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RADAR CROSS SECTION AND GLINT CALCULATION  

INTRODUCTION  

For the purpose of estimating the glint characteristics of a simple 

target, one needs to know the rate of change of phase of the return signal 

with respect to the aspect angle. Fortunately a computer program was avail-

able (1)  for bodies of roll symmetry and perfectly conducting surfaces. The 

computer program is based on the physical optics prescription for the scat-

tering from surface elements and on the geometrical theory of diffraction for 

edges. The latter implicitly contains polarization dependence while the 

former does not. Thus, glint characteristics-can be predicted for arbitrary 

polarizations. However, for simplicity, the data given below are for the 

principal polarizations only. 

The program-is a coherent one, in that the phase angles of the contri-

butions from various portions of the target are "remembered." The phase angle 

of the sum of the contributions can be output (as shown below), and can 
(1) 

 also 

be used to form the rate of change. The basic program described in was 

slightly modified to do this. The results are typical of what the program can 

do, and other bodies of revolution can easily be simulated. 

(1) E. F. Knott and T. B. A. Senton, "A Program Incorporating Diffraction for 
the Computation of Radar Cross Section," University of Michigan, Report 
011758-2-T, June 1973. 



= 2k (R0  - a cos e ) 

dcp 
de 	

= 2ka sin _0 

Point Scatterer 

i2k(R
o
-a cose ) 

fa = A e 

Ro = distance between radar and center of 
rotation 

a 	= effective radius of rotation 

St) 	= phase angle of the echo 

but L = a sin 0 is the instantaneous lateral position of the scatterer, hence 

do 
de = 2 kL 	 if kdo,  is in radians per inch, 

and a- 
in radians per radian, L is in 

- inches 

_ 1 dO 
L  2k de 

Thus, apparent glint is large where the rate of change of phase with aspect 
angle is large. 

ANALYSIS 

The program returns amplitude and phase of the backscattering for hori- 
zontal and vertical polarizations. The amplitude data are expressed in dB 
above a square wavelength. The return from the spherical nose of the RV is 
given by the formulat for a sphere: 

2 
a 

	

X2 	7 ( 5t- 

The radius of the sphere is 3.15 inches, and its radar cross section is -17.0 
dBm -2  . Normalized with respect to the square of the wavelength, we get 

	

18.4 dB 
	

(17.5 GHz) 
a 	 nose returns 
2 	24.4 dB 
	

(35 GHz) 



The return from the base of the cone at axial incidence is independent of 
the frequency (4 

a = 4 Tr r sin (7/n) 
7 -- \ n (cos 	- cos 	—) n 	n 

where r is the radius of the base and n is the normalized exterior wedge 
angle of the base, 

n = 1.5 + a Tr 

'where a is the cone half-angle (7 °  in our case). For a base radious of 11.811 
inches, we calculate the base return to be 

a 
	28.0 dB 	(17.5 GHz) 

x2 	34.0 dB 	(35 GHz) 
	base returns 

Thus the nose return is about 9.6 dB below the base return at both fre-
quencies. 

Depending on the relative phase of the nose and base returns, the net 
echo could range from 3.4 dB below the base return to 2.5 dB above it. Thus 
the on-axis amplitude should be somewhere between 24.6 and 30.5 dB above a 
square wavelength at 17.5 Ghz, and between 30.6 and 36.5 at 35 GHz. 

The table below summarizes the nose-on amplitudes: 

a, dBX2 
	

a, dBX2 
f, GHz 	from above analysis 	from plots 

17.5 	 24.6 - 30.5 	 24.9 
35.0 	 30.6 - 36.5 	 31.4 

Thus, the predicted patterns seem correct. 

( 2 )J. B. Keller, "Backscattering from a Finite Cone," IRE Transactions on  
Antennas and Propagation,  Vol. AP-8, March 1960, pp. 175-182. 
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MONOPULSE ANGLE MEASUREMENT ERROR  

This section is concerned with the mean and standard 

deviation of angle errors in monopulse systems caused by thermal 

noise. Two representative monopulse implementations are 

analyzed: the dot product processor with long time constant AGC 

and the phase comparison or S ± jD processor. 	Single pulse 

errors are derived and extended to multiple 	pulse cases for 

coherent and noncoherent integration. 	The mathematical 

expressions for the mean and standard deviation of the error are 

valid for arbitrary signal to noise ratio (p) and can be 

simplified for limiting value of p. 

1. 	SINGLE PULSE 

Single pulse thermal noise measurement errors for the 

monopulse systems shown in Figures 1 and 2 are derived in terms 

of the antenna parameters and the input signal to noise ratio. 

The operation and - advantage/disadvantage of each implementation 

are also discussed. 

1.1 	Dot Product Detector 

The commonly used dot product processor (Figure 1) has 3 

receiver channels: one each for the sum signal and the two 

difference signals. A long time constant AGC circuit (averaging 

over many pulses) normalizes the IF signals to the sum signal. 

