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SUMMARY 

 

Steady technological progresses in all fields of nanoscale technology and probe 

technology have enabled the synthesis, the assembly, the development, the 

characterization and the improvement of nanostructured materials. The lack of 

understanding of their macroscopic behavior is a major roadblock for inserting these 

materials into engineering applications. Partially due to these rapid advances in nano-

scale and nano-structured materials, there has been a resurgence of interest in surface 

elastic properties such as surface energy, surface stresses, and surface elastic stiffness. 

Because of the large surface-to-volume ratio in nano-materials, surface elastic properties 

become more prominent. They have strong influence on the overall thermo-mechanical 

behavior of the nano-materials. 

In this dissertation, an innovative approach combining continuum mechanics and 

atomistic simulations is exposed to develop a nanomechanics theory for modeling and 

predicting the macroscopic behavior of nanomaterials.  This nanomechanics theory 

exhibits the simplicity of the continuum formulation while taking into account the 

discrete atomic structure and interaction near surfaces/interfaces.  There are four primary 

objectives to this dissertation.  First, theory of interfaces is revisited to better understand 

its behavior and effects on the overall behavior of nanostructures.  Second, atomistic 

tools are provided in order to efficiently determine the properties of free surfaces and 

interfaces.  Interface properties are reported in this work, with comparison to both 

theoretical and experimental characterizations of interfaces.  Specifically, we report 

surface elastic properties of groups 10 – 11 transition metals as well as properties for 
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low-CSL grain boundaries in copper.  Third, we propose a continuum framework that 

casts the atomic level information into continuum quantities that can be used to analyze, 

model and simulate macroscopic behavior of nanostructured materials.  In particular, we 

study the effects of surface free energy on the effective modulus of nano-particles, nano-

wires and nano-films as well as nanostructured crystalline materials and propose a 

general framework valid for any shape of nanostructural elements / nano-inclusions 

(integral forms) that characterizes the size-dependency of the elastic properties.  This 

approach bridges the gap between discrete systems (atomic level interactions) and 

continuum mechanics.  Finally this continuum outline is used to understand the effects of 

surfaces on the overall behavior of nano-size structural elements (particles, films, fibers, 

etc.) and nanostructured materials.  More specifically we will discuss the impact of 

surface relaxation, surface elasticity and non-linearity of the underlying bulk on the 

properties nanostructured materials. 

In terms of engineering applications, this approach proves to be a useful tool for 

multi-scale modeling of heterogeneous materials with nanometer scale microstructures 

and provides insights on surface properties for several material systems; these will be 

very useful in many fields including surface science, tribology, fracture mechanics, 

adhesion science and engineering, and more. It will accelerate the insertion of nano-size 

structural elements, nano-composite and nanocrystalline materials into engineering 

applications. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 This chapter introduces the research presented in this document.  First, we discuss 

the motivations and past works from other scientists that lead to the research covered in 

this dissertation.  We next present a synopsis of the primary objectives and goals of this 

work to set out clearly the research intended and the methods to be used.  Finally, we 

explain the structure of this dissertation in order to facilitate the reading of this document. 

 

1.1 Motivations 

 

 On December 29th 1959, Richard P. Feynman gave a famous talk "There's Plenty 

of Room at the Bottom" at the annual meeting of the American Physical Society at the 

California Institute of Technology (Caltech) on the problem of manipulating and 

controlling things on a small scale.  Since 1959, the fields of nanostructure science and 

nanostructured materials (NsM) have been growing explosively and nanomaterials, such 

as nanocrystalline materials and nanocomposites, have shown promising new and 

exciting properties.  Steady technological progress in all fields of nanoscale technology 

and probe technology has enabled the synthesis, the assembly, the development, the 

characterization and the improvement of nanostructured materials.  While considerable 

progress has been made in the basic understanding of making these nano-structured 

materials, the shift from basic science to technological applications has yet to occur.  For 

example, there has been extensive research on the microstructure and unique properties 

of carbon nano-tubes (Iijima, 1992; Iijima and Ichihashi, 1993; Gamaly and Ebbesen, 

1995; Palaci et al., 2005).  Developing applications that take full advantage of the 
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properties of carbon nanotubes will be the next important step towards their potential 

industrial use and economic impact.  However, up to now, only a very small number of 

engineering applications of carbon nano-tubes exists (Collins et al., 2001).  Even among 

those applications, very few have taken full advantage of the unique properties that the 

carbon nano-tubes can provide. 

 Besides the difficulties of making bulk forms of nano-structured materials, the 

lack of understanding of their macroscopic behavior is a major roadblock for inserting 

these materials in engineering applications.  Innovative ways of testing and modeling the 

thermomechanical behavior of nanomaterials must be developed before one can take full 

advantage of the unique properties that these materials can offer.  In other words, in order 

to bring material science knowledge to material engineering applications, one needs an 

engineering science-based methodology to bridge the gap between atomic (nano) level 

understanding and macroscopic material behavior.  Very few studies of nano-structured 

materials have successfully attempted this.  For example, requirements for increased fuel 

economy in motor vehicles demand the use of new, lightweight materials.  

Nanocomposites, consisting of traditional polymers reinforced by nanometer-scale 

particles dispersed throughout, may prove to be an economical candidate for metal 

replacement.  In theory, nanocomposites can be easily extruded or molded to near-final 

shape, provide stiffness and strength approaching that of metals, and reduce weight.  

Corrosion resistance, noise dampening, parts consolidation, and recyclability all would be 

improved.  However, before such nanocomposites can be used in commercial vehicles, 

their macroscopic mechanical behaviors, such as effective modulus, fracture toughness, 

fatigue and creep resistance, etc., must be well understood so that the vehicles can be 

designed with sufficient reliability and durability. 

 Continuum mechanics-based micromechanics theories have been used extensively 

and very successfully in the past to model the macroscopic mechanical behavior of 

conventional polycrystalline and composite materials.  The basic length scale (grain size 
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or particle size) for such conventional materials is on the order of micrometers or above.  

At this length scale, the assumption of continuum is valid.  In other words, each crystal 

(or each particle in composite materials) can be treated as a continuous medium and, 

therefore, continuum mechanics equations can be used to describe the deformation of 

conventional polycrystalline and composite materials.  Nano-structured materials, on the 

other hand, are characterized by its microstructure with a length scale in the order of 

nanometers (typically less than 100nm).  Because of such fine microstructure, 

nanomaterials exhibit a wide range of new properties and behavior (Gleiter, 1989; 

Morris, 1998) that cannot be modeled or explained by the conventional continuum 

mechanics-based micromechanics theories.  For example, it is well known for 

conventional polycrystalline metals that the yield strength and hardness increase with 

reduction of grain size, as defined by the Hall-Petch relationship 

  0
n

yield yk dσ σ −= +   , (1.1) 

where n is a positive constant (typically 0<n<1) and d is the grain size.  The Hall-Petch 

relationship was derived based on the continuum theory of dislocation pile-up.  Clearly, 

such a relationship cannot be extrapolated to fine grain size.  From a pure mathematical 

standpoint, this equation would predict infinite strength, certainly as high as the ideal 

material strength, as grain sizes approaches the nano-scale.  Physically, however, the 

nano-size grains may not have enough space for creating a pile-up of even only two 

dislocations.  In fact, it has been observed by several investigators (Gryaznov et al., 1989; 

Gryaznov et al., 1990; Nieh and Wadsworth, 1991) that below a certain critical grain 

size, the yield strength actually decreases with decreasing grain size.  This phenomenon, 

shown in Figure 1.1 from Conrad (2003), is called the Hall-Petch “breakdown” or inverse 

Hall-Petch.  Other mechanical properties, such as the melting point (Alymov and 

Shorshorov, 1999), toughness and fatigue behavior (Morris, 1998), have also been 

observed to vary with grain (or particle) size in ways different between nano- and 

conventional materials. 
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 Another example is the elastic constants (e.g., Young's modulus, Poisson's ratio).  

It has been reported in the literature that the surface stresses could increase by about 15 to 

25% the apparent in-plane bi-axial modulus of a Cu (100) free standing film of 2 nm 

thick (Banerjea, 1987; Cammarata, 1989; Kosevich, 1989; Nix, 1998).  Some 

experimental work (Catlin, 1960) seems to indicate that the modulus enhancement could 

be as much as 50%, although it has been pointed out by later studies (Itozaki, 1982; 

Baker, 1993) that such a large enhancement might be due to experimental errors.  When 

the thickness reduces to below 5 nm, modulus enhancement/reduction of 20% was also 

predicted (Cammarata, 1989; Streitz, 1994; Streitz, 1994) and confirmed experimentally 

for several multilayered metal films such as Cu-Nb (Fartash, 1991).  As an example, 

Figure 1.2 shows dependence of the Young’s modulus of silver and aluminum films on 

the film thickness d from Mizubayashi et al. (1999).  More recently, Miller and Shenoy 

(Shenoy, 1998; Miller, 2000) developed a simple model to incorporate surface stress in 

determining the size-dependent elastic modulus of plates and rods.  In a recent paper, 

Zhou and Huang (Zhou, 2004) used molecular dynamics simulations to show that 

depending upon the crystallographic orientations, the effective elastic modulus of a thin 

free-standing film can either increase or decrease as the film thickness decreases. 

 Another relevant area of research is the investigation of elastic properties of grain 

boundaries.  A number of publications have suggested that the elastic moduli in the grain 

boundary domain may differ significantly from those of the bulk.  Wolf and co-workers 

(Wolf, 1989; Wolf, 1989; Kluge, 1990; Wolf, 1990), who studied superlattices of (001) 

twist boundaries, as well as Adams et al. (Adams, 1989), who examined the Σ5 twist 

boundary in a thin film of copper, have found an increase of the Young's modulus 

perpendicular to the boundary plane and a substantial decrease of the shear modulus in 

the boundary plane in the atomic layers adjacent to the boundary.  Bassani and co-

workers (Alber, 1992; Bassani, 1992; Vitek, 1994; Marinopoulos, 1998) defined the local 

atomic elastic modulus tensor and determined the values of the local elastic modulus 
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tensor near grain boundaries in several face center cubic metals using molecular dynamic 

simulations.  They also found that the local elastic moduli are significantly different for 

atoms near the grain boundaries.  Since grain boundaries have distinct elastic properties, 

the effective modulus of polycrystalline materials should also be dependent on its grain 

size since the interface (grain boundary) to volume ratio is inversely proportional to the 

grain size.  Existing literature shows mixed results on the dependency of modulus on 

grain sizes.  Some have reported reduction of elastic modulus by as much as 30% (Korn, 

1988; Gleiter, 1989; Suryanarayana, 1995) for nano-structured materials.  Others 

(Nieman, 1991; Krstic, 1993; Fougere, 1995) argued that such reduction is purely due to 

porosities.  However, careful molecular dynamic simulations of copper polycrystal 

(Schiøtz, 1998) have shown that the Young's modulus is indeed reduced by over 25% 

when the grain size is reduced to 5 nm, even when the polycrystal is fully dense.  Similar 

reduction is seen in simulations where the nanocrystalline metal is grown from a molten 

phase (Phillot, 1995).  Clearly, more experimental work is needed to confirm the 

relationship between elastic modulus and grain size. 

 A related issue is the effective properties of composite materials.  Specifically, the 

effective modulus of a conventional composite material, where particles or fibers are 

measured in µm, is independent of the size of the particles (or fibers), according to the 

conventional continuum mechanics-based micromechanics theories (Mura, 1987).  For 

example, the well-known Mori-Tanaka formula states that the effective shear modulus for 

a particulate reinforced composite is given by 

  1 0
0

0 0 1 0 0

( )
1

2(4 5 )(1 ) ( ) 15(1 )

f

f

µ µ
µ µ

µ ν µ µ ν
 −

= + 
+ − − − − 

  , (1.2) 

where f is the particle volume fraction, ν0 the Poisson's ratio of the matrix and µ0 and µ1 

the shear modulus of the particle and matrix, respectively.  What this formula tells us is 

that the effective shear modulus of the composite is the same, as long as the volume 

fraction of the reinforcement particles remains the same, regardless the size of the 
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particles.  Extensive studies (both theoretical and experimental) have shown that the 

Mori-Tanaka prediction (as well as predictions from many other conventional continuum 

mechanics-based micromechanics theories) is quite accurate for composites with micron-

size particles.  However, the validity of this prediction is questionable when applied to 

nano-composites.  Several studies of nano-laminates already showed the dependency of 

effective modulus on the layer thickness (Streitz et al., 1994). 

 Geometrically speaking, the only difference between the nano- and conventional 

materials is the characteristic length (grain or particle size) of the microstructure.  If each 

phase is assumed continuum, as it is done in the continuum mechanics theory, the overall 

properties of the material shall be independent of the characteristic length of the 

microstructure.  This is because the characteristic length can be used to re-scale other 

dimensions in the context of continuum mechanics.  In order to take into account the 

characteristic length of the microstructure, modifications to the continuum assumption 

must be made and physical characteristics of the nano-composites must be taken into 

consideration. 

 Physically speaking, one of the obvious differences between nano- and 

conventional materials is the amount of grain boundaries (or particle/matrix interfaces in 

case of composites) per unit volume.  The volume fraction of material in the grain 

boundaries, considered negligible for conventional polycrystalline materials, can in fact 

become significant for nanomaterials.  The fraction of grain boundary material 

(Mütschele and Kirchheim, 1987) can be assessed as f=3δ/d, where δ is the grain 

boundary thickness and d the grain size.  Thus, 30% of matter is found in grain 

boundaries for nanomaterials of grain size 5 nm if the grain boundary is considered to be 

0.5 nm thick, but only 3% when the grain size is increased to 50 nm.  Since the properties 

of grain boundaries are very different from those of bulk crystals, it is conceivable that 

the dramatic decrease in grain boundaries will inevitably alter the overall macroscopic 

behavior of the material. 
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 The distinction between nano- and conventional materials is the characteristic 

length of the material studied, which dictates the amount of interfacial area per unit 

volume of the composite.  To characterize the amount of interfacial area per unit volume, 

we introduce the specific interfacial area to volume ratio 

  
total interfacial area  interface thickness   t

volume

S
Sv

d

× ×
= =   . (1.3) 

It is seen from the above that, when the characteristic size d is reduced from 10 µm 

(typical of conventional materials) to 10 nm, the corresponding interfacial area to volume 

ratio of a materials (for example a polycrystalline materials with an average grain size 

size d) increases by a factor of 1000 for the same given interface thickness.  Such 

dramatic increase in the mount of interfacial area necessitates the consideration of 

interfacial properties in modeling and predicting the macroscopic behavior of the 

materials.  Such considerations inevitably lead us to the discrete atomic level 

microstructure of the interface between a nano-size particle and its surrounding 

environment.  In other words, any theory to model and predict the macroscopic behavior 

of nanostructured materials must be based on the discrete nature of the particle interfaces. 

 

1.2 Dissertation Objectives and Goals 

 

 Obviously, one way to account for the behavior of atoms at a surface or an 

interface is to use quantum mechanics to describe the interaction among atoms on the free 

surface or the grain boundaries.  However, direct use of such theories to model and 

predict the macroscopic behavior of nanomaterials for engineering applications may not 

be computationally feasible. 

 One fundamental issue that needs to be addressed in modeling macroscopic 

mechanical behavior of nano-structured materials based on their atomic structure is 
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therefore the large difference in time and length scales.  On the opposite ends of the time 

and length scale spectrum are atomistic calculations and continuum mechanics, each of 

which consists of highly developed and reliable modeling methods.  Atomistic 

calculation models, such as Molecular Dynamics for example, predict atomic interactions 

based on discrete atomic properties, while continuum mechanics models predict the 

macroscopic mechanical behavior of materials idealized as continuous media based on 

known bulk material properties.  However, a corresponding model does not exist in the 

intermediate range of time and length scales.  Even though there is a long history of 

modeling bulk properties of materials based on atomic level properties, a simple link 

between the firmly established disciplines of atomistic modeling and continuum 

mechanics has not been established. 

 In this dissertation: we propose an innovative approach that combines continuum 

mechanics and atomistic calculations to develop a nanomechanics theory for modeling 

and predicting the macroscopic behavior of nanomaterials.  This nanomechanics theory 

exhibits the simplicity of the continuum formulation while taking into account the 

discrete atomic structure and interaction near surfaces/interfaces.  In other words, it uses 

the atomic level information in a continuum mechanics framework that can be used to 

analyze, model and simulate macroscopic behavior of nano-structure materials.  This 

approach bridges the gap between discrete system (atomic level interactions) and 

continuum mechanics.  It is a step towards bringing nano-science, where the focus is on 

atomic interaction, to nano-technology where the interest is in the macroscopic behavior 

of nano-structured materials in an engineering system. 

 There are four main objectives to this dissertation:  (i) to understand the general 

behavior of interfaces considered as a dividing surface; (ii) to provide atomistic tools in 

order to efficiently determine the behavior of  interfaces and surfaces; (iii) to develop, a 

continuum framework that accounts for the interface effects by casting the atomic level 

information into continuum quantities and that can be used to analyze, model and 
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simulate macroscopic behavior of nanostructured materials; (iv) to understand the effects 

of surfaces on the overall behavior of nano-size structural elements (particles, films, 

fibers, etc.) and nanostructured materials. 

 First, this thesis addresses the formulation of the surface and interface elastic 

behavior.  The reduced coordination of atoms near a free surface or near an interface 

induces a corresponding redistribution of electronic charge, which alters the binding 

situation (Sander, 2003).  As a result, the equilibrium position and energy of these atoms 

will, in general, be different from their bulk positions and bulk energies.  Thus, the elastic 

moduli of the surface region may differ from those of the bulk.  Inspired by the works of 

Gibbs (1928) on the concept of a dividing surface and surface energy, those of 

Shuttleworth (1950) on surface tension and finally those of Nozières and Wolf (1988) 

who introduced the concept of surface strain, we clearly formulate the surface free 

energy, the surface excess energy, the surface stress and strains and the surface elastic 

constants.  We capture the surface atomistic structure and interactions and cast it into 

surface free energy, a thermodynamic quantity of continuum that will subsequently be 

used in a continuum framework. 

 Second, a semi-analytical methodology is developed to quantify the interface 

elastic behavior.  Because of their significant effects on material behavior, surface 

properties have attracted tremendous attention.  Many approaches have been proposed 

and used to experimentally measure or theoretically predict surface properties.  Among 

the various experimental techniques, contact angle measurement and zero creep method 

are well-known techniques commonly used to measure surface energy (Digilov et al., 

1976; Tyson and Miller, 1977; de Boer et al., 1988; Qu, 2003).  Theoretical predictions 

of surface elastic properties have been made using a variety of different techniques.  

Among them, first principle calculations, molecular dynamics (MD) and molecular static 

(MS) simulations have been extensively used.  As early as 1986, Ackland and Finnis 

(1986, 1987) presented calculations of surface tension for body-centered cubic (BCC) 
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and face-centered-cubit (FCC) metals using simple empirical N-body potentials.  Their 

results yield satisfactory agreement with available experimental data.  Needs (Needs and 

Godfrey, 1990; Mansfield and Needs, 1991; Needs et al., 1991) performed first principle 

calculations of surface stresses and surface energy for different materials and different 

surface orientations, and investigated the role that surface stress may play in surface 

reconstructions.  Todd and Lynden-Bell (1993) investigated surface properties and some 

bulk properties of metals using the Sutton-Chen potential in order to gain microscopic 

insights into surface phenomena.  Others, like Schmid and coworkers (1995), have 

studied stresses and surface elasticity using effective-medium theory potentials which 

allow them to probe the stresses and elasticity of individual layers.  Daw and Baskes 

(1983, 1984, 1992), as well as Mishin and coworkers (1999, 2001), evaluated the ability 

of the embedded-atom method (EAM) potentials to predict energies and stability of non-

equilibrium structures.  Shenoy (2005), using MS simulations of a slab in conjunction 

with the EAM potential, calculated several crystal faces of some FCC metals.  His 

method requires multiple MS simulations at different levels of stretching of the slab.  

Tartaglino (2001) presented a calculation of the change of free energy of a solid surface 

upon bending of the solid. It is based on extracting the surface stress through a molecular 

dynamics simulation of a bent slab by using a generalized stress theorem formula, and 

subsequent integration of the stress with respect to the strain as a function of bending 

curvature. 

 Concerning the interfacial energy, Wolf (1990) and Rittner (Rittner and Seidman, 

1996) performed energy minimization calculations to reproduce the grain boundary 

interface energy as a function of misorientation angle for <110> symmetric tilt interfaces.  

Surprisingly enough, there is limited atomistic simulation work in the literature that 

directly addresses interfacial stresses and interface elasticity (Streitz, 1994; Streitz et al., 

1994; Schmid et al., 1995; Shenoy, 2005).  Most of the existing methods of computing 

surface elastic properties are rather complicated to perform and are computationally 
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intensive, particularly if the surface stress as a function of surface deformation is the 

main interest.  This work represents an advancement over previous calculations of 

interface and surface elastic properties of crystalline materials.  Using this method, 

surface elastic properties, such as the intrinsic surface energy density, intrinsic surface 

stress and surface elastic stiffness, are given analytically in terms of the inter-atomic 

potentials of the material.  To evaluate these analytical expressions for the relaxed 

surfaces, one needs to know only the equilibrium (or relaxed) positions of the atoms near 

the free surface, which are obtained by conducting a standard energy minimization 

calculation of the interface structure (Spearot, 2005).  In comparison with existing 

methods, the semi-analytical method developed here reduces the amount of computation 

significantly, and conceivably increases the accuracy of the computation.  More 

importantly, because of the analytical and explicit nature of the method, it provides us 

with a much better tool to understand the surface characteristics. 

 Third we focus on developing a continuum framework that incorporates the 

surface free energy into the analysis of the macroscopic deformation of nanostructured 

materials.  In particular, we study the effects of surface free energy on the effective 

modulus of nano-particles, nano-wires and nano-films as well as nanostructured 

crystalline materials.  The effect of free surfaces on the elastic properties of thin films and 

nanowires has been studied intensively by atomistic simulation (Cammarata and 

Sieradzki, 1989; Wolf, 1991; Streitz, 1994; Cammarata, 2000; Diao, 2004; Liang et al., 

2005).  For example, Liang et al. (2005) found a decrease of the Young’s modulus of 

[100] copper nanowires when decreasing the cross-sectional area and they qualitatively 

attribute the decrease of Young’s modulus to the non-linear elasticity of the core of 

nanowires (see Figure 1.3).  In a similar study Diao et al. study the effects of the surfaces 

and edges on the structure and elastic properties of gold (Au) nanowires.  They found that 

when the thickness of a gold nanowire is less than a critical value, the surface stresses 

induce a phase transformation and result in a new structure for the nanowire.  Wolf 
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(1991) examined elastic properties of thin films along different crystallographic 

orientations.  He found that the Young’s modulus in the (100) direction for (100) oriented 

Cu and Au films decreases when decreasing the thickness of the film while the Young’s 

modulus in the (110) or (112) direction for (111) oriented Cu and Au films is found to be 

increasing when decreasing the film thickness. 

 Nevertheless, few researchers have proposed a model incorporating the surface 

behavior into a continuum model.  Cammarata and Sieradzki (1989) proposed a simple 

surface stress model that explicitly introduced surface energy and surface stress into the 

equations for equilibrium of a thin film.  They showed that depending on the sign of 

surface stress (tensile or compressive), surface stress causes a thin film to contract or 

expand in the plane of the film upon relaxation from its bulk atomic positions.  The 

resulting equilibrium strain with respect to the unrelaxed configuration is given by 

  * 0

0
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λ ∞

= −   , (1.4) 

where f0 is the surface stress, λ0 is the initial unrelaxed thickness of the film, and Y∞ is the 

biaxial modulus of the bulk.  The effective biaxial modulus of the relaxed film is then 

evaluated as 
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where B∞ is the coefficient of first-order term in the Taylor expansion of the biaxial 

modulus of bulk as a function of the biaxial strain, η is some sort of a Poisson’s ratio, and 

f ′  is the first derivative of the surface energy with respect to the surface strain.  This 

model neglects the change of the film thickness caused by the surface relaxations and is 

specifically tailored to a very specific type of nanostructural elements. 

 Concerning nanostructured materials, there is a very limited and recent work in 

the literature (Sharma and Ganti, 2003; Sharma and Ganti, 2004; Duan et al., 2005; 

Huang, 2006) that addresses the size dependence of nanostructured materials and 
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nanocomposites.  All of these works revisited the Eshelby solution including the surface 

energy and interfacial stresses assuming that the same relationship between surface 

energy (or interfacial energy in this case) and surface stress exist for free surfaces and 

bicrystal surfaces. 

