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A Finite Difference Method Applied to Seismic Wave Propagation in 
Vertically Inhomogeneous Media and Application to Compressional 

Seismic Arrivals from the Crust and Upper Mantle. 

Part One: Brief Description of Research 

The initial work on the grant was directed toward understanding 

and testing the basic principles of the finite difference technique 

in one dimension. At the time of initiation of the research, seismic 

applications of the finite difference method were few and limited to 

homogeneous media. The most typical utilization of the finite differ-

ence technique was directed at problems in heat flow or similar non-

oscillatory phenomenon. Consequently, one-dimensional seismic problems 

were investigated perhaps longer than warranted. The more intense 

development of one-dimensional formulations allowed the preliminary 

evaluation of numerous concepts and computation techniques which were 

essential to the success of the two-dimensional computations. 

The equivalence between the solution of the boundary conditions 

for a welded contact and the gradient formulation for a sharp gradient 

was first shown in one dimension. The difficulties and inaccuracies 

that arise from mixing centered and one-sided differences were also 

examined. These tests indicated that to avoid unsuspected inaccuracies 

in the representation of the differential equations, centered differ-

ence equations should be used exclusively. The one-dimensional formu-

lation for reflections from a gradient was compared to the theoretical 

response and found tc be accurate to within the accuracy of the differ-

ence approximations. The accuracy of the difference approximations, in 

turn, depended on the space and time increments used showing that the 
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gradient formulation approached the theoretical solution in the limit 

of small increments. 

Computer programs were written in both real number and integer 

calculus. Integer calculus yielded approximately a 40 percent reduc-

tion in computer time but the programming difficulties in maintaining 

precision and reducing truncation bias were significant. Consequently, 

the reduction in computer time was not considered worth the extra pro-

gramming effort. The results of one-dimensional explicit and implicit 

finite difference methods were also examined. The usual advantage of 

the stability of the explicit methods at longer time steps could not 

be realized in seismic wave simulation because of the time variation 

of the particle motion. Also, the explicit methods required considerably 

longer computation times. The implicit methods with filtering 

effectively do the same computation more economically. In general, the 

implicit computations required less computer time than expected. The 

longest two-dimensional elastic media program required six minutes. 

A considerable variety of source functions were tested in one 

dimension. The theoretical impulse response of an elastic media 

,typically exhibits an abrupt initiation and infinite duration or per-

minant displacement. These features were found to introduce the less 

accurate higher frequencies or to require larger grids, respectively. 

By computing the finite difference or filtering the source function, 

the frequencies could be limited to those easily handled by the diff-

erence methods. However, the simplest and best results were obtained 

with a finite pulse designed to satisfy the frequency limitations of 

the difference method. 

The investigation of boundary conditions for termination of the 
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grid showed that for each type of boundary an appropriate independent 

condition was necessary. Perfectly rigid or free surfaces were easily 

specified from displacement or stress conditions at the boundary. A 

boundary which generated no reflections could be developed by approxi-

mating the wave motion with a Taylor's expansion and theoretically 

propagating the wave one time step at the boundary. The accuracy 

depended on the number of terms retained in the approximation as well as 

the accuracy of the difference equations. 

Two-dimensional finite-difference computations were initially 

applied to a fluid media with a gradient in velocity. The gradient 

formulation for a fluid is very similar to the formulation for horizontal 

shear-wave propagation. The results showed the feasibility of studying 

particle motions near focal points in the media containing a gradient. 

Also, distinct head waves could be generated with a reasonable amount 

of computer time. In order to keep the computer storage and computation 

time at a minimum, a method was developed to move a smaller grid along 

the area of interest in the wave front. 

In an elastic media the exact boundary conditions, where applied 

to centered difference equations, generally yielded implicit relations 

which are difficult or time consuming to solve. Hence, in this case, 

the gradient formulation resulted in a simplification of the computation. 

The finite difference equations of motion were developed for an 

arbitrary velocity variation in two dimensions. The validity of the 

formulation was shown by considering the limit as the thickness of the 

gradient zone separating two uniform media goes to zero. The results 

showed that the finite difference methods can give displacements which 

agree with theoretical data within the error limit determined by the 
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finite difference grid. Displacement fields showing reflected, 

compressional and shear waves and all the head waves were generated 

with a reasonable amount of computer time. Various examples of 

gradients were computed to test the effect of the gradient on re-

flected and head waves. Fault cases were computed to show the effect 

of the faults on the development of the head waves and the diffraction 

of the waves about the fault. 

The specific problem to which the finite difference application 

was originally directed concerned the development and character of the 

head wave. More specifically, the research was attempting to deter-

mine whether the head wave has the character of the displacement or 

the displacement potential when a velocity gradient exists at the 

interface. The finite difference computations indicate that the shape 

of the head wave corresponds to the displacement. The analysis of 

Cerveny and Ravindra (1970) indicate that with a gradient, ray theory 

also predicts a shape similar to the displacement but the mechanism is 

poorly understood. The head wave with a shape similar to the displace-

ment potential may only exist under ideal conditions. 

The finite difference technique for an inhomogeneous media was 

applied here to the study of head waves. However, the technique is 

generally applicable to any seismic propagation problem involving 

irregular velocity structures. The use of transparent boundaries to 

terminate the grid and thus to minimize computer requirements extends 

the effective usefulness of the technqiue to the study of selected 

details of wave motion. 



Based on the results and experience of this research the following 

recommendations are given: 

1. The method should be applied more often to seismic problems 

involving complex velocity distributions. 

2. The relations between finite element and finite difference 

techniques should be examined for possible mixed applications. 

3. The theory should be extended to include the effects of 

attenuation. 

4. The theory should be extended to allow evaluation of anisotropic 

media. 



A Finite Difference Method Applied to Seismic Wave Propagation in 
Vertically Inhomogeneous Media and Application to Compressional 

Seismic Arrivals from the Crust and Upper Mantle. 

Part Two: Collaborators, Thesis and Presentations 

At the time of initiation of Grant No. 12391, Geophysical 

Sciences was a section of the School of Ceramic Engineering with 

only a few graduate students. The task of finding students capable 

of this type of work was more difficult than anticipated. Geophysical 

Sciences is now a school with nearly 30 active graduate students of 

which at least five are interested in geophysics. Geophysical 

Sciences has grown significantly and NSF suppurt has contributed to 

its growth. Nevertheless, for a student to contribute significantly 

to a program using a difficult technique like finite differences, he 

should have ability, interest, and sufficient background to understand 

why the technique is being developed. These qualities, unfortunately, 

are usually only found in the more advanced graduate students. Geo-

physical Sciences is now authorized to offer the Ph.D., but it will 

be awhile before this type of student is attracted to•Geophysical 

Sciences. 

The NSF Grant No. 12391 has supported five students over the past 

four years. 

Uday P. Mathur worked for approximately one year on the pro-

gramming of one-dimensional problems. While supported by this grant 

he wrote his M.S. thesis titled "Study of the Continental Structure of 

Southeastern United States by Dispersion of Rayleigh Waves." A con-

densed version of this thesis was published as: Long, L. T, and Uday P. 

Mathur. "Southern Appalachian Crustal Structure from the Dispersion 
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of Rayleigh Waves and Refraction Data." Earthquake Notes,  Vol. XL111, 

No. 1, 1972. 

Frank B. Jones  worked for one year on the programming of wave 

propagation in fluid media. He is currently teaching physics and 

introductory geophysics at Georgia Southwestern College, Americus, 

Georgia and intends to continue work toward a Ph.D. in Geophysics. 

He has installed and maintained a seismic observatory (AMG) on the 

Georgia Southwestern campus. 

