
CUDA PERFORMANCE ANALYZER

A Thesis
Presented to

The Academic Faculty

by

Aniruddha Dasgupta

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2011

CUDA PERFORMANCE ANALYZER

Approved by:

Dr. Hyesoon Kim, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Sudhakar Yalamanchili
School of Electrical and Computer Engineering
Georgia Institute of Technology

Dr. Richard Vuduc
School of Computational Science and Engineering
Georgia Institute of Technology

Date Approved: March 30, 2011

To my wife Pallavi

iv

ACKNOWLEDGEMENTS

 I wish to thank my family back in India and my very supportive wife. I would like to

extend my sincere gratitude to my advisor, Dr. Hyesoon Kim for being a constant source of

inspiration and guidance. I would also like to thank Dr. Richard Vuduc and Dr. Sudhakar

Yalamanchili for agreeing to be a part of my thesis reading committee. Lastly, I would like to

thank my colleagues Sunpyo Hong and Jaewoong Sim for their help and encouragement.

 v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

SUMMARY x

CHAPTER

1 INTRODUCTION 1

1.1 The Problem 1

1.2 The Solution 3

1.3 Contributions 4

1.4 Thesis Organization 4

2 BACKGROUND 5

2.1 CUDA Programming Model 5

2.2 Base GPU Analytical Model 6

2.3 NVIDIA GT200 Architecture 10

2.4 CUDA Performance Analysis Tools 11

 2.4.1 CUDA Visual Profiler 12

 2.4.2 GPUOcelot 12

 2.4.3 Decuda 13

 2.4.4 Cuobjdump 13

3 CUDA PERFORMANCE ANALYZER 14

3.1 Frontend Data Collector 14

3.2 GPU Analytical Model Based Predictor 18

 vi

 3.2.1 Calculating MWP 19

 3.2.2 Calculating CWP 23

 3.2.3 Calculating Memory and Compute Cycles 23

 3.2.4 Implications of Memory Transaction Merging 24

 3.2.5 Implications of Vector Memory Operations 29

 3.2.6 Tuning of the GPU Analytical Model 32

4 FAST MULTIPOLE METHOD KERNEL SUITE 37

4.1 FMM – The Baseline Algorithm 37

4.2 FMM Optimization Strategies 40

 4.2.1 Shared Memory 40

 4.2.2 Unroll and Jam (Ujam) 43

 4.2.3 Vector Packing (VecPack) 46

 4.2.4 Fast Reverse Square Root (Rsqrt) 48

 4.2.5 Prefetching 50

 4.2.6 Other Optimizations 53

5 RESULTS AND ANALYSIS 55

5.1 Summary of Results 55

5.2 Data Analysis 57

6 CONCLUSION 69

APPENDIX A: MICROBENCHMARK 71

REFERENCES 80

 vii

LIST OF TABLES

Page

Table 1: CUDA Visual Profiler - Relevant Performance Counters 16

Table 2: Memory Transaction Merging on 32 Byte Transactions 26

Table 3: Memory Transaction Merging on 64 Byte Transactions 27

Table 4: Comparing Vector and Scalar Memory Operations 30

Table 5: No Merging Effect in Vector Memory Operations 31

Table 6: Tuning the shader frequency 33

Table 7: Tuning the Base Memory Latency 34

Table 8: Tuning the Departure Delay for 32B Scalar Memory Transactions 35

Table 9: Tuning the Departure Delay for 64B Scalar Memory Transactions 35

Table 10: Tuning the Departure Delay for 128B Scalar Memory Transactions 35

Table 11: Tuning the Departure Delay for Vector Memory Transactions 36

Table 12: Comparison between Baseline and Shared Memory Optimization 43

Table 13: Comparison between Baseline and Ujam Optimization 46

Table 14: Comparison between Baseline and Vector Packing Optimization 48

Table 15: Comparison between Baseline and Rsqrt Optimization 49

Table 16: Comparison between Baseline and Prefetching Optimization 52

Table 17: Memory access patterns for Scalar Memory Operations 74

Table 18: Memory access patterns for Vector Memory Operations 79

 viii

LIST OF FIGURES

Page

Figure 1: Performance Vs. Effort 2

Figure 2: Occupancy and Performance 3

Figure 3: CUDA Thread Hierarchy 6

Figure 4: CUDA Memory Hierarchy 7

Figure 5: MWP and CWP 8

Figure 6: CUDA Performance Analyzer Block Diagram 14

Figure 7: MWP Increase due to Independent Loads 22

Figure 8: MWP Decrease due to Duplicate Loads 23

Figure 9: Memory Access Pattern for 32B transaction non-merging 26

Figure 10: Memory Access Pattern for 32B transaction with merging 27

Figure 11: Memory Access Pattern for 64B transaction non-merging 28

Figure 12: Memory Access Pattern for 64B transaction with merging 28

Figure 13: Memory Access Pattern for vector memory operations with no merging 31

Figure 14: Memory Access Pattern for vector memory operations with merging 32

Figure 15: Fast Multipole Method representation 38

Figure 16: Coherency between predicted and actual performance 55

Figure 17: Predicted Vs. Actual Performance 3D plot 56

Figure 18: Base Optimizations with 64T 57

Figure 19: Another layer of optimizations over Shared Memory with 64T 58

Figure 20: MWP & CWP for optimized versions with 64T 58

Figure 21: Performance & #Instructions Correlation with 64T 59

Figure 22: Performance & #Instructions correlation with 128T 60

Figure 23: Memory bound optimizations with 64T 60

 ix

Figure 24: Performance & #Memory_Ops Correlation with 64T 61

Figure 25: Performance & #Memory_Ops Correlation with 128T 62

Figure 26: 3D Sign Plot for 64 Threads/block 63

Figure 27: Relationship between Occupancy and Effective duplicate load factor (192T) 65

Figure 28: Model performance with fixed duplicate loads (192T) 66

Figure 29: Model performance with adaptive duplicate loads (192T) 66

Figure 30: Relationship between Occupancy and Effective duplicate load factor (256T) 67

Figure 31: Model performance with fixed duplicate loads (256T) 67

Figure 32: Model performance with adaptive duplicate loads (256T) 68

Figure 33: Memory access pattern for 128 Byte transactions 75

 x

SUMMARY

GPGPU Computing using CUDA is rapidly gaining ground today. GPGPU has been

brought to the masses through the ease of use of CUDA and ubiquity of graphics cards

supporting the same. Although CUDA has a low learning curve for programmers familiar

with standard programming languages like C, extracting optimum performance from it,

through optimizations and hand tuning is not a trivial task. This is because, in case of

GPGPU, an optimization strategy rarely affects the functioning in an isolated manner. Many

optimizations affect different aspects for better or worse, establishing a tradeoff situation

between them, which needs to be carefully handled to achieve good performance. Thus

optimizing an application for CUDA is tough and the performance gain might not be

commensurate to the coding effort put in.

I propose to simplify the process of optimizing CUDA programs using a CUDA

Performance Analyzer. The analyzer is based on analytical modeling of CUDA compatible

GPUs. The model characterizes the different aspects of GPU compute unified architecture

and can make prediction about expected performance of a CUDA program. It would also

give an insight into the performance bottlenecks of the CUDA implementation. This would

hint towards, what optimizations need to be applied to improve performance. Based on the

model, one would also be able to make a prediction about the performance of the

application if the optimizations are applied to the CUDA implementation. This enables a

CUDA programmer to test out different optimization strategies without putting in a lot of

coding effort.

1

CHAPTER 1

INTRODUCTION

 General-Purpose Computation on Graphics Processing Units (GPGPU) [1] is on the

fast track in the High Performance Computing (HPC) world today. The proliferation of

cost-effective and state-of-the-art graphics cards coupled with new technologies like

NVIDIA’s Compute Unified Device Architecture (CUDA) [2], Khronos Group’s Open

Computing Language (OpenCL) [3], Microsoft’s DirectCompute etc. have led to rapid

strides in GPGPU technology and widespread acceptability of GPGPU in Computing.

CUDA has been a forerunner in modern GPGPU technology. The entire range of

contemporary NVIDIA Graphics cards is CUDA capable which gives one access to

GPGPU in daily computing. A lot of general software is GPGPU optimized like web-

browsers, video decoders, physics calculations in games etc. Also the specialized Tesla range

of NVIDIA graphics cards are tuned for the HPC market with additional features like high

performance double precision support, error correction codes etc. Thus CUDA is used in a

very broad spectrum of applications today.

1.1 The Problem

The speedup offered by using NVIDIA CUDA is very significant for problems that offer a

high degree of data level parallelism. Also many algorithms, which were traditionally

considered to be a forte of fast serial execution, have been parallelized successfully using

new parallel approaches. But the coding effort required for such cases might be significant

considering the speedup achieved. As shown in Figure 1, in a survey performed by Vuduc et

al [4], it is observed that for parallel sorting algorithms CUDA provides a significant benefit

but at a price of increased coding effort.

 2

Figure 1: Performance vs. Effort [4]

Optimizing an application for maximum performance using CUDA is a non-trivial task.

There are multiple factors that have an implication on the performance and multiple

optimization strategies that affect these factors. Additionally these optimization strategies

rarely affect the performance in an isolated manner. For example, a loop unrolling

optimization implemented in an algorithm might help extract more ILP within a thread but

the possible resultant increase in register usage might reduce the number of active threads

solving the problem, thus possibly, hurting the performance. Because of such interactions

between the optimization strategies, tuning for maximum performance is a difficult problem.

Such problems have been discussed in length in works like [5].

 Another hindrance to simplifying optimization process in CUDA is the lack of

standard performance metrics to aid programmers in tuning. One of the few metrics

 3

available to programmer is Occupancy [6], which is defined as the ratio of the number of

active warps resident per SM to the maximum possible number of active warps on an SM.

However Occupancy is not a direct indicator of performance as illustrated in Figure 2 below.

Figure 2: Occupancy and Performance [7]

 Figure 2 depicts three versions of SVM algorithm; Naïve, Constant and Constant plus

Optimized which have increasing levels of optimization giving higher performance. Doing a

variation in the number of threads per block, it can be seen that though the occupancy varies

a lot for the optimized cases, the performance remains fairly constant.

1.2 The Solution

A tool that can analyze the performance of CUDA kernels would be useful to the

developers. Also there is a need for performance metrics that provide the programmers with

an intuitive understanding of the bottlenecks of current implementation and hints towards

improving the kernel performance. This would make it easier to create optimized CUDA

kernels and bring down the effort of development for the same. A good solution to achieve

all this is to create an Analytical model of the GPU which can predict performance of a

CUDA kernel based on certain performance metrics. The GPU Analytical model proposed

by Hong and Kim [7] is a step in this direction. In this study we enhance Hong’s model

further to make it more robust, reliable and flexible.

 4

1.3 Contributions

This study aims to build upon Hong’s GPU Analytical model to create a better GPU

Analytical Model and tool, that we call the CUDA Performance Analyzer. CUDA

Performance Analyzer has increased robustness since it brings in support for NVIDIA

CUDA GT200 architecture and .introduces some new metrics pertaining to phenomenon

like Memory Transaction Merging. It is more flexible since the GPU Analytical Model can

now also work using the CUDA Visual Profiler in addition to GPUOcelot. We also put the

CUDA Performance Analyzer through its paces with the help of a suite of 44 different

kernel optimizations for a Fast Multipole Method (FMM) algorithm which helps improve

the reliability of the tool.