 In comparison with the existing models, the work presented here clearly 

distinguishes free surfaces and interfaces.  It incorporates the surface properties in a 

general framework valid for any shape of nanostructural elements / nano-inclusions 

(integral forms) and characterizes the size-dependency of the elastic properties.  Such a 

formulation clearly constitutes a tool that will enable the integration of those types of 

materials into engineering applications and a basis to develop more advanced composite 

materials. 

 

1.3 Dissertation Structure 

 

 This dissertation is the synthesis of several years of personal research at Georgia 

Tech but also refers to collaborative work with some of my colleagues.  This research led 

to five publications in scientific journals and several presentations at various conferences.  

The writing of these memoirs had been carried out with the concern of details and 

precision, in the hope that this manuscript might become a useful working tool for the 

ones who would like to get inspired from the results obtained and the methods developed.  

Therefore, some sections might be redundant but each chapter can be read independently 

and does not require the reader to know all the subtleties of the previous chapters. 

 Chapter 2 is relatively short and presents the theory of atomistic simulation.  First, 

we outline the fundamentals and the role of atomistic simulation.  Next the basic 

assumptions and simplifications used in the basic atomistic “machinery” are discussed.  

This includes the use of periodic boundary conditions to mimic medium of infinite extent 
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of thin films for examples, and the different type of statistical mechanics ensembles 

considered to control the evolution of the atomistic system.  Next, we present the 

mathematical details of the molecular statics and energy minimization algorithm used 

throughout this work.  The most probable configuration of nanostructure in their relaxed 

state is necessary to be able to describe their elastic properties.  Finally, we close this 

chapter with a discussion of the fundamentals of interatomic potentials in section 2.4 with 

an emphasis on the embedded-atom method for F.C.C metals and the pair-wise potentials 

for ionic solids.  Detailed explanations regarding the interatomic potentials used for this 

work (Daw and Baskes, 1984; Foiles et al., 1986; Wolf et al., 1999) are given. 

 Chapter 3 is devoted to the elastic properties of bulk phases.  Following the axiom 

“nanostructure = bulk + surface”, a clear understanding of the properties of the bulk is a 

necessary first step in the description of nanostructure.  In this chapter we first recall 

some useful fundamental concepts and definitions used to describe the elastic behavior of 

bulk phases.  More specifically, we will recall definitions of stress, strain and elastic 

energy as well as the elastic constant.  Next we focus and present an easy and simple 

analytical method of calculating the full set of second and third order elastic (TOE) 

constants for single crystal materials based on their interatomic potentials.  This method 

is based on the expansion of an interatomic potential about the equilibrium state of the 

bulk.  It has the advantage of significantly reducing the computation time and is 

inherently accurate.  The method is analytical in that it involves only numerical 

evaluation of the interatomic potential and its derivatives.  To illustrate this methodology, 

we present the TOE constants Cu, Ni, Au, Ag, Pt, Pd and Al single crystals.  We close 

this chapter by presenting homogenization techniques to calculate the effective TOE 

constants of the corresponding polycrystals.  The estimates of the effective TOEC for 

isotropic aggregates of cubic crystals are of greater interest when calibrating experiments 

measuring anharmonicity properties of the studied materials.  Results are presented for 
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Cu, Ni, Au, Ag, Pt, Pd and Al polycrystalline isotropic aggregates of single cubic 

crystals. 

 Chapter 4 presents the elastic description of surfaces and interfaces.  In this 

chapter, the concept of interfacial excess energy is first reformulated from the continuum 

mechanics perspective.  This approach considers a single dividing surface separating the 

two homogeneous phases (as opposed to the interface considered as an interphase).  The 

interface contribution to the thermodynamic properties is defined as the excess over the 

values that would obtain if the bulk phases retained their properties constant up to an 

imaginary surface (of zero thickness) separating the two phases.  Such a new formulation 

allows us to then determine interfacial excess energy using a semi-analytical method.  

The cases of free surfaces and interfaces are distinguished.  To illustrate this 

methodology we subsequently present numerical examples of calculated free surface 

elastic properties, such as the intrinsic surface energy density, intrinsic surface stress and 

surface elastic stiffness for low-index surfaces (111), (100) and (110) of face-centered 

cubic metals copper (Cu), nickel (Ni), silver (Ag), and palladium (Pd).  The properties of 

these surfaces are discussed in terms of “reduced units” in order to compare the different 

materials and understand the origin of these coefficients.  Numerical examples of 

calculated interfacial excess energy are finally given for grain boundaries in Cu bicrystals 

to close this chapter. 

 Chapter 5 discusses nanomechanics theories modeling the macroscopic behavior 

of nano-structured materials.  First, existing methods in the literature designed to account 

for the size-effect in material behavior are briefly reviewed.  We then propose and 

develop a framework to incorporate the surface free energy into the continuum theory of 

mechanics.  Based on this approach, it is demonstrated that the overall elastic behavior of 

structural elements (such as particles, wires, films) is size-dependent.  Although such 

size-dependency is negligible for conventional structural elements, it becomes significant 

when at least one of the dimensions of the element shrinks to nanometers.  Numerical 
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examples are given to illustrate quantitatively the effects of surface free energy on the 

elastic properties of nano-size particles, wires and films for several materials.  These 

results are then compared with a semi-analytical method based on interatomic potential to 

compute and study the elasticity of nanowires and thin films grown along (001), (110), 

and (111) crystallographic directions for group 10-11 transition metals.  The comparison 

with the continuum model clearly shows the influence of the third order elastic constants 

on the effective elastic stiffness of the nanostructural elements.  The softening induced by 

the surface elasticity in all three directions is accentuated or compensated by the non-

linear response of the core of the element depending on the orientation.  A decomposition 

of the interatomic potential gives insights on the origins of the effective elastic response 

of the nanostructural elements.  We finally close this chapter by revisiting boundary 

conditions of the classical formulation of Eshelby (1957) for embedded inclusions and 

modifying it by incorporating the previously excluded surface/interface stresses, tension 

and energies.  Unlike the classical result, our modified formulation will eventually 

renders the elastic state of an embedded inclusion size-dependent making possible the 

extension of Eshelby’s original formalism to nano-inclusions.  The theory developed 

combines continuum mechanics and atomistic simulation for modeling and predicting the 

macroscopic properties of nanomaterials.  Such nanomechanics theory exhibits the 

simplicity of the continuum formulation while takes into account the discrete atomic 

structure and interaction near surfaces/interfaces.  In other words, it uses the atomic level 

information in a continuum mechanics framework that can be used to analyze, model and 

simulation macroscopic behavior of nano-structure materials.  This approach bridges the 

gap between discrete system (atomic level interactions) and continuum mechanics. 

 Chapter 6 summarizes the significant contributions of this research and provides 

recommendations and suggestions for future work directions based on the results of this 

thesis. 
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Figure 1.1  Hall-Petch plot of the effect of grain size d on the flow stress σ of Cu at 300K 
from Conrad (2003) 

 

 

 

 

Figure 1.2  The dependence of the Young’s modulus of silver and aluminum films on the 
film thickness d from Mizubayashi et al. (1999) 
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Figure 1.3  Thickness dependence of Young’s moduli for [001], [110], and [111] 

nanowires from Liang et al. (2005) 
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CHAPTER 2 

ATOMISTIC SIMULATIONS 

 

 This chapter presents the theory of atomistic simulation.  First, we outline the 

fundamentals of atomistic simulation and its limitations.  We next discuss the main 

assumptions and simplifications used in the basic “machinery”.  This includes the role of 

periodic boundary conditions and the different types of statistical mechanics ensembles 

considered.  In the following section the mathematical algorithm details of molecular 

statics calculations used for this work are presented.  Finally, the fundamentals of 

interatomic potentials with an emphasis on the embedded-atom method close this chapter.  

No attempt is made to address advanced topics in atomistic calculations and we 

recommend the reading of more detailed and comprehensive reviews in books by Haile 

(1992) or Rapaport (1995) for examples. 

 

2.1 Introduction 

 

 Many physical problems of great interest fall outside the realm of “special cases” 

that can be treated with theoretical models.  Among them, we could mention the physics 

and chemistry of surfaces and interfaces, the characterization of clusters of atoms or the 

anharmonic properties of materials, which all involve to a large extent, disorder, 

asymmetry and a considerable amount of degrees of freedom.  With the advent of high 

speed computers, computational material science became a scientific field in its own 

right, enabling the setup of computer experiments to investigate complex and realistic 

systems.  For instance, as early as 1957, the introduction of the monstrous IBM 704, 

allowed Alder and Wainwright (1957) to investigate the phase diagram of hard sphere 
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systems and to perform their calculations for a 108-atom system.  Many important 

insights concerning the behavior of simple liquids emerged from their studies.  Nowadays 

atomistic simulations complement most fields of materials science and engineering.  For 

example, former colleague Douglas Spearot used Molecular Dynamics (MD) simulations 

to study the fundamental failure processes that occur at a bicrystal interface in Cu and Al 

as a result of a mechanical deformation (Spearot, 2005). 

 Atomistic simulation refers to a family of computational techniques used to model 

the interaction and configuration of a system of atoms.  These simulation models include 

energy minimization, Molecular Dynamics, Monte Carlo and lattice Monte Carlo 

method.  The energy minimization method seeks to reduce the net force acting on the 

atoms by moving the atoms to lower energy configurations.  This process is ideal for 

determining lowest energy structures at zero Kelvin.  The Molecular Dynamics model 

imitates the vibrations of atoms by solving Newton's equation of motion.  Through this 

process, systems are simulated at finite temperatures.  The Monte Carlo method involves 

the random sampling of a system's states.  This method is useful in determining 

equilibrium structures and properties at finite temperatures.  Finally, the lattice Monte 

Carlo method is useful to model systems over long time periods.  This method ignores 

atomic vibrations and considers events that involve atomic motion from one lattice site to 

another.  In this research we principally dealt with energy minimization and Molecular 

Dynamics. 

 In atomistic simulations, the goal is to understand and model the motion of each 

atom in the material.  The collective behavior of the atoms allows the understanding of 

how the material undergoes deformation, phase changes or other phenomena, providing 

links between the atomic scale and meso/macro phenomena.  In the atomistic framework, 

each atom is represented as a point mass in space.  The force acting upon each atom is 

derived from energy functionals of the positions of the atomic nuclei.  This simplification 

bypasses the treatment of the motion and interaction of the individual electrons.  The 
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conservation law of total energy implies that the force iF  on a given atom i derives from 

the gradient of the potential energy U, 

  
( )1, , , ,i N

i

i

U∂
= −

∂

r r r
F

r

� �
  , (2.1) 

where ir  is the atomic position vector for the ith atom.  Detailed information concerning 

the interatomic potential used for calculations in this research is presented in section 2.4.  

Traditional atomistic simulations follow the classical laws of mechanics and evaluate the 

atomic positions, velocities and forces of a set of interacting atoms.  This is a 

deterministic technique: given initial conditions, the subsequent evolution is in principle 

completely determined.  The conversion of this microscopic information to macroscopic 

observables such as pressure, stress tensor, energy, etc… requires theories and strategies 

developed in the realm of statistical mechanics.  According to statistical physics, physical 

quantities are represented by averages following the ergodicity principle (ensemble 

average = time average).  Trajectories in the phase space calculated by atomistic 

simulation provide such configurations, and therefore measurement of physical quantities 

is simply obtained through arithmetic averaging. 

 Typical atomistic simulations can be performed on systems containing thousands, 

maybe millions of atoms, for a simulation time ranging a few picoseconds to several 

nanoseconds.  Simulations are therefore limited by the relaxation time and the 

characteristic length of the quantities of interest.  As discussed later in this chapter, there 

is a solution for solving the scaling problem (ability to treat more atoms in the system 

studied), although no solution exists for the time scale dilemma (limitation in the time 

scale range).  As a consequence, we need to be very careful while considering its range of 

validity and interpret with caution the results. 
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2.2 Nuts and Bolts of Atomistic Simulation 

 

 In this thesis work we used two atomistic codes called PARADYN and WARP, 

initially written by Dr. Steve Plimpton at Sandia National Laboratories / Albuquerque, 

NM.  The code is written in FORTRAN90 and performs parallel calculations with a 

domain-decomposition technique.  We used a MD code modified by former student 

Douglas Spearot who implemented in parallel the capability to perform molecular statics 

(energy minimization) calculations.  In addition, we made a number of small 

modifications to the code that are critical to the analysis provided in this thesis, such as 

the implementation of algorithms to identify various characteristics of nanoscale 

configurations.  This section discusses some important aspects of atomistic simulations 

performed throughout this research. 

 

2.2.1 Periodic Boundary Conditions 

 As briefly discussed in the previous section, an inherent problem associated with 

atomistic simulations is the limited number of atoms or equivalently the degrees of 

freedom that can be treated.  No matter how large the simulated system is, its total 

number of atoms N, is still negligible compared with the number of atoms contained in 

“macroscopic chunks” of materials (for example in the order of 1011 atoms for a 1mm-

long wire with a cross section of 5 nm).  While the study of atomic surface effects is 

particularly important, in this research we want to study and characterize the macroscopic 

behavior of surfaces and interfaces as well as realistic nanostructures.  In order to have a 

realistic modeling of those physical systems we can use Periodic Boundary Conditions 

(PBCs).  This methodology virtually replicates to infinity the calculation box containing 

the studied geometry by rigid translation in all the three Cartesian directions.  Figure 2.1 

illustrates this principle in a 2-D case. 
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 If one particle of the calculation box is located at a position vector r , then it is 

assume that this particle actually represents an infinite set of particle located at, 

  { }l m n+ + +r a b c   , ( ), , ,l m n = −∞ +∞   , (2.2) 

where l, m, n are integers ranging from minus infinity to plus infinity, and  with a, b, and 

c being the three axis vectors of the calculation box.  All of these “image” cells are 

subjected to the same forces, but only one of them is explicitly represented in the 

atomistic methods.  Not only does each particle i in the calculation cell interact with other 

particles in the box, but also with their images in the surrounding images cells.  One can 

easily see that periodic boundaries virtually remove surface effects from the system and 

that the position of the box boundary has no consequence. 

 As an effect of the PBCs, the number of interactions increases tremendously.  

Nevertheless, in practice, the interatomic potentials used have a finite range for 

interaction and particles do not interact with each other if they are separated by a distance 

larger than a defined cutoff distance Rc.  By making sure that the box size is at least 2 Rc, 

we can simplify even more the PBCs by keeping the closest image cells.  This is known 

as the minimum image criterion. 

 Even though, the purpose of PBCs is to eliminate surface effects, in this work we 

are also interested in situations where we want to have free surfaces.  Free surfaces are 

generally simulated by defining a thick slab delimited by 2 free surfaces.  PBC in the 

direction perpendicular to the free surfaces is removed while it is retained in the in-plane 

directions.  There is therefore no replication in the perpendicular direction.  The slab is 

taken to be thick enough so that one can expect that the core would be similar to the bulk 

of the material.  The top and bottom surface can then be considered as decoupled and 

independent.  In these conditions the system can be considered to behave as a semi-

infinite medium.  Similarly if one leaves PBCs along one direction only, we can simulate 

a wire, with the wire axis along the PBC direction. 
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2.2.2 Control of the System:  Role of Statistical Ensembles 

 In an atomistic calculation, the system could be in a state characterized by a 

certain density, energy, temperature, and/or pressure.  From a statistical mechanics point 

of view, different ensembles can be considered to describe isolated or partially isolated 

systems.  These considerations are particularly important when performing atomistic 

simulations.  Different boundary types lead to different ensembles. 

 

 If the system is completely isolated from its surroundings with a fixed number of 

atoms, volume and constant total energy, this corresponds to a microcanonical (NVE) 

ensemble (Greiner et al., 1995).  The microcanonical average of a physical quantity Θ is 

obtained as the time average on the trajectory 

  ( )( )
1

1 Nt

NVE
tN

t
t =

Θ = Θ Φ∑   , (2.3) 

where Φ(t) is the phase space coordinate of the system (3N positions and 3N velocities), 

and tN is the final time step of the calculation. 

 To carry out calculations in the NVE ensemble, the Verlet leapfrog scheme 

(Verlet, 1967) is commonly used.  It generates trajectories in the NVE ensemble in which 

the total energy (kinetic plus potential energy) is conserved. If this property drifts or 

fluctuates significantly in the course of a simulation it indicates that the time step is too 

large or the potential cutoffs too small.  The algorithm requires for each atom, that values 

be obtained for the position vector r  and the force vector F  at time t while the velocity 

vector v  is half a time step behind.  The first step is to advance the velocity to 1 2t t+ ∆  

by integrating the force 

  
1 1 ( )

( ) ( )
2 2

t
t t t t t

m
+ ∆ = − ∆ + ∆

F
v v   , (2.4) 

where m is the mass of the atom and ∆t is the time step.  The positions are then evaluated 

at the next time step using the new velocity 
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1

( ) ( ) ( )
2

t t t t t t+ ∆ = + ∆ + ∆r r v   . (2.5) 

Atomistic simulations normally require properties that depend on position and velocity to 

be evaluated at the same time.  The velocity at time t is therefore obtained from averaging 

the velocities at time 1 2t t+ ∆  and 1 2t t− ∆  

  
1 1 1

( ) ( ) ( )
2 2 2

t t t t t
 = + ∆ + − ∆  

v v v   . (2.6) 

 

 If the system is allowed to interact with its surrounding environment through 

either thermal or physical constraints then depending on the equations of motion that 

describe the system of atoms, this may correspond to the canonical (NVT or NPT) 

ensemble (Greiner et al., 1995).  The basic idea is to integrate other equations in place of 

Newton’s equations in such a way that the sampling is performed in another statistical 

ensemble. 

 To carry out calculations in the NVT, the method developed by Nosé and Hoover 

(Nosé, 1984; Hoover, 1985) is generally used.  It introduces a time-dependent frictional 

term ζ  to the equation of motions, whose time evolution is driven by the imbalance 

between the instantaneous kinetic energy and the average kinetic energy (3N/2)kBT.  The 

velocity of each atom is calibrated to the control temperature To through 

  
2

( )
( ) ( )

( )
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t
t t
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= −

 
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F
v v�

�

  , (2.7) 

where the ‘dot’ represents the first derivative with respect to time, T is the temperature at 

time t, and Tv  is the thermostating rate.  We use this type of system control in this 

research when performing studies of the tensile behavior of nanostructures (such as thin 

films or nanowires) or grain boundary interfaces. 
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 To carry out calculations in the NPT an additional degree of freedom representing 

the volume of the calculation box is introduced, and all the particle coordinates are given 

in units relative to the box. Several schemes for isobaric ensembles have been developed 

by Andersen (1980), Parrinello and Rahman (1981) or Hoover (1985).  Each of these 

methods allows the volume of the calculation cell to change its size, driven by the 

imbalance between the internal and desired system pressures or stresses.  Similar to the 

NVT ensemble, the Nosé-Hoover (1985) constant pressure equations of motion calibrate 

the velocity of each atom to the control pressure Po through 

  ( )
2

o

( ) ( ) ( )

( )P

o

t t t

v
V t

NkT

= −

= −

=

v F ηv

η Π P

h ηh

�

�

�

  , (2.8) 

where η  is the isobaric friction coefficient, Pv  is the constant pressure damping 

coefficient, k is the Boltzmann’s constant and V(t) is the volume of the calculation box at 

time t.  The boundaries of the calculation box are defined by a set of three vectors h  

along the edges of the periodic unit cell, h .  The internal system stress Π is calculated 

using the virial definition, 

  
1 1

2i i i ij ij

i j i

mαβ α β α β

≠

 
= − + 
Ω  

∑ ∑Π v v F r   . (2.9) 

where Ω  is the volume of the system, im  and iv  the mass and velocity of the atom i, ijF  

is the force between atoms i and j, ijr  is the distance between atoms i and j, and the 

subscripts α  and β  denote the Cartesian components.  In this work, we use this control 

scheme when performing equilibration studies of the nanostructures and grain boundary 

interfaces in order to get the relaxed states. 

 More complete reviews of ensembles used in atomistic calculation are provided in 

textbooks by Haile (1992). 
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2.3 Molecular Statics 

 

 In this work, molecular statics (MS) calculations are used to compute the 

minimum energy of nanostructures such as films and nanowires as well as the most 

probable configurations of interface structures.  It is critical that the relaxed states of 

interfaces and nanostructures are depicted accurately to enable us to draw unambiguous 

conclusions regarding the surface and interface properties or the mechanical behavior of 

the nanostructures studied.  A nonlinear conjugate gradient method is used to calculate 

the atomic configuration (relaxed positions of the atoms) associated with the minimum 

potential energy of the system considered.  The following is a brief overview of the 

algorithms implemented with Douglas Spearot in the WARP code.  The MD code 

PARADYN already had a built-in conjugate gradient algorithm to minimize the energy of 

the system to a certain tolerance.  A more complete review of steepest decent, linear and 

nonlinear conjugate gradient methods is provided in Shewchuk (1994). 

 The conjugate gradients (CG) method is a well-known iterative method used to 

solve sparse systems of linear equations.  The basic idea behind this method is to used the 

gradient ( )f x′  of smooth enough continuous function ( )f x  to find the minimum of this 

function since by definition, the gradient vector points in the direction of the greatest 

increase of a given function. 

 The starting point of the CG method in atomistic simulation is taken from 

equation (2.1) where the force is defined as the negative of the gradient of the potential 

energy U .  Therefore, since the force vector points in the direction of greatest decrease in 

the potential energy, the minimum of the potential energy is found by setting the gradient 

equal to zero and solving for the appropriate values of { 1, , Nr r� }. 

 The minimum potential energy of a system (most probable configuration) is 

obtained through an iteration process.  For the ith iteration step, the first step is to define 
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the residual ( )ip  as the negative of the gradient of the potential energy which is also by 

definition the force 

  ( )
( )

( )
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i

U∂
= −

∂

r r
p

r

�
  , (2.10) 

where ( )ir  represents the position vector at the i
th iteration step.  The position is then 

updated at the next step using search direction ( )id  such that 

  ( ) ( ) ( )1 ii i i
α+ = +r r d   , (2.11) 

where iα  is a scalar that minimizes the potential energy in the search direction for this 

iteration step. 

 The choice of step direction is different depending on the minimization technique 

chosen.  For example, the method of steepest decent (SD) sets the search direction equal 

to the residual at each iteration step.  Thus, successive search directions will always be 

orthogonal.  Unfortunately, the method of steepest decent is inefficient, as the algorithm 

will often search in the same direction a number of times during energy minimization.  

Linear and nonlinear conjugate gradient methods use the residual to define the initial 

search direction such as, 

 ` ( ) ( )
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0 0
0

, , NU∂
= = −
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r r
d p

r

�
  . (2.12) 

Using equation (2.12) and an appropriate step size 0α , the positions of the atoms are 

updated.  Once the new atomic positions are obtained, the new search direction, ( )1i+d , is 

built from the new residual, ( ) ( )1 1i i
U+ += −∂ ∂p r , and the last search direction, 

  ( ) ( ) ( )11 1 ii i i
β ++ += +d p d   , (2.13) 

where the scalar ( )1iβ +  is calculated by requiring that successive search directions are U-

orthogonal meaning conjugate, 
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  ( ) ( )1 0T

i i
U+ =d d   . (2.14) 

Due to convergence criteria for non-linear problems, the minimization algorithm 

implemented in WARP calculates the scaling parameter β  using the Polak-Ribière 

formula, 
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Convergence is guaranteed in the Polak-Ribière method by requiring that β  be non-

negative (Shewchuk, 1994).  Setting 0β =  essentially results in reinitializing the 

minimization calculation, as the search direction is then equal to the residual of the 

potential energy. 

 Once the search direction is determined, we finally need to evaluate the scalar iα  

before using equation (2.11) to calculate the new atomic positions associated with the 

minimum potential energy of the system.  To solve for iα , the CG method requires that 

the gradient of the potential energy at the point ( )1i+r  be orthogonal to the search direction, 

  ( )( ) ( ) ( ) ( )( ) ( )1 0
T T

ii i i i i
U U α+
   ′ ′= + =
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r d r d d   . (2.16) 

A line search algorithm is used to solve the above expression.  Two common algorithms 

are the Newton-Raphson method and the secant method.  Both require that the second 

derivative of the potential energy exist and be continuous.  The Newton-Raphson method 

requires the explicit evaluation of the second derivative of the potential and is 

computational expensive, therefore the implemented algorithm employs the secant 

method which is simpler and less computationally demanding.  The secant method does 

not directly compute ( )( )iU ′′ r ; it evaluates the first derivative (negative of the force 

vector) at various points around ( )( )iU ′ r .  With this methodology, 
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where µ  is a small, nonzero number.  The choice of µ  is arbitrary during the first 

iteration of the secant method.  For each subsequent iteration, the value of µ  is set equal 

to the negative of the previous value of nα , i.e., 

  1n nµ α+ = −   . (2.18) 

In equation (2.18), n denotes the number of iterations taken in the secant method, which 

should not be confused with the number of iterations in the conjugate gradient routine, i.  

