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CHAPTER I 

INTRODUCTION 

In 19 54, H. S. Wall [31] Investigated equations of the form 

0 
h(t) = p t / (dF)h (LE) 

t 

where F is a continuous square-matrix-valued function on [0,°°) which is 

of bounded variation on each bounded interval of [O, 0 0), p is a member of 

the matrix ring which contains the values of F, and the integral is the 

ordinary Riemann-Stieltjes integral. J. S. MacNerney [15,16] took this 

development further by allowing the functions to have their values in a 

complete normed ring with identity. A nonlinear analogy was presented 

by J. W. Neuberger [23] who studied 

0 
h(t) = p + / dF[h] (NLE) 

t 

where each value of F is a nonlinear function from a Banach space into 

itself, and continuity conditions are imposed on F so as to make solu­

tions continuous. Discontinuities were introduced in the linear equa­

tion (LE) by MacNerney [17] who simply required F to be of bounded vari­

ation on each bounded interval, and used the Cauchy right integral. In 

[19] this work was extended to allow for discontinuities in the solutions 

of the nonlinear equation (NLE). The equation (NLE), taken in the 
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context of [19], s h a l l be referred to as the nonlinear Cauchy-Stieltjes 

integral equation, or, for brevity, the C-S equation. 

The C-S equation was extended to a more general nonlinear integral 

operation by J. V. Herod in [7], Also, Herod [8,10] studied the problem 

of coalescence of solutions of the C-S equation, and R. H. Martin, Jr. 

[20,21] obtained numerical bounds for solutions of the C-S equation. 

In this work we shall continue the analysis of the nonlinear 

Cauchy-Stieltjes integral equation. In Chapter III, algebraic operations 

will be described with respect to which the integrator class and the 

solution class become isomorphic algebraic semigroups. Under fairly 

lenient hypotheses, the algebraic operations will show how to solve per­

turbed equations in terms of the solutions of unperturbed equations. 

There will be introduced in Chapter IV a product integral with the aid 

of which we shall derive a variation-of-parameters formula for nonlinear 

systems and shall solve a coalescence problem. We shall, in Chapter V, 

extend the work of Martin on bounds. Bounds will be obtained for solu­

tions of equations subject to integrator perturbations and to forcing 

function perturbations. 

To achieve a measure of self-containment, we have included, in 

Chapter II, many known results due to MacNerney, Herod, and Martin, but 

we have not included the proofs. In few, If any, cases will these proofs 

be essential to the present discussion, and each cited result is fully 

referenced. In the last section of Chapter II there is a discussion 

designed to point up the relation between our subject and more widely 

studied problems of differential equations with interface conditions. 
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CHAPTER II 

THE GENERAL THEORY 

SECTION II.1: Definitions 
and the Fundamental Correspondence 

Let S be the set of all nonnegative real numbers, and let Y be a 

Banach space with norm N (in none of what follows will it matter 

whether Y is a Banach space over the real field or a Banach space over 

the complex field). Let H be the set to which A belongs only in case A 

is a function from Y to Y, A[0] = 0, and there is a number b such that 

N1[A[p] - A[q]] < bN [p-q] whenever (p,q) is in YxY. If A is in H, let 

N2[A] be the least number b such that N [A[p] - A[q]] < bN [p-q] when­

ever (p,q) is in YxY, and let N^[A] be the least number b such that 

N [A[p]] < bN [p] whenever p is in Y. Note that if A is in H and is 

linear, then N [A] = N g[A]. If each of A and B is in H, then AB will 

denote that member C of H having the property that if p is in Y then 

C[p] = A[B[p]]. 

If h is a function from S to a metric space, we define h(O-) = 

h(0), h(0+) = l i m
t ^ 0 h(t), and if t>0, then h(t-) and h(t+) will denote 
t>0 

the usual left-and right-hand limits, respectively. Let QC be the set 

to which f belongs only in case f is a function from S to Y, and f is 

quasicontinuous , i.e., each of f(t-) and f(t+) exists whenever t is in 

S. Let BV be the set to which f belongs only in case f is a function 

from S to Y and f has bounded variation on each bounded interval of S. 

Note that BV is a subset of QC. 
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If (a,b) IS IN S X S , t will be called a chain from a to b only in 

case t (also denoted (T. ),n J is a monotone sequence into S and t̂  = a 
K K = 0 0 

and t = b. If each of s and t is a chain from A to b , s will be called n 
a refinement of t only in case t Is a subsequence of s. If h is a func­

tion from SXS to H , and (a,b) is In S X S , and P is in Y , then by nbh[p] 
EL and ) h[p] we mean the limits, in the sense of successive refine-a 

ments of chains T , of members of Y of the forms h(t ,t )[p] (where 
K — _L K — 1 K 

N K = L H ( T K - L ' V = h ( t0' tl ) h ( tl' t2 )'-- h ( tn-l' tn ) ) a n d £K = l H ( T K - l ' V [ P ] ' 
respectively. If h is a real-valued function on S X S , and (a,b) is In 

b r^> 
S X S , we define IT h and I h analogously. If (x,y,z) Is in S X S X S , we a a 
will refer to y as being between x and z only in case |x-y| + |y-z| = 

| x- z | . 

Let 0A+ be the set to which a belongs only In case a is a func­

tion from SXS to S and A(x,y) + a(y ,z) = a(x,z) whenever (x,y,z) is in 

SXSXS and y is between x and z. Let 0M+ be the set to which u belongs 

only in case u is a function from SXS to [l,00) and u(x,y)u(y,z) = u(x,z) 

whenever (x,y,z) Is in SXSXS and y is between x and z. Let OA be the set 

to which V belongs only in case V is a function from SXS to H such that 

(0A1) V(x,y) + V(y,z) = V(x,z) whenever (x,y,z) is SXSXS 

and y is between x and Z , and 

(0A2) there Is a in 0A+ such that N [V(a9b)] < a(a,b) 

whenever (a ,b) is in S X S . 

If a and V are related as in (0A2), a will be said to dominate V. Let 

OM be the set to which W belongs only in case W is a function from SXS 

to H such that 
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(0M1) W(X,Y)W(Y,Z) = W(X,Z) WHENEVER (X,Y,Z) IS IN SXSXS 

AND Y IS BETWEEN X AND Z, AND 

(0M2) THERE IS Y IN 0M + SUCH THAT N 2[W(A,B) - I ] < Y(A,B) - 1 

WHENEVER (A,B) IS IN SXS, WHERE I IN H IS GIVEN BY 

I[P] = P. 

IF Y AND W ARE RELATED AS IN (0M2) , Y WILL BE SAID TO DOMINATE W. 

THE FOLLOWING THREE THEOREMS ARE DUE TO MACNERNEY, AND THE LATTER 

TWO DELINEATE WHAT MACNERNEY CALLS THE FUNDAMENTAL CORRESPONDENCES 

BETWEEN 0 A + AND 0M + AND BETWEEN OA AND OM. 