1.4 Thesis Organization

We will briefly discuss the outline of the thesis. Chapter 2 deals with background

information and gives an overview of CUDA, Hong’s GPU Analytical Model and few

existing tools. Chapter 3 goes into details of CUDA Performance Analyzer. Chapter 4

discusses the Fast Multipole Method Suite of CUDA based kernels and how it relates to the

CUDA Performance Analyzer. Chapter 5 specifies the results and provides analysis of the

same. We conclude with Chapter 6 which lays down prospects for future potential of the

CUDA Performance Analyzer.

 5

CHAPTER 2

BACKGROUND

 The CUDA Performance Analyzer proposed in this study has its roots in the CUDA

Analytical Model by Hong et al. In this chapter we describe the base GPU analytical model.

We cover some important basics of the CUDA programming model and GT200 GPU

architecture [8]. We also discuss some existing tools that help in CUDA performance

analysis.

2.1 CUDA Programming Model

 The CUDA programming model is based on three key abstractions; a hierarchy of

thread groups, shared memories and barrier synchronization.

 The thread hierarchy in CUDA consists of threads, blocks and grids. A number of

threads come together to form a block of threads. Multiple blocks come together to form a

grid. A grid can be defined as a group of thread blocks that executes a kernel function. The

threads within a thread block get executed concurrently on a Streaming Multiprocessor (SM).

On the other hand, blocks within a grid get allocated to different SMs within a GPU for

another level of parallel execution. Figure 3 shows the thread hierarchy in CUDA

programming model.

 There is a well-defined memory hierarchy in CUDA. Each thread has a private on-

chip register space and off-chip local memory. Threads within a thread block can share data

using an on-chip shared memory. Thread blocks within a grid can share data through a

global memory space called device memory which lies off-chip. This off-chip device memory

can also be used as a read-only texture memory or constant memory, both of which have an

on-chip cache to help reduce the latency of access. Figure 4 gives a clear picture of the

memory hierarchy in the CUDA programming model.

 6

 Figure 3: CUDA Thread Hierarchy

Barrier synchronization constructs exist for synchronizing threads within a thread block

using the shared memory. There are no CUDA constructs for global level synchronization

and this is mostly achieved by spawning a new kernel.

2.2 Base GPU Analytical Model

The CUDA Performance Analyzer has its roots in Hong’s GPU Analytical Model [7]. In this

section we briefly describe this base model.

2.2.1 Memory Warp Parallelism (MWP)

MWP represents the maximum number of warps per SM that can access the memory

simultaneously during the time period from right after the SM processor executes a memory

instruction from one warp until all the memory requests from the same warp are serviced.

 7

Figure 4: CUDA Memory Hierarchy

 8

MWP is an indicator of Memory level parallelism that can be exploited. MWP is dependent

upon the memory bandwidth, certain parameters of memory operations like latency, and the

number of active warps in an SM.

 2.2.2 Computation Warp Parallelism (CWP)

CWP is defined as the number of warps that the SM can execute while waiting for a memory

request to get serviced; plus one. CWP is a measure of computation per memory access. It

also helps to know whether a particular kernel is compute bound or memory bound. If CWP

is greater than MWP then the kernel is mostly memory bandwidth limited. On the other

hand, MWP being greater than CWP implies that the kernel is compute bound.

Optimization strategies for both of these cases would vary greatly.

Figure 5 shows the concepts of MWP and CWP. The numbered elements are active warps

on a SM; the blue part being a computation operation and the green part being a memory

request.

Figure 5: MWP and CWP

 9

2.2.3 Predicting CUDA Kernel Performance

Apart from MWP and CWP, the analytical model defines many other terminologies.

Mem_LD is the minimum number of latency cycles for a memory transaction. Uncoalesced

memory requests spawn #Uncoal_per_mw number of memory transactions.

Departure_delay_uncoal is defined as the minimum time interval between two consecutive

memory transactions of an uncoalesced memory request. Similarly Departure_delay_coal is the

time interval between the two transactions of a coalesced memory request. The term

departure_delay gives the overall weighed time interval between two memory warps. Mem_L is

the overall round trip latency to the DRAM for a memory warp request and is a function of

the number of coalesced and uncoalesced memory requests (given by #Coal_Mem_insts and

#Uncoal_Mem_insts respectively) performed by a warp. Additionally Mem_cycles is the number

of memory cycles per warp while Comp_cycles is the total number of Compute cycles. Based

on these parameters and some others, a prediction can be made about the performance of

the CUDA kernel. A summary of the how to calculate various parameters and derive the

prediction is given below:

Mem_L_Uncoal = Mem_LD + (#Uncoal_per_mw-1) * Departure_del_uncoal (1)

Mem_L_Coal = Mem_LD (2)

Mem_L = Mem_L_Uncoal * Weight_uncoal + Mem_L_Coal * Weight_coal (3)

Weight_uncoal = #Uncoal_Mem_insts /(#Uncoal_Mem_insts + #Coal_Mem_insts) (4)

Weight_coal = #Coal_Mem_insts /(#Uncoal_Mem_insts + #Coal_Mem_insts) (5)

Departure_delay = (Departure_del_uncoal * #Uncoal_per_mw) * Weight_uncoal

 + Departure_del_coal * Weight_coal (6)

MWP_Without_BW_full = Mem_L / Departure_delay (7)

MWP_Without_BW = MIN(MWP_Without_BW_full, #Active_warps_per_SM) (8)

Mem_cycles = Mem_L_Uncoal * #Uncoal_Mem_insts + Mem_L_Coal * #Coal_Mem_insts (9)

Comp_cycles = #Issue_cycles * #total_insts (10)

N = #Active_warps_per_SM (11)

 10

#Rep = #Blocks / (#Active_blocks_per_SM * #Active_SMs) (12)

If (MWP is N warps per SM) and (CWP is N warps per SM)

Exec_cycles_app = (Mem_cycles + Comp_cycles + (Comp_cycles/#Mem_insts)

* (MWP – 1)) * #Rep (13)

If (CWP >= MWP) or (Comp_cycles > Mem_cycles)

 Exec_cycles_app = (Mem_cycles * N / MWP

 + (Comp_cycles/#Mem_insts) * (MWP – 1)) * #Rep (14)

If (MWP > CWP)

Exec_cycles_app = (Mem_L + Comp_cycles * N) * #Rep (15)

2.3 NVIDIA GT200 Architecture

In this section we discuss some important aspects of NVIDIA GT200 architecture [8] which

have changed over the G80 architecture.

2.3.1 GT200 Memory Coalescing Model

The G80 architecture GPUs have a very strict coalescing model in which a non-coalesced

request would always spawn 32 memory transactions. Also for a memory request to be

coalesced, threads of a warp would have to access consecutive memory locations; and would

then result into two memory transactions. In GT200, the coalescing model has been

revamped; the restrictions on coalescing have been loosened but the protocol has become

more complicated. The concepts of coalesced/non-coalesced accesses have been diluted to

give more importance to variable memory transactions of 32 bytes, 64 bytes and 128 bytes.

A memory request spawns a variable number of different sizes of memory transactions

depending on the size of data being fetched per thread, the alignment of the memory being

fetched and ability to reduce a transaction to minimum size possible. This results in a much

 11

lesser number of memory transactions on average over the G80 architecture and thus

improves utilization of bandwidth. The exact protocol can be referred to in CUDA

programming guide [6].

2.3.2 Shared Memory Model

The degree of banking in shared memory has doubled over the previous architecture and

now stands at 32 banks with 4 bytes being interleaved in each of the banks. This results in

reduced number of shared memory conflicts for certain cases. There are other enhancements

like support for broadcast of data to multiple threads within a warp if they are accessing the

same location in the same bank. This would have resulted in access serialization in G80

architecture.

2.3.3 Other enhancements

In GT200 architecture each SM has some Special Function Units (SFUs) which operate on

transcendental functions like sine, log etc and can also perform floating point operations. So

there can be simultaneous execution of instructions between the stream processors (SPs) and

the SFUs resulting in higher instruction throughput. There is also a double precision floating

point unit. The memory controllers are smarter and can perform memory transaction

merging which is discussed later on. Apart from these there are a lot of improvements. We

have just briefly discussed the ones which are important from the point of view of analytical

modeling.

2.4 CUDA Performance Analysis Tools

In this section we discuss a few important tools that help in analysis of CUDA performance.

We made use of all these tools in this study.

 12

2.4.1 CUDA Visual Profiler

NVIDIA CUDA GPUs have built in hardware counters and many predefined performance

events which can use these. The CUDA Visual Profiler [9] tool uses these performance

counters and events to collect a lot of useful statistics of a running CUDA kernel. CUDA

Visual Profiler gives a lot of important information like the number of instructions, memory

requests and transactions, occupancy, number of branches etc which can help in

performance analysis. It has both a command line as well as a GUI interface. It can

additionally analyze the previously mentioned data into performance metrics such as global

memory throughput, instruction throughput, ipc etc. It is a NVIDIA tool and comes packed

with the CUDA toolkit [10].

 2.4.2 GPUOcelot

GPUOcelot [11] is a dynamic compilation framework for heterogeneous systems. It realizes

numerous backend targets for CUDA programs. So a program written in CUDA can be

executed without recompilation on x86 CPUs using PTX emulation or LLVM translation as

well as run natively on AMD and NVIDIA GPUs. PTX is a virtual Instruction Set

Architecture for NVIDIA CUDA Architecture. PTX provides a stable programming model

and instruction set for general purpose parallel programming [12].

Using Ocelot one can also instrument the CUDA kernel PTX code while performing

emulation by writing instruction analyzers using the API provided with Ocelot. These

instruction analyzers can be used to collect a lot of statistics and metrics relevant to the

kernel performance. In this study we have used GPUOcelot to create an instruction analyzer

which collects performance relevant data from the CUDA kernel, to be used by the

Analytical model for further analysis. The scope of GPUOcelot is much bigger than what we

have used in this study and more details about it can be referenced in [11].

 13

2.4.3 Decuda

The PTX assembly code is not a true representation of the binary code that lies in the

NVIDIA CUDA Binary (.cubin) file. There is some optimization that takes place between

the PTX and the .cubin file. DECUDA is a disassembler for the NVIDIA CUDA binary

format. It provides insight into the internal instructions generated and can better explain the

performance aspects from these instructions. DECUDA is a third party tool and can be

obtained from [13].

2.4.4 Cuobjdump

Cuobjdump is a tool for manipulating CUDA object files. Supported inputs are pre-CUDA

3.0 text-based cubins or a CUDA 3.0 ELF-based cubins. Cuobjdump can display the

assembly instructions for a particular kernel, making it useful for optimization and

debugging. Cuobjdump is an NVIDIA provided tool available to CUDA registered

developers [14]. The difference between DECUDA and Cuobjdump is that the latter gives

the actual instructions from the GT200 Instruction set instead of the PTX abstraction.