The combination of properly chosen search directions and step sizes avoids repeated 

searches by stepping the ‘correct’ distance in each search direction on every CG iteration 

step. 

 Nevertheless, nonlinear CG methods, applied to nonlinear functions such as the 

potential energy of system of atoms, does not guarantee the convergence toward the 

global minimum of the system every time but rather a local minimum.  To improve 

convergence, the CG algorithm routine is restarted every few iterations, especially in 

problems that involve small numbers of atoms. 

 In order to verify the CG algorithm, we modeled a F.C.C lattice of copper with 

the lattice spacing slightly different from its bulk value in one of the three directions.  

After applying PBCs in the three directions, and letting the system relax using the CG 

routine in a NVT ensemble, the resulting structure reached after equilibration, was 

exactly the bulk configuration. 

 

2.4 Interatomic Potentials 

 The interatomic potentials are at the heart of atomistic simulations.  In classical 

atomistic simulations, the atoms are represented by mass-points in space interacting 
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through many-body interactions potential.  The complex description of electrons 

dynamics is abandoned and an effective depiction is taken.  In this picture, the 

interatomic interaction and internal degrees of freedom are completely defined by a set of 

parameters and functions which depend on the positions of the atoms in the system. 

 

2.4.1 Interatomic Potentials for F.C.C metals:  the Embedded Atom Method (EAM) 

 Among all of the interatomic potentials, the EAM method is a very efficient 

technique for modeling realistic descriptions of metallic cohesion.  Pair-wise potentials, 

like Lennard-Jones (LJ) potentials (Lennard-Jones, 1924a, 1924b) presented in equation 

(2.19) fail to adequately describe all the properties of metals. 

  ( )
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  . (2.19) 

For example, the LJ potential imposes the Cauchy relation C12=C44 on the elastic 

constants.  This relation proves to be wrong for most metals.  Pair-wise potential also 

fails to estimate accurately the relaxation and reconstruction around point defects such as 

vacancies or interstitial sites. 

 By introducing many-body potentials, we can go beyond the pair interaction.  

Daw and Baskes (1983; 1984) developed the embedded atom method (EAM) potential to 

describe atomic bonding in face-centered cubic (FCC) metallic systems.  The EAM is a 

semi-empirical approach that uses multi-atom potential for modeling the interatomic 

forces.  In this scheme all atoms are treated in a unified way.  The method is so called 

“embedded” because it views each atom individually as if it was embedded in a host 

lattice comprising all other atoms.  It has the important benefit of keeping the 

computational scaling on the order of magnitude of N (if N is the number of particle 

composing the system) whereas more complex and thorough many-body potential scale 

on the order of magnitude N3 (for instance, Density Functional Theory).  For example the 
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EAM potential requires only 2 to 5 times the computing time of pair potential (Voter, 

1994).  In the EAM framework, the total energy of an atom is expressed as the sum of the 

contribution from the energy of two-body interactions and the embedding energy 

incorporating the complex nature of metallic cohesion 

  
1

( ) ( )
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G V mn

n n n n n

m n

E E E G V rρ
≠

= + = + ∑   , (2.20) 

where G

nE  and V

nE  represent, respectively, the embedding energy of atom n and the pair 

interaction potential between atoms m and n.  .  In the above expressions, mnr  is the scalar 

distance between atoms m and n and nρ  is the local background electron density induced 

at atom n by the rest of the atoms in the system calculated as a linear superposition of the 

contributions from all neighboring atoms.  The density contribution of each atom is 

assumed to be spherically symmetric, implying that bond orientation is neglected in such 

potentials. 

  ( )
m n

m mn

n rρ ρ
≠

≡∑   . (2.21) 

This summation is performed over the neighboring atoms within a specified cut-off 

distance and typically includes at least first and second nearest neighbors. 

 According to Density Functional Theory, it can be demonstrated  that (i) the 

energy of a system of atoms can be exactly determined by a function of its electronic 

density (Carlsson, 1990) and (ii) the energy change due to the embedding of an atom into 

a host matrix of atoms can be also given by a function of the electronic density of the host 

matrix prior to embedding an atom (Daw and Baskes, 1984).  A parameterized functional 

form is determined empirically by fitting the predicted results to experimental values or 

values obtained from more precise ab-initio techniques.  These include physical 

properties such as the equilibrium lattice parameter, cohesive energy, sublimation energy, 

elastic constants C11, C12 and C44 and vacancy-formation energy (Daw and Baskes, 1984; 

Foiles et al., 1986).  Interatomic potentials developed more recently are fit to additional 
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structural properties, such as the energies of hexagonal close-packed (HCP), body-

centered cubic (BCC) and diamond cubic structures, the phonon energies or the stacking 

fault energy (Mishin, 1999; 2001). 

 In this work we used two types of potential to study metallic surfaces and 

interfaces.  For free surfaces the Foiles et al. (1986) EAM interatomic potential for 

copper, nickel, palladium and silver was used.  This potential is satisfactory when 

studying basal free surfaces since it is fitted to bulk elastic constants and surface energy.  

To partially validate these EAM potentials and the molecular dynamics codes used, we 

performed two sets of simulations to calculate the elastic constants (C11, C12) and surface 

energy in the [100], [110] and [111] crystallographic directions (more detailed results and 

discussion on these subjects are presented in chapter 3 and chapter 4). 

 The first set of simulations is designed to compute the elastic constants.  We first 

created the initial assembly using the given material properties (atomic weight, lattice 

spacing, material EAM potential, etc.).  A typical computation cell contains 1000 atoms.  

PBCs in all three directions are applied in order to simulate a crystal of infinite extent.  

We then performed a strain meshing of the calculation cell in all three directions with 

strains ranging from -1% to 1% and a strain increment of ±0.01% using a NVT ensemble.  

The crystal was therefore stretched by independently varying the lattice constants along 

the three principal directions of the calculation cell.  The total energy density u of the 

system was then calculated for each triplet (ε11, ε22, ε33).  The elastic constants were then 

determined by fitting a polynomial to the bulk energy density–strain curve such as, 

  0

1

2ii ii iijj ii jju U U Uε ε ε= + +   . (2.22) 

Through this curve fitting, the coefficients C11 and C12 can be directly determined.  In the 

second series of calculations, the initial assembly is created and oriented in the desired 

crystallographic orientation.  Periodic boundary conditions are used in the two planar 

directions with free surfaces in the vertical direction to mimic an infinite plane.  The slab 
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thickness must be chosen to be thick enough to avoid interaction between the two 

surfaces.  A conjugate gradient method is used to minimize the total energy of the system 

using a NVT ensemble such that atoms in the vertical direction can fully relax.  

Numerical results for the elastic constant surface energy calculations are shown in Table 

2.1 and compared to experimental values.  As expected, results show good agreement 

with the experimental values. 

 When studying interfaces, The Mishin et al. EAM interatomic potential for 

copper (2001) is used in this work.  Spearot (2005) showed in his work that the EAM 

interatomic potential of Mishin et al. (2001) for copper is in fact the most appropriate 

choice to accurately model the formation and structure of dislocations in FCC metals, as 

well as the structure of grain boundaries.  Indeed this potential gives better estimates for 

both the intrinsic and unstable stacking fault energies compared to Foiles et al. (1986) 

potential. 
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Figure 2.1  Principle of Periodic Boundary Conditions 
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Table 2.1  Elastic constants (in 100 GPa) and surface energy for (111), (100) and (110) 
surfaces (in J.m-2) from EAM potential validation 

 Ni Cu Pd Ag Ag 

C11 2.331 
(2.500)b 

1.674 
(1.661)b 

1.984 
- 

1.289 
1.222)b 

1.289 
1.222)b 

C12 1.544 
(1.5)b 

1.241 
(1.199)a 

1.707 
- 

0.911 
(0.907)a 

0.911 
(0.907)a 

Γ0 (111) 1.436 
(1.45)c 

1.181 
(1.17)c 

1.224 
(1.22)c 

0.620 
(0.62)c 

0.620 
(0.62)c 

Γ0 (100) 1.572 
(1.58)c 

1.288 
(1.28)c 

1.377 
(1.37)c 

0.703 
(0.705)c 

0.703 
(0.705)c 

Γ0 (110) 1.721 
(1.73)c 

1.413 
(1.40)c 

1.482 
(1.49)c 

0.768 
(0.77)c 

0.768 
(0.77)c 

     

a Reference (Hiki and Granato, 1966) ; b Reference (Landolt-Bornstein, 1979) 
c Reference (Foiles et al., 1986) 
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CHAPTER 3 

ELASTIC DESCRIPTION OF BULK PHASES 

 

 In this chapter we recall useful fundamental concepts and definitions used to 

describe the elastic behavior of bulk phases.  More specifically, we recall definitions of 

stress, strain and elastic energy as well as the elastic constant.  A particular emphasis 

focus on an easy and simple analytical method of calculating the full set of third order 

elastic (TOE) constants for single crystal materials based on their interatomic potentials.  

The method is analytical in that it involves only numerical evaluation of the interatomic 

potential and its derivatives.  The TOE constants of single crystal Cu, Ni, Au, Ag, Pt, Pd 

and Al were calculated using this method.  The effective TOE constants of their 

corresponding polycrystals were also obtained from their single crystal data using a self-

consistent method as well as Voigt and Reuss-type estimates.  The results show good 

agreement with existing experimental data. 

 

3.1 Introduction 

 

 Second order elastic (SOE) constants and third order elastic (TOE) constants 

respectively appear in the quadratic and cubic representation of strain energy density.  

SOE constants describe the linear elastic response of a material.  They are commonly the 

only parameters used in engineering to characterize the elastic properties of a material.  

TOE constants are of interest in solid state physics because they characterize the 

anharmonicity properties of materials (non-linearity of the atomic displacements) such as 

thermal expansion, Grüneisen parameters, specific heat, interactions of thermal and 

acoustic phonons, and defects’ properties of crystals or the equation of state.  If higher 
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order elastic constants are known, many of these anharmonic properties can be calculated 

or estimated.  For example, the speeds and propagation modes of sound waves in 

statically stressed and damaged materials are different from those in unstressed and 

undamaged specimens(Seeger and Buck, 1960).  In the presence of small damages at the 

beginning of a fatigue cycle, non-linear effects are important, and thus the knowledge of 

the higher-order elastic constants.  The deviation from the linear behavior can be 

expressed in terms of the TOE constants.  For the reasons cited above it is important to 

determine the higher order elastic constants in crystals. 

 While data for SOE constants can be found in any given book of undergraduate 

Mechanical Engineering class, there are few experimental and theoretical data available 

in the literature concerning the third order elastic constants.  Experimentally, TOE 

constants can be determined from velocity measurements (Thurston and Brugger, 1964; 

Brugger, 1965; Hiki and Granato, 1966; Salama and Alers, 1967; Riley and Skove, 1973) 

of small amplitude sound waves in statically stressed media.  The difference in speed and 

propagation modes from the unstressed media is expressed as a function of the TOE 

constants.  An alternative experimental technique is to measure the TOEC statically 

(Seeger and Buck, 1960; Powell and Skove, 1968) by observing the deviations of the 

second order elastic constants (SOEC) from the Hooke’s law in materials under 

hydrostatic pressure.  However there is a large discrepancy in the measured values 

principally due to the accuracy of these experiments and the structure sensitivity of the 

TOE constants.  Furthermore these experimental procedures are exceedingly laborious. 

 Analytical methods have also been used to estimate the TOE constants.  

Micromechanics formulations (Barsh, 1968; Hamilton and Parrott, 1968; Lubarda, 1997) 

have been applied to calculate the effective TOE constants of isotropic aggregates of 

cubic crystals.  Çağin (Çağin and Ray, 1988) and Ray (Ray and Moody, 1985) presented 

a fluctuation formula allowing them to calculate the third-order elastic constants of 

solids, using molecular-dynamics computer simulation.  Srinivasan (Srinivasan, 1966) 
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derived expressions for the third-order elastic constants of non-primitive lattices from 

lattice theory by the method of homogeneous deformation. 

 In the literature, there are few, sometimes incomplete, reported experimental and 

theoretical measurements for single crystals and polycrystalline materials and there is a 

large discrepancy of results among them.  In this chapter, along with the reminder of 

fundamental concepts used in the description of elastic properties, we present an 

analytical method of computing the second and third order elastic constants of groups 10 

– 11 transition metals using the interatomic potentials directly without any atomistic 

simulations and tabulate the results for single crystals as well as isotropic aggregates of 

cubic crystals.  It is of interest to determine the higher order elastic constants in a 

homologous series of metals because the nature of the binding forces in metals is very 

different from that in ionic or covalent crystals but should be very similar in the 

homologous series.  Specifically, we calculate the full set of elastic constants for Cu, Ni, 

Au, Ag, Pt, Pd but also for Al.  The calculated elastic coefficients are consistent with the 

few existing data. 

 

3.2 Definition of the Elastic Constants 

 

3.2.1 Elastic Strain and Complementary Energy Representations 

 One way to introduce the elastic constants is through the Taylor expansion of the 

total strain energy density at the state of zero strain and stress (Martin, 1975), 

  ( )31 1

2 6ijkl ij kl ijklmn ij kl mnU C Cε ε ε ε ε= + +…   , (3.1) 

where ijε  is the Lagrangian strain measured from the perfect lattice of an undeformed 

crystal of infinite extent, ijklC  is a fourth order tensor consists of second order elastic 
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constants, and (3)
ijklmnC  is a sixth order tensor consisting of the third order elastic constants 

of the solid.  All are defined in the reference configuration, or the initial stress-free 

configuration.  Since the strain energy is expressed as a function of the strains, it can be 

easily shown that the following symmetry conditions must be met by these tensors, 

  ijkl jikl klijC C C= =   , (3.2) 

  (3) (3) (3) (3) (3) (3) (3)
ijklmn jiklmn klmnij mnijkl ijmnkl mnklij klijmnC C C C C C C= = = = = =   . (3.3) 

Instead of the tensorial notation, it is convenient in certain cases to use the notation 

introduced by Voigt (contracted) for these tensors defined as a mapping of pair indices ij 

to a single index α.  The general rules to contract the indices are (11) (1)⇔ , (22) (2)⇔ , 

(33) (3)⇔ , (23) (4)⇔ , (13) (5)⇔ , (12) (6)⇔ .  Of course, the symmetry properties of 

the elasticity tensor remain in their contracted form, e.g., 12 21C C=  and 123 312C C= .The 

number of independent SOE constants varies from 21 to 2  while the number of 

independent TOE constants(Fumi, 1951; Jarić and Kuzmanović, 2001) varies from 56 to 

3.  For crystal with higher symmetry, the number is in its reduced form. 

 The symmetric Piola-Kirchhoff stress is the gradient of the strain energy with 

respect to the (Lagrangian) strain 

  ( )31

2ij ijkl kl ijklmn kl mn

ij

U
C Cσ ε ε ε

ε
∂

= = +
∂

  . (3.4) 

 Similarly, the elastic compliance constants ijklM  and ( )3
ijklmnM  are defined from the 

complementary strain energy Uc, the Legendre transform of the strain energy U.  The 

complementary strain energy density of an elastic solid can also be expanded in a Taylor 

series about the state of zero strain and stress as, 

  ( )31 1

2 6c ijkl ij kl ijklmn ij kl mnU M Mσ σ σ σ σ= + +…   , (3.5) 

The second and third order elastic moduli and compliances are related by(Barsh, 1968), 

  1
ijkl ijklM C−=   , (3.6) 
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  ( ) ( )3 3
ijklmn ijpq pqrsuv rskl uvmnM M C M M= −   . (3.7) 

 

3.2.2 Second and Third Order Elastic Constants of Cubic Crystals 

 The invariant constants of cubic crystals can be obtained from the symmetries of 

the crystal structure.  The principal cubic axis vectors a, b and c are orthonormal and 

each one of them is a two-fold axes of rotation.  The atomic array is unchanged by 

inversion about the plane defined any of the three principal axes.  Furthermore the atomic 

array should be invariant under 120º rotation about its principal axes.  Therefore there are 

at most three independent SOE constants and six independent TOE constants. 

 Written with respect to the principal cubic axes, the corresponding second order 

elastic stiffness tensor is 

  12 44 11 12 442 ( 2 )ijkl ij kl ijkl ijklC C C I C C C Aδ δ= + + − +   , (3.8) 

where ijδ  is the Kronecker symbol, ijklI  is the fourth-order unit tensor and 

ijkl i j k l i j k l i j k lA a a a a bb b b c c c c= + +  is the principal cubic axes tensor.  Therefore for solids 

with cubic symmetry, the three independent non-zero second order elastic constants are 

  11 22 33C C C= = ,  12 13 23C C C= = ,  44 55 66C C C= =   . (3.9) 

Similarly the second order elastic compliance tensor has the form 

  12 44 11 12 442 ( 2 )ijkl ij kl ijkl ijklM M M I M M M Aδ δ= + + − +   , (3.10) 

with the relation 

( )( )
11 12

11
11 12 11 122

C C
M

C C C C

+
=

− +
,  

( )( )
12

11
11 12 11 122

C
M

C C C C

−
=

− +
, 44

44

1

4
M

C
=   . (3.11) 

The inversion of symbol C and M gives the relationship expressing the second order 

elastic stiffness tensor as a function of the second order compliance tensor. 

 As for the corresponding third order elastic stiffness tensor we have 
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( ) (
) (

)
( ) (

3
1 2

3

3
4 5

ijlkmn ij kl mn ij kl ln ij kn lm im kl jn in kl jm

ik jl mn il jk mn ik jm ln ik jn lm il jm kn

il km jn im jk ln im jl kn in km jl in jm kl

ijklmn ij klmn kl ijmn mn

C

A A A A

λδ δ δ λ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ λ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

λ λ δ δ δ

= + + + + +

+ + + + +

+ + + + +

+ + + ) (

)

6ijkl i j k l m n

i j k l m n i j k l m n i j k l m n i j k l m n

i j k l m n

a a b b c c

a a c c b b bb a a c c bb c c a a c c b b a a

c c a a b b

λ+ +

+ + + +

  , (3.12) 

where ( )3
ijklmnA  is introduced as the following quantity 

  ijkl i j k l m n i j k l m n i j k l m nA a a a a a a bb b b b b c c c c c c= + +   . (3.13) 

It follows that for crystals with cubic symmetry, the six independent TOE constants are 

given by 

  

111 222 333

112 113 122 133 223 233

123

144 255 366

155 166 244 266 344 355

456

,

,

,

,

,

  .

C C C

C C C C C C

C

C C C

C C C C C C

C

= =

= = = = =

= =

= = = = =

  . (3.14) 

Using equation (3.7), the components of the sixth-order elastic compliance tensor for a 

cubic crystal ( )3
ijklmnM  rewritten in the Voigt notation are therefore given by 

 ( ) ( )
12

3 3 2 2 2
111 11 12 111 12 11 11 12 12 112 11 1232 6 6M M M C M M M M M C M M C= − + − + + −   ,(3.15) 

 
( )( )

( )

2 2
112 12 11 11 12 12 111 123

3 2 2 3
11 11 12 11 12 12 112

2

3 9 5

M M M M M M C C

M M M M M M C

= − + + +

− + + +
  ,(3.16) 

 
( )

( )

2 2 2
123 11 12 111 12 11 11 12 12 112

3 2 3
11 11 12 12 123

3 6

3 2

M M M C M M M M M C

M M M M C

= − − + +

− + +
  ,(3.17) 

  ( )2
144 44 11 144 12 1554 2M M M C M C= − +   , (3.18) 

  ( )( )2
155 44 12 144 11 12 1554M M M C M M C= − + +   , (3.19) 
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  3
456 44 4568M M C= −   . (3.20) 

The inverse relationships expressing the third order stiffness moduli in terms of the third 

order compliance moduli can be obtained by simply interchanging the compliance moduli 

by the stiffness moduli in equations (3.15) – (3.20).  Once the elastic constants are 

known, their corresponding compliance can be calculated. 

 

3.2.3 Second and Third Order Elastic Constants of Isotropic Materials 

 An isotropic tensor is a tensor which retains its components unchanged when 

subjected to any proper orthogonal transformation of rectangular Cartesian coordinates.  

The isotropic tensors of second and third order (or higher order) can be constructed by 

only using Kronecker delta tensors ijδ  and Ricci tensor of alternation ijke .  Any isotropic 

tensor can be represented by a linear combination of these two tensors. For isotropic 

materials, the representation of the SOE stiffness tensor becomes quite simple: 

  12 442ijkl ij kl ijklC C C Iδ δ= +   . (3.21) 

And the TOE stiffness tensor is expressed as 

  
( ) ( )

( )

3
123 144

456

6

8

ijklmn ij kl mn ij klmn kl ijmn mn ijkl

in jmkl jn imkl im jnkl jm inkl

C C C I I I

C I I I I

δ δ δ δ δ δ

δ δ δ δ

= + + + +

+ + +
  . (3.22) 

Like the Lame’s constants for isotropic solids, these constants are sometimes referred to 

as universal constants for isotropic materials. 

 

 In the next section, we will present an easy and simple method of calculating the 

full set of second and third order elastic constants for single crystal materials based on 

their interatomic potentials. 
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3.3 A Method of Computing the Elastic Constants 

 

 The interaction between atoms in crystalline metals can be well characterized by 

the interatomic potential.  A generic interatomic potential function for the atom n an 

infinite crystal can be written formally as 

  ( )mn

nE E r=   , (3.23) 

,where ( ) ( ) ( )2 2 2

1 2 3
mn mn mn mnr r r r= + +  is the scalar distance between atom m and atom n.  

The form of the potential function in equation (3.23) implies central symmetry of the 

interatomic forces, i.e. the potential is a function of scalar distance mnr  between atoms, 

rather than the vector components mn

ir of the interatomic distance.  In other words, bond 

orientation is neglected in the description of such potentials.  This assumption is 

reasonably good for f.c.c metals, but not so appropriate for materials with oriented 

bonding such as b.c.c or hexagonal closed-packed (h.c.p.) crystals. 

 For small displacements, a Taylor expansion of En yields 

  

( ) ( )

( )

ˆ

ˆ

2

ˆ

u
r

1
                                  u u

2 r r

mn mn

mn mn

mn mn

mn

mn mn

n jmnr r
m j

r r

mn

mn mn

j lmn mn

j l
r r

E r
E E r

E r

=

=

=

∂
= +

∂

∂
+ +

∂ ∂

∑

�

  , (3.24) 

where ˆmnr  is the scalar distance between the atom m and atom n in the undeformed or 

referenced configuration, mn

ir  is the Cartesian component of the vector mnr  and the 

component of the displacement vector is ˆmn mn mn

i i iu r r= − .  For a homogeneous and 

uniform deformation, the nine components of the deformation gradient tensor mn

ijF  

relative to the undeformed configuration are given by 

  ˆ ˆ ˆ( )mn mn mn mn mn

i i ij j ij ij jr r F r rε ω− = = +   , (3.25) 
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where, the summation convention is implied for the subscripts, but not superscripts.  In 

equation (3.25), ijω  is an antisymmetric second order tensor representing rigid body 

rotation while ijε  is the usual strain tensor.  Note that for homogeneous deformation the 

deformation gradient is constant therefore independent of n.  It then follows that the 

Taylor expansion (Johnson, 1972; Johnson, 1973; Oh and Johnson, 1988) of (3.23) with 

respect to perfect lattice configuration can be written as, 

  ( ) ( ) ( ) ( )1 1

2 6
n n n n

n ij ij ijkl ij kl ijklmn ij kl mnE A A A Aε ε ε ε ε ε= + + +   , (3.26) 

with the quantities ( )nA , ( )n
ijA , ( )n

ijklA  and ( )n
ijklmnA  defined by, 

  ( )( ) ˆn mn

nA E r=   , (3.27) 

  
( )( )

ˆ

ˆ

mn mn

pn mn

j nn

ij pn
p n i

r r

r E r
A

r≠
=

∂
=

∂∑   , (3.28) 

( )2

( )

ˆ

ˆ ˆ

mn mn

pn qn mn

j l nn

ijkl pn qn
p n q n i k

r r

r r E r
A

r r≠ ≠
=

∂
=

∂ ∂∑∑ , 
( )3

( )

ˆ

ˆ ˆ ˆ

mn mn

pn qn sn mn

j l v nn

ijkluv pn qn sn
p n q n s n i k u

r r

r r r E r
A

r r r≠ ≠ ≠
=

∂
=

∂ ∂ ∂∑∑∑   .  (3.29) 

The equalities presented in equations (3.27) and (3.29) are valid as long as the potential is 

a smooth enough function of the interatomic distance mnr .  The equilibrium condition for 

a perfect lattice with this energy function is that energy is independent of terms linear 

with in the strain parameter with equivalently translate mathematically by 

  ( )

ˆ

0
mn mn

nn
ij

ij r r

E
A

ε
=

∂
= =

∂
  .  (3.30) 

Equilibrium with respect to pure rotation ijω  only requires that ( )n
ijA  be positive, while 

equilibrium with respect to pure deformation leads directly to equation (3.30). 

