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(57) ABSTRACT 

Nanostructures and methods of fabricating nanostructures 
are disclosed. A representative nanostructure includes a 
substrate having at least one semiconductor oxide. In 
addition, the nanostructure has a substantially rectangular 
cross-section. A method of preparing a plurality of semi­
conductor oxide nanostructures that have a substantially 
rectangular cross-section from an oxide powder is disclosed. 
A representative method includes: heating the oxide powder 
to an evaporation temperature of the oxide powder for about 
1 hour to about 3 hours at about 200 torr to about 400 torr 
in an atmosphere comprising argon; evaporating the oxide 
powder; and forming the plurality of semiconductor oxide 
nanostructures. 

6 Claims, 3 Drawing Sheets 
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SEMICONDUCTING OXIDE 
NANOSTRUCTURES 

2 
The present invention also involves a method of preparing 

a plurality of semiconductor oxide nanostructures that have 
a substantially rectangular cross-section from an oxide pow­
der. A representative method includes: heating the oxide CROSS-REFERENCE TO RELATED 

APPLICATION 

This application is a divisional application of the patent 
application having Ser. No. 10/042,868 filed on Jan. 8, 2000 
now U.S. Pat. No. 6,586,093. 

5 powder to an evaporation temperature of the oxide powder 
for about 1 hour to about 2 hours at about 200 torr to about 
400 torr in an atmosphere comprising argon; evaporating the 
oxide powder; and forming the plurality of semiconductor 
oxide nanostructures. This application claims priority to copending U.S. provi­

sional application entitled, "Semiconductive Oxide 10 

Nanobelts," having Ser. No. 60/261,367, filed Jan. 12, 2001, 
which is entirely incorporated herein by reference. 

TECHNICAL FIELD 
15 

The present invention is generally related to nanostruc-
tures and, more particularly is related to semiconductive 
oxide nanostructures and fabrication thereof. 

BACKGROUND 
20 

Other systems, methods, features, and advantages of the 
present invention will be or become apparent to one with 
skill in the art upon examination of the following drawings 
and detailed description. It is intended that all such addi­
tional systems, methods, features, and advantages be 
included within this description, be within the scope of the 
present invention, and be protected by the accompanying 
claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Many aspects of the invention can be better understood 
with reference to the following drawings. The components 
in the drawings are not necessarily to scale, emphasis instead 
being placed upon clearly illustrating the principles of the 
present invention. Moreover, in the drawings, like reference 

Binary semiconducting oxides often have distinctive 
properties and can be used as transparent conducting oxide 
(TCO) materials and gas sensors. Current studies of semi­
conducting oxides have been focused on two-dimensional 
films and zero-dimensional nanoparticles. For example, 
fluorine-doped tin oxide films are used in architectural glass 
applications because of their low emissivity for thermal 
infrared heat. Tin-doped indium oxide (ITO) films can be 
used for fiat panel displays (FPDs) due to their high elec­
trical conductivity and high optical transparency; and zinc 
oxide can be used as an alternative material for ITO because 
of its lower cost and easier etchability. Tin oxide nanopar­
ticles can be used as sensor materials for detecting leakage 

25 numerals designate corresponding parts throughout the sev­
eral views. 

30 

FIGS. lA through lD are schematics that illustrate a 
perspective view, a top view, a side view, and, an end view 
of a nanobelt, respectively. 

FIGS. 2A through 2D are schematics that illustrate a 
perspective view, a top view, a side view, and, an end view 
of a nanosheet, respectively. 

of several inflammable gases owing to their high sensitivity 
to low gas concentrations. 

In contrast, investigations of wire-like semiconducting 
oxide nanostructures can be difficult due to the unavailabil-

FIG. 3 is a schematic that illustrates an apparatus that can 

35 be used to fabricate the nanobelt and/or the nanosheet shown 
in FIGS. 1 and 2. 

ity of nanowire structures. Wire-like nanostructures have 
attracted extensive interest over the past decade due to their 
great potential for addressing some basic issues about 40 
dimensionality and space confined transport phenomena as 
well as related applications. In geometrical structures, these 
nanostructures can be classified into two main groups: 
hollow nanotubes and solid nanowires, which have a com­
mon characteristic of cylindrical symmetric cross-sections. 45 
Besides nanotubes, many other wire-like nanomaterials, 
such as carbides, nitrides, compound semiconductors, ele­
ment semiconductors, and oxide nanowires have been suc­
cessfully fabricated. 

