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SUMMARY

In this thesis we investigate the static, dynamic, and thermodynamic properties

of atomic spin-1 Bose gases in external magnetic fields. At low magnetic fields the

properties of single-component, or scalar condensates, are essentially unaffected but

can become significantly altered for spinor Bose condensates as shown by our studies.

We first study the Bose-Einstein condensation of trapped spin-1 Bose gases by em-

ploying the Hartree-Fock approximation and the two-fluid model within a mean field

approximation. Our detailed investigation reveals that the ferromagnetically inter-

acting spin-1 condensates exhibit triple condensations while the antiferromagnetically

interacting ones show double condensations.

The ground state structure of homogeneous and trapped spin-1 Bose condensates

with ferromagnetic and antiferromagnetic interactions at zero temperature in mag-

netic fields are then investigated systematically. We further illuminate the important

effect of quadratic Zeeman shift which causes a preferred occupation of the |mF = 0〉
state through spin exchange collisions, 2|mF = 0〉 ↔ |mF = 1〉+ |mF = −1〉.

We also present detailed studies of the off-equilibrium coherent dynamics of spin-

1 Bose condensates in magnetic fields within the single spatial mode approximation.

Dynamical instabilities of the off-equilibrium oscillations are shown to be responsible

for the formation of multiple domains as recently observed in several 87Rb experi-

ments.

Finally, we discuss briefly excited condensate states, or soliton-like states, in cigar-

shaped spin-1 Bose condensates with an effective quasi-1D description, using the

developed nonpolynomial Schrödinger equation.
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CHAPTER I

INTRODUCTION

Bose-Einstein condensation (BEC) was first predicted theoretically by Bose [1]

and Einstein [2] in 1920s, yet not realized in its original form for a weakly interacting

gas until a decade ago when it was first achieved with dilute alkali atomic gases

inside a magnetic trap [3, 4, 5]. As can be easily seen in the phase diagram, the

Bose condensed state is an supercooled state. The thermodynamic ground state is

actually a solid state, thus the Bose condensed state is meta-stable that may last up to

more than a few minutes. The central theme of Bose-Einstein condensation in finite

systems is the macroscopic occupation of a single particle state. The original idea

that condensation occurs only in momentum space for an infinite system becomes

simultaneous condensations in both momentum and coordinate space for a finite

confined system. Experimental techniques such as laser cooling, magnetic trapping,

and evaporative cooling, collectively enable cooling of an atomic alkali system down to

nanokelvin (now even picokelvin [6]) temperatures, where the thermal de Broglie wave

length of an atom, λT = h/
√

2πmkBT , is of the order of a few micrometer. The atoms

thus behave quantum mechanically, distinguished from classical systems [3, 4, 5],

and become quantum degenerate when the de Broglie wavelength of atoms is larger

than the average distance between atoms (typical densities of atomic condensates

range from 1013 to 1015 cm−3 and the average distance between atoms is less than 1

micrometer).

The realization of BEC in trapped dilute alkali atomic gases has stimulated signifi-

cant interest because this system is an excellent test-bed for weakly interacting many

body quantum theory. Many branches of research in trapped condensates remain

active even 10 years after the initial discoveries [7]. For example, the formation of a
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vortex in a rotating condensate manifests its superfluid property as first demonstrated

experimentally by Matthews et al. with a phase imprinting technique [8, 9], followed

by Madison et al. and Abo-Shaeer et al. with a laser beam “stirrer” [10, 11, 12], and

Hodby et al. with a “rotating bucket” method [13]. A state of vortex lattice can now

be routinely produced as reported by Abo-Shaeer et al., Raman et al. [11, 12], Engels

et al. [14], and Bretin et al. [15].

Many studies have been devoted to the properties of a condensate in a double well

potential and in an optical lattice relevant to strongly interacting condensed matter

systems. For a simple double well model system, one expects to find Josephson

like dynamical effects, Rabi oscillations, and self-trappings in different interaction

regimes [16, 17, 18]. Optical lattices created by standing wave laser beams consist

of an array of wells where each well can contain a small sub-condensate. Coherent

tunnelling, similar to the Josephson junction like oscillation, was first observed in

an optical lattice system by Anderson and Kasevich [19] and was followed by other

groups on various condensed matter effects, cumulating with the observation of the

interference pattern of the superfluid to Mott-insulator phase transition formed by

releasing the trapping potential [20, 21, 22, 23]. Bloch oscillations are also observed

when condensates in optical lattices are accelerated [24, 25], and Hofstadter butterfly

effect is predicted for an array of atoms placed in a super-strong effective magnetic

field created by laser beams [26].

Lower dimensional (1D or 2D) quantum gases consist of another hot topical area

and many novel properties appear in these systems [27, 28, 29, 30, 31]. A 1D Boson

system can be solved exactly with the technique of Bethe ansatz and such a system has

many known counter-intuitive properties. For example, the interaction between atoms

is “weak” in the high-density limit but becomes “strong” in the low-density limit. A

1D system in the low density limit is usually referred as a Tonks-Girardeau gas in

which the particles are impenetrable and exhibit Fermion-like features [27, 28, 31].

2



BEC-BCS (Bardeen-Cooper-Schrieffer) crossover, at which trapped dilute ultra-

cold fermionic atoms form a bosonic molecular condensate and/or Cooper pairs near

a Feshbach resonance, is yet another prominent and highly debated new phenomenon

in recent years. Regal et al. first reported the appearance of condensation of fermionic

40K atom pairs, similar to Cooper pairs in a superconductor, on the BCS side of the

Feshbach resonance where weakly bound molecular condensate is not supported [32].

Similar results were also reported with higher percentages of condensate (80% vs 15%

of Regal et al.) by Zwierlein et al. in 6Li systems at MIT and the 80% condensate is

argued to be actually composed of short-range atomic pairs, or essentially molecules

on the BCS side [33]. While some of these debates can be traced to the differences

of a Feshbach resonance being broad or narrow, much theoretical work have been

done [34, 35, 36, 37, 38, 39]. Ohashi and Griffin recently proposed a new concept

capable of reconciling molecules and Cooper pairs and giving rise to a continuous

phase transition from the BCS to BEC [40].

Spinor condensates are the topic I shall concentrate on in this thesis. It arises

when more than one hyperfine states of atoms are trapped simultaneously. Despite

its early appearance in atomic condensate research, it was not an actively pursued

topic, evidenced by only a few available experiments for pseudo-spin-half condensates

[41, 42, 43, 44] and spin-1 condensates [45, 46, 47, 48, 49, 50, 51, 52]. The study

on spinor condensate has received significant boosts recently with more experimental

set-ups being built for spin-1 and spin-2 condensates [53, 54, 55, 56]. Experimentally

spin-1 or spin-2 condensates are confined spatially with optical traps. The releasing

of the spin degrees of freedom enables one to study both static and dynamic spin

properties of a condensate absent in a magnetically trapped single component (scalar)

condensate.

Making use of a Feshbach resonance, one can adjust the interaction strength be-

tween atoms in a scalar Bose condensate by changing the magnitude of an external

3



magnetic field, the interaction between atoms then changes from repulsive to attrac-

tive when the magnetic field crosses the Feshbach resonant region [57, 58, 59]. In

this way one may control the static, dynamic, and thermodynamic properties of a

single component condensate. Typically the magnetic field is in the range of several

hundred Gausses and the relative Zeeman shift between open and closed channels is

responsible for the tuning [60]. This picture becomes richer for a spinor condensate,

even in much smaller magnetic fields, e.g. less than 1 Gauss, because Zeeman shifts

are different for different spin components. It turns out, as we will show later, the

leading term of the Zeeman effect, the linear one, has little effect on the properties of

a spin-1 condensate but the quadratic term can significantly affect both the static and

dynamic properties [45, 48, 53]. Many theoretical studies in the past have been de-

voted to the properties of a spinor condensate in a negligible magnetic field [50, 51, 52]

and only a few touched on the topic of a nonzero magnetic field [61, 62, 63]. In this

thesis, we focus on the properties of atomic spin-1 Bose gases in external magnetic

fields.

The thesis is organized as follows. We briefly review the history of Bose-Einstein

condensation and other current topical areas of atomic quantum gases in chapter . In

chapter , we discuss the two body contact pseudo-potential interaction and outline a

second quantized description of the Hamiltonian and the mean field Gross-Pitaevskii

equation for both interacting scalar and spin-1 atomic Bose gases. This procedure for

a spin-1 system can be extended straight forwardly to higher atom spin gases such as

a spin-2 Bose gas. We present in chapter several analytical results in the ideal gas

limit, the Thomas-Fermi limit for repulsively interacting scalar Bose gases, and the

critical atom number for an attractively interacting scalar Bose condensate.

In chapter 2.2 we study the Bose-Einstein condensation of a harmonically trapped

interacting spin-1 Bose gas. Due to the conservations of the total number of atoms

and the total magnetization, both the ideal and antiferromagnetically interacting
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spin-1 Bose gases exhibit double phase transitions, the ferromagnetically interacting

Bose gases, on the other hand, exhibit triple condensations. We also find that in a

certain range of temperatures a spin-1 Bose gas with ferromagnetic interaction can

display phase separation between different condensed components.

We have carried out the study of the effect of magnetic fields because they are in-

evitable in experimental environment. For a scalar condensate, only strong magnetic

fields, usually in the range of hundreds of Gausses, may affect its properties due to the

change of the magnitude or sign of the s-wave scattering length through a Feshbach

resonance. For a spinor condensate, the effect of a magnetic field is more direct, from

its coupling to atomic magnetic dipole moments. In chapter 3.6 we systematically

investigate the ground states of a homogeneous and a harmonically trapped interact-

ing spin-1 Bose gas in a uniform external magnetic field. The quadratic Zeeman shift

is shown to greatly affect the ground state structures. We find in general that the

quadratic Zeeman effect causes a preferred occupation of the |0〉 component, thus the

stronger the applied magnetic fields, the more atoms in the |0〉 state.

In chapter 4.6, we investigate the dynamical properties of an off-equilibrium spin-1

Bose condensate in an external magnetic field. Again, the linear Zeeman effect can

be eliminated mathematically by changing to an interaction picture. The quadratic

Zeeman effect thus completely determines the coherent oscillation of a spin-1 Bose

condensate under the single spatial mode approximation. By analyzing the stability

of the dynamics, we find that ferromagnetically interacting spin-1 condensates are

dynamically instable and can evolve into a multi-domain structure as observed in a

87Rb spin-1 condensate confined in a cigar-shaped trap.

In chapter 5.6, we discuss the collective excited eigenstate of a trapped spin-1

Bose condensate, a soliton state, and its dynamics with an effective quasi-1D non-

polynomial Schrödinger equation description.
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CHAPTER II

FORMULATION

2.1 Scalar atomic Bose gases

Before proceeding to the spin-1 atomic gases, let us summarize briefly the formulation

of interacting spinless Bose gases. For an ultra-cold atomic gas in the same hyper-

fine state, the atomic interaction can be effectively described by a contact pseudo-

potential,

V (~r − ~r ′) =
4πh̄2asc

m
δ(~r − ~r ′),

characterized by the s-wave scattering length, asc, as the dominant atomic interaction

is isotropic and short ranged (for instance the famous van de Waals potential). asc > 0

(< 0) denotes an overall repulsive (attractive) interaction. asc can be tuned using a

Feshbach resonance as shown by many experimental groups [58, 59] with external

uniform magnetic fields. h̄ is the Plank’s constant and m is the mass of the atom.

This pseudo potential approximation (also called shape-independence approximation)

simplifies the atomic interaction, V (~r − ~r ′), with an effective interaction gδ(~r − ~r ′)

independent of the details of the actual two-body potential.

With the contact pseudo-potential, the second quantized Hamiltonian of a single

component scalar condensate is given by

H =
∫

d~r

{
Ψ†

[
− h̄2

2m
∇2 + Vext(~r)

]
Ψ +

g

2
Ψ†Ψ†ΨΨ

}
,

where Ψ(~r) (Ψ†(~r)) is the annihilation (creation) field operator which annihilates

(creates) an atom at position ~r, Vext(~r) is an external potential (usually a harmonic

trap), and g = 4πh̄2asc/m is the interaction strength of the contact pseudo-potential.
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The equation of motion for Ψ(~r) is obtained in Heisenberg picture as

ih̄
∂

∂t
Ψ(~r, t) = [Ψ, H] =

[
− h̄2

2m
∇2 + Vext(~r)

]
Ψ + gΨ†Ψ†Ψ.

Within the mean-field theory, the field operator is approximated by its average value,

Φ(~r, t) ≈ 〈Ψ(~r, t)〉, which is usually referred to as the wave function of the condensate

or the order parameter. This approximation is valid if the number of condensed

atoms, N , is large. The relative number fluctuation scales as 1/
√

N if one takes the

condensate wave function as a coherent state. The dynamics of a condensate is then

governed by the Gross-Pitaevskii (GP) equation [64, 65, 66, 67, 68, 69]

ih̄
∂

∂t
Φ(~r, t) =

[
− h̄2

2m
∇2 + Vext(~r) + g|Φ(~r, t)|2

]
Φ(~r, t).

Another way to reach the GP equation is to start from the energy functional of the

condensate,

E[Φ, Φ∗] =
∫

d~r

{
Φ∗

[
− h̄2

2m
∇2 + Vext(~r)

]
Φ +

g

2
|Φ|4

}
,

and the GP equation is given by

ih̄
∂

∂t
Φ(~r, t) =

δE[Φ, Φ∗]
δΦ∗ .

By writing Φ(~r, t) = Φ(~r)e−iµt/h̄, we obtain the stationary state from solving the

following equation

[
− h̄2

2m
∇2 + Vext(~r) + g|Φ(~r)|2

]
Φ(~r) = µΦ(~r),

with Φ(~r) being normalized to the total number of atoms N . The condensate ground

state corresponds actually to the lowest µ stationary state of the above equation.

When the interaction term is small the properties of a condensate in a harmonic

trap is close to the ideal gas limit whose wave function can be approximated as a

Gaussian function. When the interaction is strong and repulsive, one reaches the

so-called Thomas-Fermi limit where the wave function flattens due to the repulsive
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interaction between atoms and one can neglect the kinetic energy term. The density

profile of the condensate is then given by n(~r) = |Φ(~r)|2 = [µ − Vext(~r)]/g when

µ > Vext(~r) and n = 0 otherwise. When the interaction is attractive, a condensate in

a uniform trap is unstable because the system tends to collapse [70, 71]. But for a

confined system the zero-point energy (scales as N) may balance the weak attractive

interaction (scales as N2) if N is small [5, 72, 73]. Above a critical point, Nc, the

interaction can not be balanced any more by the zero-point energy and the system

becomes also unstable.

2.2 Spinor atomic Bose gases

For spinor atomic Bose gases at an ultra-low temperature, the collisions (interactions)

between atoms become more complicated than in single-component gases. Ho, and

independently Ohmi and Machida first discussed this issue [50, 51]. In this thesis

we shall follow mainly Ho’s arguments and procedures for convenience. Alkali atoms

have two hyperfine states, typically, Fhigh = I +1/2 and Flow = I−1/2, where I is the

quantum number of the nuclear spin, and s = 1/2 is the valence electron spin of the

atom. For 87Rb and 23Na atoms, I = 3/2, thus Fhigh = 2 and Flow = 1. The energy

splitting between them is usually in the range of ∼GHz, many orders of magnitude

of typical trap frequencies which range from 1Hz to several kHz.

For an ideal spinor Bose gas, individual atom does not decay from the Fhigh states

to the Flow states through spontaneous dipolar relaxation because of the conservation

of the angular momentum which requires that the orbital angular momentum must be

different by 1 before and after the transition. Two-photon processes may happen but

usually they have a much lower rate which means longer time and are negligible for

atoms in current experimental systems. For a spinor Bose gas with spin dependent

interaction, the elastic collision would not change the hyperfine state due to the

same reason as above. But the inelastic collision might change the atoms’ hyperfine
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state. At high temperatures above a few millikelvin, when the kinetic energy of an

atom is comparable to its hyperfine energy splitting, atoms in any hyperfine state

might be generated in principle after an inelastic collision. While it is forbidden

at low temperatures to convert an atom into its Fhigh state through a collision of

two atoms in their Flow state because of the conservation of the total energy. The

reverse process is allowed. An atom acquired the kinetic energy corresponding to the

hyperfine splitting would surely escape from the trap [74]. As a result, the ground

state of the optically trapped spin-1 Bose gases consists only of atoms with Flow state.

For an ultra-cold spin-1 Bose gas, such as 87Rb and 23Na atoms, the ground state is

composed of atoms in all Zeeman state |F = 1,mF = +1, 0,−1〉 (hereafter denoted as

|+〉, |0〉, |−〉) inside a far off resonant optical trap. There are two scattering channels

for collisions of two |F = 1〉 atoms, one of which has the total spin of the two atoms

|Ftot = F1−F2 = 0〉 and the other |Ftot = F1+F2 = 2〉. The s-wave scattering lengthes

of these two channels are denoted by a0 and a2, respectively. The interaction between

two spin-1 atoms can thus be described by

V (~r1 − ~r2) = (g0P0 + g2P2)δ(~r1 − ~r2),

where g0,2 = 4πh̄2a0,2/m and P0,2 is the projection operator of the state of the atom

pair (1 and 2) onto the total hyperfine spin state,

PFtot =
∑
m

|Ftot,m〉〈Ftot,m|.

