SPECIAL $T K_{5}$ IN GRAPHS CONTAINING K_{4}^{-}

A Thesis
Presented to
The Academic Faculty

by

Dawei He

In Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in
Mathematics

School of Mathematics
Georgia Institute of Technology
May 2017

Copyright © 2017 by Dawei He

SPECIAL $T K_{5}$ IN GRAPHS CONTAINING K_{4}^{-}

Approved by:

Professor Xingxing Yu, Committee Chair School of Mathematics Georgia Institute of Technology

Professor Xingxing Yu, Advisor School of Mathematics
Georgia Institute of Technology
Professor Robin Thomas
School of Mathematics
Georgia Institute of Technology

Professor William T. Trotter
School of Mathematics
Georgia Institute of Technology

Professor Greg Blekherman
School of Mathematics
Georgia Institute of Technology
Professor Geoffrey Ye Li
School of Electrical and Computer
Engineering
Georgia Institute of Technology
Date Approved: 6 September 2016

To my parents, Renhui He and Dianfeng Huang

PREFACE

One important task in structural graph theory is to obtain good characterizations of various classes of graphs. A well-known example is the Kuratowski's theorem [17], which states that a graph is planar if and only if it contains no $T K_{3,3}$ and $T K_{5}$. Given a graph $K, T K$ is used to denote a subdivision of K, which is a graph obtained from K by substituting some edges for paths.

It is natural to ask for structural characterizations of graphs containing no $T K_{5}$ and of graphs containing no $T K_{3,3}$. It can easily be derived from Kuratowski's theorem that every 3-connected nonplanar graph has a subgraph isomorphic to a $T K_{3,3}$ unless it is isomorphic to K_{5}.

Kelmans [15], and independently, Seymour [23] conjectured that every 5-connected nonplanar graph contains a $T K_{5} . K_{4,4}$ indicates that 4 -connectedness is not sufficient.

In [19], J. Ma and X. Yu proved Kelmans-Seymour conjecture for graphs containing K_{4}^{-}. A strategy to prove this conjecture for graphs containing no K_{4}^{-}is to strengthen this result of Ma and Yu . In this dissertation, we show that if G is a 5connected nonplanar graph containing K_{4}^{-}, then it contains $T K_{5}$ which avoids certain edges or vertices.

ACKNOWLEDGEMENTS

First and foremost, I wish to express my sincere thanks to my advisor, Professor Xingxing Yu, for his continuous support and encouragement. He introduces to me interesting questions in graph theory. The insightful discussions with him are very helpful on my research. Without his guidance and persistent help this dissertation would not have been possible.

I would like to thank Professor Robin Thomas, Professor William T. Trotter, Professor Greg Blekherman, and Professor Geoffrey Ye Li for being on my thesis committee. In particular, I want to thank Professor Geoffrey Ye Li for his guidance in interdiscipline of graph theory and wireless communication.

I take this opportunity to thank my fellow graduate students Dong Xia, Fan Zhou, Yan Wang, Qiqin Xie, Lu Lu, Chenchen Mou, Lei Zhang for years of friendship. The enjoyable time spent with them is one of the most precious memories for me. In particular, I appreciate Yan Wang's cooperation in years of research work.

Finally, I would like to acknowledge with gratitude to my parents Renhui He and Dianfeng Huang. My Ph.D. life would not have been smooth without their continuous support and love.

My research is partly supported through my advisor's grants from AST-1247545 and CNS-1443894.

TABLE OF CONTENTS

DEDICATION iii
PREFACE iv
ACKNOWLEDGEMENTS v
LIST OF FIGURES viii
SUMMARY ix
I INTRODUCTION TO GRAPH THEORY 1
1.1 Basics 1
1.2 Connectivity 3
1.3 Planarity 4
1.4 Other notions 5
II BACKGROUND AND PREVIOUS LEMMAS 6
2.1 Background of Kelmans-Seymour conjecture 6
2.2 Motivation for our work 7
2.3 Previous lemmas 8
III 2-VERTICES IN K_{4}^{-} 13
3.1 Main result 13
3.2 Non-separating paths 14
3.3 An intermediate substructure 23
3.4 Finding $T K_{5}$ 37
IV 3 -VERTICES IN K_{4}^{-} 57
4.1 Main Result 57
4.2 Non-separating paths 58
4.3 Two special cases 76
4.4 Substructure 84
4.5 Finding $T K_{5}$ 103
REFERENCES 118
VITA 121

LIST OF FIGURES

1 An intermediate structure 1 38
2 Structure of G in (iii) of Lemma 4.2.5. 61
3 Structure of G in (iv) of Lemma 4.2.5. 62
4 An intermediate structure 2 85

SUMMARY

Given a graph $K, T K$ is used to denote a subdivision of K, which is a graph obtained from K by substituting some edges for paths. The well-known KelmansSeymour conjecture states that every nonplanar 5 -connected graph contains $T K_{5}$. Ma and Yu proved the conjecture for graphs containing K_{4}^{-}. In this dissertation, we strengthen their result in two ways. The results will be useful for completely resolving the Kelmans-Seymour conjecture.

Let G be a 5 -connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct, such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$.

We show that one of the following holds: $G-y_{2}$ contains K_{4}^{-}, or G contains a $T K_{5}$ in which y_{2} is not a branch vertex, or G has a special 5 -separation, or for any distinct $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}, G-\left\{y_{2} v: v \notin\left\{x_{1}, x_{2}, w_{1}, w_{2}, w_{3}\right\}\right\}$ contains $T K_{5}$.

We show that one of the following holds: $G-x_{1}$ contains K_{4}^{-}, or G contains a $T K_{5}$ in which x_{1} is not a branch vertex, or G contains a K_{4}^{-}in which x_{1} is of degree 2, or $\left\{x_{2}, y_{1}, y_{2}\right\}$ may be chosen so that for any distinct $z_{0}, z_{1} \in N\left(x_{1}\right)-\left\{x_{2}, y_{1}, y_{2}\right\}$, $G-\left\{x_{1} v: v \notin\left\{z_{0}, z_{1}, x_{2}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

CHAPTER I

INTRODUCTION TO GRAPH THEORY

1.1 Basics

We use notation and terminology from [1, 5].
A graph is an ordered pair $G=(V, E)$ comprising a finite set V of vertices, together with a set E of edges, which are 2-element subsets of V.

Let $G=(V, E)$ be a graph. For an edge $\{x, y\} \subseteq V$, graph theorists usually use the shorter notation $x y$. The vertices x, y are said to be adjacent to each other. The edge $x y$ is said to be incident to the vertices x and y.

Let U be a subset of V. The neighbors of U are the vertices in $V \backslash U$ adjacent to some vertex in U, and their set is denoted by $N_{G}(U)$, or briefly $N(U)$. We write $N_{G}(v)$ for $N_{G}(\{v\})$.

Let $v \in V$ be a vertex in G. The degree of v is the number of neighbors of v, which is also equal to the number of edges incident to v, denoted by $d_{G}(v)$.

A walk W in G of length k is an alternating sequence of vertices and edges $v_{0}, e_{0}, v_{1}, e_{1}, v_{2}, \ldots, v_{k-1}, e_{k-1}, v_{k}$, such that $v_{0}, v_{1}, \ldots, v_{k} \in V, e_{0}, \ldots, e_{k-1} \in E$, and $e_{i}=v_{i} v_{i+1}$ for $0 \leq i \leq k-1 . W$ is said to be a path if $v_{0}, v_{1}, \ldots, v_{k}$ are all distinct. If W is a path, we write $W=v_{0} v_{1} \ldots v_{k}$ by the natural sequence of its vertices and call W a path from v_{0} to v_{k} and v_{1}, \ldots, v_{k-1} the internal vertices. W is said to be a cycle if $v_{0}, v_{1}, \ldots, v_{k}$ are all distinct except that $v_{0}=v_{k}$.

Let S, T be two subsets of V and P be a path from v_{0} to v_{k}. We call P an $S-T$ path if $V(P) \cap S=\left\{v_{0}\right\}$ and $V(P) \cap T=\left\{v_{k}\right\}$.

Let $G=(V, E)$ be a graph. G is said to be a bipartite graph if V can be divided into two disjoint parts A and B such that every edge in E connects a vertex in A to
one in B, and we also write $G=(A, B, E)$. A bipartite graph $G=(A, B, E)$ is said to be a complete bipartite graph if every vertex in A is connected to every vertex in B, and we also denote G by $K_{m, n}$ if $|A|=m$ and $|B|=n$.

Let $G=(V, E)$ be a graph. G is said to be a complete graph if every pair of vertices is connected by an edge, and we also denote G by K_{n} if $|V|=n$. In this dissertation we use K_{4}^{-}to denote the graph obtained from K_{4} by deleting a single edge.

Let $G=(V, E)$ be a graph. A graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is said to be a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, written as $G^{\prime} \subseteq G$. In this dissertation when we call a graph minimal or maximal with some property but have not specified any particular ordering, we are referring to the subgraph relation.

Let $G=(V, E)$ be a graph and U be a subset of V. We denote by $G[U]$ the graph on U whose edges are precisely those in E with both ends in U. A subgraph G^{\prime} is said to be an induced subgraph of G if $G^{\prime}=G[U]$ for some $U \subseteq V$. An induced path (or induced cycle) of G is a path (or cycle) that is an induced subgraph of G. Let U be a subset of V. We write $G-U$ for $G[V \backslash U]$. Let v be a vertex in V. We write $G-v$ for $G-\{v\}$. Let G^{\prime} be a subgraph of G. We write $G-G^{\prime}$ for $G-V\left(G^{\prime}\right)$. For a set F of 2-element subsets of V, we write $G-F:=(V, E \backslash F)$ and $G+F:=(V, E \cup F)$. As above, $G-\{e\}$ and $G+\{e\}$ are abbreviated to $G-e$ and $G+e$.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. $G_{1} \cup G_{2}$ is the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$, and $G_{1} \cap G_{2}$ is the graph with vertex set $V_{1} \cap V_{2}$ and edge set $E_{1} \cap E_{2}$.

Let $G=(V, E)$ be a graph and $e=x y$ be an edge in E. By G / e we denote the graph obtained from G by contracting the edge e into a new vertex v_{e}, which becomes adjacent to all the former neighbors of x and of y. For a connected subgraph M of G, we use G / M to denote the graph obtained from G by contracting M into a new vertex v_{M}, which becomes adjacent to all the former neighbors of vertices in M. A
graph K is called a minor of G if K can be formed from G by deleting edges and vertices and by contracting edges.

Let $G=(V, E)$ and $u v \in E$. We may form an elementary subdivision of G by adding a new vertex w and replacing the edge $u v$ by edges $u w$ and $v w$. A graph H is said to be a subdivision of G if H can be obtained from G by a sequence of elementary subdivisions. We use $T G$ to denote a subdivision of G. The vertices of $T G$ corresponding to those in V are its branch vertices.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. An isomorphism of graphs G_{1} and G_{2} is a bijection between V_{1} and V_{2}

$$
f: V_{1} \longrightarrow V_{2}
$$

such that any two vertices x and y of G_{1} are adjacent if and only if $f(x)$ and $f(y)$ are adjacent in G_{2}, and G_{1}, G_{2} are called isomorphic and denoted as $G_{1} \cong G_{2}$.

1.2 Connectivity

Let $G=(V, E)$ be a graph. If $S, T \subseteq V, X \subseteq V \cup E$ and every S - T path in G contains a vertex or an edge from X, we say that X separates S from T in G or X separates G, and call X a separating set in G. Furthermore, we call X a vertex cut of G if $X \subseteq V$. A vertex $v \in V$ is said to be a cutvertex if $\{v\}$ is a vertex cut of G. We call X an edge cut of G if $X \subseteq E$. An edge $e \in E$ is said to be a bridge if $\{e\}$ is an edge cut of G.

A k-separation of a graph G is a pair $\left(G_{1}, G_{2}\right)$ of subgraphs of G such that $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right), E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset$, neither G_{1} nor G_{2} is a subgraph of the other, and $\left|V\left(G_{1} \cap G_{2}\right)\right|=k$.

Let $G=(V, E)$ be a graph. We say that G is connected if there is a path from any vertex to any other vertex in G. A maximal connected subgraph is called a component of G. A maximal connected subgraph without a cutvertex is called a block of G.

Let $G=(V, E)$ be a graph and k be a positive integer. G is k-connected if $|G|>k$ and $G-X$ is connected for any subset $X \subseteq V$ with $|X|<k . G$ is (k, A)-connected if every component of $G-X$ contains a vertex from A for any vertex cut $X \subseteq V$ with $|X|<k$.

Every graph is connected if and only if it is 1-connected. Every block of a graph is either a maximal 2-connected subgraph, or a bridge (with its ends), or an isolated vertex. We call a block nontrivial if it is 2-connected.

1.3 Planarity

Let $G=(V, E)$ be a graph. We say that G is plane if G is drawn in the plane with no crossing edges. Let $A \subseteq V$. We say that (G, A) is plane if G is drawn in a closed disc in the plane with no crossing edges such that the vertices in A are incident with the boundary of the closed disc. Moreover, for vertices $a_{1}, \ldots, a_{k} \in V(G)$, we say $\left(G, a_{1}, \ldots, a_{k}\right)$ is plane if G is drawn in a closed disc in the plane with no crossing edges such that a_{1}, \ldots, a_{k} occur on the boundary of the disc in this cyclic order.

We say that G is planar if G has a plane drawing. Otherwise, G is said to be nonplanar. We say that (G, A) is planar if (G, A) has a plane representation such that (G, A) is plane. Similarly, we say that $\left(G, a_{1}, \ldots, a_{k}\right)$ is planar if $\left(G, a_{1}, \ldots, a_{k}\right)$ has a plane representation such that $\left(G, a_{1}, \ldots, a_{k}\right)$ is plane.

A 3-planar graph (G, \mathcal{A}) consists of a graph G and a collection $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint subsets of $V(G)$ (possibly $\mathcal{A}=\emptyset$) such that

- for distinct $i, j \in[k], N\left(A_{i}\right) \cap A_{j}=\emptyset$,
- for $i \in[k],\left|N\left(A_{i}\right)\right| \leq 3$, and
- if $p(G, \mathcal{A})$ denotes the graph obtained from G by (for each $i \in[k]$) deleting A_{i} and adding new edges joining every pair of distinct vertices in $N\left(A_{i}\right)$, then $p(G, \mathcal{A})$ can be drawn in a closed disc with no crossing edges.

If, in addition, b_{1}, \ldots, b_{n} are vertices in G such that $b_{j} \notin A_{i}$ for all $i \in[k]$ and $j \in[n], p(G, \mathcal{A})$ can be drawn in a closed disc in the plane with no crossing edges, and b_{1}, \ldots, b_{n} occur on the boundary of the disc in this cyclic order, then we say that $\left(G, \mathcal{A}, b_{1}, \ldots, b_{n}\right)$ is 3-planar. If there is no need to specify \mathcal{A}, we will simply say that $\left(G, b_{1}, \ldots, b_{n}\right)$ is 3-planar.

1.4 Other notions

A collection of paths in a graph are said to be independent if no internal vertex of any path in the collection belongs to another path in the collection.

Let $G=(V, E)$ be a graph and u, v be two vertices in V. We say that a sequence of blocks B_{1}, \ldots, B_{k} in G is a chain of blocks from u to v if $\left|V\left(B_{i}\right) \cap V\left(B_{i+1}\right)\right|=1$ for $i \in[k-1], V\left(B_{i}\right) \cap V\left(B_{j}\right)=\emptyset$ for any $1 \leq i<i+1<j \leq k, u, v \in V\left(B_{1}\right)$ are distinct when $k=1$, and $u \in V\left(B_{1}\right)-V\left(B_{2}\right)$ and $v \in V\left(B_{k}\right)-V\left(B_{k-1}\right)$ when $k \geq 2$. For convenience, we also view this chain of blocks as $\bigcup_{i=1}^{k} B_{i}$, a subgraph of G.

For a graph G and a subgraph L of G, an L-bridge of G is a subgraph of G that is induced by an edge in $E(G)-E(L)$ with both incident vertices in $V(L)$, or is induced by the edges in a component of $G-L$ as well as edges from that component to L.

CHAPTER II

BACKGROUND AND PREVIOUS LEMMAS

2.1 Background of Kelmans-Seymour conjecture

The well-known Kuratowski's theorem [17] can be stated as follows: A graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$. It is known that any 3connected nonplanar graph other than K_{5} contains a subdivision of $K_{3,3}$ (see [27] for more results). Seymour [23] conjectured in 1977 that every 5-connected nonplanar graph contains a subdivision of K_{5}. This was also posed by Kelmans [15] in 1979.
K. Kawarabayashi, J. Ma and X. Yu proved Kelmans-Seymour conjecture for graphs containing $K_{2,3}$ in [14]. J. Ma and X. Yu also proved Kelmans-Seymour conjecture for graphs containing K_{4}^{-}in [19]. In this dissertation, we will generalize the second result in two different ways.

Now we mention several results and problems related to the Kelmans-Seymour conjecture. G. A. Dirac in 1964 [6] conjectured that every graph on n vertices with at least $3 n-5$ edges contains a subdivision of the complete graph K_{5} on five vertices, which was also mentioned by P. Erdős and A. Hajnal in [7]. Maximal planar graphs show that this is best possible for every $n \geq 5$.
K. Wagner in [32] characterized all edge-maximal graphs not contractible to K_{5}. It follows easily from this result that every graph G on n vertices with at least $3 n-5$ edges is contractible to K_{5}.
Z. Skupién [26] proved that Dirac's conjecture is true for locally Hamiltonian graphs, i.e. graphs where every vertex has a Hamiltonian neighborhood. It was proved by C. Thomassen in [28] that every graph on n vertices with at least $4 n-10$ contains a subdivision of K_{5}. Then he improved the bound to $\frac{7}{2} n-7$ in [30], and
proved in [31] that a subdivision of K_{5} can be selected such that a prescribed vertex is no branch vertex, and with this condition the result is best possible. W. Mader finally proved Dirac's conjecture in [20]. Kézdy and McGuiness [16] showed that Kelmans-Seymour conjecture if true would imply Mader's result.

A conjecture of Hajós states that every graph containing no subdivision of K_{k+1} is k-colorable. A graph G is said to be k-colorable if there is a map $c: V \rightarrow S$ such that $c(u) \neq c(v)$ whenever u and v are adjacent. The smallest number of colors needed to color a graph G is called its chromatic number. A graph that can be assigned a k-coloring is k-colorable. P. Catlin [2] showed that Kelmans-Seymour conjecture is related to Hajós' conjecture, and Hajós' conjecture is false for $k \geq 6$ and true for $k=1,2,3$, and remains open for the case $k=4$ and $k=5$.

2.2 Motivation for our work

As mentioned in the previous section, the motivation of this dissertation is to generalize J. Ma and X. Yu's result on Kelmans-Seymour conjecture for graphs containing K_{4}^{-}. In this section, we state a strategy to prove the Kelmans-Seymour conjecture, which is systematically outlined in [8].

Let H be a 5 -connected nonplanar graph not containing K_{4}^{-}. Then by a result of Kawarabayashi [12], H contains an edge e such that H / e is 5 -connected. If H / e is planar, we can apply a discharging argument (see [8] for more details). So assume that H / e is not planar. Let M be a maximal connected subgraph of H such that H / M is 5 -connected and nonplanar. Let z denote the vertex representing the contraction of M, and let $G=H / M$. Then one of the following holds.
(a) G contains a K_{4}^{-}in which z is of degree 2.
(b) G contains a K_{4}^{-}in which z is of degree 3 .
(c) G does not contain K_{4}^{-}, and there exists $T \subseteq G$ such that $z \in V(T), T \cong K_{2}$
or $T \cong K_{3}, G / T$ is 5 -connected and planar.
(d) G does not contain K_{4}^{-}, and for any $T \subseteq G$ with $z \in V(T)$ and $T \cong K_{2}$ or $T \cong K_{3}, G / T$ is not 5 -connected.

In [8] certain special separations are studied and the results can be used to take care of (c). In this dissertation, we prove generalizations of J. Ma and X. Yu's result on graphs containing K_{4}^{-}, which can be used for taking care of (a) and (b). The results are collected in [9] and [10], which are prepared to publish.

2.3 Previous lemmas

In this section, we list a number of known results that will be used in the proof of the main results.

First, we state the following result of Seymour [24]; equivalent versions can be found in $[3,25,29]$.

Lemma 2.3.1 Let G be a graph and $s_{1}, s_{2}, t_{1}, t_{2}$ be distinct vertices of G. Then exactly one of the following holds:
(i) G contains disjoint paths from s_{1} to t_{1} and from s_{2} to t_{2}, respectively.
(ii) $\left(G, s_{1}, s_{2}, t_{1}, t_{2}\right)$ is 3-planar.

We also state a generalization of Lemma 2.3.1, which is a consequence of Theorems 2.3 and 2.4 in [22].

Lemma 2.3.2 Let G be a graph, $v_{1}, \ldots, v_{n} \in V(G)$ be distinct, and $n \geq 4$. Then exactly one of the following holds:
(i) There exist $1 \leq i<j<k<l \leq n$ such that G contains disjoint paths from v_{i}, v_{j} to v_{k}, v_{l}, respectively.
(ii) $\left(G, v_{1}, v_{2}, \ldots, v_{n}\right)$ is 3-planar.

We will make use of the following result of Menger [11].

Lemma 2.3.3 Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum vertex cut separating x from y is equal to the maximum number of independent paths from x to y.

We also need the following result of Perfect [21].
Lemma 2.3.4 Let G be a graph, $u \in V(G)$, and $A \subseteq V(G-u)$. Suppose there exist k independent paths from u to distinct $a_{1}, \ldots, a_{k} \in A$, respectively, and otherwise disjoint from A. Then for any $n \geq k$, if there exist n independent paths P_{1}, \ldots, P_{n} in G from u to n distinct vertices in A and otherwise disjoint from A then P_{1}, \ldots, P_{n} may be chosen so that $a_{i} \in V\left(P_{i}\right)$ for $i \in[k]$.

We will also use a result of Watkins and Mesner [33] on cycles through three vertices.

Lemma 2.3.5 Let G be a 2-connected graph and let y_{1}, y_{2}, y_{3} be three distinct vertices of G. There is no cycle in G through y_{1}, y_{2}, y_{3} if, and only if, one of the following holds:
(i) There exists a 2-cut S in G and there exist pairwise disjoint subgraphs $D_{y_{i}}$ of $G-S, i \in[3]$, such that $y_{i} \in V\left(D_{y_{i}}\right)$ and each $D_{y_{i}}$ is a union of components of $G-S$.
(ii) There exist 2-cuts $S_{y_{i}}$ of $G, i \in[3]$, and pairwise disjoint subgraphs $D_{y_{i}}$ of G, such that $y_{i} \in V\left(D_{y_{i}}\right)$, each $D_{y_{i}}$ is a union of components of $G-S_{y_{i}}$, there exists $z \in S_{y_{1}} \cap S_{y_{2}} \cap S_{y_{3}}$, and $S_{y_{1}}-\{z\}, S_{y_{2}}-\{z\}, S_{y_{3}}-\{z\}$ are pairwise disjoint.
(iii) There exist pairwise disjoint 2-cuts $S_{y_{i}}$ in $G, i \in[3]$, and pairwise disjoint subgraphs $D_{y_{i}}$ of $G-S_{y_{i}}$ such that $y_{i} \in V\left(D_{y_{i}}\right), D_{y_{i}}$ is a union of components of $G-S_{y_{i}}$, and $G-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$ has precisely two components, each containing exactly one vertex from $S_{y_{i}}$ for $i \in[3]$.

The next result is Theorem 3.2 from [18].

Lemma 2.3.6 Let G be a 5-connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Suppose $G-x_{1} x_{2}$ contains a path X between x_{1} and x_{2} such that $G-X$ is 2-connected, $X-x_{2}$ is induced in G, and $y_{1}, y_{2} \notin V(X)$. Let $v \in V(X)$ such that $x_{2} v \in E(X)$. Then G contains a $T K_{5}$ in which $x_{2} v$ is an edge and $x_{1}, x_{2}, y_{1}, y_{2}$ are branch vertices.

It is easy to see that under the conditions of Lemma 2.3.6, $G-\left\{x_{2} u: u \notin\right.$ $\left.\left\{v, x_{1}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$. The next result is Corollary 2.11 in [14].

Lemma 2.3.7 Let G be a connected graph with $|V(G)| \geq 7, A \subseteq V(G)$ with $|A|=5$, and $a \in A$, such that G is $(5, A)$-connected, $(G-a, A-\{a\})$ is plane, and G has no 5-separation $\left(G_{1}, G_{2}\right)$ with $A \subseteq G_{1}$ and $\left|V\left(G_{2}\right)\right| \geq 7$. Suppose there exists $w \in N(a)$ such that w is not incident with the outer face of $G-a$. Then
(i) the vertices of $G-a$ cofacial with w induce a cycle C_{w} in $G-a$, and
(ii) $G-a$ contains paths P_{1}, P_{2}, P_{3} from w to $A-\{a\}$ such that $V\left(P_{i} \cap P_{j}\right)=\{w\}$ for $1 \leq i<j \leq 3$, and $\left|V\left(P_{i} \cap C_{w}\right)\right|=\left|V\left(P_{i}\right) \cap A\right|=1$ for $i \in[3]$.

The next three results are Theorem 1.1, Theorem 1.2, and Proposition 4.2, respectively, in [8].

Lemma 2.3.8 Let G be a 5-connected nonplanar graph and let $\left(G_{1}, G_{2}\right)$ be a 5separation in G. Suppose $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$, $a \in V\left(G_{1} \cap G_{2}\right)$, and $\left(G_{2}-\right.$ a, $\left.V\left(G_{1} \cap G_{2}\right)-\{a\}\right)$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}.
(iii) G has a 5 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ such that $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}, G_{1} \subseteq$ G_{1}^{\prime}, and G_{2}^{\prime} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges ab ${ }_{i}$ for $i \in[4]$.

Lemma 2.3.9 Let G be a 5 -connected graph and $\left(G_{1}, G_{2}\right)$ be a 5 -separation in G. Suppose that $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$ and $G\left[V\left(G_{1} \cap G_{2}\right)\right]$ contains a triangle a a $a_{1} a_{2} a$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ such that $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2}^{\prime} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}$ a_{1} and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges $a b_{i}$ for $i \in[4]$.
(iv) For any distinct $u_{1}, u_{2}, u_{3} \in N(a)-\left\{a_{1}, a_{2}\right\}, G-\left\{a v: v \notin\left\{a_{1}, a_{2}, u_{1}, u_{2}, u_{3}\right\}\right\}$ contains $T K_{5}$.

Lemma 2.3.10 Let G be a 5-connected nonplanar graph and $a \in V(G)$ such that $G-a$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges $a b_{i}$ for $i \in[4]$.

We also need the following results, which are Porposition 1.3 and Proposition 2.3 in [8], respectively.

Lemma 2.3.11 Let G be a 5-connected nonplanar graph, $\left(G_{1}, G_{2}\right)$ a 5-separation in $G, V\left(G_{1} \cap G_{2}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ such that G_{2} is the graph obtained from the edgedisjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges $a b_{i}$ for $i \in[4]$. Suppose $\left|V\left(G_{1}\right)\right| \geq 7$. Then, for any $u_{1}, u_{2} \in$ $N(a)-\left\{b_{1}, b_{2}, b_{3}\right\}, G-\left\{a v: v \notin\left\{b_{1}, b_{2}, b_{3}, u_{1}, u_{2}\right\}\right\}$ contains $T K_{5}$.

Lemma 2.3.12 Let G be a graph, $A \subseteq V(G)$, and $a \in A$ such that $|A|=6,|V(G)| \geq$ 8, $(G-a, A-\{a\})$ is planar, and G is $(5, A)$-connected. Then one of the following holds:
(i) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which the degree of a is 2.
(ii) G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $a \in V\left(G_{1} \cap G_{2}\right), A \subseteq V\left(G_{1}\right),\left|V\left(G_{2}\right)\right| \geq$ 7, and $\left(G_{2}-a, V\left(G_{1} \cap G_{2}\right)-\{a\}\right)$ is planar.

CHAPTER III

2-VERTICES IN K_{4}^{-}

3.1 Main result

In this section, we prove the following theorem.

Theorem 3.1.1 Let G be a 5-connected nonplanar graph and $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which y_{2} is not a branch vertex.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and G_{2} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}$ a_{1} and the 4-cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) For $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}, G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$.

Before proving Theorem 3.1.1, we show its relation with case (a) in Section 2.2.
Let H be a 5 -connected nonplanar graph not containing K_{4}^{-}. If case (a) in Section 2.2 occurs, then there is a connected subgraph M of H such that $G:=H / M$ is 5 connected and nonplanar. Furthermore, there exists $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$ and y_{2} is the vertex representing the contraction of M.

Let P be a path in $H\left[V(M) \cup\left\{x_{1}, x_{2}\right\}\right]$ from x_{1} to x_{2} and w_{1} be a neighbor of y_{2} in G other than x_{1}, x_{2}. Since M is a connected subgraph, there is a path Q in $H\left[V(M) \cup\left\{w_{1}\right\}\right]$ from w_{1} to some vertex $v \in V(P)-\left\{x_{1}, x_{2}\right\}$ independent from P.

It is easy to see that P and Q gives three independent paths from v to x_{1}, x_{2}, w_{1}, respectively. By Lemma 2.3.4, there are five independent paths $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ in $H\left[V(M) \cup\left\{x_{1}, x_{2}, w_{1}, w_{2}, w_{3}\right\}\right]$ from v to $x_{1}, x_{2}, w_{1}, w_{2}, w_{3}$, respectively, where $w_{1}, w_{2}, w_{3} \in N_{G}\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$.

Now we may assume that one of the four results in Theorem 3.1.1 holds. If (i) holds, i.e. G contains a $T K_{5}$ in which y_{2} is not a branch vertex, then a $T K_{5}$ in H can be easily derived from the one in G.

If (ii) holds, i.e. $G-y_{2}$ contains a K_{4}^{-}, then it implies that H itself contains a K_{4}^{-}. By J. Ma and X. Yu's result on Kelmans-Seymour conjecture, H contains a $T K_{5}$.

If (iii) holds, by similar discussion as above, we can find five independent paths $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$ in $H\left[V(M) \cup\left\{b_{1}, b_{2}, b_{3}, u_{1}, u_{2}\right\}\right]$ from some vertex $w \in V(M)$ to $b_{1}, b_{2}, b_{3}, u_{1}, u_{2}$, respectively, where $u_{1}, u_{2} \in N\left(y_{2}\right)-\left\{b_{1}, b_{2}, b_{3}\right\}$. By Lemma 2.3.11, there exists a $T K_{5}$ in $G-\left\{a v: v \notin\left\{b_{1}, b_{2}, b_{3}, u_{1}, u_{2}\right\}\right\}$. Hence, H contains a $T K_{5}$.

If (iv) holds, by the existence of the five independent paths $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ in $H\left[V(M) \cup\left\{x_{1}, x_{2}, w_{1}, w_{2}, w_{3}\right\}\right]$ from v to $x_{1}, x_{2}, w_{1}, w_{2}, w_{3}$, respectively, then H contains a $T K_{5}$.

3.2 Non-separating paths

Our first step for proving Theorem 3.1.1 is to find the path X in G (see Figure 1) whose removal does not affect connectivity too much.

The following result was implicit in $[4,13]$. Since it has not been stated and proved explicitly before, we include a proof.

Lemma 3.2.1 Let G be a graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that G is $\left(4,\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)$-connected. Suppose there exists a path X in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $G-X$ contains a chain of blocks B from y_{1} to y_{2}. Then one of the following holds:
(i) There is a 4-separation $\left(G_{1}, G_{2}\right)$ in G such that $B+\left\{x_{1}, x_{2}\right\} \subseteq G_{1},\left|V\left(G_{2}\right)\right| \geq 6$, and $\left(G_{2}, V\left(G_{1} \cap G_{2}\right)\right)$ is planar.
(ii) There exists an induced path X^{\prime} in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $G-X^{\prime}$ is a chain of blocks from y_{1} to y_{2} and contains B.

Proof. Without loss of generality, we may assume that X is induced in $G-x_{1} x_{2}$. We choose such X that
(1) B is maximal,
(2) the smallest size of a component of $G-X$ disjoint from B (if exists) is minimal, and
(3) the number of components of $G-X$ is minimal.

We claim that $G-X$ is connected. For, suppose $G-X$ is not connected and let D be a component of $G-X$ other than B such that $|V(D)|$ is minimal. Let $u, v \in N(D) \cap V(X)$ such that $u X v$ is maximal. Since G is $\left(4,\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)$ connected, $u X v-\{u, v\}$ contains a neighbor of some component of $G-X$ other than D. Let Q be an induced path in $G[D+\{u, v\}]$ from u to v, and let X^{\prime} be obtained from X by replacing $u X v$ with Q. Then B is contained in B^{\prime}, the chain of blocks in $G-X^{\prime}$ from y_{1} to y_{2}. Moreover, either the smallest size of a component of $G-X^{\prime}$ disjoint from B^{\prime} is smaller than the smallest size of a component of $G-X$ disjoint from B, or the number of components of $G-X^{\prime}$ is smaller than the number of components of $G-X$. This gives a contradiction to (1) or (2) or (3). Hence, $G-X$ is connected.

If $G-X=B$, we are done with $X^{\prime}:=X$. So assume $G-X \neq B$. By (1), each B-bridge of $G-X$ has exactly one vertex in B. Thus, for each B-bridge D of $G-X$, let $b_{D} \in V(D) \cap V(B)$ and $u_{D}, v_{D} \in N\left(D-b_{D}\right) \cap V(X)$ such that $u_{D} X v_{D}$ is maximal.

We now define a new graph \mathcal{B} such that $V(\mathcal{B})$ is the set of all B-bridges of $G-X$, and two B-bridges in $G-X, C$ and D, are adjacent if $u_{C} X v_{C}-\left\{u_{C}, v_{C}\right\}$ contains a neighbor of $D-b_{D}$ or $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ contains a neighbor of $C-b_{C}$. Let \mathcal{D} be a component of \mathcal{B}. Then $\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$ is a subpath of X. Let $S_{\mathcal{D}}$ be the union of $\left\{b_{D}: D \in V(\mathcal{D})\right\}$ and the set of neighbors in B of the internal vertices of $\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$.

Suppose \mathcal{B} has a component \mathcal{D} such that $\left|S_{\mathcal{D}}\right| \leq 2$. Let $u, v \in V(X)$ such that $u X v=\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$. Then $\{u, v\} \cup S_{\mathcal{D}}$ is a cut in G. Since G is $\left(4,\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)-$ connected, $\left|S_{\mathcal{D}}\right|=2$. So there is a 4 -separation $\left(G_{1}, G_{2}\right)$ in G such that $V\left(G_{1} \cap G_{2}\right)=$ $\{u, v\} \cup S_{\mathcal{D}}, B+\left\{x_{1}, x_{2}\right\} \subseteq G_{1}$, and $D \subseteq G_{2}$ for $D \in V(\mathcal{D})$. Hence $\left|V\left(G_{2}\right)\right| \geq 6$. If G_{2} has disjoint paths S_{1}, S_{2}, with S_{1} from u to v and S_{2} between the vertices in $S_{\mathcal{D}}$, then choose S_{1} to be induced and let $X^{\prime}=x_{1} X u \cup S_{1} \cup v X x_{2}$; now $B \cup S_{2}$ is contained in the chain of blocks in $G-X^{\prime}$ from y_{1} to y_{2}, contradicting (1). So no such two paths exist. Hence, by Lemma 2.3.1, $\left(G_{2}, V\left(G_{1} \cap G_{2}\right)\right)$ is planar and thus (i) holds.

Therefore, we may assume that $\left|S_{\mathcal{D}}\right| \geq 3$ for any component \mathcal{D} of \mathcal{B}. Hence, there exist a component \mathcal{D} of \mathcal{B} and $D \in V(\mathcal{D})$ with the following property: $u_{D} X v_{D}-$ $\left\{u_{D}, v_{D}\right\}$ contains vertices w_{1}, w_{2} and $S_{\mathcal{D}}$ contains distinct vertices b_{1}, b_{2} such that for each $i \in[2],\left\{b_{i}, w_{i}\right\}$ is contained in a $(B \cup X)$-bridge of G disjoint from $D-b_{D}$. Let P denote an induced path in $G\left[D+\left\{u_{D}, v_{D}\right\}\right]$ between u_{D} and v_{D}, and let X^{\prime} be obtained from X by replacing $u_{D} X v_{D}$ with P. Clearly, the chain of blocks in $G-X^{\prime}$ from y_{1} to y_{2} contains B as well as a path from b_{1} to b_{2} and internally disjoint from $D \cup B$. This is a contradiction to (1).

We now show that the conclusion of Theorem 3.1.1 holds or we can find a path X in G such that $y_{1}, y_{2} \notin V(X)$ and $\left(G-y_{2}\right)-X$ is 2-connected.

Lemma 3.2.2 Let G be a 5-connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which y_{2} is not a branch vertex.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}$ a_{1} and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) For $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}, G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$ contains $T K_{5}$, or $G-x_{1} x_{2}$ has an induced path X from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(X)$, $w_{1}, w_{2}, w_{3} \in V(X)$, and $\left(G-y_{2}\right)-X$ is 2-connected.

Proof. First, we may assume that
(1) $G-x_{1} x_{2}$ has an induced path X from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(X)$ and $\left(G-y_{2}\right)-X$ is 2 -connected.

To see this, let $z \in N\left(y_{1}\right)-\left\{x_{1}, x_{2}\right\}$. Since G is 5 -connected, $\left(G-x_{1} x_{2}\right)-\left\{y_{1}, y_{2}, z\right\}$ has a path X from x_{1} to x_{2}. Thus, we may apply Lemma 3.2.1 to $G-y_{2}, X$ and $B=y_{1} z$.

Suppose (i) of Lemma 3.2.1 holds. Then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $y_{2} \in V\left(G_{1} \cap G_{2}\right),\left\{x_{1}, x_{2}, y_{1}, z\right\} \subseteq V\left(G_{1}\right)$ and $y_{1} z \in E\left(G_{1}\right),\left|V\left(G_{2}\right)\right| \geq 7$, and $\left(G_{2}-y_{2}, V\left(G_{1} \cap G_{2}\right)-\left\{y_{2}\right\}\right)$ is planar. If $\left|V\left(G_{1}\right)\right| \geq 7$ then, by Lemma 2.3.8, (i) or (ii) or (iii) holds. If $\left|V\left(G_{1}\right)\right|=5$ then $G_{1}-y_{2}$ has a K_{4}^{-}or $G-y_{2}$ is planar; hence, (ii) holds in the former case, and (i) or (ii) or (iii) holds in the latter case by Lemma 2.3.10. Thus we may assume that $\left|V\left(G_{1}\right)\right|=6$. Let $v \in V\left(G_{1}-G_{2}\right)$. Then $v \neq y_{2}$. Since G is 5 -connected, v must be adjacent to all vertices in $V\left(G_{1} \cap G_{2}\right)$. Thus, $v \neq y_{1}$ as $y_{1} y_{2} \notin E(G)$. Now $\left|V\left(G_{1} \cap G_{2}\right) \cap\left\{x_{1}, x_{2}, z\right\}\right| \geq 2$. Therefore, $G\left[\left\{v, y_{1}\right\} \cup\left(V\left(G_{1} \cap G_{2}\right) \cap\left\{x_{1}, x_{2}, z\right\}\right)\right]$ contains K_{4}^{-}; so (ii) holds.

So we may assume that (ii) of Lemma 3.2.1 holds. Then $\left(G-y_{2}\right)-x_{1} x_{2}$ has an induced path, also denoted by X, from x_{1} to x_{2} such that $\left(G-y_{2}\right)-X$ is a
chain of blocks from y_{1} to z. Since $z y_{1} \in E(G),\left(G-y_{2}\right)-X$ is in fact a block. If $V\left(\left(G-y_{2}\right)-X\right)=\left\{y_{1}, z\right\}$ then, since G is 5 -connected and X is induced in $\left(G-y_{2}\right)-x_{1} x_{2}, G\left[\left\{x_{1}, x_{2}, z, y_{1}\right\}\right] \cong K_{4}$; so (ii) holds. This completes the proof of (1).

We wish to prove (iv). So let $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$ and assume that

$$
G^{\prime}:=G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}
$$

does not contain $T K_{5}$. We may assume that
(2) $w_{1}, w_{2}, w_{3} \notin V(X)$.

For, suppose not. If $w_{1}, w_{2}, w_{3} \in V(X)$ then $(i v)$ holds. So, without loss of generality, we may assume $w_{1} \in V(X)-\left\{x_{1}, x_{2}\right\}$ and $w_{2} \in V(G-X)$. Since X is induced in $G-x_{1} x_{2}$ and G is 5 -connected, $\left(G-y_{2}\right)-\left(X-w_{1}\right)$ is 2 -connected and, hence, contains independent paths P_{1}, P_{2} from y_{1} to w_{1}, w_{2}, respectively. Then $w_{1} X x_{1} \cup$ $w_{1} X x_{2} \cup w_{1} y_{2} \cup P_{1} \cup\left(y_{2} w_{2} \cup P_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.
(3) For any $u \in V\left(x_{1} X x_{2}\right)-\left\{x_{1}, x_{2}\right\}$, $\left\{u, y_{1}, y_{2}\right\}$ is not contained in any cycle in $G^{\prime}-(X-u)$.

For, suppose there exists $u \in V\left(x_{1} X x_{2}\right)-\left\{x_{1}, x_{2}\right\}$ such that $\left\{u, y_{1}, y_{2}\right\}$ is contained in a cycle C in $G^{\prime}-(X-u)$. Then $u X x_{1} \cup u X x_{2} \cup C \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $u, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction. So we have (3).

Let $y_{3} \in V(X)$ such that $y_{3} x_{2} \in E(X)$, and let $H:=G^{\prime}-\left(X-y_{3}\right)$. Note that H is 2 -connected. By (3), no cycle in H contains $\left\{y_{1}, y_{2}, y_{3}\right\}$. Thus, we apply Lemma 2.3.5 to H. In order to treat simultaneously the three cases in the conclusion of Lemma 2.3.5, we introduce some notation. Let $S_{y_{i}}=\left\{a_{i}, b_{i}\right\}$ for $i \in[3]$, such that if Lemma 2.3.5(i) occurs we let $a_{1}=a_{2}=a_{3}, b_{1}=b_{2}=b_{3}$, and $S_{y_{i}}=S$ for
$i \in[3]$; if Lemma 2.3.5(ii) occurs then $a_{1}=a_{2}=a_{3}$; and if Lemma 2.3.5(iii) then $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ belong to different components of $H-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$. If Lemma 2.3.5(ii) or Lemma 2.3.5(iii) occurs then let B_{a}, B_{b} denote the components of $H-V\left(D_{y_{1}} \cup D_{y_{2}} \cup D_{y_{3}}\right)$ such that for $i \in[3] a_{i} \in V\left(B_{a}\right)$ and $b_{i} \in V\left(B_{b}\right)$. Note that $B_{a}=B_{b}$ is possible, but only if Lemma 2.3.5(ii) occurs.

For convenience, let $D_{i}^{\prime}:=G^{\prime}\left[D_{y_{i}}+\left\{a_{i}, b_{i}\right\}\right]$ for $i \in[3]$. We choose the cuts $S_{y_{i}}$ so that
(4) $D_{1}^{\prime} \cup D_{2}^{\prime} \cup D_{3}^{\prime}$ is maximal.

Since H is 2-connected, D_{i}^{\prime}, for each $i \in[3]$, contains a path Y_{i} from a_{i} to b_{i} and through y_{i}. In addition, since $\left(G-y_{2}\right)-X$ is 2-connected, for any $v \in V\left(D_{3}^{\prime}\right)-$ $\left\{a_{3}, b_{3}, y_{3}\right\}, D_{3}^{\prime}-y_{3}$ contains a path from a_{3} to b_{3} through v.
(5) If $B_{a} \cap B_{b}=\emptyset$ then $\left|V\left(B_{a}\right)\right|=1$ or B_{a} is 2-connected, and $\left|V\left(B_{b}\right)\right|=1$ or B_{b} is 2-connected. If $B_{a} \cap B_{b} \neq \emptyset$ then $B_{a}=B_{b}$ and $B_{a}-a_{3}$ is 2-connected.

First, suppose $B_{a} \cap B_{b}=\emptyset$. By symmetry, we only prove the claim for B_{a}. Suppose $\left|V\left(B_{a}\right)\right|>1$ and B_{a} is not 2-connected. Then B_{a} has a separation $\left(B_{1}, B_{2}\right)$ such that $\left|V\left(B_{1} \cap B_{2}\right)\right| \leq 1$. Since H is 2-connected, $\left|V\left(B_{1} \cap B_{2}\right)\right|=1$ and, for some permutation $i j k$ of [3], $a_{i} \in V\left(B_{1}\right)-V\left(B_{2}\right)$ and $a_{j}, a_{k} \in V\left(B_{2}\right)$. Replacing $S_{y_{i}}, D_{i}^{\prime}$ by $V\left(B_{1} \cap B_{2}\right) \cup\left\{b_{i}\right\}, D_{i}^{\prime} \cup B_{1}$, respectively, while keeping $S_{y_{j}}, D_{j}^{\prime}, S_{y_{k}}, D_{k}^{\prime}$ unchanged, we derive a contradiction to (4).

Now assume $B_{a} \cap B_{b} \neq \emptyset$. Then $B_{a}=B_{b}$ by definition, and $a_{1}=a_{2}=a_{3}$ by our assumption above. Suppose $B_{a}-a_{3}$ is not 2-connected. Then B_{a} has a 2 -separation $\left(B_{1}, B_{2}\right)$ with $a_{3} \in V\left(B_{1} \cap B_{2}\right)$. First, suppose for some permutation $i j k$ of [3], $b_{i} \in V\left(B_{1}\right)-V\left(B_{2}\right)$ and $b_{j}, b_{k} \in V\left(B_{2}\right)$. Then replacing $S_{y_{i}}, D_{i}^{\prime}$ by $V\left(B_{1} \cap B_{2}\right), D_{i}^{\prime} \cup B_{1}$, respectively, while keeping $S_{y_{j}}, D_{j}^{\prime}, S_{y_{k}}, D_{k}^{\prime}$ unchanged, we derive a contradiction to (4). Therefore, we may assume $\left\{b_{1}, b_{2}, b_{3}\right\} \subseteq V\left(B_{1}\right)$. Since G is 5 -connected, there exists $r r^{\prime} \in E(G)$ such that $r \in V(X)-\left\{y_{3}, x_{2}\right\}$ and $r^{\prime} \in V\left(B_{2}-B_{1}\right)$. Let R be a path
$B_{2}-\left(B_{1}-a_{3}\right)$ from a_{3} to r^{\prime}, and R^{\prime} a path in $B_{1}-B_{2}$ from b_{1} to b_{2}. Then $\left(R \cup r^{\prime} r \cup\right.$ $\left.r X x_{1}\right) \cup\left(a_{3} Y_{3} y_{3} \cup y_{3} x_{2}\right) \cup a_{3} Y_{1} y_{1} \cup a_{3} Y_{2} y_{2} \cup\left(y_{1} Y_{1} b_{1} \cup R^{\prime} \cup b_{2} Y_{2} y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{3}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.
(6) $D_{y_{i}}$ is connected for $i \in[3]$.

Suppose $D_{y_{i}}$ is not connected for some $i \in[3]$, and let D be a component of $D_{y_{i}}$ not containing y_{i}. Since G is 5-connected, there exists $r r^{\prime} \in E(G)$ such that $r \in$ $V(X)-\left\{x_{2}, y_{3}\right\}$ and $r^{\prime} \in V(D)$.

Let R be a path in $G\left[D+a_{i}\right]$ from a_{i} to r^{\prime}, and R^{\prime} a path from b_{1} to b_{2} in $B_{b}-a_{3}$. By (5), let A_{1}, A_{2}, A_{3} be independent paths in B_{a} from a_{i} to a_{1}, a_{2}, a_{3}, respectively. Then $\left(R \cup r^{\prime} r \cup r X x_{1}\right) \cup\left(A_{1} \cup a_{1} Y_{1} y_{1}\right) \cup\left(A_{2} \cup a_{2} Y_{2} y_{2}\right) \cup\left(A_{3} \cup a_{3} Y_{3} y_{3} \cup y_{3} x_{2}\right) \cup\left(y_{1} Y_{1} b_{1} \cup\right.$ $\left.R^{\prime} \cup b_{2} Y_{2} y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{i}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.
(7) If $a_{1}=a_{2}=a_{3}$ then $N\left(a_{3}\right) \cap V\left(X-\left\{x_{2}, y_{3}\right\}\right)=\emptyset$.

For, suppose $a_{1}=a_{2}=a_{3}$ and there exists $u \in N\left(a_{3}\right) \cap V\left(X-\left\{x_{2}, y_{3}\right\}\right)$. Let Q be a path in $B_{b}-a_{3}$ between b_{1} and b_{2}, and let P be a path in $D_{3}^{\prime}-b_{3}$ from a_{3} to y_{3}. Then $\left(a_{3} u \cup u X x_{1}\right) \cup\left(P \cup y_{3} x_{2}\right) \cup a_{3} Y_{1} y_{1} \cup a_{3} Y_{2} y_{2} \cup\left(y_{1} Y_{1} b_{1} \cup Q \cup b_{2} Y_{2} y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{3}, x_{1}, x_{2}, y_{1}, y_{2}$, a contradiction.

We may assume that
(8) there exists $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ such that $N(u)-\left\{y_{2}\right\} \nsubseteq V\left(X \cup D_{3}^{\prime}\right)$.

For, suppose no such vertex exists. Then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{3}, b_{3}, x_{1}, x_{2}, y_{2}\right\}, X \cup D_{3}^{\prime} \subseteq G_{1}$, and $D_{1}^{\prime} \cup D_{2}^{\prime} \cup B_{a} \cup B_{b} \subseteq G_{2}$. Clearly, $\left|V\left(G_{2}\right)\right| \geq 7$ since $\left|N\left(y_{1}\right)\right| \geq 5$ and $y_{1} y_{2} \notin E(G)$. If $\left|V\left(G_{1}\right)\right| \geq 7$ then, by Lemma 2.3.9, (i) or (ii) or (iii) or (iv) holds. So we may assume $\left|V\left(G_{1}\right)\right|=6$. Then $X=x_{1} y_{3} x_{2}$ and $V\left(D_{y_{3}}\right)=\left\{y_{3}\right\}$. Hence, $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{3}\right\}\right] \cong K_{4}^{-}$; so (ii) holds.
(9) For all $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ with $N(u)-\left\{y_{2}\right\} \nsubseteq V\left(X \cup D_{3}^{\prime}\right), N(u) \cap V\left(D_{3}^{\prime}-\right.$ $\left.y_{3}\right)=\emptyset$.

