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Summary

This thesis examines the various system issues that arise in the design of distributed
shared memory (DSM) systems. This work has been motivated by the observation
that distributed systems will continue to become popular, and will be increasingly
used for solving large computational problems. To this effect, shared memory
paradigm is attractive for programming large distributed systems because it offers
a natural transition for a programmer from the world of uniprocessors. The goal of
this work is to identify a set of system issues, such as integration of DSM with vir-
tual memory management, choice of memory model, choice of coherence protocol,
and technology factors; and evaluate the effects of the design alternatives on the
performance of DSM systems. The specific question that we are trying to answer
is, “Can we determine a set of system design parameters that defines an efficient
realization of a distributed shared memory system?”. The design alternatives have
been evaluated in three steps. First, we do a detailed performance study of a
distributed shared memory implementation on the CLOUDS! distributed operating
system. Second, we implement and analyze the performance of several applications
on a distributed shared memory system. Third, the system issues that could not be
evaluated via the experimental study, are evaluated using a simulation-based ap-
proach. The simulation model is developed from our experience with the CLOUDS

distributed system. A new workload model that captures the salient features of

1CLOUDS is a distributed object-based operating system developed at Georgia Tech.
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parallel and distributed programs is developed and used to drive the simulator.
The key results of the thesis are: DSM mechanisms have to be integrated with the
virtual memory management for providing high performance distributed shared
memory systems; the choice of the memory model and coherence protocol does
not significantly influence the system performance for applications exhibiting high
computation granularity and low state-sharing; and an efficient implementation of
DSM requires a careful design of miscellaneous system services (such as synchro-
nization and data servers). The thesis also enumerates several questions related to

future research directions.
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Chapter 1

Introduction

Technological advances in recent years have spurred a trend towards workstation-
oriented computing environments. Each workstation has computing power com-
parable to the mini-mainframes of the past. Availability of powerful computers
connected via local (wide) area network has sparked interest in the area of dis-
tributed computing systems. Current research is targeting its efforts in utilizing
the available computation power on the network in solving large problems through
co-operative computing.

To facilitate programming of distributed systems, two basic paradigms exist:
shared memory, and message-passing. These two paradigms have been used for
interprocess communication and synchronization in multi-process computations.
The duality between the two paradigms for structuring computations is well-known
[21]. Nevertheless, shared memory has been an appealing paradigm from the point
of view programming ease even in distributed systeins. It is no surprise that several
researchers [28, 30, 17, 7] have proposed system architectures that provide the
abstraction of shared memory in a physically non-shared (distributed) architecture.
We refer to this abstraction as Distributed Shared Memory (DSM). Figure 1 shows
the conceptual representation of a distributed shared memory system. In the

system, a set of nodes (computers) are connected via an interconnection network,



and do not physically share memory. The DSM mechanisms allow an application
to access shared data not physically resident at that node. These mechanisms
are usually provided as a software layer either integrated with or on top of the

operating system.

Figure 1: Distributed Shared Memory Abstraction

Another motivation for DSM arises from the structure of current distributed
computing environments. A typical distributed computing environment consists of
compute servers' and data servers® interconnected by a local area network. In such
an environment, there are two tasks to be performed to execute a computation. The
first task involves selecting a compute server, and the second task involves bringing
the code and data from the data server to the selected compute server before

executing the computation. The second task requires a remote paging facility. If

!Nodes where computation is performed.
2Nodes that serve as repositories for data.
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sharing of data is coupled with this remote paging, it could be seen that DSM
presents itself as a natural facility for combining the two.

Previous work in the area of distributed shared memory, as will be elab-
orated in Chapter 3, has been concerned with the design and implementation of
distributed shared systems, and evaluation of algorithms for enforcing coherence
of shared data. Some researchers have also focussed their efforts on designing
fault-tolerant algorithms for distributed shared memory systems. Previous work,
however, has ignored the study of system issues that need to be addressed in
the design of distributed shared memory systems. The specific question that the

research is trying to answer is:

“Can we determine a set of system design parameters that defines an effi-

ctent realization of a distributed shared memory system?”.

In this thesis, we identify and evaluate the system issues (see Chapter 2)
that need to be addressed for designing distributed shared memory systems. The
issues relate to questions such as, whether to integrate DSM with virtual memory
management, what type of memory model to provide, which coherence protocol
to use for maintaining coherence of shared data, and what kind of impact do
technology factors have on the DSM system performance. We evaluate these issues
with respect to the available design alternatives. The evaluation is done in three
steps. First, we do a performance study of an implementation of DSM (see Chapter
4). The performance study has provided us with an insight into the functioning of
a distributed shared memory system. Second, we have implemented and studied

the performance of several applications on a distributed shared memory system



(see Chapter 5). Finally, aspects of the study that could not be evaluated via
experimental studies are evaluated using simulation. In Chapter 6, we describe
the design of a simulator that models a distributed shared memory system. The
costs obtained from the performance study are used to assign costs to different
components of the simulator. A new workload model is developed and used to drive
the simulator. The workload model captures the salient features of distributed
and parallel programs. In Chapter 7. we discuss the results of the research. The
conclusions and contributions of the research are presented in Chapter 8.

The key contribution of this thesis is that it enumerates the systems issues
and specifies the design parameters for addressing system issues for an efficient
realization of a DSM system. The key results of the thesis are: DSM mechanisms
have to be integrated with the virtual memory management for providing high
performance distributed shared memory systems; the choice of the memory model
and coherence protocol does not significantly influence the system performance for
applications exhibiting high computation granularity and low state-sharing; and an
efficient implementation of DSM requires a careful design of miscellaneous system

services (such as synchronization and data servers).



Chapter 2

Issues in the design of DSM systems

As mentioned in Chapter 1, a designer needs to address several system issues during
the design of a distributed shared memory system. These issues form the core of
a DSM system design, and choice of solutions to these issues can significantly
influence the overall system performance. In this chapter, we enumerate these

issues and discuss the alternatives available for addressing these issues.

2.1 Virtual Memory and DSM

DSM is not true shared memory as is the case in shared memory multiprocessors
(SMM). Thus remote memory accesses have to be reconciled with the memory
management at each node. Of course, if the basic machine architecture does not
support virtual memory then the solution could perhaps be simpler. However, if
the basic architecture supports virtual memory then the DSM management and
Virtual Memory (VM) management have to be integrated. In particular, the local
memory at each node may be considered simply a cache of a global address space
that spans the entire network. The DSM and VM management at each node
would have to cooperate to ensure that the semantics implemented by the DSM

manager and the VM manager are not compromised. The normal VM chores such

3



as page replacement, swapping, and flushing have to be done in consideration with
the DSM algorithms. Similarly, in satisfying a remote memory request, the DSM
would have to consult the VM manager to get a page frame. etc. Upon release of
a page, the DSM has to instruct the VM manager to invalidate page table entries
and take other related actions.

The effectiveness of the DSM paradigm depends crucially on how quickly
a remote memory access request is serviced, and the computation is allowed to

continue, which in turn depends on several factors:

e the speed at which the VM system detects that a memory access fault (i.e.

a page-fault) or a pre-fetching request entails a remote access

e the software overhead involved in the DSM protocol (i.e. coherence mecha-

nism) for servicing a remote memory access request

e the software overhead involved in the communication subsystem (i.e. the
basic transport protocol) for effecting the inter-node message communication

to service the request

o the speed of the communication medium (i.e. hardware).

2.2 Granularity

There are two dimensions to granularity: computation granularity and data gran-
ularity. The former deals with the amount of computation a process has to do
between synchronization or communication points in a multi-process computa-

tion. The latter deals with the amount of shared information processed during

6



this computation phase.

Eggers and Katz [14] define “write-run” as a sequence of reads and writes
by a given processor following an initial write executed by the same processor to a
given shared memory location before an external read by a different processor to
that shared memory location occurs. In a shared memory multiprocessor system,
write-runs of representative applications may range from a few to a few tens of
references. However, in a DSM system, write-runs of a few hundred instructions
would be more appropriate given the latency for remote accesses.

Another distinction between the SMM and the DSM is in the data gran-
ularities of accesses that are practical in the two. In a uniprocessor memory hi-
erarchy, the processor-to-cache transfer time is in the tens of nanoseconds, the
cache-to-main memory transfer time is in the hundreds of nanoseconds, and the
main memory-to-disk transfer time is in the order of milliseconds. Correspondingly,
the granularity of transfer that makes feasible sense are: byte or word between the
processor and the cache, a block of several bytes between the main memory and
the cache, and a page ranging from 512 bytes to a several kilobytes between the
main memory and the disk. DSM systems add a new dimension to the memory
hierarchy, namely remote memory access across the network. The choice of the
network plays a big role in determining the latency. Nevertheless, independent
of this choice, there is a fixed software overhead to be incurred depending on the
choice of the data transfer protocol on the network. Moreover, such remote mem-
ory accesses need to be integrated somehow with the memory management at each
node. This requirement often forces the granularity of access to be an integral mul-

tiple of the fundamental unit of memory management (usually a page). However,



it is possible to reduce the network latency by transferring the page partially. The
key point to note is that the data granularity has to be sufficiently high to make

the DSM paradigm viable.

2.3 Memory Model

In a uniprocessor, correctness of execution is ensured by preserving the order of
memory references generated by a processor. Lamport [20] has proposed sequential
consistency as a memory model for ordering shared memory accesses to ensure
correct multiprocessor execution. In this model, the order of memory references
generated by an individual processor is preserved, while the global order of memory
references from all the processors is an arbitrary interleaving of the individual
processors’ reference streams that preserves the order of references emanating from
each processor. Essentially, sequential consistency ensures that the view of the
memory 1s consistent at all times from all the processors.

Insofar as correctness of multiprocessor execution is concerned, only the
ordering of the shared memory references is of interest. Shared memory accesses

may be categorized into three types:
e shared code,
e synchronization variables, and

e shared data variables.

Shared code is always read-only, and hence is always consistent. On the

other hand, synchronization variables require that memory consistency be strictly



preserved. Shared data variables normally require strict consistency as well. How-
ever, several applications exist wherein the program correctness would not be com-
promised even if there are temporary inconsistencies in the view of the shared
memory as seen by distinct processes. Examples of such applications include asyn-
chronous and iterative algorithms. Moreover. if the programs are written to obey
some synchronization paradigm such as lock/unlock. and semaphore P/V, then en-
suring a consistent view of shared data may be deferred to synchronization points
in the program without compromising program correctness. Thus, sequential con-
sistency 1s an overly restrictive memory model. This fact was first observed by
Dubois, Scheurich and Briggs [13]. who proposed weak ordering as an alternative
to sequential consistency. Weak ordering requires that memory accesses from a
process are performed in program order; synchronization operations are globally
performed before allowing a process to continue; and all shared data accesses from
a process are globally performed before issuing a synchronization operation. Sev-
eral weaker memory models have been proposed. One such memory model is the
causal memory model [1]. This model is based on the notion of causality [20], which
is the fundamental event ordering mechanism in distributed systems. Similar to
a message-passing system, the causal order is used to relate operations based on
the program (local) order at processes and a reads-from order that is established
between a write and its subsequent reads. This is similar to the happens-before
relation defined in message-passing svstems between an operation that sends a
message and the operation that receives it. The causal memory model only guar-

antees that read operations do not return causally overwritten values. Another



memory model weakens the ordering constraints by distinguishing between syn-
chronization operations that acquire and release rights to access shared data [25)].
Of course, all such weakening of the memory model assumes that it is possible to
distinguish between two types of memory accesses: synchronization and read-write
data. If such a distinction cannot be made then a conservative approach {such as
sequential consistency) may be the only way to assure program correctness. Re-
cently, there have been proposals for hardware support to make this distinction
possible in SMMs [23, 33, 18]. DSM. on the other hand, is usually a software
abstraction. Therefore, it is quite straightforward (with support from the com-
piler and/or operating system) to make this distinction possible and weaken the

memory model.

2.4 Choice of Protocol

DSM assumes that all memory is globally shared. This assumption requires that
independent computations started at different nodes see a consistent view of the
shared memory. To facilitate this view would require a coherence scheme. Consis-
tency maintenance of distributed shared memory is similar to cache coherence in
multiprocessors. Shared memory multiprocessors such as Encore’s Multimax, con-
sist of several processors connected to a common shared memory via a system bus.
A main memory cache is associated with each processor to help reduce the traffic
to the shared memory. Multiprocessor cache consistency protocols ensure the fol-
lowing memory coherence constraint: a read operation performed by a processor

returns the most recent value written into that location (by any processor). This

10



criterion is appropriate in a shared memory multiprocessor since the system bus
(a broadcast medium) serializes the memory operations of all the processors. The
cache coherence algorithms that have been proposed for multiprocessors are viable
since the cost (measured in circuit complexity as well as time) of implementing
them in hardware is a small fraction of the total system cost. Further, bus-based
multiprocessors usually have the ability to invalidate (or update) all cached copies
in one atomic bus cycle.

It 1s possible to devise distributed versions of cache coherence protocols to
maintain the consistency of distributed shared memory. However, such implemen-
tations would suffer to some degree due to the mismatch in the capabilities of their
intended environments and distributed systems. The definition of coherence that
works well for shared memory multiprocessors is not appropriate in a distributed
environment since there is no “system bus” to impose a total order on the memory
operations that are performed by all the processors. Further, while invalidation
of cached copies of data is a viable approach in multiprocessors (with a system
bus) it is expensive in a distributed system due to the cost of the invalidation mes-
sages. Invalidation involves at least sending a multi-cast message to all the nodes
that have a read-copy of the data. Achieving reliable delivery of such multi-cast
messages is expensive in a distributed system.

In reality, memory coherence and process synchronization are closely inter-
twined. A process acquires permission to read or write shared data invariably
through some synchronization method. Absence of synchronization implies that
any arbitrary ordering of simultaneous accesses to a shared location should yield

valid results for a given computation. Therefore, in such cases there is no coherence

11



requirement. In fact, it would be reasonable to argue that memory coherence
should be defined in conjunction with process synchronization.

Not surprisingly, the solutions that have been suggested in the DSM envi-
ronment are similar to the ones in the SMM caches. Broadly. these solutions may

be classified into three categories:

1. Write-invalidate policy: In this protocol the writer acquires exclusive

ownership by invalidating all copies before performing the write.

2. Lock-based policy: In this protocol lock requests (exclusive and shared)
result in the data associated with the lock being sent to the requester along
with the granting of the lock. Upon release of a lock, the associated data is
sent back (if modified) to the server. Reads or writes to shared data without
explicit locking follow single-copy semantics that does not allow multiple-
readers or writers. A weaker form of read allows multiple-readers to shared

data (without locking) but does not guarantee consistency.

3. Write-update policy: This protocol differentiates between two types of
accesses: normal read/write and synchronization. Writes to shared data are

buffered and consistency is enforced at synchronization points.

These three categories of cache protocols may be likened to deadlock preven-
tion in an operating system, in that they prevent memory consistency violations
from ever happening. It is possible to take a more liberal approach (similar to
deadlock detection) and allow memory consistency violations to occur but have

mechanisms in the system to detect such violations and take corrective action
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when they occur (see section 3.1).

In distributed systems, the number of messages is a measure of protocol per-
formance. From this standpoint, the lock-based policy is expected to out-perform
the other two, since coherence is maintained commensurate with the semantics of
sharing in the computation. Moreover, since locking could be integrated with the
data transfer, there is no need for any additional mechanisms for providing mu-
tual exclusion for shared write accesses. In both write-update and write-invalidate
policies there is a need to provide synchronization mechanisms on top of the co-
herence policy to assure mutual exclusion for multiple nodes requesting to write
to the same page. However, lock-based policy has its drawbacks: In particular
it does not have the generality of the other two policies. By decoupling memory
coherence and synchronization, it is possible to devise synchronization mechanisms
independent of the coherence policy. The lock-based policy requires explicit direc-
tives from the system software to know the semantics of sharing, while the other

two do not require any such directives.

2.5 Synchronization

Another issue is the way interprocess synchronization is achieved in such systems.
Extending the analogy of shared memory multiprocessors to DSM, it would seem
that shared-memory style of synchronization would be expected in DSM systems
as well. However, the granularity of accesses in DSM systems precludes using true
shared memory style of synchronization such as Test-and-Set on arbitrary mem-

ory locations. One possibility is to combine synchronization with sharing as has
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been suggested in some multiprocessor cache protocols [23]. Another possibility
is to have an orthogonal set of primitives to achieve svnchronization. This latter
approach is attractive since there could be situations where there may be very
little sharing of data but independent computation may have to synchronize with
one another. For example, in compute-intensive applications, such as the embar-
rassingly parallel kernel and matrix multiplication, interprocess synchronization is
used only to indicate completion of computation. Some systems provide semaphore

operations or lock operations in addition to the shared memory primitives.

2.6 Hardware Technology

There are two sources of overhead in a DSM system: the first is the communication
overhead associated with the data transfer on the communication medium; and the
second is the computational overhead associated with servicing remote memory
requests. The choice of the communication medium (Ethernet, optical fiber, etc.)
directly impacts the former, while the speed of the processor and any additional

hardware support for DSM affects the latter.

In this chapter, we enumerated a set of issues that need to be addressed in
the design of a distributed shared memory system. These issues form the basis of
the work described in this thesis. In the next chapter, we present the work that

has been previously done in the area of distributed shared memory.
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Chapter 3

Related Work

Over the past decade, several systems have been developed and implemented that
provide a shared memory abstraction in a physically distributed environment.
However, the emphasis of the research has been restricted to the design, analy-
sis, and implementation of algorithms for maintaining coherence of shared data.
Some research has also been done to investigate the issues in providing reliable
and recoverable distributed shared memory. In this chapter, we briefly summa-
rize the work that has been done in the area of distributed shared memory, and
qualitatively discuss these systems with respect to the issues outlined in chapter

2.

3.1 Apollo Domain

Apollo Domain [22] system is one of the earliest systems that employs DSM
paradigm to assure consistency of shared objects in a local area network of personal
workstations and data servers. It provides an integrated distributed environment
with each node possessing a high degree of autonomy with additional system mech-
anisms that permit cooperation and sharing among the nodes. The Domain system

allows users to name and access all objects in a transparent manner by having a

-

15



distributed object storage system (OSS). The OSS is a flat address space of ob-
jects addressed by unique identifiers (UID’s). The distributed OSS allows objects
to be accessed from any node in the network. Processes could potentially access
all objects by presenting their UID’s and mapping the object into their respective
address spaces.

The OSS is implemented in two layers. The first layer provides access to
local objects that reside on the same node as the faulting process. The second
layer provides access to remote objects in a transparent manner. On a page-fault,
the OSS determines if the access is to a local object. If so then the object is read
from the local disk and mapped into the process’ address space. If the object
is not locally available then it is located using an object locating service. After
the object is located, the specific page is requested and mapped into the process’
address space.

To assure consistency of replicated copies of an object a two-level approach
1s adopted. The lower level detects concurrency violations using a time-stamp
based version number scheme for each object. The time-stamp corresponds to the
time the object was last modified. Every node remembers the version number for
all remote objects whose pages it has encached in its main memory. Every time an
object is read from another node, its version number is returned with it. If it is the
only page of the object encached in this node, its version number is remembered.
If not, the returned version number must match the remembered version number
for the object; otherwise a read concurrency violation has occurred. Every time
a page of an object is written back to its home node, the current version number

is sent with the write request and an updated version number is returned. The
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home node only accepts the page if the write occurs on a current version of the
page; otherwise a write concurrency violation has occurred. A write request to a
page updates both the home node’s and the requesting node’s time stamp for the
object. The system also provides primitives to flush stale pages of cached object,
inquiring current version number of an object, and sending back modified pages of
a cached object.

The higher level provides an object locking mechanism. Several tvpes of
lock modes are provided including a multiple-readers/single-writer lock. Lock and
unlock requests for remote objects are always sent to the home node. A lock request
that is granted returns the current version number of the lock. This information is
used to remove stale pages from the requesting node’s main memory. The unlock
operation forces modified pages back to the home node before the lock is released.
In Domain, lock requests are not enqueued; if the lock is currently in use, then the

requester is denied access to the lock and would have to retry later.

3.2 lvy

Ivy [28] is a distributed shared memory system implemented on Apollo worksta-
tions interconnected by a token-ring network. It provides a shared virtual address
space similar in concept to the Domain system with the difference that the gran-
ularity of access is a physical page in Ivy as opposed to an object in Domain.

In Ivy, a process address space is divided into two parts: a private part and
a shared part. The private part is local to a process and cannot be accessed by any

other process. The shared part is implemented using shared virtual memory. A
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process may access any memory location of the shared virtual memory through the
shared part of its address space. To manage the shared virtual memory, each node
has a memory mapping manager. The memory mapping manager implements the
mapping between the physical memory of the processor and the shared virtual
memory address space. The memory mapping manager at each node treats the
physical memory as a cache for the shared virtual memory, and is responsible for
maintaining the shared virtual memory coherent at all times. The shared virtual
memory is implemented at the processor-level: Thus, once a page of the shared
virtual memory is made available at a node by its memory mapping manager, it
becomes accessible to all processes that execute at this node.

