
ROUTING AND SCHEDULING WITH TIME WINDOWS:
MODELS AND ALGORITHMS FOR

TRAMP SEA CARGOS AND RAIL CAR-BLOCKS

A Thesis
Presented to

The Academic Faculty

by

Aang Daniel

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2006

ROUTING AND SCHEDULING WITH TIME WINDOWS:
MODELS AND ALGORITHMS FOR

TRAMP SEA CARGOS AND RAIL CAR-BLOCKS

Approved by:

Professor Faiz Al-Khayyal, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor I. A. Karimi
Department of Chemical and
Biomolecular Engineering
University of Singapore

Professor Earl Barnes
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Joel Sokol
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Ellis Johnson
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: 13 November 2006

In loving memory of my beloved mother...

iii

ACKNOWLEDGEMENTS

“The fear of the Lord is the beginning of knowledge” (Proverbs 1:7). Let me begin

by thanking God, for he is the beginning of everything. He was also the one who

gave me strength and courage to finish my Ph.D. at Georgia Tech. In the same time,

I would like to thank the blessed virgin Mary for her prayers throughout my study.

My academic journey is truly a journey of faith.

I am thankful to my advisor, Dr. Faiz Al-Khayyal, for his kindness, encourage-

ment, patience, and advice ever since the first day of my life at Georgia Tech. I would

like to specially acknowledge Dr. Ellis Johnson for his counsel and guidance that have

been invaluable to me. I also would like to thank Dr. Joel Sokol, Dr. Earl Barnes,

and Dr. Karimi for serving on my dissertation committee and always being there for

me.

I would like to express my gratitude to the Indonesian Catholic Community (Ko-

munitas Katolik Indonesia) in Atlanta for all the prayers and the great experience of

being part of the community. To my fellow students, especially Seunghyun, Ethan,

Yaxian, and all members and alumni of the Indonesian Student Association (ISA)

at Georgia Tech for the joy and friendship throughout my study. Also, to my best

friends, Audie and Shanti, for convincing me that I was smarter than I actually am.

Finally, I would like to thank my family. I would like to thank my Dad, a remark-

able man with a big heart, and my Mom in heaven, a woman whose most gentle soul

embraces me each day of my life. I am deeply grateful to my wonderful wife, Elisa.

Without her unwavering and unconditional support I would never have completed my

study. Also, to my little angle, Avila, for being such a blessing from God.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . x

I INTRODUCTION . 1

1.1 Ship routing and scheduling . 1

1.2 Previous work on ship routing and scheduling 4

1.3 Pickup and Delivery Problem . 6

1.3.1 Optimization based approach for Pickup and Delivery Problem 6

1.3.2 Heuristic based approach for Pickup and Delivery Problem . 8

1.4 Train routing and scheduling . 8

1.4.1 Previous work in train routing and scheduling 10

1.5 Thesis focus and organization . 12

II PROBLEM DESCRIPTION AND MODEL FORMULATION 15

2.1 Problem description . 15

2.2 Assumptions . 17

2.3 Model formulation . 19

2.3.1 Routing constraints . 20

2.3.2 Cargo movement constraints 22

2.3.3 Time constraints . 24

2.3.4 Objective function . 26

2.3.5 Complete multi-ship problem 27

2.4 Example . 28

2.5 Decomposition . 35

2.5.1 Total-unimodularity property 36

v

III SOLUTION STRATEGIES AND COMPUTATIONAL EXPERIMENTS 42

3.1 Heuristic methods to solve multi-ship problem 42

3.1.1 Multi-Period Heuristic (MPH) 43

3.1.2 One-Ship Heuristic (OSH) 47

3.1.3 Set-Packing Heuristic (SPH) 51

3.2 Pickup and delivery problem with time-windows 58

3.2.1 Network construction . 58

3.2.2 Full column generation for 10-ship example 62

3.3 Computational experiments for heuristic methods 63

3.3.1 Creating random problems 63

3.3.2 Computational results . 65

IV UPPER BOUNDING PROBLEM . 71

4.1 Deriving an upper bound to the one-ship problem 71

4.1.1 Upper bound . 72

4.1.2 Primal and dual pair in one-ship problem 74

4.1.3 Analyzing primal . 75

4.1.4 Analyzing dual . 77

4.1.5 Example . 79

4.2 Deriving an upper bound for the multi-ship problem 79

4.2.1 Upper-bound for the multi-ship problem 81

4.2.2 Lagrangian relaxation of upper-bounding problem 83

4.2.3 Dual Ascent Method . 84

4.3 Computational Results . 87

V EXTENSIONS TO SOFT TIME-WINDOWS AND INTER-SHIP CARGO-
TRANSFERS . 90

5.1 Soft time-windows . 90

5.1.1 Embedding soft time-windows into our model 91

5.1.2 Exact linear relaxation . 94

5.1.3 Example for one-ship problem 95

vi

5.2 Cargo-transfer between ships . 96

5.2.1 Embedding cargo-transfer into our model 96

5.2.2 Change in the objective function 100

5.2.3 New constraints added . 100

5.2.4 Price to pay . 102

5.2.5 Example . 103

VI APPLICATION TO TRAIN ROUTING AND SCHEDULING PROBLEM105

6.1 Problem description . 106

6.2 Model formulation . 108

6.2.1 Routing constraints . 109

6.2.2 Block-segment movement constraints 112

6.2.3 Time constraints . 115

6.2.4 Objective function . 119

6.2.5 Complete train routing and scheduling formulation 121

6.2.6 Example and heuristic method 122

6.2.7 More computational results 127

6.3 Notes on lower bounding problem 128

VII CONCLUSION AND FUTURE WORK 131

7.1 Conclusion . 131

7.2 Future Work . 134

7.2.1 Sea cargo pricing strategy 134

7.2.2 Hub-and-spoke system in sea cargo operations 134

7.2.3 Performance of train routing and scheduling model 135

APPENDIX A RELAXATION OF THE PRODUCT OF VARIABLES . . 136

APPENDIX B DUAL PROBLEM OF THE MILP RELAXATION OF SEA-
CARGO MODEL . 139

VITA . 151

vii

LIST OF TABLES

1 Unloaded cargo information details 29

2 Loaded cargo information details . 30

3 Ship information details . 31

4 Port information details . 32

5 Optimal one-ship solutions for all ten ships 33

6 Optimal 2-ship solutions for ships 8 and 9 34

7 Step-by-step multi period heuristic applied to 10-ship problem example 45

8 Final MPH cargo assignment to 10-ship problem 46

9 Step-by-step one ship heuristic applied to 10-ship problem example . 50

10 Final OSH cargo assignment to 10-ship problem 50

11 Final SPH cargo assignment to 10-ship problem 55

12 Number of possible cargo combinations for each ship 56

13 Optimal cargo assignment to 10-ship problem 57

14 Columns generated for each ship . 63

15 Heuristic Solution Quality . 65

16 Heuristic Solution Time . 67

17 Upper bound comparison for one-ship problems 79

18 Upper bound performance . 88

19 Comparison of hard and soft time window (TW) profits for one ship
problems . 95

20 Unloaded cargo information details 103

21 Ship information details for 3-ship problem 103

22 Port information details for 3-ship problem 104

23 Trains information for 63-block problem 125

24 Computational Results of Train Heuristics 128

25 Bounds for train problem . 130

viii

LIST OF FIGURES

1 Time representation with port arrivals at Tsk and time travel between
ports TTsk. 25

2 Gantt-chart for the optimal one-ship schedules 33

3 Gantt-chart for the optimal 2-ship schedules 34

4 Constraint (13) acts as the coupling constraint, the remaining con-
straints can be decoupled into |S| smaller problems. 35

5 Each of the |S| ship polyhedron has a special one-ship structure. . . . 37

6 Schedule generated by multiperiod heuristic 46

7 Schedule generated by one ship heuristic 51

8 Schedule generated by set-packing heuristic 56

9 Optimal schedule for the 10-ship problem example 57

10 Network for PDPTW approach . 59

11 Graph for Heuristic Solution Quality 66

12 Graph for Heuristic Solution Time 67

13 Solution time to find optimal solution 69

14 Solution time to find heuristic solutions 69

15 Solution time to find heuristic solutions 70

16 Structure defined by multi-ship polyhedron. 80

17 Penalty function for soft time-windows 92

18 Comparison of Gantt-charts for the optimal one-ship schedules with
hard and soft time windows for ships 3,4, and 9. 95

19 Three ways ship s can serve cargo j when transfers are allowed. . . . 97

20 Gantt-charts for the 3-ship schedules with cargo transfers 104

ix

SUMMARY

This research introduces a new formulation to solve routing and scheduling

problems, with the main application in answering an actual problem faced by a sea-

cargo shipping company in South-East Asia. Our formulation better lends itself to

extensions and related applications. The model can also be adapted to the solution

of train routing and scheduling problems faced by a railroad company in the United

States.

For the work in sea-cargo routing and scheduling, we focus our methodology on

the tramp shipping operation. Tramp shipping is a demand-driven type of shipping

operation. Tramp ships typically do not have fixed schedules, but are routed based

on the pickup and download locations of profitable service requests. The problem

is that given a set of products distributed among a set of ports, with each product

having a pickup time window, download time window, and destination port, find the

schedule for a fleet of ships that maximizes profit for a specified time horizon. The

problem is modelled as a Mixed Integer Non-Linear Programming (MINLP) problem.

We use quite a number of bilinear constraints that are linearized by taking advantage

of the linearization scheme based on a convex and concave envelope approach. This

allows us to reformulate our model into an equivalent Mixed Integer Linear Program

(MILP).

We introduce three heuristic methods for solving sea-cargo routing and scheduling

problems. The first heuristic employs the idea of a rolling horizon concept. Here we

divide the time horizon into smaller time periods. We solve the earlier period and

carry over the decision to the next period. The second heuristic utilizes the optimal

solutions to one-ship problems. Here we permanently assign cargos that appear in

x

only one ship and determine which ship should carry cargos that appear in more

than one ship by creating a priority list. Based on the list, the model is again

used to break any ties among competing ships. The third heuristic utilizes the set

packing approach. Columns are created a priori based on cargo combinations that

can be served by each ship. Our model is used to check the feasibility of a cargo

combination and give us the corresponding route and optimal profit. Cargos are

added to the system using a predefined priority list. If we allow the method to find

all possible cargo combinations that can be served by each ship, we can eventually

find the optimal solution. Extensive computational results are presented to show how

good these heuristics perform in solving randomly generated problems. Generally, the

proposed heuristic methods find solutions that are within at least 80% of the optimal

profit reasonably fast.

We also exploit the special structure enjoyed by our formulation and introduce

an upper-bounding problem to our model. Our computational results show that the

LP relaxation of the upper bounding problem gives a bound that is 2 − 10% times

stronger than that given by the LP relaxation of the original problem. Also, those

bounds are computed within 3 to 5 times faster than the time spent to find the LP

relaxation of the original problem.

With a little modification, the model for our sea-cargo routing and scheduling

problem is readily extendable to reflect other practical needs in sea cargo operations.

We introduce the notions of soft time windows with penalty and inter-ship cargo-

transfer as extensions to our problem to show the advantages of our formulation

of the problem. Both of these extensions involve extensive time aspects. In the

soft time-window extension, we allow pickups and downloads to happen outside the

predefined time-windows by imposing some penalty terms. This is where the time

aspects come into play. In the cargo-transfer extension, we allow a cargo to be picked-

up and downloaded by different ships. We present some computational results on

xi

these extensions. The results show that more savings can be generated by including

soft time-windows and inter-ship cargo-transfer capabilities to the model. Soft time-

windows and cargo-transfer also allow more realistic situations in sea-cargo operation.

The other part of our work is the application of the same modeling technique to

solve a train routing and scheduling problem faced by a real railroad company in the

United States. Train routing and scheduling problems involve a lot of time aspects

since one of the goals is to have optimal train schedules and timings.

The train scheduling problem is a very large-scale network optimization problem

which typically calls for trillions of decision variables. One very important concept

in train scheduling problems is the block concept. Block concept arises in the con-

text that a railroad serves thousands or millions of shipments from their origins to

respective destinations. A typical shipment consists of a set of cars having a com-

mon origin and destination. To reduce the handling of individual shipments as they

travel, a set of shipments is grouped together as a block. Previous research in train

routing and scheduling problems typically calls for separating the problem into sev-

eral phases. Train route design problems and block-to-train assignment problems are

usually solved separately using an iterative procedure with feedbacks from one phase

to another. Our model solves the routing and timing/scheduling problems altogether

and proposes a new approach in solving the train routing and scheduling problems.

Given a set of blocks to be carried from their origins to their destinations, our goal

is to decide how many trains are needed, construct train routes and schedules, and

determine block-to-train assignments. We want the solution that minimizes the num-

ber of block transfers (block swaps) between trains, the number of trains used to serve

all blocks, and some other efficiency measures used in train operations. Some compu-

tational experiments from real railroad data are presented and the model successfully

provides a different approach in solving train routing and scheduling problems by giv-

ing not only the train routes but also the optimal timings/schedules simultaneously.

xii

We anticipate that our models will provide alternate modeling techniques to solve

routing and scheduling problems found in other transportation industries.

xiii

CHAPTER I

INTRODUCTION

Ships and trains are two very important modes of transportation. They are both

considered to be the most cost effective transportation modes. Both operate long

hours and carry larger and heavier products compared to other transportation modes.

Ship and train industries are also rich with opportunities to implement optimization

models. A small improvement may result in millions of dollars in savings. Both

industries were very conservative in accepting and applying optimization models in

their business practices. From a research point of view, ship and train industries

have historically received little research attention. However, as researchers realized

the importance of cost savings and performance improvements in these industries,

a growing body of advances concerning optimizations in these two industries has

increasingly appeared in the operations research literature.

This dissertation focuses on the introduction of a modeling technique that can

better represent practical situations in answering routing and scheduling problems

in the ship and train industries. The model is a Mixed Integer Nonlinear Program

(MINLP) that can be reformulated as an equivalent Mixed Integer Linear Program

(MILP).

1.1 Ship routing and scheduling

One major transportation mode of international trade is sea cargo shipping. Sea

cargo transportation is the logistics workhorse in global supply chains. Approximately

70% of the value of all goods are transported worldwide by sea [49], but relatively

little work has been done on ship routing and scheduling. Recent United Nation’s

Shipping and World Trade Reports also show that approximately 90% of the world

1

trade tonnage is transported worldwide by sea. Worldwide traffic is expected to grow

at an average rate of between 3% to 6% each year until at least 2024. This rate

applies for all types of cargo categories (dry and liquid bulk, container, and general

cargo). The volatility of global fuel costs has significantly reinforced the need for

optimal ship schedules that minimize ship operational costs.

Although the trend shows a significant increase in the usage of ships, the ocean

shipping companies are faced with ever-increasing competition among players, where

profit margins are squeezed to a very minimum level. Ships are capital-intensive and a

ship may cost tens of thousands of dollars a day to operate. Whether it is a company

that owns and manages a fleet of ships, or a ship leasing company that manages a fleet

and is hired by either a shipper or a third party logistics provider, the cost incurred

by a ship’s route and schedule directly affects the cost effectiveness of global supply

chain systems.

Optimal assignments of cargos and optimal schedule generations are complex com-

binatorial problems. A better schedule that saves 5% of the current operating costs

can result in millions of dollars in savings annually.

Ship routing and scheduling problems are somewhat different from those of other

transportation modes because of the time spent by a ship to travel from one desti-

nation to another. Ships generally spend a great amount of time traveling from one

destination to another. Even though a ship may spent time waiting in a port, the

total time spent in a port is far less than the traveling time. Typical travel time

ranges from as short as several hours to as long as several months.

A ship’s route and schedule are also very sensitive to weather and ocean environ-

ment changes that are indeed unpredictable. Consequently, a ship may frequently

change its schedule to avoid dangerous weather conditions. Hence, the set of routes

has to be reoptimized many times.

Shipping companies usually maintain a large variety of fleets that operate 24

hours a day. The schedule for each ship voyage may be as long as 4 months and the

2

destination might change while a ship is in the middle of its journey. A ship can only

visit some of the ports since its size might be incompatible with some port terminals.

To some extent, aircraft operations are similar to ship operations. They both pay

port fees and operate internationally. Their daily operating cost is very large. But

mostly aircrafts transfer passengers or packaged goods, while ships load mostly liquid

and dry bulk cargos, or many types of containers.

Compared to other transportation modes (such as train, truck, aircraft), there has

been far less attention given to ship. One of the possible reasons is that even though

a ship is a major transportation mode worldwide, it is commonly seen by people

in their daily lives. Another reason is that ship-related industries are conservative

and not very open to new ideas. Many companies are small and owned by a family.

People employed in ship routing and scheduling departments are most likely those

with years of experience so that they are reluctant to accept new technologies for fear

that they might not be needed anymore. Also, since most ship companies are small

and family owned, they are less likely to devote some of their profits to fund research.

However, as the trend of mergers, acquisitions, and joint-ventures increases in the

shipping industry, the role of optimization in this area will become more significant.

There are three types of ship operations. The first one is a classical industrial

shipping operation, which tries to minimize the sum of all costs generated by all

ships while ensuring all cargos are transported from origin to destination. Usually

this problem is faced by a multi-national company that has to transport goods within

the company to fulfill demands in many ports. But today more and more companies

focus on their business and outsource this kind of transportation problem to a third

party.

The second type is a tramp shipping operation, which is the focus of the work in

this thesis. Tramp shipping operates like a taxi service; whenever there is profitable

cargo to load, a ship is dispatched to pickup the cargo using a route and schedule

that tries to maximize its profit. Some of the tramp shipping companies also engage

3

in shipping contracts. Little work has been done in this area because of the large

number of small operators in the tramp market. But in this era of mergers and acqui-

sitions, tramp shipping is now an interesting research topic. Also, as transportation

outsourcing becomes a trend, the demand for tramp shipping is bound to increase.

The third shipping operation is liner shipping, which is quite different from the two

described above because it involves decisions at different planning levels. This is

beyond the scope of this study.

1.2 Previous work on ship routing and scheduling

A classic attempt to determine an optimal schedule for a fleet of ships in tramp

operation was pioneered by Appelgren [6]. He used a relaxed set partitioning approach

and applied the Dantzig-Wolfe decomposition method to solve the problem. The

solution strategy could not guarantee an integer solution, but it managed to solve

problems with practical sizes.

Quite a number of papers discussed the scheduling of a fleet of ships in industrial

operations. Ronen [54] examined the short-term scheduling of a fleet of bulk ships:

each starts in a single loading port and ends at the same port after visiting a sequence

of download ports. The objective is to minimize the cost and the solution strategy

proposed is the set partitioning method. The method managed to solve small prob-

lems to optimality. Scott [59] also studied industrial shipping problems where oil

and other petrochemical products are shipped from a refinery station to several pro-

cessing centers using heterogeneous multi-compartment ships. The solution strategy

proposed is Lagrangian relaxation and a refined version of Bender’s decomposition

method to avoid solving a large integer model. Recently, Hwang [30] formulated a

model for finding a minimum cost routing in a network for a heterogeneous fleet of

ships engaged in pickup and delivery of several liquid bulk cargos in an industrial

operation environment. The problem is frequently encountered by maritime chemical

transport companies, including oil companies serving an archipelago of islands. The

4

model decides how much of each product should be carried by each ship from supply

ports to demand ports, such that the inventory level of each product in each port is

maintained.

There are also studies in industrial shipping operations inspired by problems faced

by the US Navy. Psaraftis [50] studied how to allocate cargos to ships such that all car-

gos arrive at respective destinations as planned. The algorithm proposed uses a rolling

horizon strategy where the cargos at the front-end time horizon are permanently as-

signed to be carried but cargos available at a later time are assigned tentatively.

Fisher and Rosenwein [24] studied the scheduling of ships serving less-than-shipload

bulk cargos with time windows for the US Navy’s Military Sealift Command. The

goal is to minimize the cost incurred, and the proposed solution strategy is a set

partitioning approach with total schedule enumeration.

Even though during the last decades there has been a shift from industrial shipping

to the tramp sector, most contributions in general are still for industrial shipping.

Only a few studied the tramp sector. A typical tramp ship scheduling problem is

presented in Appelgren [6]. Kim and Lee [37] developed a prototype of decision-

support system for scheduling a fleet of ships serving a bulk trade. The underlying

problem is formulated as a set packing problem. They also present an algorithm

to generate all feasible columns (feasible routes) a priori. For works where shipping

companies operate their ships in both industrial and tramp mode, see Bausch et al.

[9], Christiansen [16], and Sherali et al. [63].

There are many solution approaches that have been proposed to solve ship rout-

ing and scheduling problems. However, in the survey presented by Christiansen,

Fagerholt, and Ronen [14] it is observed that 40% of the reviewed papers use a col-

umn generation approach. The two main common solution approaches used are the

Dantzig-Wolfe decomposition approach (for example [6], [16]) and the set partitioning

approach with some or all columns generated a priori (for example [9], [22], [24]).

Christiansen et al. [13] provide an extensive review on maritime transportation

5

and all developments in the last decade. For complete reviews of the work in ship

routing and scheduling, readers are also referred to survey papers by Ronen ([55],

[53], and [12]).

1.3 Pickup and Delivery Problem

Our ship problem can be treated as a multi-vehicle pickup and delivery problem

(PDP) which has been studied by numerous authors. Savelsbergh and Sol [56] provide

a thorough review of the work in this area. The most commonly studied variant of

the PDP is the Pickup and Delivery Problem with Time Windows (PDPTW).

PDPTW is a problem that is concerned with the optimal route construction to

satisfy transportation requests, each requiring a pickup and a download at specific

locations, under vehicle capacity and time window requirements. There is also a

pairing constraint embedded since each request has to be picked up and downloaded

by the same vehicle. PDPTW usually requires the vehicles to return to their original

location while in our problem, the final paths for the vehicles are open paths, ending

at the last scheduled delivery. It is not mandatory to have the ships return to their

base location.

Several heuristic and exact methods exist for the PDP. Optimization based solu-

tion usually formulates problems as integer programs. There are two types of models

in the literature. The first one tries to find the best feasible path by evaluating the

arcs to be included in the schedule. The other one follows a two-phase set partitioning

method, where phase I generates a set of candidate schedules and phase II solves a

set partitioning model to construct the final schedule. Problem size is often reduced

by decomposing the problem or generating possible schedules heuristically.

1.3.1 Optimization based approach for Pickup and Delivery Problem

An exact solution method for PDP was first proposed by Psaraftis [51]. A dynamic

programming approach is developed with computational results shown for up to 9

customers. Little et al. [43] develop a branch and bound approach to answer PDP

6

problems. The work was extended by Kalantari et al. [34] where the tours are di-

vided into some manageable subsets. Computation results are reported for up to 31

customers. Fischetti and Toth [23] apply a branch-and-bound algorithm that em-

ploys an additive bounding approach, which bounds based on assignment relaxation,

the shortest spanning 1-arborescence relaxation, as well as disjunctions and variable

decomposition.

Lu and Dessouky [44] apply a branch-and-cut algorithm based on a 0-1 integer

programming formulation. Dumas, Desrosiers, and Soumis [20] present a set parti-

tioning approach to answer the PDPTW problem and a forward dynamic program-

ming approach to generate columns and solve the problem to optimality. Columns

are generated as needed by solving a constrained shortest path problem. Generated

columns are then used to solve the linear relaxation of the set partitioning prob-

lem, then a branch and bound approach is used to obtain an integral solution. The

constrained shortest path problem is solved by forward dynamic programming.

Psaraftis [50] also developed an algorithm for solving multiple-vehicle problems in

which the vehicles are eventually ships. The capacity of a port is also considered in

order to avoid idle times in the ports waiting for loads being picked-up or downloaded.

The algorithm uses the rolling horizon principle. Based on the pickup time windows,

the algorithm tries to serve cargos with earlier pickup times and gradually assigns

more and more cargos permanently to the available ships. In earlier stages, cargos

with later pickup time windows are assigned tentatively. The tentative assignment

of loads to ships is calculated in two phases. First, the utility ujs of assigning cargo

j to ship s is calculated for each cargo j and ship s. This utility measurement is a

complicated function measuring the assignment’s effect on the delivery time of cargo

j and all other cargos assigned to ship s, the efficiency of the use of ship s, and port

resources. In the second phase, an assignment problem is solved, where the user has

to specifically specify the maximum number of cargos that can be assigned to each

ship.

7

1.3.2 Heuristic based approach for Pickup and Delivery Problem

The PDP is a generalization of the Vehicle Routing Problem (VRP), which is a gen-

eralization of the Traveling Salesman Problem (TSP). This makes PDP an NP-hard

problem in the strong sense. Hence many authors focus their research on heuristic

methods.

Most of the work on PDP takes time windows into account. Van der Bruggen

et al. [68] use a two-phase local search algorithm for the PDPTW. Both phases use

a variable-depth procedure and an embedded arc-exchange algorithm. Sexton and

Bodin [60], [61] apply Benders’ decomposition method to a mixed binary nonlinear

formulation that solves the scheduling and routing components of the PDPTW sep-

arately. Jaw et al. [31] propose a heuristic that generates routes by feasibility and

cost-based insertion selection. Savelsbergh and Sol [57] apply a sophisticated column

management scheme to a branch-and-price algorithm in the development of a decision

support system for a European road transportation firm.

Nanry and Barnes [46] develop a tabu search heuristic, where, to generate so-

lutions, origin and destination locations may either be inserted from one route to

another or be swapped with an origin-destination pair of another route. Solution

quality is improved or feasibility is gained by inserting individual origins or desti-

nations forward or backward within a route since the capacity constraint might be

violated by insertion or swap. Toth and Vigo [67] also discuss the tabu search-related

heuristic.

1.4 Train routing and scheduling

Another important major in-land transportation mode is rail. The railroad industry

is also very rich in terms of problems that can be modeled using mathematical opti-

mization techniques. However, the related literature in train routing and scheduling

has shown a slow growth and most contributions have dealt with simplified models

that fail to reflect railroad business practices [17]. But after decades of hunkering

8

down and cutting costs, railroads over the past few years have begun acknowledging

that their future depends to a large extent on their ability to provide service that is

competitive with other modes, notably trucking, in terms of reliability and customer

satisfaction. This is also the reason many researchers currently are turning their

attention to railroad problems.

The development of optimization models for train routing and scheduling was

hindered by the large size and the high difficulty of the problems. So, practical im-

plementations of optimization models often had limited success, which deterred both

researchers and practitioners from pursuing the effort. However, rail has increasingly

gained reputation as the most economical in-land mode of transportation and their

stock indices have become stronger in recent years. Strong competition between rail-

road companies, mergers and acquisitions, privatization, increasing computer speed

and data management capability are factors to increased research interest in this area.

Now we will begin explaining some railroad terms that will be used throughout

the thesis. Demands for railroad are generally expressed as number of cars to be

transferred from an origin to a destination. The railroad transportation scheduler

has to determine a trip plan for the cars to follow. For every origin-destination pair,

the corresponding demand can be shipped directly or indirectly. When the demand is

a high priority one, a scheduler might assign a train to carry it from the origin all the

way to the destination. When the demand is a low priority one that does not require

a direct train, it may experience some delays. Either the traffic is consolidated and

routed through intermediate transfer points, or the cars have to wait at the originating

station until sufficient cars has been accumulated.

To benefit from economies of scale and to make the scheduler perform his job

easier, cars are grouped into blocks. A block might contain cars with different origins

and destinations but share some portion of their journeys. Thus, there is also an

origin and a destination associated to a block. Cars might reach their destination

by traveling on a sequence of blocks. There are optimization models developed to

9

provide an optimal blocking plan and how to assign cars into blocks. However, these

are beyond the scope of this thesis. The next thing to do after we have the blocking

plans, which is within the scope of our work, is to build a train plan that will carry

all blocks from their origins to destinations.

A train travels from a train-origin to a train-destination and carries blocks along

the way. When a train passes through an intermediate transfer point, it may drop or

pickup blocks of cars. A block dropped by an inbound train might be transferred to

another to continue its journey. A block might also switch trains several times before

reaching the final destination.

The problem for train routing and scheduling lies in determining the best train

plan to carry all blocks from origins to destinations. How many trains are needed,

what route each train should follow, what blocks to carry, are some of the routing

decisions that a scheduler should decide. A scheduler has to decide the timetables

for each trains. Moreover, daily trains are preferred to ease operational issues. It

means that a railroad company would rather have the same daily trains operating

throughout the week. Train frequency, train arrival and departure times in each stop

are some of the scheduling decisions.

1.4.1 Previous work in train routing and scheduling

Train routing and scheduling is a very complex problem. Thus, sequential approaches

are often adopted. For example, train routings are developed first and train timetables

are decided last. Operating plans are usually for 6 months to 1 year, but weekly and

daily adjustments are usually made to account for demand variability.

Most optimization models for train and block routing are defined over a network

whose nodes represent origins, destinations, or intermediate transfer points. The arcs

represent existing or possible train connections between these points. One of the first

efforts to integrate multiple components of the freight routing problem is credited to

Assad [7] who proposed a multi-commodity network flow model for train routing and

10

scheduling that incorporates some level of interaction between routing and activities

in train intermediate terminals.

Crainic et al. [18] propose a model and a heuristic for a train routing problem. The

model is a nonlinear, mixed integer, multi-commodity flow problem that deals with the

interactions between blocking and train routing decisions. They use a decomposition

scheme that iterates between blocking and routing until the best improvement in the

objective function is attained. The objective is to minimize the sum of operational

cost and delay costs associated with block routing and train services.

Haghani [26] proposes a formulation and a solution method for a combined train

routing and scheduling with empty car distribution problem. The model deals with

temporary demand variability, providing empty car distribution decisions as well as

the optimal time interval for consecutive train services between pairs of transfer nodes.