 14

CHAPTER 3

CUDA PERFORMANCE ANALYZER

 The CUDA Performance Analyzer can be used to predict the performance of a

CUDA kernel. It also gives insight into the bottlenecks of the particular kernel

implementation. It helps the programmer to understand the parameters to which the

particular kernel is sensitive in terms of performance and provides hints towards how to

improve the performance. The CUDA performance analyzer consists of two main parts:

Frontend Data Collector and GPU Analytical Model Based Predictor. Figure 6 shows the

block diagram of the CUDA Performance Analyzer.

Figure 6: CUDA Performance Analyzer Block Diagram

3.1 Frontend Data Collector

The Frontend Data Collector (FDC) works to gather a number of statistics pertinent to the

particular kernel under analysis. How this information is used would be discussed later in the

chapter. The most important ones amongst these are:

a. Number of threads/block

b. Number of blocks/grid

 15

c. Register Usage for the kernel

d. Shared Memory used per Block

e. Occupancy

f. Total number of Instructions

g. Total number of Global Memory Requests

h. Number of 32 Byte memory transactions

i. Number of 64 Byte memory transactions

j. Number of 128 Byte memory transactions

k. Total number of shared memory requests

l. Number of shared memory requests that have bank conflicts

m. Avg. Latency for conflicted shred memory requests

n. Number of synchronization instructions

o. Number of high latency compute instructions

For the CUDA Performance Analyzer, from the above list, the items from a. to j. can be

called as compulsory parameters for making a performance prediction for the kernel. The

factors k. to o. are not compulsory but help to increase the accuracy of the prediction. There

are two tools that can fit into the role of the Frontend Data Collector. These are:

3.1.1 CUDA Visual Profiler

As discussed earlier, the CUDA Visual Profiler can reliably provide a lot of useful

information about the CUDA kernel. From the parameter list given above, parameters a. to

j. can be obtained using the profiler which are sufficient for the analytical model to make a

performance prediction. Also since the profiler has a command line interface it can be easily

used to profiler multiple kernels through simple scripting methods. It is convenient since it

gets installed as part of the CUDA toolkit. The downside is that it gives no information on

parameters k. to o., which could have been used to predict performance more accurately.

Another point to note is that the data we need for the Analytical Model is in terms of per

warp per SM, while the one provided by CUDA Visual Profiler is the total count over all

 16

warps per SM or per Texture Processing Cluster (TPC); depending on the parameter under

consideration. Table 1 gives an overview of the parameters provided by the CUDA Visual

Profiler and the conversion to be applied to the same for use with the Analytical Model.

Table 1: CUDA Visual Profiler - Relevant Performance Counters

Performance Counter Description Conversion to be used in

Analytical Model

instructions Number of dynamic

instructions executed on an

SM

Instructions/(total warps

per SM)

gld_request Number of global memory

load requests per SM

gld_request/(total warps

per SM)

gst_request Number of global memory

store requests per SM

gst_request/(total warps

per SM)

gld_32/64/128 byte Number of 32/64/128 byte

global memory load

transactions per TPC

(gld_32/64/128 byte)

/(total warps per TPC)

gst_32/64/128 byte Number of 32/64/128 byte

global memory store

transactions per TPC

(gst_32/64/128 byte)

/(total warps per TPC)

Apart from these performance counters the CUDA Visual profiler also provides useful

information like number of registers per thread, static shared memory, dynamic shared

memory, occupancy etc.

 17

3.1.2 GPUOcelot

GPUOcelot provides API to create instruction analyzers which can be used to instrument an

emulating PTX kernel. The Instruction Analyzer used by Hong was based on the NVIDIA

G80 architecture of GPUs. As discussed in section 2.3, GT200 architecture brings in many

changes over the G80 architecture. Based on these architectural changes as well as some

deficiencies in the previous instruction analyzer, the instruction analyzer was enhanced as a

part of this study. The major changes made to the instruction analyzer were as follows:

3.1.2.1 New Coalescing Model

The previous model used to measure the number of coalesced and uncoalesced memory

requests in the kernel. Also the number of memory transactions was fixed; two for coalesced

and thirty two for uncoalesced requests. The new model implements the coalescing model of

the GT200 architecture which calculates the number of dynamic memory transactions,

depending on size of data fetched, memory alignment and potential for transaction size

reduction.

3.1.2.2 New Shared Memory model

The new instruction analyzer calculates the number of shared memory bank conflicts for the

kernel. It also calculates the average shared memory access latency for the conflicted shared

memory operations. Factors like data broadcast are also considered while calculating this.

3.1.2.3 Improved reliability

The instruction analyzer considers control divergence while taking count of number of

instructions, and different operations. It uses a warp level bit-mask to figure out control

divergence and takes into account instruction serialization due to the same.

Thus using GPUOcelot we are able to gather all the information that is required to be

fetched by the Frontend Data Collector. Even those parameters that cannot be tracked by

 18

the CUDA Visual profiler like the shared memory related statistics, high latency compute

instructions etc. can be obtained using this.

However there is a slight disadvantage in using this approach. GPUOcelot makes use of the

PTX kernel for emulation while running the instruction analyzer. In CUDA computing,

PTX gets optimized before it actually runs on the GPU, so we are essentially making a

prediction about the kernel from an un-optimized version of the code. We will discuss this

in greater detail in section 4.2.5.2. However practically this has not been a significant

deterrent and the predictions are fairly accurate.

Next we take a look at the other piece of the puzzle, which is the GPU Analytical Model

based predictor.

3.2 GPU Analytical Model Based Predictor

We have already discussed Hong’s GPU analytical model in section 2.2. The original model

was more suited towards the G80 architecture. In this study, the GPU analytical model has

been enhanced to make use of memory transactions instead of coalesced and non-coalesced

memory requests. The original model was able to use only Ocelot as the Frontend Data

Collector since CUDA Visual Profiler does not give number of coalesced and non-coalesced

memory instructions. But with a switch to memory transaction based model, both Ocelot as

well as CUDA Visual Profiler can act as the front-end as explained earlier. The following is a

list of enhancements to the GPU analytical model as an outcome of this study:

• Ability to use model with the output of CUDA Visual Profiler

• Memory transactions based memory modeling

• Merging of memory requests is considered and accounted for

• Independent memory requests are accounted for while determining performance

• Shared Memory Banked conflicts are considered

• High latency compute instructions are considered

 19

As shown in the block diagram in figure 6, the GPU Analytical model based predictor takes

an input from the Frontend Data Collector. This consists of various parameters listed in

section 3.1. Now based on these parameters, the model calculates performance related

metrics like MWP, CWP etc. and based on these, makes a prediction about the performance

of the kernel. Let us now examine this process in greater detail.

3.2.1 Calculating MWP

 Overall MWP is determined by three factors:

3.2.1.1 MWP with available bandwidth consideration

Since practically the SM consumes a part of the total bandwidth of the system, the total

number of warps being able to access the memory simultaneously might depend on the

bandwidth usage per warp per SM. This bandwidth usage is governed by average number of

transaction and transaction sizes per warp per memory request. Since we have both the

number of memory requests and the number of memory transactions of different sizes

available to us, it is possible to determine MWP with peak bandwidth.

Data_per_request = ((warp_memtran_32b*32) + (warp_memtran_64b*64) +

(warp_memtran_128b*128))/warp_mem (16)

Where;

Data_per_request is Avg. size of data fetched per memory request

warp_memtran_32b/64b/128b is the number of memory transactions of size 32 bytes/64

bytes/128 bytes respectively, per warp for the entire kernel

warp_mem is the total number of memory requests per warp for the kernel

bandwidth_requirements_per_warp = (Data_per_request * Freq)/Mem_Latency (17)

Where;

bandwidth_requirements_per_warp is the amount of bandwidth required per warp

 20

Mem_latency is the avg. memory latency to service a memory request

warps_per_sm_to_reach_peak_bw = Total_Mem_bandwidth / (bandwidth_requirements_per_warp

*#Active SMs) (18)

The term warps_per_sm_to_reach_peak_bw is the MWP_peak_bandwidth.

3.2.1.2 MWP without bandwidth consideration

For calculating MWP_without_BW, we consider the number of transactions per memory

request as obtained through:

num_trans_per_request = (warp_memtran_32b + warp_memtran_64b + warp_memtran_128b) /

(warp_mem) (19)

where;

num_trans_per_request is avg. number of memory transactions per memory request

32 Byte, 64 Byte and 128 Byte memory transactions have different departure delays but same

base memory latency. So depending on the number of 32 Byte, 64 Byte and 128 Byte

transactions per request and their respective departure delays, we can calculate the effective

departure delay as follows:

weight_32b = warp_memtran_32b/ (warp_memtran_32b + warp_memtran_64b +

warp_memtran_128b) (20)

weight_64b = warp_memtran_64b/ (warp_memtran_32b + warp_memtran_64b +

warp_memtran_128b) (21)

weight_128b = warp_memtran_128b/ (warp_memtran_32b + warp_memtran_64b +

warp_memtran_128b) (22)

avg_dep_delay_per_tran = (dep_delay_32b * weight_32b) + (dep_delay_64b * weight_64b) +

(dep_delay_128b * weight_128b) (23)

where;

avg_dep_delay_per_tran is the avg. departure delay per memory transaction

 21

dep_delay_32b/64b/128b is departure delay for 32 bytes/64 bytes/128 bytes transactions

respectively (obtained through tuning from micro-benchmark; refer to section 3.2.6)

The final memory latency is calculated as follows:

mem_latency_final = base_mem_latency + (num_trans_per_request-1) * avg_dep_delay_per_tran (24)

where;

base_mem_latency is obtained through tuning process as documented in section 3.2.6

Also the final value of departure delay is calculated as:

dep_delay_per_request = $num_trans_per_request * avg_dep_delay_per_tran (25)

Now with the effective memory latency (mem_latency_final) and effective departure delay per

memory request (dep_delay_per_request) calculated, the MWP without bandwidth full can be

calculated as:

MWP_without_BW_full = (mem_latency_final / dep_delay_per_request) (26)

3.2.1.3 Active warps per SM

The third factor influencing MWP is the number of active warps per SM. In the new GPU

Analytical Model we consider two new parameters, which play along with number of Active

warps per SM to give Active_warps_for_MWP.

Active_warps_for_MWP = Active_warps_per_SM * (Independent Loads) / (Duplicate Loads) (27)

Independent loads is the average number of independent memory loads per thread.

If a kernel has independent loads then a single warp can issue multiple loads thus effectively

increasing the MWP over the active number of warps. This is illustrated in figure 7.

 22

Figure 7: MWP increase due to Independent Loads

Duplicate loads is the average number of load requests that fetch the same data and are being

handled by the memory subsystem within the same timeframe. For e.g. in the following code

snippet, the load would be accessing the same data for all warps within the thread block.

--

int Index = blockIdx.x + (threadIdx.x % 32);

float data = FloatArray[Index];

--

Thus if there are duplicate loads, it will lead to memory merging effect. Memory Merging Effect

means that when there are memory loads being serviced by the memory subsystem, that are

fetching the same data, then data for one load will piggyback automatically when data for

previous duplicate load is fetched. Thus the latter load should not be accounted for as a part

of MWP, and MWP from point of view of active warps reduces. This scenario is depicted in

figure 8.