Ivy uses a write-invalidate type of coherence protocol to manage its shared
virtual memory. The virtual memory is partitioned into pages. Individual pages
can exist in read-only, write, or nil mode. Ivy uses multiple-readers/single-writer
memory semantics. In this approach, all read-only copies of a page are invalidated
when any processor attempts to write to the page. Three different flavors of the
invalidation scheme have been implemented in Ivy. In the central scheme, a central
manager maintains a table to keep track of the locations for all the pages. On a
page-fault, the faulting processor asks the central manager for a copy of the page.
The central manager then asks the owner of the page to send a copy of the page
to the faulting processor. A node is said to be the owner of a page if it was
the last node that modified the page. The second approach, fixed distribution
scheme, is similar to the centralized scheme except that each node is assigned a
pre-determined set of pages to manage. A mapping function is used to perform

this distribution. This scheme avoids the single site bottleneck of the centralized
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scheme. The third scheme is the dynamic distributed manager algorithm that
keeps track of the ownership for all the pages. This is done by adding a field called
probOwner in each page table entry at all the processors. The probOwner field is
used as a hint to locate the true owner of a page. A processor sends the request
for a page to the node indicated in the probOwner field of the page. If the node
that receives the page request is not the current owner of the page, it forwards the
request to the node indicated in its page table. Initially, the probOwner field is
set to some default value in all the processors. The probOwner field is updated
whenever a processor receives an invalidation request. a processor relinquishes the
ownership of a page on a read or write page-fault, or a processor forwards the
page-fault request to another node.

On a read page-fault, the processor locates the owner of a page and sends a
request to the owner of the page. The owner maintains a set of all nodes that have
a read-only copy of the page in a copyset. The owner adds the faulting processor to
the copyset of the page and sends a copy of the page to the faulting processor. On
a write page-fault, the processor locates the owner of the page and sends a request
to the owner of the page. The owner of the page sends the page and its copyset to
the faulting processor. The faulting processor sends an invalidation message to all
the processors in the copyset of the page. When all the invalidation requests have
been acknowledged, the faulting processor restarts the blocked process.

Ivy provides synchronization mechanisms based on the primitives (event-
counts) provided by the underlying operating system. An event-count supports
four operations: init(count), read(count), await(count, value), and advance(count).

Init primitive initializes an event-count. Read primitive returns the value of the
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event-count. Await primitive suspends the calling process until the event-count
value reaches a specified value. Advance primitive increments the value of the
event-count by one and wakes up any sleeping processes. Any process may use an
event-count after the event-count has been initialized.

An extension of Ivy’s memory coherence protocol has been implemented
in the Mirage system at UCLA [17]. It allows a reader or a writer of a page to
retain access to the page for a fixed duration of time regardless of the pending re-
quests. This is done to guarantee forward progress of the computation by reducing

thrashing of heavily shared data pages.

3.3 CLOuUDS

CLouDps [9] is a distributed operating system developed at Georgia Tech. One
of the distinctive features of CLOUDS is its separation of two notions that have
been traditionally inter-twined in most operating systems, namely, address space
and computation. The former is specified by objects and the latter by threads
in CLOUDS. An object is a passive entity (i.e. there is no process associated
with it) that is part of a global name space. It specifies a distinct virtual space
that is unique in the entire distributed system. The object encapsulates data that
can be manipulated only from within the object. There are entry points in the
object that are invocable from other objects. The entry points contain code for
manipulating the data in the object. and may themselves invoke entry points in
other objects. To allow concurrent execution of more than one computation in the

same object, shared-memory style synchronization primitives are provided by the
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operating system.

A thread is an active entity that provides the notion of a computation. It
executes in the context of an object. During the course of execution. a thread may
invoke entry points in other objects. Thus, a thread is not associated with a single
address space. Further, since these objects may not all be at the same node, a
thread may span machine boundaries during the course of execution.

The collection of objects in CLOUDS represents a distributed shared vir-
tual space. A thread traverses the address spaces of the objects that it invokes
during its execution. Objects are composed of segments that form the basic unit
of sharing. Each segment may be composed of one or more pages. Pages are
the units of distribution. There is an entity, Distributed Shared Memory Con-
troller (DSMC) [30] at each node that owns and maintains the segments that are
created in the node. The DSMC provides a set of primitives for segment access
and transport, and is responsible for preserving the consistency of the segments
that it owns. DSMC uses a lock-based protocol for coherence maintenance that
unifies synchronization and transport of data. It supports both exclusive (read-
write) locks as well as shared (read-only) locks for segment access. Upon a lock
request, the owner DSMC encloses the requested segment (parts thereof) in the
message that grants the lock request, thus providing synchronization for free. A
segment may be requested by a thread in one of the four modes: read-only, read-
write, weak-read, and none. Read-only mode provides a non-exclusive lock on the
segment while read-write mode provides an exclusive lock on the segment. Mode
none gives exclusive access to the segment without locking the segment, i.e., any

new request would result in the segment being yanked away to service the request.
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These three modes provide sequentially consistent memory semantics for the nodes
accessing the segments. However, there are situations where such strong memory
coherence may not be required (e.g. a monitoring thread that wants to “inspect”
the contents of a segment). For such purposes, the weak-read mode is provided. In
this mode a current copy of the segment is sent to the requester. The thread would
continue to receive updates to the segment if it had specified the update option on
the weak-read request. A thread explicitly relinquishes a lock that it has acquired

for a segment by using the discard primitive.

3.4 Mach and Agora

Mach [32] is a multiprocessor operating system kernel developed at CMU. It pro-
vides five basic abstractions: task, thread, port, message and memory object. A task
is an execution environment that includes a virtual address space and an access list
to system resources. A thread is a basic unit of CPU scheduling and it executes
in the environment provided by a task; a port is a communication channel; and
a message is a typed collection of data objects. Inter-thread communication is
effected using messages on the ports. A memory object is a collection of data that
may be mapped into the address space of any task. It is a structured mechanism
for managing virtual memory independent of the underlying architecture.

An address space consists of a collection of memory mappings between a
task and memory objects. A task may modify its address space by allocating and
de-allocating a region of virtual memory. A task may also set protection attributes

and specify inheritance of a region of virtual memory. It could create and manage a
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memory object that maybe mapped into the address space of another task. There
are two ways of sharing memory between tasks in Mach: copy-on-write and read-
write. In copy-on-write sharing, unrelated tasks share an address space without
the actual data being copied. The first task that tries to write gets a copy of the
shared address space. The copies become distinct and different from this point on.
Read-write shared memory is created by allocating a memory region and setting
its inheritance attributes to shared, copy, or none. Subsequent child task creation
obeys the inheritance attributes specified by the parent. Pages specified as shared
are physically shared between the parent and the children, i.e., there is exactly
one copy of the page in the multiprocessor system. A child gets a logical copy of
a page that is marked copy. Pages marked as none are not shared between the
parent and the children.

Note that memory objects may be shared across the network. In this case,
the physical memory is considered to be a cache for the memory objects. Associ-
ated with each memory object is a server called pager that manages the memory
object. The pager handles any request for the memory object through a commu-
nication port. On a page-fault, the Mach page-fault handler checks whether the
faulting thread has the access permissions for the page. If the permissions are cor-
rect then the page request is sent to the pager for the memory object. The pager
services the request and sends back the page from the memory object. Mach pro-
vides sequentially consistent memory coherence semantics using a write-invalidate
approach for sharing of pages across the network.

Although Mach’s shared memory semantics are geared towards managing

shared memory in a tightly-coupled multiprocessor, there is nothing in the design

23



that precludes its use in a loosely-coupled system. In fact, Agora [5] is a system
that is built on top of Mach with the specific intent of providing shared memory
semantics in a loosely-coupled system. The Agora system allows processes to
share structured data, e.g., abstract data types across heterogeneous architectures
over a local area network. Agora uses the shared memory abstraction of the Mach
operating system to share data structures among processes on the same machine. It
also provides simple locks to synchronize access to shared data. To provide sharing
across the network, the shared data structures are stored in the shared memory of
the process that created the data structure. This copy of data is called the master
copy while a copy of the data at another node is called a cache copy. Data is shared
using copy-on-write semantics with updates to the cache copies. Writes to shared
data are done on the master copy while data is read from the cache copy. A server
process running on the node with the master copy is responsible for updating the
copies of the data at other nodes. A read may potentially return stale data if the
read occurs after the write is complete on the master copy and before the updates
are propagated to the cache copies. The system expects that synchronization is

implemented orthogonally using semaphores to guard against such stale accesses.

3.5 Memnet

Memnet [12] is a shared local area token-ring network being developed at the
University of Delaware. It provides close coupling to the processors of a distributed
multiprocessor system. There are three distinctive features of this project: first, it

allows a granularity of access (32-byte chunks) finer than a page; second, it employs
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Figure 2: Memnet Architecture

dedicated hardware (Memnet device) to service remote memory accesses; third, it
exploits the features of a special-purpose token ring network to implement a write-
invalidate style of cache protocol. Given that there is an appreciable software
overhead for remote access, dedicated hardware is almost a necessity to assure
acceptable performance in DSM systems. The Memnet system does not support
virtual memory. Therefore, the way DSM is managed on Memnet is very similar
to cache management in a shared memory multiprocessor.

Each node in the system consists of a host and a Memnet device (Figure
2). The host has access to its private memory, which is inaccessible to other nodes.
There is a large shared memory that is accessible from any node in the system.
This shared memory is divided into 32-byte chunks and distributed among all the
Memnet devices. The hardware address space seen by each host has two parts:
private and shared. References to the shared part are passed to the associated
Memnet device, which coordinates with other devices to resolve the references.

The physical memory associated with each Memnet is divided into two

parts: reserved and cache. The reserved part is the permanent residence for the
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portion of the global shared memory that is managed by this Memnet device, while
the cache is a temporary store for chunks that have been brought from remote
Memnet devices. There is a chunk status table with each Memnet device that
contains an entry for the chunks that are present in its physical memory. Memnet
uses a write-invalidate style of cache protocol. A chunk may be in one of three
states: valid (readable but not writable), exclusive (readable and writable), and
invalid.

When a reference is generated for a chunk that is not locally available, then

this request is sent around the token-ring. The first node that has valid copy of this
chunk responds to this request. In case the reference is a “write”, all other valid
copies are invalidated before the chunk is written. In this sense, Memnet treats the
token-ring as a logical broadcast bus. When a chunk has to be replaced from the
cache, it is written back to its designated reserved area in the appropriate Memnet
device. Since the system does not explicitly provide synchronization mechanisms,

they have to be implemented at the user level to protect shared accesses.

3.6 Choices

Choices [34] is an operating system architecture developed at the University of
Illinois at Urbana-Champaign. It uses class hierarchies and object-oriented pro-
gramming to support the building of customized operating systems for shared
memory and networked multiprocessors.

The virtual memory management system of Choices is similar to that of

Mach. Choices uses the idea of a memory object that is cached in physical memory.
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The memory object abstraction is provided by the MemoryObject class while the
virtual memory abstraction is provided by the Domain class. The Domain class
maintains information about the association between the virtual memory of an
application and the memory objects. It provides methods to bind and release a
virtual address to a memory location. Sharing of memory is achieved by mapping
the same memory object into multiple Domains. Sharing across the network is
achieved via the DistributedMemoryObjectCache class. This class is responsible
for servicing page-faults on a node for shared data residing on a remote node. It
communicates with its peers to maintain the consistency of shared data using a
write-invalidate style of protocol similar to the distributed manager protocol of
Ivy. The granularity of remote access is a page. Choices also provides for locking
a page similar to the read-write mode of CLOUDS (see section 3.3) to guarantee
atomic updates to a memory object by denying access until the lock is removed.
Another variant (similar to Mirage) that Choices allows is retaining access to a

page for a fixed duration of time regardless of other pending requests.

3.7 Mether

Mether [29] provides a set of mechanisms for sharing memory across the network
on top of SunOS 4.0. Mether differs from most other distributed shared memory
systems in that it does not provide sequentially consistent memory coherence. A
process can continue to write on a page without the changes being reflected in
other copies of the page. The other copies of the page may be updated in one of

the following three ways: The process with the consistent copy of the page may
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initiate the updates to be propagated to all the other copies; a process holding an
inconsistent copy of the page may invalidate its copy, resulting in a page-fault the
next time it tries to access that page: a process holding an inconsistent copy of the
page may explicitly request a consistent copy of the page. As should be evident, the
user 1s responsible for tailoring the consistency requirements commensurate with
the needs of the application. Mether provides a set of system calls to facilitate
customizing the coherence requirements.

Mether provides for data driven page-faults. In a data driven page-fault,
the process that caused the page-fault is blocked. No request for servicing the
page-fault is sent by the server across the network. The page-fault is serviced
when another process actively sends out an update for the page that caused the
fault. Thus, the page-faults are completely passive. Mether defines two types of
pages: a short page (32-bytes) and a full page (8192 bytes). A short page, referred
to as a subset, corresponds to the first 32-bytes of a full page, while a full page
is referred to as a supersef. A process is ready to resume execution following a

page-fault, as soon as the subset of the page is made available to this node.

3.8 Munin

Munin [7] is a distributed shared memory system that allows shared memory par-
allel programs to be executed on distributed memory multiprocessors. It differs
from other distributed shared memory systems in that it uses multiple consistency

protocols, and its use of a weaker memory model based on release consistency’.

In release consistency, memory consistency is enforced at a release synchronization point.
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In Munin, shared program variables are annotated with their expected access pat-
tern, and these annotations are then used by the runtime system to choose a con-
sistency protocol best suited to that access pattern. At present, Munin supports
seven different types of annotations: read-only, migratory, write-shared, producer-
consumer, reduction, result, and conventional. These annotations are then used by
the runtime system to select appropriate consistency protocol for sharing. Munin
uses weaker sharing semantics (using release consistency) to mask network latency

and reduce the number of messages required to keep memory consistent.

3.9 Hardware assisted distributed shared mem-

ory systems

[n recent years, several systems have been proposed that implement the distributed
shared memory abstraction in hardware. Two examples are the DASH multipro-
cessor [26], and KSR-1 [33].

The DASH architecture consists of processing nodes connected to an inter-
connection network. It uses a distributed directory-based cache coherence protocol.
Each processing node consists of a small number of processors, called a cluster;
a small portion of the shared memory; and a directory controller interfacing the
cluster to the network. The memory hierarchy consists of two levels: cluster mem-
ory, and global memory. The cluster memory consists of the memory available
with the processors of the cluster, while the global memory consists of memory

available in all the clusters. On an access miss, an attempt is made to service the
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data request by the processors within a cluster. If the request cannot be serviced
then it is sent to other processors outside the cluster. Each processing node has
a directory memory corresponding to its portion of the shared physical memory.
For each memory block, the directory memory stores the identities of all remote
nodes caching that block. Using the directory memory, a node can send either
invalidation or update messages to those processors that are caching the block.
DASH uses an invalidation-based ownership protocol for maintaining consistency
of shared data. Data consistency is maintained at the granularity of a cache line
within a cluster, and at the granularity of a memory block between clusters.
KSR-1 is a 64-bit cache only memory architecture based on an intercon-
nection of a hierarchy of rings. It implements a system virtual address (SVA)
space that is global to the entire system. The SVA consists of the union of all the
memory available with the individual processor caches. Each cache is subdivided
in 16-Kbyte pages, which are further divided into 128-byte sub-pages. A data
item on KSR-1 does not have any home associated with it. The data item moves
from one cache to another cache as dictated by the memory access pattern of the
application. An invalidation-based cache coherence protocol is used to maintain
consistency of shared data. The unit of cache consistency is a sub-page. Access
miss on a data item is sent on the local ring. If another cache is able to service
the data request, it does so by sending the sub-page to the requesting cache. If no
cache on the local ring has the data item, the request is propagated to the next

level of the ring.
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3.10 Discussion

In this section we compare the features of the DSM systems surveyed in this
chapter with respect to the issues enumerated in chapter 2 (see Table 1). All the
DSM systems presented in this chapter, with the exception of Agora and Munin
have integrated the DSM management with the VM management, i.e., the DSM
manager co-operates with the VM manager to service page-faults. Accesses to
remote memory are referred to the DSM manager by the VM manager. which in
turn satisfies the request using its own coherence protocol. Thus, a page-fault
to local memory is indistinguishable from a page-fault to remote memory, insofar
as a process is concerned. The difference may only be in the latency of service.
Memnet does not support virtual memory. The shared memory in Memnet is at
the physical address level and its management is similar to private caches in an
SMM. References to shared memory are serviced by a Memnet device without the
software overhead associated with the VM management. A similar approach is
used in DASH and KSR-1 systems. CLOUDS provides a tighter integration of the
VM system and the DSM system than any of the other systems by maintaining
sharing information at the thread (process) level as opposed to processor level. In
fact, such an integration is essential for a system that uses a lock-based coherence
protocol to assure mutual exclusion (when needed) for a thread from all other
threads, including ones that execute on the same processor. On the other hand,
Agora and Munin use the library-approach. Both systems require the user to
specify which data structures in the program are shared. This information is

used by the DSM at runtime for maintaining coherence for shared data. Due
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to the additional overhead for processing shared memory requests in the library-
approach, the library approach is expected to perform poorly as compared to the
integrated-approach.

Data granularity (see section 2.2) has two aspects: unit of transfer and unit
of access and locking. Unit of transfer refers to the amount of information shipped
across the network to satisfy a remote request, while the unit of access and locking
is self explanatory. One disadvantage of integrating DSM management with VM
management is that the data granularity of shared memory may be dictated by
the underlying VM architecture. Most VM architectures provide address mapping
and protection attributes at the level of a page or multiples of a page. This feature
could constrain the unit of transfer between the DSM managers to be a page, and
could lead to inefficiencies if the size of the shared data structure is less than a
page. For example, suppose the size of a data object is 512 bytes. In a DSM system
with a page size of 8192 bytes, an access to this data object would result in the
transfer of 8192 bytes, an unnecessary overhead of 1500%. This overhead could be
reduced with some simple optimizations. One such optimization is implemented
in Mether, where each access to shared data results in the transfer of the first
32-bytes of the page. A process may decide to fetch the entire page if it so desires
by examining the first 32-bytes of the page.

Another disadvantage of such an integration (between VM and DSM) could
be that the unit of access and locking may be constrained to be a page (or multiples
thereof). If multiple data structures are allocated on the same page, then this
constraint could lead to false sharing, wherein distinct private data structures

appear shared due to co-location on the same page. However, the advantage of
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such an integration is that the hardware memory management facilities in the
underlying architecture could be exploited to efficiently implement access control
and locking of the shared data structures.

Most DSM systems follow a strict memory model for data accesses: a read
to a memory location always returns the most recent write to that location. How-
ever, as was mentioned earlier (see section 2.3) such a strict memory model is not
required to ensure program correctness. In fact, weakening the memory model
could result in significant performance advantage since the DSM manager would
not have to incur the overhead associated with the strict memory model. CLOUDS,
Mether, Agora, Munin, and DASH are examples of DSM systems that have im-
plemented weaker models of memory coherence. The weak-read mode of segment
access in CLOUDS allows an application to acquire a segment without the overhead
for consistency maintenance. The application may choose to receive updates to
this segment asynchronously. In Mether, a process may continue to read a stale
copy of a page that has since been written by another process. It is up to the appli-
cation to either force updates to be propagated on writes, or request for updates
to existing copies prior to reading a page. Similarly in Agora, a server process
(that has the master copy) is responsible for propagating updates to cache copies
at other nodes. Munin implements several types of memory coherence protocols
including a weaker memory model based on release consistency. A user needs to
specify the type of memory consistency that should be used for a particular mem-
ory object. DASH also implements the release consistency memory model, and
uses invalidates and updates for maintaining coherence of shared data.

Ivy, Mach, Memnet, Choices and KSR-1 implement a write-invalidation
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based memory coherence protocol. Agora uses a write-update style protocol, while
CLOUDS uses a lock-based protocol. All these systems prevent memory inconsis-
tencies from happening (a la deadlock prevention in operating systems). Domain,
on the other hand, uses a version-based protocol to detect inconsistencies after they
have happened (a la deadlock detection in operating systems), and takes corrective
action.

The lock-based protocol of CLOUDS avoids having to send invalidation mes-
sages upon writes as is the case with write-invalidation style protocols. However,
in lieu of these messages. the requesting thread has to explicitly relinquish a lock
that it has acquired using the discard primitive. While in terms of the number
of messages (invalidations or discards) there may not be a significant difference
between the write-invalidation approach and CLOUDS, the burden of generating
these messages is spread out among the readers and the writers in CLOUDS while
it rests completely with the writers in the write-invalidation approach. Explicit
locking of segments has the advantage of reducing the thrashing effect across the
network that is possible in the write-invalidation protocols for highly shared data.
Choices and Mirage attempt to reduce the extent of this thrashing by allowing a
processor to retain control of a page for a fixed duration of time during which it
may disregard remote requests for the same page.