To account for demand variations from period to period, each transfer node is repli-

cated a certain number of times in a time-space network, depending on the period

length and the planning horizon. The resulting model is a mixed integer problem

with nonlinear objective function and linear constraints. It is solved using a heuris-

tic decomposition approach that exploits the structure of the problem by solving an

integer programming subproblem.

Ahuja et al. [1] consider a simplified version of the problem in which they assume

that each train runs every day of the week (which thus reduces the weekly problem

to an equivalent and simpler daily problem), ignore the train timings, and propose

a time-space network. However, they do not solve the model directly and propose

another heuristic method to solve the problem. The heuristic solves the problem in

two phases. In the first phase, they determine the train network; i.e., train origins,

destinations, and routes as well as block-to-train assignments, that takes into account

the blocking network. In the second phase, train frequencies and timetables are

determined for the train network.

Generally, train routing and train scheduling problems are solved separately since

11

they are hard problems to combine. However, there are also optimization models

that integrate both routing and scheduling decisions into a single model. Morlok and

Peterson [45] are two of the pioneers. The costs considered include train and crew

costs, intermediate transfer point costs, and car-time costs. The model incorporates

constraints on the maximum number of cars per train as well as scheduling constraints

requiring some blocks to be delivered within certain time windows. The model was

applied to a very small instance and solved with a branch-and-bound procedure.

Huntley et al. [29] introduces a computerized routing and scheduling system for

CSX Transportation strategic planning. The output of the model is the sequence of

train links that each block should follow from origin to destination, as well as the

departure times for all train links. The problem is solved using simulated annealing

and a perturbation operator that inserts or deletes a stop from the route of a block,

and adjusts the departure times of the trains. The system was tested on a problem

involving 166 blocks and 41 transfer points. Gorman [25] introduces a combination

of genetic and tabu search algorithms to address weekly train routing and scheduling

problems.

1.5 Thesis focus and organization

The primary contribution of this dissertation is the introduction of a modeling tech-

nique for pickup and delivery problems with time windows along with its extensions

and its application in ship and train routing and scheduling problems.

This work is an extension to the work on the tramp problem studied by Jetlund

and Karimi [32] which is an actual problem faced by a chemical shipping company

in South-East Asia. The work on the train routing and scheduling problem is also

inspired by a real problem faced by a leading railroad company in the United States.

Our novel formulation involves quite a number of bilinear constraints that are

linearized using the scheme for bilinear terms introduced by Al-Khayyal and Falk [4].

It is a linearization scheme based on convex and concave envelopes which allows to

12

reformulate our model into an equivalent Mixed Integer Linear Program (MILP).

The remainder of this thesis is organized as follows: Chapters 2-5 discuss the ship

routing and scheduling problem while Chapter 6 focuses on the train routing and

scheduling problem. In Chapter 2 we give a detailed description of the ship routing

and scheduling problem studied in this thesis, followed by the underlying assump-

tions and model formulation. We follow the notation of Jetlund and Karimi [32] to

formulate our multi-ship problem. We also exploit the special structure embedded in

our model and uncover the totally-unimodular structure enjoyed by some part of the

activity matrix. Chapter 3 will show several attempts to solve the problem heuristi-

cally. Extensive computational results are presented to show how good the heuristics

perform in solving randomly generated problems. We describe how these random

test problems are generated. We also solve the random test problems to optimality

to show the performance of the proposed heuristics, in terms of solution quality and

computational time. We then introduce an upper-bounding problem to our model

in Chapter 4. We also show some computational results on the performance of the

upper-bounding problems. In Chapter 5, we will demonstrate the usefulness of our

model to reflect problems with time aspects. From our ship problem, we relax the

original (hard) pickup time window to soft time windows, allowing a cargo to be

picked up outside its pickup time window by incurring some penalty cost. We also

extend our model to accommodate cargo transfer between ships. In this case, we no

longer require a cargo to be picked up and downloaded by the same ship. Instead, we

allow at most two ships to serve one particular cargo. Of course we may need extra

constraints in our model. We use quite a number of bilinear constraints that can be

exactly linearized using a linearization scheme. We demonstrate the ideas by solving

small test problems. We will also discuss the application of the model to solve train

routing and scheduling problems faced by a real railroad company in Chapter 6. The

complete train model and some computational results are presented. Chapter 7 will

close our discussion by providing a summary of the thesis, suggested future work, and

13

some concluding remarks.

14

CHAPTER II

PROBLEM DESCRIPTION AND MODEL

FORMULATION

The problem we consider to illustrate our model is a real planning problem faced by a

major, multi-national shipping company that operates a fleet of multi-parcel chemical

tankers in Asia. The carriers operate in Asia, but the fleet also serves Australia, India,

and the Middle East. The fleet serves in redistributing cargos to respective download

ports in these regions. The fleet also deals with freight contracts with manufacturers

in the region or spot requests. The problem has been studied by Jetlund and Karimi

[32] in which they suggest an initial version of the model studied in this thesis. Here

we generalize the use of the model to serve most of the cargo types. There are time-

window requirements for cargo pickup and download. The charterer would normally

require a cargo to be picked up within a specific period. Typically, they demand

the delivery to take place as soon as possible after pickup and the longest time they

would tolerate is six weeks after the pickup happens. But generally, the ship notifies

the customers of its estimated time of arrival at the download port and updates them

with additional information if there are any changes to the ship’s schedule.

2.1 Problem description

We are given a fleet of ships S with different characteristics, each of which can be

owned by a different owner. They have different capacities V MAXs, fuel consumption

rates FCs, and charter costs TCCs. A ship’s capacity is proportional to its size and

can be measured in m3, tonnes, number of compartments, or any other metric. Each

ship also has its own operating rate, measured in tonnes of fuel or money spent per

nautical mile. At time zero, we know the current locations of all ships as well as

15

their immediate destinations. Also, we know that each ship contains a set of onboard

cargos L (loaded) to be delivered to their various destinations.

A ship s ∈ S can visit a collection of ports from the set I. When a ship visits a

port i ∈ I, it has to pay a port charge PCis per visit, which normally depends on

the size or capacity of the ship. This port charge does not depend on how long the

ship spends at that particular port. Typically, a ship anchors after arrival at a port

and waits for an inspection to be done by port officers. After it passes the inspection

procedure, then it may berth to unload and/or load cargos. Before it may leave the

port to continue its voyage, it must again go through some inspections. We denote

the total inspection time of any ship in any port as Tadm, which typically is the same

for all ports.

Also, we are given the distance matrix between ports, a set of onboard cargos

L, and a set of unloaded cargos U at various ports. Each unloaded cargo j ∈ U
has specified pickup port and destination port information, denoted by PPj and

DPj, respectively. In addition, each cargo also has size information Vj which can be

measured by its weight (tonnes) or volume (m3), consistent with how the capacity of a

ship is measured. A cargo also has hard time-window information during which it can

be picked up from its originating port. This time-window, which is often referred to

as laycan, consists of the earliest pickup time EPTj and the latest pickup time LPTj.

Similarly, EDTj and LDTj denote the earliest and the latest download time windows,

respectively. In a later extension, we will also introduce soft time-windows where a

cargo can still be picked up outside its original time-window but incurs a penalty. A

cargo is loaded with a loading rate LRj which depends on the characteristics of the

cargo itself. Similarly, we have a download rate DRj for cargo J . Whenever cargo

j is transferred from its pickup port to download port, a shipping revenue of SRj is

gained. It is important to mention that our fleet of ships do not have to serve all of

the unloaded cargos in U , thereby foregoing some potential revenue.

The objective is to select which cargos to be served by which ship and determine

16

the route that each ship should follow during the planning horizon, such that the

total profit of all ships is maximized. The segment of a ship’s journey from one port

to the immediately following port is often referred to as a leg. The profit for each ship

is the revenue from serving cargos minus fuel cost, all port costs, and a charter cost.

The planning horizon is usually 3 to 4 weeks long, and the number of ports visited

(equal to the number of legs) is predetermined by the schedule planner. The number

of legs of one ship may differ from another, but every ship has to deliver at least all

onboard cargos.

We assume that our schedule is a short-term plan that is to be revised frequently.

We expect to run our problem over and over again once new information becomes

available; for example, if there is bad weather, unexpected delays, more new cargos

become available for pickup, or any other reasons that force us to reconfigure our

current solution.

2.2 Assumptions

The following assumptions are made to simplify the notation or to estimate values of

some parameters:

(i) Each ship s ∈ S belongs to a certain class based on its dead-weight capacity.

The port cost PCi is estimated as the average cost of ships in the respective

class.

(ii) Ships sail at a constant average speed of v nautical miles per hour for all jour-

neys.

(iii) Any ship may visit any port. In reality, one port can only serve certain kinds

of ships. Hence, the compatibility between ships and ports is not considered.

(iv) Fuel consumption is a linear function of the sailed distance, independent of

load or the draught of the ship. The draught of a ship is defined as the depth

of a ship’s keel below the surface, especially when loaded. The actual fuel

17

consumption depends on the draught of the ship as well as the sailing speed of

the ship in a highly non-linear fashion.

(v) At time zero, for every ship we are given the initial destination and estimated

time of arrival at the designated port. Each ship will complete its journey to

the target port before a new schedule is created for it. In reality, a ship may

change directions in the middle of a voyage.

(vi) A ship cannot visit a port more than once during the planning horizon. In

most situations, a ship would visit a port only once in each planning horizon.

However, our schedule is expected to be revised frequently, so in fact a ship may

have multiple visits to the same port.

(vii) The inspection times before berthing and before leaving the port are both

0.5Tadm. In other words, an equal amount of time is needed before and af-

ter for a total inspection time of Tadm per port visit.

(viii) In this high level planning, we do not consider the process of assigning cargos

to compartments on the ship. We assume that a feasible stowage arrangement

exists, as long as the capacity constraint holds.

(ix) Once the ship loads a cargo, it must deliver that cargo and cannot transfer the

cargo to another ship. We will relax this assumption in one of our extensions

which modifies the model to allow transfers between ships.

(x) Each cargo has its time-windows for pickup and delivery. Typically, delivery

time-windows are not defined as one of the company’s business rules. However,

since the generated schedule is short-term and we require every picked-up cargo

to be delivered within the time horizon, the time horizon itself can act as a

deadline. In other words, by setting the time horizon as 4 weeks, we require

each served cargo to be delivered within 4 weeks. Later we will also introduce

18

soft time-windows for cargo pickups where we allow some cargos to be picked-up

outside their original time windows with some penalty.

(xi) Loading and downloading rates of each cargo j are given by the average of

total cargo volume transferred divided by the relevant loading and downloading

rates. It is assumed to be the same for all types of cargos. Depending on data

availability, we can always differentiate the rates for each cargo. The loading

and downloading rates for each cargo are conservative measures since we assume

only one cargo can be loaded or discharged at a time. A ship sometimes would

be able to load and/or discharge multiple cargos at the same time.

(xii) Pickup and delivery time-window requirements are measured by the arrival time

of a ship at the respective ports, not the actual time the cargos are fully loaded

or unloaded.

2.3 Model formulation

The problem was visited by Jetlund and Karimi [32] and is formulated as a Mixed

Integer Linear Program (MILP). We follow their notation and investigate the problem

for the multi-ship case. We model the schedule for a ship s as a series of (Ks+1) sailing

legs, where Ks is the number of sailing legs a planner schedules. Sailing leg k = 0 is

the leg where a ship reaches its destination port at time zero. This initial target port

information is given prior to the new schedule generation. Let Ks = {0, 1, ..., Ks}
be the set of legs for ship s. In reality, with the emerging technology of Global

Positioning Systems (GPS) we may model the initial ship location as an imaginary

port allowing the ship to change its first destination at time zero.

In addition to real ports, a dummy port i = 0 is introduced with zero port cost

and zero distance from any other port. There is no cargo originating from and to

be discharged at this dummy port. Therefore the model also forces a condition that

after a ship visits this dummy port, it will have to stay there until the end of the

19

planning horizon. We recognize this dummy port as an absorbing port used to idle

any ship, if this option is considered profitable.

2.3.1 Routing constraints

The routing constraints define and link the sequence of arrivals and departures of the

various ships to and from available ports. We define binary variables Xisks to model

whether or not ship s is at port i at the end of sailing leg ks. Note that the index

k depends on s, because for different ships we may have different numbers of legs

(ks ∈ Ks), where Ks denotes the set of legs for ship s. But for simplicity, let us drop

the subscript s from index ks. We define

Xisk =





1 if ship s reaches port i at the end of leg k

0 otherwise

and let Tsk denote the time at which ship s arrives at any port at the end of leg k.

Visit exactly one port in each leg

A ship can only visit one port during each leg. It can be any of the service ports or

the dummy port

∑
i

Xisk = 1, s ∈ S, k ∈ Ks. (1)

Maximum one visit for all ports i ∈ I \ {0}
From assumption (vi) of section 2.2, a ship can visit a specific port at most once

during each leg, except for the dummy port, so

∑

k

Xisk ≤ 1, i ∈ I \ {0}, s ∈ S. (2)

20

Dummy port as an absorbing port

To prevent a ship from transiting through the dummy port, we force that once a ship

visits the dummy port, it has to stay there until the end of the planning horizon. In

other words, the dummy port is only visited by ships that are idle until the end of

the planning horizon. We express this in the following constraint

X0sk ≤ X0s(k+1), s ∈ S, k ∈ Ks\{Ks}. (3)

Port-to-port travel

To model travel from the current port to the next port, binary transition variables

are defined as

Zilsk =





1 if ship s visits port i at the end of leg k

and port l at the end of leg (k + 1)

0 otherwise.

Clearly, Zilsk = XiskXls(k+1), for all i, j ∈ I, s ∈ S, k ∈ Ks\{Ks}. This represents

a nonlinear relationship, but we utilize an equivalent linear reformulation of this type

of constraint given by these two constraints

∑

l∈I,l 6=i

Zilsk = Xisk, i ∈ I, s ∈ S, k ∈ Ks\{Ks}, (4)

∑

i∈I,i 6=l

Zilsks = Xls(ks+1), l ∈ I, s ∈ S, k ∈ Ks\{Ks}. (5)

By this equivalent linear formulation, we may treat Zilsk as a 0 − 1 continuous

variable.

21

2.3.2 Cargo movement constraints

We define binary variables Yjs to indicate whether a ship s should serve a cargo j

Yjs =





1 if ship s serves cargo j

0 otherwise.

Clearly, Yjs = 1 for all onboard cargos j ∈ L. In our current scenario, once a ship

picks up a cargo from its pickup port, it has to carry it all the way to the destination

port within the time horizon. To capture these movements, we define three types of

binary variables XPjsk, XDjsk, and XCjsk that later turn out can be set as 0 − 1

continuous variables.

XPjsk =





1 if ship s picks up cargo j at the end of leg k

0 otherwise

XDjsk =





1 if ship s downloads cargo j at the end of leg k

0 otherwise

XCjsk =





1 if ship s carries cargo j onboard during leg k

0 otherwise

Note that for all cargos j ∈ L, XCjs0 = 1 for their respective ship s.

Cargo pickups and downloads

For a ship s to load a cargo j at the end of leg k, the ship must visit the loading port

PPj at time Tsk, and of course it must service cargo j. Hence, we must have

XPjsk = YjX(PPj)sk, j ∈ U , s ∈ S, k ∈ Ks.

Similarly, for a ship s to unload a cargo j at the end of leg k, the ship must visit

the unloading port DPj at time Tsk, and it must service cargo j. Therefore,

XDjsk = YjsX(DPj)sk, j ∈ L ∪ U , s ∈ S, k ∈ Ks.

22

These non-linear constraints are replaced by the following linear constraints. Firstly,

when a ship s does service a cargo j (i.e., Yjs = 1), then it must be loaded in exactly

one leg. Otherwise, when it does not serve the cargo, then it cannot be loaded in any

leg. The same is true for downloads. Thus,

∑

k

XPjsk = Yjs, j ∈ U , s ∈ S, (6)

∑

k

XDjsk = Yjs, j ∈ L ∪ U , s ∈ S. (7)

Secondly, the pickup and download can happen only at a cargo’s pickup and

discharge ports, respectively. That is,

XPjsk ≤ X(PPj)sk, j ∈ U , s ∈ S, k ∈ Ks, (8)

XDjsk ≤ X(DPj)sk, j ∈ L ∪ U , s ∈ S, k ∈ Ks. (9)

By these constraints we are assured that we can treat variables XPjsk and XDjsk

as 0-1 continuous variables.

Pickup before download

If a ship services a cargo, then it must visit the pickup port before it visits the delivery

port, which is expressed in the following constraint

∑

k>0

k(XDjsk −XPjsk) ≥ Yjs, j ∈ U , s ∈ S. (10)

Carrying cargo from pickup to download port

Also, to make a ship carry a cargo j from its pickup port to its delivery port, the

following constraint is used

23

XCjs(k+1) = XCjsk + XPjsk −XDjsk, j ∈ L ∪ U , s ∈ S, k ∈ Ks\{Ks}. (11)

Since variables XPjsk and XDjsk are automatically set to be binary, the same

applies to variable XCjsk. Clearly, XCjs0 = 1 for all cargos j ∈ L carried by ship s.

Ship capacity

Every time a ship carries some cargos onboard, they must be within the carrying

capacity of the ship. Thus,

∑
j

VjXCjsk ≤ V MAXs, s ∈ S, k ∈ Ks. (12)

One cargo is served by one ship

To ensure that a cargo is serviced by at most one ship, the following constraint is

imposed

∑
s

Yjs ≤ 1, j ∈ L ∪ U . (13)

2.3.3 Time constraints

We let Tsk denote the time at which a ship s arrives at any port at the end of its leg

k. After a ship performs its service at a port, it will continue its journey to the next

port. Let TTsk denote the time a ship s takes to travel from a current port at the

end of leg k to the next port at the end of leg (k + 1). If the distance between port i

and port l is Disil, then TTsk can be expressed as

TTsk =
∑

i

∑

l

DisilZilsk

24vs

s ∈ S, k ∈ Ks\{Ks}. (14)

24

��� ���

������	��
��� ������	��
��� ����
�	��
�
�

�
�

�
� �

����

������	��
���

�
�

��
�

��
�

��

��

��������������������������

������������������

������

Figure 1: Time representation with port arrivals at Tsk and time travel between
ports TTsk.

Here, vs denotes the speed of ship s in nautical miles per hour. Notice that only

one Zilsk can equal 1 for all i and all j. Hence, TTsk is actually the distance between

two ports visited at the ends of legs k and (k + 1) divided by the speed of the ship.

Figure 1 shows the connection between Tsk and TTsk in a slot-based time representa-

tion.

Pickup and download time windows

We must ensure that whenever a ship serves a cargo, it has to pickup the cargo within

the pickup laycan. First, a pickup can only happen before the latest pickup time

expires. Assuming that a ship requires half of the total administrative time before it

can actually perform a pickup in any port, the following constraint is defined:

Tsk ≤ (LPTj − 1

2
Tadm)XPjsk + M(1−XPjsk), j ∈ U , s ∈ S, k ∈ Ks\{Ks}. (15)

The constant M in the above constraint is a large number that functions when a

ship does not serve the cargo. And second, the arrival time at the next port has to

meet the pickup time windows for whatever cargos that are being picked up at the

next port. Therefore,

25

Ts(k+1) ≥ (EPTj +
1

2
Tadm)XPjsk +

VjXPjsk

LRj

+ TTsk, j ∈ U , s ∈ S, k ∈ Ks\{Ks}.
(16)

Similarly, an unloading has to be done within the download time-windows. There-

fore,

Tsk ≤ (LDTj − 1

2
Tadm)XDjsk + M(1−XDjsk), j ∈ L ∪ U , s ∈ S, k ∈ Ks, (17)

Ts(k+1) ≥ (EDTj+
1

2
Tadm)XDjsk+

VjXDjsk

DRj

+TTsk, j ∈ L∪U , s ∈ S, k ∈ Ks\{Ks}.
(18)

Time spent at a port

Since we assume that a ship can load or unload one cargo at a time, we also have to

consider the total time required to serve all cargos. Total service time in a port must

exceed the time required for inspections, plus the time for discharging all delivery

cargos, plus the time for loading pickup cargos. Also, particularly for the dummy

port, we do not have administrative time. Hence,

Ts(k+1) ≥ Tsk+Tadm(1−X0sk)+
∑

j

VjXDjsk

DRj

+
∑

j

VjXPjsk

LRj

+TTsk, s ∈ S, k ∈ Ks\{Ks}.

(19)

2.3.4 Objective function

The objective is to maximize profits, i.e. revenues generated from all serviced cargos,

less all fuel costs FCs, port charges PCis, and time-charter costs TCCs.

26

(OBJ) Maximize





∑
j

∑
s SRjYjs Revenue

−∑
s

∑
k FCsvsTTsk - Fuel Costs

−∑
s

∑
i

∑
k PCisXisk - Port Costs

−∑
s TCCs ×

(
TKs,s +

∑
j

VjXDjsKs

DRj

)
- Time Charter Costs

(20)

where j ∈ L ∪ U , i ∈ I, s ∈ S, and k ∈ Ks. This completes the formulation for our

multi-ship scheduling problem.

To summarize, we have the complete problem modeled as a MILP problem. For

the sake of completeness we derive the dual form of the MILP relaxation which can

be found in Appendix B.

2.3.5 Complete multi-ship problem

(OBJ) Maximize





∑
j

∑
s SRjYjs Revenue

−∑
s

∑
k FCsvsTTsk −

∑
s FCsvsTs0 - Fuel Costs

−∑
s

∑
i

∑
k PCisXisk - Port Costs

−∑
s TCCs ×

(
TKs,s +

∑
j

VjXDjsKs

DRj

)
- Time Charter Costs

(Ask)
∑

i Xisk = 1 s ∈ S, k ∈ Ks

(Bis)
∑

k Xisk ≤ 1 i ∈ I \ {0}, s ∈ S
(Csk) X0sk −X0s(k+1) ≤ 0 s ∈ S, k ∈ Ks\{Ks}
(Disk)

∑
l Zilsk −Xisk = 0 i ∈ I, s ∈ S, k ∈ Ks\{Ks}

(Eisk)
∑

l Zlisk −Xis(k+1) = 0 i ∈ I, s ∈ S, k ∈ Ks\{Ks}
(Fjs)

∑
k XPjsk − Yjs = 0 j ∈ U , s ∈ S

(Gjsk) XPjsk −X(PPj)sk ≤ 0 j ∈ U , s ∈ S, k ∈ Ks

(Hjs)
∑

k XDjsk − Yjs = 0 j ∈ L ∪ U , s ∈ S
(Ijsk) XDjsk −X(DPj)sk = 0 j ∈ L ∪ U , s ∈ S, k ∈ Ks

(Jjs)
∑

k>0 k(XPjsk −XDjsk) + Yj ≤ 0 j ∈ U , s ∈ S
(KDjsk) −XCjs(k+1) + XCjsk + XPjsk −XDjsk = 0 j ∈ L ∪ U , s ∈ S, k ∈ Ks\{Ks}

27

(LDsk)
∑

j VjYjsk ≤ V MAXs s ∈ S, k ∈ Ks

(MDsk) TTsk −
∑

i

∑
l
DisilZilsk

24vs
= 0 s ∈ S, k ∈ Ks

(Njsk) Tsk + (M − LPTj + 1
2Tadm)XPjsk ≤ M j ∈ U , s ∈ S, k ∈ Ks\{Ks}

(Ojsk) −Ts(k+1) + (EPTj + 1
2Tadm)XPjsk + ...

VjXPjsk

LRj
+ TTsk ≤ 0 j ∈ U , s ∈ S, k ∈ Ks\{Ks}

(Psk) −Ts(k+1) + Tsk − TadmX0sk + ...
∑

j
VjXDjsk

DRj
+

∑
j

VjXPjsk

LRj
+ TTsk ≤ −Tadm s ∈ S, k ∈ Ks\{Ks}

(Qj)
∑

s Yjs ≤ 1 j ∈ U
(Rjsk) Tsk + (M − LDTj + 1

2Tadm)XDjsk ≤ M j ∈ U , s ∈ S, k ∈ Ks\{Ks}
(Sjsk) −Ts(k+1) + (EDTj + 1

2Tadm)XDjsk + ...

VjXDjsk

DRj
+ TTsk ≤ 0 j ∈ U , s ∈ S, k ∈ Ks

(V Xisk) Xisk ≤ 1 i ∈ I, s ∈ S, k ∈ Ks

(V Zilsk) Zilsk ≤ 1 i, l ∈ I, s ∈ S, k ∈ Ks\{Ks}
(V Yjs) Yjs ≤ 1 j ∈ L ∪ U , s ∈ S
(V XPjsk) XPjsk ≤ 1 j ∈ U , s ∈ S, k ∈ Ks

(V XDjsk) XDjsk ≤ 1 j ∈ L ∪ U , s ∈ S, k ∈ Ks

(V XCjsk) XCjsk ≤ 1 j ∈ L ∪ U , s ∈ S, k ∈ Ks

2.4 Example

Our example is taken from a real chemical shipping company which operates a fleet

of small, multi-parcel ships in the Asia Pacific region. At one time in the past (time

zero is 17 April, 12:00AM) the company had 10 ships and 79 cargo requests involving

36 ports. Among these 79 cargos, at time zero, 37 of them were loaded on their

corresponding ships while 42 others were new potential cargos. This cargo information

is shown in Tables 1 and 2. We also have information about each ship and port as

shown in Tables 3 and 4, respectively.

We first repeat the work done by Jetlund and Karimi [32] to solve several one-

ship problems, meaning that we ignore the existence of all but one ship and solve the

problem. The problems are solved using by CPLEX 9.000 on a four-CPU Sun E450

server machine under all of the default options of CPLEX for each one-ship problem.

28

Table 1: Unloaded cargo information details

Cargo Origin Destination Pickup Latest Volume Shipping Rate
Time Windows Download (tonnes) (USD)

1 Karimun Shuidong 25-29 April 10 June 950 45,125
2 Karimun Shekou 25-29 April 10 June 596 29,800
3 Karimun Taichung 25-29 April 10 June 1049 31,470
4 Karimun Kaohsiung 25-29 April 10 June 700 28,000
5 Karimun Shanghai 25-29 April 10 June 501 20,040
6 Karimun Bangkok 25-29 April 10 June 2092 62,760
7 Karimun Jasaan 25-29 April 10 June 1000 45,000
8 Karimun Anyer 25-29 April 10 June 1011 28,308
9 Karimun Ningbo 23-27 April 8 June 1400 50,400
10 Karimun Port Kelang 23-27 April 8 June 500 30,000
11 Ulsan Ningbo 26-29 April 10 June 995 33,830
12 Ulsan Ningbo 26-29 April 10 June 678 23,052
13 Ulsan Shanghai 26-29 April 10 June 1000 34,000
14 Ulsan Shanghai 26-29 April 10 June 505 17,170
15 Ulsan Nantong 26-29 April 10 June 1000 36,000
16 Ulsan Nantong 26-29 April 10 June 315 11,340
17 Singapore Shekou 21-25 April 6 June 2700 67,500
18 Singapore Shekou 21-25 April 6 June 350 8,750
19 Singapore Shekou 21-25 April 6 June 600 15,000
20 Singapore Botany Bay 14-23 April 4 June 800 44,800
21 Kuantan Shanghai 22-27 April 8 June 800 30,000
22 Kuantan Shanghai 22-27 April 8 June 300 11,250
23 Kuantan Ulsan 22-27 April 8 June 400 15,000
24 Kuantan Ulsan 22-27 April 8 June 700 26,250
25 Kuantan Shanghai 22-27 April 8 June 1000 37,500
26 Singapore Kandla 18-25 April 6 June 1000 26,250
27 Singapore Kandla 18-25 April 6 June 500 13,125
28 Singapore Kandla 18-25 April 6 June 500 13,125
29 Singapore Kandla 18-25 April 6 June 300 7,875
30 Karimun Maptaphut 25-29 April 10 June 500 16,000
31 Karimun Maptaphut 25-29 April 10 June 1000 32,000
32 Karimun Bangkok 25-29 April 10 June 250 8,000
33 Singapore Kerteh 25-30 April 11 June 350 23,999.5
34 Kuantan Bangkok 01-05 May 16 June 500 20,000
35 Kuantan Bangkok 01-05 May 16 June 200 8,000
36 Onsan Paradip 21-25 April 6 June 6000 289,800
37 Ulsan Lanshantao 21-25 April 6 June 300 9,000
38 Ulsan Shanghai 21-25 April 6 June 600 18,000
39 Brisbane Kaohsiung 24-28 April 9 June 1100 57,607
40 Brisbane Shanghai 24-28 April 9 June 2700 141,399
41 Brisbane Zhapu 24-28 April 9 June 4500 235,665
42 Brisbane Taichung 24-28 April 9 June 150 7,855.5

29

Table 2: Loaded cargo information details

Cargo Origin Destination Latest Volume Ship Rate Status at time zero
Download (tonnes) (USD)

43 Ulsan Bangkok 17 May 315 12,600 Loaded on ship 1
44 Ulsan Bangkok 17 May 315 12,600 Loaded on ship 1
45 Ulsan Bangkok 17 May 315 12,600 Loaded on ship 1
46 Ulsan Bangkok 17 May 199 7,960 Loaded on ship 1
47 Ulsan Kuantan 17 May 1490 48,425 Loaded on ship 1
48 Ulsan Singapore 17 May 455 13,650 Loaded on ship 1
49 Ulsan Singapore 17 May 105 3,150 Loaded on ship 1
50 Ulsan Singapore 17 May 509 15,270 Loaded on ship 1
51 Ulsan Tanjung Priok 17 May 210 15,006.6 Loaded on ship 1
52 Ulsan Tanjung Priok 17 May 210 15,006.6 Loaded on ship 1
53 Kuantan Yosu 17 May 850 36,125 Loaded on ship 2
54 Kuantan Ulsan 17 May 300 12,000 Loaded on ship 2
55 Kuantan Ulsan 17 May 300 12,000 Loaded on ship 2
56 Abu Jubail Tanjung Priok 17 May 2086 74,053 Loaded on ship 3
57 Ulsan Karimun 17 May 3000 120,000 Loaded on ship 4
58 Ulsan Wellington 17 May 500 30,750 Loaded on ship 5
59 Ulsan Timaru 17 May 500 30,750 Loaded on ship 5
60 Ulsan New Plymouth 17 May 50 3,075 Loaded on ship 5
61 Ulsan Auckland 17 May 50 3,075 Loaded on ship 5
62 Yosu Yingkou 17 May 5359 96,462 Loaded on ship 6
63 Taichung Nantong 17 May 1001 36,036 Loaded on ship 7
64 Taichung Ningbo 17 May 650 26,000 Loaded on ship 7
65 Taichung Jiangyin 17 May 1050 42,000 Loaded on ship 7
66 Mailiao Shanghai 17 May 2000 52,000 Loaded on ship 7
67 Mailiao Shanghai 17 May 500 13,000 Loaded on ship 7
68 Karimun Davao 17 May 800 60,000 Loaded on ship 9
69 Karimun Batangas 17 May 350 29,998.5 Loaded on ship 9
70 Kuantan Batangas 17 May 300 24,999 Loaded on ship 9
71 Kerteh Batangas 17 May 500 10,800 Loaded on ship 9
72 Kerteh Mailiao 17 May 2000 43,200 Loaded on ship 9
73 Kerteh Kaohsiung 17 May 1300 28,080 Loaded on ship 9
74 Kuantan Batangas 17 May 300 24,999 Loaded on ship 9
75 Karimun Shuidong 17 May 731 31,067.5 Loaded on ship 10
76 Karimun Shuidong 17 May 488 20,740 Loaded on ship 10
77 Karimun Xiaohudao 17 May 1000 40,000 Loaded on ship 10
78 Karimun Xiaohudao 17 May 1000 26,000 Loaded on ship 10
79 Karimun Xiaohudao 17 May 850 22,100 Loaded on ship 10

30

Table 3: Ship information details

Ship Size Cost Immediate ETA Fuel Cost Consumption
(dwt) (USD/day) Destination (day) (USD/nm) (tonnes/day at 13 knots)

1 11000 9000 Bangkok 1.620 7.18 14
2 11000 9000 Yosu 1.875 7.18 14
3 11000 8000 Tanjong Priok 0.083 7.18 14
4 8200 8000 Singapore 3.625 6.15 12
5 8200 7000 Wellington 1.573 6.15 12
6 5800 7000 Yingkou 1.323 6.15 12
7 5800 7000 Ningbo 2.865 6.15 12
8 5800 7000 Ulsan 3.750 6.15 12
9 5800 7000 Davao 2.031 6.15 12
10 6000 7000 Shuidong 0.367 6.15 12

The ten problems were solved to optimality within a time range between 5.18 and

240.53 seconds. Each of our one-ship problems on average has 338 integer and 11,256

continuous variables, and 12,700 constraints. The result of solving all 10 one-ship

problems is shown in Table 5 and Figure 2.