J. B. Oliver  assisted for one term on the programming and 

routine analysis of some of the data for the fluid media case. He 

is currently continuing his studies in Geophysical Sciences. 

Nickolas L. Faust  assisted for one year in the programming of 

the wave propagation in the elastic media. He is currently applying 

his background experience and computing skills to the analysis of 

ERTS- MSS digital data. He intends to earn a Ph.D. in the field of 

remote sensing. 

Harry E. Denman  assisted for about three terms with the analy- 

sis and display aspects of the propagation in elastic media. He intends 

to complete his M.S. degree in early 1974 and work in applied geophysics. 

The results of the research have been presented in two talks. 

1. L. T. Long, "Finite difference propagation of waves in fluid 

media with linear velocity gradient." Eastern Section SSA, Penn. State 

Univ., Oct. 7, 1971 

2. L. T. Long, "Finite difference propagation of elastic waves 

near a velocity discontinuity and gradient,"Western AGU, San Francisco, 

California, Dec. 7, 1972. 



A Finite Difference Method Applied to Seismic Wave Propagation in 
Vertically Inhomogeneous Media and Application to Compressional 

Seismic Arrivals from the Crust and Upper Mantle. 

Grant No. 12391 

Part three: Detailed Technical Results 

Part three is a first draft of a proposed publication to present 
the results of this research. Contemplated revision will largely 
condense the notation and refine the analysis. 
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A STUDY OF THE EFFECTS OF A GRADIENT OR STRUCTURAL IRREGULARITY ON 

THE GENERATION OF HEAD WAVES; A FINITE DIFFERENCE APPROACH. 

Introduction  

Refracted waves have been used extensively in earthquake studies, 

geophysical prospecting and crustal studies (see, for example Mus-

grave, (1967). The theoretical problems related to the propagation 

of refracted waves including head waves have been discussed extensively 

in a number of books and papers (see, for example Brekhovskikh, 1960; 

Cagniard, 1962; Zvolinskiy, 1965; Cerveny and Ravindra, 1970). Most 

of these consider only the simplest seismological situation for which 

closed solutions could be obtained by wave integral methods or approxi-

mate solutions by expanded ray methods. The complications in the theory 

introduced by gradients in velocity or irregularities on the refracting 

interface have only been investigated by techniques which approximate 

the wave fronts or ray paths. A complete analytic solution has been 

possible only for some of the simplest geometrics or limited depth-

velocity functions (Cagniard, 1962; Hook, 1965). Approximate solutions 

for refractions from a gradient in elastic media have been presented 

using finite layers (Helmberger, 1968; Brekhovskikh, 1960). Hirasawa 

and Berry (1971) presented solutions for head and reflected waves in a 

linear transition layer in fluid media in the frequency domain. These 

results were in agreement with theoretical seismograms generated for 

approximate elastic media by Fuchs (1968). 

Regardless of the theoretical advances, complete theoretical seis-

mograms are available for only simpler cases because general results 

are quite complicated and simple computational formulas are not available. 



To overcome these difficulties, Alterman and Karal (1968) introduced 

a finite difference equation formulation for a single layered half 

space with internal source. The finite difference methods possess much 

greater generality and offer a conceptually simpler approach to the 

solution of seismic problems in the time domain. Alterman and Karal 

(1968) show that the finite difference methods give valid results and 

can be used to obtain complete theoretical seismograms. 

The purpose of this paper is to extend the finite difference 

methods to the study of limited regions of an elastic medium where 

the physical parameters may be varied arbitrarily. The technique is 

applied to the generation of refracted, reflected and head waves at a 

discontinuity perturbed by velocity gradients or structural irre-

gularities. 

Most structural problems in seismology can be solved with the mea-

surement of the traveltime of seismic waves through the structure. How-

ever the measurement of attenuation or the frequency content of the 

source requires an understanding of the transmission factors which affect 

frequency content of the refracted waves. Theoretical studies (for 

example,Zvolinskiy, 1965) indicate that the head wave should have the 

character of the source displacement potential and the direct wave the 

character of the source displacement. Long and Berg (1969) applied 

this principle to the refracted waves from nuclear explosions and con-

cluded that the head wave was not seen. The major factor contributing 

to the absence of the head wave with the classical shape of the displace-

ment potential was the existence of a gradient and structural irregular-

ities inferred from traveltime and amplitude measurements. 

Evidence for the existence of velocity gradients come from the study 
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of velocity in materials under pressure, refraction surveys and study 

of arrival character. Theoretical studies of the pressure dependence 

of velocity in granite (Birch, 1960) or oceanic crust ( Fox et.al., 1973) 

indicate that an increase in velocity with depth is characteristic of 

assumed crustal materials. Refraction measurement in Missouri 

(Stewart, 1968) and in the Western Lake Superior region (Smith et.al., 

1966) strongly support the existence of gradients. Helmberger (1968) 

in synthesizing arrivals from the crust-mantle transition found that 

arrivals from certain regions in the Bering Sea were represented best 

by models containing a transition zone. 

The explanation for the lack of head waves in regions with 

velocity gradients (Long and Berg, 1969) is not completely clear. For 

a slight gradient there should be little distinction between the head 

and refracted wave. However, as head waves are derived theoretically from 

second order ray theory the first order terms introduced by the gradients 

(termed interference head waves by Cerveny and Ravindra, 1970) could 

dominate the wave motion. These have the character of the displace- 

ment since they are first order. The analysis of Hirasawa and Berry 

(1971) for gradients in a fluid media support the first order charac-

ter of these waves. The sharp discontinuities approximated with the 

finite difference method in this study predominantly shows the 

character of the displacement for the refracted phases and not the dis-

placement potential. By allowing detailed examination of the wave 

motion along the boundary it is hoped that the finite difference appli-

cation of this study will add to the understanding of this problem. 
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Definition of Problem  

The finite difference technique is used here to investigate the 

effects of a gradient or structural irregularity on the generation 

and propagation of head waves. All problems considered contain 

essentially two dimensional structures. Because of the distance from 

the source to the emergent head waves, a two dimensional or cylindri-

cal source is used. At these distances the curvature from a point 

source would be slight, plane-wave theory would be valid and ampli-

tudes can be converted geometrically from the observed amplitudes 

for a cylindrical source to expected amplitudes for a point source. 

The equations of motion are derived in a general form for propaga-

tion in a media with a two-dimensional source and two-dimensional in-

homogeneties. The use of the general form for inhomogeneous media 

is valid for smooth or sharp gradients. For SH waves or in a fluid 

media the sharp gradient is shown to be numerically equivalent to 

setting up and solving the boundary conditions at the interface be-

tween two distinct media. For P-SV motion in elastic media this 

equivalence may also be true but the equation can not be solved ex-

plicity. The first case investigated is a simple sharp horizontal 

discontinuity. It serves as a check on the validity and accuracy of 

the numerical method since its solution is known approximately. Then 

structures in which the gradients are modified above or below the 

discontinuity arE investigated for the effects on the amplitudes of 

the head wave and converted waves. Finally the effects of a vertical 

step in the horizontal discontinuity are investigated. 

Equations of Motion  

For motion in a perfectly-elastic, inhomogeneous, isotropic 
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medium the equations of motion can be written in the form 

(Sokolnikoff, 1964, pg. 343) 

a2 u 
i 2kT.

j,k 
= n 	 

° i 
at

2 

whereTii  is the stress tensor, g
jk the contravariant fundamental 

tensorancIPA 1/at
2 the inertial force. The subscript notation 

",j" represents covariant differentiation. The stress is expressed 

in terms of the displacements U i  by substituting the strain tensor 

ij 
E.. = 	1 (u. ,3  . + u. .) 	

