enable <= '0'; 
       bit_error_reset <= '1'; 
       global_reset <= '1'; 
       sync <= '1'; 
       state <= COMMAND_CLR; 
     ------------------- 
     when SYNCHRONIZE_DCM => 
       sync_dcm <= '1'; 
       state <= COMMAND_CLR; 
     -------------------      
     when READ_ERRORS => 
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      if(temp_memaddr = "00110100") then 
       state <= COMMAND_CLR; 
      else 
       case count is 
        WHEN "01" => 
         MEM_DATAOUT <= 
ERRORS(15 downto 8); 
        WHEN "10" => 
         MEM_DATAOUT <= 
ERRORS(23 downto 16); 
        WHEN "11" => 
         MEM_DATAOUT <= 
ERRORS(31 downto 24); 
        WHEN others => 
       end case; 
       count <= count + 1; 
       temp_memaddr <= temp_memaddr + 1; 
       MEM_WRITE <= '1'; 
      end if; 
     ------------------- 
     when RUN_TEST => 
      bit_error_enable <= '1'; 
      MEM_WRITE <= '1'; 
      if(low_word = '0') then 
       temp_memaddr <= "00111100"; 
       MEM_DATAOUT <= packet_count(31 downto 24); 
       low_word <= '1'; 
      else 
       temp_memaddr <= "00111101"; 
       MEM_DATAOUT <= total_error(15 downto 8); 
       low_word <= '0'; 
      end if; 
 
      if(bit_error_done = '1') then 
       temp_memaddr <= "00111100"; 
       MEM_DATAOUT <= total_error(7 downto 0); 
       
       state <= COMMAND_CLR; 
      end if;  
     ------------------- 
     when COMMAND_CLR => 
       MEM_WRITE <= '1'; 
       sync <= '0'; 
       sync_dcm <= '0'; 
       MEM_DATAOUT <= "00000000"; 
       temp_memaddr <= "00000000"; 
       state <= STANDBY; 
       sub_state <= "000"; 
     when others => 
      state <= STANDBY; 
      sub_state <= "000"; 
     end case; 
  end if; 
  
end process; 
 
process(RxFrame, bit_error_enable, global_reset) 
begin  
 if(global_reset = '1') then 
  bit_error_temp <= '0'; 
  bit_error_done <= '0'; 
  packet_count <= "00000000000000000000000000000000"; 
 
  error0 <= "0000000000000000"; 
  error1 <= "0000000000000000"; 
  error2 <= "0000000000000000"; 
  error3 <= "0000000000000000"; 
  error4 <= "0000000000000000"; 
  error5 <= "0000000000000000"; 
  error6 <= "0000000000000000"; 
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  error7 <= "0000000000000000"; 
  error8 <= "0000000000000000"; 
  error9 <= "0000000000000000"; 
  error10 <= "0000000000000000"; 
  error11 <= "0000000000000000"; 
  error12 <= "0000000000000000"; 
  error13 <= "0000000000000000"; 
  error14 <= "0000000000000000"; 
  error15 <= "0000000000000000"; 
  error16 <= "0000000000000000"; 
  error17 <= "0000000000000000"; 
  error18 <= "0000000000000000"; 
  error19 <= "0000000000000000"; 
  error20 <= "0000000000000000"; 
  error21 <= "0000000000000000"; 
  error22 <= "0000000000000000"; 
  error23 <= "0000000000000000"; 
  error24 <= "0000000000000000"; 
  error25 <= "0000000000000000"; 
  error26 <= "0000000000000000"; 
  error27 <= "0000000000000000"; 
  error28 <= "0000000000000000"; 
  error29 <= "0000000000000000"; 
  error30 <= "0000000000000000"; 
  error31 <= "0000000000000000"; 
 
 elsif(rising_edge(RxFrame)) then 
 
   if(packet_count = "11111111111111111111111111111111") then 
   bit_error_done <= '1'; 
  end if; 
   ------------------------------------baaaaaad code here 
 
if (errors(0) = '1') then 
 error0 <= error0  + 1;  
end if; 
if (errors(1) = '1') then 
 error1 <= error1  + 1;  
end if; 
if (errors(2) = '1') then 
 error2 <= error2  + 1;  
end if; 
if (errors(3) = '1') then 
 error3 <= error3  + 1;  
end if; 
if (errors(4) = '1') then 
 error4 <= error4  + 1;  
end if; 
if (errors(5) = '1') then 
 error5 <= error5  + 1;  
end if; 
if (errors(6) = '1') then 
 error6 <= error6  + 1;  
end if; 
if (errors(7) = '1') then 
 error7 <= error7  + 1;  
end if; 
if (errors(8) = '1') then 
 error8 <= error8  + 1;  
end if; 
if (errors(9) = '1') then 
 error9 <= error9  + 1;  
end if; 
if (errors(10) = '1') then 
 error10 <= error10  + 1;  
end if; 
if (errors(11) = '1') then 
 error11 <= error11  + 1;  
end if; 
if (errors(12) = '1') then 
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 error12 <= error12  + 1;  
end if; 
if (errors(13) = '1') then 
 error13 <= error13  + 1;  
end if; 
if (errors(14) = '1') then 
 error14 <= error14  + 1;  
end if; 
if (errors(15) = '1') then 
 error15 <= error15  + 1;  
end if; 
if (errors(16) = '1') then 
 error16 <= error16  + 1; 
end if; 
if (errors(17) = '1') then 
 error17 <= error17  + 1;  
end if; 
if (errors(18) = '1') then 
 error18 <= error18  + 1;  
end if; 
if (errors(19) = '1') then 
 error19 <= error19  + 1;  
end if; 
if (errors(20) = '1') then 
 error20 <= error20  + 1;  
end if; 
if (errors(21) = '1') then 
 error21 <= error21  + 1;  
end if; 
if (errors(22) = '1') then 
 error22 <= error22  + 1;  
end if; 
if (errors(23) = '1') then 
 error23 <= error23  + 1;  
end if; 
if (errors(24) = '1') then 
 error24 <= error24  + 1;  
end if; 
if (errors(25) = '1') then 
 error25 <= error25  + 1;  
end if; 
if (errors(26) = '1') then 
 error26 <= error26  + 1;  
end if; 
if (errors(27) = '1') then 
 error27 <= error27  + 1;  
end if; 
if (errors(28) = '1') then 
 error28 <= error28  + 1;  
end if; 
if (errors(29) = '1') then 
 error29 <= error29  + 1;  
end if; 
if (errors(30) = '1') then 
 error30 <= error30  + 1;  
end if; 
if (errors(31) = '1') then 
 error31 <= error31  + 1;  
end if; 
 
 
------------------------------------------------ 
 
  packet_count <= packet_count + 1; 
   
  if(bit_error_temp = '0') then 
   bit_error_temp <= '1'; 
  else 
   bit_error_temp <= '0'; 
  end if; 
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 end if; 
 
end process; 
 
end Behavioral; 
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RocketIO.vhd 
------------------------------------------------------------------------------ 
--$Date: 2008/07/23 00:16:39 $ 
--$Revision: 1.1.2.7 $ 
------------------------------------------------------------------------------ 
--   ____  ____  
--  /   /\/   /  
-- /___/  \  /    Vendor: Xilinx  
-- \   \   \/     Version : 1.5 
--  \   \         Application : RocketIO GTX Wizard  
--  /   /         Filename : example_mgt_top.vhd 
-- /___/   /\     Timestamp :  
-- \   \  /  \  
--  \___\/\___\  
-- 
-- 
-- Module EXAMPLE_MGT_TOP 
-- Generated by Xilinx RocketIO GTX Wizard 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
library UNISIM; 
use UNISIM.VCOMPONENTS.ALL; 
 
 
 
--***********************************Entity Declaration************************ 
 
entity EXAMPLE_MGT_TOP is 
generic 
( 
    EXAMPLE_CONFIG_INDEPENDENT_LANES        : integer   := 1; 
    EXAMPLE_LANE_WITH_START_CHAR            : integer   := 0; 
    EXAMPLE_WORDS_IN_BRAM                   : integer   := 512; 
    EXAMPLE_SIM_MODE                        : string    := "FAST"; 
    EXAMPLE_SIM_GTXRESET_SPEEDUP            : integer   := 1; 
    EXAMPLE_SIM_PLL_PERDIV2                 : bit_vector:= x"0a0"; 
    EXAMPLE_USE_CHIPSCOPE                   : integer   := 0     -- Set to 1 to use Chipscope to drive resets 
); 
port 
( 
    TILE0_REFCLK_PAD_N_IN                   : in   std_logic; 
    TILE0_REFCLK_PAD_P_IN                   : in   std_logic; 
    TILE1_REFCLK_PAD_N_IN                   : in   std_logic; 
    TILE1_REFCLK_PAD_P_IN                   : in   std_logic; 
    DRP_CLK_IN                              : in   std_logic; 
    GTXRESET_IN                             : in   std_logic; 
    TILE0_PLLLKDET_OUT                      : out  std_logic; 
    TILE1_PLLLKDET_OUT                      : out  std_logic; 
    RXN_IN                                  : in   std_logic_vector(3 downto 0); 
    RXP_IN                                  : in   std_logic_vector(3 downto 0); 
    TXN_OUT                                 : out  std_logic_vector(3 downto 0); 
    TXP_OUT                                 : out  std_logic_vector(3 downto 0) 
     
); 
 
    attribute X_CORE_INFO : string; 
    attribute X_CORE_INFO of EXAMPLE_MGT_TOP : entity is "gtxwizard_v1_5, Coregen v10.1_ip3"; 
 
end EXAMPLE_MGT_TOP; 
     
architecture RTL of EXAMPLE_MGT_TOP is 
 
--**************************Component Declarations***************************** 
 
 
component ROCKETIO_WRAPPER  
generic 
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( 
    -- Simulation attributes 
    WRAPPER_SIM_MODE                : string    := "FAST"; -- Set to Fast Functional Simulation Model 
    WRAPPER_SIM_GTXRESET_SPEEDUP    : integer   := 0; -- Set to 1 to speed up sim reset 
    WRAPPER_SIM_PLL_PERDIV2         : bit_vector:= x"0a0" -- Set to the VCO Unit Interval time 
); 
port 
( 
    ------------------------ Loopback and Powerdown Ports ---------------------- 
    TILE0_LOOPBACK0_IN                      : in   std_logic_vector(2 downto 0); 
    TILE0_LOOPBACK1_IN                      : in   std_logic_vector(2 downto 0); 
    ----------------------- Receive Ports - 8b10b Decoder ---------------------- 
    TILE0_RXDISPERR0_OUT                    : out  std_logic_vector(1 downto 0); 
    TILE0_RXDISPERR1_OUT                    : out  std_logic_vector(1 downto 0); 
    TILE0_RXNOTINTABLE0_OUT                 : out  std_logic_vector(1 downto 0); 
    TILE0_RXNOTINTABLE1_OUT                 : out  std_logic_vector(1 downto 0); 
    --------------- Receive Ports - Comma Detection and Alignment -------------- 
    TILE0_RXENMCOMMAALIGN0_IN               : in   std_logic; 
    TILE0_RXENMCOMMAALIGN1_IN               : in   std_logic; 
    TILE0_RXENPCOMMAALIGN0_IN               : in   std_logic; 
    TILE0_RXENPCOMMAALIGN1_IN               : in   std_logic; 
    ------------------- Receive Ports - RX Data Path interface ----------------- 
    TILE0_RXDATA0_OUT                       : out  std_logic_vector(15 downto 0); 
    TILE0_RXDATA1_OUT                       : out  std_logic_vector(15 downto 0); 
    TILE0_RXRESET0_IN                       : in   std_logic; 
    TILE0_RXRESET1_IN                       : in   std_logic; 
    TILE0_RXUSRCLK0_IN                      : in   std_logic; 
    TILE0_RXUSRCLK1_IN                      : in   std_logic; 
    TILE0_RXUSRCLK20_IN                     : in   std_logic; 
    TILE0_RXUSRCLK21_IN                     : in   std_logic; 
    ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------ 
    TILE0_RXEQMIX0_IN                       : in   std_logic_vector(1 downto 0); 
    TILE0_RXEQMIX1_IN                       : in   std_logic_vector(1 downto 0); 
    TILE0_RXN0_IN                           : in   std_logic; 
    TILE0_RXN1_IN                           : in   std_logic; 
    TILE0_RXP0_IN                           : in   std_logic; 
    TILE0_RXP1_IN                           : in   std_logic; 
    --------------- Receive Ports - RX Loss-of-sync State Machine -------------- 
    TILE0_RXLOSSOFSYNC0_OUT                 : out  std_logic_vector(1 downto 0); 
    TILE0_RXLOSSOFSYNC1_OUT                 : out  std_logic_vector(1 downto 0); 
    ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------ 
    TILE0_DADDR_IN                          : in   std_logic_vector(6 downto 0); 
    --TILE0_DCLK_IN                           : in   std_logic; 
    TILE0_DEN_IN                            : in   std_logic; 
    TILE0_DI_IN                             : in   std_logic_vector(15 downto 0); 
    TILE0_DO_OUT                            : out  std_logic_vector(15 downto 0); 
    TILE0_DRDY_OUT                          : out  std_logic; 
    TILE0_DWE_IN                            : in   std_logic; 
    --------------------- Shared Ports - Tile and PLL Ports -------------------- 
    TILE0_CLKIN_IN                          : in   std_logic; 
    TILE0_GTXRESET_IN                       : in   std_logic; 
    TILE0_PLLLKDET_OUT                      : out  std_logic; 
    TILE0_REFCLKOUT_OUT                     : out  std_logic; 
    TILE0_RESETDONE0_OUT                    : out  std_logic; 
    TILE0_RESETDONE1_OUT                    : out  std_logic; 
    ---------------- Transmit Ports - 8b10b Encoder Control Ports -------------- 
    TILE0_TXCHARISK0_IN                     : in   std_logic_vector(1 downto 0); 
    TILE0_TXCHARISK1_IN                     : in   std_logic_vector(1 downto 0); 
    ------------------ Transmit Ports - TX Data Path interface ----------------- 
    TILE0_TXDATA0_IN                        : in   std_logic_vector(15 downto 0); 
    TILE0_TXDATA1_IN                        : in   std_logic_vector(15 downto 0); 
    TILE0_TXRESET0_IN                       : in   std_logic; 
    TILE0_TXRESET1_IN                       : in   std_logic; 
    TILE0_TXUSRCLK0_IN                      : in   std_logic; 
    TILE0_TXUSRCLK1_IN                      : in   std_logic; 
    TILE0_TXUSRCLK20_IN                     : in   std_logic; 
    TILE0_TXUSRCLK21_IN                     : in   std_logic; 
    --------------- Transmit Ports - TX Driver and OOB signalling -------------- 
    TILE0_TXDIFFCTRL0_IN                    : in   std_logic_vector(2 downto 0); 
    TILE0_TXDIFFCTRL1_IN                    : in   std_logic_vector(2 downto 0); 
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    TILE0_TXN0_OUT                          : out  std_logic; 
    TILE0_TXN1_OUT                          : out  std_logic; 
    TILE0_TXP0_OUT                          : out  std_logic; 
    TILE0_TXP1_OUT                          : out  std_logic; 
    TILE0_TXPREEMPHASIS0_IN                 : in   std_logic_vector(2 downto 0); 
    TILE0_TXPREEMPHASIS1_IN                 : in   std_logic_vector(2 downto 0); 
    --------------------- Transmit Ports - TX PRBS Generator ------------------- 
    TILE0_TXENPRBSTST0_IN                   : in   std_logic_vector(1 downto 0); 
    TILE0_TXENPRBSTST1_IN                   : in   std_logic_vector(1 downto 0); 
    ------------------------ Loopback and Powerdown Ports ---------------------- 
    TILE1_LOOPBACK0_IN                      : in   std_logic_vector(2 downto 0); 
    TILE1_LOOPBACK1_IN                      : in   std_logic_vector(2 downto 0); 
    ----------------------- Receive Ports - 8b10b Decoder ---------------------- 
    TILE1_RXDISPERR0_OUT                    : out  std_logic_vector(1 downto 0); 
    TILE1_RXDISPERR1_OUT                    : out  std_logic_vector(1 downto 0); 
    TILE1_RXNOTINTABLE0_OUT                 : out  std_logic_vector(1 downto 0); 
    TILE1_RXNOTINTABLE1_OUT                 : out  std_logic_vector(1 downto 0); 
    --------------- Receive Ports - Comma Detection and Alignment -------------- 
    TILE1_RXENMCOMMAALIGN0_IN               : in   std_logic; 
    TILE1_RXENMCOMMAALIGN1_IN               : in   std_logic; 
    TILE1_RXENPCOMMAALIGN0_IN               : in   std_logic; 
    TILE1_RXENPCOMMAALIGN1_IN               : in   std_logic; 
    ------------------- Receive Ports - RX Data Path interface ----------------- 
    TILE1_RXDATA0_OUT                       : out  std_logic_vector(15 downto 0); 
    TILE1_RXDATA1_OUT                       : out  std_logic_vector(15 downto 0); 
    TILE1_RXRESET0_IN                       : in   std_logic; 
    TILE1_RXRESET1_IN                       : in   std_logic; 
    TILE1_RXUSRCLK0_IN                      : in   std_logic; 
    TILE1_RXUSRCLK1_IN                      : in   std_logic; 
    TILE1_RXUSRCLK20_IN                     : in   std_logic; 
    TILE1_RXUSRCLK21_IN                     : in   std_logic; 
    ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------ 
    TILE1_RXEQMIX0_IN                       : in   std_logic_vector(1 downto 0); 
    TILE1_RXEQMIX1_IN                       : in   std_logic_vector(1 downto 0); 
    TILE1_RXN0_IN                           : in   std_logic; 
    TILE1_RXN1_IN                           : in   std_logic; 
    TILE1_RXP0_IN                           : in   std_logic; 
    TILE1_RXP1_IN                           : in   std_logic; 
    --------------- Receive Ports - RX Loss-of-sync State Machine -------------- 
    TILE1_RXLOSSOFSYNC0_OUT                 : out  std_logic_vector(1 downto 0); 
    TILE1_RXLOSSOFSYNC1_OUT                 : out  std_logic_vector(1 downto 0); 
    ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------ 
    TILE1_DADDR_IN                          : in   std_logic_vector(6 downto 0); 
    --TILE1_DCLK_IN                           : in   std_logic; 
    TILE1_DEN_IN                            : in   std_logic; 
    TILE1_DI_IN                             : in   std_logic_vector(15 downto 0); 
    TILE1_DO_OUT                            : out  std_logic_vector(15 downto 0); 
    TILE1_DRDY_OUT                          : out  std_logic; 
    TILE1_DWE_IN                            : in   std_logic; 
    --------------------- Shared Ports - Tile and PLL Ports -------------------- 
    TILE1_CLKIN_IN                          : in   std_logic; 
    TILE1_GTXRESET_IN                       : in   std_logic; 
    TILE1_PLLLKDET_OUT                      : out  std_logic; 
    TILE1_REFCLKOUT_OUT                     : out  std_logic; 
    TILE1_RESETDONE0_OUT                    : out  std_logic; 
    TILE1_RESETDONE1_OUT                    : out  std_logic; 
    ---------------- Transmit Ports - 8b10b Encoder Control Ports -------------- 
    TILE1_TXCHARISK0_IN                     : in   std_logic_vector(1 downto 0); 
    TILE1_TXCHARISK1_IN                     : in   std_logic_vector(1 downto 0); 
    ------------------ Transmit Ports - TX Data Path interface ----------------- 
    TILE1_TXDATA0_IN                        : in   std_logic_vector(15 downto 0); 
    TILE1_TXDATA1_IN                        : in   std_logic_vector(15 downto 0); 
    TILE1_TXRESET0_IN                       : in   std_logic; 
    TILE1_TXRESET1_IN                       : in   std_logic; 
    TILE1_TXUSRCLK0_IN                      : in   std_logic; 
    TILE1_TXUSRCLK1_IN                      : in   std_logic; 
    TILE1_TXUSRCLK20_IN                     : in   std_logic; 
    TILE1_TXUSRCLK21_IN                     : in   std_logic; 
    --------------- Transmit Ports - TX Driver and OOB signalling -------------- 
    TILE1_TXDIFFCTRL0_IN                    : in   std_logic_vector(2 downto 0); 
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    TILE1_TXDIFFCTRL1_IN                    : in   std_logic_vector(2 downto 0); 
    TILE1_TXN0_OUT                          : out  std_logic; 
    TILE1_TXN1_OUT                          : out  std_logic; 
    TILE1_TXP0_OUT                          : out  std_logic; 
    TILE1_TXP1_OUT                          : out  std_logic; 
    TILE1_TXPREEMPHASIS0_IN                 : in   std_logic_vector(2 downto 0); 
    TILE1_TXPREEMPHASIS1_IN                 : in   std_logic_vector(2 downto 0); 
    --------------------- Transmit Ports - TX PRBS Generator ------------------- 
    TILE1_TXENPRBSTST0_IN                   : in   std_logic_vector(1 downto 0); 
    TILE1_TXENPRBSTST1_IN                   : in   std_logic_vector(1 downto 0) 
); 
end component; 
 