Our one-ship solution does not provide a feasible solution to our multi-ship prob-

lem. Since we only consider one ship at a time, a single cargo may be served by

multiple ships, especially if the profit generated by serving that cargo is attractive.

Remark 2.4.1

(i) The optimal result from many one-ship problems are used to generate some

heuristics for solving the multi-ship problem. These are presented in Chapter

3.

(ii) Our 10-ship problem involves 79 cargos (loaded and unloaded) and 37 ports.

The number of integer and continuous variables are 3,380 and 112,560, respec-

tively. The total number of constraints is 127,079. It is virtually impossible

to solve such a multi-ship problem using the default options of CPLEX within

a reasonable amount of time; i.e., the amount of time a ship would tolerate

waiting for its schedule to be constructed.

31

Table 4: Port information details

Port Number Port Name Port Cost (USD) Port Cost (USD)
9000-11000 dwt 6000-9000 dwt

1 Anyer 6250 4853
2 Auckland 5000 4500
3 Bangkok 6048 4594
4 Batangas 9370 8230
5 Botany Bay 10725 9000
6 Brisbane 6846 5500
7 Davao 7421 7085
8 Jasaan 7500 7000
9 Jiangyin 5224 4599
10 Kandla 5845 5500
11 Kaohsiung 4644 4188
12 Karimun 1988 1629
13 Kerteh 10957 9361
14 Kuantan 3608 3210
15 Lanshantao 5312 4127
16 Maptaphut 5681 4819
17 Mailiao 5900 5112
18 Nantong 6302 4543
19 New Plymouth 4839 4325
20 Ningbo 4740 3116
21 Onsan 5587 3688
22 Paradip 6501 5764
23 Port Kelang 3686 2513
24 Shanghai 6177 5125
25 Shekou 5757 4840
26 Shuidong 5862 5202
27 Singapore 7248 5348
28 Taichung 4624 4219
29 Tanjung Priok 5004 4724
30 Timaru 3748 3445
31 Ulsan 6591 5692
32 Wellington 4044 4000
33 Xiaohudao 7809 6760
34 Yingkou 5000 4325
35 Yosu 5772 5056
36 Zhapu 5000 4000

32

Table 5: Optimal one-ship solutions for all ten ships

Ship Size Cost Immediate Arrival Cargos New cargos Ship Profit
(dwt) ($/day) Destination (days) onboard (USD)

1 11,000 9,000 Bangkok 1.620 43-52 2,5,9,17-19,21-22,25 158,412
2 11,000 9,000 Yosu 1.875 53-55 11-15, 36, 38 191,288
3 11,000 8,000 Tj. Priok 0.083 56 1-2, 6, 17-19, 30-32 144,742
4 8,200 8,000 Singapore 3.625 57 1-2, 5, 9, 17, 21, 25 195,108
5 8,200 7,000 Wellington 1.573 58-61 40-41 171,609
6 5,800 7,000 Yingkou 1.323 62 11-16, 38 138,912
7 5,800 7,000 Ningbo 2.865 63-67 13-14, 38 115,221
8 5,800 7,000 Ulsan 3.750 - 11-16, 38 46,841.2
9 5,800 7,000 Davao 2.031 68-74 11-14 160,653
10 6,000 7,000 Shuidong 0.367 75-79 36 215,735

Ship-1

Ship-2

Ship-3

Ship-4

Ship-5

Ship-6

Ship-7

Ship-8

Ship-9

Ship-10

Shuidong

1 week
 2 weeks
 3 weeks
 4 weeks

Bangkok
 Kuantan
 S’pore
 Karimun
 Jakarta
 Shekou
 Ningbo
 Shanghai

Yosu
 Onsan
 Ulsan
 Nantong
 Shanghai
 Ningbo
 Paradip

Xiaohudao
 Onsan
 Paradip

Jakarta
 Singapore
 Karimun
 Maptaphut
 Bangkok
 Shuidong
 Shekou

Singapore
 Kuantan
 Karimun
 Shuidong
 Shekou
 Ningbo
 Shanghai

Wellington
 Timaru
 New Plymouth
 Auckland
 Brisbane
 Shanghai
 Zhapu

Yingkou
 Ulsan
 Ningbo
 Shanghai
 Nantong

Ningbo
 Nantong
 Jiangyin
 Ulsan
 Shanghai

Ulsan
 Ningbo
 Shanghai
 Nantong

Davao
 Batangas
 Kaohsiung
 Mailiao
 Ulsan
 Shanghai
 Ningbo

Figure 2: Gantt-chart for the optimal one-ship schedules

33

Table 6: Optimal 2-ship solutions for ships 8 and 9

Ship Size Cost Immediate Arrival Cargos New cargos Ship Profit
(dwt) ($/day) (Destination) (days) onboard (USD)

8 5,800 7,000 Ulsan 3.750 - 11-16, 38 46,841.2
9 5,800 7,000 Davao 2.031 68-74 1, 2, 4 114,589.8

Total 68-74 1, 2, 4, 11-16, 38 161,431

Figure 3: Gantt-chart for the optimal 2-ship schedules

We illustrate our multi-ship model by solving a 2-ship problem, consisting of ships

8 and 9. We ignore the rest of the ships and solve the problem of determining the

optimal schedule only of ships 8 and 9. Using the default choices of CPLEX, the

problem is solvable in 2469.24 seconds. In the optimal solution of the two one-ship

problems, ships 8 and 9 are both competing to serve cargos 11-14. But in the optimal

2-ship schedule, cargos 11-14 are served by ship 8 with additional cargos 15, 16 and

38; while ship 9 is serving new cargos 1,2, and 4, that are not even carried in the

one-ship optimal schedule. The result of this 2-ship problem is shown in Table 6 and

Figure 3.

34

��������	
����
�����

����	�

����
�����

����	�

����
�����

����	�����

����
�����

����	���

����
�����

��������	�
������

Figure 4: Constraint (13) acts as the coupling constraint, the remaining constraints
can be decoupled into |S| smaller problems.

2.5 Decomposition

Decomposition is essential in order to solve MIP’s of the size encountered in our model.

Moreover, it is very natural to decompose the problem by ship. In this section we will

show how to decompose the problem into smaller problems and exploit the special

structure of the system.

Notice that constraint (13) can be viewed as a system of coupling constraint. The

remaining other constraints can be decoupled into |S| smaller problems, as illustrated

in Figure 4.

From the description of each variable we presented earlier, we have three kinds of

variables; namely, variables related to ship movements (Xisk, Zilsk), variables related

to cargo movements (Yjs, XPjsk, XDjsk, XCjsk), and variables related to time con-

straints (Tsk, TTsk). We use this classification as a basis for grouping our constraints.

Constraints (1), (2), (3), (4) and (5) only involve variables Xisk and Zilsk, so we

group them into one block of constraints. Constraints (6), (7), and (11) involve cargo

movements variables Yjs, XPjsk, XDjsk, and XCjsk and we categorized them into

one block of constraints. The third block consists of time constraints (14), (15), (16),

and (19). Finally, we group the rest of the constraints (8), (9), (10), and (12) into

35

the fourth block. Hence our problem can be written as follow

Maximize c1
x x1 + c2

x x2 + cy y

s.t. A1
x x1 + A2

x x2 + Ay y ≤ a

D1
x x1 + D2

x x2 ≤ d

E x1 ≤ e

F x2 ≤ f

(21)

x1, x2 ∈ {0, 1}, y ≥ 0

where (c1
x, c

2
x, cy) is the objective coefficient row vector, A1

x, A2
x, Ay, D1

x, D2
x, E and

F are real matrices, (aT , dT , eT , fT) is the right hand side column vector, and x1, x2

and y are column vectors, where

x := 〈Xisk, Zilsk, Yjs, XPjsk, XDjsk, XCjsk〉
y := 〈TTsk, Tsk〉

range over j ∈ L ∪ U , i, l ∈ I, s ∈ S, k ∈ Ks. We use the notation 〈·〉 to denote the

column vector with components ranging through the specified indices. Note that the

variables Xisk and Yjs are pure binary variables and the remaining variables in (x1,x2)

are forced to be binary by these two pure binary variables. The components of y are

continuous. We further observe that matrices E and F are totally-unimodular, and

we use this special property later. Also note that by using the relation reflected in

equation (14) we can eliminate variable TTsk from the system for all s ∈ S, k ∈ Ks.

2.5.1 Total-unimodularity property

While the formulation does not follow a simple network structure, some constraints

do form a totally-unimodular activity matrix.

Lemma 2.5.1 For each ship s ∈ S, the submatrices E and F as defined in the

one-ship problem are totally-unimodular.

36

E

(Totally

Unimodular)

F

(Totally

Unimodular)

A
x

1

D
x

1

A
x

2

D
x

2

A
y

Figure 5: Each of the |S| ship polyhedron has a special one-ship structure.

The proof of Lemma 2.5.1 takes advantage of the well-known result of totally-

unimodular (TU) matrix characteristics (e.g., Proposition III.1.2.1 in [47]). We in-

clude a partial statement that is used to show our submatrices E and F are TU.

Proposition 2.5.1 The following statements are equivalent.

1. P is TU.

2. A matrix obtained by multiplying a row of P by −1 is TU.

3. A matrix obtained by interchanging two rows of P is TU.

We also need the following famous result (e.g., Theorem 19.3(iv) in [58]) to prove

Lemma 1.1.

Proposition 2.5.2 Let P be a matrix with entries 0, +1,−1. Then P is totally-

unimodular if and only if each collection of rows of A can be split into two parts so

that the sum of the rows in one part minus the sum of the rows in the other part is a

vector with entries only 0, +1, and −1.

Proof of Lemma 2.5.1:

The idea of proving the total-unimodularity of submatrices E and F in our one-

ship problem is to split their row collections into two classes R1 and R2 so that the

property in Proposition 2.5.2 is satisfied.

37

Submatrix E involves constraints (1), (2), (4), (5) and variables Xisk, Zilsk, for all

i, l ∈ I, k ∈ Ks. We let each column represent a variable and observe that submatrix

E has entries 0, +1,−1.

For each s ∈ S, let us first consider constraints (1) and (2) and relabel them as

(Ask)
∑

i Xisk = 1 s ∈ S, k ∈ Ks,

(Bis)
∑

k Xisk ≤ 1 i ∈ I \ {0}, s ∈ S.

Variable Xisk appears once in (Ask) for all k ∈ Ks, and once more in (Bis) for all

i ∈ I\{0}. Still not considering those for i = 0, group all rows of (Ask) as R1 and all

rows generated by constraint (Bis) as R2. Up to now, for each column in R1∪R2, we

have the sum of all rows in R1 cancels out the sum of all rows in R2. For all (Ask),

let us now put them aside and we will consider them later.

Now, we consider constraints (4) and (5) which involve both variables Xisk and

Zilsk. For each s ∈ S, let (Disk) and (Eisk) denote constraints (4) and (5), respectively;

i.e.,

(Disk)
∑

l Zilsk −Xisk = 0, i ∈ I, s ∈ S, k ∈ Ks\{Ks}
(Eisk)

∑
i Zilsk −Xls(k+1) = 0, i ∈ I, s ∈ S, k ∈ Ks\{Ks}.

Use the following rule of assigning these constraints for each s ∈ S:

• For each i, l ∈ I and k ∈ Ks\{Ks}, variable Zilsk appears once in both types

of constraints. Since it is our goal to take advantage of Proposition 2.5.2, the

same variable that appears in (4) has to be separated from its appearance in

(5). So, for all i ∈ I, assign (Dis0) to R1 and (Eis0) to R2.

• Since Xisk appears in both (Dis(k+1)) and (Eisk) with different signs for all

k ∈ Ks\{0, Ks}, for these values of k we want to put (Dis(k+1)) in the same

group with (Eisk). Then we assign constraint (Dis1) to R2 and (Eis1) to R1, for

all i ∈ I.

• For the same reason, we assign (Dis2) to R1 and (Eis2) to R2, for all i ∈ I.

38

• We keep doing this cross assignment until we hit k = Ks − 1.

Up to this point, for each column related to variables Zilsk, we have the sum of all

rows in R1 cancels out the sum of all rows in R2, for all i ∈ I. And for each column

related to variables Xisk, we have the sum of all rows in R1 cancels out the sum of

all rows in R2 for all k ∈ Ks\{0, Ks} and all i ∈ I\{0}.
For the column related to variable X0s0, we have the sum of all rows in R1 and

R2 equals +1 and 0, respectively. And for the column related to variable X0sKs , the

sum of all rows in R1 and R2 are either −1 or 0. One of them will equal −1 and the

other one 0.

Recall that we still have not assigned (Ask), for all k ∈ Ks. The variable related

to these unassigned rows is X0sk, for all k ∈ Ks. Further,

• assign (As0) to R2 to have cancel out the sum of all rows in column X0s0 in

R1. As a consequence of this assignment, the sum of all rows of R1 and R2 in

column Xis0 (i ∈ I\{0}) are +1 and 0 respectively. But this is fine as long as

it does not violate the condition to apply Proposition 2.5.2.

• assign (AsKs) to whichever group has the current sum of rows in column X0sKs

equal −1. This will make the row sums in column X0sKs equal 0 in both R1

and R2.

• assign the rest of (Ask) with k ∈ K\{0, Ks} arbitrarily to either R1 or R2. This

will make either one of the row sums equal 1 in the corresponding columns.

This is fine since we still can apply Proposition 2.5.2.

Until now, we have successfully assigned all constraints to two groups R1 and

R2 so that the sum of the rows in R1 minus the sum of the rows in R2 is a vector

with entries only 0, +1, and −1. By Proposition 2.5.2, our submatrix E is totally-

unimodular.

39

Similarly, we will now construct the respective set R1 and R2 for submatrix F

which involves constraints (6), (7), (11) and variables Yjs, XPjsk, XDjsk, and XCjsk,

for all j ∈ L ∪ U , k ∈ Ks; namely,

(Fjs)
∑

k XPjsk − Yjs = 0 j ∈ U , s ∈ S
(Hjs)

∑
k XDjsk − Yjs = 0 j ∈ L ∪ U , s ∈ S

(KDjsk) −XCjs(k+1) + XCjsk + XPjsk −XDjsk = 0 j ∈ L ∪ U , s ∈ S, k ∈ Ks\{Ks}.

For each ship s ∈ S apply the following rules: assign all constraints (Fjs) to R1

for all j ∈ U , assign all constraints (Hjs) to R2 for all j ∈ L ∪ U , and assign all

constraints (KDjsk) to R2 for all j ∈ L ∪ U , k ∈ Ks\{Ks}.
Let us now verify that these rules do not violate the requirements of applying

Proposition 2.5.2. For all unloaded cargo j ∈ U , variable Yjs appears once in (Fjs)

and once more in (Hjs). Hence for all columns related to variable Yjs, the sum of

all rows in R1 cancels out the sum of all rows in R2. For all loaded cargo j ∈ L,

variable Yjs only appears in (Hjs), but it does not violate the condition for applying

Proposition 2.5.2.

Variable XPjsk appears once in constraint (Fjs) and once more for k ∈ Ks\{Ks}
in constraint (KDjsk). Hence, the sum of all rows in R1 cancels out the sum of all

rows in R2 for such cases. For variable XPjsKs , we have the sum equals +1 in R1

and 0 in R2, but it still satisfies the condition to apply Proposition 2.5.2.

Variable XDjsk has a coefficient of +1 in constraint (Hjs) and −1 in constraint

(KDjsk), for all k ∈ Ks\{Ks}. These entries result in a sum of 0 for all rows of R2

in each related column. For XDjsKs , the variable only appears in (Hjs) resulting in

the sum of 1 in rows of R2.

For variable Y Yjsk with k ∈ Ks\{0, Ks}, it appears in (KDjsk) with coefficient

−1 and in (KDjs(k+1)) with coefficient +1, k ∈ Ks\{Ks}. Hence the sum of all rows

in R2 is 0 for all columns related to such variables. Variable Y Yjs0 appears once in

(KDjs0) and variable Y YjsKs appears once in (KDjsKs), and no condition is violated

40

to apply Proposition 2.5.2.

From these rules of assigning rows in submatrix F , by Proposition 2.5.2 we con-

clude that our submatrix F is totally-unimodular. And hence the proof is complete.

41

CHAPTER III

SOLUTION STRATEGIES AND COMPUTATIONAL

EXPERIMENTS

In practical applications, our multi-ship problem takes far too long to solve for an

optimal solution. For problems involving a small number of ships and cargos, it is still

possible to obtain optimal solutions within a reasonable amount of time. However, a

typical scheduling problems faced by real tramp shipping companies involve 8 to 20

ships and as many as 240 cargos. For this size of problem, it is almost impossible to

find an optimal solution within one hour. In this chapter, we introduce three types

of heuristic methods that are fast and capable of finding a feasible solution within a

reasonable amount of time.

3.1 Heuristic methods to solve multi-ship problem

The first heuristic is called the Multi-Period Heuristic (MPH). The strategy for this

heuristic is to divide the time horizon into several smaller periods, solve the earlier

period, carry over the solution to the next period, and so on. The idea is to make the

period subproblems significantly smaller than the original one. The second heuris-

tic is called the One-Ship Heuristic (OSH). This heuristic takes as a starting point

the optimal solutions of all one-ship problems, which are relatively fast to compute.

Then the multi-ship schedule is constructed by fixing some cargos that appear in

the solutions of more than one ship. The third heuristic we introduce is called the

Set-Packing Heuristic (SPH). SPH tries to generate “good” cargo combinations to

be served by each ship. A set packing problem is solved to choose the best combi-

nation among these cargo combinations and to construct one feasible solution to the

multi-ship problem. Next, we will describe these heuristic methods in detail.

42

3.1.1 Multi-Period Heuristic (MPH)

We may recall that our model is expected to run over and over again whenever new

information becomes available. Hence, a natural heuristic method is introduced by

dividing the time horizon into some time intervals. For example, if our time horizon

is five weeks and new information becomes available at the beginning of each week,

then we may split the scheduling problem into 5 time intervals of one-week length.

We carry the solution made in the current interval into the next interval. For the

later intervals, we have more and more fixed cargo assignments and by doing this

we decrease the size of our problem tremendously because we only consider certain

portions of the cargos and the movements of the ships are only over certain ports.

We can further decrease the complexity of each iteration by breaking the step into

several sub-iterations, each allowing only one originating port to be evaluated. For

example, if a period has multiple originating ports, we may break the period into

several sub-iterations by allowing only one originating port to be opened. Which

originating port goes first can be determined by calculating the potential revenue

associated with the port, generated by the available cargos within the port. The

bigger potential revenue an originating port has, the more profitable that port is; such

ports are evaluated first. Of course there are many ways in which we can implement

the idea of this heuristic. One is as follows.

Let α1, α2, · · · , αn be the n points in the scheduling period that break the time

horizon into n + 1 subperiods or subintervals; namely, [0, α1), [α1, α2), · · · , [αn−1, αn),

and [αn, αn+1] where αn+1 is the time horizon. Let Ai denote the set of cargos j

having EPTj ∈ [αi−1, αi), for all i ∈ {1, 2, · · · , n}. Also, let Bs be the set of cargos

permanently assigned to ship s ∈ S and let R be the set of routes for all ships. Note

that the size of R is the same as the number of ships, meaning that each ship has

one corresponding route in R. Our multi-period heuristic (MPH) algorithm can be

described as follows.

43

Algorithm 3.1.1

Initialization:

Bs = Ls, R = ∅;

begin algorithm

for (each i = 1 to n) do

Solve multi-ship model with U = Ai,Ls = Bs;

Bs ← Bs ∪ {j : j ∈ Ai that has been assigned to ship s by the iteration};
Update R;

end for

Solve multi-ship model one more time, with U ← U\⋃
s∈S Bs and Ls = Bs, and

R;

end algorithm

3.1.1.1 Example

We solve our 10-ship example problem using this proposed heuristic method. Table

7 shows the step-by-step process until we get the initial schedule for each ship, with

some permanent assignment of the served cargos. Using this initial schedule, we run

the problem one more time to allow more unloaded cargos to be picked up. This

last step in fact gives us a more profitable schedule as shown in Table 8 and we

have determined the final schedule for our multi-ship problem. The final schedule is

depicted in Figure 6 and the total computational time to complete the iterations in

MPH is 764.06 seconds. It takes an additional 126.22 seconds to run the model one

more time to allow more cargos to be served, yielding a total time of 890.28 seconds

to run the complete MPH heuristic for our particular 10-ship example.

44

Table 7: Step-by-step multi period heuristic applied to 10-ship problem example

#Itr Period Ports opened Ports opened Cargos Available Assignment
(Origin) (Destination)

1 14-17 Apr 27 5 20 -
2 18-20 Apr 27 10 26 -

27 -
28 -
29 -

3 21 Apr 21 22 36 Ship-10
27 25 17 Ship-4

18 Ship-4
19 Ship-4

31 15, 24 37 -
38 -

4 22 Apr 14 24, 31 21 Ship-4
22 Ship-4
23 Ship-4
24 Ship-4
25 Ship-4

5 23 Apr 12 20, 23 9 -
10 Ship-4

6 24 Apr 6 11, 24, 28, 36 39 -
40 Ship-5
41 Ship-5
42 -

7 25 Apr 12 1, 3, 8, 11, 20, 24-26, 28 1 Ship-9
2 Ship-9
3 -
4 Ship-9
5 -
6 -
7 -
8 -

27 13, 17 30 -
31 -
32 -
33 -

8 26-30 Apr 31 18, 20, 24 11 Ship-8
12 Ship-8
13 Ship-8
14 Ship-8
15 Ship-8
16 Ship-8

9 1-5 May 14 3 34 -
35 -

45

Table 8: Final MPH cargo assignment to 10-ship problem

Ship Additional cargo Cargos served Total profit (USD)
1 - 43-52 52,289
2 - 53-55 19,381
3 - 56 62,908
4 - 10, 17-19, 21-25, 57 149,439
5 - 40-41, 58-61 174,627
6 - 62 73,311
7 - 63-67 108,809
8 38 11-16, 38 54,037
9 - 1-2, 4, 68-74 135,182
10 - 36, 75-79 216,801

Total unloaded cargos served: 21 1,046,784

Ship-1

Ship-2

Ship-3

Ship-4

Ship-5

Ship-6

Ship-7

Ship-8

Ship-9

Ship-10

Shuidong

1 week
 2 weeks
 3 weeks
 4 weeks

Bangkok
 Kuantan
 S’pore
 Jakarta

Yosu
 Ulsan

Xiaohudao
 Onsan
 Paradip

Jakarta

Singapore
 Karimun
 Port Kelang
 Shekou
 Ulsan
Shanghai

Wellington
 Timaru
 New Plymouth
 Auckland
 Brisbane
 Shanghai
 Zhapu

Yingkou

Ningbo
 Nantong

Jiangyin

S’hai

Ulsan
 Ningbo
 Shanghai
 Nantong

Davao
 Batangas
 Kaohsiung

Mailiao

Karimun
 Shuidong
 Shekou

Kuantan

Figure 6: Schedule generated by multiperiod heuristic

46

3.1.2 One-Ship Heuristic (OSH)

Here we use the optimal one-ship solutions as a starting point to OSH. First, we

run the problem for each ship separately. Once we have found all one-ship optimal

solutions, we may discover that some cargos appear on only one ship, while others

appear on multiple ships. The latter case is clearly infeasible for the multi-ship

problem.

These one-ship models allow complete freedom to the ships to serve any unloaded

cargo and at the same time, allow multiple ships to serve a given cargo. If a cargo

appears on only one ship, it makes good sense to assign it permanently to that ship,

since we may somewhat reduce the complexity of the problem. We call these kind of

cargos as 1-ship cargos. When multiple ships are trying to serve the same cargo, we

must identify the best ship to serve that particular cargo. We name such cargo as

multi-ship cargo.

We may come up with several methods in finding the best ship to assign multi-

ship cargos. In their original paper, Jetlund and Karimi [32] proposed a method of

assigning a cargo to the ship on which it has the maximum marginal profit. The

marginal profit is defined as the profit that the ship loses for not serving the cargo.

So, the marginal profit gives a measure of how important one particular cargo is to

a serving ship. They also introduce another heuristic that progressively assigns all

cargos permanently to ships by using the number of bidding ships as a guide. They

fixed all 1-ship cargos first, then 2-ship cargos, and so on.

We propose another scheme similar to the second heuristic proposed in [32]. Again,

for 1-ship cargos, it makes perfect sense to assign them to their corresponding ships.

Then we make a list of multi-ship cargos in decreasing order of number of bidding

ships. The more bidding ships we have for one particular cargo, the more favorable

that cargo becomes. Then it makes sense to select the best ship for the most favorite

cargo first, followed by the next less favorable cargo, etc. We resolve only a few

cargo bid conflicts at a time by solving the multi-ship problem with the unloaded

47

cargos limited to the ones being decided. In each iteration we have some cargos

being assigned to some ships. In each iteration, the ship routes are reoptimized

to accommodate the newly assigned cargos. Thus, we gradually assign all cargos

permanently to ships. The last step is to run the multi-ship model one more time

with all the multi-ship cargos assigned permanently. Here we try to see if more cargos,

that do not even appear in the optimal one-ship solutions, can be served.

After we solve the one-ship problem optimally for all ships, we observe the optimal

results and categorize the cargos as 1-ship, 2-ship, ..., n-ship, according to the number

of competing ships. Let α ∈ {0, 1, · · · , n} indicate the number of competing ships.

Let Aα be the set of α-ship cargos, α ∈ {0, 1, · · · , n}. Let U and Ls be the set of

unloaded and loaded cargos that have to be served in solving the multi-ship problem;

i.e.,
∑

s∈S Yjs = 1, for all j ∈ U and Ls respectively. Also, let Bs denote the set of

cargos that have been permanently assigned to a ship s. Clearly, the set B grows as

we progress. To initialize, we let the set of loaded cargo Ls be the initial Bs for every

s. Lastly, we let R denote the current routes for all s ∈ S. Note that R has as many

members as the number of ships in the problem. Using this notation, our one-ship

heuristic (OSH) algorithm is as follows.

Algorithm 3.1.2

Initialization:

Bs = Ls, R = ∅;

begin algorithm

Solve one-ship problem for all ships s ∈ S
Categorize cargos as α-ship cargo;

Construct sets Aα and place cargos in respective sets;

αmax = max{α : Aα 6= ∅};
for (each j ∈ A1) do

48

Let s be the ship to which cargo j is assigned in the one-ship optimal solution;

Bs ← Bs ∪ {j};
end for

for (α = αmax to 2) do

if (Aα 6= ∅ then

for (each j ∈ Aα do

Solve multi-ship model with U = j, Ls = Bs;

Let s be the ship to which cargo j;

Bs ← Bs ∪ {j};
Update R;

end for

end if

end for

Solve multi-ship model one more time, with U ← U\⋃
s∈S Bs, Ls = Bs, and R;

end algorithm

3.1.2.1 Example

Table 9 shows a step-by-step construction of a multi-ship schedule for our problem.