Similarly we can also project the operator ~F1 · ~F2 onto the total spin space

~F1 · ~F2 =
∑

Ftot=0,2

1

2
[Ftot(Ftot + 1)− F1(F1 + 1)− F2(F2 + 1)] PFtot .

Substituting F1 = F2 = 1 and Ftot = 0 or 2, we obtain

~F1 · ~F2 = P2 − 2P0.

On the other hand we have the identity P0 + P2 = 1. So we can express P0 and P2 as

P0 =
1

3

(
1− ~F1 · ~F2

)
,
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P2 =
1

3

(
2 + ~F1 · ~F2

)
.

Finally this leads to the rotationally invariant form

V (~r1 − ~r2) =
(
c0 + c2

~F1 · ~F2

)
δ(~r1 − ~r2),

where c0 = (g0 +2g2)/3 and c2 = (g2− g0)/3. The interaction energy is less when the

spins of the two colliding atoms align parallel to each other for c2 < 0 and antiparallel

for c2 > 0. Thus the interaction is ferromagnetic if c2 < 0 and antiferromagnetic if

c2 > 0.

The Hamiltonian of a spin-1 bosonic gas thus can be written down in the second

quantized form as

H =
∫

d~r

[
Ψ†

i

(
− h̄2

2m
∇2 + Vext(~r)

)
Ψi +

c0

2
Ψ†

iΨ
†
jΨjΨi

+
c2

2
Ψ†

iΨ
†
k (Fα)ij (Fα)kl ΨlΨj

]
, (1)

where Ψi(~r) [Ψ†
i (~r)] is the quantum field operator annihilating (creating) an atom in

state |i〉 at ~r, and i, j, k, l = +, 0,− and α = x, y, z. Repeated indices are assumed to

be summed. Fα=x,y,z are spin-1 matrices given by

Fx =
1√
2




0 1 0

1 0 1

0 1 0




, Fy = i√
2




0 −1 0

1 0 −1

0 1 0




, Fz =




1 0 0

0 0 0

0 0 −1




, (2)

with the quantization axis taken along the z-axis direction.

The equation of motion for the field operators can be expressed in the Heisenberg’s

picture as

ih̄
∂

∂t
Ψ+(~r, t) =


− h̄2

2m
∇2 + Vext(~r) + c0

∑

j

(
Ψ†

jΨj

)

 Ψ+

+c2

(
Ψ†

+Ψ+ + Ψ†
0Ψ0 −Ψ†

−Ψ−
)

Ψ+ + c2Ψ
†
−Ψ0Ψ0,

ih̄
∂

∂t
Ψ0(~r, t) =


− h̄2

2m
∇2 + Vext(~r) + c0

∑

j

(
Ψ†

jΨj

)

 Ψ0

10



+c2

(
Ψ†

+Ψ+ + Ψ†
−Ψ−

)
Ψ0 + 2c2Ψ

†
0Ψ+Ψ−,

ih̄
∂

∂t
Ψ−(~r, t) =


− h̄2

2m
∇2 + Vext(~r) + c0

∑

j

(
Ψ†

jΨj

)

 Ψ−

+c2

(
Ψ†
−Ψ− + Ψ†

0Ψ0 −Ψ†
+Ψ+

)
Ψ− + c2Ψ

†
+Ψ0Ψ0.

Similar to the procedure for the GP equation of a scalar condensate, one obtains

the coupled GP equations for a spin-1 condensate within mean field theory as follows,

ih̄
∂

∂t
Φ+ =

[
− h̄2

2m
∇2 + Vext + c0n + c2(n+ + n0 − n−)

]
Φ+ + c2Φ

2
0Φ

∗
−,

ih̄
∂

∂t
Φ0 =

[
− h̄2

2m
∇2 + Vext + c0n + c2(n+ + n−)

]
Φ0 + 2c2Φ+Φ−Φ∗

0,

ih̄
∂

∂t
Φ− =

[
− h̄2

2m
∇2 + Vext + c0n + c2(n− + n0 − n+)

]
Φ− + c2Φ

2
0Φ

∗
+,

where ni = |Φi|2 is the density of the ith component and n =
∑

i ni is the total density

of the atomic gas.

11



CHAPTER III

BOSE-EINSTEIN CONDENSATION OF

TRAPPED INTERACTING SPIN-1 ATOMS

3.1 Introduction

It has been known for a long time that the spin degrees of freedom of an atom become

accessible if a far-off-resonant optical trap is used to provide equal confinement for

all Zeeman states, instead of the more widely used magnetic traps for spin polarized

atoms [50, 51, 52, 75]. Several earlier experiments have produced fascinating observa-

tions of spinor condensates, a superfluid with internal degrees of freedom, e.g., with

23Na atoms in F = 1 [45, 46] and F = 2 [76] and 87Rb atoms in F = 1 [49, 56, 77]

and F = 2 [53, 54, 55], spin domains and interdomain tunnelling [47, 48], as well

as the generation of coreless vortex states [78, 79, 80, 81]. These properties exist

only because of the spinor nature of the condensate order parameter, and thus are

generally not expected to occur in a magnetically trapped condensate.

Despite these and other related successes with spinor condensates, our knowledge

remains limited regarding the condensation thermodynamics of spin-1 atoms. In a

sense, the spin-1 condensate constitutes a type of quantum fluid unfamiliar to many

of us. On the experimental side, it remains a significant challenge to produce a spinor

condensate, as evidenced by the disproportionally small numbers of spinor BEC ex-

periments in operation. In this chapter, we will revisit the topic of the condensation

thermodynamics for a system of trapped spin-1 atoms. Of particular interest to us is

the question of the so-called double condensations for a spin-1 system constrained by

two global conservations [82]. Using the Bogoliubov-Popov approximation, Isoshima

12



et al. first investigated the thermodynamics of the BEC phase transition for a spin-

1 gas [82]. Huang et al. studied analytically the effect of a magnetic field on the

transition temperature [83]. While an attempt to find the zero-magnetic-field phase

diagram was made through numerical simulations in Ref. [82], there still exist sev-

eral question marks to the overall picture of BEC for a spin-1 Bose gas, especially

for ferromagnetically interacting atoms such as 87Rb. Limited by the computation

procedure within the Bogoliubov-Popov approximation, only a few data points were

made available in the earlier studies by Isoshima et al. [82].

In this chapter we will investigate systematically the phase diagram of a spin-

1 Bose gas for both ferromagnetic and antiferromagnetic interactions. Instead of

the Bogoliubov approach, we will adopt the Hartree-Fock-Popov approximation and

employ a semiclassical approximation to the noncondensed atoms within the mean

field theory. We will also enforce the thermodynamics for a finite trapped system

with a fixed total atom number N and a total magnetization M . Recent studies

have significantly verified the accuracy of this approximation when applied to similar

systems [84]. As will be discussed in detail later our results indicate that double

condensations will occur for a spin-1 gas with antiferromagnetic interactions, while

triple condensations are more likely for ferromagnetic interactions [85].

We start with a review of several additional features of a BEC for an ideal gas

of spin-1 atoms in a spherical harmonic trap in Sec. 2.2.2. This is followed by

the formulation of an interacting spin-1 gas in Sec. 2.2.3, then a brief sketch of the

Hartree-Fock-Popov theory and two fluid model used for our investigation. We outline

the detailed numerical algorithm employed to solve the coupled two-fluid model for

the quantum gas at different temperatures in Sec. 2.2.4 and present the results of our

study in Sec. 2.2.5. We conclude with some discussions and remarks in Sec. 2.2.6.
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3.2 BEC of an ideal gas of spin-1 atoms

In this section, we briefly review the phenomenon of BEC for a trapped noninteracting

gas of spin-1 atoms following the pioneering study of Isoshima et al. [82]. At thermal

equilibrium, we adopt the standard Bose-Einstein distribution, and treat the spinor

degree of freedom as degenerate internal states in the absence of an external magnetic

field. The average number of atoms at each single atom state of an energy εj for the

component |i〉, is then conveniently given by

Ni,j =
zie

−βεj

1− zie−βεj
, (3)

with β = 1/(kBT ) at temperature T . kB is the Boltzmann constant. The fugacity

zi can be expressed in terms of the chemical potential for the ith component µi

as zi = exp(βµi). In the thermodynamic limit, one can follow the usual approach

by making a semiclassical approximation for a continuous description of the single

particle density of states, and treating the ground state population separately as it

can become macroscopic due to Bose-Einstein condensation. The total number of

atoms for a given internal state in all motional excited states of the trap is thus found

to be

NT
i =

∞∑

j=1

Ni,j =

(
kBT

h̄ω

)3

g3(zi), (4)

where we have assumed atoms are confined in a spherical harmonic trap with a

frequency ω independent of the atomic internal state |i〉. gν(x) =
∑∞

n=1(x
n/nν) is

the standard Bose function [86, 87, 88]. We note that the conservations of the total

number of atoms N = N++N0+N− and total magnetization M = N+−N− lead to the

chemical potentials for different spin components expressible as µ± = µ± η and µ0 =

µ. These identities remain valid in the presence of atom-atom interactions. µ and η

are effectively independent Lagrange multipliers used to guarantee the conservation

of N and M , respectively. Taking the single atom trapped ground state to be zero

energy, the Bose distribution (3) shows that µi is negative at high temperatures and
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reaches zero when the spin component |i〉 condenses. η is positive (negative) for a

positive M (negative), which acts as a fictitious applied magnetic field physically.

As was first pointed out in Ref. [82], there exists an interesting double condensa-

tion phenomenon for a spin-1 gas because of the presence of M conservation. When

the temperature is lowered, the |+〉 component first condenses for a system with a

positive M because its phase space density is largest, reflecting the fact that N+ is

the largest component population. Thus we first arrive at µ+ = 0. This consideration

leads to the critical temperature T1 governed by the following equations:

N =

(
kBT1

h̄ω

)3 [
g3(1) + g3(e

βµ) + g3(e
2βµ)

]
, (5)

M =

(
kBT1

h̄ω

)3 [
g3(1)− g3(e

2βµ)
]
. (6)

On further lowering of the temperature, however, the remaining two components |0〉
and |−〉 condense simultaneously, rather than sequentially with the less populated

component of the two condensing last. This is precisely due to the conservation

identities as discussed before. The relationships µ± = µ ± η and µ0 = µ lead to a

mathematical certainty: when µ+ is zero, if either µ0 or µ− becomes zero, both must

be zero. At this second critical temperature T2, both µ0 = 0 and µ− = 0, which imply

that the |0〉 and |−〉 components condense simultaneously. This second condensation

where all three components condense, occurs at the temperature T2 of

T2 =
h̄ω

kB

[
N −M

3g3(1)

]1/3

. (7)

In Fig. 1, we illustrate the M dependence of the double condensations for an

ideal Bose gas of spin-1 atoms. Tc = [N/g3(1)]1/3(h̄ω/kB) ≈ 0.94N1/3h̄ω/kB is the

condensation temperature for M = N , i.e., for a single component gas with all atoms

polarized in state |+〉.
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Figure 1: BEC for a gas of spin-1 atoms with M > 0 (M < 0). For noninteracting
atoms, the |+〉 (|−〉) component condenses first at T1 (dashed line) while the |0〉 and
|−〉 (|+〉) components condense simultaneously at T2 (solid line). For 23Na atoms
with antiferromagnetic interactions, double condensations persist according to our
theoretical study. The |+〉 component (denoted by +) condenses first, which is then
followed by the condensation of the |−〉 component (denoted by ×). The |0〉 compo-
nent is unpopulated in the low temperature limit. For 87Rb atoms with ferromagnetic
interactions, our study reveals the potential for triple condensations. First, the |+〉
component condenses (denoted by ¦), which is then followed by the second conden-
sation for the |−〉 component (denoted by ∗), and finally the third condensation for
the |0〉 component occurs (denoted by ◦).
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3.3 BEC of an interacting gas of spin-1 atoms

3.3.1 Formulation

Our model system of the interacting spin-1 atoms is described by a Hamiltonian in

second quantized form [50, 51, 52] in Eq. (1). It is easy to check that both the total

number of atoms and the total magnetization

N =
∫

d~r(|Ψ+|2 + |Ψ0|2 + |Ψ−|2),

M =
∫

d~r(|Ψ+|2 − |Ψ−|2) =
∫

d~rΨ†
i (Fz)ijΨj,

commute with the Hamiltonian [Eq. (1)], and are thus constants of motion. To study

the minimal energy ground state, we therefore introduce two Lagrange multipliers µ

and η, to fix the total atom number and magnetization of the system in our numerical

minimization. It turns out that µ is in fact the chemical potential of the system and

η is an effective magnetic field. The Gibbs free energy is then given by

G = H − µN − ηM

=
∫

d~r
{
Ψ†

i (Lij − η(Fz)ij)Ψj +
c0

2
Ψ†

iΨ
†
jΨjΨi

+
c2

2
Ψ†

i (Fα)ij ΨjΨ
†
k (Fα)kl Ψl

}
, (8)

where

Lij =

[
− h̄2

2m
∇2 − µ + Vext(~r)

]
δij. (9)

The atomic interactions are conveniently parametrized in explicit form through the

two s-wave scattering lengths a0 and a2 between two spin-1 atoms [50, 51, 52]

c0 =
4πh̄2

m

(
a0 + 2a2

3

)
, c2 =

4πh̄2

m

(
a2 − a0

3

)
. (10)

In this chapter, we attempt to find the mean field ground state of our spin-1 Bose

gas system, which corresponds to the state with the lowest Gibbs free energy.
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3.3.2 Hartree-Fock-Popov theory and the two-fluid model

The field operator Ψ(~r, t) evolves in the Heisenberg picture according to

ih̄
∂

∂t
Ψ(~r, t) = [Ψ, G] .

For the system of a spin-1 Bose gas as considered here, the above equation becomes

ih̄
∂

∂t
Ψ+(~r, t) = L++Ψ+ − ηΨ+ + c0

∑

j

(
Ψ†

jΨj

)
Ψ+ + c2

(
Ψ†

+Ψ+ + Ψ†
0Ψ0 −Ψ†

−Ψ−
)

Ψ+

+c2Ψ
†
−Ψ0Ψ0,

ih̄
∂

∂t
Ψ0(~r, t) = L00Ψ0 + c0

∑

j

(
Ψ†

jΨj

)
Ψ0 + c2

[(
Ψ†

+Ψ+ + Ψ†
−Ψ−

)
Ψ0 + 2Ψ†

0Ψ+Ψ−
]
,

ih̄
∂

∂t
Ψ−(~r, t) = L−−Ψ− + ηΨ− + c0

∑

j

(
Ψ†

jΨj

)
Ψ− + c2

(
Ψ†
−Ψ− + Ψ†

0Ψ0 −Ψ†
+Ψ+

)
Ψ−

+c2Ψ
†
+Ψ0Ψ0. (11)

Following the standard mean field theory procedure, i.e. taking Ψ = Φ + δΨ with

Φ = 〈Ψ〉 denoting the condensate, after some tedious manipulations and calculations,

we obtain a set of coupled Gross-Pitaevskii equations for the condensed components

including their interactions with the noncondensed atoms as

ih̄
∂

∂t
Φ+ =

[
− h̄2

2m
∇2 + Vext − µ− η + c0(n + nT

+) + c2(n+ + n0 − n− + nT
+)

]
Φ+

+c2Φ
2
0Φ

∗
−,

ih̄
∂

∂t
Φ0 =

[
− h̄2

2m
∇2 + Vext − µ + c0(n + nT

0 ) + c2(n+ + n−)

]
Φ0 + 2c2Φ+Φ−Φ∗

0,

ih̄
∂

∂t
Φ− =

[
− h̄2

2m
∇2 + Vext − µ + η + c0(n + nT

−) + c2(n− + n0 − n+ + nT
−)

]
Φ−

+c2Φ
2
0Φ

∗
+, (12)

and equations for the noncondensed parts δΨi,

ih̄
∂

∂t
δΨ+(~r, t) =

[
− h̄2

2m
∇2 + Vext − µ− η + c0(n + n+) + c2(2n+ + n0 − n−)

]
δΨ+,

ih̄
∂

∂t
δΨ0(~r, t) =

[
− h̄2

2m
∇2 + Vext − µ + c0(n + n0) + c2(n+ + n−)

]
δΨ0, (13)

ih̄
∂

∂t
δΨ−(~r, t) =

[
− h̄2

2m
∇2 + Vext − µ + η + c0(n + n−) + c2(2n− + n0 − n+)

]
δΨ−,
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where n =
∑

i ni =
∑

i(|Φi|2 + nT
i ) is the total density of the atomic gas, with

nT
i = 〈δΨ†

iδΨi〉 the normal (noncondensed) gas density of the ith component. In-

stead of the Hartree-Fock-Bogoliubov (HFB) approximation as employed by Isoshima

et al. [82], we use the Hartree-Fock-Popov (HFP) approximation to obtain the above

equations. Within the HFP approximation, we neglect terms proportional to the

anomalous noncondensate density 〈δΨiδΨj〉 as well as their complex conjugates. We

also neglect cross component noncondensate terms proportional to 〈δΨ†
iδΨj〉 for i 6= j,

similar to the random phase approximation. A more detailed formal discussion of the

HFP theory can be found in Refs. [89, 90, 91, 92], and for the calculation of the phase

diagram of Bose-Einstein condensation, it is an excellent approximation as confirmed

recently in a set of detailed comparisons with experiments [84]. In addition, as will

become clear later, the HFP approximation is also efficient from the numerical point

of view, especially near regions of temperatures close to (but below) the critical tem-

perature. The HFB approximation, on the other hand, is more difficult to handle

numerically [82]. Although more rigorous at very low temperatures, the HFB ap-

proximation is expected to agree with the more transparent HFP approximation at

higher temperatures. In deriving the equations for δΨi, terms proportional to δΨ†
i ,

δΨj, and δΨ†
j for j 6= i are also neglected. This is equivalent to the neglect of the

“hole” component in the HFB approximation, and is thus expected to have a minor

effect except that the temperature is very close to zero.

