
Methods for Extending High-Performance Automated

Test Equipment (ATE) using Multi-Gigahertz FPGA

Technologies

A Dissertation
Presented to

The Academic Faculty

by

Ashraf M. Majid

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2011

Copyright © Ashraf M. Majid 2011

Methods for Extending High-Performance Automated

Test Equipment (ATE) using Multi-Gigahertz FPGA

Technologies

Approved by:

Dr. David C. Keezer, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Dr. James O. Hamblen
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Abhijit Chatterjee
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Dr. Shijie Deng
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Linda S. Milor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

 Date Approved: March 29th, 2011

As no man is born an artist, so no man is born an angler.
 -Izaak Walton – The Compleat Angler

To my mother, Shahida Majid,
and my family,

for their endless love, encouragement and support,
without which, this work would not have been possible.

v

ACKNOWLEDGEMENTS

 My career at Georgia Tech started as I first stepped through the halls of

this great institution in 1998. As an eager undergraduate student during the ramp-up to

the dot-com era, my only plan was to graduate and enter the high-tech industry as quickly

as possible. I had no clue that this institution had a lot more planned for me over the next

13 years. Fortunately, along the way, I was able to meet wonderful people whose

guidance, support, and above all friendship have enabled this achievement.

First of all, I would like to express my deepest gratitude to my advisor Dr. David

Keeezer for all his support throughout my graduate career at Georgia Tech. If it were not

for his willingness to take a gamble on a young student, with no experience in digital

testing, this research would not have been possible. His guidance and wisdom have

proven to be invaluable in the development of my career. Also, his encouragement and

patience throughout the years have made this entire experience joyful. I would also like

to give a special thanks to my lab mate Carl Grey who has been instrumental in much of

our work and who has always been willing to provide his technical expertise.

I would like to thank both my reading committee members Dr. Abhijeet

Chatterjee and Dr. Linda Milor, who have been highly supportive of this research and

available for guidance and advice. Dr. Chatterjee has helped our research group with

numerous publications and industry liaisons throughout the years and deserves a special

acknowledgement. I would like to express my gratitude to Dr. James Hamblen for

serving on my proposal and dissertation defense committees. Furthermore, I would like to

 vi

thank Dr. Shije Deng for his assistance and guidance during my time in the quantitative

finance program, and also for serving on my dissertation defense committee.

I would also like to acknowledge of my undergraduate professors at Georgia

Tech. I was fortunate enough to take courses throughout various schools at Georgia Tech

and able to meet many wonderful professors, each of whom contributed to my

development. I would especially like to thank Dr. David Anderson who introduced me to

this intriguing world of research. Allowing me to join his Digital Signal Processing lab as

an undergraduate, he helped sow the seeds for my desire of research and further studies.

Over the last three years, I have been working full time at SunTrust Bank’s capital

markets division while finishing this research. This would not have been possible without

the support and patience of my entire team at SunTrust. I would especially like to thank

my manager Al Kolesar, who has proven to be a great mentor over the years and pivotal

in developing my newfound career in investment banking.

Finally, I am eternally indebted to my family, without whose support, this work

would have been impossible, if not meaningless. This entire journey was not only made

bearable, but pleasurable and fun by the never ending love and support of my mother and

sister. My father’s own academic achievements, and hard work ethic, inspired and drove

me to endeavors I attempt today. Their understanding and patience has been vital in this

entire process. Furthermore, this section would not be complete without acknowledging

the wonderful lifelong friendships I have developed during my tenure at Georgia Tech

and in Atlanta. These friendships have proven to be an essential support structure

providing the encouragement required for completing this research. I have come to value

all these relationships very very dearly.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF SYMBOLS AND ABBREVIATIONS .. xvii

SUMMARY ... xxii

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: BACKGROUND AND HISTORY ... 6

2.1 TECHNOLOGY ROADMAPS ... 7
2.2 AUTOMATIC TEST EQUIPMENT .. 11
2.3 DESIGN FOR TESTABILITY (DFT) ... 16

2.3.1 Additional Module based DFT ... 17
2.3.2 Embedded Module Access based DFT ... 19
2.3.3 Self-Test .. 19

CHAPTER 3: MODULAR EXTENSION OF ATE TO MULTI-GHZ SPEEDS 22

3.1 HIGH SPEED SIGNAL GENERATION .. 23
3.2 LOOPBACK TESTING .. 29
3.3 TIMING SKEW ADJUSTMENT ... 32
3.4 JITTER MANIPULATION .. 35
3.5 SWITCHING .. 39

CHAPTER 4: STAND-ALONE MINIATURE TESTER .. 44

4.1 WAFER-LEVEL TESTING .. 45
4.2 WAFER-LEVEL PROBING .. 47

4.2.1 Interposer .. 49
4.2.2 Bare-die test Socket .. 52

4.3 MINIATURE TESTER .. 55
4.3.1 Digital Logic Core (DLC) ... 57
4.3.2 High Speed Signal Generation .. 59
4.3.3 High Speed Signal Sampling .. 60

4.4 EXPERIMENTAL DEMONSTRATION OF THE MINI-TESTER 61
4.5 EXPERIMENTAL DEMONSTRATION OF THE BARE-DIE TEST SYSTEM 65

CHAPTER 5: ENHANCED TEST MODULE USING MULTI-GIGAHERTZ FPGA
TECHNOLOGIES .. 69

5.1 CONCEPT.. 70
5.2 METHODOLOGY ... 73
5.3 TEST MODULE DESIGN .. 74

5.3.1 Core Logic Block .. 75
5.3.2 Application Specific Block ... 78

 viii

5.4 APPLICATIONS ... 79
5.4.1 High Speed Signal Multiplexing ... 80
5.4.2 Loopback Testing.. 82
5.4.3 Amplitude/Voltage Adjustment .. 84
5.4.4 Timing Skew Adjustment ... 86
5.4.5 Jitter Injection ... 90
5.4.6 Low Speed/Parametric/ATE Testing .. 91

CHAPTER 6: FPGA DESIGN AND IMPLEMENTATION ... 93

6.1 FGPA SELECTION .. 94
6.1.1 Xilinx Virtex 5 .. 96

6.1.1.1 RocketIO GTX Transceivers .. 98
6.2 FPGA IMPLEMENTATION ... 104

6.2.1 Communication ... 105

6.2.2 FPGA Firmware .. 110

6.2.3 Software Client ... 116

CHAPTER 7: PHYSICAL DESIGN AND BOARD LAYOUT 119

7.1 PHYSICAL DESIGN CONSIDERATIONS ... 119
7.2 TEST MODULE PHYSICAL LAYOUT .. 126

CHAPTER 8: TEST MODULE PERFORMANCE AND CHARACTERIZATION .. 135

8.1 CORE LOGIC BLOCK –CHARACTERIZATION ... 135
8.2 HIGH-SPEED SIGNAL MULTIPLEXING –CHARACTERIZATION 141
8.3 LOOPBACK PATH – CHARACTERIZATION .. 145
8.4 AMPLITUDE ADJUSTMENT – CHARACTERIZATION .. 153
8.5 TIMING/SKEW ADJUSTMENT – CHARACTERIZATION .. 155
8.6 JITTER INJECTION – CHARACTERIZATION ... 157
8.7 LOW-SPEED/PARAMETRIC TESTING - CHARACTERIZATION 162
8.8 RESULTS SUMMARY ... 163

CHAPTER 9: CONCLUSIONS .. 164

9.1 SUMMARY .. 164
9.2 CONTRIBUTIONS .. 167

9.2.1 Modular test enhancement framework for ATE ... 167

9.2.2 Communication and control architecture for test modules 168

9.2.3 High-speed signal multiplexing .. 168

9.2.4 High-speed Loopback path ... 169

9.2.5 Jitter Injection ... 169

9.2.6 Low-speed/parametric testing path ... 170

9.2.7 Physical design guidelines for high-speed test module 170

9.3 CONCLUSIONS .. 171
9.4 FUTURE WORK .. 172

APPENDIX A: FPGA Firmware ... 174

APPENDIX B: Communication Firmware and Software ... 212

APPENDIX C: Physical Board Design and Layout .. 246

 ix

REFERENCES .. 254

VITA ... 264

 x

LIST OF TABLES

Table 2.1 Test Cost Drivers [1] 9

Table 2.2 ITRS Test and Test Technology Roadmap 2005 [2] 9

Table 6.1 Virtex-5 Family supported I/O standards [100] 97

 xi

LIST OF FIGURES

Figure 2.1 Semiconductor test cost vs. manufacturing cost [17]. 8

Figure 2.2 ATE Architecture Change 13

Figure 2.3 Serial Scan Architecture 18

Figure 3.1. Top-level system view of modular extension approach to ATE[44] 25

Figure 3.2 Typical application test configuration [44]. 26

Figure 3.3. Multi-GHz driver module logic [44]. 27

Figure 3.4. Multi-GHz receiver module logic [44]. 28

Figure 3.5. High-speed data signal from driver module at 5.0Gbps [44]. 28

Figure 3.6. Overview of minimal loopback testing [52] 30

Figure 3.7 Active loopback path measured at 10.0Gbps [53] 31

Figure 3.8 One stage variable delay circuit [59] 34

Figure 3.9 4-stage fine delay circuit with finite delay circuit [59] 34

Figure 3.10 Output from delay circuit at 6.0 GHz showing a delay of 32.5ps [59] 35

Figure 3.11. Simple jitter reduction circuit [61] 36

Figure 3.12 Input signal into jitter injection circuit at 3.2Gbps with 29ps of total jitter
[59] 38

Figure 3.13 Output signal from jitter injection circuit at 3.2Gbps with 69ps of total jitter
[59] 38

Figure 3.14 Mechanical relay performance [52] 41

Figure 3.15 Size comparison of mechanical relay and MEMS relay [52] 42

Figure 3.16 MEMS switch performance [52] 43

Figure 4.1 Process flow of bed of nails wafer level interconnects by photo resist method
 49
Figure 4.2 Interposer incorporating vertically connected signal traces created using
through wafer vias. 50

 xii

Figure 4.3 Testing of wafer-level packaged (WLP) devices using a “miniature tester” and
a high-density interposer. 51

Figure 4.4 Parallel high-speed wafer probing using multiple miniature testers. 52

Figure 4.5 Layout of elastomer coplanar contact probe. 53

Figure 4.6. Prototype Test Socket 54

Figure 4.7. Elastomer Coplanar Contact probes inside test socket. 54

Figure 4.8. Miniature tester with high-speed PECL for testing multi-GHz DUTs (DLC
enlarged). 58

Figure 4.9. Prototype miniature tester with embedded DLC. 58

Figure 4.10. PECL logic used in mini-tester for high speed signal generation. 60

Figure 4.11. Logic used in mini-tester for high speed signal sampling. 61

Figure 4.12. 5.0Gbps eye diagram produced by mini-tester. 62

Figure 4.13. 6.4Gbps eye diagram produced by mini-tester. 62

Figure 4.14. 8.0Gbps eye diagram produced by mini-tester. 63

Figure 4.15. 6.4Gbps signal to be received. 64

Figure 4.16. Bit pattern plotted with sampled data. 64

Figure 4.17. Lab setup showing high-speed signal from mini-tester prototype passing
through interposer prototype to oscilloscope. 65

Figure 4.18. 5.0Gbps eye diagrams. Bottom signal directly from mini-tester, top signal
via interposer. 66

Figure 4.19. 6.4Gbps eye diagrams. Bottom signal directly from mini-tester, top signal
via interposer. 67

Figure 4.20. Jitter measurement of 6.4Gbps through interposer. 68

Figure 5.1 ATE test head shown with device interface board. Test modules are designed
to plug into DIB. 72

Figure 5.2 Block diagram of test module design with DIB and ATE. 73

 xiii

Figure 5.3 Photograph of the FPGA 5/10Gbps Module. 78

Figure 5.4 Multiplexing high-speed signals from core logic block to produce a double
date rate signal. (a) shows a timing diagram to generate a double date rate. (b) shows
logic components used. 81

Figure 5.5 Typical loopback path for external loopback test. 83

Figure 5.6 Variable-gain output buffer. 84

Figure 5.7 Variable-gain output buffer controlled by a DAC. 85

Figure 5.8 Schematic of 10-stage delay chip 87

Figure 5.9 Measured delay plotted against programmed delay for three delay chips. 88

Figure 5.10 Delay Chip used with clock input for RIO MGT 89

Figure 5.11 Jitter injection using FTUNE pin 91

Figure 5.12 Low speed/ATE testing 92

Figure 6.1 Example of GTX Transceiver Tile column in a Virtex-5 FXT device [102] 100

Figure 6.2 GTX_DUAL Tile block diagram [102] 101

Figure 6.3 GTX TX block diagram [102] 102

Figure 6.4 GTX RX block diagram [102] 103

Figure 6.5 Logical overview of FPGA in core logic block and surrounding components
 105
Figure 6.6 Logical overview of communication to test module 109

Figure 6.7 State machine implemented in FGPA firmware to execute instructions 111

Figure 6.8 FPGA clock delay control logic overview 113

Figure 6.9 FPGA firmware memory map 115

Figure 6.10 Client software screen 116

Figure 7.1 Microstrip and stripline configurations 124

Figure 7.2 Test module PCB stack up 127

 xiv

Figure 7.3 Test module PCB layout using CAD software. 130

Figure 7.4 Right-most section of test module layout 131

Figure 7.5 Mid-section of test module layout 131

Figure 7.6 Left-most section of test module layout 132

Figure 8.1 Test setup to measure core logic block performance. 136

Figure 8.2. Core logic block output @ 5Gbps 137

Figure 8.3 Core logic block output rise time measurement @ 5Gbps 138

Figure 8.4 Core logic block output @ 6.25Gbps 138

Figure 8.5 Core logic block output @ 9.00Gbps 139

Figure 8.6 Core logic block jitter measurement @ 9.00Gbps 140

Figure 8.7 Core logic block output @ 10.00Gbps 141

Figure 8.8 Test setup to measure high-speed signal multiplexing performance 142

Figure 8.9 High-speed signal multiplexing output @ 10.00Gbps 143

Figure 8.10 High-speed signal multiplexing rise-time measurement @ 10.00Gbps 144

Figure 8.11 High-speed signal multiplexing output @ 15.00Gbps 144

Figure 8.12 High-speed signal multiplexing output @ 16.00Gbps 145

Figure 8.13 Test setup to measure loopback path using RIO MGT signals. 146

Figure 8.14 Loopback path results using RIO MGT @ 6.25Gbps 147

Figure 8.15 Loopback path results using RIO MGT @ 9.00Gbps 148

Figure 8.16 Loopback path results using RIO MGT @ 10.00Gbps 149

Figure 8.17 Test setup to measure loopback path using an external high-speed signal
source. 150

Figure 8.18 Loopback path results using external source @ 9.28Gbps 151

 xv

Figure 8.19 Loopback path results using external source @ 10.0Gbps 152

Figure 8.20 Test setup to measure amplitude adjustment performance of test module. 153

Figure 8.21 Amplitude adjustment results from TX1 154

Figure 8.22 Test setup to measure timing/skew adjustment. 155

Figure 8.23 Finite timing adjustment with delay chip 156

Figure 8.24 Timing adjustment using analog FTUNE input on delay chip 157

Figure 8.25 Test setup to demonstrate jitter injection. 158

Figure 8.26 0.5V noise signal injecting 16ps (p-p) of jitter 159

Figure 8.27 2.0V noise signal injecting 52ps (p-p) of jitter 159

Figure 8.28 0.5V 20MHz sine signal injecting 30ps (p-p) of jitter 160

Figure 8.29 2.0V 20MHz sine signal injecting 81ps (p-p) of jitter 160

Figure 8.30 Jitter injection measurements (p-p) 161

Figure 8.31 Jitter injection measurements (standard deviation) 162

Figure A.1 USB Communication logic 176

Figure A.2 Delay load logic 177

Figure B.1 DLC software interface 230

Figure B.2 Test module software interface 244

Figure C.1 Core logic block schematic 248

Figure C.2 Application specific logic schematic 248

Figure C.3 Test Module connectors schematic 249

Figure C.4 Test Module Layer 1: Signal – Top 250

Figure C.5 Test Module Layer 2: Ground Plane - 1 250

Figure C.6 Test Module Layer 3: Signal – Inner 1 250

 xvi

Figure C.7 Test Module Layer 4: Ground Plane - 2 251

Figure C.8 Test Module Layer 5: Power Plane – 1 251

Figure C.9 Test Module Layer 6: Power Plane - 2 251

Figure C.10 Test Module Layer 7: Ground Plane - 3 252

Figure C.11 Test Module Layer 8: Signal – Inner 2 252

Figure C.12 Test Module Layer 9: Ground Plane - 4 252

Figure C.13 Test Module Layer 10: Signal - Bottom 253

 xvii

LIST OF SYMBOLS AND ABBREVIATIONS

ATE Automated Test Equipment

AC Alternating Current

ASIC Application-Specific Integrated Circuit

ATPG Automatic Test Pattern Generator

BCB Benzocyclobutene

BGA Ball Grid Array

BIST Built-In Self-Test

BLVDS Bus Low-Voltage Differential Signaling

BoN Bed of Nails

BOST Built-Off Self-Test

CAD Computer-Aided Design

CMT Clock Management Tiles

CPU Central Processing Unit

CRC Cyclical Redundancy Check

CSP Chip Scale Package

CUT Circuit Under Test

DAC Digital-to-Analog Converter

DC Direct Current

DDJ Data Dependent Jitter

DDR Double Data Rate

DFT Design for Testability

DIB Device Interface Board

DLC Digital Logic Core

 xviii

DLL Delay-Locked Loop

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processing

DUT Device Under Test

FIFO First In, First Out

GaAs Gallium Arsenide

GPS Global Positioning System

GSG Ground-Signal-Ground

GTL Gunning Transceiver Logic

GTLP Gunning Transceiver Logic Plus

HDL Hardware Description Language

HID Human Interface Device

HSTL High-speed Transceiver Logic

I/O Input and Output

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

InP Indium Phosphide

IP Intellectual Property

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors

JTAG Joint Test Action Group

LFSR Linear Feedback Shift Register

LVCMOS Low-Voltage Complementary Metal Oxide Semiconductor

LVDS Low-Voltage Differential Signaling

LVTTL Low-Voltage Transistor-Transitor Logic

 xix

MAC Media Access Control

MCC Multiple Copper Columns

MCM Multi-Chip Module

MCP Multi-Chip Package

MEMS Microelectromechanical Systems

MUX Multiplexor

ORA Output Response Analyzers

PA ATE Protocol Aware ATE

PC Personal Computer

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PCIE PCI Express

PCI-X PCI eXtended

PEC Pin Electronic Card

PECL Positive Emitter-Coupled Logic

PISO Parallel In, Serial Out

PLL Phase-Locked Loop

PMU Parametric Measurement Unit

PRBS Pseudorandom Binary Sequence

PROM Programmable Read-Only Memory

RAM Random Access Memory

RF Radio Frequency

RIO MGT RocketIOTM Multi-Gigabit Transceiver

RSDS Reduced Swing Differential Signaling

RX Receive

 xx

SATA Serial Advanced Technology Attachment

SB Solder Bumps

SECT Standard For Embedded Core Test

SerDes Serializer/Deserializer

SIE Serial Interface Engine

SiGe Silicon-Germanium

SiP System-in-a-Package

SIPO Serial In, Parallel Out

SMA SubMiniature version A

SoC System-on-a-Chip

SoL Sea of Leads

SRAM Static Random-Access Memory

SSC Stretched Solder Column

SSTL Stub Series Transceiver Logic

SW Software

TAM Test Access Mechanism

TCK Test Clock

TDI Test Data In

TDO Test Data Out

TMS Test Mode Select

TPG Test Pattern Generator

TSP Test Support Processor

TX Transmit

UBM Under Bump Metallization

ULVDS Ultra Low-Voltage Differential Signaling

 xxi

USB Universal Serial Bus

UV Ultra-Violet

VCO Voltage-Controlled Oscillator

VHDL VHSIC Hardware Description Language

WLP Wafer-Level Package

 xxii

SUMMARY

This thesis presents methods for developing multi-function, multi-GHz, FPGA-

based test modules designed to enhance the performance capabilities of automated test

equipment (ATE). In recent years technological advancements in semiconductor

technology have outpaced advances in ATE testing capabilities, thereby causing

significant challenges for new high-speed device testing. The main motivation of this

research was to develop solutions that address these challenges.

The methods shown in this thesis are used to develop a design approach that

utilizes a test module structure in two blocks. A core logic block is designed using a

multi-GHz FPGA that provides control functions. Another block called the “application

specific” logic block includes components required for specific test functions. Six test

functions are demonstrated in this research: high-speed signal multiplexing, loopback

testing, jitter injection, amplitude adjustment, timing adjustment. Furthermore, the test

module is designed to be compatible with existing ATE infrastructure, thus retaining full

ATE capabilities for standard tests. Experimental results produced by this research

provide evidence that the methods are sufficiently capable of enhancing the multi-GHz

testing capabilities of ATE and are extendable into future ATE development.

The modular approach employed by the methods in this thesis allow for flexibility

and future upgradability to even higher frequencies. The methods allow a next-generation

FPGA to be quickly integrated into a test module to increase performance. Similarly, new

components can be designed into the “application specific” block for additional test

functionality. Therefore the contributions made in this thesis have the potential to be used

into the foreseeable future for enhancements to semiconductor test capabilities.

 1

CHAPTER 1

 INTRODUCTION

The objective of this research is to develop feasible and economical solutions to

testing high-speed digital devices at multi-GHz rates. Testing high-speed digital devices

at full speeds is essential to assure that manufactured devices meet design specifications

and function properly throughout the entire range of intended operation. Increases in

device performance and functionality have resulted in challenging problems pertaining to

testing them effectively. Many current methods of testing are either inefficient or

prohibitively expensive. This research presents methods to develop an efficient test

system to cost-effectively test high-speed semiconductor devices.

Technology roadmaps have accurately predicted rapidly increasing clock and data

rates of electronic devices [1]. Current roadmaps indicate this trend will continue into the

foreseeable future [2]. Gordon Moore states in his famous 1965 article [3] – the basis for

the well-known “Moore’s Law”- that the number of components that can be placed into a

device nearly doubles every two years. This “law” has been upheld for nearly half a

century, despite meeting many physical limitations on the way. Furthermore, this trend is

expected to continue without major obstacles until at least the year 2015 or perhaps later

[4], thereby producing exponentially complex, higher-performance devices.

Automated Test Equipment (ATE) has generally been used to test high-volume semi-

conductor devices over the last four decades. Over this period, ATE performance has

improved and new capabilities have been added. However, the advances in many ATE

performance measures and capabilities have not kept up with the advances in semi-

 2

conductor technology [1][2]. One commercially available system can run up to 12.8Gbps

after installing add-on instrumentation [5]. Typical base systems are limited to lower

speeds [6]. This situation has resulted in the production of advanced, complex devices,

but not a feasible way to test their complete functionality. This problem has become so

critical to the development of higher performance devices, that the paradigm in which

design is associated with research and development and testing is associated with

manufacturing no longer stands [7]. Design and test can no longer be dealt with as

separate issues – they must be approached hand in hand in order to efficiently develop

next generation high-performance devices.

Design for Testability (DFT) incorporates certain testability features into the

design stage of semiconductor devices. These improvements typically include design

modifications and enhancements such as serial scan, boundary scan, and built-in self-test

(BIST) [7]. Most DFT and BIST methods can be used to verify internal logic and

structural connectivity, thereby simplifying external testing required.

As the complexity of devices increase, testing the entire device globally becomes

inefficient and complex. Incorporating DFT techniques into various components of

devices produces substantial benefits [8][9]. This has caused most semiconductor

manufacturers to incorporate DFT features into complex device design. Assuming there

is a practical degree of DFT and BIST methods on the device, its testing complexity can

be reduced to a subset of traditional testing [10]. However, functional testing at full clock

speeds remains as one of the most critical tests required as DFT and BIST generally do

not operate at these speeds. Furthermore, environmental and parametric testing is still

required, as these tests are not covered by DFT and BIST methods. Therefore, although

 3

the required external tests are reduced by incorporating DFT, high-performance devices

still require high-speed functional tests and traditional testing such as environmental and

parametric testing.

ATE have traditionally been able to perform most semiconductor testing

requirements mentioned above. Parametric tests are performed by elaborate parametric

measurement units (PMUs) within an ATE. Reliability tests are performed by an ATE’s

full suite of sophisticated instrumentation and software. These tests do not fundamentally

change with increasing clock and data rates. Functional testing, on the other hand, is

limited by an ATE’s performance capabilities. Purchasing new ATE systems when

higher-performance testing is required can be cost prohibitive (historical ATE buy rates

have been reduced by a factor of two since 1981 [11]). Upgrading existing ATE

performance with additional pin electronics cards (PECs) from its manufacturer is a

cheaper option when available. Therefore there is a need for a test system that can

perform functional tests beyond the performance capabilities of available ATE. Based on

technology road maps, test systems will be required to test devices running at speeds in

excess of 10Gbps.

To approach the problem of increasing test performance requirements, a modular

test system is presented in this thesis. The test system is used to enhance specific ATE

performance criteria such as high-speed signal generation, high-speed loop-back testing,

etc. The test system is designed with a core component that aims to exploit state-of-the-

art field programmable gate array (FPGA) technologies. Current FPGA performance

exceeds many performance criteria of ATE [6][12]. Furthermore the use of an FPGA

allows the test system to operate independently of the ATE and without any of its

 4

resources which tend to be relatively expensive. With the FPGA, the core component

controls and generates many test functions itself. However, for comprehensive testing,

test functions such as parametric measurement and reliability testing are required. As

discussed above, these traditional, lower-speed parametric tests are better handled by and

ATE. Hence, to retain full testing functionality, the designed solutions must be

compatible with existing ATE infrastructure.

In addition to a core component, the test system can be designed with logic to

enhance ATE capabilities based upon specific test application requirements. For instance,

typical ATE are limited in signal speeds up to 3.2Gbps. If higher speed test signals are

required for the test application, logic can be added to the test module to increase signal

speeds to above 3.2Gbps. Similarly, if other test capabilities are required such as jitter

injection, additional logic can be added to the test module.

Therefore the objective of the research presented in this thesis is to develop

feasible methodologies for extending ATE performance capabilities using multi-GHz

FPGAs. The research develops an approach that can be adapted as new functionalities are

required and further technological advances take place. The approach consists of the

design of a test system in separate blocks, specifically a core logic block and an

application specific block. When higher performance is required of the test system, the

core logic block can be redesigned independently of the application specific logic.

Similarly, the application specific logic can be redesigned or additional logic added to

accommodate new or improved test applications. By limiting the solution to focus on

specific enhancements, the methods presented in this thesis allow ATE performance to be

extended in a feasible, timely and cost-effective manner.

 5

The organization of this thesis is as follows. In Chapter 2, technology roadmaps

are presented and discussed. Also the history of ATE is given and the evolution of testing

with concepts such as DFT and BIST is described. Two different methods of previous

work done in the area to enhance high-speed digital testing capabilities are presented in

Chapters 3 & 4. Chapter 3 presents modular extension techniques of ATE to

accommodate high-speed digital testing. This method of test enhancement extends

resources from the ATE to produce higher performance test capabilities. Chapter 4

presents a FPGA-based stand-alone test system that is capable of operating independently

of an ATE and providing high-performance test capabilities.

The reaming research presented in this thesis uses the lessons learned in both

Chapters 3 and 4 and develops an FPGA-based modular extension test system designed

to work within existing ATE infrastructure, but not to use ATE resources. The test system

can be operated with the FPGA, thus allowing operation independent of an ATE. Chapter

5 discusses in detail the concept and design of the test system. As the FPGA in the test

system is a critical component of it, the selection, design, and use of the FPGA is

discussed in Chapter 6. Designing high-speed digital systems requires additional

considerations versus designing at-speed systems. At higher speeds, passive system

elements can cause undesirable effects, essentially altering system performance. These

additional considerations are discussed in Chapter 7 and the physical design of the test

system is presented. In Chapter 8, the experimental results of this thesis are presented and

the developed test system is characterized. Finally in Chapter 9, conclusions of this work

are presented and future work discussed.

 6

CHAPTER 2

 BACKGROUND AND HISTORY

In the semiconductor industry, specialized computers are used to test devices.

Over the past 50 years or so, these specialized computers, or ATE as they are formally

known as, have become bigger, faster and offer more functionality than ever before. This

chapter aims to present a background on testing and the history of ATE evolution.

Semiconductor testing is largely driven by the technological trends of the

semiconductor industry. Various technologies, such as digital, optical, MEMS, RF, etc.

require different testing methodologies. Furthermore, technological advancements in

these fields merit different methodologies of test techniques due to the complexities

imposed by these advancements. Therefore it is relevant to discuss these technological

advancements to fully understand the nature of modern day semiconductor testing. Due

to this reason, in this chapter, technology roadmaps are discussed first. ATE are the

primary tools used in testing semiconductor devices, thus after presenting technology

roadmaps, the history and development of ATE is discussed. The last section of this

chapter discusses general testing methods and how they have been developed along with

ever increasing semiconductor device functionality.

 7

2.1 Technology Roadmaps

Over the past few decades, the ever increasing performance and transistor count

of semiconductor devices has caused a phenomenal change in semiconductor test

requirements. Consumer demand during the 80s and 90s focused mainly on increased

performance of electronics. However the last decade witnessed a fundamental shift in

market demand, as technological advancements allowed the integration of various

semiconductor technologies. These technological advancements include technologies

such as Multi-chip modules (MCM), Multi-chip package (MCP), System-on-a-Chip

(SoC), System-in-a-Package (SiP) and 3D packaging, which have allowed the integration

of various semiconductor technologies such as digital, RF, optical, MEMS, etc. devices

into one system [13]. Based on these capabilites, consumer demand has shifted from not

only higher performance from electronic devices, but more functionality as well.

The demand growth of simple one function devices has been steadily declining. In

many cases, such as the point-and-shoot digital camera, sales have actually been

declining since 2008 [14]. Current market demand indicates that consumers prefer to use

their smartphone devices, and demand that a smartphone also function as a high-

resolution camera, GPS device, motion sensor, etc. This level of integration has caused

significant challenges in testing as it is ultimately the application requirements or

specifications that determine test requirements. Furthermore, each technology requires

different test methodologies. Along with testing requirements for various technologies,

increased device complexity has increased test complexity, which further translates to

increased test cost. The cost of testing a device is now a large part of its total

manufacturing cost [15]. Fabrication costs per function have generally decreased 25-30%

 8

annually, while test cost per function has decreased only 5-10% annually [16]. Given that

test costs are already a large part of the total manufacturing cost; the statistics indicate

that testing costs will soon be the majority of a device’s final cost. Figure 2.1 shows a

plot of manufacturing and test costs per function over the past 40 years and predicted for

the next 20 years. It is expected that the cost of testing a device will become the majority

of a device’s cost shortly within this decade [17].

Figure 2.1 Semiconductor test cost vs. manufacturing cost [17].

According to the International Technology Roadmap for Semiconductors (ITRS),

the capital cost for a test cell is the following:

CCELL = CBASE + CINTERFACE + CPOWER-SUPPLIES + CTEST-CHANNELS + COTHER

Where CBASE is the cost of the base system (channels not included), CINTERFACE is

the cost of interfacing devices, CPOWER-SUPPLIES is the cost of power supplies, CTEST-

CHANNELS is the cost of channels, and COTHER is the remaining costs such as floor space,

cooling systems, etc.[1]. The total cost of a test cell can be broken down into more

meaningful figures by dividing costs by testing throughput, to result in a per device test

 9

cost. The current top drivers of test cost and future test cost drivers according to the ITRS

are shown in Table 2.1.

Table 2.1 Test Cost Drivers [1]

Current Top Test Cost Drivers Future Test Cost Drivers

ATE Capital Expenditures Device Performance Metrics

ATE Interface Expenditures New Defects and Reliability Problems

Cost of Test Program Development Known Good Die Requirement

Test Time an Test Coverage Test Requirements of Packaging

Device performance metrics will be one of the main future test cost drivers. The

cost of testing high-speed I/O has become very significant [1]. High frequency I/O

technology continues to show significant growth in speed and port count. Trends such as

these are expected to continue as technology roadmaps clearly predict rapidly increasing

clock and data rates into the foreseeable future. Table 2.2 shows the ITRS Test and Test

Technology Roadmap from 2005. It can be noted from the table that not only are the data

rates for future semiconductors expected to increase, but their feature sizes are expected

to decrease.

Table 2.2 ITRS Test and Test Technology Roadmap 2005 [2]

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013

Wafer Test -
number of Sites 8 8 8 16 16 16 16 32 32

Half Pitch size
(nm) 90 78 68 59 52 45 40 36 32

Chip-to-board (off-
chip) speed (high-
performance, for
peripheral buses)
(MHz) 3125 3906 4883 6103 7629 9536 TBD 14901 18626

I/O data rate
(GT/s)

0.1 -
3

0.1 -
6

0.1 -
6

0.1 -
6

0.2 -
12

0.2 -
12

0.2 -
12

0.2 -
15

0.2 -
15

 10

Based on this roadmap and technology trends, there are a few important areas of

concern regarding test. The first is the rampant data rate increase. Due to higher data

rates, test systems must be capable of such high-speed data rates. Second, test systems

must be able to accommodate the increase in pin counts enabled by the lower feature

sizes. In 2009, up to 250 pairs of 7Gbps backplane style SerDes channels were found in

some applications [1], however most applications will have 32 channels or less. The third

area of concern is test system bandwidth. At 10Gbps, the bandwidth requirement

becomes 20GHz or higher and providing such an interface including connections through

PCB, cables, connectors, etc. becomes a monumental engineering task. The fourth area of

concern is jitter, and this becomes a significant concern at multi-GHz data rates. At a

10Gbps speed, bit periods are 100ps and only 50ps of jitter can render half that bit period

useless. Dealing with such high-speed signals and introducing low amounts of jitter is not

a trivial task. The final area of concern is the cost factor. Traditionally high-speed devices

were designed as high-performance high-priced devices. This has been rapidly changing

as the thirst for high-speed data in commoditized hand-held devices has been insatiable.

Furthermore, with accelerating technology improvements, product lifecycles have

become shortened, which has made cost savings from “mature” technologies very

difficult to achieve.

The concerns discussed above indicate a need for a test system that:

i) is capable of multi-GHz I/O

ii) is capable of accommodating multiple data channels

iii) is capable of high bandwidth through all components

iv) adds low jitter to the test signal

 11

v) feasibly and economically tests devices

In addition to the new requirements for a test system discussed above, a

comprehensive test system should always be capable of standard tests functions such as

timing adjustment, voltage adjustment, parametric tests, etc. Taking all these concerns

into consideration, multi-dimensional challenges arise when developing new test

instrumentation. Semiconductor testing is generally done using ATE. The next section

discusses the history and development of ATE systems.

2.2 Automated Test Equipment

The roots of modern ATE were developed in the 1960s by Nick DeWolf, a well-

known test engineer during that era, and often referred to as the father of ATE [18].

DeWolf and Alex d’Arbeloff together founded a company called Teradyne whose

business plan was to manufacture and design semiconductor test equipment. In 1966,

Teradyne introduced an integrated circuit tester, the J259, which was the first tester to use

a minicomputer for control, thus launching the first ATE [19].

The first generation of ATE was comparatively primitive to modern day ATE. It

wasn’t until the late 70s and early 80s that ATE started to achieve complex functionality

and the use of automatic handlers and probers. During this time multi-function ATE were

being introduced that could test mixed-signal, RF, optical as well as digital components.

In the mid-to late 80s digital devices were rapidly evolving into the GHz range.

This required test systems capable of testing at GHz rates. Many manufacturers

developed systems using various techniques to increase speeds. For instance, the

Megatest MegaOne and the Tektronix S-3295 used multiplexing concepts on adjacent

 12

pins to double output frequencies [20]. However these systems could operate at only a

few hundred MHz, with timing accuracy of only 0.5-1ns, and above all, cost nearly $3M

for a 256-pin system. Therefore around this time, ATE functionality could not keep pace

with the rapid advancements of semiconductor technologies. In order to achieve GHz

speeds and keep up with technological trends, test engineers either developed custom test

heads for existing ATE or developed extension systems to produce GHz signals. These

enhancements are the topic of the next chapter.

Despite the lack of performance during this period, a significant shift did occur in

ATE architecture. Up to this point, most ATE systems used a “shared resource”

architecture, where a few dedicated “per-pin” electronics, such as formatter or

comparator served as an interface to the device under test (DUT). When lower pin counts

were required, this allowed a cost advantage. However as more and more switching and

multiplexing techniques were employed, issues such as test calibration and programming

became very tedious due to signal routing. Also, at higher speeds bandwidth limitations

produced undesirable results. To overcome these issues, manufacturers introduced “per-

pin” architecture [20]. Under this architecture, each tester pin included its own dedicated

pin electronics such as pattern generation, timing control, etc. This eliminated the

complex switching algorithms and timing issue between pins, and created a more

simplistic, efficient and easy to use system as each channel could be controlled

independently. This architecture in turn reduced the cost of the base system, and allowed

users to purchase additional channels when required. An overview of the shift from

shared resource architecture to per-pin architecture is shown in Figure 2.2.

 13

Figure 2.2 ATE Architecture Change

Hewlett Packard released its first series of testers based on this new “per-pin”

architecture in the 90s. The 83000-F660 was the state-of-the-art tester at the time.

However, it could not reach 1GHz; its highest speed was 666MHz. The cost of the

system ranged between $1-3M and despite the cost and performance limitations, these

systems were the industry leader and quite popular.

Other players in the market included Teradyne, Advantest and Credence systems.

All had their own custom systems, but none running above 1GHz. However around this

time, a new standard for modern ATE architecture did evolve which included a test

mainframe/test head, a development workstation, and power supplies. Much of the testing

done on ATE was power intensive and generated much heat. Thus most ATE were

 14

equipped with efficient cooling systems, for example the HP8300 was equipped with

water cooling features.

Despite the fact that tester performance could not keep pace with device

performance, many additional functions were added and improved. These included

elaborate parametric measurement units, sophisticated test pattern generation algorithms,

large amounts of memory, etc. Adding such additional functions to ATE have kept their

costs around the same level. ATE cost per pin for high-end systems still hovers around

$3,000-$10,000 per channel. Therefore a 256 channel ATE can easily range from $1M to

above $5M.

In order to lower ATE costs, manufacturers pushed the concept of open-

architecture test platforms in the early 2000s [13]. The concept of open-architecture

testers is similar to that of building a custom PC, in which one can purchase a

motherboard, a processor, a video card, etc. separately in order to build one system.

Similarly ATE manufacturers developed base test systems to which PECs could be added

to. The idea was that consumers could purchase a base system and only the cards they

required, thus keeping costs down [21]. Furthermore this allowed the design of higher

end cards that could be sold to consumers that required high-performance testing. For

example Verigy (formerly HP’s Test Systems division) develops a base system called

V93000 SOC (the latest system evolved from the HP83000). The system can accept cards

with functions such as digital nano-electronics testing, high-speed digital testing, high-

end consumer mixed-signal testing, etc. [5]. Despite this new model, the demand for

higher-performance, greater accuracy and increased vector memory have offset most cost

savings achieved. The base system for the V93000 costs well over $1M, and adding

 15

PECs for required high-speed testing can create a total price tag well into the $3-5M

range. Furthermore, there haven’t been significant third-party efforts to develop PECs for

ATE due to their complexity and performance requirements. Independent PEC

development by third-parties could have lowered costs. Therefore the ATE industry is yet

to experience significant cost reductions.

The latest development in the ATE industry is what has been termed Protocol

Aware ATE (PA ATE). PA ATE came into prominence in 2007 and was formally

debuted in [22]. The concept for PA ATE arose as higher levels of integration allowed

the manufacture of diverse devices using technologies such as SoC. Device

manufacturers with substantial IP libraries could develop an entire true system with

diverse IP blocks in a single process on a single die with minimal development time.

Each IP block could have different protocols such as JTAG, PCI, PCI-E, USB, SATA,

serial flash, SRAM/DRAM, etc. And each protocol would require its own test strategy,

thus testing the entire device on a global level would be high inefficient if not impossible.

PA ATE aims to solve this problem by essentially natively emulating, in real time, chip

I/O at the protocol level. Programmable interfaces in PA ATE are used to perform real-

time state detection to handshake with a device using its native protocol. Test strategies

are developed for each protocol, and once a communication link to the device is

established, testing is performed in a more efficient manner.

PA ATE enables cooperative test between an ATE and a DUT with realistic

device activity, thus improving the quality of test [23]. The ATE provides a suitable test

environment with infrastructure such as power supplies, cooling systems, DUT

 16

interfaces, probe cards, etc. Furthermore, the ATE controls overall test flow, I/O levels,

I/O timing, etc. and manages results.

PA ATE is most effective when used with DFT techniques. DFT is used to

provide access to internal chip resources and allows the ATE to perform low-level

structural tests using the required protocol. Low-level structural tests require less ATE

complexity and simpler use, which results in lower cost and higher reliability [24]. In fact

much of the cost savings in testing have been afforded by DFT techniques. Therefore the

next section discusses the evolution of DFT standards and usage in detail.

2.3 Design for testability (DFT)

In the semiconductor industry, testing is the process by which stimuli is applied to a

circuit in order to demonstrate its correct operation [25]. Traditional testing of

semiconductor devices can generally be divided into three broad categories [26]:

i) Functional tests: these tests comprise of testing input/output pins on the

device, its timing characteristics, proper logic handling, behavior, etc.

ii) Environmental testing: tests include operation characteristics under various

power and temperature conditions.

iii) Reliability testing: these tests characterize a device’s quality, reliability, life

expectancy, failure rates, etc.

Out of the above three categories, functional tests are the most involved as they are

required to test the proper logic functioning of the device. Comprehensive functional tests

 17

should be able to verify the proper function of all components in a device. A typical

modern semiconductor device can contain hundreds of millions of transistors and wires.

Every one of these transistors and wires can contain defects that manifest themselves as

incorrect opens or shorts. These defects can only be tested via device I/O pins, which

there are only a few hundred of. Therefore there is a gap between the large number of on-

chip components that need to be tested and the relatively small number of pins through

which these test can be performed. This gap necessitates design modifications to improve

accessibility from external pins to all internal logic. DFT addresses this problem and is

the design of additional on-chip hardware to improve accessibility to internal logic.

Improving accessibility is used as a generic term here, as DFT techniques can provide

accessibility in a variety of ways from physically providing access to internal logic to

generating tests on internal logic and providing access to results.

Modern trends in DFT techniques can be distinguished into three general roles

[27]. The first role of DFT is to enable high-quality testing, through the use of additional

internal modules designed on-chip. The second role is to provide access to embedded

modules within a DUT. The third role is the on-chip generation of stimuli and/or the

evaluation of test responses. These roles are discussed further below.

2.3.1 Additional Module based DFT

This technique of DFT requires the inclusion of additional modules into devices

to enable external testing. The most common methods of this style of DFT are scan-based

designs which allow the access and control of device components connected to internal

registers through scan chains. Various types of scans exist based on the depth of the

 18

testing required such as full serial scan, partial serial scan, non-serial san, and system

level scan [28]. The most popular scan-based design is the Joint Test Action Group

(JTAG) Boundary Scan Standard (IEEE Standard 1149.1) [29]. A serial scan architecture

is shown in Figure 2.3.

Figure 2.3 Serial Scan Architecture

As shown in the figure, the architecture requires four additional pins. In the JTAG

standard these signals are defined as Test Data In (TDI), Test Data Out (TDO), Test

Clock (TCK) and Test Mode Select (TMS). Test data and instructions are sent through

the TDI pin to internal registers in the device. Each register has certain test functions

implemented in it, and the TMS pin is used to select these registers. Once tests are

performed, results are sent back over the TDO pin. A clock input is required for the

internal logic and provided through the TCK pin. The advantage of using the JTAG

 19

standard is that is allows the scan of multiple circuits. For example a flash memory

device connected to eight FPGAs can be scanned at once using this standard.

2.3.2 Embedded Module Access based DFT

 Complex devices can be composed of multiple logic modules. Testing these

modules in a similar fashion, i.e. modular testing, is an efficient approach to testing as it

reduces test generation time through reuse and concurrent engineering [27]. Modular

testing requires an on-chip test infrastructure in the form of test wrappers and Test Access

Mechanisms (TAMs) [30]. The test wrappers are used to provide access to the targeted

module and the TAMs are used to transport data to and from external pins. Therefore, a

small number of external pins can access a much larger number of internal signals, thus

allowing testing to be performed using external test equipment. The IEEE describes a

standard for test wrappers called the Standard for Embedded Core Test (SECT – IEEE

Std. 1500) [31]. The standard is similar to the JTAG standard, however slightly different

and allows for some customization. This makes SECT a better standard for use with

various TAMs.

2.3.3 Self-Test

Test stimuli and response evaluation has traditionally been performed by an external

tester. As devices became more complex and access to embedded components became

more difficult, external testers could not perform comprehensive testing. To solve this

problem, internal test modules are designed onto the device itself in a technique called

 20

BIST. This technique was first applied to memory devices in the late 80s [32]. Additional

on-chip circuitry is added on to devices that generate test stimuli and evaluate responses

to verify operation.

BIST is generally of two types, online and offline. Online BIST is designed to

function when a device is in normal operation, thus being able to detect errors in real-

time. Offline BIST is designed to perform testing functions when the device is not in

operation mode, such as on power up [28]. Both types of BIST require similar

architecture. The main components of BIST are test pattern generators (TPGs) and output

response analyzers (ORAs). A BIST controller component controls operation of the TPGs

and reads output from the ORA to determine test results. These components can be built

using registers and finite state machines.

The complexity of BIST depends on the amount of test patterns required and the

number of circuits under test (CUTs). BIST has been an efficient method of DFT for the

last 20 years [27]. Miniaturization of transistor features has allowed additional circuitry

to be built into devices without much imposition on the devices performance. However as

device complexity increased exponentially, employing BIST has become more

challenging. Therefore in 1999, Credence Systems Corp. introduced the concept of built-

off self-test (BOST) [33]. In this DFT technique, additional self-test circuitry is added to

a device, but built off of the device such as on a load board, test fixture, etc. Typically a

FPGA is used to control the test circuitry and generate test patterns. This technique

permits tremendous flexibility, as it removes physical limitations of BIST. Furthermore,

the use of high-performance FPGAs can develop elaborate, high-performance testing

solutions.