FIG. 4 is a flow diagram illustrating a representative 
method for fabricating nanostructures as shown in FIGS. 1 
and 2. 

DETAILED DESCRIPTION 

The present invention provides for nanostructures and 
methods of fabrication thereof. The nanostructures have 
substantially rectangular cross-sections that may be defect 
free, dislocation free, and/or structurally uniform. In 
addition, the nanostructure can be structurally controlled as 
well as morphology controlled, while the surfaces of the 
nanostructure are specific crystallographic planes. In this 
manner, the nanostructures may overcome some of the 

However, the nanostructures discussed above can have a 
variety of deficiencies. For example, often it is difficult to 
control the structure and morphology of many nanostruc­
tures. Further, many nanostructures are not defect and/or 
dislocation free. These deficiencies can cause problems such 

50 deficiencies described above. 
In general, the nanostructures can be nanobelts, 

nanosheets, or nanodiskettes that have a substantially rect­
angular cross-section. FIGS. lA through lD illustrate a 
perspective view (A), a top view (B), a side view (C), and 
an end view (D) of a nanobelt 10, respectively. The per­
spective view (A) illustrates a top 12, a side 14, and an end 
16 of the nanobelt 10. The top view (B), side view (C), and 
the end view (D) illustrate the top 12, the side 14, and the 
end 16 of the nanobelt 10. FIGS. 2A through 2D illustrate a 

as, for example, uncontrolled properties due to uncontrolled 55 

structure and/or morphology, scattering from dislocations in 
electric transport applications, and degraded optical proper­
ties. Thus, a heretofore unaddressed need exists in the 
industry to address at least the aforementioned deficiencies 
and/or inadequacies. 60 perspective view (A), a top view (B), a side view (C), and 

an end view (D) of a nanosheet 20, respectively. The 
perspective view (A) illustrates a top 22, a side 24, and an 
end 26 of the nanosheet 20. The top view (B), the side view 
(C), and the end view (D) illustrate the top 22, the side 24, 

SUMMARY OF THE INVENTION 

Briefly described, the present invention provides for new 
types of nanostructures. A representative nanostructure 
includes a substrate having at least one semiconductor 
oxide. In addition, the nanostructure has a substantially 
rectangular cross-section. 

65 and the end 26 of the nanosheet 20. 
Nanobelts 10 can be characterized as "ribbon-like" 

structures, while the nanosheets 20 can take the form of a 
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Typically, the as-deposited products can be characterized 
and analyzed by x-ray diffraction (XRD) (Philips PW 1800 
with Cu Ka radiation), scanning electron microscopy (SEM) 
(Hitachi S800 FEG), transmission electron microscopy 

variety of polygonal shapes such as, for example, a 
rectangle, a square, a triangle, etc. N anodiskettes (not 
shown) are similar to nanosheets 20 except that nanodis­
kettes are "coin-shaped" structures. This disclosure does not 
describe in any definite dimensions the difference between 
nanobelts 10, nanosheets 20, and nanodiskettes. For clarity, 
this disclosure refers to nanobelts 10, nanosheets 20, and 
nanodiskettes as "nanostructures." 

5 (TEM) (Hitachi HF-2000 FEG at 200 kVandJEOL4000EX 
high resolution TEM (HRTEM) at 400 kV), and energy 
dispersive x-ray spectroscopy (EDS). 

Reference will now be made to the flow diagram of FIG. 
4. FIG. 4 illustrates a representative method of preparing a 
plurality of semiconductor oxide nanostructures having a 
substantially rectangular cross-section from an oxide pow­
der. Initially, the oxide powder is heated to an evaporation 
temperature of the oxide powder for about 1 hour to about 
3 hours at about 200 torr to about 400 torr in an atmosphere 

The nanostructures are fabricated of at least one semi­
conductor oxide and/or at least one doped semiconductor 

10 
oxide. The semiconductor oxide includes oxides of zinc, 
cadmium, mercury, gallium, indium, tellurium, germanium, 
tin, and lead. The nanostructure fabricated of at least one 
semiconductive oxide can be, for example, a binary or a 
ternary complex of the semiconductor oxide. 

