
Issues in the Design of
Distr ibuted Shared Memory Systems

A Thesis
Presented to

The Faculty of the Division of Graduate Studies

By

Ajay Mohindra

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy
in Computer Science

Georgia Institute of Technology
May 1993

Copyright © 1993 by Ajay Mohindra

Issues in the Design of
Distributed Shared Memory Systems

Approved:
__i

}f—• w • r

Dr. Umakishore Ramachandran, Chairman

Dr. Mustaque Ahamad

Dr. Richard LeBlanc Jr. /

/ / /f

Dr. Karsten Schwan

L^
Dr. Murthy Devarakonda (IBM)

Date Approved by Chairman .

Acknowledgements

First, I would like thank Dr. Kishore Ramachandran for enduring me for the past

six years, and seeing me through the Ph.D. program. Without his guidance, 1 may

not have seen the end of the tunnel. I would also like to thank all the members

of my reading committee, who provided guidance and constructive criticisms, and

ensured that what I did was worthwhile. Thank you Dr. Richard LeBlanc Jr., Dr.

Mustaque Ahamad, Dr. Karsten Schwan, and Dr. Murthy Devarakonda. I would

also like to thank Dr. Sudhakar Yalamanchili and Dr. H. Venkateswaran for their

advice and guidance.

Special thanks go to folks in the CLOUDS Lab who kept the lab alive.

Thanks to Sathis Menon, Mark Pearson, Gautam Shah, Ranjit John, M. Chelliah,

Vibby Gottemukkala, Sreenivas Gukal, L. Gunaseelan, and Ross D'Souza. I would

also like to thank Dr. Martin Davis Jr. for being a good friend. Special thanks go

to Deeptendu Majumder, with whom I checked out numerous ethnic restaurants,

and movies during my stay at Georgia Tech.

My Ph.D. would not have been possible without the love and support of my

parents; I dedicate my dissertation to them. I would also like to thank my brother

Vivek, and my sister Deepali, for their "long distance" support. And last, but not

the least, I would like to thank my wife Reena, for her support and understanding,

and for providing me with motivation to graduate.

in

Contents

Acknowledgements iii

List of Tables viii

List of Figures x

S u m m a r y xii

1 Introduction 1

2 Issues in the design of D S M sys tems 5

2.1 Virtual Memory and DSM 5

2.2 Granularity 6

2.3 Memory Model 8

2.4 Choice of Protocol 10

2.5 Synchronization 13

2.6 Hardware Technology 14

3 Related Work 15

3.1 Apollo Domain 15

3.2 Ivy 17

3.3 C L O U D S 20

iv

3.4 Mach and Agora 22

3.5 Memnet 24

3.6 Choices 26

3.7 Mether 27

3.8 Munin 28

3.9 Hardware assisted distributed shared memory systems 29

3.10 Discussion 31

3.11 Other Work 35

4 Distr ibuted Shared M e m o r y in C L O U D S : A Case Study 38

4.1 DSM Primitives 39

4.2 Methodology 41

4.3 Performance Measurements 42

4.4 Analysis 44

5 Implementat ion and Analysis of Benchmarks 49

5.1 System Architecture 50

5.2 Embarrassingly Parallel Benchmark 52

5.3 Integer Sort Benchmark 53

5.4 Matrix Multiplication Benchmark 58

5.5 Conjugate Gradient Benchmark 59

5.6 SCAN Benchmark 61

5.7 Traveling Salesman Problem 63

6 Simulation Studies 66

6.1 Simulator 67

6.2 The Workload Model 69

6.2.1 Structure of the Workload Model 71

6.2.2 Domain Specific Models 73

6.2.3 Validation of the Workload Model 75

6.2.4 Parameters for the Simulation 80

6.3 Simulation Results and Discussion 81

6.3.1 Transaction Model 81

6.3.2 Iterative Model 85

6.3.3 Asynchronous Model 89

6.3.4 Hardware Technology 90

7 Discuss ion 96

7.1 Virtual Memory and DSM 96

7.2 Granularity 97

7.3 Memory Model and Coherence Protocol 104

7.4 Synchronization 110

7.5 Hardware Technology 112

7.6 Conclusions 113

8 Conclusions and Future Work 115

8.1 Concluding Remarks 115

8.2 Future Work 117

A Integer Sort and S C A N benchmarks 119

VI

A.l Integer Sort (version VI) Benchmark 119

A. 1.1 Source Listing of the Integer Sort Benchmark 120

A.2 SCAN Benchmark 126

A.2.1 Source Listing of the SCAN Benchmark 127

B Design and Implementat ion of Buffered Consistency based D S M

on C L O U D S 132

B.l The Buffered Consistency Memory Model 132

B.2 Implementation of BC-DSM on CLOUDS 133

B.3 Performance of BC-DSM on CLOUDS 136

C Hardware Support for Distr ibuted Shared M e m o r y 139

C.l Hardware Design of the Controller Board 140

C.2 Software Design for the Controller Board 142

C.3 Functional Description of the Controller 147

C.4 Expected Performance of the Controller 150

D N u m b e r of Messages for the Coherence Protocols 158

Bibliography 161

Vi ta 165

vn

List of Tables

1 Comparison of DSM systems 37

2 Basic system timings on CLOUDS 44

3 Basic system timings on CLOUDS (contd.) 45

4 Basic system timings on CLOUDS (contd.) 46

5 DSM t imings on CLOUDS 47

6 Page-fault service times on CLOUDS 48

7 Completion times and speedups for the Embarrassingly Parallel

benchmark, M = 2^^ iterations 53

8 Breakdown of times for the Integer Sort algorithm version V2. . . . 58

9 Completion times and speedups for the Matrix Multiplication bench

mark for A'' = 256 rows 59

10 Completion times and speedups for the Traveling Salesman Prob

lem, 11 city tour 64

11 List of parameters for domain specific workload models 74

12 List of parameters for the simulator along with the default values . 78

13 Comparison of results obtained via simulation with actual measure

ments for the Integer Sort benchmark for 2^^ elements 79

14 Comparison of results obtained via simulation with actual measure

ments for the SCAN benchmark for 10000 records 79

15 List of alternatives evaluated using simulation 79

viii

16 Integrated vs Library: Comparison of the two approaches 98

17 Computation granularity requirements 100

18 Classification of the applications based on the CGRatio 100

19 Optimal value of page-size for different system configurations 102

20 Ranking of the three memory models 105

21 Number of messages generated in the three coherence protocols . . 108

22 Scalability of the three coherence protocols without multi-cast . . . 109

23 Characteristics of three types of DSM systems 113

24 Number of nodes that can efficiently execute an application based

on the CGRatio 113

25 Approximate shared memory requirements for the integer sort bench

mark for A^ = 2^^ elements, Bmax = 2048, MAX_PR0CS=6 120

26 Number of references made by each task for the integer sort bench

mark for A' = 2^^ elements, Bmax = 2048 121

27 Approximate shared memory requirements for the SCAN bench

mark for MAXRECORDS=10000 records 127

28 Basic system timings for BC-DSM on CLOUDS 138

29 Service times for a cp_synch() system call for BC-DSM on CLOUDS 138

30 DSMC: Times for page-fault servicing for resident data 152

31 DSMC: Service time for a cp_synch call 154

32 DSMC: Service time for a msg_update message 156

33 Number of messages generated in the write-update protocol 159

34 Number of messages generated in the write-invalidate protocol . . . 160

35 Number of messages generated in the lock-based protocol 160

IX

List of Figures

1 Distributed Shared Memory Abstraction 2

2 Memnet Architecture 25

3 Cost associated with each subsystem in servicing a DSM page-fault.

Total = 16.3 ms 44

4 High level structure of the Integer sort benchmark, Version VI . . . 56

5 High level structure of the Integer sort benchmark, Version V2 . . . 56

6 Completion times for the Integer Sort benchmark, Version VI, A^ =

2^0 keys 57

7 Completion times for the Conjugate Gradient benchmark 61

8 Pseudo code for the SCAN benchmark 62

9 Completion times for the SCAN benchmark 63

10 Conceptual picture of the simulator 68

11 Reference parameters within a task 73

12 Transaction workload model's performance on 4 nodes on fiber . . . 82

13 Transaction workload model's performance on 8 nodes on fiber . . . 83

14 Transaction workload model's performance on 16 nodes on fiber . . 83

15 Transaction workload model's performance on 4 nodes on Ethernet 85

16 Transaction workload model's performance on 8 nodes on Ethernet 86

17 Transaction workload model's performance on 16 nodes on Ethernet 86

18 Iterative workload model's performance on 4 nodes on fiber 87

X

19 Iterative workload model's performance on 16 nodes on fiber 87

20 Asynchronous workload model's performance on 4 nodes on fiber . . 90

21 Asynchronous workload model's performance on 4 nodes on fiber.

Comparing write-update and write-invalidate 91

22 Effect of processor speed on performance 92

23 Effect of communication speed on performance 93

24 System scalability with 3 MIPS CPU and 10 Mbps network 94

25 System scalability with 25 MIPS CPU and 10 Mbps network 94

26 System scalability with 3 MIPS CPU and 1 Gbps network 95

27 System scalability with 25 MIPS CPU and 1 Gbps network 95

28 Computation to communication ratio requirements 99

29 Total overhead per byte for DSM on CLOUDS 103

30 Structure of the dtable entry 136

31 Flow of control for the cp_synch() system call 137

32 Layout of the DSMC coprocessor board 141

33 Functional description of the VIC 068 VME bus interface chip . . . 142

34 Structure of a buffer entry 143

35 Structure of a state table entry 144

36 Page-fault servicing by the controller 151

37 Schematic of DSMC actions subsequent to a cp_synch() system call 153

38 Schematic of DSMC actions subsequent to the receipt of a msg.update

message 155

39 Effect of using a DSM controller on the performance 157

XI

Summary

This thesis examines the various system issues that arise in the design of distributed

shared memory (DSM) systems. This work has been motivated by the observation

that distributed systems will continue to become popular, and will be increasingly

used for solving large computational problems. To this effect, shared memory

paradigm is attractive for programming large distributed systems because it offers

a natural transition for a programmer from the world of uniprocessors. The goal of

this work is to identify a set of system issues, such as integration of DSM with vir

tual memory management, choice of memory model, choice of coherence protocol,

and technology factors; and evaluate the effects of the design alternatives on the

performance of DSM systems. The specific question that we are trying to answer

is, "Can we determine a set of system design parameters that defines an efficient

realization of a distributed shared memory system?". The design alternatives have

been evaluated in three steps. First, we do a detailed performance study of a

distributed shared memory implementation on the CLOUDS^ distributed operating

system. Second, we implement and analyze the performance of several applications

on a distributed shared memory system. Third, the system issues that could not be

evaluated via the experimental study, are evaluated using a simulation-based ap

proach. The simulation model is developed from our experience with the CLOUDS

distributed system. A new workload model that captures the salient features of

^CLOUDS is a distributed object-based operating system developed at Georgia Tech.

xn

parallel and distributed programs is developed and used to drive the simulator.

The key results of the thesis are: DSM mechanisms have to be integrated with the

virtual memory management for providing high performance distributed shared

memory systems; the choice of the memory model and coherence protocol does

not significantly influence the system performance for applications exhibiting high

computation granularity and low state-sharing; and an efficient implementation of

DSM requires a careful design of miscellaneous system services (such as synchro

nization and data servers). The thesis also enumerates several questions related to

future research directions.

Xlll

Chapter 1

Introduction

Technological advances in recent years have spurred a trend towards workstation-

oriented computing environments. Each workstation has computing power com

parable to the mini-mainframes of the past. Availability of powerful computers

connected via local (wide) area network has sparked interest in the area of dis

tributed computing systems. Current research is targeting its efforts in utilizing

the available computation power on the network in solving large problems through

co-operative computing.

To facilitate programming of distributed systems, two basic paradigms exist:

shared memory, and message-passing. These two paradigms have been used for

interprocess communication and synchronization in multi-process computations.

The duality between the two paradigms for structuring computations is well-known

[21]. Nevertheless, shared memory has been an appealing paradigm from the point

of view programming ease even in distributed systems. It is no surprise that several

researchers [28, 30, 17, 7] have proposed system architectures that provide the

abstraction of shared memory in a physically non-shared (distributed) architecture.

We refer to this abstraction as Distributed Shared Memory (DSM). Figure 1 shows

the conceptual representation of a distributed shared memory system. In the

system, a set of nodes (computers) are connected via an interconnection network,

1

and do not physically share memory. The DSM mechanisms allow an application

to access shared data not physically resident at that node. These mechanisms

are usually provided as a software layer either integrated with or on top of the

operating system.

0 0
Distributed Shared Memory Abstraction

Figure 1: Distributed Shared Memory Abstraction

Another motivation for DSM arises from the structure of current distributed

computing environments. A typical distributed computing environment consists of

compute servers^ and data servers'^ interconnected by a local area network. In such

an environment, there are two tasks to be performed to execute a computation. The

first task involves selecting a compute server, and the second task involves bringing

the code and data from the data server to the selected compute server before

executing the computation. The second task requires a remote paging facility. If

^ Nodes where computation is performed.
^Nodes that serve as repositories for data.

sharing of data is coupled with this remote paging, it could be seen that DSM

presents itself as a natural facility for combining the two.

Previous work in the area of distributed shared memory, as will be elab

orated in Chapter 3, has been concerned with the design and implementation of

distributed shared systems, and evaluation of algorithms for enforcing coherence

of shared data. Some researchers have also focussed their efforts on designing

fault-tolerant algorithms for distributed shared memory systems. Previous work,

however, has ignored the study of system issues that need to be addressed in

the design of distributed shared memory systems. The specific question that the

research is trying to answer is:

"Can we determine a set of system design parameters that defines an effi

cient realization of a distributed shared memory system,?".

In this thesis, we identify and evaluate the system issues (see Chapter 2)

that need to be addressed for designing distributed shared memory systems. The

issues relate to questions such as, whether to integrate DSM with virtual memory

management, what type of memory model to provide, which coherence protocol

to use for maintaining coherence of shared data, and what kind of impact do

technology factors have on the DSM system performance. We evaluate these issues

with respect to the available design alternatives. The evaluation is done in three

steps. First, we do a performance study of an implementation of DSM (see Chapter

4). The performance study has provided us with an insight into the functioning of

a distributed shared memory system. Second, we have implemented and studied

the performance of several applications on a distributed shared memory system

(see Chapter 5). Finally, aspects of the study that could not be evaluated via

experimental studies are evaluated using simulation. In Chapter 6, we describe

the design of a simulator that models a distributed shared memory system. The

costs obtained from the performance study are used to assign costs to different

components of the simulator. A new workload model is developed and used to drive

the simulator. The workload model captures the salient features of distributed

and parallel programs. In Chapter 7, we discuss the results of the research. The

conclusions and contributions of the research are presented in Chapter 8.

The key contribution of this thesis is that it enumerates the systems issues

and specifies the design parameters for addressing system issues for an efficient

realization of a DSM system. The key results of the thesis are: DSM mechanisms

have to be integrated with the virtual memory management for providing high

performance distributed shared memory systems; the choice of the memory model

and coherence protocol does not significantly influence the system performance for

applications exhibiting high computation granularity and low state-sharing; and an

efficient implementation of DSM requires a careful design of miscellaneous system

services (such as synchronization and data servers).

Chapter 2

Issues in the design of DSM systems

As mentioned in Chapter 1, a designer needs to address several system issues during

tlie design of a distributed shared memory system. These issues form the core of

a DSM system design, and choice of solutions to these issues can significantly

influence the overall system performance. In this chapter, we enumerate these

issues and discuss the alternatives available for addressing these issues.

2.1 Virtual Memory and DSM

DSM is not true shared memory as is the case in shared memory multiprocessors

(SMM). Thus remote memory accesses have to be reconciled with the memory

management at each node. Of course, if the basic machine architecture does not

support virtual memory then the solution could perhaps be simpler. However, if

the basic architecture supports virtual memory then the DSM management and

Virtual Memory (VM) management have to be integrated. In particular, the local

memory at each node may be considered simply a cache of a global address space

that spans the entire network. The DSM and VM management at each node

would have to cooperate to ensure that the semantics implemented by the DSM

manager and the VM manager are not compromised. The normal VM chores such

as page replacement, swapping, and flushing have to be done in consideration with

the DSM algorithms. Similarly, in satisfying a remote memory request, the DSM

would have to consult the VM manager to get a page frame, etc. Upon release of

a page, the DSM has to instruct the VM manager to invalidate page table entries

and take other related actions.

The effectiveness of the DSM paradigm depends crucially on how quickly

a remote memory access request is serviced, and the computation is allowed to

continue, which in turn depends on several factors:

• the speed at which the VM system detects that a raemory access fault (i.e.

a page-fault) or a pre-fetching request entails a remote access

• the software overhead involved in the DSM protocol (i.e. coherence mecha

nism) for servicing a remote memor}^ access request

• the software overhead involved in the communication subsystem (i.e. the

basic transport protocol) for effecting the inter-node message communication

to service the request

• the speed of the communication medium (i.e. hardware).

2.2 Granularity

There are two dimensions to granularity: computation granularity and data gran

ularity. The former deals with the amount of computation a process has to do

between synchronization or communication points in a multi-process computa

tion. The latter deals with the amount of shared information processed during

6

this computation phase.

Eggers and Katz [14] define "write-run" as a sequence of reads and writes

by a given processor following an initial write executed by the same processor to a

given shared memory location before an external read by a different processor to

that shared memory location occurs. In a shared memory multiprocessor system,

write-runs of representative applications may range from a few to a few tens of

references. However, in a DSM system, write-runs of a few hundred instructions

would be more appropriate given the latency for remote accesses.

Another distinction between the SMM and the DSM is in the data gran

ularities of accesses that are practical in the two. In a uniprocessor memory hi

erarchy, the processor-to-cache transfer time is in the tens of nanoseconds, the

cache-to-main memory transfer time is in the hundreds of nanoseconds, and the

main memory-to-disk transfer time is in the order of milliseconds. Correspondingly,

the granularity of transfer that makes feasible sense are: byte or word between the

processor and the cache, a block of several bytes between the main memory and

the cache, and a page ranging from 512 bytes to a several kilobytes between the

main memory and the disk. DSM systems add a new dimension to the memory

hierarchy, namely remote memory access across the network. The choice of the

network plays a big role in determining the latency. Nevertheless, independent

of this choice, there is a fixed software overhead to be incurred depending on the

choice of the data transfer protocol on the network. Moreover, such remote mem

ory accesses need to be integrated somehow with the memory management at each

node. This requirement often forces the granularity of access to be an integral mul

tiple of the fundamental unit of memory management (usually a page). However,

7

it is possible to reduce the network latency by transferring the page partially. The

key point to note is that the data granularity has to be sufficiently high to make

the DSM paradigm viable,

2.3 Memory Model

In a uniprocessor, correctness of execution is ensured by preserving the order of

memory references generated by a processor. Lamport [20] has proposed sequential

consistency as a memory model for ordering shared memory accesses to ensure

correct multiprocessor execution. In this model, the order of memory references

generated by an individual processor is preserved, while the global order of memory

references from all the processors is an arbitrary interleaving of the individual

processors' reference streams that preserves the order of references emanating from

each processor. Essentially, sequential consistency ensures that the view of the

memory is consistent at all times from all the processors.

Insofar as correctness of multiprocessor execution is concerned, only the

ordering of the shared memory references is of interest. Shared memory accesses

may be categorized into three types:

• shared code,

• synchronization variables, and

• shared data variables.

Shared code is always read-only, and hence is always consistent. On the

other hand, synchronization variables require that memory consistency be strictly

preserved. Shared data variables normally require strict consistency as well. How

ever, several applications exist wherein the program correctness would not be com

promised even if there are temporary inconsistencies in the view of the shared

memory as seen by distinct processes. Examples of such applications include asyn

chronous and iterative algorithms. Moreover, if the programs are written to obey

some synchronization paradigm such as lock/unlock, and semaphore P /V, then en

suring a consistent view of shared data ma}' be deferred to synchronization points

in the program without compromising program correctness, Thus, sequential con

sistency is an overly restrictive memory model. This fact was first observed by

Dubois, Scheurich and Briggs [13]. who proposed weak ordering as an alternative

to sequential consistency. Weak ordering requires that memory accesses from a

process are performed in program order; synchronization operations are globally

performed before allowing a process to continue; and all shared data accesses from

a process are globally performed before issuing a synchronization operation. Sev

eral weaker memory models have been proposed. One such memory model is the

causal memory model [1]. This model is based on the notion of causality [20], which

is the fundamental event ordering mechanism in distributed systems. Similar to

a message-passing system, the causal order is used to relate operations based on

the program (local) order at processes and a reod^-from order that is established

between a write and its subsequent reads. This is similar to the happens-before

relation defined in message-passing systems between an operation that sends a

message and the operation that receives it. The causal memory model only guar

antees that read operations do not return causally overwritten values. Another

memory model weakens the ordering constraints by distinguishing between syn

chronization operations that acquire and release rights to access shared data [25].

Of course, all such weakening of the memory model assumes that it is possible to

distinguish between two types of memory accesses: synchronization and read-write

data. If such a distinction cannot be made then a conservative approach (such as

sequential consistency) may be the only way to assure program correctness. Re

cently, there have been proposals for hardware support to make this distinction

possible in SMMs [23, 33, 18]. DSM, on the other hand, is usually a software

abstraction. Therefore, it is quite straightforward (with support from the com

piler and/or operating system) to make this distinction possible and weaken the

memory model.

2.4 Choice of Protocol

DSM assumes that all memory is globally shared. This assumption requires that

independent computations started at different nodes see a consistent view of the

shared memory. To facilitate this view would require a coherence scheme. Consis

tency maintenance of distributed shared memory is similar to cache coherence in

multiprocessors. Shared memory multiprocessors such as Encore's Multimax, con

sist of several processors connected to a common shared memory via a system bus.

A main memory cache is associated with each processor to help reduce the traffic

to the shared memory. Multiprocessor cache consistency protocols ensure the fol

lowing memory coherence constraint: a read operation performed by a processor

returns the most recent value written into that location (by any processor). This

10

criterion is appropriate in a shared memory multiprocessor since the system bus

(a broadcast medium) serializes the memory operations of all the processors. The

cache coherence algorithms that have been proposed for multiprocessors are viable

since the cost (measured in circuit complexity as well as time) of implementing

them in hardware is a small fraction of the total system cost. Further, bus-based

multiprocessors usually have the ability to invalidate (or update) all cached copies

in one atomic bus cycle.

It is possible to devise distributed versions of cache coherence protocols to

maintain the consistency of distributed shared memory. However, such implemen

tations would suffer to some degree due to the mismatch in the capabilities of their

intended environments and distributed systems. The definition of coherence that

works well for shared memory multiprocessors is not appropriate in a distributed

environment since there is no "system bus" to impose a total order on the memory

operations that are performed by all the processors. Further, while invalidation

of cached copies of data is a viable approach in multiprocessors (with a system

bus) it is expensive in a distributed system due to the cost of the invalidation mes

sages. Invalidation involves at least sending a multi-cast message to all the nodes

that have a read-copy of the data. Achieving reliable delivery of such multi-cast

messages is expensive in a distributed system.

In reality, memory coherence and process synchronization are closely inter

twined. A process acquires permission to read or write shared data invariably

through some synchronization method. Absence of synchronization implies that

any arbitrary ordering of simultaneous accesses to a shared location should yield

valid results for a given computation. Therefore, in such cases there is no coherence

11

requirement. In fact, it would be reasonable to argue that memory coherence

should be defined in conjunction with process synchronization.

Not surprisingly, the solutions that have been suggested in the DSM envi

ronment are similar to the ones in the SMM caches. Broadly, these solutions may

be classified into three categories:

1. Write-invalidate policy: In this protocol the writer acquires exclusive

ownership by invalidating all copies before performing the write.

2. Lock-based policy: In this protocol lock requests (exclusive and shared)

result in the data associated with the lock being sent to the requester along

with the granting of the lock. Upon release of a lock, the associated data is

sent back (if modified) to the server. Reads or writes to shared data without

explicit locking follow single-copy semantics that does not allow multiple-

readers or writers. A weaker form of read allows multiple-readers to shared

data (without locking) but does not guarantee consistency.

3. Write-update policy: This protocol differentiates between two types of

accesses: normal read/write and synchronization. Writes to shared data are

buffered and consistency is enforced at synchronization points.

These three categories of cache protocols may be likened to deadlock preven

tion in an operating system, in that they prevent memory consistency violations

from ever happening. It is possible to take a more liberal approach (similar to

deadlock detection) and allow memory consistency violations to occur but have

mechanisms in the system to detect such violations and take corrective action

12

when they occur (see section 3.1).

In distributed systems, the number of messages is a measure of protocol per

formance. From this standpoint, the lock-based policy is expected to out-perform

the other two, since coherence is maintained commensurate with the semantics of

sharing in the computation. Moreover, since locking could be integrated with the

data transfer, there is no need for any additional mechanisms for providing mu

tual exclusion for shared write accesses. In both write-update and write-invalidate

policies there is a need to provide synchronization mechanisms on top of the co

herence policy to assure mutual exclusion for multiple nodes requesting to write

to the same page. However, lock-based policy has its drawbacks: In particular

it does not have the generality of the other two policies. By decoupling memory

coherence and synchronization, it is possible to devise synchronization mechanisms

independent of the coherence policy. The lock-based policy requires explicit direc

tives from the system software to know the semantics of sharing, while the other

two do not require any such directives.

2.5 Synchronization

Another issue is the way interprocess synchronization is achieved in such systems.