 21

 The three techniques of DFT can be mixed according to testing needs to design

optimal results. Using any form of DFT techniques does add additional costs to a

semiconductor device. However there are definite economic benefits that justify the use

of DFT [8]-[10]. Therefore most semiconductor manufactures employ some level of

DFT. While DFT can do a variety of testing, it cannot replace all traditional required

testing functions. Environmental and reliability testing still needs to be handled by an

external tester. External functional testing can be reduced, but not eliminated by using

DFT. For example at-speed tests and characterization may not be handled by DFT.

Therefore DFT is often designed to complement the use of an ATE. This has led to the

development of low-cost testers by ATE manufacturers [34]. These low-cost testers work

adequately provided one is willing to rely on DFT to compensate for reduced tester

capability. Although, this solution addresses the concerns of cost, it does not address the

concerns of higher performance test requirements. By relying on DFT, a similar argument

can be made to develop higher-performance test systems. The development of higher

performance test systems is presented in the following chapters.

 22

CHAPTER 3

MODULAR EXTENSION OF ATE TO MULTI-GHZ SPEEDS

Testing electronic devices has been challenging due to their exponential growth in

complexity [3]. When next generation devices are developed, a test engineer may only

have current generation technologies available for devising test strategies. For instance,

when the first generation of GHz capable devices are developed, the only resources

available to test may be limited to MHz speeds. In terms of clock and data speeds, this

issue was first addressed in the 80s. During that era, standard ATE had testing

capabilities up to 200 Mbps [35], however many GaAs devices and high-end application-

specific integrated circuits (ASIC) were developed to operate above 1000 Mbps, thus

creating a need for multi-GHz testing equipment. Therefore, the first substantial attempts

to enable testing capabilities into the Gbps range were seen in the late 80s [35]-[43].

The need for high-speed testing has typically been limited to newer devices and

ASICs. Furthermore, these devices may require high-speed testing limited to only a few

pins. These new devices are often manufactured in smaller quantities. In the fast paced

technology industry, new devices have a limited a “window of opportunity” in which to

make an impact, thus requiring a shorter testing turnaround time. As such, purchasing an

entire new test system is difficult to justify from a business point of view. Also

developing a custom platform to test these devices is not feasible in order to take

advantage of the window of opportunity. Taking these concerns into consideration, test

engineers have developed solutions extending ATE resources. These solutions involved

 23

developing test electronics that used ATE resources to produce higher-performance tests.

In [36]-[40], high-speed ATE extension is demonstrated using custom design test heads.

Although this approach is certainly a possibility, designing custom test heads for today’s

complex ATE systems is a more challenging task. Furthermore, developing custom test

heads for specific ATE does not allow portability of the solution to other ATE systems.

Building on this approach, [35] & [41]-[43] demonstrate extension of ATE through the

development of modular electronic cards using similar principles. These modules are

compatible with the existing ATE test head - through a device interface board (DIB) or

similar interface; thus allowing portability to other ATE systems. Initial modular

extensions developed for GHz speeds included drivers/receivers [35][41], pattern

generators [42], clock distribution networks [43], and others. Essentially, these works laid

the foundations of using modular electronics card to extend ATE performance.

 In this chapter, a number of selected modular ATE extension methods pertinent to

this research are presented. In the first section high-speed signal generation using driver

and receiver modules is presented. The next section discusses loopback modules,

followed by jitter manipulation modules. Modules capable of timing and skew control of

high-speed signals are presented and finally high-speed signal switching modules

presented.

3.1 High speed signal generation

ATE systems may not have a single signal running in the multi-GHz range,

however many have multiple signals running in the GHz range. It is not uncommon for

an ATE to have 64 channels or more, each capable of producing up to 1Gbps. The sheer

 24

aggregate bandwidth of these signals can be awesome, however available only in parallel

format. Harnessing a few of these signals into one high-speed signal using careful

techniques is an approach to generating high-speed data. In this approach a large number

of low-speed signals are taken from the ATE and interleaved or multiplexed into a

smaller number of high-speed signals. Although not a trivial task by any means, this

becomes especially challenging when attempting to generate multi-GHz speeds. For

instance, the bit period of a 5Gbps is 200ps. This requires the ATE to maintain very tight

timing accuracies across very long test sequences and over multiple channels. Further the

electronics used to multiplex these signals must be capable of producing high-speeds

without significantly distorting the signal by adding unwanted elements such as jitter,

noise, etc.

In [44] and [45], Keezer et al demonstrate the extension of ATE using test-support

modules. The modules are designed to work with a DIB. The DIB is an interface between

the test-support module and the ATE. DIBs are designed to fit a specific ATE test head.

Since DIBs do not have any active components, they can be quickly designed for another

test system, thus allowing a test extension module to be ported to another test system.

Figure 3.1 illustrates how these test-support modules are used with the DIB. In this

research, an Agilent 93000-P1000 ATE with about 900 channels was used.

 25

Figure 3.1. Top-level system view of modular extension approach to ATE[44]

To generate and receive high-speed signals from existing ATE signals, typically a

driver and receiver module is required. The driver module synthesizes low-speed signals

from the ATE into high-speed signals through multiplexing using various logic and

control functions from the ATE. These signals are delivered to the DUT. The receiver

card performs the opposite function; it takes high-speed signals from the DUT and de-

multiplexes them into a larger number of slow speed signals which the ATE can handle.

Depending on the application requirements, numerous driver and receiver modules can be

used. However care must be taken to order to maintain tight timing accuracy across the

ATE and the modules. For temperature stability, the driver and receiver modules have

water-cooled plates sandwiched around them as shown in the figure.

A typical application test configuration is shown in Figure 3.2. A DUT may

require several multi-GHz test signals. To produce these signals, several high-speed

signals are synthesized by the driver modules from incoming low-speed ATE signals and

delivered to the DUT. The DUT performs its designed function with the signals and

DUT Test

Socket

Application
Loadboard

Driver Modules Receiver ModulesCooling

Water
Connections

DUT Test

Socket

Application
Loadboard

Driver Modules Receiver ModulesCooling

Water
Connections

 26

produces output signals, which are also running at multi-GHz. These high-speed outputs

from the DUT are then input into the receiver modules. Since the ATE is also not capable

of receiving high-speed signals, the DUT output is de-multiplexed by the receiver module

in multiple lower speed signals and relayed back to the ATE. This approach provides a

low-cost solution to obtaining high-speed signals from an ATE using little or no external

instrumentation. The benefits of this approach include flexibility, customization, and

compatibility [44].

Figure 3.2 Typical application test configuration [44].

Basic driver and receiver modules are designed using multiplexing logic with

additional ancillary logic devices. Figure 3.3 shows a logical overview of a basic driver.

Multiple data channels from the ATE are supplied to multiplexing logic in the driver

module. A multi-GHz clock is used as the select signal on the MUX and multiplexes the

input signals into a higher-speed signal. The signal then passes through a buffer where it

~1 Gbps

Data

(from ATE)
DUT

Driver
Module

Driver
Module

Driver
Module

Driver
Module

Receiver
Module

Receiver
Module

Receiver
Module

Receiver
Module

Multi-GHz

Inputs
Multi-GHz

Outputs

“Low” Speed

I/O (to/from ATE)

~1 Gbps

Data

(to ATE)

DC Channels

(from ATE)

DC Channels

(to ATE)

~1 Gbps

Data

(from ATE)
DUTDUT

Driver
Module
Driver
Module

Driver
Module
Driver
Module

Driver
Module
Driver
Module

Driver
Module
Driver
Module

Receiver
Module
Receiver
Module

Receiver
Module
Receiver
Module

Receiver
Module
Receiver
Module

Receiver
Module
Receiver
Module

Multi-GHz

Inputs
Multi-GHz

Outputs

“Low” Speed

I/O (to/from ATE)

~1 Gbps

Data

(to ATE)

DC Channels

(from ATE)

DC Channels

(to ATE)

 27

is re-clocked; and also allows for amplitude control. Relays are present on this driver

module which allow for switching between high-speed and low speed signals (switching

is discussed further in Section 3.5). Figure 3.4 shows a basic receiver module designed in

a similar fashion. High-speed data from the DUT passes through relays and a buffer after

which it enters de-multiplexing logic. Similar, but opposite to the driver module, a multi-

GHz clock is used to de-multiplex the signals into multiple lower speed signals which can

then be received by the ATE.

Several driver and receiver modules were demonstrated in [44] including 4:1, 8:1

and 16:1 multiplexing schemes. Figure 3.5 shows an output signal produced from a driver

using a 16:1 multiplexing scheme to generate a 5Gbps signal. The eye opening is about

0.75UI and can be used for certain test applications. The results clearly demonstrate that

external electronic modules can be used feasibly to generate high-speed signals from

lower speed ATE resources.

Figure 3.3. Multi-GHz driver module logic [44].

D1

D2

D3

D4

Multi-GHz

Clock

Amplitude

Control

MUX

Logic
Relays

DC Test

Channels

(from ATE)

RF Connectors

To

DUT

+
-

+
-

+
-

RF/DC

Select

Embedded

Calibration

Logic
Calib Ref

D1

D2

D3

D4

Multi-GHz

Clock

Amplitude

Control

MUX

Logic
Relays

DC Test

Channels

(from ATE)

RF Connectors

To

DUT

+
-

+
-

+
-

RF/DC

Select

Embedded

Calibration

Logic
Calib Ref

 28

Figure 3.4. Multi-GHz receiver module logic [44].

Figure 3.5. High-speed data signal from driver module at 5.0Gbps [44].

D1

D2

D3

D4

Multi-GHz

Clock

DeMUX

or

Sampling

Logic

Relays

DC Test

Channels

(to ATE)

RF Connectors

From

DUT

+

-

+

-
+

-

RF/DC

Select

Differential

Receiver

+

-

D1

D2

D3

D4

Multi-GHz

Clock

DeMUX

or

Sampling

Logic

Relays

DC Test

Channels

(to ATE)

RF Connectors

From

DUT

+

-

+

-
+

-

RF/DC

Select

Differential

Receiver

+

-

 29

3.2 Loopback Testing

As the drive for higher bandwidth has made its way into almost all computing

devices, there has been a push for high-speed serial interfaces similar to those found in

communication devices [46]. Testing communication devices requires large throughput

bandwidth on the order of terabits per second. Generating such tests can involve highly

expensive custom ATE equipment and require long test times [47]. Test costs and times

for high volume manufactured computing devices have been pressured lower. Therefore

using expensive ATE equipment for elaborate tests is not a feasible option. Due to this,

DFT methods such as BIST have been pursued. Self-test indeed reduces the full test

support required from an ATE. However internal BIST does not accurately reflect a

realistic operating environment a device may face [48]-[49]. Furthermore, I/O parametric

and signal characterization cannot be validated using BIST. Therefore an external

loopback path is ideal in order to test a device under a real world environment.

In 1999, Credence Systems Corp. introduced the concept of BOST [33]. BOST

implemented self-test circuitry using FPGAs built off the device and on the test fixture.

Test patterns were delivered to the device through load boards, essentially creating an

external loop back path. This concept was extended to multi-GHz rates and demonstrated

in [50]-[51]. However, multi-GHz devices now produce multi-GHz self-test signals.

Therefore when multi-GHz BIST is present in a DUT, its internal BIST circuits generate

multi-GHz test patterns that can be used to test itself. Modular test cards can be built to

simply loopback the test patterns generated by BIST back into the DUT.

 30

Designing a simple loopback path to handle multi-GHz data rates is not a trivial

task. Due to the high-speed nature of the signals, small amounts of jitter and noise from

the path can cause undesirable results on the output signal. Furthermore, a loopback path

spanning across an ATE test head can cause undesirable attenuation of the signal. In [52]

& [53], modular high-speed loopback paths are demonstrated with capabilities up to

12.8Gbps. The modules are designed to connect to an ATE via a DIB similar to the setup

shown in Figure 3.1. An overview of a minimal loopback path is shown in Figure 3.6. In

addition to loopback testing, low-speed functional tests and parametric measurement may

also be required. Therefore relay switches are implemented on these modules to select

between loopback signals and ATE signals (switches further discussed in Section 3.5).

High performance connectors and relays are utilized in order to support high bandwidth

required for multi-GHz signals.

Figure 3.6. Overview of minimal loopback testing [52]

DUT

P
a

tt
e
rn

 G
e

n
e

ra
to

r

(P
R

N
G

)

D
a

ta
 A

n
a

ly
z
e

r
(M

IS
R

)

OutputsInputs

BIST

Controller

N Channels

Loopback Path

1149.1

CLKRelays Relays

From ATE To ATE

DUT

P
a

tt
e
rn

 G
e

n
e

ra
to

r

(P
R

N
G

)

D
a

ta
 A

n
a

ly
z
e

r
(M

IS
R

)

OutputsInputs

BIST

Controller

N Channels

Loopback Path

1149.1

CLKRelays Relays

From ATE To ATE

 31

Loopback paths can be either active or passive. Passive loopback paths simply

relay the signal through an external path back into the DUT. The signal may suffer

attenuation travelling through longer paths and may be the test of choice for many

applications. Active loopback paths generally re-clock the DUT’s test signal for sharper

edges. In addition to re-clocking, advanced features can be added onto active loopback

cards. Depending upon application requirements, loopback cards can be designed with

active logic components such as high-speed buffers, jitter manipulation, skew adjustment,

amplitude adjustment, etc. Both types of paths are demonstrated in [52] & [53]. Figure

3.7 shows the output from an active loopback path with an input signal running at

10.0Gbps. Jitter is measured at 20ps (p-p), out of which only 6ps is attributed to the

loopback path. The data eyes are open with 0.80UI, thus producing usable output data.

Figure 3.7 Active loopback path measured at 10.0Gbps [53]

 32

3.3 Timing Skew adjustment

The ability to adjust the relative timing or phase between signals is often desired

during testing. Timing adjustment can be used to ensure the consistent sampling of test

signals. For example the phase of an ATE’s sampling clock can be adjusted such that it

samples at the center of an input signals’ bit period, thus producing more reliable results.

Most ATE have some form of timing adjustment available, such as the Teradyne Tiger

offers timing adjustment capabilities with a resolution of 100ps [18]. Considering a

10Gbps signal whose bit period is only 100ps, this resolution is inadequate. Furthermore,

when dealing with parallel data signals, it is necessary to ensure that all signals arrive at

the destination at the same time. Multi-GHz signals highlight this necessity as the

slightest mismatch in path lengths can cause timing misalignment between signals.

Therefore, there is a need for timing adjustment on a finer picosecond scale.

Adjusting the phase of a constant-frequency clock signal for sampling purposes or

to generate high-speed data is generally simpler than adjusting the phase of the incoming

data signal itself. Many techniques utilizing VCOs and PLLs/DLLs have demonstrated

this functionality [54]-[58]. However, timing adjustment is much more challenging when

the problem at hand is to align multiple multi-gigabit data signals to arrive synchronously

at the DUT. In [59], a method for adjusting the phase of multi-GHz test signals using

stages of variable gain buffers is demonstrated on signals running up to 6.4Gbps. The

variable gain buffers used are off-the-shelf buffers that contain a VCTRL input pin. The

pin accepts input voltages ranging from 0-3.3V in order to determine the amplitude of the

buffer’s output signal. Essentially, by increasing the output voltage amplitude, the signals

rise time is increased. This in effect causes a delay in the signal, thus by varying the

 33

output amplitude, delay can be finely varied. A stage of the delay circuit is shown in

Figure 3.8 consisting of a buffer with an adjustable VCTRL pin. An output stage buffer is

shown after the adjustable buffer. The purpose of the second buffer is to recover the full

amplitude of the signal.

The research done in [59] shows that one buffer allows a range of up to 10ps of

delay. Although the ability to finely adjust the phase of a high-speed signal is an

achievement, a 10ps range may not be sufficient for many applications. Therefore the

paper presents a 4-stage fine delay adjustment which allows a theoretical range of 40ps (4

adjustable buffer offer 10x4 = 40ps). In order to allow a larger range of delay adjustment,

a finite delay circuit is used in conjunction with the 4-stage fine delay adjustment circuit

as shown in Figure 3.9. Discrete delay is added to the signal by using a multiplexor as

shown in the figure, to select between 4 signal paths. Each path varies in length and is

designed to add a discrete amount of delay to the signal, in this case 0ps, 33ps, 66ps, and

99ps. A fan-out buffer provides the input signal onto each of the paths, and the path with

the desired amount of delay is selected.

The module developed in [59] is demonstrated to have a range of 95ps and the

fine-delay stage demonstrated with a range of 50ps. Figure 3.10 shows the delay circuit

with an input clock signal at 6.4 GHz. The circuit is used to delay the signal 32.5ps. Total

jitter of the output signal is measured to be 10.5ps. Since the fine delay range is greater

than the finite delay steps, this module can be used on ATE test signals to provide a fine

delay range of up to 145ps, while adding minimal jitter to the signal.

 34

Figure 3.8 One stage variable delay circuit [59]

Figure 3.9 4-stage fine delay circuit with finite delay circuit [59]

 35

Figure 3.10 Output from delay circuit at 6.0 GHz showing a delay of 32.5ps [59]

3.4 Jitter Manipulation

Jitter is a critical issue when dealing with multi-GHz systems. Jitter is defined as

“short-term non-cumulative variations of the significant instants of a digital signal from

their ideal positions in time” [60]. Jitter on the order of a few tens of picoseconds can

pose to be a challenge on high-speed signals. For example on a 8Gbps signal – or 125ps

bit period, p-p jitter of only 25ps can reduce the open eye to 0.80UI. Therefore it is

imperative to be able to control jitter on the picosecond scale on test support cards.

Adding more features to a system generally increases jitter. Therefore logic used

to improve jitter can in fact add jitter to the system. This makes jitter improvement quite

challenging, and it cannot be eliminated completely – especially when dealing with

complex multi-GHz. However, in [61] a novel method for jitter reduction is introduced.

 36

In this method, real time averaging is performed on a pair of identical signals. In theory

this reduces the total jitter of the signal. Results presented in [61] agree with theoretical

calculations. A simple circuit used to average high-speed signals in real time is shown in

Figure 3.11.

Figure 3.11. Simple jitter reduction circuit [61]

In addition to jitter reduction, many test applications require jitter injection. For

example stressing test input jitter tolerance may require controlled jitter injection.

Injecting jitter in a controlled and feasible manner is also a challenge especially when

very small (picosecond) finite increments are required. In [62] & [63], a method of jitter

injection employing passive filters on SerDes I/Os on high-speed communication devices

is demonstrated. In another approach [64], Shimanouchi introduces periodic jitter

injection for SerDes. However injecting jitter in finite controlled amounts still remains

challenging.

In [59], a new technique for injecting jitter into a system using variable output

buffers is presented. The jitter injection function is an offshoot of a timing adjustment

 37

function discussed in the section above. The variable output buffers are primarily

designed to vary the output amplitude of the signal, however in doing so, cause timing

skew on the output signal as shown in Figure 3.8. Adding AC coupled noise on the VCTRL

input essentially randomly skews the delay of the output signal, thus causing jitter. The

amount of jitter injected is a function of the amplitude of noise applied. A higher voltage

noise causes longer random timing skew, which translates to higher injected jitter.

Characterizing this relationship allows for controlled jitter injection onto the signal.

Figure 3.12 and Figure 3.13 show the operation of this circuit at 3.2Gbps. Figure

3.12 is an eye diagram of the input signal to the jitter injection circuit with jitter measured

at 28ps and Figure 3.13 is the output signal. Here, jitter is measured at 69ps total jitter,

showing the circuit adding 41ps of jitter onto the input signal. This new method is a cost-

effective method for injecting jitter and can be easily incorporated into modular extension

cards for ATE.

 38

Figure 3.12 Input signal into jitter injection circuit at 3.2Gbps with 29ps of total jitter
[59]

Figure 3.13 Output signal from jitter injection circuit at 3.2Gbps with 69ps of total jitter
[59]

 39

3.5 Switching

The modules to extend ATE performance discussed in Sections 3.1 and 3.2

incorporated the use of relay switches. In many test applications, in addition to high-

speed tests, the DUT may require other low-speed tests such as parametric testing,

continuity checks, stress testing, etc. Generally, most ATE have numerous features and

are better equipped to perform such tests. Testing time on an ATE can be very expensive

in a production environment. Switching between testing using modular extension cards

and testing using the ATE may not be feasible in many cases. Therefore it is ideal to

design modular extension cards that allow direct connections between the DUT and ATE.

To accommodate this, the modules presented were equipped with relay switches. This

allows the extension module to perform the required high-performance tests and also the

ATE to perform any additional tests as necessary.

Generally a relay would be the last component a signal passes through before

being input to a DUT or the first component the output signal passes through on an

extension module. Furthermore relays are used on extension modules with other

functionalities such as high-speed signal generation, loopback testing, etc. as shown in

[44] & [52]. The function of the relay is similar to the function of a multiplexor in that it

selects either to pass a signal from the extension module or from the ATE. Although this

may be a simple task, when dealing with multi-GHz signals, the relay used must be

chosen with care to support such high-speed signals.

In [52], a mechanical RF relay capable of multi-GHz signals is demonstrated. The

switch is a reed type relay and simply consists of two input signals and one output signal

 40

along with two voltage terminals. When a prescribed voltage is placed across the voltage

terminals, a mechanical switch closes the path to select one input signal as the out signal

– this is used as the high-speed path. In a normal state, when there is no voltage

differential across the pins, the mechanical switch closes the circuit on the other input

which is used for the slow-speed path. Therefore, when the switch is off, i.e. no voltage

applied across the terminals, it passes ATE signals directly to the DUT. When turned on,

the extension module is active and provides the signals to the DUT. Figure 3.14 shows

the performance of this switch on an extension module. The output signal of a 3.2Gbps

input signal measures a total jitter of 32ps, adding 11ps of jitter to the signal. At 5.0Gbps,

the measurement taken shows an addition of 10ps of total jitter, however it can be noticed

that at this speed, the rise time of the switch is not fast enough to achieve full amplitude

swing. Regardless, the switch demonstrated sufficient performance for testing

applications.

 41

Figure 3.14 Mechanical relay performance [52]

The size of a mechanical relay package measures approximately 0.4 inches and is

shown in Figure 3.15. These switches are relatively large and can consume too much

board space on an extension module which is limited in size. Thus, when multiple test

signals are required on an extension module, this size can be a limiting factor. Also

shown in Figure 3.15 is a similar function MEMS based relay switch which is

approximately half the mechanical relay’s size. This MEMS based switch utilizes a

device-on-package construction which fabricates the MEMS device directly onto its

ceramic (alumina) wafer via conductive metal vias, thus allowing a much smaller form

factor [52]. Furthermore, the use of an alumina substrate and minimizing the path

between the device and printed surface by conductive vias, reduces insertion loss, thus

 42

allowing better propagation of high-frequency signals [65]-[66]. These factors make

selecting a MEMS based switch ideal when multiple high-speed signals are required on

an extension module.

Figure 3.15 Size comparison of mechanical relay and MEMS relay [52]

In [52], an extension module using MEMS based switches is presented.

Performance of this module is shown in Figure 3.16. At 3.2Gbps, the module adds 6ps of

total jitter, and performs better than the mechanical relay switch. At 5.0Gbps, the module

is demonstrated to add 13ps of total jitter on to the input signal. This performance is

comparable to the performance of the mechanical relay shown at 5.0Gbps. However the

power dissipation characteristics were measured to be much lower on the MEMS switch

compared to the mechanical switch [52].

 43

Figure 3.16 MEMS switch performance [52]

In this chapter previous research is shown to demonstrate modular extension of

ATE targeting five specific applications – high speed signal generation, loopback testing,

timing adjustment, jitter manipulation and switching. All of the applications shown are

capable of multi-GHz speeds, although some were not demonstrated at speeds above

5Gbps. Despite this, the principles used are still valid for extending ATE performance.

By slightly modifying the methods used greater performance can be achieved. In the next

chapter, a different approach to extending ATE performance is discussed, in which stand-

alone mini-testers are developed. The principles learned in the research discussed in this

chapter helped the development of the systems in the next chapter.

 44

CHAPTER 4

 STAND-ALONE MINIATURE TESTER

In Chapter 2, methods for enhancing test capabilities are presented consisting of

modular electronic cards used in conjunction with ATE. The modular cards use resources

from the ATE along with on-card electronics to produce higher performance test

capabilities. This method of enhancing test capabilities is limited by the performance of

available ATE resources. Some test applications may require test capabilities not

achievable using these ATE resources alone. For example, consider the case when a

10Gbps test signal is required for testing purposes. A modular extension card capable of

doubling data rates would require 5Gbps input signals to produce this rate. Performance

of ATE not capable of producing required input rates cannot be enhanced to target rates.

Therefore modular enhancement methods may not be feasible solutions for certain test

requirements.

Another method of enhancing test capabilities is to develop a custom test system

capable of operating independently of an ATE. This method of enhancing test capabilities

involves designing custom test electronics that do not rely upon ATE resources. Early

work to extend testing capabilities to the GHz range using this method ranged from

developing custom test heads for existing ATE [39]-[40] to developing proprietary test

systems [38] & [67]. Developing proprietary test systems to rival current ATE is not

feasible because ATE have become exceedingly complex and extremely costly to

develop. However custom test systems designed address specific applications with

limited test functions can be used to enhance testing capabilities.

 45

In this chapter a custom test system specifically designed to test wafer-level

package (WLP) devices is presented. Various testing functions can be addressed with this

test system; however the particular test system presented is intended to enhance high-

speed testing capabilities. The test system is designed with an FPGA that allows it to

operate independently of an ATE, and additional logic to produce high-speed testing

capabilities. Before the details of this test system are presented, wafer-level testing is

briefly discussed to introduce the probing technologies the mini-tester is designed to

work with. Subsequently, the design of the mini-tester is discussed in detail. An

experimental demonstration and performance characteristics of the test system are

presented in the final section.

4.1 Wafer-Level Testing

Miniaturization of portable hand-held electronic devices has stimulated the need

for IC packages of even smaller size than conventional ball grid array (BGA) and chip

scale packages (CSPs). This has led to the development of advanced packaging

technologies such as WLP, MCM, SiP, SoC, etc. These new packaging technologies have

allowed for smaller device sizes and more integration.

A WLP is a chip size package. The area that it occupies when mounted onto a

system level board is as small as the size of the IC itself. WLP devices offer minimum

size and weight for a given die, and cost is also expected to be lower than for traditional

IC packaging [68]. WLP technology has been developed with a density of up to 12,000

leads/cm2 [69] [70]. Many of these leads are for power and ground, thereby reducing the

number of signal pins to only a subset of this number. Despite the reduced number of

 46

signal pins, many problems still arise in testing wafer-level packaged devices due to their

high I/O densities, microscopic pad sizes, and high-speed testing requirements.

As package sizes have become smaller, more functionality continues to be

demanded from devices. For example, consumers now want a mobile phone not only to

be able to make phone calls, but also function as a camera, music device, GPS, etc. This

may require multiple technology components such as MEMS, optical components, RF

components, digital components, etc. to be integrated into one device. Such levels of

integration and complexity exacerbate the testing problem.

To address the problem of testing complex WLP devices, a miniature tester has

been developed that can be customized to the testing needs of a DUT [71]. These “mini-

testers” can be designed for specific testing purposes such as high-speed testing,

loopback testing, jitter injection, etc. The goal is to keep the mini-testers simple and small

enough that they can be used to test devices in wafer form, yet provide easily

customizable performance not available on general-purpose ATE. Additionally, these

mini-testers are designed to function independent of ATE, thus requiring no (or very

little) expensive ATE resources.

This mini-tester requires the use of wafer-level probers (interposers) in order to

make physical contact with the device when it is still in die or wafer form. Generally the

mini-tester is designed independently and then used with an appropriate interposer based

upon the type of packaging technology or compliant leads present on the device. This

solution allows a variety of devices with high-density leads to be tested. Furthermore, this

approach can allow device components to be tested individually. For example the digital

components of a device can be tested as they are fabricated, before they are packaged or

 47

interconnected with other components. This is a relatively simpler task than testing its

functionality within a fully integrated and packaged device. Undertaking such an

approach reduces the complexity of testing the complete integrated device as a whole.

This approach can also reduce test time and overall manufacturing cost as defective

devices identified early in the fabrication process can be removed from further fabrication

and packaging processes.

4.2 Wafer-Level Probing

Several different WLP technologies are available, including Bed of Nails (BoN)

[72], Multiple copper columns (MCC) [73] Solder Bumps (SB), Stretched solder column

(SSC) [74], and Sea of Leads (SoL) [69]-[70]. The fabrication processes for each of these

technologies have varying degrees of cost and difficulty associated with them. The SoL

approach uses low-cost lithographic fabrication of very high density compliant leads [69].

The SoL process is actually a continuation of the IC fabrication process and may be done

without adding significant cost to the device [75]-[76].

In [71], the mini-tester is successfully demonstrated with BoN structures. The

BoN is a novel compliant interconnect structure with limited z-axis compliance. To

enhance this limitation, a compliant interposer is used and discussed in the next section.

Since a higher column height would result in higher compliance, lower stress, and hence,

longer fatigue life, interconnections as high as 50um are developed.

Single layer BoN wafer level interconnects have been successfully fabricated with

a nail height of 50µm. These are designed to fulfill the following electrical requirements:

DC resistance ≤ 25mΩ, inductance ≤ 50pH and capacitance ≤ 10-15fF. These

 48

requirements were based on the fact that the package using such interconnects must

support high frequency performance applications (e.g., microprocessors, high pin count

logic devices, etc.).

The BoN fabrication process flow consisting of six steps is illustrated in Figure

4.1. Metal layers of Ti/Ni/Au are first sputter deposited onto the WLP pads. A thick

photo-resist is then applied and patterned using Ti/Ni/Au etching one by one and resist

removal. Secondly, BCB dielectric polyimide is spun to passivate the daisy chains and

pattern the dielectric layer using UV lithography to open the pads. A Ti/Cu or Ti/Au seed

layer is then sputtered. The bottom Ti layer is applied to improve the adhesion between

dielectric and Cu or Au. Then a thick photo-resist is spun, soft-baked, UV patterned, and

developed. The copper post is electroplated. Solder is then electroplated at the tip of the

copper post for bump formation. Thick photo-resist is then removed and Ti/Cu or Ti/Au

seed layer is etched away to complete the interconnect structure. Finally, solder is

reflowed in N2 atmosphere. This fabrication process is based on photolithography and

electroplating processes which are compatible with the conventional IC fabrication and

the fabrication is integrated into wafer-level processing as batch process [77]. Additional

masks are not needed as the UBM mask can be used to pattern the photo resist for copper

column deposition.

 49

Figure 4.1 Process flow of bed of nails wafer level interconnects by photo resist method

The mini-tester does not make direct contact with the DUT, but requires a wafer-

level prober such as an interposer to make physical contact with the device. This allows

mini-testers to be generically designed, and then use customized interposers to make

contact for actual testing. This parallel development approach greatly enhances the

usability of the mini-tester, since it can be used with almost any WLP technology as long

as an interposer to connect to it is available. In the next section, a few notable interposers

are described.

4.2.1 Interposer

An interposer is similar to a probe card and serves as an electromechanical

interface between the DUT and the mini-tester. A major role of the interposer is to serve

1

2

3

4

5

6

1

2

3

4

5

6

 50

as a space transformer. To accomplish this, the interposer has large pitch metal bump

pads on one surface to connect to the tester and fine pitch compliant interconnects on the

opposite surface to make contact with the WLP device.

There are currently a few approaches used to construct an interposer. A MEMS

based interposer, is proposed in [78] and shown in Figure 4.2. Another approach uses

MEMS based spring probes, as discussed in [79], to make electrical contacts with the

DUT. The spring interposer allows for a non-destructive low resistance contact with the

wafer leads [79]. FormFactor, Inc. uses a proprietary technology called MicroSpringsTM

[80] optimized to provide low contact force and low contact resistance with over 900,000

touchdown rates [81].

Figure 4.2 Interposer incorporating vertically connected signal traces created using
through wafer vias.

Mini-testers may be connected to an interposer to make electrical contact with the

wafer [82]. As illustrated in Figure 4.3, an interposer is used to redistribute the high-

density WLP signals to a macroscopic scale (similar to a micro-BGA). In the figure, a

DUT

Power plane

Ground plane

Signal plane

Lead for tester

Compliant Lead
I/OGND PWR

DUTDUT

Power plane

Ground plane

Signal plane

Lead for tester

Compliant Lead
I/OGND PWR

 51

customized version of the mini-tester is illustrated as a self-contained module mounted to

the top side of the interposer. The interposer has a contact interface that is designed to

make contact with the appropriate complaint leads on the wafer. This allows testing to

take place, if necessary, directly on the wafer chuck and even in-between fabrication

steps. The mini-tester shown does not require an ATE or its resources to perform testing.

Due to its stand-alone nature, connections to the miniature tester are limited to: DC

power, USB, and a high-performance (low-jitter, multi-GHz) clock input.

Figure 4.3 Testing of wafer-level packaged (WLP) devices using a “miniature tester” and
a high-density interposer.

Using similar concepts as described above, the mini-tester may be used to perform

parallel testing. When parallel testing is required, the miniature tester may be replicated

in array form as illustrated in Figure 4.4. The complexity of the PCB is minimized by

using only a small number of signals for each mini-tester, thereby taking advantage of

BIST features of the DUT. This strategy is a logical extension of existing parallel tests

(such as used in memory testing) employing highly aggressive WLP testing techniques

[83]. As testing is done on multiple devices at the wafer level, manufacturers gain

significant cost and time savings.

CLOCK,

POWER &
PC CONTROL

WAFER

COMPLIANT
LEADS

CONTACT
INTERFACE

INTERPOSER

MINI TESTER

PCB

DUTs with BIST

WAFER CHUCK

CLOCK,

POWER &
PC CONTROL

WAFER

COMPLIANT
LEADS

CONTACT
INTERFACE

INTERPOSER

MINI TESTER

PCB

DUTs with BIST

WAFER CHUCK

 52

Figure 4.4 Parallel high-speed wafer probing using multiple miniature testers.

In [71], wafer-level probing is done by cantilever probe needles in a bare-die test

socket. For testing purposes, signals from the mini-tester are relayed to the bare-die test

socket, which then probes the DUT using cantilever probe needles to deliver the test

signals. The probing method is discussed in the following section.

4.2.2 Bare-die test Socket

Cantilever probe needles [84] have traditionally been used for testing wafer level

devices. They are mostly useful for frequency applications below 100MHz due to long

lead inductances. Coaxial probes [85] are available with multi-GHz performance for pad

pitches as small as 120 micron and have been used for probing solder bumps. However,

coaxial probes do not scale well for higher I/O density, fine pitch packages.

In [77], a novel approach based on metallized elastomer mesh which meets the

small size, high frequency and compliance requirements of WLP is described. The

elastomer mesh has coplanar contact probes that make the actual contact between it and

the DUT as shown in Figure 4.5. Each probe location consists of three fingers that

POWER

SOURCE

PC

RF

SOURCE

INTERPOSER

WAFER

MINI TESTER
ARRAY

COMPLIANT

LEADS

DUT

POWER

SOURCE

PC

RF

SOURCE

INTERPOSER

WAFER

MINI TESTER
ARRAY

COMPLIANT

LEADS

DUT

 53

correspond to ground-signal-ground (GSG) placed at a pitch of 100 microns. Gold plated

metallization is used for the signal and ground contacts. The metallization lines are screen

printed on the elastomer in the form of tapered GSG probes. The thickness of the mesh is

50 microns. The probes make contact with BoN copper column interconnects on the

DUT.

Figure 4.5 Layout of elastomer coplanar contact probe.

A prototype of the test fixture is shown in Figure 4.6 & Figure 4.7. The design

consists of two parts. First an elastomer mesh provides an electrical and mechanical

interface to the WLP. The elastomer material is itself in mesh form. Metal lines are

screen printed on the mesh on both sides. The signal wiring pitch is 100 micron (not

discernable in the figure). The compliance achieved depends on the mesh thickness. For

the prototype used, the compliance is on the order of 2 µm/gF. Secondly a multilayer

PCB substrate made of BT resin material provides support for 3.5mm SMA connectors

for use up to 6 GHz. One side of the mesh connects to the device under test while the

opposite side makes contact with the PCB. The PCB connects to the mini-tester through

the SMA connector.

 54

Figure 4.6. Prototype Test Socket

Figure 4.7. Elastomer Coplanar Contact probes inside test socket.

Screw for Contact
Pressure
Adjustment

Socket Cover
Latch

SMA
Connector

Screw for Contact
Pressure
Adjustment

Socket Cover
Latch

SMA
Connector

 55

The multilayer PCB has four metal layers, two of which form signal trace layers

on either side of the board with 50Ω transmission lines and the other two are buried

layers used as ground planes. The PCB serves as a space transformer between the fine

pitch WLP (at the 100 micron level) and the instrumentation connectors (millimeter

scale).

The contact probes are made by screen printing metallization lines onto the

elastomer mesh. Some areas of the metallization are patterned to from the ground and

power grids, while others provide short signal traces and contact pads forms in the sparse

elastomer matrix. The contacts can be densely populated to test fine pitch, high I/O

density WLP devices. The elastomer mesh material has spaces into which metallization

can be plated. This arrangement contributes towards the necessary compliance while

maintaining low contact resistance.

A diced WLP device is placed inside the socket on the test hardware. Connectors

surrounding the WLP device are connected to measurement instruments. The coplanar

transmission line on the substrate printed circuit board and the probe on the mesh provide

efficient high frequency transmission.

4.3 Miniature tester

The concept of a “test support processor” (TSP) was introduced earlier [82] and is

the precursor of the mini-tester. A TSP is a customized circuit that can be included in a

testing environment to enhance an ATE’s performance or functional capabilities.

Customizing the TSP to the DUT’s testing needs could be done quickly by reusing a core

logic structure called the Digital Logic Core (DLC - discussed in the next section) and

 56

adding specialized components. In this way the TSP could rapidly and economically

address new test requirements. However, the TSP was technically still a “support”

processor, i.e. it used significant resources from the ATE in order to create specialized

test signals. This limited TSP performance, as many of its functions were limited by

performance characteristics of the ATE. Furthermore, the TSP approach was not so

inexpensive, since it needed many very expensive ATE resources.

The main purpose of the DLC in the TSP was to provide control functions

between the TSP and the ATE. It served as a critical component of the TSP as it acted as

in interface between the TSP and ATE, and also the user. Additionally, it could be used

to control peripheral logic used in the TSP as necessary. The main component of the DLC

was an FPGA. As FPGA technology started to advance ahead of ATE performance in

some respects, it was realized that a DLC could be designed with a state-of-the-art FPGA

that could control the TSP without the need for resources of an ATE. This was achieved

by extending the basic TSP by adding connections for a PC controller, RF clock source

and DC power sources [86]. The DLC now controlled the TSP’s test functions via a PC

through which users could enter commands. These developments set the stage for a

stand-alone mini-tester to be designed.

Using this DLC, a customized mini-tester was deigned at low cost, since it did not

have all of the general purpose features found in traditional ATE [87]. It was designed to

provide only the specific test features needed for a particular application. Furthermore, to

keep costs low, off-the-shelf chips are typically used for constructing the mini-tester. The

main component of the mini-tester, the DLC is presented in detail in the next section.

 57

4.3.1 Digital Logic Core (DLC)

The central component of the mini-tester is known as the Digital Logic Core - DLC.

The main component of the DLC is an FPGA, which can be programmed to serve as a

test controller. In [86], a Xilinx Virtex XCV300E FPGA was used which had over 150

available I/Os, each capable of running up to 400 Mbps. In some applications, these

signals could serve directly as I/Os for testing the DUT. However, in this design, these

I/O signals were supplied to additional logic to enhance performance. A top level

schematic of the mini-tester is shown in Figure 4.8. In addition to the FPGA, the DLC

includes a specialized microcontroller chip for interfacing to a USB. A personal computer

communicates through the USB with the DLC, and provides high-level control of the

tests (which otherwise are synthesized in the DLC). Supporting these are a 12 MHz

crystal oscillator, and a flash memory chip to store the FPGA programming information.

FPGA programming can be quickly changed by overwriting the flash. An RF clock

source is also required to provide a low-jitter (picoseconds) timing reference.

In this mini-tester, signals from the FPGA are formatted and supplied to

additional PECL logic. The PECL devices take the formatted signals and create multi-

Gbps. State machines encoded in the FPGA, together with higher speed PECL

multiplexers and sampling circuits synthesize the desired tests in real time. This process

is discussed in detail in the next section.

 58

Figure 4.8. Miniature tester with high-speed PECL for testing multi-GHz DUTs (DLC
enlarged).

Figure 4.9. Prototype miniature tester with embedded DLC.

 59

A photograph of the mini-tester prototype board is displayed in Figure 4.9.

Although the prototype is large compare to the devices it is designed to test, this

prototype can be used to aid design of an ASIC-based mini-tester, reducing its size by an

order of magnitude. Each mini-tester ASICs can be integrated onto an interposer to test

one die site in an array (see Figure 4.4). The tests are designed to demonstrate high-speed

signal propagation through the compliant lead structures. The mini-tester produces a

programmable data source up to 8.0Gbps with 10ps timing resolution (see Section 4.3.2).

A high-speed PECL sampling circuit is designed to capture the returned signal, also with

a 10ps resolution (see Section 4.3.3).

4.3.2 High Speed Signal Generation

The DLC frequency is limited by the chosen FPGA to about 300-400Mbps,

therefore PECL is used to produce higher speed signals as shown in Figure 4.10. The

high-speed signal generation logic includes a multiplexer that allows the user to choose

between two input clock sources. This source clock is then fanned-out into two

programmable clock delay chips, which are controlled by the DLC. Two parallel-to-serial

converters are used to convert 8-bit words from the DLC into a serial data stream. Test

signals are independently programmed in the DLC and sent to the individual serial

converters. The clock outputs from the delay chips are used by the serial converters.

These signals are then sent to the next stage where they are logically combined using an

XOR gate to produce even higher speeds. This method creates a double data rate. The

signal is then fanned out to four separate channels.

 60

Figure 4.10. PECL logic used in mini-tester for high speed signal generation.

4.3.3 High Speed Signal Sampling

For capturing the DUT output signals, PECL devices allow the DLC to sample

one bit at a time from the high-speed incoming signal. The receive side of the mini-tester,

as shown in Figure 4.11, can receive up to 4 high-speed signal channels. Data capture

takes place using a high-speed flip-flop that is clocked by another programmable delay

chip. The delay chip is used to sweep the sampling time across the received signal.

Sampled data is then accessed by the PC though a USB link and used to plot a

reconstructed waveform.

 61

Figure 4.11. Logic used in mini-tester for high speed signal sampling.

4.4 Experimental Demonstration of the Mini-Tester

At speeds above 5Gbps the mini-tester is required to produce bit periods shorter

than 200ps. Most PECL devices are not sufficient for this application as they have rise

and fall times above 100ps [86]. They cannot achieve full amplitude swings when

running at such high speeds. In order to accommodate higher speeds, the mini-tester was

redesigned using SiGe logic devices [88]. To demonstrate the high-speed signal

generation capability, a pseudo-random data pattern was generated with the mini-tester,

using an LFSR encoded into the FPGA. An oscilloscope was used to measure eye

diagrams from one of its output channels. Figure 4.12 shows an eye diagram at our target

rate of 5.0Gbps. The eye diagram shows eye openings of about 0.8UI and sharp logic

transitions.

 62

Figure 4.12. 5.0Gbps eye diagram produced by mini-tester.

Figure 4.13 shows an eye diagram at 6.4Gbps. Again open data eyes were

obtained, with about 0.75 UI. Even at such high speeds, sharp transitions and full

amplitude swings can be obtained using SiGe devices. Jitter was measured on the

6.4Gbps signal to be about 35ps (including 6σ random jitter and deterministic effects).

Figure 4.13. 6.4Gbps eye diagram produced by mini-tester.

 63

The mini-tester was able to exceed its 5Gbps goal and reach speeds up to

8.0Gbps. Figure 4.14 shows an eye diagram at this speed. Signal speeds were even

pushed up to 9.6Gbps, where the eyes entirely collapsed. Jitter was measured on the

8.0Gbps signal and found to be about 40ps (including 6σ). By using SiGe devices in this

design, a significant reduction in p-p jitter was achieved compared with earlier designs

that used standard PECL technologies. However the programmable delay chips are

known to add picosecond range random and deterministic jitter [17]. Despite this fact the

jitter observed was at acceptable levels, producing eye openings of 0.75UI.

Figure 4.14. 8.0Gbps eye diagram produced by mini-tester.

To demonstrate the receive side of the mini-tester, a 6.4Gbps signal (Figure 4.15)

was generated using the testers output channel and looped-back to the input channel. The

DLC was then used to program the receiver sampling delay to sweep across the signal in

10ps intervals and record the values. However, the delay chip itself exhibits non-linear

 64

behavior, which can be minimized using a previously reported calibration process [88].

Using the raw data measured by the mini-tester, a received signal waveform was

reconstructed by graphing software as shown in Figure 4.16. Better accuracy can be

obtained by using the calibration method described in [88].

Figure 4.15. 6.4Gbps signal to be received.

Figure 4.16. Bit pattern plotted with sampled data.

Received 6.4Gbps Signal

0

0.2

0.4

0.6

0.8

1

1.2

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

31
0

33
0

35
0

37
0

39
0

41
0

43
0

45
0

47
0

49
0

51
0

53
0

55
0

57
0

59
0

61
0

63
0

65
0

67
0

69
0

71
0

73
0

75
0

77
0

79
0

Programmed Delay in ps

O
u

tp
u

t

 65

4.5 Experimental Demonstration of the Bare-die Test System

The high-speed signals from the mini-tester must pass through an interposer to

test WLP devices. Signals passing through the interposer may experience some quality

loss. To characterize this effect, high-speed signals from the mini-tester are passed

through the interposer and a test sample DUT. One high-speed mini-tester channel was

connected to the oscilloscope directly (as a reference), and its compliment was connected

to the interposer. The output of the interposer/DUT was then connected to another

channel of the oscilloscope. The setup is shown in Figure 4.17.

Figure 4.17. Lab setup showing high-speed signal from mini-tester prototype passing
through interposer prototype to oscilloscope.

