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PREFACE

One important task in structural graph theory is to obtain good characterizations of
various classes of graphs. A well-known example is the Kuratowski’s theorem [17],
which states that a graph is planar if and only if it contains no T'K3 3 and T'K5. Given
a graph K, TK is used to denote a subdivision of K, which is a graph obtained from
K by substituting some edges for paths.

It is natural to ask for structural characterizations of graphs containing no 7K
and of graphs containing no T'K3 3. It can easily be derived from Kuratowski’s theo-
rem that every 3-connected nonplanar graph has a subgraph isomorphic to a T'K3 3
unless it is isomorphic to K.

Kelmans [15], and independently, Seymour [23] conjectured that every 5-connected
nonplanar graph contains a T'K5. K44 indicates that 4-connectedness is not sufficient.

In [19], J. Ma and X. Yu proved Kelmans-Seymour conjecture for graphs con-
taining K, . A strategy to prove this conjecture for graphs containing no K, is to
strengthen this result of Ma and Yu. In this dissertation, we show that if G is a 5-
connected nonplanar graph containing K, , then it contains 7'K5 which avoids certain

edges or vertices.
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SUMMARY

Given a graph K, TK is used to denote a subdivision of K, which is a graph
obtained from K by substituting some edges for paths. The well-known Kelmans-
Seymour conjecture states that every nonplanar 5-connected graph contains 7K.
Ma and Yu proved the conjecture for graphs containing K, . In this dissertation, we
strengthen their result in two ways. The results will be useful for completely resolving
the Kelmans-Seymour conjecture.

Let G be a 5-connected nonplanar graph and let z1, xo, y1,y2 € V(G) be distinct,
such that G[{z1, z2,y1,y2}] = K; and y1y2 ¢ E(G).

We show that one of the following holds: G — y, contains K, or G contains a
T K5 in which y, is not a branch vertex, or G has a special 5-separation, or for any
distinet wy, we, w3 € N(y2) — {z1, 22}, G — {y2v : v & {21, 29, w1, we, w3}} contains
TKs.

We show that one of the following holds: G — x; contains K, , or G contains a
T K5 in which z; is not a branch vertex, or G contains a K in which x; is of degree
2, or {2, y1,y2} may be chosen so that for any distinct 2o, 21 € N(z1) — {x2, v1,¥2},

G —A{z1v:v ¢ {20, 21,72, y1, Y2} } contains T Kp.

X



CHAPTER 1

INTRODUCTION TO GRAPH THEORY

1.1 Basics

We use notation and terminology from [1, 5].

A graph is an ordered pair G = (V, E) comprising a finite set V' of vertices,
together with a set E of edges, which are 2-element subsets of V.

Let G = (V, E) be a graph. For an edge {x,y} C V, graph theorists usually use
the shorter notation zy. The vertices x, y are said to be adjacent to each other. The
edge zy is said to be incident to the vertices x and y.

Let U be a subset of V. The neighbors of U are the vertices in V' \ U adjacent
to some vertex in U, and their set is denoted by Ng(U), or briefly N(U). We write
N¢(v) for Ng({v}).

Let v € V be a vertex in G. The degree of v is the number of neighbors of v,
which is also equal to the number of edges incident to v, denoted by dg(v).

A walk W in G of length k is an alternating sequence of vertices and edges
Vg, €0, U1, €1, V2, . . ., Up_1, €p—1, Uk, Such that vg,vi,..., v € V, €g,...,e1._1 € E, and
e; = vvipq for 0 <@ < k—1. W is said to be a path if vy, vy, ..., v, are all distinct.
If W is a path, we write W = vgv; ... v, by the natural sequence of its vertices and
call W a path from vy to vy and vy,...,v,_1 the internal vertices. W is said to be
a cycle if vy, vy, ..., v are all distinct except that vy = vg.

Let S, T be two subsets of V and P be a path from vy to vy. We call P an S —T
path if V(P)NS ={v} and V(P)NT = {vg}.

Let G = (V, E) be a graph. G is said to be a bipartite graph if V can be divided

into two disjoint parts A and B such that every edge in E connects a vertex in A to



one in B, and we also write G = (A, B, E). A bipartite graph G = (A, B, F) is said
to be a complete bipartite graph if every vertex in A is connected to every vertex in
B, and we also denote G by K,,,, if |A| =m and |B| = n.

Let G = (V,E) be a graph. G is said to be a complete graph if every pair of
vertices is connected by an edge, and we also denote G by K, if |V| = n. In this
dissertation we use K, to denote the graph obtained from K, by deleting a single
edge.

Let G = (V,E) be a graph. A graph G’ = (V', E’) is said to be a subgraph of
Gif V! CV and E' C F, written as G’ C G. In this dissertation when we call a
graph minimal or maximal with some property but have not specified any particular
ordering, we are referring to the subgraph relation.

Let G = (V, E) be a graph and U be a subset of V. We denote by G[U] the graph
on U whose edges are precisely those in £ with both ends in U. A subgraph G’ is said
to be an induced subgraph of G if G' = G[U] for some U C V. An induced path (or
induced cycle) of G is a path (or cycle) that is an induced subgraph of G. Let U be
a subset of V. We write G — U for G[V \ U]. Let v be a vertex in V. We write G — v
for G — {v}. Let G’ be a subgraph of G. We write G — G’ for G — V(G"). For a set
F' of 2-element subsets of V, we write G — F := (V,E\ F) and G+ F := (V,EUF).
As above, G — {e} and G + {e} are abbreviated to G — e and G + e.

Let Gy = (V4, Ey) and Gy = (Va, Ey) be two graphs. G; U Gy is the graph with
vertex set V3 U V5 and edge set Ey U Ey, and G N Gy is the graph with vertex set
Vi NV, and edge set £ N Es.

Let G = (V, E) be a graph and e = zy be an edge in E. By G/e we denote the
graph obtained from G by contracting the edge e into a new vertex v., which becomes
adjacent to all the former neighbors of z and of y. For a connected subgraph M of
G, we use G/M to denote the graph obtained from G by contracting M into a new

vertex vy, which becomes adjacent to all the former neighbors of vertices in M. A



graph K is called a minor of G if K can be formed from G by deleting edges and
vertices and by contracting edges.

Let G = (V,E) and wv € E. We may form an elementary subdivision of G by
adding a new vertex w and replacing the edge uv by edges uw and vw. A graph
H is said to be a subdivision of G if H can be obtained from G by a sequence of
elementary subdivisions. We use T'G to denote a subdivision of G. The vertices of
TG corresponding to those in V' are its branch vertices.

Let G; = (V4, Ey) and Gy = (Va, E3) be two graphs. An isomorphism of graphs

G1 and G5 is a bijection between V; and V5
Vi — W

such that any two vertices = and y of G are adjacent if and only if f(z) and f(y)

are adjacent in GG, and Gy, G5 are called isomorphic and denoted as G| =2 Gs.

1.2 Connectivity

Let G = (V,E) be a graph. If S;T C V, X C V UFE and every S-T path in G
contains a vertex or an edge from X, we say that X separates S from T in G or X
separates G, and call X a separating set in GG. Furthermore, we call X a vertezr cut
of Gif X CV. A vertex v € V is said to be a cutvertex if {v} is a vertex cut of G.
We call X an edge cut of G if X C E. An edge e € E is said to be a bridge if {e} is
an edge cut of G.

A k-separation of a graph G is a pair (Gp,G2) of subgraphs of G such that
E(G) = E(G1) U E(G2), E(G1) N E(Gs) = 0, neither G; nor Gy is a subgraph of the
other, and |V (G1 N Gy)| = k.

Let G = (V, E) be a graph. We say that G is connected if there is a path from any
vertex to any other vertex in G. A maximal connected subgraph is called a component

of G. A maximal connected subgraph without a cutvertex is called a block of G.



Let G = (V, E) be a graph and k be a positive integer. G is k-connected if |G| > k
and G — X is connected for any subset X C V with | X| < k. G is (k, A)-connected if
every component of G — X contains a vertex from A for any vertex cut X C V with
| X < k.

Every graph is connected if and only if it is 1-connected. Every block of a graph
is either a maximal 2-connected subgraph, or a bridge (with its ends), or an isolated

vertex. We call a block nontrivial if it is 2-connected.

1.3 Planarity

Let G = (V, E) be a graph. We say that G is plane if G is drawn in the plane with
no crossing edges. Let A C V. We say that (G, A) is plane if G is drawn in a closed
disc in the plane with no crossing edges such that the vertices in A are incident with
the boundary of the closed disc. Moreover, for vertices aq,...,a; € V(G), we say
(G,ay,...,a) is plane if G is drawn in a closed disc in the plane with no crossing
edges such that aq, ..., a; occur on the boundary of the disc in this cyclic order.

We say that G is planar if G has a plane drawing. Otherwise, G is said to be
nonplanar. We say that (G, A) is planar if (G, A) has a plane representation such
that (G, A) is plane. Similarly, we say that (G, a4, ..., ag) is planar if (G, a4, ..., ax)
has a plane representation such that (G, aq,...,ax) is plane.

A 3-planar graph (G, A) consists of a graph G and a collection A = {Aq, ..., Ay}

of pairwise disjoint subsets of V(G) (possibly A = 0)) such that
e for distinct i, 5 € [k], N(A;) N A; =0,
o foric [k], [N(A;)| <3, and

e if p(G,.A) denotes the graph obtained from G by (for each i € [k]) deleting
A; and adding new edges joining every pair of distinct vertices in N(A4;), then

p(G, A) can be drawn in a closed disc with no crossing edges.



If, in addition, by,...,b, are vertices in G such that b; ¢ A; for all i € [k] and
j € [n], p(G, A) can be drawn in a closed disc in the plane with no crossing edges,
and by, ..., b, occur on the boundary of the disc in this cyclic order, then we say that
(G, A,by,...,by,) is 3-planar. If there is no need to specify A, we will simply say that
(G,by,...,b,) is 3-planar.

1.4 Other notions

A collection of paths in a graph are said to be independent if no internal vertex of
any path in the collection belongs to another path in the collection.

Let G = (V, E) be a graph and u, v be two vertices in V. We say that a sequence
of blocks By, ..., By in G is a chain of blocks from u to v if |V(B;) NV (Biy1)| =1
forie[k—1], V(B)NV(B;)=0forany 1 <i<i+1<j<k uwveV(B) are
distinct when £ =1, and u € V(B;) — V(By) and v € V(By) — V(Bg-1) when k > 2.
For convenience, we also view this chain of blocks as Ule B;, a subgraph of G.

For a graph GG and a subgraph L of G, an L-bridge of GG is a subgraph of G that is
induced by an edge in F(G)— E(L) with both incident vertices in V(L), or is induced

by the edges in a component of G — L as well as edges from that component to L.



CHAPTER 11

BACKGROUND AND PREVIOUS LEMMAS

2.1 Background of Kelmans-Seymour conjecture

The well-known Kuratowski’s theorem [17] can be stated as follows: A graph is planar
if and only if it contains no subdivision of K5 or Ks3. It is known that any 3-
connected nonplanar graph other than K5 contains a subdivision of K33 (see [27] for
more results). Seymour [23] conjectured in 1977 that every 5-connected nonplanar
graph contains a subdivision of K. This was also posed by Kelmans [15] in 1979.

K. Kawarabayashi, J. Ma and X. Yu proved Kelmans-Seymour conjecture for
graphs containing Ks3 in [14]. J. Ma and X. Yu also proved Kelmans-Seymour
conjecture for graphs containing K, in [19]. In this dissertation, we will generalize
the second result in two different ways.

Now we mention several results and problems related to the Kelmans-Seymour
conjecture. G. A. Dirac in 1964 [6] conjectured that every graph on n vertices with
at least 3n — 5 edges contains a subdivision of the complete graph K5 on five vertices,
which was also mentioned by P. Erdés and A. Hajnal in [7]. Maximal planar graphs
show that this is best possible for every n > 5.

K. Wagner in [32] characterized all edge-maximal graphs not contractible to K.
It follows easily from this result that every graph G on n vertices with at least 3n —5
edges is contractible to K.

Z. Skupién [26] proved that Dirac’s conjecture is true for locally Hamiltonian
graphs, i.e. graphs where every vertex has a Hamiltonian neighborhood. It was
proved by C. Thomassen in [28] that every graph on n vertices with at least 4n — 10

contains a subdivision of K5. Then he improved the bound to In — 7 in [30], and



proved in [31] that a subdivision of K can be selected such that a prescribed vertex
is no branch vertex, and with this condition the result is best possible. W. Mader
finally proved Dirac’s conjecture in [20]. Kézdy and McGuiness [16] showed that
Kelmans-Seymour conjecture if true would imply Mader’s result.

A conjecture of Hajds states that every graph containing no subdivision of K} is
k-colorable. A graph G is said to be k-colorable if there is a map ¢ : V' — S such that
c(u) # c(v) whenever u and v are adjacent. The smallest number of colors needed
to color a graph G is called its chromatic number. A graph that can be assigned
a k-coloring is k-colorable. P. Catlin [2] showed that Kelmans-Seymour conjecture
is related to Hajos’ conjecture, and Hajos’ conjecture is false for £ > 6 and true for

k =1,2,3, and remains open for the case k =4 and k = 5.

2.2 Motivation for our work

As mentioned in the previous section, the motivation of this dissertation is to gener-
alize J. Ma and X. Yu’s result on Kelmans-Seymour conjecture for graphs containing
K, . In this section, we state a strategy to prove the Kelmans-Seymour conjecture,
which is systematically outlined in [8].

Let H be a 5-connected nonplanar graph not containing K, . Then by a result of
Kawarabayashi [12], H contains an edge e such that H/e is 5-connected. If H/e is
planar, we can apply a discharging argument (see [8] for more details). So assume that
H/e is not planar. Let M be a maximal connected subgraph of H such that H/M is
5-connected and nonplanar. Let z denote the vertex representing the contraction of

M, and let G = H/M. Then one of the following holds.

(a) G contains a K, in which z is of degree 2.
(b) G contains a K in which z is of degree 3.

(¢) G does not contain K, and there exists T C G such that z € V(T), T = K,



or T = K3, G/T is 5-connected and planar.

d) G does not contain K, , and for any 7" C G with z € V(T) and T = K, or
4

T = K3, G/T is not 5-connected.

In [8] certain special separations are studied and the results can be used to take
care of (c). In this dissertation, we prove generalizations of J. Ma and X. Yu’s result
on graphs containing K, , which can be used for taking care of (a) and (b). The

results are collected in [9] and [10], which are prepared to publish.

2.8 Previous lemmas

In this section, we list a number of known results that will be used in the proof of
the main results.
First, we state the following result of Seymour [24]; equivalent versions can be

found in [3, 25, 29].

Lemma 2.3.1 Let G be a graph and sy, ss9,t1,ts be distinct vertices of G. Then

exactly one of the following holds:
(1) G contains disjoint paths from si to t1 and from sy to ts, respectively.
(17) (G, s1,89,t1,t2) is 3-planar.

We also state a generalization of Lemma 2.3.1, which is a consequence of Theorems

2.3 and 2.4 in [22].

Lemma 2.3.2 Let G be a graph, vy,...,v, € V(G) be distinct, and n > 4. Then

exactly one of the following holds:

(1) There exist 1 < i < j < k <1 < n such that G contains disjoint paths from

v;, v to vk, vy, respectively.

(11) (G,v1,v9,...,v,) is 3-planar.



We will make use of the following result of Menger [11].

Lemma 2.3.3 Let G be a finite undirected graph and x and y two distinct vertices.
Then the size of the minimum vertex cut separating x from y is equal to the maximum

number of independent paths from x to y.
We also need the following result of Perfect [21].

Lemma 2.3.4 Let G be a graph, u € V(G), and A C V(G — u). Suppose there exist
k independent paths from w to distinct aq,...,ar € A, respectively, and otherwise
disjoint from A. Then for any n > k, if there exist n independent paths Py, ..., P, in
G from u to n distinct vertices in A and otherwise disjoint from A then Pi,..., P,

may be chosen so that a; € V(F;) for i € [k].

We will also use a result of Watkins and Mesner [33] on cycles through three

vertices.

Lemma 2.3.5 Let G be a 2-connected graph and let yy, yo, ys be three distinct vertices
of G. There is no cycle in G through yi,vys,y3 if, and only if, one of the following
holds:

(i) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs D, of
G — S, i€ [3], such that y; € V(D,,) and each D,, is a union of components of
G-5S.

(i1) There exist 2-cuts Sy, of G, i € [3], and pairwise disjoint subgraphs D, of G,
such that y; € V(D,,), each D,, is a union of components of G—.S,,, there exists

2z € Sy, NSy, NSy, and Sy, — {2}, Sy, — {2}, Sy, — {2} are pairwise disjoint.

(i1i) There exist pairwise disjoint 2-cuts S,, in G, i € [3]|, and pairwise disjoint
subgraphs D,, of G — Sy, such that y; € V(D,,), D,, is a union of components
of G—S,,, and G —V(D,, UD,, UD,,) has precisely two components, each

containing exactly one vertex from Sy, fori € [3].



The next result is Theorem 3.2 from [18].

Lemma 2.3.6 Let G be a 5-connected nonplanar graph and let x1,z2,y1,y2 € V(G)
be distinct such that Gl{z1,x9,y1,y2}] = K, and 11y ¢ E(G). Suppose G — x124
contains a path X between x1 and xo such that G — X is 2-connected, X — xo is
induced in G, and y1,y2 ¢ V(X). Let v € V(X) such that zov € E(X). Then G

contains a T Ky in which xov 1s an edge and x1, 9,1, y2 are branch vertices.

It is easy to see that under the conditions of Lemma 2.3.6, G — {zou : u ¢

{v,21,91,y2}} contains T K5. The next result is Corollary 2.11 in [14].

Lemma 2.3.7 Let G be a connected graph with |V(G)| > 7, A C V(G) with |A| = 5,
and a € A, such that G is (5, A)-connected, (G — a, A — {a}) is plane, and G has no
5-separation (G, Gy) with A C Gy and |V (Gy)| > 7. Suppose there exists w € N(a)

such that w is not incident with the outer face of G — a. Then
(1) the vertices of G — a cofacial with w induce a cycle Cy, in G — a, and

(i1) G — a contains paths Py, Py, Py from w to A —{a} such that V(P;N P;) = {w}
for1<i<j<3,and |V(P,NC,)|=|V(P)NA| =1 forie[3]

The next three results are Theorem 1.1, Theorem 1.2, and Proposition 4.2, re-

spectively, in [8].

Lemma 2.3.8 Let G be a 5-connected nonplanar graph and let (Gy,Gs) be a 5-
separation in G. Suppose |V(G;)| > 7 for i € [2], a € V(G1 N Gy), and (Gy —

a,V(G1 N Gy) —{a}) is planar. Then one of the following holds:
(i) G contains a T K in which a is not a branch vertex.

(1i) G — a contains K .

10



(i1i) G has a 5-separation (G, GY) such that V(G N GY) = {a,a1,a2,as,a4}, G1 C
G, and GY is the graph obtained from the edge-disjoint union of the 8-cycle
ai1biasboasbsasbsay and the 4-cycle bibabsbyby by adding a and the edges ab; for
i€ 4]

Lemma 2.3.9 Let G be a 5-connected graph and (Gq,Gz) be a 5-separation in G.
Suppose that |V (G;)| > 7 fori € [2] and G]V (G N Gy)] contains a triangle aajasa.
Then one of the following holds:

(i) G contains a TK; in which a is not a branch vertex.
(17) G — a contains K .

(17i) G has a 5-separation (G, Gy) such that V(G NGY) = {a, a1, as,a3,a4} and GY
is the graph obtained from the edge-disjoint union of the 8-cycle a1biasbsazbsasby

ay and the 4-cycle bibybsbsby by adding a and the edges ab; for i € [4].

(iv) For any distinct uy,ug, ug € N(a) — {ar,a2}, G — {av : v & {ay1, a2, u1, ug, uz}}

contains T K.

Lemma 2.3.10 Let G be a 5-connected nonplanar graph and a € V(G) such that

G — a is planar. Then one of the following holds:
(i) G contains a T K5 in which a is not a branch vertex.
(1i) G — a contains K .

(i13) G has a b5-separation (G, Ga) such that V(G1NGs) = {a, a1, as, a3, as} and Gy is
the graph obtained from the edge-disjoint union of the 8-cycle ai1biasbsazbszasbiay

and the 4-cycle bibabsbyby by adding a and the edges ab; for i € [4].

We also need the following results, which are Porposition 1.3 and Proposition 2.3

in [8], respectively.

11



Lemma 2.3.11 Let G be a 5-connected nonplanar graph, (G1,G3) a 5-separation in
G, V(G1 N Gy) = {a,ay,as,as,a4} such that Gy is the graph obtained from the edge-
disjoint union of the 8-cycle aibyasbsazbzasbsa; and the 4-cycle bibabsbyby by adding
a and the edges ab; for i € [4]. Suppose |V(G1)| > 7. Then, for any uj,us €
N(a) — {b1,b2,b3},G —{av : v & {by, ba, b3, u1,us}} contains T K.

Lemma 2.3.12 Let G be a graph, A C V(G), and a € A such that |A| =6, |V(G)| >
8, (G —a,A—{a}) is planar, and G is (5, A)-connected. Then one of the following
holds:

(i) G —a contains K, or G contains a K, in which the degree of a is 2.

(i7) G has a 5-separation (G, Ge) such that a € V(G1NGs), A CV(Gy), |[V(Gs)| >
7, and (Go — a,V(Gy N Gq) — {a}) is planar.

12



CHAPTER II1

2-VERTICES IN K,

3.1 Mawn result

In this section, we prove the following theorem.

Theorem 3.1.1 Let G be a 5-connected nonplanar graph and {x1, 2, y1,y2} € V(G)
such that G[{x1, xa,y1,y2}] = K with y1ya ¢ E(G). Then one of the following holds:

(1) G contains a T Ky in which ys is not a branch vertex.
(11) G — yo contains K .

(17i) G has a 5-separation (G, Gg) such that V(G1NGy) = {ys, a1, a2, a3, a4}, and Gy
is the graph obtained from the edge-disjoint union of the 8-cycle a1biasbsazbsasby

ay and the 4-cycle bibybsbsby by adding yo and the edges yob; for i € [4].

(iv) For wy, we, w3 € N(y2) — {z1, 22}, G — {yov : v & {wy, wa, w3, x1,22}} contains

e

Before proving Theorem 3.1.1, we show its relation with case (a) in Section 2.2.

Let H be a 5-connected nonplanar graph not containing K . If case (a) in Section
2.2 occurs, then there is a connected subgraph M of H such that G := H/M is 5-
connected and nonplanar. Furthermore, there exists {x1,x2,y1,72} C V(G) such
that G[{x1,x2, 11, y2}] = K, with y1y2 ¢ E(G) and ys is the vertex representing the
contraction of M.

Let P be a path in H[V(M) U {1, x2}] from z; to x2 and w; be a neighbor of
1o in G other than xy,x5. Since M is a connected subgraph, there is a path @ in

H[V(M)U{w;}] from w; to some vertex v € V(P) — {x1, 22} independent from P.
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It is easy to see that P and @) gives three independent paths from v to x1, z9, wq,
respectively. By Lemma 2.3.4, there are five independent paths Sy, Ss, S3,S4, S5
in H[V(M) U {z1, x9, w1, wy, w3}] from v to xy,xs,w,ws, ws, respectively, where
wy, wo, w3 € Ng(yo) — {1, 22}

Now we may assume that one of the four results in Theorem 3.1.1 holds. If (7)
holds, i.e. G contains a T'K5 in which g, is not a branch vertex, then a TKy5 in H
can be easily derived from the one in G.

If (73) holds, i.e. G —y, contains a K, then it implies that H itself contains a K .
By J. Ma and X. Yu’s result on Kelmans-Seymour conjecture, H contains a T K.

If (4i7) holds, by similar discussion as above, we can find five independent paths
T, 15,15, Ty, T5 in H[V (M) U {by,bs, b3, ur,us}| from some vertex w € V(M) to
b1, ba, b3, u1, ug, respectively, where ui,us € N(yo) — {b1,bo,b3}. By Lemma 2.3.11,
there exists a TK5 in G — {av : v ¢ {by, by, b3, us,us}}. Hence, H contains a T Kj.

If (iv) holds, by the existence of the five independent paths Si, S, Ss, Sy, S5 in
H[V (M) U {x1, z2, wy, we, ws}] from v to xq, e, wy, we, ws, respectively, then H con-

tains a T K.

3.2 Non-separating paths

Our first step for proving Theorem 3.1.1 is to find the path X in G (see Figure 1)
whose removal does not affect connectivity too much.
The following result was implicit in [4, 13]. Since it has not been stated and proved

explicitly before, we include a proof.

Lemma 3.2.1 Let G be a graph and let x1,xo,y1,y2 € V(G) be distinct such that G
is (4,{x1, z2,y1, Y2 })-connected. Suppose there exists a path X in G — x1x9 from x;
to xo such that G — X contains a chain of blocks B from y; to yo. Then one of the

following holds:
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(1) There is a 4-separation (G1, Gg) in G such that B+{x,x2} C Gy, |V(Gs)| > 6,
and (G2, V(G1 N Gy)) is planar.

(19) There exists an induced path X' in G — x1xo from x1 to xo such that G — X' is

a chain of blocks from y; to ys and contains B.

Proof. Without loss of generality, we may assume that X is induced in G — x125. We

choose such X that
(1) B is maximal,

(2) the smallest size of a component of G — X disjoint from B (if exists) is minimal,

and
(3) the number of components of G — X is minimal.

We claim that G — X is connected. For, suppose G — X is not connected and
let D be a component of G — X other than B such that [V (D)| is minimal. Let
u,v € N(D) N V(X) such that uXv is maximal. Since G is (4, {x1, 22,1, y2})-
connected, uXv — {u,v} contains a neighbor of some component of G — X other
than D. Let @ be an induced path in G[D + {u,v}] from u to v, and let X’ be
obtained from X by replacing uXv with ). Then B is contained in B’, the chain of
blocks in G — X’ from y; to y. Moreover, either the smallest size of a component of
G — X' disjoint from B’ is smaller than the smallest size of a component of G — X
disjoint from B, or the number of components of G — X’ is smaller than the number
of components of G— X. This gives a contradiction to (1) or (2) or (3). Hence, G — X
is connected.

If G — X = B, we are done with X’ := X. So assume G — X # B. By (1), each
B-bridge of G — X has exactly one vertex in B. Thus, for each B-bridge D of G — X,
let bp € V(D)NV(B) and up,vp € N(D—bp)NV(X) such that up Xvp is maximal.
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We now define a new graph B such that V' (B) is the set of all B-bridges of G — X,
and two B-bridges in G — X, C' and D, are adjacent if ucXve — {uc,vc} contains
a neighbor of D — bp or upXvp — {up,vp} contains a neighbor of C' — be. Let D
be a component of B. Then UDE‘/(D) upXvp is a subpath of X. Let Sp be the
union of {bp : D € V(D)} and the set of neighbors in B of the internal vertices of
UDGV(D) upXup.

Suppose B has a component D such that |Sp| < 2. Let u,v € V(X) such that
uXv = UDev(D) upXwvp. Then {u,v}USp isa cut in G. Since G is (4, {x1, x2, y1, Y2})-
connected, |Sp| = 2. So there is a 4-separation (G, Gz) in G such that V(G NGy) =
{u,v}USp, B4+{z1,22} C Gy, and D C Gy for D € V(D). Hence |V (Gy)| > 6. If G
has disjoint paths Si, S5, with S; from u to v and Sy between the vertices in Sp, then
choose S; to be induced and let X' = 1 Xu U S; UvXxye; now BU S, is contained in
the chain of blocks in G — X’ from y; to ys, contradicting (1). So no such two paths
exist. Hence, by Lemma 2.3.1, (G5, V(G N Gs)) is planar and thus (¢) holds.

Therefore, we may assume that |Sp| > 3 for any component D of 5. Hence, there
exist a component D of B and D € V(D) with the following property: upXvp —
{up,vp} contains vertices w;,wy and Sp contains distinct vertices by, by such that
for each i € [2], {b;, w;} is contained in a (B U X)-bridge of G disjoint from D — bp.
Let P denote an induced path in G[D + {up, vp}] between up and vp, and let X’ be
obtained from X by replacing upXwvp with P. Clearly, the chain of blocks in G — X’
from y; to yo contains B as well as a path from b; to by and internally disjoint from

D U B. This is a contradiction to (1). |

We now show that the conclusion of Theorem 3.1.1 holds or we can find a path

X in G such that y;,y2 ¢ V(X) and (G — y2) — X is 2-connected.

Lemma 3.2.2 Let G be a 5-connected nonplanar graph and let x1,z2,y1,y2 € V(G)
be distinct such that G[{z1,xe,y1,y2}] = K, with y1yo ¢ E(G). Then one of the

following holds:
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(1) G contains a T Ky in which ys is not a branch vertex.
(ii) G — y2 contains K .

(17i) G has a 5-separation (Gy, Gs) such that V(G1NGs) = {ya, a1, as, as, as} and Gy
1s the graph obtained from the edge-disjoint union of the 8-cycle a1biasbaasbsasby

ay and the 4-cycle bibybsbsby by adding yo and the edges yob; for i € [4].

(1v) For wy,we, w3 € N(y2) — {z1, 22}, G — {yov : v & {w1, we, w3, x1,22}} contains
TKs, or G—x1x9 has an induced path X from xq to xo such that y1,y2 ¢ V(X),

wy, we, w3 € V(X), and (G — y2) — X is 2-connected.
Proof. First, we may assume that

(1) G — 175 has an induced path X from z; to x5 such that y;,y, ¢ V(X) and

(G — y2) — X is 2-connected.

To see this, let z € N(y;) — {x1,22}. Since G is 5-connected, (G — x129) — {y1, Y2, 2}
has a path X from x; to x5. Thus, we may apply Lemma 3.2.1 to G — y5, X and
B =y z.

Suppose (i) of Lemma 3.2.1 holds. Then G has a 5-separation (Gi,Gs) such
that yo, € V(G1 N Gy), {x1,29,y1,2} C V(Gy) and y12 € E(Gy), |V(G2)| > 7, and
(G — y2, V(G1 N Ga) — {y2}) is planar. If |V(Gy)| > 7 then, by Lemma 2.3.8, (i)
or (it) or (dit) holds. If |V(Gy)| = 5 then G; — ys has a K, or G — yo is planar;
hence, (7i) holds in the former case, and (i) or (i7) or (zii) holds in the latter case by
Lemma 2.3.10. Thus we may assume that |V (G;)| = 6. Let v € V(G; — G3). Then
v # ya. Since G is 5-connected, v must be adjacent to all vertices in V(G N Gy).
Thus, v # y1 as y1ye ¢ E(G). Now |V(Gy N Gs) N {xy, 29,2} > 2. Therefore,
G{v, 1} U V(G NGy) N{xy, z9,2})] contains K ; so (i7) holds.

So we may assume that (i7) of Lemma 3.2.1 holds. Then (G — y2) — x122 has

an induced path, also denoted by X, from x; to zy such that (G — y) — X is a
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chain of blocks from y; to z. Since zy; € E(G), (G — y2) — X is in fact a block.
If V((G —y2) — X) = {y1, 2} then, since G is 5-connected and X is induced in
(G = y2) — w122, G[{w1,22,2,y1}] = Ky; so (ii) holds. This completes the proof of

(1).

We wish to prove (iv). So let wy, ws, w3 € N(ya) — {x1, 2} and assume that
G =G —{yv : v & {wy, W, w3, 21,22} }

does not contain T'K5. We may assume that

(2) wy,wy, w3 ¢ V(X).

For, suppose not. If wy, we, w3 € V(X) then (iv) holds. So, without loss of generality,
we may assume wy; € V(X) — {x1,22} and wy € V(G — X). Since X is induced in
G — z179 and G is 5-connected, (G — y2) — (X — wy) is 2-connected and, hence,
contains independent paths P;, P, from y; to wq, ws, respectively. Then wy Xx, U
w1 Xy U wiys U P U (yowe U Py) U G{x1, 22,y1,y2}] is a TKy in G’ with branch

vertices wy, T1, T2, Y1, Y2, & contradiction.

(3) For any u € V(z1Xx2) — {x1, 22}, {u,y1,y2} is not contained in any cycle in
G — (X —u).

For, suppose there exists u € V(x; Xxo) — {x1, 22} such that {u,y;,y2} is contained
in a cycle C'in G' — (X —u). Then uXx; UuXzy UCUGH{z1,29,y1,92}] is a TK

in G’ with branch vertices u, x1, x2,y1, Y2, a contradiction. So we have (3).

Let y3 € V(X) such that ysze € E(X), and let H := G' — (X — y3). Note
that H is 2-connected. By (3), no cycle in H contains {y1,¥y2,ys}. Thus, we apply
Lemma 2.3.5 to H. In order to treat simultaneously the three cases in the conclusion
of Lemma 2.3.5, we introduce some notation. Let S,, = {a;,b;} for i € [3], such

that if Lemma 2.3.5(i) occurs we let a; = as = ag, by = by = b3, and S, = S for
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i € [3]; if Lemma 2.3.5(i7) occurs then a; = as = az; and if Lemma 2.3.5(i7) then
{a1,a2,a3} and {by, ba, b3} belong to different components of H — V' (D,, UD,,UD,,).
If Lemma 2.3.5(4i) or Lemma 2.3.5(i4i) occurs then let B,, B}, denote the components
of H -V (D, UD,, UD,,) such that for i € [3] a; € V(B,) and b; € V(B,,). Note
that B, = By is possible, but only if Lemma 2.3.5(ii) occurs.