Extending the analogy of shared memory multiprocessors to DSM, it would seem

that shared-memory style of synchronization would be expected in DSM systems

as well. However, the granularity of accesses in DSM systems precludes using true

shared memory style of synchronization such as Test-and-Set on arbitrary mem

ory locations. One possibility is to combine synchronization with sharing as has

13

been suggested in some multiprocessor cache protocols [23]. Another possibility

is to have an orthogonal set of primitives to achieve synchronization. This latter

approach is attractive since there could be situations where there may be very

little sharing of data but independent computation may have to synchronize with

one another. For example, in compute-intensive applications, such as the embar

rassingly parallel kernel and matrix multiplication, interprocess synchronization is

used only to indicate completion of computation. Some systems provide semaphore

operations or lock operations in addition to the shared memory primitives.

2.6 Hardware Technology

There are two sources of overhead in a DSM system: the first is the communication

overhead associated with the data transfer on the communication medium; and the

second is the computational overhead associated with servicing remote memory

requests. The choice of the communication medium (Ethernet, optical fiber, etc.)

directly impacts the former, while the speed of the processor and any additional

hardware support for DSM affects the latter.

In this chapter, we enumerated a set of issues that need to be addressed in

the design of a distributed shared memory system. These issues form the basis of

the work described in this thesis. In the next chapter, we present the work that

has been previously done in the area of distributed shared memory.

14

Chapter 3

Related Work

Over the past decade, several systems have been developed and implemented that

provide a shared memory abstraction in a physically distributed environment.

However, the emphasis of the research has been restricted to the design, analy

sis, and implementation of algorithms for maintaining coherence of shared data.

Some research has also been done to investigate the issues in providing reliable

and recoverable distributed shared memory. In this chapter, we briefly summa

rize the work that has been done in the area of distributed shared memory, and

qualitatively discuss these systems with respect to the issues outlined in chapter

2.

3.1 Apollo Domain

Apollo Domain [22] system is one of the earliest systems that employs DSM

paradigm to assure consistency of shared objects in a local area network of personal

workstations and data servers. It provides an integrated distributed environment

with each node possessing a high degree of autonomy with additional system mech

anisms that permit cooperation and sharing among the nodes. The Domain system

allows users to name and access all objects in a transparent manner by having a

15

distributed object storage system (OSS). The OSS is a flat address space of ob

jects addressed by unique identifiers (UID's). The distributed OSS allows objects

to be accessed from any node in the network. Processes could potentially access

all objects by presenting their UID's and mapping the object into their respective

address spaces.

The OSS is implemented in two layers. The first layer provides access to

local objects that reside on the same node as the faulting process. The second

layer provides access to remote objects in a transparent manner. On a page-fault,

the OSS determines if the access is to a local object. If so then the object is read

from the local disk and mapped into the process' address space. If the object

is not locally available then it is located using an object locating service. After

the object is located, the specific page is requested and mapped into the process'

address space.

To assure consistency of replicated copies of an object a two-level approach

is adopted. The lower level detects concurrency violations using a time-stamp

based version number scheme for each object. The time-stamp corresponds to the

time the object was last modified. Every node remembers the version number for

all remote objects whose pages it has encached in its main memory. Every time an

object is read from another node, its version number is returned with it. If it is the

only page of the object encached in this node, its version number is remembered.

If not, the returned version number must match the remembered version number

for the object; otherwise a read concurrency violation has occurred. Every time

a page of an object is written back to its home node, the current version number

is sent with the write request and an updated version number is returned. The

16

home node only accepts the page if the write occurs on a current version of the

page; otherwise a write concurrency violation has occurred. A write request to a

page updates both the home node's and the requesting node's time stamp for the

object. The system also provides primitives to flush stale pages of cached object,

inquiring current version number of an object, and sending back modified pages of

a cached object.

The higher level provides an object locking mechanism. Several types of

lock modes are provided including a multiple-readers/single-writer lock. Lock and

unlock requests for remote objects are always sent to the home node. A lock request

that is granted returns the current version number of the lock. This information is

used to remove stale pages from the requesting node's main memory. The unlock

operation forces modified pages back to the home node before the lock is released.

In Domain, lock requests are not enqueued; if the lock is currently in use, then the

requester is denied access to the lock and would have to retry later.

3.2 Ivy

Ivy [28] is a distributed shared memory system implemented on Apollo worksta

tions interconnected by a token-ring network. It provides a shared virtual address

space similar in concept to the Domain system with the difference that the gran

ularity of access is a physical page in Ivy as opposed to an object in Domain.

In Ivy, a process address space is divided into two parts: a private part and

a shared part. The private part is local to a process and cannot be accessed by any

other process. The shared part is implemented using shared virtual memory. A

17

process may access an}^ memory location of the shared virtual memory through the

shared part of its address space. To manage the shared virtual memory, each node

has a memory mapping manager. The memory mapping manager implements the

mapping between the physical memory of the processor and the shared virtual

memory address space. The memory mapping manager at each node treats the

physical memory as a cache for the shared virtual memory, and is responsible for

maintaining the shared virtual memory coherent at all times. The shared virtual

memory is implemented at the processor-level: Thus, once a page of the shared

virtual memory is made available at a node by its memory mapping manager, it

becomes accessible to all processes that execute at this node.

Ivy uses a write-invalidate type of coherence protocol to manage its shared

virtual memory. The virtual memory is partitioned into pages. Individual pages

can exist in read-only, write, or nil mode. Ivy uses multiple-readers/single-writer

memory semantics. In this approach, all read-only copies of a page are invalidated

when any processor attempts to write to the page. Three different flavors of the

invalidation scheme have been implemented in Ivy. In the central scheme, a central

manager maintains a table to keep track of the locations for all the pages. On a

page-fault, the faulting processor asks the central manager for a copy of the page.

The central manager then asks the owner of the page to send a copy of the page

to the faulting processor. A node is said to be the owner of a page if it was

the last node that modified the page. The second approach, fixed distribution

scheme, is similar to the centralized scheme except that each node is assigned a

pre-determined set of pages to manage. A mapping function is used to perform

this distribution. This scheme avoids the single site bottleneck of the centralized

18

scheme. The third scheme is the dynamic distributed manager algorithm that

keeps track of the ownership for all the pages. This is done by adding a field called

probOwner in each page table entry at all the processors. The probOwner field is

used as a hint to locate the true owner of a page. A processor sends the request

for a page to the node indicated in the probOwner field of the page. If the node

that receives the page request is not the current owner of the page, it forwards the

request to the node indicated in its page table. Initially, the probOwner field is

set to some default value in all the processors. The probOwner field is updated

whenever a processor receives an invalidation request, a processor relinquishes the

ownership of a page on a read or write page-fault, or a processor forwards the

page-fault request to another node.

On a read page-fault, the processor locates the owner of a page and sends a

request to the owner of the page. The owner maintains a set of all nodes that have

a read-only copy of the page in a copyset. The owner adds the faulting processor to

the copyset of the page and sends a copy of the page to the faulting processor. On

a write page-fault, the processor locates the owner of the page and sends a request

to the owner of the page. The owner of the page sends the page and its copyset to

the faulting processor. The faulting processor sends an invalidation message to all

the processors in the copyset of the page. When all the invalidation requests have

been acknowledged, the faulting processor restarts the blocked process.

Ivy provides synchronization mechanisms based on the primitives (event-

counts) provided by the underlying operating system. An event-count supports

four operations: mzY(count), reaf/(count), await{co\int, value), and advance{count).

Init primitive initializes an event-count. Read primitive returns the value of the

19

event-count. Await primitive suspends the calling process until the event-count

value reaches a specified value. Advance primitive increments the value of the

event-count by one and wakes up any sleeping processes. Any process may use an

event-count after the event-count has been initialized.

An extension of Ivy's memor}^ coherence protocol has been implemented

in the Mirage system at UCLA [17]. It allows a reader or a writer of a page to

retain access to the page for a fixed duration of time regardless of the pending re

quests. This is done to guarantee forward progress of the computation by reducing

thrashing of heavily shared data pages.

3.3 CLOUDS

C L O U D S [9] is a distributed operating system developed at Georgia Tech. One

of the distinctive features of CLOUDS is its separation of two notions that have

been traditionally inter-twined in most operating systems, namely, address space

and computation. The former is specified by objects and the latter by threads

in C L O U D S . An object is a passive entity (i.e. there is no process associated

with it) that is part of a global name space. It specifies a distinct virtual space

that is unique in the entire distributed system. The object encapsulates data that

can be manipulated only from within the object. There are entry points in the

object that are invocable from other objects. The entry points contain code for

manipulating the data in the object, and may themselves invoke entry points in

other objects. To allow concurrent execution of more than one computation in the

same object, shared-memory style synchronization primitives are provided by the

20

operating system.

A thread is an active entity that provides the notion of a computation. It

executes in the context of an object. During the course of execution, a thread may

invoke entry points in other objects. Thus, a thread is not associated with a single

address space. Further, since these objects may not all be at the same node, a

thread may span machine boundaries during the course of execution.

The collection of objects in CLOUDS represents a distributed shared vir

tual space. A thread traverses the address spaces of the objects that it invokes

during its execution. Objects are composed of segments that form the basic unit

of sharing. Each segment may be composed of one or more pages. Pages are

the units of distribution. There is an entity. Distributed Shared Memory Con

troller (DSMC) [30] at each node that owns and maintains the segments that are

created in the node. The DSMC provides a set of primitives for segment access

and transport, and is responsible for preserving the consistency of the segments

that it owns. DSMC uses a lock-based protocol for coherence maintenance that

unifies synchronization and transport of data. It supports both exclusive (read-

write) locks as well as shared (read-only) locks for segment access. Upon a lock

request, the owner DSMC encloses the requested segment (parts thereof) in the

message that grants the lock request, thus providing synchronization for free. A

segment may be requested by a thread in one of the four modes: read-only, read-

write, weak-read, and none. Read-only mode provides a non-exclusive lock on the

segment while read-write mode provides an exclusive lock on the segment. Mode

none gives exclusive access to the segment without locking the segment, i.e., any

new request would result in the segment being yanked away to service the request.

21

These three modes provide sequentially consistent memory semantics for the nodes

accessing the segments. However, there are situations where such strong memory

coherence may not be required (e.g. a monitoring thread that wants to "inspect"

the contents of a segment). For such purposes, the weak-read mode is provided. In

this mode a current copy of the segment is sent to the requester. The thread would

continue to receive updates to the segment if it had specified the update option on

the weak-read request. A thread explicitly relinquishes a lock that it has acquired

for a segment by using the discard primitive.

3.4 Mach and Agora

Mach [32] is a multiprocessor operating system kernel developed at CMU. It pro

vides five basic abstractions: task, thread, port, message and memory object. A task

is an execution environment that includes a virtual address space and an access list

to system resources. A thread is a basic unit of CPU scheduling and it executes

in the environment provided by a task; a port is a communication channel; and

a message is a typed collection of data objects. Inter-thread communication is

effected using messages on the ports. A memory object is a collection of data that

may be mapped into the address space of any task. It is a structured mechanism

for managing virtual memory independent of the underlying architecture.

An address space consists of a collection of memory mappings between a

task and memory objects. A task may modify its address space by allocating and

de-allocating a region of virtual memory. A task may also set protection attributes

and specify inheritance of a region of virtual memory. It could create and manage a

22

memor}^ object that maybe mapped into the address space of another task. There

are two ways of sharing memory between tasks in Mach: copy-on-write and read-

write. In copy-on-write sharing, unrelated tasks share an address space without

the actual data being copied. The first task that tries to write gets a copy of the

shared address space. The copies become distinct and different from this point on.

Read-write shared memory is created by allocating a memory region and setting

its inheritance attributes to shared, copy, or none. Subsequent child task creation

obeys the inheritance attributes specified by the parent. Pages specified as shared

are physically shared between the parent and the children, i.e., there is exactly

one copy of the page in the multiprocessor system. A child gets a logical copy of

a page that is marked copy. Pages marked as none are not shared between the

parent and the children.

Note that memory objects may be shared across the network. In this case,

the physical memory is considered to be a cache for the memory objects. Associ

ated with each memory object is a server called pager that manages the memory

object. The pager handles any request for the memory object through a commu

nication port. On a page-fault, the Mach page-fault handler checks whether the

faulting thread has the access permissions for the page. If the permissions are cor

rect then the page request is sent to the pager for the memory object. The pager

services the request and sends back the page from the memory object. Mach pro

vides sequentially consistent memory coherence semantics using a write-invalidate

approach for sharing of pages across the network.

Although Mach's shared memory semantics are geared towards managing

shared memory in a tightly-coupled multiprocessor, there is nothing in the design

23

that precludes its use in a loosely-coupled system. In fact, Agora [5] is a system

that is built on top of Mach with the specific intent of providing shared memory

semantics in a loosely-coupled system. The Agora system allows processes to

share structured data, e.g., abstract data types across heterogeneous architectures

over a local area network. Agora uses the shared memory abstraction of the Mach

operating system to share data structures among processes on the same machine. It

also provides simple locks to synchronize access to shared data. To provide sharing

across the network, the shared data structures are stored in the shared memory of

the process that created the data structure. This copy of data is called the master

copy while a copy of the data at another node is called a cache copy. Data is shared

using copy-on-write semantics with updates to the cache copies. Writes to shared

data are done on the master copy while data is read from the cache copy, A server

process running on the node with the master copy is responsible for updating the

copies of the data at other nodes. A read may potentially return stale data if the

read occurs after the write is complete on the master copy and before the updates

are propagated to the cache copies. The system expects that synchronization is

implemented orthogonally using semaphores to guard against such stale accesses.

3.5 Memnet

Memnet [12] is a shared local area token-ring network being developed at the

University of Delaware. It provides close coupling to the processors of a distributed

multiprocessor system. There are three distinctive features of this project: first, it

allows a granularity of access (32-byte chunks) finer than a page; second, it employs

24

Memnet

Cache Reserved

Network

Figure 2: Memnet Architecture

dedicated hardware (Memnet device) to service remote memory accesses; third, it

exploits the features of a special-purpose token ring network to implement a write-

invalidate style of cache protocol. Given that there is an appreciable software

overhead for remote access, dedicated hardware is almost a necessity to assure

acceptable performance in DSM systems. The Memnet system does not support

virtual memory. Therefore, the way DSM is managed on Memnet is very similar

to cache management in a shared memory multiprocessor.

Each node in the system consists of a host and a Memnet device (Figure

2). The host has access to its private memory, which is inaccessible to other nodes.

There is a large shared memory that is accessible from any node in the system.

This shared memory is divided into 32-byte chunks and distributed among all the

Memnet devices. The hardware address space seen by each host has two parts:

private and shared. References to the shared part are passed to the associated

Memnet device, which coordinates with other devices to resolve the references.

The physical memory associated with each Memnet is divided into two

parts: reserved and cache. The reserved part is the permanent residence for the

25

portion of the global shared memory that is managed by this Memnet device, while

the cache is a temporary store for chunks that have been brought from remote

Memnet devices. There is a chunk status table with each Memnet device that

contains an entry for the chunks that are present in its physical memory. Memnet

uses a write-invalidate style of cache protocol. A chunk may be in one of three

states: valid (readable but not writable), exclusive (readable and writable), and

invalid.

When a reference is generated for a chunk that is not locally available, then

this request is sent around the token-ring. The first node that has valid copy of this

chunk responds to this request. In case the reference is a "write", all other valid

copies are invalidated before the chunk is written. In this sense, Memnet treats the

token-ring as a logical broadcast bus. When a chunk has to be replaced from the

cache, it is written back to its designated reserved area in the appropriate Memnet

device. Since the system does not explicitly provide synchronization mechanisms,

they have to be implemented at the user level to protect shared accesses.

3.6 Choices

Choices [34] is an operating system architecture developed at the University of

Illinois at Urbana-Champaign. It uses class hierarchies and object-oriented pro

gramming to support the building of customized operating systems for shared

memory and networked multiprocessors.

The virtual memory management system of Choices is similar to that of

Mach. Choices uses the idea of a memory object that is cached in physical memory.

26

The memory object abstraction is provided by the Memory Object class while the

virtual memory abstraction is provided by the Domain class. The Domain class

maintains information about the association between the virtual memory of an

application and the memory objects. It provides methods to bind and release a

virtual address to a memory location. Sharing of memory is achieved by mapping

the same memory object into multiple Domains. Sharing across the network is

achieved via the DistributedMemoryObjectCache class. This class is responsible

for servicing page-faults on a node for shared data residing on a remote node. It

communicates with its peers to maintain the consistency of shared data using a

write-invalidate style of protocol similar to the distributed manager protocol of

Ivy. The granularity of remote access is a page. Choices also provides for locking

a page similar to the read-write mode of CLOUDS (see section 3.3) to guarantee

atomic updates to a memory object by denying access until the lock is removed.

Another variant (similar to Mirage) that Choices allows is retaining access to a

page for a fixed duration of time regardless of other pending requests.

3.7 Met her

Mether [29] provides a set of mechanisms for sharing memory across the network

on top of SunOS 4.0. Mether differs from most other distributed shared memory

systems in that it does not provide sequentially consistent memory coherence. A

process can continue to write on a page without the changes being reflected in

other copies of the page. The other copies of the page may be updated in one of

the following three ways: The process with the consistent copy of the page may

27

initiate the updates to be propagated to all the other copies; a process holding an

inconsistent copy of the page may invalidate its copy, resulting in a page-fault the

next time it tries to access that page; a process holding an inconsistent copy of the

page may explicitly request a consistent copy of the page. As should be evident, the

user is responsible for tailoring the consistency requirements commensurate with

the needs of the application. Mether provides a set of system calls to facilitate

customizing the coherence requirements.

Mether provides for data driven page-faults. In a data driven page-fault,

the process that caused the page-fault is blocked. No request for servicing the

page-fault is sent by the server across the network. The page-fault is serviced

when another process actively sends out an update for the page that caused the

fault. Thus, the page-faults are completely passive. Mether defines two types of

pages: a short page (32-bytes) and a full page (8192 bytes). A short page, referred

to as a subset, corresponds to the first 32-bytes of a full page, while a full page

is referred to as a superset. A process is ready to resume execution following a

page-fault, as soon as the subset of the page is made available to this node.

3.8 Munin

Munin [7] is a distributed shared memory system that allows shared memory par

allel programs to be executed on distributed memory multiprocessors. It differs

from other distributed shared memory systems in that it uses multiple consistency

protocols, and its use of a weaker memory model based on release consistency^.

'in release consistency, memory consistency is enforced at a release synchronization point.

28

In Munin, shared program variables are annotated with their expected access pat

tern, and these annotations are then used by the runtime system to choose a con

sistency protocol best suited to that access pattern. At present, Munin supports

seven different types of annotations: read-only, migratory, write-shared, producer-

consumer, reduction, result, and conventional. These annotations are then used by

the runtime system to select appropriate consistency protocol for sharing. Munin

uses weaker sharing semantics (using release consistency) to mask network latency

and reduce the number of messages required to keep memory consistent.

3.9 Hardware assisted distributed shared mem

ory systems

In recent years, several systems have been proposed that implement the distributed

shared memory abstraction in hardware. Two examples are the DASH multipro

cessor [26], and KSR-1 [33].

The DASH architecture consists of processing nodes connected to an inter

connection network. It uses a distributed directory-based cache coherence protocol.

Each processing node consists of a small number of processors, called a cluster;

a small portion of the shared memory; and a directory controller interfacing the

cluster to the network. The memory hierarchy consists of two levels: cluster mem

ory, and global memory. The cluster memory consists of the memory available

with the processors of the cluster, while the global memory consists of memory

available in all the clusters. On an access miss, an attempt is made to service the

29

data request b}̂ the processors within a cluster. If the request cannot be serviced

then it is sent to other processors outside the cluster. Each processing node has

a directory memory corresponding to its portion of the shared physical memory.

For each memory block, the directory memory stores the identities of all remote

nodes caching that block. Using the directory memory, a node can send either

invalidation or update messages to those processors that are caching the block.

DASH uses an invalidation-based ownership protocol for maintaining consistency

of shared data. Data consistency is maintained at the granularity of a cache line

within a cluster, and at the granularity of a memory block between clusters.

KSR-1 is a 64-bit cache only memory architecture based on an intercon

nection of a hierarchy of rings. It implements a system virtual address (SVA)

space that is global to the entire system. The SVA consists of the anion of all the

memory available with the individual processor caches. Each cache is subdivided

in 16-Kbyte pages, which are further divided into 128-byte sub-pages. A data

item on KSR-1 does not have any home associated with it. The data item moves

from one cache to another cache as dictated by the memory access pattern of the

application. An invalidation-based cache coherence protocol is used to maintain

consistency of shared data. The unit of cache consistency is a sub-page. Access

miss on a data item is sent on the local ring. If another ca':he is able to service

the data request, it does so by sending the sub-page to the requesting cache. If no

cache on the local ring has the data item, the request is propagated to the next

level of the ring.

30

3.10 Discussion

In this section we compare the features of the DSM systems surveyed in this

chapter with respect to the issues enumerated in chapter 2 (see Table 1). All the

DSM systems presented in this chapter, with the exception of Agora and Munin

have integrated the DSM management with the VM management, i.e., the DSM

manager co-operates with the VM manager to service page-faults. Accesses to

remote memory are referred to the DSM manager by the VM manager, which in

turn satisfies the request using its own coherence protocol. Thus, a page-fault

to local memory is indistinguishable from a page-fault to remote memory, insofar

as a process is concerned. The difference may only be in the latency of service.

Memnet does not support virtual memory. The shared memory in Memnet is at

the physical address level and its management is similar to private caches in an

SMM. References to shared memory are serviced by a Memnet device without the

software overhead associated with the VM management. A similar approach is

used in DASH and KSR-1 systems, CLOUDS provides a tighter integration of the

VM system and the DSM system than any of the other systems by maintaining

sharing information at the thread (process) level as opposed to processor level. In

fact, such an integration is essential for a system that uses a lock-based coherence

protocol to assure mutual exclusion (when needed) for a thread from all other

threads, including ones that execute on the same processor. On the other hand,

Agora and Munin use the library-approach. Both systems require the user to

specify which data structures in the program are shared. This information is

used by the DSM at runtime for maintaining coherence for shared data. Due

31

to the additional overhead for processing shared memory requests in the library-

approach, the library approach is expected to perform poorly as compared to the

integrated-approach.

Data granularity (see section 2.2) has two aspects: unit of transfer smd unit

of access and locking. Unit of transfer refers to the amount of information shipped

across the network to satisfy a remote request, while the unit of access and locking

is self explanatory. One disadvantage of integrating DSM management with VM

management is that the data granularity of shared memory may be dictated by

the underlying VM architecture. Most VM architectures provide address mapping

and protection attributes at the level of a page or multiples of a page. This feature

could constrain the unit of transfer between the DSM managers to be a page, and

could lead to inefficiencies if the size of the shared data structure is less than a

page. For example, suppose the size of a data object is 512 bytes. In a DSM system

with a page size of 8192 bytes, an access to this data object would result in the

transfer of 8192 bytes, an unnecessary overhead of 1500%. This overhead could be

reduced with some simple optimizations. One such optimization is implemented

in Mether, where each access to shared data results in the transfer of the first

32-bytes of the page. A process may decide to fetch the entire page if it so desires

by examining the first 32-bytes of the page.

Another disadvantage of such an integration (between VM and DSM) could

be that the unit of access and locking may be constrained to be a page (or multiples

thereof). If multiple data structures are allocated on the same page, then this

constraint could lead to false sharing, wherein distinct private data structures

appear shared due to co-location on the same page. However, the advantage of

32

such an integration is that the hardware memory management facilities in the

underlying architecture could be exploited to efficiently implement access control

and locking of the shared data structures.

Most DSM systems follow a strict memory model for data accesses: a read

to a memory location always returns the most recent write to that location. How

ever, as was mentioned earlier (see section 2.3) such a strict memory model is not

required to ensure program correctness. In fact, weakening the memory model

could result in significant performance advantage since the DSM manager would

not have to incur the overhead associated with the strict memory model. CLOUDS,

Mether, Agora, Munin, and DASH are examples of DSM systems that have im

plemented weaker models of memory coherence. The weak-read mode of segment

access in CLOUDS allows an application to acquire a segment without the overhead

for consistency maintenance. The application may choose to receive updates to

this segment asynchronously. In Mether, a process may continue to read a stale

copy of a page that has since been written by another process. It is up to the appli

cation to either force updates to be propagated on writes, or request for updates

to existing copies prior to reading a page. Similarly in Agora, a server process

(that has the master copy) is responsible for propagating updates to cache copies

at other nodes. Munin implements several types of memory coherence protocols

including a weaker memory model based on release consistency. A user needs to

specify the type of memory consistency that should be used for a particular mem

ory object. DASH also implements the release consistency memory model, and

uses invalidates and updates for maintaining coherence of shared data.

Ivy, Mach, Memnet, Choices and KSR-1 implement a write-invalidation

33

based memory coherence protocol. Agora uses a write-update style protocol, while

C L O U D S uses a lock-based protocol. All these systems prevent memory inconsis

tencies from happening [a la deadlock prevention in operating systems). Domain,

on the other hand, uses a version-based protocol to detect inconsistencies after they

have happened {a la deadlock detection in operating systems), and takes corrective

action.

The lock-based protocol of CLOUDS avoids having to send invalidation mes

sages upon writes as is the case with write-invalidation style protocols. However,

in lieu of these messages, the requesting thread has to explicitly relinquish a lock

that it has acquired using the discard primitive. While in terms of the number

of messages (invalidations or discards) there may not be a significant difference

between the write-invalidation approach and CLOUDS, the burden of generating

these messages is spread out among the readers and the writers in CLOUDS while

it rests completely with the writers in the write-invalidation approach. Explicit

locking of segments has the advantage of reducing the thrashing effect across the

network that is possible in the write-invalidation protocols for highly shared data.