 66

Figure 4.18 shows two eye-diagrams at 5.0Gbps, the bottom one is produced

directly from the mini-tester high-speed data channel, and the top one is produced from

its complementary signal passed through the interposer/DUT. From the two eye

diagrams, it can be noticed that the signal from the interposer/DUT is slightly attenuated.

This is due to the losses through the interposer board material, the traces on the elastomer

mesh, the connectors, and the DUT itself. The high-speed signal through the interposer

exhibits an increase in jitter. The jitter is at acceptable levels, as the eyes are still open.

Figure 4.18. 5.0Gbps eye diagrams. Bottom signal directly from mini-tester, top signal
via interposer.

Figure 4.19 is a comparable eye diagram at 6.4Gbps. The high-speed signal

through the interposer (top) again exhibits some attenuation. Also, at such high speeds,

the signal is not exhibiting full amplitude swing. The interposer rise and fall times start to

limit amplitude swing, thus at higher rates we are rise-time limited.

 67

Figure 4.19. 6.4Gbps eye diagrams. Bottom signal directly from mini-tester, top signal
via interposer.

At 6.4Gbps the mini-tester, jitter was measured to be about 35ps (including 6σ).

Jitter increases on the signal when it is passed through the interposer, due to the inherent

properties of the interposer itself. The jitter through the interposer was measured to be

about 65ps (including 6σ) as shown in Figure 4.20. However usable eye openings can be

seen. In order to fully utilize the high-speed capabilities of the mini-tester, an interposer

with improved rise and fall times must be developed.

 68

Figure 4.20. Jitter measurement of 6.4Gbps through interposer.

 69

CHAPTER 5

ENHANCED TEST MODULE USING MULTI-GHZ FPGA

TECHNOLOGIES

In the Chapters 3 & 4, two distinct approaches to enhancing ATE test

performance were presented. The first approach consisted of designing modular test

electronics to be used within ATE infrastructure in order to enhance test performance.

The modular test cards use resources from the ATE, such as multiple high-speed

channels, to generate higher-performance test capabilities. This approach was

demonstrated to be highly effective for many test applications (see Chapter 3). However,

this approach was limited by ATE resources, which could only be enhanced to a certain

degree.

A second approach to enhancing ATE performance is presented in Chapter 4, in

which stand-alone test systems are developed with higher performance test capabilities.

Although designing a test system can be an arduous task, it can be achieved in a feasible

timeframe by limiting functionality. The chapter demonstrates a mini-tester to perform

wafer-level testing at multi-GHz rates. By limiting the function of the mini-tester to only

produce high-speed test signals, it is developed within a reasonable time-frame and at a

reasonable cost using off-the-shelf components. However, the mini-tester does not

provide the complete test solution by itself. Another (low-cost) test system is required to

perform traditional tests such as DC parametric measurements, reliability testing, etc.

 70

 The research presented in this thesis aims to take advantage of both approaches to

enhancing ATE performance by developing a stand-alone test module in the form of an n

ATE plug-in module. A state-of the-art multi-GHz FPGA is used in the test module,

which allows it to operate independently of the ATE. Designing the test module as a

plug-in module allows it to operate within ATE infrastructure, thus permitting full use of

ATE resources when required. Therefore the test module is designed to enhance test

capabilities within ATE infrastructure, while not using any of its resources. They can be

designed to enhance various ATE performance criteria based upon DUT test

requirements, thus allowing much flexibility.

This chapter presents the test module in detail. The test module’s concept and test

methodology are discussed in the next section. Next, its design is presented. The design

of the test module is separated into two blocks, the core logic block, and the application

specific block. The application specific block is designed based on specific test functions.

In this research, six functions are demonstrated – specifically: high-speed signal

multiplexing, loopback testing, amplitude adjustment, timing adjustment, jitter injection,

and low speed testing. These functions are discussed in the final section.

5.1 Concept

Over the past four decades, ATE performance has improved and new testing

capabilities added. However, the advances in many ATE performance measures and

capabilities have not kept up with the advances in semi-conductor technology [1]. While

device data and clock rates have surpassed that of most ATE, some ATE manufacturers

offer add-on instrumentation to generate higher speed signals. For example, Verigy has a

high-speed extension card to generate signals up to 12.8Gbps [89]. Credence offers a card

 71

to extend signal generation up to 6.4Gbps [90]. Both these cards are ATE specific. If a

designer is using another manufacturer’s ATE, a huge capital outlay would be required to

access such instrumentation. Therefore this research presents the development of generic

(ATE independent) test modules that interface, not directly with the ATE, but through a

device interface board (DIB - explained below).

The concept of the test module is a generic electronic module designed to enhance

certain testing capabilities within ATE infrastructure. This concept allows the

enhancement of specific performance criteria of ATE quickly and feasibly. For instance,

most existing ATE are limited in signal speed to 6.4Gbps. Limiting the solution to focus

on increasing the high-speed capability of the ATE, a test module can be developed to

generate signals above 6.4Gbps. Since the test modules do not connect directly to an

ATE, they can be used with multiple ATE systems via specific DIBs. This also permits

full access to ATE testing resources, as the designed solutions are compatible with

existing ATE infrastructure.

The DIB acts as an interface between the ATE and the DUT. It is basically a PCB

that is designed to meet the mechanical and electrical requirements of a particular ATE

test head and provide the electrical interconnect paths between ATE and DUT. Most ATE

have “pogo” pins or similar compliant contacts on their test head to support signal

connections. The DIB makes physical contact to these pogo pins and routes these signals

to a more central or convenient location where they are delivered to the DUT. In this

case, the DIB is also designed to accommodate specific test enhancement modules. The

test modules fit directly into the DIB and are in between the signal path from the ATE to

the DUT. Therefore signals from the ATE to the DUT must pass through the test

 72

modules. Developing a DIB is much easier than redesigning a test module for a specific

ATE test head. Therefore, generically designing a test module with the notion of using a

DIB greatly enhances its portability across various ATE platforms.

Figure 5.1 shows a conceptual cut-away view of an ATE test head, with a multi-

layer PCB DIB. Multiple test modules are shown to connect on the top side of the DIB

and can be controlled synchronously by an external PC. However, in most production

testing environments, where robotic handlers are used, the test modules would connect to

the bottom side of the DIB.

Figure 5.1 ATE test head shown with device interface board. Test modules are designed
to plug into DIB.

In most test applications simple DC tests such as I/O voltage and current

measurement are also required and are better handled by existing ATE. Therefore the test

module is designed with provisions to allow ATE signals to pass directly to and from the

DUT. Low speed data and control signals connect between the test module and ATE,

while high-performance test signals connect between the module and DUT. This is done

Test Module

Test Module

Test Module

Test Module

Test Module

Test Module

Test Module

Test Module

DUT

ATE Test Head

Device Interface Board

Test ModuleTest Module

Test ModuleTest Module

Test ModuleTest Module

Test ModuleTest Module

Test ModuleTest Module

Test ModuleTest Module

Test ModuleTest Module

Test ModuleTest Module

DUT

ATE Test Head

Device Interface Board

 73

using high-performance RF switches and allows the full suite of ATE functions to still be

available for use on the DUT.

5.2 Methodology

The test module itself is designed in two blocks (see Figure 5.2). The first block is

a core component that exploits state-of-the-art FPGA technologies. The use of an FPGA

allows the test system to operate independently of the ATE. Also with the FPGA, the

core component controls and generates many test functions itself.

Figure 5.2 Block diagram of test module design with DIB and ATE.

In addition to a core component, the test module is designed with logic to enhance

ATE capabilities based upon specific test application requirements. This block is called

the application specific block. The primary enhancement targeted in this research is high-

speed testing. This is the most critical enhancement due to rapidly rising clock and data

 74

rates. Based on this requirement, the application specific logic is designed to perform the

following six functions: high-speed signal multiplexing, loopback testing, amplitude

adjustment, timing adjustment, jitter injection, and low speed parametric testing. Both of

these blocks are discussed in detail in the next section.

Designing the test module in separate blocks allows for greater flexibility,

customizability and future upgradability. The test module can be adapted as new

functionalities are required and further technological advances take place. When higher

performance is required of the test system, the core logic block can be redesigned

independently of the application specific logic. Similarly, the application specific logic

can be redesigned or additional logic added to accommodate new or improved test

applications. By limiting the solution to focus on specific enhancements, the methods

presented in this research allow ATE performance to be extended in a feasible, timely

and cost-effective manner.

5.3 Test Module Design

 In this section the design of the test module is described. The test module is

divided into two blocks, namely the core logic block and an application specific logic

block. The core logic block is designed by leveraging previous work done developing

stand-alone mini-testers as described in Chapter 4. The application specific logic block is

developed by leveraging previous work done in the development of modular ATE

extensions cards as described in Chapter 3. This approach allows for more flexibility

when upgrades are required and more customizability. Figure 5.2 shows a block diagram

of the test module and how it connects to the DIB. The core logic block and the

 75

application specific block are distinctly shown. The details of both these blocks are

provided in the following sub-sections.

5.3.1 Core Logic Block

 The core logic block consists of an FPGA that controls testing functions. In

addition to the FPGA, The core- logic block includes a specialized microcontroller chip

for interfacing to a USB. A personal computer communicates through the USB with the

core-logic block, and provides high-level control of the tests. Supporting these are a 12

MHz crystal oscillator, and a flash memory chip to store the FPGA programming

information. An RF clock source (usually an external instrument) provides a low-jitter

(picoseconds) timing reference. The core logic block can be seen in the left-hand side of

Figure 5.2 within the light-blue dotted box.

 The latest core logic block design exploits new advancements in FPGA

technology to reduce and/or eliminate dependence on ATE. For example, recent Xilinx

FPGAs can produce and capture high-speed signals up to 6.25Gbps using RocketIOTM

multi-gigabit transceivers (RIO MGT) [91]. Each RIO MGT block in the FPGA has two

TX and two RX channels. The particular FPGA used in this design contains 4 RIO MGT

blocks, which implies that each test module can have up to 8 high-speed TX and RX

channels. These transceivers are basically dedicated high-speed serializers/deserializers.

Internal logic in the FPGA takes a 20-bit wide parallel data bus, sends it to the SerDes

and converts it into a serial data stream. Therefore, internally, the data bus is required to

run at only 1/20th of the serial output data rate. The slower internal data rates allow the

test data manipulation, either algorithmically, comparatively or randomly, to be done

inside the FPGA in parallel fashion. This allows data to be manipulated (transferred

 76

to/from memory, or algorithmically-generated or compared) at the full sustained rate

needed by the multi-Gbps serial channels. Only within the dedicated RIO MGT logic are

the extreme, mutli-Gbps serial rates encountered.

How specific stimulus and response data is produced and manipulated within the

FPGA is flexible and depends upon the intended application. Therefore the details of this

are not shown in the figure, but discussed in detail in the next chapter. Typically the

parallel data is stored, at least temporarily in RAM and/or registers within the FPGA.

The data could represent deterministic test patterns, or could be produced in real-time

using programmed logic to implement algorithms related to the DUT. The obvious

example of algorithmic pattern generation is for memory testing, but the available FPGA

logic can accommodate even complex logic functions.

 On the other hand, certain aspects of the FPGA RIO MGT are common across

many applications. Each RIO MGT block requires a reference clock that determines both

the frequency and phase of the generated (or captured) serial data. The FPGA supports a

number of possible modes. In this particular case, a 1/20th rate reference clock is used.

For example, to produce a 5Gbps signal, a 250MHz reference clock is supplied.

Internally the RIO MGT circuitry phase-locks to this reference clock and synthesizes a

high-speed clock for the serializers and/or deserializers. This approach greatly reduces

the need for high-speed clock distribution external to the FPGA. Nevertheless, the SiGe

clock networks in the development platform work extremely well for distributing the

250MHz reference clocks, providing very stable (low-jitter) signals to the modules.

 In the core logic block, the reference clock is delivered to a 1:4 SiGe fanout buffer

in the module. Each of the four buffered outputs pass through a programmable delay

 77

chip. The FPGA is used to program these delays chips with a 10-bit word. Delay can be

set in 10ps increments. However these delay chips also include a fine tuning input port

that takes an analog voltage input from 0-3.3V and allows the tuning of the delay

between 0-60ps, thus allowing a much finer control of the delay. Programmable DACs

can be added to the core logic block (not shown), and controlled by the FPGA, to achieve

such precise timing control.

 Since the clock is relatively slow (<500 MHz), and does not have “data

dependant” properties, these delay elements pass the reference clocks with only minimal

added random jitter – 3ps as per manufacturers specifications. Notice in the Figure 5.2

that each of the four RIO MGT channels has its own reference clock, with an

independently-programmed phase. This degree of control allows the channel-to-channel

skew across all channels to be adjusted independently, providing maximum flexibility for

testing.

For communication to the external world, a microcontroller is used in the module

to allow control from an external PC via a USB port. A flash memory device is included

for programming the FPGA. These features are described in the next Chapter discussing

the FPGA design.

Figure 5.3 shows a photograph of the test module. In this figure the core logic

block consisting of the FPGA, USB microcontroller, flash, etc. can be seen in the central

and right side of the board, along with four programmable delay chips (for the reference

clocks) and the multi-pin Gbps signal connectors. Application-specific logic is seen on

the left side of the board, including the SiGe select logic, adjustable-amplitude buffers;

fan-out buffers, relays and SMP connectors.

 78

Figure 5.3 Photograph of the FPGA 5/10Gbps Module.

The application specific logic shown in Figure 5.3 is a critical component of the

test module design. The concept of designing the application specific logic as a separate

block, allows many different applications to be designed. They must be designed to be

compatible with the core logic block. If an application is desired that is not compatible

with the core logic block, provisions can be made in the core logic block and the test-

module redesigned. The application specific block is discussed below.

5.3.2 Application Specific Block

 The application specific block can be seen within the green dotted box in Figure

5.2. Signals from the core logic block are passed to the application specific block where

they are either manipulated or passed through to the DUT based on the application. In

this particular design, each of the RIO MGT TX signals are passed through a 2:1 fan-out

multiplexer that allows the selection of either the core signal or the application specific

signal. This signal is then passed through a variable-amplitude SiGe buffer (where the

amplitude can be adjusted between 100mV and 700mV), and then through an RF relay to

SMP connectors. When the relay switches pass these signals, the FPGA controls the test

 79

module independently, and an ATE (if present) is idle. This is the most novel mode.

Also, using similar modular extension principles in [44], the application specific block is

designed to extend its signals from the core logic block, without needing critical ATE

resources. This allows for increased customization as various ATE enhancements can be

developed depending upon specific needs.

Still another possibility is to use the alternate signal paths for in-situ calibration.

In past modules this flexibility has been well-worth the extra cost of the relays. On the

other hand, it is critical for these high-speed applications that the relays be carefully

chosen to support the extreme bandwidth requirements. The ones used in this card have a

bandwidth well above 10GHz, and work down to DC.

5.4 Applications

The application specific logic can be designed based upon the desired testing

needs. This feature removes many limits on what types of tests can be done with the test

module. Demonstrating all the test functions the test module can be designed to perform

would not be a feasible task and outside the scope of this research. Therefore in this

research, six commonly required test functions have been targeted. The test functions are

described in the following sections.

 80

5.4.1 High Speed Signal Multiplexing

 The first function developed was high-speed signal generation. There are many

techniques to generate higher-speed signals from slower-speed signals, such as

serializing, multiplexing, etc. However this task becomes very difficult when the slower-

speed signals are running at multi-GHz rates. At these speeds, jitter is a concern, and

must be minimized to retain signal integrity [92]. Also at such speeds, precision timing

becomes a critical issue, as control of signals must be established on the pico-second

level.

In this research, high-speed signal generation is achieved by multiplexing high-

speed data signals from the core logic block and producing a double data rate signal. This

is done by selecting both the RIO MGT TX channels through the muxes. The signals are

passed through ultra-precision buffers to sharpen their edge rates, and then multiplexed

through a high-performance InP XOR gate. As shown in [71] it is possible to create a

double-rate serial pattern by encoding two normal-rate signals each offset by half a clock

period simply by combining them with a high-performance XOR gate (as configured in

Figure 5.4-(b)). This is a well-known logic technique for DDR generation. However, its

success for synthesizing multi-Gbps test signals has met resistance due to the extreme

timing accuracy requirements of sub-nanosecond bit periods. Therefore, the FPGA in the

core logic block is used to set the proper timing offsets on the programmable delay chips

and also to select the proper mux channels.

 81

(a)

(b)

Figure 5.4 Multiplexing high-speed signals from core logic block to produce a double
date rate signal. (a) shows a timing diagram to generate a double date rate. (b) shows

logic components used.

 Since the simplicity (and low-cost) of the XOR multiplexing method is retained

when the high speed data is not re-clocked, any jitter present on either input shows up on

the XOR gate output. So, the first requirement for success is that the two input signals to

the XOR have minimal jitter. Furthermore, XOR gates have historically been notorious

for adding data-dependant jitter (DDJ), not to mention the unavoidable increase in

random jitter. One must further recognize that the timing accuracy demands for DDR

signals are generally about twice as tight as for the normal-rate signals. Therefore the

Delay 1

Delay 2

RIO MGT TX1

RIO MGT TX2

XOR (DDR)

Time 1 2 3 4

Delay 1

Delay 2

RIO MGT TX1

RIO MGT TX2

XOR (DDR)

Time 1 2 3 4

 82

tendency of the XOR to increase timing errors is heading in just the wrong direction

(increasing errors rather than decreasing them). Furthermore, the XOR mux technique

requires careful calibration at each frequency, since the optimal delay offset is frequency-

dependent.

 Even with all these potential difficulties, the promise of a 2x increase in data rate

can be worth the effort. Many of the timing errors can be minimized through calibration

techniques. However, those inherent to the XOR itself cannot be corrected (without re-

clocking). So an XOR gate with minimal inherent timing errors must be utilized. For

signals above 10Gbps, this means only a few picoseconds of allowable DDJ, and well

under 1ps of random jitter. In this test module an InP technology XOR for exactly these

reasons has been used. The specific part shown here is intended for low-jitter

applications up to 13Gbps (although good performance up to 20Gbps has been

demonstrated). As such, it works extremely well at the demonstrated 16Gbps speed (see

Chapter 8).

5.4.2 Loopback Testing

Another test function the test module addresses is a high-speed low-jitter adding

loopback path. BIST allows a device to test itself. However, a device testing itself within

its own packaging does not resemble real world operating conditions. Therefore routing

self-test stimulus through an external loopback path back into the device is preferable,

and creates a more realistic test environment [93]. At multi-GHz speeds, the simple

routing of a signal, while maintaining its integrity, is not a trivial task. The loopback path

must have enough bandwidth to support the multi-GHz signal while adding minimal jitter

 83

and minimizing losses and signal distortion. Such a loopback path has been developed

and is discussed in the next section.

 Loopback paths may be either passive or active. In this test module an active

loopback path is designed using a RF relay, a mux, and finally a high-speed variable

amplitude SiGe buffer to sharpen signal edge rates. This is shown in Figure 5.5, along

with its typical setup.

Figure 5.5 Typical loopback path for external loopback test.

 To implement the loopback path, a copy of the RX channels (coming from the

SiGe 1:2 fanout buffer) is taken and rerouted to the mux inputs of the core logic block.

The core logic block selects the proper mux channel to allow the loopback signal to pass.

As the signal is passed through the SiGe buffers, its final output amplitude going to the

DUT input is adjustable (100mV-700mV). This permits dynamic input sensitivity

characterization/test and allows the DUT to perform self-test through an exterior path.

The test module can also sample RX data to verify that the DUT is responding correctly

if desired.

DIB

DUT
Test Module OUTPUT INPUT

Core Logic

Block

DIB

DUT
Test Module OUTPUT INPUT

Core Logic

Block

 84

5.4.3 Amplitude/Voltage Adjustment

When testing high-speed digital circuits, there is often a need to adjust the

amplitude/voltage of the test signal. For example, a circuit designer may wish to

determine the upper and lower threshold voltage of a circuit. Amplitude adjustment may

seem like a trivial task, however at high-speeds becomes quite challenging. The device

used for amplitude adjustment must be able to handle high-speed data rates. However,

adding another component into the signal path can add unwanted jitter to the signal.

On the test module, the high-speed variable-gain SiGe buffers used in TX1 and

TX2 are capable of amplitude adjustment. The devices contain a voltage input pin used to

modify the bias voltage supplied to the buffer. Figure 5.6 shows the schematic for the

output buffer. Modifying the bias voltage subsequently modifies the output signal

amplitude. This allows amplitude adjustment without introducing another device into the

test module. The operation of these buffers is demonstrated up to 10Gbps; therefore

amplitude adjustment is also available on 10Gbps signal.

Figure 5.6 Variable-gain output buffer.

 85

The output buffers have a VCTRL input voltage pin that operates between the range

of 2.375-3.465V. The input voltage is directly proportional to the output amplitude. The

input voltage can be modified with a potentiometer as is designed currently on the board.

However, this requires manual adjustment during testing. To automate this process, a

DAC can be used as shown in Figure 5.7.

Figure 5.7 Variable-gain output buffer controlled by a DAC.

In Figure 5.7, the variable-gain buffer is controlled using a DAC. The DAC is

programmed to output a voltage between the range of 2.375-3.465V. The DAC is

controlled using the FPGA. The FPGA can be programmed to output 12-bit words to

control the DAC. This allows for full automation during test cycles. In the current design,

DACs have not been included. The inclusion of DACs is planned for the next iteration of

the test module.

 86

5.4.4 Timing Skew Adjustment

Testing high-speed digital circuits often require the need for timing or phase

adjustment relative to one another. There may be a variety of reasons to desire this

functionality. One reason may be to adjust the center of the data signal eye to align with

the clock signal at the receiving end. This would ensure more consistent sampling of the

high-speed data signal.

Another use for timing adjustment is with parallel data buses. When dealing with

high-speed signals, the slightest path length mismatch between multiple high-speed

signals can cause them to arrive at the destination at different times. Timing adjustment is

required to ensure that the data signals arrive at the destination at approximately the same

time. This is a common problem seen with ATE, where multiple test signals must be

aligned at the DUT input. Generally ATEs have a feature of programming delays on each

channel, thus allowing for timing adjustment. However, the precision of timing

adjustment is limited by the ATEs programmable resolution. For example the Teradyne

Tiger ATE has a timing resolution of 100ps [94], which may be adequate for many

applications. However, a 10Gbps signal has a bit-period of 100ps, thus an adjustment

resolution of 100ps is not adequate. In these situations, a picosecond timing control is

required for accurate alignment of high-speed data signals.

Picosecond timing control in the test module is achieved using off-the-shelf

programmable delay chips. The delay chips have a digital finite timing precision of 10ps

and a range of about 10ns which is more than adequate for high speed signals. In order to

set the delay, a 10 bit delay word is loaded onto the chip by the DLC. The schematic for

delay chip used is shown in Figure 5.8.

 87

Figure 5.8 Schematic of 10-stage delay chip

The delay chip has ten distinct stages of delay. Each stage has a delay of 10x2nps,

where n ranges from 0 to 9. At each stage, a multiplexer is present that is used to select

the delayed value or the non-delayed value. The multiplexer select lines are set by

loading the 10-bit delay word onto the chip. Thus any multiple of ten between 10-

10240ps can be programmed on the chip. In addition to the finite delay increments, the

programmable delay chip allows for more resolution via a FTUNE analog pin. This pin

basically supplies a bias voltage to an output buffer. Modifying the bias voltage of the

output buffer adjusts the amplitude of the signal, changing the time the signal reaches the

50% threshold, thus adjusting its skew. The FTUNE pin allows an analog timing

adjustment of an additional 60ps. Generally a programmable DAC is used to modify the

voltage supplied to FTUNE, however a potentiometer can also be used to adjust the voltage

 88

manually. A potentiometer has been used in the current design of the test module. Future

iterations will include programmable DACs controlled by the core logic block.

Each stage of the programmable delay chip ideally provides a finite amount of

delay. However the actual measured delay may differ at some points. A sample of three

delay chips was taken and their programmed delay versus their measured delay was

plotted in Figure 5.9. As can be seen from the graph, the relationship between these two

values is not linear. Lower delay values have higher percentage discrepancies. However,

these differences are similar throughout the chips used. Since every delay value is made

up by a combination of these ten delay values, a calibrated table can be constructed, in

which the programmed delay corresponds to an actual delay. Alternatively, the FTUNE

feature can also be used to calibrate the actual delay to the programmed delay.

Figure 5.9 Measured delay plotted against programmed delay for three delay chips.

10

100

1000

10000

10 100 1000 10000

Programmed Delay in ps

A
c

tu
a

l
D

e
la

y
 i

n
 p

s

Chip 1 Chip 2 Chip 3 Average

 89

It is generally easier to adjust a narrow-bandwidth clock signal rather than a wide-

bandwidth data signal. Similarly, it is easier to adjust a slower speed signal rather than a

higher speed signal due to device limitations. Therefore in the test module, the

programmable delay chips are used on the reference clock inputs for each RIO MGT as

shown in Figure 5.10. The core logic block requires a clock input that is fanned out via a

low-jitter SiGe 1:4 buffer. The output of the buffer is passed on to the programmable

delay chip. The FPGA is used to control the delay chip and program the desired delay

value onto it. The adjustable output of the delay chip is used as the reference clock for the

RIO MGT blocks in the FPGA. The speed of the reference clock is usually 1/20th the

speed of the RIO MGT output signal. Internally the RIO MGT synthesizes a higher speed

clock from the input clock to serialize the RIO MGT data (this process is discussed in

detail in the FPGA section). Thus adjusting the clock input of the reference clock to the

RIO MGT, causes a timing adjustment in the RIO MGT output signal.

Figure 5.10 Delay Chip used with clock input for RIO MGT

 90

5.4.5 Jitter Injection

Jitter is a critical issue with high-speed data signals. Amounts as small as 50ps

can render a 10Gbps signal useless. In most cases test designers strive to minimize jitter

on test signals. However in many causes the ability to add controlled amounts of jitter is

desired. For example, data signals are subject to various sources of noise, such as

crosstalk, simultaneous switching noise, etc. These sources are greatly amplified at higher

speeds. Therefore input jitter tolerance testing is required.

 The test module has provisions for adding controlled jitter by slightly modifying

devices already used on the board. There are two methods by which this can be done. In

the first method, the output SiGe buffer is modified. As discussed under the amplitude

adjustment section above, the SiGe buffers have a VCTRL input pin that allows the user to

adjust the bias voltage of the buffer for output amplitude adjustment (see Figure 5.6).

Controlled jitter can be injected onto the signal by AC-coupling a voltage noise source

onto the VCTRL input. The voltage noise is injected by an external source via an SMP

connector present on the board. However, adding a noise source to VCTRL will adjust the

amplitude of the output signal. This effect may not be desired in some test cases.

In another method, jitter injection is achieved in the test module by slightly

modifying the use of the programmable delay chips in the core logic block. As discussed

above, the programmable delay chips have a FTUNE input for analog timing control.

Varying the voltage input on FTUNE, the phase of the output signal is shifted. If an AC

signal or noise is placed on the pin, the output signal shifts back and forth, causing jitter,

as shown in Figure 5.11. This allows the addition of jitter onto the reference clock for the

RIO MGTs. Since the reference clock is used in the serializing logic of the MGT, this

 91

jitter is ultimately transferred to the output data signal. The RIO MGTs have internal

logic that will remove small amounts of jitter and even reject very larger amounts using

PLLs. This limits the amount of jitter that can be added to the output signal. However, for

high speed signals, large amounts of jitter are not required e.g. a 10Gbps signal will close

off with only 50ps of jitter added to it. Therefore adding jitter through the programmable

delay chips is preferred to first method described.

Figure 5.11 Jitter injection using FTUNE pin

5.4.6 Low Speed/Parametric/ATE Testing

 The test modules are designed to target specific enhancements for an ATE. As

such, they are not designed to handle all testing requirements a manufacturer may desire.

Additionally, there are tests that an ATE can perform more efficiently and precisely than

the test module can be designed to perform, such as DC parametric testing, low speed

testing, etc. Since the test modules are designed to interface with existing ATE

infrastructure, it is advantageous to allow ATE tests through the test modules. Therefore

the test modules are designed with RF relay switches that allow signals from the ATE to

pass through the test module to the DUT. The RF relays are used to select external

 92

signals to replace those from the module. These external signals may be connections to

DC parametric test instruments. Alternatively, the relays may be used to connect to

moderate-speed (<1Gbps) ATE functional test channels. In the low-speed mode, the

four relays connect the DUT signals directly to ATE channels, via the DIB. This mode

allows the ATE to control the test directly. Thus, standard ATE tests can be performed.

This mode is valuable for debug.

Figure 5.12 Low speed/ATE testing

 Figure 5.12 shows the logic used to implement ATE testing. Test signals from the

ATE are passed to the DIB, which passes them to the test module through a 40-Pin

connector. These signals are routed to the RF Relays. When these relays are switched off,

they pass the signals from the ATE to the DUT. Similarly the return signals from the

DUT are passed through the receive relays, routed through the test module, and returned

to the ATE via the DIB. In this mode the test module behaves as a passive component.

DIB

DUT

Test Module

OUTPUT INPUT

Core Logic
Block

RF

Relays

ATE

40 Pin CON

Test

Stimulus

DUT

Signals

 93

CHAPTER 6

 FPGA DESIGN AND IMPLEMENTATION

FPGAs generally keep pace with electronic device trends, i.e. as newer faster

electronic devices are developed; newer faster FPGAs in comparable ranges are

developed. ATE have been comparatively slower to advance performance and features

[2]. Current FPGA performance, in terms of speed, already exceeds that of the fastest

available ATE [89] & [95]. This fact has made FPGAs an ideal choice in developing

custom testing systems. Recent advancements in FPGA technology have allowed them to

be used for many testing purposes [52]-[53], [71], [86]-[88], [96]-[98]. These

applications include the development of stand-alone test systems, test modules and even

test platforms. The ease of usability and flexibility of FPGAs allows for the addition of

high-performance circuitry to enhance and add functionality to them that may be required

for certain test applications. The FPGA along with its support circuitry alleviates the

reliance on ATE, thus making testing more efficient and cost effective.

This chapter discusses the selection criteria of the FPGA in order to develop a

suitable test module. Based on these criteria, a suitable FPGA and its features are

discussed in detail. Furthermore, the design and development of the FPGA in order to

support a test module and achieve testing functionality is discussed. This includes

communication to the FPGA, FPGA firmware development and a software interface for

user control.

 94

6.1 FPGA Selection

This research aims to exploit new technological advancements in FPGAs to

enhance the performance of ATE. The selected FPGA provides many of the functions

necessary in order for the test module to operate. Therefore, the FPGA is a critical

component of the test module. Its performance determines much of the high-speed

performance of the test module. As such, the incorporated FPGA must be chosen

carefully based up on four main criteria:

i) I/O compatibility

ii) performance

iii) capacity

iv) physical size

I/O compatibility between the ATE, FGPA, application logic and ultimately the

DUT is the most critical criteria. The test module is not designed for any specific ATE,

but instead should be able to enhance ATEs from most manufacturers with various I/O

standards. Application specific logic for certain applications may include several devices

with several different I/O standards. And finally the DUT may require another I/O

standard. Therefore the FPGA should be compatible with most available I/O standards in

order to increase flexibility.

The performance of the FPGA dictates the ultimate high-speed performance of

the test module. For example, in this research, application specific logic is used to

produce a double data rate signal from the signals generated by the FPGA. Therefore, if

the FPGA is limited to 5Gbps, a maximum speed of 10Gbps can be generated from two

5Gbps signals. Obviously FPGAs capable of higher speeds are thus preferred.

 95

The capacity of the FPGA is another issue of consideration. Much of the test

generation logic, control logic, test pattern storage, etc. is stored in the FPGA. Therefore

the chosen FPGA must be able to accommodate all the necessary logic and storage

requirements.

Finally, the physical size of the FPGA is another factor that must be considered.

In production environments, robotic handlers are usually used to load and unload DUTs

onto the ATE’s test head. The test module must be designed to fit underneath the load

board on the test head of the ATE, where it cannot interfere with the robotic handlers.

Accommodating this limitation severely restricts the maximum physical size of a test

module as the available area between the test head and load board is relatively small. In

this research, the available space between the test head and the load board is 1.5 inches;

therefore the test module is required to be slightly less than this height.

In addition to the criteria mentioned above, the concerns for power consumption

and heat dissipation are always present. Power consumption must be kept low in order to

minimize resource usage, while high performance must be maintained. Lower power

consumption also generates lower heat within the device, and subsequently the test

module. In previous ATE enhancement modules, water cooling has been used [99], and is

still an option on most ATE. An excess build-up of heat can cause undesirable test results

and in some cases an unrealistic testing environment. Therefore lower power consuming

and low heat dissipating devices are ideal.

Considering all the above criteria, the Xilinx Virtex-5 family of FPGAs was

selected for used in the designed test module. The Xilinx Virtex 5 family is discussed in

the next section.

 96

6.1.1 Xilinx Virtex 5

The Virtex-5 family is representative of leading edge FPGA technology. It

provides some of the most powerful features available in the FPGA market including

high-speed transceivers with I/O speeds up to 6.25Gbps. The Virtex-5 FPGAs contain

many hard-IP system level blocks, including powerful 36-Kbit block RAM/FIFOs,

second generation DSP slices, SelectIO™ technology with built-in digitally controlled

impedance, ChipSync™ source-synchronous interface blocks, system monitor

functionality, enhanced clock management tiles with integrated digital clock managers

(DCMs) and PLL clock generators, and advanced configuration options [100]. They are

manufactured using a 65nm copper process technology and have an internal core voltage

requirement of 1.0V, thus consuming relatively low power and dissipating low heat.

The Virtex-5 family was also a suitable choice as it supports most widely used

single-ended and differential signaling I/O standards. This feature allows for the design

of a generic test module that can be compatible with most available ATE platforms and a

vast majority of devices. Table 6.1 summarizes the I/O standards supported by the

Virtex-5 family. In this research the LVCMOS standard was mainly used and sufficient

to demonstrate compatibility with other devices.

 97

Table 6.1 Virtex-5 Family supported I/O standards [100]

Single-ended Standards Differential Signaling Standards

LVTTL LVDS and Extended LVDS (2.5V only)

LVCMOS (3.3V,2.5V 1.8V, 1.5V and 1.2V) BLVDS

PCI (33 and 66 MHz) ULVDS

PCI-X HypertransportTM

GTL and GTLP
Differential HSTL 1.5V and 1.8V (Class I
and II)

HSTL 1.5V and 1.8V (Class I, II, III and
IV)

Differential SSTL 1.8V and 2.5V (Class I
and II)

HSTL 1.2V (Class 1) RSDS (2.5V point-to-point)

SSTL 1.8V and 2.5V (Class I and II)

As an additional benefit, the Virtex-5 family supports numerous widely used

serial protocol standards. The protocol encoding is done in the RIO MGT blocks after the

transmit data has been serialized. This feature is helpful for testing devices such as

network controllers, bus controllers, etc. that require specific I/O protocols such as PCIE,

XAUI, etc. [101]. Additionally, the FPGA allows the user to use a custom protocol, or no

protocol at all. This research mainly used the no protocol option to demonstrate proper

functioning of the output. The XAUI protocol with 8B/10B was also tested to determine

the feasibility of the using protocols directly from the FPGA.

The Virtex-5 FPGA family consists of 4 main platforms: the LX, LXT, SXT and

FXT. The LX platform does not have any RIO MGT available, thus was not considered.

The LXT and SXT platforms contain RocketIO GTP transceivers; however these

transceivers are designed to run up to 3.75Gbps. The FXT platform was the only platform

to contain RocketIO GTX transceivers capable of running up to 6.5Gbps, and therefore

the FXT platform was selected to be used in this design.

 98

The FXT platform is available in 5 models, out of which the XC5VFX30T model

was selected. This was mainly due to the fact that the model’s physical package size was

the largest of the models that fit within the physical constraints of the underside of an

ATE test head and could be mounted on the test module PCB board. The XC5VFX30T

contained 8 RocketIO GTX transceivers, each capable of running up to 6.5Gbps and 360

user I/O pins. Additionally it contained 5,120 Virtex-5 slices (each Virtex-5 slice consists

of four LUTs and four flip-flops) and 2,448 Kb of RAM blocks. As the RocketIO GTX

transceivers are a critical component of the FPGA and the test module, they are discussed

in detail in the next section.

6.1.1.1 RocketIO GTX Transceivers

The RocketIO GTX transceiver is essentially a high-speed serializer/deserialzier

(SerDes) developed by Xilinx for its Virtex-5 family of FPGAs. It is a power-efficient

highly configurable module that can produce line rates up to 6.5Gbps [102]. The

transceivers support transmit pre-emphasis and receive equalization programming for

optimized signal integrity. Additionally, the transceivers have built-in support for 8B/10B

encoding, comma alignment, channel bonding, clock correction and PCIE interfacing.

Xilinx has designed the GTX transceivers into dual transceiver columns and

placed them strategically close to other logic blocks in order to minimize size and power

consumption. Figure 6.1 shows an example block diagram of a dual GTX transceiver

column in a Virtex-5 FXT device (used in this design). Adjacent to each GTX transceiver

is a cyclic redundancy check (CRC) block to provide data validation. Integrated blocks

for interfacing with PCIE and Ethernet MAC are also present. The configuration and

clock block provides access to the clock and configurable ports on the GTX transceivers.

 99

Clock Management Tiles (CMTs) are used to manage the synchronization and routing of

clocks and clocking parameters. Two embedded processor blocks are also present for

each GTX dual column containing a PowerPC 440x5 32-bit embedded processor

developed by IBM. Each processor contains a dual-issue, superscalar, pipelined

processing unit, and other functional elements required to implement embedded system-

on-chip solutions [103]. Although, these processors are not used in the current designs,

their high-performance and flexibility may come in handy in future designs requiring

more on board processing power. Finally there are two I/O columns that have direct

access to the GTX transceivers. These are used to load configuration blocks, interface

with the embedded processors and general communication with the GTX transceivers.

 100

Figure 6.1 Example of GTX Transceiver Tile column in a Virtex-5 FXT device [102]

GTX transceivers are built into GTX_DUAL tiles, with each tile containing a pair

of GTX transceivers as shown in Figure 6.2. Each GTX transceiver has a pair of

differential transmit and receive pins which are directly accessible on the FPGA package,

as seen on the left-hand side of the figure. Furthermore, each GTX_DUAL tile has five

analog voltage pins and one clock input pin shared by both GTX transceivers. Sharing a

 101

single clock source in each GTX_DUAL tile allows both transceivers to be synchronized,

and also reduces size and power consumption of the FPGA. On the right-hand side of the

figure, the GTX_DUAL tile’s interface signals to the FPGA can be seen. Data and

control signals from the FPGA are passed via these pins.

Figure 6.2 GTX_DUAL Tile block diagram [102]

 102

As mentioned above, each GTX transceiver is divided into a transmit block and a

receive block. Figure 6.3 shows a diagram of the transmit block in a GTX transceiver. As

shown in the figure, data flows from the right to left. On the furthest right-end, is the

FPGA TX interface, where parallel transmit data and configuration parameters are

supplied. An 8B/10B encoder is built into each TX block, which allows 8B/10B encoding

by simply setting an input parameter. Similarly, the TX Gearbox can encode the signal

based on a 64B/66B scheme which is preferred on some high-speed data protocols.

Another useful feature of the TX block is it’s built in pseudo-random binary sequence

(PRBS) generator which can produce 27-1, 223-1 and 231-1 PRBSs internally. A loopback

path is also available in each TX block, which takes deserialized data from the receiver

and queues it for transmittal. This feature is useful for characterizing the performance of

the transceiver and debug purposes. Based upon the configuration parameters provided

from the FPGA, multiplexors in the TX block select the particular data path to be

serialized. This data is then sent to the parallel in serial out unit (PISO) in the TX block

and serialized. The TX driver is configurable, allowing pre-emphasis voltages to be set as

well as PCIE options. After serialization, data is supplied directly to the GTX TX pins on

the FPGA package.

Figure 6.3 GTX TX block diagram [102]

 103

The GTX RX block in shown in Figure 6.4. The flow of data in this diagram is

from left to right. Serial high-speed data is directly input to the RX block from pins on

the FPGA package. The RX data driver has built-in circuits to terminate the incoming

signal and an equalization circuit to compensate for high-frequency losses. A clock data

recovery circuit is also present to extract an embedded clock in the received signal. The

serial data is then passed to the serial in parallel out unit (SIPO) where it is parallelized

for further processing. A comma detect block is present to align the input signal

accordingly. A Loss of Sync state machine alerts the FPGA if the RX channel is out of

sync and malfunctioning. 10B/8B and 66B/64B (via RX Gearbox) decoding is available

and can be selected in the RX block. Similar to the TX block, configuration parameters

from the FPGA set multiplexor select signals in the RX data path to select a particularly

processed data signal. The processed high-speed received data, now in parallel, is then

provided to the FPGA through the FPGA RX interface.

Figure 6.4 GTX RX block diagram [102]

In addition to the above functions, the FPGA contains many more functional

blocks that can be used for in the future as necessary, such as DSP blocks, MicroBlazeTM

processors, elementary logic blocks, complex logic blocks, etc. Controlling and designing

 104

functionality for these complex devices is not a trivial task. The FPGA can be

programmed to perform a variety of functions using hardware description languages

(HDLs) such as VHSIC hardware description language (VHDL), Verilog, and schematic

entry. Very complex designs can be developed for this FPGA, however the goal of this

research is to design a generic control structure that can easily be ported onto other

FPGAs when needed. The design of the FPGA design logic is described in the next

section.

6.2 FPGA Implementation

The FPGA is the main component of the core logic block in of the test module. It

is tasked with ensuring the proper functionality of the test module. It is the actual

interface between the user and the DUT through which commands are sent and executed.

Furthermore it is used to control the functionality of the application specific logic for

testing purposes. Figure 6.5 shows a logical overview of the FPGA in the core logic

block of the test module and its surrounding components. An external PC can be seen on

the left of the FPGA which is required to communicate with the FPGA. However, unlike

a specialty workstation as an ATE requires, the test module requires only a typical off-

the-shelf PC with standard features. The PC is used for two main functions, the first of

which is to program the FPGA with its internal logic. The second function of the PC is to

control the FPGA, which is done through a custom software interface. Therefore the three

main stages of implementing the FPGA are communication, internal FPGA logic, and

software interface. These stages are discussed in the following sections.

 105

Figure 6.5 Logical overview of FPGA in core logic block and surrounding components

6.2.1 Communication

The PC communicates with the FPGA for two primary purposes. The first

purpose is to program the FPGA with its internal logic or FPGA firmware. The FPGA

firmware is designed on the PC using FPGA designs tools and will be discussed in

greater detail the next section. Once the FPGA firmware code has been developed and

compiled for the correct device, it is downloaded to the FPGA. The firmware is

downloaded via a JTAG link [104]. Since a PC generally does not have a JTAG port, this

process is usually done using a serial port or USB JTAG adapter.

Once a proper functioning FPGA firmware has been developed and tested, a user

need not continuously download to the FPGA, unless upgrades/modifications are

required. However FPGAs do not store programming on power downs, therefore when

the test module is powered down, the FPGA loses its programming. To solve this

 106

problem a flash memory device is used as an intermediary storage device. The chosen

flash device must be compatible with the FGPA and large enough to store the FPGA

programming information. In this research a Xilinx XCF32P In-System Programmable

Configuration PROM is used [105]. The flash device is linked to the FPGA via a JTAG

chain, therefore the FPGA is essentially programmed directly from the flash device. The

test module developer simply programs the flash device with the desired firmware, and

upon every power up, the FPGA is reprogrammed.

The second purpose the PC communicates with the FPGA is to control its

functioning. Once a functioning FPGA firmware has been loaded onto it, the FPGA can

be communicated to for application purposes. This entails many options - a standard PC

generally has many communication ports such serial, parallel, PS/2, USB, Firewire, etc.

The FGPA can communicate with any of these ports given the correct resources. For this

research, large amounts of data may need to be transferred to and from the FPGA. Large

test sequences, real time test data at gigabit/second speeds, sampling high-speed data, etc.

can be potential applications that require large amounts of data to be transferred between

the PC and FPGA. Therefore a communication port capable of high-speed data

transmission is required, and as such, the USB port was chosen.

The USB is a communication standard between two devices. The USB 1.0

standard can communicate up to 12Mbs and the USB 2.0 standard can communicate up

to 480Mbs [106]. The newest standard USB 3.0 can communicate up to 5.0Gbs, but

requires additional pins [107]. USB 1.0 and 2.0 require a 4-pin cable consisting of power,

ground and a differential data bus. The USB provides a communication link between a

host device and a USB function on another device. USB device communication is based

 107

on pipes of logic channels. A pipe is a connection from the host device to a logical entity,

found on a device, and named an endpoint [108]. A pipe is formed when a host makes a

connection to an endpoint. The host controller manages all the traffic to the devices and

can manage up to 32 endpoints. On a PC, a host controller is usually a separate device on

its motherboard, with which the operating system interacts. The host controller uses a

serial interface engine (SIE) to access the physical bus. The SIE is responsible for

converting the serial USB packets into valid bytes for the host controller. The SIE is

required to meet the bit timing requirements of the bus and handles signal level and

connections/disconnections of devices, i.e. creating endpoints. Once a USB device is

connected to a PC, the PC’s host controller starts an enumeration process in which a reset

signal sent to the device in order to read its device class code [109]. If a valid device class

code is read by the PC’s operating system, it loads the proper device drivers and creates

an endpoint. Once an endpoint is detected, a valid pipe can be created. This pipe can now

be available through the PC’s operating system, and client software can be used to access

the pipe. Despite all these levels of protocol, once a valid pipe is established,

communicating to a USB device becomes a seamless process.

In order for the FPGA to communicate via USB, it needs a SIE. Theoretically,

this can be programmed onto the FPGA; however this process is cumbersome requires a

lot of on-chip processing. Also, using an FPGA as an SIE uses much of its resources and

a reliable connection is generally not achieved using it. Dedicated USB controller devices

offer a more reliable and more efficient solution to communicating via USB. Therefore,

in this research a Cypress Semiconductor EZ-USB FXTM USB microcontroller [110] was

used to handle USB communication from the FPGA to the PC. This microcontroller has

 108

an integrated USB transceiver which handles the complex USB standards and an

enhanced 8051 microprocessor which makes accessing it simple and streamlined. The

particular microcontroller used operates the USB 1.1 standard which is much slower than

the USB 2.0 standard, however was sufficient for evaluation purposes. The

microcontroller simply requires a 12MHz crystal oscillator, which has been designed on

to the test module specifically for this purpose and a 3.3V power supply.