In systems that do not use the lock-based approach, there is need for mech-
anisms to synchronize access to shared data. These mechanisms are orthogonal
to the DSM and are usually built at the application level. This approach has the
advantage of flexibility in the choice of primitives for synchronization. CLOUDS,

Domain, and Choices provide some form of synchronization integrated with the
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DSM system.

There are two aspects to the overhead associated with a DSM system: pro-
cessing (software), and communication (hardware). The former deals with main-
taining the state information in software for the shared memory pages as well as the
overhead for the message-exchange protocol on the communication medium. The
latter relates to the cost of shipping a unit of data across the network. The pro-
cessing overhead could be reduced by providing some form of hardware (firmware)

support. Memnet, DASH and KSR-1 are examples of such a system.

3.11 Other Work

There has been very little in published literature in the the area of providing
fault-tolerance and recovery in DSM systems. Wu and Fuchs [39] have examined
the problem of rollback recovery in a DSM system. They have proposed a user-
transparent check-pointing recovery scheme and a twin-page disk storage man-
agement technique to implement recoverable DSM. The proposed check-pointing
scheme is integrated with the memory coherence protocol used to manage DSM.
The twin-paged disk design allows check-pointing to proceed in an incremental
fashion without an explicit undo at the time of recovery.

Brett Fleisch [16] has examined the issues concerning reliability of DSM
systems in the event of site failures, specifically of sites that store the request
queues. Reliability of a site is improved by storing shadow copies of stored requests
and replica of data pages on backup sites. Stumm and Zhou [37] have proposed

extensions for basic DSM algorithms to make the algorithms tolerate single host
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failures. Fault tolerance is achieved by replicating state information onto physically

separated hosts.

In this chapter, we presented the work that has been previously done in
the area of distributed shared memory. We described the work in context to the
systems issues identified in chapter 2. In the next chapter, we present a detailed
performance study of an implementation of DSM to better understand the inter-

action between various subsystems associated with DSM design.
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Chapter 4

Distributed Shared Memory in CLOUDS:
A Case Study

As mentioned earlier. the process of evaluating the impact of the system issues
on the performance of DSM systems consists of three steps. As a first step, we
would like to study the performance of an implementation of DSM. Such a study
would primarily serve two purposes: First, it would help us better understand
the interaction between various issues in a real environment; Second, the perfor-
mance measurements obtained from such a study can be used for assigning costs
to different components of the simulator, which is used for the simulation study
(see Chapter 6). We use the CLOUDS distributed operating system as our target
system for evaiuation. The CLOUDS operating system provides a shared memory
model of computation in a distributed setting. DSM is used as the primary vehicle
for supporting this model of computation. For more details about the CLOUDS
operating, system the reader is referred to [9]. The DSM primitives and the algo-
rithms used for maintaining coherence of shared data are due to Ramachandran
et al. [30]. For completeness, we present a summary of the DSM primitives in the

next subsection.

38



4.1 DSM Primitives

In CLouDs, associated with each segment. which is the unit of sharing, is a
node called the owner node where the segment resides on stable storage. The
DSMServer! at the owner node is responsible for maintaining the consistency of
the segment. The DSM subsystem in CLOUDS uses a lock-based scheme to provide
coherence of shared data. It supports two primitives for acquiring and releasing
data: get and discard. The get primitive can be used to acquire a segment in
one of the following four modes: read-write, read-only, none, and weak-read. Read-
write mode signifies exclusive access to a segment guaranteeing that the segment
will not be thrown away until the node explicitly discards the segment. Read-only
mode indicates non-exclusive access with the guarantee that the segment will not
change until the node explicitly discards the segment. None mode (the default)
indicates exclusive access with no guarantee whether the segment will be thrown
away or not. Weak-read mode signifies non-exclusive access with no guarantee
whether the segment will change or not. A node can obtain a segment in weak-
read mode with an option to receive updates of the segment implicitly.

The DSMServers implement a First-Come-First-Served queue discipline for
processing remote segment requests. If the request cannot be honored immediately,
it is queued at the server until the relevant lock is released.

When a get primitive is issued in mode read-write or read-only the local
DSMServer sends a request to the remote DSMServer requesting the segment. The

remote DSMServer locks the segment (if it is currently unlocked) with a read-lock

'Process/thread that handles DSM related requests.
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(for read-only) or a write-lock (for read-write) and returns the segment to the
requesting DSMServer. The owner node keeps a count of the number of readers
associated with a segment. Thus concurrent access of a segment is allowed for
reading, and exclusive access for writing. The segment is kept write-locked until
an explicit discard is received, and read-locked until all the readers have discarded
the segment.

Upon receiving a get request in weak-read mode, the owner DSMServer
sends a copy of the segment to the requesting DSMServer. Note that this may
not be an up-to-date copy if the segment is currently write-locked by some other
node. If the option to receive updates is set, then the owner automatically sends
updates of the segment when the write-lock is released. On receiving a get in mode
none, the owner DSMServer does one of the following: the none mode request is
queued if the segment is currently locked in either read-only or read-write mode; if
the segment is available, it is sent to the requesting DSMServer who now becomes
the keeper of the segment; a subsequent request for the same segment (in modes
read-only, read-write, or none) is forwarded to the current keeper who forwards
the segment to the requesting DSMServer. A segment held in mode none can
be returned to the owner by using a discard primitive, or it can be taken away
by its owner when the keeper DSMServer is instructed to forward the segment to
another node. The algorithms for coherence maintenance are in [30]. The low-level
communication protocol used in the CLOUDS operating system to support DSM is

called RaTP [38]. It provides reliable transfer of data between nodes.
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4.2 Methodology

This section briefly describes the methodology used for taking the performance
measurements reported in the next section. The CLOUDS operating system is im-
plemented on a configuration of Sun 3/60s connected by a 10Mbit/sec ETHERNET.
Taking performance measurements posed two problems for us. First, the operating
system did not provide any means of taking timing measurements from within the
kernel. Second, the Sun 3/60 workstation does not provide any hardware timer
that can be used to take timing measurements. We have installed a microsecond
timer [8] to the Sun 3/60 workstations, and have added calls to the CLOUDS op-
erating system to read the timer. The timing measurements are done by reading
the timer before executing the code and after executing the code. The difference
between these two readings gives the time (in microseconds) to execute the piece
of code. Each call to read the timer has an overhead of 20 microseconds. The
times reported in the next section are an average of number of such readings. The
measured total time reported in the Tables 2. 3, 4, and 5 gives the high level time
for a particular operation. The breakdown times have been obtained by inserting
timer read calls around major function calls (e.g. context switching, transmit pro-
cessing, reply processing, sundry overhead). A page refers to 8 Kbytes. We report

the performance results for three categories of experiments.
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4.3 Performance Measurements

The first category of experiments is basic system timings, summarized in Tables
2, 3 and 4. The tables also show a breakdown of the measured total time in terms
of the low-level chores that constitute a system function. All the processing times
in the table are measured numbers (by instrumenting the kernel) while network
latency (wire overhead) is computed from the amount of data transmitted and
the network bandwidth. The context switch time of 0.15 milliseconds involves

2 This switching entails saving registers,

switching between two different isibas.
and other state information associated with an isiba and installing the new isiba
on the processor. There is very little MMU overhead associated with this switching
since all the kernel isibas exist in the same machine address space. All the network
communication times shown in Tables 2, 3 and 4 are between two compute servers.
A null round-trip message (64 bytes) between two isibas making use of the Ethernet
system object takes 1.59 milliseconds. The RaTP level null round-trip time is
3.56 milliseconds. Given this null round-trip time, a page transfer takes 12.3
milliseconds at the RaTP level as it breaks up an 8 Kbytes message into 6 packets
(Table 4). Note that Ethernet allows a maximum packet size of 1532 bytes [36].
The second category of experiments exercises the DSM subsystem, that
builds on the basic timings. Table 5 summarizes the results and gives a breakdown
of costs for the none mode requests. Other modes would incur the same cost if

there were no queueing delays at the servers. A get from a data server takes

15.5 milliseconds. Comparing the DSM and RaTP timings (Tables 4 and 5) for

2An isiba is similar to the concept of a thread or process in UNIX.
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a page transfer, it can be seen that the DSM protocol has an overhead of 3.2
milliseconds. This overhead includes updating state information for the shared
segment and coherence maintenance. A get with forwarding incurs an additional
overhead of 3 milliseconds over the simple DSM transfer due to an extra message
being exchanged between the owner and the keeper of the segment.

The third category of experiments, shown in Table 6, deals with the ser-
vicing of page-faults. In the case of remote page-faults, there is no disk access

involved (i.e. page is in memory at the remote server).

e A segment is currently with the data server that owns it. A DSMServer on
a compute server requests a page from that segment while servicing a page-

fault. The average time for servicing such a page-fault is 16.3 milliseconds.

e A segment is currently in use at a compute server. To service a page-fault
for this segment at another compute server, one level of forwarding (from
the data server that owns the segment) of the request is involved. This
three way exchange of messages results in a page-fault servicing time of 19.3

milliseconds.

It should be noted that the VM overhead of installing a page once a DSM get
completes is only 0.800 milliseconds, difference between Tables 5 and 6. The last
two entries in Table 6 show the time for servicing a page-fault on a segment owned
by the local partition. Such faults do not require network messages, resulting in a
time of 1.52 milliseconds for a zero-filled page and a time of 0.65 milliseconds for

a non zero-filled page.
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Basic system performance Breakdown | Measured
(All times are in milliseconds) Total Time
Basic context switching i 0.150
Null Round trip time using Ethernet system [.590)
object
' - Transmit processing by sender 0.450
- Wire overhead (64 bytes, computed) 0.051
- | Context switch at receiver ! 0.150 !
- Transmit processing by receiver 0.450 '
- Wire overhead (64 bytes, compnted) 0.051 |
- | Context switch at sender 0.150
TOTAL TIME 1.302

Table 2: Basic system timings on CLOUDS

4.4 Analysis

DSM (3.200 ms)

RaTP(5.506 ms)

VM (0.800 ms)

Ethernet (6.794 ms)
Figure 3: Cost assoctated with each subsystem in servicing a DSM page-fault.
Total = 16.3 ms
Based on the performance measurements presented earlier, figure 3 shows
the breakdown of the total time spent in each subsystem associated with servicing a
DSM page-fault on CLoups. The total page-fanlt servicing time can be expressed

as a sum of two types of costs: fixed cost and variable cost. The fixed cost consists

444



Basic system performance (contd.) Breakdown | Measured
(All times are in milliseconds) Total Time
Null Round-trip time at RaTP level 3.560
- Initiating request transaction (including a
32-byte copy of RaTP header into an Ethernet
buffer) 0.300
- Wire overhead (64 bytes, computed) 0.051
- RaTP processing at server before wakeup of
server thread 0.265
- 2 Context switches at the receiver 0.300
- Server processing of the request 0.150
- Initiating reply transaction (including a
32-byte copy of RaTP header into an Ethernet
buffer) 0.600
- Wire overhead (64 bytes, computed) 0.051
- RaTP processing before wakeup of the client
thread 0.265
- 2 Context switches at the sender 0.300
- Client processing of the reply 0.100
TOTAL TIME 2.882 B

Table 3: Basic system timings on CLOUDS (contd.)

of the overhead associated with the VM subsystem and the cost of sending a data

request to the data server while the variable cost consists of the cost of sending the

data back to the requester. The variable cost controls the latency of data as seen

by an application process because the application process cannot start processing

the data until the entire data page has been transferred. Ideally, in a DSM system,

one would like to keep the fized cost per byte (see equation 1) and latency per byte

(see equation 2) low.

VM overhead + data request cost

fized cost per byte =

PageSize

(1)



Basic system performance (contd.) Breakdown | Measured
(All times are in milliseconds) Total Time

Transfer time at RaTP level (64-byte request one- 12.300
way., 8 Kbytes other-way)
- Initiating request transaction (including a
32-byte copy of the RaTP header into a

Ethernet buffer) 0.800
- Wire overhead (64 bytes, computed) 0.051
- RaTP processing at the server before wakeup

of the server thread 0.265
- 2 Context switches at the server node 0.300
- Server processing of the request 0.150

- Initiating reply transaction
(8 Kbytes, 6 packets, including one copy of

8 Kbytes plus headers into 6 Ethernet buffers) 2.724
- Wire overhead

(8 Kbytes + headers, computed) 6.794
- RaTP processing before wakeup of client

thread 0.737
- 2 Context switches at the client node 0.300
- Client processing of reply (accepts data in a

buffer, no copying involved) 0.100

TOTAL TIME 12.221

Table 4: Basic system timings on CLOUDS (contd.)

PageSize

Media bandwidth (2)

latency per byte = (server proc. cost) * PageSize +

Total overhead per byte = fized cost per byte + latency per byte  (3)

Equation 1 implies that systems that incur high VM overhead (such as the
library-approach), and high cost for sending a request can minimize fired cost per
byte by increasing the page-size. However, equation 2 dictates that the page-size
should be kept small for keeping the latency per byte low. ldeally, one would like

minimize the total overhead per byte as given in equation 3. We will use these
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DSM operations (segments in memory) Breakdown | Measured
(All times are in milliseconds) Total Time
Get from a data server (no forwarding) 15.500
- Basic RaTP 8 Kbytes transfer 12.300
- 1 Context switch at the server 0.150
- DSM processing at the server (updating state
information) 1.600
- One 8 Kbyte copy from Ethernet buffers into
a client buffer 1.450
TOTAL TIME 15.500
Get from a data server (with forwarding) 18.500
- Basic RaTP 8 Kbyte transfer 12.300
- 1 Context switch at the server on the owner
node 0.150
- DSM processing at the server (updating state
information) 0.800
- Sending a forwarding request to the current
keeper 1.780
- 1 Context switch at the keeper node 0.150
- DSM processing at the keeper (updating state
information) 1.600
- One 8 Kbyte copy from Ethernet buffers into
a client buffer 1.450
TOTAL TIME 18.230

Table 5: DSM timings on CLOUDS

equations in chapter T for deriving values for the page-size parameter for different

system configurations.

Another point to note from figure 3 is that the majority of the total time is
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Page Fault Service | Time (in milliseconds)

Segment owned by a remote data server 16.30
(no forwarding)

Segment owned by a remote data server 19.30
(with forwarding)

For a perishable segment (with zero-fill) 1.52
For a perishable segment (without zero-fill) 0.65

Table 6: Page-fault service times on CLOUDS

spent in the communication subsystem (communication protocol and data trans-
mission). This observations indicates that for an efficient implementation of dis-
tributed shared memory, the cost of data transfer has to be reduced. Some tech-
niques to bring this cost down is through using an improved communication pro-
tocol that has a relatively low overhead; using a faster communication medium
to cut down the time spent on raw data transfer; data compression techniques for
faster data transfer; and using additional hardware to improve processing overhead

associated with the DSMServer.

In this chapter, we presented a detailed performance study of a distributed
shared memory implementation on the CLOUDS operating system. The study pro-
vided us with breakdown of costs associated with various components of distributed
shared memory system. The values are later used to assign costs to individual com-
ponents of the distributed system simulator that has been designed to evaluate the

system issues.
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Chapter 5

Implementation and Analysis of
Benchmarks

The second step in our evaluation process is to study the performance of several
applications on top of a distributed shared memory system. Such a study would
provide us with insights into the performance of DSM with respect to the various
design alternatives available for addressing the system issues. For this purpose,
we selected a set of six applications. These applications range from highly par-
allel computation kernels to asynchronous algorithms. Fach application exhibits
different characteristics with respect to the memory access patterns, amount of
computation granularity, amount of data granularity, and amount of synchroniza-
tion. These applications are implemented on the CLOUDS distributed system. In
the following sections, we first present the system architecture that is used in the

study, followed by the the performance of each of the applications.
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5.1 System Architecture

The system' used in our study consists of a set of Sun 3/60 workstations con-
nected via a 10 Mbit/sec Ethernet. Logically, the nodes can be classified into
three categories. Compute servers are the nodes where processes comprising the
distributed application execute. Processes running at different compute servers can
share data, caching the shared state in their local memories. Data server nodes
store the shared state when it is not cached at compute servers and also main-
tain information needed for coherence activities. Finally, we have synchronization
servers which implement synchronization constructs used to coordinate access to
data shared by processes. The three types of servers capture the functionality pro-
vided by the system. A given node may act interchangeably as a compute server,
a data server and a synchronization server.

We studied these applications with respect to two coherence protocols:?
write-invalidate and write-update. These protocols are implemented in the oper-
ating system.

e Write-invalidate: The implementation of the write-invalidate protocol
uses a static owner to provide sequentially consistent memory. Upon a page-fault,
the page is requested from the data server (owner). On writes, read copies are
invalidated. The data server keeps information about the current writer and the
readers that have cached copies.

e Write-update: The write-update protocol provides a weak memory

!Due to resource constraints, we studied the performance of these applications on only one
system architecture.
*The lock-based scheme was not studied as its implementation was flawed.



model. It is based on the assumption that all program are written with some
synchronization model in mind. Therefore, it is possible to defer consistency ac-
tions to certain synchronization points. One of the key problems in DSM systems is
the potential for false-sharing that exists in a page-oriented implementation. With
an invalidation-based protocol it is impossible to avoid this false sharing even if
synchronization information is used to defer the consistency actions. Therefore,
we have implemented an update-based protocol. The basic idea is the following.
A node records all modifications to a page in a shadow copy (transparent to the
program). Prior to exiting a synchronization region, an XOR of the original page
and its shadow is generated for each dirty page (similar to the diff in [7]). The
modifications to the data are sent to the data server (owner). The data server
merges the modifications to its copy of the page, and sends the modified page to
all nodes that are interested in receiving the updates for the page. Upon receiv-
ing the modified page, the program is allowed to exit the synchronization region.
Thus, the write-update protocol allows multiple nodes to actively write-share a
page, thereby avoiding the penalties due to false-sharing which are inherent in in-
validation based systems. On the debit side, this memory system does incur the
overhead of making a shadow copy for modified pages, generating the XOR-pages,
and applying an XOR-page to the original data page. Further, there is still a
potential for false-sharing in the form of updates to a page (or parts thereof) that
a node is no longer interested in. This could be avoided if the memory system
allows a way for a node to “unregister” itself from active sharing. The correctness
of allowing concurrent writes to the same page is guaranteed by the assumption

that the program itself obeys a synchronization model.
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We use page-faults, access violation, and synchronization events to perform
coherence activities. For example, when a reference is made to a page that is
not cached. the fault handler requests the page from the appropriate data server
(there is a one-to-one correspondence between a given page and a data server).
When the page is received, it is mapped and the faulting process continues. The
implementation of the synchronization constructs (locks, semaphores and barriers)
is centralized. For a given synchronization variable, a single server maintains its

state and the queue of processes blocked on it.

In the following sections, we present the results of the performance of the
applications for the two coherence protocols. The timing measurements are done
using a microsecond timer. Prior to the start of the measurements, all shared data

is prefetched by the compute servers; therefore, the times do not include times for

any disk 1/0.

5.2 Embarrassingly Parallel Benchmark

The embarrassingly parallel (EP) problem is typical of many Monte-Carlo simula-
tion applications. The problem requires generation of Gaussian random deviates
according to a prescribed scheme and tabulation of the number of pairs in succes-
sive square annuli. This kernel exhibits a high degree of computation granularity
with the only requirement for communication being the combination of the 10 sums
from the individual processors at the end. As a result, this kernel is expected to

perform well regardless of the underlying coherence protocol.

ot
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Implementation of CLOUDS

We ran the problem on CLOUDS for A” = 2!° iterations. The A iterations are
equally divided among the available number of processors. The number of proces-
sors is varied from 1 to 6. Each processor computes the successive square annuli.
and at the end updates the global table. The kernel performs equally well for
the two coherence protocols. Table 7 shows the completion times and achieved

speedups for this application.

# of ‘ write-update write-invalidate |

Proc. | Time (sec) | Speedup | Time (sec) | Speedup
1 178.66 - 176.00 -
2 89.23 1.99 88.48 1.99
3 62.10 2.88 59.06 2.98
4 47.35 3.77 46.57 3.78
5 36.84 4.85 36.67 4.80
6 30.30 5.90 30.53 5.76

Table 7: Completion times and speedups for the Embarrassingly Parallel bench-
mark, A" = 216 iterations

5.3 Integer Sort Benchmark

Integer sort is used in “particle-in-cell” applications. The problem statement for
the integer sort benchmark requires that A" keys be sorted in parallel. The keys
are generated by a prescribed sequential key generation algorithm, and are stored
contiguously in shared memory. The benchmark requires computing the rank for

each key in the input sequence.