In the HFP approximation we adopt here, the normal fluid for noncondensed

atoms is determined through the semi-classical approximation. We thus take −ih̄∇ →
~p, and approximate its distribution by the standard Bose-Einstein distribution in the

phase space of {~p, ~r},

nT
i (~r) =

∫ d~p

(2πh̄)3

1

eεi(~p,~r)/kBT − 1
, (14)
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with the HFP single particle energy spectrum,

ε+(~p, ~r) =
p2

2m
+ Vext − µ− η + c0(n + n+)

+c2 (2n+ + n0 − n−) ,

ε0(~p, ~r) =
p2

2m
+ Vext − µ + c0(n + n0) + c2 (n+ + n−) ,

ε−(~p, ~r) =
p2

2m
+ Vext − µ + η + c0(n + n−)

+c2 (2n− + n0 − n+) , (15)

which are obtained by substituting δΨi(~r, t) = exp[−iεi(~p, ~r)t/h̄]ui(~r) into Eqs. (13)

with ui(~r) the eigenfunction for the excitation of the ith component. In the numerical

implementation we use [µ − (3/2)] instead of µ in order to avoid negative levels at

the points of both small Vext and small p for an ideal gas. This modification also

avoids the divergence of nT
i near the edge of the condensate. This is precisely the

correction of the zero-point energy between the semi-classical description and the

quantum description.

Thus, we have formulated a coupled set of equations for both the condensate and

the normal components; they are Eq. (12) for the condensed part and Eqs. (14) and

(15) for the noncondensed atoms. These are the basis for our numerical investigations

to be presented below.

3.4 Numerical method

In the numerical studies, we have developed the following algorithm self-consistently

solving the coupled equations (12), (14), and (15), as an extension to the single

component gas studied earlier [89]. Our algorithm is divided into the following steps:

� We find the condensate wave function Φi(~r) and the chemical potential µ for a

set of fixed normal gas density nT
i (~r), by propagating Eqs. (12) in the imaginary

time domain, as described in Refs. [93, 94].

20



� We compute the updated energy spectrum and normal gas density nT
i (~r) from

Eqs. (14) and (15) using the new condensate wave function and the chemical

potential.

� We normalize the total number of atoms to N and adjust η accordingly [93].

� We repeat the above steps until convergence is reached. The convergence crite-

rion is set to be that the condensate fraction NC(T )/N and the magnetization

fraction M/N of successive iterations differ by less than 10−11 for most temper-

atures and less than 10−5 near the temperature region of phase transition.

At temperatures higher than the first BEC transition point, the above procedure

converges rather quickly as the condensed component Φi is no more exists. In this

case, we only need to solve Eqs. (14) and (15) self-consistently by adjusting µ and η.

3.5 Results and discussions

In this chapter, we focus on the illustration of our results for atoms inside a spherically

symmetric harmonic trap

Vext(~r) =
1

2
mω2r2. (16)

We take N = 106 and ω = (2π)100 Hz, and use the spin-1 atom parameters for 23Na

and 87Rb atoms as given in Table 1. As is shown, it is antiferromagnetic (c2 > 0) for

23Na atoms and ferromagnetic (c2 < 0) for 87Rb atoms.

Table 1: Atomic parameters for 23Na and 87Rb atoms [95, 96]. a0 and a2 are in units
of Bohr radius and c0 and c2 in units of (2π)10−12 Hz cm3.

a0 a2 c0 c2
23Na 50.0 55.0 15.587 0.4871
87Rb 101.8 100.4 7.793 -0.0361
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3.5.1 Atoms with antiferromagnetic interactions (23Na)

The interaction between 23Na atoms is antiferromagnetic, i.e. c2 > 0. The corre-

sponding phase diagram we obtain is shown in Fig. 2. It clearly reveals the double

phase transitions: one for the |+〉 component and the other for the |−〉 component.

The |0〉 component of the condensate never shows up because the antiferromagnetic

interaction favors an antiparallel alignment of the atomic spin, which is equivalent to

a coherent superposition of the |+〉 and |−〉 states as explained in the discussion of

order parameter symmetry at zero temperature in Ref. [50]. Our mean field result is

also consistent with that of Isoshima et al. [82]. Similar to the case of an ideal gas,

the transition temperature of the |+〉 component increases monotonically with M/N

while that of the |−〉 component monotonically decreases. When the temperature de-

creases, the first condensed component is |+〉 because M > 0; the second condensed

component is |−〉, which condenses at temperatures when NC
+ + NT

+ − NT
− > M .

Figure 3 shows typical density distributions of different components for a 23Na gas.

We see that |Φ+|2 and |Φ−|2 are always miscible [45, 97] and distributed mostly near

the central region of the trap. We also note that |Φ0|2 is always zero within this mean

field study. All three components of the normal gas coexist. Both nT
+ and nT

− peak

at the edge of the condensate because of the shape of the net interaction potentials

between the condensate and the normal gas. nT
0 is much flatter since |Φ0|2 is zero.

We now comment on a particular feature related to the asymptotic behavior of

the spin-1 gas of 23Na atoms as T → 0 for M = 0. The full quantum theory predicts

a ground as a superfragmented Fock state with atoms equally distributed among the

three spin components |N+ = N/3, N0 = N/3, N− = N/3〉 [50, 52, 61, 62]. Such

a state would give rise to a number fluctuation of order of N2, and is impossible

within the present mean field treatment. The mean field ground state is known to

be |N+ = N/2, N0 = 0, N− = N/2〉 [61, 98], consistent with our results. In an actual

experiment, it is most likely that the mean field ground state is observed because
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Figure 2: (Color) Double condensations for a spin-1 gas of 23Na atoms. The upper
left panel shows the total condensed fraction vs temperature and total magnetiza-
tion. Similarly, the upper right one shows the fraction of condensed |+〉 component,
the lower left the condensed |0〉 component, and the lower right the condensed |−〉
component.
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(T/Tc = 0.43,M/N = 0.4). The upper panel is for the condensate and the lower one
for the noncondensed atoms.
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the full quantum state is not stable against various external sources of fluctuation

or noises, e.g. that of the unshielded magnetic field [62], a small deviation of the

total magnetization M from zero [61], or a temperature being not exactly zero. The

mean field ground state, on the other hand, is more robust against these noise. In our

numerical calculations, it is really impractical to set the temperature microscopically

close to but above zero to probe the real ground state (for M = 0). We therefore

enforced the ground state structure such that it asymptotically approaches that of

the mean field ground state with a decrease of the temperature as shown in Fig. 2.

With this convention, a related issue arises: the equivalence between states |N+ =

N/2, N0 = 0, N− = N/2〉 and |N+ = 0, N0 = N, N− = 0〉 at zero temperature as

first pointed out by Ho [50]. We note, however, that this equivalence is based on

the assumption of an environment perfectly free of magnetic fields. The presence of

even a tiny magnetic field, which is inevitable in the real world, would destroy this

equivalence and cause the real ground state to be |N+ = N/2, N0 = 0, N− = N/2〉, a

convention we chose as indicated in Fig. 2.

3.5.2 Atoms with ferromagnetic interactions (87Rb)

The phase diagrams for 87Rb atoms with ferromagnetic interactions (c2 < 0) are

shown in Figs. 4 and 5. Only a sparse set of points was made available in the early

work of Isoshima et al. [82] because the numerical solution becomes far more difficult

to converge in this case. Based on our results, we see that when the temperature of

the system decreases, triple condensations occur in general. When M > 0, the first

condensed component is the |+〉 state (for T < T1), the second one is the |−〉 state

(for T < T2), and the last one is the |0〉 state (for T < T3). Our results show that

the |+〉 component first condenses at T1 and its population increases with decreasing

temperature until T2, at which the |+〉 condensed component is a little more than

the total magnetization M . When temperature is lower than T2, the |−〉 component
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Figure 4: (Color) The same as in Fig. 2 but for a gas of 87Rb atoms.

begins to condense as well. The two condensed components in states |+〉 and |−〉
both increase with decreasing temperature until the third critical temperature T3,

at which the |0〉 component starts to condense. Once the |0〉 component condenses,

the |−〉 component starts to decrease and becomes very close to zero, while the |+〉
component is almost constant with respect to further decreasing of the temperature.

This trend continues until the temperature is lower than T4, when the condensed |0〉
component starts to decrease with decreasing temperature while the populations of

the |+〉 and |−〉 condensed components increase. For the special case of M = 0, on

the other hand, we observe only double condensations; the |0〉 component condenses

first, followed by the simultaneous condensation of both the |+〉 and |−〉 components.

This is again due to the special symmetry requirement that the |+〉 component be

the same as the |−〉 component in order to keep M = 0. We note that in this case the

fraction of condensed |0〉 component can reach as high as 94% at finite temperatures,

much higher than the ∼ 50% at zero temperature.
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Figure 6 displays typical density distributions for a gas of 87Rb atoms at different

temperatures for M/N = 0.6. The right column corresponds to T ∈ (T3, T2], where

only the |+〉 and |−〉 components are condensed and the |−〉 component is quite small

and is spatially located at the edge of the |+〉 component. Quite generally, we note

that with the condensation of a component, its corresponding normal gas component

would have a lower density. For instance, the normal gas density of the |+〉 component

is low in the trap center where the |+〉 condensed component resides. The middle

column of Fig. 6 is the typical density distribution when T ∈ (T4, T3]. The condensed

|+〉 component stays at the center and is surrounded by the |0〉 component. The

condensed |−〉 component is too small to be visible directly, but can be perceived from

the shallow well in its normal gas component, which indicates that the condensed |−〉
component is not zero and is located around the edge of the condensed |+〉 component.

The left column of Fig. 6 shows the density distributions when T ∈ (0, T4], where all

three condensed components coexist near the center of the trap and are surrounded

by their normal gas components.

These results for 87Rb atoms can be understood in terms of the interplay of three

factors: the ferromagnetic atom-atom interaction (c2 < 0), the M conservation, and

the miscibility between and among different components. The ferromagnetic inter-

action favors the most populated state, the M conservation sets an upper limit on

the fraction of the condensed |+〉 component, and the immiscibility between the

condensed |+〉 and |−〉 component sets an upper limit on the total fraction of the

condensed |+〉 and |−〉 components. For instance, in the region T ∈ (T2, T1], only

the |+〉 component condenses. The ferromagnetic interaction plays a dominant role

and thus more atoms condense into the |+〉 state with decreasing temperature. In

the region of T ∈ (T3, T2], the M conservation and the immiscibility begin to take

their effect. The M conservation causes the increases to the condensed |+〉 and |−〉
components to be almost identical, while the immiscibility makes the condensed |−〉
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Figure 7: The lowest excitation level for a gas of 87Rb atoms at M/N = 0.6, T/Tc =
0.34 (right before the condensation of the |−〉 component). The inset shows the
details of a zoomed-in plot near the minimum.

component stay outside the condensed |+〉 component. The system becomes unsta-

ble with the increase of the |+〉 and |−〉 components because with more condensed

|+〉 component, the condensed |−〉 component must be pushed out further. Near

the third critical temperature T3, the condensed |−〉 component suddenly decreases

to almost zero and the condensed |+〉 component decreases to about M . Approxi-

mately, the total decreased amount from the |+〉 and the |−〉 components becomes

the condensed |0〉 component. The system enters the region T ∈ (T4, T3] in which

the condensed |0〉 component increases steadily with lowering temperature because

the condensed |+〉 and |0〉 components are miscible. The condensed |+〉 component

is almost independent of the temperature because of the M conservation. With de-

creasing temperatures, more and more condensed |0〉 component finally suppresses

the immiscibility between |+〉 and |−〉 component at T4. All three condensed com-

ponents become miscible, and both the |+〉 and |−〉 components increase to keep M

conserved while the |0〉 component decreases.

Figure 7 shows the lowest excitation energy ε = ε(p = 0) for the three components
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of a 87Rb gas at M/N = 0.6, T/Tc = 0.34 (right before the condensation of the

|−〉 component). We see that the energy for the |−〉 component is lower than the

corresponding ones for the other two states and takes a minimum near the spatial

location of r = 9 µm, which is at the edge of the condensed |+〉 component. This

result confirms that the |−〉 component condenses before the |0〉 component and

surrounds the condensed |+〉 component.

3.6 Conclusions

We have studied the thermodynamics of Bose-Einstein condensation for a gas of spin-

1 atoms with ferromagnetic and antiferromagnetic interactions using the mean field

Hartree-Fock-Popov theory and the semiclassical approximation for the noncondensed

components. Our results show that for antiferromagnetic interactions, double phase

transitions persist as in a noninteracting gas: when M > 0, first the |+〉 component

condenses, which is followed by the condensation of the |−〉 component on further

decreasing of the temperature. The |0〉 component never condenses. For ferromag-

netic interactions, on the other hand, our calculations reveal that the phase diagram

becomes more complicated and a triple condensation scenario arises with decreasing

temperatures: first the |+〉 component condenses, which is followed by the second

condensation of the |−〉 component, and the third one for the |0〉 component. When

the |+〉 and |−〉 components are the only condensed ones, they are immiscible. When

all three components condense and the temperature is lower than T4, they become

miscible because of the presence of a large condensed |0〉 component. We have com-

pared the numerically computed transition temperatures with that of an ideal gas as

in Fig. 1. An overall lowering of the various transition temperatures due to atom-

atom interactions is seen, consistent with the case of a single component interacting

Bose gas, where the interaction-induced shift to the transition temperature has been
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actively studied [99]. Quite generally a repulsive interaction tends to lower the tran-

sition temperature for a single component Bose gas [89]. In the case of a spin-1 Bose

gas considered here, c0 > 0 and c0 À |c2| constitutes an overall repulsive interaction.

Finally, we note there also exists the possibility of a ferromagnetic phase transi-

tion for 87Rb atoms, in addition to the Bose-Einstein condensation as studied here.

In fact, as was investigated recently by Gu and Klemm [100], the ferromagnetic tran-

sition is generally predicted to occur before, i.e. at temperatures higher than, the

Bose Einstein condensation. The present study, however, remains unchanged because

we treated the system within the global constraint of the conservation of total mag-

netization, distinct from that required for a separate ferromagnetic phase transition

[100]. As is evidenced from recent experiments, the total magnetization M is well

conserved, even better than the conservation of the total number N [53, 77].
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CHAPTER IV

MEAN FIELD GROUND STATE OF A SPIN-1

CONDENSATE IN A MAGNETIC FIELD

4.1 Introduction

Atomic Bose-Einstein condensates have provided a successful testing ground for the-

oretical studies of quantum many-body systems [7]. In most earlier Bose-Einstein

condensation experiments, atoms were spatially confined with magnetic traps, which

essentially freeze the atomic internal degrees of freedom [3, 4, 5]. Most studies were

thus focused on scalar models, i.e. single-component quantum degenerate gases [101].

For such single-component systems, magnetic fields have no role to play except for

being used to adjust the s-wave scattering length through Feshbach resonance. The

emergence of spin-1 condensates [45, 46, 49, 53, 54, 55, 56] (of atoms with hyperfine

quantum number F = 1) and spin-2 condensates (F = 2) [53, 54, 55] have created

opportunities for understanding degenerate gases with internal degrees of freedom

[50, 51, 52, 93, 102, 103].

In this chapter, we investigate the mean field ground state structures of a spin-1

atomic condensate in the presence of external magnetic fields (B) [94]. We focus on

several aspects of the ground state properties strongly constrained by the requirement

that elastic atom-atom collisions conserve both the total number of atoms (N) and

the magnetization (M). Several earlier studies have focused on the global ground

state structures when the conservation of M was ignored, or in the limiting case of a

vanishingly small magnetic field (B = 0) [45, 50, 51, 52, 93, 102, 103]. As we show in

this study, in the presence of a nonzero magnetic field, the conservation of M leads to

ground state population distributions significantly different from those of the global
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ground state.

The spin-1 Bose condensate in a magnetic field is described by the Hamiltonian

(repeated indices are summed) [50, 51]

H =
∫

d~r Ψ†
i (Lij + HZM)Ψj +

c0

2

∫
d~rΨ†

iΨ
†
jΨjΨi

+
c2

2

∫
d~rΨ†

kΨ
†
i (Fα)ij (Fα)kl ΨjΨl, (17)

where Ψj(~r) is the field operator that annihilates an atom in the j-th (j = +, 0,−) in-

ternal state (|F = 1,mF = +, 0,−〉) at location ~r, Lij =
[
−(h̄2∇2/2m) + Vext(~r)

]
δij,

and Vext(~r) an internal state independent trap potential. Terms with coefficients c0

and c2 of Eq. (17) describe elastic collisions of the spin-1 atom, where c0 and c2 are

defined by Eq. (10) in terms of the scattering length a0 (a2) for two spin-1 atoms

in the combined symmetric channels of total spin 0 (2). Fα=x,y,z are spin-1 matrices

given by Eq. (2).

The external magnetic field B is taken to be along the quantization axis (ẑ). It

induces a Zeeman shift on each atom expressible as

HZM(B) =




E+ 0 0

0 E0 0

0 0 E−




.