(2) 
3,1 

and the stress-strain relations 

ij 	
xgij 6. j g. + 211. 

j 	jk 
(3)  

into the equations of motion. By considering that the Lame' constants 

X and p are two-dimensional functions of position and that the source 

is also two-dimensional, the equation of motion in orthogonal cartesian 

coordinates takes the form: 

       

(4)  

(1) 



3
2
U
2 2 

[32U2 

at
2 	(3 	

3x
2 
1 

3
2
U2  1 

P 

3(p6
2
) 3U

2 

3x
2 
3 

ax
1 

 ax
1 

1 3(p6
2
) au2 

	

P 
3x

3 	
ax3 

	

3
2
U
3 	2 

3
2
U
3 	2 2

- a 2U1 	 3
2
U 

a 	
+ (a -13  )ax1 ax3 

+ (32 	3 

at = 

	

ax
2 	 3x

2 

	

3 	 1 

+ S
13 

+ R
31 

	

where 
R 	 ciL ) au a(p _ 1 3002 -P13

2
) 
3U

j  
ij 	p 3xi 	axi 	p axi 	3xi 

sij = 1 a(p(32) 	3U. 

P axi 	ax. 

a = (_X+211) 3/4  = a(xi ,x3) = compressional wave velocity 

= ( 3/4 = 13(x x
3
) = shear wave velocity 

P = P(xl ,x3) = density 

Equation 5, representing SH-wave propagation can be simplified 

further by the transformation 

z 

Y = 
Jr 01 dx

3 
3
2  

(5) 

(6) 

0 
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provided the velocity varies in one direction only. Application of 

the transformation gives the simple form: 

a 2U2 	2 a 2U
2 	1 	

2U
2 

3t
2 
	e 

3
2 

	

xl 
	P

22 
aY

2 
	 (5a) 

Finite Difference Approximation  

For finite difference computation the partial derivatives in the 

equation of motion are approximated by centered difference equations. The 

general form for the difference equations with error terms and arbitrary 

increments can be derived from a Taylor's Expansion. 

F(z) = F(zo ) + (z-z0
) F'(z

0
) + 1- 	(z—z

o
)
2 F"(z

0
) + . . 

. . + n-
1 

(z-zo)
n 
 F

n
(zo) + . . 
	 (7) 

Dz , 	2 

2 
Df f 

where 	F'(=) — F"(-) 	etc. 
3z 

 

By evaluating Taylor's expansion for z = zo  + br and z = zo  - h2 , two 

expressions are obtained from which F'(z) and F"(z) can be solved 

for in terms of F(z) and higher order derivatives. These equations 

are 

F(zo+h1) = F(z o) + F'(z 0)(h1 ) + . . . + Fn (zo ) (111) n  

n. 

F(zo-h2 ) = F(zo) + F'(zo) (-h2 ) + . . .+ Fn (zo) (-h2 ) n  

(8) 

(9) 
n. 



" ((h2  + h1)/2) h1h2 	 = F (z0) +  

h2F(z0+111 ) - (h2+h1 ) F(zo) + h1F(zo-h2 ) 

By multiplying equation (8) by h 2  and equation (9) by h1  and 

adding, the first derivative term is eliminated and an expression 

for the second derivative is obtained for arbitrary increments, 

00 (10) 
2(h1n-1  +( -1) n2 	) 	0  n. n -1. Fn (z  ) 

n=3 	n! (h2
+h1) 

which for equal increments, h1 = h
2, reduces to 

F(zo+h) -2F(z o ) + F(zo-h) 

h2 

2n-2 2n co h 	F (
zo

) 
- F"(z) + 

n=2 	(2n): 

By multiplying equation (8) by h; and equation (9) by 14 and 

substracting, the second derivative term is eliminated and an express-

ion for the first derivative is obtained for arbitrary increments, 

2 	 2 
h
1 

F(zo-h2) - h2
2

o+h F(z 1) - (h1-h2
2  
)F(zo ) 

h1h2 (h2+h1)  

h1h2 (hin-2- (-1)nh2n-2 ) Fn (zo ) 

n=2 (h2+111)n! 

--Ft(zo) - 

(12) 

which for equal increments, h, = h9 = h, reduces to 

F(zo-h) - F(zo+h) 	
h2n-2F

2n-1 

--F t (zo) - 
2h 	 n=2 2 (2n-1): 

(13) 



For a two-dimensional equation of motion, a finite difference approxi-

mation to the mixed partial derivative is also needed. It can be derived 

from equation (13) by substituting F (x,z) for F (z) evaluated for z 
 

and differentiating by x. 
m 

3 (F(x,zo-h) - F(x,zo+h)) 	3 3F(x,z0) 	 h2 n-2 (14) 	  _ - 
3x 	2h 	 3x 3z n=2  2(2n-1): 

a a2n-1F(x,z0) 

3x 3z
2h-1 

the x derivatives are then approximated according to equation (13) and 

substituted into equation (14). With elimination of products of remainder 

terms these reduce to 

a2 F(x ,z ) = (F(x -h,z -h) - F(x +h,z -h) - F(x -h,z +h) + F(x
o
+h,z

o
+h) 

3y3z 

 

4h2 

co-2 	 2n-1 
+ 	

h2n 
	 3 2n-1 3 
2(2n-1): 	ay

2n-1 3z F(x ,z ) + —3 —3 	F(x ,z ) (15) o o n=2 	 3y 
3z
2n-1 	0 o 

If the remainder terms are eliminated then the centered differences 

can be used to define difference operators (d) such that 

3F(x,z) xF 

3x 	2h 

32 F(x,z) zz F 

3t
2 	.  2 
	

(16) 

a 2 F(x, z) 	(s xzF . 
3x3z 

4h2 
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The difference operators will simplify the writing of the 

difference equations. 

The centered difference equations (11), (13) and (15) are 

correct to second order since the remainder terms start with terms 

involving h2 or higher powers of h 

Finite Difference Equations of Motion  

In formulating the finite difference form of the equations of 

motion the centered differences are used exclusively. Experience 

has shown that mixing centered and one-sided difference equations do 

not work well. The reason is that they refer to different positions 

in the media and can thus introduce unanticipated and unwanted 

boundary conditions. Mixed  difference equations may, in effect, not 

represent the differential equations being approximated. 

Because the problems investigated here limit the finite 

difference application to a portion of the total media, even incre-

ments in space and time are used exclusively. Also the P and S 

waves simulated maintain their basic character and frequency content 

through out the media so that the same increment is necessary for 

consistancy in the accuracy of the finite difference application. 

This is significantly different from the surface-wave problem where 

high frequencies are limited to shallow depth and an expanded grid 

can be used at greater depths. (Boore, 1970). 

In order to write the finite difference equations the displace-

ments and material parameters are written in terms of their values 

at indexed points on an incremented grid in space and time. 

Thus, at the points t = pAt, xl  = mAx, and x3  = nLx3  where p, m and n are 

integers, the displacements and material parameters have the values 
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U1 (x1 ,x3, t) = U1 (mAxnAx3'
pAt) = AP  

mn 

U2 (xx3 ,t) = U2 (mAxnAx3' pAt) = UP  

U
3
(xx

3'
t) = U

3 
(mAxnAx

3'
pAt) = BP  

mn 

a(xl' x3 )  = a(mAxl' nAx3)  = amn 

13(xl' x3)  = (rilAxl'riAx 3 )  = 13mn 

p(xl , x3) = p(mAxnAx
3) = pran  

The difference operators can be written in the form 

6m,6n ,6mm ,6nn and 6mn 

where, for example 

	

6 AP = AP 	- 2AP + AP 

	

mm 	m-1,n 	mn 	m-1,n 

On A and the material parameters the subscript (mn) which designates 

the position in space is omitted where not needed. 