The normalized sum signal is used for display and range tracking 

purposes; it is also input to the error detectors along with the 

normalized difference signals to generate the monopulse or error 

characteristic. In the absence of noise the outputs of the error 

detectors are equal to the ratio of D to S and proportional to 

the angle of the target from boresight. System noise generated 

primarily by the mixers causes bias and random errors in the 

angle measurement process. The main disadvantage of the dot 

product processor is degradation in performance when the target 



Video 
Amp 

Range 
Tracker 

IpazilSicos4s -  (Paz) 

2 S a  

IDellISIco s Os -  (Pei) 

sa2 

           

S u  

     

ACC 

   

                  

                  

                    

                    

                    

   

IF Amp 

    

Amplitude 
Detector 

 

               

                      

                      

                 

                 

                 

ilaz 

            

Error 
Detector 

 

               

    

IF Amp 

IF Amp 

         

             

                      

                      

                      

                      

                      

                      

Del 

            

Error 
Detector 

 

           

             

                      

Local 
Oscillator 

Pigure 1. Dot Product Monopulse Processor 
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RCS fluctuates on a pulse to pulse basis; in this case the AGC 

output averaged over several pulses is not equal to the sum 

signal of an individual pulse and significant errors are intro-

duced in the normalization process. 

At the outputs of the IF amplifiers the sum and difference 

signals during the reception of the target pulse can be written 

in the form: 

[A 0 1S(8)1 cos(wt + ( s ) 

1 + x l (t) cos wt - y l (t) sin wt .! 	= s(t) 	 (la) 
VP 

[A0  ID(0)1 cos(wt + ( 1) d ) 

+ x 2 (t) cos wt - y 2 (t) sin wt 	 - d(t)  
VP 

(1h) 

where 1S(8)1 is the magnitude of the antenna sum voltage 
pattern, ID(0)1 is the magnitude of the antenna difference vol-

tage pattern, q) s  is the phase in the sum channel, q (21  is the phase 

in the difference channel, A G  is an amplitude proportional to the 

square root of the received power, x1 (t) and y 1 (t) are the quad-

rature Gaussian noise components in the sum channel having zero 

means and variances equal to the noise power, x 2 (t) and y2 (t) are' . 

the quadrature Gaussian noise components in the difference 

channel and VT is the normalized amplitude of the AGC output. 
For a long time constant AGC circuit, P is approximately equal to 

the sum of the signal and noise powers in the sum channel 

averaged over several successive pulses. If the signal and noise 

powers are constant over the response time of the AGC circuit, 

then 

P = Ps ± n 



where Ps  and Pn are the single pulse signal and noise powers in 

the sum channel. The AGC normalizing amplitude in this case is 

then 

✓ 15  = 'PS  

The error detector can be modeled as a mixer followed by a 

low pass filter. Thus the output voltage of an error detector 

with inputs equal to those given by Equations (la) and (lb) is: 

1 r f(t) = -2-15  tA-9   iD(9)I IS(9)I cos(¢s  - (f) d ) 

+ A0  IS(8)I [x2 (t) cos,l) s 	y2 (t) singS s ] 

+ A0  ID(0)I [xl (t) cos ci 	y1 (t) sing) d i 

x1(t) x2(t) 
	y1(t)  Y2(t)1 

For zero noise and constant receive signal power, the output is 

A 2 ID(e)1 !s(e)1 cos(¢ s  - (p d ) 

f o ( t ) 	 2P
s  

_ 11)(9)1  
S(0)I 

cos (4)sd ) 	
D(e) 
s(e) 

(4) 

where 

A° 2 
 Is(9)!2 

(5) s 	 2 

D 
- n (2) 

(3) 

Over a region of plus or minus 	beamwidth about the antenna 



axis the monopulse characteristic is approximately linear: 

D(A) 
(6)j  
S1  cos(¢s 

-
d 

-  	- ka t 
- m 

 AG 

k A
t 	

(6) 

where a t is the target angle with respect to axis, AB is the sum 
pattern 3 dB beamwidth and km  is a constant approximately equal 

to 1.57. Hence the angle estimate in the noise free case is 

f o (t) 
6 = 	k 	 (7a) 

and in the noisy case 

 e = f(t)  k 

The error in the angle estimate is then 

E = 8- 8 - f(t)  
t • 

Quality of the estimate is usually determined by the mean 

and standard deviation of the estimate error. The expected value 

of the error is 

E(E) = 	 - A t . 	 (9) 

In Equation (3) for f(t) the random variables x/, x2, yl, y2 are 

independent Gaussian random variables with zero means. Therefore 

only the first term contributes to the mean: 

E(f) _ Ao 2 1D(0)1 ISO)! cos( s  - (1) d ) 
(1 0) k 	 2Pk 

Substituting Equation (6) in the numerator and Equation (2) in 

the denominator of Equation (10) .it is found that 

E(f)  _ 
A 
o  • 
21 S(0) 2  a

t 
k 	2(Ps  T 2 11 ) 

(7b) 

( 8 ) 



which reduces to 

EU)  _ Ps  8 t  
k 	P s + Pn 

when Equation (5) is used for 	The The mean error is then 

E(s) = O t ( p 	p 	1) - s 	n   

	

Ps 	 8. 

1 + p 
	 (12) 

where p is the single pulse signal to noise ratio. Equation (12) 

indicates that the AGC operation which produces a normalizing 

factor proportional to the sum of the signal and noise powers in 

the sum channel introduces a bias error proportional to the angle 

of the target from boresignt. Only for large values of p is the 

bias error insignificant. 