 We can now consider a representative volume element (RVE) of volume Ω  that 

contains N number of atoms.  When subjected to uniform strain ijε , the stored elastic 

strain energy density averaged over the RVE is thus given by 
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  ( )( ) ( ) ( )

1 1

1 1 1 1 1 1
2 6

N N
n n n

n ijkl ij kl ijklmn ij kl mn

n nn n

U E A A A
N N

ε ε ε ε ε
= =

 = − = + Ω Ω  
∑ ∑   , (3.31) 

where nΩ  is the atomic volume of atom n.  For a large enough crystal (i.e. N is 

considerably large), equation (3.31) is independent of the definition of the atomic volume 

nΩ .  Comparison of equation (3.31) with equation (3.1) leads to identification of the 

elastic constants tensors 

  
( )2

( )

1 1
ˆ

ˆ ˆ1 1 1 1

mn mn

pn qn mn
N N

j l nn

ijkl ijkl pn qn
n n p n q nn n i k

r r

r r E r
C A

N N r r= = ≠ ≠
=

∂
= =

Ω Ω ∂ ∂∑ ∑∑∑   , (3.32) 

  ( ) ( )3
3 ( )

1 1
ˆ

ˆ ˆ ˆ1 1 1 1

mn mn

pn qn sn mn
N N

j l v nn

ijklmn ijklmn pn qn sn
n n p n q n s nn n i k u

r r

r r r E r
C A

N N r r r= = ≠ ≠ ≠
=

∂
= =

Ω Ω ∂ ∂ ∂∑ ∑∑∑∑   . (3.33) 

Certain papers related to the thermodynamics of elasticity theory (Brugger, 1965) argue 

that the Lagrangian strains 
1

2ij ij ik kjF Fη ε= +  should be used rather than ijε , but the same 

results are obtained with either choice of deformation parameter.  It is seen that the 

coefficients ( )nA , ( )n
ijA , ( )n

ijklA , and ( )n
ijklmnA  only depend on the interatomic potential used.  

We note that, once the potential nE  is given, its derivatives can be calculated and 

evaluated numerically as long as the interatomic spacing ˆmnr  is known for the crystal in 

its fully relaxed state (ideal crystal of infinite extent), which is available for most metallic 

crystals.  It thus follows from (3.32) – (3.33) that, one can easily calculate the elastic 

constants ijklC  and ( )3
ijklmnC  for a given interatomic potential.  Such calculation involves 

only numerical evaluation of the derivatives of the potential function.  Obviously, the 

choice of the interatomic potential function is important. 

 In this work, the interactions between atoms are modeled using Embedded Atom 

Method (EAM) potentials(Daw and Baskes, 1983; Daw and Baskes, 1984) is used in 

equations (3.32) and (3.33) to calculate the SOE and TOE constants.  As explained in 
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chapter 2, the embedded atom method is a semi-empirical approach modeling the 

interatomic forces.  It has the important benefit of being a multi-atom potential.  In this 

scheme all atoms are treated in a unified way.  This method is so called “embedded” 

because it views each atom individually as if it was embedded in a host lattice constituted 

of all other atoms.  The total energy of an atom is the sum of the energy from the two-

body interactions and the embedding energy given by 

  G V

n n nE E E= +   , (3.34) 

where, 

  ( )G

n n nE G ρ=  and 
1

( )
2

V mn

n

m n

E V r
≠

= ∑   , (3.35) 

represent, respectively, the embedding energy of atom n and the pair interaction potential 

between atom m and atom n.  In the above expressions, nρ  is the local background 

electron density induced at atom n by the rest of atoms in the system.  The electron 

density nρ  at atom n is taken as a linear superposition of the contributions from all 

neighboring atoms which are assumed to be spherically symmetric, i.e., 

  ( )mn

n n

m

rρ ρ=∑   . (3.36) 

The functions ( )V r , ( )G r  and ( )rρ  are central function (i.e. function of unique scalar r 

rather than components of the coordinates of the interatomic distance) material 

dependent.  The derivatives of (3.32) and (3.33) have been calculated and their 

expressions are listed in the Appendix A. 

Before closing this section, we mention that, one can neglect the kinetic energy term.  

The free energy involves contributions from both the internal energy of the crystal and 

the product of the entropy and absolute temperature.  The latter contribution vanishes at 

0K temperature.  Configurational and thermal sources of entropy can be ignored.  The 

atomic rearrangements in the bulk of the crystal are regular and smooth enough to be 

ignored.  It is well known that, as far as the elastic properties are concerned, the thermally 
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activated atomic vibrations in the interior of the crystal are negligible at low and room 

temperature.  In fact, our calculations have confirmed that the kinetic energy for copper at 

100K is only about 3% of the total energy.  When the temperature rises to 1200K, the 

kinetic energy constitutes about 10% of the total energy.  The elastic modulus decrease 

approximately linearly with increasing temperature (Chen and Chen, 2005; Wu, 2006), 

with a decrease of up to 10% over a temperature range of 0 to 400 K for copper for 

example  Therefore the zero temperature internal energy constitutes a fair measure of the 

free energy at low moderate temperature.  The choice of the potential function is 

important because it influences the final results.  Among all of the interatomic potentials, 

the many-body EAM potential gives a realistic description of metallic cohesion. 

 

3.4 Elastic Constants for Single Crystals 

 

 The method presented above has been used to calculate the second and third order 

elastic constants of single crystals of the transitions metals in groups 10 – 11 as well as 

aluminum.  As discussed in the previous section, the interatomic spacing for a single 

crystal of infinite extent is needed for calculating the elastic constants.  The interatomic 

spacings of the materials studied are presented in Table 3.1. 

 To simulate an infinite crystal, we constructed a rectangular cell and used periodic 

boundary conditions in all directions to mimic a crystal of infinite extend (see chapter 2 

Section 2.2.1 for more details).  A typical calculation cell contains 500 atoms.  A bigger 

calculation sample is not necessary since the dimension of the calculation box are chosen 

to be at least twice as big as the cut-off distance of the interatomic potential.  The 

interactions between atoms are modeled using Embedded Atom Method (EAM) 

potentials(Daw and Baskes, 1983; Daw and Baskes, 1984) and calculated up to the third 

nearest neighbor by truncating the potential at the appropriate distance.  More details on 
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the interatomic potentials are presented in chapter 2.  The next step is to compute the 

derivatives of the potential function and evaluate them numerically according to (3.32) 

and (3.33).  The numerical values of the SOE constants and TOE constants for single 

crystal calculated according to the analytical method presented in this chapter are given 

in Table 3.2 and Table 3.3.  Shown in parentheses are the corresponding experimental 

data with their references indicated by the superscripts.  In comparing the results among 

them, for more readability a graphical representation of the TOEC for the single crystals 

studied are presented in Figure 3.2. 

 It is seen from our results that the SOE constants are very close to the literature 

values.  This comes with no surprise because the EAM potentials are fitted with the SOE 

constants.  The methodology used here is merely a reverse procedure to back calculate 

them.  As for the TOE constants, the comparison with existing experimental data varies.  

We find a good agreement between the theoretical calculations and the experimental data 

for copper, silver and gold.  Agreement in the case of aluminum and nickel is less 

satisfactory.  This should not be a surprise neither, for some of the experimental data on 

TOE constants differ among themselves by an order of magnitude as observed in Table 

3.3.  Disagreement might be due to the accuracy of the experimental processes.  Other 

factors like the grain structure, purity of the sample, or the presence of impurities might 

also affect the experimental measurements.  Despite some literature research, we are not 

aware of any experimental method that can definitively asses the accuracy of these 

experimental data.  However, it is reasonable to assume that the EAM potentials that are 

fitted to the lattice constant, the cohesive energy, the elastic constants, the vacancy 

formation energy, phonon frequencies and the intrinsic stacking fault energy would 

provide an accurate prediction of the TOE constants.  In other words, the theoretical 

values computed using the EAM potential should be considered more accurate than some 

of the experimental data, considering the accuracy of the experimental methods, and the 

wide range of variability of the materials used in the experiments. So, even though, we 
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are not aware of experimental data on the TOE of platinum and palladium single crystals, 

we believe the values predicted here are reliable. 

 In order to verify those calculations, we have also performed a strain meshing of 

the calculation cell with strains in the three directions ranging from -1% to 1% and 

incremented by ±0.01% strain steps.  The calculation cell is stretched by independently 

varying the lattice constants along the three directions.  This state corresponds to the 

energy state of the cell in the , ,xx yy zzε ε ε  strain space. 

 The procedure just described yields to a strain mesh of the total strain energy of 

the sample with respect to the reference configuration.  The general steps of the 

calculation can be outlined as follows: 

 (a)  Create the initial assembly using the given material properties (atomic weight, 

 lattice spacing, EAM potential, crystallographic orientation, etc…). 

 (b)  Apply a small strain field, iiε , to the assembly. 

 (c)  Compute the energy density corresponding to this given strain field. 

 (d)  Increase the magnitude of iiε  and repeat steps (b) and (c) 

After repeating steps (b) – (d) a sufficient number of times, we obtain a mesh of U as a 

function of the strains, iiε .  A numerical interpolation of the energy density was 

performed to evaluate the elastic constants.  The results obtained for a few tested 

materials are shown in Table 3.4. 

 These results are in good agreement with the results obtained using the analytical 

method presented in this section.  Nevertheless, the “strain meshing” method has the 

disadvantages of only giving an incomplete set of elastic constants since the energy 

meshing is limited to the stretching domain , ,xx yy zzε ε ε  (no shear strains) and of being 

computationally not as efficient as the analytical method presented in section 3.3. 
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3.5 Elastic Constants of Isotropic Aggregates 

 

 The estimates of the effective TOEC for isotropic aggregates of cubic crystals are 

of greater interest when calibrating experiments measuring anharmonicity properties of 

the studied materials.  For polycrystalline aggregates consisting of randomly oriented 

single crystals, the effective elastic properties can be obtained through homogenization 

methods.  In the following section we present several analytical schemes to determine the 

TOE constants of isotropic aggregates of single cubic crystals. 

 

3.5.1 Voigt and Reuss-type Estimates of the Elastic Constants of an Isotropic 

Aggregate 

 One of the simplest homogenization methods is the "rule of mixture", or the Voigt 

and Reuss estimates.  According to the Voigt estimate, when a polycrystalline aggregate 

is subjected to an overall uniform strain, the individual crystals are assumed to be in the 

same state of strain.  It thus follows that the effective elastic constants of a polycrystalline 

aggregate are simply the geometric averages of these of the single crystal, i.e., 

  
2

1

8
V

ijkl ijlkC C d
π Ω

= Ω∫   , (3.37) 

  
2

1

8
V

ijklmn ijlkmnC C d
π Ω

= Ω∫   , (3.38) 

where sind d d dθ ϕ θ ψΩ = , and ϕ , θ , and ψ  are the Euler angles. 

By carrying out the integrals in equation (3.37) we arrived at, 

  ( ) ( )11 12 44 11 12 44

1 2
4 2 3

5 5
V

ijkl ij kl ijklC C C C C C C Iδ δ= + − + − +   . (3.39) 

The two Voigt estimates of the effective second-order elastic moduli for a polycrystalline 

aggregate are thus, 
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  ( )12 11 12 44

1
4 2

5
VC C C C= + − , ( )44 11 12 44

1
3

5
VC C C C= − +   . (3.40) 

Similarly, the integration of equation (3.38) leads to the effective third-order elastic 

moduli for a polycrystalline aggregate its estimates of the three TOE constants of the 

isotropic polycrystal 

  ( )123 111 112 123 144 244 456

1
18 16 30 12 16

35
VC C C C C C C= + + − − +   , (3.41) 

  ( )144 111 112 123 144 244 456

1
4 5 19 2 12

35
VC C C C C C C= + − + + −   , (3.42) 

  ( )456 111 112 123 144 244 456

1
3 2 9 9 9

35
VC C C C C C C= − + − + +   . (3.43) 

 Similarly, when a polycrystalline aggregate is subjected to an overall uniform 

stress, the Reuss estimate assumed that the individual crystals are also in the same state of 

stress.  The effective elastic compliant constants of the polycrystalline aggregate are then 

given by the directional averages of the single crystal compliant constants, i.e., 

  ( ) 1 2

1

8
R R

ijkl ijkl ijlkM C M d
π

−

Ω
= = Ω∫   , (3.44) 

  
2

1

8
R

ijklmn ijlkmnM M d
π Ω

= Ω∫   , (3.45) 

By carrying out the integrals in equations (3.44) and (3.45), similar expressions for the 

Reuss estimates of the compliance constants can be obtained.  Substitution of these 

expressions into (3.6) and (3.7) yields the Reuss estimates for the elastic constants, 

  
( )

12
12

44 12 442 3 2

R
R

R R R
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M M M
= −

+
  , (3.46) 

  44
44
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4
R
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=   , (3.47) 
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  , (3.48) 
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  ( ) ( )2

144 44 12 44 144 12 4564 3 2 4R R R R R R RC C C C M C M = − + +    , (3.49) 

  ( )3456 44 4568R R RC C M= −   . (3.50) 

It is well known that the Voigt estimate is the upper bound for the SOE constants, while 

the Reuss estimates upper bound (Hill, 1952) for the second order compliance constants 

(or equivalently lower bound for the SOE constants). 

 Since the Voigt approximation assumes that the material is in a state of 

homogeneous strain and the Reuss approximation assumes it is in a state of homogeneous 

stress, these assumptions corresponds to two extreme configurations.  It is often expected 

that the real polycrystalline aggregate will have its elastic properties in somewhere in 

between these two bounds.  Consequently, the arithmetic mean of these two bounds gives 

a “better” approximation of the values of the elastic moduli.  It is sometimes referred to 

as the Voigt-Reuss-Hill estimates.  According to common knowledge the arithmetic mean 

is defined as, 

  ( )1

2
H V R

ijkl ijkl ijklC C C= +   ,  ( )1

2
H V R

ijklmn ijklmn ijklmnC C C= +   . (3.51) 

Results for the Voigt, Reuss and Hill estimates are presented in Table 3.6 and Table 3.7.  

The only possible comparison with experimental and reported values is made with the 

available data from Lubarda (1997) and Hamilton (Hamilton and Parrott, 1968) who 

evaluated the effective TOEC for isotropic aggregates of cubic crystals using the Voigt 

and Reuss approximation.  To our knowledge no values have been reported for platinum 

and palladium at the time of the writing of this dissertation.  As noted previously, the 

elastic constants of real polycrystalline aggregates is somewhere in between the Voigt 

and Reuss bounds.  We find satisfactory agreement with the few reported values.  The 

discrepancy and scatter in the results might be attributed to the precision of experimental 

techniques used, and to the fact that analytical estimates are not based on the same 

estimates for the single crystal SOEC and TOEC values. 
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3.5.2 Semi Consistent Estimates of the Elastic Constants of an Isotropic Aggregate 

 Another improved homogenization technique for estimating the effective elastic 

properties of aggregates of cubic crystals is the self-consistent method(Lubarda, 1997; Qu 

and Cherkaoui, 2006) .  This method was initially developed for SOE constants.  In what 

follows, we will briefly outline how it can be extended to TOE constants.  In the self 

consistent approach, we consider a polycrystal, consisting of randomly oriented and 

shaped single crystals as an infinite isotropic homogenized domain D containing an 

embedded ellipsoidal inclusion Ω uniform eigenstrain εij
* .  The term eigenstrain defines a 

stress free strain.  In other words an eigenstrain is a strain that would not create any stress 

in the inclusion if it was not embedded in a matrix.  Phase transformation and thermal 

expansion are two examples of eigenstrains.  When this method is applied to calculate the 

effective elastic properties (SOE and TOE constants), the approaches using the strain 

energy and the complementary energy are self-consistent with respect to the SOE 

constants but not the TOE constants.  This is why it is referred to as “semi-consistent”. 

 From the classical Eshelby problem (Eshelby, 1957), using an equivalent 

inclusion method (see Figure 3.1) in the framework of linear elasticity, the total strain 

(and the stress as well) inside the ellipsoidal inclusion is uniform and proportional to the 

far-field applied strain. 

In the framework of this work, the total strain in a single crystal r of a polycrystal is 

therefore proportional to the applied strain by, 

  ( ) ( ) 1[ ( )]r r

ij ijkl ijpq pqrs rskl rskl kl ijkl klI S M C C E T Eε −= + − =   , (3.52) 

where ijlkS  is the Eshelby inclusion tensor, ijlkC  and ijlkM  are the stiffness and 

compliance tensors respectively of the homogenized matrix, ( )r
ijklC and ijlkI  is the identity 

tensor and ijE  is the far-field applied strain.  The tensor ijlkT  is called the strain 

localization tensor.  This is still a simplification of the problem since a non linear 
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relationship should relate ( )r
ijε  with ijE  with the addition of a quadratic term in ijE  of the 

form ijklmn kl mnT E E  to the right-hand side of (3.52). 

 If an individual cubic crystal is considered as a spherical anisotropic 

inhomogeneity embedded in an effective isotropic matrix of the polycrystal, the effective 

elastic constants of a polycrystalline aggregate are simply given by, 

  
2

1

8ijkl ijmn mnklC C T d
π Ω

= Ω∫   , (3.53) 

  ( ) ( )3 3

2

1

8ijklmn ijpqrs pqkl rsmnC C T T d
π Ω

= Ω∫   . (3.54) 

 Similarly one can adopt a dual formulation.  In the dual formulation, one assumes 

that the state of stress in an ellipsoidal inhomogeneity within a homogenized isotropic 

matrix subjected to a far field uniform stress is also uniform.  The total stress in a single 

crystal r of a polycrystal is therefore proportional to the applied stress by, 

  ( ) ( ) ( ) 1[ ( )]r r r

ij ijmn mnpq mnrs rsuv uvpq uvpq pqkl kl ijkl klC I S M C C M Hσ −= + − Σ = Σ   , (3.55) 

where ijΣ  is the far-field applied stress.  If an individual cubic crystal is considered as a 

spherical anisotropic inhomogeneity embedded in an effective isotropic matrix of the 

polycrystal, the effective third order compliance tensor of the polycrystal is then, 

  ( ) ( )3 3

2

1

8ijklmn ijpqrs pqkl rsmnM M H H d
π Ω

= Ω∫   . (3.56) 

The second order elastic constants calculated using the strain energy approach or the 

complementary approach, are identical in both calculations and therefore self consistent 

with that regard.  The two estimates of the TOE constants calculated based on the semi 

consistent approach may not coincide, therefore the arithmetic mean of the two self-

consistent estimates of the TOE constants is expected to give a more realistic idea of the 

effective third order elastic properties of the polycrystalline.  Results for the self-

consistent estimates are presented in Table 3.8.  When comparing the different bounds in 

Figure 3.3, one can notice that the self-consistent estimates falls in between the Voigt and 
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Reuss estimates and therefore correlate with the fact the real polycrystalline aggregate 

will have its elastic properties in somewhere in between these two bounds (state of 

homogeneous strain versus state of homogeneous stress).  Nevertheless, nothing 

guarantees that the so called self-consistent method is an upper or lower bound since the 

two estimates of the TOE constants calculated based on the semi consistent approach 

may not coincide. 

 

3.6 Summary and Conclusions 

 

 The main purpose of this chapter is to report a full set of third order elastic of the 

transition metals in groups 10 – 11 for single crystals and isotropic aggregates.  Although 

some data are available in the open literature, we are not aware of a simple unified 

analytical method to evaluate TOE constant and for single crystals and isotropic 

aggregates.  The comparison of our results with available literature data shows 

satisfactory agreement. 

 An analytical method has been developed for evaluating the elastic properties.  

The method developed here requires the construction of the crystal of interest.  Once the 

atomic coordinates of the atoms are known, higher order elastic properties can be 

expressed analytically based on the interatomic potential and its spatial derivatives.  

Furthermore, although EAM was used in the present work, the methodology can be 

applied to any interatomic potential. 

 As noted when presenting the self-consistent method to evaluate the estimate of 

the elastic constants of polycrystals, several extensions of the presented analysis should 

be undertaken.  Some efforts should address the variational estimates and derivation of 

possible bounds for the TOEC.  The existing results for nonlinear heterogeneous solids, 

already considered in the literature (Willis, 1990), may be of significant help. 
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Figure 3.1  Scheme representing the equivalent inclusion method 
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Figure 3.2  TOEC for single crystals of the transitions metals in groups 10 – 11 and 

aluminum 
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(a) 
 

(b) 

 
(c) 

Figure 3.3  TOEC for isotropic aggregates of cubic crystals 
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Table 3.1  Interatomic lattice spacing (in Å) 
 Cu Ni Ag Au Al Pd Pt 

ˆmnr (Å) 3.615 3.52 4.09 4.08 4.032 3.89 3.92 

 
 

 

 

Table 3.2  Second order elastic constants for single crystals (in 100 GPa) 
 Cu Ni Ag Au Al Pd Pt 

C11 1.671 
(1.661)a 

2.329 
(2.5)c 

1.289 
(1.222)a 

1.831 
(1.929)a 

1.180 
(1.08)b 

1.983 3.317 

C12 1.240 
(1.199)a 

1.541 
(1.5)c 

0.909 
(0.907)a 

1.587 
(1.638)a 

0.622 
(0.62)b 

1.704 2.942 

C44 0.764 
(0.756)a 

1.275 
(1.2)c 

0.567 
(0.454)a 

0.447 
(0.415)a 

0.367 
(0.283)b 

0.580 0.769 
a Reference (Hiki and Granato, 1966)  ;  b Reference (Landolt-Bornstein, 1979) 
c Reference (Riley and Skove, 1973) 
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Table 3.3  Third order elastic constants for single crystals (in 100 GPa) calculated from 
analytical method 

 Cu Ni Ag Au Al Pd Pt 

C111 
-7.375 

(-12.71±0.22)a 
(-15.00±1.50)f 

-10.179 
(-20.40±0.4) c 

-6.630 
(-8.43±0.37) a 

-9.984 
(-17.29±0.21)a 

1.247 
(-10.80±0.30)b 

-11.295 -17.884 

C112 
-5.758 

(-8.14±0.09) a 
(-8.50±1.00) f 

-7.898 
(-10.30±0.30)c 

-4.976 
(-5.29±0.18) a 

-7.701 
(-9.22±0.12) a 

-3.405 
(-3.15±0.10) b 

-8.817 -13.674 

C123 
0.3221 

(-0.50±0.18) a 
(-6.70±1.80) d 
(-2.50±1.00) f 

2.545 
(-2.10±0.50) c 

0.119 
(1.89±0.37) a 

-3.460 
(-2.33±0.49) a 

0.732 
(0.36±0.15) b 
(-0.39±0.17) e 

-3.440 -6.941 

C144 
0.284 

(-0.03±0.09) a 
(1.75±2.07) d 
(-1.35±0.15) f 

0.724 
(-1.40±0.60) c 

-0.057 
(0.56±0.26) a 

-0.854 
(-0.13±0.32) a 

-0.828 
(-0.23±0.15) b 
(1.24±0.04) e 

-0.670 -1.761 

C155 
-5.189 

(-7.80±0.05) a 
(-6.45±0.10) f 

-9.213 
(-9.20±0.30) c 

-4.632 
(-6.37±0.13) a 

-3.708 
(-6.48±0.17) a 

-3.940 
(-3.40±0.10) b 

-4.622 -5.651 

C456 
0.886 

(-0.95±0.87) a 
(-3.98±0.05) d 
(-0.16±0.1) f 

1.336 
(-0.7±0.30) c 

0.530 
(0.83±0.08) a 

0.469 
(-0.12±0.16) a 

-0.971 
(-0.30±0.30) b 
(0.86±0.01) e 

0.694 0.913 

a Reference (Hiki and Granato, 1966)  ;  b Reference (Landolt-Bornstein, 1979) 
c Reference (Riley and Skove, 1973)  ;  d Reference (Seeger and Buck, 1960) 
e Reference (Wasserbach, 1990)  ;  f Reference (Salama and Alers, 1967) 
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Table 3.4  Elastic constants of single crystals calculated by the strain meshing of the 
energy (in 100GPa) 