With all multi-ship cargo assigned to their respective ships, we run the program one

more time to see if any ship would serve any more unloaded cargos. And there are

improvements since more cargos are served, as shown in Table 10. The final schedule

generated by this heuristic is depicted in Figure 7. The total time to run OSH for

the 10-ship problem, excluding the time to obtain 1-ship optimal solutions, is 134.54

seconds. Recall that the ten 1-ship problems were solved to optimality within a time

range between 5.18 seconds and 240.53 seconds. The total time to run OSH, including

the time to solve 1-ship problems, is 1, 364 seconds.

49

Table 9: Step-by-step one ship heuristic applied to 10-ship problem example

Iteration Cargo Types of cargo Bidding ships Ship Assigned
1 6 1-ship 3 3

22 1-ship 1 1
30 1-ship 3 3
31 1-ship 3 3
32 1-ship 3 3
40 1-ship 5 5
41 1-ship 5 5

2 13 5-ship 2, 6, 7, 8, 9 8
14 5-ship 2, 6, 7, 8, 9 8

3 11 4-ship 2, 6, 8, 9 8
12 4-ship 2, 6, 8, 9 8
38 4-ship 2, 6, 7, 8 8

4 2 3-ship 1, 3, 4 1
15 3-ship 2, 6, 8 8
17 3-ship 1, 3, 4 1

5 1 2-ship 3, 4 4
5 2-ship 1, 4 1
9 2-ship 1, 4 4
16 2-ship 6, 8 8
18 2-ship 1, 3 1
19 2-ship 1, 3 1
21 2-ship 1, 4 1
25 2-ship 1, 4 1
36 2-ship 2, 10 10

Table 10: Final OSH cargo assignment to 10-ship problem

Ship Additional cargos Cargos served Total profit (USD)
1 23-24 2, 5, 17-19, 21-25, 43-52 135,971
2 - 53-55 19,381
3 8, 10, 34-35 6, 8, 10, 30-32, 34-35, 56 78,432
4 3-4, 7 1, 3-4, 7, 9, 57 94,569
5 - 40-41, 58-61 174,627
6 - 62 73,311
7 - 63-67 108,809
8 - 11-16, 38 54,037
9 - 68-74 129,188
10 - 36, 75-79 216,801

Total unloaded cargo served: 32 1,085,126

50

Ship-1

Ship-2

Ship-3

Ship-4

Ship-5

Ship-6

Ship-7

Ship-8

Ship-9

Ship-10

Shuidong

1 week
 2 weeks
 3 weeks
 4 weeks

Yosu
 Ulsan

Xiaohudao
 Onsan
 Paradip

Wellington
 Timaru
 New Plymouth
 Auckland
 Brisbane
 Shanghai
 Zhapu

Yingkou

Ningbo
 Nantong

Jiangyin

S’hai

Ulsan
 Ningbo
 Shanghai
 Nantong

Davao
 Batangas
 Kaohsiung
 Mailiao

Singapore
 Kuantan
 Karimun
 Shuidong
 Shekou
 Shanghai

Jakarta
 Karimun
 Maptaphut
 Bangkok

Bangkok
 Kuantan
 S’pore
 Karimun
 Jakarta
 Shekou
 Shuidong

Port Kelang
 Kuantan
Anyer

Figure 7: Schedule generated by one ship heuristic

3.1.3 Set-Packing Heuristic (SPH)

The idea of this heuristic, as any set packing method, is to construct some, if not

all, possible routes that each ship could follow and then choose one for every ship

such that the profit is maximized. Obviously, if we can generate all possible routes

that each ship could follow, we will definitely get the optimal solution. However,

generating all possible routes might be too costly. So, another heuristic we propose is

to make a list of “good” cargo combinations to be served by a ship and let our model

decide if each combination is feasible for the ship. If the combination is feasible,

our multi-ship model also determines what the optimal route is for that particular

combination. Hence, a ship’s route is an output given by the multi-ship model.

Certain cargo combinations might not even be feasible to the problem because the

time window requirements could not be met, or the capacity limit is violated, or any

one of many other possible reasons. We only populate all cargo combinations that

are feasible to our problem and choose the best cargo combination for each ship by

formulating a set packing problem.

Let Ns be the maximum number of possible cargo combination for ship s and let

Ms be the maximum number of cargo in one particular combination for ship s. Also,

51

let Rs be the collection of routes for ship s. Clearly, if we set Ns to be infinity and

Ms to equal as many as available cargos, then we may have all possible sets of cargo

combinations. It means that for every ship s, the set Rs would contain all possible

cargo combinations. Therefore, the set packing problem will find the optimal solution

to the problem.

By controlling Ns and Ms we determine how big the set Rs is for every ship s.

The bigger Rs we want, the longer computational time we need to spend to construct

possible cargo combinations. Suppose we are given the sets Rs for all ship s, and for

every cargo combination r ∈ Rs, we have crs as the revenue generated by ship s by

choosing combination r. Let xrs be an indicator variable which equals 1 if combination

r ∈ Rs is served by ship s and 0 otherwise. The set packing problem can be written

as follow:

(SP) Max
∑

s∈S
∑

r∈Rs
crs xrs

s.t.
∑

s∈S
∑

r∈Rs
ajrs xrs ≤ 1, for all j ∈ U ∪ L

∑
r∈Rs

xrs = 1, for all s ∈ S
xrs ∈ {0, 1}

where ajrs is an indicator that equals 1 if cargo j is in combination r of ship s, and

0 otherwise.

3.1.3.1 Generating feasible cargo combinations

In this subsection we will particulary look at how we generate the cargo combinations

for the set packing heuristic. Suppose we have a set of loaded and unloaded cargos,

L and U respectively, and L =
⋃

s∈S Ls. At time zero, each ship s has its own loaded

cargos on-board, Ls. If we solve the multi-ship model ignoring all unloaded cargos,

then we will have a route that will deliver all on-board cargos. Hence the first cargo

combination is constructed using only on-board cargos at time zero. We may then add

one unloaded cargo j ∈ U to the set and re-solve our model by allowing the ship to

52

only serve cargos in Ls∪{j}. If the problem is feasible, it will find another cargo com-

bination to our collection. Otherwise, we may ignore this combination and proceed

by adding another cargo j′ ∈ U\{j} and re-solve our model. The infeasibility could

happen if certain cargo combinations violate some constraints; e.g., time-windows are

not met, ship is overloaded, or simply that there is not enough journey legs to serve

such combinations. For feasible cargo combinations, we may then add more cargo,

one at a time, to come up with new combinations, as long as we do not violate the

maximum number of cargo Ms and the maximum number of combinations Ns that

we defined earlier. These steps of generating possible combinations for a ship s ∈ S
are summarized as follow.

Algorithm 3.1.3

Initialization:

A = ∅,B = ∅, C = Ls,D = U ;

n = 0;

begin algorithm

Solve one-ship problem for ship s with U = ∅;
B ← B ∪ {C};
while (B is not empty) do

Take C, the next member of B;

B ← B\{C};
A ← A∪ {C};
n ← n + 1;

for (each j ∈ D\C) do

C = C ∪ {j};
m = |C\Ls|;
if (m < Ms and n < Ns) then

53

Solve one-ship problem for ship s with U = C\Ls;

if (the problem is solvable) then

B ← B ∪ {C};
end if

end if

end for

end while

return A, the set of feasible cargo combinations;

end algorithm

Clearly, this algorithm is eventually finite, since the number of possible cargo

combinations is finite. Each time we solve a one-ship model for a specific cargo

combination, we also get the optimal route associated with that cargo combination,

which we may store for further needs. Furthermore, the unloaded cargos can be sorted

in a non-increasing order of potential revenue. Hence, we can most likely generate

cargo combinations containing cargos with high profitability in the beginning of our

search.

3.1.3.2 Generating priority list for SPH

The way we generate a priority list is crucial for the SPH method to work well. A

different priority list might lead to different solutions once we put a limit on the

number of cargo combinations to be generated, or on the number of cargos within

each combination. Here we discuss a way to generate the priority list based on the

revenue and cost analysis for each cargo. First of all, we group cargos based on their

pickup-destination ports and availability. It is likely for a ship to pickup cargos whose

availabilities are similar and whose pickup and destination ports are the same. Hence

it is natural to group them together and to analyze them altogether when we evaluate

a cargo combination. So instead of adding cargos belonging to the same group one by

54

Table 11: Final SPH cargo assignment to 10-ship problem

Ship Cargos served Total profit (USD)
1 2, 5, 9, 17-19, 21-22, 25, 43-52 162,117
2 53-55 19,381
3 56 62,908
4 6, 10, 30-32, 57 128,014
5 40-41, 58-61 174,627
6 62 73,311
7 63-67 108,809
8 11-16, 38 54,037
9 68-74 129,188
10 36, 75-79 216,801

Total unloaded cargos served: 23 1,129,193

one, we add them all at one time. Here we may decrease the number of possible cargo

combinations. For example, in our 10-ship problem, we have a total of 30 groups of

unloaded cargos as opposed to 42 single unloaded cargos.

After we group the cargos as we explain in the foregoing discussion, we create a

priority list of cargo groups based on their profitability. The profitability is approxi-

mated as the revenue of serving a cargo group minus the fuel and time-charter costs

to travel from the pickup to the download port.

3.1.3.3 Example

We apply the foregoing idea to solve our 10-ship example problem by SPH. We limit

the maximum number of feasible cargo combinations to 1000 and the maximum num-

ber of cargo groups within each combination to 5. The SPH solution to our 10-ship

problem is $1,129,193. Table 11 shows the cargo-to-ship assignment generated by the

set packing heuristic. The computational time is 3, 146 seconds and the final schedule

is depicted in Figure 8.

Optimal solution of the 10-ship problem example

If we treat each cargo as a single cargo, as opposed to creating some cargo groups, and

allow the SPH to perform exhaustive examination of every possible cargo combination,

55

Ship-1

Ship-2

Ship-3

Ship-4

Ship-5

Ship-6

Ship-7

Ship-8

Ship-9

Ship-10

Shuidong

1 week
 2 weeks
 3 weeks
 4 weeks

Yosu
 Ulsan

Xiaohudao
 Onsan
 Paradip

Wellington
 Timaru
 New Plymouth
 Auckland
 Brisbane
 Zhapu

Yingkou

Ningbo
 Nantong

Jiangyin

S’hai

Ulsan
 Ningbo
 Shanghai
 Nantong

Davao
 Batangas
 Kaohsiung
 Mailiao

Singapore
 Karimun
 Port Kelang
 Maptaphut
 Bangkok

Jakarta

Bangkok
 Kuantan
 S’pore
 Karimun
 Jakarta
 Shekou
 Ningbo
 Shanghai

Shanghai

Figure 8: Schedule generated by set-packing heuristic

Table 12: Number of possible cargo combinations for each ship

Ship Total legs Total must-visit ports First destination # Feasible cargo combinations
1 8 4 Bangkok 25,484
2 8 2 Yosu 21,649
3 7 1 Tj. Priok 127,062
4 7 2 Singapore 300,649
5 8 4 Wellington 17
6 8 1 Yingkou 6,718
7 7 4 Ningbo 272
8 7 1 Ulsan 1,040
9 7 4 Davao 272
10 7 2 Shuidong 16,774

we will eventually find the optimal solution to our 10-ship problem. The number of

possible cargo combinations for each ship in our 10-ship problem is given in Table 12.

After solving the set-packing problem, which is found by CPLEX at the root node

in 0.34 second, we obtained the optimal solution for our 10-ship problem, $1,137,154.

The computational time is 62, 067 seconds. The optimal cargo-to-ship assignment is

given in Table 13 and the final schedule is shown in Figure 9.

56

Table 13: Optimal cargo assignment to 10-ship problem

Ship Cargos served Total profit (USD)
1 2, 5, 9, 17-19, 21-22, 25, 43-52 162,117
2 53-55 19,381
3 56 62,908
4 6, 8, 10, 30-32, 34-35, 57 135,975
5 40-41, 58-61 174,627
6 62 73,311
7 63-67 108,809
8 11-16, 38 54,037
9 68-74 129,188
10 36, 75-79 216,801

Total Unloaded Cargos served: 26 1,137,154

Ship-1

Ship-2

Ship-3

Ship-4

Ship-5

Ship-6

Ship-7

Ship-8

Ship-9

Ship-10

Shuidong

1 week
 2 weeks
 3 weeks
 4 weeks

Yosu
 Ulsan

Xiaohudao
 Onsan
 Paradip

Wellington
 Timaru
 New Plymouth
 Auckland
 Brisbane
 Zhapu

Yingkou

Ningbo
 Nantong

Jiangyin

S’hai

Ulsan
 Ningbo
 Shanghai
 Nantong

Davao
 Batangas
 Kaohsiung
 Mailiao

Singapore
 Karimun
 Port Kelang
 Maptaphut
 Bangkok

Jakarta

Bangkok
 Kuantan
 S’pore
 Karimun
 Jakarta
 Shekou
 Ningbo
 Shanghai

Shanghai

Anyer
 Kuantan

Figure 9: Optimal schedule for the 10-ship problem example

57

3.2 Pickup and delivery problem with time-windows

As previously mentioned, our problem can be formulated as a pickup and delivery

problem with time-windows constraints. One of the solution strategies is to formu-

late the problem as a set packing problem. Here we try to implement full column

generation where each column represents a possible route for a ship to follow. But

let us first explain how the network is constructed.

3.2.1 Network construction

At time zero, each ship s is located at a certain place, which could be a port or in the

middle of the sea heading towards a predetermined port. Without loss of generality

let us assume that each ship s is at a port which we refer to as the origin port. We

have several on-board cargos Ls on ship s at time zero and there are also unloaded

cargos U distributed among ports, each with its origin and destination information.

Let there be n = |U| unloaded cargos indexed by j. Associate a node j to the

pickup location of cargo j ∈ U and to its delivery location associate a node (n + j).

For each ship s, we also have a list of m = |Ls| destinations of on-board cargos.

Associate a node (2n+ j) to the download location of cargo j ∈ Ls. Furthermore, we

also have nodes 0 and (2n + m + 1) associated with the origin and the dummy ports,

respectively.

Therefore, for each ship s we have a set of nodes N in the network where N =

{0, 1, 2, ..., n, n + 1, n + 2, ..., 2n, 2n + 1, 2n + 2, ..., 2n + m, 2n + m + 1}. Let P+ =

{1, 2, ..., n}, P− = {n + 1, n + 2, ..., 2n}, and Q = {2n + 1, 2n + 2, ..., 2n + m} so that

P+ ∪ P− ∪Q is the set of nodes other than the origin and the dummy ports.

Our computational network consists of nodes in the set N = P+ ∪ P− ∪ Q ∪
{origin, dummyport} and sets of feasible arcs. Note that many nodes in our network

might refer to the same port in the physical network. There are arcs among nodes in

each group P+, P−, and Q. There are also 11 groups of arcs between two different

groups depicted in Figure 10 connecting two different node-groups. All of these arcs

58

P+:

Node-j

Initial Ship

Position:

Node-0

P-:

Node-(n+j)

Dummy

Port: Node-

(2n+m+1)

Q:

Node-(2n+i)

1

2

9

11

10

5

6

8

7

3
 4

Figure 10: Network for PDPTW approach

are mostly defined by movements between nodes and the time-window requirement

for each node.

Arc-group number-1 connects the initial ship position, node 0, to some nodes in

P+. The arc is defined from node 0 to node j ∈ P+ if a ship traveling to node j meets

the time window and if the ship continues to travel to node (2n + i) ∈ Q right after

it visits node j, the download time window in node i is still met for all i. Arc-group

number 2 is defined from node 0 to all nodes in Q.

Some members of arc-group number 3 are connecting every pickup port in set P+

to the corresponding download port in set P−. But there are also arcs connecting a

pickup port of cargo j1 in P+ to a download port of cargo j2 in P−. This happens if

the ship serving both cargos picks-up j2 and then picks-up j1 while cargo j2 is still on

board. Hence, this kind of arc is defined if the arc connecting the pickup port of j2

and the pickup port of j1 in P+ is defined and if the download time window of cargo

j2 can still be met after the ship travels from the pickup port of cargo j1 in P+ to

the download port of cargo j2 in P−.

Arc-group number 4 is defined from a download port of cargo j1 in P− to a

59

pickup port of cargo j2 in P+ if after the ship under consideration downloads cargo

j1, it travels to the pickup port of cargo j2 and the pickup time window can still

be satisfied. Arc-group number 5 is from a pickup port of cargo j1 ∈ U in P+ to a

download port of cargo j2 ∈ L in Q. An arc in this group is defined if after the ship

under consideration picks-up cargo j1 and continues its voyage to download cargo j2,

provided the download time-window for j2 is still met.

The next arc-group number 6 is from a download port of cargo j1 ∈ L in Q to a

pickup port of cargo j2 ∈ U in P+. An arc in this group is defined if after the ship

under consideration downloads cargo j1 and continues its journey to pickup cargo j2,

provided the pickup time-window can still be met.

Arc-group number 7 is from nodes in Q to nodes in P−. An arc from a download

node of cargo j1 ∈ L in Q to a download node of cargo j2 ∈ U in P− is defined

when cargo j2 is onboard when the corresponding ship visits the download node of

cargo j1 or when the corresponding arc from the pickup port of cargo j2 in P+ to

the download port of j1 in Q is defined. In other words, an arc in group number 7 is

defined when the corresponding arc in group number 5 is also defined. The reverse

arc-group number 8 from nodes in P− to nodes in Q is defined whenever the download

time-window in Q is still met after the ship travels from P−.

Arc-groups 9, 10, and 11 indicate the end of the voyage for a ship. Arc-groups 9

and 10 indicate that the ship may be left idle after it visits a download port of some

loaded cargos in Q or a download port of some unloaded cargos in P−, respectively.

Arc-group number11 indicates that the ship does not have onboard cargos at the

beginning of the time horizon and is not used at all during the time horizon.

We also have another type of arc connecting two nodes within a group. Let us

take a look at each group and explain the arcs within each of them. An arc between

two nodes in Q is defined from the tail-node to the head-node if the download time-

window in the head-node can still be met after the ship downloads some cargos in

the tail-node and travels from the tail-node to the head-node.

60

To see how an arc between two pickup nodes in P+ is defined, let us suppose that

P1 and P2 are the pickup nodes of cargos j1 and j2, respectively, where P1, P2 ∈ P+

and also suppose that D1, D2 ∈ P− are the corresponding download nodes. Then

an arc between two pickup nodes in P+ from P1 to P2 is defined if P1 −→ P2 −→
D1 −→ D2 or P1 −→ P2 −→ D2 −→ D1 is a feasible route for the ship under

consideration. Similarly, an arc between two pickup nodes in P− from D1 to D2 is

defined if P1 −→ P2 −→ D1 −→ D2 or P2 −→ P1 −→ D1 −→ D2 is a feasible route

for the ship under consideration.

After we have sets of nodes and arcs for a ship, a possible path from the origin

(node 0) to any nodes in P−, Q, or the dummy node yields a possible route for the

ship.

3.2.1.1 Limiting the number of possible routes

Obviously, a full column generation approach deals with a large number of possible

routes. To reduce the number of possible routes, we impose some restrictions, that

are:

(i) limit the maximum waiting time in a port,

(ii) limit the maximum travel time from one location to the next destination,

(iii) limit the maximum number of physical ports visited (which is also the maximum

number of legs allowed in the problem),

(iv) avoid unprofitable moves by requiring that the value of potential revenue minus

potential cost to be above a certain threshold profit,

(v) avoid multiple visits to the same port in one planning horizon,

(vi) limit the maximum number of new cargos served.

From the initial location of the ship, we perform a Depth First Search (DFS) and

store all possible routes information along with their profits. Whenever we reach a

61

node that violates at least one of the restriction above, we prune that node. We also

prune the nodes that violate time-windows requirements.

One problem arises when we have to deal with symmetric cargos. Symmetric

cargos are cargos having the same pickup origins and discharge locations, even though

they may have different weights or volumes. These cargos cause problems since we

represent each cargo pickup location as a unique node. The same is true for cargo

download locations. Hence, the sequence of visiting pickup ports (or download ports)

of symmetric cargos really matters in column generation while it does not in the final

physical route. This may generate multiple columns referring to the same physical

route, and increase the search effort tremendously. We try to limit the effect of

symmetric cargos by eliminating duplicate efforts in DFS. For example, suppose nodes

A and B refer to the same pickup ports of symmetric cargos. When the DFS process

reaches node A (before visiting B) and continues to B, we keep that move in our

record so that later when the DFS reaches port B (before visiting A), the DFS does

not continue to node A again since it is a duplicate effort.

During the DFS process, we do not store the new column containing the same

cargo set as the last one found since they are corresponding to the same column.

However, we only update the objective if the newly found column has a better profit

than the previous one. This reduces the number of columns we store tremendously.

3.2.2 Full column generation for 10-ship example

We apply the foregoing ideas to generate columns for each ship in the 10-ship problem

example. The results are shown in Table 14.

We compare the results we obtained by full column generation for each ship with

the optimal solution of the 1-ship problems we showed in Table 5. For all ships, the

columns generated contain the optimal 1-ship solution.

Optimal solution of the 10-ship problem example

62

Table 14: Columns generated for each ship

Ship #legs # must-visit # other ports # Routes Time Maximum % of
ports can be visited generated (secs) profit optimal

1 8 4 4 10,256 1,990.45 158,412 100%
2 8 2 6 8,906 1,530.37 191,288 100%
3 7 1 6 21,135 583.00 144,742 100%
4 7 2 5 11,171 536.74 195,108 100%
5 8 4 4 40 3.21 174,627 100%
6 8 1 7 1,217 318.17 138,912 100%
7 7 4 3 608 16.89 115,221 100%
8 7 1 6 264 9.02 46,841 100%
9 7 4 3 692 347.08 160,653 100%
10 7 2 5 156 3.00 215,735 100%

Given all possible columns shown in Table 14, we run the set packing problem to find

the optimal solution to the 10-ship problem. We let CPLEX solve it under its default

options. We find the optimal solution at node-0 and it found the optimal solution

in 0.54 seconds. The optimal solution match the one found by set packing method

described in Section 3.1.3.3. Full enumeration runs very fast (total 5, 338 seconds)

compared to the time spent to run full cargo combination (total 62, 067 seconds) as

discussed in Section 3.1.3.3. The time difference, of an order of magnitude, is caused

by the expensive efforts in generating all possible cargo combinations.

3.3 Computational experiments for heuristic methods

In this section, we compare the performance of the three heuristics proposed in an

earlier section. We create randomly generated test problems and compare the perfor-

mance of the heuristics on these problems.

3.3.1 Creating random problems

The problems we create are not completely random since we take as-is port infor-

mation and do not add new nor eliminate old ports. So we randomly generate the

problems taking place at predefined sets of ports. The costs each ship has to pay

when it visits ports are also fixed depending on the size of the ship.

63

The number of ships lies between the predefined minimum and maximum numbers.

In our computational instances, we evaluate the problems on 3 to 18 ships. Each ship

has a random maximum capacity between 5, 000 to 11, 000 dead-weight tonnages and

a random time-charter cost. The bigger size the ship has, the more expensive the time-

charter cost for that ship is. Moreover, each ship has a random first destination which

is reached within a random number in the interval of [0, 3.5] days. The determination

of the number of legs for every ship is a little tricky. While we want the problem to

be as random as possible, we also want the problem to be feasible. So, the number

of legs for each ship is chosen to be the maximum of the total number of destinations

of the loaded cargos on the ship and the number of legs generated randomly. The

selection will insure that the problem will indeed be feasible.

The number of cargos is random depending on the number of ships under consid-

eration. The more ships involved, the more cargos generated. Generally, the number

of cargos are 6 to 12 times the number of ships. Cargos are created one by one. Once

a cargo is created, it is randomly classified as either loaded or unloaded cargo. If it is

classified as a loaded cargo, another random number is used to determine which ship

it is loaded on. If the ship capacity permits the new cargo to be assigned as a loaded

cargo to the ship, then we do so. Otherwise, we treat the cargo as an unloaded one.

For every unloaded cargo, a port where the cargo originates is randomly selected.

Each cargo also has its own random shipment-size and download port. However, the

shipment rate is determined by which port the cargo originates from and how long

the journey takes from its origin to its destination. Pickup time-windows are also

determined randomly within the horizon and has a random length of 4 to 7 days.

The earliest download time-windows for each cargo is set to be as soon as possible

after the cargo is picked-up and once a cargo is picked-up, it has to be delivered in

no more than 6-week period.

64

3.3.2 Computational results

We create random problems for 3, 4, ..., 18 ships. For problems with 3 to 15 ships,

we manage to create 80 problems each. Due to computationally expensive efforts

in getting the optimal solutions for problem with a larger number of ships, we only

manage to solve 30 random 14-ship problems, and 10 random problems each for

15, 16, 17, and 18-ship problems. The problems are solved by CPLEX 9.1 using one

processor on a four-CPU Sun E450 server machine under all of the default options of

CPLEX. Besides the heuristics, we also run CPLEX to obtain the optimal solution.

We record the profits generated by MPH, OSH, SPH, and the optimal solutions, along

with their computational time.

Table 15 and Figure 11 show the quality of the heuristic solutions generated by

Multi-Period Heuristic (MPH), One-Ship Heuristic (OSH), and Set-Packing Heuristic

(SPH). The percentage shows the performance compared to the optimal profit and is

calculated as:

Heuristic profit

Optimal profit
× 100%.

Table 15: Heuristic Solution Quality

Total Total Average Average Average
Ships Problems MPH Quality OSH Quality SPH Quality

3 80 93.85% 94.82% 99.20%
4 80 89.05% 96.12% 96.85%
5 80 93.66% 91.96% 95.30%
6 80 81.42% 94.78% 94.25%
7 80 87.86% 93.90% 92.26%
8 80 85.63% 91.97% 90.17%
9 80 86.63% 92.65% 91.81%
10 80 90.79% 94.95% 93.76%
11 80 80.74% 92.97% 90.46%
12 80 85.55% 92.79% 91.21%
13 80 91.56% 93.62% 95.55%
14 30 85.51% 93.42% 92.08%
15 10 83.37% 91.46% 90.30%
16 10 84.83% 93.80% 92.35%
17 10 82.74% 87.64% 89.27%
18 10 88.85% 94.66% 95.12%

65

Heuristic Performance (Solution Time)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

Number of Ships

%
 o

f
T

im
e
 t

o
 f

in
d

 O
p

ti
m

a
l
S

o
lu

ti
o

n

MPH

OSH

SPH

Figure 11: Graph for Heuristic Solution Quality

Based on the performance test results, we observe that all proposed heuristics

reach profits above 80% of the optimal solutions in all cases. MPH performs slightly

worse than the other two. In almost all cases, OSH and SPH create solutions above

90% of the optimal. We limit the number of cargo combinations created in SPH to

be at most 300 combinations consisting of at most 4 new cargos, whichever is reached

first. Clearly, by increasing the number of possible cargo combinations created in

SPH, we may obtain a better SPH performance. All heuristics can maintain their

performance as the problem becomes harder (as the numbers of ships and cargos

increase). It is interesting to see that the performance of OSH is good and stable

enough. In many cases, OSH slightly outperforms SPH, not only in the solution

quality but also in the computational time.

Table 16 and Figure 12 show the average time spent in finding the heuristic so-

lutions relative to the total time to reach the optimal solution. The percentage is

calculated as

Time to solve heuristic

Time to reach optimal solution
× 100%.

66

Table 16: Heuristic Solution Time

Total Ships Total Problems Average MPH Time Average OSH Time Average SPH Time
3 80 172.01% 98.33% 112.46%
4 80 101.22% 38.03% 67.49%
5 80 37.13% 12.92% 10.21%
6 80 43.87% 11.29% 22.54%
7 80 24.02% 3.08% 3.21%
8 80 23.94% 1.99% 1.26%
9 80 4.90% 1.35% 1.17%
10 80 3.11% 3.59% 2.72%
11 80 8.11% 2.66% 1.06%
12 80 5.02% 3.22% 2.63%
13 80 5.64% 3.63% 2.58%
14 30 3.46% 1.11% 1.51%
15 10 2.60% 0.73% 1.44%
16 10 1.58% 0.31% 0.35%
17 10 1.60% 1.40% 0.61%
18 10 1.85% 1.19% 0.65%

Heuristic Performance (Solution Time)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

200.00%

3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

Number of Ships

%
 o

f
T

im
e
 t

o
 f

in
d

 O
p

ti
m

a
l
S

o
lu

ti
o

n

MPH

OSH

SPH

Figure 12: Graph for Heuristic Solution Time

67

For very small problems, i.e. problems with 3 or 4 ships, we can see that it takes

more time to solve the heuristic than that to solve the problem optimally. But as

the problem gets larger, we can see that the time to solve the heuristics is getting

much smaller than the time to solve the problem optimally, while still maintaining

the profit of at least 80% of the optimal.

From Figure 12 we can examine how the proportion of time spent in solving each

heuristic compared to that in finding the optimal solution. As the number of ships

grows, we need more time to find the optimal solution; but since the time to solve

the problem optimally grows exponentially much quicker than the time to solve the

heuristics, we may see the proportion of time to solve the heuristics is decreasing as

the problem gets bigger. Here we may also see that MPH performs slightly worse

than the other two heuristics.

