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1
CHAFTER I
INTRODUCTION
In 1954, H. 5. Wall [31] investigated equaticns of the form
0]
h(t) = p + [ (dF)h (LE)
t

where I' is a continucus square-matrix-valued function on [¢,=) which is
of bounded variation on each bounded interval of [C,»}, p is a member of
the matrix ring which contains the values of P, and the integral is the
ordinary Riemann-Stieltjes integral. J. S. MacNerney [15,16] took this
development further by allowing the functicns to have their values in a
complete normed ring with identity. A nonlinear analogy was presented
by J. W. Neuberger [23] who studied

9]

h(t) = p + [ arlh] (NLE)

t
where each value of F is a nonlinear function from a Banach space into
itself, and ceontinuity conditions are imposed on T so as to make solu-
tions continucus. Discentinuities were introduced in the linear equa-
tion (LE) by MacNerney [17] who simply required F to be of bounded vari-
ation on each bounded interval, and used the Cauchy right integral. In
[19] this work was extended to zllow for discontinuities in the solutions

of the nonlinear equation (NLE). The equation (NLE), taken in the



context of [19], shall be referred to as the nonlinear Cauchy-Stielties
integral equation, or, for brevity, the C-5 equatlomn.

The C-5 equation was extended to a more general nonlinear integral

operation by J. V. Herod in (7], Also, Herod [8,10] studied the problem
of coalescence of solutions of the C-5 equaticon, and R. H, Martin, Jr.
[20,21] obtained numerical bounds for solutions of the C-S equation.

In this work we shall continue the analysis of the nonlinear
Cauchy-Stieltjes integral equation. In Chapter 111, algebraic operations
will be described with respect to which the integrator class and the
solution class become isomorphic algebraic semigrecups. Under fairly
lenient hypotheses, the algebraic operations will show how to solve per-
turbed equations in terms of the sclutions of unperturbed equaticns.
There will be introduced in Chapter IV a product integral with the aid
of which we shall derive a variation-of-parameters formula for nonlinear
systems and shzll solve a coalescence problem. We shall, in Chapter V,
extend the work of Martin on bounds. Bounds will be cobtained for solu-
tions of equations subject to Integrator perturbatlons and to forecing
function perturbations.

To achieve a measure of self-containment, we have included, in
Chapter II, many known results due 1o MacNerney, Herod, and Martin, but
we have not included the proofs. In few, if any, cases will these proofs
be essential to the present discussion, and each cited result is fully
referenced. In the last section of Chapter II there is a discussion
designed to point up the relation between ocur subject and more widely

studied problems of differential equations with interface conditions.



CHAPTER II

THE GENERAL THEORY

SCCTION IT1.1: Definitions
and the Fundamental Correspondence

Let S be the set of all nonnegative real numbers, and let Y be a
Banach space with norm Nl (in none of what follows will it matter
whether Y is a Banach space over the real field or a Banach space over
the complex field). Let H be the set to which A belongs only in case A
iz a function from Y to Y, A[O] = 0, and there is a number b such that
Nl[A[p] - A[ql] < le[pﬁq] whenever (p,q) is in YxY. 1f A is in H, let
NQEA] be the least number b such that Nl[A[p] - Alq]] < le[p~q] wher-
ever (p,q) Is in YxY, and let N3[A] be the least number b such that
Nl[A[p]] < le[p] whenever p is in Y. Note that if A is in H and is
linear, then NQEA] = NSEA]' I1f each of A and B 1s In H, then AB will
denote that member C of H having the property that if p is in Y then
Clpl = aAlBLpl].

If h is a function from $ to a metric space, we define h{0-) =

h(0}, h(o+) = limt+o F(t), and if t»>0, then n{t-)} and h{(t+} will denote

the usual left—an§>3ight—hand limits, respectively. Let QC be the set
to which f belongs only in case f is a function frem & to Y, and f is
guasicontinucus, i.e., each of f(t-) and f(t+) exists whenever t is in
S. Let BV be the set to which f belongs only in case f is a function

from S to Y and f has bounded variation on each bounded interval of S.

Note that BV 1s a subset of QC.



If (a,b) is in S=5, t will be called a c¢hain from a to b enly in

n . ]
case t (alsc denoted (tk)k=0) 1s a monotone saguence into S and tO = a

and Tn = b, If each of s and t is & chain frcr. 4 to b, s will be called
a refinement of t only in case t is a subsequence of s. If h is a func-
tion from SxS to H, and (a,b) is in S$x8, and v is in Y, then by ath[p]
and axbh[p} we mean the limits, iIn the sense of successive refine-

(

ments of chains t, of mermbers of Y of the forms II Jp]l (where

n
k=1 ety

bt
Moy

respectively. If h is a real-valued function on Sx3, and (a,b) is in

= - . @ n
h( 1) = Rttt )h(t e ) eh(t ,t ) and } o n(t )pl,

T 1 k-1°"k

b
Sx5, we define ath and az h analogously. Tf (x,y,z) is in SxSxS, we
will refer to y as being between x and z only in case |x-y| + |y-z| =

(%2
Let 0A" be the set to which a belengs only in case o is a func-

tion from SxS to S and alx,y) + aly,z) = a(x,z) whenever {(x,v,2) 1z in

Sx5x5 and y is between x and z. Let oM™ be the set to which u belongs

only in case u is a function from SxS5 to [1,*) and u(x,yiu(y,z) = p(x,z)

whenever (x,y,z) is in Sx8x5 and y is between x and z. Let 0A be the set

tc which V belongs only in case V is a functlion from S$xS to H such that
(0A1) V(x,y) + V{y,z) = V(x,z) whenever (x,y,z) is Sx8x§

and y is between x and =z, and

(0A2) +there is o in oa’ such that NQ[V(a,b)] < ala,b)

whenever (a,b) is in 5xS.

1f o and V are related as in (0A2), o will be said to dominate V. Let
OM be the set to which W belongs only in case W is a function frem $xS

to H such that



(OM1) W(x,y)W(y,z) = W(x,z) whenever («,y,z) is in $xSxS
and v is between = and z, and
(OM2) there is u in om” sueh that NQ[W(a,b) - I1 < u(a,b) -1
whenever (a,b) is In 5x5, where I in H is given by
Ilpl = p.
If ¢ and W are related as in (0M2), ¢ will be said to dominate W.
The following three theorems are due to MacNerney, and the latter

two delineate what Maclerney calls the fundamental correspondences

between OA+ and OM+ and between 0A and OM.