For, suppose there exist $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}, u_{1} \in\left(N(u)-\left\{y_{2}\right\}\right)-V\left(X \cup D_{3}^{\prime}\right)$, and $u_{2} \in N(u) \cap V\left(D_{3}^{\prime}-y_{3}\right)$. Recall (see before (5)) that there is a path Y_{3}^{\prime} in $D_{3}^{\prime}-y_{3}$ from a_{3} to b_{3} through u_{2}.

Suppose $u_{1} \in V\left(D_{y_{i}}\right)$ for some $i \in[2]$. Then $D_{i}^{\prime}-b_{i}\left(\right.$ or $\left.D_{i}^{\prime}-a_{i}\right)$ has a path Y_{i}^{\prime} from u_{1} to a_{i} (or b_{i}) through y_{i}. If Y_{i}^{\prime} ends at a_{i} then let P_{a}, P_{b} be disjoint paths in $B_{a} \cup B_{b}$ from a_{1}, b_{3} to a_{2}, b_{3-i}, respectively; now $Y_{i}^{\prime} \cup P_{a} \cup Y_{3-i} \cup P_{b} \cup b_{3} Y_{3}^{\prime} u_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So Y_{i}^{\prime} ends at b_{i}. Let P_{b}, P_{a} be disjoint paths in $B_{a} \cup B_{b}$ from b_{1}, a_{3-i} to b_{2}, a_{3}, respectively. Then $Y_{i}^{\prime} \cup P_{b} \cup Y_{3-i} \cup P_{a} \cup a_{3} Y_{3}^{\prime} u_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Thus, $u_{1} \in V\left(B_{a} \cup B_{b}\right)$. By symmetry and (7), assume $u_{1} \in V\left(B_{b}\right)$. Note that $u_{1} \notin\left\{a_{3}, b_{3}\right\}$ (by the choice of u_{1}) and $B_{b}-a_{3}$ is 2-connected (by (5)). Hence, $B_{b}-a_{3}$ has disjoint paths Q_{1}, Q_{2} from $\left\{u_{1}, b_{3}\right\}$ to $\left\{b_{1}, b_{2}\right\}$. By symmetry between b_{1} and b_{2}, we may assume Q_{1} is between u_{1} and b_{1} and Q_{2} is between b_{3} and b_{2}. Let P be a path in B_{a} from a_{1} to a_{2} (which is trivial if $\left|V\left(B_{a}\right)\right|=1$). Then $Q_{1} \cup u_{1} u u_{2} \cup u_{2} Y_{3}^{\prime} b_{3} \cup$ $Q_{2} \cup Y_{2} \cup P \cup Y_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{y_{1}, y_{2}, u\right\}$, contradicting (3).
(10) For any $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ with $N(u)-\left\{y_{2}\right\} \nsubseteq V\left(X \cup D_{3}^{\prime}\right)$, there exists $i \in[2]$ such that $N(u)-\left\{y_{2}\right\} \subseteq V\left(D_{i}^{\prime}\right)$ and $\left\{a_{i}, b_{i}\right\} \nsubseteq N(u)$.

To see this, let $u_{1}, u_{2} \in\left(N(u)-\left\{y_{2}\right\}\right)-V\left(X \cup D_{3}^{\prime}\right)$ be distinct, which exist by (9) (and since X is induced in $G^{\prime}-x_{1} x_{2}$). Suppose we may choose such u_{1}, u_{2} so that $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(D_{i}^{\prime}\right)$ for $i \in[2]$.

We claim that $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(B_{a}\right)$ and $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(B_{b}\right)$. Recall that if $B_{a} \cap B_{b} \neq \emptyset$ then $B_{a}=B_{b}$ and if $B_{a} \cap B_{b}=\emptyset$ then there is symmetry between B_{a} and B_{b}. So
if the claim fails we may assume that $u_{1}, u_{2} \in V\left(B_{b}\right)$. Then by (5), $B_{b}-a_{3}$ is 2connected; so $B_{b}-a_{3}$ contains disjoint paths Q_{1}, Q_{2} from $\left\{u_{1}, u_{2}\right\}$ to $\left\{b_{1}, b_{2}\right\}$. If $B_{a}=B_{b}$, let $P=a_{3}$. If $B_{a} \cap B_{b}=\emptyset$, then let P be a path in B_{a} from a_{1} to a_{2}. Now $Q_{1} \cup u_{1} u u_{2} \cup Q_{2} \cup Y_{1} \cup P \cup Y_{2}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Next, we show that $\left\{a_{i}, b_{i}\right\} \nsubseteq N(u)$ for $i \in[2]$. For, suppose $u_{1}=a_{i}$ and $u_{2}=b_{i}$ for some $i \in[2]$. Then, since $\left\{u_{1}, u_{2}\right\} \cap\left\{a_{3}, b_{3}\right\}=\emptyset,\left|V\left(B_{a}\right)\right| \geq 2$ and $\left|V\left(B_{b}\right)\right| \geq 2$. By (5), let P_{1}, P_{2} be independent paths in B_{a} from a_{i} to a_{3-i}, a_{3}, respectively, and Q_{1}, Q_{2} be independent paths in B_{b} from b_{i} to b_{3-i}, b_{3}, respectively. Now $u a_{i} \cup u b_{i} \cup a_{i} Y_{i} y_{i} \cup$ $b_{i} Y_{i} y_{i} \cup\left(y_{i} x_{1} \cup x_{1} X u\right) \cup\left(P_{1} \cup Y_{3-i} \cup Q_{1}\right) \cup\left(P_{2} \cup a_{3} Y_{3} y_{3}\right) \cup\left(Q_{2} \cup b_{3} Y_{3} y_{3}\right) \cup u X y_{3} \cup y_{i} x_{2} y_{3}$ is a $T K_{5}$ in G^{\prime} with branch vertices $a_{i}, b_{i}, u, y_{i}, y_{3}$, a contradiction.

Suppose $u_{1} \in V\left(B_{a}-a_{3}\right)$ and $u_{2} \in V\left(B_{b}-b_{3}\right)$. Then $\left|V\left(B_{a}\right)\right| \geq 2$ and $\left|V\left(B_{b}\right)\right| \geq 2$. Let Y_{3}^{\prime} be a path in $D_{3}^{\prime}-y_{3}$ from a_{3} to b_{3}. First, assume that $u_{1} \in\left\{a_{1}, a_{2}\right\}$ or $u_{2} \in\left\{b_{1}, b_{2}\right\}$. By symmetry, we may assume $u_{1}=a_{1}$. So $u_{2} \neq b_{1}$. By (5), $B_{a}-a_{1}$ contains a path P from a_{2} to a_{3}, and B_{b} contains disjoint paths Q_{1}, Q_{2} from $\left\{b_{2}, b_{3}\right\}$ to b_{1}, u_{2}, respectively. Then $Y_{1} \cup Q_{1} \cup Y_{2} \cup P \cup Y_{3}^{\prime} \cup Q_{2} \cup u_{1} u u_{2}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So $u_{1} \notin\left\{a_{1}, a_{2}\right\}$ and $u_{2} \notin\left\{b_{1}, b_{2}\right\}$. Then by (5) and symmetry, we may assume that B_{a} contains disjoint paths P_{1}, P_{2} from u_{1}, a_{3} to a_{1}, a_{2}, respectively. By (5) again, B_{b} contains disjoint paths Q_{1}, Q_{2} from b_{1}, u_{2}, respectively to $\left\{b_{2}, b_{3}\right\}$. Now $P_{1} \cup Y_{1} \cup Q_{1} \cup Y_{2} \cup P_{2} \cup Y_{3}^{\prime} \cup Q_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Therefore, we may assume $u_{1} \in V\left(D_{y_{i}}\right)$ for some $i \in[2]$. By symmetry, we may assume that $u_{1} \in V\left(D_{y_{1}}\right)$ and $D_{1}^{\prime}-a_{1}$ contains a path R_{1} from u_{1} to b_{1} and through y_{1}. Then $u_{2} \notin V\left(D_{1}^{\prime}\right)$ as we assumed $\left\{u_{1}, u_{2}\right\} \nsubseteq V\left(D_{1}^{\prime}\right)$.

Suppose $u_{2} \in V\left(D_{y_{2}}\right)$. If $D_{2}^{\prime}-a_{2}$ contains a path R_{2} from u_{2} to b_{2} through y_{2} then let Q be a path in B_{b} from b_{1} to b_{2}; now $R_{1} \cup Q \cup R_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So $D_{2}^{\prime}-b_{2}$ contains a path R_{2} from u_{2} to a_{2}
and through y_{2}. Now let P be a path in B_{a} from a_{2} to a_{3}, Q be a path in $B_{b}-a_{3}$ from b_{1} to b_{3}. Let Y_{3}^{\prime} be a path in $D_{3}^{\prime}-y_{3}$ from a_{3} to b_{3}. Then $R_{1} \cup Q \cup Y_{3}^{\prime} \cup P \cup R_{2} \cup u_{2} u u_{1}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3).

Finally, assume $u_{2} \in V\left(B_{a} \cup B_{b}\right)$. If $u_{2} \in V\left(B_{b}\right)$ then, by (5), let Q_{1}, Q_{2} be disjoint paths in $B_{b}-a_{3}$ from b_{1}, u_{2}, respectively, to $\left\{b_{2}, b_{3}\right\}$, and let P be a path in B_{a} from a_{2} to $a_{3} ;$ now $u_{2} u u_{1} \cup R_{1} \cup Q_{1} \cup Q_{2} \cup Y_{2} \cup P \cup Y_{3}^{\prime}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So $u_{2} \notin V\left(B_{b}\right)$ and $u_{2} \in V\left(B_{a}-a_{1}\right)$; hence $B_{a} \cap B_{b}=\emptyset$. Let P be a path in B_{a} from u_{2} to a_{2} and Q be a path in B_{b} from b_{1} to b_{2}. Then $u_{2} u u_{1} \cup R_{1} \cup Q \cup Y_{2} \cup P$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). This completes the proof of (10).

By (10) and by symmetry, let $u \in V(X)-\left\{x_{1}, x_{2}, y_{3}\right\}$ and $u_{1}, u_{2} \in N(u)$ such that $u_{1} \in V\left(D_{y_{1}}\right)$ and $u_{2} \in V\left(D_{1}^{\prime}\right)$. If $G\left[D_{1}^{\prime}+u\right]$ contains independent paths R_{1}, R_{2} from u to a_{1}, b_{1}, respectively, such that $y_{1} \in V\left(R_{1} \cup R_{2}\right)$, then let P be a path in B_{a} between a_{1} and a_{2} and Q be a path in $B_{b}-a_{3}$ between b_{1} and b_{2}; now $R_{1} \cup P \cup Y_{2} \cup Q \cup R_{2}$ is a cycle in $G^{\prime}-(X-u)$ containing $\left\{u, y_{1}, y_{2}\right\}$, contradicting (3). So such paths do not exist. Then in the 2-connected graph $D_{1}^{*}:=G\left[D_{1}^{\prime}+u\right]+\left\{c, c a_{1}, c b_{1}\right\}$ (by adding a new vertex c), there is no cycle containing $\left\{c, u, y_{1}\right\}$. Hence, by Lemma 2.3.5, D_{1}^{*} has a 2 -cut T separating y_{1} from $\{u, c\}$, and $T \cap\{u, c\}=\emptyset$.

We choose u, u_{1}, u_{2} and T so that the T-bridge of D_{1}^{*} containing y_{1}, denoted B, is minimal. Then $B-T$ contains no neighbor of $X-\left\{x_{1}, x_{2}\right\}$. Hence, G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{x_{1}, x_{2}, y_{2}\right\} \cup V(T), B \subseteq G_{1}$, and $X \cup D_{2}^{\prime} \cup D_{3}^{\prime} \subseteq G_{2}$. Clearly, $\left|V\left(G_{2}\right)\right| \geq 7$. Since $y_{1} y_{2} \notin E(G)$ and G is 5-connected, $\left|V\left(G_{1}\right)\right| \geq 7$. So (i) or $(i i)$ or (iii) or (iv) holds by Lemma 2.3.9.

3.3 An intermediate substructure

By Lemma 3.2.2, to prove Theorem 3.1.1 it suffices to deal with the second part of (iv) of Lemma 3.2.2. Thus, let G be a 5 -connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in$
$V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$, let $w_{1}, w_{2}, w_{3} \in$ $N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$ be distinct, and let P be an induced path in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(P), w_{1}, w_{2}, w_{3} \in V(P)$, and $\left(G-y_{2}\right)-P$ is 2 -connected.

Without loss of generality, assume $x_{1}, w_{1}, w_{2}, w_{3}, x_{2}$ occur on P in order. Let

$$
X:=x_{1} P w_{1} \cup w_{1} y_{2} w_{3} \cup w_{3} P x_{2},
$$

and let

$$
G^{\prime}:=G-\left\{y_{2} v: v \notin\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\} .
$$

Then X is an induced path in $G^{\prime}-x_{1} x_{2}, y_{1} \notin V(X)$, and $G^{\prime}-X$ is 2-connected. For convenience, we record this situation by calling ($G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}$) a 9-tuple.

In this section, we obtain a substructure of G^{\prime} in terms of X and seven additional paths A, B, C, P, Q, Y, Z in G^{\prime}. See Figure 1 , where X is the path in boldface and Y, Z are not shown. First, we find two special paths Y, Z in G^{\prime} with Lemma 3.3.1 below. We will then use Lemma 3.3.2 to find the paths A, B, C, and use Lemma 3.3.3 to find the paths P and Q. In the next section, we will use this substructure to find the desired $T K_{5}$ in G or G^{\prime}.

Lemma 3.3.1 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}\right)$ be a 9-tuple. Then one of the following holds:
(i) G contains $T K_{5}$ in which y_{2} is not a branch vertex, or G^{\prime} contains $T K_{5}$.
(ii) $G-y_{2}$ contains K_{4}^{-}.
(iii) G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{y_{2}, a_{1}, a_{2}, a_{3}, a_{4}\right\}, G_{2}$ is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4-cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding y_{2} and the edges $y_{2} b_{i}$ for $i \in[4]$.
(iv) There exist $z_{1} \in V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}, z_{2} \in V\left(x_{2} X y_{2}\right)-\left\{x_{2}, y_{2}\right\}$ such that $H:=G^{\prime}-\left(V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right) \cup E(X)\right)$ has disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively.

Proof. Let K be the graph obtained from $G-\left\{x_{1}, x_{2}, y_{2}\right\}$ by contracting $x_{i} X y_{2}-$ $\left\{x_{i}, y_{2}\right\}$ to the new vertex u_{i}, for $i \in[2]$. Note that K is 2-connected; since G is 5 -connected, X is induced in $G^{\prime}-x_{1} x_{2}$, and $G-X$ is 2-connected. We may assume that
(1) there exists a collection \mathcal{A} of subsets of $V(K)-\left\{u_{1}, u_{2}, w_{2}, y_{1}\right\}$ such that (K, $\left.\mathcal{A}, u_{1}, y_{1}, u_{2}, w_{2}\right)$ is 3-planar.

For, suppose this is not the case. Then by Lemma 2.3.1, K contains disjoint paths, say Y, U, from y_{1}, u_{1} to w_{2}, u_{2}, respectively. Let v_{i} denote the neighbor of u_{i} in the path U, and let $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ be a neighbor of v_{i} in G. Then $Z:=$ $\left(U-\left\{u_{1}, u_{2}\right\}\right)+\left\{z_{1}, z_{2}, z_{1} v_{1}, z_{2} v_{2}\right\}$ is a path between z_{1} and z_{2}. Now $Y+\left\{y_{2}, y_{2} w_{2}\right\}, Z$ are the desired paths for (iv). So we may assume (1).

Since $G-X$ is 2 -connected, $\left|N_{K}(A) \cap\left\{u_{1}, u_{2}, w_{2}\right\}\right| \leq 1$ for all $A \in \mathcal{A}$. Let $p(K, \mathcal{A})$ be the graph obtained from K by (for each $A \in \mathcal{A}$) deleting A and adding new edges joining every pair of distinct vertices in $N_{K}(A)$. Since G is 5-connected and $G-X$ is 2-connected, we may assume that $p(K, \mathcal{A})-\left\{u_{1}, u_{2}\right\}$ is a 2-connected plane graph, and for each $A \in \mathcal{A}$ with $N_{K}(A) \cap\left\{u_{1}, u_{2}\right\} \neq \emptyset$ the edge joining vertices of $N_{K}(A)-\left\{u_{1}, u_{2}\right\}$ occur on the outer cycle D of $p(K, \mathcal{A})-\left\{u_{1}, u_{2}\right\}$. Note that $y_{1}, w_{2} \in V(D)$.

Let $t_{1} \in V(D)$ with $t_{1} D y_{1}$ minimal such that $u_{1} t_{1} \in E(p(K, \mathcal{A}))$; and let $t_{2} \in V(D)$ with $y_{1} D t_{2}$ minimal such that $u_{2} t_{2} \in E\left(p(K, \mathcal{A})\right.$). (So t_{1}, y_{1}, t_{2}, w_{2} occur on D in clockwise order.) Since K is 2 -connected and X is induced in $G^{\prime}-x_{1} x_{2}$, there exist $z_{1} \in V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}$ and independent paths R_{1}, R_{1}^{\prime} in G from z_{1} to D and internally disjoint from $V(p(K, \mathcal{A})) \cup V(X)$, such that R_{1} ends at t_{1} and R_{1}^{\prime} ends at
some vertex $t_{1}^{\prime} \neq t_{1}$, and $w_{2}, t_{1}^{\prime}, t_{1}, y_{1}$ occur on D in clockwise order. Similarly, there exist $z_{2} \in V\left(x_{2} X y_{2}\right)-\left\{x_{2}, y_{2}\right\}$ and independent paths R_{2}, R_{2}^{\prime} in G from z_{2} to D and internally disjoint from $V(p(K, \mathcal{A})) \cup V(X)$, such that R_{2} ends at t_{2}, R_{2}^{\prime} ends at some vertex $t_{2}^{\prime} \neq t_{2}$, and $y_{1}, t_{2}, t_{2}^{\prime}, w_{2}$ occur on D in clockwise order.

We may assume that
(2) $K-\left\{u_{1}, u_{2}\right\}$ has no 2-separation $\left(K^{\prime}, K^{\prime \prime}\right)$ such that $V\left(K^{\prime} \cap K^{\prime \prime}\right) \subseteq V\left(t_{1} D t_{2}\right)$, $\left|V\left(K^{\prime}\right)\right| \geq 3$, and $V\left(t_{2} D t_{1}\right) \subseteq V\left(K^{\prime \prime}\right)$.

For, suppose such a separation $\left(K^{\prime}, K^{\prime \prime}\right)$ does exist in $K-\left\{u_{1}, u_{2}\right\}$. Then by the definition of u_{1}, u_{2}, we see that G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $V\left(K^{\prime} \cap K^{\prime \prime}\right) \cup\left\{x_{1}, x_{2}, y_{2}\right\}, K^{\prime} \subseteq V\left(G_{1}\right)$ and $K^{\prime \prime} \cup X \subseteq G_{2}$. Note that $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a triangle in $G,\left|V\left(G_{2}\right)\right| \geq 7$, and $\left|V\left(G_{1}\right)\right| \geq 6\left(\right.$ as $\left.\left|V\left(K^{\prime}\right)\right| \geq 3\right)$. If $\left|V\left(G_{1}\right)\right| \geq 7$ then by Lemma 2.3.9, (i) or (ii) or (iii) holds. (Note that if (iv) of Lemma 2.3.9 holds then G^{\prime} has a $T K_{5}$; so (i) holds.) So assume $\left|V\left(G_{1}\right)\right|=6$, and let $v \in V\left(G_{1}-G_{2}\right)$. Since G is 5-connected, $N(v)=V\left(G_{1} \cap G_{2}\right)$. In particular, $v \neq y_{1}$ as $y_{1} y_{2} \notin E(G)$. Then $G\left[\left\{v, x_{1}, x_{2}, y_{1}\right\}\right]$ contains K_{4}^{-}, and (ii) holds. So we may assume (2).

Next we may assume that
(3) each neighbor of x_{1} is contained in $V(X)$, or $V\left(t_{1} D y_{1}\right)$, or some $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$, and each neighbor of x_{2} is contained $V(X)$, or $V\left(y_{1} D t_{2}\right)$, or some $A \in \mathcal{A}$ with $u_{2} \in N_{K}(A)$.

For, otherwise, we may assume by symmetry that there exists $a \in N\left(x_{1}\right)-V(X)$ such that $a \notin V\left(t_{1} D y_{1}\right)$ and $a \notin A$ for $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$. Let $a^{\prime}=a$ and $S=a$ if $a \notin A$ for all $A \in \mathcal{A}$. When $a \in A$ for some $A \in \mathcal{A}$ then by (2), there exists $a^{\prime} \in N_{K}(A)-V\left(t_{1} D t_{2}\right)$ and let S be a path in $G\left[A+a^{\prime}\right]$ from a to a^{\prime}. By (2) again, there is a path T from a^{\prime} to some $u \in V\left(t_{2} D t_{1}\right)-\left\{t_{1}, t_{2}\right\}$ in $p(K, \mathcal{A})-\left\{u_{1}, u_{2}, y_{2}\right\}-t_{1} D t_{2}$. Then $t_{1} D t_{2} \cup R_{1} \cup R_{2}$ and $R_{2}^{\prime} \cup t_{2}^{\prime} D u \cup T$ give independent paths T_{1}, T_{2}, T_{3} in $G-\left(X-\left\{z_{1}, z_{2}\right\}\right)$ with T_{1}, T_{2} from y_{1} to z_{1}, z_{2}, respectively, and T_{3}
from a^{\prime} to z_{2}. Hence, $z_{2} X x_{2} \cup z_{2} X y_{2} \cup T_{2} \cup\left(T_{3} \cup S \cup a x_{1}\right) \cup\left(T_{1} \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$; so (i) holds.

Label the vertices of $w_{2} D y_{1}$ and $x_{1} X y_{2}$ such that $w_{2} D y_{1}=v_{1} \ldots v_{k}$ and $x_{1} X y_{2}=$ $v_{k+1} \ldots v_{n}$, with $v_{1}=w_{2}, v_{k}=y_{1}, v_{k+1}=x_{1}$ and $v_{n}=y_{2}$. Let G_{1} denote the union of $x_{1} X y_{2},\left\{v_{1}, \ldots, v_{k}\right\}, G\left[A \cup\left(N_{K}(A)-u_{1}\right)\right]$ for $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$, all edges of G^{\prime} from $x_{1} X y_{2}$ to $\left\{v_{1}, \ldots, v_{k}\right\}$, and all edges of G^{\prime} from $x_{1} X y_{2}$ to A for $A \in \mathcal{A}$ with $u_{1} \in N_{K}(A)$. Note that G_{1} is $\left(4,\left\{v_{1}, \ldots, v_{n}\right\}\right)$-connected. Similarly, let $y_{1} D w_{2}=z_{1} \ldots z_{l}$ and $x_{2} X y_{2}=z_{l+1} \ldots z_{m}$, with $z_{1}=w_{2}, z_{l}=y_{1}, z_{l+1}=x_{2}$ and $z_{m}=y_{2}$. Let G_{2} denote the union of $y_{2} X x_{2},\left\{z_{1}, \ldots, z_{l}\right\}, G\left[A \cup\left(N_{K}(A)-u_{2}\right)\right]$ for $A \in \mathcal{A}$ with $u_{2} \in N_{K}(A)$, all edges of G^{\prime} from $y_{2} X x_{2}$ to $\left\{z_{1}, \ldots, z_{l}\right\}$, and all edges of G^{\prime} from $y_{2} X x_{2}$ to A for $A \in \mathcal{A}$ with $u_{2} \in N_{K}(A)$. Note that G_{2} is $\left(4,\left\{z_{1}, \ldots, z_{m}\right\}\right)$ connected.

If both $\left(G_{1}, v_{1}, \ldots, v_{n}\right)$ and $\left(G_{2}, z_{1}, \ldots, z_{m}\right)$ are planar then $G-y_{2}$ is planar; so (i) or (ii) or (iii) holds by Lemma 2.3.10. Hence, we may assume by symmetry that $\left(G_{1}, v_{1}, \ldots, v_{n}\right)$ is not planar. Then by Lemma 2.3.2, there exist $1 \leq q<r<s<$ $t \leq n$ such that G_{1} has disjoint paths Q_{1}, Q_{2} from v_{q}, v_{r} to v_{s}, v_{t}, respectively, and internally disjoint from $\left\{v_{1}, \ldots, v_{n}\right\}$.

Since ($K, u_{1}, y_{1}, u_{2}, w_{2}$) is 3-planar, it follows from the definition of G_{1} that $q, r \leq k$ and $s, t \geq k+1$. Note that the paths $y_{1} D t_{2}, t_{2}^{\prime} D v_{q}, v_{r} D y_{1}$ give rise to independent paths P_{1}, P_{2}, P_{3} in $K-\left\{u_{1}, u_{2}\right\}$, with P_{1} from y_{1} to t_{2}, P_{2} from t_{2}^{\prime} to v_{q}, and P_{3} from v_{r} to y_{1}. Therefore, $z_{2} X x_{2} \cup z_{2} X y_{2} \cup\left(R_{2} \cup P_{1}\right) \cup\left(R_{2}^{\prime} \cup P_{2} \cup Q_{1} \cup v_{s} X x_{1}\right) \cup\left(P_{3} \cup Q_{2} \cup\right.$ $\left.v_{t} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So (i) holds.

Conclusion (iv) of Lemma 3.3.1 motivates the concept of 11-tuple. We say that $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ is an 11-tuple if

- $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}\right)$ is a 9-tuple, and $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ for $i \in[2]$,
- $H:=G^{\prime}-\left(V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right) \cup E(X)\right)$ contains disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively, and
- subject to the above conditions, $z_{1} X z_{2}$ is maximal.

Since G is 5 -connected and X is induced in $G^{\prime}-x_{1} x_{2}$, each $z_{i}(i \in[2])$ has at least two neighbors in $H-\left\{y_{2}, z_{1}, z_{2}\right\}$ (which is 2 -connected). Note that y_{2} has exactly one neighbor $H-\left\{y_{2}, z_{1}, z_{2}\right\}$, namely, w_{2}. So $H-y_{2}$ is 2-connected.

Lemma 3.3.2 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ be an 11-tuple and Y, Z be disjoint paths in $H:=G^{\prime}-\left(V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right) \cup E(X)\right)$ from y_{1}, z_{1} to y_{2}, z_{2}, respectively. Then G contains a $T K_{5}$ in which y_{2} is not a branch vertex, or G^{\prime} contains $T K_{5}$, or
(i) for $i \in[2]$, H has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order (so $y_{1} z_{i} \notin E(G)$), and
(ii) there exists $i \in[2]$ such that H contains independent paths A, B, C, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

Proof. First, suppose, for some $i \in[2]$, there is a path P in H from z_{i} to y_{2} such that $z_{i}, z_{3-i}, y_{1}, y_{2}$ occur on P in order. Then $z_{3-i} X x_{3-i} \cup z_{3-i} X y_{2} \cup\left(z_{3-i} P z_{i} \cup z_{i} X x_{i}\right) \cup$ $z_{3-i} P y_{1} \cup y_{1} P y_{2} \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So we may assume that such P does not exist. Hence by the existence of Y, Z in H, we have $y_{1} z_{1}, y_{1} z_{2} \notin E(G)$, and (i) holds.

So from now on we may assume that (i) holds. For each $i \in[2]$, let H_{i} denote the graph obtained from H by duplicating z_{i} and y_{1}, and let z_{i}^{\prime} and y_{1}^{\prime} denote the duplicates of z_{i} and y_{1}, respectively. So in H_{i}, y_{1} and y_{1}^{\prime} are not adjacent, and have the same set of neighbors, namely $N_{H}\left(y_{1}\right)$; and the same holds for z_{i} and z_{i}^{\prime}.

First, suppose for some $i \in[2], H_{i}$ contains pairwise disjoint paths $A^{\prime}, B^{\prime}, C^{\prime}$ from $\left\{z_{i}, z_{i}^{\prime}, y_{2}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$, with $z_{i} \in V\left(A^{\prime}\right), z_{i}^{\prime} \in V\left(C^{\prime}\right)$ and $y_{2} \in V\left(B^{\prime}\right)$. If $z_{3-i} \notin$ $V\left(B^{\prime}\right)$, then after identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}, we obtain from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$ a
path in H from z_{3-i} to y_{2} through z_{i}, y_{1} in order, contradicting our assumption that (i) holds. Hence $z_{3-i} \in V\left(B^{\prime}\right)$. Then we get the desired paths for (ii) from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$ by identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}.

So we may assume that for each $i \in[2], H_{i}$ does not contain three pairwise disjoint paths from $\left\{y_{2}, z_{i}, z_{i}^{\prime}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$. Then H_{i} has a separation $\left(H_{i}^{\prime}, H_{i}^{\prime \prime}\right)$ such that $\left|V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)\right|=2,\left\{y_{2}, z_{i}, z_{i}^{\prime}\right\} \subseteq V\left(H_{i}^{\prime}\right)$ and $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\} \subseteq V\left(H_{i}^{\prime \prime}\right)$.

We claim that $y_{1}, y_{2}, y_{1}^{\prime}, z_{i}^{\prime}, z_{1}, z_{2} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$ for $i \in[2]$. Note that $\left\{y_{1}, y_{1}^{\prime}\right\} \neq$ $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$, since otherwise y_{1} would be a cut vertex in H separating z_{3-i} from $\left\{y_{2}, z_{i}\right\}$. Now suppose one of y_{1}, y_{1}^{\prime} is in $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$; then since y_{1}, y_{1}^{\prime} are duplicates, the vertex in $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)-\left\{y_{1}, y_{1}^{\prime}\right\}$ is a cut vertex in H separating $\left\{y_{1}, z_{3-i}\right\}$ from $\left\{y_{2}, z_{i}\right\}$, a contradiction. So $y_{1}, y_{1}^{\prime} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Similar argument shows that $z_{i}, z_{i}^{\prime} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Since $H-y_{2}$ is 2-connected, $y_{2} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Since $H-\left\{z_{3-i}, y_{2}\right\}$ is 2-connected, $z_{3-i} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$.

For $i \in[2]$, let $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\}$, and let F_{i}^{\prime} (respectively, $F_{i}^{\prime \prime}$) be obtained from H_{i}^{\prime} (respectively, $H_{i}^{\prime \prime}$) by identifying z_{i}^{\prime} with z_{i} (respectively, y_{1}^{\prime} with y_{1}). Then $\left(F_{i}^{\prime}, F_{i}^{\prime \prime}\right)$ is a 2-separation in H such that $V\left(F_{i}^{\prime} \cap F_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\},\left\{y_{2}, z_{i}\right\} \subseteq V\left(F_{i}^{\prime}\right)-\left\{s_{i}, t_{i}\right\}$, and $\left\{y_{1}, z_{3-i}\right\} \subseteq V\left(F_{i}^{\prime \prime}\right)-\left\{s_{i}, t_{i}\right\}$. Let Z_{1}, Y_{2} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of F_{1}^{\prime} containing z_{1}, y_{2}, respectively; and let Z_{2}, Y_{1} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of $F_{1}^{\prime \prime}$ containing z_{2}, y_{1}, respectively.

We may assume $Y_{1}=Z_{2}$ or $Y_{2}=Z_{1}$. For, suppose $Y_{1} \neq Z_{2}$ and $Y_{2} \neq Z_{1}$. Since $H-$ y_{2} is 2-connected, there exist independent P_{1}, Q_{1} in Z_{1} from z_{1} to s_{1}, t_{1}, respectively, independent paths P_{2}, Q_{2} in Z_{2} from z_{2} to s_{1}, t_{1}, respectively, independent paths P_{3}, Q_{3} in Y_{1} from y_{1} to s_{1}, t_{1}, respectively, and a path S in Y_{2} from y_{2} to one of $\left\{s_{1}, t_{1}\right\}$ and avoiding the other, say avoiding t_{1}. Then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup y_{2} x_{1} \cup P_{1} \cup$ $S \cup\left(P_{3} \cup y_{1} x_{1}\right) \cup\left(Q_{2} \cup Q_{1}\right) \cup P_{2} \cup z_{2} X y_{2} \cup\left(z_{2} X x_{2} \cup x_{2} x_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $s_{1}, x_{1}, y_{2}, z_{1}, z_{2}$.

Indeed, $Y_{1}=Z_{2}$. For, if $Y_{1} \neq Z_{2}$ then $Y_{2}=Z_{1}, Y_{2}-\left\{s_{1}, t_{1}\right\}$ has a path from y_{2} to
z_{1}, and $Y_{1} \cup Z_{2}$ has two independent paths from y_{1} to z_{2} (since $H-y_{2}$ is 2-connected). Now these three paths contradict the existence of the cut $\left\{s_{2}, t_{2}\right\}$ in H.

Then $\left\{s_{2}, t_{2}\right\} \cap V\left(Y_{1}-\left\{s_{1}, t_{1}\right\}\right) \neq \emptyset$. Without loss of generality, we may assume that $t_{2} \in V\left(Y_{1}\right)-\left\{s_{1}, t_{1}\right\}$. Suppose $Y_{2}=Z_{1}$. Then $s_{2} \in V\left(Y_{2}\right)-\left\{s_{1}, t_{1}\right\}$ and we may assume that in $H,\left\{s_{2}, t_{2}\right\}$ separates $\left\{s_{1}, y_{1}, z_{1}\right\}$ from $\left\{t_{1}, y_{2}, z_{2}\right\}$. Hence, in Y_{1}, t_{2} separates $\left\{y_{1}, s_{1}\right\}$ from $\left\{z_{2}, t_{1}\right\}$, and in Y_{2}, s_{2} separates $\left\{z_{1}, s_{1}\right\}$ from $\left\{y_{2}, t_{1}\right\}$. But this contradicts the existence of the paths Y and Z in H. So $Y_{2} \neq Z_{1}$. Since $H-y_{2}$ is 2-connected and $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$, we must have $s_{2}=w_{2} \in\left\{s_{1}, t_{1}\right\}$. By symmetry, we may assume that $s_{2}=w_{2}=s_{1}$.

Let $Y_{1}^{\prime}, Z_{2}^{\prime}$ be the $\left\{s_{2}, t_{2}\right\}$-bridge of Y_{1} containing y_{1}, z_{2}, respectively. Then $t_{1} \notin$ $V\left(Z_{2}^{\prime}\right)$; for, otherwise, $H-\left\{s_{2}, t_{2}\right\}$ would contain a path from z_{2} to z_{1}, a contradiction. Therefore, because of the paths Y and $Z, t_{1} \in V\left(Y_{1}^{\prime}\right)$ and Y_{1}^{\prime} contains disjoint paths R_{1}, R_{2} from $s_{2}=s_{1}, t_{1}$ to y_{1}, t_{2}, respectively. Since $H-y_{2}$ is 2-connected, Z_{1} has independent P_{1}, Q_{1} from z_{1} to $s_{2}=s_{1}, t_{1}$, respectively, and Z_{2}^{\prime} has independent paths P_{2}, Q_{2} from z_{2} to $s_{2}=s_{1}, t_{2}$, respectively. Now $z_{1} X x_{1} \cup z_{1} X y_{2} \cup y_{2} x_{1} \cup P_{1} \cup s_{1} y_{2} \cup$ $\left(R_{1} \cup y_{1} x_{1}\right) \cup P_{2} \cup\left(Q_{2} \cup R_{2} \cup Q_{1}\right) \cup z_{2} X y_{2} \cup\left(z_{2} X x_{2} \cup x_{2} x_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $s_{1}, x_{1}, y_{2}, z_{1}, z_{2}$.

Lemma 3.3.3 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ be an 11-tuple and Y, Z be disjoint paths in $H:=G^{\prime}-V\left(X-\left\{y_{2}, z_{1}, z_{2}\right\} \cup E(X)\right)$ from y_{1}, z_{1} to y_{2}, z_{2}, respectively. Then G contains a $T K_{5}$ in which y_{2} is not a branch vertex or G^{\prime} contains $T K_{5}$, or
(i) there exist $i \in[2]$ and independent paths A, B, C in H, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i},
(ii) for each $i \in[2]$ satisfying $(i), z_{3-i} x_{3-i} \in E(X)$, and
(iii) H contains two disjoint paths from $V\left(B-y_{2}\right)$ to $V(A \cup C)-\left\{y_{1}, z_{i}\right\}$ and internally disjoint from $A \cup B \cup C$, with one ending in A and the other ending in C.

Proof. By Lemma 3.3.2, we may assume that
(1) for each $i \in[2], H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order (so $y_{1} z_{i} \notin E(G)$), and
(2) there exist $i \in[2]$ and independent paths A, B, C in H, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

Let $J(A, C)$ denote the $(A \cup C)$-bridge of H containing B, and $L(A, C)$ denote the union of $(A \cup C)$-bridges of H each of which intersects both $A-\left\{y_{1}, z_{i}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$. We choose A, B, C such that the following are satisfied in the order listed:
(a) A, B, C are induced paths in H,
(b) whenever possible, $J(A, C) \subseteq L(A, C)$,
(c) $J(A, C)$ is maximal, and
(d) $L(A, C)$ is maximal.

We now show that (ii) and (iii) hold even with the restrictions (a), (b), (c) and (d) above. Let B^{\prime} denote the union of B and the B-bridges of H not containing $A \cup C$.
(3) If (iii) holds then (ii) holds.

Suppose (iii) holds. Let $V(P \cap B)=\{p\}, V(Q \cap B)=\{q\}, V(P \cap C)=\{c\}$ and $V(Q \cap A)=\{a\}$. By the symmetry between A and C, we may assume that y_{2}, p, q, z_{3-i} occur on B in order. We may further choose P, Q so that $p B z_{3-i}$ is maximal.

To prove (ii), suppose there exists $x \in V\left(z_{3-i} X x_{3-i}\right)-\left\{x_{3-i}, z_{3-i}\right\}$. If $N(x) \cap$ $V(H)-\left\{y_{1}\right\} \nsubseteq V\left(B^{\prime}\right)$ then G^{\prime} has a path T from x to $\left(A-y_{1}\right) \cup\left(C-y_{1}\right) \cup(P-p) \cup(Q-a)$ and internally disjoint from $A \cup B^{\prime} \cup C \cup P \cup Q$; so $A \cup B \cup C \cup P \cup Q \cup T$ contain disjoint paths from y_{1}, z_{i} to y_{2}, x, respectively, contradicting the choice of Y and Z
in the 11-tuple (that $z_{1} X z_{2}$ is maximal). So $N(x) \cap V(H)-\left\{y_{1}\right\} \subseteq V\left(B^{\prime}\right)$. Consider $B^{\prime \prime}:=G\left[\left(B^{\prime}-z_{3-i}\right)+x\right]$.

If $B^{\prime \prime}$ contains disjoint paths P^{\prime}, Q^{\prime} from y_{2}, x to p, q, respectively, then $Q^{\prime} \cup Q \cup a A z_{i}$ and $P^{\prime} \cup P \cup c C y_{1}$ contradict the choice of Y, Z. If $B^{\prime \prime}$ contains disjoint paths $P^{\prime \prime}, Q^{\prime \prime}$ from x, y_{2} to p, q, respectively, then $Q^{\prime \prime} \cup Q \cup a A y_{1}$ and $P^{\prime \prime} \cup P \cup c C z_{i}$ contradict the choice of Y, Z.

So we may assume that there is a cut vertex z in $B^{\prime \prime}$ separating $\left\{x, y_{2}\right\}$ from $\{p, q\}$. Note that $z \in V\left(y_{2} B p\right)$.

Since x has at least two neighbors in $B^{\prime \prime}-y_{2}$ (because G is 5 -connected and X is induced in $G^{\prime}-x_{1} x_{2}$), the z-bridge of $B^{\prime \prime}$ containing $\left\{x, y_{2}\right\}$ has at least three vertices. Therefore, from the maximality of $p B z_{3-i}$ and 2 -connectedness of $H-$ $\left\{y_{2}, z_{1}, z_{2}\right\}$, there is a path in H from y_{1} to $y_{2} B z-\left\{y_{2}, z\right\}$ and internally disjoint from $P \cup Q \cup A \cup C \cup B^{\prime}$. So there is a path Y^{\prime} in H from y_{1} to y_{2} and disjoint from $P \cup Q \cup A \cup C \cup p B z_{3-i}$. Now $z_{3-i} B p \cup P \cup c C z_{i} \cup A \cup Y^{\prime}$ is a path in H through $z_{3-i}, z_{i}, y_{1}, y_{2}$ in order, contradicting (1).

By (2) and (3), it suffices to prove (iii). Since $H-\left\{y_{2}, z_{i}\right\}$ is 2-connected, it contains disjoint paths P, Q from $B-y_{2}$ to some distinct vertices $s, t \in V(A \cup C)-\left\{z_{i}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$.
(4) We may choose P, Q so that $s \neq y_{1}$ and $t \neq y_{1}$.

For, otherwise, $H-\left\{y_{2}, z_{i}\right\}$ has a separation $\left(H_{1}, H_{2}\right)$ such that $V\left(H_{1} \cap H_{2}\right)=\left\{v, y_{1}\right\}$ for some $v \in V(H),(A \cup C)-z_{i} \subseteq H_{1}$ and $B-y_{2} \subseteq H_{2}$. Recall the disjoint paths Y, Z in H from z_{1}, y_{1} to z_{2}, y_{2}, respectively. Suppose $v \notin V(Z)$. Then $Z-z_{i} \subseteq$ $H_{2}-\left\{y_{1}, v\right\}$. Hence we may choose Y (by modifying $Y \cap H_{1}$) so that $V(Y \cap A)=\left\{y_{1}\right\}$ or $V(Y \cap C)=\left\{y_{1}\right\}$. Now $Z \cup A \cup Y$ or $Z \cup C \cup Y$ is a path in H from z_{3-i} to y_{2} through z_{i}, y_{1} in order, contradicting (1). So $v \in V(Z)$. Hence $Y \subseteq H_{2}-v$, and we may choose Z (by modifying $Z \cap H_{1}$) so that $V(Z \cap A)=\left\{z_{i}\right\}$ or $V(Z \cap C)=\left\{z_{i}\right\}$.

Now $Z \cup A \cup Y$ or $Z \cup C \cup Y$ is a path in H from z_{3-i} to y_{2} through z_{i}, y_{1} in order, contradicting (1) and completing the proof of (4).

If $s \in V\left(A-y_{1}\right)$ and $t \in V\left(C-y_{1}\right)$ or $s \in V\left(C-y_{1}\right)$ and $t \in V\left(A-y_{1}\right)$, then P, Q are the desired paths for (iii). So we may assume by symmetry that $s, t \in V(C)$. Let $V(P \cap B)=\{p\}$ and $V(Q \cap B)=\{q\}$ such that y_{2}, p, q, z_{3-i} occur on B in this order. By (1) z_{i}, s, t, y_{1} must occur on C in order. We choose P, Q so that
$(*) s C t$ is maximal, then $p B z_{3-i}$ is maximal, and then $q B z_{3-i}$ is minimal.

Now consider B^{\prime}, the union of B and the B-bridges of H not containing $A \cup C$. Note that $(P-p) \cup(Q-q)$ is disjoint from B^{\prime}, and every path in H from $A \cup C$ to B^{\prime} and internally disjoint from $A \cup B^{\prime} \cup C$ must end in B. For convenience, let $K=P \cup Q \cup A \cup B^{\prime} \cup C$.
(5) $B^{\prime}-y_{2}$ contains independent paths P^{\prime}, Q^{\prime} from z_{3-i} to p, q, respectively.

Otherwise, $B^{\prime}-y_{2}$ has a cut vertex z separating z_{3-i} from $\{p, q\}$. Clearly, $z \in$ $V\left(q B z_{3-i}-z_{3-i}\right)$, and we choose z so that $z B z_{3-i}$ is minimal.

Let $B^{\prime \prime}$ denote the z-bridge of $B^{\prime}-y_{2}$ containing z_{3-i}; then $z B z_{3-i} \subseteq B^{\prime \prime}$. Since $H-\left\{y_{2}, z_{i}\right\}$ is 2-connected, it contains a path W from some $w^{\prime} \in V\left(B^{\prime \prime}-z\right)$ to some $w \in V(P \cup Q \cup A \cup C)-\left\{z_{i}\right\}$ and internally disjoint from K. By the definition of B^{\prime}, $w^{\prime} \in V\left(z_{i} B z_{3-i}\right)$. By $(1), w \notin V(P) \cup V\left(z_{i} C t-t\right)$. By $(*), w \notin V(Q) \cup V\left(t C y_{1}-y_{1}\right)$.

If $w \in V(A)-\left\{z_{i}, y_{1}\right\}$ then P, W give the desired paths for (iii). So we may assume $w=y_{1}$ for any choice of W; hence, $z \in V(Z)$ and $Y \cap\left(B^{\prime \prime} \cup\left(W-y_{1}\right)\right)=\emptyset$. By the minimality of $z B z_{3-i}, B^{\prime \prime}$ has independent paths $P^{\prime \prime}, Q^{\prime \prime}$ from z_{3-i} to z, w^{\prime}, respectively. Note that $z_{i} Z z \cap\left(B^{\prime \prime}-z\right)=\emptyset$. Now $z_{i} Z z \cup P^{\prime \prime} \cup Q^{\prime \prime} \cup W \cup Y$ is a path in H through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, contradicting (1).
(6) We may assume that $J(A, C) \nsubseteq L(A, C)$.

For, otherwise, there is a path R from B to some $r \in V(A)-\left\{y_{1}, z_{i}\right\}$ and internally disjoint from $A \cup B^{\prime} \cup C$. If $R \cap(P \cup Q) \neq \emptyset$, then it is easy to check that $P \cup Q \cup R$ contains the desired paths for (iii). So we may assume $R \cap(P \cup Q)=\emptyset$. If $y_{2} \notin V(R)$, then P, R are the desired paths for (iii). So assume $y_{2} \in V(R)$. Recall the paths P^{\prime}, Q^{\prime} from (5). Then $z_{i} C s \cup P \cup P^{\prime} \cup Q^{\prime} \cup Q \cup t C y_{1} \cup y_{1} A r \cup R$ is a path in H through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, contradicting (1) and completing the proof of (6).

Let $J=J(A, C) \cup C$. Then by (1), J does not contain disjoint paths from y_{2}, z_{i} to y_{1}, z_{3-i}, respectively. So by Lemma 2.3.1, there exists a collection \mathcal{A} of subsets of $V(J)-\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\}$ such that $\left(J, \mathcal{A}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar. We choose \mathcal{A} so that every member of \mathcal{A} is minimal and, subject to this, $|\mathcal{A}|$ is minimum. Then
(7) for any $D \in \mathcal{A}$ and any $v \in V(D),\left(J\left[D+N_{J}(D)\right], N_{J}(D) \cup\{v\}\right)$ is not 3-planar.

Suppose for some $D \in \mathcal{A}$ and some $v \in D$, there is a collection of subsets \mathcal{A}^{\prime} of $D-\{v\}$ such that $\left(J\left[D+N_{J}(D)\right], \mathcal{A}^{\prime}, N_{J}(D) \cup\{v\}\right)$ is 3-planar. Then, with $\mathcal{A}^{\prime \prime}=$ $(\mathcal{A}-\{D\}) \cup \mathcal{A}^{\prime},\left(J, \mathcal{A}^{\prime \prime}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3 -planar. So $\mathcal{A}^{\prime \prime}$ contradicts the choice of \mathcal{A}. Hence, we have (7).

Let v_{1}, \ldots, v_{k} be the vertices of $L(A, C) \cap\left(C-\left\{y_{1}, z_{i}\right\}\right)$ such that $z_{i}, v_{1}, \ldots, v_{k}, y_{1}$ occur on C in the order listed. We claim that
(8) $\left(J, z_{i}, v_{1}, \ldots, v_{k}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar.

For, suppose otherwise. Since there is only one C-bridge in J and $\left(J, \mathcal{A}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar, there exist $j \in[k]$ and $D \in \mathcal{A}$ such that $v_{j} \in D$. Since H is 2-connected, let $c_{1}, c_{2} \in V(C) \cap N_{J}(D)$ with $c_{1} C c_{2}$ maximal.

Suppose $N_{J}(D) \subseteq V(C)$. Then, since there is only one C-bridge in J and $\left(J, \mathcal{A}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar, J has a separation $\left(J_{1}, J_{2}\right)$ such that $V\left(J_{1} \cap J_{2}\right)=$ $\left\{c_{1}, c_{2}\right\}, D \cup V\left(c_{1} C c_{2}\right) \subseteq V\left(J_{1}\right)$, and $B \subseteq J_{2}$. Since J has only one C-bridge and
C is induced in H, we have $J_{1}=c_{1} C c_{2}$. Now let \mathcal{A}^{\prime} be obtained from \mathcal{A} by removing all members of \mathcal{A} contained in $V\left(J_{1}\right)$. Then $\left(J, \mathcal{A}^{\prime}, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar, contradicting the choice of \mathcal{A}.

Thus, let $c \in N_{J}(D)-V(C)$. So $c \in V(J(A, C))$. Let $D^{\prime}=J\left[D+\left\{c_{1}, c_{2}, c\right\}\right]$. By (7) and Lemma 2.3.1, D^{\prime} contains disjoint paths R from v_{j} to c and T from c_{1} to c_{2}. We may assume T is induced. Let C^{\prime} be obtained from C by replacing $c_{1} C c_{2}$ with T. We now see that A, B, C^{\prime} satisfy (a), but $J\left(A, C^{\prime}\right)$ intersects both $A-\left\{y_{1}, z_{i}\right\}$ (by definition of v_{j} and because $\left.c \in V(J(A, C))-V(C)\right)$ and $C^{\prime}-\left\{y_{1}, z_{i}\right\}$ (because of $P, Q)$, contradicting (b) (via (6)) and completing the proof of (8).
(9) There exist disjoint paths R_{1}, R_{2} in $L(A, C)$ from some $r_{1}, r_{2} \in V(C)$ to some $r_{1}^{\prime}, r_{2}^{\prime} \in V(A)$, respectively, and internally disjoint from $A \cup C$, such that $z_{i}, r_{1}, r_{2}, y_{1}$ occur on C in this order and $z_{i}, r_{2}^{\prime}, r_{1}^{\prime}, y_{1}$ occur on A in this order.

We prove (9) by studying the $(A \cup C)$-bridges of H other than $J(A, C)$. For any ($A \cup C$)-bridge T of H with $T \neq J(A, C)$, if T intersects A let $a_{1}(T), a_{2}(T) \in V(T \cap A)$ with $a_{1}(T) A a_{2}(T)$ maximal, and if T intersects C let $c_{1}(T), c_{2}(T) \in V(T \cap C)$ with $c_{1}(T) C c_{2}(T)$ maximal. We choose the notation so that $z_{i}, a_{1}(T), a_{2}(T), y_{1}$ occur on A in order, and $z_{i}, c_{1}(T), c_{2}(T), y_{1}$ occur on C in order.