To see how the time to solve the problem grows exponentially, the reader is referred

to Figure 13. We see that as the problem becomes harder, the time to solve the

problem grows exponentially as expected. To see how the time to solve the heuristics

grows, please refer to Figure 14. We only include the solution time to find optimal

solutions for small problems due to scaling issues. As we expect, the time to solve

the heuristics is much smaller than the time to find the optimal solutions. From the

same figure we also find out that MPH grows exponentially faster than OSH and

SPH. In conclusion, based on the facts we observed from experiments, we can say

that OSH and SPH are more stable in finding solutions to our problems. They also

experimentally reach better profits, closer to the optimal solutions than that reached

by MPH.

Recall that the time to compute optimal solutions are CPLEX computational time

under its default options. If we compare the computational times of the heuristic

methods to the time to find optimal solutions based on full column generation, we

would have different time performances. Assuming that optimal solutions found by

full column generation are obtained in one order of magnitude faster than optimal

68

Solution Time to Find Optimal Solution

-

50,000.00

100,000.00

150,000.00

200,000.00

250,000.00

300,000.00

3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

Number of Ships

T
im

e
 (

s
e
c
o

n
d

s
)

OPT

Figure 13: Solution time to find optimal solution

Heuristic Performance (Solution Time)

-

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

Number of Ships

T
im

e
 (

s
e
c
o

n
d

s
)
 MPH

OSH

SPH

OPT

Figure 14: Solution time to find heuristic solutions

69

Heuristic Performance (Solution Time)

-

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

Number of Ships

T
im

e
 (

s
e
c
o

n
d

s
)
 MPH

OSH

SPH

OPT

Figure 15: Solution time to find heuristic solutions

solutions found by CPLEX, the graphs in Figures 12 and 13 would have the vertical

values differ by an order of magnitude. Also, Figure 14 will look like Figure 15.

70

CHAPTER IV

UPPER BOUNDING PROBLEM

In this chapter we construct an upper bounding problem to our multi-ship problem.

First we explain how to construct an upper bounding problem to the one-ship problem

and generalize the idea to derive one for the multi-ship problem. Recall the compact

notation (21) for our problem as shown in Section 2.5,

Maximize c1
x x1 + c2

x x2 + cy y

s.t. A1
x x1 + A2

x x2 + Ay y ≤ a

D1
x x1 + D2

x x2 ≤ d

E x1 ≤ e

F x2 ≤ f

x1, x2 ∈ {0, 1}, y ≥ 0

where (c1
x, c

2
x, cy) is the objective coefficient row vector, A1

x, A2
x, Ay, D1

x, D2
x, E and

F are real matrices, (aT , dT , eT , fT) is the right hand side column vector, and x1, x2

and y are column vectors, where

x := 〈Xisk, Zilsk, Yjs, XPjsk, XDjsk, XCjsk〉
y := 〈TTsk, Tsk〉

range over j ∈ L ∪ U , i, l ∈ I, s ∈ S, k ∈ Ks. We use the notation 〈·〉 to denote the

column vector with components ranging through the specified indices.

4.1 Deriving an upper bound to the one-ship problem

First, we will focus on one-ship polyhedra. To simplify our notation, let xT = (xt
1,

xt
2), cx = (c1

x, c2
x), bT = (dT , eT , fT)

T
, Ax = (A1

x, A2
x) and

71

B =




D1
x D2

x

E 0

0 F




and we may rewrite our problem as

Maximize cxx + cyy

s.t. Axx + Ayy ≤ a

Bx ≤ b

x1, x2 ∈ {0, 1}, 0 ≤ y ≤ H,

where H denotes the time horizon. Furthermore, let

X := {x | Bx ≤ b, x ∈ {0, 1}}
Y := {y | 0 ≤ y ≤ H}

so we can write our one-ship problem in a compact form as follows

max
x∈X ,y∈Y

{
cxx + cyy | Axx + Ayy ≤ a

}
. (22)

4.1.1 Upper bound

Benders’ algorithm has often been proposed to decompose MILP problems as stated

in a compact form (22). The decomposition of a problem in the form of (22) consists

of an integer programming master problem involving the x variables, and a linear

programming subproblem involving the y variables. For fixed binary vector x, (22)

reduces to the linear programming subproblem

v(x) = max
y∈Y

{
cyy | Ayy ≤ a− Axx

}
. (23)

We then consider the dual of (23),

v(x) = min
p∈P

{
uT

p (a− Axx)
}

(24)

72

where {up|p ∈ P} is the set of extreme points of the dual feasible region, which does

not depend on the value of x, and P denotes the corresponding index set. Hence, our

original problem (22) can be written as a nonlinear integer programming problem

max
x∈X

{
cxx + v(x)

}
.

The following inequalities show a step-by-step derivation of an upper-bounding

problem

max
x∈X ,y∈Y

{
cxx + cyy | Axx + Ayy ≤ a

}

= max
x∈X

{
cxx + max

y∈Y

{
cyy | Ayy ≤ a− Axx

}}
(a)

= max
x∈X

{
cxx + min

u∈V

{
uT (a− Axx) | uT Ay ≥ cy

}}
(b)

= max
x∈X

{
cxx + min

p∈P

{
uT

p (a− Axx)
}}

(c)

= max
x∈X

{
min
p∈P

{
cxx + uT

p (a− Axx)
}}

(d)

≤ min
p∈P

{
max
x∈X

{
cxx + uT

p (b− Axx)
}}

(e)

= min
p∈P

{
max
x∈X

{
uT

p b + (cx − uT
p Ax) x

}}
(f)

≤ min
p∈P ′

{
max
x∈X

{
uT

p b + (cx − uT
p Ax) x

}}
(g)

= min
p∈P ′

{
uT

p b + max
x∈X

{
(cx − uT

p Ax) x
}}

(h)

where P ′ ⊂ P is the index set of selected dual extreme points that we obtain by

73

exploring the special structure in the matrix of the original problem. We will describe

the details on how we construct the set P ′ in a later section.

The derivation we showed above shows how to go from (a) to (d). We use the

min-max theorem (e.g., Danskin [19]) to obtain (e) from (d). The theorem basically

says that the minimum among the maximums is always greater than or equal to the

maximum among the minimums. Form (f) is just a rearrangement of (e). Finally,

the inequality between (f) and (g) holds because we only consider some dual extreme

points as opposed to all possible dual extreme points. The idea is that, if we can

choose some “good” dual extreme points, hopefully we can find a “good” upper bound.

Next, we will exploit the special structure of our one-ship problem that will be

used later to find some dual extreme points to define a set P ′.

4.1.2 Primal and dual pair in one-ship problem

Let us take a closer look at our one-ship problem (23). Stated using the original

variables, for each ship s ∈ S, the ship-s problem can be written as finding the cost

of chartering the ship s from time zero until the ship s finishes its operation. Or,

we are trying to minimize TCCs times TsKs . It is equivalent to −TCCs times the

optimal value of

max TsKs

s.t. Tsk ≤ αjsk(xs), j ∈ U , k ∈ Ks\{Ks} (ρjsk)

−Ts(k+1) ≤ βjsk(xs), j ∈ U , k ∈ Ks\{Ks} (πjsk)

Tsk − Ts(k+1) ≤ γsk(xs), k ∈ Ks\{Ks} (σjsk)

Ts0 = ts0 (ν)

Tsk ≥ 0 k ∈ Ks\{0}

(25)

74

where based on (15), (16), and (19),

αjsk(xs) = M − (M − LPTj + 1
2
Tadm)XPjsk ≥ 0

βjsk(xs) = −(EPTj + 1
2
Tadm)XPjsk − VjXPjsk

LRj
−∑

i

∑
l
DisilZilsk

24vs
≤ 0

γsk(xs) = −Tadm(1−X0sk)−
∑

j
VjXDjsk

DRj
−∑

j
VjXPjsk

LRj
−∑

i

∑
l
DisilZilsk

24vs
≤ 0.

and dual variables associated with each constraint are shown in the bracket. Note

that we have eliminated variables TTsk by using a substitution according to (72).

The dual problem of (25) is to minimize

ts0 ν +
∑
j∈U

Ks−1∑

k=0

αjsk(xs) ρjsk +
∑
j∈U

Ks−1∑

k=0

βjsk(xs) πjsk +
Ks−1∑

k=0

γjsk(xs) σjsk

s.t. v +
∑

j∈U ρjs0 +σs0 = 0 (Ts0)
∑

j∈U ρjsk −∑
j∈U πjs(k−1) +σsk − σs(k−1) ≥ 0, k ∈ Ks\{0, Ks} (Tsk)

−∑
j∈U πjs(Ks−1) −σs(Ks−1) ≥ −TCCs (TsKs)

ν unrestricted, ρjsk, πjsk, σsk ≥ 0, j ∈ U , k ∈ Ks

4.1.3 Analyzing primal

In our primal problem (25), for each s ∈ S the objective is to maximize −TCCs TsKs .

Hence it is our intention to make the value of TsKs as small as possible. For TsKs , we

have the relations,

−TsKs ≤ βjs(Ks−1)(xs) j ∈ U
TsKs ≥ Ts(Ks−1) − γs(Ks−1)(xs)

so we may derive the following lower bound for TsKs

TsKs ≥ max
{

Ts(Ks−1) − γs(Ks−1)(xs),
max
j∈U

{− βjs(Ks−1)(xs)
}}

(26)

Since our problem is a maximization problem, in the optimal solution TsKs will be

forced to equal its lower bound, which is achievable. But this lower bound depends

75

on the value of Ts(Ks−1). Similarly, we can derive the lower bound for Ts(Ks−1) as

Ts(Ks−1) ≥ max
{

Ts(Ks−2) − γs(Ks−2)(xs),
max
j∈U

{− βjs(Ks−2)(xs)
}}

(27)

We may substitute (27) in (26) and obtain

TsKs ≥ max
{

Ts(Ks−2) − γs(Ks−2)(xs)− γs(Ks−1)(xs),

−γs(Ks−1)(xs) + max
j∈U

{− βjs(Ks−2)(xs)
}
,

max
j∈U

{− βjs(Ks−1)(xs)
}}

.

We can continue doing this until Ts0, and derive a closed form expression for the

lower bound of TsKs which depends on the value of xs.

Ts(Ks−2) ≥ max
{

Ts(Ks−3) − γs(Ks−3)(xs),
max
j∈U

{− βjs(Ks−3)(xs)
}}

Ts(Ks−3) ≥ max
{

Ts(Ks−4) − γs(Ks−4)(xs),
max
j∈U

{− βjs(Ks−4)(xs)
}}

...

Ts2 ≥ max
{

Ts1 − γs1(xs),
max
j∈U

{− βjs1(xs)
}}

Ts1 ≥ max
{

ts0 − γs1(xs),
max
j∈U

{− βjs0(xs)
}}

And we may derive the closed form for the lower bound of TsKs . Again, note that

we want the value of TsKs to be as small as possible. Therefore, the optimal value

T ?
sKs

will be equal to

T ?
sKs

= max
{

ts0 −
∑Ks−1

k=0 γsk(xs),

−∑Ks−1
k=1 γsk(xs) + max

j∈U
{− βjs0(xs)

}
,

−∑Ks−1
k=2 γsk(xs) + max

j∈U
{− βjs1(xs)

}
,

· · ·
−γs(Ks−1)(xs) + max

j∈U
{− βjs(Ks−2)(xs)

}
,

max
j∈U

{− βjs(Ks−1)(xs)
}}

,

(28)

and the optimal objective value of our primal problem equals −TCCs T ?
sKs

.

76

4.1.4 Analyzing dual

With the closed form (28) for the optimal TsKs value in hand, we compare it to the

optimal dual objective function which is obtained by minimizing

ts0 ν +
∑
j∈U

Ks−1∑

k=0

αjsk(xs) ρjsk +
∑
j∈U

Ks−1∑

k=0

βjsk(xs) πjsk +
Ks−1∑

k=0

γsk(xs) σjsk. (29)

By analyzing these two forms, we may notice that the closed form (28) of optimal

TsKs actually suggests some possible {−1, 0, 1} combinations of {ν, ρjsk, πjsk, σjsk},
and we claim that all of these combinations are feasible to the dual problem (33).

First, let us take a look at the first term of T ?
sKs

in (28), which is

ts0 −
Ks−1∑

k=0

γsk(xs).

By comparing this term to the objective term of the dual (29), we may deduce that

the following combination is feasible for the dual problem,

ν = 1

ρjsk = 0 j ∈ U , k ∈ Ks\{Ks}
πjsk = 0 j ∈ U , k ∈ Ks\{Ks}
σsk = −1 k ∈ Ks\{Ks}.

(30)

This can be verified by substituting (30) in the dual system. Similarly, from the

second term of (28)

−
Ks−1∑

k=1

γsk(xs) +
max

j ∈ U − βjs0(xs),

for each ship s and every fixed j? ∈ U we have a dual feasible point,

77

ν = 0

ρjsk = 0 j ∈ U , k ∈ Ks\{Ks}
πj?sk = 1 k ∈ Ks\{Ks}
πjsk = 0 j ∈ U\{j?}, k ∈ Ks\{Ks}
σsk = −1 k ∈ {1, 2, ..., Ks}.

(31)

Note that from the second term of (28) alone we have as many as |U| dual feasible

points. Again, the feasibility of these dual points can be easily checked by direct

computation of the dual system. Similarly, from the third term of (28) to the last

term of (28), we have as many as |U| dual feasible points each. This leads to a total

number of (1 + Ks × |U|) dual feasible points that we may obtain from (28) for each

ship s ∈ S. These feasible points define the set P ′ and are used in the upper-bounding

problem.

Intuitively, each of these feasible points tells us that the minimum operating time

T ?
sKs

for ship-s equals the sum of travel time to reach the first destination, all pickup,

download, and port administrative times in all legs, and the travel time between

ports, with one of the following cases happening:

- there is no waiting time in all legs, the arrival of the ship at the port in each leg

lies within the pickup and download time-windows of the cargos the ship has

to serve in the respective port (this is the first term in (28));

- there is a waiting time at the port visited in leg-0 because the ship arrives

earlier than the pickup time-windows for some cargos being picked-up in leg-0,

but there is no delay in the following legs (this is the second term in (28));

- there is a waiting time at the port visited in leg-1 for the same reason as above,

but there is no delay in the following legs (here it does not mean that there is

no delay in leg-0, but it does not affect the total operational time of the ship

since there is a delay in leg-1 anyway);

78

- similar cases where a delay happens in leg-2 and no delay in the next legs, in

leg-3 and no delay in the next legs, etc.

4.1.5 Example

Now we will implement the foregoing ideas to our 10-ship problem. Upper-bounds for

all ten one-ship problems (using the method described in Section 4.1.1) are presented

in Table 17. We also include the upper bounds from the LP-relaxation for comparison.

Table 17: Upper bound comparison for one-ship problems

Ship Optimal LP Relaxation LP Relaxation Upper Bound UB Performance
Solution (% from Optimal) (proposed method) (% from Optimal)

1 162117 530349 327.14 225611 139.17
2 195488 673143 344.34 233520 119.45
3 145147 614706 423.51 285975 197.02
4 202064 592275 293.11 295955 146.47
5 174627 423907 242.75 201550 115.42
6 141450 743762 525.81 171295 121.10
7 120718 526519 436.16 133352 110.47
8 54037 598016 1,106.68 92112 170.46
9 164257 499902 304.34 180507 109.89
10 216801 634064 292.46 277267 127.89

The results shown in Table 17 tell us that the upper-bound performance ranges

from about 110% to almost 200% of the optimal profit. To see how good the upper

bound values are, we include the value of the LP relaxation in the table for us to

compare with. We may see that the LP relaxation gives us upper bound values that

range from 242.75% to 1, 106.68% of the optimal solution while our upper bound

values range from 109.89% to 197.02% of the optimal. This leads into a reduction on

the upper bound values to a range of 15− 50% from the LP relaxation. We will now

apply the idea to derive an upper bound for the multi-ship problem.

4.2 Deriving an upper bound for the multi-ship problem

Recall that our original multi-ship problem can be decomposed into as many as |S|
one-ship problems if we take care of the coupling constraint carefully. The only

79

Coupling constraints

.

.

.

.

.

.

.

.

.

.

Ship |S|-1

constraints

Ship |S|

constraints

Ship 1

constraints

Ship 2

constraints

Figure 16: Structure defined by multi-ship polyhedron.

coupling constraint that we have is constraint (71) for as many as |U| such constraints.

The general structure for the multi-ship problem is depicted in Figure 4.2.

Let us rewrite our multi-ship problem as follows:

Maximize
∑

s∈S cs
x xs + cs

y ys

s.t. H x ≤ h

As
x xs + As

y ys ≤ as, s ∈ S
Ds xs ≤ ds, s ∈ S
Gs xs ≤ gs, s ∈ S

x = 〈x1, x2, ..., x|S|〉 ∈ {0, 1}, ys ≥ 0 ∀s ∈ S

where for each s ∈ S, (cs
x, c

s
y) is the objective coefficient row vector, As

x, As
y, Ds, Gs

are real matrices, (aT
s , dT

s , gT
s)T is the right hand side column vector, and xs and ys

are column vectors, where

xs := 〈Xisk, Zilsk, Yjs, XPjsk, XDjsk, XCjsk〉
ys := 〈Tsk〉

range over j ∈ L ∪ U , i, l ∈ I, s ∈ S, k ∈ Ks. Note that the coupling constraint

that we have is Hx ≤ h, which represents constraint (71) in our formulation. The

variables Xisk and Yjs are pure binary variables and the remaining variables in xs are

80

forced to be binaries by these two pure binary variables. The components of ys are

continuous. The matrix Gs is given by

Gs =


 Es 0

0 F s




where E and F are as defined in Section 2.5. We further observe that matrix G

is totally-unimodular since submatrices E and F are totally-unimodular by Lemma

2.5.1. Also note that by using the relation reflected in equation (14) we eliminate

variable TTsk from the system for all s ∈ S, k ∈ Ks.

4.2.1 Upper-bound for the multi-ship problem

We can also write our multi-ship problem as

(IP) ZIP = Maximize cT
x x + cT

y y

s.t. H x ≤ h

Ax x + Ay y ≤ a

D x ≤ d

G x ≤ g

x ∈ {0, 1}, y ≥ 0

where

x := 〈x1, x2, ..., x|S|〉
y := 〈y1, y2, ..., y|S|〉

cx := 〈c1
x, c

2
x, ..., c

|S|
x 〉

cy := 〈c1
y, c

2
y, ..., c

|S|
y 〉

a := 〈a1, a2, ..., a|S|〉
d := 〈d1, d2, ..., d|S|〉
g := 〈g1, g2, ..., g|S|〉

and

81

Ax =




A1
x

A2
x

. . .

A
|S|
x




, Ay =




A1
y

A2
y

. . .

A
|S|
y




,

D =




D1

D2

. . .

D|S|




, G =




G1

G2

. . .

G|S|




.

Let ZIP be the optimal solution of the above problem, we use the same approach

as we used for the one-ship problem to derive an upper-bounding problem for (IP).

For a fixed x ∈ X := {x | Hx ≤ h,Dx ≤ d, Gx ≤ g, x binary}, (IP) reduces to

the linear programming subproblem

max
y≥0

{
cyy | Ayy ≤ a− Axx

}
. (32)

We then consider the dual of (32) whose feasible region does not depend on the

value of x,

min
u∈U

{
uT (a− Axx) | uT Ay ≥ cy

}

= min
p∈P

{
uT

p (a− Axx)
}

(33)

where up, p ∈ P are the set of extreme points of the dual feasible region. Hence, our

(IP) problem can be written as an integer programming problem

82

max
x∈X

{
cxx + min

p∈P

{
uT

p (a− Axx)
}}

≤ min
p∈P

{
max
x∈X

{
(cx − uT

p Ax) x + uT
p a

}}

≤ min
p∈P ′

{
max
x∈X

{
(cx − uT

p Ax) x + uT
p a

}}

where P ′ denotes a subset of P . We have derived an upper-bounding program to our

multi-ship problem, which is:

(UB) ZUB = Minimizep∈P ′ Zp
UB (34)

where for each p ∈ P ′ ⊆ P =
{

p | up is extreme point of polyhedron {u | uT Ay ≥
cy}

}
,

(UBp) Zp
UB = uT

p a + Maximize (cx − uT
p Ax)

T
x

s.t. Hx ≤ h

Dx ≤ d

Gx ≤ g

x ∈ {0, 1}

4.2.2 Lagrangian relaxation of upper-bounding problem

Since matrix G is totally-unimodular and the elements of vector g are integer, we

assume that optimizing over the set {x | Gx ≤ g, x binary} can be done efficiently.

However, adding constraints and Hx ≤ h and Dx ≤ d to the problem makes the

problem more difficult to solve. We next consider dualizing Hx ≤ h while introducing

non-negative vectors of multipliers π so that the problem is easier to solve.

83

For a fixed vector π, we consider the problem

Zp
LR(π) = uT

p a + Maximize (cx − uT
p Ax)

T
x + πT (h−Hx)

s.t. D x ≤ d,

G x ≤ g,

x ∈ {0, 1}.

and we refer to it as problem LRp(π).

Lemma 4.2.1 If the problem (IP) in Section 4.2.1 has an optimal solution, for all

π ≥ 0, we have the following relationship:

ZIP ≤ ZUB = minp∈P ′ Zp
UB ≤ minp∈P ′ Zp

LR(π). (35)

The proof is omitted since the derivation of the first inequality was explained in

Section 4.2.1 and the rest follows by definition. The problem LRp(π) provides an

upper-bound on the integer programming problem (IP) for all π ≥ 0. Of course, we

want to have the tightest of such bound. Thus, our objective is to find an optimal

π∗ ≥ 0 that yields Zp
LR(π), p ∈ P ′, the and Dual Accent method below can be applied

to obtain such π∗.

4.2.3 Dual Ascent Method

Let V be the set of all extreme points of the polyhedron defined by {x |Dx ≤ d, Gx ≤
g, x binary} and let I be the index set for points in V . As we may see, Zp

LR(π)

is a piecewise linear convex function of π. For every point xi ∈ V , the vector
∑

i∈I αi (h − Hxi), such that
∑

i∈I αi = 1 and αi ≥ 0 for all i ∈ I, and all of

its convex combinations are in the sub-differential of LRp at π, which is denoted by

∂LRp(π).

By using the basic property of convex functions, we verify optimality of the current

πk at each iteration k. If the current πk is not optimal, we derive the improving

direction, and choose the step size along the improving direction.

84

The multiplier π∗ is optimal to our problem LRp(π) if and only if the Lagrange

multiplier vector satisfies the first order optimality condition, or that the vector zero

is in the sub-differential set of LRp(π) at πH ; i.e., 0 ∈ ∂LRp(π∗).

For a given π, the method finds a vertex in V and checks if 0 ∈ ∂LRp(π). If not,

the method will find an improving direction as well as an optimal step size to fix the

value of π in the next iteration.

At iteration k, we have a set of extreme points Vk ⊆ V that solve LRp(πk) with

associated index Ik ⊆ I. We want to know if 0 ∈ ∂LRp(πk). This is the same as

checking the existence of αi such that

∑
i∈I

αi [h−Hxi] = 0,
∑
i∈I

αi = 1, and αi ≥ 0, for all i ∈ Ik.

To check this, we construct the Phase I linear problem as follow

(PH1p
k) Min

∑m
j=1 sj + sm+1

s.t. (Hx1) α1 + . . . + (Hx|Ik|) α|Ik| + Ims = h

α1 + . . . + α|Ik| + sm+1 = 1

αi ≥ 0, ∀i ∈ {1, 2, ..., |Ik|}
sj ≥ 0, ∀j ∈ {1, 2, ..., m + 1}

where m is the number of rows in matrix H and Im is the identity matrix of order

m, vector of variables s = [s1, s2, ..., sm] and variable sm+1 denote artificials.

If the solution of (PHp
k) is 0 then our current πk is optimal. Otherwise, the dual

variables from the dual problem of (PHp
k) will give us an improving direction. Let

(ρk, ρk
0) be the corresponding dual variables; i.e., the dual of (PHp

k) can be written as

Max (ρk)
T
h + ρk

0

s.t. (Hxi)T ρk + ρ0 ≤ 0, for all i ∈ Ik,

ρk, ρk
0 ≤ 1.

If the solution of (PHp
k) is positive, then we know that the dual also has the same

solution, hence

(ρk)
T
h + ρk

0 > 0,

85

or,

−ρk
0 < (ρk)

T
h, (36)

and we also know that the dual problem is feasible, so

(Hxi)T ρk + ρk
0 ≤ 0, for all i ∈ Ik,

or,

(Hxi)T ρk ≤ −ρk
0, for all i ∈ Ik. (37)

From (36) and (37) we have that

(Hxi)T ρk < (ρk
H)

T
h

or,

(ρk
H)

T
(h−Hxi) > 0, for all i ∈ Ik. (38)

The condition (38) remains true only for all i ∈ Ik, but not for all i ∈ I. Therefore,

we want to check if the direction ρk
H is really an improving direction by checking to

see if the directional derivative of LRp at πk in the direction ρk is positive; i.e., if

lim
t→0

LRp(πk + tρk)− LRp(πk)

t
> 0. (39)

If ρk is really an improving direction, we may update our current value of πk to

(πk+tρk), where the value of t can be determined by the optimal step size. Otherwise,

if ρk is not an improving direction, we will find a new extreme point xs 6= xi, i ∈ Ik

as an optimal solution to LRp(πk). We then update the set Vk ← Vk ∪ {xs} and

re-solve the phase-one problem. This procedure is valid by a well known result; e.g.,

Theorem 6.3.4 in [10], which is stated without proof in Proposition 4.2.1.

Proposition 4.2.1 Suppose LRp(πk + tsρ
k) − LRp(πk)leq0 for ts > 0 sufficiently

small and ρk is an optimal dual sub-vector associated with the first constraint of

problem (PH1p
k). Let the vertex xs be an optimal solution of LRp(πk + tsρ

k). Then

xs ∈ V\Vk.

86

If the first case happens; i.e., ρk is an improving direction, the step size tk can be

determined by solving:

Maxt≥0 LRp(ρk + tkρk).

After we have the value of tk, we define πk+1 = πk + tkρk. Let xk+1 be the solution

that yields Zp
LR(π). We then construct the set Vk+1 = {xk+1}, set k ← k + 1 and

repeat the iteration.

Furthermore, we can actually decompose Zp
LR(π) into as many as |S| subproblems

LRp
s(π)

Zp
LR(π) = uT

p a + πT h +
∑
s∈S

Zps
LR(π),

where Zps
LR(π) is the optimal value of problem LRp

s(π) which is defined as follows

Zps
LR(π) = Maximize [cs

x − (us
p)

T As
x − (πs)T Hs]

T
xs

s.t. Ds xs ≤ ds,

Gs xs ≤ gs,

xs ∈ {0, 1}.

4.3 Computational Results

We apply the foregoing ideas to calculate upper bounds on test case problems that

were randomly generated to show the performance of the heuristics we explained in

Chapter 3. However, instead of solving the integer program LRp
s(π), we solve the LP

Relaxation of it. The resulting bound is not as strong as Zps
LR(π), but it still yields

an upper bound to the multi-ship problem. Also, we only choose a point p ∈ P ′

that is the first term of the closed form (28). Table 18 shows the performance of the

upper bounding problems on the test case problems, measured relative to the optimal

solution and to the LP relaxations.

87

Table 18: Upper bound performance

Ships Number of problems UB Solution Performance UB Time Performance
(Average % of LP Relaxation) (Average % of time to solve LP)

3 80 68.79% 27.54%
4 80 64.33% 17.11%
5 80 74.64% 27.04%
6 80 63.21% 16.81%
7 80 68.50% 29.58%
8 80 68.04% 23.49%
9 80 75.62% 18.15%
10 80 69.23% 21.23%
11 80 71.97% 21.86%
12 80 75.00% 22.29%
13 80 75.27% 23.30%
14 30 69.90% 25.51%
15 10 77.46% 26.60%

The upper bound solution value performance is measured as

UB solution value

LP relaxation solution value
× 100%,

and the upper time solution time performance is measured as

Time to solve UB problem

Time to solve LP relaxation
× 100%.

The smaller of these two upper bound performance measurement values, the better

they are since they represent how good the bound obtained by our upper bounding

problem compared to that of the LP relaxation.

For our particular 10-ship problem example, the LP relaxation solution value is

1, 994, 850 obtained in 349.88 seconds while our upper bounding problem gives a

slightly better solution of 1, 804, 170, or about 90% from the LP relaxation, obtained

in 218.36 seconds, or about 62% of the time spent in solving the LP relaxation. We

also recall that the optimal solution to our 10-ship example is 1, 137, 154. Comparing

to this value, the LP relaxation and our upper bound gives a value of 75.42% and

58.66% higher than the optimal solution, respectively. In general, the relaxation of

the upper bounding problem gives a better bound compared to that provided by the

88

LP relaxation solution. Moreover, the tighter bound can be obtained in a much faster

time.

Another type of upper bound that we can compute is an upper bound provided

by one-ship optimal solutions. The sum of one-ship optimal profit for each ship

gives another upper bound. Clearly, profit reached by each ship in the final multi-

ship schedule is bounded above by the optimal profit reached by one-ship problem.

Otherwise, a ship may serve more cargos to earn extra profit, which leads to a contra-

diction to the fact that the profit is optimal for one-ship problem. For our particular

10-ship problem, for example, the upper bound obtained by summing up one-ship

optimal solutions is 1, 538, 521, or 35.30% higher than the optimal solution. While

this is a better bound to our problem, the bound is obtained at a slightly higher

computational time since we have to solve one-ship problem for each of the ship.

The total time to solve all one-ship problems is 804.52 seconds, a slightly longer time

compared to that to solve LP relaxation of the multi-ship problem.

