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I. A motivation: quantum processes in biology



Excitation transfer process
When a molecule is excited electronically by absorbing a photon, it
luminesces by emitting another photon or the excitation is lost in
its environment (∼ 1 nanosecond).
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However, when another molecule with similar excitation energy is
present within ∼ 1− 10 nanometers, the excitation can be
swapped between the molecules (∼ 1 picosecond).
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Excitation transfer happens in biological systems (chlorophyll
molecules during photosynthesis)

Similar charge transfer (electron, proton) happens in chemical
reactions: D + A → D− + A+ (reactant and product)

Processes take place in noisy environments (molecular
vibrations...)
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Collective (correlated) model: D, A have common environment



Excitation transfer process

– Initially the donor is populated
– During the evolution the acceptor population is building up

What is the transfer rate?

Marcus formula for transfer rate (1956)
(Rudolph Marcus, Chemistry Nobel Prize 1992)

γMarcus =
2π

~
|V |2 1√

4π εrec kBT
exp

[
−(∆G + εrec)2

4 εrec kBT

]

V = direct electronic coupling
εrec = reconstruction energy
T = temperature
∆G = Gibbs free energy change in reaction



Marcus approach and spin-boson model

HMarcus = |R〉ER〈R|+ |P〉EP〈P|+ |R〉V 〈P|+ |P〉V 〈R|

R = reactant (donor), P = product (acceptor)
ER,P = energies of collection of classical oscillators

Xu-Schulten ‘94:

Marcus Hamiltonian is equivalent to spin-boson Hamiltonian

HSB = Vσx + ε σz + HR + λσz ⊗ ϕ(h)

HR =
∑
α

ωα(a†αaα + 1/2)

ϕ(h) = 1√
2

∑
α

hαa
†
α + h.c., hα = form factor



Towards a structure-based exciton Hamiltonian 
for the CP29 antenna of photosystem II 

Frank Műh, Dominik Lindorfer, Marcel Schmidt am Busch and Thomas Renger,  
Phys. Chem. Chem. Phys., 16, 11848 (2014) 

Our chlorophyll dimer: 
 

      604: Chla, Ea
exc= 14 827cm-1  

                                          = 1.8385eV 
      606: Chlb, Eb

exc= 15 626cm-1 

                                          = 1.9376eV 
 
         ε =  Eb

exc- Ea
exc =  99.1meV 

                            V    =    8.3meV 
 

Our chlorophyll dimer is weakly coupled:  V
ε
≈ 0.08 ≪ 1.
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• Relevant parameter regime

– Strong dimer-environment interaction λ2 ∝ εrec ≈ ε
– Large (physiological) temperatures kBT >> ~ωc

– Weakly coupled dimer V << ε

• Heuristic ‘time-dependent perturbation theory’ (Leggett ‘87) ⇒

“ pdonor = e−γt ”, γMarcus =
V 2

4

√
π

T εrec
e−

(ε−εrec)
2

4Tεrec

• The ‘usual’ Bloch-Redfield theory of open quantum systems
works for λ small (<< ε), it is not applicable here



Our contribution:

1. Develop rigorous perturbation theory for dynamics,
valid for all times and any reservoir coupling strength

2. Prove validity of exponential decay law and find
rates of relaxation and decoherence

3. Establish a generalized Marcus formula and extract
scheme for increasing transfer rates and efficiency



II. Main technical result: Resonance Expansion



General setup

• Self-adjoint generator of dynamics on Hilbert space H
H = H0 + V I

V perturbation parameter, I interaction operator

• Eigenvalues of H0 are embedded in continuous spectrum

• Behaviour of eigenvalues of H0 under perturbation V I :

– Stable: Splitting without reduction of total degeneracy

– Partially stable: Splitting and reduction of total degeneracy

– Unstable: Disappear for V 6= 0
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Assumptions

• Effective coupling ‘Fermi Golden Rule’ condition

(Motion of eigenvalues visible to lowest order in perturbation, V 2)

• Dispersiveness away from eigenvalues

(‘Limiting Absorption Principle’, regularity of z 7→ (H − z)−1 as z → R
 absolutely continuous spectrum, time-decay)



Theorem [Könenberg-Merkli, 2016]

There is a V0 > 0 s.t. if 0 < |V | < V0, then ∀t ≥ 0

eitH =
∑

E eitEΠE +
∑

a e
itaΠa + O(1/t)

where
E ∈ R, Ima ∝ V 2 > 0

where (E ,ΠE ) are real eigenvalues and eigenprojections of H and
(a,Πa) are complex resonance energies and projections. The reso-
nance data have an explicit perturbation expansion in V .