 23

Figure 8: MWP decrease due to Duplicate Loads

Please note that the actual Active number of warps does not change due to these two

parameters. They just contribute towards change in MWP.

Now from the above three factors, MWP can be obtained as:

MWP_final = min(MWP with bandwidth, MWP without Bandwidth, Active_warps_for_MWP) (28)

3.2.2 Calculating CWP

CWP calculation remains the same and is given by:

CWP_full = (Compute_cycles + Memory_cycles) / (Compute_cycles) (29)

CWP = min(CWP_full, Active warps per SM) (30)

3.2.3 Calculating Memory and Compute cycles

Once MWP and CWP have been calculated, the other important parameters we need for

computing performance are compute cycles and memory cycles. All the dynamic instruction

in the kernel thread are assumed to take four cycles; except for high latency instructions like

sqrt, rsqrt, floating point division etc. and shared memory operations which have bank

 24

conflicts. Our Front-end data collector keeps a count of all these special latency instructions

and factors them into the calculation of total compute cycles.

On the other hand, the memory cycles are calculated as the product of the final memory

latency per memory request and the total number of memory requests in the kernel thread.

Then depending on the relationship between MWP and CWP, the number of predicted

execution cycles for the kernel is calculated.

3.2.4 Implications of Memory Transaction Merging

Consideration of memory merging effect is also a new addition to the analytical model.

There has not been any extensive study in academia in documenting the memory merging

effect; so we show it through an actual example in this study.

3.2.4.1 Observing merging effect in GT200 architecture – Tesla C1060 GPU:

Merging of memory requests at the memory controller might take place for in-flight requests

that target the same memory locations. In such cases data requested by one warp might be

fetched while the memory request for another warp is being catered, if the relevant data lies

within the same memory transaction segment. In order to verify if such merging takes place,

we designed a micro-benchmark, which would clearly demonstrate such a phenomenon. For

the same number of memory requests (i.e. same amount of work done), if one case has

memory addressed in a manner such that merging should take place; while the other case is

designed to avoid merging; it is expected that the former case should show faster execution

time due to lesser dynamic number of memory transactions. Our micro-benchmark is

designed to create memory-addressing patterns that should translate to two cases; one

without any merging and the other one with potential memory transaction merging. We

would then compare the execution time of the benchmark to observe if any merging is

taking place or not.

 25

3.2.4.2 The Micro-benchmark :

The host code allocates a chunk of linearly addressed single dimensional float array on the

device memory and preloads the elements in the array with a constant value. The kernel

consists of a computation loop that performs some fused multiply-add operations and some

global memory reads. The memory-addressing pattern for these global-memory reads can be

manipulated using different indexing schemes. The parameters to the kernel are the number

of iterations of the loop, the number of threads per block and a pointer to the float array

which consists of constant value which can change depending on the scenario. The index is

incremented by the value read from the global memory before the next global memory read.

To ensure no merging in the first case, we need to take care that each warp of each block on

all SMs access different memory locations throughout different iterations of the loop in the

micro-benchmark. Table 2 shows the indexing scheme while Figure 9 shows the memory

access pattern by the warps so as to avoid merging. It can be seen in Figure 9 that warp 0

and warp 1 of block 0 do not overlap in their memory access for the entirety of 100

iterations of their loop. The memory access regions of subsequent warps and blocks follow

those shown in the figure to create a linear and consecutive memory access space for all the

warps on all the blocks, thus avoiding any memory merging effect. On the other hand in

Figure 10, it can be clearly seen that warp 0 and warp 1 are accessing similar memory

locations in different iterations which can lead to memory transaction merging by the

memory controller.

To take care that performance differences between merging and non-merging cases are

accounted by only the memory request merging phenomenon, we found it better to have our

micro-benchmarks designed such that the memory access is regular and would spawn only a

single type of memory transaction. The micro-benchmark code is in Appendix A.

Table 2 shows the results.

 26

Table 2: Memory Transaction Merging on 32 Byte Transactions

 No-merging With merging

index (blockIdx.x*(((int)blocksize/(int)
WARPSIZE)*(CONFIG * ITERS
* WARPSIZE))) + (((int)
threadIdx.x /
(int)WARPSIZE)*(CONFIG
*ITERS * WARPSIZE)) +
((((int)(threadIdx.x %
WARPSIZE)/(int)16)*8) +
((threadIdx.x % WARPSIZE)) %
8)

(blockIdx.x * blocksize) +
(((int)threadIdx.x/(int)16)*8)
+ (threadIdx.x % 8);

Threads/
block

256 256

Blocks 120 120
Iterations 100 100
Memory
requests/
warp

400 400

32B memory
transactions/
warp

800 800

Execution
Time(us)

703.2 630

Figure 9: Memory Access Pattern for 32B transaction non-merging

 27

Figure 10: Memory Access Pattern for 32B transaction with merging

It can be seen from the table 2 that due to the sharing of memory requests, the execution

time reduces by 10.38% for the same number and type of memory transactions.

Table 3 shows the results when the access pattern is such that 64 byte memory transactions

are spawned with the first case showing no merging and the second case having merging of

memory transactions. The memory access patterns for the non-merging and merging cases

are shown in figures 11 and 12 respectively.

Table 3: Memory Transaction Merging on 64 Byte Transactions

 No-merging With merging

index (blockIdx.x*(((int)blocksize/(int)WARPSI
ZE)*(CONFIG* ITERS * WARPSIZE)))
+ (((int) threadIdx.x / (int) WARPSIZE)
* (CONFIG *ITERS * WARPSIZE)) +
(threadIdx.x % WARPSIZE)

blockIdx.x * blocksize +
threadIdx.x

Threads/
block

256 256

Blocks 120 120
Iterations 100 100
Memory
requests/
warp

400 400

64B memory
transactions/
warp

800 800

Execution
Time(us)

730 627

 28

Figure 11: Memory Access Pattern for 64B transaction non-merging

Figure 12: Memory Access Pattern for 64B transaction with merging

From Table 3, again due to sharing of memory transactions, the execution time reduces by

14.10%.

 29

3.2.4.3 How is merging effect accounted for in Analytical Model?

There are two ways in which we account for memory merging effect in our model.

As seen previously, the Active_warps_for_MWP has a factor of duplicate_Loads. This

duplicate_loads accounts for the memory merging effect since duplicate loads target the same

memory locations are likely to be merged by the memory controller. This in turn affects the

MWP.

We also reduce the number of memory transactions by a factor of ‘duplicate_loads’ to account

for merging of memory requests. This makes sense since duplicate memory transactions

would just piggyback on transactions fetching the same data and consequently should not be

considered.

3.2.5 Implications of Vector Memory Operations

GT200 architecture supports some vector memory operations. Examples from the PTX ISA

about these operations are ld.global.v4.f32, ld.global.v2.s32 etc. It needs to be investigated if

vector memory operations have different memory transaction latencies and other

peculiarities as compared to the scalar memory operations. In order to put light on this issue

we tweak our micro-benchmark code such that we get same number of memory requests

and memory transactions for scalar as well as vector operations cases and then compare their

performance. A significant digression in their performance would suggest towards different

effective latencies for these two types of operations. Micro-benchmark codes for the scalar

memory operations and vector memory operations case can be seen in Appendix A. It has

been ensured that:

• Number of total instructions is nearly equal so that any divergence in performance

can be attributed to memory characteristics.

• Number of memory requests is the same

• Number of memory transactions is the same so that any divergence in performance

can be attributed to difference in memory latencies in scalar and vector case.

 30

• There is no merging of memory transactions by having each warp of each block on

all SMs access non-overlapping memory locations

Table 4 shows various parameters and result as obtained from the CUDA Visual Profiler for

running the above benchmarks for 256 threads, 120 blocks and 100 iterations of the loop.

From Table 4, it is clear that despite the performance sensitive parameters being the same,

there is a 27.62% rise in execution time due to the vector memory operations. This points to

conclude that the global memory latency for vector operations is greater than that for the

scalar operations.

Table 4: Comparing Vector and Scalar Memory Operations

 Vector memory Ops Scalar memory Ops
Threads/block 256 256
Blocks 120 120
Occupancy 1 1
Instructions/warp 7934 7942
Mem.requests/warp 400 400
Mem Transactions /warp
(all 32 B transactions)

800 800

Execution Time(us) 1058.8 829.6

3.2.5.1 Effect of Memory Transaction merging on Vector Memory Operations

Since the vector load operations show a significant performance deviation from the scalar

ones, we decided to test if they exhibit a memory merging effect like the scalar memory

operations do. We change the indexing scheme in the micro-benchmarks to allow for

overlapping in different warps within the same block. Different blocks though, still access

non-overlapping memory regions. Thus this is a case of intra-block merging if it does exist.

Table 5 documents the indexing scheme used in the micro-benchmark as well as the results

of the test. Figures 13 and 14 show the memory access patterns.

 31

Table 5: No Merging Effect in Vector Memory Operations

 Vector Mem. Ops – No merge Vector Mem. Ops –
With merge

Indexing ((blockIdx.x)*((int)blocksize/(int)
WARPSIZE) *
ITERS*CONFIG*2) +
(((int)threadIdx.x/(int)WARPSIZE
)
*ITERS*CONFIG*2)

((blockIdx.x)*((int)bloc
ksize/
(int)WARPSIZE)
*ITERS*CONFIG*2)

Threads/ block 256 256
Blocks 120 120
Num_Iterations 100 100
Occupancy 1 1
Instructions/warp 7934 7929
Mem.requests/warp 400 400
Mem Transactions
/warp (32 Bytes in
this case)

800 800

Execution Time(us) 1058.8 1047.7

Figure 13: Memory Access Pattern for vector memory operations (v4.f32) with no merging

 32

Figure 14: Memory Access Pattern for vector memory operations (v4.f32) with merging

Thus in case of vector memory operations, because of merging, the execution time reduces

by 1.04%. In comparison, for scalar memory operations a similar comparison yields a benefit

of 10% – 14% as seen in Table 2 and Table 3. Thus merging effect is quite insignificant in

case of vector memory operations and has been not been considered as an influencing factor

in this study.

3.2.6 Tuning of the GPU Analytical Model

There are five parameters to be tuned in the model for achieving accurate results. These five

parameters are:

1. Frequency

2. Base Memory Latency

3. Departure delay for 32 Byte memory transactions with scalar operations

4. Departure delay for 64 Byte memory transactions with scalar operations

5. Departure delay for 128 Byte memory transactions with scalar operations

6. Departure delay for transactions of vector memory operations

 33

For finding out each of these parameters we make variations to the micro-benchmark such

that for each case, only one of the parameters is responsible for determining the

performance of the benchmark. Then we can compare the actual execution time of the

benchmark with the model predicted time and tweak the value of the parameter so that the

actual and predicted execution times converge. The reference GPU used for the tuning is

NVIDIA Tesla C1060. Though our model is consistent across all GPUs across this

architecture, for each GPU this tuning would be required to be done before applying the

model for prediction. Now we will discuss in detail how tuning was done for each individual

parameter. One thing to keep in mind is that tuning should be performed in the order

specified below. This is because subsequent parameters take previously tuned parameters as

input.