THEOREM II.1.1 ([17, Lemmas 2.1 and 2.2], [1%, Theorem 1.1])

. + . + . . .
Let o be in CA', p be in OM , V be in OA, W be in OM, (a,b) be in
. b b b
5x8, and p be in Y. Then each of aH [1+a], az [p-11, aH [I+V1{p], and

aXbEW—I][p] exists.

THEOREM II.1.2 ([17, Theorem 2.2])

. . . . + + . ..
There is a bijection E  from 0OA onto OM+ such that if a is in
+ . . + . .. .
CA and p is in OM , then (i), (il1), and (iii) are equivalent.

(i) w = E[al.

H

(ii) u(a,b) aHb[l+u] whenever (a,b) is in Sx&.

(iii) afa,b) aib[u~l] whenever (a,b) is in SxS.

THEOREM II1.1.3 ([1%3, Theovem 1.1])

There is a bijection E from OA onto OM such that if V is In CA
and W is in OM, then (i), (ii), (iii), and (iv) are equivalent.

(1) W = ELV].



It

(ii) wWla,b)ipl anb[I+V][p] whenever (a,b,p) 1s in S=8xY.

(iiiy v(a,b)[p] aED[W—I][p] whenever (a,b,p) Is in SxSxY,
{iv) There is « member (w,u} of g* such that N3[W(a,b)~I—V(a,b)]§

u{a,b) - 1 - a(a,b) whenever {(a,b) is in 5xS.

SECTION II.2: Integral Equations

If h is a function from 5x5 to Y, and (a,b) is in Sx§, we define

b, . .. A .
aE h in the obvicous way. If V is in CQA, g 1s In QC, and (a,b) is in
b
SxS, then we define (R) f Vgl to be aibh, where h is given by h(s,t) =

d
V(s,t)[eglt)]. This integration process yields what is called the right

Cauchy-Stieltjes integral. The fellowing theorem is due to MacNerney.

THEOREM II.2.1 ([19, Theorem 21)

Let Vbe in OA with W = E[V], let (a,p) be in SxY, and let h be

in QC. Then (i) and (ii) are equivalent.
a
(i) h(t) = p + (R) f V[h] whenever t is in S.
T

(ii) h(t) = W(t,a)[p] whenever t is in S.

Furthermore, if (1i) holds, then h 1s in BV,

THECREM IT,2,2

Let V be in 0A, let a be in S, and let £ be in QC. Then there

ig exactly cne member h of QC such that

a
h(t) = £(t) + (R) [ V[h]
T

whenever t is in 8. TFTurthermore, h is in BV cnly In case f Is In BV,



REMARK TI.2.1: Although Theoren Z1.2.2 acpears ncl to have been stated
in this form by MaclNerney, it follows immediately from an iterative

scheme analogous to ihat cited in [18].

SECTZON I1.3: C(Coalescence of Solutions

If vV is in CA, p Is in Y, (a,b) is in $x3, and & # b, then
Theorem 11.2.1 does not make it clear whether there exists a member h

of QC such that hi(b) = p and such that

a
h(t) = h(a) + (R) [ V[h]
t
whenever t is in 5. When does there exist such an h, when is h unique,
and when does h(a) depend, in a Lipschitz-continuous fashion, on p?
Since h(b) = W(b,a)[h(a)] (where W = E[V]), it is clear that the follow-

ing theorem of Herod deals with these questions.

THEOREM II.3.1 ([10], see alsc [8&])

If (V,W) is in E, then (i) and (ii) are eguivalent.

(i) Vhenever a is in S, each of I+V{a,a+), I+V(a,a-), I+V(a+,a),
and I+V{a-,a) has inverse iIn H.

(ii) Whenever (a,b) is in $x5, W(a,b) has inverse in H.

In fact, Herod has shown more. Let QAL be that subset of 0A to

which V belongs only in case V satisfies (i) of Theorem II.3.1.

THEOREM I11.3.2 ([10], see also [81)

There is a bijection G from OAI onto 0OAI such that if V is in

OAI, then each cof (i), (ii), (iii), and (iv) is true.



(i) alclvl] = v.
(ii} G[v](a,b) = -V(b,a) whenever (a,b) iz in 5x8 only in case
ZbN [V[I-V]-V] = 0 whenever (a,b) is in $xS.
a 3
(iii) Elelv]i(a,p)E[vI(b,a) = E[vI(b,a)E[G[V]I](a,b) = I whenever
(a,b) is in Sx8S.
(iv) Glvl(a,bilpl = - bEaV[I+V]-l[p] whenever (a,b,p) is in

SxSxY,

SLECTION TI.4: Bounds for Sclutions

Since Y Is a Banach space, the set of all real numbers can be
thought of as a subset of H. Let OAR and OMR denote the subsets of 0A
and OM, respectively, consisting cf real-valued functions., Martin has

proved the following two thecorems.

THEOREM II.4.1 ([21, Lemma 3.3, Theorem 3.1]1, see also [20])

Let V be in 0A, If (a,b) is 1in SxS, then aib(NB[I+V] - 1)
exists, and 1f y 1is given on 5xS by y(a,b) = aib(N3[I+V] - 1), then ¥y

is 1n DAR.

THEOREM II.4.2 ([21, Theorem 3.1], see also [20])

Let V be in 0A, and let v in OAR be given by vy(a,b} =
JPOULT4v] - 1)L Ler W = E[V], and let A = E[y]. Then N,[W(a,b)] <
x(a,b) whenever (a,b) is in 3x35, and A is the least menber of OMR for

. b .-
which this is so, i.e., Ala,b) = ! Ns[w] whenever (a,b) is in S5xS,



SoCTION IT1.5: Differential
Equations with Interface Conditlons

We shall describe a basic interface problem and show how it can
be sclved with the theory of nonlinear Cauchy-Stieltjes Integral equa-

tions. Let A be an HQ—continuouS functicn from S to H, and let K be a

countable subset of S such that K doces not contain 0. Let each of B and
C be a function from K to H such that if M is a bounded subset of K,

then each of Et N KQ[B(t) - 1] and Et inH N [e(t) - 1T is finite,

n M

Let q be in Y, The objective of this interface problem Is to find a
member h of QC such that if t is in K, then h{t} = B{(t)[h{t-)] and
hi{t+) = c{t}[h(t}], and such that If N is an open connected set in S
which does not intersect K then h is continuously differentiable on N
and h'(t) = A(t)[h(t)] whenever t is in N, and such that h(0) = q.
Let U, and U2 be members of OA such that if ¢ € a < b and p is

1

in Y then Ul(b,a)[p] ) [B(t)-11lp] and U, (b,a}p] =

a<t<b

Za5t<b[c(t)_lj[p]' Now if t is in K then Ul(t,t—) = B(t) and Uz(t+,t) =

C{t). Let V be a member of OA such that if 0 € a < b and p is in Y,

b
then V(b,a)[pl = [ A(s)[plds + U, (b,a)p] + Uy(b,a)lpl. Let W = E[V],
and let h be givei by h{t} = W(t,0}g]). Now h fulfills the requirements
of cur interface problem.