Choices and Mirage attempt to reduce the extent of this thrashing by allowing a

processor to retain control of a page for a fixed duration of time during which it

may disregard remote requests for the same page.

In systems that do not use the lock-based approach, there is need for mech

anisms to synchronize access to shared data. These mechanisms are orthogonal

to the DSM and are usually built at the application level. This approach has the

advantage of flexibility in the choice of primitives for synchronization. CLOUDS,

Domain, and Choices provide some form of synchronization integrated with the

34

DSM system.

There are two aspects to the overhead associated with a DSM system: pro

cessing (software), and communication (hardware). The former deals with main

taining the state information in software for the shared memory pages as well as the

overhead for the message-exchange protocol on the communication medium. The

latter relates to the cost of shipping a unit of data across the network. The pro

cessing overhead could be reduced by providing some form of hardware (firmware)

support. Memnet, DASH and KSR-1 are examples of such a system.

3.11 o ther Work

There has been very little in published literature in the the area of providing

fault-tolerance and recovery in DSM systems. Wu and Fuchs [39] have examined

the problem of rollback recovery in a DSM system. They have proposed a user-

transparent check-pointing recovery scheme and a twin-page disk storage man

agement technique to implement recoverable DSM. The proposed check-pointing

scheme is integrated with the memory coherence protocol used to manage DSM.

The twin-paged disk design allows check-pointing to proceed in an incremental

fashion without an explicit undo at the time of recovery.

Brett Fleisch [16] has examined the issues concerning reliability of DSM

systems in the event of site failures, specifically of sites that store the request

queues. Reliability of a site is improved by storing shadow copies of stored requests

and replica of data pages on backup sites. Stumm and Zhou [37] have proposed

extensions for basic DSM algorithms to make the algorithms tolerate single host

35

failures. Fault tolerance is achieved by replicating state information onto physically

separated hosts.

In this chapter, we presented the work that has been previously done in

the area of distributed shared memory. We described the work in context to the

systems issues identified in chapter 2. In the next chapter, we present a detailed

performance study of an implementation of DSM to better understand the inter

action between various subsystems associated with DSM design.

36

ci
CO 0

1 <U
OO ^
C^ > i
- - - O an ^

en en

J^

<
r^
1—H

o
<U

O
r^ ^ ^

en en
OJ

C

'c
o

2;

oj u

OJ U(

Q 1^ ^^9
C/:J • ^

^ ^ §2 O

2;
O

2;

bO

0 -
Q D o o

2;

c«
<U
U

'o

O

CO
<u
bO
f t

Cu C/2

^ ^ X 5 ^ ^ > f t h J

CO o

OJ

S
05 o

en
<U

c^ >>
C^ - O

O
^

o en

a
f-^
o
bJO

<
o

Oj O

f t t^

Q ^
Q
D

D o O

-a u
ft

(V
bO
f t

0 - an ^
o o

t/3
Q
P
O

o
C/}

<u
bO
f t

0-
o 9
c/:! ^

CO

m
H J

en o

>

(D
bJO
f t

Cu an 5 O o

a
"i^
B
o

Q

(K
Q;

Q;
bO
f t

0-
O
CO

.• S 1̂
^ S C/2

i^zi
en
Q ; o

03 Q

B B ft .-^

O J5

Ui

a; o

u
e -Q

O t-
O Cu

c
CO

T Q̂
(LJ i-t

f t >

0; ft

<u

ft
QJ

>
' en

X

<u

0^
f t

- o
-TD

iL)
c ^ en

CC >—.̂ fC en
a; '~' M H -TJ ^: 1

-^
OJ

a;
en

H ^

'Zl u
O

(W

>>
en

g 1
CO

m
H J

I)

CO
Q
(.-1

0
c
0
en

' t^
f t

£
0

O >, >
u c u

en
a;

en

' e n

o

c
Q;
en I t

U
X
QJ

- O
f t

en

' e n

o
O
'It

C

O
f t
>

-TD
OJ
en
f t

"-̂ <î c X I

t-i en X
o f t (Jj

cr
Qj

CO

JJ
QJ

cd
'C o

-1

X
c:) o ^ m
CO cc ̂ J

"TS

dJ

37

Chapter 4

Distributed Shared Memory in CLOUDS:

A Case Study

As mentioned earlier, the process of evaluating the impact of the system issues

on the performance of DSM systems consists of three steps. As a first step, we

would like to study the performance of an implementation of DSM. Such a study

would primarily serve two purposes: First, it would help us better understand

the interaction between various issues in a real environment; Second, the perfor

mance measurements obtained from such a study can be used for assigning costs

to different components of the simulator, which is used for the simulation study

(see Chapter 6). We use the CLOUDS distributed operating system as our target

system for evaluation. The C L O U D S operating system provides a shared memory

model of computation in a distributed setting. DSM is used as the primary vehicle

for supporting this model of computation. For more details about the CLOUDS

operating, system the reader is referred to [9]. The DSM primitives and the algo

rithms used for maintaining coherence of shared data are due to Ramachandran

et al. [30]. For completeness, we present a summary of the DSM primitives in the

next subsection.

38

4.1 DSM Primitives

In C L O U D S , associated with each segment, which is the unit of sharing, is a

node called the owner node where the segment resides on stable storage. The

DSMServer^ at the owner node is responsible for maintaining the consistency of

the segment. The DSM subsystem in CLOUDS uses a lock-based scheme to provide

coherence of shared data. It supports two primitives for acquiring and releasing

data: ge t and d i s c a r d . The get primitive can be used to acquire a segment in

one of the following four modes: read-write, read-only, none, and weak-read. Read-

write mode signifies exclusive access to a segment guaranteeing that the segment

will not be thrown away until the node explicitly discards the segment. Read-only

mode indicates non-exclusive access with the guarantee that the segment will not

change until the node explicitly discards the segment. None mode (the default)

indicates exclusive access with no guarantee whether the segment will be thrown

away or not. Weak-read mode signifies non-exclusive access with no guarantee

whether the segment will change or not. A node can obtain a segment in weak-

read mode with an option to receive updates of the segment implicitly.

The DSMServers implement a First-Come-First-Served queue discipline for

processing remote segment requests. If the request cannot be honored immediately,

it is queued at the server until the relevant lock is released.

When a get primitive is issued in mode read-write or read-only the local

DSMServer sends a request to the remote DSMServer requesting the segment. The

remote DSMServer locks the segment (if it is currently unlocked) with a read-lock

^Process/thread that handles DSM related requests.

39

(for read-only) or a write-lock (for read-write) and returns the segment to the

requesting DSMServer. The owner node keeps a count of the number of readers

associated with a segment. Thus concurrent access of a segment is allowed for

reading, and exclusive access for writing. The segment is kept write-locked until

an explicit discard is received, and read-locked until all the readers have discarded

the segment.

Upon receiving a get request in weak-read mode, the owner DSMServer

sends a copy of the segment to the requesting DSMServer. Note that this may

not be an up-to-date copy if the segment is currently write-locked by some other

node. If the option to receive updates is set, then the owner automatically sends

updates of the segment when the write-lock is released. On receiving a get in mode

none, the owner DSMServer does one of the following: the none mode request is

queued if the segment is currently locked in either read-only or read-write mode; if

the segment is available, it is sent to the requesting DSMServer who now becomes

the keeper of the segment; a subsequent request for the same segment (in modes

read-only, read-write, or none) is forwarded to the current keeper who forwards

the segment to the requesting DSMServer. A segment held in mode none can

be returned to the owner by using a discard primitive, or it can be taken away

by its owner when the keeper DSMServer is instructed to forward the segment to

another node. The algorithms for coherence maintenance are in [30]. The low-level

communication protocol used in the CLOUDS operating system to support DSM is

called RaTP [38]. It provides reliable transfer of data between nodes.

40

4.2 Methodology

This section briefly describes the methodology used for taking the performance

measurements reported in the next section. The CLOUDS operating system is im

plemented on a configuration of Sun 3/60s connected by a lOMbit/sec ETHERNET.

Taking performance measurements posed two problems for us. First, the operating

system did not provide any means of taking timing measurements from within the

kernel. Second, the Sun 3/60 workstation does not provide any hardware timer

that can be used to take timing measurements. We have installed a microsecond

timer [8] to the Sun 3/60 workstations, and have added calls to the CLOUDS op

erating system to read the timer. The timing measurements are done by reading

the timer before executing the code and after executing the code. The difference

between these two readings gives the time (in microseconds) to execute the piece

of code. Each call to read the timer has an overhead of 20 microseconds. The

times reported in the next section are an average of number of such readings. The

measured total time reported in the Tables 2, 3, 4, and 5 gives the high level time

for a particular operation. The breakdown times have been obtained by inserting

timer read calls around major function calls (e.g. context switching, transmit pro

cessing, reply processing, sundry overhead). A page refers to 8 Kbytes. We report

the performance results for three categories of experiments.

41

4.3 Performance Measurements

The first category of experiments is basic system timings, summarized in Tables

2, 3 and 4. The tables also show a breakdown of the measured total time in terms

of the low-level chores that constitute a system function. All the processing times

in the table are measured numbers (by instrumenting the kernel) while network

latency (wire overhead) is computed from the amount of data transmitted and

the network bandwidth. The context switch time of 0.15 milliseconds involves

switching between two different isibas.'^ This switching entails saving registers,

and other state information associated with an isiba and installing the new isiba

on the processor. There is very little MMU overhead associated with this switching

since all the kernel isibas exist in the same machine address space. All the network

communication times shown in Tables 2, 3 and 4 are between two compute servers.

A null round-trip message (64 bytes) between two isibas making use of the Ethernet

system object takes 1.59 milliseconds. The RaTP level null round-trip time is

3.56 milliseconds. Given this null round-trip time, a page transfer takes 12.3

milliseconds at the RaTP level as it breaks up an 8 Kbytes message into 6 packets

(Table 4). Note that Ethernet allows a maximum packet size of 1532 bytes [36].

The second category of experiments exercises the DSM subsystem, that

builds on the basic timings. Table 5 summarizes the results and gives a breakdown

of costs for the none mode requests. Other modes would incur the same cost if

there were no queueing delays at the servers. A ge t from a data server takes

15.5 milliseconds. Comparing the DSM and RaTP timings (Tables 4 and 5) for

^An isiba is similar to the concept of a thread or process in UNIX.

42

a page transfer, it can be seen that the DSM protocol has an overhead of 3.2

milliseconds. This overhead includes updating state information for the shared

segment and coherence maintenance. A ge t with forwarding incurs an additional

overhead of 3 milliseconds over the simple DSM transfer due to an extra message

being exchanged between the owner and the keeper of the segment.

The third category of experiments, shown in Table 6, deals with the ser

vicing of page-faults. In the case of remote page-faults, there is no disk access

involved (i.e. page is in memory at the remote server).

• A segment is currently with the data server that owns it. A DSMServer on

a compute server requests a page from that segment while servicing a page-

fault. The average time for servicing such a page-fault is 16.3 milliseconds.

• A segment is currently in use at a compute server. To service a page-fault

for this segment at another compute server, one level of forwarding (from

the data server that owns the segment) of the request is involved. This

three way exchange of messages results in a page-fault servicing time of 19.3

milliseconds,

It should be noted that the VM overhead of installing a page once a DSM ge t

completes is only 0.800 milliseconds, difference between Tables 5 and 6. The last

two entries in Table 6 show the time for servicing a page-fault on a segment owned

by the local partition. Such faults do not require network messages, resulting in a

time of 1.52 milliseconds for a zero-filled page and a time of 0.65 milliseconds for

a non zero-filled page.

43

Basic system])erformance

(All t imes are in milliseconds)

Breakdown Measured

Total T i m e

Basic context switching 0.150

Null Round trij:) t ime using E the rne t system

object

- Transmi t processing by sender

- Wire overhead (64 l)ytes, computed)

- 1 ('Ontext switch a,t receiver

- Transmi t processing by receiver

- Wire overhead (64 bytes, compu ted)

- 1 (Context switch at sender

T O T A L T I M E

0.4-50

0.051

0.150

0.450

0.051

0.150

1.590

1

I

Null Round trij:) t ime using E the rne t system

object

- Transmi t processing by sender

- Wire overhead (64 l)ytes, computed)

- 1 ('Ontext switch a,t receiver

- Transmi t processing by receiver

- Wire overhead (64 bytes, compu ted)

- 1 (Context switch at sender

T O T A L T I M E 1.302

1.590

1

I

Table 2: Basic system t imings on CLOUDS

4.4 Analysis

RaTP(5 .506 ms)
DSM (3.200 ms

VM (0.800 ms^

Etherne t (6.794 ms)

Figure 3: Cost associated with each subsys tem in servicing a DSM page-fault.

Total = 16.3 ms

Based on the performance measu remen t s presented earlier, figure 3 shows

the breakdown of the total t ime spent in each subsystem associated with servicing a

DSM page-fault on CLOUDS. The total page-fault servicing t ime can be expressed

as a sum of two types of costs: fixed cost and variable cost. T h e fixed cost consists

44

Basic system performance (contd.) Breakdown Measured
(All times are in milliseconds) Total Time

Null Round-trip time at RaTP level 3.560
- Initiating request transaction (including a

32-byte copy of RaTP header into an Ethernet
buffer) 0.800

- Wire overhead (64 bytes, computed) 0.051
- RaTP processing at server before wakeup of

server thread 0.265
- 2 Context switches at the receiver 0.300
- Server processing of the request 0.150
- Initiating reply transaction (including a

32-byte copy of RaTP header into an Ethernet
buffer) 0.600

- Wire overhead (64 bytes, computed) 0.051
- RaTP processing before wakeup of the client

thread 0.265
- 2 Context switches at the sender 0.300
- Client processing of the reply

TOTAL TIME
0.100 - Client processing of the reply

TOTAL TIME 2.882 1
Table 3: Basic system timings on CLOUDS (contd.)

of the overhead associated with the VM subsystem and the cost of sending a data

request to the data server while the variable cost consists of the cost of sending the

data back to the requester. The variable cost controls the latency of data as seen

by an application process because the application process cannot start processing

the data until the entire data page has been transferred. Ideally, in a DSM system,

one would like to keep the fixed cost per byte (see equation 1) and latency per byte

(see equation 2) low.

VM overhead + data request cost
fixed cost per byte =

PageSize (1)

45

Basic system performance (contd.
(All times are in milliseconds)

Breakdown Measured
Total Time

Transfer time at RaTP level (64-byte request one
way, 8 Kbytes other-way)

- Initiating request transaction (including a
32-byte copy of the RaTP header into a
Ethernet buffer)

- Wire overhead (64 bytes, computed)
- RaTP processing at the server before wakeup

of the server thread
- 2 Context switches at the server node
- Server processing of the request
- Initiating reply transaction

(8 Kbytes, 6 packets, including one copy of
8 Kbytes plus headers into 6 Ethernet buffers)

- Wire overhead
(8 Kbytes + headers, computed)

- RaTP processing before wakeup of client
thread

- 2 Context switches at the client node
- Client processing of reply (accepts data in a

buffer, no copying involved)
TOTAL TIME

12.300

0.800
0.051

0.265
0.300
0.150

2.724

6.794

0.737
0.300

0.100
12.221

Table 4: Basic system timings on CLOUDS (contd.

latency per byte = [server proc. cost) * PageSize -\-
PageSize

Media bandwidth
(2)

Total overhead per byte = fixed cost per byte + latency per byte (3)

Equation 1 implies that systems that incur high VM overhead (such as the

library-approach), and high cost for sending a request can mmimize fixed cost per

byte by increasing the page-size. However, equation 2 dictates that the page-size

should be kept small for keeping the latency per byte low. Ideally, one would like

minimize the total overhead per byte as given in equation 3. We will use these

46

DSM operations (segments in memory)
(All times are in milliseconds)

Breakdown Measured
Total Time

Get from a data server (no forwarding)
- Basic RaTP 8 Kbytes transfer
- 1 Context switch at the server
- DSM processing at the server (updating state

information)
- One 8 Kbyte copy from Ethernet bufTers into

a client bufTer
TOTAL TIME

12.300
0.150

1.600

1.450

15.500 Get from a data server (no forwarding)
- Basic RaTP 8 Kbytes transfer
- 1 Context switch at the server
- DSM processing at the server (updating state

information)
- One 8 Kbyte copy from Ethernet bufTers into

a client bufTer
TOTAL TIME 15.500

15.500

Get from a data server (with forwarding)
- Basic RaTP 8 Kbyte transfer
- 1 Context switch at the server on the owner

node
- DSM processing at the server (updating state

information)
- Sending a forwarding request to the current

keeper
- 1 Context switch at the keeper node
- DSM processing at the keeper (updating state

information)
- One 8 Kbyte copy from Ethernet buffers into

a client bufTer
TOTAL TIME

12.300

0.150

0.800

1.780
0.150

1.600

1.450

18.500 Get from a data server (with forwarding)
- Basic RaTP 8 Kbyte transfer
- 1 Context switch at the server on the owner

node
- DSM processing at the server (updating state

information)
- Sending a forwarding request to the current

keeper
- 1 Context switch at the keeper node
- DSM processing at the keeper (updating state

information)
- One 8 Kbyte copy from Ethernet buffers into

a client bufTer
TOTAL TIME 18.230

18.500

Table 5: DSM timings on CLOUDS

equations in chapter 7 for deriving values for the page-size parameter for different

system configurations.

Another point to note from figure 3 is that the majority of the total time is

47

Page Fault Service Time (in milliseconds)
Segment owned by a remote data server
(no forwarding)
Segment owned by a remote data server
(with forwarding)
For a perishable segment (with zero-fill)
For a perishable segment (without zero-fill)

16.30

19.30

1.52
0.65

Table 6: Page-fault service times on CLOUDS

spent in the communication subsystem (communication protocol and data trans

mission). This observations indicates that for an efficient implementation of dis

tributed shared memory, the cost of data transfer has to be reduced. Some tech

niques to bring this cost down is through using an improved communication pro

tocol that has a relatively low overhead; using a faster communication medium

to cut down the time spent on raw data transfer; data compression techniques for

faster data transfer; and using additional hardware to improve processing overhead

associated with the DSMServer.

In this chapter, we presented a detailed performance study of a distributed

shared memory implementation on the CLOUDS operating system. The study pro

vided us with breakdown of costs associated with various components of distributed

shared memory system. The values are later used to assign costs to individual com

ponents of the distributed system simulator that has been designed to evaluate the

system issues.

48

Chapter 5

Impleraentation and Analysis of
Benchmarks

The second step in our evaluation process is to study the performance of several

applications on top of a distributed shared memory system. Such a study would

provide us with insights into the performance of DSM with respect to the various

design alternatives available for addressing the system issues. For this purpose,

we selected a set of six applications. These applications range from highly par

allel computation kernels to asynchronous algorithms. Each application exhibits

different characteristics with respect to the memory access patterns, amount of

computation granularity, amount of data granularity, and amount of synchroniza

tion. These applications are implemented on the CLOUDS distributed system. In

the following sections, we first present the system architecture that is used in the

study, followed by the the performance of each of the applications.

49

5.1 System Architecture

The system^ used in our study consists of a set of Sun 3/60 workstations con

nected via a 10 Mbit/sec Ethernet. Logically, the nodes can be classified into

three categories. Compute servers are the nodes where processes comprising the

distributed application execute. Processes running at different compute servers can

share data, caching the shared state in their local memories. Data server nodes

store the shared state when it is not cached at compute servers and also main

tain information needed for coherence activities. Finally, we have synchronization

servers which implement synchronizat ion const ructs used to coordinate access to

data shared by processes. The three types of servers capture the functionality pro

vided by the system. A given node may act interchangeably as a compute server,

a data server and a synchronization server.

We studied these applications with respect to two coherence protocols:'^

write-invalidate and write-update. These protocols are implemented in the oper

ating system.

• W r i t e - i n v a l i d a t e : The implementation of the write-invalidate protocol

uses a static owner to provide sequentially consistent memory. Upon a page-fault,

the page is requested from the data server (owner). On writes, read copies are

invalidated. The data server keeps information about the current writer and the

readers that have cached copies.

• Write-update: The write-update protocol provides a weak memory

^Due to resource constraints, we studied the performance of these applications on only one
system architecture.

^The lock-based scheme was not studied as its implementation was flawed.

50

model. It is based on the assumption that all program are written with some

synchronization model in mind. Therefore, it is possible to defer consistency ac

tions to certain synchronization points. One of the key problems in DSM systems is

the potential for false-sharing that exists in a page-oriented implementation. With

an invalidation-based protocol it is impossible to avoid this false sharing even if

synchronization information is used to defer the consistency actions. Therefore,

we have implemented an update-based protocol. The basic idea is the following.

A node records all modifications to a page in a shadow copy (transparent to the

program). Prior to exiting a synchronization region, an XOR of the original page

and its shadow is generated for each dirty page (similar to the diff m [7]). The

modifications to the data are sent to the data server (owner). The data server

merges the modifications to its copy of the page, and sends the modified page to

all nodes that are interested in receiving the updates for the page. Upon receiv

ing the modified page, the program is allowed to exit the synchronization region.

Thus, the write-update protocol allows multiple nodes to actively write-share a

page, thereby avoiding the penalties due to false-sharing which are inherent in in

validation based systems. On the debit side, this memory system does incur the

overhead of making a shadow copy for modified pages, generating the XOR-pages,

and applying an XOR-page to the original data page. Further, there is still a

potential for false-sharing in the form of updates to a page (or parts thereof) that

a node is no longer interested in. This could be avoided if the memory system

allows a way for a node to ''unregister" itself from active sharing. The correctness

of allowing concurrent writes to the same page is guaranteed by the assumption

that the program itself obeys a synchronization model.

51

We use page-faults, access violation, and synchronization events to perform

coherence activities. For example, when a reference is made to a page that is

not cached, the fault handler requests the page from the appropriate data server

(there is a one-to-one correspondence between a given page and a data server).

When the page is received, it is mapped and the faulting process continues. The

implementation of the synchronization constructs (locks, semaphores and barriers)

is centralized. For a given synchronization variable, a single server maintains its

state and the queue of processes blocked on it.

In the following sections, we present the results of the performance of the

applications for the two coherence protocols. The timing measurements are done

using a microsecond timer. Prior to the start of the measurements, all shared data

is prefetched by the compute servers; therefore, the times do not include times for

any disk I /O.

5.2 Embarrassingly Parallel Benchmark

The embarrassingly parallel (EP) problem is typical of many Monte-Carlo simula

tion applications. The problem requires generation of Gaussian random deviates

according to a prescribed scheme and tabulation of the number of pairs in succes

sive square annuli. This kernel exhibits a high degree of computation granularity

with the only requirement for communication being the combination of the 10 sums

from the individual processors at the end. As a result, this kernel is expected to

perform well regardless of the underlying coherence protocol.

52

Implementation of CLOUDS

We ran the problem on CLOUDS for A^ = 2^^ iterations. The A' iterations are

equally divided among the available number of processors. The number of proces

sors is varied from 1 to 6. Each processor computes the successive square annuli,

and at the end updates the global table. The kernel performs equally well for

the two coherence protocols. Table 7 shows the completion times and achieved

speedups for this application.

#of write-u)date write-invalidate
Proc. Time (sec) Speedup Time (sec) Speedup

1 178.66 - 176.00 -

2 89.23 1.99 88.48 1.99
3 62.10 2.88 59.06 2.98
4 47.35 3.77 46.57 3.78
5 36.84 4.85 36.67 4.80
6 30.30 5.90 30.53 5.76

Table 7: Completion times and speedups for the Embarrassingly Parallel bench
mark, A'' = 2^^ iterations

5.3 Integer Sort Benchmark

Integer sort is used in "particle-in-celF' applications. The problem statement for

the integer sort benchmark requires that A' keys be sorted in parallel. The keys

are generated by a prescribed sequential key generation algorithm, and are stored

contiguously in shared memory. The benchmark requires computing the rank for

each key in the input sequence.

53

Implementation on CLOUDS

We have implemented two versions of the integer sort benchmark on CLOUDS.

Both versions use the bucket sort algorithm. However, the task graphs for the two

version are quite different. In version VI, the generation of ranks for the keys is

done in parallel, while in version V2, the generation of ranks for the keys is done

sequentially. Figures 4 and 5 show the task graphs for the two versions. In VI, each

key is read and count of the bucket to which it belongs is incremented. A prefix sum

operation is performed on the bucket counts. Finally, the keys are read again and

assigned ranks using the prefix sums. The algorithm has been shown to perform

well on KSR-1, a tightly-coupled shared memory machine and has been adapted

from [31]. In V2, each processor reads a portion of the keys and updates the count

of the bucket to which the individual keys belong. The final rank assignment for

the keys is done by one processor using a shared data structure that contains the

sum of all bucket counts computed by individual processors. The key difference

in the two versions is the number of synchronization operations (barriers) that

are performed. Version VI performs 7 synchronization operations (all barriers),

while version V2 performs only one barrier and a set of semaphore operations. The

motivation for two different implementations is to study the effect of the structure

of the task graph on the application's performance in a distributed system. Each

version sorts A' — 2'̂ ° keys. For the two versions, one would expect that as

the number of processors are increased, the completion time for the benchmark

decreases.