component MGT_USRCLK_SOURCE  
generic 
( 
    FREQUENCY_MODE   : string   := "LOW";     
    PERFORMANCE_MODE : string   := "MAX_SPEED"     
); 
port 
( 
    DIV1_OUT                : out std_logic; 
    DIV2_OUT                : out std_logic; 
    DCM_LOCKED_OUT          : out std_logic; 
    CLK_IN                  : in  std_logic; 
    DCM_RESET_IN            : in  std_logic 
 
); 
end component; 
 
component FRAME_GEN  
generic 
( 
    WORDS_IN_BRAM : integer    :=   256; 
    MEM_00       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_01       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_02       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_03       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_04       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_05       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_06       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_07       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_08       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_09       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_10       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_11       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_12       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_13       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_14       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_15       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_16       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_17       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_18       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_19       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_20       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_21       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_22       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_23       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
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    MEM_24       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_25       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_26       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_27       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_28       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_29       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_30       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_31       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_32       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_33       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_34       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_35       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_36       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_37       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_38       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_39       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_00      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_01      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_02      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_03      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_04      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_05      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_06      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_07      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000" 
);     
port 
( 
    -- User Interface 
    TX_DATA             : out   std_logic_vector(39 downto 0); 
    TX_CHARISK          : out   std_logic_vector(3 downto 0);  
 
    -- System Interface 
    USER_CLK            : in    std_logic; 
    SYSTEM_RESET        : in    std_logic 
);  
end component; 
 
component FRAME_CHECK  
generic 
( 
    RX_DATA_WIDTH            : integer := 16; 
    USE_COMMA                : integer := 1; 
    NONE_MSB_FIRST_DEC       : integer := 0; 
    COMMA_DOUBLE_DEC         : integer := 0; 
    CHANBOND_SEQ_LEN         : integer := 1; 
    WORDS_IN_BRAM            : integer := 256; 
    CONFIG_INDEPENDENT_LANES : integer := 0; 
    START_OF_PACKET_CHAR     : std_logic_vector := x"55fb"; 
    COMMA_DOUBLE_CHAR        : std_logic_vector := x"f628"; 
    MEM_00       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_01       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_02       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_03       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_04       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_05       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_06       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_07       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_08       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
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    MEM_09       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_0F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_10       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_11       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_12       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_13       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_14       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_15       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_16       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_17       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_18       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_19       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_1F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_20       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_21       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_22       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_23       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_24       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_25       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_26       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_27       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_28       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_29       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_2F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_30       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_31       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_32       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_33       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_34       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_35       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_36       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_37       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_38       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_39       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3A       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3B       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3C       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3D       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3E       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEM_3F       : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_00      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_01      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_02      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_03      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_04      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_05      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_06      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000"; 
    MEMP_07      : bit_vector :=   X"0000000000000000000000000000000000000000000000000000000000000000" 
); 
port 
( 
    -- User Interface 
    RX_DATA                  : in  std_logic_vector((RX_DATA_WIDTH-1) downto 0);  
    RX_ENMCOMMA_ALIGN        : out std_logic; 
    RX_ENPCOMMA_ALIGN        : out std_logic; 
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    RX_ENCHAN_SYNC           : out std_logic;  
    RX_CHANBOND_SEQ          : in  std_logic;  
    -- Control Interface 
    INC_IN                   : in std_logic;  
    INC_OUT                  : out std_logic;  
    PATTERN_MATCH_N          : out std_logic; 
    RESET_ON_ERROR           : in std_logic;  
    -- Error Monitoring 
    ERROR_COUNT              : out std_logic_vector(7 downto 0); 
    -- System Interface 
    USER_CLK                 : in std_logic; 
    SYSTEM_RESET             : in std_logic 
); 
end component; 
 
component MGT_USRCLK_SOURCE_PLL  
generic 
( 
    MULT                 : integer          := 2; 
    DIVIDE               : integer          := 2;     
    CLK_PERIOD           : real             := 1.6;     
    OUT0_DIVIDE          : integer          := 2; 
    OUT1_DIVIDE          : integer          := 2; 
    OUT2_DIVIDE          : integer          := 2; 
    OUT3_DIVIDE          : integer          := 2; 
    SIMULATION_P         : integer          := 1; 
    LOCK_WAIT_COUNT      : std_logic_vector := "1000001000110101"   
); 
port 
(  
    CLK0_OUT                : out std_logic; 
    CLK1_OUT                : out std_logic; 
    CLK2_OUT                : out std_logic; 
    CLK3_OUT                : out std_logic; 
    CLK_IN                  : in  std_logic; 
    PLL_LOCKED_OUT          : out std_logic; 
    PLL_RESET_IN            : in  std_logic 
); 
end component; 
 
--***********************************Parameter Declarations******************** 
    constant DLY : time := 1 ns; 
--************************** Register Declarations **************************** 
    signal   tile0_tx_resetdone0_r           : std_logic; 
    signal   tile0_tx_resetdone0_r2          : std_logic; 
    signal   tile0_rx_resetdone0_r           : std_logic; 
    signal   tile0_rx_resetdone0_r2          : std_logic; 
    signal   tile0_tx_resetdone1_r           : std_logic; 
    signal   tile0_tx_resetdone1_r2          : std_logic; 
    signal   tile0_rx_resetdone1_r           : std_logic; 
    signal   tile0_rx_resetdone1_r2          : std_logic; 
    signal   tile1_tx_resetdone0_r           : std_logic; 
    signal   tile1_tx_resetdone0_r2          : std_logic; 
    signal   tile1_rx_resetdone0_r           : std_logic; 
    signal   tile1_rx_resetdone0_r2          : std_logic; 
    signal   tile1_tx_resetdone1_r           : std_logic; 
    signal   tile1_tx_resetdone1_r2          : std_logic; 
    signal   tile1_rx_resetdone1_r           : std_logic; 
    signal   tile1_rx_resetdone1_r2          : std_logic; 
    signal   async_mux0_sel_i                : std_logic; 
    signal   not_async_mux0_sel_i            : std_logic; 
    signal   async_mux1_sel_i                : std_logic; 
    signal   not_async_mux1_sel_i            : std_logic; 
  --**************************** Wire Declarations ****************************** 
    -------------------------- MGT Wrapper Wires ------------------------------ 
    ------------------------ Loopback and Powerdown Ports ---------------------- 
    signal  tile0_loopback0_i               : std_logic_vector(2 downto 0); 
    signal  tile0_loopback1_i               : std_logic_vector(2 downto 0); 
    ----------------------- Receive Ports - 8b10b Decoder ---------------------- 
    signal  tile0_rxdisperr0_i              : std_logic_vector(1 downto 0); 
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    signal  tile0_rxdisperr1_i              : std_logic_vector(1 downto 0); 
    signal  tile0_rxnotintable0_i           : std_logic_vector(1 downto 0); 
    signal  tile0_rxnotintable1_i           : std_logic_vector(1 downto 0); 
    --------------- Receive Ports - Comma Detection and Alignment -------------- 
    signal  tile0_rxenmcommaalign0_i        : std_logic; 
    signal  tile0_rxenmcommaalign1_i        : std_logic; 
    signal  tile0_rxenpcommaalign0_i        : std_logic; 
    signal  tile0_rxenpcommaalign1_i        : std_logic; 
    ------------------- Receive Ports - RX Data Path interface ----------------- 
    signal  tile0_rxdata0_i                 : std_logic_vector(15 downto 0); 
    signal  tile0_rxdata1_i                 : std_logic_vector(15 downto 0); 
    signal  tile0_rxreset0_i                : std_logic; 
    signal  tile0_rxreset1_i                : std_logic; 
    ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------ 
    signal  tile0_rxeqmix0_i                : std_logic_vector(1 downto 0); 
    signal  tile0_rxeqmix1_i                : std_logic_vector(1 downto 0); 
    --------------- Receive Ports - RX Loss-of-sync State Machine -------------- 
    signal  tile0_rxlossofsync0_i           : std_logic_vector(1 downto 0); 
    signal  tile0_rxlossofsync1_i           : std_logic_vector(1 downto 0); 
    --------------------- Shared Ports - Tile and PLL Ports -------------------- 
    signal  tile0_gtxreset_i                : std_logic; 
    signal  tile0_plllkdet_i                : std_logic; 
    signal  tile0_refclkout_i               : std_logic; 
    signal  tile0_resetdone0_i              : std_logic; 
    signal  tile0_resetdone1_i              : std_logic; 
    ---------------- Transmit Ports - 8b10b Encoder Control Ports -------------- 
    signal  tile0_txcharisk0_i              : std_logic_vector(1 downto 0); 
    signal  tile0_txcharisk1_i              : std_logic_vector(1 downto 0); 
    ------------------ Transmit Ports - TX Data Path interface ----------------- 
    signal  tile0_txdata0_i                 : std_logic_vector(15 downto 0); 
    signal  tile0_txdata1_i                 : std_logic_vector(15 downto 0); 
    signal  tile0_txreset0_i                : std_logic; 
    signal  tile0_txreset1_i                : std_logic; 
    --------------- Transmit Ports - TX Driver and OOB signalling -------------- 
    signal  tile0_txdiffctrl0_i             : std_logic_vector(2 downto 0); 
    signal  tile0_txdiffctrl1_i             : std_logic_vector(2 downto 0); 
    signal  tile0_txpreemphasis0_i          : std_logic_vector(2 downto 0); 
    signal  tile0_txpreemphasis1_i          : std_logic_vector(2 downto 0); 
    --------------------- Transmit Ports - TX PRBS Generator ------------------- 
    signal  tile0_txenprbstst0_i            : std_logic_vector(1 downto 0); 
    signal  tile0_txenprbstst1_i            : std_logic_vector(1 downto 0); 
    ------------------------ Loopback and Powerdown Ports ---------------------- 
    signal  tile1_loopback0_i               : std_logic_vector(2 downto 0); 
    signal  tile1_loopback1_i               : std_logic_vector(2 downto 0); 
    ----------------------- Receive Ports - 8b10b Decoder ---------------------- 
    signal  tile1_rxdisperr0_i              : std_logic_vector(1 downto 0); 
    signal  tile1_rxdisperr1_i              : std_logic_vector(1 downto 0); 
    signal  tile1_rxnotintable0_i           : std_logic_vector(1 downto 0); 
    signal  tile1_rxnotintable1_i           : std_logic_vector(1 downto 0); 
    --------------- Receive Ports - Comma Detection and Alignment -------------- 
    signal  tile1_rxenmcommaalign0_i        : std_logic; 
    signal  tile1_rxenmcommaalign1_i        : std_logic; 
    signal  tile1_rxenpcommaalign0_i        : std_logic; 
    signal  tile1_rxenpcommaalign1_i        : std_logic; 
    ------------------- Receive Ports - RX Data Path interface ----------------- 
    signal  tile1_rxdata0_i                 : std_logic_vector(15 downto 0); 
    signal  tile1_rxdata1_i                 : std_logic_vector(15 downto 0); 
    signal  tile1_rxreset0_i                : std_logic; 
    signal  tile1_rxreset1_i                : std_logic; 
    ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------ 
    signal  tile1_rxeqmix0_i                : std_logic_vector(1 downto 0); 
    signal  tile1_rxeqmix1_i                : std_logic_vector(1 downto 0); 
    --------------- Receive Ports - RX Loss-of-sync State Machine -------------- 
    signal  tile1_rxlossofsync0_i           : std_logic_vector(1 downto 0); 
    signal  tile1_rxlossofsync1_i           : std_logic_vector(1 downto 0); 
    --------------------- Shared Ports - Tile and PLL Ports -------------------- 
    signal  tile1_gtxreset_i                : std_logic; 
    signal  tile1_plllkdet_i                : std_logic; 
    signal  tile1_refclkout_i               : std_logic; 
    signal  tile1_resetdone0_i              : std_logic; 
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    signal  tile1_resetdone1_i              : std_logic; 
    ---------------- Transmit Ports - 8b10b Encoder Control Ports -------------- 
    signal  tile1_txcharisk0_i              : std_logic_vector(1 downto 0); 
    signal  tile1_txcharisk1_i              : std_logic_vector(1 downto 0); 
    ------------------ Transmit Ports - TX Data Path interface ----------------- 
    signal  tile1_txdata0_i                 : std_logic_vector(15 downto 0); 
    signal  tile1_txdata1_i                 : std_logic_vector(15 downto 0); 
    signal  tile1_txreset0_i                : std_logic; 
    signal  tile1_txreset1_i                : std_logic; 
    --------------- Transmit Ports - TX Driver and OOB signalling -------------- 
    signal  tile1_txdiffctrl0_i             : std_logic_vector(2 downto 0); 
    signal  tile1_txdiffctrl1_i             : std_logic_vector(2 downto 0); 
    signal  tile1_txpreemphasis0_i          : std_logic_vector(2 downto 0); 
    signal  tile1_txpreemphasis1_i          : std_logic_vector(2 downto 0); 
    --------------------- Transmit Ports - TX PRBS Generator ------------------- 
    signal  tile1_txenprbstst0_i            : std_logic_vector(1 downto 0); 
    signal  tile1_txenprbstst1_i            : std_logic_vector(1 downto 0); 
    ------------------------------- Global Signals ----------------------------- 
    signal  tile0_tx_system_reset0_c        : std_logic; 
    signal  tile0_rx_system_reset0_c        : std_logic; 
    signal  tile0_tx_system_reset1_c        : std_logic; 
    signal  tile0_rx_system_reset1_c        : std_logic; 
    signal  tile1_tx_system_reset0_c        : std_logic; 
    signal  tile1_rx_system_reset0_c        : std_logic; 
    signal  tile1_tx_system_reset1_c        : std_logic; 
    signal  tile1_rx_system_reset1_c        : std_logic; 
    signal  tied_to_ground_i                : std_logic; 
    signal  tied_to_ground_vec_i            : std_logic_vector(63 downto 0); 
    signal  tied_to_vcc_i                   : std_logic; 
    signal  tied_to_vcc_vec_i               : std_logic_vector(7 downto 0); 
    signal  tile0_refclkout_bufg_i          : std_logic; 
    ----------------------------- User Clocks --------------------------------- 
    signal  tile0_txusrclk0_i               : std_logic; 
    signal  tile1_txusrclk0_i               : std_logic; 
    signal  refclkout_pll0_locked_i         : std_logic; 
    signal  refclkout_pll0_reset_i          : std_logic; 
    signal  tile0_refclkout_to_cmt_i        : std_logic; 
    signal  refclkout_pll1_locked_i         : std_logic; 
    signal  refclkout_pll1_reset_i          : std_logic; 
    signal  tile1_refclkout_to_cmt_i        : std_logic; 
    ----------------------- Frame check/gen Module Signals -------------------- 
    signal  tile0_refclk_i                  : std_logic; 
    signal  tile0_matchn0_i                 : std_logic; 
    signal  tile0_txcharisk0_float_i        : std_logic_vector(1 downto 0); 
    signal  tile0_txdata0_float_i           : std_logic_vector(23 downto 0); 
    signal  tile0_block_sync0_i             : std_logic; 
    signal  tile0_error_count0_i            : std_logic_vector(7 downto 0); 
    signal  tile0_frame_check0_reset_i      : std_logic; 
    signal  tile0_inc_in0_i                 : std_logic; 
    signal  tile0_inc_out0_i                : std_logic; 
    signal  tile0_unscrambled_data0_i       : std_logic_vector(15 downto 0); 
    signal  tile0_matchn1_i                 : std_logic; 
    signal  tile0_txcharisk1_float_i        : std_logic_vector(1 downto 0); 
    signal  tile0_txdata1_float_i           : std_logic_vector(23 downto 0); 
    signal  tile0_block_sync1_i             : std_logic; 
    signal  tile0_error_count1_i            : std_logic_vector(7 downto 0); 
    signal  tile0_frame_check1_reset_i      : std_logic; 
    signal  tile0_inc_in1_i                 : std_logic; 
    signal  tile0_inc_out1_i                : std_logic; 
    signal  tile0_unscrambled_data1_i       : std_logic_vector(15 downto 0); 
    signal  tile1_refclk_i                  : std_logic; 
    signal  tile1_matchn0_i                 : std_logic; 
    signal  tile1_txcharisk0_float_i        : std_logic_vector(1 downto 0); 
    signal  tile1_txdata0_float_i           : std_logic_vector(23 downto 0); 
    signal  tile1_block_sync0_i             : std_logic; 
    signal  tile1_error_count0_i            : std_logic_vector(7 downto 0); 
    signal  tile1_frame_check0_reset_i      : std_logic; 
    signal  tile1_inc_in0_i                 : std_logic; 
    signal  tile1_inc_out0_i                : std_logic; 
    signal  tile1_unscrambled_data0_i       : std_logic_vector(15 downto 0); 
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    signal  tile1_matchn1_i                 : std_logic; 
    signal  tile1_txcharisk1_float_i        : std_logic_vector(1 downto 0); 
    signal  tile1_txdata1_float_i           : std_logic_vector(23 downto 0); 
    signal  tile1_block_sync1_i             : std_logic; 
    signal  tile1_error_count1_i            : std_logic_vector(7 downto 0); 
    signal  tile1_frame_check1_reset_i      : std_logic; 
    signal  tile1_inc_in1_i                 : std_logic; 
    signal  tile1_inc_out1_i                : std_logic; 
    signal  tile1_unscrambled_data1_i       : std_logic_vector(15 downto 0); 
    signal  reset_on_data_error_i           : std_logic; 
 