The questicn of uniqueness of solutlons merits some discussion
here. The integral equation we constructed has, of course, a unique
solution, but the lack of uniqueness of interface solutions arises
since it need not be the case that every solution to the interface prob-

lem alzo solves our integral equation. In particular, suppose (a,b) is

an open interval in the closure of K, and D is an Nz—continuous function
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from S to H such that D(t) = 0 whenever t is ocutside (a,b). Then

E[Z]{ ,0}[p] alsc solves our interface problem, where Z In 0A 1s given

by

d d
Z2(d,e)lpl = [ a(s)[plds + [ D(s)[plds

C C

+ Ul(d,c)[p] + Ug(d,c)[p].

Several authors have studied differential interface systems, and
the connection with Cauchy-Stieltjes integral egquations has long been
recognized. In particular, we refer the reader to the works of M.
Frechet [5], T. H. Hildebrandt [11J], W. H. Ingram [12], G. B. Price
[2u4], W. T. Reid [25], W. C. Sangren [26], H. Scharf [27], and F. W.
Stallard [28,29]. Tor a more complete treatment of differential inter-
face systems, we refer to F. V. Atkinson [1, Chapter 11, Section 8] and

the references cited there.
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CHAPTER III

ALGEBRAIC S5TRUCTURE

SECTICN III.1: The @ Operation

LEMMA TIT.1.1

. . + . .
If each of o and B is in 0A , and (a,b) is in SxS, then azbu[l+6]
exists and is the greatest lower bound of the set to which r belongs

only in case there is a chain (tk)E_ from a to b such that

0
r= e t, )]

tk_l,tk)[l+8(tk_l, K

PROOI: Let (a,b,c) be in $xSxS with b between a and c¢. Now ala,c) 2

ala,b) and ala,c) 2 alb,c), so

a{a,c)B(a,b) + ala,c)p(b,c)

ala,c)pla,e)

v

ala,b)pla,b) + alb,c)r(b,c),

and

ala,c)f14R(a,ec)] 2 wla,b}[1+B(a,b}] + olb,c)[1+8(b,c)}].

It is now clear that if (a,b) is in SxS, each of s and t is a chain from

a to b, and s refines t, then

ala,b) < zsa[l+B] < zta[l+B].

This completes the proof.



1z

THEOREM 1IT7.1.1

If each of Vl and V2 iz on 0A, and (a,b,p) is in SxSxY, then

b ! . . . .
aE Vl[I+V2]Lp] exists. If, for i=1 or i=2, o, dominates Vi, then
. b -
N[V, (a,b)[I+V,(a,0)] - aZ v v, 7]
< a (a,b)[14a,(a,b)] - JPa [1+a,]
- l > 2 3 a l 2 3

whenever (a,b) is in 5xS. [lurthermore, if U is given by U(a,b)[p] =

b . .
az Vl[I+V2][p], then U is in OA.

PROOF: Let (a,b,c,p) be in SxSxSxY, with b between a and c. Now

Nl[Vl(a,CJ[I+V2(a,C)][p] - Vl(a,b)[I+V2(a,b)][p]

- Vl(b,c)[I+V2(b,c)][p]]

Nl[Vl(a,b)[I+V2(a,c)][p] - Vl(a,b)[I+V2(a,b)][p]
+ Vl(b,c)[I+V2(a,c)][p] - Vl(b,C)[I+V2(b,c)][p]]

Nl[p][ul(a,b)ng(b,C) + al(b,c)uz(ajb)]

A

Nl[p][al(a,c)[l+a2(a,0)] - al(a,b)[l+a2(a,b)]

- ul(b,c)[l+a2(b,c)]].

Consequently, if (a,b,p) is in S5x5xY, if each of s and t is a chaln from

a tob, and if s refines t, then
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Nl[ztvl[I+V2][p] - stl[1+v2][pJ]
< Nl[pjfztal[l+a2] - Esal[l+a2]].

. b . . .
It is now clear that az Vl[I+V2][p] exists and that the inequality of

the conclusion holds., Let (a,b,p,q) be in SxSx¥xY. Now

A

b . b b
Nl[aZ v, [I+v, llp] - az v [I+v,J0q]] = Nl[p-q]aE o [1+a,],

and the proof is complete.

DEFINITION ITII,1.1: 1If each of Vl and V2 is in 0OA, then Vl@V2 will be

that member U of OA given by
_ b
Ula,b)[p] = vV, (a,b)lp] + a} v LI+v, Ip .

If V is in OA, then V. will be that member of OA given by V (a,b) =
V(b,a).

Our next two theorems will be concerned with the 9 operation.
Cf particular importance here will be the discovery of necessary and
sufficient conditions for & to reduce to crdinary addition. Also of

interest is the fact that & turns out to be associlative.

THEOREM III.1.2

If each of Vl’ V2, and V3 is in OA, then Vl@(V2®V3) = (Vl@VQ)@VS’

and ccnsequently (CA,8) is a semigroup. (OAI,®) is a subgroup of (0A,8),
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each subgroup of (CA,®) is contained in OAI, and if V is in OAI, then

vec[v] = o[Vl ev = a.

ol
PROQF: If o is in OA+, and (a,b) is in SxS, let (L) f a{a, )a denote
a
aibh, where h is given by h(s,t) = a(a,s)al(s,t). It is known [17, Lemma

4,271 that if o is in oa¥ and (a,b) is in Sx5, then (L) af ala, )a exists
and is the least upper bound of the set tc which r belongs conly in case

n
f =
there is a chain (tk)k o from a to b such thst r Ek:la(a’tkﬁl)a&katkL

and the analogous statement holds for (R} f aa( ,b). Let each of Vi
a
. . + .
VQ, and V3 be in OA, and choose o in OA such that o dominates each of

Vis V,, and V Let (a,b,p) be in Sx5xY, and let (x,y) be in 5x5 such

5
that x is between & and b and y is between x and b. Let (sk)E:O be a

chain from % to y, and let j be an integer in [1,m]. Now

N LLT+v (x,y)+£k L N S _ l,sk)[I+V3(sk_l,Sk)]][p]