3.2.6.1 Frequency

For tuning the frequency, we reduce the number of memory operations in the benchmark to

zero. Reducing the number of memory operations to zero makes the MWP and CWP

independent of the memory related parameters since MWP becomes equal to the number of

active warps and CWP becomes undefined i.e. takes a value of zero. Consequently frequency

becomes the only parameter, which defines the convergence of actual and predicted value.

Tuning the frequency gave us a value of 1312 MHz, which is pretty close to the value 1296

MHz which is the defined shader frequency for Tesla C1060. Table 6 shows the result when

the execution parameters are 512 threads per block, 120 blocks and 100 iterations of the

kernel loop.

Table 6: Tuning the shader frequency

Tuned Value of Freq
Parameter(MHz)

Actual Execution
Time(ms)

Model Predicted
Time(ms)

% Difference

1312 0.846 0.844 0.23

 34

3.2.6.2 Base Memory Latency

Regarding the memory related parameters; it is very difficult to create a scenario, which

isolates the effect of base memory latency from the memory transaction processing time

while predicting performance. It was observed that the performance predicted by the model

was not very sensitive to changes in the base memory latency as compared to the other

memory related model parameters. So it was deemed proper to assume a realistic value for

the base memory latency and have the other memory related parameters tuned around this

assumed value.

NVIDIA specifies the global memory latency for GT200 to be between 400 to 600 cycles.

This memory latency value accounts for the base memory latency and departure delay. So we

made a reasonable assumption of 450 cycles for the base memory latency.

Table 7: Tuning the base memory latency

Value of Base Memory Latency 450 cycles

3.2.6.3 Departure delay for 32 Byte memory transactions with scalar operations

A memory request can manifest into multiple memory transactions. The GT200 architecture

specifies memory transaction sizes of 32 Bytes, 64 Bytes and 128 Bytes. The final memory

latency for a multi-transaction request depends not only on the base memory latency but also

the departure delay, which varies with the size of the memory transaction. In order to tune

our model with respect to processing time for 32 Byte transactions we use a micro-

benchmark in which the memory loads only spawn 32 Byte transactions. Appropriate

indexing by the threads into the global memory space can ensure this. Also we ensure that

no memory transaction merging takes place in the micro-benchmark so that the merging

phenomenon does not affect performance, thus aiding proper tuning. The micro-benchmark

is given in Appendix A. Table 8 shows the tuned value.

 35

 Table 8: Tuning the Departure Delay for 32B Scalar Memory Transactions

Tuned value of
departure delay for
32 byte transaction

Actual Execution
Time(ms)

Model Predicted
Time(ms)

% Difference

37 cycles 0.7243 0.7222 0.28

3.2.6.4 Departure delay for 64 Byte memory transactions with scalar operations

Similar to the previous case, we altered our micro-benchmark for it to spawn 64 byte

transactions only for each memory request. Also it was ensured that there would be no

memory transaction merging. The micro-benchmark is given in Appendix A.

 Table 9: Tuning the Departure Delay for 64B Scalar Memory Transactions

Value of Processing
time for 64 byte
transaction

Actual Execution
Time(ms)

Model Predicted
Time(ms)

% Difference

37 cycles 0.7240 0.7222 0.2486

3.2.6.5 Departure delay for 128 Byte memory transactions with scalar operations

Similar to the previous case, we altered our micro-benchmark for it to spawn 128 byte

transactions only for each memory request. Also it was ensured that there would be no

memory transaction merging. The micro-benchmark is given in Appendix A.

 Table 10: Tuning the Departure Delay for 128B Scalar Memory Transactions

Value of Processing
time for 128 byte
transaction

Actual Execution
Time(ms)

Model Predicted
Time(ms)

% Difference

58 cycles 1.137 1.131 0.52

 36

3.2.6.6 Departure delay for transactions of vector memory operations

Using the GT200 analytical model we tried to find out the latency of vector memory

operations. Since overall latency is a consequence of base memory latency as well as

transaction processing time, we considered both these factors. We found running the model

that the performance was not very sensitive to base memory latency but it was quite

responsive to changes in transaction processing time. Tuning it for equivalence in actual and

predicted performance we got the result as shown in Table 11.

 Table 11: Tuning the Departure Delay for Vector Memory Transactions

 ld.global.f32 (scalar) ld.global.v4.f32 (vector)
Departure delay for 32 Byte
transactions
(cycles)

37

57

 37

CHAPTER 4

FAST MULTIPOLE METHOD

To put our CUDA Performance Analyzer through its paces, we use a suite of CUDA kernels

based on the Fast Multipole Method (FMM) algorithm [15]. The suite has around forty

different variations of FMM CUDA kernel, each with different kinds of optimizations for

improving performance. If our analytical model can track the performance variation and

make correct prediction for different optimizations, we are ensured of a robust prediction

model.

4.1 FMM – The Baseline Algorithm

The Fast Multipole Method (FMM) is a mathematical technique that greatly speeds up the

calculation of long-ranged forces in the n-body problem. A detailed explanation of Fast

Multipole Method can be found in [16]. In this appendix we will briefly describe Fast

Multipole Method mathematically and specify the baseline CUDA algorithm for the same,

which we have used in this study.

Mathematically speaking, Fast Multipole Method is about solving the following problem:

Given a system of N source particles, with positions given by {y1, . . . , yN}, and N targets

with positions {x1, . . . , xN}, we wish to compute the N sums,

 = ,)),

Where; f(x) is the desired potential at target point x; s(y) is the density at source point y; and

K(x,y) is the an interaction kernel that specifies the “physics” of the problem. In our

particular case we model gravitational interactions.

The important components of FMM in our case are target boxes, source boxes and ulist.

Depending on the dataset being processed we have a certain number of target boxes and a

particular number of source boxes. Each target box and source box is a collection of a

 38

certain number of points. Each point is a quad-component single precision floating point

structure representing x, y, z co-ordinates and another component called density potential.

The aim is to calculate interaction between the points inside a target box with nearest

neighbor points in certain source boxes. This mapping between target box and relevant

source boxes is specified by the ulist. Thus each target box is processed by calculating the

interaction between the points inside that box with the points in the source boxes as

indicated by the ulist. Figure 15 shows the diagrammatic representation of FMM.

 Figure 15: Fast Multipole Method representation

The computation for each target box can be performed independently. So from a CUDA

programming model point of view target boxes can be mapped to blocks and the points

within each target box can be mapped to threads within a block. Thus, naturally each target

box i.e. block gets processed independently on the GPU.

 39

The points within the target as well as source boxes are stored in a Structure of Array (SOA)

form i.e. all x-coordinates of points are stored contiguously and same are the case for the

other components. Index arrays are used to partition the points in each individual box.

The following code snippet represents the CUDA kernel code for the baseline FMM

algorithm on the GPU:

--
int NB = blockDim.x;

int tboxid = blockIdx.x;

int di = threadIdx.x; // Local thread ID

int tid_min = TBptr[tboxid]; // Target box start
int tid_max = tid_min + TBn[tboxid]; // Target box end

int kbox_min = Uptr[tboxid];

int kbox_max = Uptr[tboxid+1];

for (int tid = tid_min + di; tid < tid_max; tid += NB) { // Targets

 float tx = Tx[tid];

 float ty = Ty[tid];

 float tz = Tz[tid];

 float td = 0.0;

 for (int kbox = kbox_min; kbox < kbox_max; ++kbox) { // Source
boxes

 int sboxid = Ulist[kbox]; // Source box ID

 int sid_min = SBptr[sboxid];

 int sid_max = sid_min + SBn[sboxid];

 for (int sid = sid_min; sid < sid_max; ++sid) { // Sources

 float dx = tx - Sx[sid];

 float dy = ty - Sy[sid];

 float dz = tz - Sz[sid];

 float ds = Sd[sid];

 float rsq = dx*dx + dy*dy + dz*dz;

 float r = sqrtf (rsq);

 td += ds / r;

 } /* sid */

 } /* kbox */

 Td[tid] = OOFP_R* td;

 }

 40

Tx, Ty, Tz and Tw represent the SOA for points in the target boxes. TBptr and TBn are the

indexing arrays that specifies the index for start of each target box and number of points in

each target box respectively. Similarly Sx, Sy, Sz and Sw represent the SOA for points in the

source boxes. SBptr and SBn are the indexing arrays that specifies the index for start of each

source box and number of points in each source box respectively. The Ulist array contains a

flat list of source boxes for each target box in succession. Uptr is the index array which

provides demarcation for the start of each target box in the Ulist.

The particular dataset used in this study contains 585 target and source boxes. So the

number of blocks is always 585. The number of points within a box varies from 0 to around

230. We run the FMM algorithms with various thread configurations like 64, 128, 192 and

256 threads. We have 47 different versions of the FMM kernel code that differ in the

particular CUDA optimizations employed for improving performance over baseline.

4.2 FMM Optimization Strategies

The major optimizations that we considered for FMM are as follows:

4.2.1 Shared Memory

The baseline FMM algorithm is memory bandwidth limited. All target points within a block

fetch the same source points and so there is a lot of data re-use. Thus shared memory can be

used to overcome the memory bottleneck and achieve greater performance.

Normal code:

for (int kbox = kbox_min; kbox < kbox_max; ++kbox) { // Source boxes

 int sboxid = Ulist[kbox]; // Source box ID

 int sid_min = SBptr[sboxid];

 (cont’d)

 41

 (cont’d)

 int sid_max = sid_min + SBn[sboxid];

 for (int sid = sid_min; sid < sid_max; ++sid) { // Sources

 float dx = tx - Sx[sid];

 float dy = ty - Sy[sid];

 float dz = tz - Sz[sid];

 float ds = Sd[sid];

 float rsq = dx*dx + dy*dy + dz*dz;

 float r = sqrtf (rsq);

 td += ds / r;

 } /* sid */

} /* kbox */

Shared memory code:

for (kbox = kbox_min; kbox < kbox_max; ++kbox) {//Source boxes

 const int sboxid = Ulist[kbox]; /* Source box ID */

 /* Loop over source points */

 const int sid_min = SBptr[sboxid];

 const int sid_max = sid_min + SBn[sboxid];

 int sid; /* Source point ID */

 for (sid = sid_min; (sid+NB) <= sid_max; sid += NB) {

 /* All threads help load 1 source point */

 extern __shared__ float SRCS__[];

 float* SX__ = SRCS__;

 float* SY__ = SX__ + NB;

 float* SZ__ = SY__ + NB;

 float* SD__ = SZ__ + NB;

 __syncthreads ();

 SX__[di] = Sx[sid+di];

 SY__[di] = Sy[sid+di];

 SZ__[di] = Sz[sid+di];

 (cont’d)

 42

 (cont’d)

 SD__[di] = Sd[sid+di];

 __syncthreads ();

 int i;

 for (i = 0; i < NB; ++i) {

 float dx = tx - SX__[i];

 float dy = ty - SY__[i];

 float dz = tz - SZ__[i];

 float sd = SD__[i];

 float r2 = dx*dx + dy*dy + dz*dz;

 float r = sqrtf (r2);

 td += sd / r;

 } /* i */

 } /* sid */

 while (sid < sid_max) {//remaining points

 float sd = Sd[sid];

 float dx = tx - Sx[sid];

 float dy = ty - Sy[sid];

 float dz = tz - Sz[sid];

 float r2 = dx*dx + dy*dy + dz*dz;

 float r = sqrtf (r2);

 td += sd / r;

 ++sid;

 }

 } /* kbox */

4.2.1.1 How is this optimization captured by the model?

Usage of shared memory drastically reduces the number of global memory operations. Since

the baseline code is bandwidth limited, this provides a significant boost to the performance.