 
--**************************** Main Body of Code ******************************* 
begin 
    --  Static signal Assigments 
    tied_to_ground_i                        <= '0'; 
    tied_to_ground_vec_i                    <= x"0000000000000000"; 
    tied_to_vcc_i                           <= '1'; 
    tied_to_vcc_vec_i                       <= x"ff"; 
     
    tile0_refclk_ibufds_i : IBUFDS 
    port map 
    ( 
        O                               =>      tile0_refclk_i, 
        I                               =>      TILE0_REFCLK_PAD_P_IN, 
        IB                              =>      TILE0_REFCLK_PAD_N_IN 
    ); 
 
    tile1_refclk_ibufds_i : IBUFDS 
    port map 
    ( 
        O                               =>      tile1_refclk_i, 
        I                               =>      TILE1_REFCLK_PAD_P_IN, 
        IB                              =>      TILE1_REFCLK_PAD_N_IN 
    ); 
 
    ----------------------------------- User Clocks --------------------------- 
    -- The clock resources in this section were added based on userclk source selections on 
    -- the Latency, Buffering, and Clocking page of the GUI. A few notes about user clocks: 
    -- * The userclk and userclk2 for each GTX datapath (TX and RX) must be phase aligned to  
    --   avoid data errors in the fabric interface whenever the datapath is wider than 10 bits 
    -- * To minimize clock resources, you can share clocks between GTXs. GTXs using the same frequency 
    --   or multiples of the same frequency can be accomadated using DCMs and PLLs. Use caution when 
    --   using RXRECCLK as a clock source, however - these clocks can typically only be shared if all 
    --   the channels using the clock are receiving data from TX channels that share a reference clock  
    --   source with each other. 
 
    refclkout_pll0_bufg_i : BUFG 
    port map 
    ( 
        I                               =>      tile0_refclkout_i, 
        O                               =>      tile0_refclkout_to_cmt_i 
    ); 
 
    refclkout_pll0_reset_i                  <= not tile0_plllkdet_i; 
    refclkout_pll0_i : MGT_USRCLK_SOURCE_PLL 
    generic map 
    ( 
        MULT                            =>      1, 
        DIVIDE                          =>      1, 
        CLK_PERIOD                      =>      1.6, 
        OUT0_DIVIDE                     =>      2, 
        OUT1_DIVIDE                     =>      1, 
        OUT2_DIVIDE                     =>      1, 
        OUT3_DIVIDE                     =>      1, 
        SIMULATION_P                    =>      EXAMPLE_USE_CHIPSCOPE, 
        LOCK_WAIT_COUNT                 =>      "1111010000100100" 
    ) 
    port map 
    ( 
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        CLK0_OUT                        =>      tile0_txusrclk0_i, 
        CLK1_OUT                        =>      open, 
        CLK2_OUT                        =>      open, 
        CLK3_OUT                        =>      open, 
        CLK_IN                          =>      tile0_refclkout_to_cmt_i, 
        PLL_LOCKED_OUT                  =>      refclkout_pll0_locked_i, 
        PLL_RESET_IN                    =>      refclkout_pll0_reset_i 
    ); 
 
 
    refclkout_pll1_bufg_i : BUFG 
    port map 
    ( 
        I                               =>      tile1_refclkout_i, 
        O                               =>      tile1_refclkout_to_cmt_i 
    ); 
 
    refclkout_pll1_reset_i                  <= not tile1_plllkdet_i; 
    refclkout_pll1_i : MGT_USRCLK_SOURCE_PLL 
    generic map 
    ( 
        MULT                            =>      1, 
        DIVIDE                          =>      1, 
        CLK_PERIOD                      =>      1.6, 
        OUT0_DIVIDE                     =>      2, 
        OUT1_DIVIDE                     =>      1, 
        OUT2_DIVIDE                     =>      1, 
        OUT3_DIVIDE                     =>      1, 
        SIMULATION_P                    =>      EXAMPLE_USE_CHIPSCOPE, 
        LOCK_WAIT_COUNT                 =>      "1111010000100100" 
    ) 
    port map 
    ( 
        CLK0_OUT                        =>      tile1_txusrclk0_i, 
        CLK1_OUT                        =>      open, 
        CLK2_OUT                        =>      open, 
        CLK3_OUT                        =>      open, 
        CLK_IN                          =>      tile1_refclkout_to_cmt_i, 
        PLL_LOCKED_OUT                  =>      refclkout_pll1_locked_i, 
        PLL_RESET_IN                    =>      refclkout_pll1_reset_i 
    ); 
    ----------------------------- The GTX Wrapper ----------------------------- 
     
    -- Use the instantiation template in the examples directory to add the GTX wrapper to your design. 
    -- In this example, the wrapper is wired up for basic operation with a frame generator and frame  
    -- checker. The GTXs will reset, then attempt to align and transmit data. If channel bonding is  
    -- enabled, bonding should occur after alignment. 
    -- Wire all PLLLKDET signals to the top level as output ports 
    TILE0_PLLLKDET_OUT                      <= tile0_plllkdet_i; 
    TILE1_PLLLKDET_OUT                      <= tile1_plllkdet_i; 
 
    -- Hold the TX in reset till the TX user clocks are stable 
    tile0_txreset0_i                    <= not refclkout_pll0_locked_i; 
    tile0_txreset1_i                    <= not refclkout_pll0_locked_i; 
    tile1_txreset0_i                    <= not refclkout_pll1_locked_i; 
    tile1_txreset1_i                    <= not refclkout_pll1_locked_i; 
 
    -- Hold the RX in reset till the RX user clocks are stable 
    tile0_rxreset0_i                    <= not refclkout_pll0_locked_i; 
    tile0_rxreset1_i                    <= not refclkout_pll0_locked_i; 
    tile1_rxreset0_i                    <= not refclkout_pll1_locked_i; 
    tile1_rxreset1_i                    <= not refclkout_pll1_locked_i; 
 
    rocketio_wrapper_i : ROCKETIO_WRAPPER 
    generic map 
    ( 
        WRAPPER_SIM_MODE                =>      EXAMPLE_SIM_MODE, 
        WRAPPER_SIM_GTXRESET_SPEEDUP    =>      EXAMPLE_SIM_GTXRESET_SPEEDUP, 
        WRAPPER_SIM_PLL_PERDIV2         =>      EXAMPLE_SIM_PLL_PERDIV2 
    ) 
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    port map 
    ( 
        ------------------------ Loopback and Powerdown Ports ---------------------- 
        TILE0_LOOPBACK0_IN              =>      tile0_loopback0_i, 
        TILE0_LOOPBACK1_IN              =>      tile0_loopback1_i, 
        ----------------------- Receive Ports - 8b10b Decoder ---------------------- 
        TILE0_RXDISPERR0_OUT            =>      tile0_rxdisperr0_i, 
        TILE0_RXDISPERR1_OUT            =>      tile0_rxdisperr1_i, 
        TILE0_RXNOTINTABLE0_OUT         =>      tile0_rxnotintable0_i, 
        TILE0_RXNOTINTABLE1_OUT         =>      tile0_rxnotintable1_i, 
        --------------- Receive Ports - Comma Detection and Alignment -------------- 
        TILE0_RXENMCOMMAALIGN0_IN       =>      tile0_rxenmcommaalign0_i, 
        TILE0_RXENMCOMMAALIGN1_IN       =>      tile0_rxenmcommaalign1_i, 
        TILE0_RXENPCOMMAALIGN0_IN       =>      tile0_rxenpcommaalign0_i, 
        TILE0_RXENPCOMMAALIGN1_IN       =>      tile0_rxenpcommaalign1_i, 
        ------------------- Receive Ports - RX Data Path interface ----------------- 
        TILE0_RXDATA0_OUT               =>      tile0_rxdata0_i, 
        TILE0_RXDATA1_OUT               =>      tile0_rxdata1_i, 
        TILE0_RXRESET0_IN               =>      tile0_rxreset0_i, 
        TILE0_RXRESET1_IN               =>      tile0_rxreset1_i, 
        TILE0_RXUSRCLK0_IN              =>      tile0_txusrclk0_i, 
        TILE0_RXUSRCLK1_IN              =>      tile0_txusrclk0_i, 
        TILE0_RXUSRCLK20_IN             =>      tile0_txusrclk0_i, 
        TILE0_RXUSRCLK21_IN             =>      tile0_txusrclk0_i, 
        ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------ 
        TILE0_RXEQMIX0_IN               =>      tile0_rxeqmix0_i, 
        TILE0_RXEQMIX1_IN               =>      tile0_rxeqmix1_i, 
        TILE0_RXN0_IN                   =>      RXN_IN(0), 
        TILE0_RXN1_IN                   =>      RXN_IN(1), 
        TILE0_RXP0_IN                   =>      RXP_IN(0), 
        TILE0_RXP1_IN                   =>      RXP_IN(1), 
        --------------- Receive Ports - RX Loss-of-sync State Machine -------------- 
        TILE0_RXLOSSOFSYNC0_OUT         =>      tile0_rxlossofsync0_i, 
        TILE0_RXLOSSOFSYNC1_OUT         =>      tile0_rxlossofsync1_i, 
        ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------ 
        TILE0_DADDR_IN                  =>      tied_to_ground_vec_i(6 downto 0), 
        --TILE0_DCLK_IN                   =>      drp_clk_in_i, 
        TILE0_DEN_IN                    =>      tied_to_ground_i, 
        TILE0_DI_IN                     =>      tied_to_ground_vec_i(15 downto 0), 
        TILE0_DO_OUT                    =>      open, 
        TILE0_DRDY_OUT                  =>      open, 
        TILE0_DWE_IN                    =>      tied_to_ground_i, 
        --------------------- Shared Ports - Tile and PLL Ports -------------------- 
        TILE0_CLKIN_IN                  =>      tile0_refclk_i, 
        TILE0_GTXRESET_IN               =>      tile0_gtxreset_i, 
        TILE0_PLLLKDET_OUT              =>      tile0_plllkdet_i, 
        TILE0_REFCLKOUT_OUT             =>      tile0_refclkout_i, 
        TILE0_RESETDONE0_OUT            =>      tile0_resetdone0_i, 
        TILE0_RESETDONE1_OUT            =>      tile0_resetdone1_i, 
        ---------------- Transmit Ports - 8b10b Encoder Control Ports -------------- 
        TILE0_TXCHARISK0_IN             =>      tile0_txcharisk0_i, 
        TILE0_TXCHARISK1_IN             =>      tile0_txcharisk1_i, 
        ------------------ Transmit Ports - TX Data Path interface ----------------- 
        TILE0_TXDATA0_IN                =>      tile0_txdata0_i, 
        TILE0_TXDATA1_IN                =>      tile0_txdata1_i, 
        TILE0_TXRESET0_IN               =>      tile0_txreset0_i, 
        TILE0_TXRESET1_IN               =>      tile0_txreset1_i, 
        TILE0_TXUSRCLK0_IN              =>      tile0_txusrclk0_i, 
        TILE0_TXUSRCLK1_IN              =>      tile0_txusrclk0_i, 
        TILE0_TXUSRCLK20_IN             =>      tile0_txusrclk0_i, 
        TILE0_TXUSRCLK21_IN             =>      tile0_txusrclk0_i, 
        --------------- Transmit Ports - TX Driver and OOB signalling -------------- 
        TILE0_TXDIFFCTRL0_IN            =>      tile0_txdiffctrl0_i, 
        TILE0_TXDIFFCTRL1_IN            =>      tile0_txdiffctrl1_i, 
        TILE0_TXN0_OUT                  =>      TXN_OUT(0), 
        TILE0_TXN1_OUT                  =>      TXN_OUT(1), 
        TILE0_TXP0_OUT                  =>      TXP_OUT(0), 
        TILE0_TXP1_OUT                  =>      TXP_OUT(1), 
        TILE0_TXPREEMPHASIS0_IN         =>      tile0_txpreemphasis0_i, 
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        TILE0_TXPREEMPHASIS1_IN         =>      tile0_txpreemphasis1_i, 
        --------------------- Transmit Ports - TX PRBS Generator ------------------- 
        TILE0_TXENPRBSTST0_IN           =>      tile0_txenprbstst0_i, 
        TILE0_TXENPRBSTST1_IN           =>      tile0_txenprbstst1_i, 
        ------------------------ Loopback and Powerdown Ports ---------------------- 
        TILE1_LOOPBACK0_IN              =>      tile1_loopback0_i, 
        TILE1_LOOPBACK1_IN              =>      tile1_loopback1_i, 
        ----------------------- Receive Ports - 8b10b Decoder ---------------------- 
        TILE1_RXDISPERR0_OUT            =>      tile1_rxdisperr0_i, 
        TILE1_RXDISPERR1_OUT            =>      tile1_rxdisperr1_i, 
        TILE1_RXNOTINTABLE0_OUT         =>      tile1_rxnotintable0_i, 
        TILE1_RXNOTINTABLE1_OUT         =>      tile1_rxnotintable1_i, 
        --------------- Receive Ports - Comma Detection and Alignment -------------- 
        TILE1_RXENMCOMMAALIGN0_IN       =>      tile1_rxenmcommaalign0_i, 
        TILE1_RXENMCOMMAALIGN1_IN       =>      tile1_rxenmcommaalign1_i, 
        TILE1_RXENPCOMMAALIGN0_IN       =>      tile1_rxenpcommaalign0_i, 
        TILE1_RXENPCOMMAALIGN1_IN       =>      tile1_rxenpcommaalign1_i, 
        ------------------- Receive Ports - RX Data Path interface ----------------- 
        TILE1_RXDATA0_OUT               =>      tile1_rxdata0_i, 
        TILE1_RXDATA1_OUT               =>      tile1_rxdata1_i, 
        TILE1_RXRESET0_IN               =>      tile1_rxreset0_i, 
        TILE1_RXRESET1_IN               =>      tile1_rxreset1_i, 
        TILE1_RXUSRCLK0_IN              =>      tile1_txusrclk0_i, 
        TILE1_RXUSRCLK1_IN              =>      tile1_txusrclk0_i, 
        TILE1_RXUSRCLK20_IN             =>      tile1_txusrclk0_i, 
        TILE1_RXUSRCLK21_IN             =>      tile1_txusrclk0_i, 
        ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------ 
        TILE1_RXEQMIX0_IN               =>      tile1_rxeqmix0_i, 
        TILE1_RXEQMIX1_IN               =>      tile1_rxeqmix1_i, 
        TILE1_RXN0_IN                   =>      RXN_IN(2), 
        TILE1_RXN1_IN                   =>      RXN_IN(3), 
        TILE1_RXP0_IN                   =>      RXP_IN(2), 
        TILE1_RXP1_IN                   =>      RXP_IN(3), 
        --------------- Receive Ports - RX Loss-of-sync State Machine -------------- 
        TILE1_RXLOSSOFSYNC0_OUT         =>      tile1_rxlossofsync0_i, 
        TILE1_RXLOSSOFSYNC1_OUT         =>      tile1_rxlossofsync1_i, 
        ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------ 
        TILE1_DADDR_IN                  =>      tied_to_ground_vec_i(6 downto 0), 
        --TILE1_DCLK_IN                   =>      drp_clk_in_i, 
        TILE1_DEN_IN                    =>      tied_to_ground_i, 
        TILE1_DI_IN                     =>      tied_to_ground_vec_i(15 downto 0), 
        TILE1_DO_OUT                    =>      open, 
        TILE1_DRDY_OUT                  =>      open, 
        TILE1_DWE_IN                    =>      tied_to_ground_i, 
        --------------------- Shared Ports - Tile and PLL Ports -------------------- 
        TILE1_CLKIN_IN                  =>      tile1_refclk_i, 
        TILE1_GTXRESET_IN               =>      tile1_gtxreset_i, 
        TILE1_PLLLKDET_OUT              =>      tile1_plllkdet_i, 
        TILE1_REFCLKOUT_OUT             =>      tile1_refclkout_i, 
        TILE1_RESETDONE0_OUT            =>      tile1_resetdone0_i, 
        TILE1_RESETDONE1_OUT            =>      tile1_resetdone1_i, 
        ---------------- Transmit Ports - 8b10b Encoder Control Ports -------------- 
        TILE1_TXCHARISK0_IN             =>      tile1_txcharisk0_i, 
        TILE1_TXCHARISK1_IN             =>      tile1_txcharisk1_i, 
        ------------------ Transmit Ports - TX Data Path interface ----------------- 
        TILE1_TXDATA0_IN                =>      tile1_txdata0_i, 
        TILE1_TXDATA1_IN                =>      tile1_txdata1_i, 
        TILE1_TXRESET0_IN               =>      tile1_txreset0_i, 
        TILE1_TXRESET1_IN               =>      tile1_txreset1_i, 
        TILE1_TXUSRCLK0_IN              =>      tile1_txusrclk0_i, 
        TILE1_TXUSRCLK1_IN              =>      tile1_txusrclk0_i, 
        TILE1_TXUSRCLK20_IN             =>      tile1_txusrclk0_i, 
        TILE1_TXUSRCLK21_IN             =>      tile1_txusrclk0_i, 
        --------------- Transmit Ports - TX Driver and OOB signalling -------------- 
        TILE1_TXDIFFCTRL0_IN            =>      tile1_txdiffctrl0_i, 
        TILE1_TXDIFFCTRL1_IN            =>      tile1_txdiffctrl1_i, 
        TILE1_TXN0_OUT                  =>      TXN_OUT(2), 
        TILE1_TXN1_OUT                  =>      TXN_OUT(3), 
        TILE1_TXP0_OUT                  =>      TXP_OUT(2), 
        TILE1_TXP1_OUT                  =>      TXP_OUT(3), 
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        TILE1_TXPREEMPHASIS0_IN         =>      tile1_txpreemphasis0_i, 
        TILE1_TXPREEMPHASIS1_IN         =>      tile1_txpreemphasis1_i, 
        --------------------- Transmit Ports - TX PRBS Generator ------------------- 
        TILE1_TXENPRBSTST0_IN           =>      tile1_txenprbstst0_i, 
        TILE1_TXENPRBSTST1_IN           =>      tile1_txenprbstst1_i 
    ); 
 