For convenience, let D) := G'[D,, + {a;, b;}| for i € [3]. We choose the cuts S, so

that
(4) Dj U D} U Df is maximal.

Since H is 2-connected, D), for each i € [3], contains a path Y; from a; to b; and
through ;. In addition, since (G — y2) — X is 2-connected, for any v € V(D3) —

{as, b3, y3}, Dj — y3 contains a path from agz to b3 through v.

(5) If B,N B, =0 then |V(B,)| =1 or B, is 2-connected, and |V (By)| =1 or By is

2-connected. If B, N By, # () then B, = B, and B, — a3 is 2-connected.

First, suppose B, N B, = (). By symmetry, we only prove the claim for B,. Suppose
|[V(B,)|] > 1 and B, is not 2-connected. Then B, has a separation (B, Bs) such
that [V(B; N By)| < 1. Since H is 2-connected, |V(B; N By)| = 1 and, for some
permutation ijk of [3], a; € V(By) — V(B2) and a;,a; € V(Bs). Replacing S,,, D} by
V(B1N By) U{b;}, D;U By, respectively, while keeping S, D7, Sy, , D} unchanged, we
derive a contradiction to (4).

Now assume B, N By, # (). Then B, = B, by definition, and a; = ay = a3 by our
assumption above. Suppose B, — az is not 2-connected. Then B, has a 2-separation
(B1, B2) with ag € V(B; N By). First, suppose for some permutation ijk of [3],
b; € V(B1)—V(Bs) and b;, by, € V(B3). Then replacing S

Yi» D; by V(BlmBZ)a D;UBla
respectively, while keeping S, , D}, Sy, , D} unchanged, we derive a contradiction to
(4). Therefore, we may assume {by, be, b3} C V(By). Since G is b-connected, there

exists 7’ € E(G) such that r € V(X)—{ys, 22} and ' € V(By— By). Let R be a path
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By — (By — a3) from a3 to r’, and R’ a path in By — By from b; to by. Then (RUr'rU
rXx1) U (asYsys Uyses) UasYiys UasYoys U (y1 Y1y U R'UbyYoys) U G{x1, 22, Y1, Y2 }]

is a T K5 in G’ with branch vertices as, x1, x2, Y1, y2, a contradiction.
(6) D,, is connected for i € [3].

Suppose D,, is not connected for some i € [3], and let D be a component of D,
not containing y;. Since G is 5-connected, there exists 7’ € E(G) such that r €
V(X) — {z2,y3} and 7" € V(D).

Let R be a path in G[D + a;] from a; to 7', and R a path from b, to by in By — as.
By (5), let Ay, Ay, A3 be independent paths in B, from a; to ay, as, as, respectively.
Then (RUr'rUrXz ) U(A1Ua1Yiy1) U (AsUasYsys) U (AsUasYsys Uysezs) U (y1 Y10y U
R U byYays) U G[{x1, 2, y1,92}] is a TK5 in G’ with branch vertices a;, x1, T2, Y1, y2,

a contradiction.
(7) If a1 = ag = ag then N(a3) N V(X — {z2,y3}) = 0.

For, suppose a; = as = a3 and there exists u € N(a3) N V(X — {z2,y3}). Let @ be a
path in By, —ag between b; and bq, and let P be a path in Df — b3 from as to ys3. Then
(asuUuXw;)U(PUysre)UasYiys UasYays U (y1 Y101 UQUb Yayo) UG[{ w1, 2,41, 42}

is a T K5 in G’ with branch vertices as, x1, x2, y1, y2, a contradiction.

We may assume that
(8) there exists u € V(X)) — {1, z2,y3} such that N(u) — {y2} € V(X U D).

For, suppose no such vertex exists. Then G has a 5-separation (G1,Gs) such that
V(G1NGs) =A{as,bs,x1, 22,92}, XUD; C Gy, and D} UD,U B, U B, C Gs. Clearly,
|V(G2)| > Tsince |[N(y1)| > 5and y1y2 ¢ E(G). If |[V(G1)| > 7 then, by Lemma 2.3.9,
(i) or (22) or (ii7) or (iv) holds. So we may assume |V (G1)| = 6. Then X = x,ysz
and V(D,,) = {ys}. Hence, G[{z1,z2,y1,y3}] = K, ; so (i) holds.
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(9) For all u € V(X)) —{z1,z2,y3} with N(u) —{y2} € V(X UD}), N(u)NV (D} —
yz) = 0.

For, suppose there exist u € V(X)) — {z1, 22,93}, u1 € (N(u) — {y2}) — V(X U D),
and us € N(u) NV (D} —ys3). Recall (see before (5)) that there is a path Y3 in D} —ys
from as to by through wus.

Suppose u; € V(D,,) for some i € [2]. Then D) —b; (or D} — a;) has a path Y/
from wu; to a; (or b;) through y;. If Y/ ends at a; then let P,, P, be disjoint paths in
B, U B, from ay, bs to ay, bs_;, respectively; now Y/ U P, UY;_; U P, U bsY3us Uuguuy
is a cycle in G’ — (X — u) containing {u,y1, ¥}, contradicting (3). So Y/ ends at b;.
Let P,, P, be disjoint paths in B, U By from by, as_; to by, as, respectively. Then
Y/ UP,UY;3_;UP,UasY3ius Uuguuy is a cycle in G' — (X — u) containing {u, y1,y2},
contradicting (3).

Thus, u; € V(B, U By). By symmetry and (7), assume u; € V(By). Note that
uy ¢ {as,bs} (by the choice of u1) and By, — a3 is 2-connected (by (5)). Hence, B, —as
has disjoint paths Q1, Q2 from {uy, b3} to {b1,bo}. By symmetry between b; and by,
we may assume () is between u; and b; and )5 is between bs and by. Let P be a
path in B, from a; to ay (which is trivial if |V(B,)| = 1). Then Q1 Uujuus UuyYsbs U

Q2 UY,UPUY] is acycle in G’ — (X — u) containing {y1, y2, u}, contradicting (3).

(10) For any u € V(X)) — {1, x9,y3} with N(u) — {y2} € V(X U D), there exists
i € [2] such that N(u) — {y2} € V(D)) and {a;,b;} € N(u).

To see this, let uy,us € (N(u) — {y2}) — V(X U Dj) be distinct, which exist by (9)
(and since X is induced in G’ — x1xs). Suppose we may choose such ug,us so that
{uy,us} £ V(D)) for i € [2].

We claim that {u1,us} € V(B,) and {u1,us} € V(By). Recall that if B,N B, # 0

then B, = B, and if B, N B, = () then there is symmetry between B, and B,. So
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if the claim fails we may assume that u;,us € V(By). Then by (5), B, — as is 2-
connected; so B, — a3 contains disjoint paths Qq, Qs from {uy,us} to {by,b2}. If
B, = By, let P = a3. If B,N B, = 0, then let P be a path in B, from a; to as.
Now Q1 Uujuus UQo UY; UPUY3 is a cycle in G — (X — u) containing {u, 1, Y2},
contradicting (3).

Next, we show that {a;, b;} € N(u) for i € [2]. For, suppose u; = a; and uy = b;
for some i € [2]. Then, since {uy, us}N{as, b3} =0, |V(B,)| > 2 and |V (B,)| > 2. By
(5), let P, P, be independent paths in B, from a; to as_;, as, respectively, and Q1, Q2
be independent paths in By from b; to bs_;, b3, respectively. Now wa; U ub; U a;Y;y; U
biYiyi U (ysr1 Uy Xu) U (PLUY3;UQ) U (PaUasYsys) U (Q2UbsYsys) UuXys Uy;rays
is a T K5 in G’ with branch vertices a;, b;, u, y;, y3, a contradiction.

Suppose u; € V(B,—a3z) and us € V(By—b3). Then |V(B,)| > 2 and |V (B,)| > 2.
Let Yy be a path in D} — ys from as to bs. First, assume that u; € {a;,as} or
us € {by,by}. By symmetry, we may assume u; = aj. So us # by. By (5), B, — a4
contains a path P from as to az, and B, contains disjoint paths Qq, Q2 from {bs, b3}
to by, ug, respectively. Then Y, UQUY>UPUY;UQUujuus is a cycle in G'— (X —u)
containing {u,y1, y»}, contradicting (3). So uy ¢ {a1,a2} and uy ¢ {b1,b2}. Then by
(5) and symmetry, we may assume that B, contains disjoint paths Py, P, from ug, ag
to ay,ay, respectively. By (5) again, By contains disjoint paths @1, Q2 from by, us,
respectively to {by,b3}. Now PLUY; U QU Yo U P UYS U@y Uusuuy is a cycle in
G’ — (X — u) containing {u,yi, y2 }, contradicting (3).

Therefore, we may assume u; € V(D,,) for some i € [2]. By symmetry, we may
assume that u; € V(D,,) and D] — a; contains a path R; from wu; to b; and through
y1. Then uy ¢ V(D) as we assumed {uy,us} € V(D}).

Suppose uy € V(D,,). If D} —ay contains a path Ry from uy to by through yo then
let @ be a path in By, from by to by; now Ry UQU Ry Uusuuy is a cycle in G/ — (X — u)

containing {u, y1, y2 }, contradicting (3). So Dj — by contains a path Ry from usy to as
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and through y,. Now let P be a path in B, from as to a3, () be a path in B, — ag from
by to bs. Let Y3 be a path in D} —ys3 from a3 to bs. Then Ry UQUYZ U P U Ry Uusuuy
is a cycle in G’ — (X — u) containing {u,y1,y»}, contradicting (3).

Finally, assume uy € V(B,UBy). If ug € V(By) then, by (5), let @1, Q2 be disjoint
paths in By, — ag from by, ug, respectively, to {by, b3}, and let P be a path in B, from
as to ag; now uguuy U Ry UQ1UQ2UY,UPUYS is a cycle in G — (X — u) containing
{u, 11,92}, contradicting (3). So ug ¢ V(B,) and uy € V(B, —ay); hence B,N B, = 0.
Let P be a path in B, from us to as and @) be a path in By from b; to b,. Then
uguuy U R UQUY,U P is a cycle in G’ — (X — u) containing {u, y1, y2 }, contradicting

(3). This completes the proof of (10).

By (10) and by symmetry, let u € V/(X) —{z1, 22,93} and uy, us € N(u) such that
w € V(Dy,) and uy € V(D}). If G[D] +u] contains independent paths Ry, Ry from u
to ay, by, respectively, such that y; € V(R; U Ry), then let P be a path in B, between
a; and as and @) be a path in B, — a3z between b; and by; now R{ U P U Yo UQ U Ry
is a cycle in G' — (X — u) containing {u, y1,y2}, contradicting (3). So such paths do
not exist. Then in the 2-connected graph D; := G[D] + u] + {c, cay, cb, } (by adding
a new vertex c), there is no cycle containing {c,u,y;}. Hence, by Lemma 2.3.5, D}
has a 2-cut T separating y; from {u,c}, and T N {u,c} = 0.

We choose u, u;,us and 1" so that the T-bridge of Dj containing y;, denoted B,
is minimal. Then B — T contains no neighbor of X — {z1,22}. Hence, G has a
5-separation (Gi,G2) such that V(Gy N Gs) = {z1,29,y2} UV(T), B C Gy, and
X UD,U D} C Gy. Clearly, |[V(Gsy)| > 7. Since y1y2 ¢ E(G) and G is 5-connected,
|[V(G1)| > 7. So (i) or (ii) or (iii) or (iv) holds by Lemma 2.3.9. |

3.3 An intermediate substructure

By Lemma 3.2.2, to prove Theorem 3.1.1 it suffices to deal with the second part of (iv)

of Lemma 3.2.2. Thus, let G be a 5-connected nonplanar graph and xi,x2,y1,y2 €
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V(G) be distinct such that G[{z1, z2, y1, y2}] = K, with y1y2 ¢ E(G), let wy, wq, w3 €
N(y2) — {x1,x2} be distinct, and let P be an induced path in G — x1z5 from x; to xs
such that y1,ye & V(P), wy,ws, ws € V(P), and (G — y2) — P is 2-connected.

Without loss of generality, assume xq, wq, wo, w3, T occur on P in order. Let
X = xlpwl U W1Y2W3 U U)gP.l’Q,

and let

G =G —{yv: v ¢ {wy,wy, w3, x1,T2}}.

Then X is an induced path in G' — 129, y1 ¢ V(X), and G’ — X is 2-connected.
For convenience, we record this situation by calling (G, X, x1, T2, Y1, Y2, w1, we, w3) a
9-tuple.

In this section, we obtain a substructure of G’ in terms of X and seven additional
paths A, B,C,P,Q,Y,Z in GG'. See Figure 1, where X is the path in boldface and
Y, Z are not shown. First, we find two special paths Y, Z in G’ with Lemma 3.3.1
below. We will then use Lemma 3.3.2 to find the paths A, B, C', and use Lemma 3.3.3
to find the paths P and (). In the next section, we will use this substructure to find
the desired TK5 in G or G'.

Lemma 3.3.1 Let (G, X, x1, T2, y1, Y2, w1, wa, w3) be a 9-tuple. Then one of the fol-

lowing holds:
(1) G contains T K5 in which yy is not a branch vertez, or G' contains T K.
(171) G — ya contains K .

(13i) G has a 5-separation (G1,Gs) such that V(G1 N Ge) = {ya, a1, az,as,as}, Go is
the graph obtained from the edge-disjoint union of the 8-cycle a1byasbsazbsasbsay

and the 4-cycle bybabsbsby by adding yo and the edges yab; for i € [4].
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(iv) There exist zy € V(x1Xys) — {x1,y2}, 20 € V(x2Xya) — {x2,y2} such that
H:=G — (V(X —{y2,21,22}) U E(X)) has disjoint paths Y, Z from yi,z to

Yo, 22, respectively.

Proof. Let K be the graph obtained from G — {x1, x5, y2} by contracting z; Xy, —
{zi,y2} to the new vertex u;, for ¢ € [2]. Note that K is 2-connected; since G is
5-connected, X is induced in G — z1x9, and G — X is 2-connected. We may assume

that

(1) there exists a collection A of subsets of V(K) — {uy, ug, wq,y1} such that (K,

A, uy, y1, uz, we) is 3-planar.

For, suppose this is not the case. Then by Lemma 2.3.1, K contains disjoint paths,
say Y,U, from y;,u; to wq,us, respectively. Let v; denote the neighbor of u; in
the path U, and let z; € V(x;Xy2) — {x;,y2} be a neighbor of v; in G. Then Z :=
(U —A{uy,us})+ {21, 22, 2101, 2002 } is a path between z; and zo. Now Y +{yo, yows }, Z

are the desired paths for (iv). So we may assume (1).

Since G — X is 2-connected, |Ng(A) N {ug,uz, wo}| < 1 for all A € A. Let
p(K, A) be the graph obtained from K by (for each A € A) deleting A and adding
new edges joining every pair of distinct vertices in Ny (A). Since G is 5-connected
and G — X is 2-connected, we may assume that p(K, A) — {us,us} is a 2-connected
plane graph, and for each A € A with Ng(A) N{uy,us} # 0 the edge joining vertices
of Ng(A) — {u1,us} occur on the outer cycle D of p(K, A) — {us,us}. Note that
y1, we € V(D).

Let t; € V(D) with t; Dy; minimal such that u1t; € E(p(K,.A)); and let t, € V(D)
with y; Dty minimal such that usty € E(p(K,.A)). (So t1,y,ts, wy occur on D in
clockwise order.) Since K is 2-connected and X is induced in G' — zy24, there exist
21 € V(x1Xy2) — {z1,y2} and independent paths R;, R} in G from z; to D and

internally disjoint from V' (p(K,.A)) UV (X), such that R; ends at t; and R} ends at

25



some vertex t] # t1, and ws, t},t1,7; occur on D in clockwise order. Similarly, there
exist zo € V(29X y2) — {22, 92} and independent paths Ry, R, in G from 2z, to D and
internally disjoint from V' (p(K, A)) UV (X), such that R ends at to, R/, ends at some
vertex t, # to, and yy, ta, th, we occur on D in clockwise order.

We may assume that

(2) K — {uy,us} has no 2-separation (K’, K”) such that V(K' N K") C V(t;Dt,),
|[V(K")| > 3, and V(toDt1) C V(K").

For, suppose such a separation (K’, K”) does exist in K — {uj,us}. Then by the
definition of uy, us, we see that G has a separation (G7,G3) such that V(G; NGy) =
V(K'NK")U{z1, 29,92}, K’ CV(Gy) and K"UX C Gs. Note that G[{z1, e, y2}] is
a triangle in G, |V (G3y)| > 7, and |V(G1)| > 6 (as |[V(K')| > 3). If |V(G;)| > 7 then
by Lemma 2.3.9, (i) or (ii) or (iii) holds. (Note that if (iv) of Lemma 2.3.9 holds
then G’ has a T'K3; so (i) holds.) So assume |V (G1)| = 6, and let v € V(G — G2).
Since G is 5-connected, N(v) = V(G N Gy). In particular, v # y; as y1y2 ¢ E(G).

Then G[{v, 1, xs,y1}| contains K, , and (4i) holds. So we may assume (2).

Next we may assume that

(3) each neighbor of z; is contained in V(X), or V(¢;Dy,), or some A € A with
u; € Ng(A), and each neighbor of x5 is contained V' (X), or V(y; Dts), or some
A e A with uy € Ng(A).

For, otherwise, we may assume by symmetry that there exists a € N(z7) — V(X)
such that a ¢ V(t;Dy;) and a ¢ A for A € A with u; € Ng(A). Let d = a
and S = aifa ¢ Aforall A e A When a € A for some A € A then by (2),
there exists ' € Ng(A) — V(t1Dty) and let S be a path in G[A + '] from a to
a’. By (2) again, there is a path 7' from a’ to some u € V(t9Dty) — {t1,t2} in
p(K, A)—{uy,us,ya} —t1 Dty. Then ty DtsURURy and R,yUt, DuUT give independent

paths 11,15, T3 in G — (X — {21, 20}) with 17, T, from y; to 21, 22, respectively, and T3
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from a’ to zo. Hence, 2o X xoUz X yo UToU(T3USUaz ) U(T1Uz X yo ) UG {21, T2, Y1, Y2 }]

is a TK5 in G’ with branch vertices x1, T2, Y1, Y2, 22; 80 (i) holds.

Label the vertices of wyDy; and x1 Xys such that woDy; = vy ... v, and 1 Xys =
Vil - .- Un, With v1 = we, vp = y1, vp1 = 21 and v, = ys. Let G; denote the
union of z1Xys, {v1,..., v}, G[AU (Ng(A) —uy)] for A € A with vy € Ng(A),
all edges of G’ from 1 Xy, to {vq,..., v}, and all edges of G’ from 271 Xy, to A for
A € A with u; € Ng(A). Note that Gy is (4, {vy,...,v,})-connected. Similarly, let
y1Dwy = 21 ...z and 22Xy = 2141 .. . 2m, With 21 = we, 21 = y1, 2111 = T2 and
Zm = Yo. Let Gy denote the union of yo Xws, {21,..., 21}, GIAU (Nk(A) — uy)| for
A € A with uy € Ng(A), all edges of G’ from ys X x5 to {z1,..., 2}, and all edges of
G’ from yo X9 to A for A € A with us € Ng(A). Note that Gy is (4,{z1,..., 2m})-
connected.

If both (Gy,v1,...,v,) and (Ge, 21, ..., zy,) are planar then G — yo is planar; so
() or (i7) or (4i7) holds by Lemma 2.3.10. Hence, we may assume by symmetry that
(G1,v1,...,v,) is not planar. Then by Lemma 2.3.2, there exist 1 < g < r < s <
t < m such that G has disjoint paths ()1, Q2 from vy, v, to v, v, respectively, and
internally disjoint from {vy,...,v,}.

Since (K, uy, 31, uz, we) is 3-planar, it follows from the definition of G that ¢,r < k
and s,t > k + 1. Note that the paths y; Dty, t,Dv,, v,Dy; give rise to independent
paths Py, Py, Py in K — {uy,us}, with P, from y; to ta, P from ¢, to v,, and P from
v, to y;. Therefore, 2o X9 U 20Xy U(Re U Py) U(RLU P UQy Uus Xay) U (PsUQoU
v Xy2) UG[{x1, 22,91, y2}] is a TK5 in G' with branch vertices 1, xa, y1, Y2, 22. So (7)
holds. 1

Conclusion (iv) of Lemma 3.3.1 motivates the concept of 11-tuple. We say that

(GvaIlaan y17y27w1aw27w3azla22) is an 11_tupl€ if

L4 (G,Xﬂfl,iﬂz,?Jl,yz,wbwz,’w:%) is a 9-tuple, and z; € V(%’Xyz) - {ﬂfi,yQ} for

ie 2,
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o H:=G — (V(X —{y2, 21, 22}) U E(X)) contains disjoint paths Y, Z from yy, 2

to s, 29, respectively, and
e subject to the above conditions, z; X 29 is maximal.

Since G is 5-connected and X is induced in G’ — z124, each z; (i € [2]) has at least
two neighbors in H —{ys, 21, 22} (which is 2-connected). Note that y, has exactly one

neighbor H — {ys, 21, 20}, namely, wy. So H — ys is 2-connected.

Lemma 3.3.2 Let (G, X, x1, %2, Y1, Y2, W1, Wa, W3, 21, 22) be an 11-tuple and Y,Z be
disjoint paths in H := G' — (V(X —{ys, 21, 22}) U E(X)) from y1, 21 to ya, 22, respec-
tively. Then G contains a TKs in which ys is not a branch vertex, or G' contains

TKs, or
(i) fori € [2], H has no path through z;, z3_;,y1,y2 in order (so y1z; ¢ E(G)), and

(13) there exists i € (2] such that H contains independent paths A, B, C, with A and

C from z; to yy, and B from ys to z3_;.

Proof. First, suppose, for some i € [2], there is a path P in H from z; to ys such that
Ziy Z3—iy Y1, Y2 occur on P in order. Then 23 ; Xz3 ;U 235 ;Xys U (23_; P2 U 2, Xz;) U
23 i Pyy Uy Pys U G[{x1, 22, y1,y2}] is a TK5 with branch vertices 1, s, y1, Yo, 23_;-
So we may assume that such P does not exist. Hence by the existence of Y, 7 in H,
we have yy 21, y122 ¢ E(G), and (i) holds.

So from now on we may assume that (¢) holds. For each i € [2], let H; denote
the graph obtained from H by duplicating z; and y;, and let z; and y] denote the
duplicates of z; and y;, respectively. So in H;, y; and ] are not adjacent, and have
the same set of neighbors, namely Ny (y;); and the same holds for z; and z/.

First, suppose for some ¢ € [2], H; contains pairwise disjoint paths A, B’, C' from
{zi, 2L, y2} to {y1,y1, 23—}, with z; € V(A'), 2] € V(C') and y, € V(B'). If z3_; ¢

V(B’), then after identifying y; with y; and z; with 2/, we obtain from A’UB'UC" a
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path in H from z3_; to yo through z;,y; in order, contradicting our assumption that
() holds. Hence z3_; € V(B'). Then we get the desired paths for (i7) from A'"UB'UC’
by identifying y; with y; and z; with 2..

So we may assume that for each i € [2], H; does not contain three pairwise disjoint
paths from {ys, z;, 2/} to {y1,y], 23—;}. Then H; has a separation (H], H') such that
\V(H; N H)| =2, {42, 2,2} S V(H]) and {y1, 41, 23} € V(H]).

We claim that y1, 2,91, 21, 21, 22 ¢ V(H! N H!) for i € [2]. Note that {y;,y]} #
V(H! N H!), since otherwise y; would be a cut vertex in H separating z3_; from
{y2, z;}. Now suppose one of yy, ¥} is in V(H/ N H!"); then since y;,y; are duplicates,
the vertex in V(H! N H!') — {y1,y;} is a cut vertex in H separating {y;, z3_;} from
{y2, zi}, a contradiction. So y1,y; ¢ V(H; N H/). Similar argument shows that
ziyzi ¢ V(H/NH!). Since H —ys is 2-connected, yo ¢ V(H/NH"). Since H—{z3_;, Y2}
is 2-connected, z3—; ¢ V(H! N H/).

Fori € [2], let V(H/NH]") = {si,t;}, and let F! (respectively, F}’) be obtained from
H! (respectively, H!) by identifying z] with z; (respectively, ¢} with y;). Then (F], F!)
is a 2-separation in H such that V(EF/NF/") = {s;, t;}, {y2, 2:} C V(F!) —{s;,t;}, and
{y1,23-:} S V(F/) — {si,t;}. Let Z1,Y, denote the {s;,t; }-bridges of F| containing
21, Y2, respectively; and let Z5,Y) denote the {si,t; }-bridges of F|' containing zo, 1,
respectively.

We may assume Y; = Z5 or Yo = Z;. For, suppose Y] # Zs and Yy # Z;. Since H—
1o is 2-connected, there exist independent P;, Q) in Z; from z; to s1,t1, respectively,
independent paths P, ()2 in Zy from 2z, to si,t;, respectively, independent paths
P3;, Q3 in Y] from y; to si,t;, respectively, and a path S in Y5 from g, to one of
{s1,t1} and avoiding the other, say avoiding t;. Then z; Xz U 21 Xys U yox; U Py U
SU(PsUy11) U (QaUQ1) U Py U 29 Xys U (20 Xxo Umary) is a TK5 in G' with branch
vertices s1, T1, Y2, 21, Z2-

Indeed, Y7 = Z,. For, if Y} # Z5 then Yo = Zy, Y3 — {s1,t1} has a path from ys to
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21, and Y] U Z, has two independent paths from y; to zo (since H —ys is 2-connected).
Now these three paths contradict the existence of the cut {ss,%2} in H.

Then {s2,t2} NV (Y1 — {s1,t1}) # 0. Without loss of generality, we may assume
that t, € V(Y1) — {s1,t1}. Suppose Yo = Z;. Then sy € V(Y3) — {s1,t1} and we
may assume that in H, {so, 12} separates {s1,y1,21} from {t1,ys,22}. Hence, in Y7,
to separates {yi,s1} from {zo, %1}, and in Y3, sy separates {z1, 1} from {ys,¢;}. But
this contradicts the existence of the paths Y and Z in H. So Y; # Z;. Since H — ys
is 2-connected and Ng/(y2) = {w, wa, w3, 1, x2}, we must have sy = wy € {s1,11}.
By symmetry, we may assume that sy = wy = s7.

Let Y/, Z} be the {so,t2}-bridge of Y7 containing vy, 22, respectively. Then ¢, ¢
V(Z}); for, otherwise, H —{ss, t2} would contain a path from 2, to z1, a contradiction.
Therefore, because of the paths Y and Z, t; € V(Y]) and Y/ contains disjoint paths
Ry, Ry from sy = s1,t; to y,ts, respectively. Since H — y is 2-connected, Z; has
independent P;, @y from z; to sy = s1,t1, respectively, and Z) has independent paths
Py, Qo from z5 to so = sq, o, respectively. Now 21 Xxy U 21 Xys U yoxy U P U s1y2 U
(RiUy121)UP,U(Q2URyUQ:) Uz Xya U (20X e Uxoxy) is a T K5 in G with branch

vertices s1, X1, Y2, 21, 22- |

Lemma 3.3.3 Let (G, X, x1, %2, Y1, Y2, W1, Wa, W3, 21, 22) be an 11-tuple and Y,Z be
disjoint paths in H := G' =V (X —{ya, 21, 22 }JUE(X)) from yy, z1 to ya, 2o, respectively.

Then G contains a T K5 in which yo is not a branch vertex or G' contains T K, or

(1) there exist i € [2] and independent paths A, B,C in H, with A and C' from z;

to y1, and B from ys to z3_;,
(13) for each i € [2] satisfying (i), z3_;xs_; € E(X), and

(13i) H contains two disjoint paths from V(B — ys) to V(AU C) — {y1, z;} and in-
ternally disjoint from AU BUC, with one ending in A and the other ending in
C.
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Proof. By Lemma 3.3.2, we may assume that

(1) for each i € [2], H has no path through z;, z3_;, y1, y2 in order (so y12; ¢ E(G)),

and

(2) there exist ¢ € [2] and independent paths A, B,C in H, with A and C from z;

to y1, and B from y; to 2z3_;.

Let J(A,C) denote the (AU C)-bridge of H containing B, and L(A,C) denote
the union of (A U C)-bridges of H each of which intersects both A — {y1, z;} and
C — {y1,2}. We choose A, B,C such that the following are satisfied in the order

listed:
(a) A, B,C are induced paths in H,
(b) whenever possible, J(A,C) C L(A,C),
(¢) J(A,(C) is maximal, and
(d) L(A,C) is maximal.

We now show that (i) and (i77) hold even with the restrictions (a), (b), (c¢) and (d)

above. Let B’ denote the union of B and the B-bridges of H not containing AU C.
(3) If (4i7) holds then (i7) holds.

Suppose (iii) holds. Let V(P N B) = {p}, V(Q N B) = {q}, V(PN C) = {c} and
V(QNA) = {a}. By the symmetry between A and C, we may assume that yo, p, ¢, 23_;
occur on B in order. We may further choose P, () so that pBz3_; is maximal.

To prove (ii), suppose there exists z € V(z3_;Xw3_;) — {w3-4,23-;}. If N(z)n
V(H)—{y:} € V(B') then G’ has a path T from x to (A—y;)U(C'—y;)U(P—p)U(Q—a)
and internally disjoint from AUB'UCUPUQ; so AUBUCUPUQUT contain

disjoint paths from ¥, z; to ys, x, respectively, contradicting the choice of Y and Z
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in the 11-tuple (that z; X zo is maximal). So N(z) NV (H) — {y:} C V(B’). Consider
B" .= G[(B' — z3_;) + x|.

If B” contains disjoint paths P, Q)" from g, x to p, g, respectively, then Q"UQUaAz;
and P’ U P U cCy; contradict the choice of Y, Z. If B” contains disjoint paths P”, Q"
from x,yy to p, q, respectively, then Q" UQ UaAy; and P”U P U cC'z contradict the
choice of Y, Z.

So we may assume that there is a cut vertex z in B” separating {z, y»} from {p, ¢}.
Note that z € V(y2Bp).

Since x has at least two neighbors in B” — y5 (because G is 5-connected and X
is induced in G’ — zyx5), the z-bridge of B” containing {x,y,} has at least three
vertices. Therefore, from the maximality of pBz3_; and 2-connectedness of H —
{ya, 21, 22}, there is a path in H from y; to y2 Bz — {ys, 2z} and internally disjoint from
PUQUAUCUDB'. So there is a path Y/ in H from y; to y» and disjoint from
PUQUAUCUpBz3_;. Now z3_;BpU P UcCz UAUY'is a path in H through

23_4, Zi, Y1, Y2 in order, contradicting (1).

By (2) and (3), it suffices to prove (iii). Since H — {yo, z;} is 2-connected, it
contains disjoint paths P, @ from B—ys to some distinct vertices s,t € V(AUC)—{z;},

respectively, and internally disjoint from AU B U C.

(4) We may choose P, @ so that s # y; and t # y;.

For, otherwise, H — {ya, z; } has a separation (Hy, Hs) such that V(H N Hy) = {v,y1}
for some v € V(H), (AUC) — 2z € H; and B — yo C H,. Recall the disjoint
paths Y, Z in H from z1,y; to 23, Y2, respectively. Suppose v ¢ V(Z). Then Z — z; C
Hy—{yi1,v}. Hence we may choose Y (by modifying YN H;) so that V(Y NA) = {y,}
or V(YNC)={wy}. Now ZUAUY or ZUCUY is a path in H from z3_; to y»
through z;, v, in order, contradicting (1). So v € V(Z). Hence Y C Hy — v, and we

may choose Z (by modifying Z N Hy) so that V(Z N A) = {z} or V(ZNC) = {z}.
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Now ZUAUY or ZUCUY is a path in H from 23_; to y, through z;,y; in order,

contradicting (1) and completing the proof of (4).

IfseV(A—y)andt € V(C—yy)or s € V(C—yy) and t € V(A—1y), then P,Q
are the desired paths for (ii7). So we may assume by symmetry that s,¢ € V/(C). Let
V(PN B)={p}and V(QN B) = {q} such that ys, p, q, 23_; occur on B in this order.

By (1) 2, s,t, 1 must occur on C' in order. We choose P, @ so that

(%) sCt is maximal, then pBz3_; is maximal, and then ¢Bz3;_; is minimal.

Now consider B’, the union of B and the B-bridges of H not containing A U C.
Note that (P — p) U (Q — q) is disjoint from B’, and every path in H from AU C

to B’ and internally disjoint from A U B’ U C must end in B. For convenience, let

K=PUQUAUB UC.

(5) B’ — y, contains independent paths P’, Q)" from z3_; to p, g, respectively.

Otherwise, B’ — y, has a cut vertex z separating z3_; from {p,q}. Clearly, z €
V(¢Bzs3_; — z3_;), and we choose z so that zBzz_; is minimal.

Let B” denote the z-bridge of B’ — y5 containing z3_;; then zBz3_; C B”. Since
H —{ys, z;} is 2-connected, it contains a path W from some w’ € V(B"” — z) to some
weV(PUQUAUC) —{z} and internally disjoint from K. By the definition of B’,
w € V(zBz—;). By (1), w ¢ V(P)UV(2,Ct—t). By (x), w ¢ V(Q)UV (tCyy —11).