According to the Breit-Rabi formula [104], the individual level shift can be expressed

as

E+ = −EHFS

8
− gIµIB − 1

2
EHFS

√
1 + y + y2,

E0 = −EHFS

8
− 1

2
EHFS

√
1 + y2,

E− = −EHFS

8
+ gIµIB − 1

2
EHFS

√
1− y + y2, (18)

where EHFS is the hyperfine splitting [104], and gI is the Lande g-factor for the atomic

nuclei with nuclear spin ~I. µI is the nuclear magneton and y = (gIµIB+gJµBB)/EHFS

with gJ the Lande g-factor for the valence electron with total angular momentum ~J .

µB is the Bohr magneton.
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4.2 Mean field approximation

As in Chapter 2.2, at near zero temperatures and when the total number of condensed

atoms is large, the ground state is essentially determined by the mean field term

Φi = 〈Ψi〉. Neglecting all quantum fluctuations we arrive at the mean field energy

functional from Eq. (17) [52, 97]

H[{Φi}] = HS + E0N +
c2

2
〈~F 〉2 − η0〈Fz〉+ δ〈F 2

z 〉, (19)

where the symmetric part

HS =
∫

d~r
[
Φ∗

iLijΦj +
c0

2
Φ∗

i Φ
∗
jΦjΦi

]
, (20)

is invariant under the exchange of spin component indices, thus is independent of the

external B field. The Zeeman shift as given by the Breit-Rabi formula (18) can be

conveniently parametrized by [97]

η0 =
E− − E+

2
,

δ =
E+ + E− − 2E0

2
, (21)

which measure approximately the linear and quadratic Zeeman effects. The B-field

dependence of η0 and δ for a 87Rb atom are displayed in Fig. 8. For current available

experiments on 87Rb and 23Na atom gases, the magnetic field ranges from 1 mG

to around 1 G. In this region, the linear Zeeman effect, η0, is always 3-6 orders of

magnitude larger than the quadratic Zeeman effect, δ. But we shall show later that

the quadratic Zeeman effect plays a more important role despite of being smaller. The

linear Zeeman effect is actually nulled by the conservation of the total magnetization

M .

The elastic atomic collisions as described by the c0 and c2 parts of the Hamiltonian

(17) conserve both N and M , which in the mean field approximation are given by

N =
∑

j=±,0

∫
d~r 〈Ψ†

j(~r)Ψj(~r)〉 ≈
∑

j=±,0

∫
d~r |Φj(~r)|2,
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Figure 8: Approximate linear and quadratic Zeeman effects as characterized by pa-
rameters η0 and δ versus magnetic field B for a 87Rb atom.

M =
∫

d~r [〈Ψ†
+(~r)Ψ+(~r)〉 − 〈Ψ†

−(~r)Ψ−(~r)〉]

≈
∫

d~r [|Φ+(~r)|2 − |Φ−(~r)|2]. (22)

In a typical experiment, the last stage before condensation consists of atomic

evaporations, during which neither N nor M is conserved. For a scalar condensate,

typically the ground state is obtained from a minimization of Eq. (19) subjected to

the constraint of only N conservation. This gives rise to the Gross-Pitaevskii equa-

tion (GPE) and the associated condensate chemical potential, which mathematically

is simply the Lagrange multiplier of the constrained minimization. A spin-1 conden-

sate requires the introduction of two Lagrange multipliers during the minimization

subjected to both the N and M conservation constraints, as was first performed in

[45, 97].

When atomic interactions are ferromagnetic (c2 < 0 as for 87Rb atoms) and when

the external B-field is negligible, Yi et. al. have shown previously that the ground

state structure is simply a state where all individual atomic spins are aligned in the

same direction [93]. In this case, the conservation of M can be simply satisfied by

tilting the quantization axis away from the direction of the condensate spin. This
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can always be done if a system described by (17) is rotationally symmetric, and thus

contains the SO(3) symmetry [50]. The presence of a nonzero B field, on the other

hand, breaks the rotational symmetry, [e.g. the linear Zeeman shift, reduces the

SO(3) to SO(2) symmetry], thus the conservation of M has to be included in the

minimization process directly.

The global ground state phase diagram including both linear and quadratic Zee-

man effect was first investigated by Stenger et al. [45]. In their early study, although

the M conservation was included in their formulation, it was not separately discussed,

consequently their results do not easily apply to systems with fixed values of M . The

ground state structures as given in Ref. [45] correspond to the actual ground state

which is realized through a M non-conserving evaporation process (e.g. in the pres-

ence of a nonzero B-field) that has a reservoir for condensate magnetization. Our

study, on the other hand, would explicitly discuss the phase diagram for fixed values

of M , which could physically correspond to experimental ground states (with/without

a B-field) due to a M conserving evaporation process. Although more limited, as our

results can be traced to linear trajectories of M = const. in the phase diagram of Ref.

[45, 97], we expect them to be useful, especially in predicting ground state struc-

tures when a ready-made spinor condensate is subject to external manipulations that

conserve both N and M .

When atomic interactions are anti-ferromagnetic (c2 > 0), the global ground state

was first determined to be a total spin singlet [52]. More elaborate studies, including

quantum fluctuations, were performed by Ho and Yip [61] and Koashi and Ueda

[62]. Unfortunately, these results [61, 62] do not correspond to actual ground states

as realized in current experiments, because of the presence of background magnetic

fields. For instance, the states as found in Ref. [61] are only possible if the magnetic

field B is less than 70µG at the condensate density as realized in the MIT experiments

[97]. The linear Zeeman shift (see Fig. 8) due to the presence of even a small magnetic
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field can overwhelm atomic mean field interaction and typical atomic thermal energy,

thus if it were not for the conservation of M , the ground state would simply correspond

to all atoms condense into the lowest Zeeman sublevel of |mF = 1〉.
We now minimize H of Eq. (19) by denoting Φj(~r) =

√
Njφj(~r)e

−iθj , with a real

mode function φj(~r) (
∫

φ2
j(~r)d~r = 1) and phase θj. It is easy to check that the phase

convention of ferromagnetic/anti-ferromagnetic interactions as obtained previously

[51] in the absence of a B-field still remains true, i.e.

θ+ + θ− − 2θ0 = 0, c2 < 0 (ferromagnetic), (23)

θ+ + θ− − 2θ0 = π, c2 > 0 (anti-ferromagnetic). (24)

4.3 Condensate ground state in a homogeneous system

In a homogeneous system such as a box type trap (of volume V), adopting the above

phase convention, the resulting ground state energy functional becomes (+/− for

c2 < 0 and c2 > 0 respectively)

H[{Ni}] = HS + E0N +
c2

2V
[
(N+ −N−)2 + 2N0(

√
N+ ±

√
N−)2

]

−η0(N+ −N−) + δ(N+ + N−). (25)

With everything expressed in terms of fractional populations and fractional magne-

tization ρi = Ni/N and m = M/N , and note that ρ+ + ρ− = 1 − ρ0, ρ+ − ρ− = m,

Eq. (25) becomes

H[{ρi}]
N

=
HS

N
+ E0 +

c

2

[
(ρ+ − ρ−)2 + 2ρ0(

√
ρ+ ±√ρ−)2

]

−η0(ρ+ − ρ−) + δ(ρ+ + ρ−), (26)

with an interaction coefficient c = c2N/V , tunable through a change of condensate

density.

We now minimize Eq. (26) under the two constraints ρ+ + ρ0 + ρ− = 1 and

ρ+ − ρ− = m. We restrict our discussion to the region −1 < m < 1 as the special
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cases of m = ±1 are trivial. Because HS, E0, c, η0, and m are all constants for given

values of B, N , and V , the only part left to be minimized is

F = cρ0(
√

ρ+ ±√ρ−)2 + δ(ρ+ + ρ−). (27)

In the special case of c = 0, Eq. (27) reduces to

F = δ(ρ+ + ρ−). (28)

The ground state is then very simple. When δ > 0, which seems to be always the

case for quadratic Zeeman shift, the minimum is reached by having as large an ρ0

(thus as small an ρ+ + ρ−) as possible, namely

ρ0 = 1− |m|, ρ+ =





|m|, m ≥ 0

0, m < 0
, ρ− =





0, m ≥ 0

|m|, m < 0
. (29)

When δ = 0, we have (in general) three condensate components with ρ± = (1− ρ0 ±
m)/2 and 0 ≤ ρ0 ≤ 1− |m|.

For ferromagnetic interactions with c < 0, we define x = ρ+ + ρ−. The ground

state is then determined by the minimum of

F = g+(x) + δx, (30)

with g+(x) ≡ c(1− x)(x +
√

x2 −m2). When δ = 0, we find

ρ± =
1

4
(1±m)2, ρ0 =

1

2
(1−m2), (31)

which is the same as obtained in [93, 102]. However with a nonzero δ > 0, we find in

general

ρ± =
1

2
(x0 ±m), ρ0 = 1− x0 ≥ 1

2
(1−m2), (32)

with x0 being the root of equation g′+(x)+ δ = 0, it turns out that there always exists

one and only one solution to the equation. The equilibrium value for ρ0 is larger than
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Figure 9: The dependence of fractional population for different spin component on
m and B for a spin-1 87Rb homogeneous condensate with N/V = 5× 1014cm−3.

the result of Eq. (31) because the quadratic Zeeman effect causes a lowering of the

total energy if two |mF = 0〉 atoms are created when an |mF = +1〉 atom collides

with an |mF = −1〉 atom. Figure 9 displays the results of Eq. (32) for a typical

87Rb condensate, for which the atomic parameters are EHFS = (2π)6.8347GHz [104],

a0 = 101.8aB, and a2 = 100.4aB (aB is the Bohr radius) [95]. At weak magnetic

fields, typically a condensate contains all three spin components. With the increasing

of B-field, the quadratic Zeeman effect becomes important which energetically favors

the |0〉 component, so typically only two components survive: the |0〉 component

and the larger (initial population) of the |+〉 or |−〉 component, so the ground state

becomes (for m > 0) ρ+ ' m and ρ0 ' 1−m.

Finally we consider the case of anti-ferromagnetic interactions for c > 0, we have

then

F = g−(x) + δx, (33)

with g−(x) = c(1−x)(x−√x2 −m2). For δ = 0, we again recover the standard result

ρ0 = 0, ρ± =
1

2
(1±m), (34)

if m 6= 0. When m = 0, the ground state is under-determined as many solutions are

allowed as along as they satisfy ρ+ = ρ− = (1− ρ0)/2 with ρ0 ∈ [0, 1].
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Figure 10: The same as in Fig. 9, but now for a spin-1 23Na condensate.

In an external B-field when δ > 0, we first consider the special case of m = 0.

It can be easily seen from Eq. (33) that ρ0 = 1 is the ground state. For m 6= 0,

we obtain the following result: when δ > c[1−√1−m2], the ground state will have

three condensate components with

ρ± = (x0 ±m)/2, ρ0 = 1− x0, (35)

where x0 is the root of equation g′−(x) + δ = 0; When δ ≤ c[1 −√1−m2], only |+〉
and |−〉 components exist, i.e., ρ± = (1±m)/2.

Figure 10 is the typical results for a spin-1 23Na condensate. The atomic param-

eters are EHFS = (2π)1.7716 GHz [104], a0 = 50 aB and a2 = 55 aB [96]. At B = 0

there are only two condensate components, |+〉 and |−〉. For B > 0 but not very

strong, there are two possibilities: three nonzero condensate components if m < mc

and two nonzero condensate components if m ≥ mc, with δ(B) = c(1 −
√

1−m2
c ).

When B-field gets stronger, i.e. δ(B) ≥ c, there are always three condensate compo-

nents. Although the |−〉 component becomes smaller and smaller with increasing B,

it never be zero exactly. Actually when B field is so strong that it overwhelms the

spin dependent interaction, c term, the solution always approaches ρ0 ' 1 − |m| no

matter what kind of interaction it is, ferromagnetic or antiferromagnetic interaction.
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Figure 11: The ground state phase diagram for a homogeneous spin-1 condensate.
Dashed curves and lines denote gradual transitions across the boundaries, solid lines
denote discontinuous jumps. x0 is the solution to equation g′±(x) + δ = 0 and

the curves for c > 0 is determined by δ(B) = c[1 − √
1−m2]. The open cir-

cle at B = 0,m = 0 for c > 0 denotes the family of degenerate ground state
[(1− ρ0)/2, ρ0, (1− ρ0)/2].

Figure 11 summarizes the ground state structures of a homogeneous spin-1 con-

densate in a B-field for different c and m.

4.4 Condensate ground state inside a harmonic trap

In the previous section, we investigated in detail mean field ground state structures

for a spin-1 condensate in a homogeneous confinement. For the case of a harmonic

trap as in most experiments, there is no reason to believe a priori that the above

conclusions still hold. In fact, the structures and phase diagrams as discussed before

is only meaningful if the spatial mode function φj(~r) for different spin components

is identical. Otherwise, it would be impossible to classify the rich variety of possible

solutions. When the spatial mode functions are the same, the spatial confinement

simply introduces an average over the inhomogeneous density profile of the mode

function.

The aim of this section, is therefore to determine the validity of the single mode

approximation (SMA) in the presence of an external B-field and a harmonic trap. For

simplicity, we assume the trap to be spherically symmetric. We employ numerical
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methods to directly find the ground state solutions from the coupled Gross-Pitaevskii

equation

ih̄
∂

∂t
Φ+ = [H + E+ − η + c2(n+ + n0 − n−)]Φ+ + c2Φ

2
0Φ

∗
−,

ih̄
∂

∂t
Φ0 = [H + E0 + c2(n+ + n−)]Φ0 + 2c2Φ

∗
0Φ+Φ−,

ih̄
∂

∂t
Φ− = [H + E− + η + c2(n− + n0 − n+)]Φ− + c2Φ

2
0Φ

∗
+, (36)

subject to the conservations of both N and M [Eqs. (22)]. H = −h̄2∇2/2m+Vext(~r)+

c0n, Vext(~r) = mω2r2/2, and n = n+ + n0 + n− with ni = |Φi|2. η is the Lagrange

multiplier introduced to numerically enable the conservation of M .

It was shown previously that in the absence of an external B-field, and for ferro-

magnetic interactions, the SMA is rigorously valid despite the presence of a harmonic

trap [93]. We can also show that in the presence of a nonzero B-field, the linear Zee-

man shift does not affect the validity of the SMA because it can be simply balanced

by the external Lagrange multiplier η. The quadratic Zeeman effect, on the other

hand, can not be simply balanced, as it favors the production of two |0〉 atoms by

annihilating one |+〉 and one |−〉 atom during a spin-exchange collision. Such unbal-

anced elastic collisions thus break the SO(3) symmetry of the freedom for an arbitrary

quantization axis. Therefore, we do not in general expect the SMA to remain valid

inside a nonzero B-field.

Numerically, we find the ground state solutions of Eq. (36) by propagating the

equations in imaginary time. We typically start with an initial wave function as that of

a complex Gaussian with a constant velocity: exp[−(x2/2q2
x+y2/2q2

y +z2/2q2
z)−i~k ·~r].

qx, qy, qz, and ~k are adjustable parameters which are checked to ensure that their

choices do not affect the final converged ground state [93].

For c2 = 0 or c = 0, it is easy to check that SMA is always valid since the

energy functional is symmetric with respect to spin component index. The fractional

populations for each component is therefore the same as for a homogeneous system,

43



0 5 10
0

0.5

1

1.5
x 10

−3

r / a
r

D
en

si
ty

 (
N

/a
r3 )

|+〉
|0〉
|−〉

0 5 10
0

1

2

3
x 10

−3

r / a
r

D
en

si
ty

 (
N

/a
r3 )

Figure 12: Typical densities of spatial mode functions for each components of a 87Rb
(a) and a 23Na (b) condensate. The solid line denotes the |+〉 component, the dashed
line the |−〉 component, and the dash-dotted line the |0〉 component. The parameters

are, N = 106, ω = (2π)100 Hz, B = 1.0 Gauss, and m = 0.5. ar =
√

h̄/mω is the
length scale.

i.e. given by [(1− ρ0 + m)/2, ρ0, (1− ρ0−m)/2] if B = 0, and (m, 1−m, 0) if B > 0.

For 87Rb and 23Na condensates, which are believed to be ferromagnetic c2 < 0 (c <

0) and anti-ferromagnetic c2 > 0 (c > 0) respectively, Fig. 12 gives typical density

distributions of spacial mode function, nj(~r) = |φj(~r)|2. Both panels in Fig. 12 clearly

indicate that SMA is no longer valid. To get an overall idea of the validity of SMA we

plot in Fig. 13 the overlap integrals of our mode functions with respect to the SMA

mode function φSMA(~r) as determined from a scalar GP equation with a nonlinear

coefficient ∝ c0 (due to the symmetric HS only) [93]. For a 87Rb condensate, we see

the overlap is close to unity when B is small, therefore, SMA remains approximately

applicable. But it becomes increasingly bad with the increase of B. We thus conclude

that the SMA remains reasonable in a weak magnetic field while it is clearly invalid in

a strong B-field. In fact, our numerical results confirm that the stronger the B-field,

the worse the SMA gets. For typical system parameters, the dividing line occurs at a

B-field of a fraction of a Gauss when the system magnetization M is not too small or

too large. For a condensate with anti-ferromagnetic interactions, it was found earlier
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Figure 15: Fractional population for each spin component of a 87Rb (left column) and
a 23Na (right column) condensate. The values of B-field from top row to bottom are
B = 0, 0.1, 1.0 Gauss. The atomic parameters are the same as in Fig. 12. The solid
lines with plus signs denote the |+〉 component, the lines with triangles are for the
|−〉 component and the lines with open circles for the |0〉 component. The vertical
dashed lines in (e) and (f) indicate the critical value mc, the boundary between the
two distinct regions discussed in the text. In (d), mc = 0.

that SMA is violated in the limit of both large N and M even without an external

B-field, while the case of M = 0 presents an exception where SMA remains strictly

valid for B = 0 [93]. Figure 13 shows the overlap integral for a 23Na condensate,

indeed we see SMA is invalid except for the case of M = 0 where all atoms are in the

|0〉 component. Remarkably, despite the seemingly large deviations from the SMA

(as in Fig. 13), the spin asymmetric energy term remains very small in comparison

to the spin symmetric term as evidenced in Fig. 14.
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Figure 15 shows the dependence of fractional populations on the fractional mag-

netization for a 87Rb (left column) and a 23Na condensate (right column) at different

B-fields. For 87Rb atoms, these curves resemble the same dependence as for a ho-

mogeneous system where SMA is strictly valid. Nevertheless, we find the densities

of mode functions can become quite different, i.e. SMA is not valid in general. For

23Na atoms, the fractional component populations at different B-fields again follow

the results as obtained previously for the homogeneous case. When B = 0 [as in Fig.