Table 12 shows a comparison between the baseline code and shared memory optimization

for 64 threads per block.

 43

 Table 12: Comparison between Baseline and Shared Memory Optimization

 Baseline Kernel Shared Memory Optimized

#Instructions 235880 262520

#Memory operations 47013 8854

MWP 9.722 9.070

CWP 16 4.425

Actual Performance(ms) 66.21315 35.952

Predicted Performance(ms) 66.33431 35.99694

From Table 12, it can be seen that CWP is greater than MWP for baseline, which suggests

that baseline is memory bandwidth limited. However for share memory optimized case,

MWP becomes greater than CWP which suggests that the memory bottleneck was removed

by the optimization. It can also be noted that the number of memory operations has reduced

drastically thus pushing MWP to become greater than CWP. The predicted performance is

also in synergy with actuality which shows that our model can track this optimization quite

accurately.

4.2.2 Unroll and Jam (Ujam)

The points within a target box get mapped to threads within a block. If the number of

threads within a block is less than the number of points in the target box, there is another

iteration of the outermost loop in which target points are fetched. So loop unrolling can be

performed for each thread to process multiple target points to begin with. This also helps in

reducing the pressure on memory bandwidth, since source points are fetched only once for

multiple target points. The following code snippet shows the optimization:

 44

Unroll and Jam(ujam) code:

while ((tid_block + UNROLL_FACTOR*NB) <= tid_next) {

 const int t0id = tid_block + di + 0*NB;

 const real_t t0x = Tx[t0id];

 const real_t t0y = Ty[t0id];

 const real_t t0z = Tz[t0id];

 real_t t0w = 0.0;

 const int t1id = tid_block + di + 1*NB;

 const real_t t1x = Tx[t1id];

 const real_t t1y = Ty[t1id];

 const real_t t1z = Tz[t1id];

 real_t t1w = 0.0;

 /* Loop over source boxes in the U-list of tboxid */

 int kbox;

 for (kbox = kbox_min; kbox < kbox_max; ++kbox) {

 const int sboxid = Ulist[kbox]; /* Source box ID */

 /* Loop over source points */

 const int sid_min = SBptr[sboxid];

 const int sid_max = sid_min + SBn[sboxid];

 int sid; /* Source point ID */

 for (sid = sid_min; sid < sid_max; ++sid) {

 const real_t sx = Sx[sid];

 const real_t sy = Sy[sid];

 const real_t sz = Sz[sid];

 const real_t sw = Sd[sid];

 const real_t d0x = t0x - sx;

 const real_t d1x = t1x - sx;

 const real_t d0y = t0y - sy;

 const real_t d1y = t1y - sy;

 (cont’d)

 45

 (cont’d)

 const real_t d0z = t0z - sz;

 const real_t d1z = t1z - sz;

 const real_t r0sq = d0x*d0x + d0y*d0y + d0z*d0z;

 const real_t r1sq = d1x*d1x + d1y*d1y + d1z*d1z;

 const real_t r0 = sqrtf (r0sq);

 const real_t r1 = sqrtf (r1sq);

 t0w += sw / r0;

 t1w += sw / r1;

 } /* sid */

 } /* kbox */

 if (t0id < tid_max)

 Td[t0id] += OOFP_R * t0w;

 if (t1id < tid_max)

 Td[t1id] += OOFP_R * t1w;

 tid_block += UNROLL_FACTOR*NB;

 } /* tid_0 */

UNROLL_FACTOR determines how many target points would be handled by each thread.

4.2.2.1 How is this optimization captured by the model?

Doing Ujam should ideally result in a decrease in memory operations for our case, since

source data is re-used for multiple target points, which should increase the performance. On

the downside, it can result in an increase in number of instructions and also an increase in

the number of registers per thread thus hurting occupancy.

Table 13 shows the comparison between baseline and ujam optimization for the case of 64

threads per block.

 46

 Table 13: Comparison between Baseline and Ujam optimization

 Baseline Kernel Ujam Optimized

#Instructions 235880 215413

#Memory operations 47013 36426.86

Occupancy 0.5 0.375

MWP 9.722 10.08268

CWP 16 12

Actual Performance(ms) 66.21315 49.972

Predicted Performance(ms) 66.33431 49.356

From Table 13 it can be seen that overall the performance increases and model tracks the

increases performance quite accurately. MWP increase can be accounted for by the reduction

in memory operations. CWP is reducing because of the active number of warps per SM

decreases due to drop in occupancy.

4.2.3 Vector Packing (VecPack)

For the points within the boxes, the four components of the points are stored in SOA form

in baseline. In case of Vector packing, these points are stored in AOS with the four

components of each point stored contiguously. This enables the use of vector memory

operations, which in turn brings down the total number of memory operations as compared

to the baseline. Thus for the vector packing we have a single float4 vector memory load

instead of four independent float scalar memory loads. The following code snippet shows

the optimization:

 47

Normal code:

float sx = Sx[tid];

float sy = Sy[tid];

float sz = Sz[tid];

float sd = Sd[tid];

//Sx, Sy, Sz and Sd are float arrays that store x, y, z and w components of

//all source points respectively

Vector Packing code:

float4 src = S[tid];

//S is a float4 array that stores packed x, y, z and w components for each

point and for all source points over all source boxes.

4.2.3.1 How is this optimization captured by the model?

One significant difference in VecPack optimization is that it uses vector memory operations

as opposed to the scalar ones. Vector memory operations have different departure delays as

compared to the scalar ones as has been described in Section 3.2.5. Also vector memory

operations do not show memory merging effect. Also the overall number of memory

operations is reduced since now we have one vector memory load instead of four scalar

memory loads.

Table 14 shows the comparison between baseline configuration and Vector Packing case for

64 threads per block.

 48

 Table 14: Comparison between Baseline and Vector Packing Optimization

 Baseline Kernel Vecpack Optimized

#Instructions 235880 165275

#Memory operations 47013 11893

Occupancy 0.5 0.5

MWP 9.722 3.969

CWP 16 8.486

Actual Performance(ms) 66.21315 44.318

Predicted Performance(ms) 66.33431 45.608

From the Table 14, it can be seen that VecPack reduces both the total instruction count as

well as memory operations count. Also despite the decrease in the number of memory

operations, CWP is still higher than MWP. This is because vector memory operations do not

participate in memory transaction merging according to findings in Section 3.2.5. Also it can

be seen that our model tracks these optimizations in a very accurate manner.

4.2.4 Fast Reverse Square Root (Rsqrt)

In the computation loop, it can be observed that there is square root operation and a floating

point division operation. In GT200, the latency for the above two operations is 32 cycles

and 36 cycles respectively. In comparison the latency for a “normal” operation like floating

point multiplication is 4 cycles. So instead of using square root and division, we use the

“rsqrt” operation (reciprocal square root) which has a latency of 16 cycles. Thus it reduces

the number of compute instructions and eliminates some very high latency instructions. The

following code snippet shows the optimization:

 49

Normal code:

float rsq = dx*dx + dy*dy + dz*dz;

float r = sqrtf (rsq);

td += ds / r;

Rsqrt code:

float rsq = dx*dx + dy*dy + dz*dz;

td += ds * rsqrt (rsq);

4.2.4.1 How is this optimization captured by the model?

Using Reciprocal Square-root instruction has a direct impact on the total number of

instructions for the kernel. This is what improves the performance. Table 15 shows a

comparison between the baseline kernel and ‘rsqrt’ optimized one.

Table 15: Comparison between Baseline and Rsqrt optimization

 Baseline Kernel Rsqrt Optimized

#Instructions 235880 224177

#Memory operations 47013 47013

MWP 9.722 9.722

CWP 16 16

Actual Performance(ms) 66.21315 64.98121

Predicted Performance(ms) 66.33431 66.33422

 50

From Table 15 it can be observed that the model predicts a performance improvement but

the magnitude of predicted improvement is quite less. This can be attributed to the fact the

square root and reciprocal square root operations are performed by the SFUs which work in

parallel with the SPs. Since our analytical model does not incorporate this parallel behavior

our prediction is a little off in terms of magnitude.

4.2.5 Prefetching

In case of prefetching, a source point is pre-fetched before entering the loop, which iterates

through all the source points in the box. Inside the loop we fetch the next source point while

computation is performed on the previous source point and thus these operations can be

done in parallel i.e. computation helps to cover up the latency of fetch to certain extent. Also

the code is compacted by using make_float4 and make_float3. The following code snippet

shows the optimization:

 Normal code:

 for (int sid = sid_min; sid < sid_max; ++sid) { // Sources

 float dx = tx - Sx[sid];

 float dy = ty - Sy[sid];

 float dz = tz - Sz[sid];

 float ds = Sd[sid];

 float rsq = dx*dx + dy*dy + dz*dz;

 float r = sqrtf (rsq);

 td += ds / r;

 } /* sid */

 (cont’d)

 51

 (cont’d)

 Prefetching code:

 if (sid < sid_max)

 src_next = make_float4 (Sx[sid], Sy[sid], Sz[sid], Sd[sid]);

 while (sid < sid_max) {

 float4 src = src_next;

 ++sid;

 src_next = make_float4 (Sx[sid], Sy[sid], Sz[sid], Sd[sid]);

 float3 dr = make_float3 (tx - src.x, ty - src.y, tz - src.z);

 float rsq = dr.x*dr.x + dr.y*dr.y + dr.z*dr.z;

 float r = sqrtf (rsq);

 td += src.w / r;

 } /* sid */

4.2.5.1 How is this optimization captured by the model?

Prefetching is a difficult optimization for our current analytical model. It manifests in the

form of an increase in total instructions as well as memory operations which are counter-

intuitive for the model for performance improvement. In reality, the advantage of

prefetching comes with the fact that due to this optimization you have a number of compute

instructions which are independent of a memory operation (since the relevant load has been

pre-fetched) and hence can be executed while the memory operation is being serviced. Our

model does not recognize such an opportunity at this time and mostly prefetching

optimizations do not give an accurate prediction in the model.

Table 16 shows the comparison between the baseline case and prefetching optimization.

 52

 Table 16: Comparison between Baseline and prefetching optimization

 Baseline Kernel Prefetching Optimized

#Instructions 235880 331252.1

#Memory operations 47013 47253.99

MWP 9.722 9.722

CWP 16 15.317

Actual Performance(ms) 66.21315 62.896

Predicted Performance(ms) 66.33431 64.672

From Table 16, it can be seen that prefetching leads to an increase in both the total number

of instructions as well as the number of memory operations.

4.2.5.2 Failed attempts at getting prefetching to work:

We had several lines of thought as to why prefetching was being a particularly difficult

optimization to predict performance for:

Decuda: We knew that there is a difference in the PTX file and what gets executed on the

GPU. We thought that perhaps this difference might be a deciding factor in case of

prefetching. So we compared the PTX file for baseline and prefetch with the decuda

dissembled PTX files (decuda_ptx) for the same. We saw that the number of ‘mov’

instructions in baseline was 8 for the original PTX but it was 22 for the baseline decuda_ptx.