The doped semiconductor oxide includes at least one 
semiconductive oxide that can be doped with at least one 
dopant that may be chosen from aluminum, gallium, boron, 
yttrium, indium, scandium, silicon, germanium, titanium, 
zirconium, hafnium, antimony, tin, nitrogen, and fluorine. 20 
The nanostructure can be fabricated of at least one doped 
semiconductor oxide, for example, a binary or a ternary 
complex of the doped semiconductor oxide. 

15 comprising Argon, as shown in block 42. Then, the oxide 
powder is evaporated, as shown in block 44. Thereafter, the 
plurality of semiconductor oxide nanostructures is formed, 
as shown in block 46. 

The size (e.g. length, width, and height) of the nanostruc­
ture can vary within a type of semiconductor oxide and 25 
among each of the semiconductor oxides. The size of the 
nanostructure can be controlled to fit certain criteria for a 

Having summarized the nanostructures and methods of 
fabrication thereof above, reference will now be made in 
detail to six illustrative examples of the semiconductor oxide 
nanostructures. While the invention is described in connec­
tion with these examples, there is no intent to limit the 
invention to the following examples. On the contrary, the 
intent is to cover all alternatives, modifications, and equiva­
lents included within the spirit and scope of the invention. 

particular application. However, in general, the nanostruc- Examples 1-4 are discussed in the paper entitled "Nano-
tures can be about 20 nanometers to about 6000 nanometers belts of Semiconducting Oxides," published in Science Vol. 
in width, about 5 nanometers to about 100 nanometers in 30 291, 9, March 2001, which is herein incorporated by refer-
height, and about 100 nanometers to about 3 millimeters in ence. Example 5 is discussed in the paper entitled "Gallium 
length. The nanostructures can have a width-to-height ratio Oxide Nanoribbons and Nanosheets," and is in-press at the 
of about 5 to about 15. In addition to the dimensions Journal of Physical Chemistry B, which is herein incorpo-
described above, the following examples describe illustra- rated by reference. Example 6 is discussed in the paper 
tive sizes of the nanostructures for some of the semicon- 35 entitled "Lead Oxide Nanobelts and Phase Transformation 
ductor oxides. Induced by Electron Beam Irradiation," and is in-press at 

Tue methods for fabricating nanostructures can be based Applied Physics Letters, which is herein incorporated by 
on thermal evaporation of oxide powders under controlled reference. 
conditions that can be performed on the apparatus 30 shown 
in FIG. 3. The apparatus 30 includes a horizontal tube 40 

furnace 32 that has an alumina tube 36 therein and is 
wrapped in a heating coil 34. Inside the alumina tube 36 are 
one or more alumina plates 38 and an alumina crucible 40, 
which contains the oxide powder 42 and/or other chemicals 
used to fabricate the nanostructures. To measure the tern- 45 

EXAMPLE 1 

Zinc Oxide 

Thermal evaporation of zinc oxide (ZnO) powders 
(purity: 99.99%, melting point: 1975° C.) at 1400° C. for 
approximately 2 hours resulted in white wool-like products 
that formed in high yield on the surface of the alumina plate perature at various locations in the furnace 32, a thermo­

couple 44 or other temperature measuring device can be 
moved within the furnace 32. The apparatus 30 is also 
equipped with input 46 and output tubes 48 to introduce and 
pump-out a flow gas such as Argon (Ar). Additional features 
known by one skilled in the art are also included in the 
apparatus such as vacuum pumps, vacuum manifolds, reac­
tant gas inputs, reactant gas manifolds, etc., and will not be 
discussed here. 

38. Scanning electron microscopy (SEM) observations 
reveal that the products consist of a large quantity of 
nanostructures with typical lengths in the range of several 

50 tens to several hundreds of micrometers, while some of 
nanostructures have lengths on the order of millimeters. 
EDS microanalysis and powder XRD measurement show 
that the sample is wurtzite (hexagonal) structured ZnO with 

In practice, the desired oxide powder is placed in the 55 

aluminum crucible 40 in the center of an alumina tube 36. 

lattice constants of a=3.249 A and c=5.206 A, consistent 
with the standard values for bulk ZnO. 