 Once the microcontroller is connected to the PC, the PC detects a default Human

Interface Device (HID) and loads the proper drivers. Two endpoints are created, one for

the write buffer and one for the read buffer on the microcontroller. At this point, the

microcontroller is ready for USB communication, but not much else. The host computer

simply polls the read buffer at regular intervals and the microcontroller accesses an

interrupt routine when new data is pushed to it.

 In order for usable communication to be established between the PC and the

microcontroller, the microcontroller must be programmed with a core. This core is

programmed in assembly language and runs on the 8051 processor available in the

microcontroller. The microcontroller core is programmed to be an interface between the

software client on the PC and the FPGA firmware, however is independent of both. It

simply relays commands and instructions from the PC to the FPGA. As such, the

microcontroller core is not expected to change unless significant changes are made on

both the client software and the FPGA firmware.

Foundations of the microcontroller core were developed in [111]. The core allows

simple commands and data to be written to the microcontroller’s write buffer, which are

then taken by the processor and processed accordingly. The microcontroller takes data

 109

from the USB buffer and extracts instructions from the data. Essentially there are two

commands that are sent to the microcontroller, read and write. The read and write

commands refer to a memory block within the FPGA and discussed in the following

section. Commands are sent by the client software interface hosted on the PC and

discussed in Section 6.2.3. Each command is sent along with an address and a data value.

When a write command is received, the microcontroller separates the address and data,

and writes the data to the FGPA memory block. Similarly when a read command is

received, the microcontroller reads the appropriate address from the FGPA memory block

and writes the data to the USB buffer, from which the PC SW client can read it. A logical

overview of the process is shown in Figure 6.6.

Figure 6.6 Logical overview of communication to test module

In Figure 6.6, the SW client resides on a PC connected to the test module, but

specifically to a microcontroller on the test module. The microcontroller is physically

 110

connected to the FPGA. Commands sent from the SW client are passed onto a memory

block in the FPGA via the microcontroller. The memory block is a dual port memory

block that can be accessed by additional FPGA logic. Once data is written to the memory

block, the FPGA firmware can access and process it accordingly. The FPGA firmware is

discussed in the following section.

6.2.2 FPGA Firmware

The internal logic of the FPGA, or firmware as referred to in this research, is

developed on a PC using an FPGA development tool. For this research, since a Xilinx

FPGA was used, the Xilinx ISE Design Suite was used to develop the FPGA firmware.

The ISE Design Suite is a powerful package that allows the development of HDL logic

for Xilinx FPGAs. It provides many additional design functions such as simulation tools,

chip-verification/debug tools, optimization tools, etc. The ISE Design Suite also comes

with an IP Solutions package. The IP Solutions package allows a developer to access

Xilinx’s library of pre-built logic components. The library includes a vast selection of

components from as simple as 2-bit counters to as complex as DSP cores and RIO MGT

blocks. These tools make a developer’s task much easier, especially when portability is a

concern, as the tools modify the compile logic based on the specific FPGA device

chosen.

 The main function of the FPGA firmware is to control the functioning of the test

module. In essence, the FPGA firmware is the test module’s central processing unit

(CPU). Therefore it is tasked with reading instructions from memory registers and

executing these instructions. In order to carry out these functions, a simple state machine

 111

is designed in the FPGA firmware. The simple state machine implements a pseudo

instruction set architecture (ISA). In its default state the state machine reads from a

designated memory register in the FPGA. Data in this memory block are assumed to be

instructions. After each valid memory word is read, the state machine decodes the

instruction and carries out the designated function. Each instruction requires

supplementary logic to implement and must also be designed in the FPGA firmware.

Figure 6.7 shows a conceptual state machine that represents the logic implemented in the

FGPA firmware and is discussed below.

Figure 6.7 State machine implemented in FGPA firmware to execute instructions

Figure 6.7 shows an overview of a state machine implemented in the FPGA to

control the functioning of the test module. The state machine is programmed to

 112

continuously read an instruction register. An empty register or zeros in the register cause

the state machine to continue reading the register in a loop, i.e. nothing different is done.

Similarly, if an unknown instruction is read, the state machines clears out the register,

and resumes to continuously reading it. In the case of a valid instruction, the state

machine enters into a sub-routine to carry out the said function. Upon completion of the

function, the instruction register is cleared out and the loop sequence resumed, unless

overridden by the sub-routine.

In this research a few instructions were implemented to prove the concept of

using a state machine for control architecture of the test-module. The first instruction

implemented is a sub-routine that loads delays onto the programmable clock-delay

devices on the test-module. The clock-delay chips require a 10-bit delay word and an

enable signal to be pulsed in order for the delay to be loaded. Specific addresses are

reserved in a memory block that stores the delay words for each delay chip. Since the

delay chips require a load enable signal to be pulsed, a common 10-bit bus is used to

route the delay words to each chip. Once the load delay instruction is received, the state-

machine accesses the memory addresses for the first delay word and places it on the bus,

while pulsing the load enable signal for Clock Delay 1. The next delay word is then

accessed and a similar process repeated for each clock delay chip. Figure 6.8 shows a

logical overview of this process.

 113

Figure 6.8 FPGA clock delay control logic overview

The second instruction implemented in the FPGA firmware is an instruction to

reset all the clock-delay chips. This was a simple function to implement and used the

same logic as the shown in Figure 6.8. However, instead of accessing the proper memory

registers to load programmed delay values, the 10-bit delay word bus is set to zero and all

the load enable signals are pulsed sequentially. The third instruction implemented is

loading data from the memory onto the transmit data bus of a RIO MGT. When this

instruction is sent to the test module, the state machine simply accesses data in specified

locations and forwards them to the transmit data bus. This is a simple, but necessary

instruction to demonstrate that specific data structures can be transmitted via a RIO

MGT. This instruction can be extended in future designs to transmit blocks of data

sequentially through the RIO MGT, thus sending test patterns to the DUT. Further, if

automatic test pattern generation (ATPG) logic is implemented in the firmware, test

patterns can be sent to the DUT via this instruction.

 114

 Instructions to the test module are issued from the SW client on the PC, therefore

the FPGA firmware must also to able to communicate with the SW client. As discussed

in the previous section, this is done via a USB connection and through a microcontroller.

The microcontroller is physically connected to the FPGA. The connections of the

microcontroller are routed to access a dual port memory block designed in the FPGA.

Among other functions, the memory block in the FPGA is designed to function as an

instruction register. Specific addresses in the memory are designated for specific

purposes. The first two addresses are designated for instruction words; each address

holds an 8-bit word, therefore allowing storage of a 16-bit instruction word. When

instructions are sent from the PC via the USB connection, they are written to these two

addresses automatically through one port of the dual-port memory in the FPGA firmware.

The state-machine in the FPGA hardware is constantly reading these addresses for new

instructions via the other port of the dual-port memory block.

Figure 6.9 shows a map of the memory block implemented in the FPGA

firmware. The memory block is a dual port memory block that is pre-designed in the

Xilinx ISE software suite [112]. One port of the memory is connected to a

microcontroller on the test module, while the other port is accessed through the internal

FGPA firmware. This establishes a communication link between a user and the FPGA, as

both entities can access the same data. Specifying memory addresses for specific uses

simplifies the communication process and also allows the creation of an instruction

register. In this research, Addresses 0 and 1 are reserved to instruction storage purposes

only, i.e. an instruction register. Addresses 2-5 are reserved for future purposes. The 10-

bit clock delay values for the four clock delay chips are stored in addresses 6-13. The

 115

remaining addresses are currently available to the user. Therefore the user has access to

nearly 2K-bits of memory storage for test patterns, etc.

Figure 6.9 FPGA firmware memory map

 Implementing the memory block as an instruction register greatly simplifies the

development of new instructions. Two 8-bit locations allow for a total of 255

instructions. Most instruction set architectures do not have nearly as many instructions. If

additional functionality is required, another four locations have been reserved to meet

needs. The logic to execute each instruction is handled by the state-machine and

implemented in the FPGA firmware. Developing new functions for the test module is

done incrementally. This significantly reduces implementation time and does not require

a complete design overhaul.

 116

6.2.3 Software Client

As discussed above, a user interfaces with the test-module through a PC software

client. Once the test module is connected to a PC with a USB cable, the host PC detects a

HID and creates two end points and loads the proper drivers, which allow access to the

microcontroller on the test module. As communication is established with the

microcontroller, a simple core is loaded on to its 8051 processor (Section 6.2.1), which

makes it ready to read and write commands. These commands are issued by a software

client on the PC that can access the HID device detected. Figure 6.10 shows the client

software screen developed for this research.

Figure 6.10 Client software screen

 117

The client software is the interface with which a user will control the test module.

It is tasked with issuing the commands that are sent to the FPGA via the USB. As such, it

is usually developed in tandem with the FPGA firmware. When new

instructions/functions are added to the FPGA firmware, the software client simply needs

to be updated with a method for executing them. To facilitate usability, much of low level

communication is hidden from the user. For example, in the previous section, it was

mentioned that Addresses 6-13 are the storage areas for the delay values. These addresses

are pre-programmed into the software client such that a user would simply enter a delay

value and click a button. The software converts the delay value into a 10-bit word, writes

the delay value into the proper memory location, and writes the instruction word to load

delays into the instruction register.

In this research a basic software interface was developed to handle the

instructions and functions available by the FPGA firmware, as seen in Figure 6.10. The

top section is where delay values are entered in nano-second units up to two decimal

places (the delay chips accept values in 10ps increments). Below that section are the

buttons to load and reset the delay values on the test module. The third section is where a

user can enter transmit data onto the RIO MGT channels (binary input only allowed in

the text boxes). In, the following section, clicking on the “READ RX” button causes the

FPGA to sample the RIO MGT RX channels, and write the data to a memory block, from

which the software client reads and displays it. The final section of the window is

primarily for setting optional parameters such as using the RIO MGT on the output

channels or the loopback path. Future functionality can also be placed in this section.

 118

 This chapter described the implementation of an FPGA for the test module,

starting from selecting an appropriate one to the software required to operate it. The

previous chapter described the logical design of the test module. Once the stages have

been completed, the next stage consists of physically designing the hardware of the test

module. Since high speed signals require special considerations, hardware design for the

test module is not a trivial task and is the topic of the next chapter.

 119

CHAPTER 7

 PHYSICAL DESIGN AND BOARD LAYOUT

The design of high-speed digital systems requires additional considerations versus

designing at-speed digital systems. Passive circuit elements such as wires, circuit boards,

device packages, etc. cause undesirable effects on signals such as ringing, reflections,

crosstalk, electromagnetic interference, etc. In the case of at-speed signals, these passive

circuit elements simply act as an extension of the device’s package. At higher speeds, the

effects of these same passive circuit elements are accentuated, such that the electrical

performance of the signal is directly affected [113]. Therefore careful consideration of

the effects of these elements must be taken when high-speed digital systems are designed.

In this chapter the physical design of the test module is discussed. Since the test

module is designed to operate at multi-GHz speeds, special considerations are made in its

design. These physical design considerations are discussed in the first section. In the next

section, the actual physical design of the test module is presented and discussed.

7.1 Physical Design Considerations

All electrical signals travel over wires as analog signals, and are thus affected by

the analog limitations of the wires upon which they travel. As frequencies increase,

electric charges migrate to the edges of the wire, and essentially reduce the cross

sectional area available for carrying current. This phenomenon is known as skin effect,

 120

and is mainly due to the larger magnetic fields in higher frequency signals pushing

current flow in the perpendicular direction towards the perimeter of the conductor. The

effect increases the resistance and parasitic capacitance of a wire while reducing its signal

to noise ratio. This effect is more pronounced as frequency increases and limits the

throughput of a wire, i.e. the maximum bandwidth it can carry. Skin effect is also a

contributor to energy loss at speeds in the multi-GHz range. The knee frequency

(discussed below) of a digital signal determines the bandwidth required to carry said

signal. Wires upon which skin effect does not start to limit bandwidth up to the desired

knee frequency are required to carry high-speed signals.

The equivalent sine wave frequency of a digital signal can be approximated by its

“knee frequency”. Signal edges contain frequency components called harmonics. Each

harmonic is a multiple of the signal frequency and has significant amplitude up to a

certain frequency. The knee frequency is the frequency above which harmonics present in

the signal pulse can be ignored. The knee frequency of a signal is related to the 3-dB

frequency of the signal and determined by a constant and the signal’s rise/fall time as

shown in Equation 7.1.

���� ≈ �
� (7.1)

Where K is the constant of proportionality related to the pulse shape, equal to 0.35 for

exponential rise, and 0.337 for Gaussian rise. T is the smaller value of the signal rise (Tr)

or fall (Tf) time.

The faster the rise/fall time of a signal, the higher its knee frequency is. This

requires a higher bandwidth to carry the signal, and ultimately materials capable of

carrying such bandwidths. Resistive losses at higher frequencies increase the rise and fall

 121

times of a signal as the amplitude of higher harmonics are decreased, with the highest

frequency harmonics most affected. Resistive loses can fundamentally change a signals

performance, and therefore need to be minimized.

In addition to frequency effects, transmission line effects also need to be

considered when designing high-speed digital systems. In an at-speed system, as long as

the round trip propagation delay of a signal trace is small comparable to its rise time, the

reflections generated by the signal can be ignored and not terminated [113]. This assumes

that the path of the signal is infinitely short, as no reflections can occur on an infinitely

short line since there is no propagation time between the signal and its reflection from the

end of the line. A transmission line is said to be short if its electrical length (lelectrical) is

less than 1/6 of its rise time [114]. The electrical length of a transmission line is

calculated by dividing its physical length (lphysical) by the propagation velocity (νpropagation)

of the signal. The Equations 7.2 and 7.3 define these relationships.

�	
	��
���
 < ��
� (7.2)

�	
	��
���
 =

��������

�����������
 (7.3)

The maximum speed a signal can travel is limited by the speed of light which is

84.7ps/inch. In physical media (besides air), this speed is much lower. Realistically, on

transmission lines, the propagation velocity is closer to 66-75% of the speed of light, or

closer to 120-180ps/inch. The propagation velocity of a transmission line is dependent on

its effective dielectric constant [115] (discussed below) as shown in Equation 7.4.

!"
#"�$���#% =

��������
√'(

 (7.4)

 122

In high-speed systems, when the transmission line is not infinitely short, a

reflection of the signal travels back. This happens when there is a change in the

characteristic impedance on a line, for instance when a line is routed to a device pin.

These reflections can be minimized by placing a terminating resistor in parallel to a fixed

voltage source and the signal. To achieve maximum minimization, the resistor must have

the same characteristic impedance value as the transmission line [113]. Using the

equations above, it can be seen that a high-speed signal with 100ps rise time travelling

through an FR4 medium (dielectric constant ≈ 4.5) has a maximum allowable

unterminated line of less than 10mm. This is an extremely short distance when designing

physical circuit boards; hence practically all high-speed signals must be terminated with

impedance matched resistors.

In most digital systems, PCBs are used, and signal traces are designed on them.

Any transmission medium is lossy, and at multi-GHz speeds these effects are

emphasized. Therefore the choice of PCB materials can have a large impact on the

performance of a high-speed system [102]. The parameter used to describe the

performance of PCB materials is its dielectric constant. The dielectric constant of a

material is its relative permittivity for frequency 0. Relative permittivity is a measure of

the effect of the dielectric on the capacitance of a conductor. Higher dielectric constants

cause signals to travel slower in a medium, thus lower dielectric constants are almost

always preferred.

FR4 is the most commonly used substrate material for PCBs. Standard FR4 with a

dielectric constant of 4.5 provides good performance when basic design rules are

followed. However, FR4 is available in a wide range of dielectric constants, 2.8-4.5

 123

[113]. Lower dielectric FR4 materials are generally more expensive, however preferable

when designing high-performance high-speed digital systems [102].

In PCBs, additional metal layers are placed around the signal layer. Changing

currents on any metal wire produce magnetic fields through induction which can generate

undesirable electric currents. This is true for traces on a PCB and the effect is known as

crosstalk. To mitigate this effect, the additional layers placed around a signal layer are

generally used as ground or voltage planes, upon which the effects of crosstalk are

negligible. These layers are often referred to as reference layers.

The characteristic impedance for a trace in a PCB is dependent on its stack up as

well as its geometry. The impedance of a trace is determined by its inductive and

capacitive coupling to nearby conductors, such as other traces, other layers, pads, vias,

connectors, etc. Other factors also contribute to the final impedance of the trace such as

substrate properties, conductor properties, distance to nearby conductors, etc. Two of the

most commonly used configurations on PCBs are microstrip and stripline; these are

shown in Figure 7.1. When a trace is routed on the outer most side of a PCB, i.e. does not

have two reference layers around it, the configuration is known as microstrip.

Conversely, when a trace is routed in an inner layer of a PCB, i.e. the trace does have two

reference layers around it, the configuration is known as stripline. Based on these

definitions, there are obviously more stripline traces available versus microstrip traces in

a multi-layer PCB. Striplines are generally preferred to microstrips as striplines have two

reference layers providing radiation shielding. Microstrips leave one side exposed to the

environment, however the upper and lower layers are preferred to minimize via stubs,

and therefore both configurations have distinct advantages.

 124

Figure 7.1 Microstrip and stripline configurations

The characteristic impedance of each configuration depends on its form. When a

signal passes through a trace in either configuration, there is a difference between the

trace voltage and the layers around it. This difference in voltage forms a capacitive effect

which varies depending on the height, width and length of the trace. The equation to

calculate the characteristic impedance of a trace is shown in Equation 7.5.

)* = +,/�%�.//�%�.0
1
2

 (7.5)

As seen in the equation, the characteristic impedance of a trace is a function of its

inductance and capacitance, and not dependent on the signal frequency. However this

constant ratio is a function of the physical geometry of the transmission line. The

equations to find the characteristic impedance of a trace based on geometry are shown in

Equations 7.6 and 7.7 [113][12].

 125

)* = 34*5
√'(78�93.�;�9

2
<
%+

8
�93.===0>

									�?@	A. 	≥ 1 (7.6)

)* = �*
√'(

�D +8A. + 0.25
.
A0 													�?@	

A
. 	< 1 (7.7)

Characteristic impedances commonly range from 10Ω to 300Ω in transmission

lines, and are typically between 50Ω to 75Ω in PCB traces [113]. When using FR4 based

substrates in a PCB, Equations 7.6 and 7.7 can be simplified to find the following

impedance approximations shown in Equations 7.8-7.11.

J = 2ℎ							�?@	50Ω	MNO@?PQ@NR (7.8)

J = .
� 										�?@	50Ω	PQ@NR�NDS 7.9)

J = ℎ										�?@	75Ω	MNO@?PQ@NR (7.10)

J = .
U 									�?@	75Ω	PQ@NR�NDS (7.11)

Standard resistors are easily available in 50 Ω and 75 Ω values on the market.

Using the above equations, trace widths can be calculated to result in these standard

values. The actual impedance value of the trace will vary slightly than calculated using

these equations. Therefore when using such standard resistors as termination resistors,

minimal reflections may be seen. This may cause a marginal change in resulting voltage

swing of the signal compared to the original voltage swing.

Traces that are routed in straight lines have a constant width (w). When a trace is

turned or bent, its width can change. In order to keep the width constant, and thus the

impedance of a line constant, straight lines are preferable. However routing signals with

 126

all straight line traces is simply not realistic. When turns and bends in signal traces are

required, right-angle bends must not be used. At a 90˚ bend, the effective width of the

trace changes, causing an impedance discontinuity due to the capacitive coupling of the

additional conductor area to the reference plane. This change in impedance can cause

undesired reflections on the signal depending on the amount of impedance mismatch.

Instead mitered 45˚ bends should be used, which keep the width and thus the impedance

of the trace constant.

7.2 Test Module Physical Layout

Since the goal of the test module is to enhance ATE performance, maximum

digital performance is desired from the PCB. Therefore the test module is designed by

paying careful attention to the physical design considerations discussed above. Ideal

performance could be achieved by following the considerations literally, for example by

using custom termination resistors to match trace impedance exactly, routing signals

straight lines only, not using vias, etc. For obvious reasons, this is not feasible or realistic.

Furthermore, there are physical restrictions that must be followed.

Chapter 5 discussed the physical width and height restrictions imposed on

designing an ad-on module to fit within existing ATE infrastructure. In addition to width

and height restrictions, there is a thickness restriction imposed on the module in order for

it to connect to the DIB. In this research, the maximum thickness available for designing

the test module was 0.062 inches. This allowed for a design using ten layers. Figure 7.2

shows the PCB stack up for the test module.

 127

Figure 7.2 Test module PCB stack up

All of the active device components used in the test module are surface mounted

on the top side of the PCB. Therefore the top layer is used to route the highest-speed

signals. The top and bottom layers are both microstrips. Although using stripline to route

higher speed signals may have been preferred, via transitions would have been required

that would have distorted signal performance. When transitions were required on the

high-speed top layer signals, they were routed directly to the bottom layer. This was to

minimize ringing effects potentially caused by mid-board via stubs. Since the

performance of the top and bottom layers was critical to the performance of the test

module, a high performance dielectric was used for these layers. The dielectric used was

R04350B, a glass-reinforced hydrocarbon and ceramic dielectric which had a dielectric

constant of 3.66 [116] compared to 4.5 for standard FR4, thus providing greater

 128

bandwidth. This dielectric can be fabricated on PCBs using standard FR4 processes,

however is more expensive than standard FR4 materials. Two more layers are used as

signal routing layers – layers 3 and 8. These layers were used to route non-critical signals

such as control signals. Since the signals routed on these layers were not critical to the

high-speed performance of the test module, standard FR4 was used for these layers.

 For each signal layer, a ground layer is present as a reference plane. Reference

planes should be contiguous for the length of a trace and splits should be avoided. Splits

on the reference plane cause impedance discontinuities on the trace above or below them,

as the coupling effects to the reference plane are changed abruptly [102]. Routing over

plane splits also causes issues with return currents. Due to skin effect, return currents also

travel near the surface of tightly coupled reference planes and have a tendency to follow

the original signal carrying trace. At plane splits, return currents must find alternative

routes, causing suboptimal current return paths and increasing the current loop area [102].

This effect increases the inductance of the trace at the split, and should be avoided.

Therefore contiguous ground planes are used as reference planes and placed adjacent to

the signal routing layers in the test module, layers 2, 4, 7 and 9. Also ground planes are

preferred to contiguous power planes as power planes tend to be noisier and can cause

undesired crosstalk effects [102].

 Using four layers for routing signals requires an additional four ground layers as

reference layers for optimal performance. This leaves only two layers left on a ten layer

board. In the test module, the two remaining layers are used as power planes – layers 5

and 6. The test module requires six separate power supplies. Supplying six power

supplies over only two planes becomes a challenging task. In the test module, these two

 129

planes are carefully divided in four split planes where the voltage sources are needed. It

should be noted that the power planes are in the middle of the PCB and well isolated

from the signal layers, thus minimizing undesirable interference. The remaining two

power sources were required for only a few pins. Since the two power planes could not

be feasibly split to accommodate these additional supplies, they were routed as traces on

the inner signal planes. Again, care was taken to keep them as far away as possible from

high-speed signals.

The exact dimensions of each layer are typically optimized by the PCB

fabrication house. A CAD tool, such as Mentor Graphics PADs, is commonly used to

design PCBs. Trace widths for each layer are set with the CAD tool to result in the

desired impedance values. On the test module, 50Ω traces were used. Once the design is

complete, CAD files of the design are sent to the fabrication house. The fabrication house

sets the thickness of each layer based on the total board thickness specification – 0.062”.

Once the individual layer thicknesses are set, trace widths may need to be slightly

modified in order to result in specified impedance. This is all handled at the fabrication

house by automated optimization software and seamless to a board designer.

The PCB design for the test module was done using a PCB CAD tool called

Mentor Graphics PADS Suite. The first step of the process involved entering all the

devices and components into a schematic editor. Once the schematic is complete, the

pads of all the components are exported to a layout editor. The layout editor can attempt

to auto-route the schematic connections is desired. However for high-speed performance,

manually routing each signal produces more efficient results. By entering the design into

a schematic editor first, manual routing of the traces is simplified. The software also has

 130

the capability to check the schematic version against the layout version, to ensure that

signals are routed to their proper destinations. Figure 7.4 shows the physical layout

design of the test module. Based on the physical limitations imposed by ATE

infrastructure, the height of the test module is set to 1.5” and its length set to 12”. Signal

propagation in the test module can be said to move from the right side of the board to the

left, i.e. input ports are on the right side of the board and outputs on the left. For greater

clarity, Figure 7.3 is divided and enlarged into three sections – starting from the right –

and shown in Figure 7.4-Figure 7.6. The figures are discussed below.

Figure 7.3 Test module PCB layout using CAD software.

 131

Figure 7.4 Right-most section of test module layout

Figure 7.5 Mid-section of test module layout

 132

Figure 7.6 Left-most section of test module layout

Figure 7.4 shows the right-most section of the board. This section contains two

40-pin connectors which connect to an ATE through a DIB. These connectors can be

used for control and communication, such as test commands, FPGA programming, USB,

etc. Eight pins from the 40-pin connectors are routed directly to the RF switches (shown

in Figure 7.6) for low-speed testing purposes. A few of the pins on the 40-pin connectors

are designated as power input pins for the test module. For development purposes,

redundant power supply posts are also present on the test module, such that it can be used

on a laboratory bench. In the lower right hand-side of the figure, the USB connection can

be seen. This feature is also redundant and for development purposes. Adjacent to USB

connector is the microcontroller and crystal oscillator. To the left of that is the

programmable flash chip. Most of the components provide an I/O interface to the test

 133

module, and interact with each other. Thus keeping them close to each other simplifies

trace routing in this section.

Figure 7.5 shows the midsection of the test module. The jitter injection subsection

contains two SMP connectors. Next to it is the differential clock input to the test module.

A fan-out chip supplies the clock to four delay chips in the clock delay network

(discussed in Chapter 5). Clock signals are routed to the left into the FPGA. Since the

clock signals are in differential pairs, the lengths of the pair must match in order for the

signals to arrive in phase at the destination. The FPGA is where the first high-speed

signals are generated. These signals are routed to the left into the application logic area

and are routed with great care.

Figure 7.6 shows the left-most section of the board. The Channel 1 subsection

contains four SMP connectors, two for differential transmit, and two for differential

receive of high-speed signals. The SMP connectors are routed directly to a pair of RF

relays. High-speed RIO MGT signals from the FPGA are routed directly to a MUX,

where they are then passed to SiGe buffers (discussed in Chapter 5). All these signals are

critical high-speed signals and routed only on the top and bottom layers for optimal

performance. Furthermore, great care is taken to match the lengths of the differential

high-speed signal pairs. Even a slight mismatch in length can cause one end of the signal

to be slightly out of phase, and cause significant jitter. The Channel 2 subsection is

similar to the Channel 1 subsection and contains all the same components. The left part of

the figure consists of the components required for high-speed signal multiplexing. This

subsection consists of four SMP connectors; only two are currently used for high-speed

signal transmission. Two buffers in this subsection each receive a RIO MGT signal from

 134

the Channel 1 & 2 networks. The signals are then multiplexed using a high-precision

XOR gate and routed to the SMP connectors (see Chapter 5). All these signals are also

critical signals, and are thus length matched and routed only on the top and bottom layers.

 Routing all the required signals within the physical dimensions of the board by

using only four signal planes in the PCB proved to be quite a challenge. First the critical

signals were all routed only on the top and bottom layers, while trying to avoid transitions

and length matching signal pairs. When a transition could not be avoided, a top layer

signal was transitioned all the way to the bottom layer through a via, and vice versa. By

transitioning the signal to the other side of the via, signal deterioration due to via stubs is

minimized. Once the high-speed signals were all routed, the remaining signals were

routed using the available area layers.

As shown in Section 7.1, high-speed signals over 10mm in length must be

terminated. On the test module, all high-speed and clock signals are terminated using

impedance matching resistors. In addition to resistors, numerous decoupling capacitors

are strategically placed around the board to filter both high-frequency and low frequency

noise. Furthermore, an elaborate network of inductors and capacitors is used to filter the

power planes close to the FPGA, thus providing it with highly filtered power supplies.

All this is to reap the maximum performance allowable through the system. Complete

schematics for the test module design are included in Appendix C. The appendix also

includes the entire layouts for all ten layers of the board.

 135

CHAPTER 8

TEST MODULE PERFORMANCE AND CHARACTERIZATION

In this chapter the performance characteristics of the test module are presented

and discussed. The core logic block is the main driver of the performance of the test

module, thus its performance metrics are critical to the overall performance of the test

module. In order to properly characterize the performance of the test module, the

performance of the core module is presented first. Additional test functions such as high

speed multiplexing, loopback testing, etc. devised within the application specific logic

block utilize resources from the core logic block, thus their performance is directly

related to that of the core logic block. The performance of these additional functions are

discussed after the results section of the core logic block.

8.1 Core logic block –characterization

The core logic block is responsible for the control of the test module; however it

also produces output signals. These output signals can be directly used for testing

purposes. The output signals are produced from the RIO MGT of the FPGA within the

block as described in Chapter 5. The output signal performance is mainly determined by

the FPGA’s RIO MGT characteristics; however the signal must pass through additional

logic elements before reaching a DUT which can alter the signal’s performance. The

performance characteristics of these output signals are measured by connecting them to

 136

an oscilloscope through the SMP connectors on the test board. A 50GHz oscilloscope is

used that requires SMA inputs; therefore a SMP to SMA converter is used to connect the

test module to the oscilloscope. An overview of the connection path is shown in Figure

8.1. High-speed test signals are generated by the FPGA through its RIO MGT ports.

These signals are passed through 2-to-1 fan-out MUX, where they are selected using

control logic. The signals then pass through high-performance SiGe buffers to remove

any attenuation that may have occurred and produce sharper edge rates. Finally, the

signals pass through an RF relay switch, which passes the signal on to the SMP

connectors on the test module (TX1). A SMP to SMA cable is used to connect the signal

to the oscilloscope where it is characterized.

Figure 8.1 Test setup to measure core logic block performance.

Figure 8.2 shows the output of the core logic block at 5Gbps. This speed is below

the maximum speed the RIO MGT blocks are specified to operate. The signals produced

have relatively low jitter, are symmetric, and have wide eye openings. A rough

 137

measurement of jitter showed the signal carried ~20ps (p-p) jitter. It should be noted that

portions of the measured jitter are contributed by the additional components within the

signal path in addition to the native jitter produced by the FPGA.

Figure 8.2. Core logic block output @ 5Gbps

Figure 8.3 shows a rise time measurement of the core logic block output signal at

5Gbps. The 20-80% rise time for this signal is measured at ~40-42ps, which is typical of

SiGe technology. According to the driver’s manufacturer, the maximum input data rate

for this part is up to 12Gbps and it’s typical rise/fall time is 40ps [117].

Figure 8.4 shows output from the core logic block at 6.25Gbps. This is a

significant level as the Xilinx Virtex-5 RIO MGT is specified to operate reliably up to

this speed. The results show wide open eyes. Jitter is measured to be ~22ps (p-p), and a

rise-time measurement (not shown here) indicates the same SiGe driver rise-time of ~40-

42ps.

 138

Figure 8.3 Core logic block output rise time measurement @ 5Gbps

Figure 8.4 Core logic block output @ 6.25Gbps

 139

Once operation of the RIO MGT was established at its specified maximum

reliable rate, the output limits were pushed for further performance. Figure 8.5 shows

output of the core logic block at 9Gbps. At this speed, wide open eyes are shown.

However the p-p voltage swing of this signal was slightly limited to achieve this speed.

Figure 8.5 Core logic block output @ 9.00Gbps

Figure 8.6 shows a jitter measurement on the 9Gbps signal. Jitter is measured to

be ~30ps (p-p). Although jitter has increased from the 6.25Gbps output signal, the added

jitter is well within acceptable limits. As mentioned above, this data rate is in excess of

the maximum reliable output specified by the FPGA manufacturer. However, these

results were produced consistently numerous times by providing a clean low-jitter clock

input and filtered low-noise (laboratory grade) power sources. Given the same quality

inputs, these results should be reproducible in other environments, i.e. production testing.

 140

Figure 8.6 Core logic block jitter measurement @ 9.00Gbps

After functionality of the core logic block was demonstrated at 9.0Gbps, it was

further pushed to determine its maximum output capabilities. Figure 8.7 shows output

from the core logic block at 10Gbps. At this speed jitter is measured at 38ps (p-p). The

eyes shown are open, but starting to close off. 38ps of jitter on a 10Gbps - 100ps bit

period signal produces a roughly 0.60UI eye opening. This signal may be used for certain

testing applications. Pushing the test module to further speeds produced unstable results.

 141

Figure 8.7 Core logic block output @ 10.00Gbps

8.2 High-speed signal multiplexing –characterization

In this section the results of the high-speed signal multiplexing application are

presented. The setup to take measurements of the performance characteristics of the high-

speed multiplexed signals is similar to that as described in the previous section using an

oscilloscope. However, in this case, additional logic is used to synthesize signals

produced by the core logic block as described in Chapter 5. The core logic block is used

to produce two RIO MGT high-speed signals. These signals are available after they have

passed through a 2-to-1 fan-out multiplexor. One output of the fan-out multiplexor is

routed to ultra-precision drivers which sharpen the signals edges. These signals are then

passed through an InP XOR gate which is used to multiplex the signals. An overview of

the signal path and test setup is show in Figure 8.8. Given the signals are offset in time by

 142

half a bit period; a double output data rate is produced by the InP XOR gate. Timing

offsets of the RIO MGT signals are controlled by using clock delay chips in the core

logic block, also described in Chapter 5.

Figure 8.8 Test setup to measure high-speed signal multiplexing performance

Figure 8.9 shows a multiplexed signal at 10Gbps. This signal is produced by

using two 5Gbps RIO MGT signals and appropriately offsetting them in time. The output

signal exhibits wide eye openings. Jitter as measured on the signal, is 32ps. However

much of the jitter can be attributed to the input signals from the FPGA. The manufacturer

of the XOR gate estimates the gate adds <10ps of data dependent jitter [118]. This is an

appropriate estimation as the RIO MGT input signals at 5Gbps measured 20ps (p-p) jitter.

The performance demonstrated by the XOR gate at 10Gbps is within manufacturer

guidelines and can be seen up to a speed of 13Gbps per manufacturer specifications.

 143

Figure 8.9 High-speed signal multiplexing output @ 10.00Gbps

Figure 8.10 shows a rise time measurement of a 10Gbps multiplexed signal. Rise

time for this signal can be seen to be 24ps, which is typical for InP technology and in line

with manufacturer specifications. The manufacturer also indicates a faster fall time,

which is typical for InP technology [118]. Faster fall times for this signal can be seen in

the figure above.

Figure 8.11 shows a multiplexed signal at 15Gbps. This signal is produced by

using two 7.5Gbps RIO MGT signals and appropriately offsetting them in time. This test

was done to demonstrate how far the performance of the XOR gate could be stretched.

15Gbps is beyond manufactures reliable guidelines of 13Gbps, however output is still

produced. The results show data eyes are still open, however closing off. Jitter is

measured around 35ps (p-p), which produces a less than 0.5UI open eye.

 144

Figure 8.10 High-speed signal multiplexing rise-time measurement @ 10.00Gbps

Figure 8.11 High-speed signal multiplexing output @ 15.00Gbps

 145

Figure 8.12 shows multiplexed output from the XOR gate at 16Gbps. It is similar

to the output at 15Gbps, but mainly presented to show the upper limits of the XOR gate.

Jitter on this signal is measured to be approximately the same as the 15Gbps signal

shown above at 35ps (p-p). The jitter is mainly dominated by the RIO MGT input signals

which measured a jitter of 28ps (p-p). Furthermore, on a 62.5ps bit period signal

(16Gbps), a rise time of 24ps becomes inefficient. This can be seen in the figure, as full

amplitude on the high side can only be sustained for a short period of time. Pushing the

XOR gate further did not produce useful results.

Figure 8.12 High-speed signal multiplexing output @ 16.00Gbps

8.3 Loopback Path – characterization

In this section the results of the loopback path on the test module are discussed.

The test module is designed with a high-speed loopback path to allow for loopback

 146

testing of devices. Test signals enter the test module through SMP connectors. The

signals are passed through a high-speed fan-out buffer, with one set of differential outputs

routed to the loopback path and the other directly to the core logic block. The loopback

path continues to a 2-to-1 fan-out mux, where it can be selected as the output signal, thus

creating a loopback path as discussed in detail in Chapter 5.

The loopback path is characterized using two experiments. In the first experiment,

the output of the core logic block is used as shown in Figure 8.13. The output of TX1 is

set to use the output signal produced by RIO MGT TX1 in the FPGA by setting the upper

mux (as pictured in the figure) to 1. TX1 is then physically connected to RX2 using a

SMP cable. The output of TX2 is then set to use the loopback input by setting the lower

mux to 0, thus establishing a loopback path between TX1 and TX2. The output of TX2 is

connected to an oscilloscope, where it is analyzed.

Figure 8.13 Test setup to measure loopback path using RIO MGT signals.

 147

Figure 8.14 shows results of the loopback path using a RIO MGT signal at

6.25Gbps. The upper portion of the figure shows the signal before it enters the loopback

path for reference purposes, while the lower portion of the figure shows the signal after it

has travelled the loopback path. The reference signal at 6.25Gbps measures jitter at

~22pp (p-p). After going through the loopback path, jitter on the same signal is measured

at ~42ps (p-p), thus the loopback path at 6.25Gbps is adding ~20ps (p-p) jitter to the

signal. Nonetheless, the output signal exhibits wide open eyes with a ~0.75UI opening.

Figure 8.14 Loopback path results using RIO MGT @ 6.25Gbps

 148

Figure 8.15 shows a similar plot of the loopback path results using RIO MGT

input signal at 9.0Gbps. The reference input signal is shown above and the output signal

is shown below. The input signal measures ~28ps (p-p) of jitter, whereas the output

signal measures ~46ps (p-p) of jitter. The jitter added to the signal at this speed is similar

to jitter added at 6.25Gbps. However since the input signal already measures jitter of

28ps (p-p), adding another ~20ps (p-p) starts to close the data eyes as seen above.

Figure 8.15 Loopback path results using RIO MGT @ 9.00Gbps

 149

Higher speed input signals were used to determine the loopback path’s limits. In

Figure 8.16, a 10Gbps signal from the RIO MGT is input to the loopback path. The

reference signal measures ~35ps (p-p) jitter. The lower portion of the figure displays the

same signal output from the loopback. The output signal measures jitter above 50ps (p-p)

with data eyes that are mostly closed (less than 0.50UI opening). Adding another 20ps of

jitter in this case would not be an acceptable solution.

Figure 8.16 Loopback path results using RIO MGT @ 10.00Gbps

 150

The above results indicated that using a low-jitter high speed signal would better

demonstrate the performance characteristics. Since all the output signals produced by the

test module measured at least 20ps (p-p) jitter, an external source was used. In [98] a

serializer module is demonstrated that can output high-speed data up to 10Gbps with

jitter under 20ps (p-p). This module was available to be used as an external source to test

the test module’s loopback path. The test setup for this experiment is similar to the above

experiment and shown in Figure 8.17. Instead of the RIO MGT output from TX1, the

external high-speed source from the serializer module is input into RX2. The mux on the

TX2 path is set to choose the loopback path and the output signal measured with an

oscilloscope. In this experiment, the mux, buffer and relay switch on TX1 path are

bypassed. Each of these components has the propensity to add small amounts of jitter to

the signal used, which accumulate and affect the final output signal. Thus by bypassing

these components, lower jitter can be seen on the output of the loopback path.

Figure 8.17 Test setup to measure loopback path using an external high-speed signal
source.

 151

Figure 8.18 shows results of the test module’s loopback path using an external

signal at 9.28Gbps. Jitter measured on the input signal is ~11ps (p-p), as shown in the

upper portion of the figure. After this signal is output from the loopback path, jitter is

measured at ~18ps (p-p). In this case, the loopback path on the test module is adding only

7ps of jitter to the input signal. The results of the loopback path using an external source

at this speed are certainly promising.

Figure 8.18 Loopback path results using external source @ 9.28Gbps

 152

In the final loopback path experiment, an external source at 10Gbps is used as

shown in the upper portion of Figure 8.19. Jitter on the input signal is measured at ~16ps

(p-p). The same signal output through the loopback path measures ~32ps (p-p). At this

speed, the loopback path is adding 16ps of jitter. In this case the loopback path adds

lower jitter compared to using a RIO MGT input signal at the same speed. However, the

output signal is distorted and not symmetrical. These results may not be ideal for most

test applications, but can be used for some, such as at-speed testing.

Figure 8.19 Loopback path results using external source @ 10.0Gbps

 153

8.4 Amplitude Adjustment – characterization

Amplitude adjustment features are available on two channels of the test module –

TX1 and TX2. This is achieved by using variable output drivers on the output signals and

discussed in detail in Chapter 5. By adjusting a control voltage input to the driver, the

output amplitude can be varied. The test module is designed with a potentiometer for the

purpose of adjusting the control voltage. The output driver is capable of varying the

output amplitude from 100-700mV, when input control voltage range is between 2.375-

3.465V [119]. A simple lab experiment is setup to test the amplitude adjustment

performance of the test module as shown in Figure 8.20. A RIO MGT signal is output

onto TX1 and connected to an oscilloscope. Control voltage on the buffer in the TX1 path

is systematically incremented while the output signal amplitude is monitored on the

oscilloscope.

Figure 8.20 Test setup to measure amplitude adjustment performance of test module.

 154

Figure 8.21 shows a plot of the measured amplitude of an output signal from TX1

versus the control voltage applied to the output driver. The input signal used is one

produced by a RIO MGT channel at 6.25Gbps. The p-p amplitude measured varied from

70mV to 725mV and is very similar to the range specified by the device manufacturer.

The driver varied the output amplitude while the control voltage was within 1.70-3.00V,

which is slightly offset from the manufacturer’s data sheet. Regardless, the device did

provide the variable amplitude range as specified and is sufficient for this function on the

test module. The control voltage offset can be noted and proper adjustments made to

achieve the desired amplitude in a testing environment.

Figure 8.21 Amplitude adjustment results from TX1

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500

P
e

a
k

-t
o

-P
e

a
k

 A
m

p
li

tu
d

e
 (

m
V

)

Control Voltage (mV)

Amplitude Adjustment Results

 155

8.5 Timing/Skew Adjustment – characterization

Timing/skew adjustment on the test module is available on two channels, TX1

and TX2. Adjustments are made using a programmable delay chip as described in

Chapter 5. The RIO MGTs require a clock input, which also determines the output phase.

Therefore, by adjusting the phase of the input clock to the RocketIO, the phase of its

output data can be adjusted. This feature can be tested by setting various delay values on

the programmable delay chips, and monitoring the change in phase of the output signals.

An overview of the test setup is shown in Figure 8.22.

Figure 8.22 Test setup to measure timing/skew adjustment.

 Figure 8.23 shows finite timing adjustment using the programmable delay chip.

Edge 1 is the reference edge at 0ps. The device is then programed to delay the signal

10ps, and the actual delay is 14ps as seen in edge 2. Edge 3 delayed by 38ps is produced

by programming 20ps of delay. Edge 4 is programmed to be delayed 30ps, a combination

of 20+10ps. Its actual delay is 52ps (38+14ps). A programmed delay of 40ps produces an

actual delay of 38ps, and overlaps edge 3. Edge 5 measured at 66ps delayed, is

 156

programmed to be 50ps delayed. These delay non-linearities are well documented in the

programmable delay data sheet [120]. Also, Chapter 5 discusses this issue in detail as

well and calibration methods to obtain better results.

Figure 8.23 Finite timing adjustment with delay chip

In addition to finite timing adjustment, the programmable delay chips are capable

of fine analog timing adjustment using its FTUNE input as discussed in Chapter 5. Figure

8.24 shows the performance of the fine adjustment. A total range of about 60ps is

achieved using this method. A table can be constructed measuring the voltage applied on

the FTUNE input and the delay measured. Using this table in conjunction with the

calibrated values for the finite delay discussed in Chapter 5, accurate and finite timing

adjustment can be achieved from the range of 0 to 10ns.

 157

Figure 8.24 Timing adjustment using analog FTUNE input on delay chip

8.6 Jitter Injection – characterization

The test module allows jitter to be injected onto its output signals through two

methods. The first method by which jitter can be injected is directly into the output signal

through the final stage driver. The second method to inject jitter into the system is

through the clock source, i.e. the programmable delay chip. Both options are discussed in

detail in Chapter 5. The second method allows a larger range of jitter injection and is

preferable to the first method. In this option an external signal generator is used as a jitter

injection source to input jitter directly onto the programmable delay chips as shown in

Figure 8.25.

 158

Figure 8.25 Test setup to demonstrate jitter injection.

The signal generator can produce a variety of signals with various amplitudes and

frequencies. It can also produce a plain noise signal. Various signals result in different

amounts of jitter injection. Figure 8.26 shows jitter injection using a 0.5V amplitude

noise signal, which produces 16ps of jitter. Similarly, Figure 8.27 shows 52ps of jitter

added by increasing the noise amplitude to 2.0V. Using a sine wave instead of plain

noise, higher jitter can be injected. Figure 8.28 shows 30ps of jitter injected using 0.5V

amplitude 20MHz sine waves. Similarly, Figure 8.29 shows 81ps of jitter injected using a

2.0V amplitude 20MHz sine wave. All these signals were applied onto to 6.25Gbps data

signal that measured a base jitter of 27ps (p-p).

 159

Figure 8.26 0.5V noise signal injecting 16ps (p-p) of jitter

Figure 8.27 2.0V noise signal injecting 52ps (p-p) of jitter

 160

Figure 8.28 0.5V 20MHz sine signal injecting 30ps (p-p) of jitter

Figure 8.29 2.0V 20MHz sine signal injecting 81ps (p-p) of jitter

 161

Injected jitter is a function of both the amplitude as well as the frequency (when

not plain noise) of the added signal. Therefore signals of various amplitudes and

frequencies were injected into the system, and the total jitter measured. Figure 8.30

shows the relationship between signal characteristics and total p-p jitter, while Figure

8.31 shows the same relationship with the standard deviation of the jitter. The same

reference signal running at 6.25Gbps with a base jitter of 27ps (p-p) was used. Figure

8.31 shows linearly increasing jitter with signal amplitude up to about 1.25V. After this

point the added jitter starts to taper off, also seen in Figure 8.30. The highest amount of

jitter added is about 81ps (p-p) (shown in Figure 8.29), therefore the range of jitter

injection using this method is 0-81ps (p-p). Data from Figure 8.30 and Figure 8.31 can be

used to created tables that allow the finite injection of jitter close to the picosecond scale.