After substitution of the centered difference formula, the 

equations of motion assume an explicit form in which successive values 

of particle motion are found directly from values at the previous two 

time increments. Thus, when Ax 1 
= Ax3 

the equations are, 

2 ,2 
- ID  

	

p+1 	p AP-1  + (2.) 2  a26 AP  + ( a 	)6 BP  A 	= 2A - 	Ax 	mm 	4 	mn 

,, + 13 2,5 AP + 4p (6 (pat ) 6 AP + 6m(pa
2 
 -2po

2 
 ) 

	

nn 	4m  

]

6BP + 6n ( 02 ) (6 mBP  + 6nAP )) 

(17)  

(18) 

(19) 



tAt2 	a26 Bp 	la 
4

2
-(3 

 )mnAP

2 
BP+1  = 2BP  - BP-1  + 

` `Ax' 	nn 

+ (3 26 BP  + t ((d.(02)  (dnAP  + %BP) + 611 (pa2 )6 11BP  

6n (pa
2
-20

2
) 6 01AP ) 

foAt\  
UP+1  = 2UP  - UP-1  + 

2 	6  
` PAx/ 	mm

up 6 
 nn

up 	
1 4432 

(6m(02)6 UP  + 6n (02 ) 6nUP I] 

Boundary conditions  

The formulation of the boundary conditions generally prove to be 

the most difficult aspect of the finite difference application. For 

each value which falls outside the grid an independent boundary con-

dition is needed. In general it is necessary to set-up factitious 

grid points one increment beyond the propagation grid and use the 

boundary conditions to solve for the appropriate values on the false 

line. The use of centered difference equations becomes important in 

boundary formulation since otherwise the effective position of the 

boundary might not coincide in the two media. The use of both one 

sided and centered difference equations for the stress continuity con-

ditions at the free surface or an internal surface in an elastic media 

would place the tangential and normal stress boundary conditions at 

different planes in the media. Results from this questionable type of 

formulism may be stable but could be slightly in error. The magnitude 

of the error would depend on the magnitude of the velocity contrast. 

(20) 

(21) 
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The appropriate application of centered difference equations to a 

free surface in elastic media is described by Munasinghe and Farnell 

(1973). However, even though a free surface is not used in this in-

vestigation it serves to illustrate the relation between the gradient 

formulation and a formulation involving solution of boundary conditions. 

If we assume the velocity and density to be zero (p = 0 ,ct = 0, n < 1) 
mn 

above the free surface then, at n = 0 the finite difference equations 

Sid  reducetotheremaindertermsR..ij 
 andS

i .in. their finite difference 

form. 

and 

For a 

0 = 

0 = 

0 = 

horizontal 
2 At 

1 (At) 	6n(0 

2  1 	At
)  (E 
x 

2 1 	At 

surface, 

2
) 	(draBP  + 611AP) 

	

p 2 	(6 BP 	AP  

	

m1 ml 	m 	
+ 6 

mo 	n mo
) 
 

[ 	2 	p 	2 

	

6(pa )6nB 	+ n
(pa -2p(3 ) 6 mA] 

(22) 

(Ti) 

(23) 

A 	1 (At‘ 2 [5 	2 6  p 	f 	2 	Q2 \(s  
= -4-  'Ax' 	 e

n
mo + ‘ Pmlaml 2Pm1Pmll m

A 
 mo 

However, by comparison with equations (3), equations (22) and 

(23) represent the boundary conditions for tangential and normal stress 

at a free surface. These conditions depend on the ratio of shear to 

compressional velocities, not the magnitude of the velocities, and 

allow computations of the A and B values en the factitious grid points 

above the computation grid. In the finite difference formulation for 

inhomogeneous media (equations 19, 20), remainder terms will exist 

at the free surface. Otherwise the equations will be identical to the 

difference equations for homogeneous media where the media is homogen- 

-13- 



eous. The remainder terms thus have the effect of a velocity gradient 

over one grid point at the free surface. Because it is a sharp 

gradient, however, it would effect only the high frequencies, which, 

for reasons of accuracy, should not be present. 

The relation between the gradient formulation and the formula-

tion obtained by solving the boundary conditions for two homogeneous 

media is similar to the smoothing effect observed at the free surface.  

For SH waves or fluid media (equation 21) the boundary conditions 

allow an exact solution for values on the factitious lines above and 

below a horizontal interface. By adding the finite difference express-

ions evaluated for the upper and lower media, and then substituting the 

values for the two unknown points on the factitious lines from the 

stress condition at the boundary, the following equation for SH waves 

results: 

 

U
p+1 

= 2U
p 
 - U

p-1  + ( 111/112
) (A 

t ) 2 2 [6 
A p

1
+p

2 	
Llx 

+ dnnUp 
 

(24) 

where 

1 
(

11 112) 	p + 	 U ) 
2 ( p1+p2) 

 n 

 

pi  = shear modulus of upper media 

p
1 

= density of upper media 

p
2 
= shear modulus of lower media 

p
2 

= density of lower media 

At the boundary, equation (24) differs from the gradient formu-

lation with mean values of the elastic constants at the boundary, 

equation (21), by a factor of two in the remainder term. However, the 



gradient formulation also adds a remainder term one step above and 

below the boundary. The sum of these terms is equal to the remainder 

term in equation (24). 

The effect of the gradient formulation is to spread the boundary 

out over three grid points. By applying the gradient formulation to 

a simple step change in elastic constants the boundary is spread out 

over only two grid points. Again the sum of the remainder terms are 

equal to the remainder in equation 24. The differences in the form-

ulations would only effect the shorter wavelengths. 

An analogous comparison of the gradient formulation with the 

boundary value formulation is more difficult for P-SV wave propaga-

tion in elastic media. At the boundary the finite difference equa-

tions become implicit and it is necessary to solve for all the values 

on the factitious lines simultaneously. In the simplest case consist-

ing of three grid points in width with rigid boundaries there are two 

sets of six simultaneous equations. Although the algebraic equations 

were not solved exactly, a numerical test showed the equivalence of the 

boundary value formulation to the gradient formulation used at the 

boundary with mean values of the elastic constants and twice the re-

mainder term. In the investigation here of the generation of head 

waves a correct formulation for the boundary value condition was nec- 

essary because of the sensitivity of the head wave to velocity gradients 

near the boundary. 

In addition to the physical boundaries associated with the velocity 

structure of the media, artificial boundaries are introduced by the con-

straints in computer storage and reasonable computing time. In the 

cases investigated here the grid is limited to the region of interest 



by moving the grid with the wave and utilizing transparent boundaries. 

Transparent boundaries allow termination of the grid by assuming pro-

pagation in one direction and thus do not allow reflections. Previous 

investigations (Alterman and Karal, 1968; Boore, 1970) either 

ignored the reflected phases or used a modified grid to extend the net 

to a distance where reflected phases would not interfere with phases 

of interest. Neither of these techniques could be utilized in this 

investigation. 

The structures investigated here are primarily perturbations of 

horizontal interface between two homogeneous media. Hence the grid 

needed only to be shifted horizontally to follow the interaction of 

the incident wave with the interface. The vertical boundary in front 

of the waves was constrained to zero since, in a moving grid, the 

waves never reach this edge. The vertical boundary at the source was 

constrained by symetry about the vertical axis. Hence the standard 

finite difference equations are applied with 

AP = - AP 	BP = BP l,n 	-1,n 	l,n 	-1,n (25) 

After an initial time period required to propagate the major por- 

tion of the wave into the grid, the grid is shifted with the wave along 

the interface and the boundary at the origin is left behind. 