Implementation on CLOUDS

We have implemented two versions of the integer sort benchmark on CLOUDS.
Both versions use the bucket sort algorithm. However, the task graphs for the two
version are quite different. In version V1, the generation of ranks for the keys is
done in parallel, while in version V2, the generation of ranks for the keys is done
sequentially. Figures 4 and 5 show the task graphs for the two versions. In V1, each
key is read and count of the bucket to which it belongs is incremented. A prefix sum
operation is performed on the bucket counts. Finally, the keys are read again and
assigned ranks using the prefix sums. The algorithm has been shown to perform
well on KSR-1, a tightly-coupled shared memory machine and has been adapted
from [31]. In V2, each processor reads a portion of the keys and updates the count
of the bucket to which the individual keys belong. The final rank assignment for
the keys is done by one processor using a shared data structure that contains the
sum of all bucket counts computed by individual processors. The key difference
in the two versions is the number of synchronization operations (barriers) that
are performed. Version V1 performs 7 synchronization operations (all barriers),
while version V2 performs only one barrier and a set of semaphore operations. The
motivation for two different implementations is to study the effect of the structure
of the task graph on the application’s performance in a distributed system. Each
version sorts A” = 2% keys. For the two versions, one would expect that as
the number of processors are increased, the completion time for the benchmark

decreases.



Version V1

As one increases the number of processors to solve the problem, one would expect
that the completion times to decrease because the total work is equally divided
among participating processors. However. the results of the implementation of
version V1 are quite surprising as almost no speedups observed for any of the two
coherence protocols (see Figure 6). The implementation using the write-invalidate
protocol performs poorly due to the effects of false-sharing. False-sharing causes
data pages that contain the data structures for computing the key densities to
thrash between processors, thereby negating any performance gains achieved due
to increased parallelism. On the other hand, the problem of false-sharing is absent
in the write-update protocol. One would, therefore, expect it to perform better
than the write-invalidate protocol. The write-update protocol performs poorly
because of the high overhead it incurs at synchronization points. As one would
recall, version V1 performs 7 barriers operations. Prior to each barrier operation,
the write-update protocol performs global writes to shared data. As it turns out,
this operation is quite expensive to perform in a distributed system because all
modifications need to be propagated to all participating processors, a potential
O(n?) messages. This is an artifact of the structure of algorithm wherein during
different phases, each processor accesses different portions o1 the shared data. A
different algorithm that enforces localized accesses to shared memory by individual
processors would perform better as each processor can specify which updates to
global memory it would like to receive, thereby eliminating the potential for O(n?)

messages at svnchronization points. For the implementation of version V1 on the



write-update coherence protocol, all gains due to the absence of {alse-sharing are

negated by the need to perform global writes at synchronization points.

Figure 4:

Figure 5:

Version V2

Phase 1
Phase 2
Prase 3
Phase 4
QOnty 1 thread
15 actve
Phase 5
N threads working in paraliel
Prase &
Phase 7 i Bamer

High level structure of the Integer sort benchmark, Version V1

Parallel phase
- computing key frequencies
- N threads working in paraliel

Barrier

Sequential phase
- assiging ranks
- only 1 thread active

High level structure of the Integer sort benchmark, Version V2

The second version of the integer sort benchmark has two distinct phases: a paral-

lel phase, and a sequential phase. In the parallel phase, all processors read in the

key values from their respective portions and increment the bucket counts. At the
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Figure 6: Completion times for the Integer Sort benchmark, Version V1, A" = 2
keys

end of the parallel phase (before executing the barrier), each processor updates
the global bucket counts for the keys. After the barrier, one processor reads in
the global bucket counts and assigns the ranks to individual keys. The sequential
component of the algorithm constitutes approximately 60% percent of the total
execution time on one processor. This version, therefore, has very limited paral-
lelism. Both the write-update and write-invalidate perform equally well. However,
the completion times on these protocols starts to saturate beyond 4 processors,
as the sequential component of the algorithm starts to dominate. Table 8 shows
the breakdown for the sequential and parallel phase of the algorithm for the two

coherence protocols.
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# of write-update write-invalidate

Proc. | Tot | Seq | Par | Tot | Seq | Par
1(13.13 | 7.76 | 5.37 | 13.18 | 7.77 | 5.44
2110.59 | 7.88 | 2.71 | 10.69 | 7.77 | 2.91
3 9.70 | 7.86 | 1.84 | 9.93 | 7.85 | 2.08
4§ 946 | 7.03 | 143 | 9.65|7.85 | 1.79
51 918 | 7.87 | 1.21 | 9.41|7.85] 1.55
6| 9.03 [8.00(1.03]| 9.27 | 7.86 | 1.40

Table 8: Breakdown of times for the Integer Sort algorithm version V2.
5.4 Matrix Multiplication Benchmark

In matrix multiplication, the product of two A" x A" matrices is assigned to a
third resultant matrix. This algorithm is highly parallelizable as no interprocess
communication is needed during the computation of the individual rows of the

resultant matrix.

Implementation on CLOUDS

On CLOUDS, we ran this benchmark for A" = 256 rows. Each participating proces-
sor computes a set of rows of the resultant matrix. At the end, a barrier is executed
to indicate the end of the computation. The completion times and speedups are
summarized in Table 9. As no interdependencies exist between computation of
any two rows, one would expect the completion times to be independent of the

underlying coherence protocol. This is indeed the case.



# of write-update write-invalidate

Proc. | Time (sec) | Speedup | Time (sec) | Speedup
1 449.48 - 446.13 -
2 226.17 1.99 227.12 1.96
3 152.47 2.95 155.15 2.88
4 114.79 3.92 121.11 3.68
5 93.13 1.83 95.78 4.66
6 76.36 5.89 80.27 5.56

Table 9: Completion times and speedups for the Matrix Multiplication benchmark
for A" = 256 rows

5.5 Conjugate Gradient Benchmark

In the conjugate gradient (CG) benchmark, the power method is used to find an
estimate of the smallest eigenvalue of a symmetric positive definite sparse matrix

with random pattern of non-zeros. The algorithm for CG is adapted from [31].

Implementation on CLOUDS

We have implemented CG with an input sparse matrix of size N' = 1400 rows,
and 100300 non zero entries. About 90% of the time for this benchmark is spent
in performing sparse matrix multiplication. Therefore, in the parallel version of
the benchmark, only the sparse matrix multiplication portion is parallelized. The
implementation consists of alternating sequential and parallel phases. The parallel
phase corresponds to the sparse matrix computation. As matrix multiplication
forms the core of the benchmark, one would expect speedups similar to ones ob-
tained for matrix multiplication benchmark (see section 5.4), i.e., the underlying

coherence protocol would not impact the performance of the benchmark. The



results for the implementation of the benchmark are quite surprising. An imple-
mentation with no data partitioning shows significant performance degradation
beyond 2 processors for the write-invalidate protocol. This degradation is due to
the false-sharing of the vector containing the result of the sparse matrix multipli-
cation. Unlike the matrix multiplication benchmark, where the resultant matrix
is distributed among the processors, the CG benchmark requires the result of the
sparse matrix multiplication be placed in a single output vector. The output vector
is then used during the sequential phase of the computation. In our implementa-
tion the output vector is an array of 1400 floating point numbers that can fit in
one 8192 byte physical page. Although individual processors write to disjoint rows
of the output vector, the fact that the vector resides on one physical page causes
it to thrash between processors, thereby degrading the performance. On the other
hand, there is no problem of false-sharing in the write-update protocol as multiple
writers to a physical page are allowed to coexist. However, another problem which
causes performance degradation for the write-update protocol is performing global
writes prior to a synchronization point. The global writes causes the generation
of O(n?) messages as each processor sends its writes to all other processors. This
causes severe performance degradation especially for large number of processors.
One can see in Figure 7, the curve for write-update with global updates starts
to show degradation beyond 3 processors. In CG, the output vector is used only
by 1 processor that performs the sequential phase. Eliminating the generation
of O(n?) messages by allowing a processor to turn-off receipt of those updates

that it is not interested in, causes the performance to continuously improve for
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the write-update protocol upto 5 processors (curve marked write-update with con-
trolled updates). Similarly. doing careful data partitioning of the output vector
for the write-invalidate protocol causes the performance to improve upto 5 proces-
sors. However, beyond 5 processors. due to reduced computation granularity, the
cost of moving data to the node that performs the sequential component starts to

dominate, resulting in loss of performance for the two protocols.

Conjugate Gradient Method Benchmark
1200 T T T T T

1100 B write-invalidate (no false sharing! -— _“_,_.-a-'"=
weite-invalidate (false sharing; =+ ’/’,*'
wi.te-update (with glcbal updates) -8--
1000 P write-update (with contrelled upaates) H—

tdeal i
300 B
N e
el -_’_..-4-‘-"‘ b
/

Completion Times (in seconds)

Kumber of Frocessors

Figure 7: Completion times for the Conjugate Gradient benchmark

56 SCAN Benchmark

The transaction processing benchmarks [15] consists of three basic benchmarks:
sort, scan, and debit-credit. Out of these three, we studied the implementation
of the SCAN benchmark on CLOUDS. The SCAN benchmark specifies a sequen-
tial scan of a file, reading and updating records. The high level structure of the

SCAN benchmark is shown in figure 8. A duplexed transaction log is automatically
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maintained for transaction recovery. Such scans are typical of end-of-day process-
ing in on-line transaction processing systems. The benchmark requires that each
record be locked, read, modified, updated, and unlocked. In the parallel imple-
mentation of the algorithm, the data is partitioned among available processors,
and each processor performs a sequential scan of its portion of the database. In

our implementation, we did not implement the transaction recovery log.

for i in 0 to TotalNumberOfRecords do
WriteLock(record 1);
Read record i;
Change record i;
Rewrite record 1;
UnLock(record i);
endfor ;

Figure 8: Pseudo code for the SCAN benchmark

Implementation on CLOUDS

We ran the SCAN benchmark on CLoOUDS for A" = 10000 records. Each processor
performs a sequential scan of its portion of data. Exclusive access to records is
controlled by assigning one lock per 100 records. The benchmark has very little
communication overhead as there is no contention for data. The benchmark shows
good performance for the two coherence protocols. Figure 9 shows the completion

time for the benchmark for the two protocols.
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Figure 9: Completion times for the SCAN benchmark

5.7 Traveling Salesman Problem

The traveling salesman problem (TSP) requires the computation of the shortest
tour that visits all the cities exactly once. A set of cities, along with a starting
city, and distances between cities is specified as input. TSP can be solved with a
branch-and-bound algorithm. The algorithm constructs a tree of possible solutions
with the root of the tree being the starting city. The path from the root to a leaf
node represents a tour that visits all the cities en route exactly once. The goal is
to find the path from the root to the leaf node with the minimum weight. The

sequential implementation of the algorithm uses a depth-first heuristic.

Implementation on CLOUDS

The parallel implementation of TSP on CLOUDS is similar to the one in [27]. A

master processor generates a number of jobs consisting of the partial paths for the
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top two levels of the search tree. The jobs are kept in a globally shared queue.
Each participating processor picks up a job from the central queue, and using
the depth-first search heuristic, computes the possible paths to cover all cities in
the tour. The value of the best computed path so far is kept in a globally shared
variable. At each level of the tree, a processor compares its current tour value with
the global minimum. A path is abandoned (or pruned) if the current tour value
exceeds the global minimum. A processor can update the global minimum only
if the tour value of the path computed by it is smaller than the global minimum.

The problem completes when all jobs in the queue have been processed.

# of write-update write-invalidate

Proc. | Time (sec) | Speedup | Time (sec) | Speedup
1 58.73 - 54.48 -
2 35.98 1.63 37.96 1.44
3 27.57 2.13 31.37 1.74
4 25.52 2.30 27.95 1.95
3 25.92 2.27 27.69 1.97
6 27.29 2.15 27.93 2.01

Table 10: Completion times and speedups for the Traveling Salesman Problem, 11
city tour

The only actively shared piece of data in TSP is the current best tour value.
To prevent false-sharing, we stored the current best tour value on a separate page.
The frequency of updates to the current best tour value depends on the weights
assigned to the input city matrix, and how soon the global minimum is found in
the computation. In our implementation, we use a 11 x 11 distance matrix with
the distances uniformly distributed over the interval [0, 100] units. We observe

that the speedups achieved for the algorithm depend upon how soon is the global
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minimum found in the computation. If the minimum for the tour is found earlier
in the computation then close to linear speedups are observed. Table 10 shows the
completion times and speedups for the write-update and write-invalidate coherence
scheme. One key point to note is that the speedup saturates at about 2 for four or
more processors. The reason for this saturation is that the cost of propagation of
the best tour value starts to dominate. In both these protocols, any change to the
current best tour value results in the propagation of an entire page (8192 bytes in

CLouDs) of data. This is a high cost of sharing a value which is just an integer.

In this chapter, we presented the results of the experimental study of six
applications on the CLOUDS distributed system. These applications range from
highly parallel computation kernel to asvnchronous algorithms. The experimental
study provided us with the comparison of the two coherence protocols: write-
update and write-invalidate, for different application workloads. The study also
highlighted other factors such as false-sharing and synchronization cost that can
significantly impact the performance of an application. In the next chapter, we
evaluate the issues, which could not be evaluated via experimental studies, using

a simulation-based approach.



Chapter 6

Simulation Studies

The third step in our evaluation process is to study the effects of the system issues
that could not be evaluated via experimental study using simulation. As men-
tioned earlier, the goal of this thesis is to evaluate the design alternatives that are
available for addressing the system issues. We use a simulation-based approach
rather than an experimental approach because the latter approach places con-
straints on the study by limiting the choice of alternatives that can be studied.
The constraints are primarily placed on the study of the effect of the technology
factors (such as processor speed, speed of the communication medium, physical
page size, and additional support for distributed shared memory) on the perfor-
mance of the distributed shared memory system. If one would like to study the
effects of different alternatives using an experimental approach then he/she has to
build all possible system configurations that need to be studied. Such an approach
is very expensive, both resource-wise and time-wise, to realize if a large number of
system configurations need to be studied. On the other hand, a simulation-based
approach offers the flexibility to easily model different system configurations by
tweaking the parameters of the simulator. One drawback of a simulation-based

approach is that the results obtained via a simulation study are not quite exact.
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To remedy this drawback, we do two things: First, the costs assigned to the dif-
ferent components of the simulator are obtained from the performance study of an
implementation of DSM (see Chapter 4). Second, we validate the workload model,
used to drive the simulator, using some of the applications that are implemented
on the CLOUDS distributed system (see Chapter 5).

In this chapter, we present the results of the simulation study. We first
describe the design of the simulator and the workload model used in the study.
This is followed by the validation of the workload model. We conclude the chapter

by presenting some of the results of the study.

6.1 Simulator

We have constructed a simulator to evaluate the design alternatives presented ear-
lier. The simulator is written in CSIM [35], a process oriented simulation language.
The distributed system modeled by the simulator consists of a collection of nodes
interconnected by a local area network. Each node in the network has a processor,
a DSM coprocessor, aind local memory. The local memory acts as a cache for the
portion of the distributed shared memory currently residing at the node. The pro-
cessor generates memory references according to a specified workload model. The
workload model is described in detail in section 6.2. Remote memory references
are serviced by the DSM coprocessor at each node in concert with other DSM
coprocessors. In the simulator, each node is modeled as a set of three CSIM pro-
cesses: a compute engine, a DSM server, and a media server. The interconnection

network is modeled as a CSIM facility. The compute engine models a processor

67



with associated local memory. Shared references which are not currently encached
in the local memory are communicated to the DSM server by the compute en-
gine. The DSM server simulates the appropriate coherence protocol. The media
server models the communication subsystem of a node. It differentiates between
two types of messages: CONTROL and DATA. Each control message is 64 bytes
long while the size of the data message is determined by the page-size parameter
used in the simulation. The media server models the bandwidth characteristics of
Ethernet and an optical fiber. It models the contention aspects of using a shared
broadcast medium without modeling the collision and back-off aspects that are in-
herent in an Ethernet type of protocol. In addition to these three per node CSIM
processes, a CSIM process serves as a centralized lock server. Figure 10 shows the

conceptual picture of the simulator.

Node 1 Node 2 Node n
Compute Compute CSIM process Compute
Engine Engine Engine
DEMserver DEMserver DEMserver
MediaServer HediaServer Mediaserver

Communication Medium

B AR

CSIM facility

CSIM process
Lock Server

Figure 10: Conceptual picture of the simulator



6.2 The Workload Model

Each simulator needs to be driven by a workload model. There are three types of
workload models that can be used: execution driven, trace driven, or a probabilis-
tic workload model. In execution driven simulations [11], the applicaticn programs
are allowed to execute on native hardware, and only interesting events are captured
and executed on a simulator. The advantage of using an execution driven simula-
tion is that the simulation time is considerably reduced as most of the application
code executes at the speed of the host processor. However, the disadvantage of
this approach is that the simulation is closely tied to the hardware architecture of
the native machine, thereby limiting the set of alternatives that can be studied.
In trace driven simulations, traces from a application are captured and used to
drive a simulator; while in a probabilistic workload model, the memory reference
stream of individual processors is generated using some probability distribution.
The advantage of using a trace-driven simulation is that the workload model accu-
rately models an application. However, trace driven simulation has the limitation
that only a few number of applications, which have available traces, can be used.
These set of applications may not be representative of all application workloads.
Therefore, in view of these limitations, we chose to use the probabilistic work-
load model to drive our simulations. The probabilistic workload model has the
flexibility of modeling a wide variety of workloads by tweaking the probabilities
associated with the workload model, thereby allowing us to study a wide range of
workload models. The disadvantage of the probabilistic workload model is that

the workload may not correspond to any real application. To remedy this defect,
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we validated our workload model with some of the distributed applications that
have been implemented on the CLOUDS distributed system.

Archibald and Baer [3] have proposed a simple memory reference generator
based on a probabilistic approach to evaluate cache coherence schemes in a shared
memory multiprocessor. In their model, each processor generates a memory ref-
erence stream. A memory reference (read or write) could either be to private or
shared blocks; locality of references to shared blocks is modeled by increasing the
probability for accesses to recently used shared blocks. The interaction between
the memory reference streams of the different processors is simulated for different
coherence protocols. A synthetic reference generator is used by Kessler and Livny
[19] to evaluate distributed shared memory algorithms, in which the main differ-
ence from Archibald and Baer’s model is that the memory reference stream of each
processor is a sequence of shared and private phases. During a private phase the
accesses are strictly to private memory, while both shared and private memory
may be referenced during a shared phase. Fach phase is characterized by length,
placement, locality, read to write ratio, and type (private or shared).

Synchronization is an important aspect of any parallel program design, and
the memory reference streams of processors executing a parallel program will con-
sist of synchronization accesses and normal read/write accesses. By exploiting
synchronization related information of a program, it is possible to weaken the
memory consistency requirements, thereby improving overall system performance
(see section 2.3). The workload model, described in the next section, captures syn-
chronization aspects of a program; a feature absent in other probabilistic workload

models.
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6.2.1 Structure of the Workload Model

The workload model described in this section captures salient features of paral-
lel and distributed programs. Specifically, it models class of applications that
belong to the single-program-multiple-data (SPMD) style of programming. In a
SPMD program, individual processors execute the same piece of code, albeit on
possibly disjoint sets of data items. Processors synchronize with each other using
semaphores, locks (shared or exclusive), or barriers. Semaphores and locks are used
for protecting pieces of shared data, while barriers are typically used to indicate
the end of a computation phase, or the computation itself.

As with any program, a parallel program in our workload model is rep-
resented as a collection of tasks. The inter-relationship between these tasks is
captured by a task dependency graph, that suggests a partial execution order for
the tasks that constitute the parallel program. A task is ready for execution when
all tasks that precede it in the dependency graph have been completed. A work
queue is maintained that contains the set of tasks that are ready for execution.
Tasks are inserted into this queue honoring the dependencies in the task graph. A
processor accesses the work queue to acquire a task to be executed next. When
the work queue becomes empty and all the tasks have terminated, the parallel
program is said to have completed.

FEach task is a memory reference stream of finite length (specified by a pa-
rameter) and is composed of a sequence of compute and synchronization phases.

During a compute phase, the processor generates references (reads or writes) to



private and shared data. A compute phase is characterized by the following pa-
rameters: the number of memory references, read to write ratio, probability for
shared and private data accesses, and the degree of locality within the phase. The
compute phase is similar to the shared phase as defined by Kessler and Livny
[19]. A synchronization phase consists of read/write data accesses (both private
and shared), with a percentage of the shared data accesses being done under the
control of explicit synchronization. Thus, a compute phase corresponds to a phase
in a SPMD program in which computation is performed, while a synchronization
phase corresponds to a phase in which shared data is manipulated under the con-
trol of some synchronization variahle. Figure 11 shows the composition of the the
two phases within a task (the associated parameters are given in parentheses).
The degree of locality within a phase defines the spatial locality for refer-
ences within a page. In addition to this, the workload model allows designating
distinct and disjoint regions of the shared address space to each task; and there is
a parameter, called InterTaskRefProb, that governs the fraction of shared refer-
ences of a task that are directed to other tasks' as opposed to its own region. This
feature of the workload model captures the SPMD style of programming, wherein
individual processors primarily operate on distinct portions of shared data, with
occasional references to other portions of shared data. To capture effects of false-
sharing, we provide the FalseSharingRefProb parameter. Another parameter,
called SynchReferenceProb, controls the percentage of accesses to shared regions
that are performed under the control of explicit synchronization (shared or ex-
clusive). This parameter models the number of critical sections in the SPMD

program.
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I Type of model I Parameter variable ‘ Default values f

Transaction Model PvtProb 0.70
OtherRegion 0.20
SynchRef 1.00
InterTaskRefProb 0.00

Iterative Model PvtProb 0.70
OtherRegion 0.20
SynchRef 0.20
InterTaskRefProb 0.05
ReadInterTaskRefProb 1.00

Asynchronous Model | PvtProb 0.70
OtherRegion 0.20
SynchRef 0.20
InterTaskRefProb 0.05
ReadInterTaskRefProb 0.80 |

Table 11: List of parameters for domain specific workload models

2. Iterative Model: Iterative algorithms such as linear equation solvers, have
the characteristic that shared data is not modified except at well defined
synchronization points (such as a barrier). Such a data access pattern would
allow a task to access the shared data without acquiring any locks for the
purposes of reading. The iterative model captures this characteristic by
allowing some percentage of the shared references (only reads) to be directed

to other tasks’ regions. (OtherRegion # 0, 0.05 in our experiments).