These tables can be programmed into the software interface of the test module, making

jitter injection seamless to the user.

Figure 8.30 Jitter injection measurements (p-p)

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

To
ta

l
Ji

tt
e

r
-

p
s

(p
-p

)

Signal Amplitude (mV)

Noise

1MHz

2MHz

5MHz

10MHz

15MHz

20MHz

 162

Figure 8.31 Jitter injection measurements (standard deviation)

8.7 Low-speed/parametric testing - characterization

The test module has special provisions for direct propagation of low speed signals

from an ATE. This is achieved by the use of RF relays, which when are in the open

position, can relay signals from an ATE to the output. This application is discussed in

detail in Chapter 5.

Testing the low-speed path is a simpler experiment. The purpose of the low-speed

path is to provide a connection from the 40-pin connector on the test module to the RF

relays (see Figure 5.12). Therefore, essentially by checking this path for continuity, it

can be asserted that the path functions properly. Furthermore, it is expected that the path

will be used for parametric measurements by the ATE. Thus the low-speed path should

not alter the input signal. This can be tested by measuring the current and voltage of an

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

To
ta

l
ji

tt
e

r
st

a
n

d
a

rd
 d

e
v

ia
ti

o
n

 (
p

s)

Signal Amplitude (mV)

Noise

1MHz

2MHz

5MHz

10MHz

15MHz

20MHz

 163

input signal to the low-speed path and comparing it to the output signal at the RF relays.

Given the values are within sufficient tolerance limits, it can be determined that the low-

speed path performs are designed. These tests were conducted and low-speed signal

path’s operation was verified.

8.8 Results Summary

The results presented in this chapter demonstrate satisfactory performance of the

test module. The high-speed signal generating capabilities of the core logic block greatly

exceeded expectations. The main component of the core logic block, the FPGA was

expected to produce reliable results up to 6.25Gbps as per the manufacturer’s guidelines,

however was pushed to produce results up to 10.0Gbps. The high-speed multiplexing

feature produced results up to 16Gbps, at which jitter was dominated by the input signals

produced by the core logic block. The test module does have the ability to multiplex

external signals. Therefore, if two lower jitter external signals, which are aligned

precisely for multiplexing, are provided to the test module, better results are potentially

attainable. The loopback path demonstrated solid capabilities of reliably propagating

high-speed signals slightly under 10Gbps. Amplitude adjustment and timing/skew

adjustment results demonstrated the proper functioning of these features. Jitter injection

was demonstrated with a range of 0-81ps (p-p). Furthermore, the low-speed path on the

test module performed as designed. Therefore, the results presented in this chapter

provide sufficient evidence that by using a multi-GHz FPGA based test module according

the approach described within this research, ATE performance can indeed be extended in

a feasible and useful manner.

 164

CHAPTER 9

 CONCLUSIONS

9.1 Summary

The objective of this research was to develop methodologies for extending ATE

performance capabilities into the multi-GHz range using FPGAs. In Chapter 1, the

motivation for extending ATE performance was discussed, and hence the purpose of this

research was established. The history of ATE development and recent advancements was

reviewed in Chapter 2. This chapter also examined the progression of semiconductor test

and how various methods of design and test are used to test today’s complex electronics.

Furthermore this chapter reviewed technology roadmaps in order to better understand

industry trends and anticipate future challenges.

Chapter 3 reviewed research done to extend ATE performance into the GHz

range. This research mainly consisted of the development of electronic test modules that

use ATE resources to synthesize higher test performance metrics. Chapter 4 presented the

preliminary research of this thesis that was motivated by the need to increase high-speed

testing capability. However unlike the research presented in Chapter 3, the preliminary

research presented in Chapter 4 focused on the development of a FPGA-based multi-GHz

miniature tester capable of operating without the need for ATE resources. The research

presented in this thesis extended the earlier work (presented in Chapters 3 and 4) by

combining the ideas of modular extension of ATE and stand-alone test techniques using

 165

FPGAs. This research focused on methods to enhance ATE performance using multi-

GHz FPGAs to develop test modules capable of independent operation. These methods

are explored and demonstrated by the design and characterization of a high-performance

test module in Chapters 5-7.

Chapter 5 discussed the logical design and methodology of the test module. This

module consisted to two blocks – the core logic block and the application specific logic

block. The core logic block was the central component of the module. It was designed

with a FPGA that allowed it to control test functionality and also provided an interface to

the outside world. A multi-GHz Xilinx FPGA was used that contained RIO MGTs. These

allowed the core logic block to produce multi-GHz signals. In addition to the FPGA, the

core logic block contained a flash memory chip and a microcontroller. The flash memory

chip was required to program the FPGA on power up. The microcontroller provided a

USB interface to the FPGA such that it could be controlled using a PC. The core logic

block required a clock input that was fanned-out to four programmable delay chips.

These clock delay chips were used in the core logic block to adjust the timing skew of the

output signals produced by the FPGA.

The application specific logic block took signals from the core logic block and

either processed them further or simply passed them through to the DUT, based upon the

application. In this research six applications were developed. The first application was

high-speed signal multiplexing to produce DDR signals. The second application

developed a high-speed low-jitter loopback path. The third application was the ability to

adjust the amplitude of output signals. Similarly, the fourth application was the ability to

adjust the timing skew of the output signals. The fifth application was the ability to inject

 166

controlled amounts of jitter onto a test signals. The final application was low speed

parametric testing that was achieved using high-speed RF switches.

The FPGA used in the test module was a critical design component. Chapter 6

discussed the selection criteria for this FPGA. Since the FPGA was used to control the

test module, its design and development was presented in this chapter. The test module

required a communication interface to an external control computer (PC). This chapter

discussed the development of this communication interface and the test module’s

operation.

Multi-GHz digital systems require additional design considerations to optimize

signal propagation and integrity. The test module was developed on a controlled

impedance multi-layer PCB. Chapter 7 discussed the physical design considerations

undertaken to achieve multi-GHz speeds. Furthermore the layout of the test module was

presented in this chapter.

Chapter 8 presented the experimental results of characterizing the performance of

the test module. Functionality of the core logic block of the test module was shown up to

10Gbps with 38ps (p-p) jitter. High-speed signal multiplexing was shown at 10Gbps with

32ps (p-p) jitter. Multiplexing was also shown using two 8Gbps RIO MGT signals to

produce a 16Gbps output signal. The loopback path developed in this research was

demonstrated to work up to 10Gbps while adding only 16ps (p-p) jitter to the input

signal. Amplitude adjustment of output signals from the test module is demonstrated

through a range of 100-700mV. Timing control of the output signals was demonstrated in

10ps discrete increments up to 10ns. A fine scale range of 60ps was achieved using an

analog control signal. Jitter injection is demonstrated up to 80ps (p-p). Finally,

 167

functionality of a low-speed path was also demonstrated for use with signals directly

from an ATE.

9.2 Contributions

 The summary given above highlights the achievements of this research. Based

upon these achievements, the major contributions of this thesis are:

9.2.1 Modular test enhancement framework for ATE

A modular test enhancement framework consisting of a core logic block and an

application specific block is introduced in this thesis. The modular nature of the

framework allows rapid development of ATE performance enhancing test modules. Since

the application specific logic block can be designed independent of the core logic block,

various ATE enhancements can be developed using this framework. Furthermore, since

the framework is compatible with existing ATE infrastructure, full ATE functionality can

be retained.

The modular approach allows for the easy upgradability when next generation

devices are available. When next generation FPGAs become available, the core logic

block can be redesigned to achieve higher performance. Similarly when higher-

performance components, such as XOR gates, are available, the test module can be easily

redesigned to include these, thus not requiring a full redesign. Therefore the framework

developed in this thesis can be applied into the foreseeable future.

 168

9.2.2 Communication and control architecture for test modules

A command and control architecture for ATE performance enhancing electronic

modules is presented in this thesis. The architecture consists of software developed for

use on a PC to interface to the test module through a USB port. A microcontroller

firmware architecture developed on the test module translates and executes commands

sent by a user. The PC software and the microcontroller software are developed

independently and designed to be compatible with each other.

Since the communication architecture presented consists of two independent

components, greater flexibility is achieved. When new commands are required, the

microcontroller architecture can be updated to accommodate them. Similarly, the PC

software can be updated accordingly to allow new commands. Therefore this approach

allows for future upgradability and furthermore allows this architecture to be used in

various similar applications.

9.2.3 High-speed signal multiplexing

A method for generating high-speed signals through multiplexing lower speed

signals using an ultra-precision XOR gate is presented in this thesis. A data rate doubling

is achieved by offsetting the input signals by half a bit-period and combining with an

XOR gate. This well-established concept has proven to be very challenging, especially in

cases when the input signals are in the multi-GHz ranges. Therefore a significant

contribution of this thesis is the exploration, characterization and demonstration of this

technique in the 5-15GHz range using FPGAs as a data source.

 169

The results shown in Chapter 8 demonstrated that the limitations of this

application were imposed by the XOR gate. Therefore this method can be used in the

future to produce higher speed signals by substituting higher-speed XOR gates. When a

higher-performance XOR gate is available, it is designed within the same framework to

produce even faster test signals.

9.2.4 High-speed Loopback path

This thesis presents a method for designing a high-speed loopback path using

active components. The loopback path is shown to add low jitter to an input signal and

demonstrated up to 10Gbps. Much of the limitations on the loopback path are imposed by

the active components, i.e. the multiplexor, buffer, fan-out buffer. Using next generation

devices and employing the methods shown in this thesis will allow even higher

performance loopback paths.

9.2.5 Jitter Injection

A method of injecting measured jitter into a high-speed test signal is presented in

this thesis. Jitter injection is achieved by placing external noise on to the programmable

clock delay chip that adds it to the output clock signal and ultimately to the output test

signal. This thesis establishes a relationship between characteristics of the noise applied

and the jitter produced. Using this relationship, controlled amounts of jitter can be

injected onto a signal. This method also allows for future upgradability when high-speed

serializers become available.

 170

9.2.6 Low-speed/parametric testing path

High-performance ATE may perform many standard tests (such as parametric

measurements) better than custom built test modules. Therefore retaining full

functionality of an ATE when developing test modules is desirable. A method to allow

full ATE functionality while using a test module us presented in this thesis. The low-

speed path allows the test module to act as a passive signal transmission path, thus

allowing test signals from an ATE to be used for standard testing functions. This is

achieved through the use of high-frequency RF switches, whose functionality is

demonstrated up to 16Gbps. When higher performance switches are available, the

switches can be replaced to accommodate higher-speed signals.

9.2.7 Physical design guidelines for high-speed test module

High-speed digital systems require special physical design considerations as

discussed in Chapter 7. This thesis presents guidelines for physically designing a high-

speed test-module effectively. Based on these considerations a test module design is

presented that is within the size and form factor limitations imposed by a target ATE

infrastructure. Furthermore the choice of PCB materials makes a significant impact on

high-speed signal propagation. Therefore when higher performance PCB materials are

available, a new test module capable of greater speeds can be designed using the same

guidelines presented in this thesis.

 171

9.3 Conclusions

The objective of this research was to develop methodologies to extend ATE

performance capabilities into the multi-GHz range using FPGAs. Experimental results

presented in this thesis demonstrate enhancing six test applications within an ATE

framework. Therefore these results provide evidence that the methods presented by this

thesis can be used to effectively enhance ATE performance into the multi-GHz range

using economical FPGAs. Although specific example test modules are shown, the

methods presented in this thesis have a broad application to future test scenarios.

The methods presented in this thesis offer seven distinct contributions discussed

in the previous section. These contributions extend the applicability of this research to

future test requirements. As new technological advancements are made, the same

methods presented in this thesis can be used to extend ATE performance. Chapter 2

discusses that FPGA performance in terms of speed has increased much faster than ATE

speeds have increased. Xilinx is introducing a Virtex-7 family of FPGA devices with the

capability of 28Gbps transceivers very soon [12]. Altera has recently released a line of its

Stratix V FPGAs equipped with transceivers capable of transmitting data up to 28Gbps as

well [121]. The test module design presented in this thesis can utilize these new FPGAs

employing the same principals to achieve 28Gbps data rates, which are far beyond the

capability of available ATE.

Similarly when faster components are available, they can be incorporated in to the

application specific block of the test module. Inphi Corp currently offers a 25Gbps

precision XOR device [122], other manufacturers offer faster components. These XOR

devices can be designed in to the application specific logic block to take two signals from

 172

the core logic block and multiplex them to produce a double date rate using the same

methods presented in this thesis. Therefore the contributions made in this thesis have the

potential to be used into the foreseeable future to enhance semiconductor testing

applications.

9.4 Future Work

This thesis demonstrated several functions of a test module used to enhance ATE

performance. Much of this work was required in order to demonstrate proof of concept.

Therefore, there is much immediate work that can be done to further improve current

performance and usability.

 The first improvements that can be made are to the software interface. The

software interface was designed as a minimal interface to demonstrate communication to

the test module. However, the software interface can readily be designed to do much

more. For example, the delay non-linearities of the programmable delay chips can be

programmed into the interface. This would allow the software to correct the desired delay

based on calibration tables. Furthermore, potentiometers on the test module can be

replaced with DACs which can be programed automatically by the core logic block. This

will make delay calibration much more efficient.

 Jitter injection can also be automated by the software interface. Jitter is injected

using an Agilent signal source which is controlled through a computer link. The software

interface can be developed to control the signal source and inject noise according to the

amount of jitter desired. For example, when 20ps of jitter is required, the software

 173

interface would be pre-programed to set the signal source to produce a 600mV noise

signal to produce the required amount of jitter.

 The FPGA firmware can also be developed to handle more commands, such as

cycling through test patterns. Memory structures in the FPGA already exist to

accommodate pre-determined test patterns. Implementing a command in the FPGA to

sequentially cycle through a range of memory address is simply a matter of software

development.

 All the tasks discussed above will improve the performance of the generic test

module design. Once specific applications have been targeted, these applications can also

be built into the application specific logic if necessary and a more targeted test module

developed. Furthermore, future work on the test module should also be aimed at

redesigning the core logic block with the new Xilinx Virtex 7 FPGA capable of transmit

speeds of 28Gbps. Since another Xilinx FPGA is to be used, much of the internal

firmware can be reused, and most of the communication software will remain unchanged.

The physical layout of the test module would have to be redone as the new FPGA will

have to be connected to the other components. However, this entire process would entail

much less than a complete redesign. Therefore, as discussed above, the modular design of

the test module greatly simplifies the upgrade process.

 174

APPENDIX A

FPGA Firmware

In this appendix details of the FPGA firmware used to control the test module are

presented. The FPGA firmware is developed using Xilinx ISE software suite. A mixture

of schematic entry and VHDL entry is used to produce the final firmware. The firmware

is broken up in to four distinct functions. The first function is the interface to the USB

port, via the microcontroller. It contains a memory block to read and write to the

microcontroller, and controller logic to execute the read and write commands. It also has

pin connections to the microcontroller. This function is developed using the schematic

editor and shown in Figure A.1.

The second function deals with loading delay values to the four programmable

delay chips. It contains pin outs to the delay chips. It also contains logic to read delay

values from predefined memory addresses and sequentially load them on to the delay

chips. This function is also developed using a schematic editor and shown in Figure A.2.

The third function is the state machine that controls the test module. This function

is slightly more complex and developed in VHDL. Much of this code has been developed

with assistance from Carl Gray at the High Speed Digital Test Lab at Georgia Tech. This

code operates the state machine and executes commands based on inputs to the

instruction register as discussed in Chapter 6. The code is included after Figure A.1 &

Figure A.2.

 175

The final function of FPGA firmware is to control the RIO MGTs. The RIO

MGTs are complex structure with over fifty variables. Xilinx provides a RIO MGT

wizard in its ISE software suite and recommends its use when designing with RIO

MGTs. Using this wizard, the RIO MGT function was developed in VHDL. The RIO

MGT code is included after the controller code.

 176

Figure A.1 USB Communication logic

 177

Figure A.2 Delay load logic

 178

Controller.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity controller is
 Port (MEM_DATA : in std_logic_vector(7 downto 0);
 MEM_ADDR : out std_logic_vector(8 downto 0);
 MEM_WRITE : out std_logic;
 SLOWCLK : in std_logic;
 MEM_DATAOUT : out std_logic_vector(7 downto 0);
 DELAY_WORD : out std_logic_vector(9 downto 0);
 DELAY_WRITE : out std_logic_vector(2 downto 0);
 COMMAND_STATE : out std_logic_vector(15 downto 0);
 DELAY_STROBE : out std_logic;
 FASTCLK : in std_logic;
 SYNC_OUT : out std_logic;
 ERRORS : in std_logic_vector(31 downto 0);
 RxFrame : in std_logic;
 BIT_ERR_CLEAR : out std_logic;
 BIT_ERR_ENABLE : out std_logic;
 RESET_DCM : out std_logic);
end controller;

architecture Behavioral of controller is

type state_type is (RESET, STANDBY,
DELAY_LOAD,SYNCHRONIZE,SYNCHRONIZE_DCM,COMMAND_CLR,READ_ERRORS,RUN_TEST);
signal state : state_type;

signal delay_count : std_logic_vector (2 downto 0);
signal low_word : std_logic;
signal sub_state : std_logic_vector(2 downto 0);

signal sync : std_logic;
signal sync_dcm : std_logic;

signal temp_memaddr : std_logic_vector(7 downto 0);
signal delay_strobe_out : std_logic;

signal dumb_counter : std_logic_vector(7 downto 0);

signal bit_error_enable : std_logic;
signal bit_error_done : std_logic;
signal bit_error_reset : std_logic;
signal bit_error_temp : std_logic;

signal error0 : std_logic_vector(15 downto 0);
signal error1 : std_logic_vector(15 downto 0);
signal error2 : std_logic_vector(15 downto 0);
signal error3 : std_logic_vector(15 downto 0);
signal error4 : std_logic_vector(15 downto 0);
signal error5 : std_logic_vector(15 downto 0);
signal error6 : std_logic_vector(15 downto 0);
signal error7 : std_logic_vector(15 downto 0);
signal error8 : std_logic_vector(15 downto 0);
signal error9 : std_logic_vector(15 downto 0);
signal error10 : std_logic_vector(15 downto 0);
signal error11 : std_logic_vector(15 downto 0);
signal error12 : std_logic_vector(15 downto 0);
signal error13 : std_logic_vector(15 downto 0);

 179

signal error14 : std_logic_vector(15 downto 0);
signal error15 : std_logic_vector(15 downto 0);
signal error16 : std_logic_vector(15 downto 0);
signal error17 : std_logic_vector(15 downto 0);
signal error18 : std_logic_vector(15 downto 0);
signal error19 : std_logic_vector(15 downto 0);
signal error20 : std_logic_vector(15 downto 0);
signal error21 : std_logic_vector(15 downto 0);
signal error22 : std_logic_vector(15 downto 0);
signal error23 : std_logic_vector(15 downto 0);
signal error24 : std_logic_vector(15 downto 0);
signal error25 : std_logic_vector(15 downto 0);
signal error26 : std_logic_vector(15 downto 0);
signal error27 : std_logic_vector(15 downto 0);
signal error28 : std_logic_vector(15 downto 0);
signal error29 : std_logic_vector(15 downto 0);
signal error30 : std_logic_vector(15 downto 0);
signal error31 : std_logic_vector(15 downto 0);

signal total_error : std_logic_vector(31 downto 0);

signal count : std_logic_vector(1 downto 0);

signal eight_count : std_logic_vector(2 downto 0);
signal packet_count : std_logic_vector(31 downto 0);

signal global_reset : std_logic;

signal toggle : std_logic;

begin

total_error <= error0 + error1 + error2 + error3 + error4 + error5 + error6 + error7 +
 error8 + error9 + error10 + error11 + error12 + error13 + error14 + error15 +
 error16 + error17 + error18 + error19 + error20 + error21 + error22 + error23 +
 error24 + error25 + error26 + error27 + error28 + error29 + error30 + error31;

MEM_ADDR <= "0" & temp_memaddr;
delay_strobe <= delay_strobe_out;

BIT_ERR_CLEAR <= bit_error_temp;
BIT_ERR_ENABLE <= toggle;

sync_out <= sync;
reset_dcm <= sync_dcm;

--main state update
process(SLOWCLK,MEM_DATA,global_reset)
begin
 if(global_reset = '1') then
 global_reset <= '0';
 elsif(rising_edge(SLOWCLK)) then
 case state is
 when STANDBY =>
 MEM_WRITE <= '0';
 case sub_state is
 when "000" =>
 temp_memaddr <= "00000010";
 sub_state <= "001";
 when "001" =>
 COMMAND_STATE(7 downto 0) <= MEM_DATA;
 temp_memaddr <= "00000011";
 sub_state <= "010";
 when "010"=>
 COMMAND_STATE(15 downto 8) <= MEM_DATA;
 sub_state <= "011";
 when "011" =>
 temp_memaddr <= "00000000";
 sub_state <= "100";

 180

 when "100" =>
 if(MEM_DATA = "00000010") then
 state <= DELAY_LOAD;
 delay_count <= "000";
 temp_memaddr <= "00000110";
 delay_strobe_out <= '0';
 low_word <= '0';
 elsif(MEM_DATA = "00000011") then
 state <= SYNCHRONIZE;
 elsif(MEM_DATA = "00000100") then
 state <= SYNCHRONIZE_DCM;

 elsif(MEM_DATA = "00000101") then
 temp_memaddr <= "00110000";
 MEM_WRITE <= '1';
 MEM_DATAOUT <= ERRORS(7 downto
0);
 count <= "01";
 state <= READ_ERRORS;
 elsif(MEM_DATA = "00000110") then
 bit_error_reset <= '1';
 low_word <= '0';
 state <= RUN_TEST;
 end if;
 sub_state <= "000";
 when others =>
 sub_state <= "000";
 end case; -- case sub_sate

 when DELAY_LOAD =>
 if(delay_count = "111") then
 state <= COMMAND_CLR;
 delay_strobe_out <= '0';
 --delay_write <= "00000";
 else
 if(low_word = '0') then
 delay_word(7 downto 0) <= mem_data(7
downto 0);
 low_word <= '1';
 delay_strobe_out <= '0';
 temp_memaddr <= temp_memaddr + 1;
 delay_write <= "111";
 elsif(delay_strobe_out = '1') then
 delay_strobe_out <= '0';
 low_word <= '0';
 --delay_count <= "00111";

 delay_count <= delay_count + 1;
 else
 delay_word(9 downto 8) <= mem_data(1
downto 0);
 temp_memaddr <= temp_memaddr + 1;
 delay_strobe_out <= '1';
 delay_write <= delay_count;

 end if;
 end if;

 when SYNCHRONIZE =>
 bit_error_enable <= '0';
 bit_error_reset <= '1';
 global_reset <= '1';
 sync <= '1';
 state <= COMMAND_CLR;

 when SYNCHRONIZE_DCM =>
 sync_dcm <= '1';
 state <= COMMAND_CLR;

 when READ_ERRORS =>

 181

 if(temp_memaddr = "00110100") then
 state <= COMMAND_CLR;
 else
 case count is
 WHEN "01" =>
 MEM_DATAOUT <=
ERRORS(15 downto 8);
 WHEN "10" =>
 MEM_DATAOUT <=
ERRORS(23 downto 16);
 WHEN "11" =>
 MEM_DATAOUT <=
ERRORS(31 downto 24);
 WHEN others =>
 end case;
 count <= count + 1;
 temp_memaddr <= temp_memaddr + 1;
 MEM_WRITE <= '1';
 end if;

 when RUN_TEST =>
 bit_error_enable <= '1';
 MEM_WRITE <= '1';
 if(low_word = '0') then
 temp_memaddr <= "00111100";
 MEM_DATAOUT <= packet_count(31 downto 24);
 low_word <= '1';
 else
 temp_memaddr <= "00111101";
 MEM_DATAOUT <= total_error(15 downto 8);
 low_word <= '0';
 end if;

 if(bit_error_done = '1') then
 temp_memaddr <= "00111100";
 MEM_DATAOUT <= total_error(7 downto 0);

 state <= COMMAND_CLR;
 end if;

 when COMMAND_CLR =>
 MEM_WRITE <= '1';
 sync <= '0';
 sync_dcm <= '0';
 MEM_DATAOUT <= "00000000";
 temp_memaddr <= "00000000";
 state <= STANDBY;
 sub_state <= "000";
 when others =>
 state <= STANDBY;
 sub_state <= "000";
 end case;
 end if;

end process;

process(RxFrame, bit_error_enable, global_reset)
begin
 if(global_reset = '1') then
 bit_error_temp <= '0';
 bit_error_done <= '0';
 packet_count <= "00000000000000000000000000000000";

 error0 <= "0000000000000000";
 error1 <= "0000000000000000";
 error2 <= "0000000000000000";
 error3 <= "0000000000000000";
 error4 <= "0000000000000000";
 error5 <= "0000000000000000";
 error6 <= "0000000000000000";

 182

 error7 <= "0000000000000000";
 error8 <= "0000000000000000";
 error9 <= "0000000000000000";
 error10 <= "0000000000000000";
 error11 <= "0000000000000000";
 error12 <= "0000000000000000";
 error13 <= "0000000000000000";
 error14 <= "0000000000000000";
 error15 <= "0000000000000000";
 error16 <= "0000000000000000";
 error17 <= "0000000000000000";
 error18 <= "0000000000000000";
 error19 <= "0000000000000000";
 error20 <= "0000000000000000";
 error21 <= "0000000000000000";
 error22 <= "0000000000000000";
 error23 <= "0000000000000000";
 error24 <= "0000000000000000";
 error25 <= "0000000000000000";
 error26 <= "0000000000000000";
 error27 <= "0000000000000000";
 error28 <= "0000000000000000";
 error29 <= "0000000000000000";
 error30 <= "0000000000000000";
 error31 <= "0000000000000000";

 elsif(rising_edge(RxFrame)) then

 if(packet_count = "11111111111111111111111111111111") then
 bit_error_done <= '1';
 end if;
 ------------------------------------baaaaaad code here

if (errors(0) = '1') then
 error0 <= error0 + 1;
end if;
if (errors(1) = '1') then
 error1 <= error1 + 1;
end if;
if (errors(2) = '1') then
 error2 <= error2 + 1;
end if;
if (errors(3) = '1') then
 error3 <= error3 + 1;
end if;
if (errors(4) = '1') then
 error4 <= error4 + 1;
end if;
if (errors(5) = '1') then
 error5 <= error5 + 1;
end if;
if (errors(6) = '1') then
 error6 <= error6 + 1;
end if;
if (errors(7) = '1') then
 error7 <= error7 + 1;
end if;
if (errors(8) = '1') then
 error8 <= error8 + 1;
end if;
if (errors(9) = '1') then
 error9 <= error9 + 1;
end if;
if (errors(10) = '1') then
 error10 <= error10 + 1;
end if;
if (errors(11) = '1') then
 error11 <= error11 + 1;
end if;
if (errors(12) = '1') then

 183

 error12 <= error12 + 1;
end if;
if (errors(13) = '1') then
 error13 <= error13 + 1;
end if;
if (errors(14) = '1') then
 error14 <= error14 + 1;
end if;
if (errors(15) = '1') then
 error15 <= error15 + 1;
end if;
if (errors(16) = '1') then
 error16 <= error16 + 1;
end if;
if (errors(17) = '1') then
 error17 <= error17 + 1;
end if;
if (errors(18) = '1') then
 error18 <= error18 + 1;
end if;
if (errors(19) = '1') then
 error19 <= error19 + 1;
end if;
if (errors(20) = '1') then
 error20 <= error20 + 1;
end if;
if (errors(21) = '1') then
 error21 <= error21 + 1;
end if;
if (errors(22) = '1') then
 error22 <= error22 + 1;
end if;
if (errors(23) = '1') then
 error23 <= error23 + 1;
end if;
if (errors(24) = '1') then
 error24 <= error24 + 1;
end if;
if (errors(25) = '1') then
 error25 <= error25 + 1;
end if;
if (errors(26) = '1') then
 error26 <= error26 + 1;
end if;
if (errors(27) = '1') then
 error27 <= error27 + 1;
end if;
if (errors(28) = '1') then
 error28 <= error28 + 1;
end if;
if (errors(29) = '1') then
 error29 <= error29 + 1;
end if;
if (errors(30) = '1') then
 error30 <= error30 + 1;
end if;
if (errors(31) = '1') then
 error31 <= error31 + 1;
end if;

--

 packet_count <= packet_count + 1;

 if(bit_error_temp = '0') then
 bit_error_temp <= '1';
 else
 bit_error_temp <= '0';
 end if;

 184

 end if;

end process;

end Behavioral;

 185

RocketIO.vhd
--
--$Date: 2008/07/23 00:16:39 $
--$Revision: 1.1.2.7 $
--
-- ____ ____
-- / /\/ /
-- /___/ \ / Vendor: Xilinx
-- \ \ \/ Version : 1.5
-- \ \ Application : RocketIO GTX Wizard
-- / / Filename : example_mgt_top.vhd
-- /___/ /\ Timestamp :
-- \ \ / \
-- ___\/___\
--
--
-- Module EXAMPLE_MGT_TOP
-- Generated by Xilinx RocketIO GTX Wizard

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

--***********************************Entity Declaration************************

entity EXAMPLE_MGT_TOP is
generic
(
 EXAMPLE_CONFIG_INDEPENDENT_LANES : integer := 1;
 EXAMPLE_LANE_WITH_START_CHAR : integer := 0;
 EXAMPLE_WORDS_IN_BRAM : integer := 512;
 EXAMPLE_SIM_MODE : string := "FAST";
 EXAMPLE_SIM_GTXRESET_SPEEDUP : integer := 1;
 EXAMPLE_SIM_PLL_PERDIV2 : bit_vector:= x"0a0";
 EXAMPLE_USE_CHIPSCOPE : integer := 0 -- Set to 1 to use Chipscope to drive resets
);
port
(
 TILE0_REFCLK_PAD_N_IN : in std_logic;
 TILE0_REFCLK_PAD_P_IN : in std_logic;
 TILE1_REFCLK_PAD_N_IN : in std_logic;
 TILE1_REFCLK_PAD_P_IN : in std_logic;
 DRP_CLK_IN : in std_logic;
 GTXRESET_IN : in std_logic;
 TILE0_PLLLKDET_OUT : out std_logic;
 TILE1_PLLLKDET_OUT : out std_logic;
 RXN_IN : in std_logic_vector(3 downto 0);
 RXP_IN : in std_logic_vector(3 downto 0);
 TXN_OUT : out std_logic_vector(3 downto 0);
 TXP_OUT : out std_logic_vector(3 downto 0)

);

 attribute X_CORE_INFO : string;
 attribute X_CORE_INFO of EXAMPLE_MGT_TOP : entity is "gtxwizard_v1_5, Coregen v10.1_ip3";

end EXAMPLE_MGT_TOP;

architecture RTL of EXAMPLE_MGT_TOP is

--**************************Component Declarations*****************************

component ROCKETIO_WRAPPER
generic

 186

(
 -- Simulation attributes
 WRAPPER_SIM_MODE : string := "FAST"; -- Set to Fast Functional Simulation Model
 WRAPPER_SIM_GTXRESET_SPEEDUP : integer := 0; -- Set to 1 to speed up sim reset
 WRAPPER_SIM_PLL_PERDIV2 : bit_vector:= x"0a0" -- Set to the VCO Unit Interval time
);
port
(
 ------------------------ Loopback and Powerdown Ports ----------------------
 TILE0_LOOPBACK0_IN : in std_logic_vector(2 downto 0);
 TILE0_LOOPBACK1_IN : in std_logic_vector(2 downto 0);
 ----------------------- Receive Ports - 8b10b Decoder ----------------------
 TILE0_RXDISPERR0_OUT : out std_logic_vector(1 downto 0);
 TILE0_RXDISPERR1_OUT : out std_logic_vector(1 downto 0);
 TILE0_RXNOTINTABLE0_OUT : out std_logic_vector(1 downto 0);
 TILE0_RXNOTINTABLE1_OUT : out std_logic_vector(1 downto 0);
 --------------- Receive Ports - Comma Detection and Alignment --------------
 TILE0_RXENMCOMMAALIGN0_IN : in std_logic;
 TILE0_RXENMCOMMAALIGN1_IN : in std_logic;
 TILE0_RXENPCOMMAALIGN0_IN : in std_logic;
 TILE0_RXENPCOMMAALIGN1_IN : in std_logic;
 ------------------- Receive Ports - RX Data Path interface -----------------
 TILE0_RXDATA0_OUT : out std_logic_vector(15 downto 0);
 TILE0_RXDATA1_OUT : out std_logic_vector(15 downto 0);
 TILE0_RXRESET0_IN : in std_logic;
 TILE0_RXRESET1_IN : in std_logic;
 TILE0_RXUSRCLK0_IN : in std_logic;
 TILE0_RXUSRCLK1_IN : in std_logic;
 TILE0_RXUSRCLK20_IN : in std_logic;
 TILE0_RXUSRCLK21_IN : in std_logic;
 ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------
 TILE0_RXEQMIX0_IN : in std_logic_vector(1 downto 0);
 TILE0_RXEQMIX1_IN : in std_logic_vector(1 downto 0);
 TILE0_RXN0_IN : in std_logic;
 TILE0_RXN1_IN : in std_logic;
 TILE0_RXP0_IN : in std_logic;
 TILE0_RXP1_IN : in std_logic;
 --------------- Receive Ports - RX Loss-of-sync State Machine --------------
 TILE0_RXLOSSOFSYNC0_OUT : out std_logic_vector(1 downto 0);
 TILE0_RXLOSSOFSYNC1_OUT : out std_logic_vector(1 downto 0);
 ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------
 TILE0_DADDR_IN : in std_logic_vector(6 downto 0);
 --TILE0_DCLK_IN : in std_logic;
 TILE0_DEN_IN : in std_logic;
 TILE0_DI_IN : in std_logic_vector(15 downto 0);
 TILE0_DO_OUT : out std_logic_vector(15 downto 0);
 TILE0_DRDY_OUT : out std_logic;
 TILE0_DWE_IN : in std_logic;
 --------------------- Shared Ports - Tile and PLL Ports --------------------
 TILE0_CLKIN_IN : in std_logic;
 TILE0_GTXRESET_IN : in std_logic;
 TILE0_PLLLKDET_OUT : out std_logic;
 TILE0_REFCLKOUT_OUT : out std_logic;
 TILE0_RESETDONE0_OUT : out std_logic;
 TILE0_RESETDONE1_OUT : out std_logic;
 ---------------- Transmit Ports - 8b10b Encoder Control Ports --------------
 TILE0_TXCHARISK0_IN : in std_logic_vector(1 downto 0);
 TILE0_TXCHARISK1_IN : in std_logic_vector(1 downto 0);
 ------------------ Transmit Ports - TX Data Path interface -----------------
 TILE0_TXDATA0_IN : in std_logic_vector(15 downto 0);
 TILE0_TXDATA1_IN : in std_logic_vector(15 downto 0);
 TILE0_TXRESET0_IN : in std_logic;
 TILE0_TXRESET1_IN : in std_logic;
 TILE0_TXUSRCLK0_IN : in std_logic;
 TILE0_TXUSRCLK1_IN : in std_logic;
 TILE0_TXUSRCLK20_IN : in std_logic;
 TILE0_TXUSRCLK21_IN : in std_logic;
 --------------- Transmit Ports - TX Driver and OOB signalling --------------
 TILE0_TXDIFFCTRL0_IN : in std_logic_vector(2 downto 0);
 TILE0_TXDIFFCTRL1_IN : in std_logic_vector(2 downto 0);

 187

 TILE0_TXN0_OUT : out std_logic;
 TILE0_TXN1_OUT : out std_logic;
 TILE0_TXP0_OUT : out std_logic;
 TILE0_TXP1_OUT : out std_logic;
 TILE0_TXPREEMPHASIS0_IN : in std_logic_vector(2 downto 0);
 TILE0_TXPREEMPHASIS1_IN : in std_logic_vector(2 downto 0);
 --------------------- Transmit Ports - TX PRBS Generator -------------------
 TILE0_TXENPRBSTST0_IN : in std_logic_vector(1 downto 0);
 TILE0_TXENPRBSTST1_IN : in std_logic_vector(1 downto 0);
 ------------------------ Loopback and Powerdown Ports ----------------------
 TILE1_LOOPBACK0_IN : in std_logic_vector(2 downto 0);
 TILE1_LOOPBACK1_IN : in std_logic_vector(2 downto 0);
 ----------------------- Receive Ports - 8b10b Decoder ----------------------
 TILE1_RXDISPERR0_OUT : out std_logic_vector(1 downto 0);
 TILE1_RXDISPERR1_OUT : out std_logic_vector(1 downto 0);
 TILE1_RXNOTINTABLE0_OUT : out std_logic_vector(1 downto 0);
 TILE1_RXNOTINTABLE1_OUT : out std_logic_vector(1 downto 0);
 --------------- Receive Ports - Comma Detection and Alignment --------------
 TILE1_RXENMCOMMAALIGN0_IN : in std_logic;
 TILE1_RXENMCOMMAALIGN1_IN : in std_logic;
 TILE1_RXENPCOMMAALIGN0_IN : in std_logic;
 TILE1_RXENPCOMMAALIGN1_IN : in std_logic;
 ------------------- Receive Ports - RX Data Path interface -----------------
 TILE1_RXDATA0_OUT : out std_logic_vector(15 downto 0);
 TILE1_RXDATA1_OUT : out std_logic_vector(15 downto 0);
 TILE1_RXRESET0_IN : in std_logic;
 TILE1_RXRESET1_IN : in std_logic;
 TILE1_RXUSRCLK0_IN : in std_logic;
 TILE1_RXUSRCLK1_IN : in std_logic;
 TILE1_RXUSRCLK20_IN : in std_logic;
 TILE1_RXUSRCLK21_IN : in std_logic;
 ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------
 TILE1_RXEQMIX0_IN : in std_logic_vector(1 downto 0);
 TILE1_RXEQMIX1_IN : in std_logic_vector(1 downto 0);
 TILE1_RXN0_IN : in std_logic;
 TILE1_RXN1_IN : in std_logic;
 TILE1_RXP0_IN : in std_logic;
 TILE1_RXP1_IN : in std_logic;
 --------------- Receive Ports - RX Loss-of-sync State Machine --------------
 TILE1_RXLOSSOFSYNC0_OUT : out std_logic_vector(1 downto 0);
 TILE1_RXLOSSOFSYNC1_OUT : out std_logic_vector(1 downto 0);
 ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------
 TILE1_DADDR_IN : in std_logic_vector(6 downto 0);
 --TILE1_DCLK_IN : in std_logic;
 TILE1_DEN_IN : in std_logic;
 TILE1_DI_IN : in std_logic_vector(15 downto 0);
 TILE1_DO_OUT : out std_logic_vector(15 downto 0);
 TILE1_DRDY_OUT : out std_logic;
 TILE1_DWE_IN : in std_logic;
 --------------------- Shared Ports - Tile and PLL Ports --------------------
 TILE1_CLKIN_IN : in std_logic;
 TILE1_GTXRESET_IN : in std_logic;
 TILE1_PLLLKDET_OUT : out std_logic;
 TILE1_REFCLKOUT_OUT : out std_logic;
 TILE1_RESETDONE0_OUT : out std_logic;
 TILE1_RESETDONE1_OUT : out std_logic;
 ---------------- Transmit Ports - 8b10b Encoder Control Ports --------------
 TILE1_TXCHARISK0_IN : in std_logic_vector(1 downto 0);
 TILE1_TXCHARISK1_IN : in std_logic_vector(1 downto 0);
 ------------------ Transmit Ports - TX Data Path interface -----------------
 TILE1_TXDATA0_IN : in std_logic_vector(15 downto 0);
 TILE1_TXDATA1_IN : in std_logic_vector(15 downto 0);
 TILE1_TXRESET0_IN : in std_logic;
 TILE1_TXRESET1_IN : in std_logic;
 TILE1_TXUSRCLK0_IN : in std_logic;
 TILE1_TXUSRCLK1_IN : in std_logic;
 TILE1_TXUSRCLK20_IN : in std_logic;
 TILE1_TXUSRCLK21_IN : in std_logic;
 --------------- Transmit Ports - TX Driver and OOB signalling --------------
 TILE1_TXDIFFCTRL0_IN : in std_logic_vector(2 downto 0);

 188

 TILE1_TXDIFFCTRL1_IN : in std_logic_vector(2 downto 0);
 TILE1_TXN0_OUT : out std_logic;
 TILE1_TXN1_OUT : out std_logic;
 TILE1_TXP0_OUT : out std_logic;
 TILE1_TXP1_OUT : out std_logic;
 TILE1_TXPREEMPHASIS0_IN : in std_logic_vector(2 downto 0);
 TILE1_TXPREEMPHASIS1_IN : in std_logic_vector(2 downto 0);
 --------------------- Transmit Ports - TX PRBS Generator -------------------
 TILE1_TXENPRBSTST0_IN : in std_logic_vector(1 downto 0);
 TILE1_TXENPRBSTST1_IN : in std_logic_vector(1 downto 0)
);
end component;

component MGT_USRCLK_SOURCE
generic
(
 FREQUENCY_MODE : string := "LOW";
 PERFORMANCE_MODE : string := "MAX_SPEED"
);
port
(
 DIV1_OUT : out std_logic;
 DIV2_OUT : out std_logic;
 DCM_LOCKED_OUT : out std_logic;
 CLK_IN : in std_logic;
 DCM_RESET_IN : in std_logic

);
end component;

component FRAME_GEN
generic
(
 WORDS_IN_BRAM : integer := 256;
 MEM_00 : bit_vector := X"00";
 MEM_01 : bit_vector := X"00";
 MEM_02 : bit_vector := X"00";
 MEM_03 : bit_vector := X"00";
 MEM_04 : bit_vector := X"00";
 MEM_05 : bit_vector := X"00";
 MEM_06 : bit_vector := X"00";
 MEM_07 : bit_vector := X"00";
 MEM_08 : bit_vector := X"00";
 MEM_09 : bit_vector := X"00";
 MEM_0A : bit_vector := X"00";
 MEM_0B : bit_vector := X"00";
 MEM_0C : bit_vector := X"00";
 MEM_0D : bit_vector := X"00";
 MEM_0E : bit_vector := X"00";
 MEM_0F : bit_vector := X"00";
 MEM_10 : bit_vector := X"00";
 MEM_11 : bit_vector := X"00";
 MEM_12 : bit_vector := X"00";
 MEM_13 : bit_vector := X"00";
 MEM_14 : bit_vector := X"00";
 MEM_15 : bit_vector := X"00";
 MEM_16 : bit_vector := X"00";
 MEM_17 : bit_vector := X"00";
 MEM_18 : bit_vector := X"00";
 MEM_19 : bit_vector := X"00";
 MEM_1A : bit_vector := X"00";
 MEM_1B : bit_vector := X"00";
 MEM_1C : bit_vector := X"00";
 MEM_1D : bit_vector := X"00";
 MEM_1E : bit_vector := X"00";
 MEM_1F : bit_vector := X"00";
 MEM_20 : bit_vector := X"00";
 MEM_21 : bit_vector := X"00";
 MEM_22 : bit_vector := X"00";
 MEM_23 : bit_vector := X"00";

 189

 MEM_24 : bit_vector := X"00";
 MEM_25 : bit_vector := X"00";
 MEM_26 : bit_vector := X"00";
 MEM_27 : bit_vector := X"00";
 MEM_28 : bit_vector := X"00";
 MEM_29 : bit_vector := X"00";
 MEM_2A : bit_vector := X"00";
 MEM_2B : bit_vector := X"00";
 MEM_2C : bit_vector := X"00";
 MEM_2D : bit_vector := X"00";
 MEM_2E : bit_vector := X"00";
 MEM_2F : bit_vector := X"00";
 MEM_30 : bit_vector := X"00";
 MEM_31 : bit_vector := X"00";
 MEM_32 : bit_vector := X"00";
 MEM_33 : bit_vector := X"00";
 MEM_34 : bit_vector := X"00";
 MEM_35 : bit_vector := X"00";
 MEM_36 : bit_vector := X"00";
 MEM_37 : bit_vector := X"00";
 MEM_38 : bit_vector := X"00";
 MEM_39 : bit_vector := X"00";
 MEM_3A : bit_vector := X"00";
 MEM_3B : bit_vector := X"00";
 MEM_3C : bit_vector := X"00";
 MEM_3D : bit_vector := X"00";
 MEM_3E : bit_vector := X"00";
 MEM_3F : bit_vector := X"00";
 MEMP_00 : bit_vector := X"00";
 MEMP_01 : bit_vector := X"00";
 MEMP_02 : bit_vector := X"00";
 MEMP_03 : bit_vector := X"00";
 MEMP_04 : bit_vector := X"00";
 MEMP_05 : bit_vector := X"00";
 MEMP_06 : bit_vector := X"00";
 MEMP_07 : bit_vector := X"00"
);
port
(
 -- User Interface
 TX_DATA : out std_logic_vector(39 downto 0);
 TX_CHARISK : out std_logic_vector(3 downto 0);

 -- System Interface
 USER_CLK : in std_logic;
 SYSTEM_RESET : in std_logic
);
end component;

component FRAME_CHECK
generic
(
 RX_DATA_WIDTH : integer := 16;
 USE_COMMA : integer := 1;
 NONE_MSB_FIRST_DEC : integer := 0;
 COMMA_DOUBLE_DEC : integer := 0;
 CHANBOND_SEQ_LEN : integer := 1;
 WORDS_IN_BRAM : integer := 256;
 CONFIG_INDEPENDENT_LANES : integer := 0;
 START_OF_PACKET_CHAR : std_logic_vector := x"55fb";
 COMMA_DOUBLE_CHAR : std_logic_vector := x"f628";
 MEM_00 : bit_vector := X"00";
 MEM_01 : bit_vector := X"00";
 MEM_02 : bit_vector := X"00";
 MEM_03 : bit_vector := X"00";
 MEM_04 : bit_vector := X"00";
 MEM_05 : bit_vector := X"00";
 MEM_06 : bit_vector := X"00";
 MEM_07 : bit_vector := X"00";
 MEM_08 : bit_vector := X"00";