If we V(A) — {z,y1} then P,WW give the desired paths for (iii). So we may
assume w = y; for any choice of W; hence, z € V(Z) and Y N (B"U (W — 1)) = 0.
By the minimality of zBz3;_;, B” has independent paths P”, Q" from z3_; to z,w’,
respectively. Note that z;,ZzN(B”" —z) =. Now z,ZzUP"UQ"UW UY is a path

in H through z;, 23_;, 1, y2 in order, contradicting (1).

(6) We may assume that J(A,C) € L(A,C).
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For, otherwise, there is a path R from B to some r € V(A) — {41, z;} and internally
disjoint from AUB'UC. If RN (PUQ) # 0, then it is easy to check that PUQU R
contains the desired paths for (iii). So we may assume RN(PUQR) = 0. If y ¢ V(R),
then P, R are the desired paths for (iii). So assume yo € V(R). Recall the paths
P’ Q' from (5). Then z,CsUPUP UQ'UQUtCyYy; Uy ArUR is a path in H through

Ziy 23—i, Y1, Y2 in order, contradicting (1) and completing the proof of (6).

Let J = J(A,C)UC. Then by (1), J does not contain disjoint paths from ys, z;
to Y1, z3_;, respectively. So by Lemma 2.3.1, there exists a collection A of subsets of
V(J) —{v1, Y2, 21, 22} such that (J, A, z;, 41, 23—, Y2) is 3-planar. We choose A so that

every member of 4 is minimal and, subject to this, |.4| is minimum. Then
(7) for any D € A and any v € V(D), (J[D+ N;(D)], N;(D)U{v}) is not 3-planar.

Suppose for some D € A and some v € D, there is a collection of subsets A’ of
D — {v} such that (J[D + N;(D)], A', N;(D) U {v}) is 3-planar. Then, with A" =
(A—{D}HUA, (J, A", z;, 11, 234, y2) is 3-planar. So A” contradicts the choice of A.

Hence, we have (7).

Let vy, ..., v be the vertices of L(A,C)N(C — {1, z;}) such that z;,vy,..., vk, 11

occur on C' in the order listed. We claim that
(8) (J7 Ziy Uty - v oy Uky Y15 23— y2) 18 3_p1anar'

For, suppose otherwise. Since there is only one C-bridge in J and (J, A, z;, y1, 23-4, Y2)
is 3-planar, there exist j € [k] and D € A such that v; € D. Since H is 2-connected,
let ¢1,c0 € V(C) N Ny(D) with ¢1Ccy maximal.

Suppose N;(D) C V(C). Then, since there is only one C-bridge in J and
(J, A, zi,y1, 23_i, y2) is 3-planar, J has a separation (Jj, Jo) such that V(J; N J3) =

{c1,¢2}, DUV (c1Ccqy) C V(Jy), and B C J,. Since J has only one C-bridge and
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C is induced in H, we have J; = ¢;Ccy. Now let A" be obtained from A by re-
moving all members of A contained in V' (Jy). Then (J, A, z;, 41, 234, Yo) is 3-planar,
contradicting the choice of A.

Thus, let ¢ € Ny(D) —V(C). Soc e V(J(A,C)). Let D' = J[D + {c1,¢2,c}]. By
(7) and Lemma 2.3.1, D’ contains disjoint paths R from v; to ¢ and 7" from ¢; to c,.
We may assume T is induced. Let C’ be obtained from C by replacing ¢;Ccy; with
T. We now see that A, B, C" satisfy (a), but J(A, C") intersects both A —{y, z;} (by
definition of v; and because ¢ € V(J(A,C)) — V(C)) and C’ — {y1, z;} (because of

P, Q), contradicting (b) (via (6)) and completing the proof of (8).

(9) There exist disjoint paths Ry, Ry in L(A,C) from some r1,75 € V(C') to some
ri,rh € V(A), respectively, and internally disjoint from A U C, such that

2i,T1,72,y1 occur on C' in this order and z;, 75, ],y occur on A in this order.

We prove (9) by studying the (A U C)-bridges of H other than J(A,C). For any
(AUC)-bridge T of H with T # J(A, C), if T intersects A let ay(T),ax(T) € V(T NA)
with a1(T)Aas(T) maximal, and if T intersects C' let ¢i(T'), co(T) € V(T N C) with
c1(T)Ceo(T) maximal. We choose the notation so that z;, ai(7), aa(T"), y1 occur on A
in order, and z;, ¢;(T), c2(T), 41 occur on C in order.

If Ty, Ty are (AU C)-bridges of H such that T, C L(A,C), T1 # J(A,C), and T}
intersects C' (or A) only, then ¢;(77)Cecy(T1) — {c1(11), co(Th)} (or a1(Th)Aax(Th) —
{a1(11),a9(T1)}) does not intersect Ty. For, otherwise, we may modify C' (or A) by
replacing ¢1(T7)Cey(T) (or ay(T1)Aax(T7)) with an induced path in 77 from ¢ (7))
to co(T1) (or from aq(77) to ax(T1)). The new A and C' do not affect (a), (b) and (c)
but enlarge L(A, C), contradicting (d).

Because of the disjoint paths Y and Z in H, (H, z;, 41, 23—i, y2) is not 3-planar.
By (1) A — {y1,2:;} # 0. Hence, since H — {ya, 21, 22} is 2-connected, L(A,C) # (.

Thus, since (J, z;,v1, ..., Uk, Y1, 23—, Y2) is 3-planar (by (8)) and J(A,C) does not
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intersect A —{y1, 2} (by (6)), one of the following holds: There exist (AU C)-bridges
Ty, T, of H such that Ty UT, C L(A,C), z;Aas(Ty) properly contains z; Aai(T3), and
c1(T1)Cyy properly contains co(T2)Cyp; or there exists an (A U C)-bridge T of H
such that 7' C L(A,C) and T'U a1 (T)Aax(T) U ¢1(T)Ceco(T) has disjoint paths from

a1(T),as(T) to co(T), c1(T), respectively. In either case, we have (9).

(10) r1,re € V(tCyy) for all choices of Ry, Ry in (9), or ri,ry € V(z,Cs) for all
choices of Ry, Ry in (9).

For, suppose there exist Ry, Re such that € V(z,Cs) and ry € V(tCyy), or 1 €
V(sCt) — {s,t}, or ro € V(sCt) — {s,t}. Let A" := z;Arl, U Ry UryCy; and C" :=
2;Cry U R Ur] Ay;. We may assume A’ C” are induced paths in H (by taking induced
paths in H[A'] and H[C"]). Note that A’, B, C' satisfy (a), and J(A,C) C J(A',C").
However, because of P and @, J(A’, C") intersects both A’ —{z;,y1} and C"—{z;, y1 },

contradicting (b) (via (6)) and completing the proof of (10).

If r1,79 € V(z,Cs) for all choices of Ry, Ry in (9) then we choose such Rj, Ry
that z;Ar| and z;Cry are maximal, and let 2’ := | and z” = ry; otherwise, define
2l = 2" = z. Similarly, if ri,ry € V(tCy;) for all choices of Ry, Ry in (9), then
we choose such Ry, Ry that y; Ar), and y;Cr; are maximal, and let ¢ := 7} and
y" = ry; otherwise, define v/ = y"” = y;. By (10), 2;, 2/, ¢/, y1 occur on A in order, and
2, 2", 8,t,9y",y1 occur on C' in order.

Note that H has a path W from some y € V(B) UV (P —s) UV (Q —t) to some
w € V(zAZ'—{2, 2})UV (202" ={2", 2, ) UV (y' Ayr —{y/, yn }) UV (" Con —{y", 11 })
such that W is internally disjoint from K. For, otherwise, (H, z;,y1, 23_:,Y2) is 3-
planar, contradicting the existence of the disjoint paths Y and Z. By (6), w ¢ V(A).
Ifwe V(zAZ — {7, 2z}) UV (yAyr — {¢/, 11 }) then we can find the desired P, Q. So
assume w € V(z,C2" —{z", z ) UV (y"Cy1 —{y",11}). By () and (1), y ¢ V(B —y2)

and y ¢ V(P UQ). This forces y = y,, which is impossible as Ny (y2) = {w2}. |
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Remark. Note from the proof of Lemma 3.3.3 that the conclusions (i7) and (7i7)

hold for those paths A, B, C that satisfy (a), (b), (c) and (d).
3.4 Finding TK;

In this section, we prove Theorem 3.1.1. Let G be a 5-connected nonplanar graph
and let 1, 9, Y1, y2 € V(G) be distinct such that G[{z1, x2, y1,y2}] = Ky and yyys ¢
E(G). Let wy,we, w3 € N(y2) — {x1, 22} be distinct and let G' := G — {yov : v ¢
{wy, we, w3, x1, 22} }.

We may assume that G’ — z1x9 has an induced path L from z; to x5 such that
y1,y2 & V(L), (G — y2) — L is 2-connected, and wy, ws, ws € V(L); for otherwise,
the conclusion of Theorem 3.1.1 follows from Lemma 3.2.2. Hence, G’ — x x5 has
an induced path X from z; to xs such that y; ¢ V(X), wiys, w3y, € E(X), and
G' — X = G — X is 2-connected. Hence, (G, X, 21, xa, Y1, Yo, w1, wa, w3) is a 9-tuple.

We may assume that there exist z; € V(2;Xy2) — {x;,y2} for i € [2] such that
H =G — (X —{ys, 21, 22}) has disjoint paths Y, Z from y;, z1 to ya, 29, respectively;
for, otherwise, the conclusion of Theorem 3.1.1 follows from Lemma 3.3.1. We choose
such Y, Z so that z; X z3 is maximal. Then (G, X, 1, z2, Y1, y2, w1, we, w3, 21, 22) is an
11-tuple.

By Lemma 3.3.2 and by symmetry, we may assume that
(1) for i € [2], H has no path through z;, z3_;, y1, y2 in order (so y1z; ¢ E(G)),

and that there exist independent paths A, B,C in H with A and C from 2; to yi,
and B from y, to 2z5. See Figure 1.

Let J(A,C) denote the (AU C)-bridge of H containing B, and L(A,C) denote
the union of (A U C)-bridges of H intersecting both A — {y1,21} and C — {y1, 21 }.

We may choose A, B, C' such that the following are satisfied in the order listed:

(a) A, B,C are induced paths in H,
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Figure 1: An intermediate structure 1

(b) whenever possible J(A,C) C L(A,C),
(c¢) J(A,C) is maximal, and
(d) L(A,C) is maximal.

By Lemma 3.3.3 and its proof (see the remark at the end of Section 4), we may

assume that

2929 € E(X)

and that there exist disjoint paths P,Q in H from p,q € V(B — y3) to ¢ € V(C) —
{y1,21},a € V(A) — {y1, 21}, respectively, and internally disjoint from AU B U C.
By symmetry between A and C', we assume that ys, p, ¢, 22 occur on B in order. We

further choose A, B, C, P, () so that
(2) qBz is minimal, then pBz, is maximal, and then aAy; U c¢Cz; is minimal.

Let B’ denote the union of B and the B-bridges of H not containing AU C. Note

that all paths in H from A U C to B’ and internally disjoint from B’ must have an
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end in B. For convenience, let
K=AUB UCUPUQ.
Then
(3) H has no path from aAy; — a to z;Cc — ¢ and internally disjoint from K.

For, suppose S is a path in H from some vertex s € V(aAy; — a) to some vertex
s' € V(z,Cc— ¢) and internally disjoint from K. Then zoBqUQUaAz Uz Cs"USU
sAy; Uy Ce U P U pBys is a path in H through zs, 21, y1, y2 in order, contradicting
(1).

We proceed by proving a number of claims from which Theorem 3.1.1 will follow.
Our intermediate goal is to prove (12) that H contains a path from y; to @ — a and
internally disjoint from K. However, the claims leading to (12) will also be useful

when we later consider structure of G near z;.

(4) B’'—1ys5 has no cut vertex contained in ¢Bzy — z5 and, hence, for any ¢* € V(B')—

{y2,q}, B' — yo has independent paths P;, P, from z, to ¢, ¢*, respectively.

Suppose B’ — y contains a cut vertex u with u € V(qBzy — z2). Choose u so that
uBzs is minimal. Since H — {ys, 21} is 2-connected, there is a path S in H from some
s' € V(uBzy—u) tosome s € V(AUCUPUQR)—{p, ¢} and internally disjoint from K.
By the minimality of uBz,, the u-bridge of B’ — y, containing uBz, has independent
paths Ry, Ry from zy to ¢, u, respectively. By the minimality of ¢Bzy in (2), S is
disjoint from (PUQUAUC) —{z1, 41} If s = 21 then (R{US)UAU(y;CcUPUpBys)
is a path in H through z, z1,y1, 92 in order, contradicting (1). So s = y;. Then
(2140 U Q U qgBu U Ry) U (R U S) U (y31CcU P UpBysy) is a path in H through
21, 22, Y1, Y2 in order, contradicting (1).

Hence, B’ — 95 has no cut vertex contained in ¢Bzy — z9. Thus, the second half of

(4) follows from Menger’s theorem.
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(5) We may assume that G’ has no path from aAy; — a to z; Xz and internally
disjoint from K U X, and no path from cCy; — ¢ to 21X 2y — 2; and internally

disjoint from K U X.

For, suppose S is a path in G’ from some s € V(aAy; —a) UV (cCy; — ¢) to some
s' € V(21X z3) and internally disjoint from K UX, such that s’ # z; if s € V(cCy; —c).
If s =z then s € V(aAy; —a); s0 22BqUQ U aAz USUsAy, Uy;CcU PUpBys is
a path in H through z, 21, y1, ¥ in order, contradicting (1). If s’ = 25 then s = y; by
(2); so (z1AaU QU qBz) US Uy, CcU P UpBys, is a path in H through 21, 29, y1, yo
in order, contradicting (1). Hence, s’ € V(21X 29) — {21, 22}

Suppose s € V(21 Xy — 21). Let P, P, be the paths in (4) with ¢* = p. If
s € V(aAy; —a) then 225Uz Xy U(P,UPUcCyp )U(PLUQUaAz Uz Xxp)U(y; AsU
SUS'Xyy) UG[{x1, 2, y1,y2}] is a TK5 in G' with branch vertices 1, X2, y1, Y2, 22. If
s € V(cAy; —c) then 2929 U2zo X o U(P,UPUcCz1 Uz X)) U(PLUQUaAy; ) U (y;CsU
S U Xys) UGz, 29,y1,92}] is a TK5 in G’ with branch vertices x1, z2, Y1, Y2, 22.

Now assume s’ € V(20 Xys — 23). If s € V(aAy; — a), then z; Xx; U2 Xy, UC U
(z1Aa U Q U ¢Bzy U z915) U (11As U S U ' Xyo) U Gl{x1, 22, y1,92}] is a TK5 in G’
with branch vertices x1, 2, Y1, Yo, 21. If s € V(cCy; — ¢), then 2 Xz Uz Xy U AU
(21CcUPUPpBzyU zowo) U (11 CsUSUS Xya) UG[{x1, 22,91, Y2} is a TK5 in G' with

branch vertices x1, 2, 1, Y2, 21. This completes the proof of (5).

Denote by L(A) (respectively, L(C')) the union of (AU C)-bridges of H not inter-
secting C' (respectively, A). Let C' = C U L(C). The next four claims concern paths

from x1 Xz — 2z, to other parts of G’. We may assume that

(6) N(z1Xz1 —{x1,21}) CV(C")U{x1, 21}, and that G’ has no disjoint paths from
S1,89 € V(11 Xz — z1) to s}, s, € V(C), respectively, and internally disjoint
from K U X such that s, € V(cCy; — ¢), x1, $1, 82, 21 occur on X in order, and

21, 81, 84, y1 occur on C' in order.
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First, suppose N(x1 Xz —{x1,21}) € V(C")U{x1, z1}. Then there exists a path S in
G’ from some s € V(21X 21)—{x1, 21} tosome s’ € V(AUB'UPUQ)—{c, Y1, Y2, 21, 22}
and internally disjoint from K U X. If s’ € V(A) — {z1, 41} then y;Cc U P U pBys,
SUs’ AaUQUq Bz, contradict the choice of Y, Z. If s’ € V(Q—a) then y;CcUPUpBys,
SUs'QqU qBzs contradict the choice of Y, Z. If ' € V(P —¢) then let P;, P, be the
paths in (4) with ¢* = p; now 225Uz Xy U(PLUQUaAy; ) U (P,UpPs'USUsXxq)U
(C'U 2z Xys) UG[{x1,22,91,y2}] is a TK5 in G’ with branch vertices x1, xa, y1, Yo, 22.
If & € V(B') — {y2,p,q} then let P, P, be the paths in (4) with ¢* = s'; now
2T U2 Xy U (PLUQUaAy,) U (P USUsXx)U(CU2Xy) UGz, 22,91, Y2 )]
is a T K5 in G’ with branch vertices x1, s, y1, Y2, 22.

Now assume G’ has disjoint paths 57, S from s1, 89 € V(21 X21 — 21) to s}, 85 €
V(C), respectively, and internally disjoint from K U X such that s € V(cCy; — ¢),
x1, 81, S2, 21 occur on X in order, and 21, s, s, y; occur on C' in order. Let Py, P, be
the paths in (4) with ¢* = p. Then 22 U 20 Xyo U (PLUQUaAy;)U(P,UPUcCs) U
S1U 1 X)) U (y1Csh, U Sy U s9Xye) UG{x1,29,y1,92}] is a TK5 in G’ with branch

vertices 1, Ta, Y1, Yo, z2. This completes the proof of (6).

(7) For any path W in G’ from z; to some w € V(K) — {y1,21} and internally
disjoint from K U X, we may assume w € V(AUC) — {yi, z1}. (Note that such

W exists as G is 5-connected and G’ — X is 2-connected.)

For, let W be a path in G’ from 7 to w € V(K) — {y1, 21} and internally disjoint
from K U X, such that w ¢ V(AU C) — {z,11}. Then w # ys as Ng/(y2) =
{wy, we, w3, x1, T2}

Suppose w € V(B' — q). Let P, P, be the paths in (4) with ¢* = w. Then
2009 U 20 Xya U(PLUQUaAY)U(P,UW)U(CUz Xya) UG[{x1, 22,91, Y2} is a TK
in G’ with branch vertices x1, T2, Y1, Yo, 22.

So assume w ¢ V(B' — q). Let P, P, be the paths in (4) with ¢* = p. If

w € V(P —c) then zoxro U 20Xy U(PLUQUaAy;) U(P,UpPwUW)U(CUz Xys)U
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G[{z1,y1, 72,92} is a TKy in G’ with branch vertices x1, 22, Y1, Y2, 20. lf w € V(Q—a)
then zow0 U 2o Xyo U (P UqQuwUW)U(P,UPUcCy; ) U(AUz Xy2) UG{x1, 22, Y1, Y2 ]

is a T K5 in G’ with branch vertices x1, 2, 1, Y2, 22. This completes the proof of (7).

(8) We may assume that G’ has no path from 21Xz, — z; to y; and internally

disjoint from K U X.

For, suppose that R is a path in G’ from some x € V(X z; — 1) to y; and internally
disjoint from K U X. Then z # z;; as otherwise 20 BqU Q UaAz UR U y;CcU P U
pBys is a path in H through 29, z1, 41, y2 in order, contradicting (1). Let P, P, be
the paths in (4) with ¢* = p. We use W from (7). If w € V(A) — {21,151} then
2009 U 2o Xyo U(PLUQUaAwUW)U(P,UPUcCy )U(RUzXyo) UG[{x1, T2, Y1, Y2}
is a TK5 in G’ with branch vertices x1, z2,y1,y2,20. If w € V(C) — {z1,y1} then
299U 2o Xyo U(PLUQUaAy, ) U(P,UPUcCCwUW)U(RUzXys) UG[{x1, 22, Y1, Y2}

is a TK5 in G’ with branch vertices x1, 2, 1, Y2, 22. This completes the proof of (8).

(9) If G’ has a path from x1 X2z — {x1, 21} to cCy; — ¢ and internally disjoint from

K U X, then we may assume that

e we V(C)—{y, 2} for any choice of W in (7), and

e G’ has no path from x5 to C'— {y1, 21} and internally disjoint from K U X.

Let S be a path in G’ from some s € V(21X 2)—{x1, 21} to V(cCy, —c) and internally
disjoint from K U X. Since X is induced in G' — x1x9, G'[H — {42, 21, 22} + 8] is 2-
connected. Hence, since N(z1Xz — {z1,21}) C V(C") U {x1, 2z} (by (6)), G’ has
independent paths Sy, Sy from s to distinct s1,s5 € V(C) — {21,751} and internally
disjoint from K U X. Because of S, we may assume that z1, s1, S2,y; occur on C' in
this order and sy € V(cCy; — ).

Suppose we may choose the W in (7) with w € V(A) — {z1, 51 }. Let P;, P, be the

paths in (4) with ¢* = p. Then zoxo U 20 Xyo U sX 11 Us Xy U (Po,UPUcCsyUST) U
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(SoUsaCy1 Uyiae) U(PLUQUaAwUW)UG[{x1,x2,y2}] is a TK5 in G’ with branch
vertices s, T1, Ta, Yo, 2o.

Now assume that S’ is a path in G’ from x5 to some s’ € V(C) — {y1, 21} and
internally disjoint from K U X. Then S; U Sy U S’ U (C' — z1) contains independent
paths S}, S5 which are from s to yi, xo, respectively (when s € V(21Csy) — {s2,21}),
or from s to ¢, xy, respectively (when s € V(soCy; — y1)). If S1,S) end at yy, xo,
respectively, then s Xz U sXys US] U S,U (y1Aa U QU qBys) UG[{x1,z2,91,y2}] is
a T'K5 in G’ with branch vertices s, 1, 2, Y1, y2. So assume that S7, S} end at ¢, xo,
respectively. Let Pj, P, be the paths in (4) with ¢* = p. Then sX 7 U sXys U zow9 U
20Xy U (STUPUPR,)US,U (PLUQUaAy Uyixy) UG[{xy, 22, y2}] is a TKy in G’

with branch vertices s, x1, T2, y2, 2. This completes the proof of (9).

The next two claims deal with L(A) and L(C). First, we may assume that
(10) L(A)N A C z Aa.

For any (A U C)-bridge R of H contained in L(A), let z(R),y(R) € V(RN A) such
that z(R)Ay(R) is maximal. Suppose for some (A U C)-bridge Ry of H contained
in L(A), we have y(Ry)Az(Ry) € z1Aa. Let Ry,..., R, be a maximal sequence of
(AUC)-bridges of H contained in L(A), such that for each i € {2,...,m}, R; contains
an internal vertex of U;;ll 2(Rj)Ay(R;) (which is a path). Let aj,a; € V(A) such
that JJ~, z(R;)Ay(R;) = a1Aaz. By (c), J(A, C) does not intersect a, Aas — {as, as};
so ar,as € V(aAy,). By (d), G’ has no path from ay Aas —{ay, as} to C and internally
disjoint from K U X. Hence by (5), {a1, a2, 1, 22,y2} is a cut in G. Thus, G has a
separation (G, Gy) such that V(G1NGsy) = {a1, as, v1, x2,y2}, PUQUB'UCUX C Gy,
and a; Aas U (U;nﬂ Rj> C Q.

Let z € V(Gg) — {ay, a9, 1, 22,92} and assume z1, ay, az, y; occur on A in order.
Since G is 5-connected, Gy —yo contains four independent paths Ry, Ry, R3, Ry from 2

to 1, Ta, ay, as, respectively. Now RiURsU(R3Uay Az Uz Xyo)U(RyUag Ay )U(y1CeU
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PUpBys)UG[{x1, 22, y1,y2}] is a TK5 in G’ with branch vertices 1, 2, y1, Y2, 2. This

completes the proof of (10).

(11) We may assume that if R is an (A U C)-bridge of H contained in L(C) and
RN (cCy; —c) # 0 then [V(R) —V(C)| =1and N(R—C) = {c1, c2, $1, S2, Y },

with ¢;Ccy = c1co and s189 = 51X 89 C 21 X x1.

For any (AU C)-bridge R in L(C), let z(R),y(R) € V(C N R) such that z(R)Cy(R)
is maximal. Let R; be an (A U C)-bridge of H contained in L(C') such that Ry N
(cCyr —c) # 0.

Let Ry, ..., R, be a maximal sequence of (AUC)-bridges of H contained in L(C),
such that for each i € {2,...,m}, R; contains an internal vertex of U;;ll 2(R;)Cy(R;)
(which is a path). Let c1,ca € V(C) such that ¢;Cey = /L, 2(R;)Cy(R;), with
21,¢1,C2,y1 on C in order. So ¢s € V(cCy; — y1) and, hence, ¢; € V(cCy; — y1) by
(c) and the existence of P. Let R' = J/_, R; UciCcy.

By (¢), G" has no path from ¢;Ccy —{c1, co} to V(B'UPUQ)U{z } and internally
disjoint from K U X. By (d), G’ has no path from ¢;Ccy — {c1, 2} to A — {y1, 21}
and internally disjoint from K U X.

If N(22)NV(R'—{c1,ca}) # 0 then by (5) and (9), N(R'—{c1, c2}) = {x1, T2, y2, 1, C2 }
Let z € V(R') — {x1,x9,¢1,c2}. Since G is 5-connected, R’ has independent paths
Wy, Wy, W3, Wy from z to xq, s, 2, 1, respectively. Now Wi U Wy U (W3 U coCyq) U
(WyUe1Cz U2 Xys) U (y1Aa U QU qBy2) U G[{x1, 22,11, y2}] is a TK5 in G’ with
branch vertices x1, T2, y1, Yo, 2.

So we may assume N (z2) NV (R —{c1,ca}) = 0. Since G is 5-connected, it follows
from (5) that there exist distinct sy, 59 € V(21 X21 — 21) N N(R' — {c1,¢2}). Choose
$1, 89 such that s;Xss is maximal and assume that xq, sq, o, 21 occur on X in this
order. By (6), {c1,ca, 81, S2,y2} is a b-cut in G; so G has a separation (Gy, G) such

that V(Gl N GQ) = {Cl,CQ,Sl,SQ,yQ} and R/ U 01002 U 81X82 Q GQ. By (6) again,
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(Go — Yo, 1,02, 51, 82) is planar (since G is 5-connected). If |V(G3)| > 7 then by
Lemma 2.3.8, (i) or (ii) or (i77) holds. So we may assume that |V (G3)| = 6, and we

have the assertion of (11).

We may assume that
(12) H has a path @' from y; to some ¢’ € V(Q — a) and internally disjoint from K.

First, suppose that y; € V(J(A,C)). Then, H has a path @  from y; to some
¢ € V(P —c¢)UV(Q — a) UV(B) internally disjoint from K. We may assume
¢ € V(P —¢)UV(B); for otherwise, ¢ € V(Q — a) and the claim holds. If ¢’ €
V(P —c)UV(y2Bq—q) then (P —c¢)U (y,Bq — q) U Q' contains a path " from y; to
Y2; 50 21 X1 U1 Xyp UC U (21 AaUQU Bz U 2020) UQ" UG[{ w1, X2, y1,y2}] is a T K5
in G’ with branch vertices x1, 22,91, y2, 21. Hence, we may assume ¢’ € V(qBzy — q).
Let P;, P, be the paths in (4) with ¢* = ¢/. Then 2329 U 20Xy U (P, UQ U aAz; U
21 X)) U(PRUQ)U(y1:CcUPUpByy) UG{x1, x2, Y1,y }] is a TK5 in G' with branch
vertices x1, To, Y1, Yo, 2o

Thus, we may assume that y; ¢ V(J(A,C)). Note that y; ¢ V(L(A)) (by (10))
and v, ¢ V(L(C)) (by (8) and (11)). Hence, since y1y2 ¢ F(G) and G is 5-connected,
yy1 is contained in some (A U C)-bridge of H, say Dy, with D; C L(A,C) and Dy #
J(A,C). Note that |[V(D;)| > 3 as A and C are induced paths. For any (AU C)-
bridge D of H with that D C L(A,C) and D # J(A,C), let a(D) € V(A) NV (D)
and ¢(D) € V(C) N V(D) such that zyAa(D) and z;C¢(D) are minimal.

Let Dy, ..., Dy be a maximal sequence of (AUC')-bridges of H with D; C L(A,C)
(so D; # J(A,C)) for i € [k], such that, for each ¢ € [k — 1], D;y1 N (AU C)
is not contained in U;Zl(c(Dj)Cyl U a(Dj)Ay1), and Dy N (AU C) is not con-
tained in ﬂ;zl(lec(Dj) U z1Aa(D;)). Note that for any i € [k], U;Zl a(D;)Ay; and
U'_, ¢(D,)Cy; are paths. Solet a; € V(A) and ¢; € V(C) such that U;Zl a(Dj)Ay, =

j=1

CLiAyl and Uj‘:l C(Dj)Cyl = ciCyl. Let Sz = aiCyl U CiC'yl U <U§:1 D]> .
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Next, we claim that for any | € [k] and for any r; € V(S;) — {a;, ¢} there exist
three independent paths A;, C;, R; in S; from y; to a;, ¢;, r;, respectively. This is clear
when [ = 1; note that if ¢ = y1, or ¢ = y1, or r, = y; then A;, or Cj, or R; is
a trivial path. Now assume that the assertion is true for some [ € [k — 1]. Let
rie1 € V(Si1) — {aie1, a1} When ryy € V(S) — {a, ¢} let r; := r4q; otherwise,
let 7, € V(Dy41) with r, € V(gjAys — a;) UV (Cyy — ¢). By induction hypothesis,
there are three independent paths A;, Cj, R; in S; from y; to a;, ¢, 7y, respectively. If
ri1 € V(S) — {a, ¢} then Ay = AU qjAaiq, Cryr = G U qCcyq, R = Ry
are the desired paths in Siyq. If 7y € V(Dig1) — V(AU C) then let Py be a
path in Dy, from r; to 7.1 and internally disjoint from A U C; we see that A, :=
AUajAap, 1, Cryq = CiUeCeyq, Ry := RjUP, are the desired paths in S;1. So we
may assume by symmetry that r;.1 € V(aj1Aa; — aiyq). Let Qryq be a path in Dy
from 7; to a;41 and internally disjoint from AUC. Now Ry 1 := A U Ar 1, Criq =
CrUqCeyq, Ay = Ry U Q1 are the desired paths in Sj 4.

We claim that J(A,C) has no vertex in (ap Ay U cxCy1) — {ax, ¢ }. For, suppose
there exists € V(J(A, C)) such that r € V(apAys — ax) UV (cxCy1 — ¢x). Then let
Ay, Ck, R, be independent (induced) paths in S from y; to ay, cx, 7, respectively. Let
A’, C" be obtained from A, C' by replacing ay Ay, ¢,,Cy; with Ay, Cy, respectively. We
see that J(A’, C") contains J(A, C) and r, contradicting (c).

Therefore, a € V(z1Aax) and ¢ € V(z,Ce¢;). Moreover, no (A U C)-bridge of H
in L(A) intersects ar Ay, — ay (by (10)). Let S; be the union of S; and all (AU C)-
bridges of H contained in L(C') and intersecting ¢,Cy; — ¢,. Then by (5) and (11),
NS, — {ak,cr}) — {ag, ¢k, x2, 92} C V(21X2z). Since G is 5-connected, N (S} —
{ar, e }) = {a, cx, w2, 90} # 0.

We may assume that N(S), — {ax, cx}) — {y2, T2, ax, e} # {x1}. For, otherwise, G
has a separation (G, Gy) such that V(G1NGy) = {ag, ¢k, 1, T2, y2} and X UPUQ C

Gy, and ), € Go. Clearly, |V(Gy)| > 7. Since G is 5-connected and y1y2 ¢ E(G),
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|V (G2)| > 7. Hence, the assertion follows from Lemma 2.3.9.

Thus, we may let z € N(S;, — {ax, cx}) — {ax, ek, x1,22,y2} such that x; Xz is
maximal. Then z # z;,. For otherwise, let r € V(S},) — {ax, cx} such that rz; € E(G).
Let v = r if r € V(S)) and, otherwise, let ' € V(c,Cyy — ¢x) with r'r € E(QG)
(which exists by (11)). Let Ay, Ck, Ry be independent (induced) paths in S, from y;
to ag, ¢, 1, respectively. Now 2o BqU QU aAz U (zir1’' U Ry) U Cy U ,CeU PUpBys
is a path in H through zs, z1,y1, y2 in order, contradicting (1).

Let C* be the subgraph of G induced by the union of 1 Xz —x; and the vertices of
L(C)—C adjacent to ¢;Cy; — ¢ (each of which, by (11), has exactly two neighbors on
C' and exactly two on ;X z;). Clearly, C* is connected. Let G, = G[x; Xz U S}, + 24|
and let G’, be the graph obtained from G, — {x;, 22} by contracting C* to a new
vertex c*.

Note that G’, has no disjoint paths from ag, ¢ to ¢*, y;, respectively; as otherwise,
such paths, ¢,CcU PUpBys, and ayAaUQUgBzy give two disjoint paths in H which
would contradict the choice of Y, Z. Hence, by Lemma 2.3.1, there exists a collection
A of subsets of V(G") — {ax, cx, ¢*, y1 } such that (G, A, ay, cx, ¢*,y1) is 3-planar. We
choose A so that each member of A is minimal and, subject to this, |.A| is minimal.