If T_{1}, T_{2} are $(A \cup C)$-bridges of H such that $T_{2} \subseteq L(A, C), T_{1} \neq J(A, C)$, and T_{1} intersects C (or A) only, then $c_{1}\left(T_{1}\right) C c_{2}\left(T_{1}\right)-\left\{c_{1}\left(T_{1}\right), c_{2}\left(T_{1}\right)\right\}$ (or $a_{1}\left(T_{1}\right) A a_{2}\left(T_{1}\right)-$ $\left.\left\{a_{1}\left(T_{1}\right), a_{2}\left(T_{1}\right)\right\}\right)$ does not intersect T_{2}. For, otherwise, we may modify C (or A) by replacing $c_{1}\left(T_{1}\right) C c_{2}\left(T_{1}\right)$ (or $a_{1}\left(T_{1}\right) A a_{2}\left(T_{1}\right)$) with an induced path in T_{1} from $c_{1}\left(T_{1}\right)$ to $c_{2}\left(T_{1}\right)$ (or from $a_{1}\left(T_{1}\right)$ to $a_{2}\left(T_{1}\right)$). The new A and C do not affect (a), (b) and (c) but enlarge $L(A, C)$, contradicting (d).

Because of the disjoint paths Y and Z in $H,\left(H, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is not 3-planar. By (1) $A-\left\{y_{1}, z_{i}\right\} \neq \emptyset$. Hence, since $H-\left\{y_{2}, z_{1}, z_{2}\right\}$ is 2-connected, $L(A, C) \neq \emptyset$. Thus, since $\left(J, z_{i}, v_{1}, \ldots, v_{k}, y_{1}, z_{3-i}, y_{2}\right)$ is 3-planar (by (8)) and $J(A, C)$ does not
intersect $A-\left\{y_{1}, z_{i}\right\}$ (by (6)), one of the following holds: There exist $(A \cup C)$-bridges T_{1}, T_{2} of H such that $T_{1} \cup T_{2} \subseteq L(A, C), z_{i} A a_{2}\left(T_{1}\right)$ properly contains $z_{i} A a_{1}\left(T_{2}\right)$, and $c_{1}\left(T_{1}\right) C y_{1}$ properly contains $c_{2}\left(T_{2}\right) C y_{1}$; or there exists an $(A \cup C)$-bridge T of H such that $T \subseteq L(A, C)$ and $T \cup a_{1}(T) A a_{2}(T) \cup c_{1}(T) C c_{2}(T)$ has disjoint paths from $a_{1}(T), a_{2}(T)$ to $c_{2}(T), c_{1}(T)$, respectively. In either case, we have (9).
(10) $r_{1}, r_{2} \in V\left(t C y_{1}\right)$ for all choices of R_{1}, R_{2} in (9), or $r_{1}, r_{2} \in V\left(z_{i} C s\right)$ for all choices of R_{1}, R_{2} in (9).

For, suppose there exist R_{1}, R_{2} such that $r_{1} \in V\left(z_{i} C s\right)$ and $r_{2} \in V\left(t C y_{1}\right)$, or $r_{1} \in$ $V(s C t)-\{s, t\}$, or $r_{2} \in V(s C t)-\{s, t\}$. Let $A^{\prime}:=z_{i} A r_{2}^{\prime} \cup R_{2} \cup r_{2} C y_{1}$ and $C^{\prime}:=$ $z_{i} C r_{1} \cup R_{1} \cup r_{1}^{\prime} A y_{1}$. We may assume A^{\prime}, C^{\prime} are induced paths in H (by taking induced paths in $H\left[A^{\prime}\right]$ and $\left.H\left[C^{\prime}\right]\right)$. Note that $A^{\prime}, B, C^{\prime}$ satisfy (a), and $J(A, C) \subseteq J\left(A^{\prime}, C^{\prime}\right)$. However, because of P and $Q, J\left(A^{\prime}, C^{\prime}\right)$ intersects both $A^{\prime}-\left\{z_{i}, y_{1}\right\}$ and $C^{\prime}-\left\{z_{i}, y_{1}\right\}$, contradicting (b) (via (6)) and completing the proof of (10).

If $r_{1}, r_{2} \in V\left(z_{i} C s\right)$ for all choices of R_{1}, R_{2} in (9) then we choose such R_{1}, R_{2} that $z_{i} A r_{1}^{\prime}$ and $z_{i} C r_{2}$ are maximal, and let $z^{\prime}:=r_{1}^{\prime}$ and $z^{\prime \prime}=r_{2}$; otherwise, define $z^{\prime}=z^{\prime \prime}=z_{i}$. Similarly, if $r_{1}, r_{2} \in V\left(t C y_{1}\right)$ for all choices of R_{1}, R_{2} in (9), then we choose such R_{1}, R_{2} that $y_{1} A r_{2}^{\prime}$ and $y_{1} C r_{1}$ are maximal, and let $y^{\prime}:=r_{2}^{\prime}$ and $y^{\prime \prime}=r_{1}$; otherwise, define $y^{\prime}=y^{\prime \prime}=y_{1}$. By (10), $z_{i}, z^{\prime}, y^{\prime}, y_{1}$ occur on A in order, and $z_{i}, z^{\prime \prime}, s, t, y^{\prime \prime}, y_{1}$ occur on C in order.

Note that H has a path W from some $y \in V(B) \cup V(P-s) \cup V(Q-t)$ to some $w \in V\left(z_{i} A z^{\prime}-\left\{z^{\prime}, z_{i}\right\}\right) \cup V\left(z_{i} C z^{\prime \prime}-\left\{z^{\prime \prime}, z_{i}\right\}\right) \cup V\left(y^{\prime} A y_{1}-\left\{y^{\prime}, y_{1}\right\}\right) \cup V\left(y^{\prime \prime} C y_{1}-\left\{y^{\prime \prime}, y_{1}\right\}\right)$ such that W is internally disjoint from K. For, otherwise, $\left(H, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is 3planar, contradicting the existence of the disjoint paths Y and Z. By (6), $w \notin V(A)$. If $w \in V\left(z_{i} A z^{\prime}-\left\{z^{\prime}, z_{i}\right\}\right) \cup V\left(y^{\prime} A y_{1}-\left\{y^{\prime}, y_{1}\right\}\right)$ then we can find the desired P, Q. So assume $w \in V\left(z_{i} C z^{\prime \prime}-\left\{z^{\prime \prime}, z_{i}\right\}\right) \cup V\left(y^{\prime \prime} C y_{1}-\left\{y^{\prime \prime}, y_{1}\right\}\right)$. By (*) and (1), y $\notin V\left(B-y_{2}\right)$ and $y \notin V(P \cup Q)$. This forces $y=y_{2}$, which is impossible as $N_{H}\left(y_{2}\right)=\left\{w_{2}\right\}$.

Remark. Note from the proof of Lemma 3.3.3 that the conclusions (ii) and (iii) hold for those paths A, B, C that satisfy (a), (b), (c) and (d).

3.4 Finding $T K_{5}$

In this section, we prove Theorem 3.1.1. Let G be a 5 -connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin$ $E(G)$. Let $w_{1}, w_{2}, w_{3} \in N\left(y_{2}\right)-\left\{x_{1}, x_{2}\right\}$ be distinct and let $G^{\prime}:=G-\left\{y_{2} v: v \notin\right.$ $\left.\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}\right\}$.

We may assume that $G^{\prime}-x_{1} x_{2}$ has an induced path L from x_{1} to x_{2} such that $y_{1}, y_{2} \notin V(L),\left(G-y_{2}\right)-L$ is 2-connected, and $w_{1}, w_{2}, w_{3} \in V(L)$; for otherwise, the conclusion of Theorem 3.1.1 follows from Lemma 3.2.2. Hence, $G^{\prime}-x_{1} x_{2}$ has an induced path X from x_{1} to x_{2} such that $y_{1} \notin V(X), w_{1} y_{2}, w_{3} y_{2} \in E(X)$, and $G^{\prime}-X=G-X$ is 2 -connected. Hence, $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}\right)$ is a 9-tuple.

We may assume that there exist $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ for $i \in[2]$ such that $H:=G^{\prime}-\left(X-\left\{y_{2}, z_{1}, z_{2}\right\}\right)$ has disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively; for, otherwise, the conclusion of Theorem 3.1.1 follows from Lemma 3.3.1. We choose such Y, Z so that $z_{1} X z_{2}$ is maximal. Then $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, w_{1}, w_{2}, w_{3}, z_{1}, z_{2}\right)$ is an 11-tuple.

By Lemma 3.3.2 and by symmetry, we may assume that
(1) for $i \in[2], H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order (so $y_{1} z_{i} \notin E(G)$),
and that there exist independent paths A, B, C in H with A and C from z_{1} to y_{1}, and B from y_{2} to z_{2}. See Figure 1.

Let $J(A, C)$ denote the $(A \cup C)$-bridge of H containing B, and $L(A, C)$ denote the union of $(A \cup C)$-bridges of H intersecting both $A-\left\{y_{1}, z_{1}\right\}$ and $C-\left\{y_{1}, z_{1}\right\}$. We may choose A, B, C such that the following are satisfied in the order listed:
(a) A, B, C are induced paths in H,

Figure 1: An intermediate structure 1
(b) whenever possible $J(A, C) \subseteq L(A, C)$,
(c) $J(A, C)$ is maximal, and
(d) $L(A, C)$ is maximal.

By Lemma 3.3.3 and its proof (see the remark at the end of Section 4), we may assume that

$$
z_{2} x_{2} \in E(X)
$$

and that there exist disjoint paths P, Q in H from $p, q \in V\left(B-y_{2}\right)$ to $c \in V(C)-$ $\left\{y_{1}, z_{1}\right\}, a \in V(A)-\left\{y_{1}, z_{1}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$. By symmetry between A and C, we assume that y_{2}, p, q, z_{2} occur on B in order. We further choose A, B, C, P, Q so that
(2) $q B z_{2}$ is minimal, then $p B z_{2}$ is maximal, and then $a A y_{1} \cup c C z_{1}$ is minimal.

Let B^{\prime} denote the union of B and the B-bridges of H not containing $A \cup C$. Note that all paths in H from $A \cup C$ to B^{\prime} and internally disjoint from B^{\prime} must have an
end in B. For convenience, let

$$
K:=A \cup B^{\prime} \cup C \cup P \cup Q .
$$

Then
(3) H has no path from $a A y_{1}-a$ to $z_{1} C c-c$ and internally disjoint from K.

For, suppose S is a path in H from some vertex $s \in V\left(a A y_{1}-a\right)$ to some vertex $s^{\prime} \in V\left(z_{1} C c-c\right)$ and internally disjoint from K. Then $z_{2} B q \cup Q \cup a A z_{1} \cup z_{1} C s^{\prime} \cup S \cup$ $s A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1).

We proceed by proving a number of claims from which Theorem 3.1.1 will follow. Our intermediate goal is to prove (12) that H contains a path from y_{1} to $Q-a$ and internally disjoint from K. However, the claims leading to (12) will also be useful when we later consider structure of G near z_{1}.
(4) $B^{\prime}-y_{2}$ has no cut vertex contained in $q B z_{2}-z_{2}$ and, hence, for any $q^{*} \in V\left(B^{\prime}\right)-$ $\left\{y_{2}, q\right\}, B^{\prime}-y_{2}$ has independent paths P_{1}, P_{2} from z_{2} to q, q^{*}, respectively.

Suppose $B^{\prime}-y_{2}$ contains a cut vertex u with $u \in V\left(q B z_{2}-z_{2}\right)$. Choose u so that $u B z_{2}$ is minimal. Since $H-\left\{y_{2}, z_{1}\right\}$ is 2-connected, there is a path S in H from some $s^{\prime} \in V\left(u B z_{2}-u\right)$ to some $s \in V(A \cup C \cup P \cup Q)-\{p, q\}$ and internally disjoint from K. By the minimality of $u B z_{2}$, the u-bridge of $B^{\prime}-y_{2}$ containing $u B z_{2}$ has independent paths R_{1}, R_{2} from z_{2} to s^{\prime}, u, respectively. By the minimality of $q B z_{2}$ in $(2), S$ is disjoint from $(P \cup Q \cup A \cup C)-\left\{z_{1}, y_{1}\right\}$. If $s=z_{1}$ then $\left(R_{1} \cup S\right) \cup A \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). So $s=y_{1}$. Then $\left(z_{1} A a \cup Q \cup q B u \cup R_{2}\right) \cup\left(R_{1} \cup S\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$ is a path in H through $z_{1}, z_{2}, y_{1}, y_{2}$ in order, contradicting (1).

Hence, $B^{\prime}-y_{2}$ has no cut vertex contained in $q B z_{2}-z_{2}$. Thus, the second half of (4) follows from Menger's theorem.
(5) We may assume that G^{\prime} has no path from $a A y_{1}-a$ to $z_{1} X z_{2}$ and internally disjoint from $K \cup X$, and no path from $c C y_{1}-c$ to $z_{1} X z_{2}-z_{1}$ and internally disjoint from $K \cup X$.

For, suppose S is a path in G^{\prime} from some $s \in V\left(a A y_{1}-a\right) \cup V\left(c C y_{1}-c\right)$ to some $s^{\prime} \in V\left(z_{1} X z_{2}\right)$ and internally disjoint from $K \cup X$, such that $s^{\prime} \neq z_{1}$ if $s \in V\left(c C y_{1}-c\right)$. If $s^{\prime}=z_{1}$ then $s \in V\left(a A y_{1}-a\right)$; so $z_{2} B q \cup Q \cup a A z_{1} \cup S \cup s A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). If $s^{\prime}=z_{2}$ then $s=y_{1}$ by (2); so $\left(z_{1} A a \cup Q \cup q B z_{2}\right) \cup S \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{1}, z_{2}, y_{1}, y_{2}$ in order, contradicting (1). Hence, $s^{\prime} \in V\left(z_{1} X z_{2}\right)-\left\{z_{1}, z_{2}\right\}$.

Suppose $s^{\prime} \in V\left(z_{1} X y_{2}-z_{1}\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. If $s \in V\left(a A y_{1}-a\right)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(P_{1} \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup\left(y_{1} A s \cup\right.$ $\left.S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $s \in V\left(c A y_{1}-c\right)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{2} \cup P \cup c C z_{1} \cup z_{1} X x_{1}\right) \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(y_{1} C s \cup\right.$ $\left.S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now assume $s^{\prime} \in V\left(z_{2} X y_{2}-z_{2}\right)$. If $s \in V\left(a A y_{1}-a\right)$, then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup C \cup$ $\left(z_{1} A a \cup Q \cup q B z_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} A s \cup S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $s \in V\left(c C y_{1}-c\right)$, then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup A \cup$ $\left(z_{1} C c \cup P \cup p B z_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} C s \cup S \cup s^{\prime} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. This completes the proof of (5).

Denote by $L(A)$ (respectively, $L(C)$) the union of $(A \cup C)$-bridges of H not intersecting C (respectively, A). Let $C^{\prime}=C \cup L(C)$. The next four claims concern paths from $x_{1} X z_{1}-z_{1}$ to other parts of G^{\prime}. We may assume that
(6) $N\left(x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}\right) \subseteq V\left(C^{\prime}\right) \cup\left\{x_{1}, z_{1}\right\}$, and that G^{\prime} has no disjoint paths from $s_{1}, s_{2} \in V\left(x_{1} X z_{1}-z_{1}\right)$ to $s_{1}^{\prime}, s_{2}^{\prime} \in V(C)$, respectively, and internally disjoint from $K \cup X$ such that $s_{2}^{\prime} \in V\left(c C y_{1}-c\right), x_{1}, s_{1}, s_{2}, z_{1}$ occur on X in order, and $z_{1}, s_{1}^{\prime}, s_{2}^{\prime}, y_{1}$ occur on C in order.

First, suppose $N\left(x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}\right) \nsubseteq V\left(C^{\prime}\right) \cup\left\{x_{1}, z_{1}\right\}$. Then there exists a path S in G^{\prime} from some $s \in V\left(x_{1} X z_{1}\right)-\left\{x_{1}, z_{1}\right\}$ to some $s^{\prime} \in V\left(A \cup B^{\prime} \cup P \cup Q\right)-\left\{c, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ and internally disjoint from $K \cup X$. If $s^{\prime} \in V(A)-\left\{z_{1}, y_{1}\right\}$ then $y_{1} C c \cup P \cup p B y_{2}$, $S \cup s^{\prime} A a \cup Q \cup q B z_{2}$ contradict the choice of Y, Z. If $s^{\prime} \in V(Q-a)$ then $y_{1} C c \cup P \cup p B y_{2}$, $S \cup s^{\prime} Q q \cup q B z_{2}$ contradict the choice of Y, Z. If $s^{\prime} \in V(P-c)$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup p P s^{\prime} \cup S \cup s X x_{1}\right) \cup$ $\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $s^{\prime} \in V\left(B^{\prime}\right)-\left\{y_{2}, p, q\right\}$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=s^{\prime}$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup S \cup s X x_{1}\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now assume G^{\prime} has disjoint paths S_{1}, S_{2} from $s_{1}, s_{2} \in V\left(x_{1} X z_{1}-z_{1}\right)$ to $s_{1}^{\prime}, s_{2}^{\prime} \in$ $V(C)$, respectively, and internally disjoint from $K \cup X$ such that $s_{2}^{\prime} \in V\left(c C y_{1}-c\right)$, $x_{1}, s_{1}, s_{2}, z_{1}$ occur on X in order, and $z_{1}, s_{1}^{\prime}, s_{2}^{\prime}, y_{1}$ occur on C in order. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C s_{1}^{\prime} \cup\right.$ $\left.S_{1} \cup s_{1} X x_{1}\right) \cup\left(y_{1} C s_{2}^{\prime} \cup S_{2} \cup s_{2} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (6).
(7) For any path W in G^{\prime} from x_{1} to some $w \in V(K)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$, we may assume $w \in V(A \cup C)-\left\{y_{1}, z_{1}\right\}$. (Note that such W exists as G is 5 -connected and $G^{\prime}-X$ is 2 -connected.)

For, let W be a path in G^{\prime} from x_{1} to $w \in V(K)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$, such that $w \notin V(A \cup C)-\left\{z_{1}, y_{1}\right\}$. Then $w \neq y_{2}$ as $N_{G^{\prime}}\left(y_{2}\right)=$ $\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$.

Suppose $w \in V\left(B^{\prime}-q\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=w$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup W\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So assume $w \notin V\left(B^{\prime}-q\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. If $w \in V(P-c)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup p P w \cup W\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup$
$G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $w \in V(Q-a)$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q w \cup W\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (7).
(8) We may assume that G^{\prime} has no path from $x_{1} X z_{1}-x_{1}$ to y_{1} and internally disjoint from $K \cup X$.

For, suppose that R is a path in G^{\prime} from some $x \in V\left(x_{1} X z_{1}-x_{1}\right)$ to y_{1} and internally disjoint from $K \cup X$. Then $x \neq z_{1}$; as otherwise $z_{2} B q \cup Q \cup a A z_{1} \cup R \cup y_{1} C c \cup P \cup$ $p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. We use W from (7). If $w \in V(A)-\left\{z_{1}, y_{1}\right\}$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(R \cup x X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $w \in V(C)-\left\{z_{1}, y_{1}\right\}$ then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C w \cup W\right) \cup\left(R \cup x X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (8).
(9) If G^{\prime} has a path from $x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}$ to $c C y_{1}-c$ and internally disjoint from $K \cup X$, then we may assume that

- $w \in V(C)-\left\{y_{1}, z_{1}\right\}$ for any choice of W in (7), and
- G^{\prime} has no path from x_{2} to $C-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$.

Let S be a path in G^{\prime} from some $s \in V\left(x_{1} X z_{1}\right)-\left\{x_{1}, z_{1}\right\}$ to $V\left(c C y_{1}-c\right)$ and internally disjoint from $K \cup X$. Since X is induced in $G^{\prime}-x_{1} x_{2}, G^{\prime}\left[H-\left\{y_{2}, z_{1}, z_{2}\right\}+s\right]$ is 2connected. Hence, since $N\left(x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}\right) \subseteq V\left(C^{\prime}\right) \cup\left\{x_{1}, z_{1}\right\}$ (by (6)), G^{\prime} has independent paths S_{1}, S_{2} from s to distinct $s_{1}, s_{2} \in V(C)-\left\{z_{1}, y_{1}\right\}$ and internally disjoint from $K \cup X$. Because of S, we may assume that $z_{1}, s_{1}, s_{2}, y_{1}$ occur on C in this order and $s_{2} \in V\left(c C y_{1}-c\right)$.

Suppose we may choose the W in (7) with $w \in V(A)-\left\{z_{1}, y_{1}\right\}$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup s X x_{1} \cup s X y_{2} \cup\left(P_{2} \cup P \cup c C s_{1} \cup S_{1}\right) \cup$
$\left(S_{2} \cup s_{2} C y_{1} \cup y_{1} x_{2}\right) \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $s, x_{1}, x_{2}, y_{2}, z_{2}$.

Now assume that S^{\prime} is a path in G^{\prime} from x_{2} to some $s^{\prime} \in V(C)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$. Then $S_{1} \cup S_{2} \cup S^{\prime} \cup\left(C-z_{1}\right)$ contains independent paths $S_{1}^{\prime}, S_{2}^{\prime}$ which are from s to y_{1}, x_{2}, respectively (when $s^{\prime} \in V\left(z_{1} C s_{2}\right)-\left\{s_{2}, z_{1}\right\}$), or from s to c, x_{2}, respectively (when $s^{\prime} \in V\left(s_{2} C y_{1}-y_{1}\right)$). If $S_{1}^{\prime}, S_{2}^{\prime}$ end at y_{1}, x_{2}, respectively, then $s X x_{1} \cup s X y_{2} \cup S_{1}^{\prime} \cup S_{2}^{\prime} \cup\left(y_{1} A a \cup Q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $s, x_{1}, x_{2}, y_{1}, y_{2}$. So assume that $S_{1}^{\prime}, S_{2}^{\prime}$ end at c, x_{2}, respectively. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $s X x_{1} \cup s X y_{2} \cup z_{2} x_{2} \cup$ $z_{2} X y_{2} \cup\left(S_{1}^{\prime} \cup P \cup P_{2}\right) \cup S_{2}^{\prime} \cup\left(P_{1} \cup Q \cup a A y_{1} \cup y_{1} x_{1}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $s, x_{1}, x_{2}, y_{2}, z_{2}$. This completes the proof of (9).

The next two claims deal with $L(A)$ and $L(C)$. First, we may assume that (10) $L(A) \cap A \subseteq z_{1} A a$.

For any $(A \cup C)$-bridge R of H contained in $L(A)$, let $z(R), y(R) \in V(R \cap A)$ such that $z(R) A y(R)$ is maximal. Suppose for some $(A \cup C)$-bridge R_{1} of H contained in $L(A)$, we have $y\left(R_{1}\right) A z\left(R_{1}\right) \nsubseteq z_{1} A a$. Let R_{1}, \ldots, R_{m} be a maximal sequence of $(A \cup C)$-bridges of H contained in $L(A)$, such that for each $i \in\{2, \ldots, m\}, R_{i}$ contains an internal vertex of $\bigcup_{j=1}^{i-1} z\left(R_{j}\right) A y\left(R_{j}\right)$ (which is a path). Let $a_{1}, a_{2} \in V(A)$ such that $\bigcup_{j=1}^{m} z\left(R_{j}\right) A y\left(R_{j}\right)=a_{1} A a_{2}$. By (c), $J(A, C)$ does not intersect $a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}$; so $a_{1}, a_{2} \in V\left(a A y_{1}\right)$. By (d), G^{\prime} has no path from $a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}$ to C and internally disjoint from $K \cup X$. Hence by (5), $\left\{a_{1}, a_{2}, x_{1}, x_{2}, y_{2}\right\}$ is a cut in G. Thus, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{1}, a_{2}, x_{1}, x_{2}, y_{2}\right\}, P \cup Q \cup B^{\prime} \cup C \cup X \subseteq G_{1}$, and $a_{1} A a_{2} \cup\left(\bigcup_{j=1}^{m} R_{j}\right) \subseteq G_{2}$.

Let $z \in V\left(G_{2}\right)-\left\{a_{1}, a_{2}, x_{1}, x_{2}, y_{2}\right\}$ and assume $z_{1}, a_{1}, a_{2}, y_{1}$ occur on A in order. Since G is 5 -connected, $G_{2}-y_{2}$ contains four independent paths $R_{1}, R_{2}, R_{3}, R_{4}$ from z to $x_{1}, x_{2}, a_{1}, a_{2}$, respectively. Now $R_{1} \cup R_{2} \cup\left(R_{3} \cup a_{1} A z_{1} \cup z_{1} X y_{2}\right) \cup\left(R_{4} \cup a_{2} A y_{1}\right) \cup\left(y_{1} C c \cup\right.$
$\left.P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z$. This completes the proof of (10).
(11) We may assume that if R is an $(A \cup C)$-bridge of H contained in $L(C)$ and $R \cap\left(c C y_{1}-c\right) \neq \emptyset$ then $|V(R)-V(C)|=1$ and $N(R-C)=\left\{c_{1}, c_{2}, s_{1}, s_{2}, y_{2}\right\}$, with $c_{1} C c_{2}=c_{1} c_{2}$ and $s_{1} s_{2}=s_{1} X s_{2} \subseteq z_{1} X x_{1}$.

For any $(A \cup C)$-bridge R in $L(C)$, let $z(R), y(R) \in V(C \cap R)$ such that $z(R) C y(R)$ is maximal. Let R_{1} be an $(A \cup C)$-bridge of H contained in $L(C)$ such that $R_{1} \cap$ $\left(c C y_{1}-c\right) \neq \emptyset$.

Let R_{1}, \ldots, R_{m} be a maximal sequence of $(A \cup C)$-bridges of H contained in $L(C)$, such that for each $i \in\{2, \ldots, m\}, R_{i}$ contains an internal vertex of $\bigcup_{j=1}^{i-1} z\left(R_{j}\right) C y\left(R_{j}\right)$ (which is a path). Let $c_{1}, c_{2} \in V(C)$ such that $c_{1} C c_{2}=\bigcup_{j=1}^{m} z\left(R_{j}\right) C y\left(R_{j}\right)$, with $z_{1}, c_{1}, c_{2}, y_{1}$ on C in order. So $c_{2} \in V\left(c C y_{1}-y_{1}\right)$ and, hence, $c_{1} \in V\left(c C y_{1}-y_{1}\right)$ by (c) and the existence of P. Let $R^{\prime}=\bigcup_{j=1}^{m} R_{j} \cup c_{1} C c_{2}$.

By $(\mathrm{c}), G^{\prime}$ has no path from $c_{1} C c_{2}-\left\{c_{1}, c_{2}\right\}$ to $V\left(B^{\prime} \cup P \cup Q\right) \cup\left\{z_{1}\right\}$ and internally disjoint from $K \cup X$. By (d), G^{\prime} has no path from $c_{1} C c_{2}-\left\{c_{1}, c_{2}\right\}$ to $A-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup X$.

If $N\left(x_{2}\right) \cap V\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right) \neq \emptyset$ then by (5) and (9), $N\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right)=\left\{x_{1}, x_{2}, y_{2}, c_{1}, c_{2}\right\}$. Let $z \in V\left(R^{\prime}\right)-\left\{x_{1}, x_{2}, c_{1}, c_{2}\right\}$. Since G is 5 -connected, R^{\prime} has independent paths $W_{1}, W_{2}, W_{3}, W_{4}$ from z to $x_{1}, x_{2}, c_{2}, c_{1}$, respectively. Now $W_{1} \cup W_{2} \cup\left(W_{3} \cup c_{2} C y_{1}\right) \cup$ $\left(W_{4} \cup c_{1} C z_{1} \cup z_{1} X y_{2}\right) \cup\left(y_{1} A a \cup Q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z$.

So we may assume $N\left(x_{2}\right) \cap V\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right)=\emptyset$. Since G is 5 -connected, it follows from (5) that there exist distinct $s_{1}, s_{2} \in V\left(x_{1} X z_{1}-z_{1}\right) \cap N\left(R^{\prime}-\left\{c_{1}, c_{2}\right\}\right)$. Choose s_{1}, s_{2} such that $s_{1} X s_{2}$ is maximal and assume that $x_{1}, s_{1}, s_{2}, z_{1}$ occur on X in this order. By (6), $\left\{c_{1}, c_{2}, s_{1}, s_{2}, y_{2}\right\}$ is a 5 -cut in G; so G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{c_{1}, c_{2}, s_{1}, s_{2}, y_{2}\right\}$ and $R^{\prime} \cup c_{1} C c_{2} \cup s_{1} X s_{2} \subseteq G_{2}$. By (6) again,
$\left(G_{2}-y_{2}, c_{1}, c_{2}, s_{1}, s_{2}\right)$ is planar (since G is 5 -connected). If $\left|V\left(G_{2}\right)\right| \geq 7$ then by Lemma 2.3.8, (i) or (ii) or (iii) holds. So we may assume that $\left|V\left(G_{2}\right)\right|=6$, and we have the assertion of (11).

We may assume that
(12) H has a path Q^{\prime} from y_{1} to some $q^{\prime} \in V(Q-a)$ and internally disjoint from K.

First, suppose that $y_{1} \in V(J(A, C))$. Then, H has a path Q^{\prime} from y_{1} to some $q^{\prime} \in V(P-c) \cup V(Q-a) \cup V(B)$ internally disjoint from K. We may assume $q^{\prime} \in V(P-c) \cup V(B)$; for otherwise, $q^{\prime} \in V(Q-a)$ and the claim holds. If $q^{\prime} \in$ $V(P-c) \cup V\left(y_{2} B q-q\right)$ then $(P-c) \cup\left(y_{2} B q-q\right) \cup Q^{\prime}$ contains a path $Q^{\prime \prime}$ from y_{1} to y_{2}; so $z_{1} X x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A a \cup Q \cup q B z_{2} \cup z_{2} x_{2}\right) \cup Q^{\prime \prime} \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. Hence, we may assume $q^{\prime} \in V\left(q B z_{2}-q\right)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=q^{\prime}$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup Q \cup a A z_{1} \cup\right.$ $\left.z_{1} X x_{1}\right) \cup\left(P_{2} \cup Q^{\prime}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Thus, we may assume that $y_{1} \notin V(J(A, C))$. Note that $y_{1} \notin V(L(A))$ (by (10)) and $y_{1} \notin V(L(C))$ (by (8) and (11)). Hence, since $y_{1} y_{2} \notin E(G)$ and G is 5-connected, y_{1} is contained in some $(A \cup C)$-bridge of H, say D_{1}, with $D_{1} \subseteq L(A, C)$ and $D_{1} \neq$ $J(A, C)$. Note that $\left|V\left(D_{1}\right)\right| \geq 3$ as A and C are induced paths. For any $(A \cup C)$ bridge D of H with that $D \subseteq L(A, C)$ and $D \neq J(A, C)$, let $a(D) \in V(A) \cap V(D)$ and $c(D) \in V(C) \cap V(D)$ such that $z_{1} A a(D)$ and $z_{1} C c(D)$ are minimal.

Let D_{1}, \ldots, D_{k} be a maximal sequence of $(A \cup C)$-bridges of H with $D_{i} \subseteq L(A, C)$ (so $\left.D_{i} \neq J(A, C)\right)$ for $i \in[k]$, such that, for each $i \in[k-1], D_{i+1} \cap(A \cup C)$ is not contained in $\bigcup_{j=1}^{i}\left(c\left(D_{j}\right) C y_{1} \cup a\left(D_{j}\right) A y_{1}\right)$, and $D_{i+1} \cap(A \cup C)$ is not contained in $\bigcap_{j=1}^{i}\left(z_{1} C c\left(D_{j}\right) \cup z_{1} A a\left(D_{j}\right)\right)$. Note that for any $i \in[k], \bigcup_{j=1}^{i} a\left(D_{j}\right) A y_{1}$ and $\bigcup_{j=1}^{i} c\left(D_{j}\right) C y_{1}$ are paths. So let $a_{i} \in V(A)$ and $c_{i} \in V(C)$ such that $\bigcup_{j=1}^{i} a\left(D_{j}\right) A y_{1}=$ $a_{i} A y_{1}$ and $\bigcup_{j=1}^{i} c\left(D_{j}\right) C y_{1}=c_{i} C y_{1}$. Let $S_{i}=a_{i} C y_{1} \cup c_{i} C y_{1} \cup\left(\bigcup_{j=1}^{i} D_{j}\right)$.

Next, we claim that for any $l \in[k]$ and for any $r_{l} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ there exist three independent paths A_{l}, C_{l}, R_{l} in S_{l} from y_{1} to a_{l}, c_{l}, r_{l}, respectively. This is clear when $l=1$; note that if $a_{l}=y_{1}$, or $c_{l}=y_{1}$, or $r_{l}=y_{1}$ then A_{l}, or C_{l}, or R_{l} is a trivial path. Now assume that the assertion is true for some $l \in[k-1]$. Let $r_{l+1} \in V\left(S_{l+1}\right)-\left\{a_{l+1}, c_{l+1}\right\}$. When $r_{l+1} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ let $r_{l}:=r_{l+1}$; otherwise, let $r_{l} \in V\left(D_{l+1}\right)$ with $r_{l} \in V\left(a_{l} A y_{1}-a_{l}\right) \cup V\left(c_{l} C y_{1}-c_{l}\right)$. By induction hypothesis, there are three independent paths A_{l}, C_{l}, R_{l} in S_{l} from y_{1} to a_{l}, c_{l}, r_{l}, respectively. If $r_{l+1} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ then $A_{l+1}:=A_{l} \cup a_{l} A a_{l+1}, C_{l+1}:=C_{l} \cup c_{l} C c_{l+1}, R_{l+1}:=R_{l}$ are the desired paths in S_{l+1}. If $r_{l+1} \in V\left(D_{l+1}\right)-V(A \cup C)$ then let P_{l+1} be a path in D_{l+1} from r_{l} to r_{l+1} and internally disjoint from $A \cup C$; we see that $A_{l+1}:=$ $A_{l} \cup a_{l} A a_{l+1}, C_{l+1}:=C_{l} \cup c_{l} C c_{l+1}, R_{l+1}:=R_{l} \cup P_{l+1}$ are the desired paths in S_{l+1}. So we may assume by symmetry that $r_{l+1} \in V\left(a_{l+1} A a_{l}-a_{l+1}\right)$. Let Q_{l+1} be a path in D_{l+1} from r_{l} to a_{l+1} and internally disjoint from $A \cup C$. Now $R_{l+1}:=A_{l} \cup a_{l} A r_{l+1}, C_{l+1}:=$ $C_{l} \cup c_{l} C c_{l+1}, A_{l+1}:=R_{l} \cup Q_{l+1}$ are the desired paths in S_{l+1}.

We claim that $J(A, C)$ has no vertex in $\left(a_{k} A y_{1} \cup c_{k} C y_{1}\right)-\left\{a_{k}, c_{k}\right\}$. For, suppose there exists $r \in V(J(A, C))$ such that $r \in V\left(a_{k} A y_{1}-a_{k}\right) \cup V\left(c_{k} C y_{1}-c_{k}\right)$. Then let A_{k}, C_{k}, R_{k} be independent (induced) paths in S_{k} from y_{1} to a_{k}, c_{k}, r, respectively. Let A^{\prime}, C^{\prime} be obtained from A, C by replacing $a_{k} A y_{1}, c_{k} C y_{1}$ with A_{k}, C_{k}, respectively. We see that $J\left(A^{\prime}, C^{\prime}\right)$ contains $J(A, C)$ and r, contradicting (c).

Therefore, $a \in V\left(z_{1} A a_{k}\right)$ and $c \in V\left(z_{1} C c_{k}\right)$. Moreover, no $(A \cup C)$-bridge of H in $L(A)$ intersects $a_{k} A y_{1}-a_{k}$ (by (10)). Let S_{k}^{\prime} be the union of S_{k} and all $(A \cup C)$ bridges of H contained in $L(C)$ and intersecting $c_{k} C y_{1}-c_{k}$. Then by (5) and (11), $N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{a_{k}, c_{k}, x_{2}, y_{2}\right\} \subseteq V\left(x_{1} X z_{1}\right)$. Since G is 5-connected, $N\left(S_{k}^{\prime}-\right.$ $\left.\left\{a_{k}, c_{k}\right\}\right)-\left\{a_{k}, c_{k}, x_{2}, y_{2}\right\} \neq \emptyset$.

We may assume that $N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{y_{2}, x_{2}, a_{k}, c_{k}\right\} \neq\left\{x_{1}\right\}$. For, otherwise, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{k}, c_{k}, x_{1}, x_{2}, y_{2}\right\}$ and $X \cup P \cup Q \subseteq$ G_{1}, and $S_{k}^{\prime} \subseteq G_{2}$. Clearly, $\left|V\left(G_{1}\right)\right| \geq 7$. Since G is 5 -connected and $y_{1} y_{2} \notin E(G)$,
$\left|V\left(G_{2}\right)\right| \geq 7$. Hence, the assertion follows from Lemma 2.3.9.
Thus, we may let $z \in N\left(S_{k}^{\prime}-\left\{a_{k}, c_{k}\right\}\right)-\left\{a_{k}, c_{k}, x_{1}, x_{2}, y_{2}\right\}$ such that $x_{1} X z$ is maximal. Then $z \neq z_{1}$. For otherwise, let $r \in V\left(S_{k}^{\prime}\right)-\left\{a_{k}, c_{k}\right\}$ such that $r z_{1} \in E(G)$. Let $r^{\prime}=r$ if $r \in V\left(S_{k}\right)$ and, otherwise, let $r^{\prime} \in V\left(c_{k} C y_{1}-c_{k}\right)$ with $r^{\prime} r \in E(G)$ (which exists by (11)). Let A_{k}, C_{k}, R_{k} be independent (induced) paths in S_{k} from y_{1} to a_{k}, c_{k}, r^{\prime}, respectively. Now $z_{2} B q \cup Q \cup a A z_{1} \cup\left(z_{1} r r^{\prime} \cup R_{k}\right) \cup C_{k} \cup c_{k} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1).

Let C^{*} be the subgraph of G induced by the union of $x_{1} X z-x_{1}$ and the vertices of $L(C)-C$ adjacent to $c_{k} C y_{1}-c_{k}$ (each of which, by (11), has exactly two neighbors on C and exactly two on $\left.x_{1} X z_{1}\right)$. Clearly, C^{*} is connected. Let $G_{z}=G\left[x_{1} X z \cup S_{k}^{\prime}+x_{2}\right]$ and let G_{z}^{\prime} be the graph obtained from $G_{z}-\left\{x_{1}, x_{2}\right\}$ by contracting C^{*} to a new vertex c^{*}.

Note that G_{z}^{\prime} has no disjoint paths from a_{k}, c_{k} to c^{*}, y_{1}, respectively; as otherwise, such paths, $c_{k} C c \cup P \cup p B y_{2}$, and $a_{k} A a \cup Q \cup q B z_{2}$ give two disjoint paths in H which would contradict the choice of Y, Z. Hence, by Lemma 2.3.1, there exists a collection \mathcal{A} of subsets of $V\left(G_{z}^{\prime}\right)-\left\{a_{k}, c_{k}, c^{*}, y_{1}\right\}$ such that $\left(G_{z}^{\prime}, \mathcal{A}, a_{k}, c_{k}, c^{*}, y_{1}\right)$ is 3-planar. We choose \mathcal{A} so that each member of \mathcal{A} is minimal and, subject to this, $|\mathcal{A}|$ is minimal.

We claim that $\mathcal{A}=\emptyset$. For, let $T \in \mathcal{A}$. By (10), $T \cap V(L(A))=\emptyset$. Moreover, $T \cap V(L(C))=\emptyset$; for otherwise, by (11), $c^{*} \in N(T)$ and $|N(T) \cap V(C)|=2$; so by (11) again (and since C is induced in $H),\left(G_{z}^{\prime}, \mathcal{A}-\{T\}, a_{k}, c_{k}, c^{*}, y_{1}\right)$ is 3planar, contradicting the choice of \mathcal{A}. Thus, $G[T]$ has a component, say T^{\prime}, such that $T^{\prime} \subseteq L(A, C)$. Hence, for any $t \in V\left(T^{\prime}\right), L(A, C)$ has a path from t to $a A y_{1}-y_{1}$ (respectively, $c C y_{1}-y_{1}$) and internally disjoint from $A \cup C$. Since G is 5-connected, $\left\{x_{1}, x_{2}\right\} \cap N\left(T^{\prime}\right) \neq \emptyset$. Therefore, for some $i \in[2], G^{\prime}$ contains a path from x_{i} to $a A y_{1}-y_{1}$ as well as a path from x_{i} to $c C y_{1}-y_{1}$, both internally disjoint from $K \cup X$. However, this contradicts (9).

Hence, $\left(G_{z}^{\prime}, a_{k}, c_{k}, c^{*}, y_{1}\right)$ is planar. So by (6) and (11), $\left(G_{z}-x_{2}, a_{k}, c_{k}, z, x_{1}, y_{1}\right)$ is
planar. By (9) and (10), $N\left(x_{2}\right) \cap V\left(S_{k}\right) \subseteq V\left(a_{k} A y_{1}\right)$. Therefore, since $\left(G_{z}-x_{2}\right)-$ $a_{k} A y_{1}$ is connected (by (10)), $\left(G_{z}, a_{k}, c_{k}, z, x_{2}\right)$ is planar.

We claim that $\left\{a_{k}, c_{k}, z, x_{2}, y_{2}\right\}$ is a 5 -cut in G. For, otherwise, by (7) and (9), G^{\prime} has a path S_{1} from x_{1} to $z_{1} C c_{k}-\left\{z_{1}, c_{k}\right\}$ and internally disjoint from $K \cup X$. However, G^{\prime} has a path S_{2} from z to $c_{k} X y_{1}-c_{k}$ and internally disjoint from $K \cup X$. Now S_{1}, S_{2} contradict the second part of (6).

Hence, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a_{k}, c_{k}, z, x_{2}, y_{2}\right\}$, $B^{\prime} \cup P \cup Q \cup X \subseteq G_{1}$, and $G_{z} \subseteq G_{2}$. Clearly, $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$. So (i) or (ii) or (iii) follows from Lemma 2.3.8.

Now that we have established (12), the remainder of this proof will make heavy use of Q^{\prime}. Our next goal is to obtain structure around z_{1}, which is done using claims (13) - (17). We may assume that
(13) $x_{1} z_{1} \in E(X), w \in V(A)-\left\{y_{1}, z_{1}\right\}$ for any choice of W in (7), and G^{\prime} has no path from x_{2} to $(A \cup C)-y_{1}$ and internally disjoint from $K \cup Q^{\prime} \cup X$.

Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Suppose $x_{1} z_{1} \notin E(X)$. Let $x_{1} s \in E(X)$. By (6), G has a path S from s to some $s^{\prime} \in V(C)-\left\{y_{1}, z_{1}\right\}$ and internally disjoint from $K \cup Q^{\prime} \cup X\left(\right.$ as $\left.Q^{\prime} \subseteq J(A, C)\right)$. Hence, $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup\right.$ $\left.P \cup c C s^{\prime} \cup S \cup s x_{1}\right) \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now suppose W is a path in (7) ending at $w \in V(C)-\left\{y_{1}, z_{1}\right\}$. Then $z_{2} x_{2} \cup$ $z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup c C w \cup W\right) \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Finally, suppose G^{\prime} has a path S from x_{2} to some $s \in V(A \cup C)-\left\{y_{1}\right\}$ and internally disjoint from $K \cup Q^{\prime} \cup X$. If $s \in V\left(A-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A s \cup S\right) \cup\left(Q^{\prime} \cup\right.$ $\left.q^{\prime} Q q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $s \in V\left(C-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C s \cup S\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.
(14) We may assume that G^{\prime} has no path from $y_{2} X z_{2}$ to $(A \cup C)-y_{1}$ and internally disjoint from $K \cup Q^{\prime} \cup X$, and no path from $y_{2} X z_{1}-z_{1}$ to $A-z_{1}$ and internally disjoint from $K \cup Q^{\prime} \cup X$.

First, suppose S is a path in G^{\prime} from some $s \in V\left(y_{2} X z_{2}\right)$ to some $s^{\prime} \in V(A \cup C)-\left\{y_{1}\right\}$ and internally disjoint from $K \cup Q^{\prime} \cup X$. Then $s \neq y_{2}$ as $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$. If $s^{\prime} \in V\left(C-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C s^{\prime} \cup S \cup s X x_{2}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $s^{\prime} \in V\left(A-y_{1}\right)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A s^{\prime} \cup S \cup s X x_{2}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Now suppose S is a path in G^{\prime} from $s \in V\left(y_{2} X z_{1}-z_{1}\right)$ to $s^{\prime} \in V\left(A-z_{1}\right)$ and internally disjoint from $K \cup Q^{\prime} \cup X$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup c C z_{1} \cup z_{1} x_{1}\right) \cup\left(y_{1} A s^{\prime} \cup S \cup s X y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.
(15) We may assume that

- $J(A, C) \cap\left(z_{1} C c-c\right)=\emptyset$,
- any path in $J(A, C)$ from $A-\left\{y_{1}, z_{1}\right\}$ to $(P-c) \cup(Q-a) \cup\left(Q^{\prime}-y_{1}\right) \cup B$ and internally disjoint from $K \cup Q^{\prime}$ must end on $\left(Q \cup Q^{\prime}\right)-q$, and
- for any $(A \cup C)$-bridge D of H with $D \neq J(A, C)$, if $V(D) \cap V\left(z_{1} C c-c\right) \neq \emptyset$ and $u \in V(D) \cap V\left(z_{1} A y_{1}-z_{1}\right)$ then $J(A, C) \cap\left(z_{1} A u-\left\{z_{1}, u\right\}\right)=\emptyset$.

First, suppose there exists $s \in V(J(A, C)) \cap V\left(z_{1} C c-c\right)$. Then H has a path S from s to some $s^{\prime} \in V(P-c) \cup V(Q-a) \cup V\left(Q^{\prime}-y_{1}\right) \cup V\left(B-y_{2}\right)$ and internally disjoint from $K \cup Q^{\prime}$. If $s^{\prime} \in V\left(Q^{\prime}-y_{1}\right) \cup V(Q-a) \cup V\left(z_{2} B p-p\right)$ then $S \cup\left(Q^{\prime}-y_{1}\right) \cup(Q-a) \cup\left(z_{2} B p-p\right)$ contains a path S^{\prime} from s to z_{2}; so $S^{\prime} \cup s C z_{1} \cup A \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1). Hence, $s^{\prime} \in V(P-c) \cup V\left(y_{2} B p-y_{2}\right)$ and, by (2), $s=z_{1}$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$ (if $\left.s^{\prime} \in V(P-c)\right)$
or $q^{*}=s^{\prime}\left(\right.$ if $\left.s^{\prime} \in V\left(y_{2} B p\right)-\left\{p, y_{2}\right\}\right)$. Then $S \cup(P-c) \cup P_{2}$ contains a path S^{\prime} from z_{1} to z_{2}. Let W, w be given as in (7). By (13), $w \in V(A)-\left\{y_{1}, z_{1}\right\}$. Now $z_{2} x_{2} \cup z_{2} X y_{2} \cup z_{1} x_{1} \cup z_{1} X y_{2} \cup S^{\prime} \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup\left(C \cup y_{1} x_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$.

Now suppose S is path in $J(A, C)$ from $s \in V\left(A-\left\{y_{1}, z_{1}\right\}\right)$ to $s^{\prime} \in V(P-c) \cup$ $V(B-q)$ and internally disjoint from $K \cup Q^{\prime}$. Since $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$, $s^{\prime} \neq y_{2}$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$ (if $s^{\prime} \in V(P-c)$) or $q^{*}=s^{\prime}$ (if $\left.s^{\prime} \in V(B-q)\right)$. Let S^{\prime} be a path in $P_{2} \cup S \cup(P-c)$ from s to z_{2}. Let W, w be given as in (7). $\mathrm{By}(13), w \in V(A)-\left\{y_{1}, z_{1}\right\}$. Hence, $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup$ $\left(S^{\prime} \cup s A w \cup W\right) \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Finally, suppose D is some $(A \cup C)$-bridge of H with $D \neq J(A, C), v \in V(D) \cap$ $V\left(z_{1} C c-c\right)$, and $u \in V(D) \cap V\left(z_{1} A y_{1}-z_{1}\right)$. Then D has a path T from v to u and internally disjoint from $K \cup Q^{\prime}$. If there exists $s \in V(J(A, C)) \cap V\left(z_{1} A u-\left\{z_{1}, u\right\}\right)$ then $J(A, C)$ has a path S from s to some $s^{\prime} \in V(Q-a)$ and internally disjoint from K. Now $z_{2} B q \cup q Q s^{\prime} \cup S \cup s A z_{1} \cup z_{1} C v \cup T \cup u A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (1).
(16) We may assume $L(A)=\emptyset$.

Suppose $L(A) \neq \emptyset$. For each $(A \cup C)$-bridge R of H contained in $L(A)$, let $a_{1}(R), a_{2}(R) \in$ $V(R \cap A)$ with $a_{1}(R) A a_{2}(R)$ maximal. Let R_{1}, \ldots, R_{m} be a maximal sequence of $(A \cup C)$-bridges of H contained in $L(A)$, such that for $i=2, \ldots, m, R_{i}$ contains an internal vertex of $\bigcup_{j=1}^{i-1}\left(a_{1}\left(R_{j}\right) A a_{2}\left(R_{j}\right)\right)$ (which is a path). Let $a_{1}, a_{2} \in V(A)$ such that $\bigcup_{j=1}^{m} a_{1}\left(R_{j}\right) A a_{2}\left(R_{j}\right)=a_{1} A a_{2}$. Let $L=\bigcup_{j=1}^{m} R_{j}$.

By $(\mathrm{c}), J(A, C) \cap\left(a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=\emptyset$. By (d), $L(A, C) \cap\left(a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=$ Ø. By (10), $a_{1}, a_{2} \in V\left(z_{1} A a\right)$. So $z_{1} \notin N\left(L \cup a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)$. Hence by (14), $V\left(z_{1} X z_{2}-y_{2}\right) \cap N\left(L \cup a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=\emptyset$. By (13), $x_{2} \notin N\left(L \cup a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)$.

Thus, $\left\{a_{1}, a_{2}, x_{1}, y_{2}\right\}$ is a cut in G separating L from X, which is a contradiction (since G is 5 -connected).
(17) $z_{1} c \in E(C), z_{1} y_{2} \in E(G)$, and z_{1} has degree 5 in G.

Let C^{*} be the union of $z_{1} C c$ and all $(A \cup C)$-bridges of H intersecting $z_{1} C c-c$. By (15), $V\left(C^{*} \cap J(A, C)\right)=\{c\}$.