TEM images reveal that the ZnO nanostructure has a 
substantially rectangular cross-section (i.e., nanobelt) that is 
distinct in cross-section from nanotubes and nanowires. 
Each nanobelt has a uniform width along a substantial 

The temperature, pressure, and evaporation time ate con­
trolled. Typically, the evaporation is performed without a 
catalyst. Except for the evaporation temperature that can be 
determined based on the melting point of the oxides used, 
the following parameters are typically kept constant: evapo­
ration time (e.g., 2 hours), alumina tube 36 pressure (e.g., 
300 Torr), and flow gas flow rate (e.g., Argon flowed at 
approximately 50 standard cubic centimeter per minute 
(seem)). During evaporation the products of the evaporation 
are deposited onto the alumina plates 38 located at the 
downstream end of the alumina tube 36. 

60 portion of the length of the nanobelt, and the typical widths 
of the nanobelts are in the range of 50 to 300 nanometers. In 
addition, the ends of the nanobelts do not include a particle. 
The typical height and width-to-height ratios of the ZnO 
nanobelts are in the range of 10 to 30 nanometers and about 

65 5 to about 10, respectively. HRTEM and electron diffraction 
show that the ZnO nanobelts are structurally uniform and 
single crystalline but with two different growth directions. 
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The nano belt, growing along [0001] and enclosed by ±(2I 
IO) and ±(OlIO) facets, shows no defect and dislocations. 
The nanobelt, growing along [OlIO] and enclosed by 
±(0001) and ±(2ITO) facets, is also dislocation free but with 
only a single stacking fault that is parallel to the axis and 5 

runs throughout the entire length of the nanobelt. The 
surfaces of these nanobelts are clean, atomically sharp, and 
without any sheathed amorphous phase. 

6 
grams. The lengths of the CdO nanobelts are usually less 
than about 100 micormeters, and their widths are typically 
about 100 to about 500 nanometers, significantly wider and 
shorter than those of ZnO, Sn02 and In2 0 3 nanobelts, 
respectively. As a result, the width-to-height ratios of CdO 
nanobelts are usually greater than 10. Electron diffraction 
pattern shows that the nanobelts grow along [100], and their 
surfaces are enclosed by ±(001) and ±(010) facets. In 
addition, some nanobelts were broken into two halves dur-

EXAMPLE 2 

Tin Oxide 

Single crystalline Sn02 nanobelts of rutile structure can 

10 ing TEM observation due to electron beam illumination, 
which is likely to be caused by the easy cracking charac­
teristic of the NaCl-type ionic structure of the nanobelt. 
Thus, it may be possible to cut these nanobelts with a 
focused electron or ion beam, so that nanobelts with specific be fabricated by thermal evaporation of either Sn02 powders 

(purity: 99.9%, melting point: 1630° C.) at 1350° C. and/or 
SnO powders (purity: 99.9%, melting point: 1080° C.) at 
1000° C. After evaporation, white fuzz-like products are 
deposited on the alumina plate 38, whether the source 
material was Sn02 or SnO. SEM imaging and EDS analysis 
show that the products are composed of large quantities of 20 

Sn02 nanobelts (with lengths up to the order of millimeters) 
and a small fraction of Sn nanoparticles. XRD patterns from 
the synthesized Sn02 nanobelt samples proye the rutile ty~e 
structure with lattice constants of a=4.772 A and c=3.184 A, 
which are consistent with those of bulk Sn02 . TEM images 25 

display the characteristic shape (e.g. rectangular cross­
section) of the Sn02 nanobelts. Each nanobelt is uniform in 
width and height, and the typical widths of the Sn02 

nanobelts are in the range of about 50 to about 200 nanom­
eters. Cross-sectional TEM observations show that the 30 

15 lengths for nano-device applications could be fabricated. 

cross-sections of the Sn02 nanobelts are substantially 
rectangular, with typical width-to-height ratios of about 5 to 
about 10. High-resolution TEM images reveal that the 
nanobelts are single crystalline and dislocation free. Elec­
tron diffraction pattern indicates that the Sn02 nanobelt 35 

grows along [101], and it is enclosed by ±(010) and ±(lOI) 
crystallographic surfaces. 

EXAMPLE 5 

Gallium Oxide 

The synthesis of gallium oxide (Ga2 0 3) is based on 
thermal evaporation of gallium nitride (GaN) powders under 
controlled conditions in the presence of oxygen. The com­
mercially supplied GaN powders (99.99% metals basis) are 
placed at the center of an alumina tube 36. The furnace is 
heated at a rate of about 10--15° C./min to about 1100° C., 
and then maintained at this temperature for 2 hours being 
cooled down to room temperature. The pressure in the 
alumina tube 36 is about 300 Torr, and the Ar flow rate is 
about 50 seem. During evaporation, the products are depos­
ited onto alumina plates 38, where the temperature is about 
800-850° C. The as-deposited products are wool-like with a 
light gray color. 