54

Version VI

As one increases the number of processors to solve the problem, one would expect

that the completion times to decrease because the total work is equall}^ divided

among participating processors. However, the results of the implementation of

version VI are quite surprising as almost no speedups observed for any of the two

coherence protocols (see Figure 6). The implementation using the write-invalidate

protocol performs poorly due to the effects of false-sharing. False-sharing causes

data pages that contain the data structures for computing the key densities to

thrash between processors, thereby negating any performance gains achieved due

to increased parallelism. On the other hand, the problem of false-sharing is absent

in the write-update protocol. One would, therefore, expect it to perform better

than the write-invalidate protocol. The write-update protocol performs poorly

because of the high overhead it incurs at synchronization points. As one would

recall, version VI performs 7 barriers operations. Prior to each barrier operation,

the write-update protocol performs global writes to shared data. As it turns out,

this operation is quite expensive to perform in a distributed system because all

modifications need to be propagated to all participating processors, a potential

O(n^) messages. This is an artifact of the structure of algorithm wherein during

different phases, each processor accesses different portions oi the shared data. A

different algorithm that enforces localized accesses to shared memory by individual

processors would perform better as each processor can specify which updates to

global memory it would like to receive, thereby eliminating the potential for 0{n'^)

messages at synchronization points. For the implementation of version VI on the

55

write-update coherence protocol, all gains due to the absence of false-sharing are

negated by the need to perform global writes at synchronization points.

Only 1 thread
IS active

N threads working in parallel

Figure 4: High level structure of the Integer sort benchmark, Version VI

Parallel phase
- computing key frequencies
- N threads working in parallel

Barrier

Sequential phase
- assiging ranks
- only 1 thread active

Figure 5: High level structure of the Integer sort benchmark, Version V2

Version V2

The second version of the integer sort benchmark has two distinct phases: a paral

lel phase, and a sequential phase. In the parallel phase, all processors read in the

key values from their respective portions and increment the bucket counts. At the

56

Integer Sort Benchmark (1 million elements)

NumDer of Processors

Figure 6: Completion times for the Integer Sort benchmark, Version VI, A' = 2^"
keys

end of the parallel phase (before executing the barrier), each processor updates

the global bucket counts for the keys. After the barrier, one processor reads in

the global bucket counts and assigns the ranks to individual keys. The sequential

component of the algorithm constitutes approximately 60% percent of the total

execution time on one processor. This version, therefore, has very limited paral

lelism. Both the write-update and write-invalidate perform equally well. However,

the completion times on these protocols starts to saturate beyond 4 processors,

as the sequential component of the algorithm starts to dominate. Table 8 shows

the breakdown for the sequential and parallel phase of the algorithm for the two

coherence protocols.

57

o f write-update write-invalidate
Proc. Tot Seq Par Tot Seq Par

1
2
3
4
5
6

13.13
10.59
9.70
9.46
9.18
9.03

7.76
7.88
7.86
7.03
7.87
8.00

5.37
2.71
1.84
1.43
1.21
1.03

13.18
10.69
9.93
9.65
9.41
9.27

7.77
7.77
7.85
7.85
7.85
7.86

5.44
2.91
2.08
1.79
1.55
1.40

Table 8: Breakdown of times for the Integer Sort algorithm version V2.

5.4 Matrix Multiplication Benchmark

In matrix multiplication, the product of two M x Af matrices is assigned to a

third resultant matrix. This algorithm is highly parallelizable as no interprocess

communication is needed during the computation of the individual rows of the

resultant matrix.

Implementation on CLOUDS

On C L O U D S , we ran this benchmark for A^ = 256 rows. Each participating proces

sor computes a set of rows of the resultant matrix. At the end, a barrier is executed

to indicate the end of the computation. The completion times and speedups are

summarized in Table 9. As no interdependencies exist between computation of

any two rows, one would expect the completion times to be independent of the

underlying coherence protocol. This is indeed the case.

58

o f write-update vvrite-invalidate
Proc. Time (sec) Speedup Time (sec) Speedup

1 449.48 - 446.13 -

2 226.17 1.99 227.12 1.96
3 152.47 2.95 155.15 2.88
4 114.79 3.92 121.11 3.68
5 93.13 4.83 95.78 4.66
6 76.36 5.89 80.27 5.56

Table 9: Completion times and speedups for the Matrix Multiplication benchmark
for J\f = 256 rows

5.5 Conjugate Gradient Benchmark

In the conjugate gradient (CG) benchmark, the power method is used to find an

estimate of the smallest eigenvalue of a symmetric positive definite sparse matrix

with random pattern of non-zeros. The algorithm for CG is adapted from [31].

Implementation on CLOUDS

We have implemented CG with an input sparse matrix of size A^ = 1400 rows,

and 100300 non zero entries. About 90% of the time for this benchmark is spent

in performing sparse matrix multiplication. Therefore, in the parallel version of

the benchmark, only the sparse matrix multiplication portion is parallelized. The

implementation consists of alternating sequential and parallel phases. The parallel

phase corresponds to the sparse matrix computation. As matrix multiplication

forms the core of the benchmark, one would expect speedups similar to ones ob

tained for matrix multiplication benchmark (see section 5.4), i.e., the underlying

coherence protocol would not impact the performance of the benchmark. The

59

results for the implementation of the benchmark are quite surprising. An imple

mentation with no data partitioning shows significant performance degradation

beyond 2 processors for the write-invalidate protocol. This degradation is due to

the false-sharing of the vector containing the result of the sparse matrix multipli

cation. Unlike the matrix multiplication benchmark, where the resultant matrix

is distributed among the processors, the CG benchmark requires the result of the

sparse matrix multiplication be placed in a single output vector. The output vector

is then used during the sequential phase of the computation. In our implementa

tion the output vector is an array of 1400 floating point numbers that can fit in

one 8192 byte physical page. Although individual processors write to disjoint rows

of the output vector, the fact that the vector resides on one physical page causes

it to thrash between processors, thereby degrading the performance. On the other

hand, there is no problem of false-sharing in the write-update protocol as multiple

writers to a physical page are allowed to coexist. However, another problem which

causes performance degradation for the write-update protocol is performing global

writes prior to a synchronization point. The global writes causes the generation

of 0{n) messages as each processor sends its writes to all other processors. This

causes severe performance degradation especially for large number of processors.

One can see in Figure 7, the curve for write-update with global updates starts

to show degradation beyond 3 processors. In CG, the output vector is used only

by 1 processor that performs the sequential phase. Eliminating the generation

of 0{n^) messages by allowing a processor to turn-off receipt of those updates

that it is not interested in, causes the performance to continuously improve for

60

the write-update protocol upto 5 processors (curve marked write-update with con

trolled updates). Similarly, doing careful data partitioning of the output vector

for the write-invalidate protocol causes the performance to improve upto 5 proces

sors. However, beyond 5 processors, due to reduced computation granularity, the

cost of moving data to the node that performs the sequential component starts to

dominate, resulting in loss of performance for the two protocols.

Conjugate Gradient Method Benchmark

1100 -

1 I 1

write-invalidate (no false sharing) -•—
write-invalidate (false sharing) -*—

*•: ite-update (with global updates) -B--

1 1

fr——

/

.--̂

1000 write-updace (with controlled updates) -•*—

1 1

fr——

/ "
900

ideal

/

800

t-—^'

. / -

700 \ /
..J

600

\ \ / . . ^ • • ' "
50C :̂;s4,̂ ^̂ ^̂ •B-'''

-400

^ ^ ' ^ ^ ' ' ^ ^ ^ ^ ^ r ^ - - ^

•B-'''

-

300
"-•^.^^ * jl a -

200

1 1 1

• -
1 1 1 _l 1

Number of Processors

Figure 7: Completion times for the Conjugate Gradient benchmark

5.6 SCAN Benchmark

The transaction processing benchmarks [15] consists of three basic benchmarks:

sort, scan, and debit-credit. Out of these three, we studied the implementation

of the SCAN benchmark on CLOUDS. The SCAN benchmark specifies a sequen

tial scan of a file, reading and updating records. The high level structure of the

SCAN benchmark is shown in figure 8. A duplexed transaction log is automatically

61

maintained for transaction recovery. Such scans are typical of end-of-day process

ing in on-line transaction processing systems. The benchmark requires that each

record be locked, read, modified, updated, and unlocked. In the parallel imple

mentation of the algorithm, the data is partitioned among available processors,

and each processor performs a sequential scan of its portion of the database. In

our implementation, we did not implement the transaction recovery log.

for i in 0 to TotalNumberOfRecords do
WriteLock(record i);
Read record i;
Change record i;
Rewrite record i;
UnLock(record i);

endfor ;

Figure 8: Pseudo code for the SCAN benchmark

Implementation on CLOUDS

We ran the SCAN benchmark on CLOUDS for A^ = 10000 records. Each processor

performs a sequential scan of its portion of data. Exclusive access to records is

controlled by assigning one lock per 100 records. The benchmark has very little

communication overhead as there is no contention for data. The benchmark shows

good performance for the two coherence protocols. Figure 9 shows the completion

time for the benchmark for the two protocols.

62

Scan Transaction Processing Benchniark

Number of Processors

Figure 9: Completion times for the SCAN benchmark

5.7 Traveling Salesman Problem

The traveling salesman problem (TSP) requires the computation of the shortest

tour that visits all the cities exactly once. A set of cities, along with a starting

city, and distances between cities is specified as input. TSP can be solved with a

branch-and-bound algorithm. The algorithm constructs a tree of possible solutions

with the root of the tree being the starting city. The path from the root to a leaf

node represents a tour that visits all the cities en route exactly once. The goal is

to find the path from the root to the leaf node with the minimum weight. The

sequential implementation of the algorithm uses a depth-first heuristic.

Implementation on CLOUDS

The parallel implementation of TSP on CLOUDS is similar to the one in [27]. A

master processor generates a number of jobs consisting of the partial paths for the

63

top two levels of the search tree. The jobs are kept in a globally shared queue.

Each participating processor picks up a job from the central queue, and using

the depth-first search heuristic, computes the possible paths to cover all cities in

the tour. The value of the best computed path so far is kept in a globally shared

variable. At each level of the tree, a processor compares its current tour value with

the global minimum. A path is abandoned (or pruned) if the current tour value

exceeds the global minimum. A processor can update the global minimum only

if the tour value of the path computed by it is smaller than the global minimum.

The problem completes when all jobs in the queue have been processed.

o f write-u Ddate write-invalidate
Proc. Time (sec) Speedup Time (sec) Speedup

1 58.73 - 54.48 -

2 35.98 1.63 37.96 1.44
3 27.57 2.13 31.37 1.74
4 25.52 2.30 27.95 1.95
5 25.92 2.27 27.69 1.97
6 27.29 2.15 27.93 2.01

Table 10: Completion times and speedups for the Traveling Salesman Problem, 11
city tour

The only actively shared piece of data in TSP is the current best tour value.

To prevent false-sharing, we stored the current best tour value on a separate page.

The frequency of updates to the current best tour value depends on the weights

assigned to the input city matrix, and how soon the global minimum is found in

the computation. In our implementation, we use a 11 x 11 distance matrix with

the distances uniformly distributed over the interval [0, 100] units. We observe

that the speedups achieved for the algorithm depend upon how soon is the global

64

minimum found in the computation. If the minimum for the tour is found earher

in the computation then close to linear speedups are observed. Table 10 shows the

completion times and speedups for the write-update and write-invalidate coherence

scheme. One key point to note is that the speedup saturates at about 2 for four or

more processors. The reason for this saturation is that the cost of propagation of

the best tour value starts to dominate. In both these protocols, any change to the

current best tour value results in the propagation of an entire page (8192 bytes in

C L O U D S) of data. This is a high cost of sharing a value which is just an integer.

In this chapter, we presented the results of the experimental study of six

applications on the CLOUDS distributed system. These applications range from

highly parallel computation kernel to asynchronous algorithms. The experimental

study provided us with the comparison of the two coherence protocols: write-

update and write-invalidate, for different application workloads. The study also

highlighted other factors such as false-sharing and synchronization cost that can

significantly impact the performance of an application. In the next chapter, we

evaluate the issues, which could not be evaluated via experimental studies, using

a simulation-based approach.

65

Chapter 6

Simulation Studies

The third step in our evaluation process is to study the effects of the system issues

that could not be evaluated via experimental study using simulation. As men

tioned earlier, the goal of this thesis is to evaluate the design alternatives that are

available for addressing the system issues. We use a simulation-based approach

rather than an experimental approach because the latter approach places con

straints on the study by limiting the choice of alternatives that can be studied.

The constraints are primarily placed on the study of the effect of the technology

factors (such as processor speed, speed of the communication medium, physical

page size, and additional support for distributed shared memory) on the perfor

mance of the distributed shared memory system. If one would like to study the

effects of different alternatives using an experimental approach then he/she has to

build all possible system configurations that need to be studied. Such an approach

is very expensive, both resource-wise and time-wise, to realize if a large number of

system configurations need to be studied. On the other hand, a simulation-based

approach offers the flexibility to easily model different system configurations by

tweaking the parameters of the simulator. One drawback of a simulation-based

approach is that the results obtained via a simulation study are not quite exact.

66

To remedy this drawback, we do two things: First, the costs assigned to the dif

ferent components of the simulator are obtained from the performance study of an

implementation of DSM (see Chapter 4). Second, we validate the workload model,

used to drive the simulator, using some of the applications that are implemented

on the C L O U D S distributed system (see Chapter 5).

In this chapter, we present the results of the simulation study. We first

describe the design of the simulator and the workload model used in the study.

This is followed by the validation of the workload model. We conclude the chapter

by presenting some of the results of the study.

6.1 Simulator

We have constructed a simulator to evaluate the design alternatives presented ear

lier. The simulator is written in CSIM [35], a process oriented simulation language.

The distributed system modeled by the simulator consists of a collection of nodes

interconnected by a local area network. Each node in the network has a processor,

a DSM coprocessor, and local memory. The local memory acts as a cache for the

portion of the distributed shared memory currently residing at the node. The pro

cessor generates memory references according to a specified workload model. The

workload model is described in detail in section 6.2. Remote memory references

are serviced by the DSM coprocessor at each node in concert with other DSM

coprocessors. In the simulator, each node is modeled as a set of three CSIM pro

cesses: a compute engine, a DSM server, and a media server. The interconnection

network is modeled as a CSIM facility. The compute engine models a processor

67

with associated local memory. Shared references which are not currently encached

in the local memory are communicated to the DSM server by the compute en

gine. The DSM server simulates the appropriate coherence protocol. The media

server models the communication subsystem of a node. It differentiates between

two types of messages: CONTROL and DATA. Each control message is 64 bytes

long while the size of the data message is determined by the page-size parameter

used in the simulation. The media server models the bandwidth characteristics of

Ethernet and an optical fiber. It models the contention aspects of using a shared

broadcast medium without modeling the collision and back-off aspects that are in

herent in an Ethernet type of protocol. In addition to these three per node CSIM

processes, a CSIM process serves as a centralized lock server. Figure 10 shows the

conceptual picture of the simulator.

Nodel Node 2 Noden

CSIM facility

CSIM process

Figure 10: Conceptual picture of the simulator

68

6.2 The Workload Model

Each simulator needs to be driven by a workload model. There are three types of

workload models that can be used: execution driven, trace driven, or a probabilis

tic workload model. In execution driven simulations [11], the application programs

are allowed to execute on native hardware, and only interesting events are captured

and executed on a simulator. The advantage of using an execution driven simula

tion is that the simulation time is considerably reduced as most of the application

code executes at the speed of the host processor. However, the disadvantage of

this approach is that the simulation is closely tied to the hardware architecture of

the native machine, thereby limiting the set of alternatives that can be studied.

In trace driven simulations, traces from a application are captured and used to

drive a simulator; while in a probabilistic workload model, the memory reference

stream of individual processors is generated using some probability distribution.

The advantage of using a trace-driven simulation is that the workload model accu

rately models an application. However, trace driven simulation has the limitation

that only a few number of applications, which have available traces, can be used.

These set of applications may not be representative of all application workloads.

Therefore, in view of these limitations, we chose to use the probabilistic work

load model to drive our simulations. The probabilistic workload model has the

flexibility of modeling a wide variety of workloads by tweaking the probabilities

associated with the workload model, thereby allowing us to study a wide range of

workload models. The disadvantage of the probabilistic workload model is that

the workload may not correspond to any real application. To remedy this defect,

69

we validated our workload model with some of the distributed applications that

have been implemented on the CLOUDS distributed system.

Archibald and Baer [3] have proposed a simple memory reference generator

based on a probabilistic approach to evaluate cache coherence schemes in a shared

memory multiprocessor. In their model, each processor generates a memory ref

erence stream. A memory reference (read or write) could either be to private or

shared blocks; locality of references to shared blocks is modeled by increasing the

probability for accesses to recently used shared blocks. The interaction between

the memory reference streams of the different processors is simulated for different

coherence protocols. A synthetic reference generator is used by Kessler and Livny

[19] to evaluate distributed shared memory algorithms, in which the main differ

ence from Archibald and Baer's model is that the memory reference stream of each

processor is a sequence of shared and private phases. During a private phase the

accesses are strictly to private memory, while both shared and private memory

may be referenced during a shared phase. Each phase is characterized by length,

placement, locality, read to write ratio, and type (private or shared).

Synchronization is an important aspect of any parallel program design, and

the memory reference streams of processors executing a parallel program will con

sist of synchronization accesses and normal read/write accesses. By exploiting

synchronization related information of a program, it is possible to weaken the

memory consistency requirements, thereby improving overall system performance

(see section 2.3). The workload model, described in the next section, captures syn

chronization aspects of a program; a feature absent in other probabilistic workload

models.

70

6.2.1 Structure of the Workload Model

The workload model described in this section captures salient features of paral

lel and distributed programs. Specifically, it models class of applications that

belong to the single-program-multiple-data (SPMD) style of programming. In a

SPMD program, individual processors execute the same piece of code, albeit on

possibly disjoint sets of data items. Processors synchronize with each other using

semaphores, locks (shared or exclusive), or barriers. Semaphores and locks are used

for protecting pieces of shared data, while barriers are typically used to indicate

the end of a computation phase, or the computation itself.

As with any program, a parallel program in our workload model is rep

resented as a collection of tasks. The inter-relationship between these tasks is

captured by a task dependency graph, that suggests a partial execution order for

the tasks that constitute the parallel program. A task is ready for execution when

all tasks that precede it in the dependency graph have been completed. A work

queue is maintained that contains the set of tasks that are ready for execution.

Tasks are inserted into this queue honoring the dependencies in the task graph. A

processor accesses the work queue to acquire a task to be executed next. When

the work queue becomes empty and all the tasks have terminated, the parallel

program is said to have completed.

Each task is a memory reference stream of finite length (specified by a pa

rameter) and is composed of a sequence of compute and synchronization phases.

During a compute phase, the processor generates references (reads or writes) to

71

private and shared data. A compute phase is characterized by the following pa

rameters: the number of memory references, read to write ratio, probability for

shared and private data accesses, and the degree of locality within the phase. The

compute phase is similar to the shared phase as defined by Kessler and Livny

[19]. A synchronization phase consists of read/wTite data accesses (both private

and shared), with a percentage of the shared data accesses being done under the

control of explicit synchronization. Thus, a compute phase corresponds to a phase

in a SPMD program in which computation is performed, while a synchronization

phase corresponds to a phase in which shared data is manipulated under the con

trol of some synchronization variable. Figure 11 shows the composition of the the

two phases within a task (the associated parameters are given in parentheses).

The degree of locality within a phase defines the spatial locality for refer

ences within a page. In addition to this, the workload model allows designating

distinct and disjoint regions of the shared address space to each task; and there is

a parameter, called InterTaskRefProb, that governs the fraction of shared refer

ences of a task that are directed to other tasks' as opposed to its own region. This

feature of the workload model captures the SPMD style of programming, wherein

individual processors primarily operate on distinct portions of shared data, with

occasional references to other portions of shared data. To capture effects of false-

sharing, we provide the FalseShar ingRefProb parameter. Another parameter,

called SynchRef erenceProb, controls the percentage of accesses to shared regions

that are performed under the control of explicit synchronization (shared or ex

clusive). This parameter models the number of critical sections in the SPMD

program.

72

Type of mode] Parameter variable Default values

Transaction Model PvtProb 0.70
OtherRegion 0.20
SynchRef 1.00
InterTaskRefProb 0.00

Iterative Model PvtProb 0.70
OtherRegion 0.20
SynchRef 0.20
InterTaskRefProb 0.05
ReadlnterTaskRefProb 1.00

Asynchronous Model PvtProb 0.70
OtherRegion 0.20
SynchRef 0.20
InterTaskRefProb 0.05
ReadlnterTaskRefProb 0.80

Table 11: List of parameters for domain specific workload models

2. Iterative Model: Iterative algorithms such as linear equation solvers, have

the characteristic that shared data is not modified except at well defined

synchronization points (such as a barrier). Such a data access pattern would

allow a task to access the shared data without acquiring any locks for the

purposes of reading. The iterative model captures this characteristic by

allowing some percentage of the shared references (only reads) to be directed

to other tasks' regions. (OtherRegion / 0, 0.05 in our experiments).

3. Asynchronous Model: In this model, tasks that comprise a computation

do not synchronize with one another explicitly. In terms of the workload

model this feature would translate to tasks reading and writing to shared

memory without explicit synchronization. However, an implementation of

this model in a shared memory environment may involve the use of locks

74

to govern access to mailboxes that may be used for asynchronous communi

cation among the tasks. This workload model is similar to the data access

patterns of asynchronous algorithms that rely on some other property such as

convergence for correctness and termination [4]. In terms of task parameters,

some percentage of the shared references (both reads and writes) are directed

to other tasks' regions. (OtherRegion ^ 0, 0.05 in our experiments).

Table 11 summarizes the default values for the parameters that define the

three domain specific workload models. Table 12 shows the default values for the

other parameters used in the simulator.

6.2.3 Validation of the Workload Model

As mentioned earlier, we chose to validate our workload model using some of the

applications that have been implemented on the CLOUDS distributed system. The

validation will illustrate that by properly tuning the parameters of the workload

model, one can model any SPMD style application. For the purpose of valida

tion, we use two applications: integer sort, and scaji - a transaction processing

benchmark. The approach we take is as follows. The performance of these two

applications is measured from the implementation on the CLOUDS distributed

system. Using the program code the basis, we determine the values for the key

parameters of the workload model. Ideally, executing the resulting workload model

on top of the simulator should yield results identical to the measurements on the

real system. Any variations in the results should be easily explained given some

simplifying assumptions that are made in the simulator.

75

Integer sort

The algorithm for the integer sort benchmark is taken from [31]. The algorithm

uses bucket sort algorithm for generating the ranks for the input keys. The al

gorithm consists of seven distinct phases with barrier synchronization between

consecutive phases. For more details on the algorithm for version VI, see section

5.3.

The structure of the application task graph can be easily modeled using our

workload model. The task graph for the application consists of 7 levels. At the end

of each level, there is an implicit barrier; modeled in our workload model by the

fact that the processor has to acquire a task from the central work queue. Number

of tasks at each level is equal to the number of threads that are active during that

phase. Using the listing for the program, we determine the number of references

made during each level of the task graph. The shared address space is computed

using the size of the shared data structures in the application. In our example, size

of the total shared data space is equal to approximately 2150 Kbytes for A'' = 2^^

elements. Similarly, other parameters are determined and assigned. To account for

false-sharing aspects of the program, we set the FalseShar ingRef Prob parameter.

See appendix A.l for details about computation of these parameters.

After determining the values for various parameters, we ran the simulation

for the write-invalidate coherence protocol. The results of completion times gener

ated by an actual run and the simulation experiments are shown in Table 13. The

values within parentheses are reported at 90% confidence level. As can be seen from

the table, the simulation results agree quite well with the real results. Comparing

76

the results using the t - t e s t indicates no difference between the results obtained

via the two techniques (The confidence intervals contain zero). This validation

shows the workload model can capture the salient application characteristics with

a careful choice of parameters.

SCAN — A t ransac t ion processing b e n c h m a r k

SCAN is one of the three TPS benchmarks used for evaluating transaction systems.

The details about the benchmark can be found in section 5.6. This benchmark is an

example of the transaction workload model described earlier. The task dependency

graph for the SCAN benchmark consists of only 1 level, with the number of tasks

equal to the number of processors participating in the computation. The memory

reference stream for each processor consists of only synchronization phases. Each

synchronization phase corresponds to accessing a 100 records of a file under the

control of an exclusive lock. The number of references made during each synchro

nization phase is determined from the set of operations performed on each record

(approximately 500). The total shared memory requirement for this benchmark

is 130000 bytes as all records are stored in shared memory. See appendix A.2 for

listing of the SCAN benchmark. The results obtained via the simulation study

and measurements for the write-invalidate coherence are summarized in Table 14.

The results obtained via simulation are similar to the those obtained via actual

measurements.

77

2 CO

0) f̂

Q >

o o o o o o o o o o o
t— t — C M O O O O O C M O C ^ O O

o o o
o" ^ ^ o

o o o o o o o o

1/} ^ o o T' O oo CM C/3
1) o QC o O lO rT̂ U H

>.
o

o O o oo

o s f-^
0 0

0) a;

<V bO

0 ; ^

s 'g

0 . ^

c^

a

J^
u
c
CO

bC
c

D H

a;

P^ (U

S c«
^ <̂
P -^
b C ^

3
-T^

ifl

-u

c

05 "^

- U CO
cti • —

'TD 0)

0)
u
c
OJ

-—^ f^
0 / <-H^

u c;

C-HH
OJ QJ

- ^ u

c

^ 05

Q;

o <—1 —^

-TD d

0) f^
t , -XD

d -T^

CK 1 ^

o -5
' • ^ ^

u
o . 2

Oi

a;

r- >
OJ

a
o

: 3 05

c ^

c« .^
05

-TD

Q;

OJ

DH X

2 ^
^ 2̂ :S

d 05 <1̂

- ^ D H

^ £

C a;

d 05

bC bC

c c

C^ 5:̂
o s^
c "̂
C '-'
03 ^
<̂ -u
o ^
S5 - ^ c« CO

: 3
cr
u

; 3
cr
u

Q;
u oj

: 3
o

OJ
u
c
OJ
;-H

t ^
Q;
;-H

- T ^
OJ
;-H
05

0) Q;

-TD

X !
03

X 2

o
(-H

OJ

Q;

' u
Q;
D H

0/

-u

-u
-TD

03

>.