For the bottom and top boundaries the same transparent boundary 

condition was applied. However, at the top the incident pulse was 

removed before comialting the transparent boundary values. The indepen-

dent conditions necessary to terminate a finite difference grid are 

supplied by assuming that the existing waves near the boundary propa-

gate in the direction of their maximum slope with the appropriate shear 
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or compressional wave velocity. Hence it is necessary to transform 

the horizontal and vertical displacements into dilatation and rota-

tion. Also, to assure complete separation the media near the trans-

parent boundary was assumed to be homogeneous. The transformation 

to dilatation and rotation is effected by writing the differential 

equations in finite difference form. 

	

1 
3U
1 + 

1 	

au3\ A = 3x
3

1  

	

1 
au

3 	3U1) 
2 

0 = 	(
3x1 3x3 

AP = 4Ax (s nIAP  + nBP ) 

Op  4Axm
BP -nA:P) 

Equations (27) are used to compute dilatation and rotation at the 

second and third grid points from the boundary at time p. The displace-

ments A and B, can be computed for all points except on the boundary 

for time p41, the next time step, from the standard explicit finite 

difference equations of motion for interval points. The values of A 

and 0 at the grid points adjacent to the boundary are then computed for 

the next time step by theoretically propagating the waves. Equations 

(27) can then be used at p+1 to solve for the A and B values on the 

boundary. 

In order to propagate the rotational and dilatational waves, the 
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maximum (i.e. normal) gradients are computed from the relations 

1 
2 

DA 	[DAN 	(DA)  
an Dn = 	Dxf 	‘3x )  

	

1 	3 

	

DO 	
(ax) 	

2 + (:) 	
2 32-  

	

an = ‘ax' 	2x)N 
 

	

1 	3 

Propagation is then assumed to be in the direction of the maximum 

gradient and the new values can be written: 

AP41  = AP + aft ( a4) SGN (AP 	- AP ) m,n 	m,n 	an 	m,n-1 	mn (30) 

01341  = OP
mn 

 + 13L t 02) SGN (Om n-1 - O
ran ) 

mn 	 Dn 

Equations (30) represent a plane wave approximation to the wave at 

the boundary and give results good to eight percent or better depending 

on the azmuth of the incident wave and amplitudes of higher derivative 

components in the wave. Their asymetry, perhaps, contributes to the 

azimuthal variations in efficiency of this first order approximation. 

However, the predominent direction of propagation was in the positive 

x
1 direction and the one sided approximations with bias toward the 

(28) 

(29) 
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negative xl  direction were considered appropriate for these waves. 

The eight percent was adequate for the investigations here consider-

ing the added computer time required for a higher order approximation 

in two dimensions. A second order approximation in one dimension is 

good to better than one percent, or nearly as good as the finite 

difference approximations at the shorter wavelengths. 

Source Function  

A solution of the wave equation representing compressional waves 

propagating cylindrically outward from a line source may be written 

(Ewing, et.al., 1957, pg. 36) as: 

iwt 0.)(wR) (1) 	e 	H 	-- 
o 	 o a 

where H!
2) 

is a Henkel function of second kind of zero order and 

R
2 
= x1

2  + x2
2 
 is the radial distance from the line source. Where 

is large, 

H 	
iaR

J 
,w, 

(2),wR, 	2ia 	V---  
o 	 moR

e 
  (32)  

Where greater precision is required, higher order terms in the series 

approximation (Sommerfeld, 1964, p.117) 

H (2)  (L'15 
o 	a 

2ia e 
,iwR, 

[-!. (33)  a 
TrWR 8iwR 

can be included. The equation for the potential can then be written: 

(00 (w) = A(w) R 2  - J1L,(4 [I 
1 	a  8iwR + 

(31) 
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where A(w) can be considered the spectra of the first order approxima-

tion. By comparison with the inverse Fourier  transform with respect 

to w it can be shown that the general solution to the wave equation 

for cylindrical propagation in the time domain takes the form 

(1)  T)  1  It  
F(t 1 ) dt' + - - - 	 (35)  rT  

R 2  

For the cases investigated here the first order approximation was used 

since the regions of interest were sufficiently removed from the 

source and wR/a was large. 

The choice of the function F(T) requires consideration of the limi-

tations of the grid and finite difference technique. For the finite 

difference approximations to give a genuine solution representative of 

the input function, the first and second derivative of the displace-

ments must be continuous. Hence, the problem must be properly posed 

in the sense that the input function can contain only frequencies or 

geometries which can be accurately handled by the finite difference 

scheme. Also, to resolve phases on the finite difference seismograms 

the source function should be finite in length and not introduce a 

net displacement. The potential function chosen is the linear com-

bination of two cosine functions. 

C s(2ffft)-0.25Cos(4ffft)-0.75)/R 2 

 0.0, IfTI > 1.0 

F(T)  
^ (T) = 

R 2  
(36) 

where f is the frequency. 



The displacement for the top surface was computed from the relation: 

F(T) 
2 	

27f 	DF(T) U = - iy (F(T)/R2) = 
DT 2R

3/ 	
aR 2  

(37) 

Its first and second derivative are continuous as can be seen in 

Figure 1. The length of the pulse can be controlled by the frequency. 

In the first order approximation it shows no net displacement so that 

phases can easily be identified on the artificial seismograms and dis-

placement plots. 

Others (e.g. Alterman and Karal, 1968) have utilized nth order 

finite differences of nth order polynomials or other appropriate 

functions to achieve smooth higher order derivatives. These source 

functions, however, generally show a sharp front edge and a net dis-

placement. Alterman and Loewenthal (1970) used a zero frequency filter 

to remove the net displacement. The abrupt initiation is a result of 

higher amplitudes in the higher frequencies. These sources do provide 

a single peak for the displacement which helps in identifying phases, 

but at the cost of near discontinuities in the second derivatives. 

In contrast the displacement and dilatation or rotation for the 

source used here have two or three maxima respectively. 

Consistency  

By the equivalence theorem, stability by the Von Neumann 

condition or other condition is a necessary and sufficient con-

dition that the finite difference equation be a convergent approxi-

mation to the true solution provided (1) the initial value problem 

is properly posed and provided (2) the finite difference approxi-

mation satisfies the consistency condition. A properly posed pro- 
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Figure 1. Displacement potential and displacement at 5.0 

kilometers for the source used in finite difference computations. 
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blem requires that the source be chosen to fit the constraints of 

the finite difference scheme. This was discussed in the previous 

section. 

To verify the consistency condition, the differential 

operators have to be compared to their finite difference approxi-

mation. This amounts to evaluating the remainder terms in the 

Taylor's series approximation to the differential operators (equa -

tions 11, 13, 15).Figure 2 shows the maximum values of the error 

terms evaluated for a unit amplitude Sine function versus the ratio 

of grid increment to wave length. The lowest shear wave velocity 

used (a = 2.23 km/sec) in this study is thus at most in error by 

about 5 percent with 0.1 kilometer space increments and a period 

of 0.4 seconds. Thus the consistency requirement is satisfied to 

5 percent precision provided 13 >2.23. All longer wave lengths or 

equivalently higher velocities would be proportionally more precise. 

Attempts to use velocities lower than 2 km/sec (space increment of 

0.1 and period 0.4 seconds) led to erroneous results and in general 

caused abnormally large reflections from these low velocity regions. 

The abnormally large reflections were most noticeable where the 

velocity contrast approaches the limit of stability for the higher 

velocity P-waves. Accuracy is limited at the longer wavelengths 

by truncation in the computer. However, the one percent precision 

level for single precision computer programming (eight significant 

digits) implies a wavelength of nearly 5000 points and the maximum 

number of points used in this study was about 100 points. 