We claim that A = (). For, let T € A. By (10), TN V(L(A)) = 0. Moreover,
T NV(L(C)) = 0; for otherwise, by (11), ¢* € N(T) and |[N(T) N V(C)| = 2;
so by (11) again (and since C' is induced in H), (G, A — {T'}, ax,c,c*,y1) is 3-
planar, contradicting the choice of A. Thus, G[T] has a component, say 7", such that
T" C L(A,C). Hence, for any t € V(1"), L(A,C) has a path from ¢ to aAy; — i
(respectively, cC'y; — y;) and internally disjoint from A U C. Since G is 5-connected,
{z1,22} N N(T") # (. Therefore, for some i € [2], G’ contains a path from z; to
aAy, —y; as well as a path from x; to ¢cC'y; — y1, both internally disjoint from KU X.
However, this contradicts (9).

Hence, (G’ ax, ¢k, c*,yp) is planar. So by (6) and (11), (G, — 2, a, ¢k, 2, 1, Y1) 18
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planar. By (9) and (10), N(xz2) N V(Sk) C V(arAy:). Therefore, since (G, — x2) —
arp Ay, is connected (by (10)), (G, ak, ¢k, 2, x2) is planar.

We claim that {ay, ck, 2, 22, y2} is a 5-cut in G. For, otherwise, by (7) and (9),
G’ has a path S; from z7 to 21Cc¢; — {z1, ¢} and internally disjoint from K U X.
However, G’ has a path Sy from z to ¢ Xy; — ¢ and internally disjoint from K U X.
Now S, Sz contradict the second part of (6).

Hence, G has a separation (Gi,Gs) such that V(G N Go) = {ag, ck, 2, T2, Y2},
B'UPUQUX C Gy, and G, C Gs. Clearly, |V(G;)| > 7 for i € [2]. So (i) or (ii) or

(#7i) follows from Lemma 2.3.8.

Now that we have established (12), the remainder of this proof will make heavy
use of @’. Our next goal is to obtain structure around z;, which is done using claims

(13) — (17). We may assume that

r121 € , W E — {wy1, 21} for any choice o in (7), an as no
(13) E(X) V(A) —{y } o y choi f W in (7) dG h

path from z5 to (AU C) — y; and internally disjoint from K U Q' U X.

Let Pj, P; be the paths in (4) with ¢* = p. Suppose 7121 ¢ E(X). Let 15 € E(X).
By (6), G has a path S from s to some s" € V(C) — {y1, 21} and internally disjoint
from KUQ'UX (as Q" C J(A,C)). Hence, zox9 U 20 Xyo U (P UqQq UQ") U (P2 U
PUcCs USUsz)U (AU zXye) UG{z1,22,91,92}] is a TKy in G’ with branch
vertices x1, To, Y1, Yo, 2o

Now suppose W is a path in (7) ending at w € V(C) — {y1,21}. Then zozy U
20Xy U(PLU@Q¢ UQ ) U (Po,UPUcCwUW)U (AU 21 Xy2) UG[{x1, 22, 91,y2}] 18
a TKs in G' with branch vertices x1, x2, Y1, Y2, 22.

Finally, suppose G’ has a path S from x5 to some s € V(AUC)—{y;} and internally
disjoint from KUQ'UX. If s € V(A —y;) then 2121 Uz Xys UC U (20 AsUS) U (Q'U
¢ QqUqBy:)UG[{x1, z2,y1,y2}] is a T K5 in G' with branch vertices x1, x2, Y1, Y2, 21. If
s € V(C—yy) then 221Uz Xyo UAU(21CsUS)U(Q'UG QqUqBy2) UG [{x1, x2, Y1, Y2}

is a T K5 in G’ with branch vertices x1, xa, y1, Yo, 21.
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(14) We may assume that G’ has no path from y, X 25 to (AU C) — y; and internally
disjoint from K U@’ U X, and no path from y, X z; — z; to A — z; and internally

disjoint from K U Q" U X.

First, suppose S is a path in G’ from some s € V(y2X 22) to some s’ € V(AUC)—{y;}
and internally disjoint from KUQ'UX. Then s # y, as Ngr(y2) = {w1, we, w3, x1, 22}
If & € V(C' =) then z121 Uz Xyo UAU (2,0 USUsXao) U(Q'UGQqUqBys) U
G[{z1,x2,y1,y2}] is a T K5 in G’ with branch vertices 1, o, y1, yo, 21. If ' € V(A—1y;)
then 2121 U 21 Xys UC U (21 A8’ US U sX o) U(Q'UGQqU qBys) UG[{x1, 22,91, Y2 }]
is a T K5 in G’ with branch vertices x1, T2, Y1, Y2, 21.

Now suppose S is a path in G’ from s € V(y2X21 — 21) to s’ € V(A — z;) and
internally disjoint from K UQ’'UX. Let Py, P, be the paths in (4) with ¢* = p. Then
2omo U 20 Xyo U (PLUqQq U Q) U (P UPUcCz Uzizy) U (11 As’ US U sXys) U

G[{z1,x2,y1,y2}] is a TKy in G’ with branch vertices 1, s, y1, Y2, 22.

(15) We may assume that

o J(A,C)N (z1Cc—c) =0,

e any path in J(A,C) from A —{y1,21} to (P—c)U(Q —a)U(Q —y1)UB
and internally disjoint from K U @’ must end on (Q U Q') — ¢, and

e for any (AUC)-bridge D of H with D # J(A,C),if V(D)NV (21Cc—c) # 0
and u € V(D) NV (z1Ay; — 2z1) then J(A,C) N (z1Au — {z1,u}) = 0.

First, suppose there exists s € V(J(A,C))NV(z;Cc—c). Then H has a path S from s
tosome s’ € V(P—c)UV(Q—a)UV(Q' —y1)UV (B —1ys) and internally disjoint from
Ku@'. If s € V(Q'—y1)UV(Q—a)UV (22Bp—p) then SU(Q'—y1)U(Q—a)U(22 Bp—p)
contains a path S” from s to z9; so S’ UsCz UAUy,CcU P UpBys is a path in H
through 29, 21, y1, Y2 in order, contradicting (1). Hence, s’ € V(P —¢) UV (y2Bp — y»)
and, by (2), s = z;. Let Py, P, be the paths in (4) with ¢* = p (if s € V(P — ¢))
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or ¢* = ¢ (if & € V(y2Bp) — {p,y2}). Then S U (P — ¢) U P, contains a path S’
from z; to z5. Let W,w be given as in (7). By (13), w € V(A) — {y1,21}. Now
2909 U 29 Xyp U 2921 U 21 Xy US" U (PLUQUaAw UW) U (CUyia2) UG{z1, 29, Y2}
is a T K5 in G’ with branch vertices x1, £, y2, 21, 22.

Now suppose S is path in J(A,C) from s € V(A — {y1,21}) to s € V(P —¢) U
V(B — q) and internally disjoint from K U Q'. Since Ng/(y2) = {w1, wa, w3, x1, 22},
s' # yo. Let Pj, P, be the paths in (4) with ¢* = p (if & € V(P —¢)) or ¢* = ¢ (if
s'€ V(B —gq)). Let S’ be a path in P,USU (P —¢) from s to z5. Let W, w be given
as in (7). By (13), w € V(A) — {y1, z1}. Hence, zoms U 20 Xyo U (P U qQq U Q") U
(S"UsAwUW)U (CUz Xyo) UG[{x1, 22, Y1, y2}] is a TK5 in G’ with branch vertices
1, X2, Y1, Y2, 22-

Finally, suppose D is some (A U C)-bridge of H with D # J(A,C), v € V(D) N
V(z1Cc—c¢), and u € V(D) NV (z1Ay; — z1). Then D has a path T from v to u and
internally disjoint from K U Q'. If there exists s € V(J(A,C)) NV (z1Au — {z1,u})
then J(A, C) has a path S from s to some s’ € V(Q — a) and internally disjoint from
K. Now zoBqU qQs' USUsAz Uz CoUT UuAy; Uy CeU P UpBys is a path in

H through z, z1,y1, 3o in order, contradicting (1).
(16) We may assume L(A) = 0.

Suppose L(A) # (). For each (AUC)-bridge R of H contained in L(A), let a;(R), az(R) €
V(RN A) with a1(R)Aaz(R) maximal. Let Ry,..., R, be a maximal sequence of
(AU C)-bridges of H contained in L(A), such that for i = 2,...,m, R; contains an
internal vertex of U;;ll(al(Rj)Aag(Rj)) (which is a path). Let aj,as € V(A) such
that U2, a1(R;)Aas(R;) = a1Aay. Let L =J;_, R;.

By (c), J(A,C) N (a1Aas — {a1,as}) = 0. By (d), L(A,C) N (a1 Aas — {a1,a2}) =
0. By (10), a1,a2 € V(z14a). So z; ¢ N(L U ajAay — {a1,as}). Hence by (14),
V(21X 20 —y2) N N(LUayAas —{as,as2}) = 0. By (13), 29 ¢ N(LUajAas —{a1,as}).
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Thus, {ai,as,z1,y2} is a cut in G separating L from X, which is a contradiction

(since G is 5-connected).

(17) z1c € E(C), z1y2 € E(G), and z; has degree 5 in G.

Let C* be the union of z;Cc and all (A U C')-bridges of H intersecting z;Cc — ¢. By
(15), V(C*NJ(A,C)) = {c}.

Suppose (17) fails. If C* = z;Cc then, since A, C' are induced paths and L(A) = ()
(by (16)), z1y2 € E(G) and z;Cc # zic; so any vertex of z;Cc — {¢, z;} would have
degree 2 in G (by (15)), a contradiction. So C* — z;Cc # (. Since G' — X is 2-
connected, (C* — 2;Cc) N (A —z1) # 0 by (c¢) (and since J(A.C)NN(zCc—c) =0 by
(15)). Moreover, if |V (z;Cc)| > 3 then there is a path in C* from 2,Cc — {¢, 21} to
A — z; and internally disjoint from AU C.

Let a* € V(ANC*) with a* Ay; minimal, and let u € V(21 Xyy) with uXys minimal
such that u is a neighbor of (C* — ¢) U (z1Aa* — a*).

We may assume that {a*, c,u,z1,y2} is a 5-cut in G. First, note, by (15), that
J(A,C)N ((z214a* — a*) U (z1Cc — ¢)) = 0 (in particular, a* € V(z1A4a)). Hence, if
u = z then it is clear from (d), (13) and (14) that {a*, c,u,z1,92} is a 5-cut in G.
So we may assume u # z;. Then G’ contains a path 7" from u to v’ € V(A — 2z;) and
internally disjoint from AU cCy; U PUQ U Q' U B’. Suppose {a*, ¢, u,x1,y} is not
a 5-cut in G. Then by (d), (13) and (14), G’ has a path R from r € V(z; Xu — u) to
reV(P—-c)UV(Q—a)UV(Q —y) UV (B') and internally disjoint from K U X.
Note that 1" # yo as Ng/(y2) = {w1, wa, w3, x1,22}. If ' € V(B' — q) then let Py, Py
be the paths in (4) with ¢* = 7’; now zexs U 20Xy U (PL U qQq¢ U Q') U (P, U RU
rXx) U (y Av' UT UuXys) UG[{x1,22,91,y2}] is a TK5 in G with branch vertices
X1, T, Y1, Y2, 20. If ¥ € V(P — ¢) then let Py, P, be the paths in (4) with ¢* = p; now
2009 U 20Xy U (P U QG UQ) U (P, UpPr' URUrXz) U (g Av UT UuXys) U

G[{z1,x2,y1,y2}] is a TK5 in G with branch vertices x1,x2, 41, Y2, 22. Now assume
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reV(Q—-a)uV(Q —y1). Then (Q —a)U(Q'—1y1)UR contains a path R’ from r to
q. Let P;, P, be the paths in (4) with ¢* = p; now zemo U 20Xy U(PLUR UrXz) U
(P,UPUcCy) U (yr Ad' UT UuXys) UG[{x1, 22, y1,y2}] is a TK5 in G with branch
vertices x1, T2, Y1, Yo, 22

Thus, G has a separation (G, Gs) such that V(G1NGsy) = {a*, ¢, u, x1, 92}, uXx2U
PUQ C Gy, and C*"U zCcU z1Aa* C G5. Suppose Gy — y» contains disjoint paths
Ty, T, from u, x; to a*, ¢, respectively. Let Pj, P, be the paths in (4) with ¢* = p. Then
2909U2zo X yoU(PUqQq' UQ ) U(PoUPUT)U(yy Aa*UT UuX yo UG {21, o, y1, Y2 }] is &
T K5 in G’ with branch vertices x1, s, y1, Yo, 22. S0 we may assume that such T, T5 do
not exist. Then by Lemma 2.3.1, (G — y2, u, 1, a*, ¢) is planar (as G is 5-connected).
If |V(Gy)| > 7 then, by Lemma 2.3.8, (7) or (i) or (¢i¢) holds. Hence, we may assume

that |V (G2)| = 6 and, hence, we have (17).

We have now forced a structure around z;. Next, we study the structure of

G'[B' Uy X 23] to complete the proof of Theorem 3.1.1. We may assume that

(18) (G'[B'Uy2X 2], p,q, 22, y2) is 3-planar.

For, otherwise, by Lemma 2.3.1, G'[ B’ U ys X 25] has disjoint paths R;, Ry from ¢, p to
Y2, 22, respectively. Now z12; U 21 Xys U AU (2:CcU P U Ry U 2919) U (R U qQq' U
Q') UGH{z1,29,y1,92}] is a TKy in G’ with branch vertices x1, %2, 41,2, 21. S0 we

may assume (18).

Since G is 5-connected, G is (5, V(K UQ Uys Xxo U 2121))-connected. Recall that
w1ys € E(r1Xy2). Then wiys and wy Xz, are independent paths in G from w; to
Yo, 21, respectively. So by Lemma 2.3.4, GG has five independent paths 7y, Zs, Z3, Z4, Zs
from wy to 21, ya, 23, 24, 25, respectively, and internally disjoint from K UQ Uy X xoU
2121, where 23, 24, 25 € V(KUQ' Uy XUz 1 ). Note that we may assume Zy = wyys.

Hence, Zy, Zs, Z3, Zy, Zs are paths in G'. By the fact that X is induced, by (14), and
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by (5) and (17), z3,24,25 € V(P)UV(Q —a) UV(Q') UV (B — y3). Recall that
L(A) = 0 from (16), and recall W and w from (7) and (13).

(19) We may assume that at least two of Z3, Z4, Z5 end in B' — ys.

First, suppose at least two of Z3, Z4, Z5 end on P. Without loss of generality, let
¢, 23, z4, p occur on P in this order. Let Py, P, be the paths in (4) with ¢* = p. Then
(Z1Uz121) U Zy U 209 U 20Xy U (Z4 U 24 PpU Py) U (Z3 U 23 PcU cCyy Uy o) U (P U
QU aAw UW)UG[{x1,z2,y2}] is a TK5 in G’ with branch vertices wy, 1, xa, Y2, 22.
Now assume at least two of Z3, Z4, Z5 are on Q U @', say Z3 and Z;. Then
Z5U Z,;UQUQ' contains two independent paths Z%, Z) from wy to 2/, ¢, respectively,
where 2" € {a,y;}. Hence (Z1Uz121)UZyU(Z5U2 Ay ) U(ZUqBza U zox) U (y2 BpU
PUcCy) UG[{x1,x2,11,y2}] is a TKy in G’ with branch vertices wq, 1, Z2, Y1, Yo
So we may assume that z3 € V(B’) — {p, ¢}, and hence Z3 = w;z3. Suppose none
of Zy, Zs5 ends in B’ — y,. Then we may assume z4 € V(P — p). Let Pj, P, be the
paths in (4) with ¢* = z3. Then (Z;Uz121)U Zy U 2020 U 20 Xy U (Z3U Py) U(PLUQU
aAw U W)U (Zy U z4PcU cCyy Uyixe) U G[{x1, 22,y2}] is a TK5 in G' with branch

vertices wy, X1, Ta, Y2, Z2-
(20) We may assume that
e w; has at most one neighbor in B’ that is in ¢Bz, or separated from ys Bp
in G'|B’ Uys Xz by a 2-cut contained in gBzs, and
e w; has at most one neighbor in B’ that is in y3 Bp — 3 or separated from

qBzy in G'[B" Uys X z5] by a 2-cut contained in y, Bp.

Suppose there exist distinct vy, v € N(w;)NV (B’) such that for i € [2], v; € V(qBz2)
or G'[B' Uys X z5] has a 2-cut contained in ¢Bzy and separating v; from y, Bp. Then,
since (G'[B' U y2X25],p,q, 22,y2) is 3-planar (by (18)) and H — y, is 2-connected,

G'[B' + wy] — y2 Bp contains independent paths Si,.Ss from w; to g, 22, respectively.
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Now w1 X 21 Uw 5, U(S1UqQq"UQ" ) U(SaUzx9)U(y1CcUPUPBys ) UG [{x1, T2, Y1, Y2 }]
is a T K5 in G’ with branch vertices wy, x1, T2, Y1, Ya.

Now suppose there exist distinct vy, v € N(wy) N V(B’) such that for i € [2],
v; € V(yaBp) or G'[B' Uy, X 23] has a 2-cut contained in y, Bp and separating v; from
qBzy. Then, since (G'[B' U y2X 23], p, q, 22,92) is 3-planar (by (18)) and H — ys is
2-connected, G'[B’ 4+ wy| — (¢Bz2 — z3) has independent paths Sy, Ss from w; to p, za,
respectively. Now wq X a1 UwiyaUzoxeU 2o Xyo USs U (S1UPUcCy Uyyo) U (22BqU

QU aAw UW)UG[{xy,z2,y2}] is a TK5 in G' with branch vertices wy, 1, 22, y2, 22.

(21) G'[B'UysX 23] has a 2-separation (By, By) such that N(w, )NV (B’ —y,) C V(By),

pBq C By, and y2 X 29 C By.

Let z € N(w;)NV (B’) be arbitrary. If there exists a path S in B'—(pBy2U(qBz2—23))
from 25 to z then zow9 U 20 Xyo U (20 BqUqQq' UQ" ) U(SUzwy Uw Xz1) U (y;CcUPU
pBys) U G[{x1, 2, y1,y2}] is a TK5 in G’ with branch vertices 1, s, y1, Yo, 22. S0 we
may assume that such path S does not exist. Then, since (G'[B' UysX 25, p, ¢, 22, y2)
is 3-planar (by (18)) and G’ — X is 2-connected, z € V(y2Xp U ¢Bz5) (in which case
let B, =z and B! = G'[B' Uy X29]), or G'[B' Uy X 25| has a 2-separation (B, BY)
such that B, N B) C y2Bp U qBzo Uys X 29, 2z € V(B, — BY) and z, € V(B! — B.).
We claim that we may assume that w; has exactly two neighbors in B’, say vy, vs,
such that v; € V(y2Bp — y2) or G'|B" U y2 X 25| has a 2-cut contained in y,Bp and
separating vy from ¢Bzy, and vy € V(qBzy — 23) or G'|B’ U y2X 23] has a 2-cut
contained in ¢Bzy and separating ve from yoBp. This follows from (20) if for every
choice of z, B, N BY C y,Bp or B, N BY C ¢qBz,. So we may assume that there
exists v € N(w;) NV (B’) such that pBq C B! and we choose v and (B, B)) with B,
maximal. If pBq C B, for all choices of z then, by (18), we have (21). Thus, we may
assume that there exists z € N(wy) NV (B') such that pBq € B’ for any choice of

(B.,BY). Then B, N B! C ysBp or B, N B! C qBz,. First, assume B, N B C qBzs.
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Then by the maximality of B!, B’ —ysBp has independent paths 77, T, from 25 to g, 2,
respectively. Hence, zoxoU 2o Xy U(T1 UqQq' UQ")U(To U zwy Uw; X 1)U (y;CcUPU
pBys) U G[{z1,x2,y1,y2}] is a TK5 in G’ with branch vertices 1, x2, y1, Y2, 22. Now
assume B, N BY C y,Bp. Then by (20), for any t € N(wy) NV (B.), t ¢ V(y2Bp —y2)
and G'[B" Uy X z5] has no 2-cut contained in y, Bp and separating t from ¢Bz,. If for
every choice of t € N(wy) NV(B)), we have t € V(qBzy — 2z3) or G'|B" U X 25 has
a 2-cut contained in ¢Bz, and separating ¢t from y, Bp then the claim follows from
(20). Hence, we may assume that ¢ can be chosen so that t ¢ V(qBzy — z2) and
G'[B"Uys X z5] has no 2-cut contained in ¢Bzy and separating ¢ from y, Bp. Then, by
(18) and 2-connectedness of G' — X, G[B' + w;| — (¢Bzy — 22) has independent paths
S1, Sy from wy to p, 29, respectively. Now wy Xz Uwiys U zome U 20 Xys U Sy U (S U
PUcCy Uyi22) U (20BqUQ UaAwUW)UG[{x1, e, y2}] is a TK5 in G’ with branch
vertices wy, X1, To, Y2, 22

Thus, we may assume that Z3 = wyv;, Z4 = wivs, and Z5 ends at some v3 €
V(IPUQUQ') —{a,p,q}. Suppose v3 € V(P — p). Let P, P, be the paths in (4)
with ¢* = v1. Then wy X a1 Uwiys U zme U 20 Xy U (wiv1 U Po) U (Z5 UvgPeU cCyy U
y122) U (P UQ U aAw U W) U G[{z1,22,y2}] is a TK;5 in G’ with branch vertices
W1, 21, T2, Y2, 22-

Now assume v € V(QUQ')—{a, q}. Then (B'—y2Bp)UZ;UQUQ'U(A—z1)Uw; vy
has independent paths Ry, Ry from w; to yi, 2o, respectively. So wy X a1 Uwys U Ry U
(RoUzoz2)U(y1CcUPUpByy)UG[{x1, 22,1, y2}] is a T K5 in G’ with branch vertices

wy, T, T2, Y1, Y2. This completes the proof of (21).

By (21), let V(By N By) = {t1,t2} with ¢, € V(y2Bp) and ty € V(gBz,). Choose
{t1,t2} so that By is minimal. Then we may assume that (G'[By + xs], t1, t2, T2, Y2)
is 3-planar. For, otherwise, by Lemma 2.3.1, G'[By + x| contains disjoint paths
Ty, T, from ty,ty to xa, Yo, respectively. Then zyz1 U2 Xy U AU (2;CcU PUpBty U

T1)U(Q'UGdQqU Bty UTy) UG[{x1,x2,41,y2}] is a TK5 in G’ with branch vertices
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Ty, T2, Y1, Y2, 21-

Suppose there exists ss' € F(G) such that s € V(2 Xw; — wy) and s’ € V(Bsy) —
{t1,t2}. Then s’ ¢ V(X), as X is induced in G' — x1z5. By (19), (20) and (21), we
may assume that B; — ¢Bty contains a path R from z3 to p. By the minimality of Bs
and 2-connectedness of H — o, (By —t1) — (y2X 22 — 22) contains independent paths
Ry, Ry from 23 to &, ta, respectively. Now zox9 U 20 Xyo U (R U s's U sX 1) U (Ry U
toBqUqQq U Q") U (11CcU PU RU zzwyyz) U G[{x1, 22,91, y2}] is a TK5 in G' with
branch vertices x1, x2, Y1, Yo, 2o.

Thus, we may assume that ss’ does not exist. Since G is 5-connected, {t1, t2, o, T2}
is not a cut. So H has a path T from some t € V(y2Xx2) — {y2,22} to some
e V(IPUQUQ UAUC) —{p,q} and internally disjoint from K U Q’. By (14),
¥ VAUC) - ()

If ' € V(P —p) then z121 U 21 Xyos U AU (2:CcUcPY UT UtXx9) U(Q'UqdQqU
qBy2) U G[{x1, 22,41, y2}] is a TKy in G’ with branch vertices x1, 2, 1, Y2, 21. So we
assume t' € V(QU Q') — {a, ¢}.

If ¢4 ¢ ort' € V(Q) then (TUQ U Q') — ¢ has a path Q* from ¢ to y;; now
2121 U 21 Xyo UAU (21CcUPUpBzoUzox0) U(Q* UsXyo ) UG[{ 1, 2, y1,y2}] is a T K
in G’ with branch vertices z1, g, y1, Yo, z1. So assume ¢ = ¢’ and t' € V(Q) — {a, ¢}.
Then z121 U2 Xy, UC U (z1Aa UaQt UT UtXxo) U (Q U qBy2) UG[{x1, 2,1, y2}]

is a T K5 in G’ with branch vertices x1, T2, Y1, Y2, 21. 1
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CHAPTER IV

3-VERTICES IN K,

4.1 Main Result

In this section, we prove the following theorem.

Theorem 4.1.1 Let G be a 5-connected nonplanar graph and xi,z2,y1,y2 € V(G)
be distinct such that G[{xi,xe,vy1,92}] = Ky and y1y2 ¢ E(G). Then one of the

following holds:
(1) G contains a T Ky in which x; is not a branch vertex.
(11) G — 1 contains K, , or G contains K in which x1 is of degree 2.

(170) x2,v1,y2 may be chosen so that for any distinct zo,z1 € N(x1) — {22, 91, Y2},

G —{x1v v ¢ {20, 21, T2, Y1, Y2} } contains T K.

Similar to our discussion in Section 3.1, we show the relation between Theo-
rem 4.1.1 and case (b) in Section 2.2.

Let H be a 5-connected nonplanar graph not containing K . If case (b) in Section
2.2 occurs, then there is a connected subgraph M of H such that G := H/M is 5-
connected and nonplanar. Furthermore, there exists {z1,22,y1,72} € V(G) such
that G[{z1, 2, y1,y2}] = K, with 1192 ¢ E(G) and x; is the vertex representing the
contraction of M.

Let P be a path in H[V(M)U{y1,y2}] from y; to y» and @ be a path in H[V (M )U
{z2}] from x5 to some vertex v € V(P) — {y1,y2} independent from P. It is easy
to see that P and @) gives three independent paths from v to xs, y1, Yo, respectively.
By Lemma 2.3.4, there are five independent paths Si,Ss,Ss, Sy, S5 in H[V (M) U
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{x2,Y1, Y2, 20, 21}] from v to x9,y1, Y2, 20, 21, respectively, where zg,2; € Ng(zy) —
{72, 91,92}

Now we may assume that one of the three results in Theorem 4.1.1 holds. If (4)
holds, i.e. G contains a T K5 in which x; is not a branch vertex, then a T Ky in H
can be easily derived from the one in G.

If (i7) holds, then either H itself contains a K; (and furthermore, H contains a
TK; by J. Ma and X. Yu’s result) or it can be reduced to case (a) in Section 2.2.

If (#i7) holds, by the existence of the five independent paths Si, S, Ss, Sy, S5 in
H[V(M)U{x2,y1,Y2, 20, 21 }] from v to x2, y1, Y2, 20, 21, respectively, then H contains
aTKs.

4.2 Non-separating paths

Note that condition (#i7) in Lemma 2.3.8, Lemma 2.3.9 and Lemma 2.3.10 that G
has a 5-separation (G, G%) such that V(G] N GY) = {a, a1, as,as3, a4} and GY is the
graph obtained from the edge-disjoint union of the 8-cycle a1byasbsa3bzasbsa; and the
4-cycle bybabsbsby by adding a and the edges ab; for i € [4]. This condition implies
that G contains a K, in which a is of degree 2. So in this chapter we only need the

weaker versions of these results.

Lemma 4.2.1 Let G be a 5-connected nonplanar graph and let (Gy,Gs) be a 5-
separation in G. Suppose |V(G;)| > 7 for i € [2], a € V(G1 N Gy), and (Gy —

a,V(G1 N Gy) —{a}) is planar. Then one of the following holds:
(1) G contains a T K5 in which a is not a branch vertex.

(11) G — a contains K , or G contains a K; in which a is of degree 2.

Lemma 4.2.2 Let G be a 5-connected graph and (Gy,Gz) be a 5-separation in G.
Suppose that |V (G;)| > 7 fori € [2] and G]V (G N G3)| contains a triangle aajasa.

Then one of the following holds:
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(1) G contains a TKs in which a is not a branch vertex.
(11) G — a contains K , or G contains a K; in which a is of degree 2.

(i13) For any distinct uy,us,us € N(a) — {a1,a2}, G —{av : v & {a1, a2, us, us,us}}

contains T K.

Lemma 4.2.3 Let G be a 5-connected nonplanar graph and a € V(G) such that G—a

s planar. Then one of the following holds:
(i) G contains a T K5 in which a is not a branch vertex.

(1i) G — a contains K, , or G contains a K; in which a is of degree 2.

Let G be a 5-connected nonplanar graph and 1, x2, y1, y2 € V(G) be distinct such
that G[{z1, z2, 1,92} = K, and y1y2 ¢ E(G). To prove Theorem 4.1.1, we need to
find a path in G satisfying certain properties (see (ii7) and (iv) of Lemma 4.2.5). As

a first step, we prove the following

Lemma 4.2.4 Let G be a 5-connected nonplanar graph and x1,22,v1,y2 € V(G) be
distinct such that G[{z1,x2, 1,92} = K, and y1y2 ¢ E(G). Let 29,21 € N(x1) —

{z2,y1,y2} be distinct. Then one of the following holds:
(i) G contains a T K5 in which z1 is not a branch vertez.
(11) G — x1 contains K , or G contains a K in which 1 is of degree 2.

(i13) There exist i € {0,1} and an induced path X in G — xy from z; to xo such that
(G —x1) — X is a chain of blocks from yy to ys, z1_; ¢ V(X), and one of y1, ya

is contained in a nontrivial block of (G — x1) — X.

Proof. We may assume G — x; contains disjoint paths X,Y from z1,y; to s, o,
respectively. For, otherwise, since GG is 5-connected, it follows from Lemma 2.3.1 that

(G — x1, 21, Y1, T2, Yo) is planar; so (i) or (ii) holds by Lemma 4.2.3.
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Hence (G — x1) — X contains a chain of blocks from y; to ys, say B. We may
assume that (G — x1) — X is a chain of blocks from y; to ys. For otherwise, we
may apply Lemma 3.2.1 to conclude that G has a 5-separation (G, G2) such that
x1 € V(G1NGy), B+{x1, 29,21} C Gy, [V(G)| > 7, and (Gy—x1, V(G1NGs) —{z1})
is planar. If |V(Gy)| > 7 then (i) or (i7) follows from Lemma 4.2.1. So assume
\V(Gy)] < 6. Since yiyo ¢ E(G), |V(Gy)] = 6 and |V(B)| = 3. Let V(B) =
{y1,y2,v}. Since G is 5-connected and y1y2 ¢ E(G), y1,y2 € V(G1 N G2) = N(v).
Hence, G[{v, x1,z2,y1}| — 122 is a K, in which z; is of degree 2, and (ii) holds.

We may further assume that z ¢ V(X). For, suppose 2o € V(X). Since G is
5-connected and X is induced in G — xy, every vertex of X has at least two neighbors
in (G —x1) — X. Hence, (G — 1) — 20X x5 is also a chain of blocks from y; to y,. So
we can simply use zo Xy as X.

Let By, By be the blocks in (G — x1) — X containing yi, ¥, respectively. If one of
By, By is nontrivial, then (i7i) holds. So we may assume that |V (B;)| = |V (B2)| = 2.
Since X is induced and G is 5-connected, there exists z € N (z2)—({x1, y1, y2 JUV (X)),
and y; and yy each have at least two neighbors on X — z5. Let Z be a path in
(G —x1) — X — {y1,y2} from zy to z. Then y; and y, are each contained in a
nontrivial block of (G — x1) — Z. So (G — x1) — Z contains a chain of blocks, say B,
from y; to yo, and the blocks in (G — x1) — Z containing ¥, yo are nontrivial. Thus,
we may apply Lemma 3.2.1 to G, Z and B. If (i7) of Lemma 3.2.1 holds, we have
(73i). So assume (i) of Lemma 3.2.1 holds. Then, as in the second paragraph of this

proof, (i) or (i7) follows from Lemma 4.2.1. |

We may assume that (iii) of Lemma 4.2.4 holds and parts (iii) and (iv) of the
next lemma give more detailed structure of G. We refer the reader to Figure 2 for

(73) of Lemma 4.2.5, and Figure 3 for (iv) of Lemma 4.2.5.

Lemma 4.2.5 Let G be a 5-connected nonplanar graph and x1,22,y1,y2 € V(G) be

distinct such that G[{z1, x2,y1,y2}] = K; and y1y2 ¢ E(G). Let 29,21 € N(x1) —
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Figure 2: Structure of G in (ii7) of Lemma 4.2.5.
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Figure 3: Structure of G in (iv) of Lemma 4.2.5.

62



{z2,y1,y2} be distinct and let G' := G — {xyx : v & {x2,y1, Yo, 20,21} }. Then one of

the following holds:

(4)
(id)
(idi)

(iv)

G’ contains TKs, or G contains a T K5 in which x, is not a branch vertex.
G — x1 contains K , or G contains a K, in which x, is of degree 2.

The notation of zo, zy may be chosen so that (G — x1) — T2ys has an induced

path X from z to xo such that zg,y1 ¢ V(X), and (G —x1) — X is 2-connected.

The notation of zg,z1 may be chosen so that there exists an induced path X
in G — xy from z to xg such that zg ¢ V(X), (G — x1) — X is a chain of
blocks By, ..., By from yy to yo with By nontrivial, zo € V(By) when z; has
at least two neighbors in By, and (G — x1) — xay2 has a 3-separation (Y1,Y3)
such that V(Y1 N Y2) = {b,p1,p2}, 21,01, P2, T2 occur on X in this order, Y, =
G[By U 21 Xp1 UpeXzo + b], p1Xpe + y2 C Ya, and py,ps each have at least
two neighbors in Yo — By. Moreover, if b ¢ V(By) then V(By) = {b1,b} with
by € V(By), and there exists some j € (2] such that ps—; has a unique neighbor
by in By, b has a unique neighbor v in X such that vps_; € E(X) — E(p1Xpa),
vby ¢ E(G) and p;jb ¢ E(G).