15(d)], the ground state distribution clearly obeys the same earlier (homogeneous)

result [(1 + m)/2, 0, (1 −m)/2], including the special case when m = 0 where it be-

comes [(1 − ρ0)/2, ρ0, (1 − ρ0)/2] with ρ0 ∈ [0, 1]. For B 6= 0 [as in Fig. 15(e) and

(f)], our numerical solutions reveal again two distinct regions; one for m < mc where

all three components coexist, and another one for m > mc where only two compo-

nents (|+〉 and |−〉) coexist. We find that mc increases with the B-field, and is of

course limited to mc < 1. We conclude that despite the fact a harmonic trap induces

spatially inhomogeneous distribution to condensate density, thus breaks the SMA in

general, the overall ground state properties as measured by the fractional component

distributions follow closely the results as obtained previously for the homogeneous

case. Physically, we believe the above results can be understood as fractional popu-

lations relate to integrals of wave functions over all spaces, during which differences

between wave functions can be averaged out. When only the |+〉 and |−〉 components

coexist, in fact, the two constraints on N and M always give the fractional population

ρ± = (1±m)/2 if ρ0 = 0.

In summary, we find that inside a harmonic trap, the results remain largely the

same as a homogeneous system, although the SMA becomes generally invalid. We

find interestingly (see Fig. 16), the B field (or the δ) dependence of the critical

value mc that separates the two and three component condensate regions, remains

almost identical as that given by the analytical formulae δ = c[1 −
√

1−m2
c ] for a
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Figure 16: The B field dependence of the critical fractional magnetization mc as
computed numerically for a 23Na condensate in a harmonic trap. The smooth curve

corresponds to the result of δ = c[1−
√

1−m2
c ] (as from the homogeneous case) with

an appropriately adjusted coefficient c (or density). The atomic parameters are the
same as in Fig. 12.

homogeneous system. In a sense, this also points to the validity of the use of a mean

field description, as the number of atoms is really large (106).

4.5 Effect of an inhomogeneous magnetic field

We have discussed the effect of a uniform magnetic field B in previous sections. We

now consider an external B-field ~B(~r) = Bx(~r)x̂ + By(~r)ŷ + Bz(~r)ẑ, which satisfies

∇ · ~B(~r) = 0. Generally speaking, the Zeeman energy term, HZQ
ZM , is not diagonal in

the Z-quantized (ZQ, according to T. Isoshima et al.’s notation [105]) representation

|Ψ+(~r), Ψ0(~r), Ψ−(~r)〉ZQ since the local magnetic field ~B(~r) is not always along the z-

axis. But in a ~B-quantized representation which chooses local z-axis always along the

~B(~r), the Zeeman energy term, HBQ
ZM , is still diagonal and given by the Breit-Rabbi

formula (Eq. (18)). The relation between HZQ
ZM and HBQ

ZM is found to be

HZQ
ZM = U †HBQ

ZMU,
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Figure 17: The magnetic field applied on the system at position ~r.

where U is the unitary transformation which connects ZQ and BQ representations.

The matrix U can be written as a product of two rotational matrices in spin space,

U = eiFyθeiFzφ

=




1
2
(1 + cos θ)eiφ 1√

2
sin θ 1

2
(1− cos θ)e−iφ

− 1√
2
sin θeiφ cos θ 1√

2
sin θe−iφ

1
2
(1− cos θ)eiφ − 1√

2
sin θ 1

2
(1 + cos θ)e−iφ




, (37)

where angles θ and φ are shown in Fig. 17.

After some tedious but straightforward calculations we find HZQ
ZM as follows, as in

Isoshima et al. [105],

HZQ
ZM = U †




E+(B) 0 0

0 E0(B) 0

0 0 E−(B)




U

=




H++ H+0 H+−

H0+ H00 H0−

H−+ H−0 H−−




, (38)
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where B =
∣∣∣ ~B(~r)

∣∣∣ and

H++ =
1

4

[
E+(1 + cos θ)2 + 2E0 sin2 θ + E−(1− cos θ)2

]
,

H+0 = − 1√
2
(η0 sin θ − δ sin θ cos θ)e−iφ,

H+− =
δ

2
sin2 θe−i2φ,

H0+ = (H+0)∗ = − 1√
2
(η0 sin θ − δ sin θ cos θ)eiφ,

H00 = E0 cos2 θ + (E+ + E−)
sin2 θ

2
= E0 + δ sin2 θ,

H0− = − 1√
2
(η0 sin θ + δ sin θ cos θ)e−iφ,

H−+ = (H+−)∗ =
δ

2
sin2 θei2φ,

H−0 = (H0−)∗ = − 1√
2
(η0 sin θ + δ sin θ cos θ)eiφ,

H−− =
1

4

[
E−(1 + cos θ)2 + 2E0 sin2 θ + E+(1− cos θ)2

]
. (39)

We have used the definitions of η0 and δ which denote the linear and quadratic Zeeman

shift, respectively.

Now the GP Eq. (36) is modified as

ih̄
∂

∂t
Φ+ = [H + H++ − η + c2(n+ + n0 − n−)]Φ+ + c2Φ

2
0Φ

∗
− + H+0Φ0 + H+−Φ−,

ih̄
∂

∂t
Φ0 = [H + H00 + c2(n+ + n−)]Φ0 + 2c2Φ

∗
0Φ+Φ− + H0+Φ+ + H0−Φ−, (40)

ih̄
∂

∂t
Φ− = [H + H−− + η + c2(n− + n0 − n+)]Φ− + c2Φ

2
0Φ

∗
+ + H−+Φ+ + H−0Φ0,

Propagating the above GP equation in imaginary time, we can find in principle

the new ground state for a spin-1 condensate in an arbitrary magnetic field. As an

example, we illustrate the results for a ~B(~r),

~B(x, y, z) = ẑB0 + x̂B′x− ŷ
B′

2
y − ẑ

B′

2
z.

Figure 18 shows the results we calculated for the ground state of 87Rb spin-1 conden-

sates in various magnetic fields for B′ = 0 and B′ = 0.02 G/cm. The trap parameters
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Figure 18: Comparison of theoretical calculation with experiment results. Circles
with error bars denote experiment result, solid lines denote B′ = 0 and dashed lines
denote B′ = 0.02 G/cm. The top pair of solid and dashed lines with diamond is
for “antiferromagnetically interacting” 87Rb condensate and the bottom pair is for
ferromagnetically interacting one.

are close to that of experiments [53], Vext(~r) = (1/2)m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) with

ωx = ωy = (2π)120 Hz and ωz = (2π)2550 Hz. We also illustrate results for an

“antiferromagnetic” 87Rb spin-1 Bose condensate with c′2 = −|c2| in Fig. 18. Clearly

the 87Rb condensate result confirms a ferromagnetically interaction.

4.6 Conclusions

We have revisited the question of the mean field ground state structures of a spin-1

condensate in the presence of a uniform magnetic field. For a homogeneous system,

when c = 0, there exist in general only two nonzero components |+〉 and |0〉, except

that B = 0 where the ground state solution becomes indefinite; for ferromagnetic

interactions when c < 0, the ground state in general has three nonzero components;
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when c > 0 as for anti-ferromagnetic interactions, except for m = 0, there are two

regions: one for δ > c[1 −
√

1−m2
c ] where three nonzero components coexist and

one for δ ≤ c[1 −
√

1−m2
c ] where only two components coexist. Inside a harmonic

trap, these results remain largely true, although the SMA becomes generally invalid.

We find interestingly (see Fig. 16), the B field (or the δ) dependence of the critical

value mc that separates the two and three component condensate regions, remains

almost identical as that given by the analytical formulae δ = c[1 −
√

1−m2
c ] for a

homogeneous system. In a sense, this also points to the validity of the use of a mean

field description, as the number of atoms is really large (106). We also investigated

briefly the ground state in a nonhomogeneous magnetic field and compared directly

with recent experimental results.
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CHAPTER V

COHERENT SPIN MIXING DYNAMICS AND

DOMAIN FORMATION IN A SPIN-1 ATOMIC

BOSE CONDENSATE

5.1 Introduction

Different from a scalar or a pseudo-spin-1/2 two-component Bose condensate, a spin-1

Bose condensate has an inherent spin mixing mechanism, i.e., atoms can exchange

among components through collisions 2|0〉 ↔ |+〉+ |−〉. While most studies concen-

trate on condensates of atoms in a single hyperfine state, activities in spinor conden-

sates [46] have recently attracted more and more attention with the additions of four

new spin-1 Bose condensate experiments [49, 54, 55, 56], especially on the topics of

the dynamics of spin mixing.

In a spinor condensate, atomic hyperfine spin degrees of freedom become acces-

sible with the use of a far-off resonant optical trap instead of a magnetic trap. For

atoms in the F = 1 ground state manifold, the presence of Zeeman degeneracy and

spin dependent atom-atom interaction [45, 46, 49, 50, 51, 52, 93, 102, 63] leads to

interesting spin dynamics. A clear experimental demonstration of such macroscopic

oscillations remains to be seen though some preliminary work has been done by Chang

et al. for spin-1 atoms [53] and Schmaljohnn et al. [54] and Kuwamoto et al. [55]

for spin-2 atoms. From an experimental point of view, the main obstacles are dissi-

pative atomic collisions among the condensed atoms and decoherence collisions with

the noncondensed atoms [53, 54]. A promising approach to overcome these obstacles

relies on increased atomic detection sensitivity, thus on the use of smaller condensates

with lower number densities and at lower temperatures, both favorable conditions for
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the single spatial mode approximation (SMA). Although some theoretical investiga-

tions on spin dynamics of spinor condensate under the SMA have been performed

[52, 102], more interesting properties need to be explored in detail, especially when

an external magnetic field is present. In this chapter, we study spin mixing dynamics

inside a spin-1 condensate [52, 63, 102], focusing on the interaction-driven coherent

oscillations in a uniform magnetic field, and the dynamical stability of these oscilla-

tions [106]. It is hoped that our study of dynamical instability of a ferromagnetically

interacting spin-1 condensate may lead to an explanation for the recently observed

multidomain formation.

5.2 Analytical results under SMA

Our system of a spin-1 atomic Bose gas inside an external magnetic field is described

by the Hamiltonian given in Eq. (17). The field operators Ψi evolve according to the

Heisenberg operator equations of motion.

ih̄
∂

∂t
Ψ+(~r, t) =

[
− h̄2

2m
∇2 + Vext(~r) + E+

]
Ψ+ + c0

∑

j

(
Ψ†

jΨj

)
Ψ+

+c2

(
Ψ†

+Ψ+ + Ψ†
0Ψ0 −Ψ†

−Ψ−
)

Ψ+ + c2Ψ
†
−Ψ0Ψ0,

ih̄
∂

∂t
Ψ0(~r, t) =

[
− h̄2

2m
∇2 + Vext(~r) + E0

]
Ψ0 + c0

∑

j

(
Ψ†

jΨj

)
Ψ0

+c2

[(
Ψ†

+Ψ+ + Ψ†
−Ψ−

)
Ψ0 + 2Ψ†

0Ψ+Ψ−
]
,

ih̄
∂

∂t
Ψ−(~r, t) =

[
− h̄2

2m
∇2 + Vext(~r) + E−

]
Ψ− + c0

∑

j

(
Ψ†

jΨj

)
Ψ−

+c2

(
Ψ†
−Ψ− + Ψ†

0Ψ0 −Ψ†
+Ψ+

)
Ψ− + c2Ψ

†
+Ψ0Ψ0. (41)

At near-zero temperature and when the total number of condensed atoms (N) is

large, the condensate is essentially described by the mean field Φi = 〈Ψi〉. Neglecting

quantum fluctuations, they form the set of coupled Gross-Pitaevskii (GP) equations

as expressed in Eq. (36), from which we can simulate the mean field off-equilibrium

dynamics accurately at various external magnetic fields without using the SMA.
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To gain more physical insight, we have formulated a simple model based on the

well-known fact that for both 87Rb (ferromagnetic) and 23Na (anti-ferromagnetic)

atoms, the spin dependent interaction ∝ |c2| is much weaker than the density de-

pendent interaction ∝ |c0|. This leads to the use of the SMA, where we adopt the

mode function Φ(~r) as determined from the spin-independent part of the Hamiltonian

Hs = −(h̄2/2m)∇2 +V + c0n as discussed in previous chapters [52, 93, 102]. Thus we

define Φi(~r, t) =
√

Nξi(t)φ(~r) exp(−iµt/h̄) with Hsφ(~r) = µφ(~r) and
∫

d~r|φ(~r)|2 = 1.

We arrive at the coupled spinor equations

ih̄ ˙ξ+ = E+ξ+ + c′[(ρ+ + ρ0 − ρ−)ξ+ + ξ2
0ξ
∗
−],

ih̄ξ̇0 = E0ξ0 + c′[(ρ+ + ρ−)ξ0 + 2ξ+ξ−ξ∗0 ],

ih̄ ˙ξ− = E−ξ− + c′[(ρ− + ρ0 − ρ+)ξ− + ξ2
0ξ
∗
+], (42)

with c′ = c2N
∫

d~r|φ(~r)|4, ρi = |ξi|2. It is easy to verify that the total atom number

and atomic magnetization are conserved, i.e.
∑

i ρi ≡ 1, ρ+ − ρ− ≡ m, and m =

(N+ −N−)/N is a constant of motion.

As before we use η0 = (E−−E+)/2 and δ = (E−+E+−2E0)/2 to parameterize the

linear and quadratic Zeeman effect. We further transform ξ± → ξ± exp[−i(E0∓η0)t/h̄]

and ξ0 → ξ0 exp[−iE0t/h̄], to eliminate the E0 and η0 dependence, and take ξj =

√
ρje

−iθj . After some simplification, we obtain the following dynamic equations for

spin mixing inside a spin-1 condensate

ρ̇0 =
2c′

h̄
ρ0

√
(1− ρ0)2 −m2 sin θ, (43)

θ̇ = −2δ

h̄
+

2c′

h̄


(1− 2ρ0) +

(1− ρ0)(1− 2ρ0)−m2

√
(1− ρ0)2 −m2

cos θ


 , (44)

where θ = θ+ + θ− − 2θ0 is the relative phase. These two coupled equations give

rise to a classical dynamics of a nonrigid pendulum, whose energy functional (or

Hamiltonian) can also be derived within the SMA as in [93]

E = c′ρ0

[
(1− ρ0) +

√
(1− ρ0)2 −m2 cos θ

]
+ δ(1− ρ0). (45)
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Figure 19: Iso-energy contours for a condensate of 87Rb atoms (upper panel) with
B = 0.05 Gauss, |c′| = (2π)0.5 Hz, and m = 0; of 23Na atoms (lower panel) with
B = 0.015 Gauss, |c′| = (2π)0.5 Hz, and m = 0.3.

It is easy to check that ρ̇0 = −(2/h̄)∂E/∂θ and θ̇ = (2/h̄)∂E/∂ρ0.

The contour plot of E in Fig. 19 displays several types of oscillation as in a

pendulum. The energy is conservative for the spin mixing dynamics described by Eqs.

(43, 44) in a magnetic field. The corresponding phase space trajectory is therefore

confined to stay on the equal energy contour. Quite generally, ρ0 oscillates in a

magnetic field. Rewriting equation (43) as

(ρ̇0)
2 =

4

h̄2{[E − δ(1− ρ0)][(2c
′ρ0 + δ)(1− ρ0)− E ]− (c′ρ0m)2}, (46)

we can compute the oscillation period according to

T =
∮ 1

ρ̇0

dρ0 =

√
2h̄√−δc′

K
(√

x2−x1

x3−x1

)

√
x3 − x1

, for c′ < 0, (47)

and

T =

√
2h̄√
δc′

K
(√

x3−x2

x3−x1

)

√
x3 − x1

, for c′ > 0. (48)
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Figure 20: The dependence of cubic roots xj on the external magnetic field for a 87Rb
condensate (left) and a 23Na condensate (right). Other parameters are |c′| = (2π)0.5
Hz, ρ0(0) = 0.6, θ(0) = 0, and m = 0 for 87Rb; θ(0) = π and m = 0.3 for 23Na.