89

CHAPTER V

EXTENSIONS TO SOFT TIME-WINDOWS AND

INTER-SHIP CARGO-TRANSFERS

One of the advantages of our model is that we have continuous time variables that

allow us to embed extensive time aspects. Here we are going to explore two exten-

sions that allow us to demonstrate this capability. We are going to extend the model

to reflect soft time-window and cargo-transfer related activities. Both of these ex-

tensions involve time aspects. In the soft time-window extension, we allow pickups

and downloads to happen outside the predefined time-windows by imposing some

penalty terms. Hence we will measure how far away a pickup or download happens

outside its original time-windows. This is where the time aspects come into play. In

our cargo-transfer extension, we allow a cargo to be picked-up and downloaded by

different ships. For example, we want to have a cargo be picked-up by ship A and

downloaded by ship B. For this to happen, we require a transfer from A to B, where

we require the download from ship to happen before the pickup by ship B. This is

where we can utilize the time aspects of our model.

5.1 Soft time-windows

Recall that in scheduling with hard time windows in our sea-cargo routing and

scheduling problem, each cargo has a time window within which a pickup can only

occur. Now, we are going to relax that by introducing a soft time windows. By replac-

ing hard time windows with soft time windows, the pickup is allowed to begin outside

the original pickup time windows with inconvenience cost or penalty cost incurred.

This penalty can represent the cost of lost sales, waiting idle in the port, goodwill,

etc. The motivation is that by allowing time window violations for some cargos, it

90

may be possible to generate more profits by serving more cargos, or significantly re-

duce the overall transportation costs. Soft time windows also reflect more flexibility

experienced in practice than hard time windows. It is important to note that soft

time windows are the more general case so it includes the hard time windows case

as well. To see this, suppose our hard time window for a cargo j is [EPTj, LPTj].

Extending this time window to [XEPTj, XLPTj], where XEPTj = EPTj − δe and

XLPTj = LPTj + δl, yields a soft time window. It is clear to see that by setting

δe = δl = 0 we arrive at our original hard time window case.

5.1.1 Embedding soft time-windows into our model

To extend our problem to accommodate soft time-windows, we may easily adjust

constraints (15) and (16) in our original problem by replacing EPTj and LPTj with

XEPTj and XLPTj, respectively, where “X” indicates the “extended” time-windows.

The adjusted constraints become

Tsk ≤ (XLPTj − 1

2
Tadm)XPjsk + M(1−XPjsk) j ∈ U , s ∈ S, k ∈ Ks\{Ks} (40)

Ts(k+1) ≥ (XEPTj +
1

2
Tadm)XPjsk +

VjXPjsk

LRj

+ TTsk j ∈ U , s ∈ S, k ∈ Ks\{Ks}
(41)

Introducing penalty terms in the objective function

Penalty is introduced in the objective function and is incurred if a cargo is picked

up by a ship after its predetermined time window but before its extended (soft) time

window expires. Penalties are usually computed daily; i.e., the company is penalized

for a fixed amount for each late pick-up day. These penalties are depicted in Figure

17 and given by the penalty function

91

+ Infinity
 + Infinity

p(t)

XEPT

j

EPT

j

LPT

j

XLPT

j

|
c

1

|
 |
c

2

|

Figure 17: Penalty function for soft time-windows

pj(t) =





+∞ if t < XEPTj

|c1|(EPTj − t) if XEPTj ≤ t < EPTj

0 if EPTj ≤ t ≤ LPTj

|c2|(t− LPTj) if LPTj < t ≤ XLPTj

+∞ if t > XLPTj

where t denotes the time when a ship s is ready to pickup cargo j at the end of leg k.

Suppose a cargo j has soft time window [XEPTj, XLPTj] and is supposed to be

picked up by ship s. The inconvenience/penalty cost is incurred when ship s arrives

in either interval [XEPTj, EPTj] or [LPTj, XLPTj]. If the ship arrives in interval

[EPTj, LPTj], the inconvenience cost is zero and if the ship arrives before XEPTj or

after XLPTj, there is no chance for ship s to serve cargo j.

In this model, the inconvenience cost is denoted as Pjsk and is a linear function

of the degree of violation. Suppose the time when ship s arrives is Tsk. Since the

ship must go through an administrative process once arrived at a port, the degree

of violation is measured by EPTj − (Tsk + Tadm) if ship s arrives before EPTj or

(Tsk + Tadm)− LPTj if ship s arrives after LPTj.

Due to the nature of this problem, it does not make sense to incur a penalty cost

92

when a ship picking up a cargo arrives before the earliest pickup time. Therefore a

penalty cost is only introduced when the ship arrives after the latest pickup time. We

revise our penalty function as follows:

pj(t) =





+∞ if t < XEPTj

0 if XEPTj ≤ t ≤ LPTj

c̃(t− LPTj) if LPTj < t ≤ XLPTj, c̃ > 0

+∞ if t > XLPTj

where t = Tsk + 0.5Tadm.

Clearly, penalty for cargo j occurs if the pickup of cargo j is performed between

the latest pickup time LPTj and the extended latest pickup time XLPTj. And it

only occurs when there is a pickup for cargo j. Hence, for each cargo j, the penalty

cost is Pjsk = XPjsk pj(t). We may also write it as:

Pjsk = c̃ XPjsk max{0, Tsk + 0.5Tadm − LPTj}

To capture all penalty costs, a new term should be introduced in the original

objective function. Let f(·) be the original objective function to be maximized. Then

the positive penalty terms are subtracted from the objective.

Maximize f(·)−
∑
j∈U

∑
s∈S

∑

k∈Ks

Pjsk

or equivalently,

93

Maximize f(·)−∑
j

∑
s

∑
k c̃ XPjsk max{0, Tsk + 0.5Tadm − LPTj}

⇔ Maximize f(·)−∑
j

∑
s

∑
k c̃ max{0, Tsk XPjsk + (0.5Tadm − LPTj) XPjsk}

⇔ Maximize f(·)−∑
j

∑
s

∑
k c̃ min{0, (LPTj − 0.5Tadm) XPjsk − Tsk XPjsk}

⇔ Maximize f(·)−∑
j

∑
s

∑
k c̃ XLjsk

s.t. XLjsk = min{0, (LPTj − 0.5Tadm) XPjsk − Tsk XPjsk}, for all j, s, k

⇔ Maximize f(·)−∑
j

∑
s

∑
k c̃ XLjsk

s.t. XLjsk ≤ 0 j ∈ U , s ∈ S, k ∈ Ks

XLjsk ≤ (LPTj − 0.5Tadm) XPjsk − Tsk XPjsk j ∈ U , s ∈ S, k ∈ Ks

⇔ Maximize f(·)−∑
j

∑
s

∑
k c̃ XLjsk

s.t. XLjsk ≤ 0 j ∈ U , s ∈ S, k ∈ Ks

XLjsk ≤ (LPTj − 0.5Tadm) XPjsk − TXPjsk j ∈ U , s ∈ S, k ∈ Ks

TXPjsk = Tsk XPjsk j ∈ U , s ∈ S, k ∈ Ks

5.1.2 Exact linear relaxation

The foregoing formulation has bilinear terms TXPjsk = Tsk XPjsk for all j ∈ U , s ∈
S, k ∈ Ks. We will construct an exact linear reformulation for each of these bilinear

constraints. Noting that XPjsk is 0-1 (implied) integer variables, TXPjsk lie in the

interval [0, H], where H denotes the length of the planning horizon. As a result, we

arrive at the equivalent reformulation

Maximize f(·)−∑
j

∑
s

∑
k c XLjsk

s.t. XLjsk ≤ 0 j ∈ U , s ∈ S, k ∈ Ks

XLjsk ≤ (LPTj − 0.5Tadm) XPjsk − TXPjsk j ∈ U , s ∈ S, k ∈ Ks

TXPjsk ≥ 0 j ∈ U , s ∈ S, k ∈ Ks

TXPjsk ≥ H XPjsk + Tsk −H j ∈ U , s ∈ S, k ∈ Ks

TXPjsk ≤ H XPjsk j ∈ U , s ∈ S, k ∈ Ks

TXPjsk ≤ Tsk j ∈ U , s ∈ S, k ∈ Ks

94

Ship-3

Ship-4

Ship-9

1 week
 2 weeks
 3 weeks
 4 weeks

Jakarta
 Singapore
 Karimun
 Maptaphut
 Bangkok
 Shuidong
 Shekou

Singapore
 Kuantan
 Karimun
 Shuidong
 Shekou
 Ningbo
 Shanghai

Davao
 Batangas
 Kaohsiung
 Maptaphut
 Ulsan
 Shanghai
 Ningbo

Davao
 Ningbo

Singapore

Jakarta

Hard Time Windows. Profit: $160,653

Hard Time Windows. Profit: $195,018

Hard Time Windows. Profit: $144,742

Onsan
 Ulsan
 Nantong
 Shanghai
 Ningbo
 Paradip

Soft Time Windows. Profit: $161,238

Soft Time Windows. Profit: $216,874

Karimun
 Kuantan
 Shuidong
 Ulsan
 Shanghai
 Ningbo

Batangas
 Kaohsiung
 Maptaphut
 Ulsan
 Shanghai

Soft Time Windows. Profit: $173,801

Figure 18: Comparison of Gantt-charts for the optimal one-ship schedules with hard
and soft time windows for ships 3,4, and 9.

Consequently, the introduction of soft time-windows increases the size of the prob-

lem. Our problem has an additional (|U| × |S| × |Ks|) continuous variables and

(4× |U| × |S| × |Ks|) constraints.

5.1.3 Example for one-ship problem

We implement the idea of introducing soft time windows to our 10-ship example. We

rerun the one-ship problem for all ships and obtain improvements in three of the 10

ships. Table 19 shows the improvements in the profits gained by ships 3, 4, and 9.

The penalty we imposed is 3 percent of the shipping rate discount per day, allowing

a maximum lateness of 7 days.

Table 19: Comparison of hard and soft time window (TW) profits for one ship
problems

Ship Cargos New Cargos Late-pickup Lateness Hard TW Soft TW Percent
onboard Cargos (days) Profit ($) Profit ($) Gained

3 56 11-15,36,38 36,38 1.98,3.49 144,742 161,328 11.46
4 57 9,11-14,17,19,21-25 11-14 5.22 195,108 216,874 22.58
9 68-74 11-14,38 38 3.45 160,653 173,801 8.18

95

The example shows that by relaxing the hard time windows into soft ones, we

may gain better profit from our routing and scheduling decisions. Moreover, soft

time windows are more common in practice.

5.2 Cargo-transfer between ships

In the type of ship cargo scheduling models under investigation, we have not found

in the literature any model that allows transloads, or cargo transfers from one ship

to another. The transfer can be done in any transload port. This is an important

feature that can significantly reduce transportation costs (e.g., time-charter cost and

fuel cost). This section describes how to model cargo transfer and embed it into our

multi-ship problem.

5.2.1 Embedding cargo-transfer into our model

To include cargo-transfer in our model, we introduce new variables and constraints.

To simplify our notation, some assumptions to our model are:

(i) A cargo-transfer can happen between two ships at any port. It cannot happen in

any open space in the middle of the ocean. In a hub and spoke system, cargo-

transfer can only happen at specified transfer ports. In our model, we can

always add some restrictions to allow cargo-transfer happening only at certain

ports.

(ii) We limit the maximum number of transfers to be one for each cargo. This

avoids a possibility of transferring a cargo over and over again even when it is

profitable. We believe that the service level would be downgraded if we allow

too many transfers.

(iii) The only transfer cost involved is the port charges to be paid by ships when

they berth at a transfer port. A cargo may spend some time waiting at the

transfer port to be picked-up by another ship, but we ignore this waiting cost

since it usually constitutes only a very small portion of the other costs incurred.

96

(iv) All onboard cargos carried by a ship at time zero cannot be transferred to

another ship. In other words, a ship has to deliver all onboard cargos by itself.

The fundamental change is that when a ship s serves a cargo j, it no longer has to

pickup the cargo from its pickup port and carry it all the way to the download port.

A ship may only pickup cargo j and download it at any available transfer port i ∈ I.

Or, a ship may also pickup the cargo from any transfer port and finally download it

at its download port. Remember that we only allow one transfer for each cargo.

Pickup port

PP

j

Download port

DP

j

Any transfer port

(1)

(2)
 (3)

XP

jsk

XD

jsk
XDT

jsk

XPT

jsk

Figure 19: Three ways ship s can serve cargo j when transfers are allowed.

To incorporate this cargo-transfer into the model, in addition to our current pickup

variable XPjsk and download variable XDjsk, we introduce new pickup and download

variables for cargo-transfer activity, XPTjsk and XDTjsk, respectively

XPjsk =





1 if ship s picks up cargo j from the pickup port PPj at the end of leg k

0 otherwise

XDjsk =





1 if ship s downloads cargo j at the download port DPj at the end of leg k

0 otherwise

XPTjsk =





1 if ship s picks up cargo j from a transfer port i 6= PPj at the end of leg k

0 otherwise

XDTjsk =





1 if ship s downloads cargo j at a transfer port i 6= DPj at the end of leg k

0 otherwise

97

As depicted in Figure 19, when a ship serves a cargo, the ship may either (1) pickup

the cargo from its pickup port and carry it all the way to the download port, or (2)

pickup the cargo from the pickup port and download it at any transfer port, or (3)

pickup the cargo from a transfer port and download it at the destination port.

Old constraints modified

Because of the newly introduced variables, some of our current constraints are af-

fected. Those affected constraints are (6), (7), (10), (11), (19), and (13). The rest of

the constraints remain the same.

Cargo pickups and downloads

If a ship s serves a cargo j, it has to pick it up once, either from its original pickup

port PPj, or from some transfer port i ∈ I. If the latter occurs, that means that

another ship has already served the cargo and a transfer of cargo j is happening at

port i. Similarly, if a ship s serves a cargo j, it has to download it once, either at

its destination port DPj, or at some transfer port i ∈ I. The following constraints

replace our original constraints (6) and (7)

∑

k

XPjsk +
∑

k

XPTjsk = Yjs, j ∈ U , s ∈ S, (42)

∑

k

XDjsk +
∑

k

XDTjsk = Yjs, j ∈ U , s ∈ S. (43)

Pickup and download sequence

A pickup has to happen before a download. The following constraint replaces our

original constraint (10)

98

∑

k>0

k(XDjsk −XPTjsk + XDTjsk −XPjsk) ≥ Yjs, j ∈ U , s ∈ S. (44)

Cargo carrying by a ship

To make a ship carry a cargo j from a pickup port to a download port, the following

constraint is used to replace constraint (11)

XCjs(k+1) = XCjsk+XPjsk−XDjsk+XPTjsk−XDTjsk, j ∈ L∪U , s ∈ S, k ∈ Ks\{Ks}.
(45)

Time spent at a port

Total service time in a port must exceed the time required for inspections plus the

time for discharging all delivery cargos plus the time for loading pickup cargos. The

time spent for all transfer activities has to be included here. For the dummy port,

we do not have administrative time. The following constraint replaces our original

constraint (19)

Ts(k+1) ≥ Tsk + Tadm(1−X0sk) +
∑

j

Vj

DRj

(XDjsk + XDTjsk) + ...

∑
j

Vj

LRj

(XPjsk + XPTjsk) + TTsk, s ∈ S, k ∈ Ks\{Ks}. (46)

Limit on number of ships serving a cargo

As we stated in one of the assumptions, a cargo-transfer can happen at most once for

each cargo. Since the maximum number of ships serving a cargo is two, constraint

(47) replaces constraint (13) in our original formulation

99

∑
s

Yjs ≤ 2, j ∈ L ∪ U . (47)

5.2.2 Change in the objective function

In our original formulation, we gained revenues by delivering a cargo from its pickup

port to its destination port. This is reflected in the objective function as

∑
s∈S

∑
j∈L∪U

SRj Yjs. (48)

But now, since we allow at most two ships to serve a cargo, we may have
∑

s Yjs = 2

for some j ∈ U . To avoid double-counting the revenue of serving one particular cargo,

we only count the revenue from a cargo j if the cargo is finally downloaded at its

destination port DPj. To represent this, we modify (48) above to

∑
s∈S

∑

k∈Ks

∑
j∈L∪U

SRj XDjsk. (49)

5.2.3 New constraints added

We also have to include some new constraints to model cargo-transfer activity. These

new constraints contain bilinear terms and an exact linearization scheme. This lin-

earization scheme used for the bilinear terms throughout this thesis can be found in

the Appendix A.

At most one ship delivers a cargo to its destination port

From Figure 19, we have two possible ways to download a cargo j at its destination

port DPj: namely, when the cargo is brought directly from its pickup port PPj, and

when the cargo originates from a transfer port i 6= PPj. To ensure that only one of

these two events occurs, we introduce the following constraint

100

∑
s∈S

∑

k∈Ks

XDjsk XDPj ,sk ≤ 1, j ∈ L ∪ U . (50)

One transfer port

When a cargo is served by two ships, a ship s1 has to pickup from its pickup port

PPj and download it at a transfer port i. And later, another ship s2 will visit that

transfer port, pickup cargo j and discharge it at its destination port DPj. Hence

there are two downloads and two pickups done to cargo j. The following constraint

makes sure that the first download and the second pickup happen in the same port i

∑
s∈S

∑

k∈Ks

i XPTjsk Xisk =
∑
s∈S

∑

k∈Ks

i XDTjsk Xisk, j ∈ U , i ∈ I. (51)

One pickup and one download

As mentioned earlier, once a ship serves a cargo, it has to pickup once and download

once. Also from Figure 19, if XPjsk = 1, then for that particular j and s, we must

have XPTjsk′ = 0 for all k′ ∈ K\{k}. This is reflected in the following bilinear

constraint

XPjsk1 XPTjsk2 = 0, for all (k1, k2)-pair, j ∈ U , s ∈ S, k1, k2 ∈ Ks, k1 6= k2.

(52)

Similarly, a download can occur only once when a ship serves a cargo. So that

XDjsk1 XDTjsk2 = 0, for all (k1, k2)-pair, j ∈ U , s ∈ S, k1, k2 ∈ Ks, k1 6= k2.

(53)

101

Transfer cargo is picked-up by 2nd ship after downloaded by 1st ship

For each cargo transfer activity, cargo pickup by the second ship can only happen

after cargo download has been done by the first ship. This is reflected in the following

trilinear constraint

XDTjs1k1 XPTjs2k2 Ts1k1 ≤ XDTjs1k1 XPTjs2k2 Ts2k2 ,

j ∈ U , s1 6= s2, s1, s2 ∈ S, k1 ∈ Ks1 , k2 ∈ Ks2 .
(54)

This trilinear constraint is exactly reformulated as a linear system by Proposition

A.0.1 in Appendix A.

5.2.4 Price to pay

Because constraints (6) and (7) are replaced by (42) and (43), we can no longer guar-

antee the integrality of variables XPjsk and XDjsk, which were forced to integrality

by (6) and (7). The same is true for variables XPTjsk and XDTjsk. Therefore, all of

them have to be set as binary variables. The good thing is, by constraints (52) and

(53), we just have to make sure either one of the pickup variables XPjsk or XPTjsk

must be binary. The same is true for the download variables, only one of XDjsk or

XDTjsk is set to be binary.

New binary variables, as well as all introduced constraints, will of course increase

the size of the problem tremendously. By introducing the cargo transfer capability

to the model, we add additional |U||S||K| integer variables and {|L|+ |U|+ |U||I|+
|U||S||K|2(2 + |S|)} constraints. For our 10-ship problem, for example, the number

of the constraints will increase from 127,079 to 2,685,374. And the number of integer

and continuous variables increased from 3,380 and 112,560 to 9,760 and 885,780,

respectively.

102

5.2.5 Example

We will illustrate our cargo transfer model with a small example. The problem has

3 ships and 7 cargos. The data is shown in Tables 20, 21, and 22. Time zero

is August 12, 00:00AM. The key in this example is that more than one ship has

one common destination that is profitable, yet quite far away. The cargo transfer

capability allows ships to pool all these cargos into one ship going to that destination,

while pickup of each cargo is done by a different ship. The optimal objective value

without allowing cargo transfers is $969,468 while with cargo transfers, the profit

increases to $1,144,308.83. The schedule chart of this 3-ship problem is depicted in

Figure 20.

Table 20: Unloaded cargo information details

Cargo Origin Destination Pickup Volume Shipping Rate Status at
time window (tonnes) (USD) time zero

1 Ulsan Brisbane 12-14 Aug 2000 380,000 Unloaded
2 Onsan Brisbane 12-14 Aug 2500 450,000 Unloaded
3 Taichung Brisbane 12-15 Aug 3000 500,000 Unloaded
4 Onsan Brisbane - 1,000 20,000 Loaded on Ship 1
5 Onsan Singapore - 1,100 25,000 Loaded on Ship 1
6 Jasaan Singapore - 1,200 40,000 Loaded on Ship 2
7 Kaohsiung Anyer - 1,500 30,000 Loaded on Ship 3

This example shows that by allowing inter-ship cargo-transfers we may signifi-

cantly reduce the operational costs and it also reflects more common practice.

Table 21: Ship information details for 3-ship problem

Ship Size Cost Immediate ETA Fuel Cost Consumption
(dwt) (USD/day) Destination (day) (USD/nm) (tonnes/day at 13 knots)

1 11000 5000 Ulsan 2.525 6.18 14
2 11000 9000 Onsan 1.875 8.15 18
3 11000 11000 Taichung 1.732 7.25 16

103

Table 22: Port information details for 3-ship problem

Port Number Port Name Port Cost (USD) Port Cost (USD) Port Cost (USD)
Ship-1 Ship-2 Ship-3

1 Ulsan 5,692 6,591 8,150
2 Onsan 3,688 5,587 6,262
3 Taichung 4,219 4,624 6,484
4 Singapore 5,348 7,248 12,006
5 Anyer 4,853 6,250 6,609
6 Brisbane 5,500 6,846 7,347

������

������

������

	
��

������ ������� �������

��
������ ������
�

������
� �
���

�
��
 ��
������
����������	
��

��
������

Figure 20: Gantt-charts for the 3-ship schedules with cargo transfers

104

CHAPTER VI

APPLICATION TO TRAIN ROUTING AND

SCHEDULING PROBLEM

In this chapter we discuss the use of our model to solve a train routing and scheduling

problem faced by a real railroad company. Train routing and scheduling problems

involve extensive time aspects since one of the goals is to have an optimal train

schedule. We extended the use of our model to answer the train routing and scheduling

problem in a leading railroad company. In this application, we modify our model and

add more constraints to better reflect the application. Here we also extend the model

to accommodate precedence requirements. In some ways we find similarities to the

problem faced by a sea-cargo company, but also due to the nature of a train’s limited

movements, we may reduce the number of some variables quite dramatically.

The train scheduling problem is a very large-scale network optimization problem

which typically calls for trillions of decision variables. Early research on train routing

and scheduling includes the work by Assad [7], Haghani [26], and Keaton [35], [36].

They divide the train scheduling problem into two separate phases. The first one is

a train design problem which determines train routes, and the second is the block

routing problem which determines the route blocks have to follow between the trains

formed. They are solved separately in an iterative procedure with feedback from one

phase to the other phase. A more recent paper by Gorman [25] suggests solving an

integrated train scheduling problem heuristically.

Ahuja et.al. [1] solve a train scheduling problem by a network modeling approach.

First, they assume that each train runs every day of the week. Ignoring the train

timings, a network-based model is introduced. Since the number of variables and

constraints are too big, they suggest a decomposition solution strategy. So they solve a

105

sequence of smaller decision models so that when the solutions of these smaller models

are taken collectively, a good solution is obtained. The decomposition they suggest

consists of two phases. In the first phase, train network and block-to-train assignments

are defined. Then in phase two, train frequencies and timings are determined for the

train network from phase one.

6.1 Problem description

Let us now start with the problem description of the train routing and scheduling

problem of interest and how it differs from the shipping model studied until now.

The first very important concept in train language is the block concept, which arises

in the context that a railroad serves thousands or millions of shipments from their

origins to respective destinations. A typical shipment consists of a set of cars having

a common origin and destination. To reduce the handling of individual shipments as

they travel, a set of shipments is grouped together as a block. Cars in the same block

may then pass through a series of intermediate classification yards, being separated

and reclassified only after they have reached the destination of the block. The blocking

policy, business practices, and scheduler’s experience specify what blocks should be

built at each yard in the network and which cars should go into each block. The

optimal blocking plan and assignment of cars to trains are beyond the scope of this

research.

When a train passes through an intermediate classification yard, it may download

or pickup blocks of cars. A block left by an inbound train is either transferred or

swapped to a different train or it is broken up and its cars are reclassified. Some cars

may have reached their destination and some are being transferred to another block.

Note here that although the origin and destination of a block may correspond to

those of a train, a block may also switch trains several times before reaching its final

destination. We call each block switch from one train to another a swap. Usually, the

railroad company has a business practice limiting the maximum number of swaps a

106

block can have during its journey.

In our train routing and scheduling problem, we are given a fleet of trains S with

different characteristics. Without loss of generality, we may assume that the fleet

has homogeneous characteristics. At time zero, we know the current locations of

all trains. A train can only originate from certain stations and terminate at certain

stations.

Trains have to carry blocks from their origins to specified destinations. Let B
be the set of blocks, each block has different characteristics (origin, destination, ton-

nage/weight, height, width, daily volume). A train s ∈ S can visit a collection of

stations from the set I. When a train visits a station i ∈ I, there are several activities

done to the train, namely pickup, download/setoff, crew change, and most likely some

inspections. Typically, once a train arrives at a station, it waits for an inspection to

be done by station officers. After the train passes the inspection procedure, some

blocks can be detached from the train, then it may proceed to pickup some other

blocks. Before the train may leave the station to continue its voyage, it must again

go through some inspections. We denote the total inspection time and crew-change of

any train in any station as Tadm. If there is a pickup, the train has to spend another

tpickup, which does not depend on the number of cars or blocks the train picks up.

Similarly, tdownload is the time spent for a download/set-off operation.

The objective is to assign all block-segments to be served by available trains and

determine the route that each train should follow during the planning horizon, such

that the number of block-swaps (block transfer between trains) is minimized. There

are also some other objectives to be minimized; i.e., number of trains running, the

length of trains operating schedules, cost of block-to-train assignments.

To use our model to solve this train routing and scheduling problem, we break

down a block into several block-segments and define precedence relationships among

them. Each block-segment has its own origin and destination. The reader is advised

to differentiate between the origin-destination pair of a block-segment and that of the

107

block itself. We will refer to the latter as a block-origin and block-destination pair to

avoid confusion.

Based on its block-path, each block b ∈ B can be broken down into a sequence

of |b| block-segments, namely j1 → j2 → ... → j(|b|−1) → j|b|. And let Jb be the

set {j1, j2, ..., j|b|}. Each block-segment j ∈ U has its pickup station and destination

station information, denoted by PPj and DPj, respectively.

The meaning of the term leg is the same as the one used to describe the ship routing

and scheduling problem. The number of stations visited (equal to the number of legs)

is also predetermined by the schedule planner. The output of this model will be used

later to define the train frequencies. We follow the formulation (1)-(14) of our original

model and make some changes to the rest of the constraints.

6.2 Model formulation

A schedule for train s is presented as a series of (Ks +1) legs, where Ks is the number

of legs a planner plans to schedule, or we may say that this is the maximum number

of stations a train could visit in a journey. We denote k = 0 as the leg-0, representing

the leg where a train reaching its first station at time zero. If the train is already at

some originating station, the first station would be the originating station itself. This

initial target station information is given prior to the new schedule generation. Let

Ks = {0, 1, ..., Ks} be the set of legs for train s.

In addition to real stations, a dummy station i = 0 is introduced with zero station

cost and zero distance from any other station. There is no block originating from and

to be discharged at this dummy station. Therefore the model also forces a condition

that after a train visits this dummy station, it will stay there until the end of the

planning horizon. We recognize this dummy station as an absorbing station used to

idle any train, if this option is considered profitable.

One interesting feature of this formulation, which makes the model different from

the traditional network flow approach, is that time is treated as continuous variables

108

as opposed to discrete units. This makes it possible to get train routes and schedules

simultaneously in one model. The model is a nonlinear model, but an exact lineariza-

tion scheme will be introduced. And we also introduce the decision variables along

with the explanation of the constraints.

6.2.1 Routing constraints

The routing constraints define and link the sequence of arrivals and departures of

the various trains to and from available stations. We define binary variables Xisks to

model whether or not train s is at station i at the end of sailing leg ks. Note that the

index k depends on s, because for different trains we may have different numbers of

legs (ks ∈ Ks), where Ks denotes the set of legs for train s. But for simplicity, let us

drop the subscript s from index ks. We define

Xisk =





1 if train s reaches station i at the end of leg k

0 otherwise

where Tsk denotes a continuous variable indicating the time at which train s arrives

at any station at the end of leg k.

Visit exactly one station in each leg

A train can only visit one station during each leg. It can be any of the service stations

or the dummy station

∑
i

Xisk = 1, s ∈ S, k ∈ Ks. (55)

Maximum one visit for all stations i ∈ I \ {0}
We may relax this assumption later to accommodate multiple visits to one station.

Now, assume that a train can visit a specific station at most once during each leg,

except for the dummy station, so

109

∑

k

Xisk ≤ 1, i ∈ I \ {0}, s ∈ S. (56)

Dummy station as an absorbing station

To prevent a train from transiting through the dummy station, we force that once

a train visits the dummy station, it has to stay there until the end of the planning

horizon. In other words, the dummy station is only visited by trains that are idle

until the end of planning horizon. We express this in the following constraint:

X0sk ≤ X0s(k+1), s ∈ S, k ∈ Ks\{Ks}. (57)

Congestion issue in a station

For the planning horizon, the number of trains visiting station i ∈ I cannot be more

than certain limit, CSi. That is,

∑
s

∑

k

Xisk ≤ CSi, i ∈ I \ {0}. (58)

Station-to-station travel

To model travel from the current station to the next station, binary transition vari-

ables are defined as

Zilsk =





1 if train s visits station i at the end of leg k

and station l at the end of leg (k + 1)

0 otherwise.