Proof. We begin our proof by applying Lemma 4.2.4 to G, x1, xa, y1, yo. If (i) or (ii) of

Lemma 4.2.4 holds then assertion (i) or (iz) of this lemma holds. So we may assume

that (i47) of Lemma 4.2.4 holds. Then (G — x1) — 22y, has an induced path X from

21 to 9 such that zo, 11 ¢ V(X), (G — x1) — X has a nontrivial block B; containing

y1, and y; is not a cut vertex of (G — z1) — X. (Note that we are not requiring the

stronger condition that yo ¢ V(X) or (G —z1) — X be a chain of blocks.) We choose

such a path X that

(1) By is maximal,
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(2) subject to (1), whenever possible, (G — x;) — X has a chain of blocks from

to yo and containing By, and
(3) subject to (2), the component H of (G — x;) — X containing B is maximal.

Let C be the set of all components of (G — x1) — X different from H. Then

(4) C =0, and if yo ¢ V(X) then H = (G — 21) — X and H is a chain of blocks

from y; to y» and containing Bj.

First, suppose C = ). Then H = (G — z1) — X. Suppose ys ¢ V(X). Then H has a
chain of blocks, say B, from y; to y, and containing B;. By Lemma 3.2.1, (4) holds,
or G has a 5-separation (G1,Gs) such that 1 € V(G1 N Gy), B + {1, 29,21} C Gy,
|[V(G2)| > 7 and (Gy — x1, V(G1 N Gy) — {x1}) is planar. Thus we may assume the
latter. Since y190 ¢ E(G), |V(B)| > 3. So |[V(Gy)| > 6. If [V(G))|] = 6 then,
since 1152 ¢ E(G) and G is 5-connected, y1,y2,21 € V(G N Gy) and there exists
v € V(Gy) — V(Gs) such that N(v) = V(G1 N Gy); now G[{v, z1, 29, y1}] — x191 is a
K, in which z; is of degree 2, and (ii) holds. So we may assume |V (G1)| > 7. Then
(7) or (i7) follows from Lemma 4.2.1 again.

Now suppose C # (). For each D € C, let up,vp € V(X) be the neighbors of D
in G — x9ys with upXvp maximal such that zy,up,vp, xs occur on X in this order.
Define a new graph G¢ such that V(G¢) = C, and two components C, D € C are
adjacent in Ge if ucXve — {uc,vec} contains a neighbor of D or upXvp — {up,vp}
contains a neighbor of C'.

Note that, for any component D of Gg, UDev(D) upXvp is a subpath of X. Since
G is 5-connected, there exist y € V(H) and C € V(D) with N(y) N V(ucXve —
{uc,vc}) # 0.

If y # y; then let @ be an induced path in G[C + {uc, ve}] — 22y, from ue to ve,
and let X’ be obtained from X by replacing ucXve with Q. Then B is contained

in a block of (G — 1) — X'/, and 7 is not a cut vertex of (G — x1) — X'. Moreover, if
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(G —21)— X has a chain of blocks from y; to ys then so does (G —z1) — X’. However,
the component of (G — x;) — X’ containing By is larger than H, contradicting (3).

So we may assume that y = y; for all choices of y and C'. Let uXv := UDev(D) upXvp.
Since G is 5-connected, yo € V(Upeypy D) U V(uXv — {u,v}) and G has a separa-
tion (G1, Ga) such that V(G1 N G2) = {u,v,z1, 22,11}, G1 := G[Upeyp) DU uXv +
{z1,29,11}], and By U z1Xu UvXxe C Go. Clearly, |V(G;)| > 7 for i € [2]. Since
G[{z1, 22,11 }] = K3, (i) or (ii) follows from Lemma 4.2.2. This completes the proof
of (4).

Let B be the set of all B;-bridges of H. For each D € B, let bp € V(D) NV (By)
and up,vp € V(X) be the neighbors of D in G — xay, with upXvp maximal. Define
a new graph G such that V(Gp) = B, and two B;-bridges C, D € B are adjacent in
Gp if ucXve —{uc,ve} contains a neighbor of D —bp or upXvp —{up,vp} contains
a neighbor of C' — bo. Note that, for any component D of Gp, UDev(D) upXvp
is a subpath of X, whose ends are denoted by up,vp. We let Sp := {bp : D €
V(D)} U (N(upXvp — {up,vp}) N V(By)). We may assume that

(5) for any component D of Gg, |Sp| < 2 and y, € <UD€V(D) V(D)) UV (upXvp)—
({UD, U’D} U SD)

First, we may assume |Sp| < 2. For, suppose |Sp| > 3. Then there exist D € V (D),
r1,79 € V(upXvp) — {up,vp}, and distinct 7},7, € V(By) such that for ¢ € [2],
riri € E(G) or 1, € V(D;) for some D; € V(D) — {D}. (To see this, we choose
D € V(D) such that there is a maximum number of vertices in B, from which G
has a path to upXvp — {up,vp} and internally disjoint from B; U D U X. If this
number is at most 1, we can show that |Sp| < 2. ) Let R; = ryr} if vl € E(G); and
otherwise let R; be a path in G[D; + r;] from r; to r} and internally disjoint from X.
Let @ denote an induced path in G[D + {up,vp}] — bp — z2y2 between up and vp,

and let X’ be obtained from X by replacing upXvp with @. Clearly, the block of
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(G — 1) — X’ containing y; contains B; as well as the path R; Ur; Xry U Ry. Note
that y; # bp (as y; is not a cut vertex in H). Moreover, if y; = r, for some i € [2]
then D; is not defined and r;7; € E(G). So y; is not a cut vertex of (G — 1) — X'.
Thus, X’ contradicts the choice of X, because of (1).

Now assume y2 ¢ Upeypy V(D) U V(upXvp) — ({up,vp} U Sp). Then Sp U
{up,vp,z1} is a cut in G; so |Sp| = 2 (as G is 5-connected). Let Sp = {p,¢}. Then
G has a 5-separation (G1, G) such that V(G1NGy) = {p, ¢, up,vp, 1}, BiUz XupU
vpXxy C G, and Gy contains upXwvp and the Bi-bridges of H contained in D. If
(Gy — 1, up, p,vp,q) is planar then, since |V (G;)| > 7 for i € [2], the assertion of
this lemma follows from Lemma 4.2.1. So we may assume that (G — x1, up, p, vp, q)
is not planar. Then by Lemma 2.3.1, Gy — x1 contains disjoint paths S, T" from up, p
to vp, q, respectively.

We apply Lemma 3.2.1 to Gy — 21 and {up,vp, p,q}. If (i) of Lemma 3.2.1 holds
then from the separation in Gy — 1, we derive a 5-separation (G, G5) in G such that
1 €V(GING,), BBUT + 21 C G, |V(GY)| > 7, and (G — 21, V(G N GY) — {x1})
is planar. So (i) or (ii) follows from Lemma 4.2.1. We may thus assume that (i7) of
Lemma 3.2.1 holds. Thus, there is an induced path S’ in G5 — 21 from up to vp such
that (Go — x1) — 5" is a chain of blocks from p to g. Now let X’ be obtained from X
by replacing up Xvp with S’. Then y; is not a cut vertex of (G — x1) — X', and the
block of (G — z1) — X’ containing y; contains By and (Gg — x1) — S’, contradicting

(1). This completes the proof of (5).

We may also assume that
(6) for any Bi-bridge D of H, y2 ¢ V(upXvp) — {up,vp}.

For, suppose y, € V(upXvp) — {up,vp} for some Bi-bridge D of H. Choose X and
D so that, subject to (1)-(3), upXwvp is maximal.

We claim that {D} is a component of Gp. For, otherwise, by the maximality of
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upXwvp, there exists a By-bridge C' of H such that N(C)NV (upXvp—{up,vp}) # 0.
Let T be an induced path in G[D+{up,vp}] —bp — x2ys from up to vp. By replacing
upXvp with T" we obtain a path X’ from X such that y; is not a cut vertex in
(G — 1) — X', By is contained in a block of (G — z1) — X', and (G — 1) — X’ has
a chain of blocks from y; to y, and containing B, contradicting the choice of X (in
(2) as yo € V(X)).

Hence, by (5), V(Gg) = {D}. If G has an edge from up Xvp —{up,vp} to By —iy
or if y; has two neighbors, one on upXys — up and one on vp Xy, — vp, then let X’
be obtained from X by replacing upXwvp with an induced path in G[D + {up,vp}] —
bp — x2yo from up to vp. In the former case, (G — z1) — X’ has a chain of blocks
from y; to y, and containing By, contradicting (2). In the latter case, (G — z1) — X’
has a cycle containing {y1,y2}. So by Lemmas 3.2.1 and 4.2.1, (i) or (i) holds, or
there is an induced path X* in G — x; from 27 to x5 such that y,y, ¢ V(X*) and
(G — x1) — X* is 2-connected, and (ii7) holds.

Therefore, we may assume N(upXvp — {up,vp}) N V(B1) = {1}, and N(y;) N
V(upXvp —{up,vp}) C V(upXys) or N(y1) NV (upXvp —{up,vp}) C V(vpXys).
Let L = G[D UupXwvp| and let L' = G[L + y1].

Suppose L has disjoint paths from up,bp to vp,ys, respectively. We may apply
Lemma 3.2.1 to L and {up,vp,bp,y=}. If L has an induced path S from up to vp
such that L — S is a chain of blocks from bp to y» then let X’ be obtained from X by
replacing up Xvp with S; now (G — x;) — X' is a chain of blocks from y; to y, and
containing By, contradicting (2). So we may assume that L has a 4-separation as given
in (7) of Lemma 3.2.1. Thus G has a 5-separation (G1, Gs) such that z; € V(G1NGs),
|V(G;)| > 2 for i € [2], and (G — x1, V(G1 N Gs) — {x1}) is planar. Hence, (i) or (i7)
follows from Lemma 4.2.1.

Thus, we may assume that such disjoint paths do not exist in L. By Lemma 2.3.1,

there exists a collection A of subsets of V/(L)—{bp, up,vp,y2} such that (L, A, up,bp,vp,ys)
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is 3-planar.

We now show that (L'—yivp, up, bp, vp, ya, y1) is planar (when N (y1)NV (up Xvp—
{up,vp}) C V(upXysz)), or (L' — y1up,up,bp,vp,y1,y2) is planar (when N(y;) N
V(upXvp — {up,vp}) C V(vpXys)). Since the arguments for these two cases are
the same, we consider only the case N(y;) N V(upXvp — {up,vp}) C V(upXys).
Since G is 5-connected, for each A € A, {z1,11} € N(A) and |N,(A)| = 3; and since
Ny )NV (upXvp—{up,vp}) C V(upXys), |NL(A)NV(X)| = 2. For each such A, let
aj,as € Np(A)NV(X)and let a € Np(A)—=V(X). If (GIAUNL(A)U{y1}], a1, a,as,y1)
is planar, for any choice A € A, then (L' — yyvp,up,bp,vp, y2,y1) is planar. So we
may assume that, for some choice of A, (G[A U NL(A) U {y1}],a1,a,as,y1) is not
planar. (Note that G[AU Np(A) U {y1}| is (4, No(A) U {y; })-connected.) Hence, by
Lemma 2.3.1, GJAU N (A) U{y; }] contains disjoint paths from ay, a to as, y1, respec-
tively. So we can apply Lemma 3.2.1 to G[AU NL(A)U{y1}] and {a, a1, az, 1 }. If ()
of Lemma 3.2.1 occurs then G has a 5-separation (G, G3) such that z; € V(G1NGs),
|[V(G;)| > 5 for i € 2], and (Gg — x1, V(G N Gg) — {x1}) is planar; so (i) or (i7)
follows from Lemma 4.2.1. Hence, we may assume that (iz) of Lemma 3.2.1 oc-
curs. Then G[A U Np(A) U {y1}] has an induced path S from a; to as such that
G[AUNL(A)U{y;}] — S is a chain of blocks from y; to a. Let X’ be obtained from X
by replacing a; X as with S. Then the block of (G —z1)— X' containing y; contains By
and G[AUN(A)U{y1}]—S, and y; is not a cut vertex in (G —x;) — X', contradicting
(1).

Hence, G has a 6-separation (G, Gs) with V(G N Gy) = {bp,up,vp,x1,y1,Y2}
and Go — a1 = L' —yyvp (or Gy —x1 = L' —yyup). Since (L' —y1vp, up,bp,vp, Y2, Y1)
(or (L' — yhup,up,bp,vp,y1,y2)) is planar and [V (Gs)| > 8, the assertion follows

from Lemma 2.3.12 (and then Lemma 4.2.1). This completes the proof of (6).

If yo € V(X) then by (4), (5) and (6), H is 2-connected; so (7i) holds. Thus

we may assume yo ¢ V(X). Then by (4), H is a chain of blocks from y; to y, and
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containing Bj, which we denote as B; ... B,. We may assume k > 2; as otherwise,
(ZZZ) holds. Let Y1 € V(Bl)_V(BQ), Yo € V(Bk)—V(Bk_1)7 and b; € V(BZ)QV(BZ_H)

for i € [k — 1]. Note that
e if z; has at least two neighbors in By then 2z, € V(By).

For, suppose z; has at least two neighbors in By and zo ¢ V(Bj). Let w € V(X)) with
wXxy minimal such that w is a neighbor of Uf:z B; — by in G — x2ys. Recall that
20 ¢ V(X). Let W be an induced path in G[(U, B;) +w — by] — @y, from 2y to
w, and let X' = W UwXzy. Then, since y; is not a cut vertex of H, vy, is not a cut
vertex of (G — x1) — X'. However, the block of (G — x1) — X’ containing y; contains

By + z, contradicting (1).

We further choose X so that, subject to (1), (2) and (3),
(7) By is maximal.

Let ¢1,q2 € V(X) be the neighbors of Uf:z B;—b; in G—x51 with ¢; X ¢ maximal,

and assume that 21, q1, ¢2, x9 occur on X in this order. We may assume that
(8) there exists b} € V(B; —by) such that N(¢1 Xq2 —{q1,¢}) NV (B; —by) = {b}}.

For, otherwise, by (5), N(¢1X¢2 — {q1,¢2}) NV (B — by) = 0. Hence, (iv) holds with
b="b1, p1 = q, and p; = ¢o.

Thus G has a separation (G1,G3) such that V(G N Gy) = {b1, b}, ¢1,q2, 1, y2},
G1 = G[(B1 U2 X UgXxy) + {x1,y2}] and Gy contains Uf:z B; and ¢; X ¢». Note
that xy ¢ E(G,) for any pair of {x,y} C {b, b}, q1, ¢}, and xoy, ¢ E(G2). We may

assume that

(9) there exists a collection A of subsets of V(Gy — 1) — {b1,0}, q1, g2} such that

(G2 — a1, A, by, q1, b, Q2) is 3-planar.
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For, otherwise, by Lemma 2.3.1, Gy — 7 has disjoint paths S, S from by, ¢; to b}, go,
respectively. We may choose S’ to be induced and let X’ be obtained from X by
replacing ¢; X ¢a with S’. Then B; U S is contained in a block of (G — ;) — X’. Thus,
by (1), y1 = b} and v, is a cut vertex of (G — z1) — X',

Suppose G — 1 is (4, {b1, ], q1, g2} )-connected. Applying Lemma 3.2.1 (and then
Lemma 4.2.1) to Go — 21 and {q1, g2, b1, b} }, we may assume that there is an induced
path S* in Gy — z; from ¢ to g such that (Gy —x1) — S* is a chain of blocks. Let X*
be obtained from X by replacing ¢; X ¢, with S*. Then B; is properly contained in a
block of (G — x1) — X*, and y; is not a cut vertex of (G — x;) — X*. This contradicts
(1).

Thus, G — x; is not (4, {b1, ), ¢1, g2 })-connected. Since G is 5-connected and s
is the only vertex in V(Gy) — {b1, b, q1, ¢2, 71} adjacent to x5, G5 — x; has a 3-cut T
separating ys from {b1,b],q1,¢2}. Choose T so that the component J of (Gy—x1) =T
containing ys is maximal. Let G be obtained from G5 — J by adding an edge between
every pair of vertices in T. Then G, —x4 is (4, {b1, b, ¢1, @2} )-connected, and the paths
S, 8" also give rise to disjoint paths in G, —z; from by, q; to b/, g, respectively. Hence
by applying Lemma 3.2.1 (and then Lemma 4.2.1) to G — x1 and {q1, g2, b1, b} }, we
find an induced path S” in G}, — x; from ¢; to ¢o such that (G}, —x1) —S” is a chain of
blocks from b; to b}. Note that S” gives rise to an induced path S* in G5 by replacing
S" N GY[T] with an induced path in Gy[J + T|. Let X* be obtained from X by
replacing ¢; X ¢o with S*. Then Bj is properly contained in a block of (G — x1) — X*.
Since yo ¢ V(X), b) ¢ T UV (J). Hence, y; is not a cut vertex in (G — z1) — X*.

Thus, we have a contradiction to (1) which completes the proof of (9).
We may assume that, for any choice of A in (9),
(10) A # 0.

For, otherwise, G2 — 1 has no cut of size at most 3 separating vy from {by, b}, ¢1, ¢2}.

Hence, G is (5, {b1, b}, ¢1, g2, 1 })-connected and (G — 1, b1, q1, V), ¢2) is planar. We
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may assume that Gy — x; is a plane graph with by, g, b/, ¢2 incident with its outer
face.

If yo is also incident with the outer face of Gy — z1 then (i) or (i7) holds by
applying Lemma 2.3.12 (and then Lemma 4.2.1) to G5 — 1 and {b1, b, ¢1, ¢2, 1, Y2}
So assume that ys is not incident with the outer face of Go—x;. Then by Lemma 2.3.7,
the vertices of Gy — x cofacial with y, induce a cycle Uy, in Gy — 21, and Gy — 24
contains paths Py, P», Ps from y, to {b1,b},q1,¢2} such that V(P N P;) = {y.} for
1 <i<j<3 and |V(P,NC,)| = |V(P)N{b,b,q1,q} = 1fori e [3]. Let
K=C,UP,UP,UP;.

If P, Py, Py end at qi, by (or b)), g, respectively, then let @ be a path in By from
y1 to by (or b)); now K U (z127 U 21X q1) U (2122 U 22X q2) U (211 U Q) U 2172 is a
TKs in GG'. For the remaining cases, let )1, Q2 be independent paths in B; from
to b, by, respectively. If Py, P», Py end at by, ¢, b, respectively, then K U Q1 U @y U
(y12121 U 21 X 1) Uyraays is a TK5 in G'. If Py, Py, P3 end at by, o, b, respectively

then K U Q1 U Q2 U (y110 Uxe X qo) Uyix1ys is a TKy in G'. This proves (10).

By (10) and the 5-connectedness of G, we may let A = {A} and y, € A. Moreover,
IN(A) — {x1, 22} = 3. Choose A so that
(11) A is maximal.

Then

(12) b, ¢ N(A), and we may assume that N(b') NV (By — by_1) = 0 for any V' €
N®) NV (1 Xq), and [N(A) NV (g1 Xq)| = 2.

Suppose ) € N(A). Then ANV (1 X q2—{q1,¢2}) # 0. Hence, [IN(A)NV (1 X q2)| > 2.
Since yo € A and y ¢ V(X), [N(A)NV(B;)| > 1 for some 2 < i < k, a contradiction
as |[IN(A) — {z1, 22} = 3.

Now suppose there exist b’ € N(b)) NV (1 Xq2) and V" € N(') NV (By, — b—1).

Then By has independent paths P, Py from ys to by_q, b”, respectively. Let P, P|
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be independent paths in B; from y; to by, b}, respectively, and let P be a path in
ULZ2 B; from by to by_1. Then (¥ Xz Uziay) UY X U (BB, U P U (WU P}) U (P U
P U Py)) UG[{x1,x2,11,y2}] is a TK5 in G' with branch vertices V', x1, Z2, 1, yo.
Finally, assume |N(A) N V(g1Xqz2)| < 1. Then, since By, — by_; has at least two
neighbors on ¢; X ¢y (as G is 5-connected), By is 2-connected and V(By — by_1) €
A. Hence, [N(A) NV (By)| > 2. Let q},¢5 € N(By — br—1) N V(X) such that
¢y X ¢4 is maximal. Then there exists O € N(b)) NV (¢} X ¢, — {q},¢}); otherwise
V(Br U @1 Xq5) — {bk-1,q1,¢,} contradicts the choice of A in (11). Since G is 5-
connected and (Gy — 21, A, by, q1, b}, ¢2) is 3-planar, &' has a neighbor 0" in By, — by_1,
a contradiction. So |[N(A) N V(1 Xqz2)| > 2. Indeed |[N(A) NV (1 Xq2)| = 2, since
(G — 1) — X is connected, yo ¢ V(X) and |[N(A) — {x1,z2}| = 3. This concludes the

proof of (12).

Since |[N(A) N V(1 X¢q)| = 2 (by (12)), there exists 2 < [ < k — 1 such that
by € N(A) and U§:1+1 V(Bj) € A. Note that N(A) NV (¢1.Xq2) # {q1, ¢}, as b} has

a neighbor in ¢; X¢2 — {q1,¢2}. We may assume that
(13) there exists i € [2] such that ¢; € N(A) and N(¢;) NV (G —z1) C AUN(A).

For, suppose otherwise. Then for i € [2], ¢; ¢ N(A) or N(¢;)NV(Ga—x1) € AUN(A).
Hence, GQ[U;:2 B; 4+ {q1, g2} — b1] contains an induced path P from ¢; to go.

We may assume 0] # y;. For, suppose b} = y;. Since G is 5-connected, there

k

exists ¢ € [2] such that G[U;_;,,

V(B;j) U1 Xq + y1] — {bi, ¢3—+} has independent
paths Py, P, from ys to yi, q;, respectively. If ¢; has a neighbor s € V(Bj) then let S
be a path in By from s to y;; now G[{x1, 22, y1, 92} U (2121 U 21 Xq U P U @ Xx5) U
(s U S)U Py U Py is a TK5 in G’ with branch vertices ¢, x1, T2, y1,y2. So assume
that ¢; has no neighbor in B;. Then we may assume ¢, ¢ {z1,z2} and gz ¢ F(X);

for otherwise, {b1,qs_¢, 1,22, y1} is a 5-cut in G containing the triangle xzoy; 21,

and the assertion follows from Lemma 4.2.2. Now let vq; € E(X) — E(¢1X¢q2). Then
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G[B; + v| has independent paths R;, Ry from v to yi, by, respectively. Let R be a
path in G[Ué:2 B; + q3—¢] from by to gs—¢. Then G[{x1, a2, y1,y2}] U Ry U (vg U Py) U
(ReURU (X — (1 Xq2 — q3—¢)) Ux121) U P is a TK5 in G’ with branch vertices
U, 21, T2, Y1, Y2-

Let t1,ty € V(X —x9) N N(Bg — br_1) with t; X5 maximal. We claim that G[Bj U
t1Xto] — b1 is 2-connected. For, suppose not. Then G[ByUt; Xts] has a 2-separation
(L1, Ly) such that by_y € V(L1 N Ly) and t1 Xty C Ly. Now V(Ly N Ly) U {xy, 22} is
a 4-cut in GG, a contradiction.

Let X’ be obtained from X by replacing ¢; X¢e with P. Then (G — z1) — X’
has a chain of blocks from y; to ., in which B; is a block containing ¥;, and the
block containing y, contains (By, — by_1) Ut; Xts (whose size is larger than By). Since
by # y1, y1 is not a cut vertex. This contradicts the choice of X for (7) (subject to
(1), (2) and (3)). So we have (13).

Then q3—; ¢ N(A), and x5 # ¢; (otherwise N(A)U{x,} would be a 4-cut in G). Let
a € N(A)—{z1,x2,q;,b;}. Thena € V(X) and {a, by, b}, b;,q3_, 1} is a6-cut in G. So
G has a 6-separation (G, G) such that V(G| NGY) = {a, by, b}, b, g3—i, 21} and G, :=
Go — (AU {q}). Note that (G — x1,by1,b;,a,b|,q3_;) is planar. If [V(G})| > 8 then
we may apply Lemma 2.3.12 to (G, G}) and conclude, with help from Lemma 4.2.1,
that () or (i7) holds. So assume |V (G5)| = 6 or |V (G%)| = 7. Note that G — x; has a
separation (Y7, Ys) such that V(Y1 NYs) = {a,b;, ¢;}, Y7 is induced in G by the union
of BiUG), and (X —z1) — (¢;Xa — {a,q}), and aX¢q; + y2 C Y.

Case 1. |V(G,)| = 6.

Then | = 2 and begs_;, aqs—;, aby € E(G). We claim that beg; ¢ E(G). For,
suppose beg; € E(G). Let P be a path in Uf;; B; from by to by_y. Since G is 5-
connected, By —by,_1 has at least two neighbors on ¢; Xa. We may choose ajas € F(G)
with a1 € ¢;Xa — ¢; and ag € V(By, — by_1). Let @1, Q2 be independent paths in By

from s to by_1,as, respectively, and P;, P, be independent paths in Y] from y; to
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by, b, respectively. Now G[{x1, 22, y1, 42} U (bag1 U 1 X 21 U z121) U (baga U o X 9) U
(PUQ1) U (byby UP) U (P, UblaUaXa; Uajas UQ9) is a TK5 in G with branch
vertices b, 1, T2, Y1, Yo.

We also claim that ab; ¢ E(G). For, otherwise, let P be an induced path in
G [U;?:g Bj + ¢;] from ¢; to by. Let X’ be obtained from X by replacing ¢; X ¢s—; with
P Ubsgs—;. Then, in (G — x1) — X', there is a block containing both B; and a, and
y1 is not a cut vertex. This contradicts (1).

If g3_;b1 ¢ E(G) then (iv) holds with b = by, p; = ¢;, ps—; = a, and v = g3_;. So
we may assume g3_;b; € E(G). We consider two cases: x5 # q3—; and xo = q3_;.

First, suppose zo # ¢q3_;. Note that g3_; # z;. Since G is 5-connected, x5 has at
least one neighbor in By — b;. Thus, G[B; + 3] has independent paths Py, P> from b,
to oy, by, respectively. If G[Y3 + x5] contains a path P from ¢; to x5 and containing
{a, by} then G[{b1,b2,q3_;}]UPLU(PyUab))Uagz_; UP U (xex121 U221 Xq1) UxeXqo
is a TK5 in G' with branch vertices a, by, by, g3_;, £o. Thus, it remains to prove the
existence of P. Note that G[Ys + x9] is (4, {a, ba, pi, T2 })-connected. First, consider
the case when G[Ys + x5] has disjoint paths from be, 25 to a,q;, respectively. Then
by Lemma 3.2.1 and then Lemma 4.2.1, (i) or (i7) holds, or there is a path S in
G[Yy + 23] from a to by such that G[Ys + x3] — S is a chain of blocks from ¢; to
9. Now the existence of P follows from the fact that Y5 is 2-connected. So assume
G[Y5 + 23] has no disjoint paths from by, x2 to a, ¢;, respectively. By Lemma 2.3.1,
(G[Ys + x2],be, x9,a,¢q;) is planar. If |V (G[Y2 + x2])| > 6 then the assertion of the
lemma follows from Lemma 4.2.1. So |V(G[Y2 + x3])| = 5. If aby € E(G) then
GH{qi,a,be,y2}] = K ; and if aby ¢ E(G) then G[{¢;,a,x1,y2}] contains a K, in
which z; is of degree 2. So (éi) holds.

Now suppose x5 = ¢3_;. Then we may assume that 0] # y;, for otherwise
Gl{a,x1,x2,y1}] contains a K in which x; is of degree 2, and (i) holds. Thus

By has independent paths Pj, P, from b; to yi, b, respectively. If Y5 has a cycle C
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containing {a, be, y2}, then C'UG[{a, by, ba, q3—;}| U (PyUbja) U (P Uy121y2) Uyexs is
a T Ky in G’ with branch vertices a, by, ba, g3_;, y2. So we may assume that the cycle
C' in Y5 does not exist. Since Y5 is 2-connected, it follows from Lemma 2.3.5 that
Y, has 2-cuts S,, for u € {a,bs,y2}, separating u from {a, by, y2} — {u}. Since G is
5-connected, we see that Sy, separates {¢;,y»} from {a,bs}. Hence, dg(by) = 5 and
x1by € E(G). Now G[{by, b, x1,22}] contains a K, in which x; is of degree 2, and
(i7) holds.

Case 2. |V(GY)| =T.

Let z € V(GY) — {a, by, b, b}, q5-;,21}. Suppose z ¢ V(X). Then bja € E(G).
Since G is 5-connected and Bj is a block of H, 2b| ¢ E(G) and za, zqs—_;, 2b;, 2by, zz1 €
E(G). We may assume bjq3_; ¢ E(G), as otherwise, G[{a, b}, q3—;, z}] contains K
and (i7) holds. Thus, G[B; + ¢g3_;] has independent paths P;, P, from b; to b}, g3,
respectively. Note b1b; € E(G) by the maximality of A in (11). In G[AU{a, b}, ¢;}] we
find independent paths @1, Q2 from b, to ¢;, a, respectively. Now G[{a, by, b;, g3, 2}|U
(PLUba) U Py U Qo U (geXxo Uxoxizy U221 Xqn UQq) is a TKy in G' with branch
vertices a, by, by, q3_;, 2.

So we may assume z € V(X). Then byb;, g3_;b; € E(G). We may assume bya, bz ¢
E(G). For, suppose bja € E(G) or byz € E(G). Let X’ be obtained from X by
replacing ¢; X ¢o with b;q5_; and a path in Y5 —a from b; to ¢;. Then, B; +a or By + z
is contained in a block of (G — z;) — X', and y; is not a cut vertex of (G — x) — X',
contradicting (1).

Hence, 20}, 2b;, zx; € E(G) and ¢3_; # x;. We may assume x1q35_; ¢ E(G); as
otherwise, G[{b, ¢3—;, x1, z}] contains a K in which x; is of degree 2, and (i7) holds.
Note that bja € E(G) by the maximality of A in (11). Let ¢ € N(qs—;) NV (By — by),
and let P;, P, be independent paths in By from b] to by, g, respectively. Let Q1, Qs
be independent paths in Y; from a to by, ¢;, respectively. Then G[{a, b;, b}, q3_i, 2} U

(Pl U blbl) U (P2 U QQ3—7;) U Ql U (Q2 U qu,Zl U zix120 U $2XQ2) is a TK5 in G/ with
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branch vertices a, by, b}, gs_;, 2. |

4.3 Two special cases

We need to consider the conclusions of Lemma 4.2.5. (i) and (ii) of Lemma 4.2.5
are desired cases. Lemma 2.3.6 can be used to deal with (i) of Lemma 4.2.5 when
y2 ¢ V(X). So it remains to consider (iii) of Lemma 4.2.5 when y, € V(X)) and (iv)
of Lemma 4.2.5.

We will use the notation in Lemma 4.2.5. See Figures 2 and 3. In particular,
X is an induced path in (G — z1) — zays from 27 to 9 and G’ := G — {x1x : = ¢
{2, Y1, Y2, 20, 21} }. Also recall from in (iv) of Lemma 4.2.5 the the separation (Y7, Y2)
and the vertices p;, ps—;,v,b, by, V. Let 2, be the neighbor of x5 on X.

For any vertex x € V(G) and S C G, we use e(z,S) to denote the number of
edges of G from x to S.

First , we need some structural information on Y5.

Lemma 4.3.1 Suppose (iv) of Lemma 4.2.5 holds. Then Y, has independent paths
from ys to b,p1,ps, respectively, and, for i € [2], Y has a path from b to ps_; and

containing {ya, p;}. Moreover, one of the following holds:

(1) G" contains TKs, or G contains a T K5 in which x, is not a branch verte.
(11) G — x1 contains K , or G contains a K, in which 1 is of degree 2.

(23i) If e(p;i, By — b1) > 1 for some i € [2] then Y3 has a path through b, p;, ya, p3—; in
order, and Yo — by has a cycle containing {p1,p2,y2}. If b # by and i = 2 with

piv € E(X) and vb,vzy € E(G) then Ys has a cycle containing {b, p;, y2}.

Proof. Since G is 5-connected, Y5 is (3, {b, p1, p2})-connected. So by Menger’s theo-

rem, Y5 has independent paths from ys to b, p1, p2, respectively.

Next, let i € [2], and consider the graph Yy := Y, + {t,tb,tps_;}, which is 2-

connected. If Y has a cycle C' containing {b,¢,y,} then C' — ¢ is a path in Y5 from
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b to p3_; and containing {ys,p;}. So suppose such a cycle C' does not exist. Then
by Lemma 2.3.5, Y has a 2-cut T separating y from {p;,t} and {p;,t} N T = 0.

However, T'U {x1, 25} is a 4-cut in G, a contradiction.

We now show that (7) holds or the first part of (éi¢) holds. Suppose e(p;, B —by) >
1. Let S denote a path in Y3 from b to p3_; and containing {p;, y2}.

We may assume that S must go through b, p;,y2, ps_; in order. For, suppose S
goes through b, ys, p;, ps—; in this order. Since e(p;, By — b1) > 1, G[By + p;] has
independent paths Py, P, from y; to by, p;, respectively. Then G[{x1, z2,y1, 42} USU
P,U((X — (pm1Xpe—{p1,p2})) Uz121) U(PLUbb) is a T Ky in G' with branch vertices
Di, T1, T2, Y1, Y2, and (i) holds.