THEOREM II.1.1 ([17, LEMMAS 2.1 AND 2.2], [19, THEOREM 1.1]) 

LET A BE IN 0 A + , Y BE IN 0 M + , V BE IN OA, W BE IN OM, (A,B) BE IN 

SXS, AND P BE IN Y. THEN EACH OF IT B[LTA], £ B [ Y - L ] , N B[I+V][P], AND 
A A A 

_J B[W-I][P] EXISTS. 

THEOREM II.1.2 ([17, THEOREM 2.2]) 

THERE IS A BIJECTION E + FROM 0A + ONTO 0 M + SUCH THAT IF A IS IN 

0 A + AND Y IS IN 0 M + , THEN ( I ) , (II), AND (III) ARE EQUIVALENT. 

(I) Y - E + [ A ] . 

(II) Y(A,B) = N B[L+A] WHENEVER (A,B) IS IN SXS. 
3. 

(III) A(A,B) = Y B[Y-L] WHENEVER (A,B) IS IN SXS. 

THEOREM II.1.3 ([19, THEOREM 1.1]) 

THERE IS A BIJECTION E FROM OA ONTO OM SUCH THAT IF V IS IN OA 

AND W IS IN OM, THEN ( I ) , (II), (III), AND (IV) ARE EQUIVALENT. 

(I) W = E[V]. 
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(II) W(A,B)[P] = N B[I+V][P] WHENEVER (A,B,P) IS IN SXSXY. 
a. 
RB (III) V(A,B)[P] = I [W-I][P] WHENEVER (A,B,P) IS IN SXSXY. EL 

(IV) THERE IS A MEMBER (A,U) OF E + SUCH THAT N [W(A,B)-I-V(A,B) ] < 

U(A,B) - 1 - A(A,B) WHENEVER (A,B) IS IN SXS. 

SECTION II.2: INTEGRAL EQUATIONS 

IF H IS A FUNCTION FROM SXS TO Y, AND (A,B) IS IN SXS, WE DEFINE 
VB 
I H IN THE OBVIOUS WAY. IF V IS IN OA, G IS IN QC, AND (A,B) IS IN 

B B 

SXS, THEN WE DEFINE (R) / V[G] TO BE £ H, WHERE H IS GIVEN BY H(S ,T) = 
A 

A 

V(S ,T)[G(T)]. THIS INTEGRATION PROCESS YIELDS WHAT IS CALLED THE RIGHT 

CAUCHY-STIELTJES INTEGRAL. THE FOLLOWING THEOREM IS DUE TO MACNERNEY. 

THEOREM II.2.1 ([19, THEOREM 2 ] ) 

LET V BE IN OA WITH W = E [ V ] , LET (A,P) BE IN SXY, AND LET H BE 

IN QC. THEN (I) AND (II) ARE EQUIVALENT. 
A 

(I) H(T) = P + (R) / V[H] WHENEVER T IS IN S. 
T 

(II) H(T) = W(T,A)[P] WHENEVER T IS IN S. 

FURTHERMORE, IF (II) HOLDS, THEN H IS IN BV. 

THEOREM II.2.2 

LET V BE IN OA, LET A BE IN S, AND LET F BE IN QC. THEN THERE 

IS EXACTLY ONE MEMBER H OF QC SUCH THAT 

A 
H(T) = F(T) + (R) / V[H] 

T 

WHENEVER T IS IN S. FURTHERMORE, H IS IN BV ONLY IN CASE F IS IN BV. 
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REMARK I I . 2 . 1 : Al though Theorem I I . 2 . 2 a p p e a r s n o t t o have been s t a t e d 

i n t h i s form by MacNerney, i t f o l l o w s i m m e d i a t e l y from an i t e r a t i v e 

scheme a n a l o g o u s to t h a t c i t e d i n [ 1 8 ] . 

SECTION I I . 3 : C o a l e s c e n c e of S o l u t i o n s 

I f V i s i n OA, p i s i n Y, ( a , b ) i s i n SxS , and a * b , t h e n 

Theorem I I . 2 . 1 does n o t make i t c l e a r w h e t h e r t h e r e e x i s t s a member h 

of QC such t h a t h ( b ) = p and such t h a t 

a 
h ( t ) = h ( a ) + (R) / V[h] 

t 

whenever t i s i n S. When does t h e r e e x i s t such an h , when i s h u n i q u e , 

and when does h ( a ) d e p e n d , i n a L i p s c h i t z - c o n t i n u o u s f a s h i o n , on p? 

S i n c e h ( b ) = W ( b , a ) [ h ( a ) ] (where W = E[V]) , i t i s c l e a r t h a t t h e f o l l o w ­

i n g theo rem of Herod d e a l s w i t h t h e s e q u e s t i o n s . 

THEOREM I I . 3 . 1 ( [ 1 0 ] , s e e a l s o [8]) 

I f (V,W) i s i n E , t h e n ( i ) and ( i i ) a r e e q u i v a l e n t . 

( i ) Whenever a i s i n S , each of I + V ( a , a + ) , I + V ( a , a - ) , I + V ( a + , a ) , 

and I + V ( a - , a ) h a s i n v e r s e i n H. 

( i i ) Whenever ( a ,b) i s i n SxS , W(a,b) h a s i n v e r s e i n H. 

In f a c t , Herod h a s shown more . L e t 0AI be t h a t s u b s e t of OA t o 

which V b e l o n g s on ly i n ca se V s a t i s f i e s ( i ) of Theorem I I . 3 . 1 . 

THEOREM I I . 3 . 2 ( [ 1 0 ] , s e e a l s o [8]) 

There i s a b i j e c t i o n G from 0AI o n t o 0AI such t h a t i f V i s i n 

0AI , t h e n each of ( i ) , ( i i ) , ( i i i ) , and ( i v ) i s t r u e . 
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(i) G[G[Vj] - V. 

(ii) G[V](a,b) = -V(b,a) whenever (a,b) is in SxS only in case 

ybN0[V[I-V]-V] = 0 whenever (a,b) is in SxS. a^ 3 
(iii) E[G[V]](a,b)E[V](b,a) = E[V](b,a)E[G[V]]( a,b) = I whenever 

(a,b) is in SxS. 

(iv) G[V](a,b)[p] = - b£ aV[I+V] _ 1[p] whenever (a,b,p) is in 

SxSxY. 

SECTION II.4: Bounds for Solutions 

Since Y is a Banach space, the set of all real numbers can be 

thought of as a subset of H. Let OAR and OMR denote the subsets of OA 

and OM, respectively, consisting of real-valued functions. Martin has 

proved the following two theorems. 