K(k) is the elliptic integral of the first kind, and xj=1,2,3 are the roots of ρ̇0 = 0

( ordered as x1 ≤ x2 ≤ x3, shown in Fig. 20). The period for a rigid pendulum,

described by ü + sin u = 0, is T = 4
√

2K[
√

2/(E + 1) ]/
√

E + 1 at energy E > 1 and

T = 4
√

2F [arcsin(
√

(E + 1)/2),
√

2/(E + 1) ]/
√

E + 1 at energy −1 ≤ E ≤ 1 with E

being the energy of the rigid pendulum.

The time evolution of ρ0 can be expressed in terms of the Jacobian elliptic function

cn(.,.),

ρ0(t) = x2 − (x2 − x1)cn
2

[
γ0 + t

√
−2δc′(x3 − x1), k

]
, for c′ < 0

and

ρ0(t) = x3 − (x3 − x2)cn
2

[
γ0 + t

√
2δc′(x3 − x1), k

]
, for c′ > 0.

γ0 depends on the initial state, cn2(γ0, k) = [x2 − ρ0(0)]/(x2 − x1) if c′ < 0 and

cn2(γ0, k) = [x3 − ρ0(0)]/(x3 − x2) if c′ > 0. For 87Rb atoms (c′ < 0), γ0 = 0 if

ρ0(0) = x1 and γ0 = K(k) if ρ0(0) = x2. The solutions of ρ0 are usually oscillatory

between x1 and x2 if c′ < 0 (between x2 and x3 if c′ > 0). When x2 = x3 (x2 = x1 if

c′ > 0), the solution becomes homoclinic, i.e., limt→∞ ρ0 = 1 and the corresponding

period is infinity for m = 0 (Fig. 21).
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Figure 21: The magnetic field dependence of the oscillation period for a 87Rb con-
densate (left) and a 23Na condensate (right). parameters are |c′| = (2π)0.5 Hz,
ρ0(0) = 0.6, θ(0) = 0, and m = 0 for 87Rb; θ(0) = π and m = 0.3 for 23Na.

We further observe from Fig. 21 that when the total magnetization is varied the

peak of the oscillation period essentially stays at the same magnetic field for ferro-

magnetic interactions. The solution becomes periodic when m 6= 0 since ρ0 can at

most reach 1 − m. It turns out that the critical solution of an infinitely long os-

cillation period occurs when ρ0(t → ∞) = 1, or equivalently E = 0, which gives

δ(Bc) = |c′|ρ0(1 + cos θ) with ρ0 and θ the initial conditions (δ ' 72B2 Hz/G2 for

87Rb condensate). At B = 0 we reproduce the same result as in Ref. [102]. The

rapid decreasing of the period when B > Bc is consistent with the recent calcula-

tions by Schmaljohann et al. [54]. For anti-ferromagnetic interactions, however, the

peak of the oscillation period shows a strong dependence on the magnetization, and

asymptotically we find the position of the peak is determined by ρ0(t →∞) = 0, i.e.,

E = δ(Bc) which is equivalent to δ(Bc) = c′[(1− ρ0) +
√

(1− ρ0)2 −m2 cos θ].

Substituting the solution ρ0(t) into Eq. (45), we can solve for θ(t). Furthermore
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we can find the time dependence of θ± and θ0 through the following

θ̇± = −1

h̄
[δ + c′ρ0 + c′ρ0

√
1− ρ0 ∓m

1− ρ0 ±m
cos θ],

θ̇0 = −c′

h̄
[(1− ρ0) +

√
(1− ρ0)2 −m2 cos θ].

5.3 Comparison with numerical results

Starting from an equilibrium state of a spin-1 condensate inside an external magnetic

field, the initial relative phases among the three components depend on the spin-

dependent atom-atom interaction being ferromagnetic (0) or anti-ferromagnetic (π)

[94]. Utilizing the SMA, we find previously the off-equilibrium dynamics of a spin-1

condensate corresponds to that of a nonrigid pendulum, which can be characterized

by trajectories in the semiclassical phase space. Typical results are as illustrated in

Fig. 22 for a spin-1 87Rb condensate, where we have plotted the SMA orbits and

the dependence of oscillation periods on the external magnetic field. The parameters

are close to the experiment [107]; where the spin-independent trap is harmonic V =

(m/2)(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) with ωx = ωy = (2π)240 Hz and ωz = (2π)24 Hz. The

average density of 87Rb condensates are 〈n〉 ≈ 1.7 × 1013 cm−3 for N = 103 and

5.4 × 1013 cm−3 for N = 104. The initial states are taken from the (equilibrium)

ground state for B = 0.07 Gauss with a zero magnetization (m = 0), i.e. c′ = −0.614

Hz, ρ0(0) = 0.644 and θ(0) = 0, for N = 103. Similarly the initial state for N = 104

is the ground state at B = 0.1 Gauss with zero m, i.e. c′ = −1.945 Hz, ρ0(0) = 0.595,

and θ(0) = 0.

As illustrated in Fig. 22, the spin mixing dynamics within the SMA corresponds

to a typical pendulum, with the quadratic Zeeman energy playing the important role

of the total energy by shifting the equilibrium point. At small offset from equilibrium

point (small change of the magnetic field before and after t = 0), the equivalent pen-

dulum undergoes small amplitude oscillation, approximately harmonic with a period
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Figure 22: (Color) The upper two panels show typical orbits (solid lines) for different
magnetic fields with SMA, starting from the same initial state (ρ0(0) = 0.644, θ(0) =
0, c′ = −0.614, denoted by a crosses). B = 0, 0.03, 0.05, 0.08, 0.09, 0.1, 0.1048
(Gauss) from the bottom to the top for the upper left panel and B = 0.11, 0.12, 0.13,
0.14, 0.15 (Gauss) from the top to the bottom for the upper right panel. The lower
two panels show the dependence of oscillation period T on magnetic field B for a 87Rb
condensate from SMA model (solid line, Eq. (47)) with total trapped atoms being
N = 103 (left panel) and N = 104 (right panel), the results from a full numerical
simulation without the use of SMA are denoted by (*).
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independent of the energy or oscillation amplitude; increasing of the total energy leads

to longer oscillation period as the pendulum becomes increasingly nonlinear. At a

critical field Bc, when the effective total energy is just enough to bring the pendulum

to the completely up or top position, the period approaches infinity as for the homo-

clinic orbit of a pendulum; Upon further increasing the energy (or B), the pendulum

starts to rotate around and the period becomes smaller with increasing energy as the

pendulum rotates faster and faster.

We hope to make some estimates to support the use of the mean field theory, i.e.

treating the atomic field operators as c-numbers. Intuitively, we would expect that

this is a reasonable approximation as the total numbers of atom, at 1000, although

not macroscopic, is definitely ‘large’. In fact, the recent double well experiment that

confirmed the coherent nonlinear Josephson oscillations of the mean field theory, is

at a similar level of numbers of atoms [18]. A rigorous discussion of this point in

terms of the quantum phase diffusions in a spin-1 condensate is a rather involved

procedure, and will not be reproduced here [109]. Instead, we illuminate the validity

of mean field theory as follows. First, we look at the total atom number fluctuations.

Approximating the spinor condensate as a one component scalar, and neglecting

the internal spin mixing dynamics, its total overall phase spreads after a time of

τc ≈ N/[σ(N)(c0〈n〉)] [110], with σ(N) ∼ √
N the standard deviation of the atom

numbers from taking c-number approximations of the atomic field operators. In

our case, this time is about 0.2 second, short compared to a typical Josephson type

oscillation period at ∼ 1 second. We believe, however, this is not a critical issue

as we are not studying phase sensitive phenomena involving the overall phase as

in an interference experiment. Instead, we are interested here in the relative phase

dynamics between different condensate components, whose oscillation time scale is

given by the much smaller value of the spin-dependent interaction coefficient c2; thus

we should compare the coherent classical oscillation period of ∼ 1 second with the
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much longer time τ ′c ≈ N/[σ(N)(c2〈n〉)] [52], ∼ 50 seconds (for 87Rb). This then leads

to a favorable condition for adopting the mean field theory in our study. Alternatively,

we can reach the same conclusion from a direct investigation of the oscillation period

T in Eq. (47), which contains a simple N dependence ∝ 1/
√

N . We find that

|T (N ± √
N) − T (N)|/T (N) = 1/(2

√
N), is only about 2%, indicating the overall

validity of the mean field theory.

5.4 Averaged spin evolutions

In a recent experiment, the collective precessing of the magnetization of a spin-1

condensate were imaged, leading to a beautiful display of spinor coherence in the

condensate [56]. Prompted by this, we now consider the evolution of the averaged

total spin. We first illustrate the quadratic Zeeman effect on the spin dynamics of a

noninteracting condensate. Assuming an initial state ξ̂(0) = (ξ+, ξ0, ξ−)T , the total

spin average is 〈~F (t)〉 = 〈ξ̂(t)|Fxx̂ + Fyŷ + Fz ẑ|ξ̂(t)〉 with

〈Fx〉 =
√

2<
[
|ξ0|

(
|ξ+|ei(θ0−θ+) + |ξ−|ei(θ0−θ−)

)]
,

〈Fy〉 =
√

2=
[
|ξ0|

(
|ξ+|ei(θ0−θ+) − |ξ−|ei(θ0−θ−)

)]
,

〈Fz〉 = |ξ+|2 − |ξ−|2 = m.

As an interesting case, we take ξ̂(0) = [
√

(1− ρ0)/2,
√

ρ0,
√

(1− ρ0)/2 ]T , θ0 = 0, and

θ± = (δ ∓ η0)t/h̄. ρ0 is a constant. We find

〈Fx〉+ i〈Fy〉 = 2
√

ρ0(1− ρ0) cos(δt/h̄) e−iη0t/h̄,

〈Fz〉 = m = 0. (49)

It spirals toward and away from the origin in the 〈Fx〉-〈Fy〉 plane. The linear Zeeman

effect causes spin precessing around the magnetic field (ẑ axis), while the quadratic

Zeeman effect makes the magnitude of the spin average oscillate.

The spin evolution becomes quite different when atomic interaction is included.

For the same initial conditions (of the above), the total averaged spin at time t
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Figure 23: Two dimensional projections of the averaged spin evolution (shaded re-
gion) for a condensate with zero magnetization of noninteracting atoms (middle),
in comparison with atoms of ferromagnetic (left) and antiferromagnetic interactions
(right).

becomes

〈Fx〉+ i〈Fy〉 = 2
√

ρ0(1− ρ0) cos(θ/2) e−iη0t/h̄,

〈Fz〉 = 0, (50)

which can be conveniently confirmed from the phase space contour plot of Fig. 19,

where θ is confined to oscillate around zero for ferromagnetic interactions and around

π for antiferromagnetic interactions if B < Bc. Note that ρ0 and θ are time-dependent

for interacting condensates. Figure 23 exemplifies this oscillation in terms of the

allowed regions (shaded) of 〈Fx〉 and 〈Fy〉 for interacting condensates in contrast to

non-interacting ones. For ferromagnetic interactions, the allowed region is defined by

two radii. One of them, rI =

√
2ρ0(0)[(1− ρ0(0)) +

√
(1− ρ0(0))2 −m2 ], depends

on the initial condition, while the other (rB) is solely determined by the quadratic

Zeeman effect. We find rB > rI if B < B0, 0 < rB < rI if B0 < B < Bc, and rB = 0

if B ≥ Bc. There exists a forbidden region at the center for a ferromagnetically

interacting condensate if B < Bc. This region shrinks to zero when B ≥ Bc. Exactly

at B = Bc, an interesting attractor-like feature arises and the average spin gradually
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spirals towards the origin (at the center) and becomes trapped eventually after an

infinitely long time. For antiferromagnetic interactions, the allowed region generally

becomes smaller than that for a noninteracting condensate as shown in Fig. 23 for

m = 0 (or Bc = 0). The radius of the shaded (allowed) region depends on the

quadratic Zeeman effect, while the forbidden region approaches zero as B →∞.

For the general case of m 6= 0, the allowed region is in between the two radii√
2ρ0(0)[(1− ρ0(0))±

√
(1− ρ0(0))2 −m2 ] for a noninteracting gas. For ferromag-

netic interactions, the averaged spin behaves similar to the case of m = 0 considered

above, except now the forbidden region shrinks gradually to a minimum nonzero value

of

√
2ρ0(0)[(1− ρ0(0))−

√
(1− ρ0(0))2 −m2 ] when B → ∞. In this case, there ex-

ists no Bc or homoclinic orbits. For antiferromagnetic interactions, the analogous

radius rB decreases from rI =

√
2ρ0(0)[(1− ρ0(0))−

√
(1− ρ0(0))2 −m2 ] to zero

while B increases from zero to Bc. At B = Bc the attractor-like feature remains.

When B is increased from Bc, rB increases from zero, and crosses rI at B = B0,

finally approaches the radius of the allowed region for a non-interacting condensate

when B →∞.

5.5 Beyond SMA: Dynamical instabilities and spatial domains

Finally, we consider the stability of these orbits, (ρ0(t), θ(t)), when small external

noises are present, for example, noises from stray magnetic fields. We first discuss a

ferromagnetically interacting 87Rb atomic condensate whose |+〉 and |−〉 components

are known to be immiscible [97]. The SMA-based spin mixing dynamics model pre-

dicts that the state consists mostly of the |+〉 and |−〉 components after T/2 evolution

if starting from ρ0 ≈ 1.0 and θ = 0 without an external magnetic field. At this time,

the system is obviously unstable against external noises, because the |+〉 and |−〉
components tend to be phase separate. This extreme case reveals that semiclassical

orbits are not always stable. As we show later these orbits are indeed dynamically
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unstable. The intrinsic instability of the orbit can well be the reason of the formation

of domains. On the other hand, domains always occur for large condensate when the

SMA fails, consistent with several experimental observations [107].

We now address the topic of dynamical stability for a ferromagnetically interacting

homogeneous spin-1 condensate without an magnetic field. The energy of the system,

including all parts, is

E

N
=

1

2
c0ρ

2 +
1

2
c2

[
m2 + 2ρ0(1− ρ0) + 2ρ0

√
(1− ρ0)2 −m2 cos θ

]
, (51)

where ρ = ρ+ + ρ0 + ρ− = 1 is the normalized total density of the homogeneous

condensate and m is the magnetization. The energy is a constant of motion thus the

sum of the second and the third terms must also be a constant. It turns out that

2ρ0(1 − ρ0) + 2ρ0

√
(1− ρ0)2 −m2 cos θ = 〈Fx〉2 + 〈Fy〉2= f 2

x + f 2
y . Within the mean

field approximation, the x- and y-component of the averaged spin are independently

conserved in the absence of an external B-field. Thus the total averaged spin is

conserved f =
√

m2 + f 2
x + f 2

y . The energy then simplifies to

E

N
=

1

2
c0ρ

2 +
1

2
c2

(
m2 + f 2

x + f 2
y

)
.

To investigate the stability of an orbit, we transform to a rotating frame where

each orbit essentially collapses to a single point in the phase space diagram. For the

system we consider here the free energy in the “rotating” frame becomes

F =
F

N
=

1

2
c0ρ

2 +
1

2
c2

(
m2 + f 2

x + f 2
y

)
− µρ− ηm− δxfx − δyfy,

where parameters µ, η, δx, and δy define the “rotating” frame, and are Lagrange

multiplies to conserve ρ, m, fx, and fy, respectively. This is similar to the case of

a condensate in a rotating frame described with a Hamiltonian Hrot = H lab − ΩLz,

where Ω is the rotating angular speed, and Lz is the z-component of the angular

momentum. Either Ω or Lz can be conserved with the one being physical observable,

and the other serving as a Lagrange multiplier.
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Figure 24: (Color) The dependence of the total spin f of a homogeneous spin-1 87Rb
condensate on the magnetization m, the relative phase θ, and the |0〉 component
fraction ρ0. f ranges from 0 to 1 as denoted by the legend to the right.
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The stationary state is obtained by finding the local minimum, maximum, or

saddle points of F from

∂F
∂ρ

= 0,
∂F
∂m

= 0,
∂F
∂fx

= 0,
∂F
∂fy

= 0,

which lead to

µ = c0ρ,

η = c2m,

δx = c2fx,

δy = c2fy.

The stability of our system of a spin-1 condensate at a stationary state is determined

by the second order derivatives of F described by a Hessian matrix,




∂2F
∂ρ2

∂2F
∂ρ∂m

∂2F
∂ρ∂fx

∂2F
∂ρ∂fy

∂2F
∂m∂ρ

∂2F
∂m2

∂2F
∂m∂fx

∂2F
∂m∂fy

∂2F
∂fx∂ρ

∂2F
∂fx∂m

∂2F
∂f2

x

∂2F
∂fx∂fy

∂2F
∂fy∂ρ

∂2F
∂fy∂m

∂2F
∂fy∂fy

∂2F
∂f2

y




=




c0 0 0 0

0 c2 0 0

0 0 c2 0

0 0 0 c2




. (52)

The system is dynamically stable if the Hessian matrix is positive definite, i.e., all the

eigenvalues of the Hessian matrix are positive. The stationary state then corresponds

to a local minimum of F , and the system dynamics consists of oscillations around

the minimum if perturbed by small external forces. On the other hand, the system is

dynamically unstable if any eigenvalue is negative, which implies the stationary state

is a saddle point or maximum and will be destabilized by an infinitesimal force along

the direction of negative second order derivative.

The eigenvalues of the above Hessian matrix for a homogeneous spin-1 condensate

are c0, c2, c2, and c2. Unfortunately homogeneous spin-1 condensates with ferromag-

netic interactions (c2 < 0) are always dynamically instable. This might be one of

the reasons why it has been difficult to study experimentally the dynamics of a 87Rb
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spin-1 condensate. But for antiferromagnetically interacting spin-1 condensates such

as 23Na condensates, the dynamics is always stable (c2 > 0).