Note that Y5 —0b; is 2-connected. For, suppose not. Then b = b; and Y>—b; has a 1-
separation (Ys1, Ya9) such that |V (Ya1 —Ya2 )N {p1, p2, y2 }| < 1. Since each of {p1, p2, y2}
has at least two neighbors in Yo —by, (V(Y21 — Yoo )N {p1, 2, y2 }) U{b, 21 } UV (Yo NY50)
is a cut in G of size at most 4, a contradiction. Thus Y5 — b; is 2-connected.

Now suppose no cycle in Ya — by contains {p1, p2,y2}. Then, (i) or (ii) or (iiz) of
Lemma 2.3.5 holds. We use the notation in Lemma 2.3.5 (with py, ps, y2 playing the
roles of y1, Y2, y3 there). If (i) of Lemma 2.3.5 occurs then let S = {a1,a}}, as = ag =
ay, and ay = az = ay; if (ii) or (i77) of Lemma 2.3.5 occurs let S, = {a;, a’;} for j € [2]
and let S, = {as, a}}. Let A, A’ denote the components of (Yo—b,)—(D,,UD,,UD,,)
such that a; € V(A) and o} € V(A') for j € [3]. Note that if (ii) of Lemma 2.3.5
occurs and A # A’ then either A = a3 and {a},a}, a4} C V(A'), or A = af and
{ai,as,a3} CV(A).

Since Y3 — by is 2-connected, there exist paths 51,52, S5 in Dy, D, , D,,, respec-
tively, with .S; from a; to a} for j € [3], p; € V/(S;) for j € [2], and y, € V(S3). Since
G is 5-connected, b € V(D,,) or b = by has a neighbor in D,,. Hence, G[D,, + b
contains a path T3 from b to some ¢ € V(S3) — {a3, a3} and internally disjoint from

S3. By symmetry, we may assume ¢ € V(y253a3). Let Ty be a path in A from a; to
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as—;, and Ty be a path in A’ from a; to as. Then T3UtS3a5UToUS;UTyUas—;S5_ips—;
is a path from b to p3_; through w., p; in order. This is a contradiction as we have

assumed that such a path S does not exist.

Next, we prove that (i) or (i7) holds or the second part of (iii) holds. Suppose
b # by, pov € E(peXxs), and vb,vx; € E(G). Suppose Y, has no cycle containing
{b,pa,y2}. Then (i) or (i) or (iii) of Lemma 2.3.5 holds. We use the notation
in Lemma 2.3.5 (with b, pa, yo playing the roles of yi, y9, y3 there, respectively). So
there is a 2-cut S,, = {as, a4} in Y5 such that Y5 — S, has a component D,, with
yo € V(D,y,) and b,ps ¢ V(D,,) U S,,. Since G is 5-connected, p; € V(D,,). Note
that Yo — D,, is (4, {as, a4, b, p2})-connected.

Suppose (Y2 — D,,,as,b, a5, ps) is not planar. Then by Lemma 2.3.1, Y5 — D,,
contains disjoint paths from a3, b to aj, p;, respectively. By Lemma 3.2.1, we may
assume that Y5 — D,, has an induced path S from b to ps such that (Yo—D,,)— S is a
chain of blocks from a3 to aj; for otherwise, we may apply Lemma 4.2.1 to show that
(¢) or (i¢) holds. Thus Y2 — D,, has a path S; from a3 to ay and containing {b, p,}
(as Y3 is 2-connected). Let Sy be a path in G[D,, + {as, a4}] from a3 to afy through
y2. Then S; U Sy is a cycle containing {b, ps, y2}, a contradiction.

So we may assume (Y2 — D,,,as,b,a5,po) is planar. Hence, bp, ¢ E(G). If
|V (Y2 — D,,)| > 6 then (i) or (i7) follows from Lemma 4.2.1 (by considering the 5-cut
{as, a%, b, p;, x1}).

Now suppose |V (Y2 — D,,)| = 5. Let t € V(Y2 — D,,) — {as,a},b,p2}. Since G
is b-connected, tas, tay, th, tps, tr1 € E(G). By symmetry between az and af, we may
assume ay € V(X). Then ajps € E(G). If ba}y € E(G) then G[{a},b,p2,t}] = K,
and (77) holds. So assume baj; ¢ E(G). Then, since G is 5-connected, bas, br, € E(G).
Now G[{as,b,t, z1}] contains K in which z; is of degree 2, and (iz) holds.

So |V (Y2 — D,,)| = 4 and, hence, (i) of Lemma 2.3.5 occurs. Moreover, V(D) =
{0} and V(D,,) = {p2}. We claim that D := G[D,, +{as, as, x1}]+{c, cx1, cy2} has a
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cycle C' containing {c, as, a4 }; for otherwise, by Lemma 2.3.5, D — ¢ has a 2-cut either
separating as from {z1, ys, a, p1 } or separating ajy from {1, ys, as, p1}, contradicting
the 5-connectedness of G. Let @ be a path in G[B; + {b,p2}] from b to p;. Now
asbaspaaz UQ U (C —c) U (210 UvXxg Uzays) UvbUvps is a TK in G with branch

vertices ag, aj, b, pa, v. '

The next two results provide information on e(z;, By) for i € [2] in the case when

y2 ¢ V(X).

Lemma 4.3.2 Suppose (iv) of Lemma 4.2.5 holds with b # by. Then one of the

following holds:
(1) G" contains TKs, or G contains a T K5 in which x1 is not a branch vertet.
(1) G — x1 contains K, , or G contains a K, in which x; is of degree 2.

(17i) e(z;, B1) > 2 fori € [2].

Proof. Recall the notation from (iv) of Lemma 4.2.5. In particular, v € V(X) —

V(p1Xpz2). Suppose e(z;, By) <1 for some i € [2].

Case 1. v € V(1 Xp1 — p1); so prv € E(X).

In this case, e(z1, Ys) < 2 (with equality only if 2y = v). Hence, e(z1, By) > 2,
since GG is 5-connected. Thus, e(zy, By) < 1. Indeed, since {x1,x2,p1,b} cannot be a
cut in G, e(zy, By) = 1 and 2 = py. By Lemma 4.3.1, Y3 has a path @ from b to p;
and containing {ys, 22 }.

Suppose b, z9, Y2, p1 occur on ) in this order. If o] € N(z3) then let Py, P, be
independent paths in G[B; + x3| from b to y;, x, respectively; now G[{z1, e, y2}] U
299 U (22Qb U bv U v X2z U 2121) U 22Quy2 U by 29 U (bp1 U p1Qya) U (P U yyz1) U
P, is a TK;5 in G' with branch vertices b, 1, X, Y2, 29. So assume b] ¢ N(z3).

Let Py, P, be independent paths in G[B; + 23] from y; to b, 29, respectively. Then

79



G[{z1, 2, y1, Y2} U 2000 U (22QbUbv UvX 21 U z121) U 20Q12 U Po U (y2Qp1 Upr by U Py)
is a T K5 in G’ with branch vertices x1, 22, y1, Y2, 22.

So assume that b, yo, 29, p1 must occur on () in this order. Then, by Lemma 4.3.1,
we may assume e(ze, By — by) = 0. Since G is 5-connected and py = 29, b1 25 € E(G);
as otherwise, {b,p1, 1,22} would be a cut in G. Let Pj, P, be independent paths
in G[By + z3] from by to yi, z9, respectively. Then G[{z1,x2,y2}] U 2029 U (20Qp1 U
p1X 21 Uz21) U 22Qy2 U (bbb U bQys) Ubizg U (P Uyixy) U Py is a TKy in G' with

branch vertices by, x1, Ta, ys, 29.

Case 2. v € V(paXxo — pa); so pov € E(X).

Since {b, p2, 1,2} cannot be a cut in G, e(z1, By) > 1. We consider two cases.

Subcase 2.1. e(z1, By) = 1.

Then z; = p;. By Lemma 4.3.1, Y5 has a path ) from b to p, and containing
{21,902}

Suppose b, z1, Y2, p occur on () in this order. If b} € N(z) then x5 # v as
{1, 29,b1,b}} is not a cut in G; so e(xy, By —y1) > 1. Let P;, P, be independent
paths in G[B; + 5] from b} to vy, x2, respectively. Then G[{x1, 2, Yo }Uz121 U (21 QU
bvUvXxe) Uz Qua Ul 21 U (W p2a UpaQuya) U (P Uy 1)U P, is a T K5 in G with branch
vertices b, x1, T2, Yo, 21. Hence, assume 0] ¢ N(z;). Then let P;, P, be independent
paths in G[B; + 2] from y; to b}, z1, respectively; now G[{x1,22,91,y2}] U 2127 U
(z21Qb U bv UvXxo) U 21Qys U Py U (y2Qpe U pob) U Py) is a T K5 in G' with branch
vertices x1, To, Y1, Yo, 21-

So we may assume b, yo, 21, po must occur on () in this order. Hence, by Lemma 4.3.1,
we may assume e(py, By — by) = 0; so by € N(z1) as {b, p2, 1,22} is not a cut in G.
Then e(xq, By — y1) > 1; otherwise, 25 = v, and {by, b}, x1, 22} would be a cut in G.
Let Py, P, be independent paths in G[B; + 3] from by to yi, z2, respectively. Then
Gl{z1, 22, Y2} U 2121 U (21Qp2 Upa X 29) U 21 Qua U b1 21 U (b10UbQyo) U (P Uy 21) U Po

is a T K5 in G’ with branch vertices by, 21, x1, T2, Ys.
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Subcase 2.2. e(z1, By) > 2.

Then e(zy, B1) < 1. Hence, 23 = ps or z3 = v. Suppose z; = ps. Then xy =
v; so z1v € E(G). Hence, by (iii) of Lemma 4.3.1, Y5 has a cycle C' containing
{b, 22,92 }. Let P;, P, be independent paths in B; from 1; to by, b}, respectively. Now
C' U zays U oz U xeb U yie Uyi21ya U (Pp U bih) U (P U b 29) is a TK5 in G' with
branch vertices b, x2, Y1, Y2, 2o.

So we may assume zp = v. Since e(zy, B1) = 1, z1v € E(G). Hence, by (iii) of
Lemma 4.3.1, Y, has a cycle C' containing {b, ps, y2}. Let P;, P, be independent paths
in G[B + 9] from x5 to by, b}, respectively. Note that Py, P, exist since 5 has at least
two neighbors in By. Then C'U29bU z9ps U 2om1ye Uxoys Uazo U (P Ub b)) U (P Ubps)

is a TK5 in G’ with branch vertices b, pa, xa, Y, 25. |

Lemma 4.3.3 Suppose yo ¢ V(X). Then one of the following holds:
(1) G' contains TKs, or G contains a T K5 in which x1 is not a branch vertet.
(11) G — 1 contains K, , or G contains K in which x1 is of degree 2.

(2ii) There exists i € [2] such that e(z;, By — by) > 2 and e(z3_;, By — by) > 1.

Proof. Suppose (iii) fails. First, assume b # by; so (iv) of Lemma 4.2.5 occurs.
Then by Lemma 4.3.2, we have, for i € [2], e(z;, By —b1) = 1 and b1z; € E(G). Let
Py, P, be independent paths in B; from y; to by, b, respectively. Recall, from (iv) of
Lemma 4.2.5, the role of j € [2] and the vertices ps_;, v. Since b} is the only neighbor
of ps_j in By, ps—; & {z1,22}. Let Q be a path in Y5 — {21, 25} from b to ps_; through
Yo. Then G[{z1, z2, y1, y2}|Ub1 2121 Uby 222U (b16UDQy2) U Py U (y2Qps—; Ups— ;01U Py)
is a T K5 in G’ with branch vertices by, x1, z2, Y1, Y2.

So we may assume b = by. Then, for i € [2], e(z;, By — b1) > 1 as {b, p3_;, x1, 2}
is not a cut in G. Hence, since (#ii) fails, e(z;, By — by) = 1 for i € [2]. For ¢ € [2], let

zl € N(z;)NV(By). Since G is 5-connected, z; = p;.
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Case 1. z9 # po.

Then, since G is 5-connected, zox1,200 € E(G). First, assume that there is
no edge from psXzo — 25 to By — b. Then G has a separation (Gi,Gs) such that
V(G1 N Gy) = {b,x1,x9, 21,20}, B € Gy, and Yy, C Gy. Clearly, |V(G;)| > 7 for
i € [2]. Since myxa2z0x; is a triangle in G, the assertion of the lemma follows from
Lemma 4.2.2.

Hence, we may assume that there exists uu’ € E(G) with u € V(paXzg — 2)
and v € V(B; —b). Suppose, for some choice of wu', u' # 2| and By — b con-
tains independent paths Py, P, from y; to 27, u/, respectively. By Lemma 4.3.1 (since
e(p1, By — b1) = 1), Y5 contains a path @ from b to py through p1,ys in order. Now
G{x1, T2, y1, Y2 }HUz121U(21QbUbzoxs ) U(21 2, U P ) Uz Qo U (P Ut/ uUuX ps UpaQys)
is a T K5 in G’ with branch vertices x1, 22, y1, Y2, 21.

Therefore, we may assume that for any choice of wu’, v’ = z] or the paths Py, P,
do not exist. Since B; is 2-connected, B; has a 2-separation (B’, B”) such that
beV(B'NB"), yy € V(B') and 2}, € V(B") for all v € N(psXzy — 29). Here, if
u = 24 for all W € N(psXzo — 23), we let B’ = By and B” = {b,2]}. Thus G has a
5-separation (G, Gq) such that V(G1NG2) = V(B'NB")U{z1, 22,20}, B’ C G and
B"UY, C Gsy. Clearly, |[V(Gy)| > 7.

If |V(Gy)| > 7 then the assertion of the lemma follows from Lemma 4.2.2 (as
T1T9zox 18 a triangle in G). So assume |V (Gy)| < 6. Then, since G is 5-connected,
201 € E(G). So G[{x1,x2,y1, 22} — x1y1 = K in which z is of degree 2, and (i)
holds.

Case 2. zy = po.

We may assume z. # y; for ¢ € [2]. For, otherwise, G has a 5-separation (G1, G>)
such that V(G1NG3y) = {b, ps_s, 1,72, y1}, B1 C Gy and Yy C Go. Clearly, |V(G;)| >
7 for i € [2]. Since G[{x1,x2,y1}] = K3, the assertion of the lemma follows from

Lemma 4.2.2.
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Note that 21 # 2} as otherwise {b, 1, 2,21} would be a cut in G. Let K =
G[By + {2, 21, 22}]. Suppose K contains disjoint paths Z;, Zs from z1, 25 to xs, y1,
respectively. By Lemma 4.3.1, let C be a cycle in Y5 — by containing {ys, 21, 22}. Then
G[{z1, 22, Y2} UC U z121 U 2920 U (Zy Uyr21) U Z7 is a T Ky in G" with branch vertices
T, XT2,Y2, 21, 22-

So we may assume that such 7, Z, do not exist. Then by Lemma 2.3.1, there
exists a collection A of pairwise disjoint subsets of V(K) — {x2, 41, 21, 22} such that
(K, A, 21, 29, 3,91) is 3-planar. Since G is 5-connected, either A = () or |A| = 1.
When |A| =1 let A = {A}; then b; € A. We choose A so that |A] is minimal and,
subject to this, |A| is minimal when A = {A}. Note that if A exists then |A| > 2 (by
the minimality of |A| and |A|). Moreover, |[Ng(A)| =3 as Ng(A) U {by,z,} is not a
cut in G.

We may assume if A # () then {xs, 21, 20} N Ng(A) = 0. For, suppose there exists
u € {x2,21,22} N Ng(A). Let S := (Ng(A) U{xy,x9,21,20}) — {u} if u € {z1, 22}
and let S := Ng(A) U {x1,29,21,20} if u = x9. Then S is a cut in G separating
By — A from Y;. Since G is 5-connected, |S| =5 if u € {21, 22} and |S| = 6 if u = x.
Therefore, G has a separation (G7,G3) such that V(G; NGy) = S, By — A C Gy,
and Yo C (5. Note that (G — x1,5 — {x1}) is planar. Clearly, |V (G3)| > 7. Since
yi & {2, 2}, [V(GY)| > 7if |S| =5 and |V(Gy)| > 8 if |[S| = 6. Thus, if |S| = 5
then the assertion of the lemma follows from Lemma 4.2.1, and if |S| = 6 then the
assertion of the lemma follows from Lemma 2.3.12 and then Lemma 4.2.1.

If A= 0let K* = K; otherwise, let K* be the graph obtained from K by deleting
A and adding new edges joining every pair of distinct vertices in Ng(A). Since By
is 2-connected and G is 5-connected, K’ := K* — {9, 21, 22} is a 2-connected planar
graph. Take a plane embedding of K’ and let D denote its outer cycle. Let t € V(D)
such that t € N(z3) and tDz} is minimal.

When A # 0, Nx(A) € V(D); as otherwise, if we write Nx(A) = {s1, 52,53} C

83



V(D) with sy € V(s1Ds3), then {by, s1, s3, 21} is a cut in G, a contradiction. Further,
if A # () and if we write Ng(A) = {a,a1,as} with a € Ng(A) — V(tDz}), then, by
the minimality of A and A, G[A U Nk(A)| contains disjoint paths Py, P, from a, as
to by, ay, respectively. If A =0 let Q =tDz, Py, =a=a; = ay = b and P, = ). If
A # 0 let Q =tDz] if ajas ¢ E(tDz)); and otherwise let Q = (tDz] — ajas) U Ps.
Note that @) is a path in Bj.

Suppose K’ — (tDz] — z}) has independent paths S;, Sy from y; to 24, {a, a1, as},
respectively, and internally disjoint from {a,a;,as}. We may assume the notation is
chosen so that a € V(Sy). For i € [2], let S] = S; if ajas ¢ E(S;); and otherwise
let S! be obtained from S; by replacing ajas with P,. By Lemma 4.3.1, let @1, Q2
be independent paths in Y5 from y, to 29,b, respectively. Then G[{x1, z2,y1,y2}] U
(25Q21 U z12121) U (25Qt Utag) U (2520 U Q1) USTU(SLUP,UQ-) is a TKy in G' with
branch vertices x1, o, y1, Y2, 25.

So we may assume that such Sp,Ss do not exist. Then by planarity, K’ has a
cut {s1, 89,83} separating y; from {a, 25}, with s; € V(24,Dz]) and s3 € V(tDz)).
Clearly, {s1,s2,s3} is also a cut in B; separating y; from {z,} U A. Denote by
M the {si, sq, s3}-bridge of B; containing y;. If V(M) — {s1,s2,83} = {1} then
s1 = 2y and s3 = t; now G[{t,x1,z2,y1}] contains a K, in which x; is of degree
2, and (4i) holds. So assume |V (M) — {s1, S2,s3}| > 2. Then G has a 6-separation
(G1, Gs) such that V(G1NGy) = {s1, S, S3, %1, X2, 21}, Ga = G[M + {21, 1, 22}, and
(Gy — x1, 21, 1, Se, S3, X2) is planar. Now |V(G;)| > 8 for i € [2]; so the assertion

follows from Lemma 2.3.12 and then Lemma 4.2.1. ]

4.4  Substructure

In this section, we derive a substructure in G by finding five paths A, B,C,Y, Z in

H := G[By 4 {z1, 22}]. The paths Y, Z are found in the following lemma.

Lemma 4.4.1 Suppose yo € V(X) (see (iii) of Lemma 4.2.5), or y, ¢ V(X) and
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Figure 4: An intermediate structure 2

e(zi, By) > 2 for some i € [2] (see (iv) of Lemma 4.2.5). Let by € N(yo) NV (By) if
y2 € V(X), and let {b1} =V (By)NV(Bs) if yo ¢ V(X). Then one of the following
holds:

(1) G" contains TKs5 or G contains a T K5 in which x1 is not a branch vertex.
(1) G — 1 contains K, , or G contains a K, in which xy is of degree 2.
(14i) H contains disjoint paths Y, Z from yy, 2z to by, z2, respectively.

Proof. Suppose (7ii) fails. Then by Lemma 2.3.1, there exists a collection A of subsets
of V(H) — {b1,y1, 21, 22} such that (H, A, by, 21, y1, 22) is 3-planar.

Since By is 2-connected, |[Ng(A)N{z, 2} < 1forall Aec A Let A/ ={Aec A:
{z1,22} N Ng(A)] = 0} and A" = {A € A: [{#,2} N Ny(A)| =1}. Let p(H,A)
be the graph obtained from H by deleting A (for each A € A) and adding new edges
joining every pair of distinct vertices in Ny (A). Since G is 5-connected and B is
2-connected, p(H, A) — {z1, 22} is 2-connected and we may assume that it is drawn
in the plane with outer cycle D, such that for each A € A”, the edges joining the

vertices in Ny (A) — {21, 22} occur on D.
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For each j € [2], let t; € V(D) such that H has a path from z; to ¢; and internally
disjoint from p(H, .A), and subject to this, ts, by, t1,y; occur on D in clockwise order,
and ty Dty is maximal. When e(z1, By) > 2, let t} € V(b1 Dty) with ¢} Dt; maximal
such that H has independent paths Ry, R} from z; to tq,t|, respectively, and internally
disjoint from p(H,.A). When e(z9, By) > 2, let t;, € V(toDby) with t2Dt, maximal
such that H has independent paths Ry, R, from 25 to to, t}, respectively, and internally
disjoint from p(H, A).

Next we define vertices a1, 22 and paths Qq, @2, Q3. If yo € V(X), then let
p1=p2 =0b=1s, let Q; =y, for j € [3], and let ya1, y22 € N(y2) N V(D) such that
th, Y2, Y21, t} occur on D in clockwise order and yq5 Dys; is maximal. If y, ¢ V(X)) and
both e(z1, B1) > 2 and e(z2, By) > 2, then let Y91 = y22 = by and, by Lemma 4.3.1, let
Q1, 2, Q3 be independent paths in Y5 from y, to pi, pe, b, respectively. Now assume
yo ¢ V(X) and e(z3_;, By) = 1. Then z3_; = p3_; and, by Lemma 4.3.1, Y5 has a
path @Q5_, through b, z3_;,yo,p; in order. Let R}, := bib U bQ5_,25_;, t5_, = by,
Qs—i = Y2Q5_;23_;, and Q; = p;QQ5_,y2, Let Rs_;, be a path in H from z3_; to t3_;
and internally disjoint from p(H,.A). (Note that in this final case, R3_; and Rj_; are
independent, and @3, yo1 and ys2 are not defined.)

Let Ay = {A € A: 2z € Nyg(A) or Ny(A) C V(hDyy)}, Ay = {A € A :
22 € Np(A) or Ny(A) € V(yDbi)}, and A; = Uyeq, A for j € [2]. Let Fy =
G'[V(x120U Xp1)UA UV (01 Dyy)] and Fy := G'[V (22X pa) U AUV (y1 Dby )]. Write
b1Dy; = vy ...v, and x121 U 20 Xp1 = Ut - - - Uy With v1 = by, v, = Y1, U1 = 1,
and v, = p;. Write y1Db; = uy...u, and poXxo = upiq ...y, such that uy = y,

ur = by, upy1 = py and u; = x5. We may assume that
(1) (Fi,v1,...,v,) and (Fy, uq,...,u;) are planar.

We only prove that (Fi,v,...,v,) is planar; the argument for (Fy,uq,...,u;) is

similar. Suppose (Fi,v1,...,v,) is not planar. Then by Lemma 2.3.2, there exist
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1 < g <r<s<t<nsuchthat Iy contains disjoint paths Sy, .S; from vy, v, to vy, vy,
respectively. By the definition of F; (and since X is induced), we see that r < m and
s > m+ 1. Note that y; Dts, t,Dv,, v, Dy, give rise to independent paths T4, T3, T,
respectively, in By with the same ends. Hence, G[{x1, Z2,y1,y2}] U 2029 U (20 X po U
Q2) U (R UTY) U (RLUT,U ST Uvg Xz Uzizy) U (T3 U Sy U Xpr UQy) is a TK5 in

G’ with branch vertices x1, xa, Y1, Yo, 2z2. This completes the proof of (1).

We may also assume that

For, suppose there exists a € Ny (xo) — V(Fy+x1). lfa ¢ Aforall Ac Alet o' =a
and S = a; and if @ € A for some A € A then let ' € Ny(A) and S be a path in
G[A + d'] from a to d'.

First, we may choose a and o’ so that o’ ¢ V(t;Dy; — y1) and no 2-cut of By
separating a from y; Dty is contained in t;Dy,. For, otherwise, let T},T5,T3 be
independent paths in B; corresponding to t,Dt},t;Da’,y; Dty, respectively. Then
G[{z1, 22, y2} U 2121 U 2020 U (RE U T U RY) U (21 Xp1 U Q1) U (22X pa UQ2) U (R U
ToUSUaxs) U (R UT3 Uy ) is a TKs5 in G' with branch vertices x1, 22, ys, 21, 22.

Suppose that p(H, A) —t; Dty — {21, 22} has a path T from &’ to t}. Then T, t; Dt,
give rise to independent paths 77, Ty, respectively, in By. So G[{z1, s, y1, Y2 }Uz121U
(21 Xp1 UQ1) U (R Ut Toy) U (R, UT US Uaxs) U (y1Tata U Ry U 20X pe UQs) is a
T K5 in G’ with branch vertices x1, 2, Y1, Y2, 21.

So we may assume that such T does not exist. By planarity, there is a cut
{s1, 82} in By separating t| from Ny (xo) — V (Fy + x1), with s1, 89 € V(1 Dts). Since
{s1,82} € V(t1Dy1) and a ¢ V(Fy + x1), we may let s; € V(t1Dy; — y1) and
S € V(y1 Dty — y1). Let M be the {s1, so}-bridge of B; containing y;. We choose
{s1, 82} so that M is minimal (subject to just the property that s; € V(t;Dy; — 1)

and sy € V(y1 Dty — y1)).
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Since {s1, S9, 1,2} cannot be a cut in G, there exists vv' € E(G) with v €
V(M) — {s1,s2} and v € V(z;Xp; — z;) for some j € [2]. By minimality, M has
independent paths P;, P, from y; to ss_;, v', respectively. Let 77 be a path in B; —
(M — s;) corresponding to t,Dt}, and T, be a path in By — (M — s;) corresponding
to t1Dsy (when j = 2) or soDty (when j = 1). Then G[{z1, 22, y1,y2}] U z3_jz3_; U
(233 Xp3—jUQs_j)U(Ry_;UTIURUzjz;)U(Rs;UTyU P ) U(PUv'vUvXp;UQy)

is a T K5 in G’ with branch vertices x1, X9, y1, Y2, 23_;-

We may assume
(3) N(ZlXpl — Zl) N V(Bl) g V(Fl) or N(ZQng — ZQ) N V(Bl) 7,@ V(FQ)

For, suppose N(z;Xp; — z;) N V(By) C V(F}) for j € [2]. If yo € V(X) then by (1)
and (2), G — x, is planar; so the assertion of this lemma follows from Lemma 4.2.3.
Hence, we may assume y, ¢ V(X). By (1) and (2), b = by, and (G[B; U 2, Xp; U
paX o], p1, b, pa, x2) is planar. So G has a separation (G, Gy) such that V(G1NGy) =
{b,p1,p2, 71,22} and Gy = G[(B1 U 21 Xp1 U 22X p2) + x1]. Clearly, |[V(G;)| > 7 for

J € [2]. Hence, the assertion of this lemma follows from Lemma 4.2.1.

Since the rest of the argument is the same for the two cases in (3), we will assume
(4) N(22Xps — 20) NV (B1) € V(F») (and, hence, e(z2, By) > 2).

Let vv' € E(G) with v € V(By — F3) and v/ € V(2 Xpy — 23). Let v = v and
S=vwvifvé¢Aforall Ae A; otherwise, let v € A € A and v € Ny (A) such that
v" ¢ V(Fy), and let S be a path in G[A + v"] from v to v".

Suppose (p(H, A) — {z1,22}) — t4Dt] has independent paths P;, P, from y; to
t1,v”, respectively. Then Py, Py, t, Dt} give rise to independent paths P;, P, T in By,
respectively (with the same ends). Now G[{z1, z2,y1, y2}|Uz121 U(R U P])U (21 X p1 U
Q1)U (R{UTURLU zowo) U (PyUSUv Ut XpaUQs) is a TKy in G with branch

vertices x1, To, Y1, Yo, 21-
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So we may assume that such P;, P, do not exist in p(H,.A). Then by planarity and
the existence of t; Dy, p(H, A)—{z1, 22} has a cut {sy, s2}, separating y; from {v”, 1},
with s; € V(t,Dt]) and sy € V(t;Dy;). Clearly, {s1, s2} is also a cut in B;. Denote
by M,, M, the {sy, so}-bridges of By containing {v”, 1}, y1, respectively. We choose
{s1, s2} so that M, is minimal. Since v is arbitrary, N(z2oXps — 22) NV (By — F3) C

V(M,). We choose vv’ with v’ X x5 minimal.

We may assume

(5) y22 € V(M,) (when defined) and, for any ¢ € V(p.Xv' — '), N(¢q) NV (M, —
{81, 82}) = Q)

Suppose (5) fails. Recall that yss is defined only when yo € V(X), or when ys ¢ V(X)
and both e(z1, By) > 2 and e(zy, By) > 2. If a9 is defined and y9o ¢ V(M,) let ¢ = b,
q = Yoz, and Q' = ¢'qUQ3; and if 195 is defined and yae € V(M,) let ¢ € V(pa X0 —0'),
¢ € N(q) NV (M, — {s1,52}), and Q" = ¢'q U ¢Xpa U Q.

Since By is 2-connected, there exists j € [2] such that M, — s3_; contains disjoint
paths 71, T, from {t1,t}} to {v”, s;}. Note that Ry UR; UT;UT;, contains independent
paths 77,77 from z; to v”, s;, respectively. If M, contains independent paths S, Ss
from y; to ¢, s;, then G[{z1, x2, y1, Y2 U z121 U (21 Xp1 U Q1) U(T] USUvv' Uv' Xao) U
(T5U S9) U (Q'U Sy) is a TK5 in G' with branch vertices x4, g, y1, Yo, 21. SO we may
assume 51, S do not exist in M,; hence M, has a cut vertex c that separates y; from
{ds;}-

By the minimality of M, and the existence of y, Dsy, ¢ € V(y1 Dty —t}); so we must
have j = 1. Denote by C,, C, the c-bridges of M, containing {¢’, s1}, y1, respectively,
and choose ¢ with Cy minimal. Then N(p,Xv' — ") NV(C, — {c, s2}) = 0.

We may assume that there exist uu’ € E(G) with u € V(21 Xp; — 2z1) and v €
V(Cy) —A{c, s2}. For, otherwise, by (1) and (2), there exists z € V(v'Xx3) such that

{c, $2,m1, 29,2} is a cut in G, and G has a separation (G1,G5) such that V(G; N
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Ga) = {c,s9,21,29,2}, M, Uz X2z C Gy, M, C Gy, and (G2 — x1,{c, 2,72, 2})
is planar. Clearly, |V (Gy)| > 7. If |V(G3)] > 7 then the assertion of the lemma
follows from Lemma 4.2.1. If |V(G2)| = 6 then z = 2, and y120 € E(G); now
Gl{z1, 22,91, 22}] — 122 = K in which z; is of degree 2, and (77) holds.

By the minimality of M, and C,, C), — s2 has independent paths Uy, Us from y; to
c,u', respectively. In M, — s;, we find a path T" from t; to v”. Let X* be an induced
path in G — z; from z; to a9 such that V(X') C V(R UT USUwvv Uv'Xzy). Now
Uy UU,U(C, — s1) Un'uUuXp UQy UQaUpa XqUqq is contained in (G —xq) — X*
and contains a cycle through y; and ys. Hence by Lemma 3.2.1 and Lemma 4.2.1,
we may assume that G — x; contains an induced path X’ from z; to x5 such that
y1,y2 ¢ V(X') and (G — x1) — X' is 2-connected. So the assertion of this lemma

follows from Lemma 2.3.6. This proves (5).

We may assume N (2 Xp; — z1) NV (M, — {s1,s2}) # (. For, otherwise, by (5),
G has a 5-separation (G1,G5) such that V(Gy N Gs) = {s1, 82,0, 21,22}, Go :=
Gv'Xze UM, + z1]m and (Go — x1, S1, S2, T2, V') is planar. Clearly, |V (Gy)| > 7. If
|[V(G5)| > 7 then the assertion of this lemma follows from Lemma 4.2.1. So assume
|[V(G2)] = 6. Then v' = 25 and y120 € E(G). So G[{x1, 22,11, 22} — 2120 = K in
which z; is of degree 2, and (i7) holds.

So there exists uu’ € E(G) with v € V(1 Xp; — z1) and u € V(M) — {s1, s2}.
Hence, e(z1, B1) > 2; SO Yo1, Y22, Q3 are defined. Let P, be a path in M, from u to
some up € V(saDs1) — {s1, s2} and internally disjoint from V(D) (by minimality of
M,), and P, be a path in M, from v” to some vp € V(s;Dsy) and internally disjoint
from V(D). By the definition of F,, we may choose vp so that vp ¢ V(s1Dyas).