    -------------------------- User Module Resets ----------------------------- 
    -- All the User Modules i.e. FRAME_GEN, FRAME_CHECK and the sync modules 
    -- are held in reset till the RESETDONE goes high.  
    -- The RESETDONE is registered a couple of times on USRCLK2 and connected  
    -- to the reset of the modules 
    process( tile0_txusrclk0_i,tile0_resetdone0_i) 
    begin 
        if(tile0_resetdone0_i = '0') then 
            tile0_rx_resetdone0_r  <= '0'   after DLY; 
            tile0_rx_resetdone0_r2 <= '0'   after DLY; 
        elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then 
            tile0_rx_resetdone0_r  <= tile0_resetdone0_i   after DLY; 
            tile0_rx_resetdone0_r2 <= tile0_rx_resetdone0_r   after DLY; 
        end if; 
    end process; 
    process( tile0_txusrclk0_i,tile0_resetdone0_i) 
    begin 
        if(tile0_resetdone0_i = '0') then 
            tile0_tx_resetdone0_r  <= '0'   after DLY; 
            tile0_tx_resetdone0_r2 <= '0'   after DLY; 
        elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then 
            tile0_tx_resetdone0_r  <= tile0_resetdone0_i   after DLY; 
            tile0_tx_resetdone0_r2 <= tile0_tx_resetdone0_r   after DLY; 
        end if; 
    end process; 
    process( tile0_txusrclk0_i,tile0_resetdone1_i) 
    begin 
        if(tile0_resetdone1_i = '0') then 
            tile0_rx_resetdone1_r  <= '0'   after DLY; 
            tile0_rx_resetdone1_r2 <= '0'   after DLY; 
        elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then 
            tile0_rx_resetdone1_r  <= tile0_resetdone1_i   after DLY; 
            tile0_rx_resetdone1_r2 <= tile0_rx_resetdone1_r   after DLY; 
        end if; 
    end process; 
    process( tile0_txusrclk0_i,tile0_resetdone1_i) 
    begin 
        if(tile0_resetdone1_i = '0') then 
            tile0_tx_resetdone1_r  <= '0'   after DLY; 
            tile0_tx_resetdone1_r2 <= '0'   after DLY; 
        elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then 
            tile0_tx_resetdone1_r  <= tile0_resetdone1_i   after DLY; 
            tile0_tx_resetdone1_r2 <= tile0_tx_resetdone1_r   after DLY; 
        end if; 
    end process; 
    process( tile1_txusrclk0_i,tile1_resetdone0_i) 
    begin 
        if(tile1_resetdone0_i = '0') then 
            tile1_rx_resetdone0_r  <= '0'   after DLY; 
            tile1_rx_resetdone0_r2 <= '0'   after DLY; 
        elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then 
            tile1_rx_resetdone0_r  <= tile1_resetdone0_i   after DLY; 
            tile1_rx_resetdone0_r2 <= tile1_rx_resetdone0_r   after DLY; 
        end if; 
    end process; 
    process( tile1_txusrclk0_i,tile1_resetdone0_i) 
    begin 
        if(tile1_resetdone0_i = '0') then 
            tile1_tx_resetdone0_r  <= '0'   after DLY; 
            tile1_tx_resetdone0_r2 <= '0'   after DLY; 
        elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then 
            tile1_tx_resetdone0_r  <= tile1_resetdone0_i   after DLY; 
            tile1_tx_resetdone0_r2 <= tile1_tx_resetdone0_r   after DLY; 
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        end if; 
    end process; 
    process( tile1_txusrclk0_i,tile1_resetdone1_i) 
    begin 
        if(tile1_resetdone1_i = '0') then 
            tile1_rx_resetdone1_r  <= '0'   after DLY; 
            tile1_rx_resetdone1_r2 <= '0'   after DLY; 
        elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then 
            tile1_rx_resetdone1_r  <= tile1_resetdone1_i   after DLY; 
            tile1_rx_resetdone1_r2 <= tile1_rx_resetdone1_r   after DLY; 
        end if; 
    end process; 
    process( tile1_txusrclk0_i,tile1_resetdone1_i) 
    begin 
        if(tile1_resetdone1_i = '0') then 
            tile1_tx_resetdone1_r  <= '0'   after DLY; 
            tile1_tx_resetdone1_r2 <= '0'   after DLY; 
        elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then 
            tile1_tx_resetdone1_r  <= tile1_resetdone1_i   after DLY; 
            tile1_tx_resetdone1_r2 <= tile1_tx_resetdone1_r   after DLY; 
        end if; 
    end process; 
    ------------------------------ Frame Generators --------------------------- 
    -- The example design uses Block RAM based frame generators to provide test 
    -- data to the GTXs for transmission. By default the frame generators are  
    -- loaded with an incrementing data sequence that includes commas/alignment 
    -- characters for alignment. If your protocol uses channel bonding, the  
    -- frame generator will also be preloaded with a channel bonding sequence. 
     
    -- You can modify the data transmitted by changing the INIT values of the frame 
    -- generator in this file. Pay careful attention to bit order and the spacing 
    -- of your control and alignment characters. 
 
    tile0_frame_gen0 : FRAME_GEN 
    generic map 
    ( 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
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        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- User Interface 
        TX_DATA(39 downto 16)           =>      tile0_txdata0_float_i, 
        TX_DATA(15 downto 0)            =>      tile0_txdata0_i, 
  
        TX_CHARISK(3 downto 2)          =>      tile0_txcharisk0_float_i, 
        TX_CHARISK(1 downto 0)          =>      tile0_txcharisk0_i, 
        -- System Interface 
        USER_CLK                        =>      tile0_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile0_tx_system_reset0_c 
    ); 
     
    tile0_frame_gen1 : FRAME_GEN 
    generic map 
    ( 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 



 201

        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- User Interface 
        TX_DATA(39 downto 16)           =>      tile0_txdata1_float_i, 
        TX_DATA(15 downto 0)            =>      tile0_txdata1_i, 
  
        TX_CHARISK(3 downto 2)          =>      tile0_txcharisk1_float_i, 
        TX_CHARISK(1 downto 0)          =>      tile0_txcharisk1_i, 
        -- System Interface 
        USER_CLK                        =>      tile0_txusrclk0_i, 
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        SYSTEM_RESET                    =>      tile0_tx_system_reset1_c 
    ); 
     
    tile1_frame_gen0 : FRAME_GEN 
    generic map 
    ( 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
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        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- User Interface 
        TX_DATA(39 downto 16)           =>      tile1_txdata0_float_i, 
        TX_DATA(15 downto 0)            =>      tile1_txdata0_i, 
  
        TX_CHARISK(3 downto 2)          =>      tile1_txcharisk0_float_i, 
        TX_CHARISK(1 downto 0)          =>      tile1_txcharisk0_i, 
        -- System Interface 
        USER_CLK                        =>      tile1_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile1_tx_system_reset0_c 
    ); 
     
    tile1_frame_gen1 : FRAME_GEN 
    generic map 
    ( 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
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        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- User Interface 
        TX_DATA(39 downto 16)           =>      tile1_txdata1_float_i, 
        TX_DATA(15 downto 0)            =>      tile1_txdata1_i, 
  
        TX_CHARISK(3 downto 2)          =>      tile1_txcharisk1_float_i, 
        TX_CHARISK(1 downto 0)          =>      tile1_txcharisk1_i, 
        -- System Interface 
        USER_CLK                        =>      tile1_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile1_tx_system_reset1_c 
    ); 
    ---------------------------------- Frame Checkers ------------------------- 
    -- The example design uses Block RAM based frame checkers to verify incoming   
    -- data. By default the frame generators are loaded with a data sequence that  
    -- matches the outgoing sequence of the frame generators for the TX ports. 
     
    -- You can modify the expected data sequence by changing the INIT values of the frame 
    -- checkers in this file. Pay careful attention to bit order and the spacing 
    -- of your control and alignment characters. 
     
    -- When the frame checker receives data, it attempts to synchronise to the  
    -- incoming pattern by looking for the first sequence in the pattern. Once it  
    -- finds the first sequence, it increments through the sequence, and indicates an  
    -- error whenever the next value received does not match the expected value. 
    tile0_frame_check0_reset_i              <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else 
tile0_matchn0_i; 
    -- tile0_frame_check0 is always connected to the lane with the start of char 
    -- and this lane starts off the data checking on all the other lanes. The INC_IN port is tied off 
    tile0_inc_in0_i                         <= '0'; 
 
    tile0_frame_check0 : FRAME_CHECK 
    generic map 
    ( 
        RX_DATA_WIDTH                   =>      16, 
        USE_COMMA                       =>      1, 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        CONFIG_INDEPENDENT_LANES        =>      1, 
        START_OF_PACKET_CHAR            =>      x"bc", 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
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        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
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        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- MGT Interface 
        RX_DATA                         =>      tile0_rxdata0_i, 
        RX_ENMCOMMA_ALIGN               =>      tile0_rxenmcommaalign0_i, 
        RX_ENPCOMMA_ALIGN               =>      tile0_rxenpcommaalign0_i, 
        RX_ENCHAN_SYNC                  =>      open, 
        RX_CHANBOND_SEQ                 =>      tied_to_ground_i, 
        -- Control Interface 
        INC_IN                          =>      tile0_inc_in0_i, 
        INC_OUT                         =>      tile0_inc_out0_i, 
        PATTERN_MATCH_N                 =>      tile0_matchn0_i, 
        RESET_ON_ERROR                  =>      tile0_frame_check0_reset_i, 
        -- System Interface 
        USER_CLK                        =>      tile0_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile0_rx_system_reset0_c, 
        ERROR_COUNT                     =>      tile0_error_count0_i 
    ); 
         
    tile0_frame_check1_reset_i              <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else 
tile0_matchn1_i; 
 
    -- tile0_frame_check0 is always connected to the lane with the start of char 
    -- and this lane starts off the data checking on all the other lanes. The INC_IN port is tied off 
    tile0_inc_in1_i                         <= '0'; 
 
    tile0_frame_check1 : FRAME_CHECK 
    generic map 
    ( 
        RX_DATA_WIDTH                   =>      16, 
        USE_COMMA                       =>      1, 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        CONFIG_INDEPENDENT_LANES        =>      1, 
        START_OF_PACKET_CHAR            =>      x"bc", 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
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        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- MGT Interface 
        RX_DATA                         =>      tile0_rxdata1_i, 
        RX_ENMCOMMA_ALIGN               =>      tile0_rxenmcommaalign1_i, 
        RX_ENPCOMMA_ALIGN               =>      tile0_rxenpcommaalign1_i, 
        RX_ENCHAN_SYNC                  =>      open, 
        RX_CHANBOND_SEQ                 =>      tied_to_ground_i, 
        -- Control Interface 
        INC_IN                          =>      tile0_inc_in1_i, 
        INC_OUT                         =>      tile0_inc_out1_i, 
        PATTERN_MATCH_N                 =>      tile0_matchn1_i, 
        RESET_ON_ERROR                  =>      tile0_frame_check1_reset_i, 
        -- System Interface 
        USER_CLK                        =>      tile0_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile0_rx_system_reset1_c, 
        ERROR_COUNT                     =>      tile0_error_count1_i 
    ); 
         
    tile1_frame_check0_reset_i              <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else 
tile1_matchn0_i; 
 
    -- in the "independent lanes" configuration, each of the lanes looks for the unique start char and 
    -- in this case, the INC_IN port is tied off. 
    -- Else, the data checking is triggered by the "master" lane 
    tile1_inc_in0_i                         <= tile0_inc_out0_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else '0'; 
 
    tile1_frame_check0 : FRAME_CHECK 
    generic map 
    ( 
        RX_DATA_WIDTH                   =>      16, 
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        USE_COMMA                       =>      1, 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        CONFIG_INDEPENDENT_LANES        =>      EXAMPLE_CONFIG_INDEPENDENT_LANES, 
        START_OF_PACKET_CHAR            =>      x"bc", 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 



 209

        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- MGT Interface 
        RX_DATA                         =>      tile1_rxdata0_i, 
        RX_ENMCOMMA_ALIGN               =>      tile1_rxenmcommaalign0_i, 
        RX_ENPCOMMA_ALIGN               =>      tile1_rxenpcommaalign0_i, 
        RX_ENCHAN_SYNC                  =>      open, 
        RX_CHANBOND_SEQ                 =>      tied_to_ground_i, 
        -- Control Interface 
        INC_IN                          =>      tile1_inc_in0_i, 
        INC_OUT                         =>      tile1_inc_out0_i, 
        PATTERN_MATCH_N                 =>      tile1_matchn0_i, 
        RESET_ON_ERROR                  =>      tile1_frame_check0_reset_i, 
        -- System Interface 
        USER_CLK                        =>      tile1_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile1_rx_system_reset0_c, 
        ERROR_COUNT                     =>      tile1_error_count0_i 
    ); 
         
    tile1_frame_check1_reset_i              <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else 
tile1_matchn1_i; 
 
    -- in the "independent lanes" configuration, each of the lanes looks for the unique start char and 
    -- in this case, the INC_IN port is tied off. 
    -- Else, the data checking is triggered by the "master" lane 
    tile1_inc_in1_i                         <= tile0_inc_out1_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else '0'; 
 
    tile1_frame_check1 : FRAME_CHECK 
    generic map 
    ( 
        RX_DATA_WIDTH                   =>      16, 
        USE_COMMA                       =>      1, 
        WORDS_IN_BRAM                   =>      EXAMPLE_WORDS_IN_BRAM, 
        CONFIG_INDEPENDENT_LANES        =>      EXAMPLE_CONFIG_INDEPENDENT_LANES, 
        START_OF_PACKET_CHAR            =>      x"bc", 
        MEM_00                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_01                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_02                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_03                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_04                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_05                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_06                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_07                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_08                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_09                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_0A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_0B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_0C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_0D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_0E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_0F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_10                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_11                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_12                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_13                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_14                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_15                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_16                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_17                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_18                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_19                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_1A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_1B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
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        MEM_1C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_1D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_1E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_1F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_20                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_21                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_22                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_23                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_24                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_25                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_26                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_27                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_28                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_29                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_2A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_2B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_2C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_2D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_2E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_2F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_30                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_31                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_32                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_33                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_34                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_35                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_36                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_37                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEM_38                  =>  x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100", 
        MEM_39                  =>  x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f", 
        MEM_3A                  =>  x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f", 
        MEM_3B                  =>  x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f", 
        MEM_3C                  =>  x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f", 
        MEM_3D                  =>  x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f", 
        MEM_3E                  =>  x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f", 
        MEM_3F                  =>  x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f", 
        MEMP_00                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_01                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_02                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_03                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_04                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_05                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_06                  =>  x"0000000000000000000000000000000000000000000000000000000000000010", 
        MEMP_07                  =>  x"0000000000000000000000000000000000000000000000000000000000000010" 
    ) 
    port map 
    ( 
        -- MGT Interface 
        RX_DATA                         =>      tile1_rxdata1_i, 
        RX_ENMCOMMA_ALIGN               =>      tile1_rxenmcommaalign1_i, 
        RX_ENPCOMMA_ALIGN               =>      tile1_rxenpcommaalign1_i, 
        RX_ENCHAN_SYNC                  =>      open, 
        RX_CHANBOND_SEQ                 =>      tied_to_ground_i, 
        -- Control Interface 
        INC_IN                          =>      tile1_inc_in1_i, 
        INC_OUT                         =>      tile1_inc_out1_i, 
        PATTERN_MATCH_N                 =>      tile1_matchn1_i, 
        RESET_ON_ERROR                  =>      tile1_frame_check1_reset_i, 
        -- System Interface 
        USER_CLK                        =>      tile1_txusrclk0_i, 
        SYSTEM_RESET                    =>      tile1_rx_system_reset1_c, 
        ERROR_COUNT                     =>      tile1_error_count1_i 
    ); 
no_chipscope : if EXAMPLE_USE_CHIPSCOPE = 0 generate 
 