 Cu Ni Au Pt 

C11 1.6739 2.331 1.833 3.034 

C12 1.241 1.544 1.588 2.733 

C111 -8.320 -12.020 -10.168 -17.037 

C112 -6.219 -8.177 -7.625 -13.358 

C123 0.306 2.282 -3.488 -6.418 

 
 
 
 
Table 3.5  Voigt estimates of the SOEC and TOEC for isotropic polycrystalline 

aggregates (in 100 GPa) 
 Ni Cu Ag Au Al Pd Pt 

C12
V 1.189 1.021 0.758 1.457 0.587 1.528 2.710 

C44
V 0.923 0.544 0.416 0.317 0.332 0.404 0.536 

C123
V -0.040 

-1.084 
(-2.51 a) 

-0.815 
(-0.01 b) 

-3.609 
(-4.02 b) 

0.236 
(-0.54 a) 

-3.954 -6.852 

C144
V -2.148 

-1.361 
(-1.36 a) 

-1.252 
(-1.46 b) 

-1.508 
(-1.61 b) 

-0.800 
(-0.94 a) 

-1.704 -2.674 

C456
V -1.680 

-0.878 
(-1.94 a) 

-0.796 
(-1.25 b) 

-0.436 
(-1.50 b) 

-0.681 
(-0.91 a) 

-0.602 -0.501 
a Reference (Lubarda, 1997)  ;  b Reference (Hamilton and Parrott, 1968) 
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Table 3.6  Reuss estimates of the SOEC and TOEC for isotropic polycrystalline 

aggregates (in 100 GPa) 
 Ni Cu Ag Au Al Pd Pt 

C12
R 1.355 1.132 0.825 1.524 0.591 1.626 2.839 

C44
R 0.673 0.378 0.316 0.216 0.326 0.256 0.343 

C123
R 3.724 

1.448 
(0.449 a) 

0.577 
(2.17 b) 

-2.260 
(-1.81 b) 

0.109 
(-0.49 a) 

-1.604 -4.440 

C144
R 5.435 

3.486 
(-3.92 a) 

2.541 
(-3.33 b) 

2.686 
(-3.31 b) 

0.896 
(-0.98 a) 

3.643 4.671 

C456
R 1.480 

1.055 
(0.513 a) 

0.537 
(0.510 b) 

0.697 
(-0.17 b) 

-0.323 
(-0.86 a) 

1.116 1.279 
a Reference (Lubarda, 1997)  ;  b Reference (Hamilton and Parrott, 1968) 

 
 
 
 

Table 3.7  Hill estimates of the SOEC and TOEC for isotropic polycrystalline aggregates 
(in 100 GPa) 

 Ni Cu Ag Au Al Pd Pt 

C12
H 1.272 1.076 0.791 1.490 0.589 1.577 2.774 

C44
H 0.798 0.461 0.366 0.266 0.329 0.330 0.440 

C123
H 1.842 0.182 -0.119 -2.934 0.173 -2.779 -5.646 

C144
H 

1.644 1.063 0.644 0.589 0.048 0.969 0.999 

C456
H -0.010 0.088 -0.129 0.131 -0.502 0.257 0.389 
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Table 3.8  Self-Consistent estimates of the SOE and TOE constants for isotropic 
polycrystalline aggregates (in 100 GPa) 

 Ni Cu Ag Au Al Pd Pt 
Self
12C  1.264 1.070 0.788 1.485 0.588 1.570 2.761 
Self
44C  0.809 0.471 0.372 0.275 0.329 0.339 0.460 

( )Self 1
123C  0.569 -0.730 -0.653 -3.643 0.180 -3.880 -6.968 

( )Self 2
123C  -9.628 -13.168 -8.168 -52.529 0.179 -56.889 -126.88 
SC
123C  -4.530 -6.949 -4.410 -28.086 0.180 -30.384 -66.923 

( )Self 1
144C  -2.780 -1.707 -1.463 -1.538 -0.845 -1.829 -2.636 

( )Self 2
144C  -2.673 -1.756 -1.396 -1.786 -0.802 -2.206 -3.365 
SC
144C  -2.727 -1.732 -1.430 -1.662 -0.824 -2.017 -3.000 

( )Self 1
456C  -0.4927 -0.210 -0.291 -0.0981 -0.519 -0.943 -0.0310 

( )Self 2
456C  -1.163 -0.580 -0.619 -0.273 -0.548 -0.318 -0.197 
SC
456C  -0.827 -0.395 -0.455 -0.186 -0.533 -0.206 -0.114 
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CHAPTER 4 

ELASTIC DESCRIPTION OF FREE SURFACES AND INTERFACES 

 

 In this chapter, we discuss essential concepts and definitions relative to the elastic 

description of surfaces and interfaces.  The concept of surface / interfacial excess energy 

is first reformulated from the continuum mechanics point of view by considering a single 

dividing surface separating the two homogeneous phases (as opposed to the interface 

considered as an interphase).  It is shown that the well-known Shuttleworth relationship 

between the interfacial excess energy and interfacial excess stress is valid only when the 

interface is free of transverse stresses.  To account for the transverse stress, a new 

relationship is derived between the interfacial excess energy and interfacial excess stress.  

At the same time, the concept of transverse interfacial excess strain is also introduced, 

and a complementary Shuttleworth equation is derived that relates the interfacial excess 

energy to the newly introduced transverse interfacial excess strain. This new formulation 

of interfacial excess stress and excess strain naturally leads to the definition of an in-

plane interfacial stiffness tensor, a transverse interfacial compliance tensor, and a 

coupling tensor that accounts for the Poisson's effect of the interface.  These tensors fully 

describe the elastic behavior of a coherent interface upon deformation.  A semi-analytical 

method is subsequently presented to calculate the interfacial elastic properties.  The cases 

of free surfaces and interfaces are distinguished.  As an illustration, we present numerical 

examples for low-index surfaces (111), (100) and (110) of face-centered cubic transition 

metals.  Numerical examples for grain boundaries in Cu bicrystals of the so called “low-

order CSL boundaries” will finally close this chapter. 

 

Note:  In what follows, the term surface is used interchangeably when describing either a 

free surface or a bicrystal interface. 
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4.1 Introduction 

 

 The reduced coordination of atoms near a surface induces a corresponding 

redistribution of electronic charge, which alters the binding situation (Sander, 2003).  As 

a result, the equilibrium position and energy of these atoms will, in general, be different 

from their bulk positions and bulk energies.  Thus, the elastic moduli of the surface 

region (typically very thin, only a few atomic layers) may differ from those of the bulk.  

It is thus perfectly acceptable to neglect the surface region and to use the bulk modulus of 

a structural element as its overall modulus, when the size of the element is in micrometers 

or larger.  For nano-sized structural elements and nanostructured materials, however, the 

surface to volume ratio is much higher and the surface region can no longer be neglected 

when considering the overall elastic behavior of nanostructured materials. 

 Because interfaces and grain boundaries present a different atomic structure than 

their bulk counterparts, interfacial physical and chemical properties are generally 

different from the ones of the surrounding bulk crystals.  These peculiar properties often 

control the overall behavior of materials.  Because of their significant effects on material 

behavior, surface properties have attracted tremendous attention and research activity 

allowing a better understanding of the stress effects on surface physics.  For example, the 

equilibrium shape of a body (Wulf, 1901; Mullins, 1959) is governed by the 

minimization of its surface free energy (in other words, the minimization of its total free 

energy at constant bulk energy).  Mullins has also shown that the surface energy drives 

the mass transport from regions of high curvatures to regions of lower curvature until the 

chemical potential of the whole material is equilibrated. Surface phase transition is 

another example illustrating the effects of surface elasticity.  Alymov (Alymov and 

Shorshorov, 1999) established the role of surface stresses and size dependence of the 

melting temperature of ultrafine particles.  In the context of a bottom-up approach in the 

fabrication process of nanostructural elements, surface elasticity is used as a tool for self-
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organization.  Proville (2001) for example describes the self-organization of domains on 

a solid surface and finds that the morphology of the adsorbed phase depends on the 

coverage and the surface elastic constants of the substrate. 

 For these reasons theoretical and atomistic studies have been carried out for many 

years to investigate the structure and energetics of grain boundaries and bicrystal 

interfaces. 

 On one hand, the main idea behind the majority of the theoretical studies is to set 

up a thermodynamic framework to characterize the behavior of the interface.  Gibbs 

(1928) was the first one to formulate the thermodynamics of a fluid interface through the 

use of interfacial free energy.  In his original idea, a single dividing surface is used to 

separate the two homogeneous phases, and the interface contribution to the 

thermodynamic properties is defined as the excess over the values that would be obtained 

if the bulk phases retained their properties constant up to an imaginary surface (of zero 

thickness) separating the two phases.  Gibbs showed that various combinations of the 

interfacial excess quantities can yield physically meaningful and experimentally 

measurable variables which are independent of the dividing surface position.  Gibbs’ 

work was followed by substantial efforts made by many researchers (Herring, 1950; 

Shuttleworth, 1950; Mullins, 1959) to extend this Gibbsian description of fluid-fluid 

interfaces to solid-solid interfaces and to associate a “surface stress” with the change of in 

interfacial energy upon deformation.  Later on, Larché and Cahn (Larché and Cahn, 

1978; Cahn and Larché, 1982) derived conditions for the thermomechanical equilibrium 

of single phase crystalline solids and two-phase crystalline solids for planar interfaces in 

which surface properties were ignored.  They allow for both coherent and incoherent 

interfaces but neglect the surface contribution.  Gurtin (1998) developed a self-consistent 

framework treating the mechanical deformation of curved material surfaces while 

Nozières and Wolf (1989) considered a general thermodynamics of surfaces that includes 

the concept of transversal surface strains.  Unfortunately all these schemes fail to explore 
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the elastic behavior of interfaces in mixed modes (in-plane deformation and transversal 

loading).   

 On the other hand, the main objective of the experiments (actual experiments and 

computer/atomistic experiments) is to investigate and characterize the atomic structure 

and energetics of grain boundaries and bicrystal interfaces.  Many approaches have been 

proposed and used to experimentally measure or theoretically predict surface properties.  

Among the various experimental techniques, contact angle measurement is a well-known 

method commonly used to measure surface energy (Tyson and Miller, 1977; de Boer et 

al., 1988; Qu, 2003).  Unfortunately, this technique is not capable of measuring the 

surface stress.  One of the techniques to measure the surface stress is the zero creep 

method (Digilov et al., 1976).  This technique is based on the fact that creep deformation 

under very small load can be prevented by surface stress.  Therefore, by observing the 

point when creep deformation stops, one can estimate the surface stress. 

 Theoretical predictions of surface elastic properties have been made using a 

variety of different techniques.  Among them, first principle calculations, molecular 

dynamics (MD) and molecular static (MS) simulations have been extensively used.  As 

early as 1986, Ackland and Finnis (Ackland and Finnis, 1986; Ackland et al., 1987) 

presented calculations of surface tension for body-centered cubic (BCC) and face-

centered-cubit (FCC) metals using simple empirical N-body potentials.  Their results 

yield satisfactory agreement with available experimental data.  Needs (Needs and 

Godfrey, 1990; Mansfield and Needs, 1991; Needs et al., 1991) performed the first 

principle calculations of surface stresses and surface energy for different materials and 

different surface orientations, and investigated the role that surface stress may play in 

surface reconstructions.  Todd and Lynden-Bell (1993) investigated surface and some 

bulk properties of metals using the Sutton-Chen potential in order to gain microscopic 

insights into surface phenomena.  Others, like Schmid and coworkers (1995), have 

studied stresses and surface elasticity using effective-medium theory potentials which 
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allow them to probe the stresses and elasticity of individual layers.  Daw and Baskes 

(Daw and Baskes, 1983; Daw and Baskes, 1984; Baskes, 1992), as well as Mishin and 

coworkers (Mishin, 1999; Mishin et al., 1999; Mishin, 2001), evaluated the ability of the 

embedded-atom method (EAM) potentials to predict energies and stability of non-

equilibrium structures.  Shenoy (2005), using MS simulations of a slab in conjunction 

with the EAM potential, calculated several crystal faces of some FCC metals.  His 

method requires conducting multiple MS simulations at different levels of stretching of 

the slab.  Tartaglino (Tartaglino et al., 2001) presented a calculation of the change of free 

energy of a solid surface upon bending of the solid.  It is based on extracting the surface 

stress through a molecular dynamics simulation of a bent slab by using a generalized 

stress theorem formula, and subsequent integration of the stress with respect to the strain 

as a function of bending curvature. 

 The examination of elastic properties of grain boundaries has also been studied by 

a certain number of researchers.  While some researchers like Sutton and Vitek (Lee and 

Aaronson, 1980; Sutton and Vitek, 1983; Sutton and Vitek, 1983; Sutton and Vitek, 

1983; Sutton and Balluffi, 1987; Gilmore and Provenzano, 1990; Streitz et al., 1994; 

Vitek et al., 1994; Leo and Schwartz, 2000; Borchers and Bormann, 2005; Yang et al., 

2005) focused more on the dominant structural features that characterize grain 

boundaries, a number of research works have suggested that the elastic moduli in the 

grain boundary domain may differ significantly from those of the bulk.  Wolf and co-

workers (Wolf, 1989; Kluge et al., 1990; Wolf, 1990; Wolf, 1990), who studied 

superlattices of (001) twist boundaries, as well as Adams et al (1989), who examined the 

5(001)Σ =  twist boundary in a thin film of copper, have found an increase of the 

Young's modulus perpendicular to the boundary plane and a substantial decrease of the 

shear modulus in the boundary plane in the atomic layers adjacent to the boundary.  

Bassani and co-workers (Alber et al., 1992; Bassani et al., 1992; Vitek, 1994; 

Marinopoulos et al., 1998) defined the local elastic modulus tensor and determined the 
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values of the local elastic modulus tensor near grain boundaries in several face center 

cubic metals using molecular dynamic simulations.  They, too, found that the local elastic 

moduli are significantly different for atoms near the grain boundary. 

 In materials with fine-scale microstructures, measurements of the macroscopic 

elastic constants can lead to eloquent experimental values on the evaluation and 

interpretation of the orientational averages of interfaces elastic constants. 

 

4.2 Surface Free Energy and Surface Stress 

 

4.2.1 Dividing Surface 

 There are different ways in which the properties of the surface can be defined and 

introduced.  For example, if one considers an "interface" separating two otherwise 

homogeneous phases, the interfacial property may be defined either in terms of an inter-

phase, or by introducing the concept of a dividing surface.  In the first approach, the 

system is considered to be one in which there are three phases present – the two bulk 

phases and an inter-phase; the boundaries of the inter-phase are somewhat arbitrary and 

are usually chosen to be at locations at which the properties are no longer varying 

significantly with position.  The inter-phase then has a finite volume and may be assigned 

thermodynamic properties in the normal way (Capolungo et al., 2005).  In the second 

approach where a single dividing surface is used to separate the two homogeneous 

phases, the interface contribution to the thermodynamic properties is defined as the 

excess over the values that would obtain if the bulk phases retained their properties 

constant up to an imaginary surface (of zero thickness) separating the two phases.  In this 

work, we adopt this second approach. 
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 These concepts of surface free energy Γ  and surface stress sΣ , ever since being 

introduced by Gibbs (1928), have been widely used in physics and chemistry, e.g.,  

(Mullins, 1959; Blakely, 1973; Gurtin and Murdoch, 1975; Gurtin, 1978; Cahn and 

Larché, 1982; Nozières and Wolf, 1988; Adams et al., 1989; Cammarata, 1989; Wolf and 

Lutsko, 1989; Needs et al., 1991; Cammarata and Sieradzki, 1994; Cammarata, 1997; 

Alymov and Shorshorov, 1999; Cammarata, 2000; Sanfeld, 2000; Sander, 2003; Müller 

and Saúl, 2004; Zhou, 2004).  In a liquid, where the atomic mobility is sufficiently high, 

atoms from the bulk will come to the surface when the surface is stretched.  This way the 

microscopic configuration of the surface is preserved following deformation, i.e., the 

surface free energy density remains invariant to the surface strain.  Consequently, the 

surface free energy is numerically equal to surface stress, i.e., s = ΓΣ I .  This is perhaps 

why surface free energy has also been historically called surface tension.  For a solid, it 

might not be possible in any reasonable experimental time to keep constant the local 

configuration around any particular atom in the surface region where the deformation 

takes place.  This is due to the long range correlation in atomic positions and low atomic 

mobility in solids.  In other words, when a solid crystal deforms, its surface area may 

change.  Such change of surface area is not accomplished by adding (or subtracting) mass 

to the surface.  Instead, the change of surface area is accompanied by the change of 

surface free energy density.  Consequently, the surface free energy density becomes a 

function of the surface strain sε .  In a Lagrangian formulation, it has been shown 

(Shuttleworth, 1950; Dingreville et al., 2005) that the surface stress is related to the 

surface free energy through 

  s

s

∂Γ
=
∂

Σ
ε
  , (4.1) 

This is known as the Shuttleworth equation (Shuttleworth, 1950).  Although derived only 

for free surfaces, the Shuttleworth equation has been used extensively for solid-solid 

interfaces such as grain boundaries, e.g., (Cammarata, 1989; Cammarata and Sieradzki, 
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1994; Cammarata, 1997; Cammarata, 2000; Sharma, 2003; Sharma et al., 2003).  Even 

though there are many similarities between a free surface and an interface in elastic solid, 

there is one key difference between them, namely, in addition to in-plane deformation, an 

interface may be subjected to transverse (normal to the interface) stress.  Such transverse 

stress and the corresponding transverse deformation also contribute to the interfacial 

excess (Andreev and Kosevich, 1981; Nozières and Wolf, 1988).  It is therefore 

questionable that the original Shuttleworth equation can be directly applied to interfaces 

in elastic solids.  Nozières and Wolf (Nozières and Wolf, 1988) recognized the necessity 

of including the transverse deformation of the interface in computing the interfacial 

excess energy, but did not give an expression of the contribution from the transverse 

stress. 

 

4.2.2 Definition of Interfacial Excess Energy 

 The surface free (excess) energy, nw , of a near surface atom is defined by the 

difference between its total energy and that of an atom deep in the interior of a large 

bicrystal.  Clearly, nw  depends on the location of the atom.  For the bicrystal interface 

shown in Figure 4.1(a), the 3x -dependence of nw  is schematically shown in Figure 

4.1(b), i.e., it reaches its maximum value on the interface and tends to zero deep into the 

crystal.  In addition, nw  is a function of the intrinsic bicrystal interface properties, as well 

as a function of the relative surface deformation.  If there are N atoms surrounding an 

area A in the deformed configuration, see Figure 4.1(a), then the total surface free energy 

associated with area A is given by 
1

N

n

n

w
=
∑ .  Thus, the Gibbs surface free energy density is 

defined by 

  
1

1 N

n

n

w
A =

Γ = ∑   . (4.2) 
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Note that the above definition is in the deformed configuration.  It can be viewed as the 

Eulerian description of the surface free energy density.  For solid crystal surfaces, the 

Lagrange description of the surface free energy density can be defined by 

  ( ) (0)

1 10 0

1 1
( )n

n

n n

w E E
A A

∞ ∞

= =

Γ = = −∑ ∑   , (4.3) 

where ( )nE  is the total energy of the atom n surrounding the area 0A , and 
(0)E  is the total 

energy of an atom in a perfect lattice far away from the free surface.  0A  is the area 

originally occupied in the undeformed configuration by the same atoms that occupy the 

area A in the deformed configuration.  It can be easily shown that the two areas are 

related through 

  0 (1 )sA A ηηε= +   , (4.4) 

where, s

αβε  is the Lagrange surface strain relative to the undeformed crystal lattice.  

Continuity of the strain field requires, for example, in the particular coordinate system 

shown in Figure 4.1(a), 

  
3 0

s

xαβ αβε ε
=

=   ,  , 1, 2α β =   , (4.5) 

where ijε  is the bulk Lagrange strain of the crystal under a given external loading.  In the 

above and in the rest of this chapter, Roman indices range from 1 to 3 and Greek indices 

range from 1 to 2, unless other wise indicated.  For future reference, the Lagrangian strain 

measure will be used in this chapter.  Although the sum in (4.3) involves an infinite 

number of atoms, the difference ( ) (0)nE E−  is non-zero only for atoms within a few 

atomic layers near the interface.  So, in practice, the sum in (4.3) only involves a very 

limited number of terms.  It should also be pointed out that the surface energy density 

calculated from (4.3) contains contributions not only from atoms on the surface, but from 

all atoms near the interface. 
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 Now, let us consider a flat interface between two dissimilar elastic solids.  For 

convenience, let the interface be located at 3 0x =  in a Cartesian coordinate system, see 

Figure 4.1.  Both constituent materials are assumed to be semi-infinite and are perfectly 

bonded together along the interface.  Furthermore, we assume that the interface is 

homogeneous in its own plane (not necessarily normal to its plane). 

 Let the bimaterial be subjected to a homogeneous traction and displacement 

boundary condition at infinity so that far away from the interface the deformation can be 

assumed homogeneous, and the (second Piola–Kirchhoff) stress and the (Lagrangian) 

strain tensors in the upper ( 3 0x > ) and lower ( 3 0x < ) materials are given by ±σ  and ±ε , 

respectively.  It has been shown that such homogeneous deformation can be easily 

constructed in a bimaterial (Qu and Bassani, 1993) by adding the so called "T" stress.  

Both bulk phases are being strained by the same amount in the plane of the interface.  

Although the deformation far away from the interface is homogeneous, the stress and 

strain fields near the interface are disturbed by the presence of the interface.  Therefore, 

the actual total fields in the bimaterial are generally different from the remote fields.  To 

distinguish them, we use σ  and ε  to denote the actual stress and strain tensors, 

respectively.  Clearly, σ  and ε  depend on the distance from the interface and approach 

their corresponding remote values far away from the interface, respectively, i.e., 

  
3

lim
x

±→±∞
=σ σ   ,  

3

lim
x

±→±∞
=ε ε   . (4.6) 

 Next, we can consider the interfacial excess energy.  If we limit ourselves to 

mechanical energy only, the standard Gibbs definition of the interfacial excess energy per 

unit undeformed area is given by 

  [ ] [ ]
0

3 3 3 3

0

( ) ( )w x w dx w x w dx

∞

+ −
−∞

Γ = − + −∫ ∫   , (4.7) 

where, following Appendix B and equation (B.10), 
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  3 0

1 1
ˆ ˆ( ) : : : : :

2 2
s s s s s t tw x c= + + +τ ε ε C ε σ M σ   , (4.8) 

  
1 1
: : : :

2 2
s s s t tw± ± ± ± ± ± ±= +ε C ε σ M σ   , (4.9) 

are the elastic strain energy densities (in the undeformed configuration) corresponding to 

the total and remote fields, respectively.  Specifically, sε  and tσ  are, respectively, the in-

plane strain and transverse stress tensors as defined by Appendix B, equation (B.4).  Note 

that, although not explicitly indicated, all the terms on the right hand side of (4.8) may 

depend on 3x .  Even though the range of integration in (4.7) is infinite, the convergence 

of the integral is expected because of (4.6).  In fact, extensive data (experimental and 

numerical) have shown that 3( )w x  differs from w±  only within a very small distance 

from the interface so that the integral needs to be carried out only over the thickness of 

the interfacial region, h h+ −+ , see, Figure 4.1(b). 

 To further simplify (4.7) into a form that is tractable for numerical evaluation, we 

introduce the following decomposition of a second order tensor ijη  into an in-plane 

portion and a transverse portion, i.e., 

  s t

ij ij ijη η η= +   , (4.10) 

where, written in a matrix form we have, 

  
11 12

12 22

0

0

0 0 0

s

η η
η η
 
 =  
 
 

η   ,  
13

23

13 23 33

0 0

0 0t

η
η

η η η

 
 =  
 
 

η   . (4.11) 

It can be easily show that the decomposition is orthogonal, i.e., : 0s t =η η . 

 Making use of the coherence of the interface leads to 

  s s s

+ −= =ε ε ε   . (4.12) 

This clearly represents the stretching of the interface caused by uniform traction at 

1x = ±∞ , and/or 2x = ±∞ .  s s s

+ −= =ε ε ε .  It is conceivable that all interfacial excess 
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quantities should be expressible in terms of t

±σ  and 
sε  since they are independent bulk 

thermodynamic variables and therefore completely characterize the elastic state of the 

interface. 