3. Asynchronous Model: In this model, tasks that comprise a computation
do not synchronize with one another explicitly. In terms of the workload
model this feature would translate to tasks reading and writing to shared
memory without explicit synchronization. However, an implementation of

this model in a shared memory environment may involve the use of locks
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to govern access to mailboxes that may be used for asynchronous communi-
cation among the tasks. This workload model is similar to the data access
patterns of asynchronous algorithms that rely on some other property such as
convergence for correctness and termination [4]. In terms of task parameters,
some percentage of the shared references (both reads and writes) are directed

to other tasks’ regions. (OtherRegion # 0, 0.05 in our experiments).

Table 11 summarizes the default values for the parameters that define the
three domain specific workload models. Table 12 shows the default values for the

other parameters used in the simu.ator.

6.2.3 Validation of the Workload Model

As mentioned earlier, we chose to validate our workload model using some of the
applications that have been implemented on the CLOUDS distributed system. The
validation will illustrate that by properly tuning the parameters of the workload
model, one can model any SPMD style application. For the purpose of valida-
tion, we use two applications: integer sort, and scan — a transaction processing
benchmark. The approach we take is as follows. The performance of these two
applications is measured from the implementation on the CLOUDS distributed
system. Using the program code the basis, we determine the values for the key
parameters of the workload model. Ideally, executing the resulting workload model
on top of the simulator should yield results identical to the measurements on the
real system. Any variations in the results should be easily explained given some
simplifying assumptions that are made in the simulator.

—
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Integer sort

The algorithm for the integer sort benchmark is taken from [31]. The algorithm
uses bucket sort algorithm for generating the ranks for the input keys. The al-
gorithm consists of seven distinct phases with barrier synchronization between
consecutive phases. For more details on the algorithm for version V1, see section
5.3.

The structure of the application task graph can be easily modeled using our
workload model. The task graph for the application consists of 7 levels. At the end
of each level, there is an implicit barrier; modeled in our workload model by the
fact that the processor has to acquire a task from the central work queue. Number
of tasks at each level is equal to the number of threads that are active during that
phase. Using the listing for the program, we determine the number of references
made during each level of the task graph. The shared address space i1s computed
using the size of the shared data structures in the application. In our example, size
of the total shared data space is equal to approximately 2150 Kbytes for A" = 218
elements. Similarly, other parameters are determined and assigned. To account for
false-sharing aspects of the program, we set the FalseSharingRefProb parameter.
See appendix A.l for details about computation of these parameters.

After determining the values for various parameters, we ran the simulation
for the write-invalidate coherence protocol. The results of completion times gener-
ated by an actual run and the simulation experiments are shown in Table 13. The
values within parentheses are reported at 90% confidence level. As can be seen from

the table, the simulation results agree quite well with the real results. Comparing
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the results using the t-test indicates no difference between the results obtained
via the two techniques (The confidence intervals contain zero). This validation
shows the workload model can capture the salient application characteristics with

a careful choice of parameters.

SCAN — A transaction processing benchmark

SCAN is one of the three TPS benchmarks used for evaluating transaction systems.
The details about the benchmark can be found in section 5.6. This benchmark is an
example of the transaction workload model described earlier. The task dependency
graph for the SCAN benchmark consists of only 1 level, with the number of tasks
equal to the number of processors participating in the computation. The memory
reference stream for each processor consists of only synchronization phases. Each
synchronization phase corresponds to accessing a 100 records of a file under the
control of an exclusive lock. The number of references made during each synchro-
nization phase is determined from the set of operations performed on each record
(approximately 500). The total shared memory requirement for this benchmark
is 130000 bytes as all records are stored in shared memory. See appendix A.2 for
listing of the SCAN benchmark. The results obtained via the simulation study
and measurements for the write-invalidate coherence are summarized in Table 14.
The results obtained via simulation are similar to the those obtained via actual

measurements.
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Number of Measured Simulated

Processors | Time | Conf. Interval | Time | Conf. Interval
] 6.51 (6.44. 6.57) | 6.56 (6.56, 6.57)
2 6.83 (6.76, 6.89) | 6.85 (6.73, 6.98)
3 8.41 (8.01, 8.82) | 8.06 (7.93, 8.20)
4 13.02 | (12.35.13.69) | 13.23 | (12.85, 13.61)

Table 13: Comparison of results obtained via simulation with actual measurements
for the Integer Sort benchmark for 2'® elements

Number of Measured Simulated

Processors | Time | Conf. Interval | Time | Conf. Interval
1 23.91 | (23.90, 23.92) | 23.18 | (23.08, 23.21)
2 12.20 | (12.16, 12.25) | 11.59 | (11.58, 11.60)
3 8.45 (8.28, 8.62) | 8.80 (8.80, 8.81)
4 6.43 (6.36. 6.50) | 6.47 (6 47, 6.48) J

Table 14: Comparison of results obtained via simulation with actual measurements

for the SCAN benchmark for 10000 records

[ [ssues ‘ Available alternatives ]
Data granularity (page size) | 512, 1024, 2048, 4096, or 8192 bytes
Coherence protocol write-invalidate, lock-based, or buffered-update
Communication medium 10 Mbps (Ethernet-like), or 1 Gbps (Fiber-like )
Processor Speeds 3 MIPS. 25 MIPS
Number of nodes 4.8.16

Table 15: List of alternatives evaluated using simulation




6.2.4 Parameters for the Simulation

We have designed a set of experiments to study the effects of the various design
alternatives presented earlier. The approach we take is as follows: we use a set
of compute nodes (3 MIPS CPU) connected by 10 Mbps Ethernet as the baseline
system. We then designed our experiments to evaluate the effects of each issue on
the performance of the overall system as compared to the baseline system. A list
of issues that are studied is summarized in Table 15.

The experiments have been conducted for the three workload models de-
scribed in section 6.2.2. An application is modeled as a 4-level deep task depen-
dence graph, with 16 tasks at each level, yielding a total of 64 tasks. A task on
level 7 + 1 is not executed until all tasks at level z have been completed. Each task
generates 100,000 references. The lengths of the compute and the synchronization
phases are specified as input parameters. The shared address space is 1 Mbytes
divided into 128 logical segments of 8 Kbytes each. The logical segment is made
up of physical pages: the page-size is specified as an input parameter. Segment is
a unit of locking assumed in the lock-based protocol while page is a unit of data
transfer on remote memory request for all three protocols. For the purposes of this
study it is assumed that the program level locks generated by the workload model
map exactly to the segment level locks. This assumption essentially removes the
effects (due to lock granularity and data transfer granularity mismatch) of false-
sharing for the write-invalidate protocol, and the effects of limited concurrency for
the lock-based protocol.

In all our experiments, we fix the following parameters to be unchanged:

30



70% private data references, 80% reads, and 20% of shared references performed
under explicit synchronization in the iterative and asynchronous workload models.
The parameters that are varied in the experiments are summarized in Table 15.

We use completion time as the metric for comparison.

6.3 Simulation Results and Discussion

We present the results in two parts: First, we discuss the effects of granularity of
data transfer, and choice of coherence protocol with respect to the three workload

models. Second, we present the impact of the hardware technology on performance.

6.3.1 Transaction Model

One would expect that larger data granularity would reduce the number of mes-
sages in the system as fewer data requests are generated, and would increase spatial
locality. However, larger data granularity also increases the potential for contention
of shared data due to false sharing, thereby degrading system performance. Figures
12, 13 and 14 show the performance for a 4-, 8-, and 16-node system connected via
a 1Gbps communication medium. In the transaction workload model (see Figure
12), we observe that the performance improves as the data granularity is increased
for all three coherence protocols. False sharing is not an issue for this workload
since all shared data references are performed under the control of a lock and since
we assume lock granularity is a segment.

The lock-based scheme is expected to incur a lesser number of messages
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Figure 12: Transaction workload model’s performance on 4 nodes on fiber

on synchronized data accesses since it combines data transfer with synchroniza-
tion. However, in this protocol the data pages associated with the lock are always
shipped to the requester along with the granting of the lock irrespective of whether
the requester has a valid copy or not. As can be seen in Figure 12, the lock-based
protocol performs poorly at low data granularity compared to the other two. The
reason is because at low data granularity more number of messages are required
to bring in the entire segment associated with the lock. The write-invalidate and
write-update schemes may not have to incur this message overhead if the data is
valid at the requester. However at higher data granularity the lock-based scheme
performs better since the number of messages per lock request reduces significantly.
Overall the write-update scheme performs better than either the write-invalidate
or lock-based scheme (see Figure 12), although at large data granularity, the dif-
ference between the write-invalidate and write-update scheme is statistically in-
significant. In the write-update scheme. only the updates are sent to the server

at synchronization points, and further the protocol does not incur the overhead
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of invalidation messages. It is interesting to note for larger systems (8 and 16
nodes) the lock-based scheme performs much better than the other two schemes
for large data granularity (see Figures 13 and 14). For write-invalidation scheme,
the probability of the data associated with a lock being valid decreases due to the
increased concurrent activity over the same number of shared segments. Similarly,
for write-update scheme the updates are sent to the current set of potential readers
and all of them may not actually use it in the future. On the other hand, the lock-
based protocol incurs exactly the minimum number of messages required to get the
lock and data. As we increase the number of nodes in the system, the number of
messages becomes an important factor (due to contention for the communication
medium) in determining the system performance.

In contrast, if one considers a system with Ethernet as the communication
medium then the results for the transaction workload model are completely differ-
ent. Figures 15, 16, and 17 show the results for the transaction workload model
on a 4-node, 8-node, and 16-node system connected via a 10Mbps Ethernet. Un-
like the earlier results, the lock-based scheme performs considerably worse than
the write-update and the write-invalidate schemes. This is because the lock-based
scheme sends a copy of the data-page to the requester regardless of the data-page
being valid at the requester. The cost associated with the transmission of this
data becomes dominant with the slower Ethernet medium, resulting in poor per-

formance for the lock-based protocol.
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Figure 15: Transaction workload model’s performance on 4 nodes on Ethernet
6.3.2 lterative Model

Recall that the iterative workload model (see section 6.2.2) allows a task to access
shared data for reading without explicitly acquiring read-locks. For this model,
increasing data transfer granularity improves system performance for the lock-
based and write-update schemes (see Figure 18). However, for the write-invalidate
scheme, the performance benefit due to the reduced number of messages (at larger
data granularity) is offset by an increase in false sharing, thus resulting in system
performance degradation. Since read-shared copies are invalidated upon a write,
the cost of re-reading a new valid copy increases with increasing data granularity
for a given sharing pattern. The problem becomes even more acute when more
nodes are added to the system, as now it is more likely that read-shared data pages
may become invalid (see Figure 19). Since false sharing is not an issue with either
the lock-based or write-update protocols, we do not see a similar performance

degradation with either of these protocols.
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Since both the lock-based and write-update schemes allow the copies of
shared data to remain inconsistent between synchronization points, these two are
expected to perform better than write-invalidate scheme for the iterative workload
model. Figures 18 and 19 confirm this hypothesis. However it is surprising that
write-update scheme does not do as well as lock-based scheme. In the write-update
scheme, updates for all modified pages are sent at the end of each synchronization
epoch. This set of pages could potentially include ones that are unrelated to this
particular epoch. As a result this scheme could incur more overhead than entirely
called for in the iterative workload model. The lock-based scheme by associating
locks with segments does not have to incur this unnecessary overhead. This effect
is more apparent at low data granularities (small page sizes). In fact, as can
be seen even write-invalidate scheme performs better than write-update scheme
at sufficiently small data granularity since the need for unnecessary updates in
the latter over-shadows the ill-effect of false-sharing in the former. At higher data
granularities the distinction between lock-based and write-update schemes is lesser.

The results for the iterative workload model do not change if the commu-
nication medium is replaced by a 10Mbps Ethernet because only 20% of the data
accesses are made under the control of a lock. Hence, the performance degradation
as a result of shipping data with the lock is not very significant for the lock-based

protocol.
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6.3.3 Asynchronous Model

In this model, unsynchronized write-sharing of data is allowed (see section 3.2).
Further the domain of write-shared data is the entire shared data space. Thus
the model itself has a high built-in overhead (as compared to the iterative model)
for both the write-invalidate or write-update style protocols. In the former, in-
validations may have to be sent to all the nodes while in the latter updates may
have to be sent to all the nodes. This is evident by comparing absolute completion
times for the same amount of total work (in terms of number of memory refer-
ences) for the two workload models (see Figures 18 and 21). As can be seen from
Figure 21 increasing the data granularity helps both the protocols. The positive
effect of reducing the number of messages at larger data granularities seems to
dominate the negative effect of false-sharing for the write-invalidate protocol. The
lock-based protocol (owing to its assumption that computations obey a synchro-
nization model) is basically incompatible with this asynchronous workload model.
Owing to the protocol allowing exactly one-copy of a segment (regardless of the
data granularity) for such asynchronous accesses the lock-based protocol performs
consistently worse than the other two for all data granularity (see Figure 7). How-
ever due to lesser number of messages at larger granularities the performance of
lock-based protocol approaches that of the other two.

The results for the asynchronous workload model do not change if the com-
munication medium is replaced by a 10Mbps Ethernet because only 20% of the data
accesses are made under the control of a lock. Hence, the performance degrada-

tion due to shipping of data with the lock is not very significant for the lock-based
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Figure 20: Asynchronous workload model’s performance on 4 nodes on fiber

protocol.

6.3.4 Hardware Technology

We conducted several experiments to determine the effects of new technology on
the overall performance. When the processors in the baseline system are replaced
with faster processors (see Figure 22), the overall system performance improves,
although the percentage improvement due to reduce computation times is not
uniform across all data transfer sizes. The non-uniform improvement across the
range of data granularity can be explained as follows: For low data granularity,
more number of data requests are generated, thereby increasing the computation
requirements associated with page-fault handling and DSM related state mainte-
nance; as a result, the processor speed has a significant impact on the performance

than for large data granularity. Similar performance improvement is observed when
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the communication medium in the baseline system is replaced with a faster com-
munication medium (see Figure 23). The reason for the improvement is reduced
transmission times. The impact of communication speed on the performance be-
comes more significant as the data granularity is increased because at low data
granularity the access to the medium is the primary source bottleneck (due to

large number of messages).

Effects of technology factors on system scalability

We define scalability of a distributed system as the effect of increased number of
nodes in the system on the performance of the problem being solved, e.g., if a
problem of size A" is solved in time ¢; by P processors then it should be solved by
kP (k > 1) processors in time t, where t; < t;. Ideally, we would like t;/t, = k.
In this case, the problem is said to achieve linear speedup.

To study the effects of technology factors on system scalability, we examined

g1
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Figure 22: Effect of processor speed on performance

a distributed system using the transaction model and the write-update scheme.
Figures 24, 26, 25, and 27 show the results for four possible system configurations:
3 MIPS CPU with 10 Mbps and 1 Gbps medium, and 25 MIPS CPU with 10 Mbps
and 1 Gbps medium.

Figure 24 shows the system performance as a function of data transfer
granularity for 4-, 8-, and 16-node configurations. Although for a given number
of processors the system performance improves as the data transfer granularity
is increased, the performance degrades as the number of processors is increased
for a given data granularity. This is because the increase in computational power
through the additional processors is not matched by the available communication
bandwidth. The scalability problem becomes even more acute when faster pro-
cessors are used in the system without changing the communication medium (see
Figure 25). Similar behavior is observed for the iterative and the asynchronous
models also.

The degradation in system scalability can be eliminated by using a faster
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Figure 23: Effect of communication speed on performance

communication medium (see Figures 26 and 27). Note however that for 16 pro-
cessors there is very little improvement in performance with increased data gran-
ularity. In the transaction workload model the processors compete for the same
fixed number of locks. There are two sources of overhead in this model: one corre-
sponding to data transfer and the other corresponding to the waiting time for lock
service. The data transfer overhead is dependent on the number of messages and
the size of each message. Since for the configurations studied the processing over-
head per message dominates the actual transmission time on the wire, the number
of messages is the more critical factor in determining the data transfer overhead.
At low data granularity the number of messages is higher but the waiting time is
higher; while at high data granularity the number of messages is smaller but due to
the increased service time for each lock request (owing to the larger data granular-
ity) the waiting time for locks is higher. Thus the two sources of overhead balance
each other out resulting in no net gain in performance for large data granularities

when the size of the system is scaled up.
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Figure 25: System scalability with 25 MIPS CPU and 10 Mbps network

In this chapter, we have presented a simulation-based study of issues that
could not be evaluated via experimental studies. A detailed discussion of the
results based on the experimental and simulation study is presented in the next

chapter.
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Chapter 7

Discussion

We started out this research with the goal of evaluating the system issues in the
design of distributed shared memory systems. We first identified a set of system
issues along with the possible design alternatives available for addressing these
issues. The evaluation was done in three steps: First, we studied the performance
of an implementation of distributed shared memory. Second, we analyzed the
performance of several applications on CLOUDS, a distributed shared memory sys-
tem. Finally, we evaluated the issues using a simulation-based approach. Based
on the results of the simulation studies, and implementation and analysis of the
applications, we present here some observations on the design and performance of
distributed shared memory systems. These observations are made with respect to

the system issues identified in chapter 2.

7.1 Virtual Memory and DSM

There are two ways in which the distributed shared memory abstraction can be pro-
vided in a system: One, integrate the distributed shared memory mechanisms with
the operating system; Second, provide the abstraction as a set of library functions

accessible from the user-level. We call the first approach as the integrated-approach
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to DSM, and the second approach as the library-approach to DSM. The implemen-
tation of DSM considered in our study uses the integrated-approach. The advan-
tage of using this approach is that the overheads associated with servicing DSM
page-faults are very low, as all DSM related processing is done inside the operating
system. In CLOUDS, the integrated-approach incurs an overhead of approximately
800 psec per page-fault. As a result, the overall performance of DSM is very good.
On the downside, the integrated-approach is quite inflexible as any minor change
to the distributed shared memory system requires modifications to the operating
system. The library approach to DSM, on the other hand, is quite flexible to deal
with, as only the library needs to be modified. However, it would perform quite
poorly due to the overheads associated with context-switching, crossing user-to-
kernel address boundaries, etc. As DSM deals with physical pages as units of data,
a system designer implementing the library-approach would also have to modify the
operating system to provide hooks for manipulating data pages (such as installing
and invalidating) from the user-level. Some operating systems, such as MACH, do
provide such hooks (via external pagers), thereby simplifying the implementation
of the library-approach. If a system designer needs to provide a high performance
DSM system then we would recommend the integrated-approach to DSM. Table

16 summarizes the advantages and disadvantages of the two approaches.

7.2 Granularity

There are two aspects to the issue of granularity: computation granularity, and

data granularity. As mentioned earlier, computation granularity is the amount
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Approach
Integrated Library
1 | low overheads, O(usec) high overheads, O(msec)
2 | inflexible flexible
3 | transparent to the user Provide hooks in the operating
system for installing, invalidating
pages

Table 16: Integrated vs Library: Comparison of the two approaches

of computation a process has to do between synchronization and communica-
tion points in a multi-process computation, while data granularity deals with the
amount of shared information processed during a computation phase.

e Lffects of computation granularity: In distributed systems connected via
a local area network, network latencies are high. Therefore, any problem that has
to be solved in a distributed environment (through cooperative computing) should
have sufficiently high computation granularity to justify the added communication
costs. The goal is to have a high CGRatio in equation 4.