    -- If Chipscope is not being used, drive GTX reset signal 
    -- from the top level ports 
    tile0_gtxreset_i                        <= GTXRESET_IN; 
    tile1_gtxreset_i                        <= GTXRESET_IN; 
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    -- assign resets for frame_gen modules 
    tile0_tx_system_reset0_c                <= not tile0_tx_resetdone0_r2; 
    tile0_tx_system_reset1_c                <= not tile0_tx_resetdone1_r2; 
    tile1_tx_system_reset0_c                <= not tile1_tx_resetdone0_r2; 
    tile1_tx_system_reset1_c                <= not tile1_tx_resetdone1_r2; 
    -- assign resets for frame_check modules 
    tile0_rx_system_reset0_c                <= not tile0_rx_resetdone0_r2; 
    tile0_rx_system_reset1_c                <= not tile0_rx_resetdone1_r2; 
    tile1_rx_system_reset0_c                <= not tile1_rx_resetdone0_r2; 
    tile1_rx_system_reset1_c                <= not tile1_rx_resetdone1_r2; 
    tile0_loopback0_i                       <= tied_to_ground_vec_i(2 downto 0); 
    tile0_txdiffctrl0_i                     <= tied_to_ground_vec_i(2 downto 0); 
    tile0_txpreemphasis0_i                  <= tied_to_ground_vec_i(2 downto 0); 
    tile0_txenprbstst0_i                    <= tied_to_vcc_vec_i(1 downto 0); 
    tile0_rxeqmix0_i                        <= tied_to_ground_vec_i(1 downto 0); 
    tile0_loopback1_i                       <= tied_to_ground_vec_i(2 downto 0); 
    tile0_txdiffctrl1_i                     <= tied_to_ground_vec_i(2 downto 0); 
    tile0_txpreemphasis1_i                  <= tied_to_ground_vec_i(2 downto 0); 
    tile0_txenprbstst1_i                    <= tied_to_vcc_vec_i(1 downto 0); 
    tile0_rxeqmix1_i                        <= tied_to_ground_vec_i(1 downto 0); 
    tile1_loopback0_i                       <= tied_to_ground_vec_i(2 downto 0); 
    tile1_txdiffctrl0_i                     <= tied_to_ground_vec_i(2 downto 0); 
    tile1_txpreemphasis0_i                  <= tied_to_ground_vec_i(2 downto 0); 
    tile1_txenprbstst0_i                    <= tied_to_vcc_vec_i(1 downto 0); 
    tile1_rxeqmix0_i                        <= tied_to_ground_vec_i(1 downto 0); 
    tile1_loopback1_i                       <= tied_to_ground_vec_i(2 downto 0); 
    tile1_txdiffctrl1_i                     <= tied_to_ground_vec_i(2 downto 0); 
    tile1_txpreemphasis1_i                  <= tied_to_ground_vec_i(2 downto 0); 
    tile1_txenprbstst1_i                    <= tied_to_vcc_vec_i(1 downto 0); 
    tile1_rxeqmix1_i                        <= tied_to_ground_vec_i(1 downto 0); 
end generate no_chipscope; 
 
end RTL; 
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APPENDIX B 

 

Communication Firmware and Software 

 

In this appendix details of the firmware and software used to communicate with 

the test module are presented. As discussed in Chapter 6, low-level communication takes 

place between the microcontroller and the PC USB drivers. The microcontroller must be 

programmed to accept communications from the USB driver and to also handshake with 

the drivers. These functions are programmed in assembly language and downloaded to 

the microcontroller. The code consists of six files mainly based on source code provided 

in [123]. The main file is named “hs.a51”, which lists all the other files to use. The 

second file is “Declare.a51” which declares all the variables used in the project. The third 

file is “EZint.a51” which interprets interrupts from the USB drivers. The fourth file is 

“EZMain.a51”. This is the main body of the project. This code controls how data is 

interpreted from the USB and written to the FPGA and vice versa. The fifth file is 

“Decode.a51”, which handles how to decode USB packets. The final file is 

“DTables.a51”, which declares descriptors required in the project. All these files are 

compiled together using an available compiler for microcontrollers and embedded 

processors called Keil µVision. The compiler produces one compiled hexadecimal file, 

which is downloaded to the microcontroller.  

High level communication to the test module is done using a software interface, 

also discussed in Chapter 6. This software interface is programmed in C#. The software 

interface for the test module is based off much of the work done by Carl Grey at the High 
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Speed Digital Design Lab at Georgia Tech. The original interface is shown in Figure B.1, 

and its code provided in the file titled DLC_interface.cs. This interface essentially 

communicated over the USB to the microcontroller after it was loaded with firmware. 

This interface was modified to develop the test module interface shown in Figure B.2. 

The code for this interface is included as file titled test_module.cs. This file uses many of 

the functions provided by DLC_interface.cs, and thus both files are compiled as one 

project. 
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Hs.a51 

 
NAME XilinxInterface 
; Version 0.9 
; 
; Based on ButtonsAndLight example from USB-By-Example 
 
; g) EP0Size made an equate to ease coding of other components 
EP0Size EQU 64 ; For EZ-USB 
 
; 
$INCLUDE(Declare.A51) 
$INCLUDE(EZInt.A51) 
$INCLUDE(EZMain.A51) 
$INCLUDE(Decode.A51) 
$INCLUDE(DTables.A51) 
 
END 
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Declare.a51 

 
; This module declares the variables and constants used in the examples 
; It is common to all of the examples 
; 
; Declare Special Function Registers used 
TimerControl DATA 088H 
TimerMode DATA 089H 
Timer0High DATA 08CH 
EI  DATA 0A8H 
EIE  DATA 0E8H ; EZ-USB specific 
EXIF  DATA 091H ; EZ-USB specific 
EICON  DATA 0D8H ; EZ-USB specific 
PageReg  DATA 092H ; EZ-USB specific, used with MOVX @Ri 
DPS  DATA 086H ; EZ-USB specific, used with dual data pointers 
; 
; "External" memory locations used, EZ-USB specific 
; Note that most of these variables are in Page 7FH 
SETUPDAT EQU 07FE8H 
SUDPTR  EQU 07FD4H 
EP0Control EQU 07FB4H 
EP0InBuffer EQU 07F00H 
EP0OutBuffer EQU 07EC0H  ; Not in Page 7FH 
EP1InBuffer EQU 07E80H  ; Not in Page 7FH 
IN0ByteCount EQU 07FB5H 
Out0ByteCount EQU 07FC5H 
IN1ByteCount EQU 07FB7H 
IN07IEN  EQU 07FACH 
IN07IRQ  EQU 07FA9H 
OUT07IEN EQU 07FADH 
OUT07IRQ EQU 07FAAH 
USBIEN  EQU 07FAEH 
USBIRQ  EQU 07FABH 
USBControl EQU 07FD6H 
I2CData  EQU 07FA6H 
I2CControl EQU 07FA5H 
PortA_Config EQU 07F93H 
PortB_Config EQU 07F94H 
PortC_Config EQU 07F95H 
PortA_OUT EQU 07F96H 
PortB_OUT EQU 07F97H 
PortC_OUT EQU 07F98H 
PortA_PINS EQU 07F99H 
PortB_PINS EQU 07F9AH 
PortC_PINS EQU 07F9BH 
PortA_OE EQU 07F9CH 
PortB_OE EQU 07F9DH 
PortC_OE EQU 07F9EH 
; 
; Byte Variables 
   
  DSEG AT 20H 
FLAGS:  DS  1 ; This register is bit-addressable 
; Bit Variables 
Configured EQU FLAGS.0 ; Is this device configured 
STALL  EQU FLAGS.1 ; Need to STALL endpoint 0 
SendData EQU FLAGS.2 ; Need to send data to PC Host 
IsDescriptor EQU FLAGS.3 ; Enable a shortcut reply 
SetAddress EQU FLAGS.4 ; Set the SIE address 
; 
MonitorSpace: DS 1FH ; Used by Dscope 
;Expired_Time: DS 1 ; A downcounter for timed Reports 
ReplyCount: DS 1 ; Byte count for following buffer 
ReplyBuffer: DS 2 ; Buffer for immediate reply 
CurrentConfiguration: 
  DS 1 ; Some examples support > 1 configurations 
SaveDPH: DS 1 ; Needed to save Descriptor Pointer .. 
SaveDPL: DS 1 ; .. for descriptors > EP0Size 
SaveLength: DS 1 ; Number of bytes still to send 
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SetupData:   ; Buffer in direct access memory 
RequestType: DS 1 
Request: DS 1 
wValueLow: DS 1 
wValueHigh: DS 1 
wIndexLow: DS 1 
wIndexHigh: DS 1 
wLengthLow: DS 1 
wLengthHigh: DS 1 
; 
;Old_Buttons: DS 1 ; Used by BAL: stores current button position 
;LEDstrobe: DS 1 ; Used by BAL: strobe one LED on at a time 
;LEDvalue: DS 1 ; Used by BAL: stores current LED value 
Msec_Counter: DS 1 ; Used by BAL: counts up to 4 msec 
INAddressA: DS 1 ; Incoming Address from USB 
INAddressB: DS 1 ; Incoming Address from USB 
OUTAddressA: DS 1 ; Outgoing Address to USB 
OUTAddressB: DS 1 ; Outgoing Address to USB 
INData:  DS 1 ; Incoming Data from USB 
OUTData: DS 1 ; Outgoing Data to USb 
INControl: DS 1 ; Control Byte containing Read/Write Info 
ValidCount: DS 1 ; Keeps count of valid outputs 
; 
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EZInt.a51 
 
; This module contains all the EZUSB-specific hardware code 
; This module also contains all of the interrupt vector declarations and 
; the first level interrupt servicing (register save, call subroutine, 
; clear interrupt source, restore registers, return) 
; Suspend and Resume are handled totally in this module 
; 
; A Reset sends us to Program space location 0 
 CSEG AT 0  ; Code space 
 USING 0   ; Reset forces Register Bank 0 
 LJMP Reset 
; 
; The interrupt vector table is also located here 
; EZ-USB has two levels of USB interrupts: 
; 1-the main level is described in this table (at ORG 43H) 
; 2-there are 21 sources of USB interrupts and these are described in USB_ISR 
; This means that two levels of acknowledgement and clearing will be required  
; LJMP INT0_ISR ; Features not used are commented out 
; ORG 0BH 
; LJMP Timer0_ISR 
; ORG 13H 
; LJMP INT1_ISR 
; ORG 1BH 
; LJMP Timer1_ISR 
; ORG 23H 
; LJMP UART0_ISR 
; ORG 2BH 
; LJMP Timer2_ISR 
; ORG 33H 
; LJMP WakeUp_ISR 
; ORG 3BH 
; LJMP UART1_ISR 
 ORG 43H 
 LJMP USB_ISR  ; Auto Vector will replace byte 45H 
; ORG 4BH 
; LJMP I2C_ISR 
; ORG 53H 
; LJMP INT4_ISR 
; ORG 5BH 
; LJMP INT5_ISR 
; ORG 63H 
; LJMP INT6_ISR 
 
 ORG 1200H  ; Load above monSIO0.hex  
USB_ISR:LJMP SUDAV_ISR 
       DB 0  ; Pad entries to 4 bytes 
 LJMP SOF_ISR 
 DB 0 
 LJMP SUTOK_ISR 
 DB 0 
 LJMP Suspend_ISR 
 DB 0 
 LJMP USBReset_ISR 
 DB 0 
 LJMP Reserved 
 DB 0 
 LJMP EP0In_ISR 
; DB 0               ; Comment out features not used 
; LJMP EP0Out_ISR 
; DB 0 
; LJMP EP1In_ISR 
; DB 0 
; LJMP EP1Out_ISR 
; DB 0 
; LJMP EP2In_ISR 
; DB 0 
; LJMP EP2Out_ISR 
; DB 0 
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; LJMP EP3In_ISR 
; DB 0 
; LJMP EP3Out_ISR 
; DB 0 
; LJMP EP4In_ISR 
; DB 0 
; LJMP EP4Out_ISR 
; DB 0 
; LJMP EP5In_ISR 
; DB 0 
; LJMP EP5Out_ISR 
; DB 0 
; LJMP EP6In_ISR 
; DB 0 
; LJMP EP6Out_ISR 
; DB 0 
; LJMP EP7In_ISR 
; DB 0 
; LJMP EP7Out_ISR   
; End of Interrupt Vector tables 
 
; When a feature is used insert the required interrupt processing here 
; The example use only used Endpoints 0 and 1 and also SOF for timing 
Reserved: 
INT0_ISR: 
Timer0_ISR: 
INT1_ISR: 
Timer1_ISR: 
UART0_ISR: 
Timer2_ISR: 
UART1_ISR: 
I2C_ISR: 
INT4_ISR: 
INT5_ISR: 
INT6_ISR: 
SUTOK_ISR: 
EP0Out_ISR: 
EP1In_ISR: 
EP1Out_ISR: 
EP2In_ISR: 
EP2Out_ISR: 
EP3In_ISR: 
EP3Out_ISR: 
EP4In_ISR: 
EP4Out_ISR: 
EP5In_ISR: 
EP5Out_ISR: 
EP6In_ISR: 
EP6Out_ISR: 
EP7In_ISR : 
EP7Out_ISR: 
Not_Used:   ; Should not get any of these 
 RETI 
 
ClearINT2:   ; Tell the hardware that we're done 
 MOV A, EXIF 
 CLR ACC.4  ; Clear the Interrupt 2 bit 
 MOV EXIF, A 
 RET 
 
USBReset_ISR:   ; Bus has been Reset, move to DEFAULT state 
 CLR Configured 
        CALL ClearINT2 
    ; No need to clear source of interrupt 
 RETI 
 
Suspend_ISR:   ; SIE detected an Idle bus 
 MOV A, PCON 
 ORL A, #1 
 MOV PCON, A  ; Go to sleep! 
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 NOP 
 NOP   ; Wake up here due to a USBResume 
 NOP 
 CALL ClearINT2 
 RETI 
   
WakeUp_ISR:    ; Not using external WAKEUP in these examples 
     ; So this must be due to a USBResume 
 CLR EICON.4   ; Clear the wakeup interrupt source 
 RETI 
 
EP0In_ISR:    ; A prepared packet has been read by PC host 
 MOV A, SaveLength  ; Do I have any more data to send? 
 JZ NoMoreToSend 
 MOV DPH, SaveDPH  ; Retreive descriptor pointer 
 MOV DPL, SaveDPL 
 CALL SendNextPieceOfDescriptor 
NoMoreToSend: 
 CALL ClearINT2 
 MOV A, #00000001b 
 MOV DPTR, #IN07IRQ 
 MOVX @DPTR, A  ; Clear source of interrupt 
 RETI 
 
SOF_ISR:    ; A Start-Of-Frame packet has been received 
; This routine services the real time interrupt 
; It is also responsible for the "real world" buttons and lights 
; 
ServiceTimerRoutine: 
; LED routine moved to exmain.a51 
 MOV A, ValidCount 
 CALL CreateInputReport 
 
Done: CALL ClearINT2     
                          ; Clear the source of the interrupt 
 MOV A, #00000010b 
ExitISR:MOV DPTR, #USBIRQ 
 MOVX @DPTR, A 
 RETI 
 