We may assume vp € V(] Dy, — t}). For, suppose vp € V(y2aDt] — ya2). Let
T, Ty, T5 be independent paths in By corresponding to ¢t Dyy, vp Dt y1 Dyss, respec-
tively. Then G[{z1,x2, y1,y2}|Uz121 U (2 Xp1 UQ1) U(RUTY) U (R, UT,UP,USU

v Uv' Xag) U (T3 UyebUQ3) is a TK5 in G' with branch vertices x1, X2, y1, Y2, 21.
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Next, we consider the location of up. Suppose up € V(t,Ds; — s1). Let 11,15, T3
be independent paths in By corresponding to y; Dts, t,Dup, y21Dyy, respectively.
Then G[{x1, 22, y1,y2}] U 2029 U (22X py U Q2) U (R UTy) U (Ry U Ty U P, Uuu' U
WXz Uzz) U (T3 UynbUQ3) is a TK5 in G' with branch vertices x1, 2, 41, y2, 22.

Now suppose up € V(s2Dyy). Let Ti,Ts, T3 be independent paths in B; cor-
responding to y; Dty, tyDt), up Dy, respectively. Then G[{x1,22,y1,y2}] U z0me U
(22 Xp2 U Qo) U (R UTY)U(RLUT, UR, U z2q) U(T3U P, Un Uu/Xpr UQy) is a
T K5 in G’ with branch vertices x1, 2, Y1, Y2, 22.

So we may assume up € V(y; Dty —t,). Let T}, T5, T3 be independent paths in B;
corresponding to y; Dup, tyDt), vp Dy, respectively. Thus, (G —z1) — (R} UT,URLU
299) contains the cycle 77 U P, Uuw' Uu/'Xp; U Q1 U Qo U pe Xv' Uvy' USU P, UTs.
Hence, by Lemma 3.2.1 and Lemma 4.2.1, we may assume that G — x; contains a
path X’ from 2; to xs such that y;, v, ¢ V(X') and (G — x;) — X’ is 2-connected. So

the assertion of this lemma follows from Lemma 2.3.6. ]

We now prove the existence of three paths A, B,C in H := G[B; + {z1, 22 }].

Lemma 4.4.2 Let by € N(y2) N V(By) when yo € V(X), and let {b1} = V(By) N
V(Bz) when yo ¢ V(X). Then one of the following holds:

(1) G" contains TKs, or G contains a T K5 in which x1 is not a branch verte.
(i1) G — xy contains K, , or G contains a K in which x1 is of degree 2.

(i13) There ezists i € [2] such that H contains independent paths A, B, C, with A and

C from z; to y; and B from by to z3_;.

Proof. 1f yo ¢ V(X) then by Lemma 4.3.1, let @1, Q2, @3 be independent paths in Y5
from o to p1, pe, b, respectively. Moreover, if yo € V(X)) then let Q1 = Q2 = Q3 = yo.

We may assume that

(1) for i € [2], H has no path through z5_;, z;, 41, b1 in order.
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For, if H has a path S through z3_;, z;,y1, b1 in order. Then G[{x1, 2, y1, Y2} U z;2; U
(ZiXpi U Qz) U ziSyl U (ZiSZ:),_i U Zg_i.l’g_z‘) U (ylel U blb U Qg) is a TK5 in G/ with

branch vertices xy, x2, Y1, Y2, 2;-

We may also assume that

(2) for i € [2] with e(z;, By — b1) > 2, H has a 2-separation (F}, F}') such that

by € V(F)), z € V(F{ = F') and {y1, z3;} C V(F/ — F)).

Suppose i € [2] and e(z;, By — b;) > 2. Let K be obtained from H by duplicating z;
and y; with copies 2z, and yj, respectively. So in K, y; and y; are not adjacent, but
have the same set of neighbors, namely Ny (y;); and the same holds for z; and 2.

Suppose K contains disjoint paths A’ B', C" from {z;, 2/, b1} to {y1, 9}, 23—}, with
z e V(A),z, e V(C") and by € V(B'). If z3_; ¢ V(B’) then, after identifying 1, with
Y, and z; with 2/, we obtain from A’ U B’ U C" a path in H from 23_; to b; through
i, 41 in order, contradicting (1). Hence z3_; € V(B’), and we get the desired paths
for (zii) from A’ U B’ U C’, by identifying y; with ¢} and z; with 2.

So we may assume that such A’, B’,C” do not exist. Then K has a separation
(K', K") such that |[V(K'NK")| <2, {z,2,b1} C V(K') and {v1,y], z3-:} C V(K").
Since H — z3_; is 2-connected, z3_; ¢ V(K' N K").

We claim that z;, 2z, ¢ V(K' N K"). For, if exactly one of z;, z, is in V(K' N K”)
then, since z;, 2] have the same set of neighbors in K, V(K'NK")—{z;, 2/} isacut in H
separating {z3_;, y1} from {z;, b; }, a contradiction. Now assume {z;, 2/} = V(K'NK").
Then z; is a cut vertex in H separating by from {y, 23_;}, a contradiction.

We may assume that yi,y; ¢ V(K’' N K”). First, suppose exactly one of y1, 1]
is in V(K" N K"). Then, since y1,y; have the same set of neighbors in K, V(K' N
K"y —{y1,y;} is a cut in H separating {z3_;,y1} from {z;, b}, a contradiction. Now
assume {y1,y1} = V(K'N K"). Then y, is a cut vertex in H separating z3_; from
{b1,z;}. This implies that N(z3_;) N V(B1) = {y1}; so y2 ¢ V(X) and 2z3_; = ps_;.
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We may assume i = 2; for otherwise, G[{z1, x2,y1, 20} — 120 = K, in which x; is
of degree 2, and (ii) holds. Then z; = p;, and G has a 5-separation (G, Gy) such
that V/(G1 N Gs) = {b,p2, 1, 22,41} and Go = G[By U 29 Xpy + {z1,b}]. Note that
T1T2y1271 18 a triangle and |V(G,)| > 7 for j € [2]. So the assertion of this lemma
follows from Lemma 4.2.2.

Thus, since B; is 2-connected, |V(K' N K")| = 2. Let V(K' N K") = {s,t}, and
let F! (respectively, F}") be obtained from K’ (respectively, K”) by identifying 2!
with z; (respectively, y; with y1). Then (F/, F!") gives the desired 2-separation in H,

completing the proof of (2).
We now consider three cases.

Case 1. e(z;, B — b)) > 2 for i € [2].

For i € [2], let V(F! N E}) = {s;,t;} as in (2). Let Zy, B} denote the {sy,¢;}-
bridges of F] containing z1, by, respectively, and let Y}, Z5 denote the {s1, ¢; }-bridges
of F' containing v, 22, respectively.

Suppose Y] # Zs, and suppose Z; # B} or by € {s1,t1}. Let by = s11if by € {s1,t1}.
Then Z; has independent paths Si,T; from 2z, to si,t;, respectively. Moreover, Z,
has independent paths Sy, 75 from 2, to sy,t;, respectively, B} — t; has a path P
from s; to by, and Y; has independent paths S3, T3 from y; to si,t1, respectively. So
120U (21 Xpr UQ1) Uzqya U (20 X po UQ2) U 2oz U(ToUT)US;US U (S3Uy 1)U
(PUbbUQ3) is a TK5 in G’ with branch vertices s1,x1, Yo, 21, 22.

Thus, we may assume that Y; = Z,, or Z; = B and by ¢ {s1,t;}. First, suppose
Y1 # Zy. Then Z; = B} and by ¢ {s1,t1}, and hence B} — {s1,t1} has a path from
z1 to by. Since H is 2-connected, Y; U Z5 has two independent paths from y; to zs.
However, this contradicts the existence of the separation (Fj, Fy).

So Y7 = Z5. Thus, by symmetry, we may assume ty € V(Y;) — {s1,¢1}. Suppose
by ¢ {s1,t1} and By = Z;. Then sy € V(B) — {s1,t1}. Moreover, {sa,t2} separates

s; from t; in H; for otherwise, either ty separates zo from {by,y1,21} in H, or ty
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separates y; from {by, z1, 22} in H, a contradiction. Thus, we may assume that in H,
{s2,t2} separates {by, s1, 2o} from {¢;, 41, 21}. However, this contradicts the existence
of Y, Z.

Therefore, B} # Z1 or by € {s1,t1}. If by & {s1,t1} then B} # Z;; so s € {s1,11}
(because of (Fj, Fy)), and we may assume sy = s;. If by € {s1,#1} then we may
assume that by = $1; S0 s9 = $1 or, in 7y, sg separates s; from {t1,2}. Let Y/, Z}
be the to-bridges of Y — {s1,¢1} containing yy, 22, respectively. Again, because of the
existence of (F3, FY'), t; has no neighbor in Z, — t,. Hence, by the existence of Y, Z,
s1 has a neighbor in Y] —t9; and, thus, sy = s; and G[Y] + {s1, t1}] has disjoint paths
S1, Ty from sy,t; to yi, ta, respectively. Let Sy, 75 be independent paths in G[Z) + 4]
from 2, to si,ts, respectively, and S, T be independent paths in Z; from z; to si,ty,
respectively. Let P be a path in B} — ¢; from s; to b;. Then x12; U (21 Xp; U Q) U
1Yo U (20X pa U Q2) U zowoxy U (To UTI UT)U S U (S; Uyizy) USe U (PUbbUQS)

is a T K5 in G’ with branch vertices si, 1, y2, 21, 22.

Case 2. e(zy, By — by) > 2.

If yo € V(X) then e(z, By — by) > 2, and if yo ¢ V(X) then, by Lemma 4.3.3,
e(z1, By—by) > 1. In view of Case 1, we may assume e(z;, By —b;) = 1; s0 z; = p; and
y2 ¢ V(X). Note that if b # by then, by Lemma 4.3.2, we may assume 21b; € F(G);
so by € V(F,N FY). By Lemma 4.3.1, we may assume that Y2 has a path @ from py
to by through ys, z; in this order.

For convenience, let F' := F, F" := F}/, s :== sy and t := t5. So by, 25 € V(F’)
and y1,2z1 € V(F"). We choose (F', F”) so that F” is minimal. Let 2] denote the
unique neighbor of z; in By — b;.

Subcase 2.1. N(zoXpy — 20) NV (F" — {z1,s,t}) € {z}}.

Let wu' € E(Q), with u € V(F") — {z1,2{,s,t} and «' € V(22Xps — 22). Note
that " contains a path S from 2y to b such that |V(S) N {s,t}| < 1. Moreover, if

there exists r € {s,t} such that r € V(5) for all such path S, then b; = r.
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If (F” — z;) — S contains independent paths T}, T from y; to 2}, u, respectively,
then G[{x1, T2, Y1, Y2} U 2121 U 21Qy2 U (2:Qb U bby U S U 2919) U (2124 UTy) U (To U
wu' U u'Xps UpaQys) is a TK5 in G' with branch vertices x1, 2, Y1, Y2, 21.

So we may assume that such 77,75 do not exist. Hence, there is a cut vertex ¢ in
(F" —z1) — S separating y; from {u, z{}. Denote by M;, M, the ({c}U(V(S)N{s,t}))-
bridges of F” — z; containing y1, {u, 21}, respectively. We may choose ¢ so that M,
is minimal. Then N (23X ps — 2z2) NV (F") C V(M;) (as uu' was chosen arbitrarily).

Since G is b-connected, {s,t} C V(M) (as otherwise {c, zq1, 22} U ({s,t} NV (M;))
would be a cut in ), and M; contains independent paths Ry, Rs, R3 from y; to ¢, s,t,
respectively. Since Bj is 2-connected, {s,t} NV (Mz) # 0 and there exist choices of
wand r € {s,t} NV (M,) such that M, contains disjoint paths Ry, Rs from {2}, u}
to {c,r}. Thus, Ry U Ry U R3 U R4 U R5 contains independent paths from y; to 2, u,
respectively. By the non-existence of 7} and Ty, r € V/(S) for every choice of S.
Hence, by = r. So {s,t} NV (M) = {r}, and V(S) N {s,t} = {r} for every choice of
S. Without loss of generality, we may assume that r = t.

We further choose uu’ so that u/Xps is maximal. Suppose N(u'Xps — ') N
V(F' — {s,t}) = 0. Then G has a 5-separation (G1,G3) such that V(G N Gq) =
{s,t,u,x1, 22} and Gy = G[F' UzoXu' + z4]. Clearly, |V(Gy)| > 7. Since e(z2, By —
by) > 2, |V(Gy)| > 7. If (Gy—x1, 9, s,t,u) is planar then the assertion of this lemma
follows from Lemma 4.2.1. Hence, we may assume, by Lemma 2.3.1, that G5 — x;
contains disjoint paths X, X5 from o', x5 to s,t, respectively. Let X3 be a path in
My —t from 2§ to c¢. Then G[{z1,x9,y1,¥2}] U 2121 U 21Qy2 U (21Qb U bby U X5) U
(z12] UX3URy) U (R U Xy Ut/ Xpy UpeQys) is a TKy in G' with branch vertices
T1, T2, Y1, Y2, 21-

So assume that there exists ww’ € E(G) with v € V(u/'Xpy — o) and w €
V(F" —{s,t}). Let Sy be a path in F’ — ¢ from w to s and Sy be a path in My — ¢

from 2} to u. Then G[{x1, z2,y1, Y2} U z121 U21Qya U (21QbUbby U R3) U (2127 U Sy U
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u' Uu' Xag) U (Ry U ST Uww Uw Xps UpaQye) is a TK5 in G' with branch vertices

1,22, Y1,Y2, 21-

Subcase 2.2. N(zoXps — 20) NV (F" — {z1,s,t}) C {z]}.

Then {s,t,x1, 29,21} is a 5-cut in G separating F” from F’ U Y;. Since G is
5-connected, F" — z; has independent paths 17,15, T3 from y; to s,t, 2], respectively.

Let Fy := (F" — z1) + {9, gs, gt}, where g is a new vertex. Since G is 5-connected
and we are in Subcase 2.2, F, has no 2-cut separating y; from {g,2{}. Hence, by
Lemma 2.3.5, there is a cycle in F}, containing {g, y, 2} and, after removing ¢ from
this cycle, we get a path R in F” — 2z, from s to t and containing {y;, 21 }.

Let @ = py if N(22Xpa — 20) N V(F” — {21,s,t}) = 0 and, otherwise, let x €
N(21) N N (22X py — 29) with X 2y minimal.

We may assume that N(zXpy —x) N V(B; — {b1, 2}}) = 0. For, otherwise, there
exists 7’ € E(G) such that r € V(B;) — {b1, 7]} and " € V(zXpy — x). Then
r € V(F') and = # po; so xz; € E(G). Note that F’ has disjoint paths from {s,¢} to
{b1,r}, which, combined with T}, T3, gives independent paths P;, P, in B; — z] from
y1 to by, r, respectively. Hence, in (G —x1) — (21212 Uz Xx2), {y1,y2} is contained in
the cycle Py U P, Ur’' Xpy U Qo U Q3 Ubby. Hence, by Lemma 3.2.1 and Lemma 4.2.1,
we may assume that G — x; has a path X’ from 2 to x5 such that y;,y» ¢ V(X),
and (G — x1) — X' is 2-connected. Thus, the assertion of this lemma follows from
Lemma 2.3.6.

We may assume b = by. For, suppose b # b;. Then, using the notation from (iv)
of Lemma 4.2.5, v € V(pa Xy — po) and b} € V(B; — by). Let P, P, be independent
paths in By from y; to by, b}, respectively. Then G[{z1,xa,y1, 92} U 2121 U 21Qyo U
(z21QbUDL; U Py ) U (2:QbUbv UvXxe) U (PoUb pa UpaQys) is a T Ky in G' with branch
vertices x1, To, Y1, Yo, 21-

Therefore, G has a separation (G1,G3) such that V(G1 N Gy) = {by, s, t,z, 21,22}

and Gy = G[F' UxXxy + 21]. Let Gy = Gy + {r,rs,rt}, where r is a new vertex.
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We may assume that (G, — x1,.4,by,x,x9,7) is 3-planar for some collection .4
of subsets of V(G4 — x1) — {by,z, 9, 7}. For, otherwise, by Lemma 2.3.1, G — 24
contains disjoint paths Ry, Ry from by, z to xo, 7, respectively. Let R =Ty, U (Ry — 1)
if Ry —r ends at ¢, and R =Ty U (R —r) otherwise. Then G[{z1, xa,y1,y2}] U 2121 U
21Qy2 U (21Qby U Ry) U (212] UT3) U (RUxXps UpeQys) is a TKy in G' with branch
vertices x1, T2, Y1, Yo, 21-

We choose A to be minimal and define J, s',t" as follows. If A = () then after
relabeling of s,t (if necessary), we may assume (G5 — 1, b1, x, 22, s,t) is planar and
let J =Gy, s =sandt' =t. Now assume A # (). Then, by the minimality of A
and 5-connectedness of G, A has a unique member, say A, such that r € N(A) and
{s,t} C A and, moreover, G'[AU{s’, t'}] is connected, where N (A)NV (F") = {r, s, t'}.
Let J denote the {s', ¢, x; }-bridge of G/, containing {by, z, z5}. We may assume, after
suitable labeling of §', ¢, (J — x1, by, x, x9, s, t') is planar.

Suppose by € {s',t'}. Then G has a 5-separation (Ly, Lo) such that V(L; N Ly) =
{s',t',x,x1,25} and Ly = J. If |V(J)| > 7 then the assertion of this lemma follows
from Lemma 4.2.1. So assume |V(J)| < 6. Since e(z9, By — by) > 2, there exists
v € N(zo) NV(F' —{s',t',22}). Since G is 5-connected, vxy,vre € E(G). Hence,
G[{v, z1, 9, 29} contains a K in which z; is of degree 2.

Thus, we may assume that by ¢ {s’,¢'}. Then G has a 6-separation (Ly, Ly) such
that V(L1 N Lg) = {by,s',t',x, 21,22} and Ly = J. If |V(J)| > 8 then the assertion
of this lemma follows from Lemmas 2.3.12 and 4.2.1.

So assume |V(J)| < 7. By planarity of J and 2-connectedness of By, zot’ ¢ E(G).
Thus, since e(zq, By —b1) > 2, 298" € E(G) and there exists v € V(J —{s',t/, x, 29, 20}
such that zpv € E(G). So |V(J)| = 7 and 2z, = z. By the minimality of F,
vt" € E(G); and by the 2-connectedness of By, vs',vb; € E(G). We may assume
xov ¢ E(G), as otherwise G[{s, v, xq, 20}] (and, hence, G — z1) contains a K, and

(1) holds. Thus, vz, € E(G) as G is b-connected. Moreover, zo = py as otherwise,
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zx1 E(G) (as G is 5-connected) and G[{s', v, 1, 22}] — 218’ = K, in which z; is of
degree 2; so (iz) holds.

If F” — z; has independent paths Py, P, from t' to s, 21, respectively, and if Y5
has a cycle C' containing {p1, pa, y2} then G[{b1,t',v}]Uz9v U (2208’ U P) UC U (2121 U
Py) U (z121v) is a TK5 in G with branch vertices by, t',v, z1, 25. So we may assume
Py, P, do not exist, or C' does not exist.

First, suppose P;, P, do not exist in F” — z;. Then F” — z; has l-separation
(L1, Ly) such that ¢ € V(L — Ly) and {s', 21} C V(Ly). Since G is 5-connected,
|[V(Ly)| = 2 and 21’ € E(G). Now G[{b1,t,v,21}] — 21b; = K, in which z; is of
degree 2, and (i7) holds.

Now assume C' does not exist. Then by Lemma 2.3.5, Y5 has 2-cuts Sy, S, such
that by is a in component Dy, of Yo — Sy, p1 = 27 is in a component D, of Y5 — S, and
VI(Dy) N(V(D.) US,U{pa}) =0 = V(D) N (V(Dy) US,U{ps2}). I y2 ¢ V(Dy) then
Sy U {t',v} is a cut in G, a contradiction. So y, € V(Dy). Then yo € V(D,). Then

S, U{zy,21} is a cut in G, a contradiction.

Case 3. e(zy, By — by) < 1.

If yo € V(X)) then, since G is 5-connected, e(z1, By —by) > 2 and e(z9, B;—b;) = 1.
If yo ¢ V(X) then, by Lemma 4.3.3, e(z2, By — b)) = 1 and e(z1, By — by) > 2.

For convenience, let F' := F|, F" := F|', s:= sy and t := t;. Then by, 2z € V(F’)
and yy, 20 € V(F")—=V(F"). We choose (F’, F") so that F" is minimal. Let z, denote
the unique neighbor of 2z in By — b;. Note that if z5 # py then 250 € E(G). By (dii)
of Lemma 4.3.1, G[Y3 + b + p2 X 25] contains a path @ from p; to b; through ys, ps in

order.

Subcase 3.1. N(z1Xp1 — z1) N V(F" — {z9,s,t}) € {7}
Let uu’ € E(G) with ' € V(21 Xp; — z1) and u € V(F" — {s,t, 29, 2,}). Since By

is 2-connected, F” contains a path S from z; to by such that |V(S) N {s,t}| < 1.
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Suppose (F” — z5) — S contains independent paths S, S5 from y; to 25, u, respec-
tively. Then G[{z1, 2, y1, Y2} U 2020 U 20Qua U (20Qb; U S U 2121 ) U (2225 U S1) U (Sa U
wu' Uu'Xpy Up1Qys) is a TK5 in G' with branch vertices xq, 2, Y1, Y2, 22

So we may assume that such Si, Sy do not exist in (F” — z5) — S for any choice
of S and any choice of u. Hence, (F” — z3) — S has a cut vertex ¢ which separates y;
from N (21 Xp; — z1) U{z5}. Denote by My, My the ({c} U ({s,t} NV (S)))-bridges of
F" — z5 containing vy, (N (21 Xp1 —21) NV (F" — {s,t, 22})) U{z}}, respectively. Since
G is 5-connected, {s,t} C V(M) (to avoid the cut {c,z1, 22} U (V(S) N {s,t})) and
M; contains independent paths Ri, Ro, R3 from y; to ¢, s,t, respectively. Since B
is 2-connected, {s,t} NV (My) # 0, say t € V(Ms). Note that My contains disjoint
paths 11, T5 from {2z, u} to {c,t}. Now Ry U R3UT; UT, contains independent paths
from y; to 25, u, respectively, which avoids s and uses ¢t. So by the nonexistence of
S1, S, t € V(S) for any choice of S, which implies by = t.

Choose uu’ so that «'Xp; is maximal. Since {x1,u/,s,t} cannot be a cut in
G separating F’ from F” U Yy U poXxa, there exists ww’ € E(G) such that w €
V(F' —{s,t,z1}) and v’ € V(u'Xp; — ') UV (peXx2).

Suppose w' € V(u'Xp; —u'). Let Py be a path in F' — {z,t} from w to s and P,
be a path in My — t from 2z} to u. Then G[{x1, 2, y1,y2}] U 2022 U 20Qys U (22Qby U
R3) U (2225 U PpUuu/ Uu/' Xz Uzizq) U (R U P Uww' Uw' Xpy Up1Qys) is a TKs in
G’ with branch vertices x1, T2, Y1, Y2, 22.

Now assume w' € V (paXxy). Then F' —t contains a path W from z; to w. Hence
X' :=WUww Uw'Xxs is a path in G — x; from z; to 9 such that in (G —xz) — X',
{y1,y2} is contained in a cycle (which is contained in (Y3 — p9) U py X/ U /v U My U
(M; — s)). Hence by Lemma 3.2.1 and Lemma 4.2.1, we may assume that X' is such
that y1,y2 ¢ V(X), and (G — x1) — X’ is 2-connected. Thus, the assertion of this

lemma follows from Lemma 2.3.6.

Subcase 3.2. N(z1Xp1 — z1) NV (F" — {z9,s,t}) C {z}.
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First, we show that {s,t, z1,29,25} is a 5-cut in G separating F" — z, from
F'UY,U X. For, otherwise, there exists ww' € E(G) with w € V(F") — {s,t} and
w' € V(paXzg — z3). Let Pp, Py be independent paths in F” from z; to r, by, respec-
tively, with r € {s,t}. Without loss of generality, we may assume r = s. By the min-
imality of F”, F” —t has independent paths Ry, Ry from y; to s, w, respectively. Now
G{z1, 22, y1, Y2} U212 U (21 X pr UQ1 )U(PLUR: )U(PoUby 2012 ) U(RpUww'Uw' X paUQs)
is a T K5 in G with branch vertices x1, x2, y1, Y2, 21.

Hence, since G is 5-connected, F” — z; contains independent paths T3, Ty, T3 from
Y1 to s,t, 25, respectively, and F” — 2z has no 2-cut separating y; from {s,t,25}. Let
F, = (F" — z) +{g, g9s, gt}, where g is a new vertex. Then by Lemma 2.3.5, F, has
a cycle containing {g, y1, z5}. Thus, we may assume by symmetry that F”/ — z; has a
path S from s to t and through ¥, 25, in order.

We may assume N (z2) N V(F' — {s,t}) = 0. For, suppose there exists =} €
N(z2)NV(F'—{s,t}). Since By is 2-connected, F’ contains independent paths Ry, Ry
from z; to a3, r, respectively, for some r € {s,t}. (This can be done by considering
whether or not z; and x} are contained in the same {s,t}-bridge of F".) Let T =T}
if r=s,and T =Ty if r = t. Then G[{x1,22,y1,y2}] U 2121 U (21 Xp1 U Q1) U (R U
2yra) U (Ry UT) U (Qa U paXz Uzozy UTs) is a TK;5 in G' with branch vertices
L1, L2, Y1, Y2, 21-

Let x = py if N(25)NV (21 Xp1 —21) = 0, and otherwise let © € N(z5)NV (21 Xp1 —
z1) with 2y Xz minimal.

Suppose zoxs € FE(G). Then we may assume z120 ¢ E(G); for otherwise,
G{z1, e, 22,25} — 2125 = K, in which 2 is of degree 2, and (ii) holds. Hence,
2o = po, and {by,s,t,z,x1} is a 5-cut in G separating F' U z; Xz from F” U Ys.
Since G is 5-connected, by ¢ {s,t}. Let (G1,G3) be a 5-separation in G such that
V(G1 N Gy) = {by,s,t,x,1} and Gy = G[F' U 21 Xx + x1]. Clearly, |V(G;)| > 7 for

i €[2]. If (Gy — x1,b1,, s,t) is planar then the assertion of this lemma follows from
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Lemma 4.2.1. So we may assume that this is not the case. Then by Lemma 2.3.1,
G — x1 has disjoint paths Sy, Sy from s, t to by, x, respectively. Now zo2bx920 Uy 29U
Y1525 U (y1.5s U S1 U b1Q29) UyaQzo U (y2Qp1 U pr Xz U Sy U tS2h) Uysxe U yoxyy; is
a TK5 in G' with branch vertices xy, 22, 25, y1, Yo.

Now assume zhxe ¢ E(G). Then x has a neighbor in F” — {y,25}. Let r be
a new vertex. We may assume that (F” 4 {r,rs,rt}) — 2z, has disjoint paths S, Ss
from r, 2}, to x,y;, respectively. For, suppose such paths S;,Se do not exist. Then
by Lemma 2.3.1, there exists a collection A of disjoint subsets of Fy — {x2,y1, 22}
such that (F" +{r,rs,rt}) — 22,7, 91, T2, z) is 3-planar. By the minimality of F”, we
may assume (F” — zy,s,t, 91, T2, 25) is planar. Thus, since 2} is the only neighbor of
2o in F” — F' G has a 5-separation (G, G5) with V(G| N GY) = {s,t,z1, %9, 20} and
G4y —ry = F". Moreover, (G4 —x1, 5,1, 73, 22) is planar. Since |V(G)| > 7 for j € [2],
the assertion of this lemma follows from Lemma 4.2.1.

Without loss of generality, let rs € S;. If F' —t has independent paths Py, P,
from z; to s, by, respectively, then G[{x1,x2,y2}] U 2120 U (P U (S1 — 7)) U (21 Xpy1 U
P1QY2) U (2225 U Sy U yg21) U 20m9 U 20Qy0 U (22Qby U P) is a T K5 in G’ with branch
vertices 1, T, Y2, 21, 22. S0 we may assume that such P, P, do not exist in F’ — t.

Thus F” has a 2-separation (F7, Fy) such that ¢t € V(F1NFy), 2z, € V(F; — F3) and
{b1,s} C V(Fy — F}). Choose this separation so that Fj is minimal. Let s’ € V(F; N
Fy) —{t}. Since {s,t, 21,21} cannot be a cut in G, V(F}) = {s',t, 21} or there exists
zz' € E(G) such that z € V(21 Xp; — 21) UV (poX 22 — 22) and 2/ € V(Fy) — {2, 5, t}.

First, assume V(F)) = {s',t/,z1}. Then z; = p; as G is 5-connected. By (#ii) of
Lemma 4.3.1, let (' be a path in Y5 from p, to b; and through s, p; in order, and
let C' be a cycle in Y, — by containing {p1, ps,y2}. Let C" := Q" U pa X2y U 20by If
29 # po; and let €7 := C if z9 = py. If F' — {by,t,21} has a path S from s to s
then x1x9ysx U 2921 U 2009 U C" U (218 U S U Sy) U (2225 U Sy Uyyry) is a TK5 in

G’ with branch vertices w1, xs,ys, 21, 22. S0 we may assume such S does not exist.
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Then F” has a separation (FY, Fy') such that V(F] N F") = {by,t}, {s', 21} C V(F))
and s € V(F/') — {b1,t}. Since G is 5-connected, {b1,t,z1,21} is not a cut in G,
and F| — {b1,t, 2} has a path S’ from s’ to some z € N(p2Xzs — 29). Let 2/ €
N(2)NV (paXzy—25). Let S be a path in Fy—t from s to b;. Then G[{z1, 2, y1, y2 }]U
2121 U Q1 U (218 US " Uz2' U2/ Xao) U (21t UTo) U (T USUQRs) is a TK5 in G with
branch vertices x1, T2, Y1, Y2, 21-

Thus, we may assume that zz’ € E(G) such that z € V (2, Xp;—21)UV (pe X 20— 22)
and 2’ € V(Fy) —{#, ¢, t}.

Suppose z € V(zXp; —z). Let X' = 1 Xx Uxzlzoxe. Then, TY UTo U (F' — z1) U
2z U zXp; UYs is contained in G — X’ and has a cycle containing {y;,y2}. Hence,
by Lemma 3.2.1 and then Lemma 4.2.1, we may assume that G — x; has an induced
path X” from 2; to z5 such that y1,y, ¢ V(X”) and G — X" is 2-connected. Then
the assertion of this lemma follows from Lemma 2.3.6.

Now suppose z € V(ps X 29 — 29). By the minimality of F}, F} —t has independent
paths Ly, Ly from z; to §', 2/, respectively. In Fy U (F” — z), we find independent
paths L, L}, from y; to s, by, respectively. Then G[{x1, z2,y1,y2}] U z121 U (21 Xpy U
Q1)U (L UL) U (LyU2'zU 2Xx9) U (LY UbibUQ3) is a TKs in G' with branch
vertices x1, T2, Y1, Yo, 21-

Hence, we may assume z € V(23 Xz —z) for all such zz'. Choose such z with z; Xz
is maximal. Since {s,t,z1, 2z} cannot be a cut in G, there exists uu’ € E(G) such that
u€ V(nXz—{z,2}) and v’ € V(F,) —{s',t}. Let P, be a path in F} —{¢', z;} from
2" tot, and P, be a path in F5—t from «’ to by. Then G[{z1, x2, y1, Y2 }|UzoxoU (2925 U
T3)U (22X pa UpaQuo) U (20Qb1 U PaUn'uUuX 21Uz ) U(ToUP UZ 202X p Up Qys)

is a T K5 in G’ with branch vertices x1, 22, y1, Y2, 22. [ |
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4.5 Finding TK;

Recall the notation from Lemma 4.2.5 and the previous section. In particular, H :=
G[B1 + {z1,2}], G’ = G —{x1x : v ¢ {x2,y1,Y2,20,21}}, b1 € N(y2) NV (By) if
y2 € V(X), and by € V(B1 N By) if yo ¢ V(X). Our objective is to find TKj in
G’ using the structural information on H produced in the previous sections. By

Lemma 4.3.1,
(A1) Y; has independent paths @1, @2, @3 from ys to p1, pa, b, respectively.

Note that if yo € V(X)) then e(z;, By — by) > 2 and e(zy, By — by) > 1. Thus, by
Lemma 4.3.3, we may assume that there exists ¢ € [2] for which e(z;, By — by) > 2
and e(z3_;, By — b;) > 1. (Moreover, by Lemma 4.3.2, e(23_;, B1) = 1 only if b = b,

and, hence, z3_; = p3_;.) Then by Lemma 4.3.1,

(A2) Y, has a path T from b to p; through p3_;, y2 in order, respectively.
By Lemma 4.4.1, we may assume that

(A3) H has disjoint paths Y, Z from y;, 21 to by, 22, respectively.

By Lemma 4.4.2, we may assume that

(A4) H has independent paths A, B,C, with A, C from z; to y;, and B from b; to

Z3—j-

Let J(A,C) denote the (AU C)-bridge of H containing B, and L(A,C) denote
the union of all (AU C)-bridges of H with attachments on both A and C. We may

choose A, B, C such that the following are satisfied in the order listed:
(a) A, B,C are induced paths in H,
(b) whenever possible, J(A,C) C L(A,C),
(¢) J(A,(C) is maximal, and
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(d) L(A,C) is maximal.
We refer the reader to Figure 4 for an illustration. We may assume that
(A5) for any j € [2], H contains no path from z; to b; and through z3_;,y; in order.

For, suppose H does contain a path, say R, from z; to b; and through z3_;,y; in
order. Then G[{z1, %o, y1,y2}] U 2523 U (23—;Xps—; U Q3_;) U (23_jRz; U zjz;) U
z3_jRy; U (1 Rby U b1b U Q3) is a T Ky in G' with branch vertices x1, 2, y1, Y2, 23—;.