Suppose (17) fails. If $C^{*}=z_{1} C c$ then, since A, C are induced paths and $L(A)=\emptyset$ (by (16)), $z_{1} y_{2} \in E(G)$ and $z_{1} C c \neq z_{1} c$; so any vertex of $z_{1} C c-\left\{c, z_{1}\right\}$ would have degree 2 in G (by (15)), a contradiction. So $C^{*}-z_{1} C c \neq \emptyset$. Since $G^{\prime}-X$ is 2 connected, $\left(C^{*}-z_{1} C c\right) \cap\left(A-z_{1}\right) \neq \emptyset$ by (c) (and since $J(A . C) \cap \cap(z C c-c)=\emptyset$ by (15)). Moreover, if $\left|V\left(z_{1} C c\right)\right| \geq 3$ then there is a path in C^{*} from $z_{1} C c-\left\{c, z_{1}\right\}$ to $A-z_{1}$ and internally disjoint from $A \cup C$.

Let $a^{*} \in V\left(A \cap C^{*}\right)$ with $a^{*} A y_{1}$ minimal, and let $u \in V\left(z_{1} X y_{2}\right)$ with $u X y_{2}$ minimal such that u is a neighbor of $\left(C^{*}-c\right) \cup\left(z_{1} A a^{*}-a^{*}\right)$.

We may assume that $\left\{a^{*}, c, u, x_{1}, y_{2}\right\}$ is a 5 -cut in G. First, note, by (15), that $J(A, C) \cap\left(\left(z_{1} A a^{*}-a^{*}\right) \cup\left(z_{1} C c-c\right)\right)=\emptyset$ (in particular, $\left.a^{*} \in V\left(z_{1} A a\right)\right)$. Hence, if $u=z_{1}$ then it is clear from (d), (13) and (14) that $\left\{a^{*}, c, u, x_{1}, y_{2}\right\}$ is a 5 -cut in G. So we may assume $u \neq z_{1}$. Then G^{\prime} contains a path T from u to $u^{\prime} \in V\left(A-z_{1}\right)$ and internally disjoint from $A \cup c C y_{1} \cup P \cup Q \cup Q^{\prime} \cup B^{\prime}$. Suppose $\left\{a^{*}, c, u, x_{1}, y_{2}\right\}$ is not a 5 -cut in G. Then by (d), (13) and (14), G^{\prime} has a path R from $r \in V\left(z_{1} X u-u\right)$ to $r^{\prime} \in V(P-c) \cup V(Q-a) \cup V\left(Q^{\prime}-y_{1}\right) \cup V\left(B^{\prime}\right)$ and internally disjoint from $K \cup X$. Note that $r^{\prime} \neq y_{2}$ as $N_{G^{\prime}}\left(y_{2}\right)=\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}\right\}$. If $r^{\prime} \in V\left(B^{\prime}-q\right)$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=r^{\prime} ;$ now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup R \cup\right.$ $\left.r X x_{1}\right) \cup\left(y_{1} A u^{\prime} \cup T \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. If $r^{\prime} \in V(P-c)$ then let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup p P r^{\prime} \cup R \cup r X x_{1}\right) \cup\left(y_{1} A u^{\prime} \cup T \cup u X y_{2}\right) \cup$ $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. Now assume
$r^{\prime} \in V(Q-a) \cup V\left(Q^{\prime}-y_{1}\right)$. Then $(Q-a) \cup\left(Q^{\prime}-y_{1}\right) \cup R$ contains a path R^{\prime} from r to q. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$; now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup R^{\prime} \cup r X x_{1}\right) \cup$ $\left(P_{2} \cup P \cup c C y_{1}\right) \cup\left(y_{1} A u^{\prime} \cup T \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Thus, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a^{*}, c, u, x_{1}, y_{2}\right\}, u X x_{2} \cup$ $P \cup Q \subseteq G_{1}$, and $C^{*} \cup z_{1} C c \cup z_{1} A a^{*} \subseteq G_{2}$. Suppose $G_{2}-y_{2}$ contains disjoint paths T_{1}, T_{2} from u, x_{1} to a^{*}, c, respectively. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(P_{2} \cup P \cup T_{2}\right) \cup\left(y_{1} A a^{*} \cup T_{1} \cup u X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So we may assume that such T_{1}, T_{2} do not exist. Then by Lemma 2.3.1, $\left(G_{2}-y_{2}, u, x_{1}, a^{*}, c\right)$ is planar (as G is 5 -connected). If $\left|V\left(G_{2}\right)\right| \geq 7$ then, by Lemma 2.3.8, (i) or (ii) or (iii) holds. Hence, we may assume that $\left|V\left(G_{2}\right)\right|=6$ and, hence, we have (17).

We have now forced a structure around z_{1}. Next, we study the structure of $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ to complete the proof of Theorem 3.1.1. We may assume that
(18) $\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3-planar.

For, otherwise, by Lemma 2.3.1, $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has disjoint paths R_{1}, R_{2} from q, p to y_{2}, z_{2}, respectively. Now $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup R_{2} \cup z_{2} x_{2}\right) \cup\left(R_{1} \cup q Q q^{\prime} \cup\right.$ $\left.Q^{\prime}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So we may assume (18).

Since G is 5-connected, G is $\left(5, V\left(K \cup Q^{\prime} \cup y_{2} X x_{2} \cup z_{1} x_{1}\right)\right)$-connected. Recall that $w_{1} y_{2} \in E\left(x_{1} X y_{2}\right)$. Then $w_{1} y_{2}$ and $w_{1} X z_{1}$ are independent paths in G from w_{1} to y_{2}, z_{1}, respectively. So by Lemma 2.3.4, G has five independent paths $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ from w_{1} to $z_{1}, y_{2}, z_{3}, z_{4}, z_{5}$, respectively, and internally disjoint from $K \cup Q^{\prime} \cup y_{2} X x_{2} \cup$ $z_{1} x_{1}$, where $z_{3}, z_{4}, z_{5} \in V\left(K \cup Q^{\prime} \cup y_{2} X x_{2} \cup z_{1} x_{1}\right)$. Note that we may assume $Z_{2}=w_{1} y_{2}$. Hence, $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are paths in G^{\prime}. By the fact that X is induced, by (14), and
by (5) and (17), $z_{3}, z_{4}, z_{5} \in V(P) \cup V(Q-a) \cup V\left(Q^{\prime}\right) \cup V\left(B^{\prime}-y_{2}\right)$. Recall that $L(A)=\emptyset$ from (16), and recall W and w from (7) and (13).
(19) We may assume that at least two of Z_{3}, Z_{4}, Z_{5} end in $B^{\prime}-y_{2}$.

First, suppose at least two of Z_{3}, Z_{4}, Z_{5} end on P. Without loss of generality, let c, z_{3}, z_{4}, p occur on P in this order. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=p$. Then $\left(Z_{1} \cup z_{1} x_{1}\right) \cup Z_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(Z_{4} \cup z_{4} P p \cup P_{2}\right) \cup\left(Z_{3} \cup z_{3} P c \cup c C y_{1} \cup y_{1} x_{2}\right) \cup\left(P_{1} \cup\right.$ $Q \cup a A w \cup W) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Now assume at least two of Z_{3}, Z_{4}, Z_{5} are on $Q \cup Q^{\prime}$, say Z_{3} and Z_{4}. Then $Z_{3} \cup Z_{4} \cup Q \cup Q^{\prime}$ contains two independent paths $Z_{3}^{\prime}, Z_{4}^{\prime}$ from w_{1} to z^{\prime}, q, respectively, where $z^{\prime} \in\left\{a, y_{1}\right\}$. Hence $\left(Z_{1} \cup z_{1} x_{1}\right) \cup Z_{2} \cup\left(Z_{3}^{\prime} \cup z^{\prime} A y_{1}\right) \cup\left(Z_{4}^{\prime} \cup q B z_{2} \cup z_{2} x_{2}\right) \cup\left(y_{2} B p \cup\right.$ $\left.P \cup c C y_{1}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$.

So we may assume that $z_{3} \in V\left(B^{\prime}\right)-\{p, q\}$, and hence $Z_{3}=w_{1} z_{3}$. Suppose none of Z_{4}, Z_{5} ends in $B^{\prime}-y_{2}$. Then we may assume $z_{4} \in V(P-p)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=z_{3}$. Then $\left(Z_{1} \cup z_{1} x_{1}\right) \cup Z_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(Z_{3} \cup P_{2}\right) \cup\left(P_{1} \cup Q \cup\right.$ $a A w \cup W) \cup\left(Z_{4} \cup z_{4} P c \cup c C y_{1} \cup y_{1} x_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.
(20) We may assume that

- w_{1} has at most one neighbor in B^{\prime} that is in $q B z_{2}$ or separated from $y_{2} B p$ in $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ by a 2 -cut contained in $q B z_{2}$, and
- w_{1} has at most one neighbor in B^{\prime} that is in $y_{2} B p-y_{2}$ or separated from $q B z_{2}$ in $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ by a 2-cut contained in $y_{2} B p$.

Suppose there exist distinct $v_{1}, v_{2} \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that for $i \in[2], v_{i} \in V\left(q B z_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $q B z_{2}$ and separating v_{i} from $y_{2} B p$. Then, since $\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3-planar (by (18)) and $H-y_{2}$ is 2-connected, $G^{\prime}\left[B^{\prime}+w_{1}\right]-y_{2} B p$ contains independent paths S_{1}, S_{2} from w_{1} to q, z_{2}, respectively.

Now $w_{1} X x_{1} \cup w_{1} y_{2} \cup\left(S_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(S_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$.

Now suppose there exist distinct $v_{1}, v_{2} \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that for $i \in[2]$, $v_{i} \in V\left(y_{2} B p\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $y_{2} B p$ and separating v_{i} from $q B z_{2}$. Then, since $\left(G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}\right)$ is 3-planar (by (18)) and $H-y_{2}$ is 2-connected, $G^{\prime}\left[B^{\prime}+w_{1}\right]-\left(q B z_{2}-z_{2}\right)$ has independent paths S_{1}, S_{2} from w_{1} to p, z_{2}, respectively. Now $w_{1} X x_{1} \cup w_{1} y_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup S_{2} \cup\left(S_{1} \cup P \cup c C y_{1} \cup y_{1} x_{2}\right) \cup\left(z_{2} B q \cup\right.$ $Q \cup a A w \cup W) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.
(21) $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-separation $\left(B_{1}, B_{2}\right)$ such that $N\left(w_{1}\right) \cap V\left(B^{\prime}-y_{2}\right) \subseteq V\left(B_{1}\right)$, $p B q \subseteq B_{1}$, and $y_{2} X z_{2} \subseteq B_{2}$.

Let $z \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ be arbitrary. If there exists a path S in $B^{\prime}-\left(p B y_{2} \cup\left(q B z_{2}-z_{2}\right)\right)$ from z_{2} to z then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(z_{2} B q \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(S \cup z w_{1} \cup w_{1} X x_{1}\right) \cup\left(y_{1} C c \cup P \cup\right.$ $\left.p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So we may assume that such path S does not exist. Then, since ($G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right], p, q, z_{2}, y_{2}$) is 3-planar (by (18)) and $G^{\prime}-X$ is 2-connected, $z \in V\left(y_{2} X p \cup q B z_{2}\right)$ (in which case let $B_{z}^{\prime}=z$ and $\left.B_{z}^{\prime \prime}=G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]\right)$, or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-separation $\left(B_{z}^{\prime}, B_{z}^{\prime \prime}\right)$ such that $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p \cup q B z_{2} \cup y_{2} X z_{2}, z \in V\left(B_{z}^{\prime}-B_{z}^{\prime \prime}\right)$ and $z_{2} \in V\left(B_{z}^{\prime \prime}-B_{z}^{\prime}\right)$.

We claim that we may assume that w_{1} has exactly two neighbors in B^{\prime}, say v_{1}, v_{2}, such that $v_{1} \in V\left(y_{2} B p-y_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $y_{2} B p$ and separating v_{1} from $q B z_{2}$, and $v_{2} \in V\left(q B z_{2}-z_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $q B z_{2}$ and separating v_{2} from $y_{2} B p$. This follows from (20) if for every choice of $z, B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p$ or $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq q B z_{2}$. So we may assume that there exists $v \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that $p B q \subseteq B_{v}^{\prime}$ and we choose v and $\left(B_{v}^{\prime}, B_{v}^{\prime \prime}\right)$ with B_{v}^{\prime} maximal. If $p B q \subseteq B_{z}^{\prime}$ for all choices of z then, by (18), we have (21). Thus, we may assume that there exists $z \in N\left(w_{1}\right) \cap V\left(B^{\prime}\right)$ such that $p B q \nsubseteq B_{z}^{\prime}$ for any choice of $\left(B_{z}^{\prime}, B_{z}^{\prime \prime}\right)$. Then $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p$ or $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq q B z_{2}$. First, assume $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq q B z_{2}$.

Then by the maximality of $B_{v}^{\prime}, B^{\prime}-y_{2} B p$ has independent paths T_{1}, T_{2} from z_{2} to q, z, respectively. Hence, $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(T_{1} \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(T_{2} \cup z w_{1} \cup w_{1} X x_{1}\right) \cup\left(y_{1} C c \cup P \cup\right.$ $\left.p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. Now assume $B_{z}^{\prime} \cap B_{z}^{\prime \prime} \subseteq y_{2} B p$. Then by (20), for any $t \in N\left(w_{1}\right) \cap V\left(B_{v}^{\prime}\right), t \notin V\left(y_{2} B p-y_{2}\right)$ and $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has no 2-cut contained in $y_{2} B p$ and separating t from $q B z_{2}$. If for every choice of $t \in N\left(w_{1}\right) \cap V\left(B_{v}^{\prime}\right)$, we have $t \in V\left(q B z_{2}-z_{2}\right)$ or $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has a 2-cut contained in $q B z_{2}$ and separating t from $y_{2} B p$ then the claim follows from (20). Hence, we may assume that t can be chosen so that $t \notin V\left(q B z_{2}-z_{2}\right)$ and $G^{\prime}\left[B^{\prime} \cup y_{2} X z_{2}\right]$ has no 2-cut contained in $q B z_{2}$ and separating t from $y_{2} B p$. Then, by (18) and 2-connectedness of $G^{\prime}-X, G\left[B^{\prime}+w_{1}\right]-\left(q B z_{2}-z_{2}\right)$ has independent paths S_{1}, S_{2} from w_{1} to p, z_{2}, respectively. Now $w_{1} X x_{1} \cup w_{1} y_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup S_{2} \cup\left(S_{1} \cup\right.$ $\left.P \cup c C y_{1} \cup y_{1} x_{2}\right) \cup\left(z_{2} B q \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Thus, we may assume that $Z_{3}=w_{1} v_{1}, Z_{4}=w_{1} v_{2}$, and Z_{5} ends at some $v_{3} \in$ $V\left(P \cup Q \cup Q^{\prime}\right)-\{a, p, q\}$. Suppose $v_{3} \in V(P-p)$. Let P_{1}, P_{2} be the paths in (4) with $q^{*}=v_{1}$. Then $w_{1} X x_{1} \cup w_{1} y_{2} \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(w_{1} v_{1} \cup P_{2}\right) \cup\left(Z_{5} \cup v_{3} P c \cup c C y_{1} \cup\right.$ $\left.y_{1} x_{2}\right) \cup\left(P_{1} \cup Q \cup a A w \cup W\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Now assume $v_{3} \in V\left(Q \cup Q^{\prime}\right)-\{a, q\}$. Then $\left(B^{\prime}-y_{2} B p\right) \cup Z_{5} \cup Q \cup Q^{\prime} \cup\left(A-z_{1}\right) \cup w_{1} v_{2}$ has independent paths R_{1}, R_{2} from w_{1} to y_{1}, z_{2}, respectively. So $w_{1} X x_{1} \cup w_{1} y_{2} \cup R_{1} \cup$ $\left(R_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $w_{1}, x_{1}, x_{2}, y_{1}, y_{2}$. This completes the proof of (21).

By (21), let $V\left(B_{1} \cap B_{2}\right)=\left\{t_{1}, t_{2}\right\}$ with $t_{1} \in V\left(y_{2} B p\right)$ and $t_{2} \in V\left(q B z_{2}\right)$. Choose $\left\{t_{1}, t_{2}\right\}$ so that B_{2} is minimal. Then we may assume that $\left(G^{\prime}\left[B_{2}+x_{2}\right], t_{1}, t_{2}, x_{2}, y_{2}\right)$ is 3-planar. For, otherwise, by Lemma 2.3.1, $G^{\prime}\left[B_{2}+x_{2}\right]$ contains disjoint paths T_{1}, T_{2} from t_{1}, t_{2} to x_{2}, y_{2}, respectively. Then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup p B t_{1} \cup\right.$ $\left.T_{1}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup q B t_{2} \cup T_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices
$x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.
Suppose there exists $s s^{\prime} \in E(G)$ such that $s \in V\left(z_{1} X w_{1}-w_{1}\right)$ and $s^{\prime} \in V\left(B_{2}\right)-$ $\left\{t_{1}, t_{2}\right\}$. Then $s^{\prime} \notin V(X)$, as X is induced in $G^{\prime}-x_{1} x_{2}$. By (19), (20) and (21), we may assume that $B_{1}-q B t_{2}$ contains a path R from z_{3} to p. By the minimality of B_{2} and 2-connectedness of $H-y_{2},\left(B_{2}-t_{1}\right)-\left(y_{2} X z_{2}-z_{2}\right)$ contains independent paths R_{1}, R_{2} from z_{2} to s^{\prime}, t_{2}, respectively. Now $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(R_{1} \cup s^{\prime} s \cup s X x_{1}\right) \cup\left(R_{2} \cup\right.$ $\left.t_{2} B q \cup q Q q^{\prime} \cup Q^{\prime}\right) \cup\left(y_{1} C c \cup P \cup R \cup z_{3} w_{1} y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Thus, we may assume that $s s^{\prime}$ does not exist. Since G is 5 -connected, $\left\{t_{1}, t_{2}, y_{2}, x_{2}\right\}$ is not a cut. So H has a path T from some $t \in V\left(y_{2} X x_{2}\right)-\left\{y_{2}, x_{2}\right\}$ to some $t^{\prime} \in V\left(P \cup Q \cup Q^{\prime} \cup A \cup C\right)-\{p, q\}$ and internally disjoint from $K \cup Q^{\prime}$. By (14), $t^{\prime} \notin V(A \cup C)-\left\{y_{1}\right\}$.

If $t^{\prime} \in V(P-p)$ then $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup c P t^{\prime} \cup T \cup t X x_{2}\right) \cup\left(Q^{\prime} \cup q^{\prime} Q q \cup\right.$ $\left.q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So we assume $t^{\prime} \in V\left(Q \cup Q^{\prime}\right)-\{a, q\}$.

If $q \neq q^{\prime}$ or $t^{\prime} \in V\left(Q^{\prime}\right)$ then $\left(T \cup Q \cup Q^{\prime}\right)-q$ has a path Q^{*} from t to y_{1}; now $z_{1} x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup p B z_{2} \cup z_{2} x_{2}\right) \cup\left(Q^{*} \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So assume $q=q^{\prime}$ and $t^{\prime} \in V(Q)-\{a, q\}$. Then $z_{1} x_{1} \cup z_{1} X y_{2} \cup C \cup\left(z_{1} A a \cup a Q t^{\prime} \cup T \cup t X x_{2}\right) \cup\left(Q^{\prime} \cup q B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

CHAPTER IV

3-VERTICES IN K_{4}^{-}

4.1 Main Result

In this section, we prove the following theorem.

Theorem 4.1.1 Let G be a 5-connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains K_{4}^{-}in which x_{1} is of degree 2.
(iii) x_{2}, y_{1}, y_{2} may be chosen so that for any distinct $z_{0}, z_{1} \in N\left(x_{1}\right)-\left\{x_{2}, y_{1}, y_{2}\right\}$, $G-\left\{x_{1} v: v \notin\left\{z_{0}, z_{1}, x_{2}, y_{1}, y_{2}\right\}\right\}$ contains $T K_{5}$.

Similar to our discussion in Section 3.1, we show the relation between Theorem 4.1.1 and case (b) in Section 2.2.

Let H be a 5 -connected nonplanar graph not containing K_{4}^{-}. If case (b) in Section 2.2 occurs, then there is a connected subgraph M of H such that $G:=H / M$ is 5 connected and nonplanar. Furthermore, there exists $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$with $y_{1} y_{2} \notin E(G)$ and x_{1} is the vertex representing the contraction of M.

Let P be a path in $H\left[V(M) \cup\left\{y_{1}, y_{2}\right\}\right]$ from y_{1} to y_{2} and Q be a path in $H[V(M) \cup$ $\left.\left\{x_{2}\right\}\right]$ from x_{2} to some vertex $v \in V(P)-\left\{y_{1}, y_{2}\right\}$ independent from P. It is easy to see that P and Q gives three independent paths from v to x_{2}, y_{1}, y_{2}, respectively. By Lemma 2.3.4, there are five independent paths $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ in $H[V(M) \cup$
$\left.\left\{x_{2}, y_{1}, y_{2}, z_{0}, z_{1}\right\}\right]$ from v to $x_{2}, y_{1}, y_{2}, z_{0}, z_{1}$, respectively, where $z_{0}, z_{1} \in N_{G}\left(x_{1}\right)-$ $\left\{x_{2}, y_{1}, y_{2}\right\}$.

Now we may assume that one of the three results in Theorem 4.1.1 holds. If (i) holds, i.e. G contains a $T K_{5}$ in which x_{1} is not a branch vertex, then a $T K_{5}$ in H can be easily derived from the one in G.

If (ii) holds, then either H itself contains a K_{4}^{-}(and furthermore, H contains a $T K_{5}$ by J. Ma and X. Yu's result) or it can be reduced to case (a) in Section 2.2.

If (iii) holds, by the existence of the five independent paths $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ in $H\left[V(M) \cup\left\{x_{2}, y_{1}, y_{2}, z_{0}, z_{1}\right\}\right]$ from v to $x_{2}, y_{1}, y_{2}, z_{0}, z_{1}$, respectively, then H contains a $T K_{5}$.

4.2 Non-separating paths

Note that condition (iii) in Lemma 2.3.8, Lemma 2.3.9 and Lemma 2.3.10 that G has a 5 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ such that $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{a, a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and G_{2}^{\prime} is the graph obtained from the edge-disjoint union of the 8-cycle $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ and the 4 -cycle $b_{1} b_{2} b_{3} b_{4} b_{1}$ by adding a and the edges $a b_{i}$ for $i \in[4]$. This condition implies that G contains a K_{4}^{-}in which a is of degree 2 . So in this chapter we only need the weaker versions of these results.

Lemma 4.2.1 Let G be a 5-connected nonplanar graph and let $\left(G_{1}, G_{2}\right)$ be a 5separation in G. Suppose $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$, $a \in V\left(G_{1} \cap G_{2}\right)$, and $\left(G_{2}-\right.$ a, $\left.V\left(G_{1} \cap G_{2}\right)-\{a\}\right)$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which a is of degree 2.

Lemma 4.2.2 Let G be a 5 -connected graph and $\left(G_{1}, G_{2}\right)$ be a 5 -separation in G. Suppose that $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$ and $G\left[V\left(G_{1} \cap G_{2}\right)\right]$ contains a triangle a a $a_{1} a_{2} a$. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which a is of degree 2.
(iii) For any distinct $u_{1}, u_{2}, u_{3} \in N(a)-\left\{a_{1}, a_{2}\right\}, G-\left\{a v: v \notin\left\{a_{1}, a_{2}, u_{1}, u_{2}, u_{3}\right\}\right\}$ contains $T K_{5}$.

Lemma 4.2.3 Let G be a 5-connected nonplanar graph and $a \in V(G)$ such that $G-a$ is planar. Then one of the following holds:
(i) G contains a $T K_{5}$ in which a is not a branch vertex.
(ii) $G-a$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which a is of degree 2.

Let G be a 5 -connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. To prove Theorem 4.1.1, we need to find a path in G satisfying certain properties (see (iii) and (iv) of Lemma 4.2.5). As a first step, we prove the following

Lemma 4.2.4 Let G be a 5-connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Let $z_{0}, z_{1} \in N\left(x_{1}\right)-$ $\left\{x_{2}, y_{1}, y_{2}\right\}$ be distinct. Then one of the following holds:
(i) G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) There exist $i \in\{0,1\}$ and an induced path X in $G-x_{1}$ from z_{i} to x_{2} such that $\left(G-x_{1}\right)-X$ is a chain of blocks from y_{1} to $y_{2}, z_{1-i} \notin V(X)$, and one of y_{1}, y_{2} is contained in a nontrivial block of $\left(G-x_{1}\right)-X$.

Proof. We may assume $G-x_{1}$ contains disjoint paths X, Y from z_{1}, y_{1} to x_{2}, y_{2}, respectively. For, otherwise, since G is 5-connected, it follows from Lemma 2.3.1 that $\left(G-x_{1}, z_{1}, y_{1}, x_{2}, y_{2}\right)$ is planar; so (i) or (ii) holds by Lemma 4.2.3.

Hence $\left(G-x_{1}\right)-X$ contains a chain of blocks from y_{1} to y_{2}, say B. We may assume that $\left(G-x_{1}\right)-X$ is a chain of blocks from y_{1} to y_{2}. For otherwise, we may apply Lemma 3.2.1 to conclude that G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $x_{1} \in V\left(G_{1} \cap G_{2}\right), B+\left\{x_{1}, x_{2}, z_{1}\right\} \subseteq G_{1},\left|V\left(G_{2}\right)\right| \geq 7$, and $\left(G_{2}-x_{1}, V\left(G_{1} \cap G_{2}\right)-\left\{x_{1}\right\}\right)$ is planar. If $\left|V\left(G_{1}\right)\right| \geq 7$ then (i) or (ii) follows from Lemma 4.2.1. So assume $\left|V\left(G_{1}\right)\right| \leq 6$. Since $y_{1} y_{2} \notin E(G),\left|V\left(G_{1}\right)\right|=6$ and $|V(B)|=3$. Let $V(B)=$ $\left\{y_{1}, y_{2}, v\right\}$. Since G is 5 -connected and $y_{1} y_{2} \notin E(G), y_{1}, y_{2} \in V\left(G_{1} \cap G_{2}\right)=N(v)$. Hence, $G\left[\left\{v, x_{1}, x_{2}, y_{1}\right\}\right]-x_{1} x_{2}$ is a K_{4}^{-}in which x_{1} is of degree 2 , and (ii) holds.

We may further assume that $z_{0} \notin V(X)$. For, suppose $z_{0} \in V(X)$. Since G is 5-connected and X is induced in $G-x_{1}$, every vertex of X has at least two neighbors in $\left(G-x_{1}\right)-X$. Hence, $\left(G-x_{1}\right)-z_{0} X x_{2}$ is also a chain of blocks from y_{1} to y_{2}. So we can simply use $z_{0} X x_{2}$ as X.

Let B_{1}, B_{2} be the blocks in $\left(G-x_{1}\right)-X$ containing y_{1}, y_{2}, respectively. If one of B_{1}, B_{2} is nontrivial, then (iii) holds. So we may assume that $\left|V\left(B_{1}\right)\right|=\left|V\left(B_{2}\right)\right|=2$. Since X is induced and G is 5 -connected, there exists $z \in N\left(x_{2}\right)-\left(\left\{x_{1}, y_{1}, y_{2}\right\} \cup V(X)\right)$, and y_{1} and y_{2} each have at least two neighbors on $X-x_{2}$. Let Z be a path in $\left(G-x_{1}\right)-X-\left\{y_{1}, y_{2}\right\}$ from z_{0} to z. Then y_{1} and y_{2} are each contained in a nontrivial block of $\left(G-x_{1}\right)-Z$. So $\left(G-x_{1}\right)-Z$ contains a chain of blocks, say B, from y_{1} to y_{2}, and the blocks in $\left(G-x_{1}\right)-Z$ containing y_{1}, y_{2} are nontrivial. Thus, we may apply Lemma 3.2 .1 to G, Z and B. If (ii) of Lemma 3.2.1 holds, we have (iii). So assume (i) of Lemma 3.2.1 holds. Then, as in the second paragraph of this proof, (i) or ($i i$) follows from Lemma 4.2.1.

We may assume that (iii) of Lemma 4.2.4 holds and parts (iii) and (iv) of the next lemma give more detailed structure of G. We refer the reader to Figure 2 for (iii) of Lemma 4.2.5, and Figure 3 for (iv) of Lemma 4.2.5.

Lemma 4.2.5 Let G be a 5-connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ be distinct such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Let $z_{0}, z_{1} \in N\left(x_{1}\right)-$

Figure 2: Structure of G in (iii) of Lemma 4.2.5.

Figure 3: Structure of G in (iv) of Lemma 4.2.5.
$\left\{x_{2}, y_{1}, y_{2}\right\}$ be distinct and let $G^{\prime}:=G-\left\{x_{1} x: x \notin\left\{x_{2}, y_{1}, y_{2}, z_{0}, z_{1}\right\}\right\}$. Then one of the following holds:
(i) G^{\prime} contains $T K_{5}$, or G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) The notation of z_{0}, z_{1} may be chosen so that $\left(G-x_{1}\right)-x_{2} y_{2}$ has an induced path X from z_{1} to x_{2} such that $z_{0}, y_{1} \notin V(X)$, and $\left(G-x_{1}\right)-X$ is 2-connected.
(iv) The notation of z_{0}, z_{1} may be chosen so that there exists an induced path X in $G-x_{1}$ from z_{1} to x_{2} such that $z_{0} \notin V(X),\left(G-x_{1}\right)-X$ is a chain of blocks B_{1}, \ldots, B_{k} from y_{1} to y_{2} with B_{1} nontrivial, $z_{0} \in V\left(B_{1}\right)$ when z_{1} has at least two neighbors in B_{1}, and $\left(G-x_{1}\right)-x_{2} y_{2}$ has a 3-separation $\left(Y_{1}, Y_{2}\right)$ such that $V\left(Y_{1} \cap Y_{2}\right)=\left\{b, p_{1}, p_{2}\right\}, z_{1}, p_{1}, p_{2}, x_{2}$ occur on X in this order, $Y_{1}=$ $G\left[B_{1} \cup z_{1} X p_{1} \cup p_{2} X x_{2}+b\right], p_{1} X p_{2}+y_{2} \subseteq Y_{2}$, and p_{1}, p_{2} each have at least two neighbors in $Y_{2}-B_{1}$. Moreover, if $b \notin V\left(B_{1}\right)$ then $V\left(B_{2}\right)=\left\{b_{1}, b\right\}$ with $b_{1} \in V\left(B_{1}\right)$, and there exists some $j \in[2]$ such that p_{3-j} has a unique neighbor b_{1}^{\prime} in B_{1}, b has a unique neighbor v in X such that $v p_{3-j} \in E(X)-E\left(p_{1} X p_{2}\right)$, $v b_{1} \notin E(G)$ and $p_{j} b \notin E(G)$.

Proof. We begin our proof by applying Lemma 4.2 .4 to $G, x_{1}, x_{2}, y_{1}, y_{2}$. If (i) or (ii) of Lemma 4.2.4 holds then assertion (i) or (ii) of this lemma holds. So we may assume that (iii) of Lemma 4.2.4 holds. Then $\left(G-x_{1}\right)-x_{2} y_{2}$ has an induced path X from z_{1} to x_{2} such that $z_{0}, y_{1} \notin V(X),\left(G-x_{1}\right)-X$ has a nontrivial block B_{1} containing y_{1}, and y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X$. (Note that we are not requiring the stronger condition that $y_{2} \notin V(X)$ or $\left(G-x_{1}\right)-X$ be a chain of blocks.) We choose such a path X that
(1) B_{1} is maximal,
(2) subject to (1), whenever possible, $\left(G-x_{1}\right)-X$ has a chain of blocks from y_{1} to y_{2} and containing B_{1}, and
(3) subject to (2), the component H of $\left(G-x_{1}\right)-X$ containing B_{1} is maximal.

Let \mathcal{C} be the set of all components of $\left(G-x_{1}\right)-X$ different from H. Then
(4) $\mathcal{C}=\emptyset$, and if $y_{2} \notin V(X)$ then $H=\left(G-x_{1}\right)-X$ and H is a chain of blocks from y_{1} to y_{2} and containing B_{1}.

First, suppose $\mathcal{C}=\emptyset$. Then $H=\left(G-x_{1}\right)-X$. Suppose $y_{2} \notin V(X)$. Then H has a chain of blocks, say B, from y_{1} to y_{2} and containing B_{1}. By Lemma 3.2.1, (4) holds, or G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $x_{1} \in V\left(G_{1} \cap G_{2}\right), B+\left\{x_{1}, x_{2}, z_{1}\right\} \subseteq G_{1}$, $\left|V\left(G_{2}\right)\right| \geq 7$ and $\left(G_{2}-x_{1}, V\left(G_{1} \cap G_{2}\right)-\left\{x_{1}\right\}\right)$ is planar. Thus we may assume the latter. Since $y_{1} y_{2} \notin E(G),|V(B)| \geq 3$. So $\left|V\left(G_{1}\right)\right| \geq 6$. If $\left|V\left(G_{1}\right)\right|=6$ then, since $y_{1} y_{2} \notin E(G)$ and G is 5 -connected, $y_{1}, y_{2}, z_{1} \in V\left(G_{1} \cap G_{2}\right)$ and there exists $v \in V\left(G_{1}\right)-V\left(G_{2}\right)$ such that $N(v)=V\left(G_{1} \cap G_{2}\right)$; now $G\left[\left\{v, x_{1}, x_{2}, y_{1}\right\}\right]-x_{1} y_{1}$ is a K_{4}^{-}in which x_{1} is of degree 2 , and (ii) holds. So we may assume $\left|V\left(G_{1}\right)\right| \geq 7$. Then (i) or (ii) follows from Lemma 4.2.1 again.

Now suppose $\mathcal{C} \neq \emptyset$. For each $D \in \mathcal{C}$, let $u_{D}, v_{D} \in V(X)$ be the neighbors of D in $G-x_{2} y_{2}$ with $u_{D} X v_{D}$ maximal such that $z_{1}, u_{D}, v_{D}, x_{2}$ occur on X in this order. Define a new graph $G_{\mathcal{C}}$ such that $V\left(G_{\mathcal{C}}\right)=\mathcal{C}$, and two components $C, D \in \mathcal{C}$ are adjacent in $G_{\mathcal{C}}$ if $u_{C} X v_{C}-\left\{u_{C}, v_{C}\right\}$ contains a neighbor of D or $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ contains a neighbor of C.

Note that, for any component \mathcal{D} of $G_{\mathcal{C}}, \bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$ is a subpath of X. Since G is 5-connected, there exist $y \in V(H)$ and $C \in V(\mathcal{D})$ with $N(y) \cap V\left(u_{C} X v_{C}-\right.$ $\left.\left\{u_{C}, v_{C}\right\}\right) \neq \emptyset$.

If $y \neq y_{1}$ then let Q be an induced path in $G\left[C+\left\{u_{C}, v_{C}\right\}\right]-x_{2} y_{2}$ from u_{C} to v_{C}, and let X^{\prime} be obtained from X by replacing $u_{C} X v_{C}$ with Q. Then B_{1} is contained in a block of $\left(G-x_{1}\right)-X^{\prime}$, and y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X^{\prime}$. Moreover, if
$\left(G-x_{1}\right)-X$ has a chain of blocks from y_{1} to y_{2} then so does $\left(G-x_{1}\right)-X^{\prime}$. However, the component of $\left(G-x_{1}\right)-X^{\prime}$ containing B_{1} is larger than H, contradicting (3).

So we may assume that $y=y_{1}$ for all choices of y and C. Let $u X v:=\bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$. Since G is 5 -connected, $y_{2} \in V\left(\bigcup_{D \in V(\mathcal{D})} D\right) \cup V(u X v-\{u, v\})$ and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{u, v, x_{1}, x_{2}, y_{1}\right\}, G_{1}:=G\left[\bigcup_{D \in V(\mathcal{D})} D \cup u X v+\right.$ $\left.\left\{x_{1}, x_{2}, y_{1}\right\}\right]$, and $B_{1} \cup z_{1} X u \cup v X x_{2} \subseteq G_{2}$. Clearly, $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in$ [2]. Since $G\left[\left\{x_{1}, x_{2}, y_{1}\right\}\right] \cong K_{3},(i)$ or (ii) follows from Lemma 4.2.2. This completes the proof of (4).

Let \mathcal{B} be the set of all B_{1}-bridges of H. For each $D \in \mathcal{B}$, let $b_{D} \in V(D) \cap V\left(B_{1}\right)$ and $u_{D}, v_{D} \in V(X)$ be the neighbors of D in $G-x_{2} y_{2}$ with $u_{D} X v_{D}$ maximal. Define a new graph $G_{\mathcal{B}}$ such that $V\left(G_{\mathcal{B}}\right)=\mathcal{B}$, and two B_{1}-bridges $C, D \in \mathcal{B}$ are adjacent in $G_{\mathcal{B}}$ if $u_{C} X v_{C}-\left\{u_{C}, v_{C}\right\}$ contains a neighbor of $D-b_{D}$ or $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ contains a neighbor of $C-b_{C}$. Note that, for any component \mathcal{D} of $G_{\mathcal{B}}, \bigcup_{D \in V(\mathcal{D})} u_{D} X v_{D}$ is a subpath of X, whose ends are denoted by $u_{\mathcal{D}}, v_{\mathcal{D}}$. We let $S_{\mathcal{D}}:=\left\{b_{D}: D \in\right.$ $V(\mathcal{D})\} \cup\left(N\left(u_{\mathcal{D}} X v_{\mathcal{D}}-\left\{u_{\mathcal{D}}, v_{\mathcal{D}}\right\}\right) \cap V\left(B_{1}\right)\right)$. We may assume that
(5) for any component \mathcal{D} of $G_{\mathcal{B}},\left|S_{\mathcal{D}}\right| \leq 2$ and $y_{2} \in\left(\bigcup_{D \in V(\mathcal{D})} V(D)\right) \cup V\left(u_{\mathcal{D}} X v_{\mathcal{D}}\right)-$ $\left(\left\{u_{\mathcal{D}}, v_{\mathcal{D}}\right\} \cup S_{\mathcal{D}}\right)$.

First, we may assume $\left|S_{\mathcal{D}}\right| \leq 2$. For, suppose $\left|S_{\mathcal{D}}\right| \geq 3$. Then there exist $D \in V(\mathcal{D})$, $r_{1}, r_{2} \in V\left(u_{D} X v_{D}\right)-\left\{u_{D}, v_{D}\right\}$, and distinct $r_{1}^{\prime}, r_{2}^{\prime} \in V\left(B_{1}\right)$ such that for $i \in[2]$, $r_{i} r_{i}^{\prime} \in E(G)$ or $r_{i}^{\prime} \in V\left(D_{i}\right)$ for some $D_{i} \in V(\mathcal{D})-\{D\}$. (To see this, we choose $D \in V(\mathcal{D})$ such that there is a maximum number of vertices in B_{1} from which G has a path to $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ and internally disjoint from $B_{1} \cup D \cup X$. If this number is at most 1 , we can show that $\left|S_{\mathcal{D}}\right| \leq 2$.) Let $R_{i}=r_{i} r_{i}^{\prime}$ if $r_{i} r_{i}^{\prime} \in E(G)$; and otherwise let R_{i} be a path in $G\left[D_{i}+r_{i}\right]$ from r_{i} to r_{i}^{\prime} and internally disjoint from X. Let Q denote an induced path in $G\left[D+\left\{u_{D}, v_{D}\right\}\right]-b_{D}-x_{2} y_{2}$ between u_{D} and v_{D}, and let X^{\prime} be obtained from X by replacing $u_{D} X v_{D}$ with Q. Clearly, the block of
$\left(G-x_{1}\right)-X^{\prime}$ containing y_{1} contains B_{1} as well as the path $R_{1} \cup r_{1} X r_{2} \cup R_{2}$. Note that $y_{1} \neq b_{D}$ (as y_{1} is not a cut vertex in H). Moreover, if $y_{1}=r_{i}^{\prime}$ for some $i \in[2]$ then D_{i} is not defined and $r_{i} r_{i}^{\prime} \in E(G)$. So y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X^{\prime}$. Thus, X^{\prime} contradicts the choice of X, because of (1).

Now assume $y_{2} \notin \bigcup_{D \in V(\mathcal{D})} V(D) \cup V\left(u_{\mathcal{D}} X v_{\mathcal{D}}\right)-\left(\left\{u_{\mathcal{D}}, v_{\mathcal{D}}\right\} \cup S_{\mathcal{D}}\right)$. Then $S_{\mathcal{D}} \cup$ $\left\{u_{\mathcal{D}}, v_{\mathcal{D}}, x_{1}\right\}$ is a cut in G; so $\left|S_{\mathcal{D}}\right|=2$ (as G is 5 -connected). Let $S_{\mathcal{D}}=\{p, q\}$. Then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{p, q, u_{\mathcal{D}}, v_{\mathcal{D}}, x_{1}\right\}, B_{1} \cup z_{1} X u_{\mathcal{D}} \cup$ $v_{\mathcal{D}} X x_{2} \subseteq G_{1}$, and G_{2} contains $u_{\mathcal{D}} X v_{\mathcal{D}}$ and the B_{1}-bridges of H contained in \mathcal{D}. If $\left(G_{2}-x_{1}, u_{\mathcal{D}}, p, v_{\mathcal{D}}, q\right)$ is planar then, since $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$, the assertion of this lemma follows from Lemma 4.2.1. So we may assume that ($\left.G_{2}-x_{1}, u_{\mathcal{D}}, p, v_{\mathcal{D}}, q\right)$ is not planar. Then by Lemma 2.3.1, $G_{2}-x_{1}$ contains disjoint paths S, T from $u_{\mathcal{D}}, p$ to $v_{\mathcal{D}}, q$, respectively.

We apply Lemma 3.2 .1 to $G_{2}-x_{1}$ and $\left\{u_{\mathcal{D}}, v_{\mathcal{D}}, p, q\right\}$. If (i) of Lemma 3.2.1 holds then from the separation in $G_{2}-x_{1}$, we derive a 5 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ in G such that $x_{1} \in V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right), B_{1} \cup T+x_{1} \subseteq G_{1}^{\prime},\left|V\left(G_{2}^{\prime}\right)\right| \geq 7$, and $\left(G_{2}^{\prime}-x_{1}, V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)-\left\{x_{1}\right\}\right)$ is planar. So (i) or (ii) follows from Lemma 4.2.1. We may thus assume that $(i i)$ of Lemma 3.2.1 holds. Thus, there is an induced path S^{\prime} in $G_{2}-x_{1}$ from $u_{\mathcal{D}}$ to $v_{\mathcal{D}}$ such that $\left(G_{2}-x_{1}\right)-S^{\prime}$ is a chain of blocks from p to q. Now let X^{\prime} be obtained from X by replacing $u_{\mathcal{D}} X v_{\mathcal{D}}$ with S^{\prime}. Then y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X^{\prime}$, and the block of $\left(G-x_{1}\right)-X^{\prime}$ containing y_{1} contains B_{1} and $\left(G_{2}-x_{1}\right)-S^{\prime}$, contradicting (1). This completes the proof of (5).

We may also assume that
(6) for any B_{1}-bridge D of $H, y_{2} \notin V\left(u_{D} X v_{D}\right)-\left\{u_{D}, v_{D}\right\}$.

For, suppose $y_{2} \in V\left(u_{D} X v_{D}\right)-\left\{u_{D}, v_{D}\right\}$ for some B_{1}-bridge D of H. Choose X and D so that, subject to (1)-(3), $u_{D} X v_{D}$ is maximal.

We claim that $\{D\}$ is a component of $G_{\mathcal{B}}$. For, otherwise, by the maximality of
$u_{D} X v_{D}$, there exists a B_{1}-bridge C of H such that $N(C) \cap V\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \neq \emptyset$. Let T be an induced path in $G\left[D+\left\{u_{D}, v_{D}\right\}\right]-b_{D}-x_{2} y_{2}$ from u_{D} to v_{D}. By replacing $u_{D} X v_{D}$ with T we obtain a path X^{\prime} from X such that y_{1} is not a cut vertex in $\left(G-x_{1}\right)-X^{\prime}, B_{1}$ is contained in a block of $\left(G-x_{1}\right)-X^{\prime}$, and $\left(G-x_{1}\right)-X^{\prime}$ has a chain of blocks from y_{1} to y_{2} and containing B_{1}, contradicting the choice of X (in (2) as $\left.y_{2} \in V(X)\right)$.

Hence, by (5), $V\left(G_{\mathcal{B}}\right)=\{D\}$. If G has an edge from $u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}$ to $B_{1}-y_{1}$ or if y_{1} has two neighbors, one on $u_{D} X y_{2}-u_{D}$ and one on $v_{D} X y_{2}-v_{D}$, then let X^{\prime} be obtained from X by replacing $u_{D} X v_{D}$ with an induced path in $G\left[D+\left\{u_{D}, v_{D}\right\}\right]-$ $b_{D}-x_{2} y_{2}$ from u_{D} to v_{D}. In the former case, $\left(G-x_{1}\right)-X^{\prime}$ has a chain of blocks from y_{1} to y_{2} and containing B_{1}, contradicting (2). In the latter case, $\left(G-x_{1}\right)-X^{\prime}$ has a cycle containing $\left\{y_{1}, y_{2}\right\}$. So by Lemmas 3.2.1 and 4.2.1, (i) or (ii) holds, or there is an induced path X^{*} in $G-x_{1}$ from z_{1} to x_{2} such that $y_{1}, y_{2} \notin V\left(X^{*}\right)$ and $\left(G-x_{1}\right)-X^{*}$ is 2-connected, and (iii) holds.

Therefore, we may assume $N\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \cap V\left(B_{1}\right)=\left\{y_{1}\right\}$, and $N\left(y_{1}\right) \cap$ $V\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \subseteq V\left(u_{D} X y_{2}\right)$ or $N\left(y_{1}\right) \cap V\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \subseteq V\left(v_{D} X y_{2}\right)$. Let $L=G\left[D \cup u_{D} X v_{D}\right]$ and let $L^{\prime}=G\left[L+y_{1}\right]$.

Suppose L has disjoint paths from u_{D}, b_{D} to v_{D}, y_{2}, respectively. We may apply Lemma 3.2 .1 to L and $\left\{u_{D}, v_{D}, b_{D}, y_{2}\right\}$. If L has an induced path S from u_{D} to v_{D} such that $L-S$ is a chain of blocks from b_{D} to y_{2} then let X^{\prime} be obtained from X by replacing $u_{D} X v_{D}$ with S; now $\left(G-x_{1}\right)-X^{\prime}$ is a chain of blocks from y_{1} to y_{2} and containing B_{1}, contradicting (2). So we may assume that L has a 4 -separation as given in (i) of Lemma 3.2.1. Thus G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $x_{1} \in V\left(G_{1} \cap G_{2}\right)$, $\left|V\left(G_{i}\right)\right| \geq 2$ for $i \in[2]$, and $\left(G_{2}-x_{1}, V\left(G_{1} \cap G_{2}\right)-\left\{x_{1}\right\}\right)$ is planar. Hence, (i) or (ii) follows from Lemma 4.2.1.

Thus, we may assume that such disjoint paths do not exist in L. By Lemma 2.3.1, there exists a collection \mathcal{A} of subsets of $V(L)-\left\{b_{D}, u_{D}, v_{D}, y_{2}\right\}$ such that $\left(L, \mathcal{A}, u_{D}, b_{D}, v_{D}, y_{2}\right)$
is 3-planar.
We now show that $\left(L^{\prime}-y_{1} v_{D}, u_{D}, b_{D}, v_{D}, y_{2}, y_{1}\right)$ is planar (when $N\left(y_{1}\right) \cap V\left(u_{D} X v_{D}-\right.$ $\left.\left\{u_{D}, v_{D}\right\}\right) \subseteq V\left(u_{D} X y_{2}\right)$), or $\left(L^{\prime}-y_{1} u_{D}, u_{D}, b_{D}, v_{D}, y_{1}, y_{2}\right)$ is planar (when $N\left(y_{1}\right) \cap$ $\left.V\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \subseteq V\left(v_{D} X y_{2}\right)\right)$. Since the arguments for these two cases are the same, we consider only the case $N\left(y_{1}\right) \cap V\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \subseteq V\left(u_{D} X y_{2}\right)$. Since G is 5 -connected, for each $A \in \mathcal{A},\left\{x_{1}, y_{1}\right\} \subseteq N(A)$ and $\left|N_{L}(A)\right|=3$; and since $N\left(y_{1}\right) \cap V\left(u_{D} X v_{D}-\left\{u_{D}, v_{D}\right\}\right) \subseteq V\left(u_{D} X y_{2}\right),\left|N_{L}(A) \cap V(X)\right|=2$. For each such A, let $a_{1}, a_{2} \in N_{L}(A) \cap V(X)$ and let $a \in N_{L}(A)-V(X)$. If $\left(G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right], a_{1}, a, a_{2}, y_{1}\right)$ is planar, for any choice $A \in \mathcal{A}$, then $\left(L^{\prime}-y_{1} v_{D}, u_{D}, b_{D}, v_{D}, y_{2}, y_{1}\right)$ is planar. So we may assume that, for some choice of $A,\left(G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right], a_{1}, a, a_{2}, y_{1}\right)$ is not planar. (Note that $G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right]$ is $\left(4, N_{L}(A) \cup\left\{y_{1}\right\}\right)$-connected.) Hence, by Lemma 2.3.1, $G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right]$ contains disjoint paths from a_{1}, a to a_{2}, y_{1}, respectively. So we can apply Lemma 3.2.1 to $G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right]$ and $\left\{a, a_{1}, a_{2}, y_{1}\right\}$. If (i) of Lemma 3.2.1 occurs then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $x_{1} \in V\left(G_{1} \cap G_{2}\right)$, $\left|V\left(G_{i}\right)\right| \geq 5$ for $i \in[2]$, and $\left(G_{2}-x_{1}, V\left(G_{1} \cap G_{2}\right)-\left\{x_{1}\right\}\right)$ is planar; so (i) or (ii) follows from Lemma 4.2.1. Hence, we may assume that (ii) of Lemma 3.2.1 occurs. Then $G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right]$ has an induced path S from a_{1} to a_{2} such that $G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right]-S$ is a chain of blocks from y_{1} to a. Let X^{\prime} be obtained from X by replacing $a_{1} X a_{2}$ with S. Then the block of $\left(G-x_{1}\right)-X^{\prime}$ containing y_{1} contains B_{1} and $G\left[A \cup N_{L}(A) \cup\left\{y_{1}\right\}\right]-S$, and y_{1} is not a cut vertex in $\left(G-x_{1}\right)-X^{\prime}$, contradicting (1).