- [I+V2(Sj_l,sj)][I+V3(X,y)][p]]

N m
NoOT Vo (s, 158 )14V, (s, 1,8, ) 00p]

- V2(sj_l,sj)[I+V3(x,y)][p]]

m
M) Cpenr Yooy 13 TIHV (508, J0p]

k#7

+ V2(sj_l,sj)[I+V3(sj_l,sj)][P]

- V2(sj_l,sj)[I+V3(X,y)][p]]
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m
< Zk:la(sk_l,sk>[1+a(s

K

r-1°%) W, tpd

+ a(sj_l,sj)[a(x,sj_l) + a(sj,y)]Nl[p]
< Nl[p][u(X,Sj Y1+a(x, s )] + a(s ,y)[l+a(s ,vy) ]

+ al(x,y)[alx, s ) + u(s »¥ ) 1]

IA

[l+2a(x,y)]Nl[p][u(x,sj_l) + a(sj,y)].

The penultimate inequality in the above computation is a direct appli-

caticon of Lemma ITI.1.1. Now

NIV, Gy ) TV, (o) J0pT + V) (5,y JLL+V (x,y)

* EEleQ(Sk_l,sk)[I+V3(sk_l,sk)]][p] - V2(x,y)[I+V3(x,y)]{p]

- [z:=lvl(sk—l ’S]{)[I+V2(Sk_l’sk)]][I+V3(X:y) ][P]]

£ T ols. s N [ITHV (xoy) ¢ o V(s o8 III+V (s 58 )110p]

- [I+V (S 2153 YILT+V (x,y)][p]]

1A

[l+2a(x,y)]Nl[p]X?:l i-1°5% YWalx, s; ) + als, ,y)]

Now let each of (sk)k -5 and (tk)k .o be a chain from a to b, and suppose

(Sk)E=O refines (tk)k o Let J be a nondecreasing integer-valued

sequence on the domain of t such that J(0) = ¢, J{n)} = m, and S7(1) = T,

whenever k 1s in the domain of t. It now follcws that
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KOy [V m TRy 1t )00p] + vy (ry s e DLIwV (e oe)
+ zgiﬁgk_l)+lv2(si_l,si)[I+V3(si_l,si)]J[p]
- V(g Lt IV (e L1 ) 1]
- Ei£§2k-l)+lvl(si-l’Si)[I+V2(Si—l’Si)][I+V3(tk—l’tk)][p]]]

A

n
Ly _j[ir2a(t, 1,1 )N [p]

J(k
) )

i=J(k'l)+la(si—l’Si)[u(t

k_l,si_l)+a(si,tk)]

n +J(k)
My Lp a0 2atasb) 1y D5o g1y en P bpor oS5 J00s 08 p)

1A

+ u(si_l,si)u(si,tk)]

¥, [pll1+20(a,0) (L] ala, o + (R)]_aal ,b)

- (L)Zta(a, Ja - (R)Ztaa( b)) .
But since this is true for every refinement s of t, it follows that

Ny LJ LV LI+V ] + Vo [I+V,8V,] - (V,8V )[1+V 1]lp]]

b b
< N [plli+2a(a,b) IL(L) [ a(a, )a + (R) [ aa( ,B)
a a

- (W] aa, Ja + (R cal b1,

The associativity is now clear.

Now note that if A is in H, and I+A has inverse in H, then



17

CATTHAT™S 4 A[I-ATI+AT ST = —A[I+AT " + A[IT+AT-ATLT+AT T = 0.

Let V in OAI, let o dominate V, and let {a,b,p} be in SxSx¥. Let s be

a chain from a to b such that 1f t is a refinement of s, then
[I+V(tk~l’tk)1—l exists whenever k is a positive member of the domain of
t {(Herod [10] has shown that such s exists). Let (tk)k 5 be a refine-

ment of s. Now

N LER L T-vCe Lt 0TV, L1 )17 p]
t
+ve Lt 0 - T Mveneva eI
k-1
%k -1
= N [ V(e 0T - - lz VII+vI IRl - (g, ,t)

(1 - vt e [TVt 1)1 Ilp]1]

t

LN ) kV[I+V]-l[p]

n
< E Lalt
k=11 ey

Vit LT 17 eI,

LN _1°%
Thus it is clear (see [10, Theorem 1]) that V&G[v] = 0. Similarly,
GLv) 8y = 0, so (CAI,®) is a group.
Now let U and V be in Q0A, and let UBV = V8U = 0. Let t be in S.

Now [UsV](t,t+} = 0, sc

UCt,t+)[T+V(t,t+)] + V(t,t+) =
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UCt,t+)LI+v{t,t+) ] + [T+v(t,t+)] = T,
and

[I+UCt,t+) JLI+v(t,t+)] = T.

Also, since [V&UJ(t,t+) = 0, we have [I+v{t,t+)1[I+U(t,t+)] = I,
Similar computations for (t,t-), (t+,t}, and (t-,t) show that each of

U and V is in 0AT, and the proof of Theorem ITT7.2.1 is complete.

LEMMA III.1.2

. t+ .
Let each of ul and o, be in OA , and let B be a continuous member

of 0A". Suppose that B(a,b) < aibaluz whenever (a,b) is in $xS8, Then

g(a,b) = 0 whenever (a,b) is in 5x5,

PROOF: Let (a,b) be in SxS8 with asb. If u2(a,b) = 0, then B(a,b} = 0.
Suppose aQ(a,b) > 0., Let €»0. Find a chain t from a to b such that

(tk—l+’t =) < g/az(a,b) whenever k iz a positive member of the domain

9 K

of t. Let n be the largest member of the domain of t. Now

n

Bla,b) = 7 8(t .t = [l 8ttt )
n
$ le11 (BB % ) < e

An analecgous argument holds if a*b, and the proof is complete.

THEOREM TIT.1.3

Let each of V) and V, be in OA. Then (i) and (ii) are equivalent

and (iii) and (iv) are egquivalent.
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(i) v 8v, = vl+v2.

(i1) Vl[I+V2] - Vl = 0 at 211 "pairs" of the forms (t,t+),

{(t,t-), (t+,t), anad (t-,t) for t in 3.

(iii) Vl@v2 = V2@Vl.

. R - _ 1y md e 11
(iv) Vl v, Vl[I+V2] V2[I+Vl] at all "pairs" of the forms

(t,t+), (t,t=), (t+,t}, and (t-,t) for t in S.