THEOREM II.4.1 ([21, Lemma 3.3, Theorem 3.1], see also [20]) 

Let V be in OA. If (a,b) is in SxS, then £b(N [I+V] - 1) 
a o 

rb 

exists, and if y is given on SxS by y(a,b) = I (N [I+V] - 1), then y 

is in OAR. 
THEOREM II.4.2 ([21, Theorem 3.1], see also [20]) 

Let V be in OA, and let y in OAR be given by y(a9b) -

Tb(N Tl+V] - 1). Let W = E[V], and let X = E[y]. Then N [W(a,b)] < a o ^ 
X(a,b) whenever (a,b) is in SxS, and X is the least member of OMR for 

which this is so, i.e., X(a,b) = n bN [W] whenever (a,b) is in SxS. 
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SECTION II.5: Differential 
Equations with Interface Conditions 

We shall describe a basic interface problem and show how it can 

be solved with the theory of nonlinear Cauchy-Stieltjes integral equa­

tions. Let A be an N -continuous function from S to H, and let K be a 

countable subset of S such that K does not contain 0. Let each of B and 

C be a function from K to H such that if M is a bounded subset of K, 

then each of V • M N0[B(t) - I] and V . M N_[C(t) - I] is finite. 
t̂ m M 2 t̂ m M 2 

Let q be in Y. The objective of this interface problem is to find a 

member h of QC such that if t is in K, then h(t) = B(t)[h(t-)] and 

h(t+) = C(t)[h(t)], and such that if N is an open connected set in S 

which does not intersect K then h is continuously differentiable on N 

and h'(t) = A(t)[h(t)] whenever t is in N, and such that h(0) = q. 

Let and be members of OA such that if 0 < a < b and p is 

in Y then U1(b9a)[p] = I a < t< b^ B( t)- I^p] and U2(b,a)[p] = 

V ̂  , [C(t)-I][p]. Now if t is in K then U (t,t-) = B(t) and LL(t+,t) = 
^a<t<b 1 2 
C(t). Let V be a member of OA such that if 0 < a < b and p is in Y, 

b 
then V(b9a)[p] = / A(s)[p]ds + U (b9a)[p] + U2(b9a)[p]. Let W = E[V], 

a 
and let h be given by h(t) = W(t,0)[q], Now h fulfills the requirements 

of our interface problem. 

The question of uniqueness of solutions merits some discussion 

here. The integral equation we constructed has, of course, a unique 

solution, but the lack of uniqueness of interface solutions arises 

since it need not be the case that every solution to the interface prob­

lem also solves our integral equation. In particular, suppose (a,b) is 

an open interval in the closure of K, and D is an N -continuous function 
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from S to H such that D(t) = 0 whenever t is outside (a,b). Then 

E[Z]( ,0)[p] also solves our interface problem, where Z in OA is given 

by 

d d 
Z(d,c)[p] = / A(s)[p]ds + / D(s)[p]ds 

c c 

+ U ^ d ^ E p ] + U2(d,c)[p]. 

Several authors have studied differential interface systems, and 

the connection with Cauchy-Stieltjes integral equations has long been 

recognized. In particular, we refer the reader to the works of M. 

Frechet [5], T. H. Hildebrandt [ll], W. H. Ingram [12], G. B. Price 

[24], W. T. Reid [25], W. C. Sangren [26], H. Scharf [27], and F. W. 

Stallard [28,29]. For a more complete treatment of differential inter­

face systems, we refer to F. V. Atkinson [1, Chapter 11, Section 8] and 

the references cited there. 
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CHAPTER III 

ALGEBRAIC STRUCTURE 

SECTION III.l: The 9 Operation 

LEMMA III.1.1 

If each of a and 3 Is in 0A +, and (a,b) is In SxS, then £ba[l+g] 
a 

exists and is the greatest lower bound of the set to which r belongs 

only In case there is a chain (t, ) i
n „ from a to b such that J k k = 0 

PROOF: Let (a,b,c) be in SxSxS with b between a and c. Now a(a,c) > 

a(a,b) and a(a,c) > a(b,c), so 

a(a,c)3(a,c) = a(a,c)3(a,b) + a(a,c)3(b,c) 

> a(a,b)3(a,b) + a(b,c)3(b,c), 

and 

a(a,c)[l+3(a,c)] > a(a,b)[1+3(a,b)] + a(b,c)[l+3(b ,c)]. 

It is now clear that if (a,b) is in SxS, each of s and t is a chain from 

a to b, and s refines t, then 

a(a,b) < J a[l+B] < a[l+3]. 

This completes the proof. 
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THEOREM III.1.1 

If each of and is on OA, and (a,b,p) is in S x S * Y , then 
rb ) Vn[I+V„][p] exists. If, for i=l or i=2, a. dominates V., then â  1 2 i i 

N3[V1(a,b)[I+V2(a,b)] - J ^ d + V ^ ] 

< a1(a,b)[l+a2(a,b)] - J ^ A

1 ^ 1 + A

2 ^ 9 

whenever (a,b) is in SxS. Furthermore, if U is given by U(a,b)[p] = 

£bV [I+V0][p], then U is in OA. a J- 2. 

PROOF: Let (a,b,c,p) be in S x S x S x Y , with b between a and c. Now 

N1[V1(a,c)[I+V2(a,c)][p] - a,b)[I+V2(a,b)][p] 

- V1(b,c)[I+V2(b,c)][p]] 

= N1[V1(a,b)[I+V2(a,c)][p] - a,b) [I+V2 (a ,b ) ][p ] 

+ V1(b,c)[I+V2(a,c)][p] - V1(b,c)[I+V2(b,c)][p]] 

< N1[p][a1(a,b)a2(b,c) + a (b,c)a2(a,b)] 

= N [p][a (a,c)[l+a (a,c)] - o^Ca,b)[l+a2(a,b)] 

- a1(b9c)[l+a2(b,c)]]. 

Consequently, if (a,b,p) is in S x S x Y , if each of s and t is a chain from 

a to b, and if s refines t, then 
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N l C ^ T V L C l + V 2 ] C p ] ~ £ s
V i [ I + V

2
] [ P ] ] 

* Nl[p][j;ta1[l+a2] - ^a^l+c^]]. 

It is now clear that V^Cl+V^Cp] exists and that the inequality of 

the conclusion holds. Let (a,b,p,q) be in SxSxY*Y. Now 

N L C a ^ V L C l + V 2 ] [ p ] " j\t I +V 2][q]] * N 1[p-q]J ba 1[l+a 2], 

and the proof is complete. 

DEFINITION III.1.1: If each of V and V 2 is in OA, then V ®V will be 

that member U of OA given by 

U(a,b)[p] - V2(a,b)[p] + J bV 1[I+V 2][p]. 

If V is in OA, then V will be that member of OA given by V (a,b) = 

V(b,a). 

Our next two theorems will be concerned with the © operation. 

Of particular importance here will be the discovery of necessary and 

sufficient conditions for © to reduce to ordinary addition. Also of 

interest is the fact that © turns out to be associative. 