 190

 MEM_09 : bit_vector := X"00";
 MEM_0A : bit_vector := X"00";
 MEM_0B : bit_vector := X"00";
 MEM_0C : bit_vector := X"00";
 MEM_0D : bit_vector := X"00";
 MEM_0E : bit_vector := X"00";
 MEM_0F : bit_vector := X"00";
 MEM_10 : bit_vector := X"00";
 MEM_11 : bit_vector := X"00";
 MEM_12 : bit_vector := X"00";
 MEM_13 : bit_vector := X"00";
 MEM_14 : bit_vector := X"00";
 MEM_15 : bit_vector := X"00";
 MEM_16 : bit_vector := X"00";
 MEM_17 : bit_vector := X"00";
 MEM_18 : bit_vector := X"00";
 MEM_19 : bit_vector := X"00";
 MEM_1A : bit_vector := X"00";
 MEM_1B : bit_vector := X"00";
 MEM_1C : bit_vector := X"00";
 MEM_1D : bit_vector := X"00";
 MEM_1E : bit_vector := X"00";
 MEM_1F : bit_vector := X"00";
 MEM_20 : bit_vector := X"00";
 MEM_21 : bit_vector := X"00";
 MEM_22 : bit_vector := X"00";
 MEM_23 : bit_vector := X"00";
 MEM_24 : bit_vector := X"00";
 MEM_25 : bit_vector := X"00";
 MEM_26 : bit_vector := X"00";
 MEM_27 : bit_vector := X"00";
 MEM_28 : bit_vector := X"00";
 MEM_29 : bit_vector := X"00";
 MEM_2A : bit_vector := X"00";
 MEM_2B : bit_vector := X"00";
 MEM_2C : bit_vector := X"00";
 MEM_2D : bit_vector := X"00";
 MEM_2E : bit_vector := X"00";
 MEM_2F : bit_vector := X"00";
 MEM_30 : bit_vector := X"00";
 MEM_31 : bit_vector := X"00";
 MEM_32 : bit_vector := X"00";
 MEM_33 : bit_vector := X"00";
 MEM_34 : bit_vector := X"00";
 MEM_35 : bit_vector := X"00";
 MEM_36 : bit_vector := X"00";
 MEM_37 : bit_vector := X"00";
 MEM_38 : bit_vector := X"00";
 MEM_39 : bit_vector := X"00";
 MEM_3A : bit_vector := X"00";
 MEM_3B : bit_vector := X"00";
 MEM_3C : bit_vector := X"00";
 MEM_3D : bit_vector := X"00";
 MEM_3E : bit_vector := X"00";
 MEM_3F : bit_vector := X"00";
 MEMP_00 : bit_vector := X"00";
 MEMP_01 : bit_vector := X"00";
 MEMP_02 : bit_vector := X"00";
 MEMP_03 : bit_vector := X"00";
 MEMP_04 : bit_vector := X"00";
 MEMP_05 : bit_vector := X"00";
 MEMP_06 : bit_vector := X"00";
 MEMP_07 : bit_vector := X"00"
);
port
(
 -- User Interface
 RX_DATA : in std_logic_vector((RX_DATA_WIDTH-1) downto 0);
 RX_ENMCOMMA_ALIGN : out std_logic;
 RX_ENPCOMMA_ALIGN : out std_logic;

 191

 RX_ENCHAN_SYNC : out std_logic;
 RX_CHANBOND_SEQ : in std_logic;
 -- Control Interface
 INC_IN : in std_logic;
 INC_OUT : out std_logic;
 PATTERN_MATCH_N : out std_logic;
 RESET_ON_ERROR : in std_logic;
 -- Error Monitoring
 ERROR_COUNT : out std_logic_vector(7 downto 0);
 -- System Interface
 USER_CLK : in std_logic;
 SYSTEM_RESET : in std_logic
);
end component;

component MGT_USRCLK_SOURCE_PLL
generic
(
 MULT : integer := 2;
 DIVIDE : integer := 2;
 CLK_PERIOD : real := 1.6;
 OUT0_DIVIDE : integer := 2;
 OUT1_DIVIDE : integer := 2;
 OUT2_DIVIDE : integer := 2;
 OUT3_DIVIDE : integer := 2;
 SIMULATION_P : integer := 1;
 LOCK_WAIT_COUNT : std_logic_vector := "1000001000110101"
);
port
(
 CLK0_OUT : out std_logic;
 CLK1_OUT : out std_logic;
 CLK2_OUT : out std_logic;
 CLK3_OUT : out std_logic;
 CLK_IN : in std_logic;
 PLL_LOCKED_OUT : out std_logic;
 PLL_RESET_IN : in std_logic
);
end component;

--***********************************Parameter Declarations********************
 constant DLY : time := 1 ns;
--************************** Register Declarations ****************************
 signal tile0_tx_resetdone0_r : std_logic;
 signal tile0_tx_resetdone0_r2 : std_logic;
 signal tile0_rx_resetdone0_r : std_logic;
 signal tile0_rx_resetdone0_r2 : std_logic;
 signal tile0_tx_resetdone1_r : std_logic;
 signal tile0_tx_resetdone1_r2 : std_logic;
 signal tile0_rx_resetdone1_r : std_logic;
 signal tile0_rx_resetdone1_r2 : std_logic;
 signal tile1_tx_resetdone0_r : std_logic;
 signal tile1_tx_resetdone0_r2 : std_logic;
 signal tile1_rx_resetdone0_r : std_logic;
 signal tile1_rx_resetdone0_r2 : std_logic;
 signal tile1_tx_resetdone1_r : std_logic;
 signal tile1_tx_resetdone1_r2 : std_logic;
 signal tile1_rx_resetdone1_r : std_logic;
 signal tile1_rx_resetdone1_r2 : std_logic;
 signal async_mux0_sel_i : std_logic;
 signal not_async_mux0_sel_i : std_logic;
 signal async_mux1_sel_i : std_logic;
 signal not_async_mux1_sel_i : std_logic;
 --**************************** Wire Declarations ******************************
 -------------------------- MGT Wrapper Wires ------------------------------
 ------------------------ Loopback and Powerdown Ports ----------------------
 signal tile0_loopback0_i : std_logic_vector(2 downto 0);
 signal tile0_loopback1_i : std_logic_vector(2 downto 0);
 ----------------------- Receive Ports - 8b10b Decoder ----------------------
 signal tile0_rxdisperr0_i : std_logic_vector(1 downto 0);

 192

 signal tile0_rxdisperr1_i : std_logic_vector(1 downto 0);
 signal tile0_rxnotintable0_i : std_logic_vector(1 downto 0);
 signal tile0_rxnotintable1_i : std_logic_vector(1 downto 0);
 --------------- Receive Ports - Comma Detection and Alignment --------------
 signal tile0_rxenmcommaalign0_i : std_logic;
 signal tile0_rxenmcommaalign1_i : std_logic;
 signal tile0_rxenpcommaalign0_i : std_logic;
 signal tile0_rxenpcommaalign1_i : std_logic;
 ------------------- Receive Ports - RX Data Path interface -----------------
 signal tile0_rxdata0_i : std_logic_vector(15 downto 0);
 signal tile0_rxdata1_i : std_logic_vector(15 downto 0);
 signal tile0_rxreset0_i : std_logic;
 signal tile0_rxreset1_i : std_logic;
 ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------
 signal tile0_rxeqmix0_i : std_logic_vector(1 downto 0);
 signal tile0_rxeqmix1_i : std_logic_vector(1 downto 0);
 --------------- Receive Ports - RX Loss-of-sync State Machine --------------
 signal tile0_rxlossofsync0_i : std_logic_vector(1 downto 0);
 signal tile0_rxlossofsync1_i : std_logic_vector(1 downto 0);
 --------------------- Shared Ports - Tile and PLL Ports --------------------
 signal tile0_gtxreset_i : std_logic;
 signal tile0_plllkdet_i : std_logic;
 signal tile0_refclkout_i : std_logic;
 signal tile0_resetdone0_i : std_logic;
 signal tile0_resetdone1_i : std_logic;
 ---------------- Transmit Ports - 8b10b Encoder Control Ports --------------
 signal tile0_txcharisk0_i : std_logic_vector(1 downto 0);
 signal tile0_txcharisk1_i : std_logic_vector(1 downto 0);
 ------------------ Transmit Ports - TX Data Path interface -----------------
 signal tile0_txdata0_i : std_logic_vector(15 downto 0);
 signal tile0_txdata1_i : std_logic_vector(15 downto 0);
 signal tile0_txreset0_i : std_logic;
 signal tile0_txreset1_i : std_logic;
 --------------- Transmit Ports - TX Driver and OOB signalling --------------
 signal tile0_txdiffctrl0_i : std_logic_vector(2 downto 0);
 signal tile0_txdiffctrl1_i : std_logic_vector(2 downto 0);
 signal tile0_txpreemphasis0_i : std_logic_vector(2 downto 0);
 signal tile0_txpreemphasis1_i : std_logic_vector(2 downto 0);
 --------------------- Transmit Ports - TX PRBS Generator -------------------
 signal tile0_txenprbstst0_i : std_logic_vector(1 downto 0);
 signal tile0_txenprbstst1_i : std_logic_vector(1 downto 0);
 ------------------------ Loopback and Powerdown Ports ----------------------
 signal tile1_loopback0_i : std_logic_vector(2 downto 0);
 signal tile1_loopback1_i : std_logic_vector(2 downto 0);
 ----------------------- Receive Ports - 8b10b Decoder ----------------------
 signal tile1_rxdisperr0_i : std_logic_vector(1 downto 0);
 signal tile1_rxdisperr1_i : std_logic_vector(1 downto 0);
 signal tile1_rxnotintable0_i : std_logic_vector(1 downto 0);
 signal tile1_rxnotintable1_i : std_logic_vector(1 downto 0);
 --------------- Receive Ports - Comma Detection and Alignment --------------
 signal tile1_rxenmcommaalign0_i : std_logic;
 signal tile1_rxenmcommaalign1_i : std_logic;
 signal tile1_rxenpcommaalign0_i : std_logic;
 signal tile1_rxenpcommaalign1_i : std_logic;
 ------------------- Receive Ports - RX Data Path interface -----------------
 signal tile1_rxdata0_i : std_logic_vector(15 downto 0);
 signal tile1_rxdata1_i : std_logic_vector(15 downto 0);
 signal tile1_rxreset0_i : std_logic;
 signal tile1_rxreset1_i : std_logic;
 ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------
 signal tile1_rxeqmix0_i : std_logic_vector(1 downto 0);
 signal tile1_rxeqmix1_i : std_logic_vector(1 downto 0);
 --------------- Receive Ports - RX Loss-of-sync State Machine --------------
 signal tile1_rxlossofsync0_i : std_logic_vector(1 downto 0);
 signal tile1_rxlossofsync1_i : std_logic_vector(1 downto 0);
 --------------------- Shared Ports - Tile and PLL Ports --------------------
 signal tile1_gtxreset_i : std_logic;
 signal tile1_plllkdet_i : std_logic;
 signal tile1_refclkout_i : std_logic;
 signal tile1_resetdone0_i : std_logic;

 193

 signal tile1_resetdone1_i : std_logic;
 ---------------- Transmit Ports - 8b10b Encoder Control Ports --------------
 signal tile1_txcharisk0_i : std_logic_vector(1 downto 0);
 signal tile1_txcharisk1_i : std_logic_vector(1 downto 0);
 ------------------ Transmit Ports - TX Data Path interface -----------------
 signal tile1_txdata0_i : std_logic_vector(15 downto 0);
 signal tile1_txdata1_i : std_logic_vector(15 downto 0);
 signal tile1_txreset0_i : std_logic;
 signal tile1_txreset1_i : std_logic;
 --------------- Transmit Ports - TX Driver and OOB signalling --------------
 signal tile1_txdiffctrl0_i : std_logic_vector(2 downto 0);
 signal tile1_txdiffctrl1_i : std_logic_vector(2 downto 0);
 signal tile1_txpreemphasis0_i : std_logic_vector(2 downto 0);
 signal tile1_txpreemphasis1_i : std_logic_vector(2 downto 0);
 --------------------- Transmit Ports - TX PRBS Generator -------------------
 signal tile1_txenprbstst0_i : std_logic_vector(1 downto 0);
 signal tile1_txenprbstst1_i : std_logic_vector(1 downto 0);
 ------------------------------- Global Signals -----------------------------
 signal tile0_tx_system_reset0_c : std_logic;
 signal tile0_rx_system_reset0_c : std_logic;
 signal tile0_tx_system_reset1_c : std_logic;
 signal tile0_rx_system_reset1_c : std_logic;
 signal tile1_tx_system_reset0_c : std_logic;
 signal tile1_rx_system_reset0_c : std_logic;
 signal tile1_tx_system_reset1_c : std_logic;
 signal tile1_rx_system_reset1_c : std_logic;
 signal tied_to_ground_i : std_logic;
 signal tied_to_ground_vec_i : std_logic_vector(63 downto 0);
 signal tied_to_vcc_i : std_logic;
 signal tied_to_vcc_vec_i : std_logic_vector(7 downto 0);
 signal tile0_refclkout_bufg_i : std_logic;
 ----------------------------- User Clocks ---------------------------------
 signal tile0_txusrclk0_i : std_logic;
 signal tile1_txusrclk0_i : std_logic;
 signal refclkout_pll0_locked_i : std_logic;
 signal refclkout_pll0_reset_i : std_logic;
 signal tile0_refclkout_to_cmt_i : std_logic;
 signal refclkout_pll1_locked_i : std_logic;
 signal refclkout_pll1_reset_i : std_logic;
 signal tile1_refclkout_to_cmt_i : std_logic;
 ----------------------- Frame check/gen Module Signals --------------------
 signal tile0_refclk_i : std_logic;
 signal tile0_matchn0_i : std_logic;
 signal tile0_txcharisk0_float_i : std_logic_vector(1 downto 0);
 signal tile0_txdata0_float_i : std_logic_vector(23 downto 0);
 signal tile0_block_sync0_i : std_logic;
 signal tile0_error_count0_i : std_logic_vector(7 downto 0);
 signal tile0_frame_check0_reset_i : std_logic;
 signal tile0_inc_in0_i : std_logic;
 signal tile0_inc_out0_i : std_logic;
 signal tile0_unscrambled_data0_i : std_logic_vector(15 downto 0);
 signal tile0_matchn1_i : std_logic;
 signal tile0_txcharisk1_float_i : std_logic_vector(1 downto 0);
 signal tile0_txdata1_float_i : std_logic_vector(23 downto 0);
 signal tile0_block_sync1_i : std_logic;
 signal tile0_error_count1_i : std_logic_vector(7 downto 0);
 signal tile0_frame_check1_reset_i : std_logic;
 signal tile0_inc_in1_i : std_logic;
 signal tile0_inc_out1_i : std_logic;
 signal tile0_unscrambled_data1_i : std_logic_vector(15 downto 0);
 signal tile1_refclk_i : std_logic;
 signal tile1_matchn0_i : std_logic;
 signal tile1_txcharisk0_float_i : std_logic_vector(1 downto 0);
 signal tile1_txdata0_float_i : std_logic_vector(23 downto 0);
 signal tile1_block_sync0_i : std_logic;
 signal tile1_error_count0_i : std_logic_vector(7 downto 0);
 signal tile1_frame_check0_reset_i : std_logic;
 signal tile1_inc_in0_i : std_logic;
 signal tile1_inc_out0_i : std_logic;
 signal tile1_unscrambled_data0_i : std_logic_vector(15 downto 0);

 194

 signal tile1_matchn1_i : std_logic;
 signal tile1_txcharisk1_float_i : std_logic_vector(1 downto 0);
 signal tile1_txdata1_float_i : std_logic_vector(23 downto 0);
 signal tile1_block_sync1_i : std_logic;
 signal tile1_error_count1_i : std_logic_vector(7 downto 0);
 signal tile1_frame_check1_reset_i : std_logic;
 signal tile1_inc_in1_i : std_logic;
 signal tile1_inc_out1_i : std_logic;
 signal tile1_unscrambled_data1_i : std_logic_vector(15 downto 0);
 signal reset_on_data_error_i : std_logic;

--**************************** Main Body of Code *******************************
begin
 -- Static signal Assigments
 tied_to_ground_i <= '0';
 tied_to_ground_vec_i <= x"0000000000000000";
 tied_to_vcc_i <= '1';
 tied_to_vcc_vec_i <= x"ff";

 tile0_refclk_ibufds_i : IBUFDS
 port map
 (
 O => tile0_refclk_i,
 I => TILE0_REFCLK_PAD_P_IN,
 IB => TILE0_REFCLK_PAD_N_IN
);

 tile1_refclk_ibufds_i : IBUFDS
 port map
 (
 O => tile1_refclk_i,
 I => TILE1_REFCLK_PAD_P_IN,
 IB => TILE1_REFCLK_PAD_N_IN
);

 ----------------------------------- User Clocks ---------------------------
 -- The clock resources in this section were added based on userclk source selections on
 -- the Latency, Buffering, and Clocking page of the GUI. A few notes about user clocks:
 -- * The userclk and userclk2 for each GTX datapath (TX and RX) must be phase aligned to
 -- avoid data errors in the fabric interface whenever the datapath is wider than 10 bits
 -- * To minimize clock resources, you can share clocks between GTXs. GTXs using the same frequency
 -- or multiples of the same frequency can be accomadated using DCMs and PLLs. Use caution when
 -- using RXRECCLK as a clock source, however - these clocks can typically only be shared if all
 -- the channels using the clock are receiving data from TX channels that share a reference clock
 -- source with each other.

 refclkout_pll0_bufg_i : BUFG
 port map
 (
 I => tile0_refclkout_i,
 O => tile0_refclkout_to_cmt_i
);

 refclkout_pll0_reset_i <= not tile0_plllkdet_i;
 refclkout_pll0_i : MGT_USRCLK_SOURCE_PLL
 generic map
 (
 MULT => 1,
 DIVIDE => 1,
 CLK_PERIOD => 1.6,
 OUT0_DIVIDE => 2,
 OUT1_DIVIDE => 1,
 OUT2_DIVIDE => 1,
 OUT3_DIVIDE => 1,
 SIMULATION_P => EXAMPLE_USE_CHIPSCOPE,
 LOCK_WAIT_COUNT => "1111010000100100"
)
 port map
 (

 195

 CLK0_OUT => tile0_txusrclk0_i,
 CLK1_OUT => open,
 CLK2_OUT => open,
 CLK3_OUT => open,
 CLK_IN => tile0_refclkout_to_cmt_i,
 PLL_LOCKED_OUT => refclkout_pll0_locked_i,
 PLL_RESET_IN => refclkout_pll0_reset_i
);

 refclkout_pll1_bufg_i : BUFG
 port map
 (
 I => tile1_refclkout_i,
 O => tile1_refclkout_to_cmt_i
);

 refclkout_pll1_reset_i <= not tile1_plllkdet_i;
 refclkout_pll1_i : MGT_USRCLK_SOURCE_PLL
 generic map
 (
 MULT => 1,
 DIVIDE => 1,
 CLK_PERIOD => 1.6,
 OUT0_DIVIDE => 2,
 OUT1_DIVIDE => 1,
 OUT2_DIVIDE => 1,
 OUT3_DIVIDE => 1,
 SIMULATION_P => EXAMPLE_USE_CHIPSCOPE,
 LOCK_WAIT_COUNT => "1111010000100100"
)
 port map
 (
 CLK0_OUT => tile1_txusrclk0_i,
 CLK1_OUT => open,
 CLK2_OUT => open,
 CLK3_OUT => open,
 CLK_IN => tile1_refclkout_to_cmt_i,
 PLL_LOCKED_OUT => refclkout_pll1_locked_i,
 PLL_RESET_IN => refclkout_pll1_reset_i
);
 ----------------------------- The GTX Wrapper -----------------------------

 -- Use the instantiation template in the examples directory to add the GTX wrapper to your design.
 -- In this example, the wrapper is wired up for basic operation with a frame generator and frame
 -- checker. The GTXs will reset, then attempt to align and transmit data. If channel bonding is
 -- enabled, bonding should occur after alignment.
 -- Wire all PLLLKDET signals to the top level as output ports
 TILE0_PLLLKDET_OUT <= tile0_plllkdet_i;
 TILE1_PLLLKDET_OUT <= tile1_plllkdet_i;

 -- Hold the TX in reset till the TX user clocks are stable
 tile0_txreset0_i <= not refclkout_pll0_locked_i;
 tile0_txreset1_i <= not refclkout_pll0_locked_i;
 tile1_txreset0_i <= not refclkout_pll1_locked_i;
 tile1_txreset1_i <= not refclkout_pll1_locked_i;

 -- Hold the RX in reset till the RX user clocks are stable
 tile0_rxreset0_i <= not refclkout_pll0_locked_i;
 tile0_rxreset1_i <= not refclkout_pll0_locked_i;
 tile1_rxreset0_i <= not refclkout_pll1_locked_i;
 tile1_rxreset1_i <= not refclkout_pll1_locked_i;

 rocketio_wrapper_i : ROCKETIO_WRAPPER
 generic map
 (
 WRAPPER_SIM_MODE => EXAMPLE_SIM_MODE,
 WRAPPER_SIM_GTXRESET_SPEEDUP => EXAMPLE_SIM_GTXRESET_SPEEDUP,
 WRAPPER_SIM_PLL_PERDIV2 => EXAMPLE_SIM_PLL_PERDIV2
)

 196

 port map
 (
 ------------------------ Loopback and Powerdown Ports ----------------------
 TILE0_LOOPBACK0_IN => tile0_loopback0_i,
 TILE0_LOOPBACK1_IN => tile0_loopback1_i,
 ----------------------- Receive Ports - 8b10b Decoder ----------------------
 TILE0_RXDISPERR0_OUT => tile0_rxdisperr0_i,
 TILE0_RXDISPERR1_OUT => tile0_rxdisperr1_i,
 TILE0_RXNOTINTABLE0_OUT => tile0_rxnotintable0_i,
 TILE0_RXNOTINTABLE1_OUT => tile0_rxnotintable1_i,
 --------------- Receive Ports - Comma Detection and Alignment --------------
 TILE0_RXENMCOMMAALIGN0_IN => tile0_rxenmcommaalign0_i,
 TILE0_RXENMCOMMAALIGN1_IN => tile0_rxenmcommaalign1_i,
 TILE0_RXENPCOMMAALIGN0_IN => tile0_rxenpcommaalign0_i,
 TILE0_RXENPCOMMAALIGN1_IN => tile0_rxenpcommaalign1_i,
 ------------------- Receive Ports - RX Data Path interface -----------------
 TILE0_RXDATA0_OUT => tile0_rxdata0_i,
 TILE0_RXDATA1_OUT => tile0_rxdata1_i,
 TILE0_RXRESET0_IN => tile0_rxreset0_i,
 TILE0_RXRESET1_IN => tile0_rxreset1_i,
 TILE0_RXUSRCLK0_IN => tile0_txusrclk0_i,
 TILE0_RXUSRCLK1_IN => tile0_txusrclk0_i,
 TILE0_RXUSRCLK20_IN => tile0_txusrclk0_i,
 TILE0_RXUSRCLK21_IN => tile0_txusrclk0_i,
 ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------
 TILE0_RXEQMIX0_IN => tile0_rxeqmix0_i,
 TILE0_RXEQMIX1_IN => tile0_rxeqmix1_i,
 TILE0_RXN0_IN => RXN_IN(0),
 TILE0_RXN1_IN => RXN_IN(1),
 TILE0_RXP0_IN => RXP_IN(0),
 TILE0_RXP1_IN => RXP_IN(1),
 --------------- Receive Ports - RX Loss-of-sync State Machine --------------
 TILE0_RXLOSSOFSYNC0_OUT => tile0_rxlossofsync0_i,
 TILE0_RXLOSSOFSYNC1_OUT => tile0_rxlossofsync1_i,
 ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------
 TILE0_DADDR_IN => tied_to_ground_vec_i(6 downto 0),
 --TILE0_DCLK_IN => drp_clk_in_i,
 TILE0_DEN_IN => tied_to_ground_i,
 TILE0_DI_IN => tied_to_ground_vec_i(15 downto 0),
 TILE0_DO_OUT => open,
 TILE0_DRDY_OUT => open,
 TILE0_DWE_IN => tied_to_ground_i,
 --------------------- Shared Ports - Tile and PLL Ports --------------------
 TILE0_CLKIN_IN => tile0_refclk_i,
 TILE0_GTXRESET_IN => tile0_gtxreset_i,
 TILE0_PLLLKDET_OUT => tile0_plllkdet_i,
 TILE0_REFCLKOUT_OUT => tile0_refclkout_i,
 TILE0_RESETDONE0_OUT => tile0_resetdone0_i,
 TILE0_RESETDONE1_OUT => tile0_resetdone1_i,
 ---------------- Transmit Ports - 8b10b Encoder Control Ports --------------
 TILE0_TXCHARISK0_IN => tile0_txcharisk0_i,
 TILE0_TXCHARISK1_IN => tile0_txcharisk1_i,
 ------------------ Transmit Ports - TX Data Path interface -----------------
 TILE0_TXDATA0_IN => tile0_txdata0_i,
 TILE0_TXDATA1_IN => tile0_txdata1_i,
 TILE0_TXRESET0_IN => tile0_txreset0_i,
 TILE0_TXRESET1_IN => tile0_txreset1_i,
 TILE0_TXUSRCLK0_IN => tile0_txusrclk0_i,
 TILE0_TXUSRCLK1_IN => tile0_txusrclk0_i,
 TILE0_TXUSRCLK20_IN => tile0_txusrclk0_i,
 TILE0_TXUSRCLK21_IN => tile0_txusrclk0_i,
 --------------- Transmit Ports - TX Driver and OOB signalling --------------
 TILE0_TXDIFFCTRL0_IN => tile0_txdiffctrl0_i,
 TILE0_TXDIFFCTRL1_IN => tile0_txdiffctrl1_i,
 TILE0_TXN0_OUT => TXN_OUT(0),
 TILE0_TXN1_OUT => TXN_OUT(1),
 TILE0_TXP0_OUT => TXP_OUT(0),
 TILE0_TXP1_OUT => TXP_OUT(1),
 TILE0_TXPREEMPHASIS0_IN => tile0_txpreemphasis0_i,

 197

 TILE0_TXPREEMPHASIS1_IN => tile0_txpreemphasis1_i,
 --------------------- Transmit Ports - TX PRBS Generator -------------------
 TILE0_TXENPRBSTST0_IN => tile0_txenprbstst0_i,
 TILE0_TXENPRBSTST1_IN => tile0_txenprbstst1_i,
 ------------------------ Loopback and Powerdown Ports ----------------------
 TILE1_LOOPBACK0_IN => tile1_loopback0_i,
 TILE1_LOOPBACK1_IN => tile1_loopback1_i,
 ----------------------- Receive Ports - 8b10b Decoder ----------------------
 TILE1_RXDISPERR0_OUT => tile1_rxdisperr0_i,
 TILE1_RXDISPERR1_OUT => tile1_rxdisperr1_i,
 TILE1_RXNOTINTABLE0_OUT => tile1_rxnotintable0_i,
 TILE1_RXNOTINTABLE1_OUT => tile1_rxnotintable1_i,
 --------------- Receive Ports - Comma Detection and Alignment --------------
 TILE1_RXENMCOMMAALIGN0_IN => tile1_rxenmcommaalign0_i,
 TILE1_RXENMCOMMAALIGN1_IN => tile1_rxenmcommaalign1_i,
 TILE1_RXENPCOMMAALIGN0_IN => tile1_rxenpcommaalign0_i,
 TILE1_RXENPCOMMAALIGN1_IN => tile1_rxenpcommaalign1_i,
 ------------------- Receive Ports - RX Data Path interface -----------------
 TILE1_RXDATA0_OUT => tile1_rxdata0_i,
 TILE1_RXDATA1_OUT => tile1_rxdata1_i,
 TILE1_RXRESET0_IN => tile1_rxreset0_i,
 TILE1_RXRESET1_IN => tile1_rxreset1_i,
 TILE1_RXUSRCLK0_IN => tile1_txusrclk0_i,
 TILE1_RXUSRCLK1_IN => tile1_txusrclk0_i,
 TILE1_RXUSRCLK20_IN => tile1_txusrclk0_i,
 TILE1_RXUSRCLK21_IN => tile1_txusrclk0_i,
 ------- Receive Ports - RX Driver,OOB signalling,Coupling and Eq.,CDR ------
 TILE1_RXEQMIX0_IN => tile1_rxeqmix0_i,
 TILE1_RXEQMIX1_IN => tile1_rxeqmix1_i,
 TILE1_RXN0_IN => RXN_IN(2),
 TILE1_RXN1_IN => RXN_IN(3),
 TILE1_RXP0_IN => RXP_IN(2),
 TILE1_RXP1_IN => RXP_IN(3),
 --------------- Receive Ports - RX Loss-of-sync State Machine --------------
 TILE1_RXLOSSOFSYNC0_OUT => tile1_rxlossofsync0_i,
 TILE1_RXLOSSOFSYNC1_OUT => tile1_rxlossofsync1_i,
 ------------- Shared Ports - Dynamic Reconfiguration Port (DRP) ------------
 TILE1_DADDR_IN => tied_to_ground_vec_i(6 downto 0),
 --TILE1_DCLK_IN => drp_clk_in_i,
 TILE1_DEN_IN => tied_to_ground_i,
 TILE1_DI_IN => tied_to_ground_vec_i(15 downto 0),
 TILE1_DO_OUT => open,
 TILE1_DRDY_OUT => open,
 TILE1_DWE_IN => tied_to_ground_i,
 --------------------- Shared Ports - Tile and PLL Ports --------------------
 TILE1_CLKIN_IN => tile1_refclk_i,
 TILE1_GTXRESET_IN => tile1_gtxreset_i,
 TILE1_PLLLKDET_OUT => tile1_plllkdet_i,
 TILE1_REFCLKOUT_OUT => tile1_refclkout_i,
 TILE1_RESETDONE0_OUT => tile1_resetdone0_i,
 TILE1_RESETDONE1_OUT => tile1_resetdone1_i,
 ---------------- Transmit Ports - 8b10b Encoder Control Ports --------------
 TILE1_TXCHARISK0_IN => tile1_txcharisk0_i,
 TILE1_TXCHARISK1_IN => tile1_txcharisk1_i,
 ------------------ Transmit Ports - TX Data Path interface -----------------
 TILE1_TXDATA0_IN => tile1_txdata0_i,
 TILE1_TXDATA1_IN => tile1_txdata1_i,
 TILE1_TXRESET0_IN => tile1_txreset0_i,
 TILE1_TXRESET1_IN => tile1_txreset1_i,
 TILE1_TXUSRCLK0_IN => tile1_txusrclk0_i,
 TILE1_TXUSRCLK1_IN => tile1_txusrclk0_i,
 TILE1_TXUSRCLK20_IN => tile1_txusrclk0_i,
 TILE1_TXUSRCLK21_IN => tile1_txusrclk0_i,
 --------------- Transmit Ports - TX Driver and OOB signalling --------------
 TILE1_TXDIFFCTRL0_IN => tile1_txdiffctrl0_i,
 TILE1_TXDIFFCTRL1_IN => tile1_txdiffctrl1_i,
 TILE1_TXN0_OUT => TXN_OUT(2),
 TILE1_TXN1_OUT => TXN_OUT(3),
 TILE1_TXP0_OUT => TXP_OUT(2),
 TILE1_TXP1_OUT => TXP_OUT(3),

 198

 TILE1_TXPREEMPHASIS0_IN => tile1_txpreemphasis0_i,
 TILE1_TXPREEMPHASIS1_IN => tile1_txpreemphasis1_i,
 --------------------- Transmit Ports - TX PRBS Generator -------------------
 TILE1_TXENPRBSTST0_IN => tile1_txenprbstst0_i,
 TILE1_TXENPRBSTST1_IN => tile1_txenprbstst1_i
);

 -------------------------- User Module Resets -----------------------------
 -- All the User Modules i.e. FRAME_GEN, FRAME_CHECK and the sync modules
 -- are held in reset till the RESETDONE goes high.
 -- The RESETDONE is registered a couple of times on USRCLK2 and connected
 -- to the reset of the modules
 process(tile0_txusrclk0_i,tile0_resetdone0_i)
 begin
 if(tile0_resetdone0_i = '0') then
 tile0_rx_resetdone0_r <= '0' after DLY;
 tile0_rx_resetdone0_r2 <= '0' after DLY;
 elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then
 tile0_rx_resetdone0_r <= tile0_resetdone0_i after DLY;
 tile0_rx_resetdone0_r2 <= tile0_rx_resetdone0_r after DLY;
 end if;
 end process;
 process(tile0_txusrclk0_i,tile0_resetdone0_i)
 begin
 if(tile0_resetdone0_i = '0') then
 tile0_tx_resetdone0_r <= '0' after DLY;
 tile0_tx_resetdone0_r2 <= '0' after DLY;
 elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then
 tile0_tx_resetdone0_r <= tile0_resetdone0_i after DLY;
 tile0_tx_resetdone0_r2 <= tile0_tx_resetdone0_r after DLY;
 end if;
 end process;
 process(tile0_txusrclk0_i,tile0_resetdone1_i)
 begin
 if(tile0_resetdone1_i = '0') then
 tile0_rx_resetdone1_r <= '0' after DLY;
 tile0_rx_resetdone1_r2 <= '0' after DLY;
 elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then
 tile0_rx_resetdone1_r <= tile0_resetdone1_i after DLY;
 tile0_rx_resetdone1_r2 <= tile0_rx_resetdone1_r after DLY;
 end if;
 end process;
 process(tile0_txusrclk0_i,tile0_resetdone1_i)
 begin
 if(tile0_resetdone1_i = '0') then
 tile0_tx_resetdone1_r <= '0' after DLY;
 tile0_tx_resetdone1_r2 <= '0' after DLY;
 elsif(tile0_txusrclk0_i'event and tile0_txusrclk0_i = '1') then
 tile0_tx_resetdone1_r <= tile0_resetdone1_i after DLY;
 tile0_tx_resetdone1_r2 <= tile0_tx_resetdone1_r after DLY;
 end if;
 end process;
 process(tile1_txusrclk0_i,tile1_resetdone0_i)
 begin
 if(tile1_resetdone0_i = '0') then
 tile1_rx_resetdone0_r <= '0' after DLY;
 tile1_rx_resetdone0_r2 <= '0' after DLY;
 elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then
 tile1_rx_resetdone0_r <= tile1_resetdone0_i after DLY;
 tile1_rx_resetdone0_r2 <= tile1_rx_resetdone0_r after DLY;
 end if;
 end process;
 process(tile1_txusrclk0_i,tile1_resetdone0_i)
 begin
 if(tile1_resetdone0_i = '0') then
 tile1_tx_resetdone0_r <= '0' after DLY;
 tile1_tx_resetdone0_r2 <= '0' after DLY;
 elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then
 tile1_tx_resetdone0_r <= tile1_resetdone0_i after DLY;
 tile1_tx_resetdone0_r2 <= tile1_tx_resetdone0_r after DLY;

 199

 end if;
 end process;
 process(tile1_txusrclk0_i,tile1_resetdone1_i)
 begin
 if(tile1_resetdone1_i = '0') then
 tile1_rx_resetdone1_r <= '0' after DLY;
 tile1_rx_resetdone1_r2 <= '0' after DLY;
 elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then
 tile1_rx_resetdone1_r <= tile1_resetdone1_i after DLY;
 tile1_rx_resetdone1_r2 <= tile1_rx_resetdone1_r after DLY;
 end if;
 end process;
 process(tile1_txusrclk0_i,tile1_resetdone1_i)
 begin
 if(tile1_resetdone1_i = '0') then
 tile1_tx_resetdone1_r <= '0' after DLY;
 tile1_tx_resetdone1_r2 <= '0' after DLY;
 elsif(tile1_txusrclk0_i'event and tile1_txusrclk0_i = '1') then
 tile1_tx_resetdone1_r <= tile1_resetdone1_i after DLY;
 tile1_tx_resetdone1_r2 <= tile1_tx_resetdone1_r after DLY;
 end if;
 end process;
 ------------------------------ Frame Generators ---------------------------
 -- The example design uses Block RAM based frame generators to provide test
 -- data to the GTXs for transmission. By default the frame generators are
 -- loaded with an incrementing data sequence that includes commas/alignment
 -- characters for alignment. If your protocol uses channel bonding, the
 -- frame generator will also be preloaded with a channel bonding sequence.

 -- You can modify the data transmitted by changing the INIT values of the frame
 -- generator in this file. Pay careful attention to bit order and the spacing
 -- of your control and alignment characters.

 tile0_frame_gen0 : FRAME_GEN
 generic map
 (
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",

 200

 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- User Interface
 TX_DATA(39 downto 16) => tile0_txdata0_float_i,
 TX_DATA(15 downto 0) => tile0_txdata0_i,

 TX_CHARISK(3 downto 2) => tile0_txcharisk0_float_i,
 TX_CHARISK(1 downto 0) => tile0_txcharisk0_i,
 -- System Interface
 USER_CLK => tile0_txusrclk0_i,
 SYSTEM_RESET => tile0_tx_system_reset0_c
);

 tile0_frame_gen1 : FRAME_GEN
 generic map
 (
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",

 201

 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- User Interface
 TX_DATA(39 downto 16) => tile0_txdata1_float_i,
 TX_DATA(15 downto 0) => tile0_txdata1_i,

 TX_CHARISK(3 downto 2) => tile0_txcharisk1_float_i,
 TX_CHARISK(1 downto 0) => tile0_txcharisk1_i,
 -- System Interface
 USER_CLK => tile0_txusrclk0_i,

 202

 SYSTEM_RESET => tile0_tx_system_reset1_c
);

 tile1_frame_gen0 : FRAME_GEN
 generic map
 (
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",

 203

 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- User Interface
 TX_DATA(39 downto 16) => tile1_txdata0_float_i,
 TX_DATA(15 downto 0) => tile1_txdata0_i,

 TX_CHARISK(3 downto 2) => tile1_txcharisk0_float_i,
 TX_CHARISK(1 downto 0) => tile1_txcharisk0_i,
 -- System Interface
 USER_CLK => tile1_txusrclk0_i,
 SYSTEM_RESET => tile1_tx_system_reset0_c
);

 tile1_frame_gen1 : FRAME_GEN
 generic map
 (
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",

 204

 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- User Interface
 TX_DATA(39 downto 16) => tile1_txdata1_float_i,
 TX_DATA(15 downto 0) => tile1_txdata1_i,

 TX_CHARISK(3 downto 2) => tile1_txcharisk1_float_i,
 TX_CHARISK(1 downto 0) => tile1_txcharisk1_i,
 -- System Interface
 USER_CLK => tile1_txusrclk0_i,
 SYSTEM_RESET => tile1_tx_system_reset1_c
);
 ---------------------------------- Frame Checkers -------------------------
 -- The example design uses Block RAM based frame checkers to verify incoming
 -- data. By default the frame generators are loaded with a data sequence that
 -- matches the outgoing sequence of the frame generators for the TX ports.

 -- You can modify the expected data sequence by changing the INIT values of the frame
 -- checkers in this file. Pay careful attention to bit order and the spacing
 -- of your control and alignment characters.

 -- When the frame checker receives data, it attempts to synchronise to the
 -- incoming pattern by looking for the first sequence in the pattern. Once it
 -- finds the first sequence, it increments through the sequence, and indicates an
 -- error whenever the next value received does not match the expected value.
 tile0_frame_check0_reset_i <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else
tile0_matchn0_i;
 -- tile0_frame_check0 is always connected to the lane with the start of char
 -- and this lane starts off the data checking on all the other lanes. The INC_IN port is tied off
 tile0_inc_in0_i <= '0';

 tile0_frame_check0 : FRAME_CHECK
 generic map
 (
 RX_DATA_WIDTH => 16,
 USE_COMMA => 1,
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 CONFIG_INDEPENDENT_LANES => 1,
 START_OF_PACKET_CHAR => x"bc",
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",

 205

 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",

 206

 MEMP_07 => x"0010"
)
 port map
 (
 -- MGT Interface
 RX_DATA => tile0_rxdata0_i,
 RX_ENMCOMMA_ALIGN => tile0_rxenmcommaalign0_i,
 RX_ENPCOMMA_ALIGN => tile0_rxenpcommaalign0_i,
 RX_ENCHAN_SYNC => open,
 RX_CHANBOND_SEQ => tied_to_ground_i,
 -- Control Interface
 INC_IN => tile0_inc_in0_i,
 INC_OUT => tile0_inc_out0_i,
 PATTERN_MATCH_N => tile0_matchn0_i,
 RESET_ON_ERROR => tile0_frame_check0_reset_i,
 -- System Interface
 USER_CLK => tile0_txusrclk0_i,
 SYSTEM_RESET => tile0_rx_system_reset0_c,
 ERROR_COUNT => tile0_error_count0_i
);

 tile0_frame_check1_reset_i <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else
tile0_matchn1_i;

 -- tile0_frame_check0 is always connected to the lane with the start of char
 -- and this lane starts off the data checking on all the other lanes. The INC_IN port is tied off
 tile0_inc_in1_i <= '0';

 tile0_frame_check1 : FRAME_CHECK
 generic map
 (
 RX_DATA_WIDTH => 16,
 USE_COMMA => 1,
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 CONFIG_INDEPENDENT_LANES => 1,
 START_OF_PACKET_CHAR => x"bc",
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",

 207

 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- MGT Interface
 RX_DATA => tile0_rxdata1_i,
 RX_ENMCOMMA_ALIGN => tile0_rxenmcommaalign1_i,
 RX_ENPCOMMA_ALIGN => tile0_rxenpcommaalign1_i,
 RX_ENCHAN_SYNC => open,
 RX_CHANBOND_SEQ => tied_to_ground_i,
 -- Control Interface
 INC_IN => tile0_inc_in1_i,
 INC_OUT => tile0_inc_out1_i,
 PATTERN_MATCH_N => tile0_matchn1_i,
 RESET_ON_ERROR => tile0_frame_check1_reset_i,
 -- System Interface
 USER_CLK => tile0_txusrclk0_i,
 SYSTEM_RESET => tile0_rx_system_reset1_c,
 ERROR_COUNT => tile0_error_count1_i
);

 tile1_frame_check0_reset_i <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else
tile1_matchn0_i;

 -- in the "independent lanes" configuration, each of the lanes looks for the unique start char and
 -- in this case, the INC_IN port is tied off.
 -- Else, the data checking is triggered by the "master" lane
 tile1_inc_in0_i <= tile0_inc_out0_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else '0';

 tile1_frame_check0 : FRAME_CHECK
 generic map
 (
 RX_DATA_WIDTH => 16,

 208

 USE_COMMA => 1,
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 CONFIG_INDEPENDENT_LANES => EXAMPLE_CONFIG_INDEPENDENT_LANES,
 START_OF_PACKET_CHAR => x"bc",
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",

 209

 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- MGT Interface
 RX_DATA => tile1_rxdata0_i,
 RX_ENMCOMMA_ALIGN => tile1_rxenmcommaalign0_i,
 RX_ENPCOMMA_ALIGN => tile1_rxenpcommaalign0_i,
 RX_ENCHAN_SYNC => open,
 RX_CHANBOND_SEQ => tied_to_ground_i,
 -- Control Interface
 INC_IN => tile1_inc_in0_i,
 INC_OUT => tile1_inc_out0_i,
 PATTERN_MATCH_N => tile1_matchn0_i,
 RESET_ON_ERROR => tile1_frame_check0_reset_i,
 -- System Interface
 USER_CLK => tile1_txusrclk0_i,
 SYSTEM_RESET => tile1_rx_system_reset0_c,
 ERROR_COUNT => tile1_error_count0_i
);

 tile1_frame_check1_reset_i <= reset_on_data_error_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else
tile1_matchn1_i;

 -- in the "independent lanes" configuration, each of the lanes looks for the unique start char and
 -- in this case, the INC_IN port is tied off.
 -- Else, the data checking is triggered by the "master" lane
 tile1_inc_in1_i <= tile0_inc_out1_i when (EXAMPLE_CONFIG_INDEPENDENT_LANES=0) else '0';

 tile1_frame_check1 : FRAME_CHECK
 generic map
 (
 RX_DATA_WIDTH => 16,
 USE_COMMA => 1,
 WORDS_IN_BRAM => EXAMPLE_WORDS_IN_BRAM,
 CONFIG_INDEPENDENT_LANES => EXAMPLE_CONFIG_INDEPENDENT_LANES,
 START_OF_PACKET_CHAR => x"bc",
 MEM_00 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_01 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_02 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_03 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_04 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_05 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_06 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_07 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_08 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_09 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_0A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_0B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_0C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_0D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_0E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_0F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_10 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_11 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_12 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_13 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_14 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_15 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_16 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_17 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_18 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_19 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_1A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_1B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",

 210

 MEM_1C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_1D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_1E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_1F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_20 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_21 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_22 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_23 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_24 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_25 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_26 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_27 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_28 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_29 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_2A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_2B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_2C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_2D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_2E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_2F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_30 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_31 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_32 => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_33 => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_34 => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_35 => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_36 => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_37 => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEM_38 => x"00000e0d00000c0b00000a09000008070000060500000403000002bc00000100",
 MEM_39 => x"00001e1d00001c1b00001a19000018170000161500001413000012110000100f",
 MEM_3A => x"00002e2d00002c2b00002a29000028270000262500002423000022210000201f",
 MEM_3B => x"00003e3d00003c3b00003a39000038370000363500003433000032310000302f",
 MEM_3C => x"00004e4d00004c4b00004a49000048470000464500004443000042410000403f",
 MEM_3D => x"00005e5d00005c5b00005a59000058570000565500005453000052510000504f",
 MEM_3E => x"00006e6d00006c6b00006a69000068670000666500006463000062610000605f",
 MEM_3F => x"00007e7d00007c7b00007a79000078770000767500007473000072710000706f",
 MEMP_00 => x"0010",
 MEMP_01 => x"0010",
 MEMP_02 => x"0010",
 MEMP_03 => x"0010",
 MEMP_04 => x"0010",
 MEMP_05 => x"0010",
 MEMP_06 => x"0010",
 MEMP_07 => x"0010"
)
 port map
 (
 -- MGT Interface
 RX_DATA => tile1_rxdata1_i,
 RX_ENMCOMMA_ALIGN => tile1_rxenmcommaalign1_i,
 RX_ENPCOMMA_ALIGN => tile1_rxenpcommaalign1_i,
 RX_ENCHAN_SYNC => open,
 RX_CHANBOND_SEQ => tied_to_ground_i,
 -- Control Interface
 INC_IN => tile1_inc_in1_i,
 INC_OUT => tile1_inc_out1_i,
 PATTERN_MATCH_N => tile1_matchn1_i,
 RESET_ON_ERROR => tile1_frame_check1_reset_i,
 -- System Interface
 USER_CLK => tile1_txusrclk0_i,
 SYSTEM_RESET => tile1_rx_system_reset1_c,
 ERROR_COUNT => tile1_error_count1_i
);
no_chipscope : if EXAMPLE_USE_CHIPSCOPE = 0 generate

 -- If Chipscope is not being used, drive GTX reset signal
 -- from the top level ports
 tile0_gtxreset_i <= GTXRESET_IN;
 tile1_gtxreset_i <= GTXRESET_IN;

 211

 -- assign resets for frame_gen modules
 tile0_tx_system_reset0_c <= not tile0_tx_resetdone0_r2;
 tile0_tx_system_reset1_c <= not tile0_tx_resetdone1_r2;
 tile1_tx_system_reset0_c <= not tile1_tx_resetdone0_r2;
 tile1_tx_system_reset1_c <= not tile1_tx_resetdone1_r2;
 -- assign resets for frame_check modules
 tile0_rx_system_reset0_c <= not tile0_rx_resetdone0_r2;
 tile0_rx_system_reset1_c <= not tile0_rx_resetdone1_r2;
 tile1_rx_system_reset0_c <= not tile1_rx_resetdone0_r2;
 tile1_rx_system_reset1_c <= not tile1_rx_resetdone1_r2;
 tile0_loopback0_i <= tied_to_ground_vec_i(2 downto 0);
 tile0_txdiffctrl0_i <= tied_to_ground_vec_i(2 downto 0);
 tile0_txpreemphasis0_i <= tied_to_ground_vec_i(2 downto 0);
 tile0_txenprbstst0_i <= tied_to_vcc_vec_i(1 downto 0);
 tile0_rxeqmix0_i <= tied_to_ground_vec_i(1 downto 0);
 tile0_loopback1_i <= tied_to_ground_vec_i(2 downto 0);
 tile0_txdiffctrl1_i <= tied_to_ground_vec_i(2 downto 0);
 tile0_txpreemphasis1_i <= tied_to_ground_vec_i(2 downto 0);
 tile0_txenprbstst1_i <= tied_to_vcc_vec_i(1 downto 0);
 tile0_rxeqmix1_i <= tied_to_ground_vec_i(1 downto 0);
 tile1_loopback0_i <= tied_to_ground_vec_i(2 downto 0);
 tile1_txdiffctrl0_i <= tied_to_ground_vec_i(2 downto 0);
 tile1_txpreemphasis0_i <= tied_to_ground_vec_i(2 downto 0);
 tile1_txenprbstst0_i <= tied_to_vcc_vec_i(1 downto 0);
 tile1_rxeqmix0_i <= tied_to_ground_vec_i(1 downto 0);
 tile1_loopback1_i <= tied_to_ground_vec_i(2 downto 0);
 tile1_txdiffctrl1_i <= tied_to_ground_vec_i(2 downto 0);
 tile1_txpreemphasis1_i <= tied_to_ground_vec_i(2 downto 0);
 tile1_txenprbstst1_i <= tied_to_vcc_vec_i(1 downto 0);
 tile1_rxeqmix1_i <= tied_to_ground_vec_i(1 downto 0);
end generate no_chipscope;

end RTL;

 212

APPENDIX B

Communication Firmware and Software

In this appendix details of the firmware and software used to communicate with

the test module are presented. As discussed in Chapter 6, low-level communication takes

place between the microcontroller and the PC USB drivers. The microcontroller must be

programmed to accept communications from the USB driver and to also handshake with

the drivers. These functions are programmed in assembly language and downloaded to

the microcontroller. The code consists of six files mainly based on source code provided

in [123]. The main file is named “hs.a51”, which lists all the other files to use. The

second file is “Declare.a51” which declares all the variables used in the project. The third

file is “EZint.a51” which interprets interrupts from the USB drivers. The fourth file is

“EZMain.a51”. This is the main body of the project. This code controls how data is

interpreted from the USB and written to the FPGA and vice versa. The fifth file is

“Decode.a51”, which handles how to decode USB packets. The final file is

“DTables.a51”, which declares descriptors required in the project. All these files are

compiled together using an available compiler for microcontrollers and embedded

processors called Keil µVision. The compiler produces one compiled hexadecimal file,

which is downloaded to the microcontroller.