CCBatie = Time spent in the computation (4)

Time spent in requesting data for the computation

Figure 28 shows the plot for a curve with CGRatio = 1. In order to achieve
good speedups, the CGRatio for an application should fall in the shaded region for a
given DSM implementation (CGRatio > 1). The vertical lines on the chart indicate
the minimum time that is spent in transferring a unit of data between two nodes
in a particular DSM implementation. For example, in CLOUDS, at least 16 msec is
spent in transferring data between two nodes. This is because during each transfer
a minimum of 8-Kbytes is transferred. Values for other systems differ depending on

the size of the unit of data transfer. speed of the communication medium, and other
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overheads associated with the transfer. To achieve good speedups on a particular
implementation, the CGRatio for an application should fall in the shaded region
to the right of the vertical line for that system. Table 17 classifies the systems
surveyed in chapter 3, based on the relative grain of computation needed to achieve
good performance. A system designer can calculate the computation requirements
for his/her DSM design by matching the minimum communication time for the
system with those shown in the chart (see figure 28).

Based on the computation and communication requirements, we can classify
the seven applications that we studied into three categories: high, medium, and
low CGRatios (see Table 18). In our studies, applications which exhibit very
large computation granularity and very little state-sharing, such as EP, matrix
multiplication, and SCAN benchmark, perform quite well (show good speedups)
for all processor configurations. Other applications with medium CGRatios show

reasonable speedups for up to 4 processors. Bevond 4 processors, the completion
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times do not decrease further with the addition of more processors, mainly due
to lack of sufficient computation granularity available at each processor. As a
result, for large system configurations, the communication costs start dominating
the completion times (small CGHRatio) thereby degrading the overall performance.
Better speedups can be achieved by increasing the computation granularity for
each processor either by scaling the problem size for large number of processors, or
using a small number of processors for a given problem size. Applications with low
CGRatios, such as integer sort V1. did not perform well on CLOUDS because the
computation granularity is quite small to yield good speedups. Such applications
will perform well on systems, such as KSR-1, that efficiently support fine-grained

parallelism (see [31]).

Computation Granularity

Large Medium Small
Domain, Ivy, Croubps, Mach, | Memnet DASH, KSR-1
Agora, Choices. Mether, Munin

Table 17: Computation granularity requirements

CGRatio
High Medium Low
EP, Matrix Multiplica- | Integer Sort V2, CG Integer Sort V1
tion. SCAN, TSP

Table 18: Classification of the applications based on the CGRatio

o Effects of data granularity: The issue of data granularity can be related
to the amount of data exchanged between nodes at the end of a computation

phase because it is this data that will be processed in the next computation phase.
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On page-based systems, regardless of the amount of sharing. the amount of data
exchanged between nodes is usually a multiple of the physical page-size of the
underlying architecture. In our study. all applications exhibited very small data
granularity, while the underlying system supported very large physical pages (8
Kbytes). If the shared data is stored in contiguous memory locations then most
data can be stored in few physical pages. This strategy often gives rise to the
problem of false-sharing wherein disjoint pieces of shared data, operated upon by
distinct processors, reside on the same physical page. As a result, the system
performance degrades as the common physical page thrashes between different
processors. The problem further exacerbates as more nodes are used for solving
the problem. Such behavior is observed for the CG, and the integer sort (version
V1) benchmarks. One way to reduce the problem of false-sharing is by partitioning
the shared data structures on to disjoint physical pages. For systems with a large
physical page-size, such partitioning of data can result in significant wastage of
the virtual address space. Such wastage can be reduced if the distributed shared
memory system is implemented on architectures which support a smaller physical
page-size.

Another factor that affects the value for the page-size is the total overhead
per byte associated with fetching a data-page. Recall, in chapter 4 we computed
the value for total overhead per byte as the sum of the fired cost per byte and latency

per byte (see equations 1, 2, and 3).

VM overhead + data request cost

Total head per byte = ‘
otal overhead per byte PageSize

PageSize
Media bandwidth

+ (server proc. cost) * PageSize +
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Using the values for different components of the distributed shared memory
system, one can compute the effect of increase in page-size on the total overhead
per byte for a particular system. Figure 29 shows the expected overhead per byte
for the CLOUDS implementation of DSM using a 10 Mbps Ethernet. In the plot,
we assume that the VM overhead is 0.800 msec, cost of sending a data request is 3
msec, and server processing cost is 0.200 msec/Kbyte of data. As can be seen from
the figure, the minimum occurs somewhere between 1 - 2 Kbytes. For page-size
values larger than 2 Kbytes, the latency per byte dominates the total overhead per
byte while for values less than 1 Kbytes, the fired cost per byte dominates the total
overhead per byte. Table 19 lists values for the page-size parameter for different
values of the VM overhead, server processing overhead, and data transmission
cost. The values listed in Table 19 indicate the minimum value of page-size; and
is obtained by differentiating the total overhead per byte with page-size parameter

and solving for page-size (see equation 5).

, \] Media bandwidth(VM overhead + data request cost)
PageSize = : ; (5)
(Media bandwidth) x (Server proc. cost) + 1024

VM ovhd | Data req cost | Server proc. | Media Speed Page-size
1 | 0.80 msec 3.00 msec 0.20 msec/K | 10 Mbps 1 - 2 Kbytes
2 | 10.0 msec 3.00 msec 0.20 msec/K | 10 Mbps 3 - 4 Kbytes
3 | 0.80 msec 1.00 msec 0.20 msec/K | 1 Gbps 2 - 3 Kbytes
4 | 10.0 msec 1.00 msec 0.20 msec/K | 1 Gbps 7 - 8 Kbytes
5| 0.005 msec | 0.02 msec 0.05 msec/K | 8 Gbps 0.7 Kbytes

Table 19: Optimal value of page-size for different system configurations

Table 19 indicates that a single value of the page-size parameter is not

appropriate for all types of DSM system designs. The value should be decided
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Figure 29: Total overhead per byte for DSM on CLOUDS

based on the other design decisions, such as approach to DSM, expected server
processing overheads, and cost of data transmission. For example, a page-size
of 1 - 2 Kbytes is appropriate for a software implementation of DSM using the
integrated-approach and Ethernet-like communication medium. Systems such as
CLOUDS that have similar characteristics but are implemented on architectures
with 8-Kbyte page-size pay a high penalty for latency per byte. On the other hand,
systems that provide hardware support for DSM (indicated by small VM overheads,
server processing overheads), and faster communication medium can utilize smaller
page-sizes (see entry 5 in Table 19). KSR-1 is an example of such a system that
uses a 128-byte sub-page as the unit of data transfer and coherence maintenance.
As the value for the page-size is usually tied to the system architecture used for
the implementation, a system designer should carefully analyze his design decisions

before selecting the architecture for implementation of DSM.
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7.3 Memory Model and Coherence Protocol

Programming on any system requires that the users be offered a programming
model that they can use for writing programs. Distributed systems are no different.
The choice of a memory model is closely tied to the type of coherence protocol
that is used for maintaining coherence of shared data. The experimental results
presented in this thesis are for two kinds of memory models: one weak, and one
strict. Corresponding to these two memory models, we considered two coherence
protocols ~ write-update, and write-invalidate. The write-update protocol is based
on the buffered consistency (BC) memory model while write-invalidate is based on
sequential consistency (SC). In our simulation studies. we also studied the lock-
based protocol. The lock-based protocol restores sequential consistency at well-
defined points governed by locks, with hooks for weaker semantics (see Chapter
2). In the following discussion, we refer to the memory model implemented by the
lock-based protocol as the SCsynch model.

Table 20 ranks the performance of the three memory models for the seven
applications and three workload models that we studied. Interestingly, for applica-
tions that exhibited high CGRatios (EP, Matrix Multiplication, SCAN, TSP), the
choice of memory model does not make a significant difference on the performance
of the application. The main reason is that the application’s communication re-
quirements are very low such that it does not matter which memory model is used.
For medium-grained applications such as integer sort V2 and CG, the BC memory
model performs well because it supports concurrent writes to heavily shared data

pages. The SC memory model performs poorly because it pays a high overhead
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Application Rank
EP, Matrix Multiplication. SCAN, TSP
Integer Sort V2

CG

Integer Sort V1

Transaction Workload

Iterative Workload

Asynchronous Workload

Table 20: Ranking of the three memory models

for maintaining consistency of heavily shared data pages. For small-grained appli-
cations such as integer sort V1, the BC memory model performs poorly compared
to SC because the former incurs high overheads at synchronization points. These
overheads negate any gains of using a weaker memory model. For our simulation
studies, we considered a wide range of workload models, and weaker memory mod-
els perform well for configurations with large number of processors (SCsynch for
iterative, BC for asynchronous; see section 6.3). The sequentially consistent mod-
els did not perform well due to the increase in overhead for maintaining coherence

of data in large configurations.



Programming Ease

Other factors that can influence the choice of the memory model, and coherence
protocol are the aspect of programming ease, and system scalability. By ease of
programming, we mean how much work the programmer has to do in writing an ef-
ficient distributed application. For programming ease, stricter memory models are
better suited because these are well understood by the programming community.
On the downside, to achieve good performance, the programmer (or the compiler)
has to do good job at data placement to avoid false-sharing. As mentioned ear-
lier, performance degradation due to false-sharing magnifies in systems with large
page-sizes. On the other hand, weak memory models are new to the programming
community, and are not understood enough by the users to exploit the weakness
of memory in the applications. False-sharing may need to be addressed in models
which use invalidation-based approach to provide weaker semantics. Programming
effort is less for protocols which eliminate false-sharing by using an update-based
scheme.

Another aspect to programming ease is the question where should ore focus
his/her efforts in writing efficient distributed shared memory programs: at the
application level, or at the system level. The advantage of focussing efforts at
the system level is that an application programmer (naive or advanced) needs to
do very little work in writing efficient programs because the underlying system
has been tuned to provide good performance. Such is the case with using the
integrated-approach to DSM wherein a programmer is oblivious of the structure of

the underlying system. All data that is needed by an application is transparently
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and efficiently fetched to the node where the execution takes place. On the other
hand. if the focus is at the application level then a programmer needs to be aware
of the complexities of the underlying system for writing efficient programs. A
naive implementation of an application may result in a poor performance as the
underlying system may not be tuned to support DSM very efficiently. Such is the
case with using the library-approach to DSM wherein a programmer has to specify
the data structures that are shared globally. and the kinds of sharing patterns

expected of the shared data. Munin is an example of such a system.

System Scalability

By system scalability, we mean how many nodes can efficiently implement DSM
without incurring significant performance degradation. One measure of system
scalability is the number of messages required for maintaining coherence of shared
data. Table 21 shows the number of messages generated in the three coherence
protocols (with and without multi-cast). If no multi-casting is used then one can
see that both the write-update and the write-invalidate schemes can potentially
generate number of messages proportional to the number of nodes participating in
the computation (r — A”). On the other hand, lock-based protocol is insensitive
to the number of nodes participating in the computation. However, in both the
lock-based and write-invalidate protocol, the number of messages increases as the
the degree of sharing is increased (number of messages is a function of the degree
of coherence, c).

Table 22 rates the scalability of the three protocols based on different pa-

rameters values, assuming no multi-cast. We analyze each of the four cases below.

107



Number Of Messages
Protocol Without multi-cast With multi-cast (r=1I)
write-update S(5 + 2rw) + 2P(1-h) S(5+ 2w) + 2P(1-h)
write-invalidate | S(5 + 2rwe + c(l-w)) + S(5 + 2we + c(1-w)) +
P(1-h)(2+ c(w(5+ 2r) +1)) | P(1-h)(2+ ¢(Tw + 1))
lock-based 3S + P(1-h)(2 + ¢) 38 + P(1-h)(2 + c)
) Number of synchronization phases
M Amount of memory operated by a processor during a computation phase
w  Probability that an access is a write operation
h Hit ratio
¢ Probability that an access read/write will cause coherence messages

to be sent to other nodes
N Number of nodes participating in the computation
r Number of nodes involved in receiving coherence messages. r < A
g Unit of data transfer
M

P Number of messages needed to bring in M bytes of memory. P = 7

See appendix D for details.

Table 21: Number of messages generated in the three coherence protocols

1. If an application does not require any coherence to be enforced (¢ = 0) then
the lock-based scheme will generate a fewer number of messages because
it combines data transfer with synchronization. One example of such an
application is an implementation of TSP that allows the nodes to use their
local copies of the best tour-value. Only when a processor needs to update the
global best tour-value, it does so under the control of a lock. This application
does not need any coherence activity to be performed during computation of
the best tour-value. The other two protocols will generate equal number of
messages, albeit more than lock-based, because separate messages are needed

for acquiring/releasing locks during the computation.
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Condition Order
1 | No coherence needed, ¢ = 0 (1) lock-based
(2) write-invalidate, write-update®
2 | No computation phase, M =0 (1) lock-based
= P=0 (2) write-update
(3) write-invalidate
3| r—- N (1) lock-based
(2) write-update
(3) write-invalidate
4 | Number of synchronization phases | (1) write-update
tend to 0, § — 0 (2) lock-based
(3) write-invalidate

¢Provided the reader turns off receipt of updates

Table 22: Scalability of the three coherence protocols without multi-cast

2. For applications that access data under the control of a svnchronization, the

lock-based scheme generates fewer number of messages than the other two
protocols because it combines data access with synchronization. The write-
update protocol generates fewer messages than write-invalidate because the
former supports concurrent writers to the same physical page while the latter

does not. The SCAN benchmark is one example of such an application.

. If the number of nodes for which memory consistency needs to be enforced

reaches A" then the number of messages generated for the write-invalidate
scheme increases more rapidly than the write-update scheme because the
former enforces memory consistency during the synchronization and compu-
tation phase while the latter enforces memory consistency only at the end
of the synchronization phases. The lock-based scheme scales better than the

other two because the number of messages is independent of the number of
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nodes participating in the computation.

4. If an application has very few synchronization phases then the benefits of
the lock-based scheme in combining data access and synchronization become
negligible. As a result, the write-update scheme scales better than the other
two because it does not generate messages to enforce memory coherence

during computation phases.

A system designer can analyze the target set of applications that will run
on the DSM system to see which type of applications will be more often used.
The designer should then select the memory coherence protocol accordingly by

comparing the number of messages using table 21.

7.4 Synchronization

We discuss the issue of providing synchronization with DSM under a broader cate-
gory of miscellaneous system services. Simulation studies (see Chapter 6) have been
performed assuming miscellaneous system services (such as acquiring/releasing
locks, barriers, and disk I/O) incur negligible cost; therefore the results of the
studies do not show significant effect of these services on the performance. In
our implementation studies, however, we observed that these services play a key
role in determining the overall performance of the application. Most applications
that we consider belong to the class of SPMD programs with approximately equal
amounts of computation being performed at each node. As a result, the proces-

sors have a tendency to reach a synchronization point in the program at about
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the same time, causing bursts of synchronization activity. Such bursts of activity
cause the central synchronization server to become overloaded, resulting in severe
performance degradation especially for large number of processors. Similar perfor-
mance degradation due to tie data server becoming a bottleneck is observed for
the write-update protocol. In the write-update protocol, all processors perform a
cp-synch() operation prior to a synchronization point. In cp_synch(), all modi-
fications made to shared memory are identified and sent to the data server. As all
processors reach the synchronization point at approximately the same time, the
data server becomes the bottleneck while servicing the cp_synch() requests. The
performance deteriorates further as more nodes are added to the system. One tech-
nique to eliminate the problem would be to reduce the number of messages that
are generated by individual processors at synchronization points. In the write-
invalidate and write-update protocols two separate messages are generated at a
synchronization point: one for doing the synchronization operation; and one for
requesting the data associated with the synchronization operation. Combining
these two messages, as is done in the lock-based protocol, would significantly im-
prove the system performance. This point is supported by the simulation studies
for the transaction workload model (see section 6.3.1). Using distributed servers
for providing miscellaneous services may also alleviate the server bottleneck prob-
lem. It is essential, therefore, that the system designer pay equal attention to
the design of miscellaneous system services for scalable distributed shared memory

systems.
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7.5 Hardware Technology

Performance of any distributed svstem is closely tied to the hardware technol-
ogy the system is built around. With the advent of faster microprocessors, it is
possible to build more powerful systems. However, one area of the design that
is seldom given much thought to is the type of communication medium. Use of
slower communication medium such as Ethernet, with faster processors causes the
communication to become a bottleneck. This is confirmed by the results of the sim-
ulation studies (see section 6.3.4), which indicate that for building scalable DSM
systems a faster interconnection network is a must. System designers interested
in building new distributed systems should pay close attention to alleviating the
communication bottleneck by considering new communication technologies, such
as fiber optics, and ATM networks, for the design. Providing additional hardware
support for DSM can also improve system performance by off-loading all shared
memory related activity from the host. There are two types of overheads asso-
ciated with a software implementation of DSM systems. One, the time spent in
performing housekeeping chores during servicing of DSM requests (approximately,
20% on CLOUDS); Second, time spent in processing control messages such as in-
validation, updates, for maintaining coherence of shared data. These activities can
reduce the number of cycles available for a host for performing useful work. To
reduce this overhead, hardware support for DSM is essential especially in large
distributed systems where distributed shared memory traflic could be high. See

appendix C for more details on the design of hardware support for DSM.



7.6 Conclusions

System Architecture

Parameters Large Medium Small
Processor Speed 12 mips 20 mips 40 mips
Communication Speed 10 Mbps 16 Mbps 1 Gbps
VM Overhead 800 usec 400 psec 10 psec
Memory Model BC BC BC
Coherence Protocol write-update | write-update | write-update
Page-size 1-2KB 512 bytes 128 bytes

Table 23: Characteristics of three types of DSM systems

CGRatio
Architecture High Medium Low
Large 0(1000) 0O(100) 0(10)
Medium 0(1000) 0O(1000) O(100)
Small 0(1000) 0(1000) 0(1000)

Table 24: Number of nodes that can efficiently execute an application based on
the CGRatio

Based on the experimental and simulation results, table 23 lists the char-
acteristics of three types of DSM systems that support large-grain, medium-grain,
and small-grain parallelism. Note that the cost of building a DSM system increases
as one moves from large-grain to small-grain systems because former are usually
built with slower processors and slower communication mediums, while the latter
needs additional hardware support for achieving good performance. However, the
DSM design does not preclude use of faster communication medium with slower
processors, though use of faster processors with slower communication medium
does not scale well (see section 6.3.4).

For these three types of DSM systems,

table 24 lists the number of nodes that can efficiently execute the three different

113



classes of applications (based on the ('GHRatios). Based on our experience with the
seven applications on the CLOUDS distributed system. we would categorize any
application with a C'GRatio less than 10 as small-grain, between 10 and 1000 as
medium-grain, and greater than 1000 as large-grain. Note that this classification
uses the CLOUDS system as the point of reference. As can be seen from table 24,
small-grain DSM systems can scale to thousands of nodes for all three classes of
applications provided the number of messages generated in the system for main-
taining memory consistency is kept to a minimum using weaker memory models

and multi-cast techniques.

In this chapter, we discussed the issues related to the design of distributed
shared memory systems based on the results of obtained from our simulation and
experimental study, and provided guidelines to designers who are interested in the

design of scalable distributed shared memory systems.
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Chapter 8

Conclusions and Future Work

8.1 Concluding Remarks

The thesis starts with the premise that distributed shared memory is a viable
programming paradigm for programming large distributed systems. Based on this
premise, we have investigated several issues that arise in the design of such systems,
and tried to answer the question whether we can identify a set of issues, along with
the design parameters, that define an efficient implementation of distributed shared
memory systems. The answer to this question has provided several contributions.

First, we have identified a set of system issues that form the core of a
distributed shared memory system design. These issues include integration of
distributed shared memory with virtual memory management, granularity of com-
putation and data, choice of memory model, choice of the coherence protocol, and
technology factors. We have also identified a set of possible design alternatives
that are available for addressing each of these issues.

Second, we have analyzed the performance of an implementation of dis-
tributed shared memory on the CLOUDS distributed operating system. The study
provided us with an insight into the functioning of a distributed shared memory

system. The performance study helped us in identifying performance bottlenecks,
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and provided us with timings measurements associated with individual compo-
nents of the DSM subsystem. These times were later used to assign costs to the
different components of the simulator.

Third, to evaluate the various design alternatives, we have implemented
and analyzed the performance of several applications on the CLOUDS distributed
system. Issues that could not be studied via experimental studies have been stud-
ied using a simulation model. To drive the simulator, we designed a workload
mode] that captures the salient features of programming parallel and distributed
systems. The simulator is used to analyze system performance with respect to data
granularity, types of coherence protocols, effect of communications media, and any
additional hardware support. We state conditions to determine appropriate values
for addressing the issues enumerated earlier. A system designer can use these con-
ditions to decide the alternatives that are appropriate for the distributed shared
memory system he/she is designing. Some of the key results of the study indicate
that the choice of coherence protocol does not matter for applications that exhibit
high computation granularity and low state sharing; coherence protocols based on
weaker memory models are suitable for use in large distributed shared memory sys-
tems; the unit of data granularity (page-size) depends on the overhead associated
with servicing data requests and cost of data transmission; miscellaneous system
services, such as the synchronization server, and the data server, play a significant
role in influencing the performance of an application; and the application perfor-
mance can be improved by providing additional hardware support for distributed

shared memory.
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8.2 Future Work

The research in this thesis has answered some questions related to distributed
shared memory systems. However, several questions remain unanswered. We
briefly discuss some of these questions in this section.