THEOREM III.1.2 

If each of V , V 2, and V 3 is in OA, then V^CV^V^ = (V^V^SV^ 

and consequently (OA,©) is a semigroup. (OAI,©) is a subgroup of (OA,©), 
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each subgroup of (OA,©) is contained in OAI, and if V is in OAI, then 

V©G[V] = G[V] ©V = 0. 

b 
PROOF: If a is in 0A +, and (a,b) is in SxS, let (L) / a(a, )a denote 
vb 3 

I h, where h is given by h(s,t) = a(a,s)a(s,t). It is known [17, Lemma 
3 b 

4.2] that if a is in OA and (a,b) is in SxS, then (L) / a(a, )a exists CL 
and is the least upper bound of the set to which r belongs only in case 

there is a chain (t, ),n from a to b such that r = Vf 1
 na(a,t -, ) a ( t n , t ) , k k=0 , ^k=l k-1 k-1 K b 

and the analogous statement holds for (R) / aa( ,b). Let each of V , 
a 

V Q, and V be in OA, and choose a in OA such that a dominates each of 

V , V , and V . Let (a,b,p) be in SxSxY, and let (x,y) be in SxS such 

that x is between a and b and y is between x and b. Let (s. ).m ^ be a 
k k=0 

chain from x to y, and let j be an integer in [l,m]. Now 

N [[I+V ( x , y ) + ̂  V2(s s )[I+V3(s s k ) : ] C p ] 

- [I+V_(s. ,s.)][I+V_(x,y)][p]] 

N l [ ^ l V 2 ( s k - l ' S k ) [ I + V 3 ( s k - l ' S k ) ] [ P ] 

- V2(s ,s J[I+V3(x,y)][p]] 

N l C ^ l V 2 ( s k - l ' S k ) [ I + V 3 ( s k - l ' S k ) ] [ P ] 

k*j 

+ V2(sj_1,sj)[I+V3(sj_1,s J][p] 

- V0(s. n,s.)[I+V„(x,y)][p]] 
Z ]-_L ] 0 



15 

V III 

- ^k=l a ( sk-l' sk ) [ 1 + a ( sk-l' Sk ) ] Nl [ p ] 

+ a(s. ,s.)[a(x,s. .) + a(s.,y)]N.[p] 
j-l j j-l ] 'J 1 

< N1[p][a(xss_._1)[l+a(x,s^._1) ] + a(s. ,y) [l+a(s. sy) ] 

+ a(x9y)[a(x9s + a(s_.,y)]] 

< [l+2a(x9y)]N1[p][a(x9s ) + a(s 9y)]. 

The penultimate inequality in the above computation is a direct appli­

cation of Lemma III.1.1. Now 

N1[V2(x9y)[I+V3(x9y)][p] + V^x.y )[I+V3(x9y) 

+ I k = i v

2

( s k - i ' s k ) [ I + v 3 ( s k - i ' s k ) ] ] C p ] " v
2

( x ' y ) [ I + v 3 ( x ' y ) ] C p ] 

" ^ k = l V l ( s k - l ' S k ) C l + V 2 ( s k - l 5 S k ) ] ] C l + V 3 ( x 5 y ) ] C p ] : i 

<- I J = 1 - ( 8 i . 1 , a i ) N 1 [ [ I + V 3 ( x ^ ) + i ; s l V 2 ( 8 k . l l 8 k ) 

- [I+V2(si_1,si)][I+V3(x,y)][p]] 

< [l+2a(x,y)]N1[p]^=1a(si_1,si)[a(x,si_1) + a(s i 9y)]. 

Now let each of (sn )™ „ and (t, )f „ be a chain from a to b , and suppose k k=0 k k=0 ^ 
(s, ) m _ refines (t, ) n _ . Let J be a nondecreasing integer-valued k k — 0 k k — 0 
sequence on the domain of t such that J(0) = 0, J(n) = m 9 and S j . ^ ) = 

whenever k is in the domain of t. It now follows that 
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+ ^ ( k - l ) + l V 2 ( s i - l ' S i ) [ I + V 3 ( s i - l ' S i ) ] ] C P ] 

- S ! k - i ) t i v i ( s i - r s i » [ I t V s i - r s i » ] [ M 3 ( t

k - r V ] W ] ] 

- ^ k = l [ 1 + 2 ° ( t k - l ' t k ) : , N l l : p : l 

• ^ J ( k - l ) + l a ( s i - l ' s i ) c a ( t k - l ' s i - l ) + a ( s i ' t k ) ; ] 

0 1 [ p ] [ l t 2 , ( a , b ) ] ^ « _ 1 ) + 1 W V l , s . _ 1 ) a ( s . . 1 , s . ) 

+ a(si_1,si)a(si,tk)] 

= N 1[p][l+2a(a sb)][(L)^ sa(as )a + (R)£ aa( , b ) 

- (L)^ta(a, )a - (R)£ aa( , b ) ] . 

But since this is true for every refinement s of t, it follows that 

N i c ^ t [ v 2 [ I + v 3 ] + v 1 [ i + v 2 © v 3 ] - ( v 1 e v 2 ) [ i + v 3 ] ] [ p ] ] 

b b 
< N Cp][l+2a(a,b)]C(L) / a(as )a + (R) / aa( , b ) 

a a 

- (L)^ta(a, )a + (R)£taa( , b ) ] . 

The associativity is now clear. 

Now note that if A is in H, and I+A has inverse in H, then 
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-A[I+A] 1 + A[I-A[I+A] 2 ] = -A[I+A] 1 + A[[I+A]-A][I+A] 1 = 0 

Let V in OAI, let a dominate V, and let (a,b,p) be in SxSxY. Let s be 

a chain from a to b such that if t is a refinement of s, then 

[I+V(t I'^k^ ^ e x i s _ t : s whenever k is a positive member of the domain of 

t (Herod [10] has shown that such s exists). Let (t, ) n
 A be a refine-

k k = 0 
ment of s. Now 

+ «t k_ 1 (t k)[i - t l ^ v c i + v ] " 1 : : ? ] ] ] 

k—1 

s
 r ^ ' v r W t / k v [ i t v ] _ 1 [ p ] 

k-1 

Thus it is clear (see [10, Theorem 1]) that V©G[V] = 0. Similarly, 

G[V]"$V = 0, so (OAI,©) is a group. 

Now let U and V be in OA, and let U©V = V©U = 0. Let t be in S 

Now [U©V](t,t+) = 0, so 

U(t ,t+)[I+V(t,t+)] + V(t,t+) = 0, 
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u(t ,t+)d+v(t,t+)] + d+v(t,t+)] = i , 

and 

[I+U(t,t+)][I+V(t,t+)] = I. 

Also, since [V©U](t,t+) = 0, we have [I+V(t,t+)][I+U(t ,t+)] = I. 

Similar computations for (t,t-), (t+,t), and (t-,t) show that each of 

U and V is in OAI, and the proof of Theorem III.2.1 is complete. 

LEMMA III.1.2 

Let each of and be in 0A +, and let 3 be a continuous member 
+ rb of OA . Suppose that 3(a,b) < £ aj®2 w n e n e v e r (a,b) is in SxS. Then 

3(a,b) = 0 whenever (a,b) Is in SxS. 

PROOF: Let (a,b) be in SxS with a<b. If a (a,b) = 0, then 3(a,b) = 0. 

Suppose a2(a,b) > 0. Let £>0. Find a chain t from a to b such that 

an(t, n+,t -) < e/a_(a.b) whenever k Is a positive member of the domain 1 k-1 k 2 

of t. Let n be the largest member of the domain of t. Now 

8 ( a , b ) = X ^ B C t ^ V = I " = 1 3 ( t k _ 1 + > V ) 

s ^ = i a i ( t k - i + ' V ) a 2 ( t k - i + ' V ) * e -

An analogous argument holds if a>b, and the proof Is complete. 