T I !
OJ

£ 'co

bC
C

bC
O

0)

t« ;_ ^

CO o3 ^
CO J^L, " ^

OJ
-p
cr
0)

^ <+H ^

o o -^
>> >^ o3

O O
d 03

X X2 X
ĉ «̂ «̂ «̂

X ! X ! X

o o o

S-H S-H

Q; O3 03 ^ ^ ^ ^ ^ ^ : ^
b j o — - ; : X X X X

' 13 3 c^ 03 03 c^
^ C C X X X X
5^ o3 o3 o O O O

t—t £ i H p ^ p ^ < O O D - a , p ^ p ^

o3 O

^ - u
>-. o

^1
O 5P

Cu c

o3
o3 o3

!-HH <H-(

O O

>, >^ >, >,
-t^ - ^ ~t^ -i^

•^ -^ -^ -^ -^ -r: 'jj^ -^ -jz

o3

>.

Q; o o
o3

-o
03
CD

O

03

^H ^

-TD - ^
03

Q;

0) Q ; CO
CO tn ^

- - ^ Ct CO

5 c

03 . t :

c

^ ^ D

1^ ^
l-H <0

r " ' CO

-TJ r ^

X c

^1
o c

C M - T J

X
o3

X

o
ĉ S

a;'
0;
;-H
bC
OJ

-TD

0)

o

^ o
- ^ ^ t H

O X

Q;

E
; 3

CO C

„ _^ X
03 o3 g

l l z

c bC
o C
a o
p o3

-u ; - H

!> O
; - H - ^ j
; - H o3
<l; <H-(
CO ^ f C ^ f
Ol o ;-H

-^
CO

03 Q; ^ - ^ j C
oJ

T - l <v ; - H

n -^ Ori
CO

C o
: 3
o

- T ^
05

M 1) M
D H o3

<, c/: ^

: 3

<H-H

a;
-u

OJ

o3

a.

CQ

X

E ^

^ a;
0) ^

£ .^
d tH
fcH 03
o3 >

PL^

<V X

^ 2
E^ 7=r Qj

c S c
c ^ O ^
c c

X X
o o
i-l u

0^ PM
• J - ^

> >
a, a,

a;
M-H

OJ

X
c

CO

Q;
b O

X o3

ffi
C (1)

J oi ^1
t 2 ^

W) ><
> 03

< S

GJ

cd
-o
X
en

X
03

X
o
;-H

u
o

i -H

X
o

Pi
X
u
c

c/̂
a;
CO
o3

X
0 .
X
u

X
o

X
o
t H ^ 0 .

-TD
o3 < -

03 zn

ci ^

CO

Q

o3
u
o

- 5

X
o

QJ

oi
r ^

CO

X
o

I L ;

K
r ^

CO
o3

Oi

-^
03

X g^
O U
f-H o3

CL DH
U H ry-) CO
cc; CO CO
bC ^ r!^

"̂ '^ O
X : —H O)

^ ^ -5
^ fcH d

-i£ fS 5
r-"̂ - ^ ^

t , c/̂ ^

CO
Q;

O

£ -̂
o 1̂ ^
X N DH

-^ -^ .5
13 ^ a;

^ CC S

78

1 Number of
Processors Time

Measured
Conf. Interval

Simulated
Time | Conf. Interval

1
2
3
4

6.51
6.83
8.41

13.02

(6.44, 6.57)
(6.76, 6.89)
(8.01, 8.82)

(12.35, 13.69)

6.56
6.85
8.06

13.23

(6.56, 6.57)
(6.73, 6.98)
(7.93, 8.20)

(12.85, 13.61)

Table 13: Comparison of results obtained via simulation with actual measurements
for the Integer Sort benchmark for 2^^ elements

1 Number of Measured Simulated
Processors Time Conf. Interval Time Conf. Interval

1 23.91 (23.90, 23.92) 23.18 (23.08, 23.21)
2 12.20 (12.16, 12.25) 11.59 (11.58, 11.60)
3 8.45 (8.28, 8.62) 8.80 (8.80, 8.81)
4 6.43 (6.36, 6.50) 6.47 (6.47, 6.48) 1

Table 14: Comparison of results obtained via simulation with actual measurements
for the SCAN benchmark for 10000 records

Issues Available alternatives

Data granularity (page size) 512, 1024, 2048, 4096, or 8192 bytes
Coherence protocol write-invalidate, lock-based, or buffered-update
Communication medium 10 Mbps (Ethernet-like), or 1 Gbps (Fiber-like)

1 Processor Speeds 3 MIPS, 25 MIPS
1 Number of nodes 4, 8, 16

Table 15: List of alternatives evaluated using simulation

79

6.2.4 Parameters for the Simulation

We have designed a set of experiments to study the effects of the various design

alternatives presented earlier. The approach we take is as follows: we use a set

of compute nodes (3 MIPS CPU) connected by 10 Mbps Ethernet as the baseline

system. We then designed our experiments to evaluate the effects of each issue on

the performance of the overall system as compared to the baseline system. A list

of issues that are studied is summarized in Table 15.

The experiments have been conducted for the three workload models de

scribed in section 6.2.2. An application is modeled as a 4-level deep task depen

dence graph, with 16 tasks at each level, yielding a total of 64 tasks. A task on

level z -f 1 is not executed until all tasks at level i have been completed. Each task

generates 100, 000 references. The lengths of the compute and the synchronization

phases are specified as input parameters. The shared address space is 1 Mbytes

divided into 128 logical segments of 8 Kbytes each. The logical segment is made

up of physical pages; the page-size is specified as an input parameter. Segment is

a unit of locking assumed in the lock-based protocol while page is a unit of data

transfer on remote memory request for all three protocols. For the purposes of this

study it is assumed that the program level locks generated by the workload model

map exactly to the segment level locks. This assumption essentially removes the

effects (due to lock granularity and data transfer granularity mismatch) of false-

sharing for the write-invalidate protocol, and the effects of limited concurrency for

the lock-based protocol.

In all our experiments, we fix the following parameters to be unchanged:

80

70% private data references, 80% reads, and 20%) of shared references performed

under explicit synchronization in the iterative and asynchronous workload models.

The parameters that are varied in the experiments are summarized in Table 15.

We use completion time as the metric for comparison.

6.3 Simulation Results and Discussion

We present the results in two parts: First, we discuss the effects of granularity of

data transfer, and choice of coherence protocol with respect to the three workload

models. Second, we present the impact of the hardware technology on performance.

6.3.1 Transaction Model

One would expect that larger data granularity would reduce the number of mes

sages in the system as fewer data requests are generated, and would increase spatial

locality. However, larger data granularity also increases the potential for contention

of shared data due to false sharing, thereby degrading system performance. Figures

12, 13 and 14 show the performance for a 4-, 8-, and 16-node system connected via

a iGbps communication medium. In the transaction workload model (see Figure

12), we observe that the performance improves as the data granularity is increased

for all three coherence protocols. False sharing is not an issue for this workload

since all shared data references are performed under the control of a lock and since

we assume lock granularity is a segment.

The lock-based scheme is expected to incur a lesser number of messages

81

4 0 0 0 0
T r a n -ac t io r : w j r k l o . la on a (4-node, 3 MIPS 1 Gbpe' syatem

4 0 0 0 0
1 1

3 5 0 0 0 °
w r i t e - u p d f l t e - • -

u r n t e - i n v f l l i d f t t e -*-
lock -baaed -e -

3 0 0 0 0 - -

2500G , H

2OOO0 \ 13. -̂

1 5 0 0 0

\ ^ •

j
iOOOO

'Q... , J

5 0 0 0

- . " • • • B -

^̂^̂^ j 5 0 0 0 '^^" V.-..v.-i' -g j
0 1000 2000 JOOC 400C 6000 6000 7000 800C 9000

Data crranuiarity (in bytes)

Figure 12: Transaction workload model's performance on 4 nodes on fiber

on synchronized data accesses since it combines data transfer with synchroniza

tion. However, in this protocol the data pages associated with the lock are always

shipped to the requester along with the granting of the lock irrespective of whether

the requester has a valid copy or not. As can be seen in Figure 12, the lock-based

protocol performs poorly at low data granularity compared to the other two. The

reason is because at low data granularity more number of messages are required

to bring in the entire segment associated with the lock. The write-invalidate and

write-update schemes may not have to incur this message overhead if the data is

valid at the requester. However at higher data granularity the lock-based scheme

performs better since the number of messages per lock request reduces significantly.

Overall the write-update scheme performs better than either the write-invalidate

or lock-based scheme (see Figure 12), although at large data granularity, the dif

ference between the write-invalidate and write-update scheme is statistically in

significant. In the write-update scheme, only the updates are sent to the server

at synchronization points, and further the protocol does not incur the overhead

82

2200C
Trar s a c _ioi . workload on a (6-no ie 3 MIPS • GCpB ' BysLeiTi

2200C T

2OOO0

18000 .

r i t e -
Le -upda t e -•—

m v a l i d a t e ^ - •
ock-booed O-

i 16000 \ •

5 14000
t -

1 12000 \. -
s \ ••• . s 10000 u -

1 8000

6000

4000
^

^. ,'S-.

"̂ -̂ ^̂ ^̂ ̂==iiSt.:^,„_

-

8000

6000

4000
^

^. ,'S-.

"̂ -̂ ^̂ ^̂

Figure 13: Transaction workload moders performance on 8 nodes on fiber

Traneaction workload

jj 10000

(16-node, ! MIPS 1 abpsi Bystem

if.

w r i t e - u p d a t e -*—
w r i t e - i n v a l i d a t e -^-

l ock -boaed -Q--

\ -

w,
-

Vx
^ W -^ W -

1000 2000 300C 400C 500: 6000 7000 6000 900
Data granularity (m bytes i

Figure 14: Transaction workload model's performance on 16 nodes on fiber

83

of invalidation messages. It is interesting to note for larger systems (8 and 16

nodes) the lock-based scheme performs much better than the other two schemes

for large data granularity (see Figures 13 and 14). For write-invalidation scheme,

the probability of the data associated with a lock being valid decreases due to the

increased concurrent activity over the same number of shared segments. Similarly,

for write-update scheme the updates are sent to the current set of potential readers

and all of them may not actually use it in the future. On the other hand, the lock-

based protocol incurs exactly the minimum number of messages required to get the

lock and data. As we increase the number of nodes in the system, the number of

messages becomes an important factor (due to contention for the communication

medium) in determining the system performance.

In contrast, if one considers a system with Ethernet as the communication

medium then the results for the transaction workload model are completely differ

ent. Figures 15, 16, and 17 show the results for the transaction workload model

on a 4-node, 8-node, and 16-node system connected via a 10Mbps Ethernet. Un

like the earlier results, the lock-based scheme performs considerably worse than

the write-update and the write-invalidate schemes. This is because the lock-based

scheme sends a copy of the data-page to the requester regardless of the data-page

being valid at the requester. The cost associated with the transmission of this

data becomes dominant with the slower Ethernet medium, resulting in poor per

formance for the lock-based protocol.

84

40000

35000

Transact: ion wc Drkload f 3r a 14 -node 3 KIPS, 10 Mbps1 sysLem
40000

35000

(L
write-update -•—

write-invaliaaLe -<—
locK-baeed o-

i 30000 - -

^

1
25000

\ k

§ 20000 •

5

f 15000
\ \

• \ V._ s... -

10000 v^_
::::;-̂ 10000 v^_
::::;-̂ ̂

10000 v^_
::::;-̂

, ,

Figure 15: Transaction workload model's performance on 4 nodes on Ethernet

6.3.2 Iterative Model

Recall that the iterative workload model (see section 6.2.2) allows a task to access

shared data for reading without explicitly acquiring read-locks. For this model,

increasing data transfer granularity improves system performance for the lock-

based and write-update schemes (see Figure 18). However, for the write-invalidate

scheme, the performance benefit due to the reduced number of messages (at larger

data granularity) is offset by an increase in false sharing, thus resulting in system

performance degradation. Since read-shared copies are invalidated upon a write,

the cost of re-reading a new valid copy increases with increasing data granularity

for a given sharing pattern. The problem becomes even more acute when more

nodes are added to the system, as now it is more likely that read-shared data pages

may become invalid (see Figure 19). Since false sharing is not an issue with either

the lock-based or write-update protocols, we do not see a similar performance

degradation with either of these protocols.

85

2600C

24000

Tran action Jorkload or. a i8-n ode T MIPS, 10 Mbps; syBterr.
2600C

24000
•

a
write-update -»-

write-invalidate -<—
lock-tiafled -0--

22000
• -

20000 * -
18000 \ -
16000

\ '•

\ Q
-

14000 -
12000 \ \ -

10000
D--.

i

-
8000

D--.

i

D--.

i ,
7000 800C 9000

Figure 16: Transaction workload model's performance on 8 nodes on Ethernet

15000
Tranafl ction workload a n a (16-node, 3 MIPS, 10 Mbpe) eyfltem

15000
1? ' write-update -•—

14000
write-Invalidate -*—

Lock-based -s- _

13000 I ,

1
s 12000

•

1 11000 . \ \ .

s ', a,

s 10000 \'. -
t •D-

9000
•

9000

8000

V

Figure 17: Transaction workload model's performance on 16 nodes on Ethernet

86

4500C
I C e r a t ve WOT kload or. a 4-noc e , 3 tCPS. GbpE) sys ter r

4500C

w r i t e - u p d a t e -•—

t
\

^ r i c e - i n v a l i d a t e -^'
4000C •

t
\

l o c k - b a s e d Q-- "

35000 - \ \ \ -
s \
^ 30000 -c

I
g

1

25000

20000

15000

10000

\

"\\

-

25000

20000

15000

10000

\

"\\

5000
s . - . .

"———-• 5000
s . - . .

1 1

Figure 18: Iterative workload model's performance on 4 nodes on fiber

18000
I C e r a t ive worklo ad on a (16-node . J MIPS, 1 GbpB' ayaLem

18000

writ:e-upd#[te -•—

16000
w r i c e - i n v a l i / i a c e -^—

l o c l ^ i ^ s e d B - •

14000 /'

12000 -'''

10000 -
eooo t?

V "\,
"V.̂ /

-

6000
"~""-v'' "

4000 a..

• Q

-

2000 . ^

Figure 19: Iterative workload model's performance on 16 nodes on fiber

87

Since both the lock-based and write-update schemes allow the copies of

shared data to remain inconsistent between synchronization points, these two are

expected to perform better than write-invalidate scheme for the iterative workload

model. Figures 18 and 19 confirm this hypothesis. However it is surprising that

write-update scheme does not do as well as lock-based scheme. In the write-update

scheme, updates for all modified pages are sent at the end of each synchronization

epoch. This set of pages could potentially include ones that are unrelated to this

particular epoch. As a result this scheme could incur more overhead than entirely

called for in the iterative workload model. The lock-based scheme by associating

locks with segments does not have to incur this unnecessary overhead. This effect

is more apparent at low data granularities (small page sizes). In fact, as can

be seen even write-invalidate scheme performs better than write-update scheme

at sufficiently small data granularity since the need for unnecessary updates in

the latter over-shadows the ill-effect of false-sharing in the former. At higher data

granularities the distinction between lock-based and write-update schemes is lesser.

The results for the iterative workload model do not change if the commu

nication medium is replaced by a 10Mbps Ethernet because only 20% of the data

accesses are made under the control of a lock. Hence, the performance degradation

as a result of shipping data with the lock is not very significant for the lock-based

protocol.

6.3.3 Asynchronous Model

In this model, unsynchronized write-sharing of data is allowed (see section 3.2).

Further the domain of write-shared data is the entire shared data space. Thus

the model itself has a high built-in overhead (as compared to the iterative model)

for both the write-invalidate or write-update style protocols. In the former, in

validations may have to be sent to all the nodes while in the latter updates may

have to be sent to all the nodes. This is evident by comparing absolute completion

times for the same amount of total work (in terms of number of memory refer

ences) for the two workload models (see Figures 18 and 21). As can be seen from

Figure 21 increasing the data granularity helps both the protocols. The positive

effect of reducing the number of messages at larger data granularities seems to

dominate the negative effect of false-sharing for the write-invalidate protocol. The

lock-based protocol (owing to its assumption that computations obey a synchro

nization model) is basically incompatible with this asynchronous workload model.

Owing to the protocol allowing exactly one-copy of a segment (regardless of the

data granularity) for such asynchronous accesses the lock-based protocol performs

consistently worse than the other two for all data granularity (see Figure 7). How

ever due to lesser number of messages at larger granularities the performance of

lock-based protocol approaches that of the other two.

The results for the asynchronous workload model do not change if the com

munication medium is replaced by a 10Mbps Ethernet because only 20% of the data

accesses are made under the control of a lock. Hence, the performance degrada

tion due to shipping of data with the lock is not very significant for the lock-based

89

Aeyncni IE workload on a :4 -node, ' MIPS Lobpst eyetem
iOOOOO

350000 -
01

b

—r- 1 1 1 r 1
w r i r e - u p a a c e -*—

r i L e - L n v a l l d a t e -•—
l o c k - b a a e d Q .

300000 . -7j

s E

c. 250000 -

1 200000 -
c
0 ^.
i 150000 ~

f 100000

50000
•

• < > - ,

" • o - - . .

" Q

' > • r - »

Figure 20: Asynchronous workload model's performance on 4 nodes on fiber

protocol.

6.3.4 Hardware Technology

We conducted several experiments to determine the effects of new technology on

the overall performance. When the processors in the baseline system are replaced

with faster processors (see Figure 22), the overall system performance improves,

although the percentage improvement due to reduce computation times is not

uniform across all data transfer sizes. The non-uniform improvement across the

range of data granularity can be explained as follows: For low data granularity,

more number of data requests are generated, thereby increasing the computation

requirements associated with page-fault handling and DSM related state mainte

nance; as a result, the processor speed has a significant impact on the performance

than for large data granularity. Similar performance improvement is observed when

90

55000

50000

Aeynchronous workload o n a [4-nod 3, 3 MIPS, 1 Gbpe) syatem
55000

50000 - i
wriLe-updaLe -•—

riLe-invaiidaLe -<— -

45000

1 -
40000 \\ -
35000 \ \ -
30000 \ \,̂ -
25000 \ \ -
20000 • \ '*-- -
15000 '̂'---̂_ -
10000

• -
5000

n I —I L. 1 1
2000 3000 4000 5000 6000 7000

Data granularity [in bytee)
300 9000

Figure 21: Asynchronous workload model's performance on 4 nodes on fiber. Com
paring write-update and write-invalidate

the communication medium in the baseline system is replaced with a faster com

munication medium (see Figure 23). The reason for the improvement is reduced

transmission times. The impact of communication speed on the performance be

comes more significant as the data granularity is increased because at low data

granularity the access to the medium is the primary source bottleneck (due to

large number of messages).

Effects of technology factors on sys t em scalability

We define scalability of a distributed system as the effect of increased number of

nodes in the system on the performance of the problem being solved, e.g., if a

problem of size A^ is solved in time ti by P processors then it should be solved by

kV {k > 1) processors in time 2̂ where 2̂ £ ^i- Ideally, we would like ti/t2 = k.

In this case, the problem is said to achieve linear speedup.

To study the effects of technology factors on system scalabilit}-', we examined

91

25000
T rsneacrti ^ r k l o a a °r. a 1 4 -ncde, IC Mbps, wri-.e-i. nvalidate system

25000
I 1 • " 1 "

\
3 MTP£ cpu -•—

25 M : P = c;pi, -^-

20000 -
\

-

15000

\
j

10000 j

5000

n

^ - 1 — — — -̂ ... —.--

1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
DaLa granuiarlLy (in byLes)

Figure 22: Effect of processor speed on performance

a distributed system using the transaction model and the write-update scheme.

Figures 24, 26, 25, and 27 show the results for four possible system configurations:

3 MIPS CPU with 10 Mbps and 1 Gbps medium, and 25 MIPS CPU with 10 Mbps

and 1 Gbps medium.

Figure 24 shows the system performance as a function of data transfer

granularity for 4-, 8-, and 16-node configurations. Although for a given number

of processors the system performance improves as the data transfer granularity

is increased, the performance degrades as the number of processors is increased

for a given data granularity. This is because the increase in computational power

through the additional processors is not matched by the available communication

bandwidth. The scalability problem becomes even more acute when faster pro

cessors are used in the system without changing the communication medium (see

Figure 25). Similar behavior is observed for the iterative and the asynchronous

models also.

The degradation in system scalability can be eliminated by using a faster

92

26000

24000

T r a n s a c t 1 3n workload on a [4-node , 3 >GPS, w r i t e - L n v a l i d a t e ' eyatem
26000

24000
• 3

10 Mbps -•—
1 Gbps ->-• .

22000

• \
-

i
c

20000

18000 •A
"

i 16000 '\ -

1
14000

\ \ -

1
12000 \.̂ •

I 10000

'̂ -̂̂ ^̂ "̂̂ ^̂ ---̂
•

8000 V ^ ^"''-~-~...̂ _ -
6000

4000
C

~""~--̂ -,_ -6000

4000
C

6000

4000
C iOOO 2000 3000 4000 5000 6000

Data g r a n u l a r i t y (in b y t e s)
7000 8000 90C

Figure 23: Effect of communication speed on performance

communication medium (see Figures 26 and 27). Note however that for 16 pro

cessors there is very little improvement in performance with increased data gran

ularity. In the transaction workload model the processors compete for the same

fixed number of locks. There are two sources of overhead in this model: one corre

sponding to data transfer and the other corresponding to the waiting time for lock

service. The data transfer overhead is dependent on the number of messages and

the size of each message. Since for the configurations studied the processing over

head per message dominates the actual transmission time on the wire, the number

of messages is the more critical factor in determining the data transfer overhead.

At low data granularity the number of messages is higher but the waiting time is

higher; while at high data granularity the number of messages is smaller but due to

the increased service time for each lock request (owing to the larger data granular

ity) the waiting time for locks is higher. Thus the two sources of overhead balance

each other out resulting in no net gain in performance for large data granularities

when the size of the system is scaled up.

93

20000
Traiisaction wor^la ̂ d • D « ' 3 MIPS , 10 Mbps w n t e - u p d a t e] jystetr

20000

18000 a

16-nodes -•—
S-nodes -^-
4-nodes s

16000
' t ; -

14000
• \ ^ , \

12000 \

10000 \ -̂ ' \

V \ a-. V \ a-.
'-rrr-—•

V \ a-.

.

Figure 24: System scalability with 3 MIPS CPU and 10 Mbps network

6500

Tcans .c t ion workload on a 125 MIPS, 10 Mbps, write-updACe) syateir.

6500

l6-aode» -•—
8-node» -•—
4-nodes S- _

-
^

6000 - -

5500

5000

4500

\ -, 5500

5000

4500
^ j

4000

• & . .

-̂

3500

Figure 25: System scalability with 25 MIPS CPU and 10 Mbps network

In this chapter, we have presented a simulation-based study of issues that

could not be evaluated via experimental studies. A detailed discussion of the

results based on the experimental and simulation study is presented in the next

chapter.

94

1800C
Tranaact i r x load o t ' | 3 K PS . 1 Gbps wrl f= upda e •y«t«

1800C
t r,oae» -«—

16000 -
a 8

4 nodes

14000 - ^ ' -

12000 v -

10000 \ a -

8000 \ \
\^

-

6000

''-- -— .
•

•JOOO

''-- -— . -*-̂
•

''-- -—

'
•

Figure 26: System scalability with 3 MIPS CPU and 1 Gbps network

orkload on a 125 MIPS 1 Ofapa

V I 1 T • - • • I

16-
8-
4-

nodes -•—
nodes --—
nodes e - .

\ ''••

-

\ ': \ \
\ a

^ \ ' • • • •

•

- \vx. •

\ \ '~'-. -
\ '""'-v̂ , " • " • • • • • ^

' »
---^ - - . .H

' » , , , 1 , *
0 1000 20 00 9000

Figure 27: System scalability with 25 MIPS CPU and 1 Gbps network

95

Chapter 7

Discussion

We started out this research with the goal of evaluating the system issues in the

design of distributed shared memory systems. We first identified a set of system

issues along with the possible design alternatives available for addressing these

issues. The evaluation was done in three steps: First, we studied the performance

of an implementation of distributed shared memory. Second, we analyzed the

performance of several applications on CLOUDS, a distributed shared memory sys

tem. Finally, we evaluated the issues using a simulation-based approach. Based

on the results of the simulation studies, and implementation and analysis of the

applications, we present here some observations on the design and performance of

distributed shared memory systems. These observations are made with respect to

the system issues identified in chapter 2.

7.1 Virtual Memory and DSM

There are two ways in which the distributed shared memory abstraction can be pro

vided in a system: One, integrate the distributed shared memory mechanisms with

the operating system; Second, provide the abstraction as a set of library functions

accessible from the user-level. We call the first approach as the integrated-approach

96

to DSM, and the second approach as the library-approach to DSM. The implemen

tation of DSM considered in our study uses the integrated-approach. The advan

tage of using this approach is that the overheads associated with servicing DSM

page-faults are very low, as all DSM related processing is done inside the operating

system. In CLOUDS, the integrated-approach incurs an overhead of approximately

800 ^sec per page-fault. As a result, the overall performance of DSM is very good.