PROOF: We shall indicate the first equivalence and leave the second to

the reader. From the definition of 8, it is clear that (i) implies
(ii). Now suppose (ii}. For izl or i=2, let a; dominate Vi. Let 8 in

o' be given by B{a,b) = asz3[Vl[I+V21 - Vl]. Wow, by (ii), B is con-

. D R
tinuous, and clearly B{a,b) < aE a0, whenever (a,b) 1s in SxS. Thus

2

B =0, (i) follows, and the proof 1s complete.

SECTION III.2: The ® Operaticon
and the Exponential Identity

THEOREM ITI.2.1

Let each of Vl and v, be in CA, with wl = E[Vl] and wQ = E[VQJ.

Let (a,b,p) be in Sx8xY¥. Then each of
PrI+v. I(1+v, 1lp]  and W W.[p]
a 1 2 a 12
exists, and they are equal. Furthermore, if M is given by
M(a,b)p] = W W [p)
? a 172 i

then M is in OM,
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+

PROOF: Let U = V16V2. Let o be a member of CA such that o dominates
+ .

each of U, V. , and V,, and let p = E fa]. Let (a,b,p) be in SxSxY, and

let t be a chain from a to b. Now

N [Ht[I+U][p] - Ht[I+Vl][I+V2][p]] = Nl[ﬂk 1[I+U(tk—l’tk)][p]

- [1+vl(tk 1> tk)][I+V (tk 1 k)][p]]

n k n
< Ek:lNl[Hj:l[I+U(tj_l,tj)]Hj=k+l[I+Vl(tj_l,tj)][I+V2C%{Ptjﬂ[p]

-1 n
. [I+U(tj_l,tj)]Hj:k[I+Vl(tj_l,tj)]

[T+7,(t;_-»t,) 10p]]

[l+a(t l’t »IN [[I+U(tk l,tk)]

1A

B

- [I+V (tk 19T )][I+V2(tk s tk)]]

n 2
R SLCIC R IO e Y

K
L v LI+, 1]

17

N, [plu(a,b) Ek LV (e ot IITHV, (e l,tk)J-tk_l

A

N CpduCa,n) (] al1ral - JPal1vall.

. b
It is now clear that aHb[I+Vl][I+V2][p] exists and equals aH [I+0](p]

whenever (a,b,p) is in Sx5xY,
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Since

I’]
l[ k= lwl( T k)w (t k)[p]

- [I+vl(tk 1o NIV, (et ) 1P 1]

n 2 8! - 2
< Nl[p][Hk:lu(tk_l,tk) - Hk:l[1+a(Lk_l,tk)] ]

(see [19, Lemma 1.2]), it is clear that
PLT+v I[T+v, 1p] = nbw ¥,[p]
a 1 2 2

whenever (a,b,p) is in SxSxY. Since these products describe E[U], it

follows that M is in OM, and the proof is complete,

DEFINITION I1I.2.1: 1If each of Wl and W2 is in OM, then wl@w2 is that

merber M of OM given by
M{a,b}pl = _-T"W.W_[p]
? a 12 )

There emerges from the proof of Theorem III.2.1 a fact which we

now record.

THEOREM III.2.2

If each of Vl and V2 is in OA, then
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E[VlSVQJ = E[Vl]®E[V2]-

REMARK III.2.1: It is now clear that (OM,8) is a semigroup and is

semigroup-isomorphic to (0A,®), with E serving as an isomorphism. In

Theorem 6 of [13], this author showed that if Vl and V2 are in CA, with

_ b _ .
W, = B[Vl] and W, = E[Vz}, and aE N3[Vl[I+V2]—Vlj = 0 whenever (a,b) is

1 2

in 5x8, then aHbW wz[p] exists whenever (a,b,p) is in Sx3xY, and, if M

b

1

is given by M(a,b)[p] = aﬂ W1W2[p], then M = E[Vl+V2]. Note that
Theorem III.2.2, together with the first equivalence of Theorem III.1.3,

includes this result.

THECREM II11,2.3

Let Vl be in 0A, and let v, be in OAL. Let U in OA be given by

Ula,b)lp] = PV, [1+v, 17 (p].
Then

E[Vl+V2] = E[U]@E[VQJ.

INDICATION OF PROOF: A line of argument similar to that used by Herod

in [10] can be used to show that the sums indicated in the definition
of U actually exist and to show that U is in 0A. Let (a,b,p) be in

ExSxY., Now

11

[£[UJeRLv,11(a,b)[p] = I BIUIELY,](p]

b
oI [I+U][I+V2][p]
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b -1
an [I+Vl[I+V2] ][I+V2][p]

il

anb[1+v +v,1(p]

1

B[Vl+V2](a,b)[P].

This completes the proof.

REMARK III.Z2.2: ©Note that by using Theorems III.3.,3, III.2.2, and

I11.2.3, we can compute, under two different sets of hypotheses,

E[Vl+V2] in terms of the ® operation.

REMARK ITII.2.3: The nction of continuously multiplying solutions for

generators in order to construct the solution for a sum of generators
has been used by Trotter [30] and Chernoff [2], [3] for the case of
autonomous linear differential equations with discontinuous linear
cperaters, by Helton [6] for the case of linear Stieltjes integral
equations, and by Mermin [22] for the case of autonomous nonlinear

differential equations with accretive operators.
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CHAPTER 1V

EVOLUTION SYSTEMS WITH QUASICONTINUOUS TRAJECTORIES

SECTION IV.1: A Product Integral

It should be noted that the definition of product integral re-
quires in no way that we restrict our attention to operators mapping
zerc onto zero. If g is in Y, then Kq, the g-constant function, will
be that function from Y to Y such that if p is in Y then Kq[p] = q.

For the remainder of Section IV.1l, W will be a member of OM, and w will

+ . .
be a member of OM dominating W.

LEMMA TV.1.1

Suppose that (a,b) is in SxS, (‘ck);:O is a chain from a to b, £
is in QC, and p is in Y. Then if k is an integer in [1l,n] it follows

that

n
M FWCE. sty )

; el = p - £(&) + £0£,

- X
[f(tj)—f(tj_ 1

1)

n I
+ Ijzk[W(tj_l,tj)—I][Hi:j+l[W(ti_l,ti) - K[f(ti)_f(ti_l)jj[p]].

PROOF: With the suppositions of the lemma, let dn = p, and if k is an

integer in [0 n-1], let

q = Wit Lty O0d 1 B0 - £ ).