SEM analysis reveals that the products consist of a large 
quantity of nanostructures with typical lengths in the range 
of several tens to several hundreds of micrometers, while 
some of the nanostructures have lengths on the order of 
millimeters. The as-synthesized sample also contains a large 
fraction of nanosheets, and size of the nanosheets is about 10 
micrometers across and several tens of nanometers in height. 

EXAMPLE 3 

Indium Oxide 

40 The nanosheets have straight edges with sharp corners, 
suggesting that they terminate by faceted crystallographic 
planes. Chemical microanalysis using EDS shows that the 
nanostructures obtained are Ga2 0 3 . The formation of Ga2 0 3 

rather than GaN is believed due to the high combinability of 
Thermal evaporation of indium oxide (In2 0 3 ) powders 

(purity: 99.99%, melting point: -1920° C.) at 1400° C. 
yields In2 0 3 nanobelts. TEM observations show that most of 
the In2 0 3 nanobelts have uniform width and height along 
their lengths. However, some nanobelts exhibit a sharp 
shrinkage in width while the height is preserved and form a 
bridge-like structure, which may be used to measure trans­
port from an oxide nanobridge. Typically, the In2 0 3 nano- 50 
belts have widths in the range of about 50 to about 150 
nanometers and lengths of several tens to several hundreds 

45 Ga with oxygen, which is believed to leak into the furnace. 
The width of the nanobelts varies from about 40 to about 

300 nanometers, and the geometry of the nanobelts is 
substantially uniform. The height of the nanobelts is about 
10 to about 60 nanometers depending on the width. The 
nanobelts ate single crystalline and free from dislocations. 
Their surfaces are clean without an amorphous layer. 

Ga2 0 3 is of polymorphism in its crystal structure. The 
of micrometers. Electron diffraction analysis shows that the 
In2 0 3 nanobelts are single crystalline, and grow along 
[001], the surfaces being enclosed by (100) and (010) 55 
surfaces. 

polymorph of Ga2 0 3 mainly includes a-(R3, a=4.979 A and 
c=13.429 A), ~-(C2.'m, a=12.23 A, b=3.04 A, c=5.80 A, and 
~=103.7 A) and y-Ga2 0 3 (Fd3m, a=8.22 A). Of those 
phases, the ~-Ga203 is only stable modification. Some of the 

EXAMPLE 4 

Cadmium Oxide 

Nanobelts of cadmium oxide (CdO) with sodium chloride 
(NaCl) cubic structure can be fabricated by evaporating 
(CdO) powders (purity: 99.998%, melting point: 1430° C.) 
at 1000° C. Besides CdO nanobelts, many single crystalline 
CdO sheets with sizes on the order of several to several tens 
of micrometers are also formed. These CdO sheets usually 
have shapes such as rectangles, triangles, and parallelo-

nanobelts are enclosed by ±(100) top and bottom surfaces 
and ±(lOI) side surfaces, while other nanobelts can be 
enclosed by ±(201) top and bottom surfaces and ±(010) side 

60 surfaces. It has been found that both the ±(010) and the ±(10 
I) crystal planes can serve as the growth front of nanobelts 
with growth directions of [010] and [001 ], respectively. The 
growth front of the nanoribbon is ±(010) and the corre­
sponding HRTEM image indicates a perfect crystallinity of 

65 the Ga2 0 3 nanobelt. 
Nanosheets have some straight edges with corners of 

specific angles, typically of 45° and 90°. Some of the 
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nanosheets are directly connected to nanobelts, indicating 
that-they have the same structure. Electron diffraction 
shows that the nanosheets have the same crystal structure of 
~-Ga203 as that of nanobelts. The electron diffraction pat­
tern demonstrates the corresponding [101] crystal zone of 5 

~-Ga203 . The two perpendicular planes result in the 
rectangular- and L-shape structures. Beside the ±(010) and 
the ±(lOI) facets, a third-type of plane with about a 45° 
angle with respect to the two sides is also observed. This 
type of plane is identified to be the (212) plane from the 10 

electron diffraction pattern. The top and bottom surfaces are 
also the ±(100) crystal planes of ~-Ga203 . Based on our 
SEM observation, the height of the nanobelts and 
nanosheets are about 20-60 nanometers. 