On the downside, the integrated-approach is quite inflexible as any minor change

to the distributed shared memory system requires modifications to the operating

system. The library approach to DSM, on the other hand, is quite flexible to deal

with, as only the library needs to be modified. However, it would perform quite

poorly due to the overheads associated with context-sw^itching, crossing user-to-

kernel address boundaries, etc. As DSM deals with physical pages as units of data,

a system designer implementing the library-approach would also have to modify the

operating system to provide hooks for manipulating data pages (such as installing

and invalidating) from the user-level. Some operating systems, such as M A C H , do

provide such hooks (via external pagers), thereby simplifying the implementation

of the library-approach. If a system designer needs to provide a high performance

DSM system then we would recommend the integrated-approach to DSM. Table

16 summarizes the advantages and disadvantages of the two approaches.

7.2 Granularity

There are two aspects to the issue of granularity: computation granularity, and

data granularity. As mentioned earlier, computation granularity is the amount

97

Approach
Integrated Library

1
2
3

low overheads, 0{fisec)
inflexible
transparent to the user

high overheads, 0{msec)
flexible
Provide hooks in the operating
system for installing, invalidating
pages

Table 16; Integrated vs Library: Comparison of the two approaches

of computation a process has to do between s3^nchronization and communica

tion points in a multi-process computation, while data granularity deals with the

amount of shared information processed during a computation phase.

• Effects of computation granularity: In distributed systems connected via

a local area network, network latencies are high. Therefore, any problem that has

to be solved in a distributed environment (through cooperative computing) should

have sufficiently high computation granularity to justify the added communication

costs. The goal is to have a high CGRatio in equation 4.

Time spent in the computation
CGRatio = (4)

Time spent in requesting data for the computation

Figure 28 shows the plot for a curve with CGRatio = 1. In order to achieve

good speedups, the CGRatio iov an application should fall in the shaded region for a

given DSM implementation (CGRatio > 1). The vertical lines on the chart indicate

the minimum time that is spent in transferring a unit of data between two nodes

in a particular DSM implementation. For example, in CLOUDS, at least 16 msec is

spent in transferring data between two nodes. This is because during each transfer

a minimum of 8-Kbytes is transferred. Values for other systems differ depending on

the size of the unit of data transfer, speed of the communication medium, and other

98

5 10 _

KSR-1 (6.5 usee)
Clouds (16 ms)

Memnet (20 usee)
1

-

ctmmm^i

y

CGRatio < 1

0 1 1 1 1 1 *

CGRatio = 1

1.0 15 20 26

Communication Time (In msec)

Figure 28: Computation to communication ratio requirements

overhea(is associated with the transfer. To achieve goo(i speedups on a particular

implementation, the CGRatio for an application should fall in the shaded region

to the right of the vertical line for that system. Table 17 classifies the systems

surveyed in chapter 3, based on the relative grain of computation needed to achieve

good performance. A system designer can calculate the computation requirements

for his/her DSM design by matching the minimum communication time for the

system with those shown in the chart (see figure 28).

Based on the computation and communication requirements, we can classify

the seven applications that we studied into three categories: high, medium, and

low CGRatios (see Table 18). In our studies, applications which exhibit very

large computation granularity and very little state-sharing, such as EP, matrix

multiplication, and SCAN benchmark, perform quite well (show good speedups)

for all processor configurations. Other applications with medium CGRatios show

reasonable speedups for up to 4 processors. Beyond 4 processors, the completion

99

times do not decrease further with the addition of more processors, mainly due

to lack of sufficient computation granularity available at each processor. As a

result, for large system configurations, the communication costs start dominating

the completion times (small CGRatio) thereby degrading the overall performance.

Better speedups can be achieved by increasing the computation granularity for

each processor either by scaling the problem size for large number of processors, or

using a small number of processors for a given problem size. Applications with low

CGRatios, such as integer sort VI. did not perform well on CLOUDS because the

computation granularity is quite small to yield good speedups. Such applications

will perform well on systems, such as KSR-1, that efficiently support fine-grained

parallelism (see [31]).

Computation Granularity
Large Medium Small

Domain, Ivy, CLOUDS, Mach,
Agora, Choices, Mether, Munin

Memnet DASH, KSR-1

Table 17: Computation granularity requirements

CGRatio
High Medium Low

EP, Matrix Multiplica
tion, SCAN, T S P

Integer Sort V2, CO Integer Sort VI

Table 18: Classification of the applications based on the CGRatio

• Effects of data granularity: The issue of data granularity can be related

to the amount of data exchanged between nodes at the end of a computation

phase because it is this data that will be processed in the next computation phase.

100

On page-based systems, regardless of the amount of sharing, the amount of data

exchanged between nodes is usually a multiple of the physical page-size of the

underlying architecture. In our study, all applications exhibited very small data

granularity, while the underlying system supported very large physical pages (8

Kbytes). If the shared data is stored in contiguous memory locations then most

data can be stored in few physical pages. This strategy often gives rise to the

problem of false-sharing wherein disjoint pieces of shared data, operated upon by

distinct processors, reside on the same physical page. As a result, the system

performance degrades as the common physical page thrashes between different

processors. The problem further exacerbates as more nodes are used for solving

the problem. Such behavior is observed for the CG, and the integer sort (version

VI) benchmarks. One way to reduce the problem of false-sharing is by partitioning

the shared data structures on to disjoint physical pages. For systems with a large

physical page-size, such partitioning of data can result in significant wastage of

the virtual address space. Such wastage can be reduced if the distributed shared

memory system is implemented on architectures which support a smaller physical

page-size.

Another factor that affects the value for the page-size is the total overhead

per byte associated with fetching a data-page. Recall, in chapter 4 we computed

the value for total overhead per byte as the sum of the fixed cost per byte and latency

per byte (see equations 1, 2, and 3).

VM overhead + data request cost
Total overhead per byte =

PageSize
PageSize

+ [server proc. cost) * PageSize +
Media bandwidth

101

Using the values for different components of the distributed shared memory

system, one can compute the effect of increase in page-size on the total overhead

per byte for a particular system. Figure 29 shows the expected overhead per byte

for the C L O U D S implementation of DSM using a 10 Mbps Ethernet. In the plot,

we assume that the VM overhead is 0.800 msec, cost of sending a data request is 3

msec, and server processing cost is 0.200 msec/Kbyte of data. As can be seen from

the figure, the minimum occurs somewhere between 1 - 2 Kbytes. For page-size

values larger than 2 Kbytes, the latency per byte dominates the total overhead per

byte while for values less than 1 Kbytes, the fixed cost per byte dominates the total

overhead per byte. Table 19 lists values for the page-size parameter for different

values of the VM overhead, server processing overhead, and data transmission

cost. The values listed in Table 19 indicate the minimum value of page-size; and

is obtained by differentiating the total overhead per byte with page-size parameter

and solving for page-size (see equation 5).

PageSize =
Media bandwidth{VM overhead -\-data request cost)

\ [Media bandwidth) + [Server proc. cost) + 1024 (5)

VM ovhd Data req cost Server proc. Media Speed Page-size
1
2
3
4
5

0.80 msec
10.0 msec
0.80 msec
10.0 msec
0.005 msec

3.00 msec
3.00 msec
1.00 msec
1.00 msec
0.02 msec

0.20 msec/K
0.20 msec/K
0.20 msec/K
0.20 msec/K
0.05 msec/K

10 Mbps
10 Mbps
1 Gbps
1 Gbps
8 Gbps

1 - 2 Kbytes
3 - 4 Kbytes
2 - 3 Kbytes
7 - 8 Kbytes
0.7 Kbytes

Table 19: Optimal value of page-size for different system configurations

Table 19 indicates that a single value of the page-size parameter is not

appropriate for all types of DSM system designs. The value should be decided

102

Page Size (in k.ilobyt:es)

Figure 29: Total overhead per byte for DSM on CLOUDS

based on the other design decisions, such as approach to DSM, expected server

processing overheads, and cost of data transmission. For example, a page-size

of 1 - 2 Kbytes is appropriate for a software implementation of DSM using the

integrated-approach and Ethernet-like communication medium. Systems such as

C L O U D S that have similar characteristics but are implemented on architectures

with 8-Kbyte page-size pay a high penalty for latency per byte. On the other hand,

systems that provide hardware support for DSM (indicated by small VM overheads,

server processing overheads), and faster communication medium can utilize smaller

page-sizes (see entry 5 in Table 19). KSR-1 is an example of such a system that

uses a 128-byte sub-page as the unit of data transfer and coherence maintenance.

As the value for the page-size is usually tied to the system architecture used for

the implementation, a system designer should carefully analyze his design decisions

before selecting the architecture for implementation of DSM.

103

7.3 Memory Model and Coherence Protocol

Programming on any system requires that the users be offered a programming

model that they can use for writing programs. Distributed systems are no different.

The choice of a memory model is closely tied to the type of coherence protocol

that is used for maintaining coherence of shared data. The experimental results

presented in this thesis are for two kinds of memory models: one weak, and one

strict. Corresponding to these two memory models, we considered two coherence

protocols - write-update, and write-invalidate. The write-update protocol is based

on the buffered consistency (BC) memory model while write-invalidate is based on

sequential consistency (SC). In our simulation studies, we also studied the lock-

based protocol. The lock-based protocol restores sequential consistency at well-

defined points governed by locks, with hooks for weaker semantics (see Chapter

2). In the following discussion, we refer to the memory model implemented by the

lock-based protocol as the SCsynch model.

Table 20 ranks the performance of the three memory models for the seven

applications and three workload models that we studied. Interestingly, for applica

tions that exhibited high CGRatios (EP, Matrix Multiplication, SCAN, TSP), the

choice of memory model does not make a significant difference on the performance

of the application. The main reason is that the application's communication re

quirements are very low such that it does not matter which memory model is used.

For medium-grained applications such as integer sort V2 and CG, the BC memory

model performs well because it supports concurrent writes to heavily shared data

pages. The SC memory model performs poorly because it pays a high overhead

104

Application Rank
EP. Matrix Multiplication. SCA.N. TSP (1) BC. SC
Integer Sort V2 (1) BC

(2) SC
CG (1) BC

(2) SC
Integer Sort VI (1) SC

(2) BC
Transaction Workload (1) SCsynch

(2) BC^
(3) SC

Iterative Workload (1) SCsynch
(2) BC
(3) SC

Asynchronous Workload (1) BC
(2) SC
(3) SCsynch |

Table 20: Ranking of the three memory models

for maintaining consistency of heavily shared data pages. For small-grained appli

cations such as integer sort VI, the BC memory model performs poorly compared

to SC because the former incurs high overheads at synchronization points. These

overheads negate any gains of using a weaker memory model. For our simulation

studies, we considered a wide range of workload models, and weaker memory mod

els perform well for configurations with large number of processors (SCsynch for

iterative, BC for asynchronous; see section 6.3). The sequentially consistent mod

els did not perform well due to the increase in overhead for maintaining coherence

of data in large configurations.

105

Programming Ease

Other factors that can influence the choice of the memory model, and coherence

protocol are the aspect of programming ease, and system scalability. By ease of

programming, we mean how much work the programmer has to do in writing an ef

ficient distributed appHcation. For programming ease, stricter memory models are

better suited because these are well understood by the programming community.

On the downside, to achieve good performance, the programmer (or the compiler)

has to do good job at data placement to avoid false-sharing. As mentioned ear

lier, performance degradation due to false-sharing magnifies in systems with large

page-sizes. On the other hand, weak memory models are new to the programming

community, and are not understood enough by the users to exploit the weakness

of memory in the applications. False-sharing may need to be addressed in models

which use invalidation-based approach to provide weaker semantics. Programming

effort is less for protocols which eliminate false-sharing by using an update-based

scheme.

Another aspect to programming ease is the question where should one focus

his/her efforts in writing efficient distributed shared memory programs: at the

application level, or at the system level. The advantage of focussing efforts at

the system level is that an application programmer (naive or advanced) needs to

do very little work in writing efficient programs because the underlying system

has been tuned to provide good performance. Such is the case with using the

integrated-approach to DSM wherein a programmer is oblivious of the structure of

the underlying system. All data that is needed by an application is transparently

106

and efficiently fetclied to tlie node wliere tlie execution takes place. On the other

hand, if the focus is at the application level then a programmer needs to be aware

of the complexities of the underlying system for writing efficient programs. A

naive implementation of an application may result in a poor performance as the

underlying system may not be tuned to support DSM very efficiently. Such is the

case with using the library-approach to DSM wherein a programmer has to specify

the data structures that are shared globally, and the kinds of sharing patterns

expected of the shared data. Munin is an example of such a system.

Sys tem Scalability

By system scalability, we mean how many nodes can efficiently implement DSM

without incurring significant performance degradation. One measure of system

scalability is the number of messages required for maintaining coherence of shared

data. Table 21 shows the number of messages generated in the three coherence

protocols (with and without multi-cast). If no multi-casting is used then one can

see that both the write-update and the write-invalidate schemes can potentially

generate number of messages proportional to the number of nodes participating in

the computation (r -^ ,\f). On the other hand, lock-based protocol is insensitive

to the number of nodes participating in the computation. However, in both the

lock-based and write-invalidate protocol, the number of messages increases as the

the degree of sharing is increased (number of messages is a function of the degree

of coherence, c).

Table 22 rates the scalability of the three protocols based on different pa

rameters values, assuming no multi-cast. We analyze each of the four cases below.

107

Protocol
Number Of Messages

Protocol Without multi-cast With multi-cast {r=l)
write-update S(5 -h 2rw) + 2V(l-h) S(5 -h 2w) + 2V(l-h)
write-invalidate S(5 -h 2rwc -h c(l-w)) +

V(l-h)(2+c(w(5-i-2r)-hl))
S(5 + 2wc + c(l-w)) +
V(l-h)(2+ c(7w-h 1))

lock-based 35 + V(l-h)(2 -h c) 35 + V(l-h)(2 -h c)

5 Number of s3^nchronization phases
M Amount of memory operated by a processor during a computation phase
w Probability that an access is a write operation
h Hit ratio
c Probability that an access read/write will cause coherence messages

to be sent to other nodes
A/' Number of nodes participating in the computation
r Number of nodes involved in receiving coherence messages, r < A'
Q Unit of data transfer
V Number of messages needed to bring in Ai bytes of memory. V = ^

See appendix D for details.

Table 21: Number of messages generated in the three coherence protocols

1. If an application does not require any coherence to be enforced {c = 0) then

the lock-based scheme will generate a fewer number of messages because

it combines data transfer with synchronization. One example of such an

application is an implementation of TSP that allows the nodes to use their

local copies of the best tour-value. Only when a processor needs to update the

global best tour-value, it does so under the control of a lock. This application

does not need any coherence activity to be performed during computation of

the best tour-value. The other two protocols will generate equal number of

messages, albeit more than lock-based, because separate messages are needed

for acquiring/releasing locks during the computation.

108

Condition Order
1 No coherence needed, c = 0 (1) lock-based

(2) write-invalidate, write-update"
2 No computation phase, A1 = 0

^V = 0
(1) lock-based
(2) write-update
(3) write-invalidate

3 r ^ A' (1) lock-based
(2) write-update
(3) write-invalidate

4 Number of synchronization phases
tend to 0, 5 ^ 0

(1) write-update
(2) lock-based
(3) write-invalidate

"Provided the reader turns off receipt of updates

Table 22: Scalability of the three coherence protocols without multi-cast

2. For applications that access data under the control of a synchronization, the

lock-based scheme generates fewer number of messages than the other two

protocols because it combines data access with synchronization. The write-

update protocol generates fewer messages than write-invalidate because the

former supports concurrent writers to the same physical page while the latter

does not. The SCAN benchmark is one example of such an application.

3. If the number of nodes for which memory consistency needs to be enforced

reaches A' then the number of messages generated for the write-invalidate

scheme increases more rapidly than the write-update scheme because the

former enforces memory consistency during the synchronization and compu

tation phase while the latter enforces memory consistency only at the end

of the synchronization phases. The lock-based scheme scales better than the

other two because the number of messages is independent of the number of

109

nodes participating in the computation.

4. If an application has very few synchronization phases then the benefits of

the lock-based scheme in combining data access and synchronization become

negligible. As a result, the write-update scheme scales better than the other

two because it does not generate messages to enforce memory coherence

during computation phases.

A system designer can analyze the target set of applications that will run

on the DSM system to see which type of applications will be more often used.

The designer should then select the memory coherence protocol accordingly by

comparing the number of messages using table 21.

7.4 Synchronization

We discuss the issue of providing synchronization w4th DSM under a broader cate

gory of miscellaneous system services. Simulation studies (see Chapter 6) have been

performed assuming miscellaneous system services (such as acquiring/releasing

locks, barriers, and disk I / O) incur negligible cost; therefore the results of the

studies do not show significant effect of these services on the performance. In

our implementation studies, however, we observed that these services play a key

role in determining the overall performance of the application. Most applications

that we consider belong to the class of SPMD programs with approximately equal

amounts of computation being performed at each node. As a result, the proces

sors have a tendency to reach a synchronization point in the program at about

110

the same time, causing bursts of s3mchronization activit3\ Such bursts of activity

cause the central synchronization server to become overloaded, resulting in severe

performance degradation especially for large number of processors. Similar perfor

mance degradation due to tl_e data server becoming a bottleneck is observed for

the write-update protocol. In the write-update protocol, all processors perform a

cp_synch() operation prior to a synchronization point. In cp_synch() , all modi

fications made to shared memory are identified and sent to the data server. As all

processors reach the synchronization point at approximately the same time, the

data server becomes the bottleneck while servicing the cp_synch() requests. The

performance deteriorates further as more nodes are added to the system. One tech

nique to eliminate the problem would be to reduce the number of messages that

are generated by individual processors at synchronization points. In the write-

invalidate and write-update protocols two separate messages are generated at a

synchronization point: one for doing the synchronization operation; and one for

requesting the data associated with the synchronization operation. Combining

these two messages, as is done in the lock-based protocol, would significantly im

prove the system performance. This point is supported by the simulation studies

for the transaction workload model (see section 6.3.1). Using distributed servers

for providing miscellaneous services may also alleviate the server bottleneck prob

lem. It is essential, therefore, that the system designer pay equal attention to

the design of miscellaneous system services for scalable distributed shared memory

systems.

I l l

7.5 Hardware Technology

Performance of any distributed system is closely tied to the hardware technol

ogy the system is built around. With the advent of faster microprocessors, it is

possible to build more powerful systems. However, one area of the design that

is seldom given much thought to is the type of communication medium. Use of

slower communication medium such as Ethernet, with faster processors causes the

communication to become a bottleneck. This is confirmed by the results of the sim

ulation studies (see section 6.3.4), which indicate that for building scalable DSM

systems a faster interconnection network is a must. System designers interested

in building new distributed systems should pay close attention to alleviating the

communication bottleneck by considering new communication technologies, such

as fiber optics, and ATM networks, for the design. Providing additional hardware

support for DSM can also improve system performance by ofF-loading all shared

memory related activity from the host. There are two types of overheads asso

ciated with a software implementation of DSM systems. One, the time spent in

performing housekeeping chores during servicing of DSM requests (approximately,

20% on C L O U D S) ; Second, time spent in processing control messages such as in

validation, updates, for maintaining coherence of shared data. These activities can

reduce the number of cycles available for a host for performing useful work. To

reduce this overhead, hardware support for DSM is essential especially in large

distributed systems where distributed shared memory traffic could be high. See

appendix C for more details on the design of hardware support for DSM.

112

7.6 Conclusions

System
Parameters

Architecture System
Parameters Large Medium Small

1 Processor Speed 12 mips 20 mips 40 mips
Communication Speed 10 Mbps 16 Mbps 1 Gbps
VM Overhead 800 fisec 400 //sec 10 //sec
Memory Model BC BC BC
Coherence Protocol write-update write-update write-update
Page-size 1 - 2 KB 512 bytes 128 bytes

Table 23: Characteristics of three types of DSM systems

Architecture
CGRatio

Architecture High Medium Low
Large
Medium
Small

0(1000)
0(1000)
0(1000)

O(IOO)
0(1000)
0(1000)

0(10)
O(IOO)
0(1000)

Table 24: Number of nodes that can efficiently execute an application based on
the CGRatio

Based on the experimental and simulation results, table 23 lists the char

acteristics of three types of DSM systems that support large-grain, medium-grain,

and small-grain parallelism. Note that the cost of building a DSM system increases

as one moves from large-grain to small-grain systems because former are usually

built with slower processors and slower communication mediums, while the latter

needs additional hardware support for achieving good performance. However, the

DSM design does not preclude use of faster communication medium with slower

processors, though use of faster processors with slower communication medium

does not scale well (see section 6.3.4). For these three types of DSM systems,

table 24 lists the number of nodes that can efficiently execute the three different

113

classes of applications (based on the CGRatios). Based on our experience with the

seven applications on the CLOUDS distributed system, we would categorize any

application with a CGRatio less than 10 as small-grain, between 10 and 1000 as

medium-grain, and greater than 1000 as large-grain. Note that this classification

uses the CLOUDS system as the point of reference. As can be seen from table 24,

small-grain DSM systems can scale to thousands of nodes for all three classes of

applications provided the number of messages generated in the system for main

taining memory consistency is kept to a minimum using weaker memory models

and multi-cast techniques.

In this chapter, we discussed the issues related to the design of distributed

shared memory systems based on the results of obtained from our simulation and

experimental study, and provided guidelines to designers who are interested in the

design of scalable distributed shared memory systems.

114

Chapter 8

Conclusions and Future Work

8.1 Concluding Remarks

The thesis starts with the premise that distributed shared memory is a viable

programming paradigm for programming large distributed systems. Based on this

premise, we have investigated several issues that arise in the design of such systems,

and tried to answer the question whether we can identify a set of issues, along with

the design parameters, that define an efficient implementation of distributed shared

memory systems. The answer to this question has provided several contributions.

First, we have identified a set of system issues that form the core of a

distributed shared memory system design. These issues include integration of

distributed shared memory with virtual memory management, granularity of com

putation and data, choice of memory model, choice of the coherence protocol, and

technology factors. We have also identified a set of possible design alternatives

that are available for addressing each of these issues.

Second, we have analyzed the performance of an implementation of dis

tributed shared memory on the CLOUDS distributed operating system. The study

provided us with an insight into the functioning of a distributed shared memory

system. The performance study helped us in identifying performance bottlenecks,

115

and provided us with timings measurements associated with individual compo

nents of the DSM subsystem. These times were later used to assign costs to the

different components of the simulator.

Third, to evaluate the various design alternatives, we have implemented

and analyzed the performance of several applications on the CLOUDS distributed

system. Issues that could not be studied via experimental studies have been stud

ied using a simulation model. To drive the simulator, we designed a workload

model that captures the salient features of programming parallel and distributed

systems. The simulator is used to analyze system performance with respect to data

granularity, types of coherence protocols, effect of communications media, and any

additional hardware support. We state conditions to determine appropriate values

for addressing the issues enumerated earlier. A system designer can use these con

ditions to decide the alternatives that are appropriate for the distributed shared

memory system he/she is designing. Some of the key results of the study indicate

that the choice of coherence protocol does not matter for applications that exhibit

high computation granularity and low state sharing; coherence protocols based on

weaker memory models are suitable for use in large distributed shared memory sys

tems; the unit of data granularity (page-size) depends on the overhead associated

with servicing data requests and cost of data transmission; miscellaneous system

services, such as the synchronization server, and the data server, play a significant

role in influencing the performance of an application; and the application perfor

mance can be improved by providing additional hardware support for distributed

shared memory.

116

8.2 Future Work

The research in this thesis has answered some questions related to distributed

shared memory systems. However, several questions remain unanswered. We

briefly discuss some of these questions in this section.

The benchmarks used in the study were drawn from a set of applications

that exhibit fine-grain parallelism. Given the high network latencies in some dis

tributed systems such applications may not be appropriate for benchmarking such

systems. It would be interesting to identify applications that are more appropriate

for distributed systems.

The research in this thesis examined the effects of the operating system

issues on the performance of DSM systems. We did not consider other issues

namely, object and process migration, reliability, availability, and fault-tolerance

that are equally important. We would like to study the impact of these issues on

the design of DSM systems, and see how these issues impact the results presented

in this thesis.

To date, many researchers have designed and implemented several experi

mental distributed shared memory systems. However, none of these systems have

left the research laboratories and made it into systems for daily use. One rea

son for this is researchers have been unable to identify applications except nu

merically intensive computations that can efficiently make use of the distributed

shared memory abstraction. A few fertile areas for research include the use of

117

distributed shared memory abstraction in the design of multi-media servers, par

allel/distributed file servers, and main memory database systems. With the ad

vent of high speed networks, it is likely that the communication bottleneck found

in current (1993) implementations of distributed shared memory systems will be

eliminated. This opens new possibilities for using distributed shared memory in

daily life.

In this research, we presented a preliminary design for the type of hardware

support that would benefit DSM systems. However, to completely understand the

performance implications of such support, it is essential that a detailed performance

study be carried out. As part of our future work, we plan to implement and do

a detailed performance study of the controller. We would also like to explore

the performance implications of using one processor of a multiprocessor machine

as a dedicated DSM processor, and study its performance in comparison to the

dedicated controller approach.

118

Appendix A

Integer Sort and SCAN benchmarks

A.l Integer Sort (version VI) Benchmark

This section describes the computa t ion of various pa ramete r s for the s imulat ion

for the integer sort program. All parameters except the amount of shared address

space, number of references made by a task, and the parameter capturing false-

sharing aspects of the program are assigned default values. We compute the shared

memory requirements for the application for sorting A"* = 2^* elements (see Table

25) based on the source listing shown in section A.l . Table 26 shows the formulae

used for computing the number of references made by a task at each level of the

task graph. This is an approximate representation derived from the loops in the

program. Note that we are only interested in the approximate number of references

and not the exact number. The parameter NumberOf Nodes is an input parameter

to the simulator indicating the number of nodes participating in the computation.