Before proceeding further with our investigation of the spin mixing dynamics, we

would like to comment on the studies of dynamical instabilities. Many phenomena,

such as parametric instability [111], modulational instability [112], and cross phase

modulational instability [113], and so on, rely on essentially the same idea as dy-

namical instability. A system is unstable if one or more of its eigenfrequencies are

imaginary which is equivalent to the appearance of a negative eigenvalue of the above

Hessian matrix. The amplitude of the corresponding eigenmode(s) with imaginary

frequency would increase or decrease exponentially with time under presumed small

perturbations. The phenomena of dynamically instability have been studied exten-

sively in nonlinear optics [114] and recently in Bose-Einstein condensates which are

in fact nothing but nonlinear interacting matter waves. Most of these studies have

focused on single-component systems with conserved number of particles [111]. Some

have also investigated two-component condensates either with conserved numbers for

each species [113, 115] or with a linear coupling between the two components that

can be decoupled by a linear transformation [116]. A spin-1 Bose condensate system

distinguishes itself uniquely from these studied systems by the presence of spin mixing

interaction, 2|0〉 ↔ |+〉+ |−〉. It is not necessary for a spin-1 condensate to conserve

the number of atoms for each component though the total atom number is usually

conserved.

Robins et al. first studied the dynamical instability of a spin-1 condensate [112].

They found a special stationary state which is dynamically instable for a ferromag-

netically interacting 87Rb spin-1 condensate. Starting from this stationary state they

showed the system collapses suddenly due to numerical truncation errors. Other more

general studies of the dynamical instability in spin-1 condensates are not yet available

to our knowledge.
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Our analysis in the above shows that a homogeneous spin-1 condensate is dynam-

ically instable. We can use the Bogoliubov-de-Genns transformation to find out more

detailed information of the instability, such as what consists of the instable modes.

Based on the stationary state we find above, we apply the Bogoliubov-de-Genns ap-

proximation to describe the elementary excitations in a spin-1 condensate in a matrix

form as

M · ~x = h̄ω~x, (53)

where the vector ~x = (δψ+, δψ0, δψ−, δψ∗+, δψ∗0, δψ∗−)T , and M is the associated

matrix

M =




A B

−B∗ −A∗


 ,

with

A =




εk + (c0 + c2)n+ + c2n0 c0φ
∗
0φ+ + c2φ0φ

∗
− (c0 − c2)φ

∗
−φ+

c0φ0φ
∗
+ + c2φ

∗
0φ− εk + c0n0 + c2(n+ + n−) c0φ0φ

∗
− + c2φ

∗
0φ+

(c0 − c2)φ−φ∗+ c0φ
∗
0φ− + c2φ0φ

∗
+ εk + (c0 + c2)n− + c2n0




and

B =




(c0 + c2)φ
2
+ (c0 + c2)φ0φ+ c2φ

2
0 + (c0 − c2)φ−φ+

(c0 + c2)φ0φ+ c0φ
2
0 + 2c2φ−φ+ (c0 + c2)φ0φ−

c2φ
2
0 + (c0 − c2)φ−φ+ (c0 + c2)φ0φ− (c0 + c2)φ

2
−




.

εk = h̄2k2/2m is the kinetic energy of an elementary excitation with wave vector k.

The eigenfrequencies of these Bogoliubov modes can be found by solving the char-

acteristic equation for M − h̄ωI. Let y = (h̄ω)2, it turns out after some calculation

that the characteristic equation becomes

y3 + ry2 + sy + t = 0, (54)
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Figure 25: Cubic roots. For currently available spin-1 condensates, r < 0 is always
satisfied. We find just one negative root under these three situations, (1) t > 0 and
(2) t = tcr for s < 0, and (3) t > 0 for s > 0. We find two negative roots if s < 0 and
tcr < t < 0.

where

r = −3ε2
k − 2εk(c0 + 2c2)− c2

2f
2,

s = 3ε4
k + 4ε3

k(c0 + 2c2) + 2ε2
k

[
2c2(c2 + 2c0) + c2(c2 − 2c0)f

2
]
+ 2εkc

2
2(c2 + c0)f

2,

t = −ε6
k − 2ε5

k(c0 + 2c2)− ε4
kc2[4c0(2− f 2) + c2(4 + f 2)]

−2ε3
kc

2
2

[
4c0 + (c2 − 3c0)f

2
]
+ 4ε2

kc0c
3
2f

2(f 2 − 1).

If c0 + 2c2 > 0, as true for both spin-1 87Rb and 23Na condensates, we find always

r < 0. By drawing the graph of y3 + ry2 + sy + t for s > 0 and s < 0 (Fig. 25), we

find the conditions under which y has at least one negative root,

t ≥ tcr, where tcr = − 1

27

[
2r3 − 9rs + 2(r2 − 3s)3/2

]
(55)

for s < 0 or

t > 0 (56)

for s > 0. Figure 25 shows that the larger the t, the more negative the root. The

eigenfrequencies become imaginary if y = (h̄ω)2 takes a negative root(s). The larger in

value a negative root(s), the more rapidly decaying or increasing a mode(s) is. Figure
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Figure 26: Elementary excitations of a homogeneous spin-1 87Rb condensate. The
curve with circles denotes the wave vector of elementary excitations and the curve
with asterisks denotes the corresponding wavelength to the label on the right. k0 =√

2mc0n/h̄ ≈ 3.2 µm−1 if n = 1× 1014 cm−3.

26 displays the largest wave vector with an imaginary frequency for a given f and

the corresponding wavelength of the elementary excitations at density n = 1 × 1014

cm−3 for a homogeneous 87Rb spin-1 condensate.

We find explicitly a ferromagnetically interacting homogeneous spin-1 condensate

is dynamically instable. The direct consequence of the dynamical instability is the

formation of spin domains. But the road map to the domain formation is not so

obvious from above analysis. We have to give a clearer picture of the domain for-

mation in the lab reference frame instead of in the rotating frame since experimental

observations are sometimes easier to understand in lab frame.

We focus on the partial derivative of E = E/V from Eq. (51) with respect to

m, dE/dm, which is related to the formation of spin domain for ferromagnetically
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interacting homogeneous spin-1 condensates. We find

dE
dm

= c2m


1− ρ0 cos θ√

(1− ρ0)2 −m2


 . (57)

Figure 27 shows the surfaces where the above first order derivative is zero. The

part above the saddle surface in Fig. 27 of an orbit is stable and the part below

is unstable if c2 < 0. Here the meaning of “stable” is generalized, referring to the

dynamical property where the local magnetization tends to oscillate around m = 0.

For example, in the top right allowed region of dE/dm > 0. To lower the configuration

energy E ≈ E(m) + (dE/dm)∆m, ∆m < 0 is required. Thus m tends to decrease to

zero. While in the left top allowed region ∆m > 0 is required and m tends to increase

to zero. Thus the whole top allowed region (including left and right) tends to have

m oscillate around zero. On the contrary the bottom allowed region tends to have

m run away from zero and form spin domains. The net effect leads to orbits being

dynamically instable and eventually formation of spin domains.

For an antiferromagnetically interacting spin-1 condensate (c2 > 0), θ usually

oscillates around π. Thus dE/dm > 0 for m > 0 and dE/dm < 0 for m < 0. So the

magnetization always oscillates around zero and no domain forms. This coincides with

the conclusion of dynamical stability analysis for an antiferromagnetically interacting

spin-1 condensate.

To justify the above analysis for the instability we have performed two simulations

with the same initial condition for a 87Rb condensate (ρ0(0) = 0.744, θ(0) = 0, which

is the ground state for N = 2.0× 105 at B = 0.3 G and M = 0), in a trap Vext(~r) =

(m/2)(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) with ωx = ωy = (2π)240 Hz and ωz = (2π)24 Hz. For

one simulation, we intentionally add small white noise (∼ 1.0 × 10−5) to the wave

function during the evolution. It is not done for the other. Our numerical results

show that it takes a shorter time for the |+〉 and |−〉 components to separate with a

white-noise-perturbed condensate. This is due to the fact that the truncation error is

much smaller than the added white noise in our simulations [111] . Figure 29 shows

73



Figure 29: (Color) Typical evolution for a 87Rb condensate and the formation of
spin domains due to a dynamical instability. The initial state is the ground state
at B = 0.3 G. The magnetic field is then set to zero and a small white noises are
added throughout the evolution. The left contour plot is the evolution of the |+〉
component. The right column shows the density distribution of all three components
at times t = 0, 160, 320 (1/ωz). Solid lines denote the |+〉 component, dash-doted
lines refer to the |0〉 component, dashed lines label the |−〉 component, and dotted
lines are for the total density. nz =

∫ |φ|22πrdr is the density along z-direction.
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the evolution of the density distribution along z-direction (r-direction is integrated

out). We see that the phase separation between |+〉 and |−〉 components actually

indicates the formation of domains (note the total magnetization, M/N , is conserved

to within 1.0×10−5). So we can safely infer that the formation of domains for 87Rb is

due to the dynamical instability. The domain width (an upper limit) can be estimated

by the spin healing length (or penetration depth), ξ = h/
√

2m|c′| ' 8(az) ≈ 17µm,

where az =
√

h̄/mωz and the average condensate density used is about 1.9 × 1014

cm−3.

5.6 Conclusions

In conclusion we have studied the interaction driven off-equilibrium collective oscil-

lations of an atomic spin-1 condensate in a uniform magnetic field. The dynamics of

spin mixing is found to be well described by a nonrigid pendulum due to the conserva-

tions of atom numbers, atomic magnetization, and the total energy. In particular, we

find that there exists an interesting class of critical trajectories whose oscillation pe-

riods approach infinity. The dynamical instability of these orbits can lead to a phase

separation of the |+〉 and |−〉 components for a 87Rb condensate and subsequently to

the formation of spin domains. Our study suggests the use of quadratic Zeeman shift

to probe pendulum-like oscillations in a spin-1 condensate and provides the complete

spin mixing dynamics analytically.

Finally we would like to point out that we have excluded some extreme cases,

such as ρ0(t = 0) = 0 and ρ0(t = 0) = 1 from our mean field studies, as these

situations cannot be accurately described by the mean field theory and will require

higher order corrections, for instance, inclusion of quantum fluctuations and coupling

to the environment.
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CHAPTER VI

SOLITON IN A TRAPPED SPIN-1

CONDENSATE

6.1 Introduction

A solitonic condensate state is an excited eigenstate of the nonlinear Schrödinger

equation (NLSE). Solitons have been extensively studied in nonlinear optics [114]

and also recently in atomic Bose condensates [117], particularly for homogeneous

spin-1 condensates with a restricted form of ferromagnetic interaction [118]. From

the experimental point of view, a spin-1 Bose condensate is usually confined in an

optical trap, which can significantly affect the spatial propagation of a soliton. Instead

of adopting the analytical method as in [118], we employ numerical approaches to

find soliton states in a trapped spin-1 condensate. We observe that the density

of the obtained soliton state becomes time-independent under a special canonical

transformation.

6.2 An effective quasi-one-dimensional description

Although our ability to perform numerical simulations keeps increasing with computer

technology, full 3D time dependent calculations still represent a significant challenge.

In many situations, one explores the inherent system symmetries, e.g. cylindrical

and spherical symmetries in space, to reduce the numbers of spatial dimension from

3D to 2D or even 1D. The description of atomic condensate dynamics in terms of a

mean field theory is such an example. With a tight radial confinement, a condensate

becomes cigar-shaped. Several effective 1D approaches have been developed [117, 119,

120, 121, 122], with the simplest of them assuming a fixed transverse Gaussian profile.
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Recent studies, however, have indicated that the effective quasi-1D non-polynomial

Schrödinger equation (NPSE) is the most powerful and efficient tool, at least for a

weakly interacting atomic condensate [117, 119, 120]. In this section, we generalize

such an NPSE approach to the case of a spin-1 atomic condensate in a cigar-shaped

trap [123].

Several recent experiments of the spin-1 condensate use a single running wave

optical trap, i.e. in a cigar-shaped trap [54, 55, 56, 107]. To provide a proper the-

oretical description for these observations, numerical approaches have been used to

study the nonlinear spatial-temporal dynamics for a spin-1 condensate. It is there-

fore desirable to have a more efficient theoretical approach instead of the 3D coupled

Gross-Pitaevskii (GP) equations that is uniformly valid to both strongly and weakly

interacting limits.

A spin-1 Bose condensate is described by the Hamiltonian in second quantized

form by Eq. (17). Adopting the mean field theory when the condensate consists of a

large number of atoms, we introduce the condensate order parameter or wave function

Φi = 〈Ψi〉 for the ith component. Neglecting quantum fluctuations we arrive at the

mean field energy functional,

E[Φi, Φ
∗
i ] =

∫
d~r

[
Φ∗

i

(
− h̄2

2m
∇2 + Vext + Ei

)
Φi (58)

+
c0

2
Φ∗

i Φ
∗
jΦjΦi +

c2

2
Φ∗

kΦ
∗
i (Fα)ij (Fα)kl ΦjΦl

]
,

from which the coupled GP equations can be derived according to ih̄ ∂Φi/∂t =

δE/δΦ∗
i . They are given in explicit form in Eq. (36).

The external trap is assumed harmonic Vext = m(ω2
⊥r2

⊥ + ω2
zz

2)/2 with cylindrical

symmetry ωx = ωy = ω⊥, and ωz ¿ ω⊥, i.e. cigar shaped. Following the successful

approach of the NPSE description as for a single component scalar condensate [120],

we factor the wave function into transversal and longitudinal functions as

Φi(~r⊥, z; t) =
√

N Φ⊥(~r⊥; χ(z, t))fi(z, t), (59)
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where χ and fi are variational functions which depend on z and t. Φ⊥ is the transversal

wave function, satisfying
∫

d~r⊥|Φ⊥|2 = 1, and is assumed identical for all components.

Substituting Eq. (59) into Eq. (36), we obtain the Lagrangian of our system as

L =
∫

d~r
∑

i

Φ∗
i (~r, t)


ih̄

∂

∂t
+

h̄2

2m
∇2 − Vext − Ei − c0N

2

∑

j

|Φj|2

 Φi(~r, t)

−c2N

2

∫
d~r

[
|Φ+|4 + |Φ−|4 + 2|Φ+|2|Φ0|2 + 2|Φ−|2|Φ0|2 − 2|Φ+|2|Φ−|2

+2Φ∗2
0 Φ+Φ− + 2Φ∗

+Φ∗
−Φ2

0

]

=
∫

dz

{∑

i

f ∗i (z, t)

[
ih̄

∂

∂t
+

h̄2

2m

∂2

∂z2
− V (z)− Ei − E⊥(χ)

−η̃(χ)
c0N

2
ñ(z)

]
fi(z, t)− η̃(χ)

c2N

2
S2

}
, (60)

where V (z) = mω2
zz

2/2. E⊥ is the transverse mode energy,

E⊥(χ) =
∫

d~r⊥Φ∗
⊥[−(h̄2∇2

⊥/2m) + (mω2
⊥r2

⊥/2)]Φ⊥.

η̃ is the scaling factor of the nonlinear interaction strength, η̃(χ) =
∫

d~r⊥|Φ⊥|4. ñ(z) =

∑
i |fi|2, and S2 is independent of χ and given by

S2 =
(
|f+|4 + |f−|4 + 2|f+|2|f0|2 + 2|f−|2|f0|2 − 2|f+|2|f−|2 + 2f ∗20 f+f− + 2f ∗+f ∗−f 2

0

)
.

To obtain the above result, we have also assumed a weak time and z dependence of

the transverse wave function, i.e. ∂Φ⊥/∂t ' 0 and ∇2Φ⊥ ' ∇2
⊥Φ⊥. The effective

quasi-1D NPSE for a spin-1 condensate can now be derived from the least action

principle of the above Lagrangian,

ih̄
∂

∂t
f+ =

[
− h̄2

2m

∂2

∂z2
+ V (z) + E+ + E⊥ + c0Nη̃ñ + c2Nη̃(ñ+ + ñ0 − ñ−)

]
f+

+c2Nη̃f 2
0 f ∗−,

ih̄
∂

∂t
f0 =

[
− h̄2

2m

∂2

∂z2
+ V (z) + E0 + E⊥ + c0Nη̃ñ + c2Nη̃(ñ+ + ñ−)

]
f0

+2c2Nη̃f+f−f ∗0 ,

ih̄
∂

∂t
f− =

[
− h̄2

2m

∂2

∂z2
+ V (z) + E− + E⊥ + c0Nη̃ñ + c2Nη̃(ñ− + ñ0 − ñ+)

]
f−

+c2Nη̃f 2
0 f ∗+,

ñ
∂E⊥
∂χ

+
(

c0N

2
ñ2 +

c2N

2
S2

)
∂η̃

∂χ
= 0, (61)
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where ñ =
∑

i ñi is the total density and ñi = |fi|2 is the density of the ith component.

We discuss two separate ansatzs for the transverse function applicable respectively

for the case of weak and strong atomic interactions.

� A Gaussian ansatz

For weak atomic interaction when µ − E⊥ ¿ h̄ω⊥ is satisfied, the transverse

wave function can be taken as a Gaussian function of a variable width,

Φ⊥(~r⊥; χ(z, t)) =
1

π1/2χ
exp[−r2

⊥/2χ2]. (62)

The transverse mode energy and scaling factor are then given by

E⊥ =
h̄ω⊥
2

(
a2
⊥

χ2
+

χ2

a2
⊥

)
, (63)

η̃ =
1

2πχ2
, (64)

where a⊥ =
√

h̄/mω⊥.