THEOREM III.1.3 

Let each of and be In OA. Then (i) and (ii) are equivalent 

and (Iii) and (iv) are equivalent. 
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(i) v 1 ©v 2 = v 1 + v 2 . 

(ii) V [I+V ] - V = 0 at all "pairs" of the forms (t,t+), 

(t,t-), (t+,t), and (t-,t) for t in S. 

(iii) v 1 ©v 2 = v 2 © v r 

(iv) V - V 2 = V1[I+V23 - V2[ItV ] at all "pairs" of the forms 

(t,t+), (t,t-), (t+,t), and (t-,t) for t in S. 

PROOF: We shall indicate the first equivalence and leave the second to 

the reader. From the definition of ©, it is clear that (I) implies 

(ii). Now suppose (ii). For i = l or i = 2, let ou dominate V\ . Let 3 in 

0A+ be given by 3(a,b) = £bN [V.[I+V_] - V,]. Now, by (ii), 3 is con-
a d j . z J. vb tinuous, and clearly 3(a,b) < l a a whenever (a,b) is in SxS. Thus a _L z 

3 = 0, (i) follows, and the proof is complete. 

SECTION III.2: The 8 Operation 
and the Exponential Identity 

THEOREM III.2.1 

Let each of V and V 2 be in OA, with = E[V^ and W 2 = E[V ]. 

Let (a,b,p) be in SxSxY. Then each of 

nb[I+V1][I+V_][p] and nbw1w.[p] a 1 2 a 1 z ^ 

exists, and they are equal. Furthermore, if M is given by 

M(a,b)[p] = rrVw.Cp] a _L z 

then M is in 0M. 
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PROOF: Let U = V j®^ 2' b e b a ^e a m e I * e r °f s u c h that a dominates 

each of U, V , and V 2, and let y = E + [a]. Let (a,b,p) be in SxSxY, and 

let t be a chain from a to b. Now 

N 1 [ n t [ i + u ] [ P ] - n t [ i + v 1 ] [ i + v 2 ] [ P ] ] = V n k = i C l + u ( t k - i 9 t k ) ] C p ] 

* ^ i V n ^ [ I + u ( V i ' V ] N W 

- n k k i + u ( t . p t j r f . [ i + v / t . I 9t.)] 

[ i + v 2 ( t . _ 1 , t j ) ] [ P ] ] 

< nk"^[i+a(t. . ,t.)]NJ[I+U(t l 9t,)] Lk=l ]=1 ]-l ] 3 k-1 k 

" ^ V V l ' V ^ + V V l ' V " 

n? , _ [ l + a ( t . n 9 t . ) ] V [ p ] 
:=k+i :-i : i 

t 
< N 1[p]y(a 9b ) 2 5;^ 1N 3[V 1(t k_ l 9t k)[I +V 2(t k_ 1 9t k)]- t I V1[I+V2]] 

k-1 

< N [p]y(a9b)^[y a [ l+a] - £ b a [ l + a ] ] . 1 l a 

It is now clear that nb[I+Vn][I+V0][p] exists and equals nb[I+U][p] 
a J- ^ a 

whenever (a,b9p) is in SxSxY, 
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Since 

NlCnk=lWl ( tk-l' tk)W2 ( tk-l' tk)[P] 

- " k ^ + v w v ^ W i V ^ p " 

(see [19, Lemma 1.2]), it is clear that 

a n b [ i + v 1 ] [ i + v 2 ] [ P ] = a n b w 1 w 2 [ P ] 

whenever (a,b,p) is in SxSxY. Since these products describe E[U], it 

follows that M is in OM, and the proof is complete. 

DEFINITION III.2.1: If each of W and W 2 is in OM, then W 8W is that 

member M of OM given by 

M(a,b)[p] = n b W W [p]. 
a j. z 

There emerges from the proof of Theorem III.2.1 a fact which we 

now record. 

THEOREM III.2.2 

If each of and is in OA, then 
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EEV^V^ = E[V1]®E[V2]. 

REMARK III.2.1: It is now clear that (OM,®) is a semigroup and is 

semigroup-isomorphic to (OA,©), with E serving as an isomorphism. In 

Theorem 6 of [13], this author showed that if and are in OA, with 

W = E[V n] and W = E[V 0], and £bN [V [I+V ]-V ] = 0 whenever (a,b) is 
_L _L z z S o _L z _L 
in SxS, then n bW W [p] exists whenever (a,b,p) is in SxSxY, and, if M 

cl _L A 

is given by M(a,b)[p] = n bW W [p], then M = E[V +V ]. Note that 

Theorem III.2.2, together with the first equivalence of Theorem III.1.3, 

includes this result. 

THEOREM III.2.3 

Let V be in OA, and let be in OAI. Let U in OA be given by 

U(a,b)[p] = 1[I+V_]"1[p]. a _L z 

Then 

ECV^V^ = E[U]8E[V2]. 

INDICATION OF PROOF: A line of argument similar to that used by Herod 

in [10] can be used to show that the sums indicated in the definition 

of U actually exist and to show that U is in OA. Let (a,b,p) be in 

SxSxY. Now 

[E[U]8E[V2]](a,b)[p] = a n b E[U ]E[V 2][p] 

= n b [ i + u ] [ i + v 0 ] [ P ] 
a I 



23 

= n b [ i + v r i + v 0 ] 1 ] [ i + v 0 ] [ P ] 
a 1 2 I 

= n b [ i + v +V_][p] a 1 2 

= E[V1+V2](a,b)[p]. 

This completes the proof. 

REMARK III.2.2: Note that by using Theorems III.3.3, III.2.2, and 

III.2.3, we can compute, under two different sets of hypotheses, 

EEV^+V^] in terms of the ® operation. 

REMARK III.2.3: The notion of continuously multiplying solutions for 

generators in order to construct the solution for a sum of generators 

has been used by Trotter [30] and Chernoff [2], [3] for the case of 

autonomous linear differential equations with discontinuous linear 

operators, by Helton [6] for the case of linear Stieltjes integral 

equations, and by Mermin [22] for the case of autonomous nonlinear 

differential equations with accretive operators. 
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CHAPTER IV 

D K = w ( W i ) C < W + F ( V - F ( W -

EVOLUTION SYSTEMS WITH QUASICONTINUOUS TRAJECTORIES 

SECTION IV.1: A Product Integral 

It should be noted that the definition of product integral re­

quires in no way that we restrict our attention to operators mapping 

zero onto zero. If q is in Y, then K^, the q-constant function, will 

be that function from Y to Y such that if p is in Y then K^[p] = q. 

For the remainder of Section IV.1, W will be a member of OM, and u will 

be a member of 0M+ dominating W. 

LEMMA IV.1.1 

Suppose that (a,b) is in SxS, ("t̂ -̂Q i-s a chain from a to b , f 

i s in QC, and p is in Y. Then if k is an integer in [l,n] it follows 

that 

n - ^ W V i ' V " K[f(t.)-f(t. n)] ] [P ] = ? - f ( b ) + f ( t

k - i > 

+ ^ k C W ( t : - i ' t : ) - I ] C n i = i + i C W ( t i - i ' t i ) " K [ f ( t . ) - f ( t . 