High level communication to the test module is done using a software interface,

also discussed in Chapter 6. This software interface is programmed in C#. The software

interface for the test module is based off much of the work done by Carl Grey at the High

 213

Speed Digital Design Lab at Georgia Tech. The original interface is shown in Figure B.1,

and its code provided in the file titled DLC_interface.cs. This interface essentially

communicated over the USB to the microcontroller after it was loaded with firmware.

This interface was modified to develop the test module interface shown in Figure B.2.

The code for this interface is included as file titled test_module.cs. This file uses many of

the functions provided by DLC_interface.cs, and thus both files are compiled as one

project.

 214

Hs.a51

NAME XilinxInterface
; Version 0.9
;
; Based on ButtonsAndLight example from USB-By-Example

; g) EP0Size made an equate to ease coding of other components
EP0Size EQU 64 ; For EZ-USB

;
$INCLUDE(Declare.A51)
$INCLUDE(EZInt.A51)
$INCLUDE(EZMain.A51)
$INCLUDE(Decode.A51)
$INCLUDE(DTables.A51)

END

 215

Declare.a51

; This module declares the variables and constants used in the examples
; It is common to all of the examples
;
; Declare Special Function Registers used
TimerControl DATA 088H
TimerMode DATA 089H
Timer0High DATA 08CH
EI DATA 0A8H
EIE DATA 0E8H ; EZ-USB specific
EXIF DATA 091H ; EZ-USB specific
EICON DATA 0D8H ; EZ-USB specific
PageReg DATA 092H ; EZ-USB specific, used with MOVX @Ri
DPS DATA 086H ; EZ-USB specific, used with dual data pointers
;
; "External" memory locations used, EZ-USB specific
; Note that most of these variables are in Page 7FH
SETUPDAT EQU 07FE8H
SUDPTR EQU 07FD4H
EP0Control EQU 07FB4H
EP0InBuffer EQU 07F00H
EP0OutBuffer EQU 07EC0H ; Not in Page 7FH
EP1InBuffer EQU 07E80H ; Not in Page 7FH
IN0ByteCount EQU 07FB5H
Out0ByteCount EQU 07FC5H
IN1ByteCount EQU 07FB7H
IN07IEN EQU 07FACH
IN07IRQ EQU 07FA9H
OUT07IEN EQU 07FADH
OUT07IRQ EQU 07FAAH
USBIEN EQU 07FAEH
USBIRQ EQU 07FABH
USBControl EQU 07FD6H
I2CData EQU 07FA6H
I2CControl EQU 07FA5H
PortA_Config EQU 07F93H
PortB_Config EQU 07F94H
PortC_Config EQU 07F95H
PortA_OUT EQU 07F96H
PortB_OUT EQU 07F97H
PortC_OUT EQU 07F98H
PortA_PINS EQU 07F99H
PortB_PINS EQU 07F9AH
PortC_PINS EQU 07F9BH
PortA_OE EQU 07F9CH
PortB_OE EQU 07F9DH
PortC_OE EQU 07F9EH
;
; Byte Variables

 DSEG AT 20H
FLAGS: DS 1 ; This register is bit-addressable
; Bit Variables
Configured EQU FLAGS.0 ; Is this device configured
STALL EQU FLAGS.1 ; Need to STALL endpoint 0
SendData EQU FLAGS.2 ; Need to send data to PC Host
IsDescriptor EQU FLAGS.3 ; Enable a shortcut reply
SetAddress EQU FLAGS.4 ; Set the SIE address
;
MonitorSpace: DS 1FH ; Used by Dscope
;Expired_Time: DS 1 ; A downcounter for timed Reports
ReplyCount: DS 1 ; Byte count for following buffer
ReplyBuffer: DS 2 ; Buffer for immediate reply
CurrentConfiguration:
 DS 1 ; Some examples support > 1 configurations
SaveDPH: DS 1 ; Needed to save Descriptor Pointer ..
SaveDPL: DS 1 ; .. for descriptors > EP0Size
SaveLength: DS 1 ; Number of bytes still to send

 216

SetupData: ; Buffer in direct access memory
RequestType: DS 1
Request: DS 1
wValueLow: DS 1
wValueHigh: DS 1
wIndexLow: DS 1
wIndexHigh: DS 1
wLengthLow: DS 1
wLengthHigh: DS 1
;
;Old_Buttons: DS 1 ; Used by BAL: stores current button position
;LEDstrobe: DS 1 ; Used by BAL: strobe one LED on at a time
;LEDvalue: DS 1 ; Used by BAL: stores current LED value
Msec_Counter: DS 1 ; Used by BAL: counts up to 4 msec
INAddressA: DS 1 ; Incoming Address from USB
INAddressB: DS 1 ; Incoming Address from USB
OUTAddressA: DS 1 ; Outgoing Address to USB
OUTAddressB: DS 1 ; Outgoing Address to USB
INData: DS 1 ; Incoming Data from USB
OUTData: DS 1 ; Outgoing Data to USb
INControl: DS 1 ; Control Byte containing Read/Write Info
ValidCount: DS 1 ; Keeps count of valid outputs
;

 217

EZInt.a51

; This module contains all the EZUSB-specific hardware code
; This module also contains all of the interrupt vector declarations and
; the first level interrupt servicing (register save, call subroutine,
; clear interrupt source, restore registers, return)
; Suspend and Resume are handled totally in this module
;
; A Reset sends us to Program space location 0
 CSEG AT 0 ; Code space
 USING 0 ; Reset forces Register Bank 0
 LJMP Reset
;
; The interrupt vector table is also located here
; EZ-USB has two levels of USB interrupts:
; 1-the main level is described in this table (at ORG 43H)
; 2-there are 21 sources of USB interrupts and these are described in USB_ISR
; This means that two levels of acknowledgement and clearing will be required
; LJMP INT0_ISR ; Features not used are commented out
; ORG 0BH
; LJMP Timer0_ISR
; ORG 13H
; LJMP INT1_ISR
; ORG 1BH
; LJMP Timer1_ISR
; ORG 23H
; LJMP UART0_ISR
; ORG 2BH
; LJMP Timer2_ISR
; ORG 33H
; LJMP WakeUp_ISR
; ORG 3BH
; LJMP UART1_ISR
 ORG 43H
 LJMP USB_ISR ; Auto Vector will replace byte 45H
; ORG 4BH
; LJMP I2C_ISR
; ORG 53H
; LJMP INT4_ISR
; ORG 5BH
; LJMP INT5_ISR
; ORG 63H
; LJMP INT6_ISR

 ORG 1200H ; Load above monSIO0.hex
USB_ISR:LJMP SUDAV_ISR
 DB 0 ; Pad entries to 4 bytes
 LJMP SOF_ISR
 DB 0
 LJMP SUTOK_ISR
 DB 0
 LJMP Suspend_ISR
 DB 0
 LJMP USBReset_ISR
 DB 0
 LJMP Reserved
 DB 0
 LJMP EP0In_ISR
; DB 0 ; Comment out features not used
; LJMP EP0Out_ISR
; DB 0
; LJMP EP1In_ISR
; DB 0
; LJMP EP1Out_ISR
; DB 0
; LJMP EP2In_ISR
; DB 0
; LJMP EP2Out_ISR
; DB 0

 218

; LJMP EP3In_ISR
; DB 0
; LJMP EP3Out_ISR
; DB 0
; LJMP EP4In_ISR
; DB 0
; LJMP EP4Out_ISR
; DB 0
; LJMP EP5In_ISR
; DB 0
; LJMP EP5Out_ISR
; DB 0
; LJMP EP6In_ISR
; DB 0
; LJMP EP6Out_ISR
; DB 0
; LJMP EP7In_ISR
; DB 0
; LJMP EP7Out_ISR
; End of Interrupt Vector tables

; When a feature is used insert the required interrupt processing here
; The example use only used Endpoints 0 and 1 and also SOF for timing
Reserved:
INT0_ISR:
Timer0_ISR:
INT1_ISR:
Timer1_ISR:
UART0_ISR:
Timer2_ISR:
UART1_ISR:
I2C_ISR:
INT4_ISR:
INT5_ISR:
INT6_ISR:
SUTOK_ISR:
EP0Out_ISR:
EP1In_ISR:
EP1Out_ISR:
EP2In_ISR:
EP2Out_ISR:
EP3In_ISR:
EP3Out_ISR:
EP4In_ISR:
EP4Out_ISR:
EP5In_ISR:
EP5Out_ISR:
EP6In_ISR:
EP6Out_ISR:
EP7In_ISR :
EP7Out_ISR:
Not_Used: ; Should not get any of these
 RETI

ClearINT2: ; Tell the hardware that we're done
 MOV A, EXIF
 CLR ACC.4 ; Clear the Interrupt 2 bit
 MOV EXIF, A
 RET

USBReset_ISR: ; Bus has been Reset, move to DEFAULT state
 CLR Configured
 CALL ClearINT2
 ; No need to clear source of interrupt
 RETI

Suspend_ISR: ; SIE detected an Idle bus
 MOV A, PCON
 ORL A, #1
 MOV PCON, A ; Go to sleep!

 219

 NOP
 NOP ; Wake up here due to a USBResume
 NOP
 CALL ClearINT2
 RETI

WakeUp_ISR: ; Not using external WAKEUP in these examples
 ; So this must be due to a USBResume
 CLR EICON.4 ; Clear the wakeup interrupt source
 RETI

EP0In_ISR: ; A prepared packet has been read by PC host
 MOV A, SaveLength ; Do I have any more data to send?
 JZ NoMoreToSend
 MOV DPH, SaveDPH ; Retreive descriptor pointer
 MOV DPL, SaveDPL
 CALL SendNextPieceOfDescriptor
NoMoreToSend:
 CALL ClearINT2
 MOV A, #00000001b
 MOV DPTR, #IN07IRQ
 MOVX @DPTR, A ; Clear source of interrupt
 RETI

SOF_ISR: ; A Start-Of-Frame packet has been received
; This routine services the real time interrupt
; It is also responsible for the "real world" buttons and lights
;
ServiceTimerRoutine:
; LED routine moved to exmain.a51
 MOV A, ValidCount
 CALL CreateInputReport

Done: CALL ClearINT2
 ; Clear the source of the interrupt
 MOV A, #00000010b
ExitISR:MOV DPTR, #USBIRQ
 MOVX @DPTR, A
 RETI

SUDAV_ISR: ; A Setup packet has been received
 MOV SaveLength, #0 ; Clear any pending transactions (if any)
 MOV DPTR, #SETUPDAT ; Copy packet to direct access memory
 MOV R0, #SetupData
 MOV R7, #8
CopySD: MOVX A, @DPTR
 MOV @R0, A
 INC DPTR
 INC R0
 DJNZ R7, CopySD
 CALL ServiceSetupPacket ; Handle the decode of the Setup packet
; if SetAddress { Update SIE address } // NOP on EZ-USB
; if STALL { Stall the endpoint }
; if SendData {
; if IsDescriptor { send DPTR->descriptor, A = length }
; else { send ReplyBuffer }
; }
 JB STALL, SendSTALL
 JNB SendData, HandShake
 JB IsDescriptor, LoadEP0
 ; Send data in ReplyBuffer
 MOV DPTR, #EP0InBuffer+1
 MOV R0, #ReplyBuffer+1
 MOV R7, #2 ; Copy the two byte buffer
CopyRB: MOV A, @R0
 MOVX @DPTR, A
 DEC DPL
 DEC R0
 DJNZ R7, CopyRB
 MOV A, @R0 ; Get BufferCount

 220

SendEP0InBuffer:
 MOV DPTR, #In0ByteCount
StartXfer:
 MOVX @DPTR, A ; This write initiates the transfer
HandShake: ; Handshake with host
 MOV R7, #00000010b ; Set HSNAK to tell the SIE that we're done
SetEP0Control:
 MOV DPTR, #EP0Control
 MOVX A, @DPTR
 ORL A, R7
 MOVX @DPTR, A ; We're done
 CALL ClearINT2
 MOV A, #00000001b ; Clear the source of the interrupt
 JMP ExitISR
SendSTALL: ; Invalid Request was received
 MOV R7, #00000011b ; Set EP0STALL and HSNAK
 JMP SetEP0Control
LoadEP0: ; Send the data pointed to by DPTR
 MOV R7, A ; Save LENGTH
; Need to return the smaller of "Requested Length" and "Actual Length"
; If "Requested Length" > 255 then use "Actual Length"
; There are no descriptors > 255 in this example
 MOV A, wLengthHigh
 JNZ UseActual
 CLR C
 SUBB A, wLengthLow
 MOV A, wLengthLow ; This does not affect Carry
 JNC UsewLengthLow
UseActual:
 MOV A, R7
UsewLengthLow:
SendNextPieceOfDescriptor: ; DPTR -> Descriptor to be sent
 MOV R7, A ; Save LENGTH again
 MOV SaveLength, #0 ; Default case, overwrite if necessary
; Do I have more than a single packet to send?
 CLR C
 SUBB A, #EP0Size
 JC SendPacket
; Need to send multiple packets.
; Calculate and save address of next packet, send next packet now
 MOV SaveLength, A ; Send these next time
 MOV R7, #EP0Size
 PUSH DPH ; Save current pointer
 PUSH DPL
 MOV A, R7 ; Retreive length
 CALL BumpDPTR
 MOV SaveDPH, DPH
 MOV SaveDPL, DPL
 POP DPL
 POP DPH
SendPacket:
 MOV A, R7 ; Retreive length
 MOV R6, A ; Save length in R6 for move
 MOV R0, #LOW(EP0InBuffer) ; PageReg = 7FH = HIGH(EP0InBuffer)
CopySTD:MOVX A, @DPTR
 MOVX @R0, A
 INC DPTR
 INC R0
 DJNZ R6, CopySTD
 MOV A, R7 ; Retrieve LENGTH
 JMP SendEP0InBuffer

GetOutputReport: ; Wait for this, it's next on USB
 MOV DPTR, #Out0ByteCount ; Enable EP0OutBuffer to receive data
 MOVX @DPTR, A ; Any value will do
 MOV DPTR, #EP0Control ; Wait for valid data in EP0OutBuffer
Wait40: MOVX A, @DPTR
 ANL A, #00001000b ; Check OUTBSY
 JNZ Wait40
 RET

 221

EZMain.a51

; This module initializes the microcontroller then executes MAIN forever
; It is hardware dependant

Reset:
 MOV SP, #0DFH ; Initialize the Stack
 MOV PageReg, #7FH ; Allows MOVX Ri to access EZ-USB memory

 MOV R0, #Low(USBControl) ; Simulate a disconnect
 MOVX A, @R0
 ANL A, #11110011b ; Clear DISCON, DISCOE
 MOVX @R0, A
 CALL Wait100msec ; Give the host time to react
 MOVX A, @R0 ; Reconnect with this new identity
 ORL A, #00000110b ; Set DISCOE to enable pullup resistor
 MOVX @R0, A ; Set RENUM so that 8051 handles USB requests
 CLR A
 MOV FLAGS, A ; Start in Default state
InitVariables:
 MOV INControl, A
 MOV INAddressA, A
 MOV INAddressB, A
 MOV OUTAddressA, A
 MOV OUTAddressB, A
 MOV INData, A
 MOV OUTData, A
 MOV ValidCount, A
Initialize4msecCounter:
 MOV Msec_counter, A
InitializeIOSystem: ; A=output, B=output C=input
 MOV R0, #LOW(PortA_Config) ; PageReg = 7F = HIGH(PortA_Config)
 CLR A
 MOVX @R0, A ; No alternate functions on PortA
 INC R0
 MOVX @R0, A ; No alternate functions on PortB
 INC R0
 MOVX @R0, A ; No alternate functions on PortC

 MOV R1, #LOW(PortA_OE)
 CPL A ; = 0FFH
 MOVX @R1, A ; Enable PortA for Output
 INC R1 ; Point to PortB_OE
 MOVX @R1, A ; Enable PortB for Output
 INC R1 ; Point to PortC_OE
 CLR A
 MOVX @R1, A ; Enable Port C for Input

InitializeInterruptSystem: ; First initialize the USB level
 MOV A, #00000001b
 MOV R0, #LOW(IN07IEN)
 MOVX @R0, A ; Enable interrupts from EP0IN only
 INC R0
 CLR A
 MOVX @R0, A ; Disable interrupts from OUT Endpoints 0-7
 INC R0
 MOV A, #00000011b
 MOVX @R0, A ; Enable (Resume, Suspend,) SOF and SUDAV INTs
 INC R0
 MOV A, #00000001b
 MOVX @R0, A ; Enable Auto Vectoring for USB interrupts
 ; Now enable the main level
 MOV EIE, #00000001b ; Enable INT2 = USB Interrupt (only)
 MOV EI, #10010000b ; Enable interrupt subsystem (and Ser0 for dScope)

; Initialization Complete.
;
MAIN:
 NOP ; Not much of a main loop for this example

 222

 JMP MAIN ; All actions are initiated by interrupts
; We are a slave, we wait to be told what to do

Wait100msec:
 MOV R7, #100
Wait1msec: ; A delay loop
 MOV DPS, #0 ; Select primary DPTR
 MOV DPTR, #-1200
More: INC DPTR ; 3 cycles
 MOV A, DPL ; + 2
 ORL A, DPH ; + 2
 JNZ More ; + 3 = 10 cycles x 1200 = 1msec
 DJNZ R7, Wait1msec
 RET

ProcessOutputReport: ; A Report has just been received
; The report is four bytes long (Control, AddressA, AddressB, Data)
 MOV DPTR, #EP0OutBuffer ; Point to the Report
 MOVX A, @DPTR ; Get the Address Byte
 MOV INControl,A ; Move it into memory
 INC DPTR
 MOVX A,@DPTR ; Get the Data Byte
 MOV INAddressA, A ; Get the Address

 INC DPTR
 MOVX A,@DPTR ; Get the Data Byte
 MOV INAddressB, A ; Get the Data

 INC DPTR
 MOVX A,@DPTR ; Get the Data Byte
 MOV INData, A ; Get the Address

 MOV A, INControl
 JZ ReadfromXilinx

WritetoXilinx:
; Write Address first on PortB, pulsing Write Bit
; Write Data next on PortB, pulsing Write Bit
 MOV A, INAddressA
 MOV DPTR, #PortB_Out
 MOVX @DPTR, A ; Send the Address to Xilinx
 MOV A, #16
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Trigger set PortA4 (Set Write Addr Low Byte)

 CLR A
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Clear control bits

 MOV A, INAddressB
 MOV DPTR, #PortB_Out
 MOVX @DPTR, A ; Send the Address to Xilinx
 MOV A, #48
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Trigger set both bits (Set Write Addr High Byte)

 CLR A
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Clear control bits

 MOV A, INData
 MOV DPTR, #PortB_Out
 MOVX @DPTR, A ; Send the Data to Xilinx
 MOV A, #32
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Trigger set PortA5 (Set Write Data & Clear Write Addr)
 CLR A
 MOVX @DPTR, A ; Trigger clear PortA5 (Clear Write Data)
 RET

 223

ReadfromXilinx:
; Write Address first on PortB, pulsing Read Bit
; Read Data next on PortC
 MOV A, INAddressA
 MOV OUTAddressA, A
 MOV DPTR, #PortB_Out
 MOVX @DPTR, A ; Send the Address to Xilinx
 MOV A, #16
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Trigger set PortA5 (Set Load Addr)

 CLR A
 MOVX @DPTR, A ; Trigger clear PortA5 (Clear Load Addr)

 MOV A, INAddressB
 MOV OUTAddressB, A
 MOV DPTR, #PortB_Out
 MOVX @DPTR, A ; Send the Address to Xilinx
 MOV A, #48
 MOV DPTR, #PortA_Out
 MOVX @DPTR, A ; Trigger set PortA5 (Set Load Addr)

 CLR A
 MOVX @DPTR, A ; Trigger clear PortA5 (Clear Load Addr)

 MOV DPTR, #PortC_Pins
 MOVX A, @DPTR
 MOV OUTData, A ; Read Data from Xilinx
 MOV A, ValidCount
 INC A
 MOV ValidCount, A

CreateInputReport: ; Called when data is requested by Host
; The report is 4 bytes: Valid Byte, Address Low, Address High, Data
; Value in A is Valid Byte (leftover from above)
 MOV DPTR, #EP1InBuffer ; Point to the buffer
 MOVX @DPTR, A ; Ready Valid Byte
 INC DPTR ; increment the buffer

 MOV A, OUTAddressA
 MOVX @DPTR, A ; Ready Address
 INC DPTR ; increment the buffer

 MOV A, OUTAddressB
 MOVX @DPTR, A ; Ready Data
 INC DPTR ;increment the buffer

 MOV A, OUTData
 MOVX @DPTR, A ; Ready Data
 INC DPTR ;increment the buffer

 MOV DPTR, #IN1ByteCount
 MOV A, #4 ; 4 total bytes now
 MOVX @DPTR, A ; Endpoint 1 now 'armed', next IN will get data
 RET

 224

Decode.a51

; This module is common to all of the examples.
; It decodes the USB Setup Packets and generates appropriate responses.
; Interpretation of Reports is handled by MAIN
;
 CSEG
ServiceSetupPacket:
 MOV A, RequestType
 MOV C, ACC.7 ; Bit 7 = 1 means IO device needs to send data to PC Host
 MOV SendData, C
 ANL A, #01011100b ; IF RequestType[6.4.3.2] = 1 THEN goto BadRequest
 JNZ BadRequest
 MOV A, RequestType ; IF RequestType[1&0] = 1 THEN goto BadRequest
 MOV C, ACC.0
 ANL C, ACC.1
 JC BadRequest
 JNB ACC.5, NotB5 ; IF RequestType[5] = 1 THEN RequestType[1,0] = [1,1]
 MOV A, #00000011b
NotB5: ANL A, #00000011b ; Set CommandIndex[5,4] = RequestType[1,0]
 SWAP A
 MOV R7, A ; Save HI nibble of CommandIndex
 ; Set CommandIndex[3,0] = Request[3,0]
 MOV A, Request
 ANL A, #11110000b ; Check if Request > 15
 JNZ BadRequest
 MOV A, Request
 ANL A, #00001111b ; Only 13 are defined today, handle in table
 ORL A, R7
; CALL CorrectSubroutine ; goto CommandTable(CommandIndex)
CorrectSubroutine: ; Jump to the subroutine that DPTR is pointing to
 MOV ReplyCount, #1 ; Set up a default reply
 MOV ReplyBuffer, #0
 MOV ReplyBuffer+1, #0
 CLR SetAddress ; Clear all flags
 CLR STALL
 CLR IsDescriptor
 MOV DPTR, #CommandTable
 CALL BumpDPTR ; Point to entry
 MOVX A, @DPTR ; Get the offset
 MOV DPTR, #Subroutines
 JMP @A+DPTR ; Go to the correct Subroutine

BadRequest: ; Decoded a Bad Request, STALL the Endpoint
 SETB STALL
 RET
 ; Support routines
NextDPTR: ; Returns (DPTR + byte DPTR is pointing to)
 MOVX A, @DPTR
BumpDPTR: ; Returns (DPTR + ACC)
 ADD A, DPL
 MOV DPL, A
 JNC Skip
 INC DPH ; Need 16 bit arithmetic here
Skip: RET

; Since the table only contains byte offsets, it is important that all these routines are
; within one page (100H) of Subroutines
; V3.0 - CommandTable moved outside of this one page limited space
CommandTable:
; First 16 commands are for the Device
 DB LOW(Device_Get_Status - Subroutines)
 DB LOW(Device_Clear_Feature - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Device_Set_Feature - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Set_Address - Subroutines)
 DB LOW(Get_Descriptor - Subroutines)
 DB LOW(Set_Descriptor - Subroutines)

 225

 DB LOW(Get_Configuration - Subroutines)
 DB LOW(Set_Configuration - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
; Next 16 commands are for the Interface
 DB LOW(Interface_Get_Status - Subroutines)
 DB LOW(Interface_Clear_Feature - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Interface_Set_Feature - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Get_Class_Descriptor - Subroutines)
 DB LOW(Set_Class_Descriptor - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Get_Interface - Subroutines)
 DB LOW(Set_Interface - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
; Next 16 commands are for the Endpoint
 DB LOW(Endpoint_Get_Status - Subroutines)
 DB LOW(Endpoint_Clear_Feature - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Endpoint_Set_Feature - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Endpoint_Sync_Frame - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
; Next 16 commands are Class Requests
 DB LOW(Invalid - Subroutines)
 DB LOW(Get_Report - Subroutines)
 DB LOW(Get_Idle - Subroutines)
 DB LOW(Get_Protocol - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Set_Report - Subroutines)
 DB LOW(Set_Idle - Subroutines)
 DB LOW(Set_Protocol - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)
 DB LOW(Invalid - Subroutines)

Subroutines:
;
; Many requests are INVALID for this example
Get_Protocol: ; We are not a Boot device
Set_Protocol: ; We are not a Boot device
Set_Descriptor: ; Our Descriptors are static
Set_Class_Descriptor: ; Our Descriptors are static
Set_Interface: ; We only have one Interface
Get_Interface: ; We do not have an Alternate setting
Set_Idle: ; V3.0 Optional command, not supported

 226

Get_Idle: ; V3.0 Optional command, not supported
Device_Set_Feature: ; We have no features that can be set or cleared
Interface_Set_Feature: ; We have no features that can be set or cleared
Endpoint_Set_Feature: ; We have no features that can be set or cleared
Endpoint_Clear_Feature: ; V3.0 We have no features that can be set or cleared
Device_Clear_Feature: ; We have no features that can be set or cleared
Interface_Clear_Feature: ; We have no features that can be set or cleared
Endpoint_Sync_Frame: ; We are not an Isonchronous device

Invalid: ; Invalid Request made, STALL the Endpoint
 SETB STALL
Reply: RET

Set_Address: ; Set the address that the SIE will respond to
 SETB SetAddress
 RET

Set_Report: ; Host wants to sent us a Report.
; The ONLY case in this example where host sends data to us
 JNB Configured, Invalid ; Need to be Configured to do this command
 CALL GetOutputReport ; Handled in EZUSB.A51
 JMP ProcessOutputReport ; RETurn via this subroutine
Get_Report: ; Host wants a Report
 JNB Configured, Invalid ; Need to be Configured to do this command
 MOV ReplyBuffer, #42H ; Reply with a recognizable (arbitary) value
 RET
Get_Configuration: ; Respond with CurrentConfiguration
 MOV ReplyBuffer, CurrentConfiguration
 RET
Device_Get_Status: ; Only two bits of Device Status are defined
 MOV ReplyBuffer, #1 ; Bit 1=Remote Wakeup(=0), Bit 0=Self Powered(=1)
 RET
Interface_Get_Status: ; Interface Status is currently defined as 0
Endpoint_Get_Status:
 MOV ReplyCount, #2 ; Need a two byte 0 response
 RET
Set_Configuration: ; Valid values are 0 and 1
 MOV A, wValueLow
 JZ Deconfigured
 DEC A
 JNZ Invalid
 SETB Configured
 MOV CurrentConfiguration, #1
 RET
Deconfigured:
 CLR Configured
 MOV CurrentConfiguration, A
 RET
Get_Descriptor: ; Host wants to know who/what we are
 SETB IsDescriptor
 MOV A, wValueHigh
 DEC A ; Valid Values are 1, 2 and 3
 MOV DPTR, #DeviceDescriptor
 JZ ReturnLength
 DEC A
 MOV DPTR, #ConfigurationDescriptor
 JNZ TryString
 MOV A, #ConfigLength
 RET
TryString:
 DEC A
 JNZ Invalid
; Request is for a String Descriptor
 MOV DPTR, #String0 ; Point to String 0
 MOV A, wValueLow ; Get String Index
NextString:
 JZ ReturnLength
 MOV R7, A ; Save String Index
 CALL NextDPTR
 MOVX A, @DPTR ; Get the String Length (= 0 means we're at Backstop)

 227

 JZ Invalid ; Asked for a string I don't have
 MOV A, R7
 DEC A
 JMP NextString ; Check if we are there yet
Get_Class_Descriptor: ; Valid values are 21H, 22H, 23H for Class Request
 SETB IsDescriptor
 MOV A, wValueHigh
 CLR C
 SUBB A, #21H
 MOV DPTR, #HIDDescriptor
 JZ ReturnLength
 DEC A
 MOV DPTR, #ReportDescriptor
 JZ ReturnRDlength
; DEC A ; This example does not use Physical Descriptors
; JZ Send_Physical_Descriptor
 JMP Invalid
;
ReturnLength:
 MOVX A, @DPTR ; Get Descriptor Length (first byte)
 RET
ReturnRDlength: ; Report Descriptor is different format
 MOV A, #ReportLength
 RET
; Error check: this MUST be on within a page of Subroutines
WithinSamePage EQU $ - Subroutines
;

 228

DTables.a51

; This module declares the descriptors
;
; This example has one Device Descriptor with:
; One Configuration - single IN port and single OUT port
; One Interface - there is only one method of accessing the ports
; One HID Descriptor - to make PC host software simpler
; One Endpoint Descriptor - for HID Input Reports
; One Report Descriptor - one byte IN and one byte OUT reports
; Multiple Sting Descriptors - to aid the user
;
 CSEG
DeviceDescriptor:
 DB 18, 1 ; Length, Type
 DB 10H, 1 ; USB Rev 1.1 (=0110H, low=10H, High=01H)
 DB 0, 0, 0 ; Class, Subclass and Protocol
 DB EP0Size
 DB 42H, 42H, 1, 42H, 0, 1; Vendor ID, Product ID and Version
 DB 1, 2, 0 ; Manufacturer, Product & Serial# Names
 DB 1 ; #Configs
ConfigurationDescriptor:
 DB 9, 2 ; Length, Type
 DB LOW(ConfigLength), HIGH(ConfigLength)
 DB 1, 1, 0 ; #Interfaces, Configuration#, Config. Name
 DB 10000000b ; Attributes = Bus Powered
 DB 250 ; Max. Power is 250x2 = 500mA
InterfaceDescriptor:
 DB 9, 4 ; Length, Type
 DB 0, 0, 1 ; No alternate setting, HID uses EP1
 DB 3 ; Class = Human Interface Device
 DB 0, 0 ; Subclass and Protocol
 DB 0 ; Interface Name
HIDDescriptor:
 DB 9, 21H ; Length, Type
 DB 0, 1 ; HID Class Specification compliance
 DB 0 ; Country localization (=none)
 DB 1 ; Number of descriptors to follow
 DB 22H ; And it's a Report descriptor
 DB LOW(ReportLength), HIGH(ReportLength)
EndpointDescriptor:
 DB 7, 5 ; Length, Type
 DB 10000001b ; Address = IN 1
 DB 00000011b ; Interrupt
 DB EP0Size, 0 ; Maximum packet size (this example only uses 1)
 DB 100 ; Poll every 0.1 seconds
ConfigLength EQU $ - ConfigurationDescriptor

ReportDescriptor: ; Generated with HID Tool, copied to here
 DB 6, 0, 0FFH ; Usage_Page (Vendor Defined)
 DB 9, 1 ; Usage (I/O Device)
 DB 0A1H, 1 ; Collection (Application)
 DB 19H, 1 ; Usage_Minimum (Button 1)
 DB 29H, 8 ; Usage_Maximum (Button 8)
 DB 15H, 0 ; Logical_Minimum (0)
 DB 25H, 1 ; Logical_Maximum (1)
 DB 75H, 1 ; Report_Size (1)
 DB 95H, 32 ; Report_Count (8)
 DB 81H, 2 ; Input (Data,Var,Abs)
 DB 19H, 1 ; Usage_Minimum (Led 1)
 DB 29H, 24 ; Usage_Maximum (Led 8)
 DB 91H, 2 ; Output (Data,Var,Abs)
 DB 0C0H ; End_Collection
ReportLength EQU $-ReportDescriptor

String0: ; Declare the UNICODE strings
 DB 4, 3, 9, 4 ; Only English language strings supported
String1: ; Manufacturer
 DB (String2-String1),3 ; Length, Type

 229

 DB "U",0,"S",0,"B",0," ",0,"D",0,"e",0,"s",0,"i",0,"g",0,"n",0," ", 0
 DB "B",0,"y",0," ",0,"E",0,"x",0,"a",0,"m",0,"p",0,"l",0,"e",0
String2: ; Product Name
 DB (EndOfDescriptors-String2),3
 DB "G",0,"e",0,"o",0,"r",0,"g",0,"i",0,"a",0," ",0,"T",0,"e",0,"c",0,"h",0," ",0
 DB "T",0,"e",0,"s",0,"t",0," ",0,"C",0,"o",0,"r",0,"e",0," ",0,"V",0,"e",0,"r",0,"2",0
EndOfDescriptors:
 DB 0 ; Backstop for String Descriptors

 230

DLC_Interface.cs

Figure B.1 DLC software interface

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using Microsoft.Win32.SafeHandles;

using System.Runtime.InteropServices;

using System.Diagnostics;

using System.Threading;

using Microsoft.VisualBasic;

namespace BitParallel_HID_Interface

{

 internal enum reportType { Read, Write };

 public partial class BitParallel : Form

 {

 private Byte[] dummyReport = new Byte[5];

 private Byte validByte = 0;

 private IntPtr deviceNotificationHandle;

 private SafeFileHandle hidHandle;

 private String hidUsage;

 private Boolean myDeviceDetected;

 private String myDevicePathName;

 private SafeFileHandle readHandle;

 private SafeFileHandle writeHandle;

 private Boolean exclusiveAccess;

 private DelayWindow frameDelay;

 private DataWindow frameData;

 private MemoryPanel frameMemory;

 private Core_Module coreWindow;

 private Debugging MyDebugging = new Debugging(); // For viewing results of API

calls via Debug.Write.

 private DeviceManagement MyDeviceManagement = new DeviceManagement();

 internal Hid MyHid = new Hid();

 public Boolean emulate = false;

 231

 public BitParallel()

 {

 InitializeComponent();

 }

 private void BitParallel_Load(object sender, EventArgs e)

 {

 FindTheHid();

 frameDelay = new DelayWindow(this);

 frameData = new DataWindow(this);

 frameMemory = new MemoryPanel(this);

 coreWindow = new Core_Module(this);

 frameDelay.Visible = false;

 frameData.Visible = false;

 coreWindow.Visible = false;

 frameDelay.Owner = this;

 frameData.Owner = this;

 coreWindow.Owner = this;

 if (myDeviceDetected == true)

 {

 Boolean successRead = false;

 successRead = ReadInputReport(ref dummyReport);

 if (successRead == true)

 {

 validByte = dummyReport[1];

 labelValid.Text = validByte.ToString();

 }

 }

 timer1.Enabled = false;

 }

 private void buttonWrite_Click(object sender, EventArgs e)

 {

 String byteValue = null;

 Int32 count = 0;

 Boolean success = false;

 Byte[] outputReportBuffer = null;

 if (MyHid.Capabilities.OutputReportByteLength > 3)

 {

 outputReportBuffer = new Byte[MyHid.Capabilities.OutputReportByteLength];

 // Store the report ID in the first byte of the buffer:

 outputReportBuffer[0] = 0; // report ID

 outputReportBuffer[1] = Convert.ToByte(reportType.Write);

 outputReportBuffer[2] = Convert.ToByte(textBoxAddrLow.Text);

 if (MyHid.Capabilities.OutputReportByteLength == 5)

 {

 outputReportBuffer[3] = Convert.ToByte(textBoxAddrHigh.Text);

 outputReportBuffer[4] = Convert.ToByte(textBoxData.Text); // double

byte addressing detected, include high address and then data

 }

 else

 {

 outputReportBuffer[3] = Convert.ToByte(textBoxData.Text); // single

byte addressing detected, ignore high address

 }

 }

 success = SendOutputReport(ref outputReportBuffer);

 if (success)

 {

 DebugLine("An Output report has been written.");

 // Display the report data in the form's list box.

 232

 DebugLine(" Output Report ID: " + String.Format("{0:X2} ",

outputReportBuffer[0]));

 DebugLine(" Output Report Data:");

 for (count = 0; count <= outputReportBuffer.Length - 1; count++)

 {

 // Display bytes as 2-character hex strings.

 byteValue = String.Format("{0:X2} ", outputReportBuffer[count]);

 DebugLine(byteValue);

 }

 }

 else

 {

 DebugLine("The attempt to write an Output report has failed.");

 }

 }

 private void buttonRead_Click(object sender, EventArgs e)

 {

 Boolean successWrite = false;

 Byte[] outputReportBuffer = new

Byte[MyHid.Capabilities.OutputReportByteLength];

 if (MyHid.Capabilities.OutputReportByteLength > 3)

 {

 outputReportBuffer[0] = 0; // reportID

 outputReportBuffer[1] = Convert.ToByte(reportType.Read);

 outputReportBuffer[2] = Convert.ToByte(textBoxAddrLow.Text);

 if (MyHid.Capabilities.OutputReportByteLength == 5)

 {

 outputReportBuffer[3] = Convert.ToByte(textBoxAddrHigh.Text);

 outputReportBuffer[4] = Convert.ToByte(textBoxData.Text); // double

byte addressing detected, include high address and then data

 }

 else

 {

 outputReportBuffer[3] = Convert.ToByte(textBoxData.Text); // single

byte addressing detected, ignore high address

 }

 }

 successWrite = SendOutputReport(ref outputReportBuffer);

 if (successWrite == true)

 {

 DebugLine("Read address written. Waiting for result");

 validByte++;

 int retry = 0;

 while (retry < 128)

 {

 ReadInputReport(ref dummyReport);

 if (dummyReport[1] == validByte)

 {

 DebugLine("Read success: " + dummyReport[4]);

 retry = 128;

 }

 else

 {

 if(menuItemSilenceOverride.Checked)

 DebugLine("Saw unexpected byte on try " + retry + ": " +

dummyReport[1] + ". Expected: " + validByte);

 Thread.Sleep(10);

 retry++;

 }

 }

 }

 }

 internal Boolean SendOutputReport(ref Byte[] outputReportBuffer)

 233

 {

 Boolean success = false;

 if (myDeviceDetected == false)

 FindTheHid();

 if (myDeviceDetected == false)

 return false;

 //debugText.Focus();

 try

 {

 // Don't attempt to exchange reports if valid handles aren't available

 // (as for a mouse or keyboard under Windows 2000/XP.)

 if (!readHandle.IsInvalid && !writeHandle.IsInvalid)

 {

 // Don't attempt to send an Output report if the HID Output report

is too small.

 if (MyHid.Capabilities.OutputReportByteLength > 3)

 {

 // Write a report.

 Hid.OutputReportViaInterruptTransfer myOutputReport = new

Hid.OutputReportViaInterruptTransfer();

 success = myOutputReport.Write(outputReportBuffer, writeHandle);

 }

 else

 {

 DebugLine("The HID doesn't have an Output report or it's too

small (" + MyHid.Capabilities.OutputReportByteLength + ").");

 }

 }

 else

 {

 DebugLine("Invalid handle. The device is probably a system mouse or

keyboard.");

 DebugLine("No attempt to write an Output report or read an Input

report was made.");

 }

 }

 catch (Exception ex)

 {

 throw;

 }

 return success;

 }

 internal Boolean ReadInputReport(ref Byte[] inputReportBuffer)

 {

 Boolean success = false;

 if (myDeviceDetected == false)

 FindTheHid();

 if (myDeviceDetected == false)

 return false;

 try

 {

 Hid.InputReportViaInterruptTransfer myInputReport = new

Hid.InputReportViaInterruptTransfer();

 myInputReport.Read(hidHandle, readHandle, writeHandle, ref

myDeviceDetected, ref inputReportBuffer, ref success);

 }

 catch (Exception ex)

 {

 throw;

 }

 return success;

 234

 }

 internal Boolean SimpleSend(byte lowerAddr, byte upperAddr, byte data, Boolean

silent)

 {

 Boolean success = false;

 int dataLoc = 3;

 silent = silent & !menuItemSilenceOverride.Checked;

 //if (silent == false)

 //debugText.Focus(); // only give the window focus if we need to output

something

 Byte[] outputReportBuffer = new

Byte[MyHid.Capabilities.OutputReportByteLength];

 if (emulate)

 outputReportBuffer = new Byte[4];

 if (outputReportBuffer.Length >= 4)

 {

 // Store the report ID in the first byte of the buffer:

 outputReportBuffer[0] = 0; // report ID

 outputReportBuffer[1] = Convert.ToByte(reportType.Write);

 outputReportBuffer[2] = lowerAddr;

 if (MyHid.Capabilities.OutputReportByteLength == 5)

 {

 outputReportBuffer[3] = upperAddr;

 outputReportBuffer[4] = data;

 dataLoc = 4;

 }

 else

 {

 outputReportBuffer[3] = data;

 }

 if(!silent)

 DebugAdd("Sending " + outputReportBuffer[dataLoc].ToString() + " to

address " + outputReportBuffer[2]);

 success = SendOutputReport(ref outputReportBuffer);

 if(!silent)

 DebugLine(" succeeded: " + success);

 }

 return success;

 }

 internal Boolean SimpleRead(byte lowerAddr, byte upperAddr, ref byte data,

Boolean silent)

 {

 Boolean successWrite = false;

 Boolean successRead = false;

 Byte[] outputReportBuffer = new

Byte[MyHid.Capabilities.OutputReportByteLength];

 int dataLoc = 4;

 silent = silent | menuItemSilenceOverride.Checked;

 //if (silent == false)

 //debugText.Focus(); // only give the window focus if we need to output

something

 if (MyHid.Capabilities.OutputReportByteLength > 3)

 {

 outputReportBuffer[0] = 0; // reportID

 outputReportBuffer[1] = Convert.ToByte(reportType.Read);

 outputReportBuffer[2] = lowerAddr;

 if (MyHid.Capabilities.OutputReportByteLength == 5)

 {

 outputReportBuffer[3] = upperAddr;

 235

 outputReportBuffer[4] = 0; // double byte addressing detected,

include high address and then bogus data

 }

 else

 {

 outputReportBuffer[3] = 0; // single byte addressing detected,

ignore high address

 dataLoc = 3;

 }

 }

 /* So why did we just send a report when we're really reading? By declaring

reportType.Read we're instructing the device

 * to store and enable the address which will then be used to populate the

proper data onto the cypress input pins.