8 
nanobelts are formed. The nanobelt is enclosed by top 
surfaces ±(201) and side surfaces ±(lOI). The growth direc­
tion of the nanobelt is parallel to [010] with growth front 
(010). 

The growth characteristics of the Pb02 nanobelts is quite 
different from that of ZnO, Sn02 , ln2 0 3 , CdO and Ga2 0 3 

nanobelts, in which no particle was found at the growth 
fronts of the nanobelts. This implies that a different growth 
mechanism be employed by the Pb02 nanobelts. The growth 
of the former five oxide nanobelts may be governed by a 
vapor-liquid process. As to the Pb02 nanobelts described 
here, however, the growth is likely to be controlled by 
vapor-liquid-solid process, which has been suggested for the 
nanowires grown by a catalytic-assisted technique, in which 
a metal particle is definitely located at the growth front of the 
wire and acts as the catalytic active site. 

The dominant orientation relationship between the Pb02 

and the PbO is determined to be (010M(100)1 and [101M 
[001 ]1 . Another preferable orientation of the PbO phase 
precipitation is 45° relative to the former case. 

The Pb02 nanobelts have been determined to be enclosed 
by top surfaces ±(201) and side surfaces ±(lOI). The growth 
direction of the nanobelts is parallel to [010], along with a 

The growth morphology of G2 0 3 nanobelts and 15 

nanosheets is distinctively different from that of Ga2 0 3 

nanorods and nanowires. The nanorods grown by thermal 
evaporation of a mixture of GaN, graphite and Ni particles 
have diameters of 5-10 nanobelts and growth directions of 
either [111] or [200]. The nanowires grown by an arc- 20 

discharge of GaN with the presence of Co and Ni particles 
have diameters of 20-30 nano belts and a growth direction of 
[001]. The formation of nanobelts and nanosheets is a 
combined result of vapor-liquid-solid (VLS) and solid-solid 
(SS) growth kinetics. 25 typical length of several hundred micrometers, width of 50 

to 300 nanometers and width-to-height ratio of 5 to 10. Each 
Pb02 nanobelt is found to have a large polyhedral Pb tip at 
its growth front, suggesting that the growth of the Pb02 

nanobelts is likely controlled by a vapor-liquid-solid mecha-

EXAMPLE 6 

Thermal evaporation of lead oxide (PbO) powders 
(purity: 99.99%) at about 950° C. yields PbO nanobelts. The 
thermal evaporation is conducted at 950° C. for 1 hour under 
a pressure of 300 Torr and Ar flowing at a flow rate of 50 
seem. The products deposited on the surface of the alumina 
plate 38 substrates are characterized by SEM, TEM, and 
EDS. 

30 nism. The Pb02 nanobelts and the crystalline Pb tips are 
very sensitive to electron beam irradiation, resulting in the 
phase transformation from Pb02 to PbO, melting of the Pb 
tips and formation of Pb nanocrystals under a high vacuum 
condition. 

The as-synthesized products display a dark gray color that 
35 It should be emphasized that the above-described embodi­

ments of the present invention, particularly, any 
embodiments, are merely possible examples of 
implementations, merely set forth for a clear understanding 
of the principles of the invention. Many variations and 

is distinctive from the yellow colored PbO source powders. 
SEM observations reveal that the products consist of a large 
quantity of belt-like nanostructures and faceted particles 
with diameters in the range of about 0.1 to about 2 microme­
ters. Chemical analysis by EDS indicates that the nanostruc­
tures are Pb02 and the particles are metal Pb covered with 
a thin oxide layer. 

40 modifications may be made to the above-described 
embodiment(s) of the invention without departing substan­
tially from the spirit and principles of the invention. All such 
modifications and variations are intended to be included 

TEM images show the morphology to be consistent with 
nanobelt morphology. The Pb02 nanobelts are several tens 45 
to several hundreds of micrometers in length. Each nanobelt 
has a uniform width over its entire length, and the typical 
width of the nanobelts in the range of about 50 to about 300 
nanometers. The height of the nanobelts varies with its 
width, and typically is in the range of about 10 to about 30 50 
nanometers, as estimated by TEM observations. The width­
to-height ratio of the nanobelts is about 5 to about 10. 