1 1-1 

PROOF: With the suppositions of the lemma, let d̂  = p, and if k is an 

integer in [0,n-l], let 
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Now 

dk = n j = k + i [ w ( Y i > V - K[f(t.)-f(t. n ) ] ] [ p ] 

whenever k is an integer in [0,n-l]. Note that 

d = W(t n ,t )[p] + f(t n ) - f(t ) n-1 n-1 n r n-1 n 

= p-f(b) + f(t ) + [W(t _,t )-I][d ] n-1 n-1 n n 

Suppose that k is an integer in [l,n-l], and 

d = p - f(b) + f(t, ) + I1} ,^nCW(t. I5t.)-I][d.] k k ^]=k+l ]-l5 ] 3 

Now 

dk-l = f ( t k - l } " f ( V + W ( tk-l' tk ) [ dk ] 

= dk + f ( t k - l } " f ( V + [ W ( t k - l ' t k ) - I ] [ d k ] 

= p - f(b) + f(t, n) + ln ,[W(t. n 9t.)-I][d.]. 
r k-1 3=k ]-l 3 3 

Thus this last equation holds whenever k is an integer in [l,n], and 

the proof is complete. 
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LEMMA IV.1.2 

Let (a,b) be in SxS, let t be a chain from a to b, and let p be 

in Y. Let each of f and g be in QC, and let 3 on S be given by 3(s) = 

N1[f(b)-g(b)] + N1[f(s)-g(s)-f(b)+g(b)]. Then 

N 1 [n t[W-K d f][p] - n t[W -K ][p]] < 3(a) + (R)^td[p(a, ) ] 3 . 

PROOF: Let n be the largest member of the domain of t. Let n = 3(b), 

and if k is an integer in [0,n-l] let n, = y(t, ,t )n + 3(t, ) -
k k k+1 k+1 k 

3(t. _ ) . Now 
k+1 

n, n = 3(t, .) + ln ,[y(t. n,t.) - Un. k-1 k-1 Lj=k 3-1' j 3 

whenever k is an integer in [l,n]. Since N^[f(tn)-g(t^)] = 3(t ), 

Lemma IV.1.1 and an easy induction argument tell us that 

N 1 [ n t [ w - K d f ] [ P ] - n t [ w - K d g ] [ P ] ] < n Q 

= y(a,b)3(b) - (L)£ p(a, )d3 

= 3(a) + (R)^d[y(a, ) ] 3 . 

This completes the proof. 
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LEMMA IV.1.3 
oo 

Let (a,b) be in SxS, and let p be in Y. Let (f ) n be a 
n n=l 

sequence into QC, and let g in QC be such that 

lim [sup{N.[f (t)-g(t)]: t is between a and b}] = 0. 

Suppose that [W-K ][p] exists whenever n is a positive integer, 
n 

Then each of 

lim ( n b[W-K_ ][p]) and Tb[W-K ][p] n-*30 a df r a dg r 

n 

exists, and they are equal. 

PROOF: The existence of lim ( IIb[W-KJJ_ ][p]) is clear from Lemma n-*30 a df r 

n 
IV.1.2. Let q be this limit. Let e be a positive number. Find a 

positive integer n such that if m and n are integers and n>n and m>n , r o o o 
then 

N l [ q " a n b [ W _ K d f ] [ p ] ] < £ / 4 

n 
and 

N 1 [ n t[W-K d f ][p] - n t[W-K d f ][p]] < e/4 
n m 

for any chain t from a to b (Lemma IV.1.2 tells us we can do this). 

Let n be a positive integer, n > n
0 « Find a chain s from a to b such 

that if t refines s then 
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N l [ a n b [ w - K d f ] [ p ] - n t [ w - K ] [ P ] ] < e a . 
n n 

Let t be a refinement of s, and let m be an integer, m>n , such that 
o 

N 1 [ n t [ w - K d f ] [ P ] - n t [ w - K d ] [ P ] ] < E A . 

m 
Now 

Nx[q - n t [ W - K d g ] [ p ] ] < N l[q - ^ [ W - K ^ ] [ p ] ] 
n 

+ V a n b [ w - K d f
 ] C p ] " n t C w _ K d f ] C p ] 

n n 

+ N 1 E n t [ w - K d f ] [ P ] - n t [ w - K d f ][p]] 
n m 

+ V n t [ W _ K d f ] C p ] " nt C W~ Kd ] C p ] ] 

m ^ 

Thus 

Nx[q - n t[W-K d ][p]] < e 

whenever t refines s, so 

q = a n b [ w - K d g ] [ P ] , 

and the proof is complete. 
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DEFINITION IV.1.1: A member f of QC shall be called a step function 
OO 

only in case there is a nondecreasing unbounded sequence (t, ), ^ into S 
k k = 0 

OO OO such that t^ = 0 and two sequences (p. ). ^ and (q, ), , into Y such that 0 k̂ k=0 nk k=l 
if k is a positive integer then f(t ) = p and f(s) = q. whenever 

K — 1 K — 1 K 
s is in S and t. n < s < t, . 

k-1 k 
LEMMA IV.1.4 

Let (a,b) be in SxS, let p be in Y, and let f be a step function 

in QC. Then 

exists. 

/[W-K d f][p] 

INDICATION OF PROOF: The lemma is clear from the following two obser­

vations : 

(i) If (c,d) is in SxS, q is in Y, and f(t) = q whenever t is 

between c and d, then nd[W-K ][p] = W(c,d)[p], 
c dr 

(ii) If c is in S, then 

c + n ° [W-K ][p] = W(c+,c)[W(c,c-)[p] - f(c-) + f(c)] - f(c) + f(c+). 

Since it Is well known that each member of QC can be written as 

the locally uniform limit of step functions, Lemmas IV.1.3 and IV.1.4 

now make the following theorem clear. 
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THEOREM I V . 1 . 1 

LET ( A , B ) BE I N SxS, LET P be in Y, and let f be in QC. Then 

/[W-K d f][p] 

E X I S T S . 

SECTION I V . 2 : Solving Forced Equations 

THROUGHOUT SECTION I V . 2 , V will be a member of OA, W = E[V], a 

WILL B E A MEMBER OF 0 A + DOMINATING V, and Y = E +[a]. Note that this 

IMPLIES THAT Y DOMINATES W. 

LEMMA I V . 2 . 1 

LET A BE in S , AND LET EACH of F, g, and h be a quasicontinuous 

FUNCTION FROM S TO S . SUPPOSE that 

a 
H ( T ) = F(t) + (R) / ah 

t 

AND 

a 
G ( T ) < F ( T ) + (R) / ag 

t 

WHENEVER T I S I N S . THEN 

G ( T ) < h ( T ) 

WHENEVER T I S I N S. 
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PROOF: Let P be a sequence such that P Q = g and 

a P (t) - f(t) + (R) / aP . n J n-1 

whenever n is a positive integer and t is in S. Now g(t) < P (t) when-
n 

ever t is in S and n is a positive integer. But according to MacNerney 

[18], lim P (t) = h(t) whenever t is in S, so the proof is complete. n-*» n ^ 

REMARK IV.2.1: The iterative technique used in the proof of Lemma 

IV.2.1 is similar to that developed by Herod in [9]. 