SUDAV_ISR:    ; A Setup packet has been received 
 MOV SaveLength, #0  ; Clear any pending transactions (if any) 
 MOV DPTR, #SETUPDAT  ; Copy packet to direct access memory 
 MOV R0, #SetupData 
 MOV R7, #8 
CopySD: MOVX A, @DPTR 
 MOV @R0, A 
 INC DPTR 
 INC R0 
 DJNZ R7, CopySD 
 CALL ServiceSetupPacket ; Handle the decode of the Setup packet 
; if SetAddress { Update SIE address }  // NOP on EZ-USB 
; if STALL { Stall the endpoint } 
; if SendData { 
;  if IsDescriptor { send DPTR->descriptor, A = length } 
; else { send ReplyBuffer } 
; }       
 JB STALL, SendSTALL 
        JNB SendData, HandShake 
 JB IsDescriptor, LoadEP0 
                                        ; Send data in ReplyBuffer 
 MOV DPTR, #EP0InBuffer+1 
 MOV R0, #ReplyBuffer+1 
 MOV R7, #2   ; Copy the two byte buffer 
CopyRB: MOV A, @R0 
 MOVX @DPTR, A 
 DEC DPL 
 DEC R0 
 DJNZ R7, CopyRB 
 MOV A, @R0    ; Get BufferCount 
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SendEP0InBuffer: 
 MOV DPTR, #In0ByteCount 
StartXfer: 
 MOVX @DPTR, A  ; This write initiates the transfer 
HandShake:    ; Handshake with host 
 MOV R7, #00000010b   ; Set HSNAK to tell the SIE that we're done 
SetEP0Control: 
 MOV DPTR, #EP0Control 
 MOVX A, @DPTR 
 ORL A, R7 
 MOVX @DPTR, A  ; We're done 
 CALL ClearINT2 
 MOV A, #00000001b  ; Clear the source of the interrupt 
 JMP ExitISR 
SendSTALL:    ; Invalid Request was received 
 MOV R7, #00000011b  ; Set EP0STALL and HSNAK 
 JMP SetEP0Control 
LoadEP0:    ; Send the data pointed to by DPTR 
 MOV R7, A   ; Save LENGTH 
; Need to return the smaller of "Requested Length" and "Actual Length" 
; If "Requested Length" > 255 then use "Actual Length" 
; There are no descriptors > 255 in this example 
 MOV A, wLengthHigh 
 JNZ UseActual  
 CLR C 
 SUBB A, wLengthLow 
 MOV A, wLengthLow  ; This does not affect Carry 
 JNC UsewLengthLow 
UseActual: 
 MOV A, R7 
UsewLengthLow: 
SendNextPieceOfDescriptor:  ; DPTR -> Descriptor to be sent 
 MOV R7, A   ; Save LENGTH again 
 MOV SaveLength, #0  ; Default case, overwrite if necessary 
; Do I have more than a single packet to send? 
 CLR C 
 SUBB A, #EP0Size 
 JC SendPacket 
; Need to send multiple packets.  
; Calculate and save address of next packet, send next packet now 
 MOV SaveLength, A  ; Send these next time 
 MOV R7, #EP0Size 
 PUSH DPH   ; Save current pointer 
 PUSH DPL 
 MOV A, R7   ; Retreive length 
 CALL BumpDPTR 
 MOV SaveDPH, DPH 
 MOV SaveDPL, DPL 
 POP DPL 
 POP DPH 
SendPacket: 
 MOV A, R7   ; Retreive length  
 MOV R6, A   ; Save length in R6 for move 
 MOV R0, #LOW(EP0InBuffer) ; PageReg = 7FH = HIGH(EP0InBuffer) 
CopySTD:MOVX A, @DPTR 
 MOVX @R0, A 
 INC DPTR 
 INC R0 
 DJNZ R6, CopySTD 
 MOV A, R7   ; Retrieve LENGTH 
 JMP SendEP0InBuffer 
 
GetOutputReport:   ; Wait for this, it's next on USB 
 MOV DPTR, #Out0ByteCount ; Enable EP0OutBuffer to receive data 
 MOVX @DPTR, A   ; Any value will do 
        MOV DPTR, #EP0Control ; Wait for valid data in EP0OutBuffer 
Wait40: MOVX A, @DPTR 
 ANL A, #00001000b  ; Check OUTBSY 
 JNZ Wait40 
 RET 
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EZMain.a51 
 
; This module initializes the microcontroller then executes MAIN forever 
; It is hardware dependant 
 
Reset: 
 MOV SP, #0DFH  ; Initialize the Stack 
 MOV PageReg, #7FH  ; Allows MOVX Ri to access EZ-USB memory 
 
 MOV R0, #Low(USBControl) ; Simulate a disconnect 
 MOVX A, @R0 
 ANL A, #11110011b  ; Clear DISCON, DISCOE 
 MOVX @R0, A 
 CALL Wait100msec     ; Give the host time to react 
 MOVX A, @R0   ; Reconnect with this new identity 
 ORL A, #00000110b           ; Set DISCOE to enable pullup resistor 
 MOVX @R0, A    ; Set RENUM so that 8051 handles USB requests 
 CLR A 
 MOV FLAGS, A  ; Start in Default state 
InitVariables: 
        MOV INControl, A 
 MOV INAddressA, A 
 MOV INAddressB, A 
 MOV OUTAddressA, A 
 MOV OUTAddressB, A 
 MOV INData, A 
 MOV OUTData, A 
 MOV ValidCount, A 
Initialize4msecCounter: 
 MOV Msec_counter, A 
InitializeIOSystem:   ; A=output, B=output C=input 
 MOV R0, #LOW(PortA_Config) ; PageReg = 7F = HIGH(PortA_Config) 
 CLR A 
 MOVX @R0, A   ; No alternate functions on PortA 
 INC R0 
 MOVX @R0, A   ; No alternate functions on PortB 
 INC R0 
 MOVX @R0, A   ; No alternate functions on PortC 
 
 MOV R1, #LOW(PortA_OE) 
 CPL A   ; = 0FFH 
 MOVX @R1, A   ; Enable PortA for Output 
 INC R1   ; Point to PortB_OE 
 MOVX @R1, A   ; Enable PortB for Output 
 INC R1   ; Point to PortC_OE 
 CLR A    
 MOVX @R1, A   ; Enable Port C for Input 
 
InitializeInterruptSystem:  ; First initialize the USB level  
 MOV A, #00000001b 
 MOV R0, #LOW(IN07IEN) 
 MOVX @R0, A   ; Enable interrupts from EP0IN only 
 INC R0 
 CLR A 
 MOVX @R0, A   ; Disable interrupts from OUT Endpoints 0-7 
 INC R0 
 MOV A, #00000011b 
 MOVX @R0, A   ; Enable (Resume, Suspend,) SOF and SUDAV INTs 
 INC R0 
 MOV A, #00000001b 
 MOVX @R0, A   ; Enable Auto Vectoring for USB interrupts 
                                 ; Now enable the main level 
 MOV EIE, #00000001b  ; Enable INT2 = USB Interrupt (only)    
        MOV EI, #10010000b  ; Enable interrupt subsystem (and Ser0 for dScope) 
  
; Initialization Complete. 
;  
MAIN: 
 NOP    ; Not much of a main loop for this example 
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 JMP MAIN   ; All actions are initiated by interrupts 
; We are a slave, we wait to be told what to do 
 
Wait100msec: 
 MOV R7, #100 
Wait1msec:    ; A delay loop 
 MOV DPS, #0   ; Select primary DPTR 
 MOV DPTR, #-1200   
More: INC DPTR   ; 3 cycles 
 MOV A, DPL                  ; + 2 
 ORL A, DPH                  ; + 2 
 JNZ More                    ; + 3 = 10 cycles x 1200 = 1msec 
 DJNZ R7, Wait1msec 
 RET 
 
ProcessOutputReport:     ; A Report has just been received 
; The report is four bytes long (Control, AddressA, AddressB, Data) 
 MOV DPTR, #EP0OutBuffer ; Point to the Report 
 MOVX A, @DPTR  ; Get the Address Byte 
 MOV INControl,A  ; Move it into memory 
 INC DPTR 
 MOVX A,@DPTR   ; Get the Data Byte 
 MOV INAddressA, A  ; Get the Address 
 
 INC DPTR 
 MOVX A,@DPTR   ; Get the Data Byte 
 MOV INAddressB, A  ; Get the Data 
 
 INC DPTR 
 MOVX A,@DPTR   ; Get the Data Byte 
 MOV INData, A  ; Get the Address 
 
 MOV A, INControl 
 JZ ReadfromXilinx   
 
WritetoXilinx: 
; Write Address first on PortB, pulsing Write Bit 
; Write Data next on PortB, pulsing Write Bit 
 MOV A, INAddressA 
 MOV DPTR, #PortB_Out 
 MOVX @DPTR, A  ; Send the Address to Xilinx 
        MOV     A, #16 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Trigger set PortA4  (Set Write Addr Low Byte) 
 
        CLR     A 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Clear control bits 
 
 MOV A, INAddressB 
 MOV DPTR, #PortB_Out 
 MOVX @DPTR, A  ; Send the Address to Xilinx 
        MOV     A, #48 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Trigger set both bits (Set Write Addr High Byte) 
 
        CLR     A 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Clear control bits 
  
 MOV A, INData 
 MOV DPTR, #PortB_Out 
 MOVX @DPTR, A  ; Send the Data to Xilinx 
        MOV     A, #32 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Trigger set PortA5  (Set Write Data & Clear Write Addr) 
        CLR     A 
        MOVX    @DPTR, A  ; Trigger clear PortA5  (Clear Write Data) 
 RET 
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ReadfromXilinx: 
; Write Address first on PortB, pulsing Read Bit 
; Read Data next on PortC 
 MOV A, INAddressA 
 MOV OUTAddressA, A 
 MOV DPTR, #PortB_Out 
 MOVX @DPTR, A  ; Send the Address to Xilinx 
        MOV     A, #16 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Trigger set PortA5  (Set Load Addr) 
 
        CLR     A 
        MOVX    @DPTR, A  ; Trigger clear PortA5  (Clear Load Addr) 
 
 MOV A, INAddressB 
 MOV OUTAddressB, A 
 MOV DPTR, #PortB_Out 
 MOVX @DPTR, A  ; Send the Address to Xilinx 
        MOV     A, #48 
        MOV     DPTR, #PortA_Out 
        MOVX    @DPTR, A  ; Trigger set PortA5  (Set Load Addr) 
 
        CLR     A 
        MOVX    @DPTR, A  ; Trigger clear PortA5  (Clear Load Addr) 
 
 MOV DPTR, #PortC_Pins 
 MOVX A, @DPTR 
 MOV OUTData, A  ; Read Data from Xilinx 
 MOV A, ValidCount 
 INC A 
 MOV ValidCount, A 
      
CreateInputReport:   ; Called when data is requested by Host 
; The report is 4 bytes: Valid Byte, Address Low, Address High, Data 
; Value in A is Valid Byte (leftover from above) 
 MOV DPTR, #EP1InBuffer ; Point to the buffer  
 MOVX @DPTR, A  ; Ready Valid Byte 
 INC DPTR   ; increment the buffer 
 
 MOV A, OUTAddressA 
 MOVX @DPTR, A  ; Ready Address 
 INC DPTR   ; increment the buffer 
 
 MOV A, OUTAddressB 
 MOVX @DPTR, A  ; Ready Data 
 INC DPTR   ;increment the buffer 
 
 MOV A, OUTData 
 MOVX @DPTR, A  ; Ready Data 
 INC DPTR   ;increment the buffer 
 
 MOV DPTR, #IN1ByteCount 
 MOV A, #4   ; 4 total bytes now 
 MOVX @DPTR, A  ; Endpoint 1 now 'armed', next IN will get data 
 RET 
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Decode.a51 

 
; This module is common to all of the examples. 
; It decodes the USB Setup Packets and generates appropriate responses. 
; Interpretation of Reports is handled by MAIN 
; 
  CSEG 
ServiceSetupPacket: 
 MOV A, RequestType 
 MOV C, ACC.7  ; Bit 7 = 1 means IO device needs to send data to PC Host 
 MOV SendData, C 
 ANL A, #01011100b  ; IF RequestType[6.4.3.2] = 1 THEN goto BadRequest 
 JNZ BadRequest 
 MOV A, RequestType  ; IF RequestType[1&0] = 1 THEN goto BadRequest 
 MOV C, ACC.0 
 ANL C, ACC.1 
 JC BadRequest 
 JNB ACC.5, NotB5  ; IF RequestType[5] = 1 THEN RequestType[1,0] = [1,1] 
 MOV A, #00000011b 
NotB5: ANL A, #00000011b  ; Set CommandIndex[5,4] = RequestType[1,0] 
 SWAP A 
 MOV R7, A   ; Save HI nibble of CommandIndex 
     ; Set CommandIndex[3,0] = Request[3,0] 
 MOV A, Request 
 ANL A, #11110000b  ; Check if Request > 15 
 JNZ BadRequest 
 MOV A, Request 
 ANL A, #00001111b  ; Only 13 are defined today, handle in table 
 ORL A, R7  
; CALL CorrectSubroutine ; goto CommandTable(CommandIndex) 
CorrectSubroutine:   ; Jump to the subroutine that DPTR is pointing to 
 MOV ReplyCount, #1  ; Set up a default reply 
 MOV ReplyBuffer, #0 
 MOV ReplyBuffer+1, #0 
 CLR SetAddress  ; Clear all flags 
 CLR STALL 
 CLR IsDescriptor 
 MOV DPTR, #CommandTable 
 CALL BumpDPTR  ; Point to entry 
 MOVX A, @DPTR  ; Get the offset 
 MOV DPTR, #Subroutines 
 JMP  @A+DPTR   ; Go to the correct Subroutine 
 
BadRequest:    ; Decoded a Bad Request, STALL the Endpoint 
 SETB STALL 
 RET 
     ; Support routines 
NextDPTR:    ; Returns (DPTR + byte DPTR is pointing to) 
 MOVX A, @DPTR 
BumpDPTR:    ; Returns (DPTR + ACC) 
 ADD A, DPL 
 MOV DPL, A 
 JNC Skip 
 INC DPH   ; Need 16 bit arithmetic here 
Skip: RET 
 
; Since the table only contains byte offsets, it is important that all these routines are 
; within one page (100H) of Subroutines 
; V3.0 - CommandTable moved outside of this one page limited space 
CommandTable: 
; First 16 commands are for the Device 
 DB LOW(Device_Get_Status - Subroutines) 
 DB LOW(Device_Clear_Feature - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Device_Set_Feature - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Set_Address - Subroutines) 
 DB LOW(Get_Descriptor - Subroutines) 
 DB LOW(Set_Descriptor - Subroutines) 
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 DB LOW(Get_Configuration - Subroutines) 
 DB LOW(Set_Configuration - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
; Next 16 commands are for the Interface 
 DB LOW(Interface_Get_Status - Subroutines) 
 DB LOW(Interface_Clear_Feature - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Interface_Set_Feature - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Get_Class_Descriptor - Subroutines) 
 DB LOW(Set_Class_Descriptor - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Get_Interface - Subroutines) 
 DB LOW(Set_Interface - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
; Next 16 commands are for the Endpoint 
 DB LOW(Endpoint_Get_Status - Subroutines) 
 DB LOW(Endpoint_Clear_Feature - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Endpoint_Set_Feature - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Endpoint_Sync_Frame - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
; Next 16 commands are Class Requests 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Get_Report - Subroutines) 
 DB LOW(Get_Idle - Subroutines) 
 DB LOW(Get_Protocol - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Set_Report - Subroutines) 
 DB LOW(Set_Idle - Subroutines) 
 DB LOW(Set_Protocol - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 DB LOW(Invalid - Subroutines) 
 
Subroutines: 
; 
; Many requests are INVALID for this example 
Get_Protocol:   ; We are not a Boot device 
Set_Protocol:    ; We are not a Boot device 
Set_Descriptor:   ; Our Descriptors are static 
Set_Class_Descriptor:           ; Our Descriptors are static 
Set_Interface:   ; We only have one Interface 
Get_Interface:   ; We do not have an Alternate setting 
Set_Idle:   ; V3.0 Optional command, not supported 
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Get_Idle:   ; V3.0 Optional command, not supported 
Device_Set_Feature:   ; We have no features that can be set or cleared 
Interface_Set_Feature:   ; We have no features that can be set or cleared 
Endpoint_Set_Feature:   ; We have no features that can be set or cleared 
Endpoint_Clear_Feature:  ; V3.0 We have no features that can be set or cleared 
Device_Clear_Feature:  ; We have no features that can be set or cleared  
Interface_Clear_Feature:  ; We have no features that can be set or cleared 
Endpoint_Sync_Frame:  ; We are not an Isonchronous device 
 
Invalid:   ; Invalid Request made, STALL the Endpoint 
 SETB STALL 
Reply: RET 
 
Set_Address:   ; Set the address that the SIE will respond to 
 SETB SetAddress 
 RET 
 
Set_Report:    ; Host wants to sent us a Report.  
; The ONLY case in this example where host sends data to us 
 JNB Configured, Invalid ; Need to be Configured to do this command 
 CALL GetOutputReport  ; Handled in EZUSB.A51 
 JMP ProcessOutputReport ; RETurn via this subroutine 
Get_Report:    ; Host wants a Report 
 JNB Configured, Invalid ; Need to be Configured to do this command  
 MOV ReplyBuffer, #42H   ; Reply with a recognizable (arbitary) value 
 RET 
Get_Configuration:   ; Respond with CurrentConfiguration 
 MOV ReplyBuffer, CurrentConfiguration 
 RET  
Device_Get_Status:   ; Only two bits of Device Status are defined 
 MOV ReplyBuffer, #1  ; Bit 1=Remote Wakeup(=0), Bit 0=Self Powered(=1) 
 RET 
Interface_Get_Status:   ; Interface Status is currently defined as 0 
Endpoint_Get_Status: 
        MOV ReplyCount, #2  ; Need a two byte 0 response 
 RET 
Set_Configuration:      ; Valid values are 0 and 1 
 MOV A, wValueLow 
 JZ Deconfigured 
 DEC A 
 JNZ Invalid 
 SETB Configured 
 MOV CurrentConfiguration, #1 
 RET 
Deconfigured: 
 CLR Configured 
 MOV CurrentConfiguration, A 
 RET 
Get_Descriptor:       ; Host wants to know who/what we are 
 SETB IsDescriptor 
 MOV A, wValueHigh 
 DEC A   ; Valid Values are 1, 2 and 3 
 MOV DPTR, #DeviceDescriptor 
 JZ ReturnLength 
 DEC A 
 MOV DPTR, #ConfigurationDescriptor 
 JNZ TryString 
 MOV A, #ConfigLength 
 RET 
TryString: 
 DEC A 
 JNZ Invalid 
; Request is for a String Descriptor 
 MOV DPTR, #String0  ; Point to String 0 
 MOV A, wValueLow  ; Get String Index 
NextString: 
 JZ ReturnLength 
 MOV R7, A   ; Save String Index 
 CALL NextDPTR 
 MOVX A, @DPTR  ; Get the String Length (= 0 means we're at Backstop) 
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 JZ Invalid   ; Asked for a string I don't have  
 MOV A, R7 
 DEC A 
 JMP NextString  ; Check if we are there yet 
Get_Class_Descriptor:    ; Valid values are 21H, 22H, 23H for Class Request 
 SETB IsDescriptor 
 MOV A, wValueHigh 
 CLR C 
 SUBB A, #21H 
 MOV DPTR, #HIDDescriptor 
 JZ ReturnLength 
 DEC A 
 MOV DPTR, #ReportDescriptor 
 JZ ReturnRDlength 
; DEC A   ; This example does not use Physical Descriptors 
; JZ Send_Physical_Descriptor 
 JMP Invalid 
; 
ReturnLength: 
 MOVX A, @DPTR  ; Get Descriptor Length (first byte) 
 RET 
ReturnRDlength:    ; Report Descriptor is different format 
 MOV A, #ReportLength 
 RET 
; Error check: this MUST be on within a page of Subroutines 
WithinSamePage EQU $ - Subroutines  
; 
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DTables.a51 