The variance of the error is 

Var(E) = E [s 	E(s)] 2  

	

= E 	1A0  Is(e)1 [x2  cos (is  + y 2  sin 4 s ] 
	(13) 

▪ Aso lD(8)1[xl  cos cp c, + y l  sin t d ] 

• xl x2 	y1 y2}2/4P2k2 

Since xl , y l , x2 , y 2  are mutually independent with zero means and 
o 

variances 	E(x 1 '
9 
 ) 	= 	E(y12) 	= 01 2 , E(x2 2 ) 	= 	E(y 9 2 

 ) 

= a 2 2  where a 1 2  and a 2 2  are the noise powers in the sum and dif-

ference channels, respectively, the error variance becomes 

A ° 
	 (14) 
2  1S(0)1 2  u 9 2  + A0 2  11)(9)1 2  a 1 2  + 2a12 a2 2 

Var(E) =  
4P2k2 



Assuming equal noise powers in the two channel and substituting 

.the expression for A o  as given by Equation (5) into Equation 

(14), the variance reduces to 

Var(E) = 
2P P + 2 P 	

D(0)  
s n 	s 

P 	S(0)  

4k 2  (Pb  + Pn ) 2  

 

2 
+ 2P n 2  

(15) 

  

Taking the square root of Equation (15) and substituting for k 

from Equation (6) the standard deviation of the error becomes 

a = S D (e) = A8 
• 	• m 

D(6) 2  P s  Pn  (1 + 
 S(e)t 

 ) + Pn 2  

2(P + P ) 2  

1/2 

(16) 

In terms of the single pulse signal to noise rate p, 

    

AS 
a E km 

1 	
re)  2 + 1 

— S(2)  
1) z 2p(1 + —j 

1/2 

(17) 

    

If 	the 	target 	is 	close 	to 	the 	boresight 	so 

that 1 D 13 1 << 1/p then so) 

a 

 

AS 

 

(18) 

   

    

k
m 

/2 (p + 1) 

Note that only when p >> 1 and ID(9)/S(8)1 << 1 does the standard 

deviation of the error reduce to the commonly quoted relationship 



a — 
Ae 

 

E 

m12p 
• 

In the general case, 	Equation (16) should be used to 

evaluate a 

1.2 	S ± jD Processor  

Figure 2 shows a block diagram of the S ± jD or phase 

monopulse processor. The difference signal is shifted by 90 

degrees and combined with the sum signal in a hybrid to produce 

phase modulated signals at RF. Conversion to IF is accomplished 

by using mixers and a common local oscillator (L.0.). The 

signals in each channel are hard limited in the limiting 

amplifiers to normalize the signals and eliminate any amplitude 

modulation. Synchronous detection in a phase detector produces 

an output voltage which is proportional to the phase difference 

between the signals in the two channels. The phase difference is 

proportional to the ratio of D to S and is converted to target 

angle with respect to boresight by dividing by the known 

monopulse slope. PhaSe processing normalizes the signals on a 

pulse to pulse basis and eliminates the problems of amplitude 

fluctuation associated with the AGC of the dot product processor. 

At the output of the mixers the signals in the two 

channels can be written as 



f l (t) = Re t[A 	IS(e)le 	jA 1 1) ( 0 )1 e 	
d 

jwo ti 

j(I) 1 	j  o wt  = Re  (A1e 	e 	). (19a) 

j 4's 
f
2
(t) = Re [AIS(8)1 e 	- jAID(e)I e 

j(t 
+ x 2 (t) + jy (t)le 2 	-I 

jcP 2  jwot 
= Re (A, e 	e 	j , (19b) 

where IS(8)I, 4) s  and ID(0)I, 1) c, are the amplitude and phase of 

the antenna one way voltage sum and difference patterns, respec-

tively; x l (t),y 1 (t) and x2 (t),y 9 (t) are the quadrature Gaussian 

noise components with zero means and variances equal to the noise 

power introduced by the mixers in each IF channel; A is an ampli-

tude related to the received sum signal power PS  through the 

equation 

PS = A21s(0):2 
	

(20) 

A l , S i  and A 2 , ¢ 2  are the envelopes and phases in the repsective 

channels. If no phase errors are introduced in the system, then 

for target angles within + 1/2 beamwidth of 

boresight ¢ s  = 0 and ¢ c, = 	0 	or 	180 	degrees. 
J$, 	 j`i'd Thus IS(0)Ie '' and ID(8)le 	can be written as the real quan- 

tities 3(8) and D(0) where S(e) is always positive and D(e) is 

bipolar. 

+ x1(t)  + j y i (t)] e 



In the absence of noise the output of the phase detector 

is a function of the phase difference between the signals in the 

two channels, 

u = f(A) = f(qS1 	 0/ 
- LI) 2 ) = f(2 tan 1 2 1 
	

(21) 

where the phase detector function has the sawtooth shape shown - in 

Figure 3. Within + 1/2 beamwidth of boresight: 

D(8)  - k 8 S(8) 

and 

A(1) = 2 tan -1 k e t . 