Hence, G has a 6 -separation $\left(G_{1}, G_{2}\right)$ with $V\left(G_{1} \cap G_{2}\right)=\left\{b_{D}, u_{D}, v_{D}, x_{1}, y_{1}, y_{2}\right\}$ and $G_{2}-x_{1}=L^{\prime}-y_{1} v_{D}\left(\right.$ or $\left.G_{2}-x_{1}=L^{\prime}-y_{1} u_{D}\right)$. Since $\left(L^{\prime}-y_{1} v_{D}, u_{D}, b_{D}, v_{D}, y_{2}, y_{1}\right)$ (or $\left(L^{\prime}-y_{1} u_{D}, u_{D}, b_{D}, v_{D}, y_{1}, y_{2}\right)$) is planar and $\left|V\left(G_{2}\right)\right| \geq 8$, the assertion follows from Lemma 2.3.12 (and then Lemma 4.2.1). This completes the proof of (6).

If $y_{2} \in V(X)$ then by (4), (5) and (6), H is 2-connected; so (iii) holds. Thus we may assume $y_{2} \notin V(X)$. Then by (4), H is a chain of blocks from y_{1} to y_{2} and
containing B_{1}, which we denote as $B_{1} \ldots B_{k}$. We may assume $k \geq 2$; as otherwise, (iii) holds. Let $y_{1} \in V\left(B_{1}\right)-V\left(B_{2}\right), y_{2} \in V\left(B_{k}\right)-V\left(B_{k-1}\right)$, and $b_{i} \in V\left(B_{i}\right) \cap V\left(B_{i+1}\right)$ for $i \in[k-1]$. Note that

- if z_{1} has at least two neighbors in B_{1} then $z_{0} \in V\left(B_{1}\right)$.

For, suppose z_{1} has at least two neighbors in B_{1} and $z_{0} \notin V\left(B_{1}\right)$. Let $w \in V(X)$ with $w X x_{2}$ minimal such that w is a neighbor of $\bigcup_{i=2}^{k} B_{i}-b_{1}$ in $G-x_{2} y_{2}$. Recall that $z_{0} \notin V(X)$. Let W be an induced path in $G\left[\left(\bigcup_{i=2}^{k} B_{i}\right)+w-b_{1}\right]-x_{2} y_{2}$ from z_{0} to w, and let $X^{\prime}=W \cup w X x_{2}$. Then, since y_{1} is not a cut vertex of H, y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X^{\prime}$. However, the block of $\left(G-x_{1}\right)-X^{\prime}$ containing y_{1} contains $B_{1}+z_{1}$, contradicting (1).

We further choose X so that, subject to (1), (2) and (3),
(7) B_{k} is maximal.

Let $q_{1}, q_{2} \in V(X)$ be the neighbors of $\bigcup_{i=2}^{k} B_{i}-b_{1}$ in $G-x_{2} y_{2}$ with $q_{1} X q_{2}$ maximal, and assume that $z_{1}, q_{1}, q_{2}, x_{2}$ occur on X in this order. We may assume that
(8) there exists $b_{1}^{\prime} \in V\left(B_{1}-b_{1}\right)$ such that $N\left(q_{1} X q_{2}-\left\{q_{1}, q_{2}\right\}\right) \cap V\left(B_{1}-b_{1}\right)=\left\{b_{1}^{\prime}\right\}$.

For, otherwise, by (5), $N\left(q_{1} X q_{2}-\left\{q_{1}, q_{2}\right\}\right) \cap V\left(B_{1}-b_{1}\right)=\emptyset$. Hence, (iv) holds with $b=b_{1}, p_{1}=q_{1}$, and $p_{2}=q_{2}$.

Thus G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}, x_{1}, y_{2}\right\}$, $G_{1}=G\left[\left(B_{1} \cup z_{1} X q_{1} \cup q_{2} X x_{2}\right)+\left\{x_{1}, y_{2}\right\}\right]$ and G_{2} contains $\bigcup_{i=2}^{k} B_{i}$ and $q_{1} X q_{2}$. Note that $x y \notin E\left(G_{2}\right)$ for any pair of $\{x, y\} \subseteq\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}$, and $x_{2} y_{2} \notin E\left(G_{2}\right)$. We may assume that
(9) there exists a collection \mathcal{A} of subsets of $V\left(G_{2}-x_{1}\right)-\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}$ such that $\left(G_{2}-x_{1}, \mathcal{A}, b_{1}, q_{1}, b_{1}^{\prime}, q_{2}\right)$ is 3-planar.

For, otherwise, by Lemma 2.3.1, $G_{2}-x_{1}$ has disjoint paths S, S^{\prime} from b_{1}, q_{1} to b_{1}^{\prime}, q_{2}, respectively. We may choose S^{\prime} to be induced and let X^{\prime} be obtained from X by replacing $q_{1} X q_{2}$ with S^{\prime}. Then $B_{1} \cup S$ is contained in a block of $\left(G-x_{1}\right)-X^{\prime}$. Thus, by (1), $y_{1}=b_{1}^{\prime}$ and y_{1} is a cut vertex of $\left(G-x_{1}\right)-X^{\prime}$.

Suppose $G_{2}-x_{1}$ is $\left(4,\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}\right)$-connected. Applying Lemma 3.2.1 (and then Lemma 4.2.1) to $G_{2}-x_{1}$ and $\left\{q_{1}, q_{2}, b_{1}, b_{1}^{\prime}\right\}$, we may assume that there is an induced path S^{*} in $G_{2}-x_{1}$ from q_{1} to q_{2} such that $\left(G_{2}-x_{1}\right)-S^{*}$ is a chain of blocks. Let X^{*} be obtained from X by replacing $q_{1} X q_{2}$ with S^{*}. Then B_{1} is properly contained in a block of $\left(G-x_{1}\right)-X^{*}$, and y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X^{*}$. This contradicts (1).

Thus, $G_{2}-x_{1}$ is not $\left(4,\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}\right)$-connected. Since G is 5 -connected and y_{2} is the only vertex in $V\left(G_{2}\right)-\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}, x_{1}\right\}$ adjacent to $x_{2}, G_{2}-x_{1}$ has a 3 -cut T separating y_{2} from $\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}$. Choose T so that the component J of $\left(G_{2}-x_{1}\right)-T$ containing y_{2} is maximal. Let G_{2}^{\prime} be obtained from $G_{2}-J$ by adding an edge between every pair of vertices in T. Then $G_{2}^{\prime}-x_{1}$ is $\left(4,\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}\right)$-connected, and the paths S, S^{\prime} also give rise to disjoint paths in $G_{2}^{\prime}-x_{1}$ from b_{1}, q_{1} to b_{1}^{\prime}, q_{2}, respectively. Hence by applying Lemma 3.2.1 (and then Lemma 4.2.1) to $G_{2}^{\prime}-x_{1}$ and $\left\{q_{1}, q_{2}, b_{1}, b_{1}^{\prime}\right\}$, we find an induced path $S^{\prime \prime}$ in $G_{2}^{\prime}-x_{1}$ from q_{1} to q_{2} such that $\left(G_{2}^{\prime}-x_{1}\right)-S^{\prime \prime}$ is a chain of blocks from b_{1} to b_{1}^{\prime}. Note that $S^{\prime \prime}$ gives rise to an induced path S^{*} in G_{2} by replacing $S^{\prime \prime} \cap G_{2}^{\prime}[T]$ with an induced path in $G_{2}[J+T]$. Let X^{*} be obtained from X by replacing $q_{1} X q_{2}$ with S^{*}. Then B_{1} is properly contained in a block of $\left(G-x_{1}\right)-X^{*}$. Since $y_{2} \notin V(X), b_{1}^{\prime} \notin T \cup V(J)$. Hence, y_{1} is not a cut vertex in $\left(G-x_{1}\right)-X^{*}$. Thus, we have a contradiction to (1) which completes the proof of (9).

We may assume that, for any choice of \mathcal{A} in (9),
(10) $\mathcal{A} \neq \emptyset$.

For, otherwise, $G_{2}-x_{1}$ has no cut of size at most 3 separating y_{2} from $\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}$. Hence, G_{2} is $\left(5,\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}, x_{1}\right\}\right)$-connected and $\left(G_{2}-x_{1}, b_{1}, q_{1}, b_{1}^{\prime}, q_{2}\right)$ is planar. We
may assume that $G_{2}-x_{1}$ is a plane graph with $b_{1}, q_{1}, b_{1}^{\prime}, q_{2}$ incident with its outer face.

If y_{2} is also incident with the outer face of $G_{2}-x_{1}$ then (i) or (ii) holds by applying Lemma 2.3.12 (and then Lemma 4.2.1) to $G_{2}-x_{1}$ and $\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}, x_{1}, y_{2}\right\}$. So assume that y_{2} is not incident with the outer face of $G_{2}-x_{1}$. Then by Lemma 2.3.7, the vertices of $G_{2}-x_{1}$ cofacial with y_{2} induce a cycle $C_{y_{2}}$ in $G_{2}-x_{1}$, and $G_{2}-x_{1}$ contains paths P_{1}, P_{2}, P_{3} from y_{2} to $\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}$ such that $V\left(P_{i} \cap P_{j}\right)=\left\{y_{2}\right\}$ for $1 \leq i<j \leq 3$, and $\left|V\left(P_{i} \cap C_{y_{2}}\right)\right|=\left|V\left(P_{i}\right) \cap\left\{b_{1}, b_{1}^{\prime}, q_{1}, q_{2}\right\}\right|=1$ for $i \in$ [3]. Let $K=C_{y_{2}} \cup P_{1} \cup P_{2} \cup P_{3}$.

If P_{1}, P_{2}, P_{3} end at q_{1}, b_{1} (or $\left.b_{1}^{\prime}\right), q_{2}$, respectively, then let Q be a path in B_{1} from y_{1} to $b_{1}\left(\right.$ or $\left.b_{1}^{\prime}\right) ;$ now $K \cup\left(x_{1} z_{1} \cup z_{1} X q_{1}\right) \cup\left(x_{1} x_{2} \cup x_{2} X q_{2}\right) \cup\left(x_{1} y_{1} \cup Q\right) \cup x_{1} y_{2}$ is a $T K_{5}$ in G^{\prime}. For the remaining cases, let Q_{1}, Q_{2} be independent paths in B_{1} from y_{1} to b_{1}^{\prime}, b_{1}, respectively. If P_{1}, P_{2}, P_{3} end at $b_{1}, q_{1}, b_{1}^{\prime}$, respectively, then $K \cup Q_{1} \cup Q_{2} \cup$ $\left(y_{1} x_{1} z_{1} \cup z_{1} X q_{1}\right) \cup y_{1} x_{2} y_{2}$ is a $T K_{5}$ in G^{\prime}. If P_{1}, P_{2}, P_{3} end at $b_{1}, q_{2}, b_{1}^{\prime}$, respectively then $K \cup Q_{1} \cup Q_{2} \cup\left(y_{1} x_{2} \cup x_{2} X q_{2}\right) \cup y_{1} x_{1} y_{2}$ is a $T K_{5}$ in G^{\prime}. This proves (10).

By (10) and the 5 -connectedness of G, we may let $\mathcal{A}=\{A\}$ and $y_{2} \in A$. Moreover, $\left|N(A)-\left\{x_{1}, x_{2}\right\}\right|=3$. Choose \mathcal{A} so that
(11) A is maximal.

Then
(12) $b_{1}^{\prime} \notin N(A)$, and we may assume that $N\left(b^{\prime}\right) \cap V\left(B_{k}-b_{k-1}\right)=\emptyset$ for any $b^{\prime} \in$ $N\left(b_{1}^{\prime}\right) \cap V\left(q_{1} X q_{2}\right)$, and $\left|N(A) \cap V\left(q_{1} X q_{2}\right)\right|=2$.

Suppose $b_{1}^{\prime} \in N(A)$. Then $A \cap V\left(q_{1} X q_{2}-\left\{q_{1}, q_{2}\right\}\right) \neq \emptyset$. Hence, $\left|N(A) \cap V\left(q_{1} X q_{2}\right)\right| \geq 2$. Since $y_{2} \in A$ and $y_{2} \notin V(X),\left|N(A) \cap V\left(B_{i}\right)\right| \geq 1$ for some $2 \leq i \leq k$, a contradiction as $\left|N(A)-\left\{x_{1}, x_{2}\right\}\right|=3$.

Now suppose there exist $b^{\prime} \in N\left(b_{1}^{\prime}\right) \cap V\left(q_{1} X q_{2}\right)$ and $b^{\prime \prime} \in N\left(b^{\prime}\right) \cap V\left(B_{k}-b_{k-1}\right)$. Then B_{k} has independent paths P_{2}, P_{2}^{\prime} from y_{2} to $b_{k-1}, b^{\prime \prime}$, respectively. Let P_{1}, P_{1}^{\prime}
be independent paths in B_{1} from y_{1} to b_{1}, b_{1}^{\prime}, respectively, and let P be a path in $\bigcup_{j=2}^{k-1} B_{j}$ from b_{1} to b_{k-1}. Then $\left(b^{\prime} X z_{1} \cup z_{1} x_{1}\right) \cup b^{\prime} X x_{2} \cup\left(b^{\prime} b_{1}^{\prime} \cup P_{1}^{\prime}\right) \cup\left(b^{\prime} b^{\prime \prime} \cup P_{2}^{\prime}\right) \cup\left(P_{1} \cup\right.$ $\left.P \cup P_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G^{\prime} with branch vertices $b^{\prime}, x_{1}, x_{2}, y_{1}, y_{2}$.

Finally, assume $\left|N(A) \cap V\left(q_{1} X q_{2}\right)\right| \leq 1$. Then, since $B_{k}-b_{k-1}$ has at least two neighbors on $q_{1} X q_{2}$ (as G is 5 -connected), B_{k} is 2-connected and $V\left(B_{k}-b_{k-1}\right) \nsubseteq$ A. Hence, $\left|N(A) \cap V\left(B_{k}\right)\right| \geq 2$. Let $q_{1}^{\prime}, q_{2}^{\prime} \in N\left(B_{k}-b_{k-1}\right) \cap V(X)$ such that $q_{1}^{\prime} X q_{2}^{\prime}$ is maximal. Then there exists $b^{\prime} \in N\left(b_{1}^{\prime}\right) \cap V\left(q_{1}^{\prime} X q_{2}^{\prime}-\left\{q_{1}^{\prime}, q_{2}^{\prime}\right\}\right)$; otherwise $V\left(B_{k} \cup q_{1}^{\prime} X q_{2}^{\prime}\right)-\left\{b_{k-1}, q_{1}^{\prime}, q_{2}^{\prime}\right\}$ contradicts the choice of A in (11). Since G is 5 connected and $\left(G_{2}-x_{1}, \mathcal{A}, b_{1}, q_{1}, b_{1}^{\prime}, q_{2}\right)$ is 3 -planar, b^{\prime} has a neighbor $b^{\prime \prime}$ in $B_{k}-b_{k-1}$, a contradiction. So $\left|N(A) \cap V\left(q_{1} X q_{2}\right)\right| \geq 2$. Indeed $\left|N(A) \cap V\left(q_{1} X q_{2}\right)\right|=2$, since $\left(G-x_{1}\right)-X$ is connected, $y_{2} \notin V(X)$ and $\left|N(A)-\left\{x_{1}, x_{2}\right\}\right|=3$. This concludes the proof of (12).

Since $\left|N(A) \cap V\left(q_{1} X q_{2}\right)\right|=2$ (by (12)), there exists $2 \leq l \leq k-1$ such that $b_{l} \in N(A)$ and $\bigcup_{j=l+1}^{k} V\left(B_{j}\right) \subseteq A$. Note that $N(A) \cap V\left(q_{1} X q_{2}\right) \neq\left\{q_{1}, q_{2}\right\}$, as b_{1}^{\prime} has a neighbor in $q_{1} X q_{2}-\left\{q_{1}, q_{2}\right\}$. We may assume that
(13) there exists $i \in[2]$ such that $q_{i} \in N(A)$ and $N\left(q_{i}\right) \cap V\left(G_{2}-x_{1}\right) \subseteq A \cup N(A)$.

For, suppose otherwise. Then for $i \in[2], q_{i} \notin N(A)$ or $N\left(q_{i}\right) \cap V\left(G_{2}-x_{1}\right) \nsubseteq A \cup N(A)$. Hence, $G_{2}\left[\bigcup_{j=2}^{l} B_{j}+\left\{q_{1}, q_{2}\right\}-b_{1}\right]$ contains an induced path P from q_{1} to q_{2}.

We may assume $b_{1}^{\prime} \neq y_{1}$. For, suppose $b_{1}^{\prime}=y_{1}$. Since G is 5 -connected, there exists $t \in[2]$ such that $G\left[\bigcup_{j=l+1}^{k} V\left(B_{j}\right) \cup q_{1} X q_{2}+y_{1}\right]-\left\{b_{l}, q_{3-t}\right\}$ has independent paths P_{1}, P_{2} from y_{2} to y_{1}, q_{t}, respectively. If q_{t} has a neighbor $s \in V\left(B_{1}\right)$ then let S be a path in B_{1} from s to y_{1}; now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup\left(x_{1} z_{1} \cup z_{1} X q_{1} \cup P \cup q_{2} X x_{2}\right) \cup$ $\left(q_{t} s \cup S\right) \cup P_{2} \cup P_{1}$ is a $T K_{5}$ in G^{\prime} with branch vertices $q_{t}, x_{1}, x_{2}, y_{1}, y_{2}$. So assume that q_{t} has no neighbor in B_{1}. Then we may assume $q_{t} \notin\left\{z_{1}, x_{2}\right\}$ and $q_{t} x_{2} \notin E(X)$; for otherwise, $\left\{b_{1}, q_{3-t}, x_{1}, x_{2}, y_{1}\right\}$ is a 5 -cut in G containing the triangle $x_{1} x_{2} y_{1} x_{1}$, and the assertion follows from Lemma 4.2.2. Now let $v q_{t} \in E(X)-E\left(q_{1} X q_{2}\right)$. Then
$G\left[B_{1}+v\right]$ has independent paths R_{1}, R_{2} from v to y_{1}, b_{1}, respectively. Let R be a path in $G\left[\bigcup_{j=2}^{l} B_{j}+q_{3-t}\right]$ from b_{1} to q_{3-t}. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup R_{1} \cup\left(v q_{t} \cup P_{2}\right) \cup$ $\left(R_{2} \cup R \cup\left(X-\left(q_{1} X q_{2}-q_{3-t}\right)\right) \cup x_{1} z_{1}\right) \cup P_{1}$ is a $T K_{5}$ in G^{\prime} with branch vertices $v, x_{1}, x_{2}, y_{1}, y_{2}$.

Let $t_{1}, t_{2} \in V\left(X-x_{2}\right) \cap N\left(B_{k}-b_{k-1}\right)$ with $t_{1} X t_{2}$ maximal. We claim that $G\left[B_{k} \cup\right.$ $\left.t_{1} X t_{2}\right]-b_{k-1}$ is 2-connected. For, suppose not. Then $G\left[B_{k} \cup t_{1} X t_{2}\right]$ has a 2-separation $\left(L_{1}, L_{2}\right)$ such that $b_{k-1} \in V\left(L_{1} \cap L_{2}\right)$ and $t_{1} X t_{2} \subseteq L_{1}$. Now $V\left(L_{1} \cap L_{2}\right) \cup\left\{x_{1}, x_{2}\right\}$ is a 4-cut in G, a contradiction.

Let X^{\prime} be obtained from X by replacing $q_{1} X q_{2}$ with P. Then $\left(G-x_{1}\right)-X^{\prime}$ has a chain of blocks from y_{1} to y_{2}, in which B_{1} is a block containing y_{1}, and the block containing y_{2} contains $\left(B_{k}-b_{k-1}\right) \cup t_{1} X t_{2}$ (whose size is larger than B_{k}). Since $b_{1}^{\prime} \neq y_{1}, y_{1}$ is not a cut vertex. This contradicts the choice of X for (7) (subject to (1), (2) and (3)). So we have (13).

Then $q_{3-i} \notin N(A)$, and $x_{2} \neq q_{i}$ (otherwise $N(A) \cup\left\{x_{1}\right\}$ would be a 4-cut in G). Let $a \in N(A)-\left\{x_{1}, x_{2}, q_{i}, b_{l}\right\}$. Then $a \in V(X)$ and $\left\{a, b_{1}, b_{1}^{\prime}, b_{l}, q_{3-i}, x_{1}\right\}$ is a 6 -cut in G. So G has a 6 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ such that $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{a, b_{1}, b_{1}^{\prime}, b_{l}, q_{3-i}, x_{1}\right\}$ and $G_{2}^{\prime}:=$ $G_{2}-\left(A \cup\left\{q_{i}\right\}\right)$. Note that $\left(G_{2}^{\prime}-x_{1}, b_{1}, b_{l}, a, b_{1}^{\prime}, q_{3-i}\right)$ is planar. If $\left|V\left(G_{2}^{\prime}\right)\right| \geq 8$ then we may apply Lemma 2.3 .12 to $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ and conclude, with help from Lemma 4.2.1, that (i) or (ii) holds. So assume $\left|V\left(G_{2}^{\prime}\right)\right|=6$ or $\left|V\left(G_{2}^{\prime}\right)\right|=7$. Note that $G-x_{1}$ has a separation $\left(Y_{1}, Y_{2}\right)$ such that $V\left(Y_{1} \cap Y_{2}\right)=\left\{a, b_{l}, q_{i}\right\}, Y_{1}$ is induced in G by the union of $B_{1} \cup G_{2}^{\prime}$ and $\left(X-x_{1}\right)-\left(q_{i} X a-\left\{a, q_{i}\right\}\right)$, and $a X q_{i}+y_{2} \subseteq Y_{2}$.

Case 1. $\left|V\left(G_{2}^{\prime}\right)\right|=6$.
Then $l=2$ and $b_{2} q_{3-i}, a q_{3-i}, a b_{1}^{\prime} \in E(G)$. We claim that $b_{2} q_{i} \notin E(G)$. For, suppose $b_{2} q_{i} \in E(G)$. Let P be a path in $\bigcup_{j=3}^{k-1} B_{j}$ from b_{2} to b_{k-1}. Since G is 5 connected, $B_{k}-b_{k-1}$ has at least two neighbors on $q_{i} X a$. We may choose $a_{1} a_{2} \in E(G)$ with $a_{1} \in q_{i} X a-q_{i}$ and $a_{2} \in V\left(B_{k}-b_{k-1}\right)$. Let Q_{1}, Q_{2} be independent paths in B_{k} from y_{2} to b_{k-1}, a_{2}, respectively, and P_{1}, P_{2} be independent paths in Y_{1} from y_{1} to
b_{1}, b_{1}^{\prime}, respectively. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup\left(b_{2} q_{1} \cup q_{1} X z_{1} \cup z_{1} x_{1}\right) \cup\left(b_{2} q_{2} \cup q_{2} X x_{2}\right) \cup$ $\left(P \cup Q_{1}\right) \cup\left(b_{2} b_{1} \cup P_{1}\right) \cup\left(P_{2} \cup b_{1}^{\prime} a \cup a X a_{1} \cup a_{1} a_{2} \cup Q_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $b_{2}, x_{1}, x_{2}, y_{1}, y_{2}$.

We also claim that $a b_{1} \notin E(G)$. For, otherwise, let P be an induced path in $G\left[\bigcup_{j=3}^{k} B_{j}+q_{i}\right]$ from q_{i} to b_{2}. Let X^{\prime} be obtained from X by replacing $q_{i} X q_{3-i}$ with $P \cup b_{2} q_{3-i}$. Then, in $\left(G-x_{1}\right)-X^{\prime}$, there is a block containing both B_{1} and a, and y_{1} is not a cut vertex. This contradicts (1).

If $q_{3-i} b_{1} \notin E(G)$ then (iv) holds with $b=b_{2}, p_{j}=q_{i}, p_{3-j}=a$, and $v=q_{3-i}$. So we may assume $q_{3-i} b_{1} \in E(G)$. We consider two cases: $x_{2} \neq q_{3-i}$ and $x_{2}=q_{3-i}$.

First, suppose $x_{2} \neq q_{3-i}$. Note that $q_{3-i} \neq x_{1}$. Since G is 5 -connected, x_{2} has at least one neighbor in $B_{1}-b_{1}^{\prime}$. Thus, $G\left[B_{1}+x_{2}\right]$ has independent paths P_{1}, P_{2} from b_{1} to x_{2}, b_{1}^{\prime}, respectively. If $G\left[Y_{2}+x_{2}\right]$ contains a path P from q_{i} to x_{2} and containing $\left\{a, b_{2}\right\}$ then $G\left[\left\{b_{1}, b_{2}, q_{3-i}\right\}\right] \cup P_{1} \cup\left(P_{2} \cup a b_{1}^{\prime}\right) \cup a q_{3-i} \cup P \cup\left(x_{2} x_{1} z_{1} \cup z_{1} X q_{1}\right) \cup x_{2} X q_{2}$ is a $T K_{5}$ in G^{\prime} with branch vertices $a, b_{1}, b_{2}, q_{3-i}, x_{2}$. Thus, it remains to prove the existence of P. Note that $G\left[Y_{2}+x_{2}\right]$ is $\left(4,\left\{a, b_{2}, p_{i}, x_{2}\right\}\right)$-connected. First, consider the case when $G\left[Y_{2}+x_{2}\right]$ has disjoint paths from b_{2}, x_{2} to a, q_{i}, respectively. Then by Lemma 3.2.1 and then Lemma 4.2.1, (i) or $(i i)$ holds, or there is a path S in $G\left[Y_{2}+x_{2}\right]$ from a to b_{2} such that $G\left[Y_{2}+x_{2}\right]-S$ is a chain of blocks from q_{i} to x_{2}. Now the existence of P follows from the fact that Y_{2} is 2-connected. So assume $G\left[Y_{2}+x_{2}\right]$ has no disjoint paths from b_{2}, x_{2} to a, q_{i}, respectively. By Lemma 2.3.1, $\left(G\left[Y_{2}+x_{2}\right], b_{2}, x_{2}, a, q_{i}\right)$ is planar. If $\left|V\left(G\left[Y_{2}+x_{2}\right]\right)\right| \geq 6$ then the assertion of the lemma follows from Lemma 4.2.1. So $\left|V\left(G\left[Y_{2}+x_{2}\right]\right)\right|=5$. If $a b_{2} \in E(G)$ then $G\left[\left\{q_{i}, a, b_{2}, y_{2}\right\}\right] \cong K_{4}^{-} ;$and if $a b_{2} \notin E(G)$ then $G\left[\left\{q_{i}, a, x_{1}, y_{2}\right\}\right]$ contains a K_{4}^{-}in which x_{1} is of degree 2 . So (ii) holds.

Now suppose $x_{2}=q_{3-i}$. Then we may assume that $b_{1}^{\prime} \neq y_{1}$, for otherwise $G\left[\left\{a, x_{1}, x_{2}, y_{1}\right\}\right]$ contains a K_{4}^{-}in which x_{1} is of degree 2, and (ii) holds. Thus B_{1} has independent paths P_{1}, P_{2} from b_{1} to y_{1}, b_{1}^{\prime}, respectively. If Y_{2} has a cycle C
containing $\left\{a, b_{2}, y_{2}\right\}$, then $C \cup G\left[\left\{a, b_{1}, b_{2}, q_{3-i}\right\}\right] \cup\left(P_{2} \cup b_{1}^{\prime} a\right) \cup\left(P_{1} \cup y_{1} x_{1} y_{2}\right) \cup y_{2} x_{2}$ is a $T K_{5}$ in G^{\prime} with branch vertices $a, b_{1}, b_{2}, q_{3-i}, y_{2}$. So we may assume that the cycle C in Y_{2} does not exist. Since Y_{2} is 2-connected, it follows from Lemma 2.3.5 that Y_{2} has 2-cuts S_{u}, for $u \in\left\{a, b_{2}, y_{2}\right\}$, separating u from $\left\{a, b_{2}, y_{2}\right\}-\{u\}$. Since G is 5 -connected, we see that $S_{y_{2}}$ separates $\left\{q_{i}, y_{2}\right\}$ from $\left\{a, b_{2}\right\}$. Hence, $d_{G}\left(b_{2}\right)=5$ and $x_{1} b_{2} \in E(G)$. Now $G\left[\left\{b_{1}, b_{2}, x_{1}, x_{2}\right\}\right]$ contains a K_{4}^{-}in which x_{1} is of degree 2 , and (ii) holds.

Case 2. $\left|V\left(G_{2}^{\prime}\right)\right|=7$.
Let $z \in V\left(G_{2}^{\prime}\right)-\left\{a, b_{1}, b_{l}, b_{1}^{\prime}, q_{3-i}, x_{1}\right\}$. Suppose $z \notin V(X)$. Then $b_{1}^{\prime} a \in E(G)$. Since G is 5 -connected and B_{1} is a block of $H, z b_{1}^{\prime} \notin E(G)$ and $z a, z q_{3-i}, z b_{l}, z b_{1}, z x_{1} \in$ $E(G)$. We may assume $b_{1}^{\prime} q_{3-i} \notin E(G)$, as otherwise, $G\left[\left\{a, b_{1}^{\prime}, q_{3-i}, z\right\}\right]$ contains K_{4}^{-} and (ii) holds. Thus, $G\left[B_{1}+q_{3-i}\right]$ has independent paths P_{1}, P_{2} from b_{1} to b_{1}^{\prime}, q_{3-i}, respectively. Note $b_{1} b_{l} \in E(G)$ by the maximality of A in (11). In $G\left[A \cup\left\{a, b_{l}, q_{i}\right\}\right]$ we find independent paths Q_{1}, Q_{2} from b_{l} to q_{i}, a, respectively. Now $G\left[\left\{a, b_{1}, b_{l}, q_{3-i}, z\right\}\right] \cup$ $\left(P_{1} \cup b_{1}^{\prime} a\right) \cup P_{2} \cup Q_{2} \cup\left(q_{2} X x_{2} \cup x_{2} x_{1} z_{1} \cup z_{1} X q_{1} \cup Q_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $a, b_{1}, b_{l}, q_{3-i}, z$.

So we may assume $z \in V(X)$. Then $b_{1} b_{l}, q_{3-i} b_{l} \in E(G)$. We may assume $b_{1} a, b_{1} z \notin$ $E(G)$. For, suppose $b_{1} a \in E(G)$ or $b_{1} z \in E(G)$. Let X^{\prime} be obtained from X by replacing $q_{1} X q_{2}$ with $b_{l} q_{3-i}$ and a path in $Y_{2}-a$ from b_{l} to q_{i}. Then, $B_{1}+a$ or $B_{1}+z$ is contained in a block of $\left(G-x_{1}\right)-X^{\prime}$, and y_{1} is not a cut vertex of $\left(G-x_{1}\right)-X^{\prime}$, contradicting (1).

Hence, $z b_{1}^{\prime}, z b_{l}, z x_{1} \in E(G)$ and $q_{3-i} \neq x_{1}$. We may assume $x_{1} q_{3-i} \notin E(G)$; as otherwise, $G\left[\left\{b_{l}, q_{3-i}, x_{1}, z\right\}\right]$ contains a K_{4}^{-}in which x_{1} is of degree 2, and (ii) holds. Note that $b_{1}^{\prime} a \in E(G)$ by the maximality of A in (11). Let $q \in N\left(q_{3-i}\right) \cap V\left(B_{1}-b_{1}\right)$, and let P_{1}, P_{2} be independent paths in B_{1} from b_{1}^{\prime} to b_{1}, q, respectively. Let Q_{1}, Q_{2} be independent paths in Y_{2} from a to b_{l}, q_{i}, respectively. Then $G\left[\left\{a, b_{l}, b_{1}^{\prime}, q_{3-i}, z\right\}\right] \cup$ $\left(P_{1} \cup b_{1} b_{l}\right) \cup\left(P_{2} \cup q q_{3-i}\right) \cup Q_{1} \cup\left(Q_{2} \cup q_{1} X z_{1} \cup z_{1} x_{1} x_{2} \cup x_{2} X q_{2}\right)$ is a $T K_{5}$ in G^{\prime} with
branch vertices $a, b_{l}, b_{1}^{\prime}, q_{3-i}, z$.

4.3 Two special cases

We need to consider the conclusions of Lemma 4.2.5. (i) and (ii) of Lemma 4.2.5 are desired cases. Lemma 2.3.6 can be used to deal with (iii) of Lemma 4.2.5 when $y_{2} \notin V(X)$. So it remains to consider (iii) of Lemma 4.2 .5 when $y_{2} \in V(X)$ and (iv) of Lemma 4.2.5.

We will use the notation in Lemma 4.2.5. See Figures 2 and 3. In particular, X is an induced path in $\left(G-x_{1}\right)-x_{2} y_{2}$ from z_{1} to x_{2} and $G^{\prime}:=G-\left\{x_{1} x: x \notin\right.$ $\left.\left\{x_{2}, y_{1}, y_{2}, z_{0}, z_{1}\right\}\right\}$. Also recall from in (iv) of Lemma 4.2.5 the the separation $\left(Y_{1}, Y_{2}\right)$ and the vertices $p_{j}, p_{3-j}, v, b, b_{1}, b_{1}^{\prime}$. Let z_{2} be the neighbor of x_{2} on X.

For any vertex $x \in V(G)$ and $S \subseteq G$, we use $e(x, S)$ to denote the number of edges of G from x to S.

First, we need some structural information on Y_{2}.

Lemma 4.3.1 Suppose (iv) of Lemma 4.2.5 holds. Then Y_{2} has independent paths from y_{2} to b, p_{1}, p_{2}, respectively, and, for $i \in[2], Y_{2}$ has a path from b to p_{3-i} and containing $\left\{y_{2}, p_{i}\right\}$. Moreover, one of the following holds:
(i) G^{\prime} contains $T K_{5}$, or G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) If $e\left(p_{i}, B_{1}-b_{1}\right) \geq 1$ for some $i \in[2]$ then Y_{2} has a path through b, p_{i}, y_{2}, p_{3-i} in order, and $Y_{2}-b_{1}$ has a cycle containing $\left\{p_{1}, p_{2}, y_{2}\right\}$. If $b \neq b_{1}$ and $i=2$ with $p_{i} v \in E(X)$ and $v b, v x_{1} \in E(G)$ then Y_{2} has a cycle containing $\left\{b, p_{i}, y_{2}\right\}$.

Proof. Since G is 5 -connected, Y_{2} is $\left(3,\left\{b, p_{1}, p_{2}\right\}\right)$-connected. So by Menger's theorem, Y_{2} has independent paths from y_{2} to b, p_{1}, p_{2}, respectively.

Next, let $i \in[2]$, and consider the graph $Y_{2}^{\prime}:=Y_{2}+\left\{t, t b, t p_{3-i}\right\}$, which is 2connected. If Y_{2}^{\prime} has a cycle C containing $\left\{b, t, y_{2}\right\}$ then $C-t$ is a path in Y_{2} from
b to p_{3-i} and containing $\left\{y_{2}, p_{i}\right\}$. So suppose such a cycle C does not exist. Then by Lemma 2.3.5, Y_{2}^{\prime} has a 2-cut T separating y_{2} from $\left\{p_{i}, t\right\}$ and $\left\{p_{i}, t\right\} \cap T=\emptyset$. However, $T \cup\left\{x_{1}, x_{2}\right\}$ is a 4 -cut in G, a contradiction.

We now show that (i) holds or the first part of (iii) holds. Suppose $e\left(p_{i}, B_{1}-b_{1}\right) \geq$ 1. Let S denote a path in Y_{2} from b to p_{3-i} and containing $\left\{p_{i}, y_{2}\right\}$.

We may assume that S must go through b, p_{i}, y_{2}, p_{3-i} in order. For, suppose S goes through b, y_{2}, p_{i}, p_{3-i} in this order. Since $e\left(p_{i}, B_{1}-b_{1}\right) \geq 1, G\left[B_{1}+p_{i}\right]$ has independent paths P_{1}, P_{2} from y_{1} to b_{1}, p_{i}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup S \cup$ $P_{2} \cup\left(\left(X-\left(p_{1} X p_{2}-\left\{p_{1}, p_{2}\right\}\right)\right) \cup x_{1} z_{1}\right) \cup\left(P_{1} \cup b_{1} b\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $p_{i}, x_{1}, x_{2}, y_{1}, y_{2}$, and (i) holds.

Note that $Y_{2}-b_{1}$ is 2-connected. For, suppose not. Then $b=b_{1}$ and $Y_{2}-b_{1}$ has a 1separation $\left(Y_{21}, Y_{22}\right)$ such that $\left|V\left(Y_{21}-Y_{22}\right) \cap\left\{p_{1}, p_{2}, y_{2}\right\}\right| \leq 1$. Since each of $\left\{p_{1}, p_{2}, y_{2}\right\}$ has at least two neighbors in $Y_{2}-b_{1},\left(V\left(Y_{21}-Y_{22}\right) \cap\left\{p_{1}, p_{2}, y_{2}\right\}\right) \cup\left\{b, x_{1}\right\} \cup V\left(Y_{21} \cap Y_{22}\right)$ is a cut in G of size at most 4, a contradiction. Thus $Y_{2}-b_{1}$ is 2 -connected.

Now suppose no cycle in $Y_{2}-b_{1}$ contains $\left\{p_{1}, p_{2}, y_{2}\right\}$. Then, (i) or (ii) or (iii) of Lemma 2.3.5 holds. We use the notation in Lemma 2.3.5 (with p_{1}, p_{2}, y_{2} playing the roles of y_{1}, y_{2}, y_{3} there). If (i) of Lemma 2.3.5 occurs then let $S=\left\{a_{1}, a_{1}^{\prime}\right\}, a_{2}=a_{3}=$ a_{1}, and $a_{2}^{\prime}=a_{3}^{\prime}=a_{1}^{\prime}$; if (ii) or (iii) of Lemma 2.3.5 occurs let $S_{p_{j}}=\left\{a_{j}, a_{j}^{\prime}\right\}$ for $j \in[2]$ and let $S_{y_{2}}=\left\{a_{3}, a_{3}^{\prime}\right\}$. Let A, A^{\prime} denote the components of $\left(Y_{2}-b_{1}\right)-\left(D_{p_{1}} \cup D_{p_{2}} \cup D_{y_{2}}\right)$ such that $a_{j} \in V(A)$ and $a_{j}^{\prime} \in V\left(A^{\prime}\right)$ for $j \in[3]$. Note that if (ii) of Lemma 2.3.5 occurs and $A \neq A^{\prime}$, then either $A=a_{3}$ and $\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\} \subseteq V\left(A^{\prime}\right)$, or $A^{\prime}=a_{3}^{\prime}$ and $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq V(A)$.

Since $Y_{2}-b_{1}$ is 2-connected, there exist paths S_{1}, S_{2}, S_{3} in $D_{p_{1}}, D_{p_{2}}, D_{y_{2}}$, respectively, with S_{j} from a_{j} to a_{j}^{\prime} for $j \in[3], p_{j} \in V\left(S_{j}\right)$ for $j \in[2]$, and $y_{2} \in V\left(S_{3}\right)$. Since G is 5 -connected, $b \in V\left(D_{y_{2}}\right)$ or $b=b_{1}$ has a neighbor in $D_{y_{2}}$. Hence, $G\left[D_{y_{2}}+b\right]$ contains a path T_{3} from b to some $t \in V\left(S_{3}\right)-\left\{a_{3}, a_{3}^{\prime}\right\}$ and internally disjoint from S_{3}. By symmetry, we may assume $t \in V\left(y_{2} S_{3} a_{3}\right)$. Let T_{1} be a path in A from a_{i} to
a_{3-i}, and T_{2} be a path in A^{\prime} from a_{i}^{\prime} to a_{3}^{\prime}. Then $T_{3} \cup t S_{3} a_{3}^{\prime} \cup T_{2} \cup S_{i} \cup T_{1} \cup a_{3-i} S_{3-i} p_{3-i}$ is a path from b to p_{3-i} through y_{2}, p_{i} in order. This is a contradiction as we have assumed that such a path S does not exist.

Next, we prove that (i) or (ii) holds or the second part of (iii) holds. Suppose $b \neq b_{1}, p_{2} v \in E\left(p_{2} X x_{2}\right)$, and $v b, v x_{1} \in E(G)$. Suppose Y_{2} has no cycle containing $\left\{b, p_{2}, y_{2}\right\}$. Then (i) or (ii) or (iii) of Lemma 2.3.5 holds. We use the notation in Lemma 2.3.5 (with b, p_{2}, y_{2} playing the roles of y_{1}, y_{2}, y_{3} there, respectively). So there is a 2-cut $S_{y_{2}}=\left\{a_{3}, a_{3}^{\prime}\right\}$ in Y_{2} such that $Y_{2}-S_{y_{2}}$ has a component $D_{y_{2}}$ with $y_{2} \in V\left(D_{y_{2}}\right)$ and $b, p_{2} \notin V\left(D_{y_{2}}\right) \cup S_{y_{2}}$. Since G is 5 -connected, $p_{1} \in V\left(D_{y_{2}}\right)$. Note that $Y_{2}-D_{y_{2}}$ is $\left(4,\left\{a_{3}, a_{3}^{\prime}, b, p_{2}\right\}\right)$-connected.

Suppose $\left(Y_{2}-D_{y_{2}}, a_{3}, b, a_{3}^{\prime}, p_{2}\right)$ is not planar. Then by Lemma 2.3.1, $Y_{2}-D_{y_{2}}$ contains disjoint paths from a_{3}, b to a_{3}^{\prime}, p_{i}, respectively. By Lemma 3.2.1, we may assume that $Y_{2}-D_{y_{2}}$ has an induced path S from b to p_{2} such that $\left(Y_{2}-D_{y_{2}}\right)-S$ is a chain of blocks from a_{3} to a_{3}^{\prime}; for otherwise, we may apply Lemma 4.2 .1 to show that (i) or (ii) holds. Thus $Y_{2}-D_{y_{2}}$ has a path S_{1} from a_{3} to a_{3}^{\prime} and containing $\left\{b, p_{2}\right\}$ (as Y_{2} is 2-connected). Let S_{2} be a path in $G\left[D_{y_{2}}+\left\{a_{3}, a_{3}^{\prime}\right\}\right]$ from a_{3} to a_{3}^{\prime} through y_{2}. Then $S_{1} \cup S_{2}$ is a cycle containing $\left\{b, p_{2}, y_{2}\right\}$, a contradiction.

So we may assume $\left(Y_{2}-D_{y_{2}}, a_{3}, b, a_{3}^{\prime}, p_{2}\right)$ is planar. Hence, $b p_{2} \notin E(G)$. If $\left|V\left(Y_{2}-D_{y_{2}}\right)\right| \geq 6$ then (i) or (ii) follows from Lemma 4.2.1 (by considering the 5 -cut $\left.\left\{a_{3}, a_{3}^{\prime}, b, p_{i}, x_{1}\right\}\right)$.

Now suppose $\left|V\left(Y_{2}-D_{y_{2}}\right)\right|=5$. Let $t \in V\left(Y_{2}-D_{y_{2}}\right)-\left\{a_{3}, a_{3}^{\prime}, b, p_{2}\right\}$. Since G is 5 -connected, $t a_{3}, t a_{3}^{\prime}, t b, t p_{2}, t x_{1} \in E(G)$. By symmetry between a_{3} and a_{3}^{\prime}, we may assume $a_{3}^{\prime} \in V(X)$. Then $a_{3}^{\prime} p_{2} \in E(G)$. If $b a_{3}^{\prime} \in E(G)$ then $G\left[\left\{a_{3}^{\prime}, b, p_{2}, t\right\}\right] \cong K_{4}^{-}$, and (ii) holds. So assume $b a_{3}^{\prime} \notin E(G)$. Then, since G is 5 -connected, $b a_{3}, b x_{1} \in E(G)$. Now $G\left[\left\{a_{3}, b, t, x_{1}\right\}\right]$ contains K_{4}^{-}in which x_{1} is of degree 2, and (ii) holds.

So $\left|V\left(Y_{2}-D_{y_{2}}\right)\right|=4$ and, hence, (i) of Lemma 2.3.5 occurs. Moreover, $V\left(D_{b}\right)=$ $\{b\}$ and $V\left(D_{p_{2}}\right)=\left\{p_{2}\right\}$. We claim that $D:=G\left[D_{y_{2}}+\left\{a_{3}, a_{3}^{\prime}, x_{1}\right\}\right]+\left\{c, c x_{1}, c y_{2}\right\}$ has a
cycle C containing $\left\{c, a_{3}, a_{3}^{\prime}\right\}$; for otherwise, by Lemma 2.3.5, $D-c$ has a 2 -cut either separating a_{3} from $\left\{x_{1}, y_{2}, a_{3}^{\prime}, p_{1}\right\}$ or separating a_{3}^{\prime} from $\left\{x_{1}, y_{2}, a_{3}, p_{1}\right\}$, contradicting the 5 -connectedness of G. Let Q be a path in $G\left[B_{1}+\left\{b, p_{2}\right\}\right]$ from b to p_{2}. Now $a_{3} b a_{3}^{\prime} p_{2} a_{3} \cup Q \cup(C-c) \cup\left(x_{1} v \cup v X x_{2} \cup x_{2} y_{2}\right) \cup v b \cup v p_{2}$ is a $T K_{5}$ in G with branch vertices $a_{3}, a_{3}^{\prime}, b, p_{2}, v$.

The next two results provide information on $e\left(z_{i}, B_{1}\right)$ for $i \in[2]$ in the case when $y_{2} \notin V(X)$.

Lemma 4.3.2 Suppose (iv) of Lemma 4.2.5 holds with $b \neq b_{1}$. Then one of the following holds:
(i) G^{\prime} contains $T K_{5}$, or G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) $e\left(z_{i}, B_{1}\right) \geq 2$ for $i \in[2]$.

Proof. Recall the notation from (iv) of Lemma 4.2.5. In particular, $v \in V(X)-$ $V\left(p_{1} X p_{2}\right)$. Suppose $e\left(z_{i}, B_{1}\right) \leq 1$ for some $i \in[2]$.

Case 1. $v \in V\left(z_{1} X p_{1}-p_{1}\right)$; so $p_{1} v \in E(X)$.
In this case, $e\left(z_{1}, Y_{2}\right) \leq 2$ (with equality only if $z_{1}=v$). Hence, $e\left(z_{1}, B_{1}\right) \geq 2$, since G is 5 -connected. Thus, $e\left(z_{2}, B_{1}\right) \leq 1$. Indeed, since $\left\{x_{1}, x_{2}, p_{1}, b\right\}$ cannot be a cut in $G, e\left(z_{2}, B_{1}\right)=1$ and $z_{2}=p_{2}$. By Lemma 4.3.1, Y_{2} has a path Q from b to p_{1} and containing $\left\{y_{2}, z_{2}\right\}$.

Suppose b, z_{2}, y_{2}, p_{1} occur on Q in this order. If $b_{1}^{\prime} \in N\left(z_{2}\right)$ then let P_{1}, P_{2} be independent paths in $G\left[B_{1}+x_{2}\right]$ from b_{1}^{\prime} to y_{1}, x_{2}, respectively; now $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup$ $z_{2} x_{2} \cup\left(z_{2} Q b \cup b v \cup v X z_{1} \cup z_{1} x_{1}\right) \cup z_{2} Q y_{2} \cup b_{1}^{\prime} z_{2} \cup\left(b_{1}^{\prime} p_{1} \cup p_{1} Q y_{2}\right) \cup\left(P_{1} \cup y_{1} x_{1}\right) \cup$ P_{2} is a $T K_{5}$ in G^{\prime} with branch vertices $b_{1}^{\prime}, x_{1}, x_{2}, y_{2}, z_{2}$. So assume $b_{1}^{\prime} \notin N\left(z_{2}\right)$. Let P_{1}, P_{2} be independent paths in $G\left[B_{1}+z_{2}\right]$ from y_{1} to b_{1}^{\prime}, z_{2}, respectively. Then
$G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup\left(z_{2} Q b \cup b v \cup v X z_{1} \cup z_{1} x_{1}\right) \cup z_{2} Q y_{2} \cup P_{2} \cup\left(y_{2} Q p_{1} \cup p_{1} b_{1}^{\prime} \cup P_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So assume that b, y_{2}, z_{2}, p_{1} must occur on Q in this order. Then, by Lemma 4.3.1, we may assume $e\left(z_{2}, B_{1}-b_{1}\right)=0$. Since G is 5 -connected and $p_{2}=z_{2}, b_{1} z_{2} \in E(G)$; as otherwise, $\left\{b, p_{1}, x_{1}, x_{2}\right\}$ would be a cut in G. Let P_{1}, P_{2} be independent paths in $G\left[B_{1}+x_{2}\right]$ from b_{1} to y_{1}, x_{2}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup\left(z_{2} Q p_{1} \cup\right.$ $\left.p_{1} X z_{1} \cup z_{1} x_{1}\right) \cup z_{2} Q y_{2} \cup\left(b_{1} b \cup b Q y_{2}\right) \cup b_{1} z_{2} \cup\left(P_{1} \cup y_{1} x_{1}\right) \cup P_{2}$ is a $T K_{5}$ in G^{\prime} with branch vertices $b_{1}, x_{1}, x_{2}, y_{2}, z_{2}$.

Case 2. $v \in V\left(p_{2} X x_{2}-p_{2}\right)$; so $p_{2} v \in E(X)$.
Since $\left\{b, p_{2}, x_{1}, x_{2}\right\}$ cannot be a cut in $G, e\left(z_{1}, B_{1}\right) \geq 1$. We consider two cases.
Subcase 2.1. $e\left(z_{1}, B_{1}\right)=1$.
Then $z_{1}=p_{1}$. By Lemma 4.3.1, Y_{2} has a path Q from b to p_{2} and containing $\left\{z_{1}, y_{2}\right\}$.

Suppose b, z_{1}, y_{2}, p_{2} occur on Q in this order. If $b_{1}^{\prime} \in N\left(z_{1}\right)$ then $x_{2} \neq v$ as $\left\{x_{1}, x_{2}, b_{1}, b_{1}^{\prime}\right\}$ is not a cut in G; so $e\left(x_{2}, B_{1}-y_{1}\right) \geq 1$. Let P_{1}, P_{2} be independent paths in $G\left[B_{1}+x_{2}\right]$ from b_{1}^{\prime} to y_{1}, x_{2}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} Q b \cup\right.$ $\left.b v \cup v X x_{2}\right) \cup z_{1} Q y_{2} \cup b_{1}^{\prime} z_{1} \cup\left(b_{1}^{\prime} p_{2} \cup p_{2} Q y_{2}\right) \cup\left(P_{1} \cup y_{1} x_{1}\right) \cup P_{2}$ is a $T K_{5}$ in G^{\prime} with branch vertices $b_{1}^{\prime}, x_{1}, x_{2}, y_{2}, z_{1}$. Hence, assume $b_{1}^{\prime} \notin N\left(z_{1}\right)$. Then let P_{1}, P_{2} be independent paths in $G\left[B_{1}+z_{1}\right]$ from y_{1} to b_{1}^{\prime}, z_{1}, respectively; now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup$ $\left(z_{1} Q b \cup b v \cup v X x_{2}\right) \cup z_{1} Q y_{2} \cup P_{2} \cup\left(y_{2} Q p_{2} \cup p_{2} b_{1}^{\prime} \cup P_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

So we may assume b, y_{2}, z_{1}, p_{2} must occur on Q in this order. Hence, by Lemma 4.3.1, we may assume $e\left(p_{1}, B_{1}-b_{1}\right)=0$; so $b_{1} \in N\left(z_{1}\right)$ as $\left\{b, p_{2}, x_{1}, x_{2}\right\}$ is not a cut in G. Then $e\left(x_{2}, B_{1}-y_{1}\right) \geq 1$; otherwise, $x_{2}=v$, and $\left\{b_{1}, b_{1}^{\prime}, x_{1}, x_{2}\right\}$ would be a cut in G. Let P_{1}, P_{2} be independent paths in $G\left[B_{1}+x_{2}\right]$ from b_{1} to y_{1}, x_{2}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} Q p_{2} \cup p_{2} X x_{2}\right) \cup z_{1} Q y_{2} \cup b_{1} z_{1} \cup\left(b_{1} b \cup b Q y_{2}\right) \cup\left(P_{1} \cup y_{1} x_{1}\right) \cup P_{2}$ is a $T K_{5}$ in G^{\prime} with branch vertices $b_{1}, z_{1}, x_{1}, x_{2}, y_{2}$.