On the other hand, for original prefetch PTX the number of ‘mov’ was 27 while it was 28

for decuda_ptx.

This disparity in the increase in ‘mov’ instructions between baseline and prefetch for original

PTX and decuda_ptx led us to suspect that it might be an issue of source PTX being an

unoptimized one. So we tried to use the decuda PTX with Ocelot for emulation. However

we had multiple difficulties in having a decuda_ptx to work with Ocelot:

 53

a) The register usage was not well defined and segregated according to data type.

For e.g. r0 was once used for u32 and then later on for f32 data type. Original

PTX had well defined register usage. We had difficulties in establishing a

correspondence between original PTX and decuda code.

b) The syntax and semantics of some decuda instructions were not true to the ISA

docs and were ambiguous in interpretation. Especially ‘setp’ (used for

predication) and ‘cvt’(convert and move) were quite off from original PTX.

So we quit the attempt of using decuda for creating a custom PTX to be run with Ocelot.

Cuobjdump: We then came to know of cuobjdump as another disassemble for cubin files

and tried to use it for creating a custom PTX. But the ‘assembly’ code given out by

cuobjdump was very different than the PTX ISA. Also there is no documentation on the

instruction format for these ‘assembly’ instructions, so creating a PTX from the assembly

proved to be quite difficult.

We then gave up our attempts of creating a custom PTX and qualitatively reasoned out why

prefetching wasn’t working for our model. Since our other optimizations are accurately

tracked by the model we concluded that unoptimized PTX is not a reason for the model to

falter.

4.2.6 Other Optimizations

Following are some minor optimization used in the FMM suite:

4.2.6.1 Tight

In this optimization, the code uses make_float4 or make_float3 and performs computation

on float4 or float3 vectors instead of having different float variables for each component.

This mostly does not provide any optimization since in the PTX the operations are

performed on individual float components instead of as a vector.

 54

4.2.6.2 Trans

In case of shared memory optimization cases, when data is loaded into a shared memory,

there are two choices of doing so; AOS or SOA. The default mechanism used in the FMM

suite is SOA, but in case of “Trans” optimization AOS is used for shared memory. This does

provide benefit in certain cases and has implication of shared memory banked conflicts as

compared to “non-trans” versions.

4.2.6.3 Combinations

All the previously mentioned optimizations are combined with each other to create

additional optimizations. To give an example, the code version

“cuda_vecpack_shmem_pref_ujam_rsqrt” combines all of the base optimizations into a

single code. In this manner we have 44 different optimized versions of the FMM CUDA

kernel used in this study.

4.2.6.4 Varying number of threads

Having different number of threads per block has major implications on occupancy and

resource usage, and ultimately performance. For e.g. even if optimization X is the best

performer for 64 threads per block, it might perform badly when number of threads is

increased to 256. We have used four different thread combinations of 64, 128, 192 and 256

threads per block in this study. So in totality we have around 170 cases of the FMM kernel in

this suite. The number of blocks is kept constant at 585 since it is related to the dataset size

used.

In the next chapter we look at the results of the study.

 55

CHAPTER 5

RESULTS AND ANALYSIS

We have applied our GPU Analytical model to the entire suite of FMM kernels and show

the results in this section. We also explain how the CUDA Performance Analyzer would be

useful to a CUDA programmer through examples.

5.1 Summary of Results

We test the FMM kernel suite with four different threads/block; 64, 128, 192 and 256. We

compare the performance prediction of our model with actual performance on a Tesla

C1060. We have used CUDA Toolkit 2.3 in this study since it mostly concentrates on the

GT200 GPU Architecture. Figure 16 gives an overall look at how well the model is able to

track the different optimizations.

 Figure 16: Coherency between predicted and actual performance

 56

In order to look at the base optimizations in more detail, one can refer to Figure 17. It

represents a comparison between the predicted and actual performance for the base

optimizations for all four thread combinations. Each block in the graph represents a pair of

threads/block and an optimization. The color of the block gives us the predicted

performance (the color translates to a number through the color bar on the right). And the

number inside the block gives the actual execution time in milliseconds. For ideal tracking,

these two should be the same.

 Figure 17: Predicted Vs. Actual Performance 3D plot

The deviation in predicted and actual performance is mostly seen in rsqrt and prefetch cases

and their combinations, for reasons discussed in Section 4.2.4 and 4.2.5 respectively.

 57

5.2 Data Analysis

We go deeper into the 64 threads per block case and try to stress on the usefulness of the

CUDA Performance Analyzer to a CUDA programmer.

5.2.1 Compute Bound Optimizations

Figure 18 shows base optimization performance on Tesla C1060, in Gflops/sec. Further we

select the base optimization which gives highest performance (shared memory for 64 threads

case) and add optimizations over it for better performance. This can be seen from Figure 19

where ‘^’ refers to the base optimization of shared memory for all the code versions

specified on the x-axis. Similar convention is used for rest of the figures also, wherever

relevant.

 Figure 18: Base Optimizations with 64T

 58

 Figure 19: Another layer of optimizations over Shared Memory with 64T

 Figure 20: MWP & CWP for optimized versions with 64T

Figure 20 shows the MWP and CWP values obtained by applying the analytical model to the

optimized cases in Figure 19. It can be seen that all these optimizations result in MWP

greater than CWP which is a rough indicator of these kernel being compute bound at this

 59

point. To reinforce this notion, Figure 21 shows the performance of these optimized kernels

along with the #instructions metric and shows their correlation.

 Figure 21: Performance & #Instructions Correlation with 64T

Thus for compute bound optimized kernels the performance is tracked fairly well by the

#instructions metric. This is useful information for the programmer if he wishes to do

further optimizations which share such characteristics.

Figure 22 shows optimization combinations for 128 threads/block, which are compute

bound. It shows a good correlation with the number of instructions in the kernel as was also

true for the 64 threads per block case.

5.2.2 Memory Bound Optimizations

Some optimization combinations could result in the resultant kernel being memory bound

still. We have such a set represented in Figure 23. Observe that CWP is greater than MWP

for all these cases.

 60

 Figure 22: Performance & #Instructions correlation with 128T

0

2

4

6

8

10

12

14

16

18

Code Versions

Optimization Set - Memory Bound(64 Threads/Block)

MWP

CWP

 Figure 23: Memory bound optimizations with 64T

 61

We found that a good indicator for performance in optimizations where CWP is greater than

MWP, is the #Memory_Operations. Intuitively this makes sense since varying

#Memory_Operations is changing the stress on the memory bandwidth for a memory

bound kernel, so performance should change accordingly. This is also in sync with the

concept in Figure 21 where the kernels were compute bound and were correlated with the

number of total instructions. Figure 24 shows the correlation between Performances for

memory bound optimized kernels and their respective #Memory_Operations in the kernel.

 Figure 24: Performance & #Memory_Ops Correlation with 64T

Similar analysis was performed on 128 Threads per block case to ensure that the model was

consistent when this factor was changed.

Figure 25 considers optimizations which keep the kernel memory bound with 128

Threads/block. If the performance of these kernels is compared to the number of memory

operations per kernel, a direct relationship between them is established to be present.

 62

 Figure 25: Performance & #Memory_Ops Correlation with 128T

5.2.3 3D Sign Plot

With so many different cases and thread combinations it may become difficult to see

patterns in the data for analysis. Another effective way for representing data is shown in

Figure 26. It’s a 3D Sign plot, where the performance of one version is compared to another

for the case of 64 threads/block. ‘1’ represents an improvement in performance over 10%

for kernel listed on y-axis over kernels on x-axis; a ‘0’ represents performance parity within

plus-minus 10% and ‘-1’ represents degradation in performance over 10%. Another

dimension is present because of the color, which represents performance difference in

predicted data. The numbers in the boxes on the other hand represent performance

difference in actual data. Thus if the magnitude and color is a mismatch we know that the

performance prediction is off for that combination of kernels. So based on Figure 26, boxes

where you have a ‘.0’ with a blue color, it means that actually the performance of the two

cases is equal but the model thinks that one performs worse than the other. Similarly there is

discrepancy in prediction when we have a ‘.0’ with maroon color or ‘1.0’ with a green color.

 63

 Figure 26: 3D Sign Plot for 64 Threads/block

5.2.4 Determining intensity of Memory Merging Effect

The amount of memory transaction merging does not depend on duplicate loads alone. This

is because memory controllers have limited capability of realizing merging of transactions

depending on the queue size in controller and other hardware peculiarities. In case of FMM

kernel the duplicate loads factor was coming in due to the fact that the warps within a thread

block access the same source point data. So a first degree duplicate load factor would be the

number of warps per thread block (for FMM).

But other factors that affect the duplicate load are:

5.2.4.1 Occupancy

If the occupancy is high, we have higher number of active warps per SM, which mostly

would mean a higher number of thread blocks per SM. Since in FMM, duplicate loads take

place amongst warps within a thread block, a higher number of thread blocks per SM means

a lower potential for merging since the memory controller queue would be filled with

memory requests from diverse warps from different blocks which are trying to access

different unique locations. On the other hand, if the occupancy is low, there is a smaller

 64

number of active blocks and the memory controller queue would have more requests from

warps within the same block which it can merge due to duplicate loads.

5.2.4.2 Number of threads per block

If there are a high number of threads per block, then for a fixed occupancy, there will be

lesser active blocks per SM as compared to the case when you have low number of threads

per block. Thus if the occupancy is frozen, having more number of threads per block leads

to higher potential merging of memory requests. Also considering the merging factor

properly is more critical in cases of high number of threads per block since our first degree

duplicate load count is the number of warps per block which would be quite high, and thus

affect performance in a significant way.

Thus there is a relationship between the occupancy, number of threads per block and the

duplicate load factor. In this study we have not defined a formal relationship between them

but consider it in a discrete manner; i.e. for higher occupancy kernels we consider a lower

effective duplicate load factor, while for lower occupancy kernels we consider the effective

duplicate loads to be high. In Figure 27 we show the case of 192 threads per block and show

the variation of occupancy across the different kernels. We also show ideal duplicate loads

and effective duplicate loads, the latter being duplicate loads which account for occupancy.

Observe the inverse relationship between occupancy and effective duplicate loads.

Also in Figure 27, note that towards the end of kernel list ideal as well as effective duplicate

loads are flat at ‘1’ since Vector packing optimized kernels do not show any memory

merging effect as discussed in section 3.2.5.

 65

 Figure 27: Relationship between Occupancy and Effective duplicate load factor (192T)

In Figure 28, we consider the duplicate load factor to be constant and unchanging with

occupancy and show comparison between actual and predicted performance across the

range of FMM kernels. For Figure 29, we change the effective duplicate load factor to be

adaptive with occupancy.

It can be clearly seen that in Figure 29 we have a more accurate prediction of kernel

performance due to consideration of effective duplicate load factor which is adaptive with

occupancy.

Figure 30 shows the variation in occupancy across the FMM suite for 256 threads per block.

Again we have an inverse relationship between occupancy and effective duplicate loads.

Figure 31 and Figure 32 show performance of prediction with and without consideration of

effective duplicate load adaptive with occupancy for 256 threads per block. As expected,

considering the adaptive nature of effective duplicate loads improves the performance of

prediction.