For small target angles 

tan-1 k8
t 

= ke t 

and the estimated target angle e is related to the phase detector 
output as 

 = f(A(45)  _ u 
2k 	2k • (22) 

When the thermal noise contributed by the mixers is 

included, the estimate becomes 

_ f °1 	c 2 )  
2k 	 2k 

A  D(0)  + y 1 (t) 	-1 -A D(0) + y 2 (t) 
= _I 	-1  ftan tan 	 (23) 

2k 	 A S(8) f 
x1(t) 
	 A 8(8) 	x2(t) 



Figure 3. Phase Detector Functional Relationship. 
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In order to calculate the mean and standard deviation of the 

error, the probability density of 	- (k o  = ap must be derived 
and transformed to the density for f(Ad)). 	Now q5 1  and q> 2  are 

independent random variables because ) 1  is a function of x i  and 

y i , q) 2  is a function of x2  and y2  and x 1 ,y 1 ,x 2 ,y 2  are mutually 

independent. Thus the density of ,LN4) is determined by deriving 

the individual densities for (0, and -4), and forming their convo-

lution. 

From Equation (23) it is seen that 4) 1  is the arctangent of 

the ratio of two independent Gaussian random variables. The 

numerator, y = A D(6) + y l , has a mean of A D(6) and a variance 

of 0 1 2  equal to the noise power P n i in the S + jD channel; the 

denominator, x = A s(e) xi has ,a mean A S(e) and a 

variance (1 1 2 . 	Since x i  and y i  are independent, the joint prob- 

ability of x and y is 

P(c,Y) = P(x) P(Y) 

1 	exp 	(x - A S) 2 	(y - A D) 2 
	 (24) 

27r a1
2 	 2 a

1
2 ' 	 2 a

1
2 

Changing variables to r and 	where 

x = r cos (pi 	 r  = if x 2 ± y2 

1 
y = r sin 	 = tan 	y/x 

the joint probability of r and 4) 1  becomes 

P(r,b 1 ) 

_ -.2 2r AB cos( 1  - 	- A 2 3 2  - A 2 0 2  1 	(25) 
exp 

r  

a_ 2 

20 1 2  



with B = ✓D 2  A- S 2 	 (26a) 

* = tan -1 D/S. 	 (26b) 

The density for 4) 1  is obtained by integrating Equation 

(25) with respect to r from zero to infinity. Using the 

identities: 

.; exp[Zcosy]=1 0 (7,)+2_J 1 11 (Z) cos ny 1 
n=i 

I n (Z) = (-j) n  J n`  riz) 

(27a) 

(27b) 

the density for 41  becomes 

P(4) 1 ) = 
r  

2Ar a12 
1 

CO 

J(7) 	j , z 	.) jrAE, 	 ,n 	AB )  L 	 ,1 11 	) cos(nc5 1  - nip)] 
a

1  2 
	n=1 	

. 	

a 12 
-  

- A 2  S 2  - A 2  D 2  - r 2  
exp 

 

] dr 	 (28) 
2a 1  2  

where Jn  is the Bessel function of the first kind of order n and 

I n  is the modified Bessel of the first kind of order n. 

Reference 1 lists the following integral identities: 
b 2  

-a 2 t 2 	n-F1 t 	Jn (bt) dt - (2a 2 )

bn 

 n+1 
e 4a 2  (29a) 



= a 1 2 exp  A 2  B 2  - , 2 exp 
A2 D2 	A2 S2 

261 2 
	

2Q 1 2 
(30a) 

0 

e
-a2t2 

t k-1 J n (bt) dt 

S ( 	

b )n rr 11-1-k  L 	2 	) ‘. 2a 	m  ( n 
2 
 k  n 	I; 

2ak r (n 	1) 

b 2  
(29b) 

4a 2  

 

where r denotes the gamma function and M is the confluent hyper-

geometric or Kummer's function. For 

t = r 
a 2 - 	1  

2(1 1 2  

b 
	jAB  

2a 1 2  

with n = 0 in Equation (29a) and k = 2 in Equation (29b) we find 

that - r 2  

00 2 
r 	2a 1 j r4  rAB 	dr 

Jo 	
e 	 j o" 

a l 

R 2  

j  (jrAB  dr n 012  1: 
re 2a1  

(30b) 

r r  n 	2  
L 	2  
r(n 	1) 

jAB  )n n 	+ 2 	A2B2 
a  2 NI( 	, n 	1; 	 

2 	 1 	 9 

al 	 2a
1

2 

and the density for 4), reduces to 



	

1 	1_A2s2 - A2D2 

	

Pp(4) 1) = "2-Tr 	
eXP 

n + 2 
 2 	AB 

I' (n + 1) n=I 	 I/2 a 

(

2a.. 2  1 

n 	+' 	 A2B 2  - M 	, n + 1; 9 	
oal 2 e„  

cos(nP 1  - n11)). (31) 

Substitution of Equation (20) for A, EquatiOn (26a) for B, P - n1 
for a1 2  and p 1 for the sum signal to noise ratio in Equation (31) 

results in an expression for p(' 1 ) which is a function 

of p 1 , 0 1 , and tp: 

1 	1 	P i 	 r(n 	2 ) 
P0 1 ) = Tri7 	exp [- 	+ PI]] 	2 )  

2 	2 	;7'1. 	r (n 	1 ) 

(32) 

•(pl
n/2

( 	D2,n/2 f n  + 2 1 r 	D 2 ■ 1 
s2 	

2 	, n+1; 	+ --jj cos(n4) 1  - n) 2 	 s2 

The probability density of the random variable a = -4) 2  is 

derived in the same manner as 4) 1 and is found to be 

1 	1 	 P2 	D2  p(a) = 	 exp [ - 2  (1 + --)] 
S 2 

P 2 	D2\1 
•

m r  n + 2  , n + 1; - 	+ --j] cos(na - n4)) L 	2 	 s2 

;.0 a > -Tr 

(33 ) 

r (n + 1) 	2 

r 	2 ) ( p2  ) 	
(1 4 D2 n/2 

n/2 

S= 

where p 2  is the sum signal to noise ratio in the S-jD channel. 