LEMMA IV.2.2 
OO 00 

Let a be in S. Let (f ) _ and (h ) . be sequences into QC 
n n=0 n n=0 H 

such that each of (i) and (ii) is true. 
a (i) h (t) = f (t) + (R) / V[h ] whenever t is in S and n is a n n ^ n 

nonnegative integer. 

(ii) lim f (t) = f^(t) whenever t is in S, the convergence n-*30 n 0 & 

being uniform on bounded subsets of S. 

Then lim h (t) = h^(t) whenever t is in S, the convergence being 

uniform on bounded subsets of S. 

PROOF: Let b and z be positive numbers, b>a, and let c be a number 

such that c>u(b,0). Let n be a positive integer such that Nn[f (t) -
o r to I n 

f (t)] < z/c whenever t is in [0,b] and m and n are integers such that m 
n>n and m>n . Let m and n be integers such that n>n and m>n , and o o o o 5 

let P from S to S be such that P(t) = e/c if 0<t<b and P(t) = 



32 

N,[f (t) - f (t)] if t>b. Let Q be that quasicontinuous function from 1 n m 
S to S such that 

Q(t) = P(t) + (R) / aQ 
t 

whenever t is in S. Now 

N [h (t) - h (t)] < P(t) + (R) / aN_[h -h ] I n m J 1 n m 

whenever t is in S, so according to Lemma IV.1.1, 

N [h (t) - h (t)] < Q(t) I n m 

whenever t is in S. But Q(t) = )j(t,a)(e/c) < z whenever 0<t<b, so it is 

now clear that there is a member U of QC such that lim h (t) = U(t) 
n-*° n 

whenever t is in S, the convergence being uniform on bounded subsets of 
a a 

S. Now lim (R) / V[h ] = (R) / V[U] whenever t is in S, so U(t) = n-*° J n J 

a t t 
fQ(t) + (R) / V[U] whenever t is in S. Now Theorem II.2.2 tells us 

t 

U = 11q , and the proof is complete. 

LEMMA IV.2.3 
Let f be a step function in QC, and let (a,p) be in S*Y. Let h 

be in QC. Then (i) and (ii) are equivalent. 
a 

(i) h(t) = p - f(a) + f(t) + (R) / V[h] whenever t is in S. 
t 

(ii) h(t) = Ha[W-K £][p] whenever t is in S. t dr 
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REMARK IV.2.2: Lemma IV.2.2 follows from Theorem II.2.1 and a straight­

forward computation. 

THEOREM IV.2.1 

Let f be in QC. There is a function M on SxS , each value of 

which is a function from Y to Y, such that each of (i), (ii), (iii), 

and (iv) is true. 

(i) M(a,b)[p] = _nb[W-Kdf][p] whenever (a,b,p) is in SxSxY. 

(ii) M(a,b)[M(b,c)[p]] = M(a,c)[p] whenever (a,b,c,p) is in 

SxSxSxy and b is between a and c. 
a 

(iii) M(b,a)[p] = p - f(a) + f(b) + (R) / V[m( ,a)[p]] whenever 
b 

(a,b,p) is in SxSxY. 

(iv) N1[[M(a,b)-I][p] - [M(a,b)-I][q]] 

< [y(a,b) - l]N1[p-q] 

whenever (a,b,p,q) is in SxSxYxY. 

PROOF: Define M according to (i). Now (ii) follows immediately, and 

(iii) follows from Lemmas IV.2.2 and IV.2.3. Thus it remains only to 

show (iv). Let (a,p,q) be in SxYxY, and let h = M( ,a)[p] and g = 

M( ,a)[q]. Now 

h(t) = p + f(t) - f(a) + (R) / V[h] 
t 

and 

;(t) = q + f(t) - f(a) + (R) / V[g] 
t 



whenever t is in S. Thus, if t is in S, 

N [h(t)-g(t)] < N [p-q] + (R) / aN [h-g] 
t 

Since 

y(t,a) = 1 + (R) / ay( ,a) 
t 

whenever t is in S, this says 

N1[h(t)-g(t)] < N1[p-q]y(t,a) 

whenever t is in S. Now, if t is in S, 

so 

a a 
[h(t)-p] - [g(t)-q] = (R) / V[h] - (R) / V[g], 

t t 

N1[[h(t)-p] - [g(t)-q]] < (R) | aN1[h-g] 

a 
< N1[p-q](R) / ay( ,a 

t 

= N [p-q][y(t9a) - 1] 

and the proof is complete. 
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COROLLARY IV.2.1 

Suppose that each value of V is linear and f is in QC. Let a 

be in S, and let h be in QC. Then (i) and (ii) are equivalent. 
a 

(i) h(t) = f(t) + (R) / V[h] whenever t is in S. 
t a 

(ii) h(t) = W(t,a)[f(a)] - (L) / W(t, )[df] whenever t is in S. 
t 

REMARK IV.2.3: This corollary can be viewed as a companion result to 

Theorem 5.2 of [17]. An easy integration-by-parts shows that the 

formula in (ii) can also be written 

a 
h(t) - f(t) + (R) / (d[W(t, )])[f]. 

t 

PROOF: Note that if each value of V is linear, then each value of W is 

linear. To prove the corollary it suffices to show that if f is in QC 

and (a,b,p) is in SxS*Y then 

, b 
a n D[W-K d f][p] = W(a,b)[p] - (L) / W(a, )[df]. 

a 

Let (a,b,p) be in SxSxY, and let (t, ).n „ be a chain from a to b. Let ^ k k=0 
(d, ) n be as in the proof of Lemma IV. 1.1. Suppose that k is an k k=0 
integer in [l,n-l], and 

d, = W(t, ,b)[p] - I1! . _W(t, ,t. _)[f(t.)-f(t. ,)]. k k ^ L3=k+1 k 3-I 3 3-1 

Now 

d x - i = H ( V r t k ) [ d k ] - [ f ( V - f ( V i ) ] 
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= W ( V l , b ) [ P ] - ^ ( V ^ V ^ H t . J - f f t . ^ ) ] 

- " ( t k - 1 ' t k - l ) [ f ( t k ) - f ( t k - l , ] 

Hence this last equation holds whenever k is an integer in [l,n], and 

the corollary follows. 

SECTION IV.3: A Coalescence Problem 

In Section IV.3, V will be a member of OAI, and W = E[V]. We 

will take A to be a member of OMR such that N2[W(a,b)_1] < A(a,b) 

whenever (a,b) is in SxS. (This is clearly possible by Theorem II.3.2). 

THEOREM IV.3.1 

Let f be in QC, and let (a,b,p,q) be in SxSxyxY. Then 

N 1Cp-q] < A(a,b)N 1[ an b[W-K d f][p] - ̂ [ W - K ^ ][q]]. 