Thus, we may assume (A5).

Since Bj is 2-connected and e(z3_;, By — b1) > 1, H has disjoint paths P, @ from
p,q € V(B) to ¢,a € V(AU C) — {2}, respectively, and internally disjoint from
AU BUC. By symmetry between A and C, we may assume that by, p, q, z3_; occur
on B in order. By (Ab), ¢ # y1. We choose such P, @ that the following are satisfied

in order listed:

(A6) gBzj_; is minimal, pBz3_; is maximal, the subpath of (AU C) — z; between a

and y; is minimal, and the subpath of (AUC') — z; between ¢ and y;is maximal.

Let B’ denote the union of B and the B-bridges of H not containing AU C. Note
that all paths in H from AU C to B’ and internally disjoint from B’ must have an

end in B. We may assume that

(A7) if e(z3_;, B1) > 2 then, for any ¢* € V(B’ — q), B’ has independent paths from

z3_; to q, q*, respectively.

For, suppose e(z3_;, B1) > 2 and for some ¢* € V(B' — ¢), B’ has no independent
paths from z3_; to q,q", respectively. Then ¢ # z3_;, and B’ has a l-separation
(B1, BY) such that ¢,¢* € V(BY) and z3_; € V(B]) — V(B}). Note that by € V(B)).

Choose (B}, By) with B} minimal, and let z € V(B] N BY). Since e(z3_;, B1) > 2,
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|V(B})| > 3; so H has a path R from some s € V(B]—2z) tosome t € V(AUCUPUQ)
and internally disjoint from AUBUC U P U Q.

By the choice of P, @ in (A6), we see that t = z;. Let S be a path in Bj from z3_;
to s, respectively. Now SU RU AU y;CcU P UpBb; is a path contradicting (A5).

Hence

We will show that we may assume a = y; (see (3)), derive structural information
about G’ and H (see (4)—(7)), and will consider whether or not z; € V(J(A, C)) (see

Case 1 and Case 2). First, we may assume that
(1) N(y1) NV (zXp; — 2;) =0 for j € [2].

For, suppose there exists s € N(y1) NV (z;Xp; —z;) for some j € [2]. If j = 3—1 then,
using the paths Q1, Q2, Q3 from (A1), we see that G[{x1, 2, y1,y2}| U zi2; U (2, X p; U
Qi) UAU (zCcUPUpBzy ;U zz 23 ;) U(y1sUsXps_;UQs ;) is a TK5 in G’ with
branch vertices x1, x2, Y1, Y2, 2i-

So assume j = i. Suppose e(z3_;, B1) = 1. Then z3_; = ps_;. Recall the path
T from (A2). Note that z3_;7bUbb; UAUBUC U P UQ contains independent
paths S, Sy from z3_; to z;,y;, respectively. Hence G[{z1,xs,y1,y2}] U 23_j23_; U
23 Tys U (S1 U z2;) U Sy U (y3s U sXp; UpTys) is a TK5 in G’ with branch vertices
L1, T2, Y1, Y2, 23—i-

Now assume e(z3_;, B1) > 2. Let Pj, P, be independent paths from (A7) with
¢ =p. Then PLUP,UAUBUCUPUQ contains independent paths Si, S5 from z3_;
to z;, 1, respectively. Now G[{x1, z2,y1, Y2} U 25_;23-; U (23-; Xps—; U Q3_;) U (S1 U
ziw;) U S U (15 U sXp; UQ;) is a TK5 in G’ with branch vertices x1, za, y1, Y2, 23—

This proves (1).

We may assume

(2) y1 € V(J(4,0)).
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For, suppose y1 ¢ V(J(A,C)). By (1) and 5-connectedness of G, y, € V(D) for
some (AUC)-bridge Dy of H with Dy # J(A,C). Thus, let Dy, ..., Dy be a maximal
sequence of (AU C)-bridges of H with D; # J(A,C) for j € [k], such that, for each
lelk—1],

Dy has a vertex not in U (¢;Cy1 Ua;Ayy) and a vertex not in ﬂ (2:Cc; U z;Aqy),

Jell] Jel]

where for each j € [k], a; € V(D; N A) and ¢; € V(D; N C) such that a;Ay; and
¢;Cy; are maximal. Let S; := |J (D; U ajAy; Uc;Cyy).

We claim that for any [ EJE[[l/]f] and for any r, € V(S;) — {a;, ¢}, S; has three
independent paths A;, C;, R; from y; to ay, ¢;, r, respectively. This is obvious for [ = 1
(if aj = y1, or ¢, = y1, or 1 =y then A, or C), or Ry is a trivial path). Now assume
k > 2 and the claim holds for some | € [k—1]. Let ri41 € V(Si41) —{ais1, 41} When
rie1 € V(S) — {ai, ¢} let ;== r;4q; otherwise, let 1, € V(q;Ay; — a;) UV (¢,Cy1 — )
with r;, € V(Dyy1). By assumption, S; has independent paths A;, Cj, R; from y; to
ay, ¢, 1y, respectively. If rpy € V(S)) — {a;, ¢} then Apy = AU ajAap,Cryq =
CyUqCcyq, Rip1 = Ry are the desired paths in Syyq. If rq € V(D) — V(AUC)
then let P; be a path in D, from r; to r;y1 internally disjoint from A U C'; we see
that A;yy == AU qiAapy,Cryq = CrU Ceyq, Ry = Ry U Py are the desired
paths in S;;;. So we may assume by symmetry that 71 € V(aj1Aa; — aje1)-
Let Q11 be a path in D;y; from r; to a;y; internally disjoint from A U C. Now
Ry = A UaqAr ., Crq = CrUqCeoyq, A := Ry U Q1 are the desired paths in
Si41-

Hence, by (c), J(A, C) does not intersect (arAy; U ¢,Cy1) — {ag, ¢ }. Since G is
5-connected, {ag, ¢k, T1, 22} cannot be a cut in G separating Sy, from X UJ(A, C). So
there exists ss’ € E(G) such that s € V(Sk) — {ax, e} and " € V(21 Xp1 U 20X po).
By the above claim, let Ay, Cy, R be independent paths in Sj from ¥, to ag,ck, s,

respectively; so s’ ¢ {z1, 22} by (c).
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Suppose s' € V(z3_;Xp3_; — 23_;). Then Gl{z1,x2,y1, 92} U z2; U (2, X p; U Q;) U
(z:CcUPUpBzz ;U zz x3 ) U (zAar U Ap) U (R Uss' Us'Xps ; UQR3 ;) is a TKj
in G’ with branch vertices x1, x2, Y1, yo, 2;.

So we may assume s’ € V' (z;Xp; — z;). Suppose e(z3_;, B1) = 1. Then z3_; = p3_;.
Recall the path T" from (A2). Note that z3_;TbUbb; Uz; AayUz;Cc, UPUQUB contains
independent paths S7, S from z3_; to z;, v, respectively, for some v € {ay,cx}. Let
S = A ifv=aqay and S = Cy if v = ¢;. Then G[{x1, z2,y1, Y2} Uzs_ix3_;Uz3_;Tys U
(S1Uziz;) U (S2US)U (R Uss'"Us' Xp; UpTys) is a TK5 in G' with branch vertices
L1, L2, Y1, Y2, Z3—i-

Hence, we may assume e(z3_;, By) > 2. Let P, P» be independent paths from
(A7) with ¢* = p. Then, P, U P, U z;Aay U z;Cc, U P U Q U B contains independent
paths S, Sy from 23 ; to z;, v, respectively, for some v € {ay,cp}. Let S = Ay if
v =ay and S = Cy, if v = ¢,. Then G[{z1, 22, y1,9y2}] U 23 323 ; U (23 ;Xp3_; U
Qs3—i) U (ST U zix;) U (SoUS)U (R Uss' Us'Xp; UQ;) is aTKs in G' with branch

vertices 1, Ta, Y1, Yo, 23— Lhis completes the proof of (2).

For convenience, we let K := AUBUC U P U Q. We claim that

(3) a=w

Suppose a # y;. By (2), J(A,C) has a path S from y; to some vertex s € V(P U
Q U B) — {c,a} and internally disjoint from K. By (A6), s ¢ V(Q U gBz3_;). So
s € V(PUbBqg—gq). Let R =aAz and R = C if a € V(A); and R = aCz; and
R =AifaeV(C). Also, let " = SUsBb if s € V(B), and S = SUsPpUpBb
if s € V(P). Then z3_;BqU QU RU R' U S’ is a path contradicting (A5).

Before we distinguish cases according to whether or not z; € V(J(A, C)), we derive

further information about G’. We may assume that

(4) for any path W in G’ from x; to some w € V(K)—{z;,y:} and internally disjoint
from K, we have w € V(A) — {z;,y1}.
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To see this, suppose w ¢ V(A) — {z;,11}. First, assume e(z3_;, B;) = 1. Then
z3_; = p3_;. Recall the path T from (A2). So z3_;Tb;UBU(C'—z;)UWUPUQ contains
independent paths S7, Sy from 23 ; to x;,y;, respectively. Then G[{z1,xs,y1,y2}] U
23 i3 Uz Tys US1U Sy U (AU 2z Xp; UpTys) is a TKs5 in G’ with branch vertices
L1, T2, Y1, Y2, 23—i-

Thus, we may assume e(z3_;, By) > 2. Let P;, P, be independent paths in B” from
(A7) with ¢* = p. So P UP,UBU (C — 2z)UW U P UQ contains independent
paths Si,S2 from z3_; to x;,y;, respectively. Then G[{x1, 22, y1,y2}] U 2323 U
(23— Xp3—i UQ3—;) US; USy U (AU 2z Xp; UQ;) is a TK5 in G' with branch vertices

x1,%2,Y1, Y2, 23—;. This completes the proof of (4).

Since G is 5-connected and zy € V' (B;) when e(z1, By) > 2 (by (iv) of Lemma 4.2.5),

it follows from (4) that
G’ has a path W from z; to w € V(A) — {y1, z;} and internally disjoint from K.

Hence, |V(A)| > 3 and |V(C)| > 3. Since A and C are induced paths in H,

iz ¢ E(G).
We may assume that

(5) G’ has no path from z3_;Xp3_; — y2 to (AU C) — y; and internally disjoint
from K, G’ has no path from z; Xp; — z; to (AU cCyy) — {z;, ¢} and internally
disjoint from K, and if ¢ = 1 then G’ has no path from z3_; to (AUC) —y; and

internally disjoint from K.

First, suppose S is a path in G’ from some s € V(z3_;Xp3_; — y2) to some s €
V(AUC) —{y1}. Then AUC US contains independent paths Sy, Sy from z; to yy, s,
respectively. Hence, G[{x1,z2,y1,y2}] U zz; U (2, Xp; U Q;) U ST U (Sa U sXz3 ;U

23-;T3-;) U (QUgBb UbibUQ;3) is a TK5 in G’ with branch vertices x1, x2, Y1, y2, 2;.
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Now assume that S is a path in G’ from some s € V(z,Xp; — z) to some s €
V(AUcCy;)—{z;, c} and internally disjoint from K. Let S" = y; As’ if s’ € V(A), and
S' =y Cs" if s € V(cCyy). If e(z3_4, B1) = 1 then z3_; = ps_; and, using the path T
from (A2), we see that G[{x1, z2,y1, Y2 }|Uz3_x3 Uz ;TysU(z3_; BqUQ)U(z3_;Tb U
b1BpUPUcCz Uzz;)U(S"USUsXp; UpTys) is a TK5 in G’ with branch vertices
x1, T2, Y1, Y2, 23—;- S0 assume e(z3_;, By) > 2. Let Py, P, be independent paths from
(A7) with ¢* = p. Now G[{z1, 22, y1,y2}| U 2323 U (23_:Xp3_; UQ3_;) U(PLUQ)U
(P, UPUCcCz Uziz;)) U(S"USUSsXp; UQ;) is aTKs in G' with branch vertices
L1, L2, Y1, Y2, Z3—i-

Now suppose i = 1 and S is a path in G’ from z3_; to some s € V(AU C) — {y}
and internally disjoint from K. If s € V(A — y1), then G[{x1,z2,y1,y2}] U ziz; U
(z:Xp; UQ;)UC U (2zAs U S)U (QUgBby UbibU Q3) is a TK; in G’ with branch
vertices x1, T2, Y1, Y2, zi- S0 assume s € V(C' — y1). Then G[{z1,xa,y1, 92} U 223 U
(2 XpiUQ)UAU (z,CsUS)U(QUgBb UbibUQ3) is a TK; in G’ with branch

vertices z1, Ta, Y1, Yo, z;- Lhis completes the proof of (5).
(6) We may assume that
(6.1) any path in J(A,C) from A—{z;,y1} to (PUQUB)—{c, y; } and internally
disjoint from K must end on @),
(6.2) if an (A U C)-bridge of H contained in L(A,C) intersects z;Cc — ¢ and
contains a vertex z € V(A — z;) then J(A,C) N (z;Az — {z;,2}) =0, and
(6.3) J(A,C)N(2,Cc—{z;,c}) =0, and any path in J(A4, C) from z; to (PUQU

B) — {c,y1} and internally disjoint from K must end on (P — ¢) U by Bp.

To prove (6.1), let S be a path in J(A,C) from s € V(A) — {z;, 11} to s € V(PU
B) —{¢, q,y1} and internally disjoint from K. Note that s’ ¢ V(¢Bzs_; — q) by (A6).
Suppose €(z3_;, B1) = 1. Then z3_; = p3_; and we use the path 7" from (A2). Let

S" be a path in (P —c¢)U (byBq—q) from by to §'. Then G[{z1, x2, y1,y2}]Uz3_j23-; U
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23 Tys U (23_;Tby US"USUsAw U W)U (23_;BqU Q) U (CUzXp; UpTys) is a
T K5 in G' with branch vertices x1, T2, Y1, Y2, 23_;. S0 we may assume e(z3_;, By) > 2.
Let Pi, P, be the paths from (A7), with ¢* = p when s’ € V(P) and ¢* = s’ when
s € V(B). So P,UP,UBUSUQ contains independent paths S;, Sy from z3_; to
s, Y1, respectively. Now G[{z1, xe, y1,y2}|Uzs_j23_;U (23 Xps_;UQ3_;)U(S1UsAwU

W)U Sy, U (CU2zXp,UQ,) is a TK; in G' with branch vertices 1, s, y1, Y2, 23—

To prove (6.2), let D be a path contained in L(A,C) from 2’ € V(z,Cc — ¢) to
z € V(A — z;) and internally disjoint from K. Suppose there exists s € V(J(A,C))N
V(z;Az —{z;,z2}). By (6.1), J(A,C) has a path S from s to some s € V(Q —y;) and
internally disjoint from K. Then G[{z1, x2, y1,y2}] U ziz; U (2, Xp; UQ;) U (2, AsUS U
SQqUqBz3_; Uz ;x5 ;) U (2,CZ UDU zAy;) U (11CcU P U pBby UbibU Q3) is a

TKs in G' with branch vertices 1, 2, Y1, Y2, 2.

To prove (6.3), let S be a path in J(A,C) from s € V(2,Cc—c) to s € V(PUQU
B) — {¢,y1} and internally disjoint from K. Suppose s’ € V(Q U z3_;Bp) — {p,y1}.
Then (SUQUpBzs_;)—{p, y1 } contains a path S’ from s to z3_;. So G[{x1, x2, 1, y2}|U
ziw; U (2, Xp;UQ;)U(2,CsUS " Uzs_yxs_; )UAU(y; CcUPUpBb Ub1bUQ3) is a T K5 in G
with branch vertices x1, z2,y1, y2, 2z;. Thus, we may assume s € V(P —¢) UV (b1 Bp).
By (A6), s = z;.. This proves (6).

Denote by L(A) (respectively, L(C')) the union of all (AU C')-bridges of H whose

intersection with A U C' is contained in A (respectively, C).
(7) L(A) =0, and L(C)NC C zCec.

Suppose L(A) # (), and let Ry be an (A U C)-bridge of H contained in L(A). We
construct a maximal sequence Ry, ..., R,, of (AUC)-bridges of H contained in L(A),
such that for 2 < i < m, R; has a vertex internal to U;;ll l;Ar; (which is a path), where
lj;rj € V(R; N A) with [;Ar; maximal. Let aj,ay € V(A) such that (JI_, [;Ar; =
a;Aay. By (¢), J(A,C) N (a1Aas — {a1,a2}) = 0; by (d) and the maximality of
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Ry, ..., Ry, L(A, C) has no path from a; Aay —{a1, as} to (A—ay; Aaz) U(C —{y1, zi});
and by (5), (21Xp1Uz2Xpy) —{a1, az, z;} contains no neighbor of (L, R;Ua;Aas) —
{a1,as}. Hence, {ay,as, 1,12} is a 4-cut in G, a contradiction. Therefore, L(A) = {).

Now assume L(C)NC € z;Ce, and let Ry be an (AU C)-bridge of H contained in
L(C) such that Ry N (cCy; — ¢) # 0. We construct a maximal sequence Ry,..., Ry,
of (AU C)-bridges of H contained in L(C) such that for 2 < ¢ < m, R; has a
vertex internal to U;;ll l;Cr; (which is a path), where l;,r; € V(R; N C) with [;Cr;
maximal. Let ¢, ¢ € V/(C') such that (-, [;Cr; = c1Ccy. By the existence of P and
(¢), c1,¢2 € cCyy; by (¢), J(A,C)N(c1Cca — {c1,c2}) = 0; by (d) and the maximality
of Ry,..., Ry, L(A,C) N (c1Ccy — {c1,c2}) = 0; and by (5) and the maximality
of Ri,...,R,,, 21Xp1 U 2Xp,y contains no neighbor of (U;n:1 R; U ci1Ccy) — {c1, 2}
Hence, {c1,co, 1,22} 18 a 4-cut in G, a contradiction. Therefore, L(C) N C C z,Ce.

This proves (7).

Let F' be the union of all (A U C)-bridges of H different from J(A,C) and inter-
secting z;Cc — c. When F # (), let a* € V(F N A) with a* Ay; minimal, and let r be

the neighbor of (F'U z;Aa* U z;,Cc) — {a*, c} on z;Xp; — z; with rXp; minimal.

Case 1. z; € V(J(A,C)).
By (6.3), J(A, C) contains a path S from z; to some s € V(P —¢) UV (b Bp) and

internally disjoint from K.

Subcase 1.1. F # ).

Suppose 1 # z;. Then by (5) and the definition of r, G’ has a path R from r to
r" € V(z,Cc) — {z;, c} and internally disjoint from K U X, and by (6.3), R is disjoint
from J(A,C). First, assume e(z3_;, B;) = 1. Then z3_; = p3_; and we use the path
T from (A2). Note that S U P U pBb; contains a path S’ from z; to b;. Hence,
G{z1, 22, y1,y2}| U 2323 U 23 ;Tys U (23, TO U bby U S" U z;2;) U (23_;BqU Q) U

(y1Cr" U RUrXp; UpTys) is a TKy in G’ with branch vertices x1, 2, y1, y2, 23_i. S0
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assume e(z3_;, B1) > 2. Let P, P, be independent paths from (A7) with ¢* = p. So
PLUP,UBUSU(P —¢)UQ contains independent paths S, Sy from z3_; to z;, yi,
respectively. Then G[{x1,za, y1, 92} U 23523 ; U (23;Xps_; U Q3_;) U (S1 U z;25) U
Se U (y1Cr" URUrXp; UQ;) is a TK5 in G' with branch vertices x1, T2, y1, Y2, 23_;-

So r = z and, hence, {a*, ¢, 1,9, 2} is a 5-cut in G. Thus, i = 2 by (5). Let
F*:=G[F U zAa* U z,Ce+ {z1, 12 }]

Suppose F* — xy has disjoint paths S;,5; from x;, z; to c¢,a*, respectively. If
e(z3—i, B1) = 1 then z3_; = ps_; and, using the path T from (A2), we see that
G{z1, 2, y1,y2}|Uz3_jx3_; Uz Tys U (23_;TbUbby Uby BpUPUS;) U (23_;BqUQ) U
(y1Aa* U Sy U 2, Xp; UpTys) is a TKy in G' with branch vertices x1, s, 1, Y2, 23—
Now assume e(z3_;, B1) > 2. Let Py, P» be independent paths from (A7) with ¢* = p.
Then G[{x1, 22, y1,y2} U 23 w3 ; U (23 Xp3s ; UQ3;) U(PLUQ)U (P, UPUS;)U
(y1Aa* U Sy U 2, Xp; UQ;) is a TKy in G' with branch vertices x1, x2, Y1, Yo, 23_i-

Thus, we may assume that such S7,S; do not exist. Then by Lemma 2.3.1,
(F* — x1, 4, 24, ¢,a*) is planar. If |[V(F*)| > 7, then the assertion of Theorem 4.1.1
follows from Lemma 4.2.1. So assume |V (F*)| = 6. Let z € V(F*—x1)—{x;, z;, ¢, a*}.
Then G[{x;, z;, z,¢}] = K, , and (ii) of Theorem 4.1.1 holds (as ¢ = 2 in this case).

Subcase 1.2. F = ().

Then L(C) = () by (7). Also, L(A) = 0 by (7). Hence, by (4) and the comment
preceding (5), W = z;w with w € V(A) — {z;,y1 }.

We may assume that J(A,C) N (A — {z;,y1}) = 0. For, otherwise, let ¢ €
V(J(A,C) N V(A —{z,n}). By (6.1), J(A,C) contains a path T" from ¢ to t’ €
V(Q — y1) and internally disjoint from K, and 7" must be internally disjoint from S.
Note that (S U P Ub;Bp) — ¢ contains a path S’ from z; to by and internally disjoint
from T U QU z3_;Bq. If e(z3_;, B1) = 1 then z3_; = p3_; and, using the path T from
(A2), we see that G[{x1, 22, Y2 }|Uz3 23 ;Uz3_ Ty Uziz; U(2: X p; Up; Tys) U (23, TOU

bby US" ) U (CUyz3;) U (23-;BqUqQt UT UtAw Uwz;) is a T K5 in G’ with branch
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vertices 1, T, Yo, 21, 22. S0 assume that e(z3_;, By) > 2. Let P, P, be independent
paths from (A7) with ¢* = p. So PLUP,UBUSU (P —c)U(Q—y;)UT contains inde-
pendent paths Sy, Sy from z3_; to z;,t, respectively. Then G[{x1, z2,y2}| U 23 ;23 ;U
(23 Xp3_i UQ3_;) Uziz; U (2, Xp; UQ;) UST U (CUyixs_;) U (Se UtAw Uwa;) is a
TK5 in G' with branch vertices 1, x2, Y2, 21, 22.

By (Ab), J := J(A,C) U C contains no disjoint paths from z;,y; to z3_;, by,
respectively. Hence by Lemma 2.3.1, there exists a collection L of subsets of V(J) —
{b1,v1, 21, 22} such that (J, L, z;,y1, 23_;,b1) is 3-planar. We choose L so that each
L € £ is minimal and, subject to this, |£| is minimal.

We claim that for each L € £, LNV (L(A,C)) = (). For suppose there exists L € L
such that LN V(L(A,C)) # (. Then, since G is 5-connected, |N;(L) NV (C)| > 2.
Assume for the moment that N;(L) C V(C). Then, since L(C) = § and J(A4,C) N
(A —A{z,u}) =0, L C V(C). However, since C is an induced path in G, we see
that (J,£ — {L}, zi,y1, 23_4,b1) is 3-planar, contradicting the choice of £. Thus, let
Ny(L) = {t1,ta,t3} such that t1,t, € V(C) and t3 ¢ V(C). Then J(A,C) contains
a path R from t3 to B and internally disjoint from BUC. Let t € LNV (L(A,C)).
By the minimality of L, G[L + {t1, t2,t3}] contains disjoint paths 77,75 from ¢, to
t9, 13, respectively. We may choose T to be induced, and let C" := z;,Cty UT; Ut,Cyy.
Then A, B, C’ satisfy (a), but J(A,C") C L(A,C") (because of Ty), contradicting (2)
(as J(A,C)N (A= {z,11}) = 0).

Because of the existence of Y, Z in (A3), there are disjoint paths Ry, Ry in L(A, C)
from 71,7y € V(A) to r},ry, € V(C) such that z;, 7,79,y occur on A in order and
2, Ty, 71, y1 occur on C in order. Let A" = z;Ary U Ry Ur|Cy; and C" = z;,Crl, U Ry U
roAyr. Let t1,ty € V(C — {z;,;1n}) NV (J(A,C)) with ¢t;Cty maximal, and assume
that z;,t1,ts,y; occur on C in this order. By the planarity of (J, z;, 1, 23—;, b1) and
by (6.3), t; = c.

Then either t1Cty C z;Cr), for all choices of Ry and Ry, or t;Cty C r{Cy; for all
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choices of Ry and Ry; for otherwise, J(A',C") C L(A’,C"), and A’, B, C" contradict
the choice of A, B,C in (b). Moreover, since F' = (), t;Cty C 2z;Cr} for all choices
of Ry and Ry. Choose Ry, Ry so that z;Ar; and z;Crl are minimal. Since G is 5-
connected, {ry,ry, z1,y1} cannot be a cut in G. So by (5), G’ has a path R from
to some v € V(riAyy — {r1,y1}) UV (r5Cys — {rh, y1}) and internally disjoint from K.

First, assume i = 1. If v € V(r1Ayy) — {r1,y1} then G[{z1, 22, y1,vy2}] U z2; U
CU (zXp;UQ)U(zAvUR)U (QUqBz;_; UQ3-;) is a TK;5 in G' with branch
vertices xy, Ta, Y1, Y2, 2i- 1f v € V(riCyy) — {rh,y1} then G[{x1, z2, y1, 92} U z;z; UAU
(z: Xp; UQ;) U (z:CvUR)U (QUqBzs_; UQ3-;) is a TKy in G’ with branch vertices
L1, L2, Y1, Y2, Zi-

Hence, we may assume i = 2. If e(z3_;, B;) = 1 then z3_; = p3_; and, using the
path T from (A2), we see that G[{z1, 22, Y1, y2}] U z3_ix3_; Uz3_; Ty U (23_;BqUQ) U
(z3_iThby Ub1BpU PUcCrhU Ry UrsAv U R) U (y1Cry U Ry Ury Az U 2, X p; UpTys)
is a TK5 in G’ with branch vertices x1, z2,y1, Y2, 23-;. So assume e(z3_;, By) > 2.
Let P;, P, be independent paths from (A7) with ¢* = p. Now G[{x1,z2,y1,y2}] U
23 i3 ;U (23 Xp3_; UQ3_; ) U(PLUQ)U(P,UPUcCryURyUrs AvU R)U (y;Cry U

RiUr Az Uz Xp; UQ;) is a TKs5 in G’ with branch vertices x1, 2, Y1, Y2, 23

Case 2. z; ¢ V(J(A,C)).

Then F # () as the degree of z; in G’ is at least 5. So a* and r are defined.

Subcase 2.1. r # z;, and G’ contains a path S from some s € V (2, X7r) —{z;,r} to
some s’ € V(PUQUDB') —{y1, ¢} and internally disjoint from AUB'UCUPUQU X.

Note that s € V(B) if s € V(B’). First, assume s’ € V(Q —y1) UV (pBzs_; — p).
Then S U (Q — 1) U (pBzs—; — p) has a path S’ from s to z3_,. By (5), let R
be a path in G’ from r to some r" € V(2;,Cc) — {z;, ¢} and internally disjoint from
AUCUJ(A,C)UX. Then G[{x1,z2,y1,y2}] U zx; U (2, XsU S U z3 ;23 ;) UAU
(zCr" URUTrXp; UQ;) U (y1CcU PUpBb; UbibU Q3) is a TK5 in G' with branch

vertices x1, T2, Y1, Y2, Zi-
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Hence, we may assume s’ € V(P — ¢) U V(b;Bp). Since F # ) and By is 2-
connected, a* # z; so G’ has a path R from r to some ' € V(z;Aa* — 2;) and
internally disjoint from AU cCy; U J(A,C) U X.

Suppose e(z3_;, B1) = 1. Then z3_; = p3_; and we use the path T from (A2). Note
that (P —¢) UQ U B U z3_;Tb U bb; contains independent paths S, Ss from z3_; to
s’ y1, respectively. So G[{z1, e, y1, Y2} Uzs_jw3_;Uz3_;Tys U(S1USUsX 2z Uzux;) U
SoU (11 Ar'UR' UrXp;Up;Tys) is a T K5 in G’ with branch vertices 1, a2, y1, Yo, 23—

Now assume e(z3_;, By) > 2. Let Pj, P, be independent paths from (A7) with
¢ =pif s € Pand ¢* = ¢ if & € V(pBb;). So PLUP,UBUSU P UCQ contains
independent paths Sy, Sy from z3_; to s,y1, respectively. Then G[{z1,z2,y1, 92} U
233 U (23 Xp3—; U Qs3—;) USy U (S1UsXzUziw;) Uy Ar UR' UrXp, UQ;) is a

TK5 in G’ with branch vertices x1, 9, Y1, Y2, 23_;.

Subcase 2.2. v = z;, or G’ contains no path from z;Xr — {z;,r} to (PUQUB’) —
{y1, ¢} and internally disjoint from AUB ' UCUPUQ U X.

Then by (5), (6.2) and (6.3), {a*,c,r,z1, 22} is a 5-cut in G. Hence, since G
is b-connected, i = 2 by (5). Therefore, G has a 5-separation (Gy,G2) such that
V(G1NGy) ={a*,¢c,r,x1,25} and Gy = G[F U 2,Cc U z9Aa* U 2o X1 + 21].

Suppose Gy — 7 contains disjoint paths Sp,.5; from r, zs to a*, ¢, respectively.
If e(z1,B1) = 1 then z; = p; and, using the path 7' from (A2) with i = 2, we
see that G[{z1, e, y1, Y2} U 2121 U 21 Tya U (21 BqU Q) U (217b1 UbyBp U P U Sy) U
(y1Aa* U Sy UrXpo UpaTys) is a TK5 in G’ with branch vertices x1, 2, Y1, Y2, 21. S0
assume e(z1, By) > 2. Let P;, P, be independent paths from (A7) with ¢* = p. Then
G[{z1, 2, y1,y2}|Uz121U(21 X p1UQ1 ) U(PLUQ)U(PUPUS)U(y1 Aa*US1Ur X pa UQs)
is a T K5 in G’ with branch vertices x1, 22, y1, Yo, 21.

Thus, we may assume that such S, S do not exist in Go—x1. Then by Lemma 2.3.1,
(Gy — x1,7r,9,a*, ¢) is planar. If |[V(Gy)| > 7 then the assertion of Theorem 4.1.1

follows from Lemma 4.2.1. So assume |[V(Gs)| < 6. If r = 25 and there exists
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z € V(Gq) —{a*, ¢, x1,x9, 20} then za*, ze, zxq, 229, 220 € E(G) (as G is 5-connected);
so G[{c, x2, 2, 22}] contains K, and (ii) of Theorem 4.1.1 holds. Hence, we may as-
sume that r # 2z, or V(Gy) = {a*, ¢, x1, 2, 22}. Then, 2911, 20¢ € E(G) and L(C) = ()
(by (7).

Recall that yi20 ¢ E(G); so G[{x1,x2,11,20}] = K, . We complete the proof of
Theorem 4.1.1 by proving (iv) for this new K. Let z{, 2} € N(z1) — {2,941, 22} be
distinct and let G” := G — {z1v : v & {2, 1, 2{, 21, 22} }-

Suppose 21 € V(J(A,C)) —V(AUC) or 2} € V(Y3) or 2; € V(X). Then
(J(A, C)UYoU X Uzoys Ubby) — (AUC) contains a path from z] to z5. Hence, G — 1
contains an induced path X’ from 2] to x5 such that AUC is a cycle in (G — 1) — X’
and {y1, 22} € V(AUC). So by Lemma 3.2.1, we may assume that X’ is chosen so
that y1,y2 ¢ V(X') and (G — x1) — X' is 2-connected. Then by Lemma 2.3.6, G”
contains T K5 (which uses G[{z1, x2, 22, y1}] and x;27).

So assume z; € V(L(A,C)— J(A,C))UV(AUC) (as L(A) = L(C) = 0). In fact,
21 € V(C) — {22,151 }. For otherwise, (W U L(A,C)U A) — C contains an induced
path X’ from 2| to x9, where W comes from (4) and the remark preceding (5). Then
(G—x1)— X' contains CUQUqgBbU(X —{x, z2})UY5, which has a cycle containing
{y1, 22}. By Lemma 3.2.1, we may assume that X' is chosen so that y;,y, ¢ V(X’)
and (G — 1) — X' is 2-connected. Now the assertion of Theorem 4.1.1 follows from
Lemma 2.3.6.

If 21 € V(J(A,(C)), then there is a path P" in J(A, C) from 2| to some p’ € V(B)
and internally disjoint from AU BUC. So G[{z1, x2,y1, 22} U 2jx1 U 2] C2e U 21Cyy U
(P'Up'Bby UbibU Q3 Uysxs) UAis a TKs5 in G” with branch vertices x1, 23, y1, 29, 2].

Thus, we may assume that 2z ¢ V(J(A, C)). So there is a path A" in L(A, C) from
21 to some a’ € V(A) and internally disjoint from J(A,C)U AU C. Recall the path
W from (4) and the remark preceding (5). Now G[{x1,z2,y1, 22} U zjx1 U 21Cz U

ZiC'yl U (A/ UadAw U W) U (Q U qul U blb U Qg U Qg UngZQ) is a TK5 in G"” with
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: /
branch vertices x1, x9, Y1, 22, 2.
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