2a n 2  1 
it 2 
	n 	4n sin n“ 

It is assumed that the IF channels are matched in amplitude and 

phase and have equal noise sources; therefore p 1  = p 2  = p. 

In order to obtain the density for the difference 

phase ( 1  - ( 2  the 	densities 	for p( i ) and p(a) must 	be 

convolved. 	Since p 1 = p 2  = p, the operation amounts to con- - 
volving a function 

P 	 27 
6) = 	E an  cos(11:0 - nip)  n=i 

-7r 

with itself. 	This is a tedious process; however perserverance 

will yield the result 

1 7 a n 
2 

27 - A(  
P(A) 

472 	7 2 

[sin (n7 - nip) - siri(nAy5 -. n7 - nip)] 

4.  27 -  Ab  an 2  cos(nA4) - 2nip) 
27 2  

y a n am rsin(n7 - m7 - 	- 	+  mcW  

	

7 2 	nn#m m 	2 L 	 n - m 

sin(n7 + Mff - nip +  rn - mL(fl 
n + m 

	

1 	y 	an  am [ sin(m7 - n7 -  1141 	+ n.64)  _ 

	

7 2 	n 	m 2 	 (n - m) 
n#m 

sin(-n7 - m7 - ni + m0 +  
n + m 

CO 

(34) 



for 2n 	A¢ 	0 and 

Ath + 27  + 1 	''S7 an 
2 PCAI)) - 	' 	, -- 

41-I 4n2 	u 2 	n 

[sin(nAth + n7 - n1)) + sin(nn + nip)] 

+ 2n + A¢  I a n t cos(nA¢ - 211/1)) 
2n 2 	n 

1 I 	an:m [sin(nA¢ + nn - mn - nip - m*)  
n 2 	nn .ltm  m 	 n - m 

sin(nA¢ + nn + mn - ni + 
n m 

1 x Ian am  [sin(-nn  + mn 	nib - 	- mA¢)  
2 	n 	m 	2 	 (n - m) 

n#m 

sin(-nn - nV? - mn + m./) - moth  
n m 

1 E 2a n 2 
, -- 

2 	4n sin nA¢ 

for 0 	A¢ > -2u. 

The next step is to obtain the density for 

u 	f(11¢) 



where f(0) is as shown in Figure 3. Now the density for u is 

related to the density of A4 through the expressions: 

	

p 3 (u) = p 2 (u) + p 2 (u + 27) 
	

0 	u a —u 

(35) 

= p2(u) 	P2 (11  - 27) 

	
U > 0 

When the indicated opertions are performed, several teams cancel 

and the density reduces to 

CX3 

/̀ u ) = -1 - . 	
L an r 

- 
1 	N-1 	2 cos(nu — 2n 11)) 27 	7 	n=1 

U a — Tr 

where 

2  r (II 4- :-7)' ) 	n/2 i 	 D2 n/2 an = exp[- 	(1 + S2 	i 

D2 
)j 	,  (n + 1) Cl2 ) 	( 1  + 

-s
-) 

• M r n 
2  2 , n + 1 ; * 13 2 (1 + T-2---)] 

L   
S 2  

Two limiting cases of Equation (36) are of interest. 
9 

For p vary large the coefficients a n t  approach one and - 

- 11 
P3 (u) = —21T + ii 

IT > 11 > - Tr 

cos(nu - 2n1p) 
n=1 (38) 

This series is recognized as the Fourier series of a periodic 

train 	of 	delta 	functions 	of 	period 27 centered 

at u = 24/ + 2n7. 	In the restricted interval 7 a u ) -7, p3(u) 

(36) 

(37) 



is a delta function centered at u = 21p and the density for the 

angle 	measurement 	is 	a 	delta 	function 	centered 
tan .L ke, 

at 9 = 	   k 	 Thus as p 4 cc,  and ke t small the densities 

approach the noise free case; the mean of the measurement 

approaches e t  and the variance approaches zero as expected. For 

small values of p, the coefficients a 11 2 approach zero and p3 (u) 

approaches the uniform density: 

, 
P3 	 = -- 3 ' 	27r 

TT a u > —IT 

This is exactly the density that would be obtained for the zero 

signal case. It results in a bias error of and a standard 

deviation of the error equal to 

it  A8  

	

a e - 	 (39) 
✓l2 km 

These results show that the formulation produces the correct 

results in the two limiting cases. They also indicate that both 

the mean and standard deviation of the error are functions of the 

signal to noise ratio. 