Parameter FalseShar ingRefProb, which models the false sharing aspect of the

application, is tuned to approximate the behavior of the implementation by com

paring the results of the simulation and the implementation. One could use curve

fitting techniques to extrapolate this parameter for a larger number of processors.

119

Data Structure Size Actual size
(in bytes)

short key[N] TA' 524288
short S[N] 2"A' 524288
int rank[N] 4^V 1048576
int keyden[Bmax] ^"^Bmax 262144
int keyden_t[MAX_PROCS][Bmax] 4*MAX_PR0CS*Bmaj- 8192
int work_size_n 4 4
int work_size_k 4 4
int extra_n 4 4
int extra_k 4 4
int my^trt_n[MAX_PROCS] 4^MAX_PR0CS 24
int my_end_n[MAX_PROCS] 4*MAX_PR0CS 24
inl my_strt_k[MAXJROCS] 4*MAX_PR0CS 24
int my_end_k[MAX_PROCS] 4"MAX_PR0CS 24
int my_extra_k[MAX_PROCS] 4"MAX_PR0CS 24
int my_extra_n[MAX_PROCS] 4^MAX_PR0CS 24
int tmp_sum_k[MAX_PROCSl 4"MAX_PR0CS 24
int tkt[MAX_PROCS][128] 4*MAX_PROCS*128 3072

TOTAL SIZE 2157752

Table 25: Approximate shared nnemory requirements for the integer sort bench
mark for A^ = 2^^ elements, Bmax = 2048, MAX_PR0CS=6

A.1.1 Source Listing of the Integer Sort Benchmark

s h o r t

s h o r t

i n t

i n t

i n t

long

long

long

key[N] = {0} ;

S[N] = { 0 } ;

rankCN] = { 0 } ;

keyden[Bmax] = { 0 } ;

keyden.t[MAX.PROCS][Bmax] = {{0, 0 } } ;

work_size_n = 0;

work_size_k = 0;

ex t r a_n = 0;

120

Level Number of References per task

(11 + Bmax -h 22 + Bmax) + (Bmax +
Bmax)/NuniberOf Nodes -f- (4 * A^ -f- 4 * A^)/NumberOf Nodes
{NumberOfNodes + 6 * NumberOfNodes) + {Bmax + 3 *
Bmax) + (2 * Bm.ax -h 4 * Bmax)/NumberOf Nodes
{Num,berOf Nodes -f- 6 * NumberOJNodes)
(2 * Bmax + 4 * Bmax)(NumberOf Nodes
(3 * Bmax + 6 * Bmax) * Num,berOf Nodes
(6 * A^ + 5 * A^)/NumberOf Nodes

Table 26: Number of references made by each task for the integer sort benchmark
for A' = 2^^ elements, Bmax = 2048

long ex t r a_k = 0;

long my_strt_n[MAX_PROCS] = { 0 } ;

long my_end_n[MAX_PROCS] = { 0 } ;

long my_strt_k[MAX_PROCS] = { 0 } ;

long my_end_k[MAX_PROCS] = {0} ;

long my_extra_k[MAX_PROCS] = {0} ;

long my_extra_n[MAX_PROCS] = {0} ;

i n t tmp_sum[6] = { 0 } ;

i n t t k t [6] [l 2 8] = {{0, 0 } } ;

i n t i s : : s t a r t (i n t n p r o c s , i n t seq , i n t chunk) {

i n t i . j ;

C.printf ("Kernel IS, chunk=y,d n", chunk);

barrier.ReadAssociate(0, 0) ;

if (seq == 0) {

121

resettimerO ;

work_size_n = N / nprocs;

work_size_k = Bmax / nprocs;

extra_n = N */, nprocs;

extra_k = Bmax */, nprocs;

}

cp_synch();

barrier.barrier();

/************************* PHASE 2 ***********************/

if (seq < extra_n)

my_extra_n[seq] = seq;

e l se

my_extra_n[seq] = extra_n;

if (seq < ex t ra .k)

my_extra_k[seq] = seq;

e l se

my_extra_k[seq] = extra_k;

iny_strt_n[seq] = (seq * work_size_n) + my_extra_n[seq] ;

my_end_n[seq] = my_strt_n[seq] + work_size_n - 1;

if (seq < extra_n)

my_end_n[seq] = my_end_n[seq] + 1;

my_strt_k[seq] = (seq * work_size_k) + my_extra_k[seq];

my_end_k[seq] = my_strt_k[seq] + work_size_k - 1;

if (seq < ext ra .k)

122

my_end_k[seq] = my_end_k[seq] + 1;

for (i = 1; i <= 1; i++) {

bucksort(seq, chunk, nprocs) ;

}

cp_synch();

b a r r i e r . b a r r i e r O ;

if (seq == 0) {

long t = readtimerO ;

C_printf("Time = Xdn", t) ;

}

}

int i s : : b u c k s o r t (i n t seq, in t chunk, in t nprocs) {

in t i , j , i t , chu, k;

C.printf ("[Xd] Star t = '/.d end = '/.dn",

seq, my_strt_k[seq], my_end_k[seq]);

/* Zero the keyden array */

for (i=my_strt_k[seq]; i<=my_end_k[seq]; i++)

keyden[i] = 0;

for (i=0; i<Bmax; i++)

keyden. t [seq] [i] = 0;

/* Count occurrences of each key (the 'key dens i t y ') */

for (i = iny_strt_n[seq] ; i <= my_end_n[seq] ; i++) {

k = key[i] ;

keyden_t[seq][k] = keyden_t [seq] [k] + 1;

123

}

cp_synch0;

barrier.barrier();

for (j = 0; j < nprocs; j++) {

keyden[my_strt_k[seq]] = keyden[my_strt_k[seq]]

+ keyden_t[j][my_strt_k[seq]] ; }

for (j = 0 ; j < nprocs; j++) {

for (i = my_strt_k[seq] + 1; i <= my_end_k[seq]; i++) {

keyden[i] = keyden[i] + keyden_t [j] [i] ; } }

for (i = my_strt_k[seq] + 1 ; i <= my_end_k[seq]; i++)

keyden[i] = keyden[i] + keydenCi - 1] ;

cp_synch();

b a r r i e r . b a r r i e r () ;

/************************ PHASE 4 ***********************/

if (seq == 0) {

tk t [seq] [0] = 1;

tmp_sum[0] = 0;

for (i = 1; i < nprocs; i++)

tmp_sum[i] = tmp_sum[i - 1] + keyden[my_end_k[i - 1]] ;

}

cp_synch 0 ;

b a r r i e r . b a r r i e r O ;

/************************ PHASE 5 ***********************/

124

f o r (i = m y _ s t r t _ k [s e q] ; i <= my_end_k[seq]; i++)

keydenCi] = keyden[i] + tmp_suin[seq] ;

cp_synch() ;

b a r r i e r . b a r r i e r O ;

/•*********************** PHASE 6 **********************•/

i f (seq == 0) {

fo r (i = 0; i < Bmax; i++)

fo r (j = 0 ; j < n p r o c s ; j++) {

i n t tmp_den = keyden_t [j] [i] ;

keyden_t [j] [i] = keyden[i] ;

keyden[i] -= tmp_den;

}

cp_synch() ;

}

b a r r i e r . b a r r i e r O ;

/ * * * * • • * * • • * * * • * • * • • • • • * PHASE 7 ••**•******************/

f o r (i = my_s t r t_n [seq] ; i <= iny_end_n[seq] ; i++) {

k = k e y [i] ;

k e y d e n _ t [s e q] [k] = k e y d e n . t [s e q] [k] - 1;

r a n k [i] = k e y d e n _ t [s e q] [k] ;

}

}

void i s : : i n i t (i n t np rocs) {

i n t i ;

125

barrier.Initialize(nprocs);

for (i = 0; 1 < N; i += 8192)

S[i] = 0;

for (i = 0; i < N; i++)

rankCi] = 0;

for (i = 0; i < Bmax; i++)

keyden[i] = 0;

r e se t t imerO ;

cp_synch();

i = readtiraerO ;

C_printf("IS : : I n i t i a l i z a t i o n done in V.d usec\n", i) ;

A.2 SCAN Benchmark

This section describes the computation of various parameters for the simulation of

the SCAN benchmark. All parameters except the amount of shared address space,

number of references made by a task, and the parameter capturing false sharing

aspects of the program are assigned default values. We computed the various

parameters based on the source listing shown in section A.2.1. False-sharing is not

a significant factor in this benchmark as all processors operate on disjoint pieces

of data. Table 27 summarizes these parameters.

126

Parameter Formula

SharedAddressSpace
Number of References per task
FalseShar ingRefProb

sizeof(struct record) * MAXRECORDS
(500^MAXRECORDS)/NumberOfNodes

0

Table 27: Approximate shared memory requirements for the SCAN benchmark for
MAXRECORDS=10000 records

A.2.1 Source Listing of the SCAN Benchmark

#define MAXLOCKS 100

#define MAXRECORDS 10000

clouds_class scan uses {}1

C.rwlock Alock[MAXLOCKS];

Barrier barrier;

public :

entry void init(int);

entry void read input s (in t , i n t , i n t , i n t) ;

entry in t s t a r t (i n t myid, in t procs ,

int s t a r t , in t end, int d e l a y) ;

e n d . c l a s s

s t ruc t record {

char ncone [45] ;

char address [45] ;

in t age [2] ;

int s s n o [2] ;

in t wage [2] ;

127

in t des ig [2] ;

in t super [2] ;

>;

struct record file[MAXRECORDS]={0};

void scaji :: readinputs(int myid, int nprocs,

int start, int end)

{

int i,j;

/* Prefetch your portion of data */

for (i=start; i < 200; i++) {

j = f ile[i] .age[l] ;

}

}

void sccm:: init(int nprocs)

{

int i;

for (i=0; i < MAXLOCKS; i++)

Alock[i] .CreateO ;

barrier.Initialize(nprocs);

cp_synch();

C.printf("Initialized\n");

}

scan:: start(int myid, int nprocs, int start,

int end, int debug)

128

{

int rec_no,k;

unsigned long t2, t;

struct record buf;

barrier.ReadAssociate(0, 0);

/:ii******************** PHASE 1 ************************/

if (myid == 0) {

resettimerO ;

}

int i=0;

int lock;

for (rec_no= s t a r t ; rec_no < end; rec_no++) {

if (rec_no == s t a r t) {

lock = start/MAXLOCKS;

if (debug)

C.printf ("[y.d] Acquiring V.d. . . An", myid, lock) ;

AlockElock] .wlockO;

}

else

if ((rec_noy.MAXLOCKS) == 0) {

if (debug)

C.printf ("[y,d] Releasing '/.d \n" , myid, lock);

AlockClock].unlock0;

lock = rec.no/MAXLOCKS;

129

if (debug)

C.printf ("[y.d] Acquiring Xd \n" , my id, lock) ;

AlockClock] .wlockO ;

>

bcopy((char *) &fi le[rec_no],

(char *) &buf, s i zeo f (s t ruc t r ecord)) ;

for (k=0; k < 45; k=k+l) {

buf . neune [k] = buf . naine [k] + 1;

buf.address[k] = buf.address [k] + 1;

}

for (k=0; k < 2; k++) {

buf.age [k] += 1;

buf.ssno[k] += 1;

buf.desig[k] += 1;

buf.super[k] += 1;

buf.wage[k] += 1;

}

for (i=0; i < 500; i++);

bcopy((char *) &buf,

(char *) &fi le[rec_no], s i zeo f (s t ruc t r ecord)) ;

>

if (debug)

C.printf ("[*/.d] Releasing */.d. .. .\n", myid, lock);

Alock[lock] .unlockO ;

130

b a r r i e r . b a r r i e r 0 ;

if (myid == 0) {

t= readtimerO ;

C p r m t f ("Total Time = y.u\n", t) ;

}

C.printf ("y.d done \n" , myid) ;

}

131

Appendix B

Design and Implementat ion of Buffered
Consistency based DSM on CLOUDS

This appendix presents the design and implementation of distributed shared mem

ory based on the buffered consistency memory model (BC-DSM). The implementa

tion is done on top of the CLOUDS distributed operating system. First, we briefly

describe the buffered consistency memory model.

B.l The Buffered Consistency Memory Model

Buffered consistency (BC) has been proposed by Lee and Ramachandran [24] as

a weak memory model for shared memory multiprocessors. The BC model recog

nizes two types of accesses: data and synchronization. Data accesses can be reads

or writes to either private or shared data, whereas synchronization accesses are

accesses to synchronization variables. The BC model distinguishes between two

types of synchronization: non-consistency preserving (NP-Synch), and consistency

preserving (CP-Synch). The BC model requires that synchronization accesses done

by an application should be globally performed in the order of issue. Interleaving

of synchronization accesses of different applications need not be sequentially con

sistent. The BC model places following restrictions on synchronization operations:

132

• The issue of an NP-Synch access does not require the preceding data accesses

to be performed globally.

• Shared accesses following an NP-Synch access by an application cannot be

issued until the NP-Synch access is performed.

• A CP-Synch access is not issued until all preceding writes to shared data

have been globally performed.

BC implements reader-initiated memory coherence, i.e., if an application is

interested in receiving modification for shared data then it would indicate so to the

data server. As a result, an\' modification made to shared data will be propagated

to the application until the request has been explicitly revoked.

In a nutshell, an implementation of buffered consistency in a distributed

system requires three features from the underlying system:

• Ability to perform local reads and writes.

• Ability to perform global writes.

• Ability to suspend a process, a thread, or an application until all global writes

prior to a CP-Synch operation have been globally performed.

B.2 Implementation of BC-DSM on CLOUDS

On C L O U D S , the buffered consistency memory model has been integrated with the

operating system. This has been done by modifying the DSM subsystem, which

is responsible for maintaining coherence of shared data, to model the buffered

133

consistency memory model. As a result, any application executing on CLOUDS

can transparently use the buffered consistency memory model. To implement the

coherence protocol, each DSMC needs to maintain some state information about

the shared data pages that are resident at that node. The state information is

maintained in state table, an entry of which is shown in Figure 30. Some fields of

the state information are valid only at the owner node. An owner of a page is the

node responsible for managing the consistency of the data page.

The following set of primitives are provided by the DSM subsystem for

implementing buffered consistency.

msg_get (interface to the kernel) When a process needs a data page belonging to

distributed shared memory, the kernel makes a request to the DSM subsystem

on behalf of the process. During this time, the requesting process is blocked.

If the data page is not locally available, the DSM subsystem sends a msg_get

request to the owner node for that data page. The owner services the data

request by returning a copy of the data page to the requesting node. Upon

receipt of the data page, the kernel installs the page in the process' address

space and resumes execution of the suspended process.

cpjsynch (interface to the kernel) To globally perform all modifications to shared

data before a CP-Synch point, the cp.synch primitive is provided. When

a CP-Synch point is reached during the execution of an application, the

kernel forces all changes made to the shared data pages to be flushed to

the respective owners of the data pages. This is done by identifying all

the dirty pages in the process' address space and issuing the cp_synch call

134

for the page to the DSM subsystem. The DSM subsystem computes the

difference page for the data page b}' XORing the contents of the data page

with the unmodified (original) copy of the page. The difference page is then

compressed^ and sent to the owner. The owner uncompresses the difference

page, appHes it to its version of the data page. If any other node is interested

in hearing about the modifications, the owner sends a copy of the difference

page (via msg_update request) to all these nodes. Figure 31 shows the control

flow for the cp_synch() system call.

request_update {accessed via a system call) If a process is interested in re

ceiving updates to a page the it indicates this to the kernel via a system

call. The kernel notifies the DSM subsystem. The DSM subsystem sends a

request_update message to the owner for the segment. The owner will send

future updates for a page via the msg_update.

reset_update {accessed via a system call) To stop receiving previously requested

updates, for specific pages of a segment, the DSM subsystem sends a r e se t .update

message to the owner of the segment. Again, this is done under user-

direction.

msg-update (interface to another DSM subsystem) To propagate changes glob

ally before the completion of the cp.synch operation, the DSM subsystem

sends the msg.update message to other DSM subsystems that are interested

in hearing about these changes. Upon receipt of a msg.update message, the

^Due to the large software overhead associated with doing compression, we do not do data
compression in the current implementation. However, provision for data compression has been
made in the hardware realization of the DSM subsystem.

135

DSM applies the modifications, and installs the new copy of the data in the

address spaces of the affected processes. One way to to achieve this is to

invalidate all copies of the data page in any process' address spaces. Subse

quent page-faults on the data will result in the DSM subsystem supplying

the latest copy of the page to the requesting process.

class DtableEntry : public BasicQueueElem {
public :

SysName SegmentName; //Name of the segment
uJnt block_number; //Number of the block within the segment
struct {

boolean valid; / / I s the data vahd?
FrameHandle phys_frame; / / Where is the data located?
stable *map; /* The phys_frame above belongs to

* this map in the segment, map will be
* used in invahdating the stable
* entries.

V
FrameHandle origJrame; //Copy of the data item before being

//installed in process' address space
boolean get_read_pending; / / Are we still reading the data?

} data;
boolean ownerJlag; / /Is ihis node the owner
uJong copyset; //List of nodes that have requested

//updates. Bitmask for now.

};

Figure 30: Structure of the dtable entry

B.3 Performance of B C - D S M on CLOUDS

We have implemented buffered consistency as part of the distributed shared mem

ory subsystem on CLOUDS. The basic performance for buffered consistency is

136

USER

cp_synchQ
system call

KERNEL

For all pages i in object's address space
If (page i is dirty) then

flush the page

^ Find the block number for page i
from the segment map

Compute the difference page for
the page using the originafcopy

Send the difference page to the owrjer

I

OWNER NODE
(maybe remote)

, Receive the difference page

Apply the difference page to
original copy

If any other node interested
in receiving the modified data
then send the difference page
to the rode(s)

Figure 31: Flow of control for the cp_synch() system call

slightly poorer than other coherence protocols that provide sequentially consistent

view of memory due to the cost of maintaining an extra copy of data page. This

copy is used at the time of the cp_synch() call to generate the difference page.

Tables 28 and 29 show the breakdown of times for page-fault servicing and the

cp_synch() system call. These timing measurements are done on a Sun 3/60 with

a microsecond timer. Approximately 25 ms per page is spent during a cp_synch()

call. Bulk of the time is spent transmission of data to the owner, and any addi

tional housekeeping done at the owner. Additional time would be needed if the

data needs to be sent to other nodes, which are interested in receiving updates for

that data page. A receipt of msg_update incurs a cost of approximately 3 ms, bulk

of the times is spent in updating old copies of the data page.

137

Operations Breakdown Measured
(All times are in milliseconds) Total Time

Get from a data server 17.550
- Basic RaTP 8K bytes transfer 13.500
- 1 Context switch at the server 0.150
- DSM processing at the server (updating state

information) 2.000
- One copy of data from Ethernet buffers

into client buffers
TOTAL TIME

1.450 into client buffers
TOTAL TIME 17.100

Write page fault servicing from another CLOUDS 20.540
server

- DSM message get call 17.550
- Client side state maintenance 0.800
- One copy for maintaining original copy of

data
TOTAL TIME

1.450 data
TOTAL TIME 19.800

Table 28: Basic system timings for BC-DSM on CLOUDS

Operations Breakdown Measured
(All times are in milliseconds) Total Time

CP synch system call (if data page has been 25.000
modified)

- Trap into the kernel from user level 0.131
- State maintenance 0.800
- Computing the Log (in software for 8K data) 4.700
- Cost of sending the flush request to the owner

site (8 Kbytes data transfer, applying log at
the server, state maintenance) 17.700

- Cost of copying modified data for future use
TOTAL TIME

1.450 - Cost of copying modified data for future use
TOTAL TIME 24.780

Table 29: Service times for a cp_synch() system call for BC-DSM on CLOUDS

138

Appendix C

Hardware Support for Distributed
Shared Memory

Performance studies of the distributed shared memory system on CLOUDS (see

chapter 4) have shown that DSM related activity incurs additional processing over

head on a host node. This overhead usually consists of sending and receiving data,

and processing control messages (such as invalidations, updates) for maintaining

coherence of shared data. The amount of overhead is a function of the coherence

protocol, the application characteristics, degree of sharing between nodes, and the

number of nodes in the distributed system. Measurements show that approxi

mately 20% of the processing done during servicing a remote page-fault is due

to DSM related activity. Such overhead can substantially degrade system perfor

mance by reducing the available number of useful cycles. To alleviate this problem,

we propose the design of a Distributed Shared Memory Controller (DSMC). The

controller off-loads all DSM related processing from the host by servicing all DSM

related requests, thereby freeing the host to perform other useful work.

The DSMC is a coprocessor board that sits on the system backplane, com

municating with the host via the system bus. The board is self-contained, i.e.,

it has its own processor, private memory, and control logic needed to service any

139

DSM-related requests. It interacts with the host through a well-defined interface.

In the following sections, we discuss the various aspects of the design. We con

clude the discussion with expected system performance improvement due to the

controller. In the present dc ^ign, the controller does not have direct access to the

network. We assume that the controller can access the network adapter via the

host, and is able to receive and send messages to the network. Such a design may

cause the communication subsystem to become a bottleneck if large amounts of

data traffic is generated by the controller. One solution to this problem would be

to allow the controller to directly access the network.

C.l Hardware Design of the Controller Board

Figure 32 shows the layout of the DSM coprocessor board. The board consists of

a 32-bit microprocessor, memory modules, system-bus interface logic, and special

ized chip set to perform compression/decompression of data. The microprocessor

communicates with its local memory via a local bus, while it communicates with

the host via its VME bus interface. The VME bus interface consists of the \'\C

068 chip [10). The VIC 068 chip allows easy access to the board from the host. It

also offers a facility for inter-process communication via a dedicated set of inter

process communication registers and mailboxes. Figure 33 shows the functional

description of the VIC 068 chip. The resident memory on the board is used for

storing the control software, and private data. A portion of the resident memory

is also mapped onto host's address space for access via the VME bus. Thus, if the

host writes to the overlapped portions of memory, the data can be read directly

140

MC68020

Control

Data/Address

RAM

VIC 068

8

Data/

Address

32

32

24

Compression/
Decompression
Logic

Data/Address

Transceiver

VMEBus

Figure 32: Layout of the DSMC coprocessor board

by the DSM coprocessor. Similarly, data written to this portion of memory by

the DSMC can be accessed by the host. Synchronization between the coprocessor

and the host is achieved using the inter-processor communication module switches

provided by the VIC 068 chip. The interaction between the host processor and the

controller is non-blocking. This means that while a data request is being serviced

by the controller, the host processor is free to perform other activities. Only the

thread/process that caused the page-fault gets blocked. Similarly, while a reply

is pending from a remote controller, the local controller is free to service other

requests from the processor.

141

SIZO-1
FCl-2
AMOS

ft

IK
Slave selectic

Local bus
requester
arbiter

DRAM refresh

Block t r a n s t e r
c o n t r o l
DMA c o n t r o l

VME BuEEer
C o n t r o l
Loffic

1

Local bus
ti-ming
c o n t r o l

E

ft
ft

Interrupter

t

r
Rese t
lof l ic

Hi

LIRO

IPL

IRQl-1•
LACKI/0
lACX*

64 MHz

16 MHz

BGO-?
BBSY-
BCLR*

Figure 33: Functional description of the VIC 068 VME bus interface chip

C.2 Software Design for the Controller Board

The software organization of the controller consists of three modules: control soft

ware for the controller, interface between the controller and the host, and interface

between two controllers.

142

Control Software for the Controller

The control software implements the protocol for managing coherence of shared

data. It also maintains data structures for storing state information about resident

data pages. As mentioned in section C.l, some portion of the controller memory

is shared with the host's address space. At the time of system initialization, the

host sets up two circular buffers in this portion of the shared memory. These

two buffers, the r e q u e s t - b u f and the rep ly-buf , are used for communication

between the controller and the host. All data requests made by the host are put in

the r e q u e s t - b u f while all replies sent by the controller are put in the rep ly-buf .

Both, the host and the controller, maintain a pointer to the last processed entry in

the buffer. Figure 34 shows the structure of a buffer entry. Each entry consists of

the request type, and information about the data-page being operated upon. The

address field in the entry points to location in host's memory where data might be

located.

enum MsgType = {Get, D i sca rd , F l u s h , I n s t a l l , I n v a l i d a t e } ;
enum Mode = {Read, Wr i t e , WeaJtRead, None};
s t r u c t message {

enum MsgType t y p e ; / * Type of message; r e q u e s t , r e p l y * /
long segment - id ; / * segment id */
long page-num; / * page number */
enum Mode mode; / * mode, i f a p p l i c a b l e */
long a d d r e s s ; / * Address where d a t a should be put */

} ;

Figure 34: Structure of a buffer entry

143

struct dsm.entry {

long segment-id; /* segment id */
long page-num; /* page number */
enum Mode mode; /* Mode is which page is installed */
long orig-page; /* pointer to original copy */

>;

Figure 35: Structure of a state table entry

State information about all shared data pages resident at a node is main

tained in separate state tables. These tables contain information about the owner

of a page, mode in which the page is present at the node, pointer to the original

copy of the data page in controller's memory, and any coherence protocol specific

state information. The structure of an entry of the state table is shown in Figure

35.

Controller - Host interface

The following set of primitives define the interface between the controller and the

host.

• ge t (segment, page , mode, p h y s i c a l a d d r e s s) : The ge t primitive,

issued by the host on a page-fault on shared data, indicates to the controller that

the host is interested in acquiring the data-page for the segment in the specified

mode.