 
; This module declares the descriptors 
; 
; This example has one Device Descriptor with: 
; One Configuration - single IN port and single OUT port 
; One Interface - there is only one method of accessing the ports 
; One HID Descriptor - to make PC host software simpler 
; One Endpoint Descriptor - for HID Input Reports 
; One Report Descriptor - one byte IN and one byte OUT reports 
; Multiple Sting Descriptors - to aid the user 
; 
 CSEG 
DeviceDescriptor: 
 DB 18, 1  ; Length, Type 
 DB 10H, 1  ; USB Rev 1.1 (=0110H, low=10H, High=01H) 
 DB 0, 0, 0  ; Class, Subclass and Protocol 
 DB EP0Size 
 DB 42H, 42H, 1, 42H, 0, 1; Vendor ID, Product ID and Version 
 DB 1, 2, 0  ; Manufacturer, Product & Serial# Names 
 DB 1  ; #Configs 
ConfigurationDescriptor: 
 DB 9, 2  ; Length, Type 
 DB LOW(ConfigLength), HIGH(ConfigLength) 
 DB 1, 1, 0  ; #Interfaces, Configuration#, Config. Name 
 DB 10000000b ; Attributes = Bus Powered 
 DB 250  ; Max. Power is 250x2 = 500mA 
InterfaceDescriptor: 
 DB 9, 4  ; Length, Type 
 DB 0, 0, 1  ; No alternate setting, HID uses EP1 
 DB 3  ; Class = Human Interface Device 
 DB 0, 0  ; Subclass and Protocol 
 DB 0  ; Interface Name 
HIDDescriptor: 
 DB 9, 21H  ; Length, Type 
 DB 0, 1  ; HID Class Specification compliance 
 DB 0  ; Country localization (=none) 
 DB 1  ; Number of descriptors to follow 
 DB 22H  ; And it's a Report descriptor 
 DB LOW(ReportLength), HIGH(ReportLength) 
EndpointDescriptor: 
 DB 7, 5  ; Length, Type 
 DB 10000001b ; Address = IN 1 
 DB 00000011b ; Interrupt 
 DB EP0Size, 0  ; Maximum packet size (this example only uses 1) 
 DB 100  ; Poll every 0.1 seconds  
ConfigLength EQU $ - ConfigurationDescriptor 
 
ReportDescriptor:  ; Generated with HID Tool, copied to here 
 DB 6, 0, 0FFH ; Usage_Page (Vendor Defined) 
 DB 9, 1  ; Usage (I/O Device) 
 DB 0A1H, 1  ; Collection (Application) 
 DB 19H, 1  ;   Usage_Minimum (Button 1) 
 DB 29H, 8  ;   Usage_Maximum (Button 8) 
 DB 15H, 0  ;   Logical_Minimum (0) 
 DB 25H, 1  ;   Logical_Maximum (1) 
 DB 75H, 1  ;   Report_Size (1) 
 DB 95H, 32  ;   Report_Count (8) 
 DB 81H, 2  ;   Input (Data,Var,Abs) 
 DB 19H, 1  ;   Usage_Minimum (Led 1) 
 DB 29H, 24  ;   Usage_Maximum (Led 8) 
 DB 91H, 2  ;   Output (Data,Var,Abs) 
 DB 0C0H  ; End_Collection 
ReportLength EQU $-ReportDescriptor 
   
String0:   ; Declare the UNICODE strings 
 DB 4, 3, 9, 4 ; Only English language strings supported 
String1:   ; Manufacturer 
 DB (String2-String1),3 ; Length, Type  
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 DB "U",0,"S",0,"B",0," ",0,"D",0,"e",0,"s",0,"i",0,"g",0,"n",0," ", 0 
 DB "B",0,"y",0," ",0,"E",0,"x",0,"a",0,"m",0,"p",0,"l",0,"e",0 
String2:   ; Product Name 
 DB (EndOfDescriptors-String2),3 
 DB "G",0,"e",0,"o",0,"r",0,"g",0,"i",0,"a",0," ",0,"T",0,"e",0,"c",0,"h",0," ",0 
 DB "T",0,"e",0,"s",0,"t",0," ",0,"C",0,"o",0,"r",0,"e",0," ",0,"V",0,"e",0,"r",0,"2",0 
EndOfDescriptors: 
 DB 0  ; Backstop for String Descriptors 
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DLC_Interface.cs 
 

 
Figure B.1 DLC software interface 

 
 

using System; 

using System.Collections; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using Microsoft.Win32.SafeHandles; 

using System.Runtime.InteropServices; 

using System.Diagnostics; 

using System.Threading; 

using Microsoft.VisualBasic; 

 

namespace BitParallel_HID_Interface 

{ 

    internal enum reportType { Read, Write }; 

 

    public partial class BitParallel : Form 

    { 

        private Byte[] dummyReport = new Byte[5]; 

        private Byte validByte = 0; 

 

        private IntPtr deviceNotificationHandle; 

        private SafeFileHandle hidHandle; 

        private String hidUsage; 

        private Boolean myDeviceDetected; 

        private String myDevicePathName; 

        private SafeFileHandle readHandle; 

        private SafeFileHandle writeHandle; 

 

        private Boolean exclusiveAccess; 

 

        private DelayWindow frameDelay; 

        private DataWindow frameData; 

        private MemoryPanel frameMemory; 

        private Core_Module coreWindow; 

 

        private Debugging MyDebugging = new Debugging(); //  For viewing results of API 

calls via Debug.Write. 

        private DeviceManagement MyDeviceManagement = new DeviceManagement(); 

        internal Hid MyHid = new Hid(); 

 

        public Boolean emulate = false; 
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        public BitParallel() 

        { 

            InitializeComponent(); 

        } 

 

        private void BitParallel_Load(object sender, EventArgs e) 

        { 

            FindTheHid(); 

            frameDelay = new DelayWindow(this); 

            frameData = new DataWindow(this); 

            frameMemory = new MemoryPanel(this); 

            coreWindow = new Core_Module(this); 

            frameDelay.Visible = false; 

            frameData.Visible = false; 

            coreWindow.Visible = false; 

            frameDelay.Owner = this; 

            frameData.Owner = this; 

            coreWindow.Owner = this; 

            if (myDeviceDetected == true) 

            { 

                Boolean successRead = false; 

                successRead = ReadInputReport(ref dummyReport); 

                if (successRead == true) 

                { 

                    validByte = dummyReport[1]; 

                    labelValid.Text = validByte.ToString(); 

                } 

            } 

 

            timer1.Enabled = false; 

        } 

 

        private void buttonWrite_Click(object sender, EventArgs e) 

        { 

            String byteValue = null; 

            Int32 count = 0; 

            Boolean success = false; 

            Byte[] outputReportBuffer = null; 

 

            if (MyHid.Capabilities.OutputReportByteLength > 3) 

            { 

                outputReportBuffer = new Byte[MyHid.Capabilities.OutputReportByteLength]; 

 

                //  Store the report ID in the first byte of the buffer: 

                outputReportBuffer[0] = 0; // report ID 

 

                outputReportBuffer[1] = Convert.ToByte(reportType.Write); 

 

                outputReportBuffer[2] = Convert.ToByte(textBoxAddrLow.Text); 

 

                if (MyHid.Capabilities.OutputReportByteLength == 5) 

                { 

 

                    outputReportBuffer[3] = Convert.ToByte(textBoxAddrHigh.Text); 

                    outputReportBuffer[4] = Convert.ToByte(textBoxData.Text);  // double 

byte addressing detected, include high address and then data 

                } 

                else 

                { 

                    outputReportBuffer[3] = Convert.ToByte(textBoxData.Text);  // single 

byte addressing detected, ignore high address 

                } 

            } 

            success = SendOutputReport(ref outputReportBuffer); 

 

            if (success) 

            { 

                DebugLine("An Output report has been written."); 

 

                //  Display the report data in the form's list box. 
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                DebugLine(" Output Report ID: " + String.Format("{0:X2} ", 

outputReportBuffer[0])); 

                DebugLine(" Output Report Data:"); 

 

                for (count = 0; count <= outputReportBuffer.Length - 1; count++) 

                { 

                    //  Display bytes as 2-character hex strings. 

                    byteValue = String.Format("{0:X2} ", outputReportBuffer[count]); 

                    DebugLine(byteValue); 

                } 

            } 

            else 

            { 

                DebugLine("The attempt to write an Output report has failed."); 

            } 

        } 

 

        private void buttonRead_Click(object sender, EventArgs e) 

        { 

            Boolean successWrite = false; 

            Byte[] outputReportBuffer = new 

Byte[MyHid.Capabilities.OutputReportByteLength]; 

 

            if (MyHid.Capabilities.OutputReportByteLength > 3) 

            { 

                outputReportBuffer[0] = 0; // reportID 

                outputReportBuffer[1] = Convert.ToByte(reportType.Read); 

                outputReportBuffer[2] = Convert.ToByte(textBoxAddrLow.Text); 

 

                if (MyHid.Capabilities.OutputReportByteLength == 5) 

                { 

 

                    outputReportBuffer[3] = Convert.ToByte(textBoxAddrHigh.Text); 

                    outputReportBuffer[4] = Convert.ToByte(textBoxData.Text);  // double 

byte addressing detected, include high address and then data 

                } 

                else 

                { 

                    outputReportBuffer[3] = Convert.ToByte(textBoxData.Text);  // single 

byte addressing detected, ignore high address 

                } 

            } 

            successWrite = SendOutputReport(ref outputReportBuffer); 

            if (successWrite == true) 

            { 

                DebugLine("Read address written.  Waiting for result"); 

                validByte++; 

                int retry = 0; 

                while (retry < 128) 

                { 

                    ReadInputReport(ref dummyReport); 

                    if (dummyReport[1] == validByte) 

                    { 

                        DebugLine("Read success: " + dummyReport[4]); 

                        retry = 128; 

                    } 

                    else 

                    { 

                        if(menuItemSilenceOverride.Checked) 

                            DebugLine("Saw unexpected byte on try " + retry + ": " + 

dummyReport[1] + ".  Expected: " + validByte); 

                        Thread.Sleep(10); 

                        retry++; 

                    } 

                } 

 

            } 

 

        } 

 

        internal Boolean SendOutputReport(ref Byte[] outputReportBuffer) 
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        { 

            Boolean success = false; 

 

            if (myDeviceDetected == false) 

                FindTheHid(); 

 

            if (myDeviceDetected == false) 

                return false; 

 

            //debugText.Focus(); 

 

            try 

            { 

                //  Don't attempt to exchange reports if valid handles aren't available 

                //  (as for a mouse or keyboard under Windows 2000/XP.) 

                if (!readHandle.IsInvalid && !writeHandle.IsInvalid) 

                { 

                    //  Don't attempt to send an Output report if the HID Output report 

is too small. 

                    if (MyHid.Capabilities.OutputReportByteLength > 3) 

                    { 

                        //  Write a report. 

                        Hid.OutputReportViaInterruptTransfer myOutputReport = new 

Hid.OutputReportViaInterruptTransfer(); 

                        success = myOutputReport.Write(outputReportBuffer, writeHandle); 

                    } 

                    else 

                    { 

                        DebugLine("The HID doesn't have an Output report or it's too 

small (" + MyHid.Capabilities.OutputReportByteLength + ")."); 

                    } 

                } 

                else 

                { 

                    DebugLine("Invalid handle. The device is probably a system mouse or 

keyboard."); 

                    DebugLine("No attempt to write an Output report or read an Input 

report was made."); 

                } 

            } 

            catch (Exception ex) 

            { 

                throw; 

            } 

 

            return success; 

        } 

 

        internal Boolean ReadInputReport(ref Byte[] inputReportBuffer) 

        { 

            Boolean success = false; 

 

            if (myDeviceDetected == false) 

                FindTheHid(); 

 

            if (myDeviceDetected == false) 

                return false; 

 

            try 

            { 

                Hid.InputReportViaInterruptTransfer myInputReport = new 

Hid.InputReportViaInterruptTransfer(); 

                myInputReport.Read(hidHandle, readHandle, writeHandle, ref 

myDeviceDetected, ref inputReportBuffer, ref success); 

            } 

            catch (Exception ex) 

            { 

                throw; 

            } 

 

            return success; 
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        } 

 

        internal Boolean SimpleSend(byte lowerAddr, byte upperAddr, byte data, Boolean 

silent) 

        { 

            Boolean success = false; 

            int dataLoc = 3; 

 

            silent = silent & !menuItemSilenceOverride.Checked; 

            //if (silent == false) 

                //debugText.Focus();  // only give the window focus if we need to output 

something 

 

            Byte[] outputReportBuffer = new 

Byte[MyHid.Capabilities.OutputReportByteLength]; 

 

            if (emulate) 

                outputReportBuffer = new Byte[4]; 

 

            if (outputReportBuffer.Length >= 4) 

            { 

                //  Store the report ID in the first byte of the buffer: 

                outputReportBuffer[0] = 0; // report ID 

                outputReportBuffer[1] = Convert.ToByte(reportType.Write); 

                outputReportBuffer[2] = lowerAddr; 

                if (MyHid.Capabilities.OutputReportByteLength == 5) 

                { 

 

                    outputReportBuffer[3] = upperAddr; 

                    outputReportBuffer[4] = data; 

                    dataLoc = 4; 

                } 

                else 

                { 

                    outputReportBuffer[3] = data; 

                } 

                if(!silent) 

                    DebugAdd("Sending " + outputReportBuffer[dataLoc].ToString() + " to 

address " + outputReportBuffer[2]); 

                success = SendOutputReport(ref outputReportBuffer); 

                if(!silent) 

                    DebugLine(" succeeded: " + success); 

            } 

 

            return success; 

        } 

 

        internal Boolean SimpleRead(byte lowerAddr, byte upperAddr, ref byte data, 

Boolean silent) 

        { 

            Boolean successWrite = false; 

            Boolean successRead = false; 

            Byte[] outputReportBuffer = new 

Byte[MyHid.Capabilities.OutputReportByteLength]; 

            int dataLoc = 4; 

 

            silent = silent | menuItemSilenceOverride.Checked; 

            //if (silent == false) 

                //debugText.Focus();  // only give the window focus if we need to output 

something 

 

            if (MyHid.Capabilities.OutputReportByteLength > 3) 

            { 

                outputReportBuffer[0] = 0; // reportID 

                outputReportBuffer[1] = Convert.ToByte(reportType.Read); 

                outputReportBuffer[2] = lowerAddr; 

 

                if (MyHid.Capabilities.OutputReportByteLength == 5) 

                { 

 

                    outputReportBuffer[3] = upperAddr; 
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                    outputReportBuffer[4] = 0;  // double byte addressing detected, 

include high address and then bogus data 

                } 

                else 

                { 

                    outputReportBuffer[3] = 0;  // single byte addressing detected, 

ignore high address 

                    dataLoc = 3; 

                } 

            } 

 

            /* So why did we just send a report when we're really reading?  By declaring 

reportType.Read we're instructing the device 

             * to store and enable the address which will then be used to populate the 

proper data onto the cypress input pins. 

             * This data will eventually be present in the output report along with a 

ValidByte incrementally higher than the last time 

             * we issued a read request.  The result may not be immediately available, so 

poll the device a few times.  Run this in a  

             * seperate process or ensure a timeout to prevent deadlock 

             */ 

 

            successWrite = SendOutputReport(ref outputReportBuffer); 

            if (successWrite == true) 

            { 

                if(!silent) 

                    DebugLine("Read address written.  Waiting for result"); 

                validByte++; 

                int retry = 0; 

                while (retry < 128) 

                { 

                    ReadInputReport(ref dummyReport); 

                    if (dummyReport[1] == validByte) 

                    { 

                        if(!silent) 

                            DebugLine("Read success: " + dummyReport[dataLoc]); 

                        data = dummyReport[dataLoc]; 

                        successRead = true; 

                        retry = 128;  // kludge to break early 

                    } 

                    else 

                    { 

                        //DebugLine("Saw unexpected byte: " + dummyReport[1] + ".  

Expected: " + validByte); 

                        Thread.Sleep(10); 

                        retry++; 

                    } 

                } 

 

            } 

 

            return successRead; 

        } 

 

        private Boolean FindTheHid() 

        { 

            Boolean deviceFound = false; 

            String[] devicePathName = new String[128]; 

            String functionName = ""; 

            Guid hidGuid = Guid.Empty; 

            Int32 memberIndex = 0; 

            Int16 myVendorID = Convert.ToInt16("4242", 16); 

            Int16 myProductID = Convert.ToInt16("4201", 16); 

            Boolean success = false; 

 

            //debugText.Focus(); 

 

            try 

            { 

                Debug.WriteLine("Attempting to open HID Devices"); 

                myDeviceDetected = false; 
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                //  *** 

                //  API function: 'HidD_GetHidGuid 

 

                //  Purpose: Retrieves the interface class GUID for the HID class. 

 

                //  Accepts: 'A System.Guid object for storing the GUID. 

                //  *** 

 

                Hid.HidD_GetHidGuid(ref hidGuid); 

 

                functionName = "GetHidGuid"; 

                Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName)); 

                Debug.WriteLine("  GUID for system HIDs: " + hidGuid.ToString()); 

 

                //  Fill an array with the device path names of all attached HIDs. 

 

                deviceFound = MyDeviceManagement.FindDeviceFromGuid(hidGuid, ref 

devicePathName); 

 

                //  If there is at least one HID, attempt to read the Vendor ID and 

Product ID 

                //  of each device until there is a match or all devices have been 

examined. 