Equation (36) can be used in conjunction with Equation 

(22) to determine the mean and mean square of the angle measure-

ment through the expressions: 

Tr 

	

u 	 r 	1 E(6) = E(--2k') 	2k = 	uL 	Zan 2  cos(nu-2nWdu (40a) 
—7 	 n=1 

2 r 1 	1 E(82) = E(  u  ) _  1 	u 2  L-- 2 
27 + 	an t n

2  cos(nu-2Wdu (40b) —  
4k 2 	4k 2 	 n=1 

When the integrals are evaluated, it is found that 



n+1 
E(0) = 	 (-1)  a

n
2 sin 2nip 

n=1 
(41a) 

E(3 2 ) - 
	2 	1 
	 (_1)n a 

 2 cos 2nlp 	(41b) 
12k 2 	k2 
	

n=1 	n2  

These equations indicate that in the general case the mean and 

mean square of the estimates and hence the mean and standard 

deviation of the angle error are complicated functions of the 

signal to noise ratio and the target angle. Detailed evaluation 

of the mean and standard deviation of the angle error would re-

quire families of plots of Equations (41a) and (41b) as a func-

tion of signal to noise to ratio for various target angles. Time 

and funding considerations do not pertit-such a detailed analysis 

at the present time. 

An interesting special case occurs when the target is on 

the antenna axis (8 t = 0). In this instance q) = 0, E(8) = 0 and 

the standard deviation of the measurement error for a single 

pulse becomes 

  

= 

	

(_1\ 11  a  2 
	1 / 2  1 	Tr 2 	 1 

-- 

	

k L 12 	
n 	/ 1- / 

= k g(P) 
n=1 	n 2  

 

a = 	E(3) (42) 

The factor g(p) was computed for various values of p and the 

results are tabulated in Table 1. Also listed for comparison 

purposes are the equivalent factor for the dot product 

detector, 1/ ✓2(p+1) , and the frequently quoted 1/ ✓2p . Of 

course the standard deviations of the angle errors are found by 

dividing the tabulated values by k which is equivalent to multi-

plication by A8/km where AO is the antenna beamwidth and km  is 

the normalized monopulse slope (approximately 1.57 for practical 

systems.) The data in the table indicate that the S.D. of the 

error 	for 	both 	the 	dot 	product 	and 	S-f-jD 	processors 

approach 1/ ✓ 2p as p becomes large (p ) 10). 	Also the dot pro- 

duct processor errors are smaller than those for the S-FjD 



TABLE 1. MONOPULSE ERROR FACTORS 

P g(p) 
1 1 

 
4Tc V2( 10-ri) t  

0.00 0.90690 . 0.70710 
0.01 0.90470 7.07100 0.70360 

0.10 0.88560 2.23600 0.67420 

0.25 0.85500 1.41400 0.63250 
0.50 0.80730 1.00000 0.57740 
1.00 0.72310 0.70710 0.50000 
2.00 0.59100 0.50000 0.40820 

3.00 0.49500 0.40820 0.35360 
4.00 0.42 4 30 0.35360 0.31620 
5.00 0.37130 0.31620 0.28870 
6.00 0.33140 0.28870 0.26730 
7.00 0.30050 0.26730 0.25000 
8.00 0.27610 0.25000 0.23570 
9.00 0.25660 0.23570 0.22360 

10.00 0.24060 0.22360 0.21320 

20.00 0.16270 0.15810 0.15430 

30.00 0.13150 0.12910 0.12700 

40.00 0.11330 0.11180 0.11040 

50.00 0.10110 0.10000 0.09901 

60.00 0.09208 0.09129 0.09054 

70.00 0.08514 0.08452 0.08392 
80.00 0.07957 0.07906 0.07857 

90.00 0.07496 0.07454 0.07412 
100.00 0.07107 0.07071 0.07036 



processor for all values of p. 	One reason for the latter 

condition is the idealized model of the AGC, which assumed a 

constant output proportional to the square root of the sum of the 

signal and noise powers. The output is a constant only for a 

study target RCS and an infinite time constant AGO circuit. For 

finite time constants the AGC output voltage is a random variable 

and in practical cases, the dot product results probably conform 

more closely to those for the S-i-jD processor. 

1.2 	PULSE INTEGRATION  

The single pulse measurement errors are modified by the 

signal processing and servo systems of the tracker. Processing 

performed prior to the angle measurement is coherent processing 

(or integration) since successive pulses are added vectorially 

preserving amplitude and phase, coherent processing can be accom-

plished at IF or at baseband if in phase and quadrature 

components are preserved. Noncoherent processing (integration) 

refers to signal manipulation after angle measurement and is 

associated with the servo in mechanically steered antennas. 

Either type of integration can be viewed as forming the average 

value of successive samples. 

1.2.1 NONCOHERENT INTEGRATION 

Noncoherent radars such as magnetron transmitter systems 

without phase lock accomplish integration with the servo system 

after the monopulse processor. The servo can be modeled as a low 

pass filter with video bandwidth B s which averages successive 

angle measurements over a time interval approximately equal to 

1  T. - 
i 	213 

 
(43) 

during which 



3 . 1 

N =   - T i PRF 
T 	2ET 	2B s 	s 

(44) 

measurements occur (T is the radar pulse repetition period and 

PRF is the pulse repetition frequency). Thus the processed or 

integrated angle measurement at the servo output can be written 

as: 

6 = 1 
	N 

E(8.) 
	

(45) 
i=i 

wherethee.'s are the individual pulse measurements. 

Since the noise is independent from pulse to pulse, the 

random variables corresponding to the measurements are 

independent and the expected value of e is 

i 	N 	. E(e) = 1,1- I 	E(8 i ) 	 (46) 
i=1 

If the signal to noise ratio is constant over the N pulses, then 

the mean of the integrated measurement is equal to he mean for a 

single pulse. Thus the servo processing has no effect on the 

bias error. 