 66

 Figure 28: Model performance with fixed duplicate loads (192T)

 Figure 29: Model performance with adaptive duplicate loads (192T)

 67

 Figure 30: Relationship between Occupancy and Effective duplicate load factor (256T)

 Figure 31: Model performance with fixed duplicate loads (256T)

 68

 Figure 32: Model performance with adaptive duplicate loads (256T)

Thus it is seen that the duplicate load factor is quite sensitive to occupancy and number of

threads especially when the number of threads per block is high.

Based on all the results, it can be said that our GPU analytical model is quite robust since it

can track a wide spectrum of optimizations barring a few. It gives the developer a holistic

perspective regarding what makes the performance of a kernel tick. In the following section

we conclude giving some interesting approaches and ideas of utilizing our GPU analytical

model.

 69

CHAPTER 6

CONCLUSION

Thus in this study, we present a robust and accurate GPU analytical model for the GT200

GPU Architecture. A recap of the important features of CUDA Performance Analyzer is

listed below:

• Modeling of the memory transaction based Coalescing model

• Accurate shared memory modeling

• In-depth consideration of the memory transaction merging effect

• Vector memory operations modeling

• Modular nature of the analyzer with a Frontend Data Collector and GPU Analytical

Model based Predictor

• Ability to use either CUDA Visual Profiler or GPU Analytical Model as Frontend

Data Collector

• Deep coverage of studied optimizations through an extensive optimization suite

However the CUDA Performance Analyzer can be taken to the next level through some

additional features like the ones suggested below:

• Compiler Tools Support: At this point, some of the metrics used in the model like

duplicate loads, independent loads have been calculated through manual code

analysis. It would be good to have a compiler tool support the calculation of these

factors and automatically feed to the Analyzer.

• Auto-tuning feature: Now that we know about all the gears that tinker with

performance, it would be great to have an auto-tuning tool that tunes through

factors like MWP, CWP, Duplicate Load factor, #Instructions etc to automatically

suggest an optimal configuration for an optimized kernel.

 70

• Additional features in GPU Model: The GPU Analytical model can be made more

advanced by handling issue of parallel execution between SPs and SFUs, execution

of independent compute instructions in parallel with memory operations etc. Also

the model can be taken to the next level with adding support for the Fermi

Architecture.

 71

APPENDIX A

MICROBENCHMARK

 This appendix illustrates the various micro-benchmarks used in tuning the model,

showing the traits of memory merging effect and studying the effect of vector memory

operations.

A.1 Microbenchmark for Scalar Memory Operations

The base micro-benchmark kernel code is as given below:

__global__ void gflops(int Num_Iterations, int blocksize, float *dm_src)

{

 int ori_index = blockIdx.x*blocksize + threadIdx.x;

 //ori_index can be changed to create different memory access patterns

 int index = ori_index;

 float loadregister;

 __shared__ float result[520];

 for (int i = 1; i <= Num_Iterations; i++)

 {

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister; //dependent load on the previous LD

 (cont’d)

 72

 (cont’d)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister; //dependent load on the previous LD

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister; //dependent load on the previous LD

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister; //dependent load on the previous LD

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 }

 if (threadIdx.x==0 && blockIdx.x==0) result[threadIdx.x] = a + b + index;

 73

FMAD2(a,b) represents two floating point multiply-add operations with variables ‘a’ and ‘b’.

Customizations through the micro-benchmark:

1. “ori_index” field can be changed to create different access patterns in the data. This

also helps in creating memory access patterns that would create only a particular type

of memory transaction, for e.g. only 32 byte memory transactions would be

spawned.

2. The global memory array “dm_src” can be programmed in the host code to contain

any value. Depending on this value memory access patterns for threads within a

warp can be changed.

3. The number of load operations in the ‘for’ loop can be changed using the CONFIG

macro. The code listing above shows the case of CONFIG=4. For e.g. for tuning

the model parameter of “frequency” as given in section 3.2.6, one needs to have

CONFIG=0 which implies no memory load operations inside the loop. Also the

macro ‘ITERS’ refers to the number of iterations of the ‘for’ loop and is generally

kept fixed at 100.

Table 17 lists the different variations of the micro-benchmark for various purposes like

tuning of the model, showing the memory merging effect etc. The indexing scheme points to

the location from where a thread would make the first memory access. Also each thread goes

on to make multiple memory accesses due to the load instruction in the ‘for’ loop, and the

step size of subsequent accesses is given by contents of global memory array “dm_src”.

Manipulation of these two parameters can result in different kinds of memory access

patterns. For e.g. for avoiding any kind of memory merging effect the “index” can be

formed such that each block of threads accesses a different chunk of global memory space;

while factors like “dm_src” value, CONFIG and ITERS can be used to ensure that within a

block, each thread accesses independent memory locations throughout each iteration of the

loop.

 74

 Table 17: Memory access patterns for Scalar Memory Operations

Operation Indexing scheme Value of

global

memory

array

“dm_src”

Access

Pattern

Illustration

Tuning of

departure

delay for 32

byte

transactions

(blockIdx.x*(((int)blocksize/(int)WARPSIZE)*(CONFIG*

ITERS * WARPSIZE))) + (((int)threadIdx.x

/(int)WARPSIZE) * (CONFIG *ITERS * WARPSIZE))

+ ((((int)(threadIdx.x % WARPSIZE)/(int)16)*8) +

((threadIdx.x % WARPSIZE)) % 8)

32 Fig 9

Tuning of

departure

delay for 64

byte

transactions

(blockIdx.x*(((int)blocksize/(int)WARPSIZE)*(CONFIG*

ITERS * WARPSIZE))) +

(((int)threadIdx.x/(int)WARPSIZE)*(CONFIG *ITERS *

WARPSIZE)) + (threadIdx.x % WARPSIZE)

32 Fig 11

Tuning of

departure

delay for

128 byte

transactions

(blockIdx.x*(((int)blocksize/(int)WARPSIZE)*(CONFIG*

ITERS * WARPSIZE))*2) +

(((int)threadIdx.x/(int)WARPSIZE)*(CONFIG *ITERS *

WARPSIZE)*2) + ((threadIdx.x % WARPSIZE)*2)

64 Fig 33

 75

Figure 33: Memory access pattern for 128 Byte transactions

 76

A.2 Microbenchmark for Vector Memory Operations:

The micro-benchmark kernel code for vector memory operations is given below:

__global__ void gflops(int Num_Iterations, int blocksize, float4 *dm_src)

{

 int ori_index = ((blockIdx.x)*((int)blocksize/(int)WARPSIZE)*ITERS*CONFIG*2) +

(((int)threadIdx.x/(int)WARPSIZE)*ITERS*CONFIG*2);

 float index3 = 0;

 float4 loadregister;

 __shared__ float result[520];

 float a ;

 float b ;

 for (int i = 1; i <= Num_Iterations; i++)

 {

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister.w;

 a+=loadregister.x;

 b+=loadregister.y;

 index3+=loadregister.z;

 (cont’d)

 77

 (cont’d)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister.w;

 a+=loadregister.x;

 b+=loadregister.y;

 index3+=loadregister.z;

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister.w;

 a+=loadregister.x;

 b+=loadregister.y;

 index3+=loadregister.z;

 FMAD2(a, b)

 FMAD2(a, b)

 (cont’d)

 78

 (cont’d)

 FMAD2(a, b)

 FMAD2(a, b)

 loadregister = dm_src[index];

 index+=loadregister.w;

 a+=loadregister.x;

 b+=loadregister.y;

 index3+=loadregister.z;

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 FMAD2(a, b)

 }

 if (threadIdx.x==0 && blockIdx.x==0)

 result[threadIdx.x] = a + b + index + index3;

}

Table 18 lists the different variations of the micro-benchmark for various purposes like

tuning of the model, showing the memory merging effect etc. The indexing scheme points to

the location from where a thread would make the first memory access. Also each thread goes

on to make multiple memory accesses due to the load instruction in the ‘for’ loop, and the

step size of subsequent accesses is given by contents of global memory array “dm_src”.

Manipulation of these two parameters can result in different kinds of memory access

patterns.

 79

 Table 18: Memory Access Patterns for Vector Memory Operations

operation indexing scheme value of

float4

global

memory

array

Access

pattern

illustration

tuning of

departure

delay for

vector

memory

operations

(32 byte in

our case)

((blockidx.x)*((int)blocksize/(int)warpsize)*iters*config*2)

+ (((int)threadidx.x/(int)warpsize)*iters*config*2)

2 Fig 13

non-

overlapping

memory

accesses

((blockidx.x)*((int)blocksize/(int)warpsize)*iters*config*2)

+ (((int)threadidx.x/(int)warpsize)*iters*config*2)

2 Fig 13

overlapping

memory

accesses

((blockidx.x)*((int)blocksize/(int)warpsize)*iters*config*2)

+ (((int)threadidx.x/(int)warpsize)*2)

2 Fig 14

 80

REFERENCES

[1] http://gpgpu.org/
 Date of last access: 02/26/2011

[2] http://www.nvidia.com/object/cuda_home_new.html
` Date of last access: 02/22/2011

[3] http://www.khronos.org/opencl/
 Date of last access: 01/31/2011

[4] Richard Vuduc, Aparna Chandramowlishwaran, Jee Whan Choi, Murat Efe Guney, and
Aashay Shringarpure. On the limits of GPU acceleration. In Proc. USENIX Wkshp.
Hot Topics in Parallelism (HotPar), Berkeley, CA, USA, June 2010

[5] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen-mei W. Hwu. 2008. Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming
(PPoPP '08)

[6] http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_
CUDA_Programming_Guide_2.3.pdf

 Date of last access: 02/29/2011

[7] Sunpyo Hong and Hyesoon Kim. 2009. An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness. In Proceedings of the 36th
annual international symposium on Computer architecture (ISCA '09)

[8] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. 2008. NVIDIA
Tesla: A Unified Graphics and Computing Architecture. IEEE Micro 28, 2 (March
2008)

[9] http://developer.nvidia.com/object/visual-profiler.html
 Date of last access: 12/28/2010

[10] http://developer.nvidia.com/object/cuda_2_3_downloads.html
 Date of last access: 01/18/2011

 81

[11] Gregory Diamos, Andrew Kerr, and Sudhakar Yalamanchili. Gpuocelot: A binary

translation framework for ptx., June 2009.
 http://code.google.com/p/gpuocelot/

[12] http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/

ptx_isa_2.1.pdf
 Date of last access: 02/26/2011

[13] DECUDA; https://github.com/laanwj/decuda/wiki

 Date of last access: 03/11/2011

[14] CUOBJDUMP; http://developer.nvidia.com/page/home.html

 Date of last access: 03/15/2011

[15] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, and R. Vuduc.

Optimizing and tuning the fast multipole method for state-of-the-art multicore

architectures. In Proc. IEEE Int’l. Parallel and Distributed Processing Symp.

(IPDPS), Atlanta, GA, USA, April 2010

[16] H. Cheng, L. Greengard, and V. Rokhlin. 1999. A fast adaptive multipole algorithm

in three dimensions. J. Comput. Phys. 155, 2 (November 1999)