Now

i = n’ LA(t, ts)

I S S N R A K[f(tj)—f(tj_l)lj[p]

whenever k is an integer in [0,n-1]. Note that

fa¥
I

= W(tn_l,tn)[p] + f(tn_l) - f(tn)

p- o) + £t )+ DWlt |t )-110d ]
Suppose that k is an integer in [1l,n-1], and

4 =p - f(b) + £(z) + Z?

§ EW(tj_l,tj)—I][dj].

=k+1

Now

oy
"

£y ) - £y + Wl Lt 004 ]

d,_+ f(tk_l) - f(tk) + [W(t

K tk)—I][dk]

k-1°

n
p - £b) + £r )+ ) DiCe, ) 2)-T0044).

Thus this last equation holds whenever k is an integer in [1,n], and

the proof is complete.

25
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LEMMA IV.,1.2

Let {a,b) be in Sx5, let t be a chain from a to b, and let p be
in Y. Let each of f and g be in QC, and let § on $ be given by B(s) =

. [E(b)-g(b)] + N [£(s)-g(s)-f(b)+g(b)]. Then
Ny O Bk Jipd - o Du-xy J0p31 < 8Ca) + (R)] dlu(a, )18,

PRCOF: Let n be the largest member cf the domain of t. Let N, = B{b),

and if k is an integer in [0,n-1] let n, = u(t ) + B(tk) -

k k’tk+l nk+l

B(tk+l). Now

= Bt

I
1 ) T Zj:k[u(tj ty) - Ln,

-1

whenever k is an integer in [1,n]. Since Nl[f(tn)—g(tn)] = B(tn),

Lemma IV.1l.1 and an easy induction argument tell us that

Ny [ [W-K, J0pT - T,0W-X, Jp11 < ng

p(a,b)B(b) - (L)Etu(a, )dB

Bla) + (R)] dlula, )Ie.

This completes the proof.
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LEMMA IV.1.3

Let (a,b) be in Sx3, and let p be in Y. Let (fn)z_l be a

sequence into QC, and let g in QC be such that
llmn#w[sup{Nl[fn(t)—g(t)]: t is between a and b}] = 0.

Suppese that aHb[W—K Jlp] exists whenever n is a positive integer.

daf
n
Then each of

. b - b
llmn+m(an [W—den][pl) and aﬂ [W—Kdg][p]

exists, and they are egqual.

. . b .
PROOF: The existence of llmn+w(an [W—den][p]) is clear from Lemma
IV.1.2. Let g be this limit. Let £ be a positive number. Find a

positive integer n such that if m and n are Iintegers and n>n and m>n_,

then

b
Nl[q - an [W—den][p]] < g/l

and
Nl[Ht[W—de 1pl - Ht[W—de 1pll < /b
n m
for any chain t from a to b (Lemma IV.l.2 tells us we can do this).

Let n be a positive integer, n>n_ . Find a chain s from a to b such

that if t refines s then
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b
Nl[an [W—den][p] - Ht[W—den][p]] < e/h.

Let t be a refinement of s, and let m be an integer, m>n_ such that

Nl[HT[W—dem][p] - Ht[W—Kdg][p]] < e/l

Now
b
N lq - Ht[w-Kdg][p]] < N lq - 1 [W—den][p]]
b
+ Nl[aH [W—de el - HtEW—de 1lpl
n n
+ Nl[nt[w-xdf 1pl - Ht[W—de 1lp1]
n im
+ Nl[Ht[W—dem][p] - Ht[w—Kdg][p]]
< e/4 + e/ + /Y + /L = g,
Thus

N, [q Ht[W—Kdg][p]] <€

whenever t refines s, so

fial
1]

b
N [W—Kdg][p],

and the proof is complete.
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DEPINITION iv.l.l: A member f of QC shall be called a step function

only in case there is a nondecreasing unbounded sequence (tk):_o into §

such that t, = 0 and two seguences (pk)k:O and (qk)k:l into Y such that
if k 1s a positive integer then f(tk-l) = P_1 and f(s) = 4 whenever
s is in S and tk—l < 5 < tk.

LEMMA IV.1.4

Let (a,b) be in $xS, let p be in Y, and let f be a step function

in QC., Then
b
JPLH-K, D]

exists.

INDICATICN OF PRCCF: The lemma 1s clear from the following two cbser-

vations:
(i} If (e,d) is in SxS5, g is in Y, and f(t) = g whenever t is
d
between ¢ and d, then CH [W—de][p] = W(e,d)pl.

(1i) If ¢ is in S, then
C+HC_EW~de][p] = Wlet,e)[Wlc,e-)[pl - £f{ec-) + £(c)] - f(c) + f(ct).
Since it is well known that each member of QC can be written as

the locally uniform limit of step functions, Lemmas IV.1.3 and IV.1.4

now make the following theorem clear,.
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THEOREM IV.1,1

Let (a,b) be in 5x8, let p be in Y, and let ¥ be in QC. Then
b .
! [W—de]Lp]

exists.

SECTION IV.2: Sclving Forced Equaticons

Throughout Section IV.2, V will be & nmerber of OA, W = E[V], «
will be a member of OA+ dominating V, and p = E+[u]. Note that this

implies that u dominates W.

LEMMA IV.2.1

Let a be in S, and let each of f, g, and h be a quasicontinuous

function from S to S. Suppose that

a
£(t) + (R) | ah

h(t) =
t
and
da
g(t) < £(t) + (R) [ ag
t
whenever t is in 5. Then
g(t) £ h(t)

whenever t is in S.
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PROCF: Let P be a seguence such that PO = g and

d
P_(t) = £(t) + (R)tf oF

-1

whenever n is a positive integer and t is In S. XHow g(t) < Pn(t) when-
ever t is In 5 and n Is a positive integer. But according to MacNerney

f1el, limn%mPn(t) = h(t) whenever t is in S, so the proof is complete.

REMARK IV.2.1: The iterative technique used in the preof of Lemma

IV.2.1 is similar to that developed by Herod in [9].

LEMMA IV.2.2

Let @ be in 5. Let (f )m_ and (h )m* be sequences into QC
n'n= n n=g¢

0

such that each of (i) and (ii) 1s true.
a
(1) hn(t) = fn{t) + (R) | V[hn] whenever t is in S and n is a
t
nonnegative integer.
(ii) limn+mfn(t) = fD(t) whenever t is in 8, the convergence

being uniform on bounded subsets of S,

Then 1lim h_(t} = h_(t) whenever t is in £, the convergence being
n>e n o]

uniform on bounded subsets of S.