 

                if (deviceFound) 

                { 

                    memberIndex = 0; 

 

                    do 

                    { 

                        //  *** 

                        //  API function: 

                        //  CreateFile 

 

                        //  Purpose: 

                        //  Retrieves a handle to a device. 

 

                        //  Accepts: 

                        //  A device path name returned by 

SetupDiGetDeviceInterfaceDetail 

                        //  The type of access requested (read/write). 

                        //  FILE_SHARE attributes to allow other processes to access the 

device while this handle is open. 

                        //  A Security structure or IntPtr.Zero.  

                        //  A creation disposition value. Use OPEN_EXISTING for devices. 

                        //  Flags and attributes for files. Not used for devices. 

                        //  Handle to a template file. Not used. 

 

                        //  Returns: a handle without read or write access. 

                        //  This enables obtaining information about all HIDs, even 

system 

                        //  keyboards and mice.  

                        //  Separate handles are used for reading and writing. 

                        //  *** 

 

                        hidHandle = FileIO.CreateFile(devicePathName[memberIndex], 0, 

FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, FileIO.OPEN_EXISTING, 0, 

0); 

 

                        functionName = "CreateFile"; 

                        Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName)); 

                        Debug.WriteLine("  Returned handle: " + hidHandle.ToString()); 

 

                        if (!hidHandle.IsInvalid) 

                        { 

                            //  The returned handle is valid,  

                            //  so find out if this is the device we're looking for. 

 

                            //  Set the Size property of DeviceAttributes to the number 

of bytes in the structure. 
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                            MyHid.DeviceAttributes.Size = 

Marshal.SizeOf(MyHid.DeviceAttributes); 

 

                            //  *** 

                            //  API function: 

                            //  HidD_GetAttributes 

 

                            //  Purpose: 

                            //  Retrieves a HIDD_ATTRIBUTES structure containing the 

Vendor ID,  

                            //  Product ID, and Product Version Number for a device. 

 

                            //  Accepts: 

                            //  A handle returned by CreateFile. 

                            //  A pointer to receive a HIDD_ATTRIBUTES structure. 

 

                            //  Returns: 

                            //  True on success, False on failure. 

                            //  ***                             

 

                            success = Hid.HidD_GetAttributes(hidHandle, ref 

MyHid.DeviceAttributes); 

 

                            if (success) 

                            { 

                                Debug.WriteLine("  HIDD_ATTRIBUTES structure filled 

without error."); 

                                Debug.WriteLine("  Structure size: " + 

MyHid.DeviceAttributes.Size); 

                                Debug.WriteLine("  Vendor ID: " + 

Convert.ToString(MyHid.DeviceAttributes.VendorID, 16)); 

                                Debug.WriteLine("  Product ID: " + 

Convert.ToString(MyHid.DeviceAttributes.ProductID, 16)); 

                                Debug.WriteLine("  Version Number: " + 

Convert.ToString(MyHid.DeviceAttributes.VersionNumber, 16)); 

 

                                //  Find out if the device matches the one we're looking 

for. 

 

                                Debug.WriteLine("Looking for: " + myVendorID + " and " + 

myProductID); 

                                Debug.WriteLine("Looking at " + 

MyHid.DeviceAttributes.VendorID + " and " + MyHid.DeviceAttributes.ProductID); 

 

                                if ((MyHid.DeviceAttributes.VendorID == myVendorID) && 

(MyHid.DeviceAttributes.ProductID == myProductID)) 

                                { 

 

                                    Debug.WriteLine("  My device detected"); 

 

                                    //  Display the information in form's list box. 

 

                                    myDeviceDetected = true; 

 

                                    //  Save the DevicePathName for OnDeviceChange(). 

 

                                    myDevicePathName = devicePathName[memberIndex]; 

                                } 

                                else 

                                { 

                                    //  It's not a match, so close the handle. 

 

                                    myDeviceDetected = false; 

                                    hidHandle.Close(); 

                                } 

                            } 

                            else 

                            { 

                                //  There was a problem in retrieving the information. 
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                                Debug.WriteLine("  Error in filling HIDD_ATTRIBUTES 

structure."); 

                                myDeviceDetected = false; 

                                hidHandle.Close(); 

                            } 

                        } 

 

                        //  Keep looking until we find the device or there are no devices 

left to examine. 

 

                        memberIndex = memberIndex + 1; 

                    } 

                    while (!((myDeviceDetected || (memberIndex == 

devicePathName.Length)))); 

                } 

 

                if (myDeviceDetected) 

                { 

                    //  The device was detected. 

                    //  Register to receive notifications if the device is removed or 

attached. 

 

                    success = 

MyDeviceManagement.RegisterForDeviceNotifications(myDevicePathName, this.Handle, hidGuid, 

ref deviceNotificationHandle); 

 

                    Debug.WriteLine("RegisterForDeviceNotifications = " + success); 

 

                    //timer1.Enabled = true; 

 

                    //  Learn the capabilities of the device. 

 

                    MyHid.Capabilities = MyHid.GetDeviceCapabilities(hidHandle); 

 

                    if (success) 

                    { 

                        //  Find out if the device is a system mouse or keyboard. 

 

                        hidUsage = MyHid.GetHidUsage(MyHid.Capabilities); 

 

                        //  Get handles to use in requesting Input and Output reports. 

 

                        readHandle = FileIO.CreateFile(myDevicePathName, 

FileIO.GENERIC_READ, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, 

FileIO.OPEN_EXISTING, FileIO.FILE_FLAG_OVERLAPPED, 0); 

 

                        functionName = "CreateFile, ReadHandle"; 

                        Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName)); 

                        Debug.WriteLine("  Returned handle: " + readHandle.ToString()); 

 

                        if (readHandle.IsInvalid) 

                        { 

                            exclusiveAccess = true; 

                        } 

                        else 

                        { 

                            writeHandle = FileIO.CreateFile(myDevicePathName, 

FileIO.GENERIC_WRITE, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, 

FileIO.OPEN_EXISTING, 0, 0); 

 

                            functionName = "CreateFile, WriteHandle"; 

                            Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName)); 

                            Debug.WriteLine("  Returned handle: " + 

writeHandle.ToString()); 

 

                            //  Flush any waiting reports in the input buffer. (optional) 

 

                            MyHid.FlushQueue(readHandle); 

                        } 

                    } 

                } 
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                else 

                { 

                    //  The device wasn't detected. 

 

                    Debug.WriteLine(" Device not found."); 

                    timer1.Enabled = false; 

                } 

 

                if (myDeviceDetected == true) 

                    toolStripStatusConnected.Text = "Device connected"; 

                else 

                    toolStripStatusConnected.Text = "Device not connected"; 

                return myDeviceDetected; 

            } 

            catch (Exception ex) 

            { 

                throw; 

            } 

        } 

 

        internal void OnDeviceChange(Message m) 

        { 

            Debug.WriteLine("WM_DEVICECHANGE"); 

 

            try 

            { 

                if ((m.WParam.ToInt32() == DeviceManagement.DBT_DEVICEARRIVAL)) 

                { 

 

                    //  If WParam contains DBT_DEVICEARRIVAL, a device has been attached. 

 

                    DebugLine("A device has been attached."); 

 

                    //  Find out if it's the device we're communicating with. 

 

                    if (MyDeviceManagement.DeviceNameMatch(m, myDevicePathName)) 

                    { 

                        DebugLine("My device attached."); 

                        toolStripStatusConnected.Text = "Device reattached";  // we see 

it, but the handle may have changed 

                        //rerun findTheHID on next transaction to reenable the connection 

                        timer1.Enabled = true; 

                    } 

 

                } 

                else if ((m.WParam.ToInt32() == 

DeviceManagement.DBT_DEVICEREMOVECOMPLETE)) 

                { 

 

                    //  If WParam contains DBT_DEVICEREMOVAL, a device has been removed. 

 

                    DebugLine("A device has been removed."); 

 

                    //  Find out if it's the device we're communicating with. 

 

                    if (MyDeviceManagement.DeviceNameMatch(m, myDevicePathName)) 

                    { 

 

                        DebugLine("My device removed."); 

 

                        //  Set MyDeviceDetected False so on the next data-transfer 

attempt, 

                        //  FindTheHid() will be called to look for the device  

                        //  and get a new handle. 

 

                        myDeviceDetected = false; 

                        //timer1.Enabled = false; 

                        toolStripStatusConnected.Text = "Device not connected"; 

                    } 

                } 

            } 
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            catch (Exception ex) 

            { 

                throw; 

            } 

        } 

 

        private void dataWindowToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            if (frameData.Visible == true) 

                frameData.Hide(); 

            else 

            { 

                Point loc = this.DesktopLocation; 

                Size frameSize = this.Size; 

                int x = loc.X + frameSize.Width; 

                int y = loc.Y; 

                frameData.SetDesktopLocation(x, y); 

                frameData.Show(); 

            } 

        } 

 

        private void delayWindowToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            if (frameDelay.Visible == true) 

                frameDelay.Hide(); 

            else 

            { 

                Point loc = this.DesktopLocation; 

                Size frameSize = this.Size; 

                int x = loc.X; 

                int y = loc.Y + frameSize.Height; 

                frameDelay.SetDesktopLocation(x, y); 

                frameDelay.Show(); 

            } 

        } 

 

        private void memViewToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            if (frameMemory.Visible == true) 

                frameMemory.Hide(); 

            else 

            { 

                frameMemory.Show(); 

            } 

        } 

 

        protected override void WndProc(ref Message m) 

        { 

            try 

            { 

                //  The OnDeviceChange routine processes WM_DEVICECHANGE messages. 

 

                if (m.Msg == DeviceManagement.WM_DEVICECHANGE) 

                { 

                    OnDeviceChange(m); 

                } 

 

                //  Let the base form process the message. 

 

                base.WndProc(ref m); 

            } 

            catch (Exception ex) 

            { 

                DisplayException(this.Name, ex); 

                throw; 

            } 

        } 

 

        internal static void DisplayException(String moduleName, Exception e) 

        { 

            String message = null; 
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            String caption = null; 

 

            //  Create an error message. 

 

            message = "Exception: " + e.Message + "\r\n" + "Module: " + moduleName + 

"\r\n" + "Method: " + e.TargetSite.Name; 

 

            caption = "Unexpected Exception"; 

 

            MessageBox.Show(message, caption, MessageBoxButtons.OK); 

            Debug.Write(message); 

        } 

 

        internal void DebugLine(String newText) 

        { 

            debugText.AppendText(newText + "\r\n"); 

        } 

 

        internal void DebugAdd(String newText) 

        { 

            debugText.AppendText(newText); 

        } 

 

        private void timer1_Tick(object sender, EventArgs e) 

        { 

            Boolean successRead = false; 

 

            Byte[] inputReportBuffer = new 

Byte[MyHid.Capabilities.OutputReportByteLength]; 

            successRead = ReadInputReport(ref inputReportBuffer); 

 

            if (myDeviceDetected == false) 

                return; 

 

            if (successRead == true) 

            { 

                for (int i = 0; i < inputReportBuffer.Length; i++) 

                { 

                    switch (i) 

                    { 

                        case (0): // fallthrough, don't care about the report ID 

                        case (1): labelValid.Text = inputReportBuffer[i].ToString(); 

                            break; 

                        case (2): labelAddrLow.Text = inputReportBuffer[i].ToString(); 

                            break; 

                        case (3): if (inputReportBuffer.Length > 4) 

                            {  // if the report length is 5, we're double byte addressing 

                                labelAddrHigh.Text = inputReportBuffer[i].ToString(); 

                                labelData.Text = inputReportBuffer[i + 1].ToString(); 

                            } 

                            else 

                            {  // otherwise it's just single byte addressing and the high 

address is irrelevant 

                                labelAddrHigh.Text = "N/A"; 

                                labelData.Text = inputReportBuffer[i].ToString(); 

                            } 

                            break; 

                    } 

                } 

            } 

            else 

            { 

                DebugLine("Read operation appears to have failed."); 

            } 

        } 

 

        private void synchronizeToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            syncValidByte(); 

        } 
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        private void syncValidByte() 

        { 

            if (myDeviceDetected == true) 

            { 

                Boolean successRead = false; 

                successRead = ReadInputReport(ref dummyReport); 

                if (successRead == true) 

                { 

                    validByte = dummyReport[1]; 

                    DebugLine("Valid Byte reset to: " + validByte); 

                    labelValid.Text = validByte.ToString(); 

                } 

            } 

        } 

 

        private void BitParallel_Move(object sender, EventArgs e) 

        { 

            Point loc = this.DesktopLocation; 

            Size frameSize = this.Size; 

 

            if ((frameDelay.Visible == true) && (delayWindowLock.Checked == true)) 

            { 

                int x = loc.X; 

                int y = loc.Y + frameSize.Height;; 

                frameDelay.SetDesktopLocation(x, y); 

                frameDelay.Show(); 

            } 

 

            if ((frameData.Visible == true) && (dataWindowLock.Checked == true)) 

            { 

                int x = loc.X + frameSize.Width; 

                int y = loc.Y; 

                frameData.SetDesktopLocation(x, y); 

                frameData.Show(); 

            } 

 

 

        } 

 

        private void mainWindowTickTimerToolStripMenuItem_CheckStateChanged(object 

sender, EventArgs e) 

        { 

            if (mainWindowTickTimerToolStripMenuItem.Checked == true) 

                timer1.Enabled = true; 

            else 

                timer1.Enabled = false; 

        } 

 

        private void debugText_TextChanged(object sender, EventArgs e) 

        { 

            SuspendLayout(); 

            Point pt = debugText.GetPositionFromCharIndex(debugText.SelectionStart); 

            if (pt.Y > debugText.Height) 

            { 

                debugText.ScrollToCaret(); 

            } 

            ResumeLayout(true); 

        } 

 

        private void ashTestToolStripMenuItem_Click(object sender, EventArgs e) 

        { 

            if (coreWindow.Visible == true) 

                coreWindow.Hide(); 

            else 

            { 

                Point loc = this.DesktopLocation; 

                Size frameSize = this.Size; 

                int x = loc.X; 

                int y = loc.Y + frameSize.Height; 

                coreWindow.SetDesktopLocation(x, y); 

                coreWindow.Show(); 
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            } 

        } 

 

    } 

} 
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Test_module.cs 
 
 

 
Figure B.2 Test module software interface 

 
 
 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

 

namespace BitParallel_HID_Interface 

{ 

    public partial class Core_Module : Form 

    { 

 

        private BitParallel bp; 

 

        public Core_Module(BitParallel source) 

        { 

            InitializeComponent(); 

            bp = source; 

        } 

 

        private void label1_Click(object sender, EventArgs e) 

        { 

 

        } 

 

        private void button1_Click(object sender, EventArgs e) 

        { 

            NumericUpDown[] delayValArray = new 

NumericUpDown[]{numericUpDown1,numericUpDown2,numericUpDown3,numericUpDown4}; 

            byte writeAddr = 6; 
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            foreach (NumericUpDown delayUpDown in delayValArray){ 

                 

                int delayVal = (int) (delayUpDown.Value * 100); 

                byte lowByte = (byte) (delayVal % 256); 

                byte highByte =(byte) (delayVal / 256); 

                

                bp.SimpleSend(writeAddr, 0, lowByte, true); 

                writeAddr++; 

                bp.SimpleSend(writeAddr, 0, highByte, true); 

                writeAddr++; 

            } 

 

            bp.SimpleSend(0, 0, 2, true); 

 

        } 

 

        private void button2_Click(object sender, EventArgs e) 

        { 

            numericUpDown1.Value = 0; 

            numericUpDown2.Value = 0; 

            numericUpDown3.Value = 0; 

            numericUpDown4.Value = 0; 

 

            button1_Click(sender, e); 

 

            //byte test = 0; 

            //bp.SimpleRead(6, 0, ref test, true); 

 

        } 

 

        private void radioButton1_CheckedChanged(object sender, EventArgs e) 

        { 

 

        } 

    } 

} 
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APPENDIX C 

 

Physical Board Design and Layout 

 

In this appendix, details of the test module’s physical design and layout are 

presented. As discussed in Chapter 7, the test module PCB is designed using Mentor 

Graphics PADS software suite. Specifically, two applications of the suite are used, 

namely it’s logic editor and its layout editor. The test module components are first 

entered into the logic editor and connected to each other according to design. Once this 

step is complete, the design is exported to the layout editor, where the physical placement 

and routing of the components is done.  

The logic design of the test module was divided up into three parts. The first part 

consisted of the core logic block. This contained the FPGA, flash memory, 

microcontroller, and the programmable delay chips. The schematic for this section is 

shown in Figure C.1. The second part contained the application specific logic, namely 

buffers, fan-out buffers, multiplexors and XOR gate. The schematic for this section is 

shown in Figure C.2. The final part of logic entry contained all the connectors used on the 

test module, i.e. the 40-pin connectors, SMP connectors, power posts, etc. The schematic 

is shown in Figure C.3. 

Once the logic design of the test module it completed, it is exported to the layout 

editor. As discussed in Chapter 7, the test module is designed on a 10-layer PCB board 

(shown in Figure 7.2). The layouts for each layer are included in Figure C.4-Figure C.13. 
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Figure C.1 Core logic block schematic 
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Figure C.2 Application specific logic schematic 
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Figure C.3 Test Module connectors schematic 
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Figure C.4 Test Module Layer 1: Signal – Top 

 
Figure C.5 Test Module Layer 2: Ground Plane - 1 

 
Figure C.6 Test Module Layer 3: Signal – Inner 1 
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Figure C.7 Test Module Layer 4: Ground Plane - 2 

 
Figure C.8 Test Module Layer 5: Power Plane – 1 

 
Figure C.9 Test Module Layer 6: Power Plane - 2 
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Figure C.10 Test Module Layer 7: Ground Plane - 3 

 

 
Figure C.11 Test Module Layer 8: Signal – Inner 2 

 

 
Figure C.12 Test Module Layer 9: Ground Plane - 4 
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Figure C.13 Test Module Layer 10: Signal - Bottom 
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