 We will now consider and define the surface stress and surface strain.  It then 

follows from (4.7) – (4.9) that the interfacial excess energy can be re-rewritten as 

  (1) (2) (2), (2),
0

1 1 1
: : :

2 2 2
s s s t t t t+ −

+ + − −Γ = Γ + + + ⋅ ⋅ + ⋅ ⋅Γ ε ε Γ ε σ Λ σ σ Λ σ   , (4.13) 

where 

  0 0 3 3ˆ ( )w x dx
∞

−∞
Γ = ∫   ,  (1)

3 3ˆ ( )s x dx
∞

−∞
= ∫Γ τ   , (4.14) 

  
0

(2)
3 3 3 3

0

( ) ( )s s s sx dx x dx

∞

+ −
−∞

   = − + −   ∫ ∫Γ C C C C   , (4.15) 

  [ ] [ ]
0

(2) (2), (2),
3 3 3 3

0

( ) ( )x dx x dx

∞
+ −

+ −
−∞

= + = − + −∫ ∫Λ Λ Λ M M M M   . (4.16) 

A more convenient way of writing (4.13) is to use the average transverse stress 

( )1

2
t t t

+ −= +σ σ σ  and the relative transverse stress discontinuity t t t

+ −= −σ σ σ� �
	 
� �  such 

that, 

  

(1) (2) (2) (2),
0

1 1 1
: : :

2 2 8
1

     
2

s s s t t t t

t t

Γ = Γ + + + ⋅ ⋅ + ⋅ ⋅

+ ⋅ ⋅

Γ ε ε Γ ε σ Λ σ σ Λ σ

σ Κ σ

� � � �
	 
 	 
� � � �

� �
	 
� �

  , (4.17) 

where, 

  (2), (2),+ −= −Κ Λ Λ   . (4.18) 

Equation (4.17) gives the interfacial excess energy as an explicit function of the in-plane 

strain and transverse stress tensors. 
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4.2.3 Surface Stress and Surface Strain 

 Next, we define the (second Piola–Kirchhoff) interfacial excess stress by 

  
0

3 3 3 3

0

( ) ( )s s s s sx dx x dx

∞

+ −
−∞

   = − + −   ∫ ∫Σ σ σ σ σ   . (4.19) 

It follows from Appendix B and equation (B.8) that, 

  ( )(1) (2) 1
:

2
s s t t + −= + + ⋅ + ⋅ −Σ Γ Γ ε σ H σ H H� �

	 
� �   , (4.20) 

where, 

  [ ] [ ]
0

3 3 3 3

0

( ) ( )x dx x dx

∞
+ −

+ −
−∞

= + = − + −∫ ∫H H H γ γ γ γ   . (4.21) 

 Similarly if we consider the “excess” strain, the (Lagrange) transverse interfacial 

excess strain is defined by 

  
0

3 3 3 3

0

( ) ( )t t t t tx dx x dx

∞

+ −
−∞

   = − + −   ∫ ∫∆ ε ε ε ε   . (4.22) 

Making use of Appendix B and equation (B.6) we have 

  (1) (2) 1
:

2
t t t s= + ⋅ + ⋅ −∆ Λ Λ σ Κ σ H ε� �

	 
� �   , (4.23) 

where, 

  (1)
3 3 3( ) ( )tx x dx

∞

−∞

= − ⋅∫Λ M τ   . (4.24) 

 

4.2.4 Surface Elasticity, Generalized Shuttleworth Relation 

 Comparing (4.13) with (4.20) and (4.23) leads to, respectively, 

  ( )1
2t

s t t

s

+ −∂Γ = + ⋅ + ⋅ − ∂ σ
Σ σ H σ H H

ε
� �
	 
� �   , (4.25) 

  (1) :
s

t s

t

 ∂Γ
 − = −
 ∂ ε

∆ Λ H ε
σ

  . (4.26) 
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Equation (4.25) relates the interfacial excess stress to the interfacial excess energy.  It 

reduces to the original Shuttleworth equation (4.1) only when t =σ 0 .  Therefore, we 

will call equation (4.25) the generalized Shuttleworth equation. For t ≠σ 0 , it is seen 

from (4.20) that interfacial excess stress sΣ  consists of three terms.  The first term (1)Γ  is 

a two-dimensional second order tensor representing the internal excess stress of the 

interface.  It is the part of interfacial stress that exists when the surface strain and 

transverse stress are absent.  The second term is related to the two-dimensional fourth 

order tensor (2)Γ  that represents the interface's in-plane elasticity, while the third term is 

related to a third order tensor H that measures the Poisson's effect of the interface. 

 Analogously, the transverse interfacial excess strain tensor t∆  measures the 

interfacial excess deformation in the direction transverse to the interface.  Therefore, 

equation (4.26) can be viewed as the complimentary Shuttleworth equation.  It is seen 

from (4.23) that t∆  also consists of three terms.  The first term (1)Λ  represents the part of 

transverse interfacial deformation that exists even when t =σ 0  and s =ε 0  (i.e., when 

the remote traction the in-plane strain vanishes).  Therefore, (1)Λ  is called the interfacial 

"relaxation" tensor.  The fourth order tensor (2)Λ  representing the transverse compliance 

of the interface is called the interfacial transverse compliant tensor.  It should be pointed 

out that although (1)Λ  and H  affect the in-plane interfacial excess stress and transverse 

interfacial excess strain, they do not explicitly appear in the interfacial excess energy.  

Furthermore, although t∆  is referred to as the transverse interfacial excess "strain", it has 

a dimension of length.  In fact, it actually represents the intrinsic “width” of the interface 

accounting for the relative movement between the top and bottom "surfaces" of the 
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interfacial region. 

 It is clear from the foregoing discussions that the interfacial tensors (1)Γ , (2)Γ , 

(1)Λ , (2)Λ  and H  are intrinsic properties of the interface.  They can be calculated 

analytically for a given bimaterial with known interatomic potentials as shown later on in 

this chapter.  Once these tensors are known, the elastic behavior of the interface is fully 

characterized. 

 Before closing this sub-section, it is worthwhile to clarify certain terms.  Since the 

term "surface free energy" was originally introduced to fluid surfaces, the traditional 

surface free energy, or surface energy consists of only 0,
ˆ

t ss = =
Γ = Γ = Γ

σ 0 ε 0
.  The surface 

free energy ˆ sΓ  by and large is an intrinsic material property.  However, if the remote 

loading sε  and/or tσ  is applied, the total interfacial excess energy is given by (4.7) which 

is no longer an intrinsic material property.  It also depends on the applied load.  To 

distinguish them, we name ˆ sΓ  the interfacial free energy, which is an intrinsic material 

property, while the Γ  as given by (4.13) will be called interfacial excess energy, which 

represents the "extra" energy associated with the interface subjected to sε  and/or tσ .  In 

traditional continuum mechanics, neither ˆ sΓ  nor Γ  appears in the formulation.  In the 

classic work on elastic interfaces (Gurtin and Murdoch, 1975; Gurtin, 1978; Gurtin, 

1998),  only the in-plane part 
0t =

Γ
σ
 was considered. 

 

4.2.5 Isotropic Bimaterials 

 The formulation presented above is valid for elastic materials with arbitrary 

anisotropy.  In this section, we consider a special case where the interface is flat and 

therefore traction continuity is assured ( t t t

+ −= =σ σ σ ) and both constituents of the 

bimaterial are elastically isotropic with Lamé constants λ±  and µ± .  In this case, it is 
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perceivable that the interface will be transversely isotropic with its axis of symmetry 

being perpendicular to the interface.  In the coordinate shown in Figure 4.1, the 

interfacial matrices defined by (4.14) – (4.21) can be calculated formally from Appendix 

B and equations (B.17) – (B.18) 

  ( )(2) ( )S S SKαβκλ αβ κλ ακ βλ αλ βκµ δ δ µ δ δ δ δΓ = − + +   , (4.27) 
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where 
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∫ ∫   . (4.34) 

 The physical meaning of these five parameters SK , Sµ , Tµ , TE  and Sν  will 

become clear next.  Substituting equations (4.27) – (4.29) into (4.20) gives 

  (1)
3

2
( ) 2s s s tS S

S S S

T

K
K

E
αβ αβ αβ κκ αβ αβ

ν
µ δ ε µ ε σ δΣ = Γ + − + +   , (4.35) 

where 
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is the in-plane interfacial excess stress when no external load is applied while the in-plane 

strain (measured from the undeformed crystal lattice) remains zero.  The in-plane biaxial 

"hydrostatic" stress is thus given by 2s

ααΣ , where 

  (1)
3

4
2s s tS S

S

T

K
K

E
αα αα κκ

ν
ε σΣ = Γ + +   . (4.37) 

Clearly, SK  is the in-plane bi-axial bulk modulus of the interface.  The individual 

components of the interfacial excess stress tensor are 

  (1)
11 11 11 3

2
( ) 2s s s tS S

S S S

T

K
K

E
κκ

ν
µ ε µ ε σΣ = Γ + − + +   , (4.38) 

  (1)
22 22 22 3

2
( ) 2s s s tS S

S S S

T

K
K

E
κκ

ν
µ ε µ ε σΣ = Γ + − + +   , (4.39) 

  (1)
12 12 122s s

Sµ εΣ = Γ +   . (4.40) 

It is seen from (4.40) that Sµ  is the in-plane shear modulus of the interface. 

 The transverse interfacial excess strain follows from making use of Appendix 

(B.17) – (B.18) in (4.23) 

  
2

(1)
3 3 32

4 21 1 1
( )t t t sS S S S

i i i i i

T T T T T

K K

E E E
κκ

ν ν
δ σ σ δ ε

µ µ
∆ = Λ + − − + −   , (4.41) 

where 

  (1)
3 3 3

1

( 2 )
t t

i i i dx
λ µ

δ τ τ
λ µ µ µ

∞

−∞

 +
Λ = − + 

∫    (4.42) 

is the transverse relaxation of the interface when no external load is applied while the in-

plane strain (measured from the undeformed crystal lattice) remains zero.  By making use 

of (4.37) in (4.41), one can write t

i∆  in terms of the stresses, 

  (1) (1)
3 3 3

1 1 1 2
( ) ( )t t t sS

i i i i i

T T T TE E
αα αα

ν
σ δ σ δ

µ µ
∆ = Λ + − + − Σ −Γ   . (4.43) 

Specifically, 
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  (1)
1 1 1

1t t

T

σ
µ

∆ = Λ +   ,  (1)
2 2 2

1t t

T

σ
µ

∆ = Λ +   , (4.44) 

  (1) (1)
3 3 3

1
( )t t s

S

TE
αα αασ ν ∆ = Λ + − Σ −Γ    . (4.45) 

It is seen that TE  is the transverse Young's modulus of the interface, and Sν  is the 

Poisson's ratio associated with the contraction of the interface in the transverse 

(thickness) direction when the interface is stretched by in-plane stress. 

 Finally, we note that in the special case when 0t

jσ = , the interfacial excess stress 

(4.37) reduces to 

  (1) 2s s s

S Sαβ αβ αβ κκ αβλ δ ε µ εΣ = Γ + +   , (4.46) 

where S S SKλ µ= −  can be viewed as one of the two-dimensional Lamé constants of the 

interface.  Equation (4.46) is identical to the classical form of interfacial excess stress 

derived in (Gurtin and Murdoch, 1975; Murdoch, 1976; Gurtin, 1978; Gurtin, 1998). 

 

 In all the preceding discussions, we have intentionally limited ourselves to 

continuum media.  Therefore, there is not microstructure, thus no characteristic length 

involved, and the interface is a mathematical surface with zero-thickness.  For realistic 

bimaterials, there typically exist two distinctive length parameters, namely, the atomic 

spacing (lattice parameter) d, and the radius of curvature of the interface D, where D is 

generally several order of magnitude greater than d for most of the problems of 

engineering interest.  More detailed discussions about the surface elastic properties and 

their effects on nano-scaled materials can be found in chapter 5.  It is shown the size-

dependence effect on the elastic properties of nanostructures and the contribution made 

by the surface elastic behavior. 
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4.3 Semi-analytical Method to Evaluate Surface Properties 

 

 In this section, a semi-analytic method is developed to compute the surface elastic 

properties of crystalline materials.  The method presented in this section is based on the 

idea of expanding the atomic energy and atomic stress into power series of surface strains 

and transverse stresses.  The roots of this approach has been used to successfully compute 

bulk properties (Johnson, 1988; Johnson and Oh, 1989) and to fit various interatomic 

potentials (Foiles et al., 1986).  For an atomic ensemble in equilibrium, the energy of 

each atom can be written as a function of the atomic position and the elastic constants can 

be extracted assuming homogeneous deformation (Born and Huang, 1954).  As pointed 

out by Shenoy (2005), direct application of such an approach in calculating surface 

properties fails to account for the internal relaxation.  The approach used in this work 

relies on the expansion of the energy and stress of each atom into a power series of 

surface strains and transverse stresses relative to the relaxed configuration.  The 

appropriate use of the equilibrium and traction conditions across the interface enables us 

to solve and account for the inner relaxation.  The theoretical framework for interfaces 

presented in the previous section helps us to subsequently formulate analytical 

expressions for the interface elastic properties.  These quantities are explicit functions of 

the interatomic potentials and atomic positions. 

 Now, let us consider a given interface between two crystals.  Because of the 

reduced coordination, atoms near the interface relaxed, i.e., they moved away from their 

perfect lattice position when the interface was created.  If this relaxed, or self-

equilibrium, state of the bicrystal is regarded as an intermediate configuration in the 

deformation process, the total strain measured from the perfect crystal lattice can be 

written as, 

  ˆ= +ε ε ε   , (4.47) 
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where ε̂  is the strain at the relaxed state of the bicrystal measured from the perfect crystal 

lattice, and ε  is the relative strain measured from the relaxed state of the bicrystal.  The 

relative strain can also be interpreted as the applied strain imposed upon the relaxed state 

of the bicrystal.  Since the in-plane interface coherent strain sε  is also measured from the 

perfect crystal lattice, continuity of the strain field near the interface, leads to 

  ( )
3

3
0 0

ˆs s s s

x
x

= =
= + =ε ε ε ε   . (4.48) 

 Let us then consider a bimaterial system containing N equivalent atoms.  The total 

energy nE  of atom n in the bimaterial is a generic inter-atomic potential functional given 

by, 

 

  

( ) ( )

( )

( )
0

1
,

2!

1
, , ,

!

n nm nm np

m n m n p n

nm np nq

m n p n q n

E E E r E r r

E r r r
N

≠ ≠ ≠

≠ ≠ ≠

= + + +

+

∑ ∑∑

∑∑ ∑

…

… …

  , (4.49) 

where, 

  ( ) ( ) ( )2 2 2

1 2 3
mn mn mn mnr r r r= + +  (4.50) 

is the scalar distance between atom m and atom n.  Note that the generic form of (4.49) 

may include pair potentials such as the Lennard-Jones potential as well as multi-body 

potentials such as the EAM potentials used in the numerical examples in this work. 

 

4.3.1 Free Surface 

 Let us first consider a flat free surface of a given single crystal.  Let ˆmnr  be the 

scalar distance between the atom m and atom n at the relaxed configuration of the 

assembly.  If mnr  is the position vector between atom m and atom n in a uniform strain 
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field superimposed on the relaxed configuration, then the strain tensor relative to the 

relaxed configuration is the same for all atoms and can be written as 

  ˆ ˆ ˆmn mn mn mn mn

i i ij j ij jr r F r F r− = =   , (4.51) 

The nine independent strains ijF  can be written as six symmetric parameters 

  ( )1

2ij ij jiF Fε = +   , (4.52) 

corresponding to the pure deformation and three anti-symmetric parameters 

  ( )1

2ij ij jiF Fω = −   , (4.53) 

corresponding to pure rotation.  The method presented in this paper only considers pure 

deformation.  Note also that such a procedure is simple in a centrosymmetric crystal, 

since all the interatomic vectors in this case transform through ijε  as in (4.52).  This is 

the case of the basal surfaces studied in the following of this section, however, in the case 

of non-centrosymmetric crystals, which is the case of atomic assemblies containing 

interfaces or for non-basal free surfaces, internal relaxation occurs.  This situation will be 

treated separately in section 4.3.2. 

 It then follows from references(Johnson, 1972; Johnson, 1973; Ackland and 

Finnis, 1986; Johnson, 1988) and equations (4.52) that for a uniform and homogeneous 

deformation the Taylor expansion of (4.49) with respect to the relaxed configuration can 

be written as 

  ( ) ( ) ( ) ( )1

2
n n n n

ij ij ijkl ij klE A A Aε ε ε= + +   , (4.54) 

where the uniform strain field ijε  is measured from the equilibrium (relaxed) state of the 

semi-infinite crystal and the coefficients ( )nA , ( )n
ijA , and ( )n

ijklA  are related to the energy of 

atom n by 

  ( ) ( )

ˆmn mn

n n

r r
A E

=
=   , (4.55) 
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( )

( )

ˆ ,

ˆ
mn mn

n
n pn

ij i pn
p n j r r i j

E
A r

r≠
= < >

 ∂
=  

∂  
∑   , (4.56) 

  
2 ( )

( )

ˆ , , ,

ˆ ˆ

mn mn

pn qn n
n i k
ijkl pn qn

p n q n j l r r i j k l

r r E
A

r r≠ ≠
= < > < >

 ∂
=  

∂ ∂  
∑∑   , (4.57) 

where the notation in subscript means taking the symmetric part of the base tensor, e.g., 

  , , ,,

1

2i j i j j ii j
u u u

< >
   = +      . (4.58) 

Note that, once the inter-atomic potential ( )nE  is given, the coefficients ( )nA , ( )n
ijA , and 

( )n
ijklA  can be computed analytically from (4.55) – (4.57).  The explicit expressions of 

(4.55) – (4.57) for the EAM potentials are derived in Appendix A. 

 For an atom deep inside the semi-infinite crystal (or, equivalently, an atom in an 

infinite crystal), the local elastic stiffness tensor can be defined as(Alber et al., 1992; 

Bassani et al., 1992; Marinopoulos et al., 1998), 

  ( )( )
( )

1 nn

ijkl ijkln
C A=

Ω
  , (4.59) 

where ( )nΩ  is the volume of the Voronoi polyhedron associated with atom n.  The 

atomic-level elastic stiffness tensor ( )n
ijklC  can be interpreted as describing the 

homogeneous elastic response at individual atomic sites. 

 For atoms near the free surface, however, the atomic level elastic stiffness tensor 

can no longer be given simply by (4.59).  To derive the elastic properties of free surfaces, 

let us consider a semi-infinite crystal subjected to an applied uniform strain field ijε .  The 

free surface at 3 0x =  requires, 

  13 23 33 0σ σ σ= = =  at 3 0x =   . (4.60) 

It then follows from Hooke's law that any uniform strain field that is compatible with the 

traction-free boundary conditions (4.60) should satisfy 
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  13 1 32 j jD C αβ αβε ε= − ,  23 2 32 j jD C αβ αβε ε= − ,  33 3 3j jD C αβ αβε ε= −   , (4.61) 

where ijklC  is the elastic stiffness tensor of the perfect crystal lattice, and the 3 3×  matrix 

ijD  is given by 

  
1313 1323 1333

1
2313 2323 2333

3313 3323 3333

D

C C C

C C C

C C C

−

 
 =  
  

  . (4.62) 

Making use of (4.61) into (4.54) yields 

  ( ) ( ) ( ) ( )1

2
n n n nE A B Bαβ αβ αβκλ αβ κλε ε ε= + +   , (4.63) 

where 

  ( ) ( ) ( )
3 3

n n n

i ij jB A A D Cαβ αβ αβ= −   , (4.64) 

  ( ) ( )
3 3 3 3 3 3 3 3

n n

i j ip jq p q i iq q j jp pB A A D D C C A D C A D Cαβκλ αβκλ αβ κλ κλ αβ αβ κλ= + − −   , (4.65) 

Substituting (4.63) into (4.2) yields 

  ( ) ( ) ( )( ) (0) ( ) (0) ( ) (0)

10

1 1
2

n n n

n

A A B B B B
A

αβ αβ αβ αβκλ αβκλ αβ κλε ε ε
∞

=

 Γ = − + − + −  
∑   , (4.66) 

where (0)A , (0)Bαβ  and 
(0)Bαβκλ  are calculated from (4.55), (4.64) and (4.65), respectively, for 

an atom far away from the surface embedded in the bulk of the semi-infinite crystal.  For 

the free surface at 3 0x =  in Figure 4.2, it follows from (4.12) that uniform strain tensor 

αβε  in (4.66) can be replaced with the surface strain tensor s

αβε .  Thus, comparing (4.66) 

with (4.13) when t =σ 0  leads to the expressions for the elastic properties of the free 

surface 

  ( )( ) (0)
0

10

1 n

n

A A
A

∞

=

Γ = −∑   , (4.67) 

  ( ) ( )1 ( ) (0)

10

1 n

n

B B
A

αβ αβ αβ

∞

=

Γ = −∑   , (4.68) 
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  ( ) ( )2 ( ) (0)

10

1 n

n

B B
A

αβκλ αβκλ αβκλ

∞

=

Γ = −∑   , (4.69) 

These are the analytical expressions of the intrinsic surface energy density, intrinsic 

surface stress and the surface elastic stiffness tensor, respectively.  Note that there is an 

important difference between (4.67) – (4.69) and similar results in the literature (Johnson, 

1972; Johnson, 1973; Ackland and Finnis, 1986; Johnson, 1988; Johnson and Oh, 1989; 

Feibelman, 1991).  In these existing solutions, as noted by Shenoy (2005), surface 

relaxation is not accounted for, while (4.67) – (4.69) are derived for the relaxed surface. 

 Before closing this section, it should be mentioned that, for a given inter-atomic 

potential function ( )nE , numerical evaluation of the analytical expressions (4.67) – (4.69) 

requires knowledge of the inter-atomic spacing ˆmnr  at the relaxed state of the surface.  To 

obtain ˆmnr , a molecular static simulation may be conducted.  This is why we called the 

method developed here semi-analytical.  Note also that only one Molecular Static 

simulation is needed for each surface orientation.  In contrast, existing methods (Zhou 

and Huang, 2004; Shenoy, 2005) evaluating the surface properties require multiple 

simulations for each surface. 

 

4.3.2 Bicrystal Interface 

 To evaluate the elastic properties of a given interface from a discrete medium 

point of view, we consider now a given flat interface between two crystals.  Given 

equation (4.49), the total energy of this ensemble containing N such atoms is ( )

1

N
n

n

E E
=

=∑ .  

If we consider a single crystal of infinite extent subjected to a macroscopically uniform 

strain field ijε  it has been demonstrated by Johnson (1972) that the elastic stiffness tensor 

of the bulk crystal is given by, 
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2 ( )

1

1 1

mn

nN
pn qn

ijkl j lpn qn
n p n q n n i k r

E
C r r

N r r= ≠ ≠

∂
=

Ω ∂ ∂∑∑∑   . (4.70) 

However, when considering an atomic ensemble containing non-equivalent atoms (which 

is the case for systems containing grain boundaries and interfaces) subjected to a 

macroscopically uniform deformation, internal relaxations occur (Martin, 1975) and 

equation (4.70) can be interpreted as a description of the homogeneous elastic response of 

the ensemble. 

 

4.3.2.1 Atomic Level Mapping 

 In order to account for the inner displacements, we first define an atomic level 

mapping between the undeformed and deformed configurations by, 

  ( )ˆ ˆm m m m

i i ij ij jr r rε ε±− = + �   , (4.71) 

where ijε
±  corresponds to a homogeneous deformation of atom m and m

ijε�  describes the 

“inner” relaxation (or additional “non-homogeneous” deformation) of atom m with 

respect to a homogeneous deformation.  The positive (or negative) sign should be 

selected if atom m is in the upper (or lower) crystal.  The atomic position of atom m is 

measured from a fixed reference point.  The homogeneous deformation of the bicrystal 

assembly can be described by an in-plane deformation s

αβε  and a transverse loading t

iσ  

("T" stress).  Derivations and detailed expressions are presented in Appendix B.  The 

homogeneous deformation is expressed as a function of these two global variables such 

that (4.71) transforms into, 

  ( )ˆ ˆ ˆm m s t m m m

i i ij ijk k j ij jr r A B r rαβ αβε σ ε± ±− = + + �   , (4.72) 

with, 

  ( )3 3

1

2ij i j j i i jA αβ α β αβ αβδ δ γ δ γ δ± ± ±= − +   , (4.73) 
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  ( )3 3

1

2ijk jk i ik jB M Mδ δ± ± ±= +   , (4.74) 

where jαβγ ±  and jkM ±  are given in Appendix B.  Note that ijA αβ
±  and ijkB±  are known 

tensors and characterize the homogeneous behavior of the bicrystal. 