Stability  

In the inhomogeneous portions of the grid, the analysis of 
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lAp 
p mn 

d
1
B
p  

p mn 

14.1)+1 	
AP

mn 	
1 mn 	(39) 

At BP+1  - At BP  mn 	mn 

stability must include the effects of the gradients of the elastic 

parameters. The general procedure in determining stability is to 

derive the amplification matrix by computing the Fourier transform 

of the difference equations and by finding estimates for the bounds 

of its powers (Lax and Richtmyer, 1956). Derivation of the amplifi-

cation matrix requires that the finite difference equations (equa-

tions 19,21) be written in terms of a single time step rather than 

the two time steps obtained in the difference approximation to 

the second time derivative. By defining the difference operator 

d 1 with the equation 

1 P 
p Aim  = AP+1  - AP  mn 	mn 

and defining the new quantities RP  and SP
mn  with the relation mn  

(38) 

it follows directly that 

[61Rp 
RP+11 1 	p mn__ 	_ 1 

At 6 1 SP 	At s
p+1 	At 

p mn 	mn  

[d AP  1 	pp mn.1 (40) 

Ott  d BP 

 
RP  
mn 

SP  
mn pp mn 

Thus, by use of equation(40), the finite difference equations 

of motion for P-SV waves can be written in the form of two implicit 

finite difference equations which require only a single previous 

time step. Hence, in matrix form the equations of motion are 
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(41) 
and 

1 BPI 
At mn 

rp+I 	[Ap+I  [AP I 
1 
At Bp 

 mn 

1 

Ax2 [

Dll 	1113  	mn 

P  

mn 

mn 	
At SP  D

21 
D22 B 

1 [RP 

 

R
p+1- 
mn 

S
p+1 
mn 

_ 1 
At 

  

where 

1 
D11 = 6nm + P.

2
lan  + LT

P 
 - (6

m 
 pa 6m + 6

n
416 n) 

	

a2 6 nn 
0 2 g 	+ 1 „ 

4p v -n 	n 
+ 6m 6m) 

D22 = a unn -I- P  -mm 	 Pa 

2 02 
—
1 

D12 
= (a 	

4 
-P  ) 6B 	+ 4p (6 m

AS 
n 	+ (5nII6m

) _ 

2 2 

D21 = (
a 

4
13 
 ) (Snm + 43- (6nA6m + 6m116n ) ' 

The Fourier  transformation of the difference equations can be effected 

at this point by introducing the Fourier series 

p 	p 	i(ma + nb)Ax 
A = 	Aab  e mn a,  

(43) 

. and similar expressions for B, R, and S with Ax 1  = Ax2  = Ax. Under 

transformation theO operators convert to multiplications by Sine func-

tions of the wave numbers a and b and thus: 

6 = - 4 Sin 
2 aA 

mm 	 2x  

6 = - 4 Sin(aAx) Sin(bAx) 
mn 

d
m 

= + 2i Sin(aAx) , i =AFT 

(42) 

(44) 
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ab 
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Rp+1 
ab 
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AX2 
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11 D12I 	I 

D
21 D22 

	
1 

1 T 	 0 
At - 

AP ab 

BP  ab 	(45) 

RP 
ab 

SP  ab _ 	_ 

0 1 
At - 

  

- I 

aAx 
Dll = - 4a Sin

2  (-2—) - 

D
22 

= - 4a2  Sin 2  (bAx-2 ) 

4 2Sin2 121, ) 
2 

4132 Sin2(—aAx) 
2 

12

▪ 

 -p  (6mpa2Sin(aAx) 4-6n p Sin(bAx)) 

▪ 2p  (6npa2Sin(bAx) + 6
m 

p Sin(aAx)) 

D12 = - (a
2-132 )Sin(aAx)Sin(bAx) 

D = - (a2-13 2)Sin(aAx)Sin(bAx) 

-I-  2p (6mASin(bAx) + 6 n p Sin(aAx)) 

+-1— (6 ASin(aAx) + 6 p Sin(bAx) 21 	 2p n 

The Fourier transformed matrix with summation over all wavelengths 

assumed takes the form 

where I is a 2 x 2 identity matrix. 

The amplification matrix can be found directly by computing the 

inverse of the matrix on the left and solving for the values atp + 1. 

    

AP 1  ab 

BP ab 

RP 
ab 

[SP  ab 

 

AP+1 
 ab 

Bp+1 ab 

Rp+1 ab 

Sp+1 ab 

    

,At s 2 
) D + I 

At 

A2 
D 

x 
 

At I 
AP 
ab 

BP ab = G 

RP ab 

SP ab 

(46) 

I 
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The problem of stability for the P-SV equations of motion is 

thus reduced to that of finding the estimates for the bounds of 

powers of the amplifications matrix G. The Von Neumann (Necessary) 

Condition for stability requires that the maximum eigenValue (C) be 

less than or equal to one. The equation for the eigenvalue which 

is derived from the determinant of G is thus: 

(1 - (2 + D
11)C + C2 )(l 

 - (2 + D22)c  + C2 ) - D
12

D
21

C2 = 0 	
(47) 

which can be written 

(C
2 - 2A1  C + 1)(C

2 
- 2A2  C + 1) 

= A
1  +

1 A2  Thus, 	 1 
- 1 

 

C = A +14.2  - 1 and 	 2 	2 

where 
D11-D22  

Al  = -2- 2 + -2- 
(D11 

 + D22) 4 2 	) 'ED12D21 

A2 
= 

-2
- 	

z 
2 + 	(D11  + D22) 

 - -4)11-D22) 2  1 
D121)21 

For stability by the Von Neumann condition Ick 1 + 0(nAt) 

where 0(nAt) is the maximum allowable error at the end of computation. 

However, the solutions for C with a gradient involve complex numbers 

and all the eigenvalues can not be less than or equal to one. This 

is a consequence of the change in amplitude inherent in the propaga-

tion of seismic waves into different velocity media. The eigenvalues 

determine the change in amplitude in propagation across an interface. 

The product of the eigenvalues, however, is unity indicating that on 

propagating back across the interface in the opposite direction the 
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amplitudes are stable. The stability of the finite difference 

equations and velocities used in this study have been checked 

numerically for typical and extreme values by computing ICI for 

selected wave numbers. 

For homogeneous media the conditions for stability can be 

computed directly by using only the real parts of the amplifica-

tion matrix in the expression for A and noting that the inequality 

IA I< 1 can be written as 0< (1-A)/2 < 1, 

0 < (
a2.+82 ) [Sin

2 (—aAx) + Sin
2 (

1/6_,lc)] 
a2 	2 	 2 

(a2_,2 0  ) ..V sin2 faAxx 	s . n2
(
bAx 2 	1 . 2 	. 2 	(50) 

2 	1 	2 )) 	s in (aAx)Sin (bAx) 
2 

a 

At 
< 2 / a

2 (AX) 
2 

 

All quantities are positive and the radical is always less than 

the first term. The most severe conditions occur where aAx = bAx = Tr 

and gives (Alterman and Loewenthal, 1970) 

a< 1/ () A/1 +(a ). 
Ax 	a 
A t 

Typical values used in this study imply stability up to a P-wave 

velocity of 8.66 in the homogeneous portion of the grid. The highest 

velocity used was 7.0. 