Subcase 2.2. $e\left(z_{1}, B_{1}\right) \geq 2$.
Then $e\left(z_{2}, B_{1}\right) \leq 1$. Hence, $z_{2}=p_{2}$ or $z_{2}=v$. Suppose $z_{2}=p_{2}$. Then $x_{2}=$ v; so $x_{1} v \in E(G)$. Hence, by (iii) of Lemma 4.3.1, Y_{2} has a cycle C containing $\left\{b, z_{2}, y_{2}\right\}$. Let P_{1}, P_{2} be independent paths in B_{1} from y_{1} to b_{1}, b_{1}^{\prime}, respectively. Now $C \cup x_{2} y_{2} \cup x_{2} z_{2} \cup x_{2} b \cup y_{1} x_{2} \cup y_{1} x_{1} y_{2} \cup\left(P_{1} \cup b_{1} b\right) \cup\left(P_{2} \cup b_{1}^{\prime} z_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $b, x_{2}, y_{1}, y_{2}, z_{2}$.

So we may assume $z_{2}=v$. Since $e\left(z_{2}, B_{1}\right)=1, x_{1} v \in E(G)$. Hence, by (iii) of Lemma 4.3.1, Y_{2} has a cycle C containing $\left\{b, p_{2}, y_{2}\right\}$. Let P_{1}, P_{2} be independent paths in $G\left[B_{1}+x_{2}\right]$ from x_{2} to b_{1}, b_{1}^{\prime}, respectively. Note that P_{1}, P_{2} exist since x_{2} has at least two neighbors in B_{1}. Then $C \cup z_{2} b \cup z_{2} p_{2} \cup z_{2} x_{1} y_{2} \cup x_{2} y_{2} \cup x_{2} z_{2} \cup\left(P_{1} \cup b_{1} b\right) \cup\left(P_{2} \cup b_{1}^{\prime} p_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $b, p_{2}, x_{2}, y_{2}, z_{2}$.

Lemma 4.3.3 Suppose $y_{2} \notin V(X)$. Then one of the following holds:

(i) G^{\prime} contains $T K_{5}$, or G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains K_{4}^{-}in which x_{1} is of degree 2.
(iii) There exists $i \in[2]$ such that $e\left(z_{i}, B_{1}-b_{1}\right) \geq 2$ and $e\left(z_{3-i}, B_{1}-b_{1}\right) \geq 1$.

Proof. Suppose (iii) fails. First, assume $b \neq b_{1}$; so (iv) of Lemma 4.2.5 occurs. Then by Lemma 4.3.2, we have, for $i \in[2], e\left(z_{i}, B_{1}-b_{1}\right)=1$ and $b_{1} z_{i} \in E(G)$. Let P_{1}, P_{2} be independent paths in B_{1} from y_{1} to b_{1}, b_{1}^{\prime}, respectively. Recall, from (iv) of Lemma 4.2.5, the role of $j \in[2]$ and the vertices p_{3-j}, v. Since b_{1}^{\prime} is the only neighbor of p_{3-j} in $B_{1}, p_{3-j} \notin\left\{z_{1}, z_{2}\right\}$. Let Q be a path in $Y_{2}-\left\{z_{1}, z_{2}\right\}$ from b to p_{3-j} through y_{2}. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup b_{1} z_{1} x_{1} \cup b_{1} z_{2} x_{2} \cup\left(b_{1} b \cup b Q y_{2}\right) \cup P_{1} \cup\left(y_{2} Q p_{3-j} \cup p_{3-j} b_{1}^{\prime} \cup P_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $b_{1}, x_{1}, x_{2}, y_{1}, y_{2}$.

So we may assume $b=b_{1}$. Then, for $i \in[2], e\left(z_{i}, B_{1}-b_{1}\right) \geq 1$ as $\left\{b, p_{3-i}, x_{1}, x_{2}\right\}$ is not a cut in G. Hence, since (iii) fails, $e\left(z_{i}, B_{1}-b_{1}\right)=1$ for $i \in[2]$. For $i \in[2]$, let $z_{i}^{\prime} \in N\left(z_{i}\right) \cap V\left(B_{1}\right)$. Since G is 5 -connected, $z_{1}=p_{1}$.

Case 1. $z_{2} \neq p_{2}$.
Then, since G is 5 -connected, $z_{2} x_{1}, z_{2} b \in E(G)$. First, assume that there is no edge from $p_{2} X z_{2}-z_{2}$ to $B_{1}-b$. Then G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{b, x_{1}, x_{2}, z_{1}, z_{2}\right\}, B_{1} \subseteq G_{1}$, and $Y_{2} \subseteq G_{2}$. Clearly, $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$. Since $x_{1} x_{2} z_{2} x_{1}$ is a triangle in G, the assertion of the lemma follows from Lemma 4.2.2.

Hence, we may assume that there exists $u u^{\prime} \in E(G)$ with $u \in V\left(p_{2} X z_{2}-z_{2}\right)$ and $u^{\prime} \in V\left(B_{1}-b\right)$. Suppose, for some choice of $u u^{\prime}, u^{\prime} \neq z_{1}^{\prime}$ and $B_{1}-b$ contains independent paths P_{1}, P_{2} from y_{1} to $z_{1}^{\prime}, u^{\prime}$, respectively. By Lemma 4.3.1 (since $\left.e\left(p_{1}, B_{1}-b_{1}\right)=1\right), Y_{2}$ contains a path Q from b to p_{2} through p_{1}, y_{2} in order. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} Q b \cup b z_{2} x_{2}\right) \cup\left(z_{1} z_{1}^{\prime} \cup P_{1}\right) \cup z_{1} Q y_{2} \cup\left(P_{2} \cup u^{\prime} u \cup u X p_{2} \cup p_{2} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Therefore, we may assume that for any choice of $u u^{\prime}, u^{\prime}=z_{1}^{\prime}$ or the paths P_{1}, P_{2} do not exist. Since B_{1} is 2-connected, B_{1} has a 2 -separation $\left(B^{\prime}, B^{\prime \prime}\right)$ such that $b \in V\left(B^{\prime} \cap B^{\prime \prime}\right), y_{1} \in V\left(B^{\prime}\right)$ and $z_{1}^{\prime}, u^{\prime} \in V\left(B^{\prime \prime}\right)$ for all $u^{\prime} \in N\left(p_{2} X z_{2}-z_{2}\right)$. Here, if $u^{\prime}=z_{1}^{\prime}$ for all $u^{\prime} \in N\left(p_{2} X z_{2}-z_{2}\right)$, we let $B^{\prime}=B_{1}$ and $B^{\prime \prime}=\left\{b, z_{1}^{\prime}\right\}$. Thus G has a 5-separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=V\left(B^{\prime} \cap B^{\prime \prime}\right) \cup\left\{x_{1}, x_{2}, z_{2}\right\}, B^{\prime} \subseteq G_{1}$ and $B^{\prime \prime} \cup Y_{2} \subseteq G_{2}$. Clearly, $\left|V\left(G_{2}\right)\right| \geq 7$.

If $\left|V\left(G_{1}\right)\right| \geq 7$ then the assertion of the lemma follows from Lemma 4.2.2 (as $x_{1} x_{2} z_{2} x_{1}$ is a triangle in G). So assume $\left|V\left(G_{1}\right)\right| \leq 6$. Then, since G is 5 -connected, $z_{2} y_{1} \in E(G)$. So $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right]-x_{1} y_{1} \cong K_{4}^{-}$in which x_{1} is of degree 2 , and (ii) holds.

Case 2. $z_{2}=p_{2}$.
We may assume $z_{i}^{\prime} \neq y_{1}$ for $i \in[2]$. For, otherwise, G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{b, p_{3-i}, x_{1}, x_{2}, y_{1}\right\}, B_{1} \subseteq G_{1}$ and $Y_{2} \subseteq G_{2}$. Clearly, $\left|V\left(G_{i}\right)\right| \geq$ 7 for $i \in[2]$. Since $G\left[\left\{x_{1}, x_{2}, y_{1}\right\}\right] \cong K_{3}$, the assertion of the lemma follows from Lemma 4.2.2.

Note that $z_{1}^{\prime} \neq z_{2}^{\prime}$ as otherwise $\left\{b, x_{1}, x_{2}, z_{1}^{\prime}\right\}$ would be a cut in G. Let $K=$ $G\left[B_{1}+\left\{x_{2}, z_{1}, z_{2}\right\}\right]$. Suppose K contains disjoint paths Z_{1}, Z_{2} from z_{1}, z_{2} to x_{2}, y_{1}, respectively. By Lemma 4.3.1, let C be a cycle in $Y_{2}-b_{1}$ containing $\left\{y_{2}, z_{1}, z_{2}\right\}$. Then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup C \cup z_{1} x_{1} \cup z_{2} x_{2} \cup\left(Z_{2} \cup y_{1} x_{1}\right) \cup Z_{1}$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$.

So we may assume that such Z_{1}, Z_{2} do not exist. Then by Lemma 2.3.1, there exists a collection \mathcal{A} of pairwise disjoint subsets of $V(K)-\left\{x_{2}, y_{1}, z_{1}, z_{2}\right\}$ such that $\left(K, \mathcal{A}, z_{1}, z_{2}, x_{2}, y_{1}\right)$ is 3-planar. Since G is 5 -connected, either $\mathcal{A}=\emptyset$ or $|\mathcal{A}|=1$. When $|\mathcal{A}|=1$ let $\mathcal{A}=\{A\}$; then $b_{1} \in A$. We choose \mathcal{A} so that $|\mathcal{A}|$ is minimal and, subject to this, $|A|$ is minimal when $\mathcal{A}=\{A\}$. Note that if A exists then $|A| \geq 2$ (by the minimality of $|\mathcal{A}|$ and $|A|)$. Moreover, $\left|N_{K}(A)\right|=3$ as $N_{K}(A) \cup\left\{b_{1}, x_{1}\right\}$ is not a cut in G.

We may assume if $\mathcal{A} \neq \emptyset$ then $\left\{x_{2}, z_{1}, z_{2}\right\} \cap N_{K}(A)=\emptyset$. For, suppose there exists $u \in\left\{x_{2}, z_{1}, z_{2}\right\} \cap N_{K}(A)$. Let $S:=\left(N_{K}(A) \cup\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}\right)-\{u\}$ if $u \in\left\{z_{1}, z_{2}\right\}$ and let $S:=N_{K}(A) \cup\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}$ if $u=x_{2}$. Then S is a cut in G separating $B_{1}-A$ from Y_{2}. Since G is 5 -connected, $|S|=5$ if $u \in\left\{z_{1}, z_{2}\right\}$ and $|S|=6$ if $u=x_{2}$. Therefore, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=S, B_{1}-A \subseteq G_{1}$, and $Y_{2} \subseteq G_{2}$. Note that $\left(G_{1}-x_{1}, S-\left\{x_{1}\right\}\right)$ is planar. Clearly, $\left|V\left(G_{2}\right)\right| \geq 7$. Since $y_{1} \notin\left\{z_{1}^{\prime}, z_{2}^{\prime}\right\},\left|V\left(G_{1}\right)\right| \geq 7$ if $|S|=5$ and $\left|V\left(G_{1}\right)\right| \geq 8$ if $|S|=6$. Thus, if $|S|=5$ then the assertion of the lemma follows from Lemma 4.2.1, and if $|S|=6$ then the assertion of the lemma follows from Lemma 2.3.12 and then Lemma 4.2.1.

If $\mathcal{A}=\emptyset$ let $K^{*}=K$; otherwise, let K^{*} be the graph obtained from K by deleting A and adding new edges joining every pair of distinct vertices in $N_{K}(A)$. Since B_{1} is 2-connected and G is 5 -connected, $K^{\prime}:=K^{*}-\left\{x_{2}, z_{1}, z_{2}\right\}$ is a 2-connected planar graph. Take a plane embedding of K^{\prime} and let D denote its outer cycle. Let $t \in V(D)$ such that $t \in N\left(x_{2}\right)$ and $t D z_{2}^{\prime}$ is minimal.

When $\mathcal{A} \neq \emptyset, N_{K}(A) \nsubseteq V(D)$; as otherwise, if we write $N_{K}(A)=\left\{s_{1}, s_{2}, s_{3}\right\} \subseteq$
$V(D)$ with $s_{2} \in V\left(s_{1} D s_{3}\right)$, then $\left\{b_{1}, s_{1}, s_{3}, x_{1}\right\}$ is a cut in G, a contradiction. Further, if $\mathcal{A} \neq \emptyset$ and if we write $N_{K}(A)=\left\{a, a_{1}, a_{2}\right\}$ with $a \in N_{K}(A)-V\left(t D z_{1}^{\prime}\right)$, then, by the minimality of \mathcal{A} and $A, G\left[A \cup N_{K}(A)\right]$ contains disjoint paths P_{1}, P_{2} from a, a_{2} to b_{1}, a_{1}, respectively. If $\mathcal{A}=\emptyset$ let $Q=t D z_{1}^{\prime}, P_{1}=a=a_{1}=a_{2}=b_{1}$ and $P_{2}=\emptyset$. If $\mathcal{A} \neq \emptyset$ let $Q=t D z_{1}^{\prime}$ if $a_{1} a_{2} \notin E\left(t D z_{1}^{\prime}\right) ;$ and otherwise let $Q=\left(t D z_{1}^{\prime}-a_{1} a_{2}\right) \cup P_{2}$. Note that Q is a path in B_{1}.

Suppose $K^{\prime}-\left(t D z_{1}^{\prime}-z_{2}^{\prime}\right)$ has independent paths S_{1}, S_{2} from y_{1} to $z_{2}^{\prime},\left\{a, a_{1}, a_{2}\right\}$, respectively, and internally disjoint from $\left\{a, a_{1}, a_{2}\right\}$. We may assume the notation is chosen so that $a \in V\left(S_{2}\right)$. For $i \in[2]$, let $S_{i}^{\prime}=S_{i}$ if $a_{1} a_{2} \notin E\left(S_{i}\right)$; and otherwise let S_{i}^{\prime} be obtained from S_{i} by replacing $a_{1} a_{2}$ with P_{2}. By Lemma 4.3.1, let Q_{1}, Q_{2} be independent paths in Y_{2} from y_{2} to z_{2}, b, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup$ $\left(z_{2}^{\prime} Q z_{1}^{\prime} \cup z_{1}^{\prime} z_{1} x_{1}\right) \cup\left(z_{2}^{\prime} Q t \cup t x_{2}\right) \cup\left(z_{2}^{\prime} z_{2} \cup Q_{1}\right) \cup S_{1}^{\prime} \cup\left(S_{2}^{\prime} \cup P_{2} \cup Q_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}^{\prime}$.

So we may assume that such S_{1}, S_{2} do not exist. Then by planarity, K^{\prime} has a cut $\left\{s_{1}, s_{2}, s_{3}\right\}$ separating y_{1} from $\left\{a, z_{2}^{\prime}\right\}$, with $s_{1} \in V\left(z_{2}^{\prime} D z_{1}^{\prime}\right)$ and $s_{3} \in V\left(t D z_{2}^{\prime}\right)$. Clearly, $\left\{s_{1}, s_{2}, s_{3}\right\}$ is also a cut in B_{1} separating y_{1} from $\left\{z_{2}^{\prime}\right\} \cup A$. Denote by M the $\left\{s_{1}, s_{2}, s_{3}\right\}$-bridge of B_{1} containing y_{1}. If $V(M)-\left\{s_{1}, s_{2}, s_{3}\right\}=\left\{y_{1}\right\}$ then $s_{1}=z_{1}^{\prime}$ and $s_{3}=t$; now $G\left[\left\{t, x_{1}, x_{2}, y_{1}\right\}\right]$ contains a K_{4}^{-}in which x_{1} is of degree 2 , and (ii) holds. So assume $\left|V(M)-\left\{s_{1}, s_{2}, s_{3}\right\}\right| \geq 2$. Then G has a 6 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{s_{1}, s_{2}, s_{3}, x_{1}, x_{2}, z_{1}\right\}, G_{2}=G\left[M+\left\{z_{1}, x_{1}, x_{2}\right\}\right]$, and $\left(G_{2}-x_{1}, z_{1}, s_{1}, s_{2}, s_{3}, x_{2}\right)$ is planar. Now $\left|V\left(G_{i}\right)\right| \geq 8$ for $i \in[2]$; so the assertion follows from Lemma 2.3.12 and then Lemma 4.2.1.

4.4 Substructure

In this section, we derive a substructure in G by finding five paths A, B, C, Y, Z in $H:=G\left[B_{1}+\left\{z_{1}, z_{2}\right\}\right]$. The paths Y, Z are found in the following lemma.

Lemma 4.4.1 Suppose $y_{2} \in V(X)$ (see (iii) of Lemma 4.2.5), or $y_{2} \notin V(X)$ and

Figure 4: An intermediate structure 2
$e\left(z_{i}, B_{1}\right) \geq 2$ for some $i \in[2]$ (see (iv) of Lemma 4.2.5). Let $b_{1} \in N\left(y_{2}\right) \cap V\left(B_{1}\right)$ if $y_{2} \in V(X)$, and let $\left\{b_{1}\right\}=V\left(B_{1}\right) \cap V\left(B_{2}\right)$ if $y_{2} \notin V(X)$. Then one of the following holds:
(i) G^{\prime} contains $T K_{5}$ or G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) H contains disjoint paths Y, Z from y_{1}, z_{1} to b_{1}, z_{2}, respectively.

Proof. Suppose (iii) fails. Then by Lemma 2.3.1, there exists a collection \mathcal{A} of subsets of $V(H)-\left\{b_{1}, y_{1}, z_{1}, z_{2}\right\}$ such that $\left(H, \mathcal{A}, b_{1}, z_{1}, y_{1}, z_{2}\right)$ is 3-planar.

Since B_{1} is 2-connected, $\left|N_{H}(A) \cap\left\{z_{1}, z_{2}\right\}\right| \leq 1$ for all $A \in \mathcal{A}$. Let $\mathcal{A}^{\prime}=\{A \in \mathcal{A}$: $\left.\left|\left\{z_{1}, z_{2}\right\} \cap N_{H}(A)\right|=0\right\}$ and $\mathcal{A}^{\prime \prime}=\left\{A \in \mathcal{A}:\left|\left\{z_{1}, z_{2}\right\} \cap N_{H}(A)\right|=1\right\}$. Let $p(H, \mathcal{A})$ be the graph obtained from H by deleting A (for each $A \in \mathcal{A}$) and adding new edges joining every pair of distinct vertices in $N_{H}(A)$. Since G is 5 -connected and B_{1} is 2-connected, $p(H, \mathcal{A})-\left\{z_{1}, z_{2}\right\}$ is 2-connected and we may assume that it is drawn in the plane with outer cycle D, such that for each $A \in \mathcal{A}^{\prime \prime}$, the edges joining the vertices in $N_{H}(A)-\left\{z_{1}, z_{2}\right\}$ occur on D.

For each $j \in[2]$, let $t_{j} \in V(D)$ such that H has a path from z_{j} to t_{j} and internally disjoint from $p(H, \mathcal{A})$, and subject to this, $t_{2}, b_{1}, t_{1}, y_{1}$ occur on D in clockwise order, and $t_{2} D t_{1}$ is maximal. When $e\left(z_{1}, B_{1}\right) \geq 2$, let $t_{1}^{\prime} \in V\left(b_{1} D t_{1}\right)$ with $t_{1}^{\prime} D t_{1}$ maximal such that H has independent paths R_{1}, R_{1}^{\prime} from z_{1} to t_{1}, t_{1}^{\prime}, respectively, and internally disjoint from $p(H, \mathcal{A})$. When $e\left(z_{2}, B_{2}\right) \geq 2$, let $t_{2}^{\prime} \in V\left(t_{2} D b_{1}\right)$ with $t_{2} D t_{2}^{\prime}$ maximal such that H has independent paths R_{2}, R_{2}^{\prime} from z_{2} to t_{2}, t_{2}^{\prime}, respectively, and internally disjoint from $p(H, \mathcal{A})$.

Next we define vertices y_{21}, y_{22} and paths Q_{1}, Q_{2}, Q_{3}. If $y_{2} \in V(X)$, then let $p_{1}=p_{2}=b=y_{2}$, let $Q_{j}:=y_{2}$ for $j \in[3]$, and let $y_{21}, y_{22} \in N\left(y_{2}\right) \cap V(D)$ such that $t_{2}^{\prime}, y_{22}, y_{21}, t_{1}^{\prime}$ occur on D in clockwise order and $y_{22} D y_{21}$ is maximal. If $y_{2} \notin V(X)$ and both $e\left(z_{1}, B_{1}\right) \geq 2$ and $e\left(z_{2}, B_{2}\right) \geq 2$, then let $y_{21}=y_{22}=b_{1}$ and, by Lemma 4.3.1, let Q_{1}, Q_{2}, Q_{3} be independent paths in Y_{2} from y_{2} to p_{1}, p_{2}, b, respectively. Now assume $y_{2} \notin V(X)$ and $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$ and, by Lemma 4.3.1, Y_{2} has a path Q_{3-i}^{*} through b, z_{3-i}, y_{2}, p_{i} in order. Let $R_{3-i}^{\prime}:=b_{1} b \cup b Q_{3-i}^{*} z_{3-i}, t_{3-i}^{\prime}:=b_{1}$, $Q_{3-i}:=y_{2} Q_{3-i}^{*} z_{3-i}$, and $Q_{i}:=p_{i} Q_{3-i}^{*} y_{2}$, Let R_{3-i} be a path in H from z_{3-i} to t_{3-i} and internally disjoint from $p(H, \mathcal{A})$. (Note that in this final case, R_{3-i} and R_{3-i}^{\prime} are independent, and Q_{3}, y_{21} and y_{22} are not defined.)

Let $\mathcal{A}_{1}=\left\{A \in \mathcal{A}: z_{1} \in N_{H}(A)\right.$ or $\left.N_{H}(A) \subseteq V\left(b_{1} D y_{1}\right)\right\}, \mathcal{A}_{2}=\{A \in \mathcal{A}$: $z_{2} \in N_{H}(A)$ or $\left.N_{H}(A) \subseteq V\left(y_{1} D b_{1}\right)\right\}$, and $A_{j}=\bigcup_{A \in \mathcal{A}_{j}} A$ for $j \in[2]$. Let $F_{1}:=$ $G^{\prime}\left[V\left(x_{1} z_{1} \cup z_{1} X p_{1}\right) \cup A_{1} \cup V\left(b_{1} D y_{1}\right)\right]$ and $F_{2}:=G^{\prime}\left[V\left(x_{2} X p_{2}\right) \cup A_{2} \cup V\left(y_{1} D b_{1}\right)\right]$. Write $b_{1} D y_{1}=v_{1} \ldots v_{m}$ and $x_{1} z_{1} \cup z_{1} X p_{1}=v_{m+1} \ldots v_{n}$ with $v_{1}=b_{1}, v_{m}=y_{1}, v_{m+1}=x_{1}$, and $v_{n}=p_{1}$. Write $y_{1} D b_{1}=u_{1} \ldots u_{k}$ and $p_{2} X x_{2}=u_{k+1} \ldots u_{l}$ such that $u_{1}=y_{1}$, $u_{k}=b_{1}, u_{k+1}=p_{2}$ and $u_{l}=x_{2}$. We may assume that
(1) $\left(F_{1}, v_{1}, \ldots, v_{n}\right)$ and $\left(F_{2}, u_{1}, \ldots, u_{l}\right)$ are planar.

We only prove that $\left(F_{1}, v_{1}, \ldots, v_{n}\right)$ is planar; the argument for $\left(F_{2}, u_{1}, \ldots, u_{l}\right)$ is similar. Suppose $\left(F_{1}, v_{1}, \ldots, v_{n}\right)$ is not planar. Then by Lemma 2.3.2, there exist
$1 \leq q<r<s<t \leq n$ such that F_{1} contains disjoint paths S_{1}, S_{2} from v_{q}, v_{r} to v_{s}, v_{t}, respectively. By the definition of F_{1} (and since X is induced), we see that $r \leq m$ and $s \geq m+1$. Note that $y_{1} D t_{2}, t_{2}^{\prime} D v_{q}, v_{r} D y_{1}$ give rise to independent paths T_{1}, T_{2}, T_{3}, respectively, in B_{1} with the same ends. Hence, $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup\left(z_{2} X p_{2} \cup\right.$ $\left.Q_{2}\right) \cup\left(R_{2} \cup T_{1}\right) \cup\left(R_{2}^{\prime} \cup T_{2} \cup S_{1} \cup v_{s} X z_{1} \cup z_{1} x_{1}\right) \cup\left(T_{3} \cup S_{2} \cup v_{t} X p_{1} \cup Q_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. This completes the proof of (1).

We may also assume that
(2) $N_{H}\left(x_{2}\right) \subseteq V\left(F_{2}+x_{1}\right)$.

For, suppose there exists $a \in N_{H}\left(x_{2}\right)-V\left(F_{2}+x_{1}\right)$. If $a \notin A$ for all $A \in \mathcal{A}$ let $a^{\prime}=a$ and $S=a$; and if $a \in A$ for some $A \in \mathcal{A}$ then let $a^{\prime} \in N_{H}(A)$ and S be a path in $G\left[A+a^{\prime}\right]$ from a to a^{\prime}.

First, we may choose a and a^{\prime} so that $a^{\prime} \notin V\left(t_{1} D y_{1}-y_{1}\right)$ and no 2-cut of B_{1} separating a from $y_{1} D t_{2}$ is contained in $t_{1} D y_{1}$. For, otherwise, let T_{1}, T_{2}, T_{3} be independent paths in B_{1} corresponding to $t_{2}^{\prime} D t_{1}^{\prime}, t_{1} D a^{\prime}, y_{1} D t_{2}$, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup z_{2} x_{2} \cup\left(R_{1}^{\prime} \cup T_{1} \cup R_{2}^{\prime}\right) \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(z_{2} X p_{2} \cup Q_{2}\right) \cup\left(R_{1} \cup\right.$ $\left.T_{2} \cup S \cup a x_{2}\right) \cup\left(R_{2} \cup T_{3} \cup y_{1} x_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$.

Suppose that $p(H, \mathcal{A})-t_{1} D t_{2}-\left\{z_{1}, z_{2}\right\}$ has a path T from a^{\prime} to t_{1}^{\prime}. Then $T, t_{1} D t_{2}$ give rise to independent paths T_{1}, T_{2}, respectively, in B_{1}. So $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup$ $\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(R_{1} \cup t_{1} T_{2} y_{1}\right) \cup\left(R_{1}^{\prime} \cup T_{1} \cup S \cup a x_{2}\right) \cup\left(y_{1} T_{2} t_{2} \cup R_{2} \cup z_{2} X p_{2} \cup Q_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

So we may assume that such T does not exist. By planarity, there is a cut $\left\{s_{1}, s_{2}\right\}$ in B_{1} separating t_{1}^{\prime} from $N_{H}\left(x_{2}\right)-V\left(F_{2}+x_{1}\right)$, with $s_{1}, s_{2} \in V\left(t_{1} D t_{2}\right)$. Since $\left\{s_{1}, s_{2}\right\} \nsubseteq V\left(t_{1} D y_{1}\right)$ and $a \notin V\left(F_{2}+x_{1}\right)$, we may let $s_{1} \in V\left(t_{1} D y_{1}-y_{1}\right)$ and $s_{2} \in V\left(y_{1} D t_{2}-y_{1}\right)$. Let M be the $\left\{s_{1}, s_{2}\right\}$-bridge of B_{1} containing y_{1}. We choose $\left\{s_{1}, s_{2}\right\}$ so that M is minimal (subject to just the property that $s_{1} \in V\left(t_{1} D y_{1}-y_{1}\right)$ and $\left.s_{2} \in V\left(y_{1} D t_{2}-y_{1}\right)\right)$.

Since $\left\{s_{1}, s_{2}, x_{1}, x_{2}\right\}$ cannot be a cut in G, there exists $v v^{\prime} \in E(G)$ with $v^{\prime} \in$ $V(M)-\left\{s_{1}, s_{2}\right\}$ and $v \in V\left(z_{j} X p_{j}-z_{j}\right)$ for some $j \in[2]$. By minimality, M has independent paths P_{1}, P_{2} from y_{1} to s_{3-j}, v^{\prime}, respectively. Let T_{1} be a path in $B_{1}-$ $\left(M-s_{j}\right)$ corresponding to $t_{2}^{\prime} D t_{1}^{\prime}$, and T_{2} be a path in $B_{1}-\left(M-s_{j}\right)$ corresponding to $t_{1} D s_{1}$ (when $j=2$) or $s_{2} D t_{2}$ (when $j=1$). Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-j} x_{3-j} \cup$ $\left(z_{3-j} X p_{3-j} \cup Q_{3-j}\right) \cup\left(R_{3-j}^{\prime} \cup T_{1} \cup R_{j}^{\prime} \cup z_{j} x_{j}\right) \cup\left(R_{3-j} \cup T_{2} \cup P_{1}\right) \cup\left(P_{2} \cup v^{\prime} v \cup v X p_{j} \cup Q_{j}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

We may assume
(3) $N\left(z_{1} X p_{1}-z_{1}\right) \cap V\left(B_{1}\right) \nsubseteq V\left(F_{1}\right)$ or $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(B_{1}\right) \nsubseteq V\left(F_{2}\right)$.

For, suppose $N\left(z_{j} X p_{j}-z_{j}\right) \cap V\left(B_{1}\right) \subseteq V\left(F_{j}\right)$ for $j \in[2]$. If $y_{2} \in V(X)$ then by (1) and (2), $G-x_{1}$ is planar; so the assertion of this lemma follows from Lemma 4.2.3. Hence, we may assume $y_{2} \notin V(X)$. By (1) and (2), $b=b_{1}$, and $\left(G\left[B_{1} \cup z_{1} X p_{1} \cup\right.\right.$ $\left.\left.p_{2} X x_{2}\right], p_{1}, b, p_{2}, x_{2}\right)$ is planar. So G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $\left\{b, p_{1}, p_{2}, x_{1}, x_{2}\right\}$ and $G_{2}=G\left[\left(B_{1} \cup z_{1} X p_{1} \cup x_{2} X p_{2}\right)+x_{1}\right]$. Clearly, $\left|V\left(G_{j}\right)\right| \geq 7$ for $j \in[2]$. Hence, the assertion of this lemma follows from Lemma 4.2.1.

Since the rest of the argument is the same for the two cases in (3), we will assume
(4) $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(B_{1}\right) \nsubseteq V\left(F_{2}\right)$ (and, hence, $\left.e\left(z_{2}, B_{1}\right) \geq 2\right)$.

Let $v v^{\prime} \in E(G)$ with $v \in V\left(B_{1}-F_{2}\right)$ and $v^{\prime} \in V\left(z_{2} X p_{2}-z_{2}\right)$. Let $v^{\prime \prime}=v$ and $S=v$ if $v \notin A$ for all $A \in \mathcal{A}$; otherwise, let $v \in A \in \mathcal{A}$ and $v^{\prime \prime} \in N_{H}(A)$ such that $v^{\prime \prime} \notin V\left(F_{2}\right)$, and let S be a path in $G\left[A+v^{\prime \prime}\right]$ from v to $v^{\prime \prime}$.

Suppose $\left(p(H, \mathcal{A})-\left\{z_{1}, z_{2}\right\}\right)-t_{2}^{\prime} D t_{1}^{\prime}$ has independent paths P_{1}, P_{2} from y_{1} to $t_{1}, v^{\prime \prime}$, respectively. Then $P_{1}, P_{2}, t_{2}^{\prime} D t_{1}^{\prime}$ give rise to independent paths $P_{1}^{\prime}, P_{2}^{\prime}, T$ in B_{1}, respectively (with the same ends). Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(R_{1} \cup P_{1}^{\prime}\right) \cup\left(z_{1} X p_{1} \cup\right.$ $\left.Q_{1}\right) \cup\left(R_{1}^{\prime} \cup T \cup R_{2}^{\prime} \cup z_{2} x_{2}\right) \cup\left(P_{2}^{\prime} \cup S \cup v v^{\prime} \cup v^{\prime} X p_{2} \cup Q_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

So we may assume that such P_{1}, P_{2} do not exist in $p(H, \mathcal{A})$. Then by planarity and the existence of $t_{1} D y_{1}, p(H, \mathcal{A})-\left\{z_{1}, z_{2}\right\}$ has a cut $\left\{s_{1}, s_{2}\right\}$, separating y_{1} from $\left\{v^{\prime \prime}, t_{1}\right\}$, with $s_{1} \in V\left(t_{2}^{\prime} D t_{1}^{\prime}\right)$ and $s_{2} \in V\left(t_{1} D y_{1}\right)$. Clearly, $\left\{s_{1}, s_{2}\right\}$ is also a cut in B_{1}. Denote by M_{v}, M_{y} the $\left\{s_{1}, s_{2}\right\}$-bridges of B_{1} containing $\left\{v^{\prime \prime}, t_{1}\right\}, y_{1}$, respectively. We choose $\left\{s_{1}, s_{2}\right\}$ so that M_{y} is minimal. Since v is arbitrary, $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(B_{1}-F_{2}\right) \subseteq$ $V\left(M_{v}\right)$. We choose $v v^{\prime}$ with $v^{\prime} X x_{2}$ minimal.

We may assume
(5) $y_{22} \in V\left(M_{v}\right)$ (when defined) and, for any $q \in V\left(p_{2} X v^{\prime}-v^{\prime}\right), N(q) \cap V\left(M_{y}-\right.$ $\left.\left\{s_{1}, s_{2}\right\}\right)=\emptyset$.

Suppose (5) fails. Recall that y_{22} is defined only when $y_{2} \in V(X)$, or when $y_{2} \notin V(X)$ and both $e\left(z_{1}, B_{1}\right) \geq 2$ and $e\left(z_{2}, B_{2}\right) \geq 2$. If y_{22} is defined and $y_{22} \notin V\left(M_{v}\right)$ let $q=b$, $q^{\prime}=y_{22}$, and $Q^{\prime}=q^{\prime} q \cup Q_{3}$; and if y_{22} is defined and $y_{22} \in V\left(M_{v}\right)$ let $q \in V\left(p_{2} X v^{\prime}-v^{\prime}\right)$, $q^{\prime} \in N(q) \cap V\left(M_{y}-\left\{s_{1}, s_{2}\right\}\right)$, and $Q^{\prime}=q^{\prime} q \cup q X p_{2} \cup Q_{2}$.

Since B_{1} is 2 -connected, there exists $j \in[2]$ such that $M_{v}-s_{3-j}$ contains disjoint paths T_{1}, T_{2} from $\left\{t_{1}, t_{1}^{\prime}\right\}$ to $\left\{v^{\prime \prime}, s_{j}\right\}$. Note that $R_{1} \cup R_{1}^{\prime} \cup T_{1} \cup T_{2}$ contains independent paths $T_{1}^{\prime}, T_{2}^{\prime}$ from z_{1} to $v^{\prime \prime}, s_{j}$, respectively. If M_{y} contains independent paths S_{1}, S_{2} from y_{1} to q^{\prime}, s_{j}, then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(T_{1}^{\prime} \cup S \cup v v^{\prime} \cup v^{\prime} X x_{2}\right) \cup$ $\left(T_{2}^{\prime} \cup S_{2}\right) \cup\left(Q^{\prime} \cup S_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So we may assume S_{1}, S_{2} do not exist in M_{y}; hence M_{y} has a cut vertex c that separates y_{1} from $\left\{q^{\prime}, s_{j}\right\}$.

By the minimality of M_{y} and the existence of $y_{1} D s_{1}, c \in V\left(y_{1} D t_{2}^{\prime}-t_{2}^{\prime}\right)$; so we must have $j=1$. Denote by C_{q}, C_{y} the c-bridges of M_{y} containing $\left\{q^{\prime}, s_{1}\right\}, y_{1}$, respectively, and choose c with C_{y} minimal. Then $N\left(p_{2} X v^{\prime}-v^{\prime}\right) \cap V\left(C_{y}-\left\{c, s_{2}\right\}\right)=\emptyset$.

We may assume that there exist $u u^{\prime} \in E(G)$ with $u \in V\left(z_{1} X p_{1}-z_{1}\right)$ and $u^{\prime} \in$ $V\left(C_{y}\right)-\left\{c, s_{2}\right\}$. For, otherwise, by (1) and (2), there exists $z \in V\left(v^{\prime} X x_{2}\right)$ such that $\left\{c, s_{2}, x_{1}, x_{2}, z\right\}$ is a cut in G, and G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap\right.$
$\left.G_{2}\right)=\left\{c, s_{2}, x_{1}, x_{2}, z\right\}, M_{v} \cup z_{1} X z \subseteq G_{1}, M_{y} \subseteq G_{2}$, and $\left(G_{2}-x_{1},\left\{c, s_{2}, x_{2}, z\right\}\right)$ is planar. Clearly, $\left|V\left(G_{1}\right)\right| \geq 7$. If $\left|V\left(G_{2}\right)\right| \geq 7$ then the assertion of the lemma follows from Lemma 4.2.1. If $\left|V\left(G_{2}\right)\right|=6$ then $z=z_{2}$ and $y_{1} z_{2} \in E(G)$; now $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right]-x_{1} z_{2} \cong K_{4}^{-}$in which x_{1} is of degree 2 , and (ii) holds.

By the minimality of M_{y} and $C_{y}, C_{y}-s_{2}$ has independent paths U_{1}, U_{2} from y_{1} to c, u^{\prime}, respectively. In $M_{v}-s_{1}$, we find a path T from t_{1} to $v^{\prime \prime}$. Let X^{*} be an induced path in $G-x_{1}$ from z_{1} to x_{2} such that $V\left(X^{\prime}\right) \subseteq V\left(R_{1} \cup T \cup S \cup v v^{\prime} \cup v^{\prime} X x_{2}\right)$. Now $U_{1} \cup U_{2} \cup\left(C_{q}-s_{1}\right) \cup u^{\prime} u \cup u X p_{1} \cup Q_{1} \cup Q_{2} \cup p_{2} X q \cup q q^{\prime}$ is contained in $\left(G-x_{1}\right)-X^{*}$ and contains a cycle through y_{1} and y_{2}. Hence by Lemma 3.2.1 and Lemma 4.2.1, we may assume that $G-x_{1}$ contains an induced path X^{\prime} from z_{1} to x_{2} such that $y_{1}, y_{2} \notin V\left(X^{\prime}\right)$ and $\left(G-x_{1}\right)-X^{\prime}$ is 2-connected. So the assertion of this lemma follows from Lemma 2.3.6. This proves (5).

We may assume $N\left(z_{1} X p_{1}-z_{1}\right) \cap V\left(M_{y}-\left\{s_{1}, s_{2}\right\}\right) \neq \emptyset$. For, otherwise, by (5), G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{s_{1}, s_{2}, v^{\prime}, x_{1}, x_{2}\right\}, G_{2}:=$ $G\left[v^{\prime} X x_{2} \cup M_{y}+x_{1}\right] \mathrm{m}$ and $\left(G_{2}-x_{1}, s_{1}, s_{2}, x_{2}, v^{\prime}\right)$ is planar. Clearly, $\left|V\left(G_{1}\right)\right| \geq 7$. If $\left|V\left(G_{2}\right)\right| \geq 7$ then the assertion of this lemma follows from Lemma 4.2.1. So assume $\left|V\left(G_{2}\right)\right|=6$. Then $v^{\prime}=z_{2}$ and $y_{1} z_{2} \in E(G)$. So $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right]-x_{1} z_{2} \cong K_{4}^{-}$in which x_{1} is of degree 2 , and (ii) holds.

So there exists $u u^{\prime} \in E(G)$ with $u^{\prime} \in V\left(z_{1} X p_{1}-z_{1}\right)$ and $u \in V\left(M_{y}\right)-\left\{s_{1}, s_{2}\right\}$. Hence, $e\left(z_{1}, B_{1}\right) \geq 2$; so y_{21}, y_{22}, Q_{3} are defined. Let P_{u} be a path in M_{y} from u to some $u_{D} \in V\left(s_{2} D s_{1}\right)-\left\{s_{1}, s_{2}\right\}$ and internally disjoint from $V(D)$ (by minimality of $\left.M_{y}\right)$, and P_{v} be a path in M_{v} from $v^{\prime \prime}$ to some $v_{D} \in V\left(s_{1} D s_{2}\right)$ and internally disjoint from $V(D)$. By the definition of F_{2}, we may choose v_{D} so that $v_{D} \notin V\left(s_{1} D y_{22}\right)$.

We may assume $v_{D} \in V\left(t_{1}^{\prime} D y_{1}-t_{1}^{\prime}\right)$. For, suppose $v_{D} \in V\left(y_{22} D t_{1}^{\prime}-y_{22}\right)$. Let T_{1}, T_{2}, T_{3} be independent paths in B_{1} corresponding to $t_{1} D y_{1}, v_{D} D t_{1}^{\prime}, y_{1} D y_{22}$, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(R_{1} \cup T_{1}\right) \cup\left(R_{1}^{\prime} \cup T_{2} \cup P_{v} \cup S \cup\right.$ $\left.v v^{\prime} \cup v^{\prime} X x_{2}\right) \cup\left(T_{3} \cup y_{22} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Next, we consider the location of u_{D}. Suppose $u_{D} \in V\left(t_{2}^{\prime} D s_{1}-s_{1}\right)$. Let T_{1}, T_{2}, T_{3} be independent paths in B_{1} corresponding to $y_{1} D t_{2}, t_{2}^{\prime} D u_{D}, y_{21} D y_{1}$, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup\left(z_{2} X p_{2} \cup Q_{2}\right) \cup\left(R_{2} \cup T_{1}\right) \cup\left(R_{2}^{\prime} \cup T_{2} \cup P_{u} \cup u u^{\prime} \cup\right.$ $\left.u^{\prime} X z_{1} \cup z_{1} x_{1}\right) \cup\left(T_{3} \cup y_{21} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now suppose $u_{D} \in V\left(s_{2} D y_{1}\right)$. Let T_{1}, T_{2}, T_{3} be independent paths in B_{1} corresponding to $y_{1} D t_{2}, t_{2}^{\prime} D t_{1}^{\prime}, u_{D} D y_{1}$, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup$ $\left(z_{2} X p_{2} \cup Q_{2}\right) \cup\left(R_{2} \cup T_{1}\right) \cup\left(R_{2}^{\prime} \cup T_{2} \cup R_{1}^{\prime} \cup z_{1} x_{1}\right) \cup\left(T_{3} \cup P_{u} \cup u u^{\prime} \cup u^{\prime} X p_{1} \cup Q_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So we may assume $u_{D} \in V\left(y_{1} D t_{2}^{\prime}-t_{2}^{\prime}\right)$. Let T_{1}, T_{2}, T_{3} be independent paths in B_{1} corresponding to $y_{1} D u_{D}, t_{2}^{\prime} D t_{1}^{\prime}, v_{D} D y_{1}$, respectively. Thus, $\left(G-x_{1}\right)-\left(R_{1}^{\prime} \cup T_{2} \cup R_{2}^{\prime} \cup\right.$ $z_{2} x_{2}$) contains the cycle $T_{1} \cup P_{u} \cup u u^{\prime} \cup u^{\prime} X p_{1} \cup Q_{1} \cup Q_{2} \cup p_{2} X v^{\prime} \cup v v^{\prime} \cup S \cup P_{v} \cup T_{3}$. Hence, by Lemma 3.2.1 and Lemma 4.2.1, we may assume that $G-x_{1}$ contains a path X^{\prime} from z_{1} to x_{2} such that $y_{1}, y_{2} \notin V\left(X^{\prime}\right)$ and $\left(G-x_{1}\right)-X^{\prime}$ is 2-connected. So the assertion of this lemma follows from Lemma 2.3.6.

We now prove the existence of three paths A, B, C in $H:=G\left[B_{1}+\left\{z_{1}, z_{2}\right\}\right]$.

Lemma 4.4.2 Let $b_{1} \in N\left(y_{2}\right) \cap V\left(B_{1}\right)$ when $y_{2} \in V(X)$, and let $\left\{b_{1}\right\}=V\left(B_{1}\right) \cap$ $V\left(B_{2}\right)$ when $y_{2} \notin V(X)$. Then one of the following holds:
(i) G^{\prime} contains $T K_{5}$, or G contains a $T K_{5}$ in which x_{1} is not a branch vertex.
(ii) $G-x_{1}$ contains K_{4}^{-}, or G contains a K_{4}^{-}in which x_{1} is of degree 2.
(iii) There exists $i \in[2]$ such that H contains independent paths A, B, C, with A and C from z_{i} to y_{1} and B from b_{1} to z_{3-i}.

Proof. If $y_{2} \notin V(X)$ then by Lemma 4.3.1, let Q_{1}, Q_{2}, Q_{3} be independent paths in Y_{2} from y_{2} to p_{1}, p_{2}, b, respectively. Moreover, if $y_{2} \in V(X)$ then let $Q_{1}=Q_{2}=Q_{3}=y_{2}$.

We may assume that
(1) for $i \in[2], H$ has no path through $z_{3-i}, z_{i}, y_{1}, b_{1}$ in order.

For, if H has a path S through $z_{3-i}, z_{i}, y_{1}, b_{1}$ in order. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup$ $\left(z_{i} X p_{i} \cup Q_{i}\right) \cup z_{i} S y_{1} \cup\left(z_{i} S z_{3-i} \cup z_{3-i} x_{3-i}\right) \cup\left(y_{1} S b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

We may also assume that
(2) for $i \in[2]$ with $e\left(z_{i}, B_{1}-b_{1}\right) \geq 2, H$ has a 2 -separation $\left(F_{i}^{\prime}, F_{i}^{\prime \prime}\right)$ such that $b_{1} \in V\left(F_{i}^{\prime}\right), z_{i} \in V\left(F_{i}^{\prime}-F_{i}^{\prime \prime}\right)$ and $\left\{y_{1}, z_{3-i}\right\} \subseteq V\left(F_{i}^{\prime \prime}-F_{i}^{\prime}\right)$.

Suppose $i \in[2]$ and $e\left(z_{i}, B_{1}-b_{1}\right) \geq 2$. Let K be obtained from H by duplicating z_{i} and y_{1} with copies z_{i}^{\prime} and y_{1}^{\prime}, respectively. So in K, y_{1} and y_{1}^{\prime} are not adjacent, but have the same set of neighbors, namely $N_{H}\left(y_{1}\right)$; and the same holds for z_{i} and z_{i}^{\prime}.

Suppose K contains disjoint paths $A^{\prime}, B^{\prime}, C^{\prime}$ from $\left\{z_{i}, z_{i}^{\prime}, b_{1}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$, with $z_{i} \in V\left(A^{\prime}\right), z_{i}^{\prime} \in V\left(C^{\prime}\right)$ and $b_{1} \in V\left(B^{\prime}\right)$. If $z_{3-i} \notin V\left(B^{\prime}\right)$ then, after identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}, we obtain from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$ a path in H from z_{3-i} to b_{1} through z_{i}, y_{1} in order, contradicting (1). Hence $z_{3-i} \in V\left(B^{\prime}\right)$, and we get the desired paths for (iii) from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$, by identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}.

So we may assume that such $A^{\prime}, B^{\prime}, C^{\prime}$ do not exist. Then K has a separation $\left(K^{\prime}, K^{\prime \prime}\right)$ such that $\left|V\left(K^{\prime} \cap K^{\prime \prime}\right)\right| \leq 2,\left\{z_{i}, z_{i}^{\prime}, b_{1}\right\} \subseteq V\left(K^{\prime}\right)$ and $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\} \subseteq V\left(K^{\prime \prime}\right)$. Since $H-z_{3-i}$ is 2-connected, $z_{3-i} \notin V\left(K^{\prime} \cap K^{\prime \prime}\right)$.

We claim that $z_{i}, z_{i}^{\prime} \notin V\left(K^{\prime} \cap K^{\prime \prime}\right)$. For, if exactly one of z_{i}, z_{i}^{\prime} is in $V\left(K^{\prime} \cap K^{\prime \prime}\right)$ then, since z_{i}, z_{i}^{\prime} have the same set of neighbors in $K, V\left(K^{\prime} \cap K^{\prime \prime}\right)-\left\{z_{i}, z_{i}^{\prime}\right\}$ is a cut in H separating $\left\{z_{3-i}, y_{1}\right\}$ from $\left\{z_{i}, b_{1}\right\}$, a contradiction. Now assume $\left\{z_{i}, z_{i}^{\prime}\right\}=V\left(K^{\prime} \cap K^{\prime \prime}\right)$. Then z_{i} is a cut vertex in H separating b_{1} from $\left\{y_{1}, z_{3-i}\right\}$, a contradiction.

We may assume that $y_{1}, y_{1}^{\prime} \notin V\left(K^{\prime} \cap K^{\prime \prime}\right)$. First, suppose exactly one of y_{1}, y_{1}^{\prime} is in $V\left(K^{\prime} \cap K^{\prime \prime}\right)$. Then, since y_{1}, y_{1}^{\prime} have the same set of neighbors in $K, V\left(K^{\prime} \cap\right.$ $\left.K^{\prime \prime}\right)-\left\{y_{1}, y_{1}^{\prime}\right\}$ is a cut in H separating $\left\{z_{3-i}, y_{1}\right\}$ from $\left\{z_{i}, b_{1}\right\}$, a contradiction. Now assume $\left\{y_{1}, y_{1}^{\prime}\right\}=V\left(K^{\prime} \cap K^{\prime \prime}\right)$. Then y_{1} is a cut vertex in H separating z_{3-i} from $\left\{b_{1}, z_{i}\right\}$. This implies that $N\left(z_{3-i}\right) \cap V\left(B_{1}\right)=\left\{y_{1}\right\}$; so $y_{2} \notin V(X)$ and $z_{3-i}=p_{3-i}$.