The difference in position of two atoms near their relaxed state is therefore given by, 

  ( )ˆ ˆ ˆmn mn mn s mn t m m n n

i i i ik k ij j ij jr r A B r rαβ αβε σ ε ε− = + + −� �   , (4.75) 

where, 

  ( ) ( ), , , ,ˆ ˆ ˆmn m n mn n m m n

i ij ij j ij j ij jA A A r A r A rαβ αβ αβ αβ αβ
± ± ± ±= + − −   , (4.76) 

and, 

  ( ) ( ), , , ,ˆ ˆ ˆmn m n mn n m m n

ik ijk ijk j ijk j ijk jB B B r B r B r± ± ± ±= + − −   . (4.77) 

 

4.3.2.2 Total Energy of the Atomic Assembly 

 Next let us consider the atomic energy of an atom n.  As reported by Johnson 

(1972), one can expand the energy density of an atom n about its equilibrium configuration. 
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E
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r r r r

r r

=
=

=≠

=
=≠

1 ∂
= + −
Ω ∂

∂
+ − − + 
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∑

∑ �

  , (4.78) 

The total strain energy density of the system, E, is defined by the sum n

n

w∑ .  

Substituting equation (4.75) into equation (4.78) yields for the total strain energy of the 

atomic assembly, 

  

( )

(1) (1) (2) (2)
0

1 1 1

1 1 1

1 1

2 2
1

      
2

s t s s t t s t

k k ij i j u i

N N N
n n s n t n mn n m

ij ij ijk k ij ijkl ij kl

n n m

E E A B A B Q

K D G L

αβ αβ αβκλ αβ κλ αβ αβ

αβ αβ

ε σ ε ε σ σ ε σ

ε σ ε ε ε
− − −

= = =

= + + + + +

+ + + +∑ ∑∑� � �

  , (4.79) 
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where (1)Aαβ , 
(1)
kB , (2)Aαβκλ , 

(2)
ijB and iQαβ  describe the homogeneous behavior of the 

assembly upon a deformation configuration ( ),  s t

kαβε σ  while, n

ijK , n

ijD αβ , 
n

ijkG  and mn

ijklL  

represent the components of perturbation response of the system introduced by the non-

equivalency of the atomic ensemble such as in grain boundaries or multi-species 

compounds and account for the accommodation of internal relaxations upon a 

deformation configuration ( ),  s t

kαβε σ . 

 

4.3.2.3 Atomic Level Stress 

 After defining the total energy of the system and the atomic level mapping, we 

then look at the atomic level stress associated with an atom n.  The virial stress on atom n 

is given by, 

  
1

1

2

N
n mn

ij jmn
mn i
m n

E
r

r
σ

=
≠

∂
=

Ω ∂∑   . (4.80) 

Expanding the atomic level stress n

ijσ  with respect to mn

ir  near ˆmnir , where ˆmnir  is the 

equilibrium configuration of the bi-crystal, gives 

  ( )
ˆ

1 ˆ

ˆ
mn mn

mn mn

nN
ijn n mn mn

ij ij k kmnr r
m k r rm n

r r
r

σ
σ σ

=
= =≠

∂
= + −

∂∑   , (4.81) 

where 

  
1 ˆˆ

1

2
pn pnmn mn

n N
ij pn

jmn mn pn
pk n k i r rr r p n

E
r

r r r

σ

= == ≠

∂  ∂ ∂
=  

∂ Ω ∂ ∂ 
∑   . (4.82) 

After substituting the mapping of equation (4.75),we obtain for the atomic level stress, 

  
1

, ,

1

N
n n s n s t n t nm m

ij ij ij kij k ijkl kl

m

C M Tαβ αβσ τ ε σ ε
−

=

= + + +∑ �   , (4.83) 
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where, n

ijτ , 
,s n

ijC αβ , 
,t n
kijM  and nm

ijklT  are known constants given in terms of the interatomic 

potential E and its partial derivative with respect to the interatomic distance r.  

Derivations and expressions of these tensors are given in Appendix C. 

 

4.3.2.4 Finding the Internal Relaxations 

 The conditions of mechanical equilibrium and traction continuity across the 

interface yield, 

  ,t n t

j jσ σ=   . (4.84) 

Substituting equation (4.84) into equation (4.83) gives a system of 3N equations for the 

6N unknowns n

ijε� . 

  
1

, , ,
3 3 3

1

N
t t n s n s t n t nm m

i i i k i k ikl kl

m

C M Tαβ αβσ τ ε σ ε
−

=

= + + +∑ �   . (4.85) 

Using equation (4.85), one can express the transverse relaxation ,t n
iε�  as a function of the 

in-plane relaxation ,s n
αβε� , in the in-plane homogeneous strains s

αβε  and the transverse 

stretching t

iσ . 

  
1

, , ,

1

N
t n t n n t n s nm s m

i i ij j i i

m

X Y Zαβ αβ αβ αβε ς σ ε ε
−

=

= + − −∑� �   , (4.86) 

with ,t n
iς , n

ijX , n

iYαβ  and
nm

iZ αβ  given in Appendix C.  Note that equation (4.86) implicitly 

accounts for the traction condition across the interface and therefore uniquely defines the 

relationship between the in-plane and transverse internal relaxation. 

 In order to solve for the 6N unknowns of equation (4.85), we furthermore need to 

consider that the application of a prescribed “mixed” loading configuration (in-plane 

prescribed deformation and transverse prescribed traction) to the bicrystal produces a 

finite strain and a minimization of strain energy density by internal relaxation.  In other 

words, once we substitute the transverse relaxation from Equation (4.86) into equation 
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(4.79), the total strain energy must be minimum with respect to any arbitrary spontaneous 

in-plane relaxation, i.e., 

  
,
0 ;

s n

E
n

αβε
∂

= ∀ ∈Ω
∂ �

  , (4.87) 

where Ω is the total bicrystal assembly.  It is seen that Equation (4.87) is now a system of 

3N equations for the 3N unknowns ,s n
αβε� .  Then, we solve for the internal in-plane 

relaxation, 

  , , , ,s n s n s n t s n s

i iM Qαβ αβ αβ αβκλ κλε η σ ε= − +�   , (4.88) 

with ,s n
αβη , ,s n

iM αβ  and 
,s nQαβκλ  given in Appendix C.  Substituting equation (4.88) back into 

equation (4.86) leads to the internal transverse relaxation, 

  , , , ,t n t n t n t t n s

i i ij j iM Qαβ αβε η σ ε= + −�   , (4.89) 

with ,t n
iη , ,

3 3
t n

j kM  and n

iQαβ  given in Appendix C. 

 

4.3.2.5 Interface Elastic Properties 

 When applying in-plane deformations s

αβε  and transversal (out-of-plane) stresses 

t

jσ  to the atomic ensemble of interest, the atomic level in-plane stress ,s n
αβσ  is given by, 

  , ,s n n s n s n t

i iC Qαβ αβ αβκλ κλ αβσ π ε σ= + +   , (4.90) 

While the transversal relaxation ,t n
kε�  is given by equation (4.89). 

The derivations and detailed expressions for n

αβπ , ,s nCαβκλ , and 
n

iQαβ  are presented in 

Appendix C.  Note that the in-plane atomic level modified stiffness tensor ,s nCαβκλ  accounts 

for the transverse effects and should not be confused with the in-plane components of the 

atomic level stiffness tensor ,s nCαβκλ  of equation (4.83). 
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 Similarly, far away from the interface region, when in-plane deformations s

αβε  

and transversal (out-of-plane) stresses t

jσ  are applied to an atomic ensemble (which can 

be considered as a perfect crystal), the bulk in-plane stress ,bulk s

αβσ  is determined by, 

  ( ),
3 3 3 3 3 3 3

bulk s bulk bulk bulk bulk s bulk bulk t

j i j i j i j iC C S C C Sαβ αβκλ αβ κλ κλ αβσ ε σ= − +   , (4.91) 

where the derivations and detailed expressions for bulk

ijklC , and 3 3
bulk

i jS  are presented in 

Appendix B. 

 With equations (4.90) – (4.91), we are now ready to evaluate the interfacial stress 

sΣ  and interfacial strain t∆ .  Combining equations (4.90) with (4.91) leads to the 

“excess” in-plane stress for an atom n, 

  

( ), ,
3 3 3 3

3 3 3                 

s n s n s n s

j i j i

n t

i k i k i

C C C S C

Q C S

αβ αβ αβ αβκλ αβκλ αβ κλ κλ

αβ αβ

σ σ π ε

σ

± ± ± ± ±

± ±

 − = + − − 

 + − 

  . (4.92) 

In all these expressions, the positive (or negative) sign should be selected if atom n is in 

the upper (or lower) crystal.  The interfacial excess in-plane stress is thus determined by, 

  ( ), (1) (2)

10

1 N
s s n s s t

n i i

n

H
A

αβ αβ αβ αβ αβκλ κλ αβσ σ ε σ±

=

Σ = Ω − = Γ +Γ +∑   , (4.93) 

where 0A  is the area of the interface concerned, and 

  (1)

10

1 N
n

n

nA
αβ αβπ

=

Γ = Ω∑   , (4.94) 

  ( )(2) ,
3 3 3 3

10

1 N
s n

n j i j i

n

C C C S C
A

αβκλ αβκλ αβκλ αβ κλ
± ± ± ±

=

 Γ = Ω − − ∑   , (4.95) 

  3 3 3
10

1 N
n

i n i k i k

n

H Q C S
A

αβ αβ αβ
± ±

=

 = Ω − ∑   . (4.96) 

 Similarly if we consider the transverse excess strain given by (4.89), the 

interfacial excess transverse strain is given by, 
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  , (1) (2)

10

1 N
t t n t s

k n i k kj j k

n

H
A

αβ αβε σ ε
=

Λ = Ω = Λ +Λ −∑ �   , (4.97) 

where 

  (1) ,

10

1 N
t n

k n j

nA
η

=

Λ = − Ω∑   , (4.98) 

  (2) ,
3 3

10

1 N
t n

kj n j k

n

M
A =

Λ = Ω∑   . (4.99) 

These are the analytical expressions of the interfacial elastic properties.  Note that, for a 

given inter-atomic potential function ( )nE , numerical evaluation of the analytical 

expressions (4.94) – (4.99) requires knowledge of the relaxed state of the interface.  To 

obtain ˆmnr , a preliminary molecular static simulation may be conducted.  This is why we 

called the method developed here semi-analytical. 

 

4.4 Surface Elastic Properties of Cu, Ni, Ag and Pd Free Surfaces 

 

 In this section, the surface elastic properties of Cu, Ni, Ag and Pd are computed 

using the semi-analytical method developed in the previous section.  The EAM of Daw 

and Baskes(Daw and Baskes, 1983; Daw and Baskes, 1984) was used in the computation.  

Explicit expressions of ( )nA , ( )n
ijA , and ( )n

ijklA   for this EAM are given in Appendix A. 

 

4.4.1 Computational Framework and Results 

 To obtain the inter-atomic spacing ˆmnr  at the relaxed state, a MS simulation was 

conducted.  The initial unrelaxed configuration was constructed by rotating a perfect 

crystal lattice about an axis by a proper angle to arrive at the desired surface orientation 

in a rectangular simulation cell with the top surface of the cell being 3 0x = .  In the plane 



 96 

of the surface of interest, periodic boundary conditions have been used to mimic an 

infinite surface.  In the direction perpendicular to the surface, the slab is made sufficiently 

thick (more than 40 layers) to ensure that the results are independent of the thickness of 

the computational cell.  The interactions between atoms are calculated up to the third 

nearest neighbor by truncating the EAM potential at the appropriate distance.  The 

reduced coordination of atoms near the free surface induces a redistribution of electronic 

charges, which alters the binding situation.  Consequently, atoms near the surface 

relaxed, i.e., they have moved away from the perfect crystal lattice and changed their 

energy.  By minimizing the potential energy of the system, the most probable (relaxed) 

configuration can be obtained, which yields ˆmnr .  A nonlinear conjugate gradient 

method(Fletcher and Reeves, 1964) was used to minimize the energy of the system. 

 Once ˆmnr  is known, the coefficients ( )nA , ( )n
ijA , and ( )n

ijklA  can be evaluated from 

(A3) – (A5).  Subsequently, the intrinsic surface energy density, intrinsic surface stress 

and surface elastic tensors can be easily obtained from (4.67) – (4.69).  Following these 

steps, three low-index surfaces, (100), (110), and (111) of Cu, Ni, Ag and Pd were 

considered and their surface properties are presented in Table 4.1.  Previously published 

results (Daw and Baskes, 1984; Ackland and Finnis, 1986; Ackland et al., 1987; 

Gumbsch and Daw, 1991; Mansfield and Needs, 1991; Needs et al., 1991; Fiorentini et 

al., 1993; Feibelman, 1995) on 0Γ  and 
( )1
11Γ  (referred to as the surface energy and surface 

stress, respectively, in the literature) are also listed next to ours.  Our results seem to 

agree with those available in the open literature, although it is not clear whether the 

existing data are expressed in the Lagrangian or Eulerian frame.  Schmid (1995) and 

Shenoy (2005) appear to be the only ones referring to surface elasticity in a somewhat 

different way. 

 In order to verify those calculations, we have also performed a strain meshing of 

the calculation cell with strains in the two planar directions ranging from -1% to 1% and 
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incremented by ±0.01% strain steps.  The initial simulation cell consists of two horizontal 

planes oriented in the desired direction as shown in Figure 4.3(a).  Periodic boundary 

conditions are used in the two planar directions with free surfaces in the vertical direction 

to mimic an infinite plane. 

 The atomic interaction is prescribed through the EAM potential.  By varying the 

number of layers of atoms in the vertical direction we can represent thin films of different 

thicknesses.  The slab thickness must be chosen to be thick enough to avoid interaction 

between the two surfaces.  The film is stretched by independently varying the lattice 

constants along the two planar directions, while atoms in the third direction can fully 

relax.  A conjugate gradient method is used to minimize the total energy of the system.  

For each calculation, strains along the horizontal directions are fixed and atoms are fully 

relaxed under this constraint.  Prior to any deformation, the first step of the calculation is 

to determine the self equilibrium state of the films.  This state corresponds to the lowest 

energy state of the film in the 11 22ε ε−  strain space.  The self equilibrium state serves as a 

reference configuration for the nanoplate. 

 The procedure just described yields to a mesh of the total strain energy of the 

sample with respect to the reference configuration.  The surface free energy, nw , of a 

near surface atom is obtained by taking the difference between its total energy and that of 

an atom deep in the interior of a large crystal following equation (4.2).  The general steps 

of the calculation can be outlined as follows: 

 (a)  Create the initial assembly using the given material properties (atomic weight, 

 lattice spacing, EAM potential, crystallographic orientation, etc.). 

 (b)  Equilibrate the assembly to find the self equilibrium state. 

 (c)  Apply a small strain field, s

αβε , to the assembly and re-equilibrate. 

 (d)  Compute the surface energy density corresponding to this given strain field. 

 (e)  Increase the magnitude of s

αβε  and repeat steps (c) and (d). 
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After repeating steps (c) – (d) a sufficient number of times, we obtain a mesh of Γ as a 

function of surface strains, s

αβε  as seen in Figure 4.3(b.1) and Figure 4.3(b.2).  Through 

curve fitting, the coefficients ( )0Γ , ( )1
αβΓ , ( )2

αβκλΓ ... can be determined.  Results obtained 

using this “meshing” method are in good agreement with the semi-analytical method 

presented in section 4.3.1 as seen from Table 4.2. 

 

4.4.2 Surface Elastic Properties of Transition Metals 

 For discussion in terms of properties of the potentials and comparison of 

materials, we used reduced units for the surface elastic constants which are defined as the 

ratio of surface energy to the bulk cohesive energy(Ec) multiplied by the surface atomic 

packing density ( ( )hkl
d ) in the case of the intrinsic surface energy and surface stress ( 0Γ , 

αβΓ ), and defined as the surface elastic modulus of interest divided by the corresponding 

bulk elastic modulus multiplied by the lattice constant.  Figure 4.4 and Table 4.3 

summarize the atomic surface density and constants used. 

For tensile elastic properties we define the biaxial modulus for the bulk as, 

  ( )
11 22 3

2

1111 2222 11222
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1 1
2

2 2bulk

E
Y C C C

ε ε ε σ
ε

= = =

 ∂
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  . (4.100) 

And the respective biaxial modulus for the surface is defined as, 

  ( )
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For the in-plane shear elastic properties we define the shear modulus for the bulk as, 

  
13 23

2

12122
12 0

1
2

2bulk

E
G C

ε ε
ε

= =

 ∂
= = ∂ 

  . (4.102) 

And the respective shear modulus for the surface is defined as, 
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2
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= = Γ ∂ 

  . (4.103) 

In all the figures the materials are ordered according to their atomic number.  Data 

presented in this way are useful to qualitatively compare different metals and observe 

general trends. 

 As mentioned earlier and shown as an example for silver in Figure 4.5, the first 

point to note is that surface energy and surface stresses are not only localized at the 

surface layer but rather continue for several layers near the surface (this is also true for 

the higher order surface elastic constants).  The surface has therefore a physical thickness 

that extends up to the point where the excess quantity considered vanishes.  The concept 

of dividing surface casts these discrete “layered” quantities (it can be either the surface 

energy or the surface elastic constants) into one single thermodynamic quantity located at 

a dividing surface of zero thickness.  The method presented above has the advantage of 

calculating the average quantity individually (for each atom n) and evaluating separately 

the average quantity considered for each layer.  Most of the surface excess quantity is 

found to reside in the top layer of atoms, with approximately 10 to 15 percent in the 

second layer and a few percent (1 to 3%) in the third layer. 

 The results for surface energy are presented in Figure 4.6.  For all the modeled 

materials, the close-packed (111) surfaces have the lowest intrinsic energy 0Γ , followed 

by the (100) and the (110) surfaces.  The order of magnitude of the surface energy can be 

estimated from the number of nearest neighbors.  Atoms in the first layer have 9, 8 and 7 

neighbors for (111), (100) and (110) surfaces.  The (111) surface is the most close-packed 

of the three basal planes for FCC crystals.  The (110) surface is the most open of the three 

basal planes for FCC. 

 When a perfect crystal lattice is cut to create a free surface, the resulting 

unrelaxed surface is stressed both in the perpendicular direction and in the in-plane 

direction; while the perpendicular stresses are eliminated by inward relaxation of the 
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surface, residual in-plane stresses still reside on the surface.  As shown in Figure 4.7, all 

the surfaces, are subjected to a tensile stress (stresses are positive) and do not bear any 

shear stress at equilibrium (the 12Γ  coefficients are equal to zero).  The residual surface 

stresses respect the symmetry of the surface orientation.  Surface stress increases with 

“openness” of the surface.  As a general trend, we can notice that the (110) surfaces 

present the highest surface stress while the (111) seem to sustain the lowest stresses. 

 Upon deformation, a surface will respond differently from its bulk counterpart.  

The surface response will increase or decrease the amount of surface stresses stored.  As 

we can see in Figure 4.8, the biaxial surface modulus is always weaker/softer than its 

corresponding bulk.  The (110) surface has a negative biaxial surface modulus.  This does 

not contradict our common knowledge of classical elasticity.  Given equation (4.69),  the 

surface elastic constants can in principle be negative.  In the particular case of the (110) 

surface, the surface stresses tend to decrease as tensile strains are applied.  This is a direct 

consequence of the through-and-ridge structure of the (110) surfaces, which reduces its 

resistance in the transverse direction ([100] close-packed direction) to the rows of atoms.  

Another interesting remark concerns the more close-packed surfaces.  Figure 4.8 clearly 

shows that, in the case of palladium and silver, close-packed surfaces have nearly zero 

surface elasticity compared to the bulk, which means in consequence that the stress/strain 

ratio of the surface is the same as the bulk. 

 Similar to tensile deformation, when a surface is sheared, its elastic response will 

differ from the bulk.  The surface shear moduli in reduced units for the modeled materials 

are presented in Figure 4.9.  We should note that, for all surface orientations, as the 

surface is sheared, surface shear stresses decrease.  This comment is the most compelling 

for (110) surfaces. 
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4.4.3 Surface Relaxation 

 A surface that is formed at low temperatures, by cleavage for example, may 

essentially retain its bulk configuration with small displacements or relaxations as the 

atoms in the vicinity of the surface move away from the ideal surface positions of a 

perfect mono-atomic crystal lattice as indicated in Figure 4.10. 

 It is expected that the displacement of the layers near the surface will decrease 

rapidly with depth into the crystal.  Our calculations show in fact that the surface 

relaxation extends about 3 layers underneath the surface.  The results obtained from the 

equilibration process are summed up in Table 4.4. 

 The general trend of the results is that the surface layer is displaced by a few 

percent and the displacement rapidly decreases with the layer number.  Note that the 

smallest relaxation strains are measured for the most closely packed surfaces.  For all the 

(111) and (100) surfaces, the total relaxation is relatively small and close to zero, while 

the (110) surfaces exhibit a total relaxation ranging from 1 to almost 4 percent and a 

relaxation of the first interlayer ranging from 2 to 12 percent.  On all the (110) surfaces, 

an alternation of the relaxation has been observed, with a contraction of the first and third 

interlayer and an expansion of the second interlayer. 

 This has already been widely observed in the literature(Ackland and Finnis, 1986; 

Ackland et al., 1987; Todd and Lynden-Bell, 1993).  Comparison with available results 

shows that a good qualitative agreement is obtained for all the materials studied.  

However, self-equilibrium calculations always predict a smaller relaxation than the 

compared results.  This is mainly because Todd and coworkers used the Sutton-Chen 

potentials which have a longer range part.  These results might change when it comes to 

the reconstruction phenomenon.  All the results presented in this paper are for 

unreconstructed surfaces, but it has been reported for example that clean (111) oriented Pt 

surfaces reconstruct above 0.65 Tm, where Tm is the melting temperature (Sandy et al., 

1992).  A 23 × √3 reconstruction has been observed in Au(111) that can be described as 
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an insertion of an extra row every 23 rows on the surface (Harten et al., 1985; Needs, 

1991).  The stability of these reconstructions has not been investigated in the scope of this 

work. 

 In order to study the effects of relaxation on the surface elastic constants, we used 

the semi-analytical method presented in section 4.3.1 to calculate the surface elastic 

properties, such as the intrinsic surface energy density, intrinsic surface stress and surface 

elastic stiffness for unrelaxed surfaces.  The results are presented in Table 4.5. 

 We can observe from Figure 4.11(a) that for all the studied materials and all three 

crystallographic orientations, the additional surface relaxations do not affect the value of 

the intrinsic surface energy 0Γ  in a significant manner.  For copper, nickel and silver the 

change in surface energy when the surface relaxation strains are neglected is less than one 

percent.  This can mainly be explained by the fact that the intrinsic surface energy is 

much more influenced by the local atomic configuration rather than by the electron 

redistribution. 

 The intrinsic surface stresses seem to follow the same trend for the close packed 

surfaces.  As seen from Figure 4.11(b), the initial values of the Γii do not change 

significantly when the surface relaxation is neglected and remain positive (tensile stress).  

But the surface relaxation seems to have some consequences on the intrinsic surface 

stresses of the (110) surfaces regarding the material considered.  We observe a change of 

up to 40% in the magnitude in the case of silver.  The reason for this is that the inward 

relaxation of the outer layers increases the local electron density towards the optimum 

(higher) value which is reached in the bulk and thus reduces the attractive part of the 

interaction forces between the atoms.  Nevertheless the fact that residual stresses do not 

vary significantly indicates that these in-plane stresses are mainly due to the bonds within 

the top layer which do not change length upon relaxation. 

 Although the relaxations do not have a major effect on the surface energy and the 

intrinsic stresses (at least for the close-pack surfaces), they profoundly affect the surface 
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elastic stiffness properties.  As seen from Figure 4.11(c), the most convincing case would 

be for palladium where the elastic constants change from 10 to 300% depending on the 

orientation.  We note that the more closely packed the surface the less change in 

coefficients.  Looking at the values of the elastic constants in detail, we can make an 

interesting observation by noting that the elastic constants Γiiii seem to be the most 

sensitive to relaxation for all three directions. 