2 (51) 



Results  

Introduction  The variety of velocity structures in which 

seismic waves can be propagated theoretically by a finite difference 

scheme for a general inhomogeneous media is endless. The only real 

limiting factors are the size of the computation grid required to 

give the desired accuracy and the time required to carry out the com-

putations in the computer. Consequently this study has been 

restricted to the general computation scheme shown in Figure 3. A 

line source was assumed at the origin. Finite difference computations 

were carried out in the depth range of five to nine kilometers. The 

velocity above five kilometers Nies four km/sec. Structures in the 

velocity were placed in the depth range of six to eight kilometers. 

These included various examples of velocity gradients, boundaries, 

and upward or downward displaced faults. The velocity below eight 

and a half kilometers was assumed constant (usually six km/sec). 

Shear wave velocities were generally computed from the compressional 

wave velocities by assuming Poisson's ratio. For display purposes 

the data were saved at selected points in the media and used to 

generate theoretical seismograms Also, the theoretical displacements 

were printed at selected times or converted to dilatation and rotation 

and printed for direct observation of the wave motion. The conver-

sion to rotation allowed direct observation of the shear phases which 

otherwise would have becn lost in the higher amplitude compressional 

phases. Although the depths and velocities assumed here are 

appropriate for a deep sedimentary basin, the velocities and distances 

can be scaled to fit other cases of interest in seismology. 
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Figure 3. Geometry of general computation scheme used in finite difference calculations. 



A sharp gradient was examined first to investigate deviations 

from the theoretically predicted results for a welded contact between 

two homogeneous media. The gradient extended over two grid units. 

For the source used this was equivalent to about 0.2 wavelEngths. The 

finite difference case for the welded contact involves an implicit 

equation and was not computed. Examples of various gradients were 

then computed to examine the effects of the gradients on the ampli-

tudes of the head and reflected waves. Finally, upward and downward 

faults were computed to examine their effect on the generation of 

head and reflected waves. 

The Sharp Velocity Gradient A sharp velocity gradient extending 

over only two grid invervals is the closest approximation to a welded 

contact possible without solving an implicit equation for each time 

step in the finite difference formulism. For computation the 

interface was placed near the center of the grid. The finite 

difference computation was initiated when the cylindrical pulse was 

incident on the top of the grid. With computer printouts of the 

grid at 0.25 second invervals to six seconds covering the propagation 

of the waves along the boundary to a distance of 33 kilometers, it 

was necessary to choose zones which best illustrated the formation 

or character of the waves interacting with the boundary. Figure 4 

illustrates the wave fronts for the refracted and head waves 

generated with the velocities used in this study. A number of regions 

in the wavefronts are of particular interest because of the 

difficulty in obtaining solutions through other mathematical methods. 

These include (1) the amplitudes of the reflected and head waves near 

the critical angle, (2) the leading edge of the head waves and (3) the 
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Figure 4. Wave fronts of reflected and refracted waves generated 

by an incident compressional wave. 



displacement in the lower media caused by the direct wave beyond 

the critical angle. 

The compressional and shear reflected waves occur without 

interference at angles less than critical and their amplitudes can 

be measured directly. The amplitudes are best observed at angles 

of incidence of 20 to 30 degrees. For comparison the Zopritz 

equations have been solved for the theoretical amplitudes of the 

reflected and refracted phases expected for the velocities used in 

the sharp gradient (Figure 5). Figures 6a and 6b show the finite 

difference reflected dilatation and shear waves. The line-printer 

output has been contoured in the region of the maximum amplitude 

of the reflected phases to emphasize the amplitude variations. 

Selected interpreted amplitudes from the finite difference printout 

are shown in Figure 7 and compared to the theoretical ratio of 

incident to reflected wave amplitudes. The amplitudes are corrected 

for cylindrical spreading. The compressional waves are about 10 

percent larger than the theoretical and the amplitude minimum may 

be shifted to higher angles of incidence. The amplitude variation 

and shift may be partially accounted for by the effect of the sharp 

gradient layer at the boundary. The reflected shear wave amplitudes 

also show a shift or are perhaps a few percent less than expected 

at 20 to 30 degrees angle of incidence. 

A more precise measure of the amplitudes of the compressional 

reflections can be obtained from the finite difference seismograms 

of the dilatation (Figure 8a-d). The receiver at 5.0 kilometers 

(32 °  angle of incidence) indicates an amplitude ratio of 0.18 ± 0.01, 

which falls on the theoretical curve. However, the value at 3.5 

kilometers (24°  angle of incidence) indicates an amplitude ratio of 
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Figure 6b. Finite difference grid of rotation showing amplitudes 

of shear wave reflection. 
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Figure 8a. Theoretical seismograms showing dilatation and 

rotation from 0.5 to 11.0 kilometers for a sharp gradient with 

"seismometer" placed one kilometer above interface. 
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Figure 8b. Theoretical seismograms showing dilatation and 

rotation from 12.5 to 23.0 kilometers for a sharp gradient 

with "seismometer" placed one kilometer above interface. 
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0.20 + 0.01 which is higher than the expected curve supporting the 

interpreted amplitudes from the finite difference printout. In 

Figure 8 the increased amplitudes of the reflected phases beyond 

- the cricital angle are easily observed but direct measurement is 

difficult because of interference with the direct arrival. The 

reflected shear wave amplitudes go through the expected minimum near 

8.0 km. In Figure 8c and 8d the character of the direct wave in 

the lower media can be seen to be continuous and similar to that of 

the incident pulse. However, the effect in the lower media of the 

reflected compressional wave beyond the critical angle causes an 

apparent continued oscillation of the refracted wave at distances 

beyond fourteen kilometers. 

All three possible head waves are apparent in Figure 8. The 

character of the compressional head wave at 21.5 or 23 kilometers 

in the upper media is indistinguishable from the direct arrival 

which is observable at 0.5 kilometers. To be of the character 

of the potential only one cycle of motion should be apparent 

and the period should be longer. However, the period is the same 

as the direct arrival and the wavelet contains three half-cycles. 

The shear head wave in the upper media also shows the character of 

the direct arrival but is of opposite sign. The shear head wave in 

the lower media is the weakest phase observed. 	Its character is 

also similar to the character of the direct arrival. The head waves 

observed using the finite difference method have the character of 

the source pulse, not its potential. 

The character of the reflected and head waves near the critical 

angle can be seen in Figure 9a and 9b. Where the critical distance 

-43- 
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intersection of the critical angle of reflection with the 
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corresponds to the intersection of the direct wave with the interface 

(Figure 9a), the dilatation is dominated by a continuous direct and 

refracted wave. At the critical angle in the reflected wave (Figure 

9b) the strong increase in amplitude attributable to total reflection 

is apparent. The nature of the junction of the head wave and 

reflection is easiest to see in the rotation. The amplitudes are 

continuous and the head wave joins the reflected wave smoothly. The 

shear head waves emerge from the reflected or refracted phases 

smoothly and are virtually inseparable where they interfere. 

Figure 10 shows the character of the dilatation and rotation at 

a point where the head wave has separated from the direct or reflected 

phases. The amplitudes are not constant across the boundary but 

show the effect of the transfer of energy from the direct refracted 

wave into the head wave. Figure 11 shows the penetration into the 

lower media of the reflected and incident pulse beyond the cricical 

angle. By comparison of the amplitudes in the lower media the penetra-

tion is seen to decrease with increased angle of incidence. However, 

some interference in the character of the wave motion is related to 

the generation of the refracted shear wave. Also, at 300 time steps 

in Figure 11 the head wave may cause some interference. 