110

Clearly, Zilsk = XiskXls(k+1), for all i, j ∈ I, s ∈ S, k ∈ Ks\{Ks}. This represents

a nonlinear relationship, but we utilize an equivalent linear reformulation of this type

of constraint given by these two constraints:

∑

l∈I,l 6=i

Zilsk = Xisk, i ∈ I, s ∈ S, k ∈ Ks\{Ks}, (59)

∑

i∈I,i 6=l

Zilsks = Xls(ks+1), l ∈ I, s ∈ S, k ∈ Ks\{Ks}. (60)

By this equivalent linear formulation, we may treat Zilsk as a 0 − 1 continuous

variable.

Line capacity constraint

Between two stations i and l, there are limited number Cil of trains passing through,

that is,

∑
s

∑

k

Zilsk = CLil, i, l ∈ I. (61)

Maximum detour constraint

Suppose |Spath| denotes the length of the shortest path from the origin to the destina-

tion of block b. But the actual route the block will follow after it is assigned to some

trains might not follow the shortest path. We say here that the block route is being

snapped to the train route. Some business rules might impose the detour constraint

of α miles. It means that the route that a block actually follows must be less than or

equal to α plus the distance of the original shortest path route. That is,

∑

b∈Jb

∑
s

∑

k

XCjsk TTsk vs ≤ |Spath|+ α, b ∈ B. (62)

and recall that vs denotes the velocity of the train s. Here we need a new variable as

a relaxation to the bilinear relationship of variables XCjsk and TTsk. Let XCTTjsk

be such variable. Then for each block b ∈ B, the bilinear term XCjsk TTsk in (62)

111

can be replaced by XCTTjsk and the constraints augmented by the system of linear

inequalities (see Appendix A):

XCTTjsk ≥ 0

XCTTjsk ≥ TTsk + H ∗XCjsk −H

XCTTjsk ≤ TTsk

XCTTjsk ≤ H ∗XCjsk

where H denotes the time horizon of the planning period. Also note that this system

involves more constraints but no new integer variables.

A scheduler might also want to differentiate the velocity of a train between one

segment from another. A constraint similar to (62) is

∑

b∈Jb

∑
s

∑

k

∑
i

∑
j

Disil

24vijs

XCjsk Zijsk ≤ |Spath|+ α, b ∈ B. (63)

Here, Disil and vils denote the distance from stations i to l and the velocity

of the train s on the line segment connecting stations i to l, respectively. Let

XCZjilsk = XCjsk Zilsk, then a system of linear relaxations of this constraint for

every combination of j, i, l, s, k is

XCZjsk ≥ 0

XCZjsk ≥ XCjsk + Zilsk − 1

XCZjsk ≤ XCjsk

XCZjsk ≤ Zilsk

Again, no new integer variables are involved, but adding the relaxation system to the

model is surely pricey.

6.2.2 Block-segment movement constraints

We define binary variables Yjs to indicate whether a train s should serve a block-

segment j:

112

Yjs =





1 if train s serves block-segment j

0 otherwise.

In our current scenario, once a train picks up a block-segment from its pickup

station, it has to carry it all the way to the destination station within the time horizon.

To capture these movements, we define three types of binary variables XPjsk, XDjsk,

and XCjsk that later turn out can be set as 0− 1 continuous variable.

XPjsk =





1 if train s picks up block-segment j at the end of leg k

0 otherwise

XDjsk =





1 if train s downloads block-segment j at the end of leg k

0 otherwise

XCjsk =





1 if train s carries block-segment j onboard during leg k

0 otherwise

Block-segment pickups and downloads

For a train s to load a block-segment j at the end of leg k, the train must visit the

loading station PPj at time Tsk, and of course it must service block-segment j. Hence,

we must have

XPjsk = YjX(PPj)sk, j ∈ U , s ∈ S, k ∈ Ks.

Similarly, for a train s to unload a block-segment j at the end of leg k, the train

must visit the unloading station DPj at time Tsk, and it must service block-segment

j. Therefore,

XDjsk = YjsX(DPj)sk, j ∈ U , s ∈ S, k ∈ Ks.

113

These non-linear constraints are replaced by the following linear constraints. Firstly,

when a train s does service a block-segment j (i.e., Yjs = 1), then it must be loaded in

exactly one leg. Otherwise, when it does not serve the block-segment, then it cannot

be loaded in any leg. The same is true for the download. Thus,

∑

k

XPjsk = Yjs, j ∈ U , s ∈ S, (64)

∑

k

XDjsk = Yjs, j ∈ U , s ∈ S. (65)

Secondly, the pickup and download can happen only at a block-segment’s pickup

and discharge stations, respectively. That is,

XPjsk ≤ X(PPj)sk, j ∈ U , s ∈ S, k ∈ Ks, (66)

XDjsk ≤ X(DPj)sk, j ∈ U , s ∈ S, k ∈ Ks. (67)

By these constraints we are assured that we can treat variables XPjsk and XDjsk

as 0-1 continuous variables.

Pickup before download

If a train services a block-segment, then it must visit the pickup station before it

visits the delivery station, which is expressed in the following constraint:

∑

k>0

k(XDjsk −XPjsk) ≥ Yjs, j ∈ U , s ∈ S (68)

Carrying block-segment from pickup to download station

Also, to make a train carry a block-segment j from its pickup station to its delivery

station, the following constraint is used:

114

XCjs(k+1) = XCjsk + XPjsk −XDjsk, j ∈ L ∪ U , s ∈ S, k ∈ Ks\{Ks} (69)

Since variables XPjsk and XDjsk are automatically set to be binary, the same

applies to variable XCjsk.

Train capacity

Every time a train carries some block-segments onboard, they must be within the

carrying capacity of the train. Thus,

∑
j

VjXCjsk ≤ V MAXs, s ∈ S, k ∈ Ks. (70)

One block-segment is served by one train

To ensure that a block-segment is serviced by at most one train, the following con-

straint is imposed:

∑
s

Yjs = 1, j ∈ U (71)

6.2.3 Time constraints

We let Tsk denote the time at which a train s arrives at any station at the end of its

leg k. After a train performs its service at a station, it will continue its journey to

the next station. Let TTsk denote the time a train s takes to travel from a current

station at the end of leg k to the next station at the end of leg (k +1). If the distance

between station i and station l is Disil, then TTsk can be expressed as

TTsk =
∑

i

∑

l

DisilZilsk

24vijs

s ∈ S, k ∈ Ks\{Ks} (72)

115

Here, vijs denotes the speed of train s on the line segment connecting stations

i and j. Notice that only one Zilsk can equal 1 for all i and all j. Hence, TTsk is

actually the distance between two stations visited at the ends of leg k and (k + 1)

divided by the average hourly speed of the train.

Time spent at a station

The time spent at a station really depends on the operations needed to be performed

within the station. The total time spent in a station must exceed the time required for

inspections, plus the time for discharging all delivery block-segments, plus the time

for loading pickup block-segments. Pickup and download activities consume tpickup

and tdownload units of time, respectively. And particularly for a dummy station, we do

not have administrative time. Hence,

Ts(k+1) ≥ Tsk + TTsk + Tadm(1−X0sk) + tpickup Psk + tdownload Dsk,

s ∈ S, k ∈ Ks\{Ks}, (73)

where Tadm indicates administrative/inspection time. The new variables Psk and

Dsk are indicator variables telling us whether a pickup and a download, respectively,

happen to train s at the end of leg k:

Psk =





1 if train s picks up some blocks at the end of leg k

0 otherwise

Dsk =





1 if train s picks up some blocks at the end of leg k

0 otherwise

With some analysis, for every block b ∈ B, and for every consecutive pair (j1, j2) such

that j1, j2 ∈ Jb, we may write Psk and Dsk as follows:

Psk = max
{
maxj1→j2,j1,j2∈Jb,b∈B{XCj2s(k+1) −XCj1sk},maxj∈FXPjsk

}
,

116

Dsk = max
{
maxj1→j2,j1,j2∈Jb,b∈B{XCj1sk −XCj2s(k+1)},maxj∈LXDjsk

}
,

where j1 → j2 indicates that block-segment j1 is the predecessor of block-segment j2.

The sets F and L denote the set of first and last block-segments in all block b ∈ B,

respectively. For all s ∈ S, k ∈ Ks, an equivalent linear system of Psk is:

Psk ≥ XCj2s(k+1) −XCj1sk, j1, j2 ∈ Jb, j1 → j2, b ∈ B,

Psk ≥ XPjsk, j ∈ F .

Similarly, Dsk can be represented by equivalent linear system:

Dsk ≥ XCj1sk −XCj2s(k+1), j1, j2 ∈ Jb, j1 → j2, b ∈ B,

Dsk ≥ XDjsk, j ∈ L.

for all s ∈ S, k ∈ Ks.

Number of block-swaps for each block

A block-swap is defined if there is a change in trains carrying a block. For example,

if a block b is carried by train t1 from station A to station B and continues from

station B to station C by train t2, we say that there is a block-swap for block b from

train t1 to train t2 at station B. Define the following variable to capture the number

of non-swaps between block-segments so we may use this to calculate the number of

block-swaps in the block,

Wj1j2s =





1 if block-segment j1 is an immediate predecessor of block-segment j2

and train s serves both

0 otherwise

and the number of block-swaps SWAPb for block b, satisfies the following equation

SWAPb = |b| −
∑

s

∑
j1,j2∈Jb,j1→j2

Wj1j2s − 1. (74)

117

Clearly, Wj1j2s = Yj1sYj2s and the following equivalent linear system will be used:

Wj1j2s ≥ 0

Wj1j2s ≥ Yj1s + Yj2s − 1

Wj1j2s ≤ Yj1s

Wj1j2s ≤ Yj2s

for every j1, j2 ∈ Jb, such that j1 → j2, for all s ∈ S and k ∈ Ks.

The company business rules often define a limit on the number of block-swaps

which are used as a measure of service level and can affect customer satisfaction. If

we limit the number of block-swaps to be Maxswap, we may impose this constraint to

the model as

SWAPb ≤ Maxswap, b ∈ B. (75)

Block-Swap Timing

For every consecutive block-segment pair (j1, j2) ∈ Jb, b ∈ B, from the train point of

view, the set-off of the earlier block-segment j1 has to happen before the pickup of

the later block-segment j2. Moreover, a block being swapped spends several hours

of connection handling time. In other word, once a block is set-off by some train, it

cannot be picked-up by another train in the next δswap hours, for example. Hence,

we have that for each pair (j1, j2) such that j1 → j2,

∑
s∈S

∑

k∈Ks

TskXDj1sk + δswap ≤
∑
s∈S

∑

k∈Ks

Ts(k+1)XPj2s(k+1). (76)

Again, this is a nonlinear constraint. For every s ∈ S and k ∈ Ks, let TDj1sk =

TskXDj1sk and TPj2sk = TskXPj2sk be the predecessor’s set-off time and the suc-

cessor’s pickup time, respectively. And let H be the planning horizon. Then an

equivalent linear system of constraint (76) for each (j1, j2) pair is

118

∑
s∈S

∑
k∈Ks

TDj1sk + δswap ≤ ∑
s∈S

∑
k∈Ks

TPj2s(k+1)

TPj2s(k+1) ≥ 0

TPj2s(k+1) ≥ Ts(k+1) + H ∗XPj2s(k+1) −H

TPj2s(k+1) ≤ H ∗XPj2s(k+1)

TPj2s(k+1) ≤ Ts(k+1)

TDj1sk ≥ 0

TDj1sk ≥ Tsk + H ∗XDj1sk −H

TDj1sk ≤ H ∗XDj1sk

TDj1sk ≤ Tsk

6.2.4 Objective function

The objective is to minimize the costs of the weighted sum of the following com-

ponents: number of block-swaps, number of trains running, the length of train’s

operating schedules, and cost of block-to-train assignment. The weight given is nat-

urally given by the dollar value of the corresponding costs.

Total number of block-swaps

Denoting the cost of performing a swap by TSb, we may capture the cost of block-

swaps as

∑

b∈B
TSb SWAPb. (77)

Total cost of train starts

This captures the one time cost of running a train. It might relate to the setup cost,

crew cost, etc. Let TCs be the one-time cost of running train s. Since an operating

119

train does not visit the dummy station at the end of leg-1, we may calculate this cost

as

∑
s

TCs(1−X0s1). (78)

Total cost of train’s trip hours

We may also have the variable cost of running a train per unit time (TRs); for

example, the rental fee for a locomotive. We also want this cost to be minimized. We

capture this cost by

∑
s

TRs TsKs . (79)

Total cost of train miles

We may also want to include the cost incurred when the train is moving from one

station to another. An example of this is the fuel cost per mile. This cost depends

on the travel time or distance between stations. Let TFsk be the travel cost incurred

by train s during leg k, then we may add this term to the objective function

∑
s∈S

∑

k∈Ks

TFsk TTsk. (80)

Cost of block-to-train assignments

There might also be some costs related to the block-to-train assignments, meaning

that the cost of moving one particular block-segment by one train differs from that

of another train. We may express this as

120

∑

b∈B

∑
j∈Jb

∑
s∈S

TAjs Yjs, (81)

where TAjs denotes the cost of assigning block-segment j to train s. This completes

the formulation for the train routing and scheduling problem as an MILP problem.

One good thing about this train routing and scheduling problem is that trains can only

run on specific tracks, hence we can reduce the number of variables Zilsk tremendously.

6.2.5 Complete train routing and scheduling formulation

The complete MINLP formulation for train routing and scheduling is given as follow.

(OBJ) Minimize





∑
b∈B TSb SWAPb Number of block-swaps

+
∑

s TCs(1−X0s1) Cost of train starts

+
∑

s TRs TsKs Cost of train’s trip hours

+
∑

s∈S
∑

k∈Ks
TFsk TTsk Cost of train miles

+
∑

b∈B
∑

j∈Jb

∑
s∈S TAjs Yjs Cost of block-to-train assignments

∑

i

Xisk = 1, s ∈ S, k ∈ Ks

∑

k

Xisk ≤ 1, i ∈ I \ {0}, s ∈ S

X0sk ≤ X0s(k+1), s ∈ S, k ∈ Ks\{Ks}
∑

s

∑

k

Xisk ≤ CSi, i ∈ I \ {0}
∑

l∈I,l 6=i

Zilsk = Xisk, i ∈ I, s ∈ S, k ∈ Ks\{Ks}

∑

i∈I,i 6=l

Zilsks = Xls(ks+1), l ∈ I, s ∈ S, k ∈ Ks\{Ks}

∑
s

∑

k

Zilsk = CLil, i, l ∈ I
∑

b∈Jb

∑
s

∑

k

XCjsk TTsk vs ≤ |Spath|+ α, b ∈ B

∑

b∈Jb

∑
s

∑

k

∑

i

∑

j

Disil

24vijs
XCjsk Zijsk ≤ |Spath|+ α, b ∈ B

XPjsk = YjX(PPj)sk, j ∈ U , s ∈ S, k ∈ Ks

XDjsk = YjsX(DPj)sk, j ∈ U , s ∈ S, k ∈ Ks

121

∑

k

XPjsk = Yjs, j ∈ U , s ∈ S
∑

k

XDjsk = Yjs, j ∈ U , s ∈ S

XPjsk ≤ X(PPj)sk, j ∈ U , s ∈ S, k ∈ Ks

XDjsk ≤ X(DPj)sk, j ∈ U , s ∈ S, k ∈ Ks

∑

k>0

k(XDjsk −XPjsk) ≥ Yjs, j ∈ U , s ∈ S

XCjs(k+1) = XCjsk + XPjsk −XDjsk, j ∈ L ∪ U , s ∈ S, k ∈ Ks\{Ks}
∑

j

VjXCjsk ≤ V MAXs, s ∈ S, k ∈ Ks

∑
s

Yjs = 1, j ∈ U

TTsk =
∑

i

∑

l

DisilZilsk

24vijs
s ∈ S, k ∈ Ks\{Ks}

Ts(k+1) ≥ Tsk + TTsk + Tadm(1−X0sk) + tpickup Psk + tdownload Dsk,

s ∈ S, k ∈ Ks\{Ks}

Psk = max
{
maxj1→j2,j1,j2∈Jb,b∈B{XCj2s(k+1) −XCj1sk}, maxj∈FXPjsk

}
,

Dsk = max
{
maxj1→j2,j1,j2∈Jb,b∈B{XCj1sk −XCj2s(k+1)},maxj∈LXDjsk

}
,

SWAPb = |b| −
∑

s

∑

j1,j2∈Jb,j1→j2

Wj1j2s − 1

SWAPb ≤ Maxswap, b ∈ B
∑

s∈S

∑

k∈Ks

TskXDj1sk + δswap ≤
∑

s∈S

∑

k∈Ks

Ts(k+1)XPj2s(k+1)

∑

s∈S

∑

k∈Ks

TskXDj1sk + δswitch ≤
∑

s∈S

∑

k∈Ks

TskXPj2sk

6.2.6 Example and heuristic method

We tested our model to answer a real train routing and scheduling problem faced by

a U.S. railroad company. The company currently has an optimization based decision

support system to find the optimal block route for all blocks. Given the optimal

block routes and all other block information, the task is to create trains, along with

their schedules, that serve all blocks such that all constraints are satisfied. Note here

122

that the final route that a block follows may not be the initial block route because

a block actually travels on a train and has to follow the train route. The company

prefers to have trains operating under a certain regular daily schedule. Hence it is

natural to consider a daily train problem. The outputs are optimal daily schedules of

trains. By repeating this train daily schedules every day of the week we may obtain a

weekly train schedule. However, we may want to eliminate some small-volume trains

to reduce operating expenses. Here we may again use our model to decide how the

blocks from the eliminated trains will be rerouted using the other available trains, or

confirm that the low-volume trains are actually needed because eliminating them will

make the problem infeasible.

We tested our model to solve the company’s 63-block problem, involving 123

block-segments and 60 precedence constraints. Since it takes too much time to solve

the problem to optimality, we introduce a heuristic approach. Ideally, the problem is

solved simultaneously to find the optimal solution. But since this deals with a large

number of integer variables, the problem becomes harder to solve. Another issue that

increases the number of integer variables is the number of trains that we create as an

input to the model. Trains may originate from certain stations and each originating

station has its maximum limit of train starts per day. Ideally, we setup all possible

trains and let the model decide which to use. However, the complexity of the problem

arises when we deal with a large number of trains, where most of them might be left

unused.

In our heuristic, we create a block priority list and only solve a couple of blocks

in one iteration. Also, trains are only created as needed. In this approach, we

gradually assign more and more blocks to trains and create more and more trains

as the number of iteration increases. By this approach, as the number iterations

increases, the problem becomes harder but we have more and more fixed values of

variables carried out from previous iterations.

The company may have some business rules that can be used as a guide to create

123

the block priority list. However, in this implementation, we use a simple priority rule

that is the number of block-segments within a block. The motivation is that the earlier

a block is assigned permanently to some trains, the less possibility it will experience

block-swaps. Thus, our list lets blocks with a small number of block-segments be

processed earlier and those with a large number of block-segments later.

Our network involves 398 stations and 1933 arcs. But since trains can only move

on specific tracks, our network is not a complete network as we found earlier in

our sea-cargo problem. Hence the movement variables can be reduced tremendously.

We have 40 potential swap locations, 85 train origins and 84 train terminals. Each

train originating station may have at most 6 train starts per day. The block-swap

and block-switch connecting times are 4 and 8 hours, respectively. The number of

maximum legs per train is initially set to be between 12 and 15. The problem is

solved by CPLEX 9.1 using one processor on a four-CPU Sun E450 server machine

under all of the default options of the CPLEX.

We let 3 − 5 blocks solve simultaneously. In each new iteration, we fix block-

to-train assignments from previous iterations and create more trains as needed. A

train is typically created from an originating station when another train from the

originating station was used by the model in previous iteration. At the last iteration,

we have a total of 53 trains created (but not all of them used). It takes 13, 476 seconds

(3.75 hours) for the heuristic to solve our problem. We do hope to get a faster solution

time to find the solution. But since this is a zero-based train scheduling approach

- meaning that the routes and schedules are built from scratch - and the company

might only perform this calculation at most 2 times a year, the computational time

of 3.75 hours may still be acceptable. In real situations, the company has set some

trains that must be run, based on experience, so we have a lot of variables set in the

beginning which would make our heuristics run faster.

Our result shows a total number of 23 train starts, 27 block-swaps, and 22 total

blocks being swapped. The number of legs used by each train ranges from 2 to 15.

124

Table 23: Trains information for 63-block problem

Train Number Minimum # cars Maximum # cars Total Legs
in trip plan in trip plan

1 108 122 7
2 30 86 7
3 14 65 7
4 112 112 3
5 49 80 6
6 11 128 13
7 4 55 13
8 44 87 9
9 18 18 12
10 4 50 6
11 2 25 12
12 2 9 12
13 39 47 9
14 7 83 12
15 11 11 6
16 5 5 2
17 8 15 12
18 14 14 12
19 7 11 12
20 10 52 12
21 6 6 12
22 20 20 8
23 5 5 15

Total train hours are from 11.25 to 56.06 hours, and the total train miles are between

225 and 812 miles. Times at which a train arrives and departs from each stations

in each of its legs are also obtained as part of the output of our model. Table 23

shows us the results of the model. We may also observe the minimum and maximum

number of cars loaded during the trip plan for each train. Note that a train may

carry a different number of cars from one leg to another, depending on the block

being attached or detached in each leg. We also include the number of legs actually

used by each train.

Among those 23 trains, we can further improve the solution found so far by elim-

inating the low-volume trains. A company business rule defines a low-volume train

as one that carries less than 40 cars in its trip plan. Applying this rule to the result

displayed in Table 23, we find 10 low-volume trains, namely train 9, 11-12, 15-19,

21-23. The existence of these trains are questionable since we may transfer the loads

125

carried by these trains to the other available trains so that the number of train starts

may be reduced. To justify, we will again use our model to see if the loads being

carried by low-volume trains can actually be transferred to other trains. So now,

we already have some must-have trains in our system and some blocks permanently

assigned to the must-have trains. Our model will try to assign unassigned blocks to

the must-have trains or decide that low-volume trains are indeed needed. First, let

us discuss a few possible reasons why a low-volume train is formed:

(i) The train is actually a must-have train. For example, no other trains pass

through the pickup station and it is not reasonable to reroute any other trains

to visit the station.

(ii) Some trains do not have enough leg to finish its operations, therefore extra

trains are needed. We know that the number of maximum legs a train can have

is predetermined as an input to the model. By adding some more legs to other

trains, we may eliminate this kind of low-volume train.

(iii) In some of our heuristic iterations, there is not enough trains available from

specific originating station. For example, all trains originating from some spe-

cific station A may have already been used to serve other blocks, but the system

actually demands another train originating from station A. Thus, the system

decides to use a train from neighboring station B as a substitute. In the real

situation, we may easily setup another train originating from station A to fulfill

the demand. In our solution, a train may travels empty from station B, or

from some other station if there are no more trains available from the near-by

locations.

(iv) Because of the heuristics, at an earlier time it is considered good to assign one

block to this train, but at a later point in time, serving the block by another

train is better.

126

There are no easy ways to find out which of the above mentioned possible causes

is the reason for a low-volume train. To identify the cause, we have to take a closer

look to the solution in every iteration of our algorithm. Having looked closer to the

solution in each iteration of our 63-block problem, we revise some input values (e.g.,

add more legs to some trains, make more trains available from certain locations) and

rerun the model. We observe that it is actually possible to eliminate 4 low-volume

trains, leaving us 7 must-have low-volume trains.

6.2.7 More computational results

We apply the foregoing heuristic on several test problem to check its performance.

We randomly generated the problems consisting of 5, 10, 15, and 20 blocks. We let

the problems run to optimality and the quality of the heuristic method is measured in

terms of percentage from the optimal solution. We include two kinds of measurements

which are solution quality and solution time. The solution quality generated by the

proposed heuristic is measured as

Heuristic solution

Optimal solution
× 100%.

Since our problem is a minimization problem, the measurement of solution quality

would have values greater than or equal to 100%. The closer a value to 100%, the

better it is. Similarly, solution time of the heuristic is measured as a comparison to

the time needed to solve the problem to optimality, that is

Time to solve heuristic

Time to reach optimal solution
× 100%.

Table 24 shows these measurements of the heuristic applied to randomly generated

test problems.

The computational results shown in Table 24 reflect the heuristic performance

applied to building train routes and schedules from scratch. It is often referred as a

zero-based train routing and scheduling approach. However, other than to build train

routes and schedules from scratch, the model can also be used to solve other practical

127

Table 24: Computational Results of Train Heuristics

Blocks # Random Average solution quality Average solution time
problems (% of optimal solution) (% of time to find optimal solution)

5 10 148% 63%
10 10 148% 30%
15 6 129% 37%
20 6 119% 7%

train problems. For example, the model can be used to determine the impacts of

some changes of the current train schedules. Suppose we want to eliminate some

trains from the system. Our model will examine how to reroute the blocks using

those particular trains to other trains in the system. With a lot of variable fixed, this

is not a hard problem to solve. Another example, given block information and all

train schedules, the model will help us to find the trip-plan for the block and suggest

the optimal block-swap locations (if any). The model can also determine an optimal

schedule for given train routes and assignments. In this case, we have every integer

variable fixed and the model will tell us the optimal timings for each trains. This will

be used at least as a guide to derive optimal train schedules. Last but not least, as we

illustrated earlier in our 63-block problem, this model can also be used to eliminate

low-volume (daily or weekly) trains.

6.3 Notes on lower bounding problem

Similar to our sea cargo routing and scheduling model, we try to derive a bounding

problem for our train routing and scheduling model. We derive an upper bounding

problem to the model that empirically provides a bounding value stronger than the

solution of the LP relaxation. The LP relaxation of the bounding problem is obtained

in a relatively short time and tells us that the optimal profit from the sea cargo

problem cannot be higher than this bounding value.

While it is our interest to derive a similar kind of bounding problem to our train

128

model, the train problem we deal with is a cost-minimizing problem and not a profit-

maximizing problem. Here, we are interested in deriving a lower bounding value.

However, due to the bilinear relations found in some constraints, we cannot easily

apply the same idea as the way we derive an upper bounding problem to the sea

cargo model. We cannot use the same tricks to find a closed form of the optimal train

operating time and obtain a bounding problem.

Recall that the idea of how we introduce a bounding problem to the sea cargo

model is to get rid of time variables and use the relations among bounds of the time

variables to derive a closed form of optimal operating time for a fleet of ships. Now,

our bilinear relations prohibit us using the same method because of the interdepen-

dent relation among them. For example, look at constraint (76) where we introduce

variable TDjsk = TskXDjsk. Recall that H is the planning horizon and an equivalent

linear reformulation of each TDjsk is given by

TDjsk ≥ 0,

TDjsk ≥ Tsk + H ∗XDjsk −H,

TDjsk ≤ H ∗XDjsk,

TDjsk ≤ Tsk.

To apply the same idea as how we derive a bounding problem for the sea cargo

model, we have to analyze bounding relationships for Tsk, and one of the bound is

TDjsk ≥ Tsk + H ∗XDjsk −H,

or after rearranging, we have

Tsk ≤ TDjsk −H ∗XDjsk + H. (82)

In the bounding problem for the sea cargo model, all bounding values of Tsk

involve only variables other than time variables. Hence we may write Tsk ≤ f(x),

for some function f of some fixed value x that does not depend on variable Tsk.

129

Table 25: Bounds for train problem

Blocks # Random LP relaxation Lower bound performance
problems (% of optimal solution) (% of optimal solution)

5 10 47% 19%
10 10 36% 12%
15 6 51% 22%
20 6 49% 21%

However, in (82) we see that the right hand side is no longer independent of Tsk since

TDjsk = TskXDjsk.

One may suggest to take out the constraints with bilinear relationship from the

system, apply a similar idea to the way we get a bounding problem for the sea cargo

problem, and still get a bound for the train model. This is absolutely true. However,

since our systems have quite a number of constraints having bilinear terms, we end

up taking out too many constraints resulting in a system that does not provide a

lower bound as strong as expected. We include some computational results in Table

25 to show that the bound obtained by ignoring constraints having bilinear terms is

empirically weaker than the LP relaxation of the original problem.

The performance of the lower bound is shown in the last column of Table 25

and is measured as the percentage of the optimal solution. Clearly, the closer this

percentage value to 100%, the better. We may see that the lower bound is not strong

enough compared to LP relaxation of the original problem.

130

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This research introduces new formulations to solve routing and scheduling problems,

with the main application in answering actual problems faced by a sea-cargo shipping

company in Asia and a railroad company in the United States. Our formulation better

lends itself to extensions and related applications. The model reflects better situation

in practice and perform well when dealing with extensive time aspects.

For the work in sea-cargo routing and scheduling, we focus our methodology on

the tramp shipping operation. Tramp shipping is a demand-driven type of shipping

operation. Tramp ships typically do not have fixed schedules, but are routed based

on the pickup and download locations of profitable service requests. The problem

is that given a set of products distributed among a set of ports, with each product

having a pickup time window, download time window, and destination port, find the

schedule for a fleet of ships that maximizes profit for a specified time horizon. The

problem is modelled as a Mixed Integer Non-Linear Programming (MINLP) problem.

Our formulation involves quite a number of bilinear constraints that are linearized

by taking the advantage of the linearization scheme for bilinear terms. It is a lin-

earization scheme based on a convex and concave envelope approach allowing us to

reformulate our model into an equivalent Mixed Integer Linear Program (MILP). We

also exploit the special structure embedded in our model and uncover the totally-

unimodular property embedded in some part of the activity matrix of multi-ship

system.