The benchmarks used in the study were drawn from a set of applications
that exhibit fine-grain parallelism. Given the high network latencies in some dis-
tributed systems such applications may not be appropriate for benchmarking such
systems. It would be interesting to identify applications that are more appropriate
for distributed systems.

The research in this thesis examined the effects of the operating system
issues on the performance of DSM systems. We did not consider other issues
namely, object and process migration, reliability, availability, and fault-tolerance
that are equally important. We would like to study the impact of these issues on
the design of DSM systems, and see how these issues impact the results presented
in this thesis.

To date, many researchers have designed and implemented several experi-
mental distributed shared memory systems. However, none of these systems have
left the research laboratories and made it into systems for daily use. One rea-
son for this is researchers have been unable to identify applications except nu-
merically intensive computations that can efficiently make use of the distributed

shared memory abstraction. A few fertile areas for research include the use of
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distributed shared memory abstraction in the design of multi-media servers, par-
allel/distributed file servers, and main memory database systems. With the ad-
vent of high speed networks, it is likely that the communication bottleneck found
in current (1993) implementations of distributed shared memory systems will be
eliminated. This opens new possibilities for using distributed shared memory in
daily life.

In this research, we presented a preliminary design for the type of hardware
support that would benefit DSM systems. However, to completely understand the
performance implications of such support, it is essential that a detailed performance
study be carried out. As part of our future work, we plan to implement and do
a detailed performance study of the controller. We would also like to explore
the performance implications of using one processor of a multiprocessor machine
as a dedicated DSM processor, and study its performance in comparison to the

dedicated controller approach.



Appendix A

Integer Sort and SCAN benchmarks

A.1 Integer Sort (version V1) Benchmark

This section describes the computation of various parameters for the simulation
for the integer sort program. All parameters except the amount of shared address
space, number of references made by a task, and the parameter capturing false-
sharing aspects of the program are assigned default values. We compute the shared
memory requirements for the application for sorting A" = 2'® elements (see Table
25) based on the source listing shown in section A.1. Table 26 shows the formulae
used for computing the number of references made by a task at each level of the
task graph. This 1s an approximate representation derived from the loops in the
program. Note that we are only interested in the approximate number of references
and not the exact number. The parameter NumberOfNodes is an input parameter
to the simulator indicating the number of nodes participating in the computation.
Parameter FalseSharingRefProb. which models the false sharing aspect of the
application, is tuned to approximate the behavior of the implementation by com-
paring the results of the simulation and the implementation. One could use curve

fitting techniques to extrapolate this parameter for a larger number of processors.
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Data Structure Size Actual size

I (in bytes)

short key[N] 2N 524288
short S[N] 2*N 524288
int rank[N] 4N 1048576
int keyden[Bmax| 4*Bmax 262144
int keyden t{MAX PROCS|[Bmax]| | 4*MAX_PROCS*Bmax 8192
int work size_n 4 4
int work _size k 4 1
int extra_n 4 4
int extra_k 1 4
int my strt_n[MAX_PROCS] 4*MAX_PROCS 24
int my_end_n[MAX_PROCS] 4*MAX_PROCS 24
int my strt ki MAX_PROCS] 4*MAX_PROCS 24
int my_end k{MAX_PROCS] 4*MAX_PROCS 24
int my_extra_k[MAX_PROCS] 4*MAX_PROCS 24
int my extra_n[MAX_PROCS] 4*MAX_PROCS 24
int tmp_sum_k[MAX_PROCS] 4*MAX_PROCS 24
int tkt MAX_PROCS][128] 4*MAX_PROCS*128 3072
TOTAL SIZE 2157752

Table 25: Approximate shared memory requirements for the integer sort bench-

mark for ' = 2'® elements, Bmax = 2048, MAX_PROCS=6

A.1.1 Source Listing of the Integer Sort Benchmark
short key[N] = {0};
short S[N] = {o0};
int rank[N] = {0};
int keyden[Bmax] = {0};
int keyden_t [MAX_PROCS] [Bmax] = {{0, 0}};
long work_size_n = 0;
long work_size_ k = 0;
long extra_n = 0;
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LLevel | Number of References per task j

18

2((11 + Bmar + 22 + Bmax) + (Bmar +
Bmazx)/NumberO fNodes + (4 + N+ 4+ A') [NumberO f Nodes
3 | (NumberOfNodes + 6 * NumberOfNodes) + (Bmazx + 3 *
Bmaz) + (2 ¥ Bmax + 4 x Bmax)/NumberO f Nodes
(NumberO f Nodes + 6 x NumberO f N odes)

(2% Bmazx + 4 * Bmax)/NumberO f Nodes

(3% Bmaz + 6 * Bmaxz) ¥ NumberO f Nodes

(6 * N +5xA)/NumberO f Nodes

=1 & O

Table 26: Number of references made by each task for the integer sort benchmark
for A" = 218 elements, Bmax = 2048

long extra_k = 0;

long my_strt_n[MAX_PROCS] = {0};
long my_end_n[MAX_PROCS] = {0};
long my_strt_k[MAX_PROCS] = {0};
long my_end_k [MAX_PROCS] = {0};
long my_extra_k[MAX_PROCS] = {0};
long my_extra_n[MAX_PROCS] = {0};
int tmp_sum[6] = {0};

int tkt[6][128] = {{0, 0}};

int is::start(int nprocs, int seq, 1nt chunk) {
int i, J;
C_printf ("Kernel IS, chunk=%d n", chunk);
barrier.ReadAssociate(0, 0);

/KoK ok skt Kok Rk skokokkok ok kokk PHASE 1 skskokokokok ko skoskskorok ok ok ok skokok ok

if (seq == 0) {
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resettimer();

work_size_n = N / nprocs;

work_size_k = Bmax / nprocs;

extra_n = N % nprocs;
extra_k = Bmax J, nprocs;
}
cp_synch();

barrier.barrier();

J dkdokokok sk okok ok ko okokkokkokkokok ok PHASE 2 skoskokok skok skt ook skook s skook sk o skok ok ok okok

if (seq < extra_n)

my_extra_n[seq] = seq;
else

my_extra_n[seq] = extra_n;
if (seq < extra_k)

my_extra_k[seq] = seq;
else

my_extra_k[seq] = extra_k;

my_strt_n[seq] = (seq * work_size_n) + my_extra_n[seq];
my_end_n[seq] = my_strt_n[seq] + work_size_n - 1;
if (seq < extra_n)

my_end_n[seq] = my_end_n[seq] + 1;
my_strt_k[seq] = (seq * work_size_k) + my_extra_k[seq];
my_end_k[seq] = my_strt_k[seq] + work_size k - 1;

if (seq < extra_k)



my_end_k[seq] = my_end_k([seq] + 1;
for (i = 1; i <= 1; i++) {
bucksort(seq, chunk, nprocs);
}
cp_synch();
barrier.barrier();
if (seq == 0) {
long t = readtimer();

C_printf("Time = %dn", t);

int is::bucksort(int seq, int chunk, int nprocs) {
int i, j, it, chu, k;
C_printf("[%d] Start = %d end = Y%dn",
seq, my_strt_k[seq], my_end_k[seq]l);

/* Zero the keyden array x*/

for (i=my_strt_k[seq]; i<=my_end_k[seq]; i++)
keyden[i] = 0;

for (i=0; 1<Bmax; i++)
keyden_t [seq] [1] = 0;

/* Count occurrences of each key (the ’key density’) */

for (i = my_strt_nlseql; 1 <= my_end_n[seq]; i++) {
k = key[il;

keyden_t [seq] [k] = keyden_t[seq] [k] + 1;
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}
cp_synch() ;
barrier.barrier();
[ HAF A A A KA A KA KKK dkkkk PHASE 3 % kokkokkokok kK dokkokok Kok ok Kok |
for (j = 0; j < nprocs; j++) {
keyden[my_strt_k[seql]] = keyden[my_strt_k[seq]]
+ keyden_t[j] [my_strt_k[seql]l; }
for (j = 0; j < nprocs; j++) {
for (1 = my_strt_klseq]l + 1; i <= my_end_k[seq]; i++) {
keyden[i] = keyden[i] + keyden_t[j][i]; } }
for (i = my_strt_k[seq] + 1; i <= my_end_k[seq]; i++)
keyden[i] = keyden[i] + keyden[i - 1];
cp_synch();
barrier.barrier();
JAokskokokokokok kskoksokotokkookokkok ok PHASE 4 skeskokskokokok sk skok sk ok ok sk kok ok sk okok ok ok f
if (seq == 0) {
tkt[seq] [0] = 1;
tmp_sum[0] = 0;
for (1 = 1; i < nprocs; i++)
tmp_sum[i] = tmp_sum[i - 1] + keyden[my_end_k[i - 1]];
}
cp_synch();
barrier.barrier();

J ok dokokok ok okokokokokokokolok kokkok - PHASE 5 skeokeok sk skok ok okokok sk ek kol ok koo ok f
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for (i = my_strt_k[seql; i <= my_end_k[seq]; i++)
keyden[i] = keyden[i] + tmp_sum[seq];
cp_synch();
barrier.barrier();
[ ok ok ok ook ok sk kR okokkokskokokkok PHASE 6 skoskoskok ok sk ok skok ok ok ok ok ok ok ok e e ke ok f
if (seq == 0) {
for (i = 0; i < Bmax; i++)
for (j = 0; j < nprocs; j++) {
int tmp_den = keyden_t[j][i];
keyden_t[j][i] = keyden[i];
keyden[i] -= tmp_den;
}
cp-synch();
F

barrier.barrier();

[FRA ook ook kRO Rkok PHASE 7 okt kot ok sk ok ok ok ko ok /
for (i = my_strt_n[seq]; i <= my_end_n[seq]; i++) {

k = key[i];

keyden_t [seq] [k] = keyden_t[seq][k] - 1;

rank[i] = keyden_t[seq] [k];

}
void is::init(int nprocs) {

int 13



barrier.Initialize(nprocs);
for (1 = 0; 1 < N; 1 += 8192)
s[i] = 0;

for (i = 0; 1 < N; i++)

n

rank[i] = 0;

for (1 = 0; i < Bmax; i++)
keyden[i] = 0;

resettimer();

cp_synch();

i = readtimer():

C_printf("IS :: Initialization done in %d usec\n", i);

A.2 SCAN Benchmark

This section describes the computation of various parameters for the simulation of
the SCAN benchmark. All parameters except the amount of shared address space,
number of references made by a task, and the parameter capturing false sharing
aspects of the program are assigned default values. We computed the various
parameters based on the source listing shown in section A.2.1. False-sharing is not
a significant factor in this benchmark as all processors operate on disjoint pieces

of data. Table 27 summarizes these parameters.
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[ Parameter J Formula ﬁ
SharedAddressSpace sizeof( struct record ) * MAXRECORDS
Number of References per task | (500°"MAXRECORDS)/NumberOfNodes
FalseSharingRefProb 0

Table 27: Approximate shared memory requirements for the SCAN benchmark for

MAXRECORDS=10000 records

A.2.1 Source Listing of the SCAN Benchmark

#define MAXLOCKS 100
#define MAXRECORDS 10000
clouds_class scan uses {}1
C_rwlock Alock [MAXLOCKS];
Barrier barrier;
public :

entry void init(int);

entry void readinputs(int, int, int, int);

entry int start(int myid, int procs,

int start, int end, int delay);

end_class
struct record {
char name[45] ;

char address[45];

int age[2];
int ssno[2];
int wage[2];



int desig[2];
int super[2];
i
struct record file[MAXRECORDS]={0};
void scan :: readinputs(int myid, int nprocs,

int start, int end)

{
int 1,j;
/* Prefetch your portion of data */
for (i=start; i < 200; i++) {
j = filelil.age[1];
}
}
void scan:: init(int nprocs)
{
int i;
for (1=0; i < MAXLOCKS; i++)
Alock[i] .Create();
barrier.Initialize(nprocs);
cp_synch();
C_printf("Initialized\n");
}

scan:: start(int myid, int nprocs, int start,

int end, int debug)
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int rec_no,k;
unsigned long t2, t;
struct record buf;
barrier.ReadAssociate(0, 0);
[k sk sk skokok ook ok ok kokdkokskokokok PHASE 1 skokoskok sk ok sk ok ook e ok skok ok ook ok sk ok ok ok ok f
if (myid == 0) {
resettimer();
}
int i=0;
int lock;
for (rec_no= start; rec_no < end; rec_no++) {
if (rec_no == start) {
lock = start/MAXLOCKS;
if (debug)
C_printf("[%d] Acquiring %d....\n", myid, lock);
Alock[lock] .wlock();
}
else
if ((rec_no%MAXLOCKS) == 0) {
if (debug)
C_printf("[%d] Releasing %d....\n", myid, lock);
Alock[lock] .unlock();

lock = rec_no/MAXLOCKS;
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if (debug)
C_printf("[%d] Acquiring /d....\n", myid, lock);
Alock([lock] .wlock();
}
becopy((char *) &file[rec_no],
(char *) &buf, sizeof(struct record));
for (k=0; k < 45; k=k+1) {
buf .name[k] = buf.name[k] + 1;
buf.address[k] = buf.address[k] + 1;
}
for (k=0; k < 2; k++) {
buf.agelk] += 1;
buf.ssno[k] += 1;
buf.desiglk] += 1;
buf.super[k] += 1;
buf .wagel[k] += 1;
}
for (i=0; 1 < 500; i++);
bcopy((char *) &buf,
(char *) &file[rec_no], sizeof(struct record));
if (debug)
C_printf ("[%d] Releasing %d....\n", myid, lock);

Alock[lock].unlock();
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barrier.barrier();
if (myid == 0) {

t= readtimer();

C_printf(“"Total Time = %u\n", t);
i

Coprintf("¥%d done. ..« wus wa \n", myid);
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Appendix B

Design and Implementation of Buffered
Consistency based DSM on CLOUDS

This appendix presents the design and implementation of distributed shared mem-
ory based on the buffered consistency memory model (BC-DSM). The implementa-
tion is done on top of the CLOUDS distributed operating system. First, we briefly

describe the buffered consistency memory model.

B.1 The Buffered Consistency Memory Model

Buffered consistency (BC) has been proposed by Lee and Ramachandran [24] as
a weak memory model for shared memory multiprocessors. The BC model recog-
nizes two types of accesses: data and synchronization. Data accesses can be reads
or writes to either private or shared data, whereas synchronization accesses are
accesses to synchronization variables. The BC model distinguishes between two
types of synchronization: non-consistency preserving (NP-Synch), and consistency
preserving (CP-Synch). The BC model requires that synchronization accesses done
by an application should be globally performed in the order of issue. Interleaving
of synchronization accesses of different applications need not be sequentially con-

sistent. The BC model places following restrictions on synchronization operations:
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e The issue of an NP-Synch access does not require the preceding data accesses

to be performed globally.

e Shared accesses following an NP-Synch access by an application cannot be

issued until the NP-Synch access is performed.

e A CP-Synch access is not issued until all preceding writes to shared data

have been globally performed.

BC implements reader-initiated memory coherence, i.e., if an application is
interested in receiving modification for shared data then it would indicate so to the
data server. As a result, any modification made to shared data will be propagated
to the application until the request has been explicitly revoked.

In a nutshell, an implementation of buffered consistency in a distributed

system requires three features from the underlying system:

e Ability to perform local reads and writes.
e Ability to perform global writes.

e Ability to suspend a process, a thread, or an application until all global writes

prior to a CP-Synch operation have been globally performed.

B.2 Implementation of BC-DSM on CLOUDS

On CLoUDS, the buffered consistency memory model has been integrated with the
operating system. This has been done by modifying the DSM subsystem, which

is responsible for maintaining coherence of shared data, to model the buffered
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consistency memory model. As a result, any application executing on CLOUDS
can transparently use the buffered consistency memory model. To implement the
coherence protocol, each DSMC needs to maintain some state information about
the shared data pages that are resident at that node. The state information is
maintained in state table, an entry of which is shown in Figure 30. Some fields of
the state information are valid only at the owner node. An owner of a page is the
node responsible for managing the consistency of the data page.

The following set of primitives are provided by the DSM subsystem for

implementing buffered consistency.

msg._get (interface to the kernel) When a process needs a data page belonging to
distributed shared memory, the kernel makes a request to the DSM subsystem
on behalf of the process. During this time, the requesting process is blocked.
If the data page is not locally available, the DSM subsystem sends a msg_get
request to the owner node for that data page. The owner services the data
request by returning a copy of the data page to the requesting node. Upon
receipt of the data page, the kernel installs the page in the process’ address

space and resumes execution of the suspended process.

cpsynch (interface to the kernel) To globally perform all modifications to shared
data before a CP-Synch point, the cp_synch primitive is provided. When
a CP-Synch point is reached during the execution of an application, the
kernel forces all changes made to the shared data pages to be flushed to
the respective owners of the data pages. This is done by identifying all

the dirty pages in the process’ address space and issuing the cp_synch call
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for the page to the DSM subsystem. The DSM subsystem computes the
difference page for the data page by XORing the contents of the data page
with the unmodified (original) copy of the page. The difference page is then
compressed' and sent to the owner. The owner uncompresses the difference
page, applies it to its version of the data page. If any other node is interested
in hearing about the modifications, the owner sends a copy of the difference
page (via msg_update request) to all these nodes. Figure 31 shows the control

flow for the cp_synch() system call.

request_update (accessed via a system call) If a process is interested in re-
ceiving updates to a page the it indicates this to the kernel via a system
call. The kernel notifies the DSM subsystem. The DSM subsystem sends a
request_update message to the owner for the segment. The owner will send

future updates for a page via the msg update.

reset_update (accessed via a system call) To stop receiving previously requested
updates, for specific pages of a segment, the DSM subsystem sends a reset update
message to the owner of the segment. Again, this is done under user-

direction.

msg_update (interface to another DSM subsystem) To propagate changes glob-
ally before the completion of the cp_synch operation, the DSM subsystem
sends the msg_update message to other DSM subsystems that are interested

in hearing about these changes. Upon receipt of a msg_update message, the

'Due to the large software overhead associated with doing compression, we do not do data
compression in the current implementation. However, provision for data compression has been
made in the hardware realization of the DSM subsystemn.
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DSM applies the modifications, and installs the new copy of the data in the
address spaces of the affected processes. One way to to achieve this is to
invalidate all copies of the data page in any process’ address spaces. Subse-
quent page-faults on the data will result in the DSM subsystem supplying

the latest copy of the page to the requesting process.

class DtableEntry : public BasicQueueElem {

public :
SysName SegmentName; //Name of the segment
u.int block_number; //Number of the block within the segment
struct {
boolean valid; // Is the data valid?
FrameHandle phys_frame; // Where is the data located?
stable *map; /* The phys_frame above belongs to
* this map in the segment. map will be
* used in invalidating the stable
* entries.
i/
FrameHandle orig_frame; //Copy of the data item before being
//installed in process’ address space
boolean get_read_pending;  // Are we still reading the data?
} data;
boolean owner flag; //1s vhis node the owner
ulong copyset; //List of nodes that have requested

//updates. Bitmask for now.

Figure 30: Structure of the dtable entry

B.3 Performance of BC-DSM on CLOUDS

We have implemented buffered consistency as part of the distributed shared mem-

ory subsystem on CLOUDS. The basic performance for buffered consistency is
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Figure 31: Flow of control for the cp_synch() system call

slightly poorer than other coherence protocols that provide sequentially consistent
view of memory due to the cost of maintaining an extra copy of data page. This
copy is used at the time of the cp_synch() call to generate the difference page.
Tables 28 and 29 show the breakdown of times for page-fault servicing and the
cp-synch() system call. These timing measurements are done on a Sun 3/60 with
a microsecond timer. Approximately 25 ms per page 1s spent during a cp_synch()
call. Bulk of the time is spent transmission of data to the owner, and any addi-
tional housekeeping done at the owner. Additional time would be needed if the
data needs to be sent to other nodes, which are interested in receiving updates for

that data page. A receipt of msg.update incurs a cost of approximately 3 ms, bulk

of the times is spent in updating old copies of the data page.
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Operations Breakdown | Measured
(All times are 1n milliseconds) Total Time
Get from a data server 17.550
- Basic RaTP 8K bytes transfer 13.500
- 1 Context switch at the server 0.150
- DSM processing at the server (updating state
information) 2.000
- One copy of data from Ethernet buffers
into client buffers 1.450
TOTAL TIME 17.100
Write page fault servicing from another CLOUDS 20.540
server
- DSM message get call 17.550
- Client side state maintenance 0.800
- One copy for maintaining original copy of
data 1.450
TOTAL TIME 19.800

Table 28: Basic system timings for BC-DSM on CLOUDS

Operations Breakdown | Measured
(All times are in milliseconds) Total Time |
CP synch system call (if data page has been 25.000
modified)
- Trap into the kernel from user level 0.131
- State maintenance 0.800
- Computing the Log (in software for 8K data) 4.700
- Cost of sending the flush request to the owner
site (8 Kbytes data transfer, applying log at
the server, state maintenance) 17.700
- Cost of copying modified data for future use 1.450
TOTAL TIME 24.780

Table 29: Service times for a cp_synch() system call for BC-DSM on CLOUDS

138




Appendix C

Hardware Support for Distributed
Shared Memory

Performance studies of the distributed shared memory system on CLOUDS (see
chapter 4) have shown that DSM related activity incurs additional processing over-
head on a host node. This overhead usually consists of sending and receiving data,
and processing control messages (such as invalidations, updates) for maintaining
coherence of shared data. The amount of overhead is a function of the coherence
protocol, the application characteristics, degree of sharing between nodes, and the
number of nodes in the distributed system. Measurements show that approxi-
mately 20% of the processing done during servicing a remote page-fault is due
to DSM related activity. Such overhead can substantially degrade system perfor-
mance by reducing the available number of useful cycles. To alleviate this problem,
we propose the design of a Distributed Shared Memory Controller (DSMC). The
controller off-loads all DSM related processing from the host by servicing all DSM
related requests, thereby freeing the host to perform other useful work.