• d i s c a r d (segment, page , p h y s i c a l a d d r e s s) : The d i s c a r d primitive

allows a host to throw out a shared data-page from its memory. The controller is

responsible for taking appropriate coherence actions on the discarded page. These

144

actions could include throwing out the data-page, sending it back to the owner,

or taking no action at all. The actions taken by the controller are based on the

coherence protocol being used by the controller.

• f lush (segment, page , p h y s i c a l a d d r e s s) : The f l u s h primitive is

functionally similar to the d i s c a r d primitive. The only difference is that on a

f l u s h , only the modifications to a page (using the diffpsige) are sent to the owner.

The diff page is constructed by XORing the contents of the modified page and

the original data-page. This primitive is used in the implementation of the write-

update protocol.

• i n s t a l l (segment, page) : The i n s t a l l primitive is issued by the con

troller to the host, indicating that a data-page requested by the host is now avail

able for installation. The controller issues i n s t a l l after it has serviced a g e t

request for the data-page.

• i n v a l i d a t e (s e g m e n t , page) : Certain coherence schemes may require

that a data-page in host memory be invalidated, i.e., memory mappings associated

with a data-page be invalidated. The i n v a l i d a t e message is sent by the controller

to the host indicating that a particular data-page be invalidated. One example

where this primitive can be used is in the implementation of the write-invalidate

scheme, where read-only copies of the data-pages need to be invalidated before a

write to the data-page can occur. This primitive can also be used to force the host

to request a fresh copy of a data-page.

• r e c e i v e . u p d a t e s (segment, page , l e n g t h , f l a g) : This primitive is

specific to the write-update coherence protocol based on the buffered-consistency

memory model (see Appendix B). Under user-direction, the primitive allows a

145

program to request updates for a specific data-page. The request for updates

is sent to the owner. The owner then continues to send fresh updates for the

data-page until the request is exphcitly turned off by the user. For page-oriented

coherence protocols, the host specifies the starting page of the segment that the

user is interested in receiving updates for.

Controller - Controller interface

The following set of primitives are defined for co-ordinating activities among con

trollers. These primitives provide the basic functionality to implement different

types of coherence protocols.

• c_get(segment-id, page, mode): If a controller is not able to service

a request for a data-page, it sends a c_get message to the owner, requesting the

data-page on behalf of the host. The owner takes appropriate actions to service

the data request.

• c_data(segment-id, page): In response to the c_get request, the owner

sends the data to the requesting controller using the c_data primitive.

• c_discard(segment-id, page): Information that a data-page has been

discarded by a node is sent to the owner using the c_discard primitive. If needed,

the data-page is also sent to the owner.

• c-f lush (segment-id, page): The c-f lush primitive is similar to c_discard,

except that only modifications to the data are sent to the owner.

• c_forward(segment-id, page) : Sometimes an owner of a page may need

to request another node to forward the data to the requesting node. The owner

146

can do so using the c_f orward primitive.

• c_update(segment- id , page) : Some weaker coherence protocols require

updates to a data-page be propagated to other nodes. A controller can send

updates to other nodes using the c_update primitive.

• c _ i n v a l i d a t e (s e g m e n t - i d , page) : A controller can instruct other con

trollers to invalidate their copy of a data-page by sending the c _ i n v a l i d a t e mes

sage to them.

• c_receive_updates (segment - id , page , s i z e , f l a g) : A controller sends

a request to the owner if the host is interested in receiving/reseting updates for a

data-page. If updates are requested, any future updates to the data-page will be

sent by the owner using the c_update primitive.

C.3 Functional Description of the Controller

In this section, we describe the events that occur during processing of different

requests by the controller.

Handling page-faults on shared data

When a page-fault occurs on data belonging to shared memory, the kernel deter

mines the segment-id. the page and the mode in which the data needs to be fetched.

A ge t message is constructed using this information. A physical page is allocated

in memory and its physical address added to the contents of the message. The

physical address is used by the controller for storing the data. The get message

is then added to r eques t -buf . The host then indicates to the controller that a

147

request is pending in the request queue. This is be done by writing to the VME

bus interface chip, which then generates an interrupt to the controller.

The controller, upon receiving an interrupt, sets out to service the re

quest. It removes the mesb. ge from the r e q u e s t - b u f and adds it to its private

r eques t -queue . Using the <segment-id, page-num> as a key, the controller looks

through its local tables to determine if it has a valid copy of the data-page in its

private memory. If a valid copy is found, the controller initiates a DMA transfer of

the data from its private memory to the host's memory using the physical address

supplied by the host as the target address. Upon successful completion of the

DMA transfer, the controller sends the i n s t a l l message to the host. This is done

by writing the message to the r e p l y - b u f and interrupting the host. However, if

the controller is unable to locate the data-page corresponding to the segment-id

and page-num, it sends a c_get message to the owner, requesting the data page.

When an owner receives a c_get message, it locates the data-page and sends

the data back to the requesting controller using the c .da ta primitive. If the data

page is not found then it can request (via cjforward) another node to forward the

data to the requester. The owner also updates its local state tables to reflect any

coherence specific information. Upon receipt of the data page, the controller copies

the page into its local memory. The controller identifies the request corresponding

to the page. Using DMA, the data is transferred to host's memory. After successful

completion of DMA, the controller writes the c . i n s t a l l in the r ep ly -bu f and

interrupts the host. Upon receiving an interrupt from the controller, the host

removes the reply from the r e p l y - b u f and services the page-fault.

148

Discarding a page

When a shared data page is no longer needed by a host, it discards the data. This

is done by sending a d i s c a r d message to the controller. The controller copies the

data page into its private memory, and takes appropriate action depending on the

coherence protocol being used. If the coherence protocol requires that the data

be returned to the owner, the controller sends the data to the owner using the

C-discard message. After all the processing is done, the host is informed that the

page has been discarded.

Flushing a page

When the host wishes to flush out all modification made to a data page, it does

so by issuing a f lush message to the controller. The controller copies the data

page into its private memory and constructs the difference page for the data.

The difference page represents the modifications made to the data page and is

constructed by XORing the contents of the modified page and the original page.

The difference page is then sent to the owner.

Invalidating a page

The coherence protocol may require that all copies of the data-page be invalidated

before any more activity on the page can occur. This can be achieved by sending a

C-invalidate message to all nodes that have a copy of the page. The controllers

at these nodes instruct their hosts to invalidate the copies of the data-page by

sending an i n v a l i d a t e message. Tpon receiving an i n v a l i d a t e message from

149

the controller, the host invalidates the corresponding data-page mappings in its

MMU. Subsequent access to the page will cause a page-fault. This page-fault will

be handled as explained earlier.

Install ing updates for a page

If a controller wishes to update all copies of a data-page resident at other nodes,

it sends the data-page to all controllers via the c_update message. The controller

installs the data copy in its private memory and sends an i n v a l i d a t e message

to the host. Subsequent access to the page would cause a page-fault, resulting in

the new copy of the page being installed in host's memory.

C.4 Expected Performance of the Controller

In this section, we examine the performance implications of a DSM controller on

the host system performance. The examination is done in context of the write-

update protocol based on the buffered-consistency memory model. More details

about this protocol can be found in Appendix B. In our analysis, we assume the

controller uses the Motorola MC68020RC16 microprocessor with 60ns cycle time.

A typical 32-bit read or write on MC68020 takes about 3 cycles. We also assume

that a 32-bit DMA transfer between the controller board and host memory takes

about 6 cycles (worst case).

150

CPU

Detect page-faiit

DSMC

rtotrt^DSMC
Owner site

Pick nequasl from rBqueet-but

Initate a DMA
treneler to the
CPU memofy

Inform CPU tiat
request is done

Sendmossaoe
to cwner hande request

Receive data
Update tables

Figure 36: Page-fault servicing by the controller

Page-fault servicing

Figure 36 shows the sequence of events that occur upon a page-fault on shared

data. The breakdown for expected service time of 1.739 ms is shown in Table 30.

Data that needs to be requested from another controller will incur additional cost

of constructing the message to be sent, receiving the data over the network, and

updating the local data structures. This overhead would be approximately 15 ms

per data page over an Ethernet-like communication network.

Servicing a cp_synch() call

Figure 37 shows the sequence of events that occur when a cp_synch() call is

issued. The cp_synch() call is issued by the host to enforce global writes to

shared data before the program completes the synchronization call. This is an

artifact of the coherence protocol implemented by the controller. The expected

151

Event Operations Number Time
of cycles (in ns)

-Host: writes request in
request-buf 4-word write 12 720

-Host: notify DSMC 1-word write 3 180
-DSMC: read request from
request-buf 4-word read 12 720

-DSMC: locate data in the state
tables 1000000

-DSMC: initiate DMA transfer to 2048-word
host memory (8192 bytes) transfer 12288 737280

-DSMC: write reply in reply-buf 4-word write 12 720
-DSMC: signal the host

TOTAL TIME
1-word write 3 180 -DSMC: signal the host

TOTAL TIME
1-word write 3

1739080

Table 30: DSMC: Times for page-fault servicing for resident data

time for individual events is summarized in Table 31. Performing a cp_synch

operation costs approximately 18.37 ms. The bulk of the time is spent in sending

the data to the owner. Computing the difference page takes about 21 cycles per

32-bit word (2.5 ms/8192 bytes). This entails reading two words, performing an

exclusive-or operation and writing the result back. Additional cycles are needed

for executing the loop 2048 times. Compressing a data page costs an additional

602 fis} The advantage of using data compression is that one can save on data

transmission costs. For example, assuming on an average 50% reduction in size of

a data page, transmitting an 8192-byte data page over Ethernet at 10Mbps would

save approximately 3.25 ms per page.

[6].
^Currently available data compression hardware can operate at speeds from 13.6 to 20MB/sec

152

cp_tynch() tystem call

For all dity pages belonging
to this (vocess address apace

Identity page

Noify DSMC

write request :

Mark page as dean

Receive Log
Apply log
it any updates
need to be sent k>
ottier nodes tier
send them

Figure 37: Schematic of DSMC actions subsequent to a cp_synch() system call

Servicing an update request

Figure 38 shows the sequence of events that occur when an update message is re

ceived by the controller. The expected times for individual events are summarized

in Table 32. On an average, approximately 4 ms is spent processing an update

message, bulk of which is spent applying the modifications to the page.

Advantages of data compression

Data transmission is the major costs incurred in distributed shared memory sys

tems. Several coherence protocols try to reduce data communication costs by

reducing the cost of maintaining coherence. Another way to reduce data com

munication cost is the use of data compression techniques. Current state of the

153

Event Operations Number Time
of cycles (in ns)

-Host: write request in
requGst-buf 4-word write 12 720

-Host: notify DSMC 1-word write 3 180
-DSMC: read request from
r e q u e s t - b u f 4-word read 12 720

-DSMC: initiate DMA transfer 2048-word
for data page to be flushed from transfer
host memory (8192 bytes) 12288 737280

-DSMC: compute the difference 2048-word
page XOR 43008 2580480

-DSMC: compress the difference 8192-bytes @
page 13.6 MB/sec 8192 602352

-DSMC: sending the difference
page using msgjflush and
waiting for an acknowledgement 13450000^

-DSMC: write reply in r e p l y - b u f 4-word write 12 720
-DSMC: signal the host

TOTAL TIME
1 .

1-word write 3 180 -DSMC: signal the host
TOTAL TIME

1 .

1-word write 3
18372632 |

"Taken from software measurements

Table 31: DSMC: Service time for a cp.synch call

art hardware technology has made it possible to use on-the-fly data compression

to substantially reduce the data transmission costs. We use data compression for

our DSMC implementation because the difference pages generated using XOR in

the buffered consistency coherence protocol are most likely to contain a high per

centage of strings of Os, thereby yielding good compression ratios. Thus, such a

protocol will benefit with the use of data compression techniques especially for

slower communication mediums such as Ethernet. For example, in an Ethernet

like media with a communication speed of 10 Mbps, a compression ratio of more

154

DSMC

Pick message from network

msg_update from the owner

Uncompress data

install changes in local
copy

Signal host to Invalidate
its copy.

On subsequent page-faults
DSMC will supply new data

Figure 38: Schematic of DSMC actions subsequent to the receipt of a msg_update
message

than 0.82 would yield good system performance.

Effects of a DSM Controller

In the implementation of distributed shared memory on CLOUDS, a processor per

forms all distributed shared memory related activity along with any computation

that needs to be performed at the node. As mentioned earlier, at least 20% of the

page-fault servicing a time is related to DSM related activity. Such overhead is

acceptable if only one thread or process is executing on a processor. In real life,

however, this is not the case. A processor may be simultaneously executing sev

eral processes (using time-sharing), and the 20% DSM related overhead per page

fault can degrade the overall throughput for the node. Similarly, an increase in

DSM activity in the system may require a processor to handle a large number of

control requests (such as invalidation, forward, and updates) from other processors

for maintaining coherence of shared data. Such overheads can adversely affect the

155

Event Operations Number Time
of cycles (in ns)

-DSMC: receive msg_update,
including DMA transfer from
host memory (51^2 bytes) lOOOOOO'̂

-DSMC: uncompress data 8192-bytes @
13.6 MB/sec

8192 602352

-DSMC: apply the difference page 2048-word
XOR

43008 2580480

-DSMC: write invalidation
request in r ep ly -bu f 4-word write 12 720

-DSMC: signal the host
TOTAL TIME

1-word write 3 180 -DSMC: signal the host
TOTAL TIME

1-word write 3
4183732

'^Approximately, includes 737280ns for DMA.

Table 32: DSMC: Service time for a msg_update message

application performance by reducing the number of cycles that are available for

doing the computation.

To study the performance gains of having a separate controller to handle

distributed shared memory related requests, we extended the simulation studies of

chapter 6. Figure 39 compares the results for two such system configurations; one

with a DSM controller and one without a DSM controller. As shown in Figure 39,

the system with a DSM controller shows much better performance than than one

without. This experiment shows the performance with respect to a transaction

workload model, executing on 16-node system. The improvement is more signif

icant for small data transfer sizes than for large data sizes. The reason is that

for small data transfer sizes, more number of DSM requests are generated in the

system, thereby requiring more DSM related work to be performed at each node.

156

Under such conditions, existence of a DSM controller improves the system perfor

mance. Benefits accrued due to the presence of the DSM controller become more

significant as the number of processors used for solving a problem is increased. For

example, for a data transfer size of 2 Kbytes, 13% performance improvement is

observed due to the presence of the controller in a 4-node configuration, 25% in a

8-node configuration, and 47% in a 16-node configuration. This behavior is consis

tent with the observation that an increase in the number of nodes is accompanied

by an increase in the amount of DSM related activity in the system.

ction model J 6-node, 2^ KIPS, I GbpG e-updatei syBt

1000 2000 3000 4000 5000 6000 7000 8000 9000
Data granularity (in bytes)

Figure 39: Effect of using a DSM controller on the performance

In this chapter, we have presented a detailed design and performance anal

ysis of a distributed shared memory controller. The controller has been designed

to improve a node's throughput by off-loading all DSM related processing from the

host processor.

157

Appendix D

Number of Messages for the Coherence
Protocols

Let

S Number of synchronization phases

M Amount of memory operated by a processor during a computation

w Probability that an access is a write operation

h Hit ratio

c Probability that an access read/write will cause coherence messages

to be sent to other nodes

r Number of nodes involved in receiving coherence messages

Q Unit of data transfer

V Number of messages needed to bring in A^ bytes of memory.

7? — M

Each of the following activity is counted as one message:

• Requesting a lock from the lock-server

• Granting a lock by the lock-server

158

• Releasing a lock by a client

• Requesting data from a data-server

• Sending data to the client by the data-server

• Sending an invalidation-message to a node

• Receiving an acknowledgement for an invalidation-message from a node

• Sending an update-message to a node

• Receiving an acknowledgement for an update-message from a node

• Forwarding of a data request by the data-server to another node (implement

ing mode none semantics in the lock-based protocol).

The total number of messages generated by a node during the execution of

a computation for the write-update protocol is shown in 33; for the write-invalidate

protocol is shown in Table 34; and for the lock-based protocol is shown in Table

35;

Activity Number of messages
Synchronization phase
Write-access Sw(5 + 2r)
Read-access 5S(l-w)
Computat ion phase
Write-miss 2Vw(l-h)
Read-miss

Total

2V(l-w)(l-h) Read-miss

Total S(5 + 2rw) + 2V(l-b}

Table 33: Number of messages generated in the write-update protocol

159

Activity Number of messages
Synchronization phase
Write-access, no coherence activity ^Sw(l-c)
Write-access, coherence activity S(5 -h 2r)wc
Read-access, no coherence activity 5S(l-w)(l-c)
Read-access, coherence activity 6S(l-w)c
Computat ion phase
Write-miss, no coherence activity 2Vw(l-b)(l-c)
Write-miss, coherence activity V(2 -h 2r)w(l-h)c
Read-miss, no coherence activity 2V(l-w)(l-b)(l-c)
Read-miss, coherence activity

Total

W(l-w)(l-h)c Read-miss, coherence activity

Total S(5 -h 2rwc -h c(l-w)) +
V(l-h)(2-h c(w(5 -h 2r) -h 1))

Table 34: Number of messages generated in the write-invalidate protocol

Activity Number of messages
Synchronization phase
Write-access 3Sw
Read-access 3S(l-w)
Computat ion phase
Write-miss, data with the server 2Vw(l-h)(l-c)
Write-miss, data with another node Ww(l-h)c
Read-miss, data with the server 2V(l-w)(l-h)(l-c)
Read-miss, data with another node

Total

3V(l-w)(l-h)c Read-miss, data with another node

Total 35 + V(l-h)(2 + c)

Table 35: Number of messages generated in the lock-based protocol

160

Bibliography

[1] M. Ahamad, P. W. Hutto, and R. John. Implementing and programming
causal distributed memory. In 11th International Conference on Distributed
Computing Systems, pages 274-281, 1991.

[2] R. Ananthanarayanan, R. John, A. Mohindra, M. Ahamad, and U. Ramachan-
dran. An evaluation of state sharing techniques in distributed operating sys
tems. Unpublished, April 1993.

[3] J. Archibald and Jean-Loup Baer. Cache coherence protocols: Evaluation
using a multiprocessor simulation model. ACM Transactions on Computer
Systems, 4(4):273 - 298, Nov 1986.

[4] G. M. Baudet. Asynchronous iterative methods for multiprocessors. Journal
of the ACM, 25(2):226~244, April 1978.

[5] Roberto Bisiani and Alessandro Forin. Multilingual parallel programming of
heterogeneous machines. IEEE Transactions on Computers, 37(8):930-945,
August 1988.

[6] Suzanne Bunton and Gaetano Bordello. Practical dictionary management
for hardware data compression. Communications of the ACM, 35(1):95-104,
January 1992.

[7] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and
performance of Munin. In The 13th ACM Symposium on Operating Systems
Principles, Oct 1991.

[8] Peter B. Danzig and Stephen Melvin. High resolution timing with low resul-
tion clocks and A microsecond resolution timer for Sun workstations. Oper
ating Systems Review, 24(l):23-26, 1990.

[9] Partha Dasgupta, Richard LeBlanc, Mustaque Ahamad, and Umakishore Ra-
machandran. The CLOUDS distributed operating system. IEEE Computer,
April 1991.

10] Colin Davis. Features of a VMEbus interface chip design. Electronic Engi
neering, pages 83-89, March 1989.

161

[11] Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessor
simulation and tracing using TANGO. In International Conference on Parallel
Processing, pages 11-99-107, 1991.

[12] Gary S. Delp, Adarshpal S. Sethi, and David J. Farber. An analysis of Mem-
net: An experiment in high-speed shared-memory local networking. In Com
puter Communication Review, volume 18, pages 165-174, Stanford, California,
August 1988. ACM SIGCOMM.

[13] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in multi
processors. In The 13th International Symposium on Computer Architecture,
pages 434-442, June 1986.

[14] S. J. Eggers and R. H. Katz. A characterization of sharing in parallel programs
and its application to coherency protocol evaluation. In Proc. 14th Int 7. Symp.
on Com^puter Architecture, pages 373-382, June 1988.

[15] Anon et al. A measure of transaction processing power. Datamation, pages
112-118, April 1985.

[16] Brett D Fleisch. Reliable distributed shared memory. In Second IEEE Work
shop on Experimental Distributed Systems, pages 102-105, Huntsville, Al
abama, October 1990. Extended Abstract.

[17] Brett D. Fleisch and Gerald J. Popek. Mirage: A coherent distributed shared
memory design. Operating Systems Review, 23(5):211-223, Dec 1989.

[18] J. R. Goodman and P. J. Woest. The Wisconsin Multicube: a new large-
scale cache-coherent multiprocessor. In Proc. 15th Intl. Symp. on Computer
Architecture, pages 422-431, June 1988.

[19] R. E. Kessler and Miron Livny. An analysis of distributed shared memory
algorithms. In 9th Intl Conference on Distributed Computing Systems, pages
498-505, 1989.

[20] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocessor programs, IEEE Transaction on Computers, C-
28(9):690-691, Sep 1979.

[21] H. C. Lauer and R. M. Needham. On the duality of operating system struc
tures. Operating Systems Review, 13(2):3-19, April 1979.

162

[22] Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A Hamilton, David L
Nelson, and Bernard L. Stumpf. The architecture of an integrated local net
work. IEEE Journal on Selected Areas in Communications^ l(5):842-857,
November 1983.

[23] Joonwon Lee and Umakishore Ramachandran. Synchronization with multi
processor caches. In Proc. 17th Intl. Symp. on Computer Architecture, pages
27-37, May 1990.

[24] Joonwon Lee and Umakishore Ramachandran. Architectural primitives for
a scalable shared memory multiprocessor. In ACM Symposium on Parallel
Algorithms and Architectures, pages 103-114, July 1991.

[25] Joonwon Lee and Umakishore Ramachandran. Locks, directories, and weak
coherence - a recipe for scalable shared memory multiprocessors. In Scalable
Shared Memory Multiprocessors. Kluwer Academic Publ ishers , 1991.

[26] D Lenoski, J. Laudon, K Gharachorloo, A Gupta, and J Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. Pro
ceedings. The 17th Annual International Symposium on Computer Architec
ture, pages 148-159, 1990.

[27] W. G. Levelt, M. F. Kaashoek, H. E. Bal, and A. S. Tanenbaum. A comparison
of two paradigms for distributed shared memory. Software - Practice and
Experience, 22(11):985-1010, Nov 1992.

[28] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
toes, 7(4):321-359, November 1989.

[29] Ronald G. Minnich and David J. Farber. Reducing host load, network load,
and latency in a distributed shared memory. In 10th International Conference
on Distributed Computing Systems, pages 468-475, May 1990.

[30] Umakishore Ramachandran, Mustaque Ahamad, and M. Yousef A. Khalidi.
Coherence of distributed shared memory: Unifying synchronization and data
transfer. In 18th International Conference on Parallel Processing, pages 160-
169, Aug 1989.

[31] Umakishore Ramachandran, Gautam Shah, S. Ravikumar, and Jeyakumar
Muthukumarasamy. Scalability study of the KSR-1. Technical Report GIT-
CC 93/03, Georgia Institute of Technology, Atlanta, GA 30332-0280, 1993.

163

[32] Richard Rashid, Avadis Tevanian, Micheal Young, David Golub, Robert
Baron, David Black, Willian Bolosky, and Jonathan Chew. Machine-
independent virtual memory management for paged uniprocessor and multi
processor architectures. In Proceedings of the Second International Conference
on Architectural Support for Programming Languages and Operating Systems^
pages 31-30, 1987.

[33] Kendall Square Research. KSRl Principles of Operations^ 1991.

[34] A. Sane, K. MacGregor, and Roy H. Campbell. Distributed virtual memory
consistency protocols: Design and performance. In Second IEEE Workshop
on Experimental Distributed System 5, pages 91-96, Oct 1990.

[35] H. D. Schwetman. CSIM: A C-based, process-oriented simulation language.
In Proceedings of the 1986 Winter Simulation Conference^ pages 387-396,
December 1986.

[36] John F. Shoch, Yogen K. Dalai, David D. Redell, and Ronald C. Crane.
Evolution of the ETHERNET local computer network. IEEE Computer^ pages
1-27, Aug 1982.

[37] Michael Stumm and Songnian Zhou. Algorithms implementing distributed
shared memory. IEEE Computer^ pages 54-64, May 1990.

[38] Christopher J. Wilkenloh. RaTP: A transaction support protocol for ra. Mas
ter's thesis, School of Information and Computer Science, Georgia Institute
of Technology, 1989.

[39] Kung-Lung Wu and W. Kent Fuchs. Recoverable distributed shared virtual
memory. IEEE Transactions on Computers, 39(4):460-469, April 1990.

164

Vita

Ajay Mohindra was born in Kota, India on October 17th, 1964. In 1983, he

completed his secondary school education from Delhi Public School, New Delhi.

Next, he attended the Birla Institute of Technology and Science (BITS) at Pilani,

where he earned his M.Sc (Tech) in Computer Science. At BITS, he gained his first

exposure to computers on an IBM 1130 - a 16 bit mainframe with punch cards.

Not satisfied with his knowledge about computers, he decided to pursue higher

studies in the U.S.A. He joined the Georgia Institute of Technology in Atlanta,

where he earned M.S. in Information and Computer Science in 1989. Still not

sure if he had learned enough about computing, Mr. Mohindra decided to join the

Ph.D. program in Computer Science at Georgia Tech. Now, that he has earned

his Ph.D., he realizes that it is not possible to learn it all, but is ready to move on

to bigger and better things in life.

165