It is noted that each nanobelt is connected with a Pb 
particle at its growth front, implying that the Pb tip likely 
acts as a catalyst in growth of the nanobelt. The diameter of 55 

the Pb tips is several times bigger than the width of con­
necting nanobelts. The Pb tips have the faceted geometrical 
shape of an octagonal projection, which indicates that Pb 
tips are crystalline and likely adopt the shape of truncated 
octahedron enclosed by (100) and (111) crystal planes 60 

because of lower surface energies. 
Pb02 can form two possible crystal structures (a and ~) 

of orthorhombic and tetragonal lattice, respectively. Elec­
tron diffraction analysis and high resolution TEM imaging 
indicate that the as-synthesized Pb02 nanobelt is single 65 

crystalline structure without dislocation and has a tetragonal 
structure (P4/mnm, a=4.961 A and c=3.385 A), i.e. ~-Pb02 

herein within the scope of this disclosure and the present 
invention and protected by the following claims. 

What is claimed is: 
1. A method of preparing a plurality of semiconductor 

oxide nanostructures from an oxide powder, each of the 
plurality of semiconductor oxide nanostructures having a 
substantially rectangular cross-section, the method compris-
ing: 

heating the oxide powder to an evaporation temperature 
of the oxide powder for about 1 hour to about 3 hours 
at about 200 torr to about 400 torr in an atmosphere 
comprising argon; 

evaporating the oxide powder; and 

forming the plurality of semiconductor oxide nanostruc­
tures. 

2. The method of claim 1, wherein forming the plurality 
of semiconductor oxide nanostructures comprises: 

forming the plurality of semiconductor oxide 
nanostructures, wherein the plurality of semiconductor 
oxide nanostructures includes at least one semiconduc­
tor oxide that is chosen from oxides of zinc, cadmium, 
mercury, gallium, indium, tellurium, germanium, tin, 
and lead. 
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3. The method of claim 1, wherein forming the plurality 
of semiconductor oxide nanostructures comprises: 

forming the plurality of semiconductor oxide 
nanostructures, wherein the at least one semiconductor 
oxide is a doped semiconductor oxide, wherein the 5 

doped semiconductor oxide includes the semiconductor 
oxide and at least one dopant, wherein the at least one 
dopant is chosen from aluminum, gallium, boron, 
yttrium, indium, scandium, silicon, germanium, 
titanium, zirconium, hafnium, antimony, tin, nitrogen, 10 

and fluorine. 

10 
rectangular cross-section, and wherein the nanostruc­
ture is within the range of: about 20 nanometers to 
about 6000 nanometers in width, about 5 nanometers to 
about 100 nanometers in height, and about 100 nanom-
eters to about 3 millimeters in length. 

5. The method of claim 4, wherein forming the plurality 
of semiconductor oxide nanostructures comprises: 

forming the plurality of free standing semiconductor 
oxide nanostructures, wherein the plurality of semicon­
ductor oxide nanostructures includes at least one semi­
conductor oxide that is chosen from oxides of zinc, 
cadmium, mercury, gallium, indium, tellurium, 
germanium, tin, and lead. 

4. A method of preparing a nanostructure, comprising the 
steps of: 

providing an oxide powder selected from an oxide of a 
metal is chosen from zinc, cadmium, mercury, gallium, 
indium, tellurium, germanium, tin, and lead; 

6. The method of claim 4, wherein forming the plurality 
15 of semiconductor oxide nanostructures comprises: 

heating the oxide powder to an evaporation temperature 
of the oxide powder for about 1 hour to about 3 hours 
at about 200 torr to about 400 torr in an atmosphere 

20 
comprising an inert gas; 

evaporating the oxide powder while flowing an inert gas 
over the oxide powder; and 

forming a plurality of free standing semiconductor oxide 
nanostructures, wherein each of the plurality of semi- 25 

conductor oxide nanostructures having a substantially 

forming the plurality of free standing semiconductor 
oxide nanostructures, wherein the at least one semi­
conductor oxide is a doped semiconductor oxide, 
wherein the doped semiconductor oxide includes the 
semiconductor oxide and at least one dopant, wherein 
the at least one dopant is chosen from aluminum, 
gallium, boron, yttrium, indium, scandium, silicon, 
germanium, titanium, zirconium, hafnium, antimony, 
tin, nitrogen, and fluorine. 

* * * * * 
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