 * This data will eventually be present in the output report along with a

ValidByte incrementally higher than the last time

 * we issued a read request. The result may not be immediately available, so

poll the device a few times. Run this in a

 * seperate process or ensure a timeout to prevent deadlock

 */

 successWrite = SendOutputReport(ref outputReportBuffer);

 if (successWrite == true)

 {

 if(!silent)

 DebugLine("Read address written. Waiting for result");

 validByte++;

 int retry = 0;

 while (retry < 128)

 {

 ReadInputReport(ref dummyReport);

 if (dummyReport[1] == validByte)

 {

 if(!silent)

 DebugLine("Read success: " + dummyReport[dataLoc]);

 data = dummyReport[dataLoc];

 successRead = true;

 retry = 128; // kludge to break early

 }

 else

 {

 //DebugLine("Saw unexpected byte: " + dummyReport[1] + ".

Expected: " + validByte);

 Thread.Sleep(10);

 retry++;

 }

 }

 }

 return successRead;

 }

 private Boolean FindTheHid()

 {

 Boolean deviceFound = false;

 String[] devicePathName = new String[128];

 String functionName = "";

 Guid hidGuid = Guid.Empty;

 Int32 memberIndex = 0;

 Int16 myVendorID = Convert.ToInt16("4242", 16);

 Int16 myProductID = Convert.ToInt16("4201", 16);

 Boolean success = false;

 //debugText.Focus();

 try

 {

 Debug.WriteLine("Attempting to open HID Devices");

 myDeviceDetected = false;

 236

 // ***

 // API function: 'HidD_GetHidGuid

 // Purpose: Retrieves the interface class GUID for the HID class.

 // Accepts: 'A System.Guid object for storing the GUID.

 // ***

 Hid.HidD_GetHidGuid(ref hidGuid);

 functionName = "GetHidGuid";

 Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName));

 Debug.WriteLine(" GUID for system HIDs: " + hidGuid.ToString());

 // Fill an array with the device path names of all attached HIDs.

 deviceFound = MyDeviceManagement.FindDeviceFromGuid(hidGuid, ref

devicePathName);

 // If there is at least one HID, attempt to read the Vendor ID and

Product ID

 // of each device until there is a match or all devices have been

examined.

 if (deviceFound)

 {

 memberIndex = 0;

 do

 {

 // ***

 // API function:

 // CreateFile

 // Purpose:

 // Retrieves a handle to a device.

 // Accepts:

 // A device path name returned by

SetupDiGetDeviceInterfaceDetail

 // The type of access requested (read/write).

 // FILE_SHARE attributes to allow other processes to access the

device while this handle is open.

 // A Security structure or IntPtr.Zero.

 // A creation disposition value. Use OPEN_EXISTING for devices.

 // Flags and attributes for files. Not used for devices.

 // Handle to a template file. Not used.

 // Returns: a handle without read or write access.

 // This enables obtaining information about all HIDs, even

system

 // keyboards and mice.

 // Separate handles are used for reading and writing.

 // ***

 hidHandle = FileIO.CreateFile(devicePathName[memberIndex], 0,

FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero, FileIO.OPEN_EXISTING, 0,

0);

 functionName = "CreateFile";

 Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName));

 Debug.WriteLine(" Returned handle: " + hidHandle.ToString());

 if (!hidHandle.IsInvalid)

 {

 // The returned handle is valid,

 // so find out if this is the device we're looking for.

 // Set the Size property of DeviceAttributes to the number

of bytes in the structure.

 237

 MyHid.DeviceAttributes.Size =

Marshal.SizeOf(MyHid.DeviceAttributes);

 // ***

 // API function:

 // HidD_GetAttributes

 // Purpose:

 // Retrieves a HIDD_ATTRIBUTES structure containing the

Vendor ID,

 // Product ID, and Product Version Number for a device.

 // Accepts:

 // A handle returned by CreateFile.

 // A pointer to receive a HIDD_ATTRIBUTES structure.

 // Returns:

 // True on success, False on failure.

 // ***

 success = Hid.HidD_GetAttributes(hidHandle, ref

MyHid.DeviceAttributes);

 if (success)

 {

 Debug.WriteLine(" HIDD_ATTRIBUTES structure filled

without error.");

 Debug.WriteLine(" Structure size: " +

MyHid.DeviceAttributes.Size);

 Debug.WriteLine(" Vendor ID: " +

Convert.ToString(MyHid.DeviceAttributes.VendorID, 16));

 Debug.WriteLine(" Product ID: " +

Convert.ToString(MyHid.DeviceAttributes.ProductID, 16));

 Debug.WriteLine(" Version Number: " +

Convert.ToString(MyHid.DeviceAttributes.VersionNumber, 16));

 // Find out if the device matches the one we're looking

for.

 Debug.WriteLine("Looking for: " + myVendorID + " and " +

myProductID);

 Debug.WriteLine("Looking at " +

MyHid.DeviceAttributes.VendorID + " and " + MyHid.DeviceAttributes.ProductID);

 if ((MyHid.DeviceAttributes.VendorID == myVendorID) &&

(MyHid.DeviceAttributes.ProductID == myProductID))

 {

 Debug.WriteLine(" My device detected");

 // Display the information in form's list box.

 myDeviceDetected = true;

 // Save the DevicePathName for OnDeviceChange().

 myDevicePathName = devicePathName[memberIndex];

 }

 else

 {

 // It's not a match, so close the handle.

 myDeviceDetected = false;

 hidHandle.Close();

 }

 }

 else

 {

 // There was a problem in retrieving the information.

 238

 Debug.WriteLine(" Error in filling HIDD_ATTRIBUTES

structure.");

 myDeviceDetected = false;

 hidHandle.Close();

 }

 }

 // Keep looking until we find the device or there are no devices

left to examine.

 memberIndex = memberIndex + 1;

 }

 while (!((myDeviceDetected || (memberIndex ==

devicePathName.Length))));

 }

 if (myDeviceDetected)

 {

 // The device was detected.

 // Register to receive notifications if the device is removed or

attached.

 success =

MyDeviceManagement.RegisterForDeviceNotifications(myDevicePathName, this.Handle, hidGuid,

ref deviceNotificationHandle);

 Debug.WriteLine("RegisterForDeviceNotifications = " + success);

 //timer1.Enabled = true;

 // Learn the capabilities of the device.

 MyHid.Capabilities = MyHid.GetDeviceCapabilities(hidHandle);

 if (success)

 {

 // Find out if the device is a system mouse or keyboard.

 hidUsage = MyHid.GetHidUsage(MyHid.Capabilities);

 // Get handles to use in requesting Input and Output reports.

 readHandle = FileIO.CreateFile(myDevicePathName,

FileIO.GENERIC_READ, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero,

FileIO.OPEN_EXISTING, FileIO.FILE_FLAG_OVERLAPPED, 0);

 functionName = "CreateFile, ReadHandle";

 Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName));

 Debug.WriteLine(" Returned handle: " + readHandle.ToString());

 if (readHandle.IsInvalid)

 {

 exclusiveAccess = true;

 }

 else

 {

 writeHandle = FileIO.CreateFile(myDevicePathName,

FileIO.GENERIC_WRITE, FileIO.FILE_SHARE_READ | FileIO.FILE_SHARE_WRITE, IntPtr.Zero,

FileIO.OPEN_EXISTING, 0, 0);

 functionName = "CreateFile, WriteHandle";

 Debug.WriteLine(MyDebugging.ResultOfAPICall(functionName));

 Debug.WriteLine(" Returned handle: " +

writeHandle.ToString());

 // Flush any waiting reports in the input buffer. (optional)

 MyHid.FlushQueue(readHandle);

 }

 }

 }

 239

 else

 {

 // The device wasn't detected.

 Debug.WriteLine(" Device not found.");

 timer1.Enabled = false;

 }

 if (myDeviceDetected == true)

 toolStripStatusConnected.Text = "Device connected";

 else

 toolStripStatusConnected.Text = "Device not connected";

 return myDeviceDetected;

 }

 catch (Exception ex)

 {

 throw;

 }

 }

 internal void OnDeviceChange(Message m)

 {

 Debug.WriteLine("WM_DEVICECHANGE");

 try

 {

 if ((m.WParam.ToInt32() == DeviceManagement.DBT_DEVICEARRIVAL))

 {

 // If WParam contains DBT_DEVICEARRIVAL, a device has been attached.

 DebugLine("A device has been attached.");

 // Find out if it's the device we're communicating with.

 if (MyDeviceManagement.DeviceNameMatch(m, myDevicePathName))

 {

 DebugLine("My device attached.");

 toolStripStatusConnected.Text = "Device reattached"; // we see

it, but the handle may have changed

 //rerun findTheHID on next transaction to reenable the connection

 timer1.Enabled = true;

 }

 }

 else if ((m.WParam.ToInt32() ==

DeviceManagement.DBT_DEVICEREMOVECOMPLETE))

 {

 // If WParam contains DBT_DEVICEREMOVAL, a device has been removed.

 DebugLine("A device has been removed.");

 // Find out if it's the device we're communicating with.

 if (MyDeviceManagement.DeviceNameMatch(m, myDevicePathName))

 {

 DebugLine("My device removed.");

 // Set MyDeviceDetected False so on the next data-transfer

attempt,

 // FindTheHid() will be called to look for the device

 // and get a new handle.

 myDeviceDetected = false;

 //timer1.Enabled = false;

 toolStripStatusConnected.Text = "Device not connected";

 }

 }

 }

 240

 catch (Exception ex)

 {

 throw;

 }

 }

 private void dataWindowToolStripMenuItem_Click(object sender, EventArgs e)

 {

 if (frameData.Visible == true)

 frameData.Hide();

 else

 {

 Point loc = this.DesktopLocation;

 Size frameSize = this.Size;

 int x = loc.X + frameSize.Width;

 int y = loc.Y;

 frameData.SetDesktopLocation(x, y);

 frameData.Show();

 }

 }

 private void delayWindowToolStripMenuItem_Click(object sender, EventArgs e)

 {

 if (frameDelay.Visible == true)

 frameDelay.Hide();

 else

 {

 Point loc = this.DesktopLocation;

 Size frameSize = this.Size;

 int x = loc.X;

 int y = loc.Y + frameSize.Height;

 frameDelay.SetDesktopLocation(x, y);

 frameDelay.Show();

 }

 }

 private void memViewToolStripMenuItem_Click(object sender, EventArgs e)

 {

 if (frameMemory.Visible == true)

 frameMemory.Hide();

 else

 {

 frameMemory.Show();

 }

 }

 protected override void WndProc(ref Message m)

 {

 try

 {

 // The OnDeviceChange routine processes WM_DEVICECHANGE messages.

 if (m.Msg == DeviceManagement.WM_DEVICECHANGE)

 {

 OnDeviceChange(m);

 }

 // Let the base form process the message.

 base.WndProc(ref m);

 }

 catch (Exception ex)

 {

 DisplayException(this.Name, ex);

 throw;

 }

 }

 internal static void DisplayException(String moduleName, Exception e)

 {

 String message = null;

 241

 String caption = null;

 // Create an error message.

 message = "Exception: " + e.Message + "\r\n" + "Module: " + moduleName +

"\r\n" + "Method: " + e.TargetSite.Name;

 caption = "Unexpected Exception";

 MessageBox.Show(message, caption, MessageBoxButtons.OK);

 Debug.Write(message);

 }

 internal void DebugLine(String newText)

 {

 debugText.AppendText(newText + "\r\n");

 }

 internal void DebugAdd(String newText)

 {

 debugText.AppendText(newText);

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 Boolean successRead = false;

 Byte[] inputReportBuffer = new

Byte[MyHid.Capabilities.OutputReportByteLength];

 successRead = ReadInputReport(ref inputReportBuffer);

 if (myDeviceDetected == false)

 return;

 if (successRead == true)

 {

 for (int i = 0; i < inputReportBuffer.Length; i++)

 {

 switch (i)

 {

 case (0): // fallthrough, don't care about the report ID

 case (1): labelValid.Text = inputReportBuffer[i].ToString();

 break;

 case (2): labelAddrLow.Text = inputReportBuffer[i].ToString();

 break;

 case (3): if (inputReportBuffer.Length > 4)

 { // if the report length is 5, we're double byte addressing

 labelAddrHigh.Text = inputReportBuffer[i].ToString();

 labelData.Text = inputReportBuffer[i + 1].ToString();

 }

 else

 { // otherwise it's just single byte addressing and the high

address is irrelevant

 labelAddrHigh.Text = "N/A";

 labelData.Text = inputReportBuffer[i].ToString();

 }

 break;

 }

 }

 }

 else

 {

 DebugLine("Read operation appears to have failed.");

 }

 }

 private void synchronizeToolStripMenuItem_Click(object sender, EventArgs e)

 {

 syncValidByte();

 }

 242

 private void syncValidByte()

 {

 if (myDeviceDetected == true)

 {

 Boolean successRead = false;

 successRead = ReadInputReport(ref dummyReport);

 if (successRead == true)

 {

 validByte = dummyReport[1];

 DebugLine("Valid Byte reset to: " + validByte);

 labelValid.Text = validByte.ToString();

 }

 }

 }

 private void BitParallel_Move(object sender, EventArgs e)

 {

 Point loc = this.DesktopLocation;

 Size frameSize = this.Size;

 if ((frameDelay.Visible == true) && (delayWindowLock.Checked == true))

 {

 int x = loc.X;

 int y = loc.Y + frameSize.Height;;

 frameDelay.SetDesktopLocation(x, y);

 frameDelay.Show();

 }

 if ((frameData.Visible == true) && (dataWindowLock.Checked == true))

 {

 int x = loc.X + frameSize.Width;

 int y = loc.Y;

 frameData.SetDesktopLocation(x, y);

 frameData.Show();

 }

 }

 private void mainWindowTickTimerToolStripMenuItem_CheckStateChanged(object

sender, EventArgs e)

 {

 if (mainWindowTickTimerToolStripMenuItem.Checked == true)

 timer1.Enabled = true;

 else

 timer1.Enabled = false;

 }

 private void debugText_TextChanged(object sender, EventArgs e)

 {

 SuspendLayout();

 Point pt = debugText.GetPositionFromCharIndex(debugText.SelectionStart);

 if (pt.Y > debugText.Height)

 {

 debugText.ScrollToCaret();

 }

 ResumeLayout(true);

 }

 private void ashTestToolStripMenuItem_Click(object sender, EventArgs e)

 {

 if (coreWindow.Visible == true)

 coreWindow.Hide();

 else

 {

 Point loc = this.DesktopLocation;

 Size frameSize = this.Size;

 int x = loc.X;

 int y = loc.Y + frameSize.Height;

 coreWindow.SetDesktopLocation(x, y);

 coreWindow.Show();

 243

 }

 }

 }

}

 244

Test_module.cs

Figure B.2 Test module software interface

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace BitParallel_HID_Interface

{

 public partial class Core_Module : Form

 {

 private BitParallel bp;

 public Core_Module(BitParallel source)

 {

 InitializeComponent();

 bp = source;

 }

 private void label1_Click(object sender, EventArgs e)

 {

 }

 private void button1_Click(object sender, EventArgs e)

 {

 NumericUpDown[] delayValArray = new

NumericUpDown[]{numericUpDown1,numericUpDown2,numericUpDown3,numericUpDown4};

 byte writeAddr = 6;

 245

 foreach (NumericUpDown delayUpDown in delayValArray){

 int delayVal = (int) (delayUpDown.Value * 100);

 byte lowByte = (byte) (delayVal % 256);

 byte highByte =(byte) (delayVal / 256);

 bp.SimpleSend(writeAddr, 0, lowByte, true);

 writeAddr++;

 bp.SimpleSend(writeAddr, 0, highByte, true);

 writeAddr++;

 }

 bp.SimpleSend(0, 0, 2, true);

 }

 private void button2_Click(object sender, EventArgs e)

 {

 numericUpDown1.Value = 0;

 numericUpDown2.Value = 0;

 numericUpDown3.Value = 0;

 numericUpDown4.Value = 0;

 button1_Click(sender, e);

 //byte test = 0;

 //bp.SimpleRead(6, 0, ref test, true);

 }

 private void radioButton1_CheckedChanged(object sender, EventArgs e)

 {

 }

 }

}

 246

APPENDIX C

Physical Board Design and Layout

In this appendix, details of the test module’s physical design and layout are

presented. As discussed in Chapter 7, the test module PCB is designed using Mentor

Graphics PADS software suite. Specifically, two applications of the suite are used,

namely it’s logic editor and its layout editor. The test module components are first

entered into the logic editor and connected to each other according to design. Once this

step is complete, the design is exported to the layout editor, where the physical placement

and routing of the components is done.

The logic design of the test module was divided up into three parts. The first part

consisted of the core logic block. This contained the FPGA, flash memory,

microcontroller, and the programmable delay chips. The schematic for this section is

shown in Figure C.1. The second part contained the application specific logic, namely

buffers, fan-out buffers, multiplexors and XOR gate. The schematic for this section is

shown in Figure C.2. The final part of logic entry contained all the connectors used on the

test module, i.e. the 40-pin connectors, SMP connectors, power posts, etc. The schematic

is shown in Figure C.3.

Once the logic design of the test module it completed, it is exported to the layout

editor. As discussed in Chapter 7, the test module is designed on a 10-layer PCB board

(shown in Figure 7.2). The layouts for each layer are included in Figure C.4-Figure C.13.

 247

Figure C.1 Core logic block schematic

 248

Figure C.2 Application specific logic schematic

 249

Figure C.3 Test Module connectors schematic

 250

Figure C.4 Test Module Layer 1: Signal – Top

Figure C.5 Test Module Layer 2: Ground Plane - 1

Figure C.6 Test Module Layer 3: Signal – Inner 1

 251

Figure C.7 Test Module Layer 4: Ground Plane - 2

Figure C.8 Test Module Layer 5: Power Plane – 1

Figure C.9 Test Module Layer 6: Power Plane - 2

 252

Figure C.10 Test Module Layer 7: Ground Plane - 3

Figure C.11 Test Module Layer 8: Signal – Inner 2

Figure C.12 Test Module Layer 9: Ground Plane - 4

 253

Figure C.13 Test Module Layer 10: Signal - Bottom

254

REFERENCES

[1]. International Technology Roadmap for Semiconductors 2005 Edition - Test and Test

Equipment, The International Technology Roadmap for Semiconductors, 2005.

[2]. International Technology Roadmap for Semiconductors 2009 Edition - Test and Test
Equipment, The International Technology Roadmap for Semiconductors, 2009.

[3]. Moore, G. E.; , “Cramming more components onto integrated circuits,” Electronics,

Volume 38, Number 8, April 19, 1965.

[4]. Kanellos, M.; , “New Life for Moore’s Law,” News.com Special Report, April 19,
2005, http://news.cnet.com/New-life-for-Moores-Law/2009-1006_3-5672485.html.

[5]. Verigy V93000 Series High-Speed I/O Test Solution – Solution Overview, Verigy Ltd.,

CA, 2006.

[6]. Credence Sapphire D-6408 Datasheet, Credence Systems Corporation, Milpitas CA,
2007.

[7]. Landis, D.L.; , “A Test Methodology for Wafer Scale Systems” IEEE Trans. Computer-

Aided Design, Vol. 11, No. 1, pp.76-82, January 1992.

[8]. Butler, K.M.; , "Estimating the economic benefits of DFT," Design & Test of

Computers, IEEE , vol.16, no.1, pp.71-79, Jan-Mar 1999.

[9]. Davidson, S.; , "Justifying DFT with a Hierarchical Top-Down Cost-Benefit Model,"
Test Conference, 2008. ITC 2008. IEEE International , vol., no., pp.1-10, 28-30 Oct.
2008.

[10]. Wei, S.; Nag, P.K.; Blanton, R.D.; Gattiker, A.; Maly, W.; , "To DFT or not to DFT?,"

Test Conference, 1997. Proceedings., International , vol., no., pp.557-566, 1-6 Nov
1997.

[11]. Jagiela, M.; , "The Dynamic World of Semiconductors and Implications for Test,"

Korea Test Conference , June 2007.

[12]. Lara, G.; , “Industry’s Highest Bandwidth FPGA Enables World’s First Single-FPGA
Solution for 400G Communications Line Cards,” WP385 v1.1, Xilinx, Inc., San Jose,
CA, November 2010.

[13]. Furukawa, Y.; Rajsuman, R.; , “New trends drive ATE open architecture,”

Semiconductor International, Issue 8, July 2005

 255

[14]. Grobart, S.; , “In Smartphone Era, Point-and-Shoots Stay Home,” The New York Times,

December 3, 2010.

[15]. MacDonald, C.; , “Embedded Test to the Rescue: What can chip manufacturers do
about soaring test cost and their impact on ATE?”, Semiconductor Magazine, Vol. 1,
No. 11, November 2007.

[16]. Fisher, P.; Nesbitt, R.; , “Clock Cycle Estimate and Test Challenges for Future

Microprocessor,” Sematech Technology Transfer #98033484A-TR.

[17]. Tummala, R. R.; Rymaszewski, E.J.; Klopfenstein, A.G.; , “Microelectronics Packaging
Handbook,” Second Edition, Part II, Chapter 13, pp. 814-867, Klumber Academic
Publisher, 1996.

[18]. Anon., “Nicholas DeWolf: The Father of ATE(Automatic Test Equipment),”

https://www.chiphistory.org/legends/nick_dewolf/nick_dewolf.htm (accessed January
13, 2011).

[19]. Anon., “About Teradyne – A Brief History,”

http://www.teradyne.com/corp/history.html (accessed January 13, 2011).

[20]. Bierman., H. ; “VLSI test gear keeps pace with chip advances,” Electronics, April 19,
1984.

[21]. Shahriari, N.; , "Mission possible? Open architecture ATE," Test Conference, 2002.

Proceedings. International, vol., no., pp. 1206, 2002.

[22]. Evans, A.C.; , "The new ATE: Protocol aware," Test Conference, 2007. ITC 2007. IEEE

International, vol., no., pp.1-10, 21-26 Oct. 2007.

[23]. Rivoir, J.; , "Protocol-Aware ATE enables cooperative test between DUT and ATE for
improved TTM and test quality," Test Conference, 2007. ITC 2007. IEEE International,
vol., no., pp.1-2, 21-26 Oct. 2007.

[24]. Sunter, S.; , "Protocol-aware ATE: Complement or competitor for structural testing?,"

Test Conference, 2007. ITC 2007. IEEE International, vol., no., pp.1, 21-26 Oct. 2007.

[25]. Williams, T.W.; Parker, K.P.; , "Design for Testability – A Survey," The Proceedings of

the IEEE, vol. 71, no. 1, pp.98-112, Jan. 1983.

[26]. Agrawal, V. D.; Seth, S. C.; , “ Test Generation for VLSI Chips,” Computer Society
Press, c1988.

 256

[27]. Vermeulen, B.; Hora, C.; Kruseman, B.; Marinissen, E.J.; van Rijsinge, R.; , "Trends in
testing integrated circuits," Test Conference, 2004. Proceedings. ITC 2004.

International, vol., no., pp. 688- 697, 26-28 Oct. 2004.

[28]. Abramovici, M.; Breuer, M.A.; Driedman, A.A.; , "Digital Systems Testing and
Testable Design," Computer Science Press, 1990.

[29]. IEEE Standard Test Access Port and Boundary-Scan Architecture-Description, IEEE

Std 1149.1-2001, 2001.

[30]. Zorian, Y.; Marinissen, E.J.; Dey, S.; , "Testing embedded-core based system chips,"
Test Conference, 1998. Proceedings., International , vol., no., pp.130-143, 18-23 Oct
1998.

[31]. DaSilva, F.; Zorian, Y.; Whetsel, L.; Arabi, K.; Kapur, R.; , "Overview of the ieee

P1500 standard," Test Conference, 2003. Proceedings. ITC 2003. International , vol.1,
no., pp. 988- 997, Sept. 30-Oct. 2, 2003.

[32]. Dekker, R.; Beenker, F.; Thijssen, L.; , "Realistic built-in self-test for static RAMs,"

Design & Test of Computers, IEEE , vol.6, no.1, pp.26-34, Feb 1989.

[33]. Dorsch, J.; , “The Softer Side of Test: Software products to star at International Test
Conference,” Electronic News, Sep. 1999.

[34]. Bedsole, J.; Raina, R.; Crouch, A.; Abadir, M.S.; , "Very low cost testers: Opportunities

and challenges," Design & Test of Computers, IEEE , vol.18, no.5, pp.60-69, Sep-Oct
2001.

[35]. Keezer, D.C.; , "Multiplexing test system channels for data rates above 1 Gb/s," Test

Conference, 1990. Proceedings., International , vol., no., pp.362-368, 10-14 Sep 1990.

[36]. Milde, G.R.R.; , "Design and Electrical Characterization of Test Fixtures for High-
speed Digital IC's", International Test Conference 1987 Proceedings, pp 363-369.

[37]. Henley, F.J.; Choi, H.J.; , "Test Head Design Using Electro-Optic Receivers and GaAs

Pin Electronics for a Gigahertz Production Test System", International Test Conference

1988 Proceedings, pp 700-709.

[38]. Barton, S.; , "Characterization of High-speed (Above 500 MHZ) Devices Using
Advanced ATE - Techniques,Results, and Device Problems", International Test

Conference 1989 Proceedings, pp 860-868.

[39]. Henley, F.J.; Choi, H.J.; , "Achieving ATE Accuracy at Gigahertz Test Rates:
Comparison of Electronic and Electro- Optic Sampling Technologies", International

Test Conference 1989 Proceedings, p 953.

 257

[40]. Bryson, S.W.; , "Custom Pin Electronics for VLSI Automatic Test Equipment",

International Test Conference 1989 Proceedings, pp 854-859.

[41]. Tsai, S.J.; Hechtman, C.D.; "GaAs Driver and Sensor for a High Speed Test System",
International Test Conference 1988 Proceedings, pp 13-22.

[42]. Kratzer, D.J.; Barton, S.; Henley, F.J.; Plomgrem, D.A.; , "High-speed Pattern

Generator and GaAs Pin Electronics for a Gigahertz Production Test System",
International Test Conference 1988 Proceedings, pp 710-718.

[43]. Hsue, C.W.; ,"Clock Signal Distribution Network for High Speed Testers", Inter-

national Test Conference 1989 Proceedings, pp 199-207.

[44]. Keezer, D.C.; Minier, D.; Paradis, M.; Binette, L.; , "Modular extension of ATE to 5
Gbps," Test Conference, 2004. Proceedings. ITC 2004. International , vol., no., pp.
748- 757, 26-28 Oct. 2004.

[45]. Keezer, D.C.; Minier, D.; Caron, M.-C.; , "Multiplexing ATE channels for production

testing at 2.5 Gbps," Design & Test of Computers, IEEE , vol.21, no.4, pp. 288- 301,
July-Aug. 2004.

[46]. Meixner, A.; Kakizawa, A.; Provost, B.; Bedwani, S.; , "External Loopback Testing

Experiences with High Speed Serial Interfaces," Test Conference, 2008. ITC 2008.

IEEE International , vol., no., pp.1-10, 28-30 Oct. 2008.

[47]. Robertson, I.; Hetherington, G.; Leslie, T.; Parulkar, I.; Lesnikoski, R.; , "Testing high-
speed, large scale implementation of SerDes I/Os on chips used in throughput
computing systems," Test Conference, 2005. Proceedings. ITC 2005. IEEE

International , vol., no., pp.8 pp.-999, 8-8 Nov. 2005.

[48]. Yamaguchi, T.J.; , "Multi-GHz interface devices should be tested using external test
resources," Test Conference, 2002. Proceedings. International , vol., no., pp. 1229,
2002.

[49]. Fritzsche, W.A.; Haque, A.E.; , "Low cost testing of multi-GBit device pins with ATE

assisted loopback instrument," Test Conference, 2008. ITC 2008. IEEE International ,
vol., no., pp.1-8, 28-30 Oct. 2008.

[50]. Sunter, S. et al; , “A digital BIST/BOST for parametric testing of 05~10 Gbps serial

interface,” Semicon Japan, Dec. 2006 .

[51]. Sunter, S.; Roy, A.; , "A selt-testing BOST for high-frequency PLLs, DLLs, and
SerDes," Test Conference, 2007. ITC 2007. IEEE International , vol., no., pp.1-8, 21-26
Oct. 2007.

 258

[52]. Keezer, D.C.; Minier, D.; Ducharme, P.; Viens, D.; Flynn, G.; McKillop, J.S.; , "Multi-
GHz loopback testing using MEMS switches and SiGe logic," Test Conference, 2007.

ITC 2007. IEEE International , vol., no., pp.1-10, 21-26 Oct. 2007.

[53]. Keezer, D.C.; Minier, D.; Ducharme, P.; Majid, A.; , "An Electronic Module for 12.8
Gbps Multiplexing and Loopback Test," Test Conference, 2008. ITC 2008. IEEE

International , vol., no., pp.1-9, 28-30 Oct. 2008.

[54]. Keezer, D.C.; Minier, D.; Ducharme, P.; , "Source-synchronous testing of multilane PCI
Express and HyperTransport buses," Design & Test of Computers, IEEE , vol.23, no.1,
pp. 46- 57, Jan.-Feb. 2006.

[55]. Borgioli, A.; Yu Liu; Nagra, A.S.; York, R.A.; , "Low-loss distributed MEMS phase

shifter," Microwave and Guided Wave Letters, IEEE , vol.10, no.1, pp.7-9, Jan 2000.

[56]. Nagra, A.S.; York, R.A.; , "Distributed analog phase shifters with low insertion loss,"
Microwave Theory and Techniques, IEEE Transactions on , vol.47, no.9, pp.1705-1711,
Sep 1999.

[57]. Barker, S.; Rebeiz, G.M.; , "Distributed MEMS true-time delay phase shifters and wide-

band switches," Microwave Theory and Techniques, IEEE Transactions on , vol.46,
no.11, pp.1881-1890, Nov 1998.

[58]. Zhang, H.; Laws, H.; Gupta, K.C.; Lee, Y.C.; Bright, V.M.; , “MEMS variable-

Capacitor Phase shifters Part I: loaded-line phase shifter,” Wiley Periodicals, Inc. Int
RF and Microwave CAE 12:321-337, 2003.

[59]. Keezer, D.C.; Minier, D.; Ducharme, P.; , "Variable Delay of Multi-Gigahertz Digital

Signals for Deskew and Jitter-Injection Test Applications," Design, Automation and

Test in Europe, 2008. DATE '08 , vol., no., pp.1486-1491, 10-14 March 2008.

[60]. Miller, C.M.; McQuate, D.J.; , “Jitter Analysis of High-Speed Digital Systems,”
Hewlett-Packard Journal, Vol. 46, No. 1, pp. 49-56, February 1995.

[61]. Keezer, D.C.; Minier, D.; Ducharme, P.; , "Method for Reducing Jitter in Multi-

Gigahertz ATE," Design, Automation & Test in Europe Conference & Exhibition, 2007.

DATE '07 , vol., no., pp.1-6, 16-20 April 2007.

[62]. Cai, Y; Laquai, B.; Luehman, K.; , "Jitter testing for gigabit serial communication
transceivers," Design & Test of Computers, IEEE , vol.19, no.1, pp.66-74, Jan/Feb
2002.

[63]. Laquai, B.; Yi Cai; , "Testing gigabit multilane SerDes interfaces with passive jitter

injection filters," Test Conference, 2001. Proceedings. International , vol., no., pp.297-
304, 2001.

 259

[64]. Shitnanouchi, M.; , "Periodic jitter injection with direct time synthesis by SPPtm ATE
for serdes jitter tolerance test in production," Test Conference, 2003. Proceedings. ITC

2003. International , vol.1, no., pp. 48- 57, Sept. 30-Oct. 2, 2003.

[65]. Harsh, K.F.; Zhang, W.; Bright, V.M.; Lee, Y.C.; , "Flip-chip assembly for Si-based RF
MEMS," Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE

International Conference on , vol., no., pp.273-278, 17-21 Jan 1999.

[66]. Kamgaing, T.; Ichikawa, K.; Zeng, X. Y.; Hwang, K. P.; Min, Y.; Kubota, J.; , "Future
Package Technologies for Wireless Communication Systems," Intel Technology
Journal, Vol. 9, Issue 04, 2005.

[67]. Sudo, T.; Yoshii, A.; Tamama, T.; Narumi, N.; Sakagawa, Y.; "'ULTIMATE': A 500-

MHZ VLSI Test System with High Timing Accuracy", International Test Conference

1987, Proceedings, pp 206-213.

[68]. Tummala, R.; , “Fundamentals of Microsystems Packaging,” NewYork, McGraw-Hill,
2001.

[69]. Bakir, M.S.; Reed, H.A.; Thacker, H.D.; Patel, C.S.; Kohl, P.A.; Martin, K.P.; Meindl,

J.D.; , "Sea of Leads (SoL) ultrahigh density wafer-level chip input/output
interconnections for gigascale integration (GSI)," Electron Devices, IEEE Transactions

on , vol.50, no.10, pp. 2039- 2048, Oct. 2003.

[70]. Keezer, D.C.; Patel, C.S.; Bakir, M.S.; Qing Zhou; Meindl, J.D.; , "Electrical test
strategies for a wafer-level packaging technology," Electronics Packaging

Manufacturing, IEEE Transactions on , vol.26, no.4, pp. 267- 272, Oct. 2003.

[71]. Majid, A. M.; Keezer, D.C.; Jayabalan, J.; Rotaru, M. R.; , "Multi-Gigahertz Testing of
Wafer-Level Packaged Devices," Test Conference, 2006. ITC '06. IEEE International ,
vol., no., pp.1-10, Oct. 2006.

[72]. Rao, V.S.; Tay, A.A.O.; Kripesh, V.; Lim, C.T.; Seung Wook Yoon; , "Bed of nails -

100 microns pitch wafer level interconnections process," Electronics Packaging

Technology Conference, 2004. EPTC 2004. Proceedings of 6th , vol., no., pp. 444- 449,
8-10 Dec. 2004.

[73]. Liao, E.B.; Ang, S.S.; Tay, A.A.O.; Feng, H.H.; Nagarajan, R.; Kripesh, V.; ,

"Fabrication and parametric study of wafer-level multiple-copper-column interconnect,"
Electronic Components and Technology Conference, 2004. Proceedings. 54th , vol.2,
no., pp. 1251- 1255 Vol.2, 1-4 June 2004.

[74]. Chng, A.C.; Tay, A.A.O.; Lim, K.M.; Wong, E.H.; , "Fatigue life estimation of a

stretched-solder-column ultra-fine-pitch wafer level package using the macro-micro
modelling approach," Electronic Components and Technology Conference, 2004.

Proceedings. 54th , vol.2, no., pp. 1586- 1591 Vol.2, 1-4 June 2004.

 260

[75]. Patel, C.; Power, C.; Realff, M.; Kohl, P.; Martin, K.; Meindl, J.; “Low cost high

density compliant wafer level package” IEEE Int. Conf. on High-Density Interconnect

and Systems Packaging, pp. 335-339, 2000.

[76]. Patel, C.S.; Realff, M.; Merriweather, S.; Power, C.; Martin, K.; Meindl, J.D.; , "Cost
analysis of compliant wafer level package," Electronic Components and Technology

Conference, 2000. 2000 Proceedings. 50th , vol., no., pp.1634-1639, 2000.

[77]. Jayabalan, J.; Rotaru, M.D.; Rao, V.S.; Kripesh, V.; Iyer, M.K.; Tay, A.A.O.; Ban-
Leong Ooi; Mook-Seng Leong; , "A Novel Test Strategy for Fine Pitch Wafer-Level
Packaged Devices," Advanced Packaging, IEEE Transactions on , vol.30, no.3, pp.439-
447, Aug. 2007.

[78]. Chun, D.; Ang, S.S.; Feng Hanhua; Tay, A.A.O.; Rotaru, M.D.; Keezer, D.; Tan, J.P.H.;

, "A MEMS based interposer for nano-wafer level packaging test," Electronics

Packaging Technology, 2003 5th Conference (EPTC 2003) , vol., no., pp. 405- 409, 10-
12 Dec. 2003.

[79]. Lee, K.K.; Kim, B.C.; , "MEMS spring probe for next generation wafer level testing,"

MEMS, NANO and Smart Systems, 2003. Proceedings. International Conference on ,
vol., no., pp. 214- 217, 20-23 July 2003.

[80]. Sporck, N.; , "A new probe card technology using compliant MicrospringsTM ," Test

Conference, 1997. Proceedings., International , vol., no., pp.527-532, 1-6 Nov 1997.

[81]. Novitsky, J.; Pedersen, D.; , "FormFactor introduces an integrated process for wafer-
level packaging, burn-in test, and module level assembly," Advanced Packaging

Materials: Processes, Properties and Interfaces, 1999. Proceedings. International

Symposium on, vol., no., pp.226-231, 14-17 Mar 1999.

[82]. Keezer, D.C.; Davis, J.S.; Ang, S.; Rotaru, M.; , "A test strategy for nanoscale wafer
level packaged circuits," Electronics Packaging Technology Conference, 2002. 4th ,
vol., no., pp. 175- 179, 10-12 Dec. 2002.

[83]. Chandra, S.J.; Patel, J.H.; , "Test generation in a parallel processing environment,"

Computer Design: VLSI in Computers and Processors, 1988. ICCD '88., Proceedings

of the 1988 IEEE International Conference on , vol., no., pp.11-14, 3-5 Oct 1988.

[84]. Lautner, M.; Bieser, G.; , "Probing ASIC Devices" Solid State Technology, pp. 111-
114, Aug. 1986.

[85]. Mielke, J.A.; Pope, K.A.; , "High-speed fixture interconnects for mixed-signal IC

testing," Test Conference, 1990. Proceedings., International , vol., no., pp.891-895, 10-
14 Sep 1990.

 261

[86]. Majid, A.M.; Keezer, D.C.; Taher, N.; Gray, C.; Ahmad, J.; , "Performance
characteristics of a 5 Gbps functional test module," Electronics Packaging Technology

Conference, 2004. EPTC 2004. Proceedings of 6th, vol., no., pp. 244- 248, 8-10 Dec.
2004.

[87]. Keezer, D.C.; Gray, C.; Majid, A.; Taher, N.; , "Low-cost multi-gigahertz test systems

using CMOS FPGAs and PECL," Design, Automation and Test in Europe, 2005.

Proceedings, vol., no., pp. 152- 157 Vol. 1, 7-11 March 2005.

[88]. Majid, A.M.; Keezer, D.C.; , "An improved low-cost 6.4 Gbps wafer-level tester,"
Electronic Packaging Technology Conference, 2005. EPTC 2005. Proceedings of 7th ,
vol.2, no., pp.6 pp., 7-9 Dec. 2005.

[89]. Verigy V93000 Pin Scale HX high-speed extension card – Product Overview (5989-

5119EN). Verigy Ltd., Cupertino, CA, 2006.

[90]. Credence Saphire D-6408 – Datasheet (PD12207). Credence Systems Corporation,
Milpitas CA, 2007.

[91]. Virtex-5 FPGA RocketIO GTX Transceiver User Guide, UG198 v2.1, Xilinx, Inc., San

Jose, CA, 2007.

[92]. Moreira, J.; Barnes, H.; Kaga, H.; Comai, M.; Roth, B.; Culver, M.; , "Beyond 10
Gbps? Challenges of Characterizing Future I/O Interfaces with Automated Test
Equipment," Test Conference, 2008. ITC 2008. IEEE International, vol., no., pp.1-10,
28-30 Oct. 2008.

[93]. Fritzsche, W.A.; Haque, A.E.; , "Low cost testing of multi-GBit device pins with ATE

assisted loopback instrument," Test Conference, 2008. ITC 2008. IEEE International,
vol., no., pp.1-8, 28-30 Oct. 2008.

[94]. Anon., “Advanced Digital with Silicon Germanium Technology,”

http://www.teradyne.com/tiger/digital.html (accessed January 21, 2011).

[95]. 7 Series FPGAs Overview Advance Product Specification, DS180 v1.3, Xilinx, Inc.,
San Jose, CA, October 2010.

[96]. Keezer, D.; Gray, C.; Majid, A.; Taher, N.; , "Implementing multi-gigahertz test

systems using CMOS FPGAs and PECL components," Solid-State Circuits Conference,

2005. ESSCIRC 2005. Proceedings of the 31st European, vol., no., pp. 291- 294, 12-16
Sept. 2005.

[97]. Majid, A.M.; Keezer, D.C.; Karia, J.V.; , "A 5 Gbps Wafer-Level Tester," Test

Symposium, 2005. Proceedings. 14th Asian, vol., no., pp. 58- 63, 18-21 Dec. 2005.

 262

[98]. Keezer, D.C.; Gray, C.; Majid, A.; Minier, D.; Ducharme, P.; , "A development
platform and electronic modules for automated test up to 20 Gbps," Test Conference,

2009. ITC 2009. International, vol., no., pp.1-11, 1-6 Nov. 2009.

[99]. Keezer, D.C.; Minier, D.; Caron, M.C.; , "A production-oriented multiplexing system
for testing above 2.5 gbps," Test Conference, 2003. Proceedings. ITC 2003.

International , vol.1, no., pp. 191- 200, Sept. 30-Oct. 2, 2003.

[100]. Virtex-5 Family Overview Advance Product Specification, DS100 v4.3, Xilinx, Inc.,
San Jose, CA, June 2008.

[101]. Virtex-5 FPGA User Guide, UG190 v4.2, Xilinx, Inc., San Jose, CA, May 2008.

[102]. Virtex-5 FPGA RocketIO GTP Transceiver User Guide, UG196 v1.6, Xilinx, Inc., San

Jose, CA, February 2008.

[103]. Embedded Processor Block in Virtex-5 FPGAs Reference Guide, UG200 v1.8, Xilinx,
Inc., San Jose, CA, February 2010.

[104]. IEEE Standard Test Access Port and Boundary-Scan Architecture-Description, IEEE

Std 1149.1-2001, 2001.

[105]. Platform Flash PROM User Guide, UG161 v1.6, Xilinx, Inc., San Jose, CA, October
2009.

[106]. Universal Serial Bus Specification, Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,

NEC, Philips, Revision 2.0, April 2000.

[107]. Universal Serial Bus 3.0 Specification, Hewlett-Packard, Intel, Microsoft, NEC, ST-
NXP Wireless, Texas Instruments, Revision 1.0, November 2008.

[108]. “Universal Serial Bus.” Wikipedia: The Free Encyclopedia. Wikimedia Foundation,

Inc. 11 November 2010, 9 November 2010.

[109]. “USB Class Codes.” USB Implementers Forum, Inc.. 11 November 2010, 17 November
2009.

[110]. EZ-USB FXTM USB Microcontroller, Document #:38-08005, Cypress Semiconductor

Corporation, San Jose, CA, April 2003.

[111]. Davis, J. S.; , “An FPGA-Based Digital Logic Core for ATE Support and Embedded
Test Applications,” Doctoral dissertation, ECE, Georgia Institute of Technology,
Atlanta, GA, July, 2003.

[112]. RAMB18 Primitive: 18K-bit Configurable Synchronous True Dual Port Block RAM,

Xilinx, Inc., San Jose, CA, 2008.

 263

[113]. Johnson, H.; Graham, M.; , “High-Speed Digital Design: A Handbook of Black Magic,”

Prentice Hall PTR, New Jersey, 1993.

[114]. Caldwell, B.; Getty, D.; , “Coping with SCSI at Gigahertz Speeds,” EDN, July 6, 2000.

[115]. Demarest, K.; , “Engineering Electromagnetics,” Prentice Hall, New Jersey, 1997.

[116]. Rogers Corporation, “Introducing R04003C and RO435B Laminates with TICER TCR
Thin Film Resistor Foils - Preliminary Data Sheet,” Publication #92-134, July 2008.

[117]. On Semiconductor, 2.5V/3.3V SiGe Differential 1:4 Clock/Data Driver with RSECL
Outputs, NBSG14/D, Rev. 15, August 2009.

[118]. Inphi Corporation, 13611XR 13 Gbps XOR/XNR Data Sheet, Ver. 2.2, June, 2007.

[119]. On Semiconductor, 2.5V/3.3V SiGe Differential Receiver/Driver Variable Output

Swing, NBSG16VS/D, Rev. 12, September, 2008.

[120]. On Semiconductor, 3.3V ECL Programmable Delay Chip, MC10EP195/D, Rev. 18,
April, 2009.

[121]. White paper; , “Fulfilling Needs for 40G-100G Network-Centric Operations and

Warfare,” WP-01138-1.1, Altera Corporation, San Jose, CA, September 2010.

[122]. Inphi Corporation, 25711XR 25 Gbps XOR/XNOR Data Sheet, Ver. 3.1, May, 2007.

[123]. Hyde, J.; , “USB Design-by-example: a practical guide to building IO devices,” John
Wiley & Sons, New York, 1999.

 264

VITA

Ashraf Muhammad Majid was born on July 26th 1979, in Dhaka Bangladesh. He

received the B.S. degree (with high honors) in computer engineering from the Georgia

Institute of Technology (Georgia Tech) in 2003. He continued on to receive the M.S.

degree in electrical and computer engineering, and the M.S. degree in quantitative and

computational finance in 2005 and 2007, respectively.

In the Spring of 2004, Dr. Majid joined the High-Speed Digital Test Lab at

Georgia Tech under the guidance of Dr. David Keezer in order to pursue the Ph.D. degree

in electrical and computer engineer. His primary areas of expertise are high-speed digital

test, high-performance electronic systems design, and wafer-level probing. He has over

seven years of experience in designing high-speed digital test systems. He has published

numerous refereed and invited papers and received the 2006 Top-Ten International Test

Conference Paper award. In the Spring of 2011, Dr. Majid received the Ph.D. degree in

electrical and computer engineering from Georgia Tech.

Dr. Majid is currently the Vice President of Market Risk Management at SunTrust

Banks, Inc. in Atlanta. His current role involves the modeling and risk management of

financial derivatives. Prior to joining SunTrust, Dr. Majid worked as a test engineer at

Nokia Corp. in Atlanta.