Similarly, the variance of the processed estimate is 

N 
	Nr1 Var(8) = E(0 - 8) 2  = E r N. 	(e

i 
- 	)1 2  

where the bar above a quantity indicates expected value. 

Independence of the measurements causes Equation (47) to reduce 

to 

Var(e) = 1 	E(3. - e.) 2  
N 2 	i 

For constant signal to noise ratio the variance of the processed 

error is equal to 1/N times the variance of a single pulse error: 

(47) 

(43) 



NVar(e) = N  Var(e i ) 	 (49) 

Since e is defined as the sum of the true target angle plus an 

error E, the variance of the processed error is also equal to 1/N 

times the error variance of an individual pulse and the standard 

deviation of the processed error is 1/1/JST times the standard de- 

viation 	of 

for 	the 	standard 

monopulse 

gration is 

a 

It 	should 

by a 	can 

strictly 	determined 

seriously 

the 	single 	pulse 

deviation 

processor 	with 	long 

	

error. 	Thus 	the 	general 

of 	the 	angle 	error 

	

time 	constant 	AGC 

+ W eel r+ P 

of a 

and 

n2) 

expression 

dot product 

servo inte-

1/2 

(50) 

as measured 

	

error 	is 

	

tracking 	is 

noise ratios. 

bias 

ee 	/ Bs 

[ 

Ps Pn 	(1 
km 	PRF 

be 	stressed 

be 	improved 

by 

impaired for 

that 

by 

the 

small 

(Ps + Pn )2  

while 	the 	rdom 	error 

and 

to 

the 	factor PRF 	the 

single 	pulse 	value 

single pulse signal 

1.2.2. COHERENT INTEGRATICN 

Coherent integration of successive pulse returns is 

accomplished by tranmsitter-receiver configurations which process 

signals of the form 

s(t) = y Ao cos(wo + wd )t p(t - nT) 
	

(51) 

where 	p(t - nT) is a periodic video pulse train. The coherent 

pulse "trains are generated by coherent oscillation-power 

amplifier or power oscillator-phase lock configurations which 

introduce no relative phase shift on a pusle to pulse basis. 

Processing can be performed by filtering the entire spectrum of 

s(t) or a single line thereof. The former type of processing is 

known as comb filtering or burst waveform processing while the 

latter is called pulse Doppler processing. 



For a range gated pulse Doppler system the peak signal 

power associated with the -  filtered central line is 

A 2 52 
0 	 6 2 

So 
	

S 
2T2 	

1 T ' 

where S1  is the peak power of a single pulse, 6 is the pulse 

length and T is the pulse repetition period. For a doppler fil-

ter of bandwidth B d , the average noise power for the pulse 

Doppler range gated system is 

6(6)2 Bd  No (k To Bd 
F) 	= N 1  qj PRF (53) 

where k is Boltzmann's constant, T o  is the reference temperature 

290 degrees K, F is the receiver noise figure and N 1  is the out-

put noise power of a receiver matched for a single pulse (band-

width of 1/6): The signal and noise powers in Equations (52) 

and (53) are those associated with the input to the monopulse 

processor. Thus the angle measurement errors E(e) and a c  have 

the same form as those derived previously for the dot product and 

S+jD procesors with the single pulse signal to noise ratio 

pl = 
	

(54) 

replaced by the coherent integration signal to noise ratio 

So 	PRF  
P o = g-o-  = P 1 Bd 

For the dot product processor the mean and standard deviation of 

the angle error, Equations (12) and (17) become: 

(52) 

(55) 

 

E(z) = 
- e t  (56) 

and 

p 1  PRF 1 + B d  



a  = 
k

m 
B

d 

AS / I's 
72, 

D(e)j 2 	Bd 	- 1/2 

S(e) t 	p 1 
 PRF 1 + 

[ 1 + ID(e) 2  + 	
Bd  

[16 	S(e) 	p 1 
PRF 

= 
E 	k 

p l PRF 	 Bd 1 2 
Bd 	

(1 + 
p 1  PRF )  

The Doppler bandwidth Bd  is determined by the uncertainty 

in the target Doppler frequency f d  and is much smaller than the 

radar PRF. Thus 

PRF  >> 1. Bd 

However, the Doppler filter has a response time Td  equal to 1/Bd 

 which is usually smaller than the response time of the servo 

The equivalent number of independent samples at the Doppler Ti . 

filter output which are noncoherently integrated by the servo is 

T i 	Bd  
Ni 	Td 	2Bs  

(58) 

Hence the servo procesed angle error for the dot product 

monopulse has a mean given by Equation (56) and a standard devia-

tion which is reduced by ,/]T. : 

Pi PRF 	Bd  ) 2 

	

Bd 
	 (1 + 

. 

	

a 	p1 PRF 	- 

1/2 

(57) 

(59) 
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MEMORANDUM: 

To: 	P. P. Britt 
1/91,5 

From: 	H. L. Bassett A ' 

Subject: "Quick-Look" Radome Analysis 

Two radome configurations were analyzed to determine electrical para-
meters at 17 GHz. The first case was thatof a slip-cast fused silica 
radome with the following dimensions: 

Thickness 
	

0.217 inch 

Length 
	

20.98 inches 

Base Diameter 
	

6.46 inches 

In Table 1 are listed the results.. Elevation boresight error (BSEEL), 
azimuth boresight error (BSEAZ), elevation boresight error slope (SLPEL), 
azimuth boresight error slope (SLPAZ), and transmission loss ( -3AIN), 
are tabulated as functions of seeker antenna look angles (PHI and THETA). 
These data in Table 1 are to be used as a baseline design for compari-
sons with the following Case 2 results. The transmission loss for the 
slip-cast fused silica radome is plotted in Figure 1. 