� A Thomas-Fermi ansatz

For strong atomic interactions when µ−E⊥ À h̄ω⊥ holds, the transverse wave

function is taken as a Thomas-Fermi (TF) ansatz,

Φ⊥(~r⊥; χ(z, t)) =





√
2
π

1
χ

√
1−

(
r⊥
χ

)2
, r⊥ ≤ χ;

0, r⊥ > χ.
(65)

The kinetic energy in the transverse direction is neglected, leading to the trans-

verse mode energy and scaling factor as

E⊥ =
h̄ω⊥
6

(
χ2

a2
⊥

)
, (66)

η̃ =
4

3πχ2
. (67)

We have performed extensive numerical simulations to illustrate the efficiency

and effectiveness of the NPSE as developed by us for a spin-1 condensate in a cigar-

shaped trap. For the first example, we computed the ground state of a 87Rb spin-1
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Figure 30: The ground state density distribution of the condensate in |0〉 component
along the axis of a cigar-shaped trap, for 87Rb atoms and without an external magnetic
field. The inset shows the zoom-in central region. The solid line denotes the “exact”,
while the dashed and dash-dot lines denote respectively the results from our NPSE
with a TF or a Gaussian ansatz for the transverse profile.

condensate by propagating the GP equations and the effective 1D NPSE with an

imaginary time. The atomic parameters of 87Rb are a0 = 101.8 aB and a2 = 100.4 aB

[95]. The trap frequencies are ω⊥ = (2π)240 Hz and ωz = (2π)24 Hz. The “exact”

solution as given by the ground state of the full 3D coupled GP equations (36) is

calibrated by its effective 1D distribution according to |fi(z)|2 =
∫

d~r⊥|Φi|2. Figure

30 illustrates the results for several cases of different total number of atoms, N . We

note that with increasing N , the mean field interaction becomes stronger. For weak

interactions the quasi-1D NPSE with a Gaussian variational ansatz gives a better

result, while for strong interactions the quasi-1D NPSE with a TF ansatz is a better

choice. Here “better” means the result obtained from an NPSE is closer to that

of the full 3D solution. We also observe that the quasi-1D NPSE with a TF ansatz

gives a lower central density and over-estimates the TF radius in the weak interaction

regime, while the quasi-1D NPSE with a Gaussian ansatz gives a lower central density
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Figure 31: Time dependence of the fractional condensate population in the |0〉 state
N0/N . Thick solid curve denotes the full 3D simulation while the dashed curve
denotes the simulation with our effective quasi-1D NPSE. We have used N = 104 for
the top part and N = 105 for the bottom. As a comparison we also presented the
result obtained from a widely adopted time-independent Gaussian ansatz (thin solid
curve in the bottom panel), which is shown to give a poor agreement in the strong
interaction regime.

and a correspondingly larger width in the strong interaction regime. Over all, it is

interesting to point out that the quasi-1D NPSE with a Gaussian ansatz is not too

bad even in the strong interaction regime.

To test the quasi-1D NPSE more strictly we study the dynamics of a spin-1 con-

densate out of equilibrium configuration and compare the results with those from a

full 3D simulation with the coupled GP equations (36). The initial state is taken as

the ground state in a given magnetic field. The simulation starts after the magnetic

field is set zero, and we follow the spatial-temporal dynamics. With our NPSE, it
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becomes essentially a trivial task, and we find that excellent agreements are obtained

with a Gaussian ansatz, e.g. with N = 103 atoms for weak interactions, and a TF

ansatz for strong interactions with N = 106 atoms. In the results to be given below,

we instead use the effective quasi-1D NPSE to simulate the dynamics in the limit

between the strong and weak interactions, i.e. for µ− h̄ω⊥ ∼ h̄ω⊥. For the quasi-1D

NPSE approach, we use a Gaussian ansatz with N = 104 atoms (E−h̄ω⊥ = 1.74 h̄ω⊥)

and a TF ansatz with N = 105 atoms (E − h̄ω⊥ = 4.98 h̄ω⊥). Figure 31 displays the

time evolution of the fractional condensate in the |0〉 state. For weak interactions, all

three components share the space profile along the z axis, and the out of equilibrium

dynamics is periodic [53, 63, 102]. Figure 31 also clearly shows the periodic motion

for N = 104 atoms, although we do find that the quasi-1D NPSE gives a slightly

shorter period than that of the full 3D simulation. For strong interactions, the appar-

ent spatial profiles of the three spin components clearly becomes different, and the

out of equilibrium dynamics also becomes complicated. Yet still, the quasi-1D NPSE

simulations give results very close to the “exact” 3D solution, especially in the short

time range. Figure 32 compares the dependence of the density distribution of the

|0〉 state component on time and space from quasi-1D NPSE and full 3D simulation.

The excellent agreement clearly demonstrates the efficiency and effectiveness of the

quasi-1D NPSE approach, although we do find that it always seems to give a slightly

shorter oscillation period as compared to the “exact” result.

We now discuss the conditions under which our quasi-1D NPSE description is

applicable. For a true 1D condensate which enters the Tonks gas regime [27, 30], our

result is obviously not applicable. In the derivations of the quasi-1D NPSE, we have

assumed a weak time- and z-dependence of the transverse mode. This assumption

is valid only for weak excitations of the condensate such that the excitation in the

transverse direction is negligible. In other words, the wavelength of the excitation is

longer than the transverse size of the condensate. Under this condition, the transverse
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Figure 32: (Color) Contour plot of the density of the |0〉 component of a condensate
with respect to time and z. The left one is from the quasi-1D NPSE while the right
one is the “exact” result from a full 3D simulation. Parameters are the same as in
Fig. 31.
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mode is reduced to the ground state which is a Gaussian in the weakly interacting

limit and a TF profile in the strongly interacting limit. For spin-1 condensates widely

discussed now, either of 23Na or 87Rb atoms, the spin-dependent excitation is always

weak since c2 is two or three orders of magnitude smaller than c0. The wavelength

of the spin wave is thus larger than the transversal size of the condensate for a

cigar-shaped trap [41, 45, 46, 54, 55, 56, 107]. Our resulting NPSE model can thus

be directly applied. For a strongly excited system, one has to include the transverse

motion, with a more general approach as developed by Kamchatnov and Shchesnovich

in [124] and Salasnich et al. in [125].

6.3 Soliton in a trapped spin-1 Bose condensate

Condensate solitons are loosely defined as high energy eigenstates of the GP equation

(36). Armed with the quasi-1D NPSE approach and the imaginary time propagation

method, we have performed extensive search for solitonic states. Numerically we first

find the ground state, then we propagate the GP equation in imaginary time domain

but subtract out the ground state projection at each time step during evolution,

Φ(n) → Φ(n) − 〈Φ0|Φ(n)〉|Φ0〉. (68)

For the second excited soliton state, we subtract the projections of both the ground

state and the first excited state, and analogously for higher energy soliton states. The

main restriction is the numerical precision which limits us to be capable of finding

only one soliton state accurately.

An example of the soliton we find in a trapped spin-1 87Rb condensate is illustrated

in Fig. 33. We see a π phase shift in the |0〉 component near the central region, and

also notice that the |+〉 and |−〉 components are symmetric with respect to the trap

center z = 0. Starting from this solitonic state we have propagated the GP equation,

and the time dependence of the |0〉 component fraction is as shown in Fig. 34. We

see clearly periodic oscillations in the fractional population of each component from
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Figure 33: The wave function of a soliton state in a trapped spin-1 87Rb condensate.
The trap parameters are ωx = ωy = (2π)240 Hz and ωz = (2π)24 Hz. The total
number of atoms in the trap is N = 106 and the total magnetization is zero. The
solid curves denote the density (the upper panel) and the phase (the lower panel)
for the |+〉 component, the dash-dotted curves denote the |0〉 component, the dashed
curves denote the |−〉 component, and the dotted curve (the upper panel) denotes
the total density.
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Figure 34: Propagation of a soliton in a trap. The upper and the middle rows display
the density distribution of the soliton at different times. The lower row shows the time
dependence of the fractional populations of every spin components. The parameters
and notations are the same as in Fig. 33.

the curves in the lower row of Fig. 34. From the upper and middle rows we see the

density distribution varies with time. The |+〉 and |−〉 components tunnel through

each other with the assistance of the |0〉 component. The tunnelling process would

be much slower if |0〉 component is absent. Such a process is often called a soliton

collision in nonlinear science [118]. This collision was explained in terms of a mutual

precession among the three components as in Ref. [118]. We can actually extract the

precession angles for both the |+〉 and |−〉 components as π since they just exchange

their positions after the collision, i.e., spin up becomes spin down and vice versa. The

interesting feature for a trapped system, distinct from the homogeneous one, is that

the collision process repeats itself cyclically upon reflections from the boundaries.

A propagating soliton with a constant speed is actually stationary in a special

moving frame. A wonderful story of this is that J. S. Russell once followed the water
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Figure 35: Density and phase distributions of the soliton after the transformation
(Eq. 69). The density becomes time independent. This is actually a one dimensional
Mermin-Ho vortex.

wave soliton for a few miles. This is also true for a soliton in a spin-1 condensate.

We find that the density of the soliton becomes time independent with the following

canonical transformation,

Φa =
1√
2
(Φ+ − Φ−),

Φb =
1√
2

[
1√
2
(Φ+ + Φ−) + Φ0

]
, (69)

Φc =
1√
2

[
1√
2
(Φ+ + Φ−)− Φ0

]
.

Figure 35 shows the density and phase distributions of component |a〉, |b〉, and |c〉.
The density is time independent after the transformation. According to Ref. [79], we

find that this is in fact simply a 1D Mermin-Ho vortex.
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6.4 Conclusions

In summary, we have extended the successful effective quasi-1D non-polynomial Schrö-

dinger equation (NPSE) for a single component scalar condensate to a multi-component

spin-1 condensate in a cigar-shaped trap. We have demonstrated its validity with a

Gaussian ansatz for the transverse profile in the weak interaction regime and with

a Thomas-Fermi (TF) ansatz in the strong interaction regime. We have further

demonstrated its effectiveness with studies on both the static (ground state) and dy-

namic properties of a spin-1 87Rb condensate in a cigar-shaped harmonic trap. With

the effective quasi-1D NPSE, simulations for out of equilibrium condensate dynam-

ics become rather efficient, thus allowing for detailed comparisons with the recently

observed spatial temporal dynamics in spin-1 condensates.

Armed with the quasi-1D NPSE, we have searched for collectively excited, or soli-

ton states in a trapped spin-1 87Rb Bose condensate. Starting from a soliton state

we find, the soliton propagates in the trap. This propagation process is explained

as mutual precession among different components. We also find a canonical trans-

formation which leads the time dependent propagation of the soliton into a time

independent density profile. The state after the transformation is found to resemble

a one dimensional Mermin-Ho vortex state.
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APPENDIX A

FINDING THE GROUND STATE

NUMERICALLY: IMAGINARY TIME

PROPAGATION METHOD

We employ the imaginary time propagation method [126, 127] to search for the

ground state. We give a rather brief summary of this algorithm in the following. More

detailed discussions can be found in Ref. [128]. For a quantum system described by

a Hamiltonian H, the Schrödinger equation is,

ih̄
∂ψ

∂t
= Hψ.

In imaginary time domain τ = it the above Schrödinger equation becomes (setting

h̄ = 1)

−∂ψ

∂τ
= Hψ,

where we have shifted to make sure all eigenvalues of H are positive. Numerically

the time derivative is approximated by a first-order forward difference formula with

a time step ∆τ

ψ(n+1) − ψ(n)

∆τ
= −Hψ(n).

Spatial derivatives in H are also approximated by a finite difference method or can

be computed by fast Fourier transform (FFT). Given an initial wave function ψ(0),

we propagate numerically the wave function according to

ψ(n+1) = ψ(n) −∆τHψ(n),

until a stable convergent solution is found. We normalize ψ at the end of each

iteration. The initial wave function is usually taken as a Gaussian for weak interaction

or parabola shaped for strong interaction (TF limit).

89



The imaginary time propagation method is a quantum version of the steepest de-

scent method or downhill search method in an infinite dimensional configuration space

expanded by ψ(x) and ψ∗(x). Physically, it corresponds to decay process from initial

state to the final ground state. Expanding the initial wave function ψ(0) according to

the eigenfunctions φi of H,

ψ(0) =
∑

i

c
(0)
i φi,

at step n,

ψ(n) =
∑

i

c
(0)
i e−Ein∆τφ

(0)
i .

The higher the energy of an eigenstate, the more rapidly it decays. Since we normalize

the wave function at each step, the converged wave function contains essentially only

the ground state component.

Strictly speaking, the above explanation is applicable only to a linear system. In

practice this method is also applicable to nonlinear interacting systems such as for

atomic Bose-Einstein condensate, especially for the ground state configuration.
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APPENDIX B

DIAGONALIZATION OF A QUADRATIC

HAMILTONIAN FOR INTERACTING BOSONS

We provide here a brief summary of a procedure for diagonalizing a quadratic

Hamiltonian of bosons. See Ref. [129, 130] for more details.

A general form of a quadratic Hamiltonian for a bosonic system with N internal

degrees of freedom (N = 3 for a spin-1 system) is

H2 =
1

2

N∑

i,j=1

[
Aij(a

†
iaj + aia

†
j) + Bija

†
ia
†
j + B∗

jiaiaj

]
,

where ai (a†i ) are the annihilation (creation) operators for the ith component which

satisfy the commutation relations

[
ai, a

†
j

]
= δij, [ai, aj] =

[
a†i , a

†
j

]
= 0,

A is an N ×N Hermitian matrix, A† = A, and B is a symmetric matrix, BT = B.

The task of diagonalization is to find a canonical transformation of ai and a†i such

that H2 takes the form

H2 =
N∑

i=1

h̄ωib
†
ibi,

where bi (b†i ) are the new bosonic annihilation (creation) operators. Let us define the

associated matrix

M2N×2N =




A B

−B∗ −A∗


 ,

then we just diagonalize M . The characteristic equation of M , det(M − h̄ωI2N), is

a real polynomial in (h̄ω)2. The appearance of zero eigenvalue is due to Goldstone

modes and imaginary eigenvalues are usually related to dynamical instability.
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APPENDIX C

NOTATIONS
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Symbol Meaning

a0 s-wave scattering length for total F = 0 channel
a2 s-wave scattering length for total F = 2 channel
asc s-wave scattering length for scalar condensate
B External magnetic field
B′ Magnetic field gradient
c Normalized spin interaction, (c2/2)〈n〉
c′ Normalized spin interaction, c2〈n〉
c0 Spin independent interaction strength
c2 Spin dependent interaction strength
E Total energy of the system
E[Φ, Φ∗] Energy functional for condensate wave function
Ei Zeeman shift for ith component
E Energy per atom under SMA
F Angular momentum of atom’s hyperfine state
Fhigh Hyperfine state with high energy
Flow Hyperfine state with low energy
Ftot Collision channel for two atoms
F1,2 Hyperfine state of two colliding atoms
Fα Spin matrices, α = x, y, z
f Average spin per atom
F Free energy in rotating frame
G Gibbs free energy
g Interaction strength for scalar condensate
g0,2 Interaction strength for channel Ftot = 0, 2
gI Landé g-factor for nucleons
gν(x) Bose function
H Hamiltonian, expressed as integration of field operators
HZM Zeeman energy matrix
HS Spin independent Hamiltonian
h̄ Plank’s constant
I Nuclear spin
J Angular momentum
i, j, k, l Internal state, i = +, 0,−
L Linear operator in H
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Symbol Meaning

m Mass of atom
M Total magnetization
m Fractional magnetization, M/N
mF z-component of the angular momentum F
N Total number of atoms
Ni,j Number of atoms in ith component and jth level
NT Total number of atoms of noncondensed part
NT

i Total number of atoms of noncondensed ith component
NC Total number of atoms of condensate
Nc Critical number of atoms with attractive interaction
n Total density, n+ + n0 + n−
nT Total density of noncondensed part
ni Density of ith component (nT

i + nC
i )

nT
i Density of ith component of noncondensed part

nC
i Density of ith component of condensate

ñi Density of ith component of quasi-1D system
P0,2 Projection operator (onto Ftot = 0, 2)
r, s, t Coefficients in cubic equation
Vext External trapping potential
x, y, z Cartesian coordinates
δ Quadratic Zeeman energy
η Fictitious magnetic field, used to conserve M
η0 Linear Zeeman energy if a B field is applied
η̃ Scaling factor for quasi-1D system
µ Chemical potential, used to conserve N
Ψ(Ψ†) Field creating (annihilating) operator
Φ(Φ∗) Condensate wave function, normalized to N
φ(φ∗) Condensate wave function, normalized to unit
ρi Fraction of ith component (i = +, 0,−)
θ Relative phase among components
θi Phase of the ith component
ξi ith component of spin degree of freedom
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[18] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K.
Oberthaler, e-print cond-mat/0411757 v2.

[19] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).

[20] P. Pedri, L. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 87, 220401
(2001).

[21] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys.
Rev. Lett. 81, 3108 (1998).

[22] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,
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S. Gupta, S. Inouye, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett.
90, 090401 (2003).

[77] M. Erhard, H. Schmaljohann, J. Kronjäger, K. Bongs, and K. Seng-
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