We may assume $i=2$; for otherwise, $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right]-x_{1} z_{2} \cong K_{4}^{-}$in which x_{1} is of degree 2, and (ii) holds. Then $z_{1}=p_{1}$, and G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{b, p_{2}, x_{1}, x_{2}, y_{1}\right\}$ and $G_{2}=G\left[B_{1} \cup x_{2} X p_{2}+\left\{x_{1}, b\right\}\right]$. Note that $x_{1} x_{2} y_{1} x_{1}$ is a triangle and $\left|V\left(G_{j}\right)\right| \geq 7$ for $j \in[2]$. So the assertion of this lemma follows from Lemma 4.2.2.

Thus, since B_{1} is 2-connected, $\left|V\left(K^{\prime} \cap K^{\prime \prime}\right)\right|=2$. Let $V\left(K^{\prime} \cap K^{\prime \prime}\right)=\{s, t\}$, and let F_{i}^{\prime} (respectively, $F_{i}^{\prime \prime}$) be obtained from K^{\prime} (respectively, $K^{\prime \prime}$) by identifying z_{i}^{\prime} with z_{i} (respectively, y_{1}^{\prime} with y_{1}). Then $\left(F_{i}^{\prime}, F_{i}^{\prime \prime}\right)$ gives the desired 2-separation in H, completing the proof of (2).

We now consider three cases.
Case 1. $e\left(z_{i}, B_{1}-b_{1}\right) \geq 2$ for $i \in[2]$.
For $i \in[2]$, let $V\left(F_{i}^{\prime} \cap F_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\}$ as in (2). Let Z_{1}, B_{1}^{\prime} denote the $\left\{s_{1}, t_{1}\right\}$ bridges of F_{1}^{\prime} containing z_{1}, b_{1}, respectively, and let Y_{1}, Z_{2} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of $F_{1}^{\prime \prime}$ containing y_{1}, z_{2}, respectively.

Suppose $Y_{1} \neq Z_{2}$, and suppose $Z_{1} \neq B_{1}^{\prime}$ or $b_{1} \in\left\{s_{1}, t_{1}\right\}$. Let $b_{1}=s_{1}$ if $b_{1} \in\left\{s_{1}, t_{1}\right\}$. Then Z_{1} has independent paths S_{1}, T_{1} from z_{1} to s_{1}, t_{1}, respectively. Moreover, Z_{2} has independent paths S_{2}, T_{2} from z_{2} to s_{1}, t_{1}, respectively, $B_{1}^{\prime}-t_{1}$ has a path P from s_{1} to b_{1}, and Y_{1} has independent paths S_{3}, T_{3} from y_{1} to s_{1}, t_{1}, respectively. So $x_{1} z_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup x_{1} y_{2} \cup\left(z_{2} X p_{2} \cup Q_{2}\right) \cup z_{2} x_{2} x_{1} \cup\left(T_{2} \cup T_{1}\right) \cup S_{1} \cup S_{2} \cup\left(S_{3} \cup y_{1} x_{1}\right) \cup$ $\left(P \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $s_{1}, x_{1}, y_{2}, z_{1}, z_{2}$.

Thus, we may assume that $Y_{1}=Z_{2}$, or $Z_{1}=B_{1}^{\prime}$ and $b_{1} \notin\left\{s_{1}, t_{1}\right\}$. First, suppose $Y_{1} \neq Z_{2}$. Then $Z_{1}=B_{1}^{\prime}$ and $b_{1} \notin\left\{s_{1}, t_{1}\right\}$, and hence $B_{1}^{\prime}-\left\{s_{1}, t_{1}\right\}$ has a path from z_{1} to b_{1}. Since H is 2-connected, $Y_{1} \cup Z_{2}$ has two independent paths from y_{1} to z_{2}. However, this contradicts the existence of the separation $\left(F_{2}^{\prime}, F_{2}^{\prime \prime}\right)$.

So $Y_{1}=Z_{2}$. Thus, by symmetry, we may assume $t_{2} \in V\left(Y_{1}\right)-\left\{s_{1}, t_{1}\right\}$. Suppose $b_{1} \notin\left\{s_{1}, t_{1}\right\}$ and $B_{1}^{\prime}=Z_{1}$. Then $s_{2} \in V\left(B_{1}^{\prime}\right)-\left\{s_{1}, t_{1}\right\}$. Moreover, $\left\{s_{2}, t_{2}\right\}$ separates s_{1} from t_{1} in H; for otherwise, either t_{2} separates z_{2} from $\left\{b_{1}, y_{1}, z_{1}\right\}$ in H, or t_{2}
separates y_{1} from $\left\{b_{1}, z_{1}, z_{2}\right\}$ in H, a contradiction. Thus, we may assume that in H, $\left\{s_{2}, t_{2}\right\}$ separates $\left\{b_{1}, s_{1}, z_{2}\right\}$ from $\left\{t_{1}, y_{1}, z_{1}\right\}$. However, this contradicts the existence of Y, Z.

Therefore, $B_{1}^{\prime} \neq Z_{1}$ or $b_{1} \in\left\{s_{1}, t_{1}\right\}$. If $b_{1} \notin\left\{s_{1}, t_{1}\right\}$ then $B_{1}^{\prime} \neq Z_{1}$; so $s_{2} \in\left\{s_{1}, t_{1}\right\}$ (because of $\left(F_{2}^{\prime}, F_{2}^{\prime \prime}\right)$), and we may assume $s_{2}=s_{1}$. If $b_{1} \in\left\{s_{1}, t_{1}\right\}$ then we may assume that $b_{1}=s_{1}$; so $s_{2}=s_{1}$ or, in Z_{1}, s_{2} separates s_{1} from $\left\{t_{1}, z_{1}\right\}$. Let $Y_{1}^{\prime}, Z_{2}^{\prime}$ be the t_{2}-bridges of $Y_{1}-\left\{s_{1}, t_{1}\right\}$ containing y_{1}, z_{2}, respectively. Again, because of the existence of $\left(F_{2}^{\prime}, F_{2}^{\prime \prime}\right), t_{1}$ has no neighbor in $Z_{2}^{\prime}-t_{2}$. Hence, by the existence of Y, Z, s_{1} has a neighbor in $Y_{1}^{\prime}-t_{2}$; and, thus, $s_{2}=s_{1}$ and $G\left[Y_{1}^{\prime}+\left\{s_{1}, t_{1}\right\}\right]$ has disjoint paths S_{1}, T_{1} from s_{1}, t_{1} to y_{1}, t_{2}, respectively. Let S_{2}, T_{2} be independent paths in $G\left[Z_{2}^{\prime}+s_{1}\right]$ from z_{2} to s_{1}, t_{2}, respectively, and S, T be independent paths in Z_{1} from z_{1} to s_{1}, t_{1}, respectively. Let P be a path in $B_{1}^{\prime}-t_{1}$ from s_{1} to b_{1}. Then $x_{1} z_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup$ $x_{1} y_{2} \cup\left(z_{2} X p_{2} \cup Q_{2}\right) \cup z_{2} x_{2} x_{1} \cup\left(T_{2} \cup T_{1} \cup T\right) \cup S \cup\left(S_{1} \cup y_{1} x_{1}\right) \cup S_{2} \cup\left(P \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $s_{1}, x_{1}, y_{2}, z_{1}, z_{2}$.

Case 2. $e\left(z_{2}, B_{1}-b_{1}\right) \geq 2$.
If $y_{2} \in V(X)$ then $e\left(z_{1}, B_{1}-b_{1}\right) \geq 2$, and if $y_{2} \notin V(X)$ then, by Lemma 4.3.3, $e\left(z_{1}, B_{1}-b_{1}\right) \geq 1$. In view of Case 1 , we may assume $e\left(z_{1}, B_{1}-b_{1}\right)=1 ;$ so $z_{1}=p_{1}$ and $y_{2} \notin V(X)$. Note that if $b \neq b_{1}$ then, by Lemma 4.3.2, we may assume $z_{1} b_{1} \in E(G)$; so $b_{1} \in V\left(F_{2}^{\prime} \cap F_{2}^{\prime \prime}\right)$. By Lemma 4.3.1, we may assume that Y_{2} has a path Q from p_{2} to b_{1} through y_{2}, z_{1} in this order.

For convenience, let $F^{\prime}:=F_{2}^{\prime}, F^{\prime \prime}:=F_{2}^{\prime \prime}, s:=s_{2}$ and $t:=t_{2}$. So $b_{1}, z_{2} \in V\left(F^{\prime}\right)$ and $y_{1}, z_{1} \in V\left(F^{\prime \prime}\right)$. We choose $\left(F^{\prime}, F^{\prime \prime}\right)$ so that $F^{\prime \prime}$ is minimal. Let z_{1}^{\prime} denote the unique neighbor of z_{1} in $B_{1}-b_{1}$.

Subcase 2.1. $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(F^{\prime \prime}-\left\{z_{1}, s, t\right\}\right) \nsubseteq\left\{z_{1}^{\prime}\right\}$.
Let $u u^{\prime} \in E(G)$, with $u \in V\left(F^{\prime \prime}\right)-\left\{z_{1}, z_{1}^{\prime}, s, t\right\}$ and $u^{\prime} \in V\left(z_{2} X p_{2}-z_{2}\right)$. Note that F^{\prime} contains a path S from z_{2} to b such that $|V(S) \cap\{s, t\}| \leq 1$. Moreover, if there exists $r \in\{s, t\}$ such that $r \in V(S)$ for all such path S, then $b_{1}=r$.

If $\left(F^{\prime \prime}-z_{1}\right)-S$ contains independent paths T_{1}, T_{2} from y_{1} to z_{1}^{\prime}, u, respectively, then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup z_{1} Q y_{2} \cup\left(z_{1} Q b \cup b b_{1} \cup S \cup z_{2} x_{2}\right) \cup\left(z_{1} z_{1}^{\prime} \cup T_{1}\right) \cup\left(T_{2} \cup\right.$ $\left.u u^{\prime} \cup u^{\prime} X p_{2} \cup p_{2} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

So we may assume that such T_{1}, T_{2} do not exist. Hence, there is a cut vertex c in $\left(F^{\prime \prime}-z_{1}\right)-S$ separating y_{1} from $\left\{u, z_{1}^{\prime}\right\}$. Denote by M_{1}, M_{2} the $(\{c\} \cup(V(S) \cap\{s, t\}))$ bridges of $F^{\prime \prime}-z_{1}$ containing $y_{1},\left\{u, z_{1}^{\prime}\right\}$, respectively. We may choose c so that M_{1} is minimal. Then $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(F^{\prime \prime}\right) \subseteq V\left(M_{2}\right)$ (as $u u^{\prime}$ was chosen arbitrarily).

Since G is 5 -connected, $\{s, t\} \subseteq V\left(M_{1}\right)$ (as otherwise $\left\{c, x_{1}, x_{2}\right\} \cup\left(\{s, t\} \cap V\left(M_{1}\right)\right)$ would be a cut in G), and M_{1} contains independent paths R_{1}, R_{2}, R_{3} from y_{1} to c, s, t, respectively. Since B_{1} is 2-connected, $\{s, t\} \cap V\left(M_{2}\right) \neq \emptyset$ and there exist choices of u and $r \in\{s, t\} \cap V\left(M_{2}\right)$ such that M_{2} contains disjoint paths R_{4}, R_{5} from $\left\{z_{1}^{\prime}, u\right\}$ to $\{c, r\}$. Thus, $R_{1} \cup R_{2} \cup R_{3} \cup R_{4} \cup R_{5}$ contains independent paths from y_{1} to z_{1}^{\prime}, u, respectively. By the non-existence of T_{1} and $T_{2}, r \in V(S)$ for every choice of S. Hence, $b_{1}=r$. So $\{s, t\} \cap V\left(M_{2}\right)=\{r\}$, and $V(S) \cap\{s, t\}=\{r\}$ for every choice of S. Without loss of generality, we may assume that $r=t$.

We further choose $u u^{\prime}$ so that $u^{\prime} X p_{2}$ is maximal. Suppose $N\left(u^{\prime} X p_{2}-u^{\prime}\right) \cap$ $V\left(F^{\prime}-\{s, t\}\right)=\emptyset$. Then G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=$ $\left\{s, t, u^{\prime}, x_{1}, x_{2}\right\}$ and $G_{2}=G\left[F^{\prime} \cup x_{2} X u^{\prime}+x_{1}\right]$. Clearly, $\left|V\left(G_{1}\right)\right| \geq 7$. Since $e\left(z_{2}, B_{1}-\right.$ $\left.b_{1}\right) \geq 2,\left|V\left(G_{2}\right)\right| \geq 7$. If $\left(G_{2}-x_{1}, x_{2}, s, t, u^{\prime}\right)$ is planar then the assertion of this lemma follows from Lemma 4.2.1. Hence, we may assume, by Lemma 2.3.1, that $G_{2}-x_{1}$ contains disjoint paths X_{1}, X_{2} from u^{\prime}, x_{2} to s, t, respectively. Let X_{3} be a path in $M_{2}-t$ from z_{1}^{\prime} to c. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup z_{1} Q y_{2} \cup\left(z_{1} Q b \cup b b_{1} \cup X_{2}\right) \cup$ $\left(z_{1} z_{1}^{\prime} \cup X_{3} \cup R_{1}\right) \cup\left(R_{2} \cup X_{1} \cup u^{\prime} X p_{2} \cup p_{2} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

So assume that there exists $w w^{\prime} \in E(G)$ with $w^{\prime} \in V\left(u^{\prime} X p_{2}-u^{\prime}\right)$ and $w \in$ $V\left(F^{\prime}-\{s, t\}\right)$. Let S_{1} be a path in $F^{\prime}-t$ from w to s and S_{2} be a path in $M_{2}-t$ from z_{1}^{\prime} to u. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup z_{1} Q y_{2} \cup\left(z_{1} Q b \cup b b_{1} \cup R_{3}\right) \cup\left(z_{1} z_{1}^{\prime} \cup S_{2} \cup\right.$
$\left.u u^{\prime} \cup u^{\prime} X x_{2}\right) \cup\left(R_{2} \cup S_{1} \cup w w^{\prime} \cup w^{\prime} X p_{2} \cup p_{2} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Subcase 2.2. $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(F^{\prime \prime}-\left\{z_{1}, s, t\right\}\right) \subseteq\left\{z_{1}^{\prime}\right\}$.
Then $\left\{s, t, x_{1}, x_{2}, z_{1}^{\prime}\right\}$ is a 5 -cut in G separating $F^{\prime \prime}$ from $F^{\prime} \cup Y_{2}$. Since G is 5-connected, $F^{\prime \prime}-z_{1}$ has independent paths T_{1}, T_{2}, T_{3} from y_{1} to s, t, z_{1}^{\prime}, respectively.

Let $F_{g}:=\left(F^{\prime \prime}-z_{1}\right)+\{g, g s, g t\}$, where g is a new vertex. Since G is 5 -connected and we are in Subcase 2.2, F_{g} has no 2-cut separating y_{1} from $\left\{g, z_{1}^{\prime}\right\}$. Hence, by Lemma 2.3.5, there is a cycle in F_{g} containing $\left\{g, y_{1}, z_{1}^{\prime}\right\}$ and, after removing g from this cycle, we get a path R in $F^{\prime \prime}-z_{1}$ from s to t and containing $\left\{y_{1}, z_{1}^{\prime}\right\}$.

Let $x=p_{2}$ if $N\left(z_{2} X p_{2}-z_{2}\right) \cap V\left(F^{\prime \prime}-\left\{z_{1}, s, t\right\}\right)=\emptyset$ and, otherwise, let $x \in$ $N\left(z_{1}^{\prime}\right) \cap N\left(z_{2} X p_{2}-z_{2}\right)$ with $x X z_{2}$ minimal.

We may assume that $N\left(x X p_{2}-x\right) \cap V\left(B_{1}-\left\{b_{1}, z_{1}^{\prime}\right\}\right)=\emptyset$. For, otherwise, there exists $r r^{\prime} \in E(G)$ such that $r \in V\left(B_{1}\right)-\left\{b_{1}, z_{1}^{\prime}\right\}$ and $r^{\prime} \in V\left(x X p_{2}-x\right)$. Then $r \in V\left(F^{\prime}\right)$ and $x \neq p_{2}$; so $x z_{1}^{\prime} \in E(G)$. Note that F^{\prime} has disjoint paths from $\{s, t\}$ to $\left\{b_{1}, r\right\}$, which, combined with T_{1}, T_{2}, gives independent paths P_{1}, P_{2} in $B_{1}-z_{1}^{\prime}$ from y_{1} to b_{1}, r, respectively. Hence, in $\left(G-x_{1}\right)-\left(z_{1} z_{1}^{\prime} x \cup x X x_{2}\right),\left\{y_{1}, y_{2}\right\}$ is contained in the cycle $P_{1} \cup P_{2} \cup r^{\prime} X p_{2} \cup Q_{2} \cup Q_{3} \cup b b_{1}$. Hence, by Lemma 3.2.1 and Lemma 4.2.1, we may assume that $G-x_{1}$ has a path X^{\prime} from z_{1} to x_{2} such that $y_{1}, y_{2} \notin V(X)$, and $\left(G-x_{1}\right)-X^{\prime}$ is 2 -connected. Thus, the assertion of this lemma follows from Lemma 2.3.6.

We may assume $b=b_{1}$. For, suppose $b \neq b_{1}$. Then, using the notation from (iv) of Lemma 4.2.5, $v \in V\left(p_{2} X x_{2}-p_{2}\right)$ and $b_{1}^{\prime} \in V\left(B_{1}-b_{1}\right)$. Let P_{1}, P_{2} be independent paths in B_{1} from y_{1} to b_{1}, b_{1}^{\prime}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup z_{1} Q y_{2} \cup$ $\left(z_{1} Q b \cup b b_{1} \cup P_{1}\right) \cup\left(z_{1} Q b \cup b v \cup v X x_{2}\right) \cup\left(P_{2} \cup b_{1}^{\prime} p_{2} \cup p_{2} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Therefore, G has a separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{b_{1}, s, t, x, x_{1}, x_{2}\right\}$ and $G_{2}=G\left[F^{\prime} \cup x X x_{2}+x_{1}\right]$. Let $G_{2}^{\prime}=G_{2}+\{r, r s, r t\}$, where r is a new vertex.

We may assume that $\left(G_{2}^{\prime}-x_{1}, \mathcal{A}, b_{1}, x, x_{2}, r\right)$ is 3 -planar for some collection \mathcal{A} of subsets of $V\left(G_{2}^{\prime}-x_{1}\right)-\left\{b_{1}, x, x_{2}, r\right\}$. For, otherwise, by Lemma 2.3.1, $G_{2}^{\prime}-x_{1}$ contains disjoint paths R_{1}, R_{2} from b_{1}, x to x_{2}, r, respectively. Let $R=T_{2} \cup\left(R_{2}-r\right)$ if $R_{2}-r$ ends at t, and $R=T_{1} \cup(R-r)$ otherwise. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup$ $z_{1} Q y_{2} \cup\left(z_{1} Q b_{1} \cup R_{1}\right) \cup\left(z_{1} z_{1}^{\prime} \cup T_{3}\right) \cup\left(R \cup x X p_{2} \cup p_{2} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

We choose \mathcal{A} to be minimal and define $J, s^{\prime}, t^{\prime}$ as follows. If $\mathcal{A}=\emptyset$ then after relabeling of s, t (if necessary), we may assume $\left(G_{2}^{\prime}-x_{1}, b_{1}, x, x_{2}, s, t\right)$ is planar and let $J=G_{2}, s^{\prime}=s$ and $t^{\prime}=t$. Now assume $\mathcal{A} \neq \emptyset$. Then, by the minimality of \mathcal{A} and 5 -connectedness of G, \mathcal{A} has a unique member, say A, such that $r \in N(A)$ and $\{s, t\} \subseteq A$ and, moreover, $G^{\prime}\left[A \cup\left\{s^{\prime}, t^{\prime}\right\}\right]$ is connected, where $N(A) \cap V\left(F^{\prime}\right)=\left\{r, s^{\prime}, t^{\prime}\right\}$. Let J denote the $\left\{s^{\prime}, t^{\prime}, x_{1}\right\}$-bridge of G_{2}^{\prime} containing $\left\{b_{1}, x, x_{2}\right\}$. We may assume, after suitable labeling of $s^{\prime}, t^{\prime},\left(J-x_{1}, b_{1}, x, x_{2}, s^{\prime}, t^{\prime}\right)$ is planar.

Suppose $b_{1} \in\left\{s^{\prime}, t^{\prime}\right\}$. Then G has a 5 -separation $\left(L_{1}, L_{2}\right)$ such that $V\left(L_{1} \cap L_{2}\right)=$ $\left\{s^{\prime}, t^{\prime}, x, x_{1}, x_{2}\right\}$ and $L_{2}=J$. If $|V(J)| \geq 7$ then the assertion of this lemma follows from Lemma 4.2.1. So assume $|V(J)| \leq 6$. Since $e\left(z_{2}, B_{1}-b_{1}\right) \geq 2$, there exists $v \in N\left(z_{2}\right) \cap V\left(F^{\prime}-\left\{s^{\prime}, t^{\prime}, z_{2}\right\}\right)$. Since G is 5 -connected, $v x_{1}, v x_{2} \in E(G)$. Hence, $G\left[\left\{v, x_{1}, x_{2}, z_{2}\right\}\right]$ contains a K_{4}^{-}in which x_{1} is of degree 2.

Thus, we may assume that $b_{1} \notin\left\{s^{\prime}, t^{\prime}\right\}$. Then G has a 6 -separation $\left(L_{1}, L_{2}\right)$ such that $V\left(L_{1} \cap L_{2}\right)=\left\{b_{1}, s^{\prime}, t^{\prime}, x, x_{1}, x_{2}\right\}$ and $L_{2}=J$. If $|V(J)| \geq 8$ then the assertion of this lemma follows from Lemmas 2.3.12 and 4.2.1.

So assume $|V(J)| \leq 7$. By planarity of J and 2-connectedness of $B_{1}, z_{2} t^{\prime} \notin E(G)$. Thus, since $e\left(z_{2}, B_{1}-b_{1}\right) \geq 2, z_{2} s^{\prime} \in E(G)$ and there exists $v \in V\left(J-\left\{s^{\prime}, t^{\prime}, x, x_{2}, z_{2}\right\}\right.$ such that $z_{2} v \in E(G)$. So $|V(J)|=7$ and $z_{2}=x$. By the minimality of F^{\prime}, $v t^{\prime} \in E(G)$; and by the 2 -connectedness of $B_{1}, v s^{\prime}, v b_{1} \in E(G)$. We may assume $x_{2} v \notin E(G)$, as otherwise $G\left[\left\{s^{\prime}, v, x_{2}, z_{2}\right\}\right]$ (and, hence, $G-x_{1}$) contains a K_{4}^{-}and (ii) holds. Thus, $v x_{1} \in E(G)$ as G is 5 -connected. Moreover, $z_{2}=p_{2}$ as otherwise,
$z_{2} x_{1} E(G)$ (as G is 5 -connected) and $G\left[\left\{s^{\prime}, v, x_{1}, z_{2}\right\}\right]-x_{1} s^{\prime} \cong K_{4}^{-}$in which x_{1} is of degree 2; so (ii) holds.

If $F^{\prime \prime}-z_{1}$ has independent paths P_{1}, P_{2} from t^{\prime} to $s^{\prime}, z_{1}^{\prime}$, respectively, and if Y_{2} has a cycle C containing $\left\{p_{1}, p_{2}, y_{2}\right\}$ then $G\left[\left\{b_{1}, t^{\prime}, v\right\}\right] \cup z_{2} v \cup\left(z_{2} s^{\prime} \cup P_{1}\right) \cup C \cup\left(z_{1} z_{1}^{\prime} \cup\right.$ $\left.P_{2}\right) \cup\left(z_{1} x_{1} v\right)$ is a $T K_{5}$ in G with branch vertices $b_{1}, t^{\prime}, v, z_{1}, z_{2}$. So we may assume P_{1}, P_{2} do not exist, or C does not exist.

First, suppose P_{1}, P_{2} do not exist in $F^{\prime \prime}-z_{1}$. Then $F^{\prime \prime}-z_{1}$ has 1-separation $\left(L_{1}, L_{2}\right)$ such that $t^{\prime} \in V\left(L_{1}-L_{2}\right)$ and $\left\{s^{\prime}, z_{1}^{\prime}\right\} \subseteq V\left(L_{2}\right)$. Since G is 5 -connected, $\left|V\left(L_{1}\right)\right|=2$ and $x_{1} t^{\prime} \in E(G)$. Now $G\left[\left\{b_{1}, t^{\prime}, v, x_{1}\right\}\right]-x_{1} b_{1} \cong K_{4}^{-}$in which x_{1} is of degree 2, and (ii) holds.

Now assume C does not exist. Then by Lemma 2.3.5, Y_{2} has 2 -cuts S_{b}, S_{z} such that b_{1} is a in component D_{b} of $Y_{2}-S_{b}, p_{1}=z_{1}$ is in a component D_{z} of $Y_{2}-S_{z}$, and $V\left(D_{b}\right) \cap\left(V\left(D_{z}\right) \cup S_{z} \cup\left\{p_{2}\right\}\right)=\emptyset=V\left(D_{z}\right) \cap\left(V\left(D_{b}\right) \cup S_{b} \cup\left\{p_{2}\right\}\right)$. If $y_{2} \notin V\left(D_{b}\right)$ then $S_{b} \cup\left\{t^{\prime}, v\right\}$ is a cut in G, a contradiction. So $y_{2} \in V\left(D_{b}\right)$. Then $y_{2} \in V\left(D_{z}\right)$. Then $S_{z} \cup\left\{x_{1}, z_{1}^{\prime}\right\}$ is a cut in G, a contradiction.

Case 3. $e\left(z_{2}, B_{1}-b_{1}\right) \leq 1$.
If $y_{2} \in V(X)$ then, since G is 5-connected, $e\left(z_{1}, B_{1}-b_{1}\right) \geq 2$ and $e\left(z_{2}, B_{1}-b_{1}\right)=1$. If $y_{2} \notin V(X)$ then, by Lemma 4.3.3, $e\left(z_{2}, B_{1}-b_{1}\right)=1$ and $e\left(z_{1}, B_{1}-b_{1}\right) \geq 2$.

For convenience, let $F^{\prime}:=F_{1}^{\prime}, F^{\prime \prime}:=F_{1}^{\prime \prime}, s:=s_{1}$ and $t:=t_{1}$. Then $b_{1}, z_{1} \in V\left(F^{\prime}\right)$ and $y_{1}, z_{2} \in V\left(F^{\prime \prime}\right)-V\left(F^{\prime}\right)$. We choose $\left(F^{\prime}, F^{\prime \prime}\right)$ so that $F^{\prime \prime}$ is minimal. Let z_{2}^{\prime} denote the unique neighbor of z_{2} in $B_{1}-b_{1}$. Note that if $z_{2} \neq p_{2}$ then $z_{2} b_{1} \in E(G)$. By (iii) of Lemma 4.3.1, $G\left[Y_{2}+b_{1}+p_{2} X z_{2}\right]$ contains a path Q from p_{1} to b_{1} through y_{2}, p_{2} in order.

Subcase 3.1. $N\left(z_{1} X p_{1}-z_{1}\right) \cap V\left(F^{\prime \prime}-\left\{z_{2}, s, t\right\}\right) \nsubseteq\left\{z_{2}^{\prime}\right\}$.
Let $u u^{\prime} \in E(G)$ with $u^{\prime} \in V\left(z_{1} X p_{1}-z_{1}\right)$ and $u \in V\left(F^{\prime \prime}-\left\{s, t, z_{2}, z_{2}^{\prime}\right\}\right)$. Since B_{1} is 2-connected, F^{\prime} contains a path S from z_{1} to b_{1} such that $|V(S) \cap\{s, t\}| \leq 1$.

Suppose $\left(F^{\prime \prime}-z_{2}\right)-S$ contains independent paths S_{1}, S_{2} from y_{1} to z_{2}^{\prime}, u, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup z_{2} Q y_{2} \cup\left(z_{2} Q b_{1} \cup S \cup z_{1} x_{1}\right) \cup\left(z_{2} z_{2}^{\prime} \cup S_{1}\right) \cup\left(S_{2} \cup\right.$ $\left.u u^{\prime} \cup u^{\prime} X p_{1} \cup p_{1} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So we may assume that such S_{1}, S_{2} do not exist in $\left(F^{\prime \prime}-z_{2}\right)-S$ for any choice of S and any choice of u. Hence, $\left(F^{\prime \prime}-z_{2}\right)-S$ has a cut vertex c which separates y_{1} from $N\left(z_{1} X p_{1}-z_{1}\right) \cup\left\{z_{2}^{\prime}\right\}$. Denote by M_{1}, M_{2} the $(\{c\} \cup(\{s, t\} \cap V(S)))$-bridges of $F^{\prime \prime}-z_{2}$ containing $y_{1},\left(N\left(z_{1} X p_{1}-z_{1}\right) \cap V\left(F^{\prime \prime}-\left\{s, t, z_{2}\right\}\right)\right) \cup\left\{z_{2}^{\prime}\right\}$, respectively. Since G is 5-connected, $\{s, t\} \subseteq V\left(M_{1}\right)$ (to avoid the cut $\left\{c, x_{1}, x_{2}\right\} \cup(V(S) \cap\{s, t\})$) and M_{1} contains independent paths R_{1}, R_{2}, R_{3} from y_{1} to c, s, t, respectively. Since B_{1} is 2-connected, $\{s, t\} \cap V\left(M_{2}\right) \neq \emptyset$, say $t \in V\left(M_{2}\right)$. Note that M_{2} contains disjoint paths T_{1}, T_{2} from $\left\{z_{2}^{\prime}, u\right\}$ to $\{c, t\}$. Now $R_{1} \cup R_{3} \cup T_{1} \cup T_{2}$ contains independent paths from y_{1} to z_{2}^{\prime}, u, respectively, which avoids s and uses t. So by the nonexistence of $S_{1}, S_{2}, t \in V(S)$ for any choice of S, which implies $b_{1}=t$.

Choose $u u^{\prime}$ so that $u^{\prime} X p_{1}$ is maximal. Since $\left\{x_{1}, u^{\prime}, s, t\right\}$ cannot be a cut in G separating F^{\prime} from $F^{\prime \prime} \cup Y_{2} \cup p_{2} X x_{2}$, there exists $w w^{\prime} \in E(G)$ such that $w \in$ $V\left(F^{\prime}-\left\{s, t, z_{1}\right\}\right)$ and $w^{\prime} \in V\left(u^{\prime} X p_{1}-u^{\prime}\right) \cup V\left(p_{2} X x_{2}\right)$.

Suppose $w^{\prime} \in V\left(u^{\prime} X p_{1}-u^{\prime}\right)$. Let P_{1} be a path in $F^{\prime}-\left\{z_{1}, t\right\}$ from w to s and P_{2} be a path in $M_{2}-t$ from z_{2}^{\prime} to u. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup z_{2} Q y_{2} \cup\left(z_{2} Q b_{1} \cup\right.$ $\left.R_{3}\right) \cup\left(z_{2} z_{2}^{\prime} \cup P_{2} \cup u u^{\prime} \cup u^{\prime} X z_{1} \cup z_{1} x_{1}\right) \cup\left(R_{2} \cup P_{1} \cup w w^{\prime} \cup w^{\prime} X p_{1} \cup p_{1} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Now assume $w^{\prime} \in V\left(p_{2} X x_{2}\right)$. Then $F^{\prime}-t$ contains a path W from z_{1} to w. Hence $X^{\prime}:=W \cup w w^{\prime} \cup w^{\prime} X x_{2}$ is a path in $G-x_{1}$ from z_{1} to x_{2} such that in $\left(G-x_{1}\right)-X^{\prime}$, $\left\{y_{1}, y_{2}\right\}$ is contained in a cycle (which is contained in $\left(Y_{2}-p_{2}\right) \cup p_{1} X u^{\prime} \cup u^{\prime} u \cup M_{2} \cup$ $\left.\left(M_{1}-s\right)\right)$. Hence by Lemma 3.2.1 and Lemma 4.2.1, we may assume that X^{\prime} is such that $y_{1}, y_{2} \notin V(X)$, and $\left(G-x_{1}\right)-X^{\prime}$ is 2-connected. Thus, the assertion of this lemma follows from Lemma 2.3.6.

Subcase 3.2. $N\left(z_{1} X p_{1}-z_{1}\right) \cap V\left(F^{\prime \prime}-\left\{z_{2}, s, t\right\}\right) \subseteq\left\{z_{2}^{\prime}\right\}$.

First, we show that $\left\{s, t, x_{1}, x_{2}, z_{2}^{\prime}\right\}$ is a 5 -cut in G separating $F^{\prime \prime}-z_{2}$ from $F^{\prime} \cup Y_{2} \cup X$. For, otherwise, there exists $w w^{\prime} \in E(G)$ with $w \in V\left(F^{\prime \prime}\right)-\{s, t\}$ and $w^{\prime} \in V\left(p_{2} X z_{2}-z_{2}\right)$. Let P_{1}, P_{2} be independent paths in F^{\prime} from z_{1} to r, b_{1}, respectively, with $r \in\{s, t\}$. Without loss of generality, we may assume $r=s$. By the minimality of $F^{\prime \prime}, F^{\prime \prime}-t$ has independent paths R_{1}, R_{2} from y_{1} to s, w, respectively. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(P_{1} \cup R_{1}\right) \cup\left(P_{2} \cup b_{1} z_{2} x_{2}\right) \cup\left(R_{2} \cup w w^{\prime} \cup w^{\prime} X p_{2} \cup Q_{2}\right)$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Hence, since G is 5 -connected, $F^{\prime \prime}-z_{2}$ contains independent paths T_{1}, T_{2}, T_{3} from y_{1} to s, t, z_{2}^{\prime}, respectively, and $F^{\prime \prime}-z_{2}$ has no 2 -cut separating y_{1} from $\left\{s, t, z_{2}^{\prime}\right\}$. Let $F_{g}:=\left(F^{\prime \prime}-z_{2}\right)+\{g, g s, g t\}$, where g is a new vertex. Then by Lemma 2.3.5, F_{g} has a cycle containing $\left\{g, y_{1}, z_{2}^{\prime}\right\}$. Thus, we may assume by symmetry that $F^{\prime \prime}-z_{2}$ has a path S from s to t and through y_{1}, z_{2}^{\prime} in order.

We may assume $N\left(x_{2}\right) \cap V\left(F^{\prime}-\{s, t\}\right)=\emptyset$. For, suppose there exists $x_{2}^{*} \in$ $N\left(x_{2}\right) \cap V\left(F^{\prime}-\{s, t\}\right)$. Since B_{1} is 2-connected, F^{\prime} contains independent paths R_{1}, R_{2} from z_{1} to x_{2}^{*}, r, respectively, for some $r \in\{s, t\}$. (This can be done by considering whether or not z_{1} and x_{2}^{*} are contained in the same $\{s, t\}$-bridge of F^{\prime}.) Let $T=T_{1}$ if $r=s$, and $T=T_{2}$ if $r=t$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(R_{1} \cup\right.$ $\left.x_{2}^{*} x_{2}\right) \cup\left(R_{2} \cup T\right) \cup\left(Q_{2} \cup p_{2} X z_{2} \cup z_{2} z_{2}^{\prime} \cup T_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Let $x=p_{1}$ if $N\left(z_{2}^{\prime}\right) \cap V\left(z_{1} X p_{1}-z_{1}\right)=\emptyset$, and otherwise let $x \in N\left(z_{2}^{\prime}\right) \cap V\left(z_{1} X p_{1}-\right.$ $\left.z_{1}\right)$ with $z_{1} X x$ minimal.

Suppose $z_{2}^{\prime} x_{2} \in E(G)$. Then we may assume $x_{1} z_{2} \notin E(G)$; for otherwise, $G\left[\left\{x_{1}, x_{2}, z_{2}, z_{2}^{\prime}\right\}\right]-x_{1} z_{2}^{\prime} \cong K_{4}^{-}$in which x_{1} is of degree 2, and (ii) holds. Hence, $z_{2}=p_{2}$, and $\left\{b_{1}, s, t, x, x_{1}\right\}$ is a 5 -cut in G separating $F^{\prime} \cup z_{1} X x$ from $F^{\prime \prime} \cup Y_{2}$. Since G is 5 -connected, $b_{1} \notin\{s, t\}$. Let $\left(G_{1}, G_{2}\right)$ be a 5 -separation in G such that $V\left(G_{1} \cap G_{2}\right)=\left\{b_{1}, s, t, x, x_{1}\right\}$ and $G_{2}=G\left[F^{\prime} \cup z_{1} X x+x_{1}\right]$. Clearly, $\left|V\left(G_{i}\right)\right| \geq 7$ for $i \in[2]$. If ($\left.G_{2}-x_{1}, b_{1}, x, s, t\right)$ is planar then the assertion of this lemma follows from

Lemma 4.2.1. So we may assume that this is not the case. Then by Lemma 2.3.1, $G_{2}-x_{1}$ has disjoint paths S_{1}, S_{2} from s, t to b_{1}, x, respectively. Now $z_{2} z_{2}^{\prime} x_{2} z_{2} \cup y_{1} x_{2} \cup$ $y_{1} S z_{2}^{\prime} \cup\left(y_{1} S s \cup S_{1} \cup b_{1} Q z_{2}\right) \cup y_{2} Q z_{2} \cup\left(y_{2} Q p_{1} \cup p_{1} X x \cup S_{2} \cup t S z_{2}^{\prime}\right) \cup y_{2} x_{2} \cup y_{2} x_{1} y_{1}$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{2}, z_{2}, z_{2}^{\prime}, y_{1}, y_{2}$.

Now assume $z_{2}^{\prime} x_{2} \notin E(G)$. Then x_{2} has a neighbor in $F^{\prime \prime}-\left\{y_{1}, z_{2}^{\prime}\right\}$. Let r be a new vertex. We may assume that $\left(F^{\prime \prime}+\{r, r s, r t\}\right)-z_{2}$ has disjoint paths S_{1}, S_{2} from r, z_{2}^{\prime} to x_{2}, y_{1}, respectively. For, suppose such paths S_{1}, S_{2} do not exist. Then by Lemma 2.3.1, there exists a collection \mathcal{A} of disjoint subsets of $F_{2}^{\prime \prime}-\left\{x_{2}, y_{1}, z_{2}\right\}$ such that $\left.\left(F^{\prime \prime}+\{r, r s, r t\}\right)-z_{2}, r, y_{1}, x_{2}, z_{2}^{\prime}\right)$ is 3 -planar. By the minimality of $F^{\prime \prime}$, we may assume $\left(F^{\prime \prime}-z_{2}, s, t, y_{1}, x_{2}, z_{2}^{\prime}\right)$ is planar. Thus, since z_{2}^{\prime} is the only neighbor of z_{2} in $F^{\prime \prime}-F^{\prime}, G$ has a 5 -separation $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ with $V\left(G_{1}^{\prime} \cap G_{2}^{\prime}\right)=\left\{s, t, x_{1}, x_{2}, z_{2}\right\}$ and $G_{2}^{\prime}-x_{1}=F^{\prime \prime}$. Moreover, $\left(G_{2}^{\prime}-x_{1}, s, t, x_{2}, z_{2}\right)$ is planar. Since $\left|V\left(G_{j}^{\prime}\right)\right| \geq 7$ for $j \in[2]$, the assertion of this lemma follows from Lemma 4.2.1.

Without loss of generality, let $r s \in S_{1}$. If $F^{\prime}-t$ has independent paths P_{1}, P_{2} from z_{1} to s, b_{1}, respectively, then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(P_{1} \cup\left(S_{1}-r\right)\right) \cup\left(z_{1} X p_{1} \cup\right.$ $\left.p_{1} Q y_{2}\right) \cup\left(z_{2} z_{2}^{\prime} \cup S_{2} \cup y_{1} x_{1}\right) \cup z_{2} x_{2} \cup z_{2} Q y_{2} \cup\left(z_{2} Q b_{1} \cup P_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$. So we may assume that such P_{1}, P_{2} do not exist in $F^{\prime}-t$.

Thus F^{\prime} has a 2-separation $\left(F_{1}, F_{2}\right)$ such that $t \in V\left(F_{1} \cap F_{2}\right), z_{1} \in V\left(F_{1}-F_{2}\right)$ and $\left\{b_{1}, s\right\} \subseteq V\left(F_{2}-F_{1}\right)$. Choose this separation so that F_{1} is minimal. Let $s^{\prime} \in V\left(F_{1} \cap\right.$ $\left.F_{2}\right)-\{t\}$. Since $\left\{s^{\prime}, t, z_{1}, x_{1}\right\}$ cannot be a cut in $G, V\left(F_{1}\right)=\left\{s^{\prime}, t^{\prime}, z_{1}\right\}$ or there exists $z z^{\prime} \in E(G)$ such that $z \in V\left(z_{1} X p_{1}-z_{1}\right) \cup V\left(p_{2} X z_{2}-z_{2}\right)$ and $z^{\prime} \in V\left(F_{1}\right)-\left\{z_{1}, s^{\prime}, t\right\}$.

First, assume $V\left(F_{1}\right)=\left\{s^{\prime}, t^{\prime}, z_{1}\right\}$. Then $z_{1}=p_{1}$ as G is 5 -connected. By (iii) of Lemma 4.3.1, let Q^{\prime} be a path in Y_{2} from p_{2} to b_{1} and through y_{2}, p_{1} in order, and let C be a cycle in $Y_{2}-b_{1}$ containing $\left\{p_{1}, p_{2}, y_{2}\right\}$. Let $C^{\prime}:=Q^{\prime} \cup p_{2} X z_{2} \cup z_{2} b_{1}$ If $z_{2} \neq p_{2}$; and let $C^{\prime}:=C$ if $z_{2}=p_{2}$. If $F^{\prime}-\left\{b_{1}, t, z_{1}\right\}$ has a path S from s^{\prime} to s then $x_{1} x_{2} y_{2} x_{1} \cup z_{1} x_{1} \cup z_{2} x_{2} \cup C^{\prime} \cup\left(z_{1} s^{\prime} \cup S \cup S_{1}\right) \cup\left(z_{2} z_{2}^{\prime} \cup S_{2} \cup y_{1} x_{1}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$. So we may assume such S does not exist.

Then F^{\prime} has a separation $\left(F_{1}^{\prime}, F_{2}^{\prime \prime}\right)$ such that $V\left(F_{1}^{\prime} \cap F_{1}^{\prime \prime}\right)=\left\{b_{1}, t\right\},\left\{s^{\prime}, z_{1}\right\} \subseteq V\left(F_{1}^{\prime}\right)$ and $s \in V\left(F_{1}^{\prime \prime}\right)-\left\{b_{1}, t\right\}$. Since G is 5 -connected, $\left\{b_{1}, t, x_{1}, z_{1}\right\}$ is not a cut in G, and $F_{1}^{\prime}-\left\{b_{1}, t, z_{1}\right\}$ has a path S^{\prime} from s^{\prime} to some $z \in N\left(p_{2} X z_{2}-z_{2}\right)$. Let $z^{\prime} \in$ $N(z) \cap V\left(p_{2} X z_{2}-z_{2}\right)$. Let S be a path in $F_{2}-t$ from s to b_{1}. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup$ $z_{1} x_{1} \cup Q_{1} \cup\left(z_{1} s^{\prime} \cup S^{\prime} \cup z z^{\prime} \cup z^{\prime} X x_{2}\right) \cup\left(z_{1} t \cup T_{2}\right) \cup\left(T_{1} \cup S \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Thus, we may assume that $z z^{\prime} \in E(G)$ such that $z \in V\left(z_{1} X p_{1}-z_{1}\right) \cup V\left(p_{2} X z_{2}-z_{2}\right)$ and $z^{\prime} \in V\left(F_{1}\right)-\left\{z_{1}, s^{\prime}, t\right\}$.

Suppose $z \in V\left(x X p_{1}-x\right)$. Let $X^{\prime}=z_{1} X x \cup x z_{2}^{\prime} z_{2} x_{2}$. Then, $T_{1} \cup T_{2} \cup\left(F^{\prime}-z_{1}\right) \cup$ $z z^{\prime} \cup z X p_{1} \cup Y_{2}$ is contained in $G-X^{\prime}$ and has a cycle containing $\left\{y_{1}, y_{2}\right\}$. Hence, by Lemma 3.2.1 and then Lemma 4.2.1, we may assume that $G-x_{1}$ has an induced path $X^{\prime \prime}$ from z_{1} to x_{2} such that $y_{1}, y_{2} \notin V\left(X^{\prime \prime}\right)$ and $G-X^{\prime \prime}$ is 2-connected. Then the assertion of this lemma follows from Lemma 2.3.6.

Now suppose $z \in V\left(p_{2} X z_{2}-z_{2}\right)$. By the minimality of $F_{1}, F_{1}-t$ has independent paths L_{1}, L_{2} from z_{1} to s^{\prime}, z^{\prime}, respectively. In $F_{2} \cup\left(F^{\prime \prime}-z_{2}\right)$, we find independent paths $L_{1}^{\prime}, L_{2}^{\prime}$ from y_{1} to s^{\prime}, b_{1}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} X p_{1} \cup\right.$ $\left.Q_{1}\right) \cup\left(L_{1} \cup L_{1}^{\prime}\right) \cup\left(L_{2} \cup z^{\prime} z \cup z X x_{2}\right) \cup\left(L_{2}^{\prime} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Hence, we may assume $z \in V\left(z_{1} X x-z_{1}\right)$ for all such $z z^{\prime}$. Choose such z with $z_{1} X z$ is maximal. Since $\left\{s^{\prime}, t, x_{1}, z\right\}$ cannot be a cut in G, there exists $u u^{\prime} \in E(G)$ such that $u \in V\left(z_{1} X z-\left\{z_{1}, z\right\}\right)$ and $u^{\prime} \in V\left(F_{2}\right)-\left\{s^{\prime}, t\right\}$. Let P_{1} be a path in $F_{1}-\left\{s^{\prime}, z_{1}\right\}$ from z^{\prime} to t, and P_{2} be a path in $F_{2}-t$ from u^{\prime} to b_{1}. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{2} x_{2} \cup\left(z_{2} z_{2}^{\prime} \cup\right.$ $\left.T_{3}\right) \cup\left(z_{2} X p_{2} \cup p_{2} Q y_{2}\right) \cup\left(z_{2} Q b_{1} \cup P_{2} \cup u^{\prime} u \cup u X z_{1} \cup z_{1} x_{1}\right) \cup\left(T_{2} \cup P_{1} \cup z^{\prime} z \cup z X p_{1} \cup p_{1} Q y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

4.5 Finding $T K_{5}$

Recall the notation from Lemma 4.2.5 and the previous section. In particular, $H:=$ $G\left[B_{1}+\left\{z_{1}, z_{2}\right\}\right], G^{\prime}:=G-\left\{x_{1} x: x \notin\left\{x_{2}, y_{1}, y_{2}, z_{0}, z_{1}\right\}\right\}, b_{1} \in N\left(y_{2}\right) \cap V\left(B_{1}\right)$ if $y_{2} \in V(X)$, and $b_{1} \in V\left(B_{1} \cap B_{2}\right)$ if $y_{2} \notin V(X)$. Our objective is to find $T K_{5}$ in G^{\prime} using the structural information on H produced in the previous sections. By Lemma 4.3.1,
(A1) Y_{2} has independent paths Q_{1}, Q_{2}, Q_{3} from y_{2} to p_{1}, p_{2}, b, respectively.

Note that if $y_{2} \in V(X)$ then $e\left(z_{1}, B_{1}-b_{1}\right) \geq 2$ and $e\left(z_{2}, B_{1}-b_{1}\right) \geq 1$. Thus, by Lemma 4.3.3, we may assume that there exists $i \in[2]$ for which $e\left(z_{i}, B_{1}-b_{1}\right) \geq 2$ and $e\left(z_{3-i}, B_{1}-b_{1}\right) \geq 1$. (Moreover, by Lemma 4.3.2, $e\left(z_{3-i}, B_{1}\right)=1$ only if $b=b_{1}$ and, hence, $z_{3-i}=p_{3-i}$.) Then by Lemma 4.3.1,
(A2) Y_{2} has a path T from b to p_{i} through p_{3-i}, y_{2} in order, respectively.
By Lemma 4.4.1, we may assume that
(A3) H has disjoint paths Y, Z from y_{1}, z_{1} to b_{1}, z_{2}, respectively.

By Lemma 4.4.2, we may assume that
(A4) H has independent paths A, B, C, with A, C from z_{i} to y_{1}, and B from b_{1} to z_{3-i}.

Let $J(A, C)$ denote the $(A \cup C)$-bridge of H containing B, and $L(A, C)$ denote the union of all $(A \cup C)$-bridges of H with attachments on both A and C. We may choose A, B, C such that the following are satisfied in the order listed:
(a) A, B, C are induced paths in H,
(b) whenever possible, $J(A, C) \subseteq L(A, C)$,
(c) $J(A, C)$ is maximal, and
(d) $L(A, C)$ is maximal.

We refer the reader to Figure 4 for an illustration. We may assume that
(A5) for any $j \in[2], H$ contains no path from z_{j} to b_{1} and through z_{3-j}, y_{1} in order.

For, suppose H does contain a path, say R, from z_{j} to b_{1} and through z_{3-j}, y_{1} in order. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-j} x_{3-j} \cup\left(z_{3-j} X p_{3-j} \cup Q_{3-j}\right) \cup\left(z_{3-j} R z_{j} \cup z_{j} x_{j}\right) \cup$ $z_{3-j} R y_{1} \cup\left(y_{1} R b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-j}$. Thus, we may assume (A5).

Since B_{1} is 2-connected and $e\left(z_{3-i}, B_{1}-b_{1}\right) \geq 1, H$ has disjoint paths P, Q from $p, q \in V(B)$ to $c, a \in V(A \cup C)-\left\{z_{i}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$. By symmetry between A and C, we may assume that b_{1}, p, q, z_{3-i} occur on B in order. By (A5), $c \neq y_{1}$. We choose such P, Q that the following are satisfied in order listed:
(A6) $q B z_{3-i}$ is minimal, $p B z_{3-i}$ is maximal, the subpath of $(A \cup C)-z_{i}$ between a and y_{1} is minimal, and the subpath of $(A \cup C)-z_{i}$ between c and y_{1} is maximal.

Let B^{\prime} denote the union of B and the B-bridges of H not containing $A \cup C$. Note that all paths in H from $A \cup C$ to B^{\prime} and internally disjoint from B^{\prime} must have an end in B. We may assume that
(A7) if $e\left(z_{3-i}, B_{1}\right) \geq 2$ then, for any $q^{*} \in V\left(B^{\prime}-q\right), B^{\prime}$ has independent paths from z_{3-i} to q, q^{*}, respectively.