• Eigenvalues E of H: oscillation eitE

• Unstable eigenvalues = Resonances: decay |eita| = e−γV
2t
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Challenges in proof

• In regime of strong environment coupling the usual (singular)
perturbation methods fail

• Develop extension of Mourre theory for strong coupling regime

• Mourre theory just gives ergodicity (‘return to equilibrium’),
not fine details of dynamics: no decay rates and directions

• We combine Feshbach-Schur reduction method and resolvent
representation of propagator in a new way to obtain our
resonance expansion



III. Application: dynamics of a dimer



Donor-acceptor model

Collective
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Donor  D
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V

H =
1

2

(
ε V
V −ε

)
+ HR +

(
λD 0
0 λA

)
⊗ φ(g)

HR =

∫
R3

ω(k) a∗(k)a(k)d3k

φ(g) =
1√
2

∫
R3

(
g(k)a∗(k) + adj.

)
d3k

Free bosonic quantum fields



Initial states, reduced dimer state

Intital states unentangled,

ρin = ρS ⊗ ρR

ρS = arbitrary, ρR reservoir equil. state at temp. T = 1/β > 0

Reduced dimer density matrix

ρS(t) = TrReservoir

(
e−itHρine

itH
)

Dimer site basis ϕ1 =

(
1
0

)
and ϕ2 =

(
0
1

)
.

Donor population

p(t) = 〈ϕ1, ρS(t)ϕ1〉 = [ρS(t)]11, p(0) ∈ [0, 1]



Relaxation

Theorem (Population dynamics) [M. et al, 2016]
Let λD , λA be arbitrary. There is a V0 > 0 s.t. for 0 < |V | < V0:

p(t) = p∞ + e−γt (p(0)− p∞) + O( t
1+t2

),

where

p∞ =
1

1 + e−βε̂
+ O(V ) with ε̂ = ε− α1−α2

2

γ = relaxation rate ∝ V 2

α1,2 = renormalizations of energies ±ε (∝ λ21,2)

p∞ = equil. value w.r.t. renormalized dimer energies

Note: Remainder small on time-scale γt << 1, i.e., t << V−2



Properties of final populations

Final donor population (modulo O(V )-correction)

p∞ ≈
1

2
− ε̂

4T
, for T >> |ε̂|.

If donor strongly coupled then ε̂ ∝ −λ2D , so

Increased donor-reservoir coupling increases final donor
population

Effect intensifies at lower temperatures

p∞ ≈
{

1, if λ2D >> max{λ2A, ε}
0, if λ2A >> max{λ2D , ε}

for T << |ε̂|

Acceptor gets entirely populated if it is strongly coupled to
reservoir



Expression for relaxation rate

γc = V 2 lim
r→0+

∫ ∞
0

e−rt cos(ε̂t) cos

[
(λD − λA)2

π
Q1(t)

]
× exp

[
−(λD − λA)2

π
Q2(t)

]
dt

where

Q1(t) =

∫ ∞
0

J(ω)

ω2
sin(ωt) dω,

Q2(t) =

∫ ∞
0

J(ω)(1− cos(ωt))

ω2
coth(βω/2) dω

This is a Generalized Marcus Formula – in the symmetric case
λD = −λA and at high temperatures, kBT >> ~ωc , it reduces to
the usual Marcus Formula.



Some numerical results

• Accuracy of generalized Marcus formula:
– ωc/T . 0.1 rates given by the gen. Marcus formula

coincide extremely well (∼ ±1%) with true values γc,l
– ωc/T & 1 get serious deviations (& 30%)

• Asymmetric coupling can significantly increase transfer
rate:

Surface shows γc , Red curve = symmetric coupling

x ∝ λ2D − λ2A, y ∝ (λD − λA)2
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