PROOF: Let b and e be positive numbers, b»a, and let ¢ be a number

such that c>p(b.,0). Let n be a positive integer such that Nl[fn(t) -
fm(t)] < g/c whenever t is in [0,b] and m and n are integers such that
n>n and men . Let m and n be integers such that n>n_ and m>n_, and

let P from S to S be such that P(f) = e/¢c if 0<t<h and P(t) =
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Nl[fn(t) - fm(t)] if t>b. Let Q be that guasicontinuous function from

S5 to S such that

a
Q(t) = P(t) + (R) [ aQ
T

whenever t 1s in S. Now

d
N [ (t) - h (£)] < P(t) + (R)tf ol [h_-h ]

whenever t iz in S, so according to Lemma IV.1.1,
- <
N Ih (£) - h (£)] < Q1)
whenever t is in 8. But {(t) = pl{t,a){e/c) < ¢ whenever 0<t<h, so it is

now clear that there is a2 member U of QC such that limn+mhn(t) = U(t)

whenever t is in S, the convergence being uniform on bounded subsets of

a a
S. Now limnﬁm(R) f V[hn] = (R) f V[U] whenever t is in S, so U(t} =
a t t
£,(0) + (R) [ VIUT whenever t is in §. Now Theorem II.2.2 tells us
T
UJ=nh and the proof is complete.

O)

LEMMA IV.2.3

Let f be a step function in QC, and let (a,p) be in SxY. Let h

be in QC. Then (i} and (ii) are equivalent.
a
p - fla) + f(t) + (R) f V[h] whenever t is in S.
t
a . .
tﬂ [W—de][p] whenever t is in S.

(i) n(t)

(ii) h(t)
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REMARK IV.2.2: Lemma IV.2.2 follows from Thecrem II.2.1 and a straight-

forward computaticn,

THEOREM IV.2.1

Let f be in GC. There iz a function M on Sx5, each value of
which is a function from Y to Y, such that each of (i}, (ii), (iii),
and (iv) is true.
(i) Mla,b)pl = aHb[w—de][p] whenever (a,b,p) Is in SxSxY.
(ii) MCa,b){M(b,e)lpl]) = M(a,c)[p] whenever (a,b,c,p) is in
SxSx5xY and b 1s between a and c.
(ii1) M(b,a)lpl = p - fla) + £(b) + (R) faV[M( ,allpll whenever
b

(a,b,p) is in Sx8xY,

(iv) Nl[[M(a,b)-I][p] - [M(a,b}-T1[ql]

< [u(a,b) - l]Nl[p—q]

whenever (a,b,p,q) is in SxSxY¥xY.

PROOF: Define M according to (i}. HNow {(ii) follows Iimmediately, and

(iii) follows from Lemmas IV.2.2 and IV.2.3., Thus it remains only to
show (iv). Let (a,p,q) be in Sx¥YxY, and let h = M( ,a)}[p] and g =
M( ,a)[gl. Now

a

p o+ f(r) - fla) + (R) [ v[h]
t

hit)

and

=}
q + F(t) - fla) + (R) [ vig]
t

g(t)
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whenever t is in 5. Thus, if t is in &,

i Th(e)-g(0)] = 1 Te-q1 + (R)tf ali, [h-g 1.

Since

a
1+ (RY | an( ,a)
t

u(t,a)
whenever t is in 8, this says
N, [h(t)-g(t) ] < Nl[p—q]u(t,a)
whenever t is in 5. Now, 1f Tt is in S,

a a
[h(t)-p] - [e(t)-q] = (R) [ v[r] - (R) [ vIgl,
t t

S0

I=1
(R) [ ot [h-g)
t

I~

Nl[[h(t)*p] - [glt)-q]]

A

a
Nl[p—q](R) [ au( La)
t

Nl[p—q][u(t,a) - 17,

and the proof is complete.
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COROLLARY IV.2.1

Suppose that each value of V is linear and f is in QC. Let a

be in S, and let h »e in QC. Then (i) and (ii) are equivalent.
a
f(t) + (R) f V[h] whenever t is in S.

(i} h(t)

(1i) n(t)

T a
W(t,a)[#(a)] - (L) [ W(t, )[df] whenever t is in S.
t

REMARK IV.Z2.3: This corollary can be viewed as a companion result to

Theorem 5.2 of [17]. An easy integration-by-parts shows that the

fermula in (ii) ean alsc be written

a
h(t) = £(t) + (R) [ (alw(t, )1}FfI.
t

PROOF: ©Note that if each value of V is linear, then each value of W is

linear. To prove the corollary it suffices to show that if f is in QC

and (a,b,p) is in $x5xY then

b
PLi-K p] = W(a,b)p] - (L)af W(a, )Laf).

Let (a,b,p) be in Sx8xY, and let (tk)E"O be a chain from a to b. Let
(dk)E_O be as in the proof of Lemma IV.l.1. Suppese that k Is an

integer in [1,n-1], znd

n

Jek+l )1

d, = W(tk,b)[p] - Z

k

W(tk,tj_l)[f(tj)—f(tj_l

Now

d = W(t

1 1T ] - DRy )-F(r )]
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_ n
= Wt b)pd - Zj:k+lW(tk_l,tj_l)[f(tj)—f(tj_l)]

- t (e )-£(r, )]

tk—l’

I
W( b)[pl - ijkw(tk_l,tj_l)[f(tj)-f(tj_l)J.

Tyo1o

Hence this last eguation hoelds whenever k is &n integer in [1,n], and

the corollary follows.

SECTION 1IV.3: A Coalescence Problem

u

In Section IV.3, V will be 2 member of 0AI, and W E(V]. We

A

will take A tc be a merber of OMR such that Nz[w(a,bJ_l] < a(a,b)

whenever (a,b) is in Sx5. (This is clearly possible by Thecrem 1I1.3.2).

THEOREM IV.3.1

Let f be in QC, and let (2,b,p,q) be in Sx8x¥xY. Then
N [p-q] < Ala,b)N [ TO0W-K, I[pi - °[H-K, _1[ql]
1 B ? 1l a df a af " )

PROOF: Let (tk)E:O be & chain from a te b. If k is an integer in

[0,n], let

_ 0
G T T Ot - K[f(tj)_f(tj_l)]l[p],

and

n” [wit.

k = T5=k+l j-l’tj)

>
1

- K _ Iql.
[f(tj) f(tj_l)l



Now, if k is an integer in [0,n-11,

= W -

dy = MOt A Ty BGe ) - B )
and

e = N(tk,tk+l)[ek+l] + f(tk) - f(tk+l),
SO

d = Wit ,t )_l[d + f(t Y - £t )]

k+1 k7 Tk+1 k k+1 k
and

e, =Wt .t ) e + £(t, ) - £t )]

k+1 k? k+1 k k+1 k°—°
Thus

NpLd o -y 1 s Al (NI, —ey ]

whenever k 1s an integer in [0,n-1]. Consequently,

Nl[p—q] Nl[dn—en]

s

l(a,b)Nl[dO—eO]

1

A(a,b)Nl[nt[w—de][p] - ntEW—de][q]].