For, suppose $e\left(z_{3-i}, B_{1}\right) \geq 2$ and for some $q^{*} \in V\left(B^{\prime}-q\right), B^{\prime}$ has no independent paths from z_{3-i} to q, q^{*}, respectively. Then $q \neq z_{3-i}$, and B^{\prime} has a 1 -separation $\left(B_{1}^{\prime}, B_{2}^{\prime}\right)$ such that $q, q^{*} \in V\left(B_{2}^{\prime}\right)$ and $z_{3-i} \in V\left(B_{1}^{\prime}\right)-V\left(B_{2}^{\prime}\right)$. Note that $b_{1} \in V\left(B_{2}^{\prime}\right)$. Choose ($B_{1}^{\prime}, B_{2}^{\prime}$) with B_{1}^{\prime} minimal, and let $z \in V\left(B_{1}^{\prime} \cap B_{2}^{\prime}\right)$. Since $e\left(z_{3-i}, B_{1}\right) \geq 2$,
$\left|V\left(B_{1}^{\prime}\right)\right| \geq 3$; so H has a path R from some $s \in V\left(B_{1}^{\prime}-z\right)$ to some $t \in V(A \cup C \cup P \cup Q)$ and internally disjoint from $A \cup B \cup C \cup P \cup Q$.

By the choice of P, Q in (A6), we see that $t=z_{i}$. Let S be a path in B_{1}^{\prime} from z_{3-i} to s, respectively. Now $S \cup R \cup A \cup y_{1} C c \cup P \cup p B b_{1}$ is a path contradicting (A5). Hence

We will show that we may assume $a=y_{1}$ (see (3)), derive structural information about G^{\prime} and H (see (4)-(7)), and will consider whether or not $z_{i} \in V(J(A, C)$) (see Case 1 and Case 2). First, we may assume that
(1) $N\left(y_{1}\right) \cap V\left(z_{j} X p_{j}-z_{j}\right)=\emptyset$ for $j \in[2]$.

For, suppose there exists $s \in N\left(y_{1}\right) \cap V\left(z_{j} X p_{j}-z_{j}\right)$ for some $j \in[2]$. If $j=3-i$ then, using the paths Q_{1}, Q_{2}, Q_{3} from (A1), we see that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup\right.$ $\left.Q_{i}\right) \cup A \cup\left(z_{i} C c \cup P \cup p B z_{3-i} \cup z_{3-i} x_{3-i}\right) \cup\left(y_{1} s \cup s X p_{3-i} \cup Q_{3-i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

So assume $j=i$. Suppose $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$. Recall the path T from (A2). Note that $z_{3-i} T b \cup b b_{1} \cup A \cup B \cup C \cup P \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to z_{i}, y_{1}, respectively. Hence $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup$ $z_{3-i} T y_{2} \cup\left(S_{1} \cup z_{i} x_{i}\right) \cup S_{2} \cup\left(y_{1} s \cup s X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Now assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. Then $P_{1} \cup P_{2} \cup A \cup B \cup C \cup P \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to z_{i}, y_{1}, respectively. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup\left(S_{1} \cup\right.$ $\left.z_{i} x_{i}\right) \cup S_{2} \cup\left(y_{1} s \cup s X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. This proves (1).

We may assume
(2) $y_{1} \in V(J(A, C))$.

For, suppose $y_{1} \notin V(J(A, C))$. By (1) and 5-connectedness of $G, y_{1} \in V\left(D_{1}\right)$ for some $(A \cup C)$-bridge D_{1} of H with $D_{1} \neq J(A, C)$. Thus, let D_{1}, \ldots, D_{k} be a maximal sequence of $(A \cup C)$-bridges of H with $D_{j} \neq J(A, C)$ for $j \in[k]$, such that, for each $l \in[k-1]$,
D_{l+1} has a vertex not in $\bigcup_{j \in[l]}\left(c_{j} C y_{1} \cup a_{j} A y_{1}\right)$ and a vertex not in $\bigcap_{j \in[l]}\left(z_{i} C c_{j} \cup z_{i} A a_{j}\right)$,
where for each $j \in[k], a_{j} \in V\left(D_{j} \cap A\right)$ and $c_{j} \in V\left(D_{j} \cap C\right)$ such that $a_{j} A y_{1}$ and $c_{j} C y_{1}$ are maximal. Let $S_{l}:=\bigcup_{j \in[l]}\left(D_{j} \cup a_{j} A y_{1} \cup c_{j} C y_{1}\right)$.

We claim that for any $l \in[k]$ and for any $r_{l} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}, S_{l}$ has three independent paths A_{l}, C_{l}, R_{l} from y_{1} to a_{l}, c_{l}, r_{l}, respectively. This is obvious for $l=1$ (if $a_{l}=y_{1}$, or $c_{l}=y_{1}$, or $r_{l}=y_{1}$ then A_{l}, or C_{l}, or R_{l} is a trivial path). Now assume $k \geq 2$ and the claim holds for some $l \in[k-1]$. Let $r_{l+1} \in V\left(S_{l+1}\right)-\left\{a_{l+1}, c_{l+1}\right\}$. When $r_{l+1} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ let $r_{l}:=r_{l+1}$; otherwise, let $r_{l} \in V\left(a_{l} A y_{1}-a_{l}\right) \cup V\left(c_{l} C y_{1}-c_{l}\right)$ with $r_{l} \in V\left(D_{l+1}\right)$. By assumption, S_{l} has independent paths A_{l}, C_{l}, R_{l} from y_{1} to a_{l}, c_{l}, r_{l}, respectively. If $r_{l+1} \in V\left(S_{l}\right)-\left\{a_{l}, c_{l}\right\}$ then $A_{l+1}:=A_{l} \cup a_{l} A a_{l+1}, C_{l+1}:=$ $C_{l} \cup c_{l} C c_{l+1}, R_{l+1}:=R_{l}$ are the desired paths in S_{l+1}. If $r_{l+1} \in V\left(D_{l+1}\right)-V(A \cup C)$ then let P_{l+1} be a path in D_{l+1} from r_{l} to r_{l+1} internally disjoint from $A \cup C$; we see that $A_{l+1}:=A_{l} \cup a_{l} A a_{l+1}, C_{l+1}:=C_{l} \cup c_{l} C c_{l+1}, R_{l+1}:=R_{l} \cup P_{l+1}$ are the desired paths in S_{l+1}. So we may assume by symmetry that $r_{l+1} \in V\left(a_{l+1} A a_{l}-a_{l+1}\right)$. Let Q_{l+1} be a path in D_{l+1} from r_{l} to a_{l+1} internally disjoint from $A \cup C$. Now $R_{l+1}:=A_{l} \cup a_{l} A r_{l+1}, C_{l+1}:=C_{l} \cup c_{l} C c_{l+1}, A_{l+1}:=R_{l} \cup Q_{l+1}$ are the desired paths in S_{l+1}.

Hence, by (c), $J(A, C)$ does not intersect $\left(a_{k} A y_{1} \cup c_{k} C y_{1}\right)-\left\{a_{k}, c_{k}\right\}$. Since G is 5 -connected, $\left\{a_{k}, c_{k}, x_{1}, x_{2}\right\}$ cannot be a cut in G separating S_{k} from $X \cup J(A, C)$. So there exists $s s^{\prime} \in E(G)$ such that $s \in V\left(S_{k}\right)-\left\{a_{k}, c_{k}\right\}$ and $s^{\prime} \in V\left(z_{1} X p_{1} \cup z_{2} X p_{2}\right)$. By the above claim, let A_{k}, C_{k}, R_{k} be independent paths in S_{k} from y_{1} to a_{k}, c_{k}, s, respectively; so $s^{\prime} \notin\left\{z_{1}, z_{2}\right\}$ by (c).

Suppose $s^{\prime} \in V\left(z_{3-i} X p_{3-i}-z_{3-i}\right)$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup Q_{i}\right) \cup$ $\left(z_{i} C c \cup P \cup p B z_{3-i} \cup z_{3-i} x_{3-i}\right) \cup\left(z_{i} A a_{k} \cup A_{k}\right) \cup\left(R_{k} \cup s s^{\prime} \cup s^{\prime} X p_{3-i} \cup Q_{3-i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

So we may assume $s^{\prime} \in V\left(z_{i} X p_{i}-z_{i}\right)$. Suppose $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$. Recall the path T from (A2). Note that $z_{3-i} T b \cup b b_{1} \cup z_{i} A a_{k} \cup z_{i} C c_{k} \cup P \cup Q \cup B$ contains independent paths S_{1}, S_{2} from z_{3-i} to z_{i}, v, respectively, for some $v \in\left\{a_{k}, c_{k}\right\}$. Let $S=A_{k}$ if $v=a_{k}$, and $S=C_{k}$ if $v=c_{k}$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup$ $\left(S_{1} \cup z_{i} x_{i}\right) \cup\left(S_{2} \cup S\right) \cup\left(R_{k} \cup s s^{\prime} \cup s^{\prime} X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Hence, we may assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. Then, $P_{1} \cup P_{2} \cup z_{i} A a_{k} \cup z_{i} C c_{k} \cup P \cup Q \cup B$ contains independent paths S_{1}, S_{2} from z_{3-i} to z_{i}, v, respectively, for some $v \in\left\{a_{k}, c_{k}\right\}$. Let $S=A_{k}$ if $v=a_{k}$, and $S=C_{k}$ if $v=c_{k}$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup\right.$ $\left.Q_{3-i}\right) \cup\left(S_{1} \cup z_{i} x_{i}\right) \cup\left(S_{2} \cup S\right) \cup\left(R_{k} \cup s s^{\prime} \cup s^{\prime} X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. This completes the proof of (2).

For convenience, we let $K:=A \cup B \cup C \cup P \cup Q$. We claim that (3) $a=y_{1}$

Suppose $a \neq y_{1}$. By (2), $J(A, C)$ has a path S from y_{1} to some vertex $s \in V(P \cup$ $Q \cup B)-\{c, a\}$ and internally disjoint from K. By (A6), $s \notin V\left(Q \cup q B z_{3-i}\right)$. So $s \in V\left(P \cup b_{1} B q-q\right)$. Let $R=a A z_{i}$ and $R^{\prime}=C$ if $a \in V(A)$; and $R=a C z_{i}$ and $R^{\prime}=A$ if $a \in V(C)$. Also, let $S^{\prime}=S \cup s B b_{1}$ if $s \in V(B)$, and $S^{\prime}=S \cup s P p \cup p B b_{1}$ if $s \in V(P)$. Then $z_{3-i} B q \cup Q \cup R \cup R^{\prime} \cup S^{\prime}$ is a path contradicting (A5).

Before we distinguish cases according to whether or not $z_{i} \in V(J(A, C))$, we derive further information about G^{\prime}. We may assume that
(4) for any path W in G^{\prime} from x_{i} to some $w \in V(K)-\left\{z_{i}, y_{1}\right\}$ and internally disjoint from K, we have $w \in V(A)-\left\{z_{i}, y_{1}\right\}$.

To see this, suppose $w \notin V(A)-\left\{z_{i}, y_{1}\right\}$. First, assume $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$. Recall the path T from (A2). So $z_{3-i} T b_{1} \cup B \cup\left(C-z_{i}\right) \cup W \cup P \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to x_{i}, y_{1}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup$ $z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup S_{1} \cup S_{2} \cup\left(A \cup z_{i} X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Thus, we may assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths in B^{\prime} from (A7) with $q^{*}=p$. So $P_{1} \cup P_{2} \cup B \cup\left(C-z_{i}\right) \cup W \cup P \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to x_{i}, y_{1}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup$ $\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup S_{1} \cup S_{2} \cup\left(A \cup z_{i} X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. This completes the proof of (4).

Since G is 5 -connected and $z_{0} \in V\left(B_{1}\right)$ when $e\left(z_{1}, B_{1}\right) \geq 2$ (by (iv) of Lemma 4.2.5), it follows from (4) that
G^{\prime} has a path W from x_{i} to $w \in V(A)-\left\{y_{1}, z_{i}\right\}$ and internally disjoint from K.

Hence, $|V(A)| \geq 3$ and $|V(C)| \geq 3$. Since A and C are induced paths in H,

$$
y_{1} z_{i} \notin E(G) .
$$

We may assume that
(5) G^{\prime} has no path from $z_{3-i} X p_{3-i}-y_{2}$ to $(A \cup C)-y_{1}$ and internally disjoint from K, G^{\prime} has no path from $z_{i} X p_{i}-z_{i}$ to $\left(A \cup c C y_{1}\right)-\left\{z_{i}, c\right\}$ and internally disjoint from K, and if $i=1$ then G^{\prime} has no path from x_{3-i} to $(A \cup C)-y_{1}$ and internally disjoint from K.

First, suppose S is a path in G^{\prime} from some $s \in V\left(z_{3-i} X p_{3-i}-y_{2}\right)$ to some $s^{\prime} \in$ $V(A \cup C)-\left\{y_{1}\right\}$. Then $A \cup C \cup S$ contains independent paths S_{1}, S_{2} from z_{i} to y_{1}, s, respectively. Hence, $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup Q_{i}\right) \cup S_{1} \cup\left(S_{2} \cup s X z_{3-i} \cup\right.$ $\left.z_{3-i} x_{3-i}\right) \cup\left(Q \cup q B b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

Now assume that S is a path in G^{\prime} from some $s \in V\left(z_{i} X p_{i}-z_{i}\right)$ to some $s^{\prime} \in$ $V\left(A \cup c C y_{1}\right)-\left\{z_{i}, c\right\}$ and internally disjoint from K. Let $S^{\prime}=y_{1} A s^{\prime}$ if $s^{\prime} \in V(A)$, and $S^{\prime}=y_{1} C s^{\prime}$ if $s^{\prime} \in V\left(c C y_{1}\right)$. If $e\left(z_{3-i}, B_{1}\right)=1$ then $z_{3-i}=p_{3-i}$ and, using the path T from (A2), we see that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup\left(z_{3-i} B q \cup Q\right) \cup\left(z_{3-i} T b_{1} \cup\right.$ $\left.b_{1} B p \cup P \cup c C z_{i} \cup z_{i} x_{i}\right) \cup\left(S^{\prime} \cup S \cup s X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from $(\mathrm{A} 7)$ with $q^{*}=p$. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup\left(P_{1} \cup Q\right) \cup$ $\left(P_{2} \cup P \cup c C z_{i} \cup z_{i} x_{i}\right) \cup\left(S^{\prime} \cup S \cup s X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Now suppose $i=1$ and S is a path in G^{\prime} from x_{3-i} to some $s \in V(A \cup C)-\left\{y_{1}\right\}$ and internally disjoint from K. If $s \in V\left(A-y_{1}\right)$, then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup$ $\left(z_{i} X p_{i} \cup Q_{i}\right) \cup C \cup\left(z_{i} A s \cup S\right) \cup\left(Q \cup q B b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$. So assume $s \in V\left(C-y_{1}\right)$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup$ $\left(z_{i} X p_{i} \cup Q_{i}\right) \cup A \cup\left(z_{i} C s \cup S\right) \cup\left(Q \cup q B b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$. This completes the proof of (5).
(6) We may assume that
(6.1) any path in $J(A, C)$ from $A-\left\{z_{i}, y_{1}\right\}$ to $(P \cup Q \cup B)-\left\{c, y_{1}\right\}$ and internally disjoint from K must end on Q,
(6.2) if an $(A \cup C)$-bridge of H contained in $L(A, C)$ intersects $z_{i} C c-c$ and contains a vertex $z \in V\left(A-z_{i}\right)$ then $J(A, C) \cap\left(z_{i} A z-\left\{z_{i}, z\right\}\right)=\emptyset$, and
(6.3) $J(A, C) \cap\left(z_{i} C c-\left\{z_{i}, c\right\}\right)=\emptyset$, and any path in $J(A, C)$ from z_{i} to $(P \cup Q \cup$ $B)-\left\{c, y_{1}\right\}$ and internally disjoint from K must end on $(P-c) \cup b_{1} B p$.

To prove (6.1), let S be a path in $J(A, C)$ from $s \in V(A)-\left\{z_{i}, y_{1}\right\}$ to $s^{\prime} \in V(P \cup$ $B)-\left\{c, q, y_{1}\right\}$ and internally disjoint from K. Note that $s^{\prime} \notin V\left(q B z_{3-i}-q\right)$ by (A6).

Suppose $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$ and we use the path T from (A2). Let S^{\prime} be a path in $(P-c) \cup\left(b_{1} B q-q\right)$ from b_{1} to s^{\prime}. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup$
$z_{3-i} T y_{2} \cup\left(z_{3-i} T b_{1} \cup S^{\prime} \cup S \cup s A w \cup W\right) \cup\left(z_{3-i} B q \cup Q\right) \cup\left(C \cup z_{i} X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So we may assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be the paths from (A7), with $q^{*}=p$ when $s^{\prime} \in V(P)$ and $q^{*}=s^{\prime}$ when $s^{\prime} \in V(B)$. So $P_{1} \cup P_{2} \cup B \cup S \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to s, y_{1}, respectively. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup\left(S_{1} \cup s A w \cup\right.$ $W) \cup S_{2} \cup\left(C \cup z_{i} X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

To prove (6.2), let D be a path contained in $L(A, C)$ from $z^{\prime} \in V\left(z_{i} C c-c\right)$ to $z \in V\left(A-z_{i}\right)$ and internally disjoint from K. Suppose there exists $s \in V(J(A, C)) \cap$ $V\left(z_{i} A z-\left\{z_{i}, z\right\}\right) . \operatorname{By}(6.1), J(A, C)$ has a path S from s to some $s^{\prime} \in V\left(Q-y_{1}\right)$ and internally disjoint from K. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup Q_{i}\right) \cup\left(z_{i} A s \cup S \cup\right.$ $\left.s^{\prime} Q q \cup q B z_{3-i} \cup z_{3-i} x_{3-i}\right) \cup\left(z_{i} C z^{\prime} \cup D \cup z A y_{1}\right) \cup\left(y_{1} C c \cup P \cup p B b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

To prove (6.3), let S be a path in $J(A, C)$ from $s \in V\left(z_{i} C c-c\right)$ to $s^{\prime} \in V(P \cup Q \cup$ $B)-\left\{c, y_{1}\right\}$ and internally disjoint from K. Suppose $s^{\prime} \in V\left(Q \cup z_{3-i} B p\right)-\left\{p, y_{1}\right\}$. Then $\left(S \cup Q \cup p B z_{3-i}\right)-\left\{p, y_{1}\right\}$ contains a path S^{\prime} from s to z_{3-i}. So $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup$ $z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup Q_{i}\right) \cup\left(z_{i} C s \cup S^{\prime} \cup z_{3-i} x_{3-i}\right) \cup A \cup\left(y_{1} C c \cup P \cup p B b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$. Thus, we may assume $s^{\prime} \in V(P-c) \cup V\left(b_{1} B p\right)$. $\mathrm{By}(\mathrm{A} 6), s=z_{i}$. This proves (6).

Denote by $L(A)$ (respectively, $L(C)$) the union of all $(A \cup C)$-bridges of H whose intersection with $A \cup C$ is contained in A (respectively, C).
(7) $L(A)=\emptyset$, and $L(C) \cap C \subseteq z_{i} C c$.

Suppose $L(A) \neq \emptyset$, and let R_{1} be an $(A \cup C)$-bridge of H contained in $L(A)$. We construct a maximal sequence R_{1}, \ldots, R_{m} of $(A \cup C)$-bridges of H contained in $L(A)$, such that for $2 \leq i \leq m, R_{i}$ has a vertex internal to $\bigcup_{j=1}^{i-1} l_{j} A r_{j}$ (which is a path), where $l_{j}, r_{j} \in V\left(R_{j} \cap A\right)$ with $l_{j} A r_{j}$ maximal. Let $a_{1}, a_{2} \in V(A)$ such that $\bigcup_{j=1}^{m} l_{j} A r_{j}=$ $a_{1} A a_{2}$. By (c), $J(A, C) \cap\left(a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}\right)=\emptyset ;$ by (d) and the maximality of
$R_{1}, \ldots, R_{m}, L(A, C)$ has no path from $a_{1} A a_{2}-\left\{a_{1}, a_{2}\right\}$ to $\left(A-a_{1} A a_{2}\right) \cup\left(C-\left\{y_{1}, z_{i}\right\}\right)$; and by (5), $\left(z_{1} X p_{1} \cup z_{2} X p_{2}\right)-\left\{a_{1}, a_{2}, z_{i}\right\}$ contains no neighbor of $\left(\bigcup_{j=1}^{m} R_{j} \cup a_{1} A a_{2}\right)-$ $\left\{a_{1}, a_{2}\right\}$. Hence, $\left\{a_{1}, a_{2}, x_{1}, x_{2}\right\}$ is a 4-cut in G, a contradiction. Therefore, $L(A)=\emptyset$.

Now assume $L(C) \cap C \nsubseteq z_{i} C c$, and let R_{1} be an $(A \cup C)$-bridge of H contained in $L(C)$ such that $R_{1} \cap\left(c C y_{1}-c\right) \neq \emptyset$. We construct a maximal sequence R_{1}, \ldots, R_{m} of $(A \cup C)$-bridges of H contained in $L(C)$ such that for $2 \leq i \leq m, R_{i}$ has a vertex internal to $\bigcup_{j=1}^{i-1} l_{j} C r_{j}$ (which is a path), where $l_{j}, r_{j} \in V\left(R_{j} \cap C\right)$ with $l_{j} C r_{j}$ maximal. Let $c_{1}, c_{2} \in V(C)$ such that $\bigcup_{j=1}^{m} l_{j} C r_{j}=c_{1} C c_{2}$. By the existence of P and (c), $c_{1}, c_{2} \in c C y_{1}$; by (c), $J(A, C) \cap\left(c_{1} C c_{2}-\left\{c_{1}, c_{2}\right\}\right)=\emptyset$; by (d) and the maximality of $R_{1}, \ldots, R_{m}, L(A, C) \cap\left(c_{1} C c_{2}-\left\{c_{1}, c_{2}\right\}\right)=\emptyset$; and by (5) and the maximality of $R_{1}, \ldots, R_{m}, z_{1} X p_{1} \cup z_{2} X p_{2}$ contains no neighbor of $\left(\bigcup_{j=1}^{m} R_{j} \cup c_{1} C c_{2}\right)-\left\{c_{1}, c_{2}\right\}$. Hence, $\left\{c_{1}, c_{2}, x_{1}, x_{2}\right\}$ is a 4 -cut in G, a contradiction. Therefore, $L(C) \cap C \subseteq z_{i} C c$. This proves (7).

Let F be the union of all $(A \cup C)$-bridges of H different from $J(A, C)$ and intersecting $z_{i} C c-c$. When $F \neq \emptyset$, let $a^{*} \in V(F \cap A)$ with $a^{*} A y_{1}$ minimal, and let r be the neighbor of $\left(F \cup z_{i} A a^{*} \cup z_{i} C c\right)-\left\{a^{*}, c\right\}$ on $z_{i} X p_{i}-z_{i}$ with $r X p_{i}$ minimal.

Case 1. $z_{i} \in V(J(A, C))$.
By (6.3), $J(A, C)$ contains a path S from z_{i} to some $s \in V(P-c) \cup V\left(b_{1} B p\right)$ and internally disjoint from K.

Subcase 1.1. $F \neq \emptyset$.
Suppose $r \neq z_{i}$. Then by (5) and the definition of r, G^{\prime} has a path R from r to $r^{\prime} \in V\left(z_{i} C c\right)-\left\{z_{i}, c\right\}$ and internally disjoint from $K \cup X$, and by (6.3), R is disjoint from $J(A, C)$. First, assume $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$ and we use the path T from (A2). Note that $S \cup P \cup p B b_{1}$ contains a path S^{\prime} from z_{i} to b_{1}. Hence, $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup\left(z_{3-i} T b \cup b b_{1} \cup S^{\prime} \cup z_{i} x_{i}\right) \cup\left(z_{3-i} B q \cup Q\right) \cup$ $\left(y_{1} C r^{\prime} \cup R \cup r X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So
assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. So $P_{1} \cup P_{2} \cup B \cup S \cup(P-c) \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to z_{i}, y_{1}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup\left(S_{1} \cup z_{i} x_{i}\right) \cup$ $S_{2} \cup\left(y_{1} C r^{\prime} \cup R \cup r X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

So $r=z_{i}$ and, hence, $\left\{a^{*}, c, x_{1}, x_{2}, z_{i}\right\}$ is a 5 -cut in G. Thus, $i=2$ by (5). Let $F^{*}:=G\left[F \cup z_{i} A a^{*} \cup z_{i} C c+\left\{x_{1}, x_{2}\right\}\right]$

Suppose $F^{*}-x_{1}$ has disjoint paths S_{1}, S_{2} from x_{i}, z_{i} to c, a^{*}, respectively. If $e\left(z_{3-i}, B_{1}\right)=1$ then $z_{3-i}=p_{3-i}$ and, using the path T from (A2), we see that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup\left(z_{3-i} T b \cup b b_{1} \cup b_{1} B p \cup P \cup S_{1}\right) \cup\left(z_{3-i} B q \cup Q\right) \cup$ $\left(y_{1} A a^{*} \cup S_{2} \cup z_{i} X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. Now assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup\left(P_{1} \cup Q\right) \cup\left(P_{2} \cup P \cup S_{1}\right) \cup$ $\left(y_{1} A a^{*} \cup S_{2} \cup z_{i} X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Thus, we may assume that such S_{1}, S_{2} do not exist. Then by Lemma 2.3.1, $\left(F^{*}-x_{1}, x_{i}, z_{i}, c, a^{*}\right)$ is planar. If $\left|V\left(F^{*}\right)\right| \geq 7$, then the assertion of Theorem 4.1.1 follows from Lemma 4.2.1. So assume $\left|V\left(F^{*}\right)\right|=6$. Let $z \in V\left(F^{*}-x_{1}\right)-\left\{x_{i}, z_{i}, c, a^{*}\right\}$. Then $G\left[\left\{x_{i}, z_{i}, z, c\right\}\right] \cong K_{4}^{-}$, and (ii) of Theorem 4.1.1 holds (as $i=2$ in this case).

Subcase 1.2. $F=\emptyset$.
Then $L(C)=\emptyset$ by (7). Also, $L(A)=\emptyset$ by (7). Hence, by (4) and the comment preceding (5), $W=x_{i} w$ with $w \in V(A)-\left\{z_{i}, y_{1}\right\}$.

We may assume that $J(A, C) \cap\left(A-\left\{z_{i}, y_{1}\right\}\right)=\emptyset$. For, otherwise, let $t \in$ $V(J(A, C)) \cap V\left(A-\left\{z_{i}, y_{1}\right\}\right)$. By (6.1), $J(A, C)$ contains a path T from t to $t^{\prime} \in$ $V\left(Q-y_{1}\right)$ and internally disjoint from K, and T must be internally disjoint from S. Note that $\left(S \cup P \cup b_{1} B p\right)-c$ contains a path S^{\prime} from z_{i} to b_{1} and internally disjoint from $T \cup Q \cup z_{3-i} B q$. If $e\left(z_{3-i}, B_{1}\right)=1$ then $z_{3-i}=p_{3-i}$ and, using the path T from (A2), we see that $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup p_{i} T y_{2}\right) \cup\left(z_{3-i} T b \cup\right.$ $\left.b b_{1} \cup S^{\prime}\right) \cup\left(C \cup y_{1} x_{3-i}\right) \cup\left(z_{3-i} B q \cup q Q t^{\prime} \cup T \cup t A w \cup w x_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch
vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$. So assume that $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. So $P_{1} \cup P_{2} \cup B \cup S \cup(P-c) \cup\left(Q-y_{1}\right) \cup T$ contains independent paths S_{1}, S_{2} from z_{3-i} to z_{i}, t, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup$ $\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup z_{i} x_{i} \cup\left(z_{i} X p_{i} \cup Q_{i}\right) \cup S_{1} \cup\left(C \cup y_{1} x_{3-i}\right) \cup\left(S_{2} \cup t A w \cup w x_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$.

By (A5), $J:=J(A, C) \cup C$ contains no disjoint paths from z_{i}, y_{1} to z_{3-i}, b_{1}, respectively. Hence by Lemma 2.3.1, there exists a collection \mathcal{L} of subsets of $V(J)-$ $\left\{b_{1}, y_{1}, z_{1}, z_{2}\right\}$ such that $\left(J, \mathcal{L}, z_{i}, y_{1}, z_{3-i}, b_{1}\right)$ is 3 -planar. We choose \mathcal{L} so that each $L \in \mathcal{L}$ is minimal and, subject to this, $|\mathcal{L}|$ is minimal.

We claim that for each $L \in \mathcal{L}, L \cap V(L(A, C))=\emptyset$. For suppose there exists $L \in \mathcal{L}$ such that $L \cap V(L(A, C)) \neq \emptyset$. Then, since G is 5 -connected, $\left|N_{J}(L) \cap V(C)\right| \geq 2$. Assume for the moment that $N_{J}(L) \subseteq V(C)$. Then, since $L(C)=\emptyset$ and $J(A, C) \cap$ $\left(A-\left\{z_{i}, y_{1}\right\}\right)=\emptyset, L \subseteq V(C)$. However, since C is an induced path in G, we see that $\left(J, \mathcal{L}-\{L\}, z_{i}, y_{1}, z_{3-i}, b_{1}\right)$ is 3 -planar, contradicting the choice of \mathcal{L}. Thus, let $N_{J}(L)=\left\{t_{1}, t_{2}, t_{3}\right\}$ such that $t_{1}, t_{2} \in V(C)$ and $t_{3} \notin V(C)$. Then $J(A, C)$ contains a path R from t_{3} to B and internally disjoint from $B \cup C$. Let $t \in L \cap V(L(A, C))$. By the minimality of $L, G\left[L+\left\{t_{1}, t_{2}, t_{3}\right\}\right]$ contains disjoint paths T_{1}, T_{2} from t_{1}, t to t_{2}, t_{3}, respectively. We may choose T_{1} to be induced, and let $C^{\prime}:=z_{i} C t_{1} \cup T_{1} \cup t_{2} C y_{1}$. Then A, B, C^{\prime} satisfy (a), but $J\left(A, C^{\prime}\right) \subseteq L\left(A, C^{\prime}\right)$ (because of T_{2}), contradicting (2) (as $\left.J(A, C) \cap\left(A-\left\{z_{i}, y_{1}\right\}\right)=\emptyset\right)$.

Because of the existence of Y, Z in (A3), there are disjoint paths R_{1}, R_{2} in $L(A, C)$ from $r_{1}, r_{2} \in V(A)$ to $r_{1}^{\prime}, r_{2}^{\prime} \in V(C)$ such that $z_{i}, r_{1}, r_{2}, y_{1}$ occur on A in order and $z_{i}, r_{2}^{\prime}, r_{1}^{\prime}, y_{1}$ occur on C in order. Let $A^{\prime}=z_{i} A r_{1} \cup R_{1} \cup r_{1}^{\prime} C y_{1}$ and $C^{\prime}=z_{i} C r_{2}^{\prime} \cup R_{2} \cup$ $r_{2} A y_{1}$. Let $t_{1}, t_{2} \in V\left(C-\left\{z_{i}, y_{1}\right\}\right) \cap V(J(A, C))$ with $t_{1} C t_{2}$ maximal, and assume that $z_{i}, t_{1}, t_{2}, y_{1}$ occur on C in this order. By the planarity of $\left(J, z_{i}, y_{1}, z_{3-i}, b_{1}\right)$ and by (6.3), $t_{1}=c$.

Then either $t_{1} C t_{2} \subseteq z_{i} C r_{2}^{\prime}$ for all choices of R_{1} and R_{2}, or $t_{1} C t_{2} \subseteq r_{1}^{\prime} C y_{1}$ for all
choices of R_{1} and R_{2}; for otherwise, $J\left(A^{\prime}, C^{\prime}\right) \subseteq L\left(A^{\prime}, C^{\prime}\right)$, and $A^{\prime}, B, C^{\prime}$ contradict the choice of A, B, C in (b). Moreover, since $F=\emptyset, t_{1} C t_{2} \subseteq z_{i} C r_{2}^{\prime}$ for all choices of R_{1} and R_{2}. Choose R_{1}, R_{2} so that $z_{i} A r_{1}$ and $z_{i} C r_{2}^{\prime}$ are minimal. Since G is 5 connected, $\left\{r_{1}, r_{2}^{\prime}, x_{1}, y_{1}\right\}$ cannot be a cut in G. So by (5), G^{\prime} has a path R from x_{2} to some $v \in V\left(r_{1} A y_{1}-\left\{r_{1}, y_{1}\right\}\right) \cup V\left(r_{2}^{\prime} C y_{2}-\left\{r_{2}^{\prime}, y_{1}\right\}\right)$ and internally disjoint from K.

First, assume $i=1$. If $v \in V\left(r_{1} A y_{1}\right)-\left\{r_{1}, y_{1}\right\}$ then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup$ $C \cup\left(z_{i} X p_{i} \cup Q_{i}\right) \cup(z A v \cup R) \cup\left(Q \cup q B z_{3-i} \cup Q_{3-i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$. If $v \in V\left(r_{2}^{\prime} C y_{1}\right)-\left\{r_{2}^{\prime}, y_{1}\right\}$ then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup A \cup$ $\left(z_{i} X p_{i} \cup Q_{i}\right) \cup\left(z_{i} C v \cup R\right) \cup\left(Q \cup q B z_{3-i} \cup Q_{3-i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

Hence, we may assume $i=2$. If $e\left(z_{3-i}, B_{1}\right)=1$ then $z_{3-i}=p_{3-i}$ and, using the path T from (A2), we see that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup\left(z_{3-i} B q \cup Q\right) \cup$ $\left(z_{3-i} T b_{1} \cup b_{1} B p \cup P \cup c C r_{2}^{\prime} \cup R_{2} \cup r_{2} A v \cup R\right) \cup\left(y_{1} C r_{1}^{\prime} \cup R_{1} \cup r_{1} A z_{i} \cup z_{i} X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. Now $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup$ $z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup\left(P_{1} \cup Q\right) \cup\left(P_{2} \cup P \cup c C r_{2}^{\prime} \cup R_{2} \cup r_{2} A v \cup R\right) \cup\left(y_{1} C r_{1}^{\prime} \cup\right.$ $\left.R_{1} \cup r_{1} A z_{i} \cup z_{i} X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Case 2. $z_{i} \notin V(J(A, C))$.
Then $F \neq \emptyset$ as the degree of z_{i} in G^{\prime} is at least 5 . So a^{*} and r are defined.

Subcase 2.1. $r \neq z_{i}$, and G^{\prime} contains a path S from some $s \in V\left(z_{i} X r\right)-\left\{z_{i}, r\right\}$ to some $s^{\prime} \in V\left(P \cup Q \cup B^{\prime}\right)-\left\{y_{1}, c\right\}$ and internally disjoint from $A \cup B^{\prime} \cup C \cup P \cup Q \cup X$.

Note that $s^{\prime} \in V(B)$ if $s^{\prime} \in V\left(B^{\prime}\right)$. First, assume $s^{\prime} \in V\left(Q-y_{1}\right) \cup V\left(p B z_{3-i}-p\right)$. Then $S \cup\left(Q-y_{1}\right) \cup\left(p B z_{3-i}-p\right)$ has a path S^{\prime} from s to z_{3-i}. By (5), let R be a path in G^{\prime} from r to some $r^{\prime} \in V\left(z_{i} C c\right)-\left\{z_{i}, c\right\}$ and internally disjoint from $A \cup C \cup J(A, C) \cup X$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{i} x_{i} \cup\left(z_{i} X s \cup S^{\prime} \cup z_{3-i} x_{3-i}\right) \cup A \cup$ $\left(z_{i} C r^{\prime} \cup R \cup r X p_{i} \cup Q_{i}\right) \cup\left(y_{1} C c \cup P \cup p B b_{1} \cup b_{1} b \cup Q_{3}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{i}$.

Hence, we may assume $s^{\prime} \in V(P-c) \cup V\left(b_{1} B p\right)$. Since $F \neq \emptyset$ and B_{1} is 2connected, $a^{*} \neq z_{i}$; so G^{\prime} has a path R^{\prime} from r to some $r^{\prime} \in V\left(z_{i} A a^{*}-z_{i}\right)$ and internally disjoint from $A \cup c C y_{1} \cup J(A, C) \cup X$.

Suppose $e\left(z_{3-i}, B_{1}\right)=1$. Then $z_{3-i}=p_{3-i}$ and we use the path T from (A2). Note that $(P-c) \cup Q \cup B \cup z_{3-i} T b \cup b b_{1}$ contains independent paths S_{1}, S_{2} from z_{3-i} to s^{\prime}, y_{1}, respectively. So $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{3-i} x_{3-i} \cup z_{3-i} T y_{2} \cup\left(S_{1} \cup S \cup s X z_{i} \cup z_{i} x_{i}\right) \cup$ $S_{2} \cup\left(y_{1} A r^{\prime} \cup R^{\prime} \cup r X p_{i} \cup p_{i} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Now assume $e\left(z_{3-i}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$ if $s^{\prime} \in P$ and $q^{*}=s^{\prime}$ if $s^{\prime} \in V\left(p B b_{1}\right)$. So $P_{1} \cup P_{2} \cup B \cup S \cup P \cup Q$ contains independent paths S_{1}, S_{2} from z_{3-i} to s, y_{1}, respectively. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup$ $z_{3-i} x_{3-i} \cup\left(z_{3-i} X p_{3-i} \cup Q_{3-i}\right) \cup S_{2} \cup\left(S_{1} \cup s X z_{i} \cup z_{i} x_{i}\right) \cup\left(y_{1} A r^{\prime} \cup R^{\prime} \cup r X p_{i} \cup Q_{i}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$.

Subcase 2.2. $r=z_{i}$, or G^{\prime} contains no path from $z_{i} X r-\left\{z_{i}, r\right\}$ to $\left(P \cup Q \cup B^{\prime}\right)-$ $\left\{y_{1}, c\right\}$ and internally disjoint from $A \cup B^{\prime} \cup C \cup P \cup Q \cup X$.

Then by (5), (6.2) and (6.3), $\left\{a^{*}, c, r, x_{1}, x_{2}\right\}$ is a 5 -cut in G. Hence, since G is 5 -connected, $i=2$ by (5). Therefore, G has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $V\left(G_{1} \cap G_{2}\right)=\left\{a^{*}, c, r, x_{1}, x_{2}\right\}$ and $G_{2}=G\left[F \cup z_{2} C c \cup z_{2} A a^{*} \cup x_{2} X r+x_{1}\right]$.

Suppose $G_{2}-x_{1}$ contains disjoint paths S_{1}, S_{2} from r, x_{2} to a^{*}, c, respectively. If $e\left(z_{1}, B_{1}\right)=1$ then $z_{1}=p_{1}$ and, using the path T from (A2) with $i=2$, we see that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup z_{1} T y_{2} \cup\left(z_{1} B q \cup Q\right) \cup\left(z_{1} T b_{1} \cup b_{1} B p \cup P \cup S_{2}\right) \cup$ $\left(y_{1} A a^{*} \cup S_{1} \cup r X p_{2} \cup p_{2} T y_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. So assume $e\left(z_{1}, B_{1}\right) \geq 2$. Let P_{1}, P_{2} be independent paths from (A7) with $q^{*}=p$. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup z_{1} x_{1} \cup\left(z_{1} X p_{1} \cup Q_{1}\right) \cup\left(P_{1} \cup Q\right) \cup\left(P_{2} \cup P \cup S_{2}\right) \cup\left(y_{1} A a^{*} \cup S_{1} \cup r X p_{2} \cup Q_{2}\right)$ is a $T K_{5}$ in G^{\prime} with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

Thus, we may assume that such S_{1}, S_{2} do not exist in $G_{2}-x_{1}$. Then by Lemma 2.3.1, $\left(G_{2}-x_{1}, r, x_{2}, a^{*}, c\right)$ is planar. If $\left|V\left(G_{2}\right)\right| \geq 7$ then the assertion of Theorem 4.1.1 follows from Lemma 4.2.1. So assume $\left|V\left(G_{2}\right)\right| \leq 6$. If $r=z_{2}$ and there exists
$z \in V\left(G_{2}\right)-\left\{a^{*}, c, x_{1}, x_{2}, z_{2}\right\}$ then $z a^{*}, z c, z x_{1}, z x_{2}, z z_{2} \in E(G)$ (as G is 5-connected); so $G\left[\left\{c, x_{2}, z, z_{2}\right\}\right]$ contains K_{4}^{-}and (ii) of Theorem 4.1.1 holds. Hence, we may assume that $r \neq z_{2}$ or $V\left(G_{2}\right)=\left\{a^{*}, c, x_{1}, x_{2}, z_{2}\right\}$. Then, $z_{2} x_{1}, z_{2} c \in E(G)$ and $L(C)=\emptyset$ (by (7)).

Recall that $y_{1} z_{2} \notin E(G)$; so $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right] \cong K_{4}^{-}$. We complete the proof of Theorem 4.1.1 by proving (iv) for this new K_{4}^{-}. Let $z_{0}^{\prime}, z_{1}^{\prime} \in N\left(x_{1}\right)-\left\{x_{2}, y_{1}, z_{2}\right\}$ be distinct and let $G^{\prime \prime}:=G-\left\{x_{1} v: v \notin\left\{x_{2}, y_{1}, z_{0}^{\prime}, z_{1}^{\prime}, z_{2}\right\}\right\}$.

Suppose $z_{1}^{\prime} \in V(J(A, C))-V(A \cup C)$ or $z_{1}^{\prime} \in V\left(Y_{2}\right)$ or $z_{1}^{\prime} \in V(X)$. Then $\left(J(A, C) \cup Y_{2} \cup X \cup x_{2} y_{2} \cup b b_{1}\right)-(A \cup C)$ contains a path from z_{1}^{\prime} to x_{2}. Hence, $G-x_{1}$ contains an induced path X^{\prime} from z_{1}^{\prime} to x_{2} such that $A \cup C$ is a cycle in $\left(G-x_{1}\right)-X^{\prime}$ and $\left\{y_{1}, z_{2}\right\} \subseteq V(A \cup C)$. So by Lemma 3.2.1, we may assume that X^{\prime} is chosen so that $y_{1}, y_{2} \notin V\left(X^{\prime}\right)$ and $\left(G-x_{1}\right)-X^{\prime}$ is 2-connected. Then by Lemma 2.3.6, $G^{\prime \prime}$ contains $T K_{5}$ (which uses $G\left[\left\{x_{1}, x_{2}, z_{2}, y_{1}\right\}\right]$ and $x_{1} z_{1}^{\prime}$).

So assume $z_{1}^{\prime} \in V(L(A, C)-J(A, C)) \cup V(A \cup C)$ (as $\left.L(A)=L(C)=\emptyset\right)$. In fact, $z_{1}^{\prime} \in V(C)-\left\{z_{2}, y_{1}\right\}$. For otherwise, $(W \cup L(A, C) \cup A)-C$ contains an induced path X^{\prime} from z_{1}^{\prime} to x_{2}, where W comes from (4) and the remark preceding (5). Then $\left(G-x_{1}\right)-X^{\prime}$ contains $C \cup Q \cup q B b_{1} \cup\left(X-\left\{x_{1}, x_{2}\right\}\right) \cup Y_{2}$, which has a cycle containing $\left\{y_{1}, z_{2}\right\}$. By Lemma 3.2.1, we may assume that X^{\prime} is chosen so that $y_{1}, y_{2} \notin V\left(X^{\prime}\right)$ and $\left(G-x_{1}\right)-X^{\prime}$ is 2 -connected. Now the assertion of Theorem 4.1.1 follows from Lemma 2.3.6.

If $z_{1}^{\prime} \in V(J(A, C))$, then there is a path P^{\prime} in $J(A, C)$ from z_{1}^{\prime} to some $p^{\prime} \in V(B)$ and internally disjoint from $A \cup B \cup C$. So $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right] \cup z_{1}^{\prime} x_{1} \cup z_{1}^{\prime} C z_{2} \cup z_{1}^{\prime} C y_{1} \cup$ $\left(P^{\prime} \cup p^{\prime} B b_{1} \cup b_{1} b \cup Q_{3} \cup y_{2} x_{2}\right) \cup A$ is a $T K_{5}$ in $G^{\prime \prime}$ with branch vertices $x_{1}, x_{2}, y_{1}, z_{2}, z_{1}^{\prime}$.

Thus, we may assume that $z_{1}^{\prime} \notin V(J(A, C))$. So there is a path A^{\prime} in $L(A, C)$ from z_{1}^{\prime} to some $a^{\prime} \in V(A)$ and internally disjoint from $J(A, C) \cup A \cup C$. Recall the path W from (4) and the remark preceding (5). Now $G\left[\left\{x_{1}, x_{2}, y_{1}, z_{2}\right\}\right] \cup z_{1}^{\prime} x_{1} \cup z_{1}^{\prime} C z_{2} \cup$ $z_{1}^{\prime} C y_{1} \cup\left(A^{\prime} \cup a^{\prime} A w \cup W\right) \cup\left(Q \cup q B b_{1} \cup b_{1} b \cup Q_{3} \cup Q_{2} \cup p_{2} X z_{2}\right)$ is a $T K_{5}$ in $G^{\prime \prime}$ with
branch vertices $x_{1}, x_{2}, y_{1}, z_{2}, z_{1}^{\prime}$. !

REFERENCES

[1] BollobÁs, B., Modern Graph Theory, Graduate Texts in Mathematics. Springer, 1998.
[2] Catlin, P., "Hajós graph-coloring conjecture: variations and counterexamples," J. Combin. Theory, Ser. B, vol. 26, pp. 268-274, 1979.
[3] Chakravarti, K. and Robertson, N., "Covering three edges with a bond in a nonserapable graph," Annals of Discrete Math., vol. 8, p. 247, 1980.
[4] Curran, S. and Yu, X., "Non-separating cycles in 4-connected graphs," SIAM J. Discrete Math., vol. 16, pp. 616-629, 2003.
[5] Diestel, R., Graph Theory (3rd edition), Graduate Texts in Mathematics. Springer, 2006.
[6] Dirac, G. A., "Homomorphism theorems for graphs," Math. Ann., vol. 153, pp. 69-80, 1964.
[7] Erdős, P. and Hajnal, H., "On complete topological subgraphs of certain graphs," Ann. Univ. Sci. Budapest, Sect. Math., vol. 7, pp. 143-149, 1964.
[8] He, D., Wang, Y., and Yu, X., "The Kelmans-Seymour conjecture I: special separations," Submitted.
[9] He, D., Wang, Y., and Yu, X., "The Kelmans-Seymour conjecture II: 2vertices in $K_{4}^{-}, "$ Submitted.
[10] He, D., Wang, Y., and Yu, X., "The Kelmans-Seymour conjecture III: 3vertices in K_{4}^{-}," Prepared for submission.
[11] Karl, M., "Zur allgemeinen Kurventheorie," Fund. Math., vol. 10, pp. 96-115, 1927.
[12] Kawarabayashi, K., "Contractible edges and triangles in k-connected graphs," J. Combin. Theory, Ser. B, vol. 85, pp. 207-221, 2002.
[13] Kawarabayashi, K., Lee, O., and Yu, X., "Non-separating paths in 4connected graphs," Annals of Combinatorics, vol. 9, pp. 47-56, 2005.
[14] Kawarabayashi, K., Ma, J., and Yu, X., "Subdivisions of K_{5} in graphs containing $K_{2,3}$," J. Combin. Theory, Ser. B, vol. 113, pp. 18-67, 2015.
[15] Kelmans, A. K., "Every minimal counterexample to the Dirac conjecture is 5-connected," Lectures to the Moscow Seminar on Discrete Mathematics, 1979.
[16] Kézdy, A. E. and McGuiness, P. J., "Do $3 n-5$ edges suffice for a subdivision of K_{5} ?," J. Graph Theory, vol. 15, pp. 389-406, 1991.
[17] Kuratowski, K., "Sur le problème des courbes gauches en Topologie," Fund. Math.(in French), vol. 15, pp. 271-283, 1930.
[18] Ma, J. and Yu, X., "Independent paths and K_{5}-subdivisions," J. Combin. Theory Ser. B, vol. 100, pp. 600-616, 2010.
[19] Ma, J. and Yu, X., " K_{5}-subdivisions in graphs containing K_{4}^{-}," J. Combin. Theory Ser. B, vol. 103, pp. 713-732, 2013.
[20] Mader, W., " $3 n-5$ edges do force a subdivision of K_{5}," Combinatorica, vol. 18, no. 4, pp. 569-595, 1998.
[21] Perfect, H., "Applications of Menger's graph theorem," J. Math. Analysis and Applications, vol. 22, pp. 96-111, 1968.
[22] Robertson, N. and Seymour, P. D., "Graph minors. IX. Disjoint crossed paths," J. Combin. Theory Ser. B, vol. 49, pp. 40-77, 1990.
[23] Seymour, P. D., "Private Communications with X. Yu,"
[24] Seymour, P. D., "Disjoint paths in graphs," Discrete Math., vol. 29, pp. 293309, 1980.
[25] Shiloach, Y., "A polynomial solution to the undirected two paths problem," J. Assoc. Comp. Mach., vol. 27, pp. 445-456, 1980.
[26] Skupién, Z., "On the locally hamiltonian graphs and Kuratowski's theorem," Roczniki PTM, Prac Mat, vol. 11, pp. 255-268, 1968.
[27] Thomas, R. and Whalen, P., "Odd $K_{3,3}$ subdivision in bipartite graphs," J. Combin. Theory Ser. B, vol. 118, pp. 76-87, 2016.
[28] Thomassen, C., "Some homeomorphism properties of graphs," Math. Nachr., vol. 64, pp. 119-133, 1974.
[29] Thomassen, C., "2-Linked graphs," Europ. J. Combinatorics, vol. 1, pp. 371378, 1980.
[30] Thomassen, C., " K_{5}-subdivision in graphs," Combinatorics, Probability and Computing, vol. 5, pp. 179-189, 1996.
[31] Thomassen, C., "Dirac's conjecture on K_{5}-subdivisions," Discrete Mathematics, vol. 165/166, pp. 607-608, 1997.
[32] Wagner, K., "Über eine Eigenschaft der ebenen Komplexe," Math. Ann., vol. 144, pp. 570-590, 1937.
[33] Watkins, M. E. and Mesner, D. M., "Cycles and connectivity in graphs," Canadian J. Math., vol. 19, pp. 1319-1328, 1967.

VITA

Dawei He was born in Hefei, Anhui province, China in 1987. He got his B.S. and M.S. in Mathematics at East China Normal University in 2008 and 2011, respectively. He has been starting working with professor Xingxing Yu as a Ph.D. student in Mathematics at Georgia Institute of Technology since Spring 2012. His research interests include combinatorics, graph theory, and algorithms, etc. During the process of pursuing his Ph.D. in Mathematics, he also obtained his M.S. in Computational Science and Engineering at Georgia Institute of Technology in Fall 2015.