The DSMC is a coprocessor board that sits on the system backplane, com-
municating with the host via the system bus. The board is self-contained, i.e.,

it has its own processor, private memory, and control logic needed to service any

139



DSM-related requests. It interacts with the host through a well-defined interface.
In the following sections, we discuss the various aspects of the design. We con-
clude the discussion with expected system performance improvement due to the
controller. In the present dcsign, the controller does not have direct access to the
network. We assume that the controller can access the network adapter via the
host, and is able to receive and send messages to the network. Such a design may
cause the communication subsystem to become a bottleneck if large amounts of
data traffic is generated by the controller. One solution to this problem would be

to allow the controller to directly access the network.

C.1 Hardware Design of the Controller Board

Figure 32 shows the layout of the DSM coprocessor board. The board consists of
a 32-bit microprocessor, memory modules, system-bus interface logic, and special-
1zed chip set to perform compression/decompression of data. The microprocessor
communicates with its local memory via a local bus, while it communicates with
the host via its VME bus interface. The VME bus interface consists of the VIC
068 chip [10]. The VIC 068 chip allows easy access to the board from the host. It
also offers a facility for inter-process communication via a dedicated set of inter-
process communication registers and mailboxes. Figure 33 shows the functional
description of the VIC 068 chip. The resident memory on the board is used for
storing the control software, and private data. A portion of the resident memory
is also mapped onto host’s address space for access via the VME bus. Thus, if the

host writes to the overlapped portions of memory, the data can be read directly
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Figure 32: Layout of the DSMC coprocessor board

by the DSM coprocessor. Similarly, data written to this portion of memory by
the DSMC can be accessed by the host. Synchronization between the coprocessor
and the host is achieved using the inter-processor communication module switches
provided by the VIC 068 chip. The interaction between the host processor and the
controller is non-blocking. This means that while a data request is being serviced
by the controller, the host processor is free to perform other activities. Only the
thread/process that caused the page-fault gets blocked. Similarly, while a reply
is pending from a remote controller, the local controller is free to service other

requests from the processor.
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Figure 33: Functional description of the VIC 068 VME bus interface chip

C.2 Software Design for the Controller Board

The software organization of the controller consists of three modules: control soft-
ware for the controller, interface between the controller and the host, and interface

between two controllers.
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Control Software for the Controller

The control software implements the protocol for managing coherence of shared
data. It also maintains data structures for storing state information about resident
data pages. As mentioned in section C.1, some portion of the controller memory
is shared with the host’s address space. At the time of system initialization, the
host sets up two circular buffers in this portion of the shared memory. These
two buffers, the request-buf and the reply-buf, are used for communication
between the controller and the host. All data requests made by the host are put in
the request-buf while all replies sent by the controller are put in the reply-buf.
Both, the host and the controller, maintain a pointer to the last processed entry in
the buffer. Figure 34 shows the structure of a buffer entry. Each entry consists of
the request type, and information about the data-page being operated upon. The
address field in the entry points to location in host’s memory where data might be
located.

enum MsgType = {Get, Discard, Flush, Install, Invalidate};

enum Mode = {Read, Write, WeakRead, None};
struct message {

enum MsgType type; /* Type of message; request, reply */
long segment-id; /* segment id */

long page-num; /* page number */

enum Mode mode; /* mode, if applicable */

long address; /* Address where data should be put */
ks

Figure 34: Structure of a buffer entry
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struct dsm_entry {

long segment-id; /* segment id */

long page-num; /* page number %/

enum Mode mode; /* Mode is which page is installed */
long orig-page; /* pointer to original copy */

Y

Figure 35: Structure of a state table entry

State information about all shared data pages resident at a node is main-
tained in separate state tables. These tables contain information about the owner
of a page, mode in which the page is present at the node. pointer to the original
copy of the data page in controller’'s memory, and any coherence protocol specific
state information. The structure of an entry of the state table is shown in Figure

35.

Controller - Host interface

The following set of primitives define the interface between the controller and the
host.

e get(segment, page, mode, physical address): The get primitive,
issued by the host on a page-fault on shared data, indicates to the controller that
the host is interested in acquiring the data-page for the segment in the specified
mode.

e discard(segment, page, physical address): The discard primitive
allows a host to throw out a shared data-page from its memory. The controller is

responsible for taking appropriate coherence actions on the discarded page. These
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actions could include throwing out the data-page, sending it back to the owner,
or taking no action at all. The actions taken by the controller are based on the
coherence protocol being used by the controller.

o flush(segment, page, physical address): The flush primitive is
functionally similar to the discard primitive. The only difference is that on a
flush, only the modifications to a page (using the diff page) are sent to the owner.
The diff page is constructed by XORing the contents of the modified page and
the original data-page. This primitive is used in the implementation of the write-
update protocol.

e install(segment, page): The install primitive is issued by the con-
troller to the host, indicating that a data-page requested by the host is now avail-
able for installation. The controller issues install after it has serviced a get
request for the data-page.

e invalidate(segment, page): Certain coherence schemes may require
that a data-page in host memory be invalidated, i.e., memory mappings associated
with a data-page be invalidated. The invalidate message is sent by the controller
to the host indicating that a particular data-page be invalidated. One example
where this primitive can be used is in the implementation of the write-invalidate
scheme, where read-only copies of the data-pages need to be invalidated before a
write to the data-page can occur. This primitive can also be used to force the host
to request a fresh copy of a data-page.

e receive updates(segment, page, length, flag): This primitive is
specific to the write-update coherence protocol based on the buffered-consistency

memory model (see Appendix B). Under user-direction, the primitive allows a
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program to request updates for a specific data-page. The request for updates
is sent to the owner. The owner then continues to send fresh updates for the
data-page until the request is explicitly turned off by the user. For page-oriented
coherence protocols, the host specifies the starting page of the segment that the

user is interested in receiving updates for.

Controller - Controller interface

The following set of primitives are defined for co-ordinating activities among con-
trollers. These primitives provide the basic functionality to implement different
types of coherence protocols.

® c_get(segment-id, page, mode): If a controller is not able to service
a request for a data-page, it sends a c_get message to the owner, requesting the
data-page on behalf of the host. The owner takes appropriate actions to service
the data request.

e c_.data(segment-id, page): In response to the c_get request. the owner
sends the data to the requesting controller using the c_data primitive.

e c_discard(segment-id, page): Information that a data-page has been
discarded by a node is sent to the owner using the c_discard primitive. If needed,
the data-page is also sent to the owner.

e c_flush(segment-id, page): The c_flush primitiveis similarto c_discard,
except that only modifications to the data are sent to the owner.

e c_forward(segment-id, page): Sometimes an owner of a page may need

to request another node to forward the data to the requesting node. The owner
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can do so using the ¢ forward primitive.

e c_update(segment-id, page): Some weaker coherence protocols require
updates to a data-page be propagated to other nodes. A controller can send
updates to other nodes using the c_update primitive.

e c_invalidate(segment-1d, page): A controller can instruct other con-
trollers to invalidate their copy of a data-page by sending the c_invalidate mes-
sage to them.

e c_receive updates(segment-id, page, size, flag): A controller sends
a request to the owner if the host is interested in receiving/reseting updates for a
data-page. If updates are requested. any future updates to the data-page will be

sent by the owner using the c_update primitive.

C.3 Functional Description of the Controller

In this section, we describe the events that occur during processing of different

requests by the controller.

Handling page-faults on shared data

When a page-fault occurs on data belonging to shared memory, the kernel deter-
mines the segment-id. the page and the mode in which the data needs to be fetched.
A get message is constructed using this information. A physical page is allocated
in memory and its physical address added to the contents of the message. The
physical address is used by the controller for storing the data. The get message

is then added to request-buf. The host then indicates to the controller that a
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request 1s pending in the request queue. This is be done by writing to the VME
bus interface chip, which then generates an interrupt to the controller.

The controller, upon receiving an interrupt, sets out to service the re-
quest. It removes ine mess. ge from the request-buf and adds it to its private
request-queue. Using the <segment-id. page-num> as a key, the controller looks
through its local tables to determine if it has a valid copy of the data-page in its
private memory. If a valid copy is found. the controller initiates a DMA transfer of
the data from its private memory to the host’'s memory using the physical address
supplied by the host as the target address. Upon successful completion of the
DMA transfer, the controller sends the install message to the host. This is done
by writing the message to the reply-buf and interrupting the host. However, if
the controller is unable to locate the data-page corresponding to the segment-id
and page-num, it sends a c_get message to the owner, requesting the data page.

When an owner receives a c_get message, it locates the data-page and sends
the data back to the requesting controller using the c_data primitive. If the data
page is not found then it can request (via c_forward) another node to forward the
data to the requester. The owner also updates its local state tables to reflect any
coherence specific information. Upon receipt of the data page, the controller copies
the page into its local memory. The controller identifies the request corresponding
to the page. Using DMA, the data is transferred to host’s memory. After successful
completion of DMA, the controller writes the c_install in the reply-buf and
interrupts the host. Upon receiving an interrupt from the controller, the host

removes the reply from the reply-buf and services the page-fault.
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Discarding a page

When a shared data page is no longer needed by a host, it discards the data. This
is done by sending a discard message to the controller. The controller copies the
data page into its private memory, and takes appropriate action depending on the
coherence protocol being used. If the coherence protocol requires that the data
be returned to the owner, the controller sends the data to the owner using the
c_discard message. After all the processing is done, the host is informed that the

page has been discarded.

Flushing a page

When the host wishes to flush out all modification made to a data page, it does
so by issuing a flush message to the controller. The controller copies the data
page into its private memory and constructs the difference page for the data.
The difference page represents the modifications made to the data page and is
constructed by XORing the contents of the modified page and the original page.

The difference page is then sent to the owner.

Invalidating a page

The coherence protocol may require that all copies of the data-page be invalidated
before any more activity on the page can occur. This can be achieved by sending a
c.invalidate message to all nodes that have a copy of the page. The controllers
at these nodes instruct their hosts to invalidate the copies of the data-page by

sending an invalidate message. Upon receiving an invalidate message from

149



the controller, the host invalidates the corresponding data-page mappings in its
MMU. Subsequent access to the page will cause a page-fault. This page-fault will

be handled as explained earlier.

Installing updates for a page

If a controller wishes to update all copies of a data-page resident at other nodes,
it sends the data-page to all controllers via the c_update message. The controller
installs the data copy in its private memory and sends an invalidate message
to the host. Subsequent access to the page would cause a page-fault, resulting in

the new copy of the page being installed in host’s memory.

C.4 Expected Performance of the Controller

In this section., we examine the performance implications of a DSM controller on
the host system performance. The examination is done in context of the write-
update protocol based on the buffered-consistency memory model. More details
about this protocol can be found in Appendix B. In our analysis, we assume the
controller uses the Motorola MC68020RC16 microprocessor with 60ns cycle time.
A typical 32-bit read or write on MC68020 takes about 3 cycles. We also assume
that a 32-bit DMA transfer between the controller board and host memory takes

about 6 cycles (worst case).
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Figure 36: Page-fault servicing by the controller
Page-fault servicing

Figure 36 shows the sequence of events that occur upon a page-fault on shared
data. The breakdown for expected service time of 1.739 ms is shown in Table 30.
Data that needs to be requested from another controller will incur additional cost
of constructing the message to be sent, receiving the data over the network, and
updating the local data structures. This overhead would be approximately 15 ms

per data page over an Ethernet-like communication network.

Servicing a cp_synch() call

Figure 37 shows the sequence of events that occur when a cp_synch() call is
issued. The cp_synch() call is issued by the host to enforce global writes to
shared data before the program completes the synchronization call. This is an

artifact of the coherence protocol implemented by the controller. The expected

151



Event Operations | Number | Time
of cycles | (in ns) |
-Host: writes request in
request-buf 4-word write 12 720
-Host: notify DSMC I-word write 3 180
-DSMC: read request from
request-buf 4-word read 12 720
-DSMC: locate data in the state
tables 1000000
-DSMC: initiate DMA transfer to | 2048-word
host memory (8192 bytes) transfer 12288 | 737280
-DSMC: write reply in reply-buf | 4-word write 12 720
-DSMC: signal the host 1-word write 3 180
TOTAL TIME 1739080

Table 30: DSMC: Times for page-fault servicing for resident data

time for individual events is summarized in Table 31. Performing a cp_synch
operation costs approximately 18.37 ms. The bulk of the time is spent in sending
the data to the owner. Computing the difference page takes about 21 cycles per
32-bit word (2.5 ms/8192 bytes). This entails reading two words, performing an
exclusive-or operation and writing the result back. Additional cycles are needed
for executing the loop 2048 times. Compressing a data page costs an additional
602 us.! The advantage of using data compression is that one can save on data
transmission costs. For example, assuming on an average 50% reduction in size of
a data page, transmitting an 8192-byte data page over Ethernet at 10Mbps would

save approximately 3.25 ms per page.

1Currently available data compression hardware can operate at speeds from 13.6 to 20M B /sec

[6).
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Figure 37: Schematic of DSMC actions subsequent to a cp_synch() system call

Servicing an update request

Figure 38 shows the sequence of events that occur when an update message is re-
ceived by the controller. The expected times for individual events are summarized
in Table 32. On an average, approximately 4 ms is spent processing an update

message, bulk of which is spent applying the modifications to the page.

Advantages of data compression

Data transmission is the major costs incurred in distributed shared memory sys-
tems. Several coherence protocols try to reduce data communication costs by
reducing the cost of maintaining coherence. Another way to reduce data com-

munication cost is the use of data compression techniques. Current state of the
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Event Operations | Number Time
of cycles | (in ns)

-Host: write request in

request-buf 4-word write 12 720
-Host: notify DSMC 1-word write 3 180
-DSMC: read request from

request-buf 4-word read 12 720

-DSMC: initiate DMA transfer 2048-word
for data page to be flushed from | transfer

host memory (8192 bytes) 12288 737280
-DSMC: compute the difference | 2048-word

page XOR 43008 2580480
-DSMC: compress the difference | 8192-bytes @

page 13.6 MB/sec 83192 602352

-DSMC: sending the difference
page using msg_flush and

waiting for an acknowledgement 13450000
-DSMC: write reply in reply-buf | 4-word write 12 720
-DSMUC: signal the host 1-word write 3 180

TOTAL TIME 18372632

Taken from software measurements

Table 31: DSMC: Service time for a cp_synch call

art hardware technology has made it possible to use on-the-fly data compression
to substantially reduce the data transmission costs. We use data compression for
our DSMC implementation because the difference pages generated using XOR in
the buffered consistency coherence protocol are most likely to contain a high per-
centage of strings of 0s, thereby yielding good compression ratios. Thus, such a
protocol will benefit with the use of data compression techniques especially for
slower communication mediums such as Ethernet. For example, in an Ethernet-

like media with a communication speed of 10 Mbps, a compression ratio of more
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than 0.82 would yield good system performance.

Effects of a DSM Controller

In the implementation of distributed shared memory on CLOUDS, a processor per-
forms all distributed shared memory related activity along with any computation
that needs to be performed at the node. As mentioned earlier, at least 20% of the
page-fault servicing a time is related to DSM related activity. Such overhead is
acceptable if only one thread or process is executing on a processor. In real life,
however, this is not the case. A processor may be simultaneously executing sev-
eral processes (using time-sharing), and the 20% DSM related overhead per page
fault can degrade the overall throughput for the node. Similarly, an increase in
DSM activity in the system may require a processor to handle a large number of
control requests (such as invalidation, forward, and updates) from other processors

for maintaining coherence of shared data. Such overheads can adversely affect the
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Event Operations | Number | Time
of cycles | (in ns)
-DSMC: receive msg_update,
including DMA transfer from
host memory (5142 bytes) 1000000
-DSMC: uncompress data 8192-bytes @ 8192 602352
13.6 MB/sec
-DSMC: apply the difference page | 2048-word 43008 | 2580480
XOR
-DSMC: write invalidation
request in reply-buf 4-word write 12 720
-DSMC: signal the host 1-word write 3 180
TOTAL TIME 4183732

9 Approximately, includes 737280ns for DMA.

Table 32: DSMC: Service time for a msg_update message

application performance by reducing the number of cycles that are available for
doing the computation.

To study the performance gains of having a separate controller to handle
distributed shared memory related requests, we extended the simulation studies of
chapter 6. Figure 39 compares the results for two such system configurations; one
with a DSM controller and one without a DSM controller. As shown in Figure 39,
the system with a DSM controller shows much better performance than than one
without. This experiment shows the performance with respect to a transaction
workload model, executing on 16-node system. The improvement is more signif-
icant for small data transfer sizes than for large data sizes. The reason is that
for small data transfer sizes, more number of DSM requests are generated in the

system, thereby requiring more DSM related work to be performed at each node.



Under such conditions, existence of a DSM controller improves the system perfor-

mance. Benefits accrued due to the presence of the DSM controller become more

significant as the number of processors used for solving a problem is increased. For

example, for a data transfer size of 2 Kbytes, 13% perforiiance imprevement is

observed due to the presence of the controller in a 4-node configuration, 25% in a

8-node configuration, and 47% in a 16-node configuration. This behavior is consis-

tent with the observation that an increase in the number of nodes is accompanied

by an increase in the amount of DSM related activity in the system.
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Figure 39: Effect of using a DSM controller on the performance

In this chapter, we have presented a detailed design and performance anal-

ysis of a distributed shared memory controller. The controller has been designed

to improve a node’s throughput by off-loading all DSM related processing from the

host processor.
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Appendix D

Number of Messages for the Coherence

Protocols
Let
S Number of synchronization phases
M  Amount of memory operated by a processor during a computation
w Probability that an access is a write operation
h Hit ratio
c Probability that an access read/write will cause coherence messages

to be sent to other nodes
r Number of nodes involved in receiving coherence messages
g Unit of data transfer
P Number of messages needed to bring in M bytes of memory.

P =i

Each of the following activity is counted as one message:
e Requesting a lock from the lock-server

e Granting a lock by the lock-server
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e Releasing a lock by a client
e Requesting data from a data-server

Sending data to the client by the data-server

e Sending an invalidation-message to a node

Receiving an acknowledgement for an invalidation-message from a node

Sending an update-message to a node

Receiving an acknowledgement for an update-message from a node

Forwarding of a data request by the data-server to another node (implement-

ing mode none semantics in the lock-based protocol).

The total number of messages generated by a node during the execution of
a computation for the write-update protocol is shown in 33; for the write-invalidate

protocol is shown in Table 34; and for the lock-based protocol is shown in Table

Read-miss

35;
Activity I Number of messages
Synchronization phase
Write-access Sw(5 + 2r)
Read-access 58(1-w)
Computation phase
Write-miss 2Pw(1-h)
| 2P(1-w)(1-h)

Total ' S(5 + 2rw) + 2P(1-h)

Table 33: Number of messages generated in the write-update protocol



Activity Number of messages

Synchronization phase
Write-access, no coherence activity | 5Sw(1-c)

Write-access, coherence activity S(5 + 2r)we
Read-access, no coherence activity | 58(1-w)(1-c)
Read-access, coherence activity 6S(1-w)c

Computation phase
Write-miss, no coherence activity 2Pw(1-h)(1-c)

Write-miss, coherence activity P(2 + 2r)w(1-h)c
Read-miss, no coherence activity 2P(1-w)(1-h)(1-c)
Read-miss, coherence activity 3P(1-w)(1-h)c

Total S(5 + 2rwe + ¢(1-w)) +

P(1-h)(2+ c(w(5 + 2r) + 1))

Table 34: Number of messages generated in the write-invalidate protocol

Activity Number of messages
Synchronization phase
Write-access 3Sw
Read-access 3S(1-w)

Computation phase
Write-miss, data with the server 2Pw(1-h)(1-c)
Write-miss, data with another node | 3Pw(1-h)c
Read-miss, data with the server 2P(1-w)(1-h)(1-c)
Read-miss, data with another node | 3P(1-w)(1-h)c

Total 38 + P(1-h)(2 + ¢)

Table 35: Number of messages generated in the lock-based protocol
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