The Case 2 radome characteristics are: 

Length 
	

20.98 inches 

Base Diameter 
	

6.46 inches 

Outer Skin Thickness 
	

0.030 inch 

Core Thickness 
	

0.200 inch 

The radome is a two-layer structure with Duroid material for the 
outer skin and polyimide quartz for the core or base structure. A 
number of cases were run for this configuration allowing for a smooth 
ablation of the Duroid material. Results are plotted in Figures 2 
through 9. The transmission loss is plotted as a function of look 
angle and Duroid material thickness in Figures 2 and 3. 

4,1 	 C,P.,CPTUNL ry" INST .  TU T!ON 
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Examples of boresight errors are plotted in Figures 4 and 5 for the 
uniformly ablating Duroid layer. The boresight error slopes are plotted 
in Figures 6 through 9 and, as indicated, are shown as functions of 
antenna look angle and outer skin thickness. 

The implications of these results relate primarily to the seeker design 
and will have a direct result on missile performance. The angular 
error (boresight error) is a function of 

Antenna Position 
Antenna Aperture 
Nose Shape 
Frequency 	- 
Polarization and 
Wall Construction. 

The boresight error varies nonlinearly with the antenna lbok angle and 
this is a prOblem. The overall interrelation between boresight error 
and missile performance is a complex, nonlinear functional relation-
ship. Techniques have been formulated using a linearized analysis to 
approximate the effect of boresight error and boresight error slope 
(rate of change of error with look angle) on overall missile per-
formance. In modeling a seeker tracker system, one considers the 
stabilization loop and the path b .;; which body motion is coupled into 
the guidance information. From the seeker subsystem block diagram 
of Figure 10, note that the radome error is included. Without the 
radome error, it is Known that the line-of-sight rate can be determined ' 
without a term containing the missile body angular rate, 6 . With 
the radome, the line-of-sight rate is then perturbed by thT missile 
body angular rate and this, in turn, will add a term containing 
boresight error slope. 

To determine if the data from Figures 6 through 9 are meaningful, 
the seeker would need to be modeled. The primary factors required 
in the seeker/missile model would be the noise filter time constant, 
the autopilot time constant, the missile turning rate time constant, 
the guidance gain, closing velocity, and the seeker/radome boresight 
error data. By knowing the constants, miss distance calculations can 
then be made as a function of boresight error slope. 

As an example, assume a Mach 1 missile and a Mach 0.8 target engagement, 
the miss distances would be predicted as indicated in Figure 11 for 
a target at a 60000 foot altitude. The data in Figure 11 are based 
on the measured boresight data of Figure 12 and the linear error 
slope in Figure 13. The actual miss distance would be approximately 
7 feet. 
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This is an example of the models and predictions that are required in 
assessing missile performance. The example does indicate that the 
analysis of radome error slope effects plays an important role in an 
assessment of a missile engagement. 

HLB/jm 
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Figure 12. Error of Figure 11. 
Slope = 0.062E. 
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1.6 November 1981 

MEMO 

To: Pete Britt 

From: Frank Williamson 

Subject: Dynetics Report s  onMeteorological Conditions at 
Minuteman Sites 

The Dynetics report on Meteorological Conditions at Minuteman Sites is a 
very ingenous treatment of recorded weather data to obtain a statistical 
estimation of the propagation conditions at these sites. Unfortunately, the 
recorded weather data was limited in resolution (for instance, rain was 
reported as light, moderate, and heavy) and somEof the. desirable upper 
atmosphere data was not available (i.e., cloud top height). Systematic 
estimations of the actual weather conditions has been made from the recorded 
weather data for-this analysis. 	This estimation proceSs was established with 
guidance obtained in referenced literature. 

This report gives radar propagation losses at 35 and 94 gigahertz for 
five sensor altitudes. The results of this data analysis is summarized by 
seasons for all of the minumteman sites in Figure 3-1. Data from these sites • 
for all seasons is summarized in the l eft graph of Figure 1-13. The 
attenuation data in these vertical attenuation studies is in absolute units 
and is plotted against the cumulative probability that the attenuation will 
equal or exceed the value of the graph. Similar cumulative probability curves 
for cloud obscuration of the minuteman sites (versus altitude) is given in 
Figure 1-12. 

A separate treatment of the weather data has been compiled for the Nevada 
area to support the proposed deployment of the MX missile in the multiple aim 
point scenario. Since the minuteman site data was presented separately from 
the Nevada data, the recent change in the deployment scenario of the MX system 
will not effect the usefulness of the data in this report. 

The data in this report appears to be applicable to sensors in anti-ICBM 
missiles that are intended for deployment at or near existing minuteman 
installations. The vertical attenuation curves may be extended to apply to 
slant paths by dividing the attenuation values by the cosine of the zenith 
angle. 

1  Technical Report, "The Effects of Meteorological Conditions on BMD Sensor 
Performance for Minutemen and MX Deployment Areas," Dynetics, Inc., June 1980. 
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