Effect of Velocity Gradients Figure 12 shows the waves recorded 

at the same relative position with a positive and negative gradient 

in the lower media. The gradient is 0.5 kilometers thick and the 

velocity at the blundary is 5.5 and 6.5 km/sec for the positive and 

negative gradient respectively. As in the sharp-gradient data 

presented previously the velocities are 4.0 and 6.0 kilometer/sec 

in the upper and lower media. The most obvious differences in the 

arrivals can be explained by the travel time variations expected. The 
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Figure 12. Theoretical seismograms showing the effects of 

gradients in the lower media. 
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effect of the positive gradient is to apparently increase the ampli-

tudes of the head wave and decrease the reflected shear wave. The 

negative gradient decreased the compressional head wave and increased 

the reflected shear waves. A significant effect on the shear head 

wave was not observed. 

Figure 13 shows the effect of a positive gradient 0.5 kilometers 

thick above the boundary from a velocity of 4.0 km/sec to 4.5 km/sec. 

Figures 13a, 13b and 13c represent a positive, zero and negative 

gradient, respectfully, below the boundary. The gradients are the 

same as were used in Figure 12. Apart from the obvious differences 

related to the expected variations in travel times, the compressional 

head waves show slightly increased amplitudes with the positive 

gradients. The reflected compressional waves are larger with a posi-

tive gradient. The greatest difference occurs in the reflected shear 

phases. At low angles of incidence the negative and positive 

gradient increase the shear phases beyond the critical angle. The 

distribution of dilatation and rotation for the arrivals of Figure 13a 

are shown in Figure 14a at 3.50 seconds and Figure 14b at 4.25 seconds. 

The contours of Figure 14 show that the gradient causes a decrease in 

amplitudes near the boundary. This perhaps accounts for an initial 

increase in the amplitudes in the head wave. The gradient also has a 

strong effect on the depth of penetration into the lower media. The 

waves at greater angles of incidence do not penetrate as deep. 

Effect of a Fault  Examples of finite difference head wave 

propagation are used here to illustrate the effect of a fault. The 

fault is at 16 kilometers which is just beyond the point where the 

head wave beings to separate from the reflected phase. The vertical 
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Figure 13a. Theoretical seismograms of the dilatation and 

rotation near a boundary with a positive gradient above and 

a positive gradient below. 

-51- 



a 

  

  

  

Figure 13b. Theoretical seismograms of the dilatation and 

rotation near a boundary with a positive gradient above and 

no gradient below. 
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Figure 13c. Theoretical seismograms of the dilatation and 

rotation near a boundary with a positive gradient above and 

a negative gradient below. 
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Figure 14a. Contoured grid values of dilatation and rotation at 3.50 seconds. 
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Figure 14b. Contoured grid values of dilatation and rotation at 4.25 seconds. 



particle displacements at 1.5 kilometer intervals, 1.0 

kilometers above the interface, are shown in Figure 15 for a 0.4 

kilometer downward fault. The delay is evident in Figure 15 where 

the theoretical seismograms are arranged according to reduced time. 

In the region beyond the fault the amplitudes are diminished and 

the continuity of the reflected phases is lost. 

The character of the wave motion about the fault can be seen 

best in the contoured finite difference grid of the dilatation and 

rotation (Figure 16). The greatest amount of disturbance is 

observed in the rotation. Continuity in the reflected shear is 

completely disrupted by a structure which in this case is 

approximately one wavelength high. 

The refracted shear maintains its continuity but is distorted. 

The diffracted shear wave is dependent on the angle as indicated 

by the modulation of the amplitude. The compressional reflection 

off the face of the fault can be seen to the left of the fault. 

Below the interface the diffracted-reflected compressional wave 

dominates. Toward the left there is little evidence of generations 

of reflected heave wave. Toward the right the newly formed 

diffraction is beginning to form additional phases in the head wave. 

Depending on the position of the fault or faults, multiple head waves 

could be generated. 



• 

Figure 15. Vertical particle displacements for a 0.4 kilometer 

downward fault at 16 kilometer range. Traces are arranged 

according to a reduced time for 6.0 kilometer/second. 
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Figure 16. Dilatation and rotation contoured grid values before and after contact of head 

and direct waves with upward fault. 



References 

Alterman, Z. S. and F. Karel (1968). Propagation of elastic waves 
in layered media by finite difference methods, Bull. Seism. 
Soc. Am. 58, 367-398. 

Alterman, Z. S. and D. Loewenthal (1970). Seismic waves in a quarter 
and three-quarter plane, Geophys. J. R. Astr. Soc. 20, 101-126. 

Birch, F. (1960). The velocity of compressional waves in rocks to 
10 kilobars, Part I, J. Geophys. Res. 65, 1083-1102. 

Boore, D. M. (1970). Love waves in nonuniform wave guides: finite 
difference calculations, J. Geophys. Res. 75. 1512-1527. 

Brekhovskikh, Leonid M. (1960). Waves in Layered Media, tr. by 
David Lieberman, Academic Press, New York. 

Cagniard, L. (1962). Reflection and Refraction of Progressive  
Seismic Waves, tr. by E. A. Flinn and C. H. Dix, McGraw-Hill, 
New York. 

Cerveny, Vlastislav, and Ravi Ravindra (1970). Theory of Seismic  
Head Waves, University of Toronto Press, Toronto. 

Ewing, W. Maurice, Wenceslas S. Jardletzky and Frank Press (1957). 
Elastic Waves in Layered Media, McGraw-Hill, New York. 

Fox, Paul J., Edward Schreiber and J. J. Peterson (1973). The geo-
logy of the oceanic crust: compressional wave velocities of 
oceanic rocks, J. Geophys. Res. 78, 5155-5172. 

Fuchs, K. (1968). The reflection of spherical waves from transition 
zones with arbitrary depth-dependent elastic moduli and density, 
J. Phys. Earth, (Tokyo) 16, Special Issue, 27-41. 

Helmberger, Donald V. (1968). The crust-mantle transition in the 
Bering Sea, Bull. Seism. Soc. Am. 58,179-214. 

Hook, J. F. (1965). Determination of inhomogeneous media for which 
the vector wave equation of easticity is separable, Bull. Seism. 
Soc Am. 55, 975-987. 

Lax, P. D. and R. D. Richtmyer (1956). Survey of the stability of 
linear finite difference equations, Comm. Pure Appl. Math. 9, 
267-293. 

Long, L. T. and Joseph W. Berg, Jr. (1969). Transmission and 
attenuation of the primary seismic wave, 100 to 600 km, Bull. 
Seism. Soc. Am. 59, 131-146. 



Munasinghe, M. and G. W. Farnell (1973). Finite difference analysis 
of Rayleigh wave scattering at vertical discontinuities, J. Geophys. 
Res. 78, 2454-2466. 

Musgrave, A. W. (1967). editor, Seismic Refraction Prospecting,  The 
Society of Exploration Geophysicists, Tulsa. 

Smith, T. Jefferson, John S. Steinhart and L. T. Aldrich (1966). 
Lake superior crustal structure, J. Geophys. Res.  71, 1141-1172. 

Sokolnikoff, I. S. (1964). Tensor Analysis,  John Wiley and Sons, New 
York. 

Sommerfeld, Arnold (1964). Partial Differential Equations in Physics, 
(tr. by Ernst G. Straus), Academic Press, New York. 

Stewart, S. W. (1968). Crustal structure in Missouri by seismic-re-
fraction methods, Bull. Seism. Soc. Am.  58, 291-323. 

Tirasawa, Tomowo and Michael J. Berry (1971). Reflected and head 
waves from a linear transition layer in a fluid medium, Bull. 
Seism. Soc. Am.  61, 1-25. 

Zvolinskii, N. V. (1958). Reflected waves and head waves arising at 
a plane interface between two elastic media, 2, Bull. Acad. Sci. 
USSR, Geophys. Ser., English Transl.,  1, 1-7. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73