Since this last ineguality holds for each chain t from a to b, the

proof is complete.
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COROLLARY IV.3.1

Let (a,p,3) be in SxYxY, and let each of f, g, and h be in QC.

Suppose that whenever t is in S, then

a
p+ f(t) + (R) [ v[h]
t

h(t)

and

a
q + f(1) + (R) [ v[gl.
t

glt)

Then, if there exists t in S5 such that h(t) = g(t), it fellows that

P =4.



CHAPTER V

BOUNDS TOR SOLUTICNS OF PERTURBED EQUATIONS

SECTION V.1: Integrator Perturbations

Our results for integrator perturbations will largely follow

from the following lemma. The first inequality in the concluslon of

the lemma was established in Lemma 5 of [13].

LEMMA V.1.1
Let (Ak)k 1 and (Bk)k 1 be sequences into H. Let (a )k 12
n . .
(bk)k:l’ and (ck)k 1 be real-valued sequences such that if k is an

. . . NT _
integer in [1,n], then NQEAk] < a NEEBk] < bk’ and ”SEBk 11 = c .

k? k

Then neither of

N [H - I A ] and N [

=1k k=1"k Hk e ™ T k

exceeds (Hk lak)Ek l[Ck(H 'k+lb])]

INDICATION OF PROOF: We shall indicate how to prove

n n n
Mgl Bk - A ) s (L jap kLo (H] SSLERRE

Note that
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il

Tl I
Nalo iy B A - AT B A+ AL OB A - AT o4 ]

1t

1A

- n g8
N [B —I]Nz[Al]Hk QNB[Ak]N [B 1+ Iz[Al]ws[Hk:QBkAk szQAk]

< k lak)cl(ﬂk Qbk) + a N [ﬂk 0By k - Hk:QAk]'

The remainder of the proof now follows from an obvious induction
argument.
We now state without proof our theorem on integrator perturba-

tions. The proof will be cbvicus from Lemma V.1.l1.

THEGREM V,1.1

Let each of wl and WE be in 0OM, let U be in 0A, and suppose

; : . b
W2 = E[U]. Suppose Al and AQ in OMR are given by Al(a,b) = aH N2[Wl]
and A (a,b) = anbwa[wgl. Let £ be a member of OA such that
NB[U(a,b)] < B(a,b) whenever (a,b) is in &x§. Let (a,b) be in Sx§,
Then neither of N3[W18W2(a,b) - Wl(a,b)] and Ng[wz®wl(a,b) - wl(a,b)]

b
exceeds Al(a,b)'(R) f BAQ( LY.
a

REMARK V.1.1: In Theorem 11 of [13], this author showed that if V

l5

Vs W, W,, and ¥ are as in Remark III.?2.1, then Na[M(a,b) - wl(a,b)] <
b

Al(a,b)'(R) f BAQ( ,b) whenever (a,b) is in Sx8. Nete that Theorem
a
V.1l.1, together with the first equivalence of Theorem III.1.3, includes

this result. It is alsc worthy of note that there is an obvicus result

te be obtained by the conjunction of Theorems III.2.3 and V.1.1.
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SECTION V.2: Torcing Function Perturbations

THEQREM V.2.1

Let (V,W) be in L. Let Al and X, in OMR be given by Al(a,b) =
b b .
aH NQ[W] and Az(a,b) = aﬂ NB[W]. Let each of fl and f2 be in BV. Let

a be in 5., Let hl and h2 be in BV, and suppose

a
n (1) = £.(0) + (R)tf vlh, ]

whenever t is in 5 and 1I=1 or i=2. Then, If t is in 5,

a
N Ch (01 s (e )N [F ()] + (L)tf s (e, N [df ]

and

Nl[hl(t) - h2(t)] < Al(t,a)Nl[fl(a) - fQ(a)]

a
+ (L) [ (e, u TalE ~f ) .
T

REMARK V.2.1: Our proof of Theorem V.2.1 will involve an application

of Theorem IV.2.1. The first ineguality of the conclusion was kncwn
prior tc the discovery of Theorem IV.2.1 (see [14, Theorem Al). It is
clear from Theorem II.4.2 that, if y in OAR is given by v(a,b) =

aEb(N3 I+V] - 1}, then the functicn g, given by

=1
glt) = x,(t,a)N [f ()] + (L)tf ho(t, N, [af ],

satisfies
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a a
g(t) = M [F ()] + t[ N L]+ (R)tf Yg

whenever t is in 5. This author conjectures that analogeus results

hold for Al’ but these analogous results have not yet been shown.

INDICATION OF PROOQF OF THEQREM V.2.1: We shall Indicate the second

inequality of the conclusion, and it will then be evident how to demon-

strate the first. Let t be iIn S, and let (Sk)E_O pe a chain from t to

a. Now

n
N_[T
L k

1 [W(sk_ s, )

125y ][fl(a)]

- K
=1 [fl(sk)_fl(sk—l)]

n o=
- LHGs, hs) - K l)]][fg(a)]]

S(5, ) (s, _
< % (a3 N [LE (s D= (s)] = [F (s0)-F,(5,)]]

n
+ Al(SO’Sl)Nl[Hk=2[w(Sk~l’Sk) - K[f (5. )f (Sk_l)]][fl(a)]

17k 1

n
- TuGs, 305, () 11,

.3, ) - K
1°7k [£,(s0-F,(s, )]

An induction argument similar to those in the proofs of Lemma IV.1.1

and Corcllary IV.2.l now makes it clear that



n .
oln,  [W(s, ,,s.) - K .
S L S L R EN R R

n
" Meaq IHGsy
< A (£,a)N [F (a)-f,(a)] + ]
- [fl(sk—l)th(S

and, from this, the theorem focllows,

1°%k
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1Lt al]
l)] 1

) - K ILf,(a) 1]
[£,(5,)-F (s, )10

n
b1 (s, DI LLE, (5, )-F (s, )]

)1
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