PROOF: Let (tn ) n „ be a chain from a to b. If k is an integer in k k=0 
[0,n], let 

dk = n W i [ W ( V I ' V - K[f(t.)-f(t. n ^ -

and 

\ = N?=K +I [ W ( TJ-I'V - K[F(T.)-F(T. N ^ -
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Now, if k is an integer in [0,n-l], 

\ - W ( V W [ < W + f ( V - f ( W 

and 

ek = ^ V W K + i 3 + f ( t k ) " " V i * ' 

so 

d k + i = " v v / H + F ( W - f ( t k ) ] 

and 

e

k + i = w ( v w - 1 [ e k + f ( w - f ( v ] -

Thus 

N i [ d k + i - e

k + i ] s ^ V W W ^ 

whenever k is an integer in [0,n-l]. Consequently, 

N1[p-q] = N 1[d n-e n] 

< A(a,b)N1[d0-eQ] 

= A(a,b)N1[nt[W-Kd f][p] - nt[W-Kdf][q]]. 

Since this last inequality holds for each chain t from a to b, the 

proof is complete. 
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COROLLARY IV.3.1 

Let (a,p,q) be in SxYxY, and let each of f, g, and h be in QC, 

Suppose that whenever t is in S, then 

a 
h(t) = p + f(t) + (R) / V[h] 

t 
and 

a 
;(t) - q + f(t) + (R) / V[g]. 

t 

Then, if there exists t in S such that h(t) = g(t), it follows that 

P = q. 
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CHAPTER V 

N 3 [ n k - - A B k " C l V a n d V C l V k " C l V 

exceeds (11^^) ̂ [ cR (Il^^b .) ] . 

INDICATION OF PROOF: We shall indicate how to prove 

» 3 » L i ! A - n " = i V £ ( n k = i \ ) ^ i [ c k ( n j = k + i b

j

) ] 

Note that 

N 3 [ C l V k - C l V 

BOUNDS FOR SOLUTIONS OF PERTURBED EQUATIONS 

SECTION V.l: Integrator Perturbations 

Our results for integrator perturbations will largely follow 

from the following lemma. The first inequality in the conclusion of 

the lemma was established in Lemma 5 of [13]. 

LEMMA V.l.l 

Let (A )^_ and (B be sequences into H. Let (a , 
K k —1 K k —1 K k —1 

(b, , and (c be real-valued sequences such that if k is an 
K K — 1 K K — 1 

integer in [l,n], then N ̂  [ A^ ] < a R, ^ 3^\^ ^ \ , and N 3[B k-I] < c . 

Then neither of 
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b, a. - A n : 1 k=2 k k 
.n B, A, + An n. 1 k = 2 k k 

.n b. a - a, n: 

< N [B - I ] N [A ]n. 2 [ A 1 ] n ^ 2 N 3 [ A k ] N 3 [ B k ] + N 2 [ A l ] N 3 [ n ^ 2 B k A k - n 

< ( nk=l\ ) cl ( I ,k=2 bk ) + a N [II r3 L J ik=2i ak 
n B, A, - n. 

The remainder of the proof now follows from an obvious induction 

argument. 

We now state without proof our theorem on integrator perturba­

tions. The proof will be obvious from Lemma V.l.l. 

THEOREM V.l.l 

Let each of W^ and W2 be in OM, let U be in OA, and suppose 

W = E[U]. Suppose A and A in OMR are given by A (a,b) = n b N [W ] 
2 -L 2 -L a 2 _L 
and A_(a,b) = n bN 0[W_]. Let B be a member of 0A + such that 2 a 3 2 

N3[U(a,b)] < 3(a,b) whenever (a,b) is in SxS. Let (a,b) be in SxS. 

Then neither of N [W ®W (a,b) - W (a,b)] and N [W ®W (a,b) - W (a,b)] 
o _L 2 _L o 2 A. _L 

rb exceeds A (a,b)•(R) / BA ( ,b). 

REMARK V.l.l: In Theorem 11 of [ 1 3 ] , this author showed that if V , 

V , W , W , and M are as in Remark III.2.1, then N [M(a,b) - W (a,b)] < 
2 _L 2 o _L 

b 
A (a,b)»(R) / 3A9( ,b) whenever (a,b) is in SxS. Note that Theorem 
V.l.l, together with the first equivalence of Theorem III.1.3, includes 

this result. It is also worthy of note that there is an obvious result 

to be obtained by the conjunction of Theorems III.2.3 and V.l.l. 

a 

a 
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SECTION V.2: Forcing Function Perturbations 

THEOREM V.2.1 

Let (V,W) be in E. Let A and A 2 in OMR be given by A (asb) = 

n bN n[W] and A_(a.b) = n bN_[W]. Let each of f, and f n be in BV. Let 
a 2 2 a d 1 2 
a be in S. Let h^ and h 2 be in BV, and suppose 

a 
h.(t) - f (t) + (R) / V[h.] 

i i ^ I 

whenever t is in S and i=l or i = 2. Then, if t is in S, 

a 
N1[h1(t)] < A 2(t , a)N 1 [ f l ( a ) ] + (L) / A2(t, )N 1 C d f 1 ] 

and 

N1[h1(t) - h2(t)] < A1(t,a)N1[f1(a) - f2(a)] 

a 
+ (L) / A1(t, )N1[d(f1-f2)]. 

REMARK V.2.1: Our proof of Theorem V.2.1 will involve an application 

of Theorem IV.2.1. The first inequality of the conclusion was known 

prior to the discovery of Theorem IV.2.1 (see [14, Theorem A]). It is 

clear from Theorem II.4.2 that, if y in OAR is given by y(a,b) = 
b̂ y (Ng[I+V] - 1), then the function g, given by 

a 
;(t) - A2(t,a)N1[f1(a)] + (L) / A 2(t s ^ [ d f ^ , 

t 

satisfies 
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;(t) = N ^ f ^ a ) ] + t);aN1[df 1J + (R) / yg 

whenever t is in S. This author conjectures that analogous results 

hold for A , but these analogous results have not yet been shown. 

INDICATION OF PROOF OF THEOREM V.2.1: We shall indicate the second 

inequality of the conclusion, and it will then be evident how to demon­

strate the first. Let t be in S, and let (s. ) n
n ^ be a chain from t to 

k k=0 
a. Now 

N n [ i r ? .[WCs. s,) - K r^ , . , . - J E f ^ a ) ] 1 k=l k-1 k [ f (s, )-f.. (s. ) J 1 l k 1 k-1 

2 k I k-1 

< A 1(s 0,s 0)N 1[[f 1(s 1)-f 2(s 1)] - [f1(s0)-f2(sQ)]] 

1 k 1 k-1 

An induction argument similar to those in the proofs of Lemma IV.1.1 

and Corollary IV.2.1 now makes it clear that 
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- " k W ^ k - l ' V - K[f 9(s v)-f 9(s v 1 ) ] ] t f 2 ( a ) : 1 ] 

2 k l k-1 
< A1(t,a)N1[f1(a)-f2(a)] + I ^ ^ C t > s

k_l ) Nl [ [ fl ( s k ) _ f2 ( s k } ] 

" [ f l ( V l ) - f 2 ( s k - l , ] ] ' 

and, from this, the theorem follows. 
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