We introduce three heuristic methods for solving sea-cargo routing and scheduling

problems. The first heuristic (MPH) employs the idea of a rolling horizon concept.

131

Here we divide the time horizon into smaller time periods. We solve the earlier pe-

riod and carry over the decision to the next period. By doing this, we simulate online

cargo arrivals. The second heuristic (OSH) for our multi-ship problem utilizes the

optimal solutions to one-ship problems. Here we permanently assign cargos that ap-

pear in only one ship and determine which ship should carry cargos that appear in

more than one ship by creating a priority list. Based on the list, the model is again

used to break any ties among competing ships. The third heuristic (SPH) utilizes the

idea of common approaches in solving routing and scheduling problem; namely, a set

partitioning approach. Since our problem has the flexibility of rejecting unprofitable

cargos, the set packing approach is used. Here, we create a list of cargos based on

their profitability and create columns a priori based on cargo combinations. Our

model is again used to check if a cargo combination is feasible. If it is feasible, the

solution of the model determines the optimum profit of that particular combination.

In SPH we have a way to control the maximum number of columns generated by

limiting the number of possible cargo combinations as well as the maximum num-

ber of cargos within each combination. If we allow the method to find all possible

cargo combinations that can be served by each ship, we can eventually find the op-

timal solution. Extensive computational results are presented to show how good the

heuristics perform in solving randomly generated problems. We also describe how

these random test problems are generated. Generally, all proposed heuristic methods

find solution that are within at least 80% of the optimal profit in most cases. OSH

and SPH outperform MPH in terms of both solution quality and computational time.

We introduce an upper-bounding problem which our computational results show

that the LP relaxation of the upper bounding problem gives bounds that are stronger

than that given by the LP relaxation of the original problem. Also, those bounds are

computed within 3 to 5 times faster than the time spent to find the LP relaxation of

the original problem.

With a little modification, the model for our sea-cargo routing and scheduling

132

problem is readily extendable to reflect other practical needs in sea cargo operations.

We introduce the notions of soft time windows with penalty and inter-ship cargo-

transfer as extensions to our problem to show the advantages of our formulation

of the problem formulation. In the soft time-window extension, we allow pickups

and downloads to happen outside the predefined time-windows by imposing some

penalty terms. Hence we will measure how far away a pickup or download happens

outside its original time-windows. In the cargo-transfer extension, we allow a cargo

to be picked-up and downloaded by different ships. We present some computational

results on these extensions. The results show that more savings can be generated by

including soft time-windows and inter-ship cargo-transfer capabilities to the model.

Soft time-windows and cargo-transfer also allow more realistic situations in sea-cargo

operation.

Another part of our work focuses on train routing and scheduling problem. We

discuss the modification of the model to solve a train routing and scheduling problem

faced by a real railroad company. Train routing and scheduling problems involve

a lot of time aspects since one of the goals is to have optimal train schedules and

timetables. Previous research in train routing and scheduling problems typically calls

for separating the problem into several phases. Train route design problem, block-to-

train assignment problem, and train optimal timetables are usually solved separately

using an iterative procedure with feedbacks from one phase to another. Our model

solves the routing and scheduling (timetable) problems altogether. Given a set of

blocks to be carried from their origins to their destinations, our goal is to decide how

many trains needed, construct train routes and schedules, and determine block-to-

train assignments. We want the solution that minimizes the number of block transfers

(block swaps) between trains, the number of trains used to serve all blocks, and some

other efficiency measures used in train operation. Some computational experiments

from real railroad data are presented and a bounding problem similar to that of ship’s

is briefly discussed.

133

Although this dissertation examined a range of important applications of our mod-

eling technique, this approach is rather new and our research has identified a number

of areas deserving future research. We present this future work in the following sec-

tion.

7.2 Future Work

7.2.1 Sea cargo pricing strategy

We studied a demand-driven environment for tramp sea cargo operation. While

many companies operating in this line of sea cargo operations deal with contract cus-

tomers, many non-contract requests are received and provide significant additional

potential revenues. With the limited number of ships owned by a company, determin-

ing whether a non-contract cargo will be served is critical, as well as determining the

appropriate price charged for the cargo. The company knows that accepting a new

cargo would affect the routes and schedules for some ships. The company has to know

exactly which ship should pickup the new cargo and how much shipping fee should

be charged. The multi-ship model can be used to determine the marginal shipping

fee charged for the company to accept the new request. If the company has already

had a predetermined list of shipping rates for particular origin-destination pairs, the

model can be used to justify the profitability of a new request. If the company applies

a dynamic pricing strategy, in which the price for non-contract cargos is determined

by the position of the ships when the new request is received, the multi-ship model

can also be used to determine how much below the standard shipping fee the price

can be set to gain competitive advantage against the company’s competitors.

7.2.2 Hub-and-spoke system in sea cargo operations

For middle to large tramp sea cargo companies, a hub and spoke system may be

considered in their operation. Here, similar to the cargo-transfer extension discussed

in Section 5.2, a cargo is allowed to be picked-up and downloaded by different ships

with cargo transfers permitted at some predetermined ports. Typically, transfer ports

134

are significantly bigger ports and have strategic geographic locations, and they are

often referred as hubs. The other smaller ports are referred to as spokes. Given the

list of hubs and spokes, the multi-ship model with cargo transfer capability can be

adapted and used to determine optimal routes and schedules of ships operating in a

hub-and-spoke environment.

7.2.3 Performance of train routing and scheduling model

While some computational results of the train routing and scheduling model have been

shown, there is a need to compare zero-based train routes and schedules generated by

the model to the actual ones currently used by train companies. We can then analyze

how well the model performs and how much savings can be generated. We can also

compare the model performance to other modeling techniques used to answer train

routing and scheduling problem. Performance of the train heuristic method can also

be compared to other known heuristic methods.

135

APPENDIX A

RELAXATION OF THE PRODUCT OF VARIABLES

The purpose of this appendix is to explain the linearization technique used many

times throughout the thesis. We find the technique is very useful in the formulation

of our type. We use a lot of bilinear constraints and by special property of variables,

the linearization is exact. This appendix demonstrates straightforward extensions and

results of Al-Khayyal [3]. We also apply the idea to linearize a trilinear constraint we

used in a sea-cargo routing and scheduling problem with extension to cargo-transfer.

Consider the compact set X defined by x, y ∈ <

A := {(x, y)|lx ≤ x ≤ ux, ly ≤ y ≤ uy}

We may see that the compact set A is formed by four constraints (i) x− lx ≥ 0, (ii)

y − ly ≥ 0, (iii) ux − x ≥ 0, and (iv) uy − y ≥ 0.

Consider multiplying (i) and (ii)

(x− lx)(y − ly) ≥ 0

⇒ xy − lyx− lxy + lxly ≥ 0

⇒ xy ≥ lyx + lxy − lxly.

Similarly, by multiplying (i) and (iv), (ii) and (iii), (iii) and (iv) we have

xy ≤ uyx + lxy − lxuy,

xy ≥ uyx + uxy − uxuy,

xy ≤ lyx + uxy − uxly,

136

respectively. Now consider the set B defined as

B := {(x, y)| xy ≥ lyx + lxy − lxly,

xy ≤ uyx + lxy − lxuy,

xy ≥ uyx + uxy − uxuy,

xy ≤ lyx + uxy − uxly}.

Notice that A ⊆ B. We also observe that the inequalities defining the set B form a

system of linear relaxation to the bilinear term xy.

Proposition A.0.1 If at least one of the variables x and y is binary, then the system

of inequalities defining the set B is an exact linear reformulation to the bilinear term

xy.

Proof. If both x and y are binary, clearly xy ∈ {0, 1} and hence the linear refor-

mulation is exact. Now, without loss of generality, let us suppose x is binary and

ly ≤ y ≤ uy. Then there are two possible cases: x = 0 or x = 1. If x = 0 then

substituting it to the system of inequalities defining the set B yields

B := {(0, y)| xy ≥ 0,

xy ≤ 0,

xy ≥ uxy − uxuy,

xy ≤ uxy − uxly}

and by the first two inequalities, xy = 0, which is what it should be since x = 0.

Similarly, if x = 1, then

B := {(1, y)| xy ≥ ly,

xy ≤ uy,

xy ≥ y,

xy ≤ y},
or we may rewrite the system as ly ≤ xy = y ≤ uy, which is again what it should be

since x = 1. Hence the proof is complete.

137

Proposition A.0.1 is used to linearize bilinear terms introduced in our model for-

mulation. All of bilinear constraints that we introduce in this thesis have the property

that one of the variables is binary. We may further generalize the proposition to give

an exact linear reformulation to trilinear constraints where at least two of the variables

are binary.

Corollary A.0.1 Let x, y ∈ {0, 1} and lz ≤ z ≤ uz. Then a system of exact linear

reformulation of trilinear term xyz is given by

xyz ≥ 0,

xyz ≥ uzx + yz − uz,

xyz ≤ uzx,

xyz ≤ yz,

yz ≥ lzy,

xy ≥ uzy + z − uz,

xy ≤ uzy,

xy ≤ lzy + z − lz.

Proof. First we apply Proposition A.0.1 to the terms y and z and we derive the last

four constraints. Next observe that 0 ≤ yz ≤ uz, so we may apply Proposition A.0.1

one more time to the terms x and yz and derive the first four constraints.

138

APPENDIX B

DUAL PROBLEM OF THE MILP RELAXATION OF

SEA-CARGO MODEL

B.1 Objective function

(OBJ) Minimize





∑
s

∑
k Ask

+
∑

i>0

∑
s Bis+

∑
s

∑
k V MAXs × LDsk

∑
j∈U

∑
s

∑
k<K MNjsk

−∑
s

∑
k<K TadmPsk

+
∑

j∈U Qj

+
∑

i

∑
s

∑
k V Xisk

+
∑

i

∑
l 6=i

∑
s

∑
k<K V Zilsk

+
∑

j

∑
s V Yjs

+
∑

j∈U
∑

s

∑
k V XPjsk

+
∑

j

∑
s

∑
k V XDjsk

+
∑

j

∑
s

∑
k V XCjsk

B.2 Dual Constraints related to Primal Variable Xisk

These type of dual constraints are complicated since they depend on whether a port

i is a dummy port, a pick-up port (i.e. i ∈ PP), a download port (i.e. i ∈ DP), both

pick-up port and download port, or neither (regular port).

Port i is a dummy port (i = 0)

Ask + Csk −DDisk − TadmPsk + V Xisk ≥ −PCis, i = 0, s ∈ S, k = 0

139

Ask+Csk−Cs(k−1)−DDisk−Eis(k−1)−TadmPsk+V Xisk ≥ −PCis, i = 0, s ∈ S, k ∈ Ks\{0,Ks}

Ask − Cs(k−1) − Eis(k−1) + V Xisk ≥ −PCis, i = 0, s ∈ S, k = Ks

Port i is a pick-up port (i ∈ PP)

Ask + Bis −DDisk −
∑

j:i=PPj ,j∈U
Gjsk + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = 0

Ask+Bis−DDisk−Eis(k−1)−
∑

j:i=PPj ,j∈U
Gjsk+V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k ∈ Ks\{0,Ks}

Ask + Bis − Eis(k−1) −
∑

j:i=PPj ,j∈U
Gjsk + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = Ks

Port i is a download port (i ∈ DP)

Ask + Bis −DDisk −
∑

j:i=DPj ,j∈L∪U
Ijsk + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = 0

Ask+Bis−DDisk−Eis(k−1)−
∑

j:i=DPj ,j∈L∪U
Ijsk+V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k ∈ Ks\{0, Ks}

Ask + Bis − Eis(k−1) −
∑

j:i=DPj ,j∈L∪U
Ijsk + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = Ks

Port i is both a pick-up and download port (i ∈ PP and i ∈ DP)

Ask+Bis−DDisk−
∑

j:i=PPj ,j∈U
Gjsk−

∑

j:i=DPj ,j∈L∪U
Ijsk+V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = 0

Ask + Bis −DDisk − Eis(k−1) −
∑

j:i=PPj ,j∈U
Gjsk −

∑

j:i=DPj ,j∈L∪U
Ijsk + V Xisk ≥ −PCis,

i ∈ PP, s ∈ S, k ∈ Ks\{0,Ks}

Ask+Bis−Eis(k−1)−
∑

j:i=PPj ,j∈U
Gjsk−

∑

j:i=DPj ,j∈L∪U
Ijsk+V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = Ks

i is neither a pick-up or download port

Ask + Bis −DDisk + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = 0

Ask + Bis −DDisk − Eis(k−1) + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k ∈ Ks\{0,Ks}

Ask + Bis − Eis(k−1) + V Xisk ≥ −PCis, i ∈ PP, s ∈ S, k = Ks

140

B.3 Dual Constraints related to Primal Variable Zilsk

DDisk + Elsk − Dil

24 ∗ velocity
MDsk + V Zilsk ≥ 0, i, l ∈ I, s ∈ S, k ∈ Ks\{Ks}

B.4 Dual Constraints related to Primal Variable Yjs

Dual constraints related to primal variable Yjs can be separated into two types, those

for j ∈ L and those for j ∈ U .

−Hjs + V Yjs ≥ SRj , j ∈ L, s ∈ S

−Fjs −Hjs + Jjs + V Yjs ≥ SRj , j ∈ U , s ∈ S

B.5 Dual Constraints related to Primal Variable XPjsk

Dual constraints related to primal variable XPjsk are only defined for j ∈ U .

Fjs + Gjsk + kJjs + KDjsk + (M − LPTj + 0.5Tadm)Njsk + (EPTj + 0.5Tadm +
Vj

LRj
)Ojsk + ...

...+
Vj

LRj
Psk+V XPjsk ≥ 0, j ∈ U , s ∈ S, k ∈ Ks\{0,Ks}

Fjs + Gjsk + kJjs + V XPjsk ≥ 0, j ∈ U , s ∈ S, k = Ks

B.6 Dual Constraints related to Primal Variable XDjsk

Dual constraints related to primal variable XPjsk are different for j ∈ L and j ∈ U .

Hjs + Ijsk −KDjsk +
Vj

DRj
Psk + V XDjsk ≥ 0, j ∈ L, s ∈ S, k ∈ Ks\{Ks}

Hjs + Ijsk + V XDjsk ≥ − Vj

DRj
TCCs, j ∈ L, s ∈ S, k = Ks

Hjs + Ijsk + kJjs −KDjsk +
Vj

DRj
Psk + V XDjsk ≥ 0, j ∈ U , s ∈ S, k ∈ Ks\{Ks}

Hjs + Ijsk + kJjs + V XDjsk ≥ − Vj

DRj
TCCs, j ∈ U , s ∈ S, k = Ks

141

B.7 Dual Constraints related to Primal Variable XCjsk

KDjsk + VjLDsk + V XCjsk ≥ 0, j ∈ L ∪ U , s ∈ S, k = 0

KDjsk −KDjs(k−1) + VjLDsk + V XCjsk ≥ 0, j ∈ L ∪ U , s ∈ S, k ∈ Ks\{0,Ks}

−KDjs(k−1) + VjLDsk + V XCjsk ≥ 0, j ∈ L ∪ U , s ∈ S, k = Ks

B.8 Dual Constraints related to Primal Variable Tsk

∑

j∈U
Njsk + Psk ≥ −FCs(24)(vs), s ∈ S, k = 0

−
∑

j∈U
−Ps(k−1) ≥ −TCCs, s ∈ S, k ∈ Ks\{0,Ks}

∑

j∈U
Njsk −

∑

j∈U
Ojs(k−1) + Psk − Ps(k−1) ≥ 0, s ∈ S, k = Ks

B.9 Dual Constraints related to Primal Variable TTsk

MDsk +
∑

j∈U
Ojsk + Psk ≥ −FCs(24)(velocity), s ∈ S, k ∈ Ks\{Ks}

142

REFERENCES

[1] AHUJA, R.K., CUNHA, C.B., SAHIN, G., “Network Models in Railroad Planning

and Scheduling,” 2005.

[2] AL-KHAYYAL, F. and HWANG, S.J., “Inventory constrained maritime routing

and scheduling for multi-commodity liquid bulk, Part I: Applications and model,”

European Journal of Operation Research, Article in Press, 2005.

[3] AL-KHAYYAL, F., “Generalized Bilinear Programming: Part 1. Models, Appli-

cations, and Linear Programming Relaxation,” European Journal of Operation

Research, vol. 60, pp. 309-314, 1992.

[4] AL-KHAYYAL, F. and FALK, J., “Jointly Constrained Biconvex Programming,”

Mathematics of Operation Research, vol. 8, pp. 273-286, 1983.

[5] ANBIL, R., TANGA, R., JOHNSON, E.L., “A Global Approach to Crew-Pairing

Optimization”, IBM Systems Journal, vol. 31, no. 1, pp. 71-78, 1992.

[6] APPELGREN, L.H., “A Column Generation Algorithm for a Ship Scheduling

Problem,” Transportation Science, vol. 3, pp. 53-68, 1969.

[7] ASSAD, A., “Models for rail transportation,” Transportation Research, Part A:

Policy and Practice, vol. 14, pp. 205-220, 1980.

[8] BALAKRISHNAN, N., “Simple Heuristics for the Vehicle Routing Problme with

Soft Time Windows,” Journal of Operation Research Society, vol. 44, no. 3, pp.

279-287, 1993.

143

[9] BAUSCH, D.O., BROWN, G.G., RONEN, D., “Scheduling short-term marine

transport of bulk products,” Maritime Policy and Management, vol. 25, no.4, pp.

335348, 1998.

[10] BAZARAA, M.S., SHERALI, H. and SHETTY, C., Nonlinear Programming:

Theory and algorithms, 2nd, New York, Wiley, 1993.

[11] BERTSIMAS, D., TSITSIKLIS, J.N., Introduction to Linear Optimizatoin.

Athena Scientific, Belmont, Massachusetts, 1997.

[12] CHRISTIANSEN, M., FAGERHOLT, K., RONEN, D., “Ship Routing and

Scheduling: Status and Perspective,” Transportation Science, vol. 38, No. 1, pp.

1- 18, 2004.

[13] CHRISTIANSEN, M., FAGERHOLT, K., NYGREEN, B., RONEN, D., “Mar-

itime Transportation,” Technical Reports, Norwegian University of Science and

Technology, Trondheim, Norway, 2003.

[14] CHRISTIANSEN, M., FAGERHOLT, K., NYGREEN, B., RONEN, D., “Ship

Routing and Scheduling: Status and Perspectives,” Transportation Science, vol.

38, no. 1, pp. 118, 2004.

[15] CHRISTIANSEN, M., FAGERHOLT, K., “Robust Ship Scheduling with Multi-

ple Time Windows,” Naval Research Logistics, vol. 49, pp. 611-625, 2002.

[16] CHRISTIANSEN, M., “Decomposition of a combined inventory and time con-

strained ship routing problem,” Transportation Science, vol. 33, no.1, pp. 316,

1999.

[17] CORDEAU, J.F., Toth, P., and VIGO, D., “A Survey of Optimization Models

for Train Routing and Scheduling,” Transportation Science, vol. 32, no. 4, pp.

380-404, 1998.

144

[18] CRAINIC, T.G., FERLAND, J.A., and ROUSSEAU, J.M., “A Tactical Planning

Model for Rail Freight Transportation,” Operational Research ’84, J.P. Brans

(ed.), Elsevier Science Publishers, Amsterdam, pp. 707-720, 1984.

[19] DANSKIN, J.M., The Theory of Max-Min. Springer-Verlag New York Inc., 1967.

[20] DUMAS, Y., DESROSIERS, J., SOUMIS, F., “The Pickup and Delivery Prob-

lem with Time Windows,” European Journal of Operation Research, vol. 54, pp.

7-22, 1991.

[21] FAGERHOLT, K., “A Computer-based Decision Support System for Vessel Fleet

Scheduling - Experience and Future Research,” Decision Support Systems, vol. 37,

pp. 35-47, 2004.

[22] FAGERHOLT, K., “Ship scheduling with soft time windows - an optimization

based approach,” International Transactions in Operation Research, vol. 6, no. 5,

pp. 453-464, 1999.

[23] FISCHETTI, M., and TOTH, P., “An Additive Bounding Procedure for Combi-

natoral Optimization Problems,” Operations Research, vol. 37, pp. 319-328, 1989.

[24] FISHER, M.L., ROSENWEIN, M.B., “An interactive optimization system for

bulk-cargo ship scheduling,” Naval Research Logistics, vol. 36, pp. 27-42, 1988.

[25] GORMAN, M.F., “An application of genetic and tabu searches to the freight

railroad operating plan problem,” Annals of Operation Research, vol. 78, pp. 51-

69, 1998.

[26] HAGHANI, A.E., “Formulation and solution of a combined train routing and

makeup, and empty car distribution model,” Transportation Research, Part B:

Methodological, vol. 23, no. 6, pp. 433-452, 1989.

[27] HEIDELOFF, C., STOCKMANN, D., ISL Market Analysis 2005, SSMR, 2005.

145

[28] HU, J., JOHNSON, E.L., “Computational Results with a Primal-Dual Subprob-

lem Simplex Method”, Operations Research Letters, vol. 25, pp. 149-157, 1999.

[29] HUNTLEY, C.L., BROWN, D.E., SAPPINGTON, D.E., and MARKOWICZ,

B.P., “Freight Routing and Scheduling at CSX Transportation,” Interfaces, vol.

25, no. 3, pp. 58-71, 1995.

[30] HWANG, S.J., “Inventory Constrained Maritime Routing and Scheduling for

Multi-Commodity Liquid Bulk,” PhD Thesis, Georgia Institute of Technology,

2005.

[31] JAW, J.J., ODONI, A.R., PSARAFTIS, H.N., and WILSON, N.H.M., “A

Heuristic Algoritm for the Multi-vehicle Advance Request Dial-a-ride Problem

with Time Windows,” Transportation Research Part B, vol. 20B, pp. 243-257,

1986.

[32] JETLUND, A. and KARIMI, I., “Improving the logistics of multi-compartment

chemical tankers,” Computers and Industrial Engineer, vol. 33, pp. 689-692, 1997.

[33] JOHNSON, E. and BARNES, E., “Computational Optimization: LaGrange

Methods and Decomposition,” Lecture Notes, 2002.

[34] KALANTARI, B., HILL, A.V., and ARORA, S.R., “An Algorithm for the Trav-

eling Salesman Problem with Pickup and Delivery Customers,” European Journal

of Operation Research,” vol. 22, pp. 377-386, 1985.

[35] KEATON, M.H., “Designing optimal railroad operating plans - Lagrangian-

relaxation and heuristic approaches,” Transporation Research, Part B: Method-

ological, vol. 23, no. 6, pp. 415-431, 1989.

[36] KEATON, M.H., “Designing railroad operating plans - A dual adjustment

method for implementing lagrangian-relaxation,” Transportation Science, vol. 26,

no. 4, pp. 263-279, 1992.

146

[37] KIM, S.H., LEE, K.K., “An optimization-based decision support system for ship

scheduling,” Computers and Industrial Engineering, vol. 33, no. 3-4, pp. 689-692,

1997.

[38] KOLEN, A.W.J., RINNOOY KAN, A.H.G., TRIENEKENS, H.W.J.M., “Vehi-

cle Routing with Time Windows,” Operations Research, vol. 35, no. 2, pp. 266-273,

1987.

[39] KOSKOSIDIS, Y.A., POWELL, W.B., SOLOMON, M.M., “An Optimization-

Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Con-

straints,” Transportation Science, vol 26, no. 2, pp. 69-85, 1992.

[40] LAMPORT, L., LATEX User’s Guide and Reference Manual. Addison-Wesley

Publishing Company, Inc., 1986.

[41] LAU, H.C., LIANG, Z., “Pickup and Delivery with Time Windows: Algorithms

and Test Case Generation,” International Journal on artificial Intelligence Tools,

vol. 11, no. 3, pp. 455-472, 2002.

[42] LAU, H.C., SIM, M., TEO, K.M., “Vehicle Routing Problem with Time Windows

and A Limited Number of Vehicles,” European Journal of Operation Research, vol.

148, pp. 559-569, 2003.

[43] LITTLE, J., MURTY, K., SWEENEY, D., and KAREL, C., “An Algorithm for

the Traveling Salesman Problem,” Operation Research, vol. 11, pp. 972-989, 1963.

[44] LU, Q., and DESSOUKY, M., “An Exact Algorithm for the Multiple Vehicle

Pickup and Delivery Problem,” Transportation Science, vol. 38, pp. 503-514, 2004.

[45] MORLOK, E.K., and PETERSON, R.B., “Final Report on a Development of a

Geographic Transportation Network Generation and Evaluation Model,” Journal

of Transporation Research Forum, vol. 11, pp. 71-105, 1970.

147

[46] NANRY, W.P., and BARNES, J.W., “Solving the Pickup and Delivery Problem

with Time Windows Using Reactive Tabu Search,” Transporation Research Part

B, vol. 34, pp.107-121, 2000.

[47] NEMHAUSER, G. and WOLSEY, L., Integer and Combinatorial Optimization.

New York, NY: John Wiley & Sons, 1998.

[48] NOWAK, M.A., “The Pickup and Delivery Problem with Split Loads,” PhD

Thesis, Georgia Institute of Technology, 2005.

[49] PSARAFTIS, H., “Foreword to the focused issue on maritime transportation,”

Transportation Science, vol. 33, 1999.

[50] PSARAFTIS, H., “Dynamic vehicle routing problems,” in B. L. Goldern, A.A.

Assad, Vehicle Routing: Methods and studies, North-Holland: Elsevier, pp. 223-

248, 1988.

[51] PSARAFTIS, H., “A dynamic programming solution to the single vehicle many-

to-many immediate request dial-a-ride problem,” Transportation Science, vol. 14,

no. 2, pp. 130-154, 1980.

[52] RANA, K. and VICKSON, R.G., “Routing Container Ships Using Lagrangean

Relaxation and Decomposition,” Transportation Science, vol. 25, No. 3, pp. 201-

214, 1991.

[53] RONEN, D., “Ship Scheduling: The Last Decade,” European Journal of Opera-

tion Research, vol. 71, pp. 325-333, 1993.

[54] RONEN, D., “Short-term scheduling of vessels for shipping bulk or semi-bulk

commodities originating in a single area,” Operation Research, vol. 34, No. 1, pp.

164-173, 1986.

[55] RONEN, D., “Cargo Ship Routing and Scheduling: Survey of Models and Prob-

lems,” European Journal of Operation Research, vol. 12, pp. 119-126, 1983.

148

[56] SAVELSBERGH, M.W.P., and SOL, M., “General Pickup and Delivery Prob-

lem,” Transporation Science, vol. 29, no. 1, pp. 17-29, 1995.

[57] SAVELSBERGH, M.W.P., and SOL, M., “Drive: Dynamic Routing of Indepen-

dent Vehicles,” Operations Research, vol. 46, pp. 474-490, 1998.

[58] SCHRIJVER, A., Theory of Linear and Integer Programming. Baffins Lane-

Chichester, John Wiley & Sons, 1986.

[59] SCOTT, J.L., “A transportation model, its development and application to a

ship scheduling problem,” Asia-Pacific Journal of Operation Research, vol. 12,

pp. 111-128, 1995.

[60] SEXTON, T.R., and BODIN, L.D., “Optimizing Single Vehicle Many-to-many

Operations with Desired Delivery Times: I. Scheduling,” Transportation Sciences,

vol. 19, pp. 378-410, 1985.

[61] SEXTON, T.R., and BODIN, L.D., “Optimizing Single Vehicle Many-to-many

Operations with Desired Delivery Times: I. Routing,” Transportation Sciences,

vol. 19, pp. 411-435, 1985.

[62] SHAPIRO, J.F., Mathematical Programming: Structures and Algorithms. John

Wiley & Sons, Canada, 1979.

[63] SHERALI, H.D., AL-YAKOOB, S.M., HASSAN, M.M., “Fleet management

models and algorithms for an oil tanker routing and scheduling problem,” IIE

Transportation, vol. 31, pp.395406, 1999.

[64] SOLOMON, M.M., “Algorithms for the Vehicle Routing and Scheduling Prob-

lems with Time Window Constraints,” Operations Research, vol. 35, no. 2, pp.

254-265, 1987.

149

[65] SOLOMON, M.M., DESROSIERS, J., “Survey Paper: Time Window Con-

strained Routing and Scheduling Problems,” Transportation Science, vol. 22, no.

1, pp. 1-13, 1988.

[66] THOMET, M.A., “A User-Oriented Freight Railroad Operating Policy,” IEEE

Trans. Systems, Man Cybernet, vol. 1, pp. 349-356, 1971.

[67] TOTH, P., and VIGO, D., “Heuristic Algorithms for the Handicapped Persons

Transportation Problem,” Transportation Science, vol. 31, no. 1., pp. 60-71, 1997.

[68] VAN DER BRUGGEN, L.J.J., LENSTRA, J.K., and SCHUUR, P.C., “Variable-

depth Search for the Single-vehicle Pickup and Delivery Problem with Time Win-

dows,” Transportation Science, vol. 27, pp. 298-311, 1993.

150

VITA

Aang Daniel was born on February 7, 1977 in Tasikmalaya, Jawa Barat, Indonesia.

He received his Bachelor of Science in Industrial Engineering from Bandung Institute

of Technology, Bandung, Indonesia in Fall 1998. Prior to continuing his education,

he worked for Accenture for 2.5 years where he served as a Business and Management

Consultant. He joined the graduate program in the School of Industrial and Systems

Engineering at Georgia Tech in Fall 2001. Mr. Daniel’s research interests are pri-

marily in applying optimization methods to answer problems found in transportation

industries.

151