 It has been clearly uncovered from these results the importance of accounting for 

the surface relaxation and its impact on the surface elastic properties.  It is found that on 

one hand the relaxation effects do not or moderately affect the intrinsic surface energy 

and intrinsic surface stresses.  On the other hand the elastic constants are strongly 

influenced by the relaxation. 

 

4.5 Surface Elastic Properties for Grain Boundaries in Cu Bicrystals 

 

 In this section, the interfacial elastic properties of a couple of the so called “low-

order CSL boundaries” (Kluge et al., 1990; Wolf, 1990) for copper are computed using 

the semi-analytical method developed in section 4.3. 

 

4.5.1 Computational Framework and Results 

 The procedure described in section 4.3.2 and in Appendix C allows us to evaluate 

exactly the elastic moduli of any coherent interface for any type of material/bimaterial 

interface.  However, this method first requires the knowledge of the inter-atomic spacing 

ˆmnr  at the relaxed state of the assembly.  Molecular statics calculations with a nonlinear 

conjugate gradient algorithm are used to refine the initial interface structures.  The tilt 

bicrystal interface model used in the energy minimization calculations is shown in Figure 
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4.1(a).  The bicrystal containing the studied grain boundary is constructed using the 

geometrical rules of the Coincident Site Lattice (CSL).  The interface misorientation is 

created by a symmetric tilt rotation of opposing lattice regions around a misorientation 

axis (Kluge et al., 1990; Wolf, 1990).  A certain number of initial starting positions are 

considered by parallel and perpendicular shifting to the interface plane to increase the 

probability of reaching the global minimum energy configuration of the interfacial 

structure studied (Kluge et al., 1990).  Periodic boundary conditions are prescribed in all 

directions.  The in-plane periodicity is imposed by the CSL rules and relaxation of the 

structure occurs only in the direction perpendicular to the boundary plane.  Therefore in 

the relaxed configuration, the transversal stress (in the sense of perpendicular to the 

boundary plane) is null.  Note that the use of periodic boundary conditions in the 

transverse direction implicitly introduces a second interface at the edge of the calculation 

box with an identical structure as the interface at the center of atomic assembly.  

Calculations in this work are focused on the so called “low-order CSL boundaries” (Σ3 

and Σ5).  More specifically, we have studied symmetric tilt grain boundaries with the 

[100] and [110] rotation axis.  The corresponding crystallographic parameters are 

summarized in Table 4.6.  The interatomic used is a copper embedded-atom method 

(EAM) potential of Mishin et al (Mishin et al., 1999; Mishin, 2001).  For accuracy 

purposes, interface structures were compared with high resolution transmission 

microscopy micrographs of the studied grain boundary to ensure the correctness of the 

atomic structure.  Following these steps, the surface properties of tilt interfaces with low-

order CSL are presented in Table 4.7. 

 In order to partially validate those calculations, a comparison of the evolution of 

the excess interfacial energy upon transverse loading (no in-plane stretching) is made 

with full blown MD calculations performed by colleague Douglas Spearot.  Results 

obtained by MD agree well with the semi-analytical method up to a critical threshold 
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stress corresponding to an elastic structural transition (see below) as seen from Figure 

4.12. 

 

4.5.2 Atomic Level Moduli for Grain Boundaries 

 The definition of the atomic level stress and the atomic level elastic constants 

introduced in section 4.3.2, naturally leads to the description of a heterogeneous medium 

composed of N different phases identified with each single atom of the atomic assembly.  

It therefore grants us a local map of the elastic properties in the interphase region. 

 As with the observations made for the free surfaces, we can remark in Figure 4.14 

that the surface energy and surface stresses are not only localized at the interface plane 

between the two crystals but rather extend for several layers of atoms near the interface, 

hence reflecting the impact of the atomic rearrangement and internal relaxations.  It is 

interesting to note that, although the interface “continuum” residual stresses are positive 

in the rotation axis X1 while negative in the normal in-plane axis X2, this is no longer the 

case at the atomic level where some atoms present a tensile state of stress while others 

present a compressive state of stress.  This can be purely attributed to the local atomic 

arrangement and is highly dependent on both the atomic position and the internal 

relaxations acting on a specific atom. 

 In agreement with previous work by Nazarov and Sutton (Sutton and Vitek, 1983; 

Bachurin et al., 2003), the interface structures of both Σ5 boundaries and the Σ3 are 

presented in Figure 4.13.  While the Σ5 [100]/(310) and the Σ3 [110]/(111) boundaries 

have perfect symmetric structures after the energy minimization (see energy profile in 

Figure 4.14), the Σ5 [100]/(210) boundary is slightly asymmetric after energy 

minimization which is obvious in Figure 4.14(a), as the atoms in the layer directly below 

the interface (h/λ>0) have a slightly higher excess energy than the atoms in the layer 

directly above the interface (h/λ<0).  Figure 4.13(b) shows this asymmetry in the 
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interface structure, as there is a lateral shift of the opposing atomic planes across the 

boundary.  As confirmed in Figure 4.15, it is therefore expected to observe symmetry 

conditions in the interfacial properties of the Σ5 [100]/(310) and the Σ3 [110]/(111) and 

to observe no specific symmetry conditions in the case of the Σ5 [100]/(210) interface. 

 The diagonal elements of the tensor of the atomic level in-plane moduli, ,s nCαβκλ  

and transverse compliance ,
3 3
t n

i jM  for the different boundaries studied here are displayed 

in Figure 4.15.  The Voigt notation is adopted to represent the elastic moduli tensors and 

is normalized by the corresponding moduli in the bulk (ideal lattice configuration).  It is 

seen that far away from the boundary, the atomic level moduli correspond to their bulk 

values, while they have significantly different values near the boundary region compared 

to those in the bulk.  It is important to bear in mind that, although the elastic constants 

tensor in the ideal bulk configuration is characterized by only three elastic components 

(in the case of FCC metals), atoms lying in the grain boundary interphase do not 

necessarily present the same characteristics as their bulk counterparts and can display a 

general anisotropy therefore having twenty-one distinct components.  Thus, the 

interphase region is generally not symmetric and the variation of the off diagonal terms 

can be significant.  As already observed by Alber and Bassani, most of the elastic moduli 

are positive definite, i.e. the strain energy will always be positive at every strained point 

in the deformed body, but for a limited number of atoms the moduli are not positive 

definite, i.e. the local stability of the atomic structure may be stable for small 

perturbations but are unstable for larger perturbations and lead to lower energy structures 

by internal relaxation.  This is consistent with the results from Spearot (Capolungo et al., 

2007) who observed an elastic structural transition upon transverse loading for the Σ5 

(310) symmetric tilt grain boundary initiating at a critical threshold transverse stress (see 

Figure 4.12). 
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 For discussion and comparison in terms of the properties of the different grain 

boundaries studied, as it is seen from Table 4.7, the first thing to be observed is that the 

lower the intrinsic surface energy 0Γ  (i.e. as the structure of an interface gets more 

similar to its bulk structure), the lower the magnitude of the interface properties. 

 When two perfect semi-infinite crystal lattices are put together to create a given 

interface, while the perpendicular stresses are eliminated by transverse inward relaxation 

of the surface, the resulting relaxed surface is stressed in both in-plane directions and 

leads to in-plane residual stresses (1)
αβΓ  residing on the interface plane.  As shown in Table 

4.7, all the studied interfaces are subjected to a tensile stress (stresses are positive) in the 

rotation axis and a compressive stress in the other in-plane direction.  They do not bear 

any residual shear stress at equilibrium (the (1)
12Γ  coefficients are equal to zero).  Residual 

surface stress increases as the surface structure differs from its bordering bulk 

counterparts.  Thus, it is with no surprise that we can observe that the Σ3 [110]/(111) 

have almost no residual surface stresses. 

 Upon deformation, an interface (considered as a dividing surface) will respond 

differently from its bulk counterpart.  The surface response will increase or decrease the 

amount of surface stresses and surface strain stored in the interface.  As we can see from 

Table 4.7, the in-plane moduli and transverse moduli are always weaker/softer than their 

adjoining bulk moduli.  Although some of these moduli are negative, this does not 

contradict our common knowledge of classical elasticity.  If we look closely at equations 

(4.14) – (4.24), the surface elastic constants can, in principle, be negative.  In the 

particular case of both Σ5 tilt grain boundaries, the surface stresses would tend to 

decrease as tensile strains are applied (no transverse loading).  Physically, this negative 

change in the surface stresses of both Σ5 tilt interfaces signifies that the interface 

structure relaxes as it is stretching in its plane.  We hypothesize that this observation is a 

result of the special geometric constraints on the atomic structure of the Σ5(310) and 
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Σ5(210) interfaces which are entirely composed of either B’ or C structural units (Sutton 

and Vitek, 1983).  As indicated by the Poisson’s effect tensor in Table 4.7, when the 

interface is stretched in its plane, the interface tends to internally relax and thus reduces 

its the interfacial stresses. 

 Comparable to tensile deformation, when an interface is sheared, its elastic 

respond will differ from the bulk.  We should just note that, for all grain boundaries 

studied here, the surface shear moduli are always weaker/softer than their corresponding 

bulk moduli. 

 

4.5.3 Interface Internal Relaxation 

 While the analysis in section 4.5.3 provides a wealth of information regarding the 

discrete elastic moduli in the interphase region, we did not cover information regarding 

the influence of the internal relaxation and its changes as a function of the applied 

loading.  The definition of the atomic level internal relaxation introduced in section 4.3.2, 

confers on us a local mapping of the relaxation across the interphase region and a useful 

tool to quantitatively measure its impact on the interface properties. 

Before presenting the above mentioned results, several points need to be mentioned first.  

As already confirmed by full blown MD calculations performed by Spearot (Capolungo 

et al., 2007), no local in-plane relaxation is to be observed in the grain boundaries studied 

in this work.  Only transverse internal relaxation occurs as the interface is deformed.  

Also, although it will not be discussed in the rest of this section, the interfacial in-plane 

shear modulus is not affected by the transverse internal relaxations.  This comes from the 

fact that the in-plane shear components of the local Poisson’s effect tensor n

iQαβ  are 

equally null. 

 When applying a macroscopically uniform loading ( ),s t

iαβε σ , the displacement of 

atoms in the atomic assembly studied can be divided to the homogeneous ones which are 
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linearly related to ( ),s t

iαβε σ  and to the inhomogeneous displacements resulting from the 

internal relaxations.  If no internal displacement takes place, as, for example, in centro-

symmetric structures, or if the internal relaxations are neglected, the methodology 

presented in section 4.3.2 can still be used to calculate the interface properties of interest.  

In order to study the effects of relaxation on the surface elastic constants, we used this 

semi-analytical method to calculate the surface elastic properties, such as the intrinsic 

surface energy density, intrinsic surface stress and surface elastic stiffness while ignoring 

the contribution of the internal relaxations.  The results are presented in Table 4.8 and 

Figure 4.16. 

 As clearly shown in Figure 4.16, the internal transverse relaxations have a 

significant impact on the surface elastic properties regardless of the interface considered.  

In the case of the Σ5[100]/(310) and Σ5[100]/(210) tilt boundaries, we can observe that 

the omission of the internal relaxations renders the interface stiffer than it actually is 

when those are accounted for.  While this stiffening is moderate in the case of the 

Σ5[100]/(310) interface, we observe a greater sensitivity on the interfacial properties of 

the Σ3[100]/(310) interface with a change up to 120% in magnitude in the case of biaxial 

surface modulus (introduced earlier in equation (4.101)).  The reason for this can be 

mainly attributed to the fact that the Σ5[100]/(210) interface has an asymmetric structure.  

Looking at Figure 4.17 and the evolution of the internal relaxation upon biaxial stretching 

with no transverse loading, one can notice that the Σ5[100]/(210) interface tends to flatten 

out as it stretches and thus the boundary evolves toward a more symmetric configuration.  

Contrary to the Σ5 boundaries, the internal relaxations tend to stiffen the uniaxial 

behavior of the Σ3 (111) interface.  A physical explanation could be attributed to the fact 

that this grain boundary has a structure really close to the bulk structure and therefore any 

atomic rearrangement can be seen as a stiffening mechanism rather than a relaxation 

mechanism. 
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 While internal relaxations clearly play a role in the stiffening or softening of the 

elastic properties, a closer look at their variation on the atomic level gives a better 

understanding of the evolution of the interface structure during deformation.  Figure 4.17 

shows the internal relaxation profile for different loading configurations.  Two loading 

configurations are considered.  Figure 4.17(a) shows the evolution of the internal 

relaxations across the boundary upon pure transverse loading (no in-plane strains) and 

Figure 4.17(b) presents the evolution of the internal relaxation across the boundary upon 

a biaxial stretching (both in-plane directions are stretched equally, while no transverse 

loading is applied). 

 In the case of pure transverse loading, as seen in Figure 4.17, but also as 

suggested by the coefficients (2)
33Λ  presented in Table 4.7, the average internal relaxation 

decreases as the transverse stress increases in the case of the Σ5[100]/(210) and the 

Σ3[110]/(111) interfaces while it is increasing in the case of the Σ5[100]/(310) boundary.  

Physically speaking, this simply means that the thickness of the Σ5 (310) increases upon 

transverse stretching with it tends to die out in the cases the Σ5 (210) and Σ3 (111).  

Interestingly enough, when examining the amplitude of the internal relaxation, one can 

notice that in all three cases it is decreasing as the load increases.  It is especially relevant 

in the case of the Σ5[100]/(210) boundary as the internal relaxation across the interface 

tends to be more symmetric as the load increases. 

 Looking at the behavior of the interface upon pure biaxial loading, although it is 

not really obvious in Figure 4.17, but as it is suggested by the coefficients 3H αα  

presented in Table 4.7, for all the boundaries studied, as the interface is stretched 

biaxially, its thickness is likely to die out (in the sense of reducing the internal 

relaxation).  Similarly, when monitoring the amplitude of the internal relaxation, we can 

notice that, in the case of both Σ5, the amplitude increase as the interface is stretched, 

while it decreases in the case of the Σ3 grain boundary.  This is simply due to the “near-
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bulk-structure” of the Σ3 interface, since the stretching has a tendency to flatten its 

structural units. 

 

4.6 Summary and Conclusions 

 

 The main purpose of this chapter revolves around the properties of interfaces 

considered as a single dividing surface (as opposed to an interphase with finite thickness). 

 We derived a new relationship between the interfacial excess energy and 

interfacial excess stress for coherent interfaces that is applicable to interfaces in elastic 

solids under general loading conditions.  It is shown that the well-known Shuttleworth 

relationship between the interfacial excess energy and interfacial excess stress is valid 

only when the interface is free of transverse stresses.  The new formulation accounts for 

both in-plane and transverse deformation of the interface, and naturally introduces the 

interfacial stiffness and compliance tensors, as well as the transverse interfacial excess 

strain.  At the same time, the concept of transverse interfacial excess strain is also 

introduced, and a complementary Shuttleworth equation is derived that relates the 

interfacial excess energy to the newly introduced transverse interfacial excess strain. This 

new formulation of interfacial excess stress and excess strain naturally leads to the 

definition of an in-plane residual stresses tensor (1)Γ , an in-plane interfacial stiffness 

tensor (2)Γ , a transverse interfacial compliance tensor (2)Λ , and a coupling tensor H  that 

accounting for the Poisson's effect of the interface, and that fully characterize the elastic 

behavior of coherent solid bimaterial interfaces upon deformation.  It was shown that 

when both constituents of the bimaterial are isotropic, the interface is transversely 

isotropic.  Explicit expressions of the interfacial tensors were derived for such 

transversely isotropic interface in terms of five elastic constants of the interface.  The 



 112 

consequences of this generalized Shuttleworth relationship allow us to establish the 

relationship between microscopic properties and mesoscopic properties of the interface. 

 Based on the idea of expanding the atomic energy and atomic stresses into power 

series of surface strains and transverse stresses and accounting for internal relaxation by 

appropriately incorporating the equilibrium and traction conditions across the interface, 

we presented semi-analytical methods to evaluate and calculate interfacial elastic 

properties.  The theoretical framework of the generalized Shuttleworth relationship helps 

us to subsequently obtain analytical expressions for the interface elastic properties, such 

as the surface density, intrinsic surface stress and surface elastic stiffness and compliance.  

Basal free surfaces and low order CSL grain boundaries have been studied using this 

method in a uniform manner without modifications to the formulation.  These methods 

are so called semi-analytical because they require knowledge of the relaxed configuration 

of the atomic assembly of interest in order to evaluate the interface properties. 

 In comparison with other existing methods, the semi-analytical methods 

developed here present several advantages compared with classical full blown atomistic 

calculations.  They reduce the amount of computation significantly (~95% reduction in 

CPU time as compared to full blown atomistic techniques).  They also directly give the 

full set of elastic properties and can be applied to any inter-atomic potential.  More 

importantly, because of the analytical nature of these methods, they provide a much 

better understanding of the interface characteristics, providing a wealth of information on 

the connection between the atomic level and the continuum level, and they enable us to 

analytically evaluate the elastic response of any given interface under any given load 

without any further computation. 

 Finally by applying this tool to the unrelaxed structure we were able to 

quantitatively measure the impact of relaxation on the interface/surface properties.  We 

have clearly uncovered from this analysis the importance of accounting for the surface 
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relaxation and its impact on the surface elastic properties.  It is found that, as a general 

rule, relaxation softens the interface. 
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Figure 4.1  (a) Flat interface of a bimaterial, (b) Interface excess energy as a function of 

the distance away from the interface 
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Figure 4.2  Semi-infinite crystal and its free surface 
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Figure 4.3  Schematic of the strain meshing process to calculate the surface excess 
energy and surface elastic constants 

 



 117 

 

 

 

 

 

 

 

 

(111) (100) (110) 

( )
2

111

3

2
λ=S  ( )

2
100 λ=S  

( )
2

110

2

2
λ=S  

( )111 2

4

3λ
=d  ( )100 2

2

λ
=d  

( )110 2

2

λ
=d  

Figure 4.4  Surface atomic packing density of basal FCC surfaces 
 

 

λ  

λλλλ  2

2
λλλλ  

6 2λ  

2 2λ  



 118 

 
 
 
 
 
 
 
 
 
 

Plane

0 2 4 6 133 135 137 139 1411 3 5 7 134 136 138 140

S
u
rf
a
c
e
 E
n
e
rg
y
 [
J
/m

2
]

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Γ
0

Γ
11

 

Figure 4.5  Layer decomposition of the intrinsic surface energy Γ0 and surface stress Γ11 
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Figure 4.6  Intrinsic surface energy in reduced units (Surface energy/(surface packing 
density × bulk cohesive energy) for several metals.  The (111) surface (filled 
circles), has the lowest energy compared to the (100) surface (plain circle) 
and the (110) surface (triangle) 
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Figure 4.7  Internal surface stress (at zero surface strain) in reduced units (Surface 

energy/(surface packing density × bulk cohesive energy) for several metals.  
The (111) surface (filled circles), has the lowest residual stresses compared 
to the (100) surface (plain circle) and the (110) surface (triangle) 
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Figure 4.8  Tensile surface elasticity coefficients in reduced units (Surface elastic 

coefficient/(lattice constant × bulk elastic constant) 
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Figure 4.9  Shear surface elasticity coefficients in reduced units (Surface elastic 

coefficient/(lattice constant × bulk elastic constant) 
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Figure 4.10  Possible displacements of atoms near the surface of a crystal.  The dotted 

lines indicate the positions of the planes at an ideal lattice structure 
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Figure 4.11  Effects of the surface relaxation on the elastic properties of low-index 

surfaces for several FCC metals such as (a) intrinsic surface energy density, 
(b) intrinsic surface stress, (c) surface biaxial modulus and (d) the surface 
shear modulus 

 



 125 

 
 
 
 
 
 
 
 
 
 

 

Figure 4.12  Comparison of the interfacial excess energy as a function of the applied 
tensile stress calculated from full blown MD calculations and from the semi-
analytical method of section 4.3 for the symmetric tilt grain boundary Σ5 
[100]/(310) 

Elastic Structural Transition 
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Figure 4.13  Bicrystal interface structures for copper interfaces (a) Σ5 [100]/(310) 

symmetric tilt grain boundary (b) Σ5 [100]/(210) symmetric tilt grain 
boundary (c) Σ3 [110]/(111) symmetric tilt grain boundary 
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Σ5 [100]/(210) 

  
 

Σ3 [110]/(111) 

  
       (a)         (b) 

Figure 4.14  Layer decomposition of (a) the surface energy Γ0 and (b) residual surface 
stress πsαα for Σ5 [001]/(310), Σ5 [001]/(210) and Σ3 [110]/(210) symmetric 
tilt grain boundaries in copper 
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Figure 4.15  Normalized diagonal elements of the tensor of the atomic elastic moduli for 
Σ5 [001]/(310), Σ5 [001]/(210) and Σ3 [110]/(210) symmetric tilt grain 
boundaries in copper, (a) , ,

1111 1111
s n s bulkC C , (b) , ,

2222 2222
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Figure 4.16  Effects of the interface internal relaxation on the elastic properties of low-

CSL symmetric tilt grain boundary in copper 
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Figure 4.17  Layer decomposition of the transverse internal relaxtion ,
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loading configuration: (a) transverse loading (b) biaxial stretching εs= εs11= 
ε
s
22 for Σ5 [001]/(310), Σ5 [001]/(210) and Σ3 [110]/(210) symmetric tilt 
grain boundaries in copper 

0s

αβε =  0t

3
σ =  

0s

αβε =  

0s

αβε =  

0t

3
σ =  

0t

3
σ =  



 131 

 

 
 

Table 4.1  Calculated surface elastic properties of low-index surfaces for several FCC 
metals.  The unit used is J.m-2 

  Ni Cu Pd Ag 

0Γ  1.436 
(1.45)a 

1.181 
(1.17)a 

1.224 
(1.22)a 

0.620 
(0.62)a 

( )1
11Γ  0.457 

(0.43)b 
0.866 
(0.86)b 

1.848 
(3.73)c 

0.636 
(0.64)b 

( )2
1111Γ  6.526 2.054 -2.914 0.888 

( )2
1122Γ  3.986 1.086 -1.014 1.194 

(111) 

( )2
1212Γ  -1.188 -1.071 -2.354 -1.173 

0Γ  1.572 
(1.58)a 

1.288 
(1.28)a 

1.377 
(1.37)a 

0.703 
(0.705)a 

( )1
11Γ  1.321 

(1.27)b 
1.396 
(1.38)b 

1.981 
(1.58)e 

0.816 
(0.82)b 

( )2
1111Γ  -0.865 -0.712 -2.360 -1.245 

( )2
1122Γ  10.722 5.914 2.611 3.343 

(100) 

( )2
1212Γ  -0.927 -0.992 -3.250 -1.666 

0Γ  1.721 
(1.73)a 

1.413 
(1.40)a 

1.482 
(1.49)a 

0.768 
(0.77)a 

( )1
11Γ [001]  1.054 

(0.707)d 
1.126 
(0.957)d 

1.230 
(1.859)c 

0.492 
(0.738)d 

( )1
22Γ [110]  0.706 

(0.707)d 
0.993 
(0.957)d 

1.656 
(2.740)c 

0.684 
(0.738)d 

( )2
1111Γ  -13.031 -7.798 -4.775 -5.510 

( )2
2222Γ  0.950 -2.263 -6.654 -2.246 

( )2
1122Γ  -5.045 -3.600 -2.086 -2.332 

(110) 

( )2
1212Γ  -7.827 -4.436 -3.378 -3.296 

    

a Reference (Foiles et al., 1986) ; b Reference (Gumbsch and Daw, 1991) 
c Reference (Feibelman, 1995) ; d Reference (Ackland et al., 1987). 
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Table 4.2  Surface elastic properties of (100) surfaces for several FCC metals calculated 
by the strain meshing of the energy.  The unit used is J.m-2 

 Ni Cu Ag 

0Γ  1.572 1.288 0.703 

( )1
11Γ  1.634 1.396 0.813 

( )2
1111Γ  -0.788 -1.280 -1.344 

( )2
1122Γ  13.383 6.384 3.699 

 
 
 
 

Table 4.3  Bulk lattice constant (λ) and bulk cohesive energy (Ec) 
 Ni Cu Pd Ag 

λ (Å) 3.52 3.615 3.89 4.09 

cE  (eV) -4.45 -3.54 -3.91 -2.85 
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Table 4.4  Surface relaxation for several FCC metals (in %) 
  Ni Cu Ag Pd 

Layer 1 
(top layer) 

-0.54 
(-2.1)a 

-1.33 
(-2.1)a 

-1.34 
(-1.1)a 

-3.24 
(-1.5)a 

Layer 2 -0.06 -0.06 0.01 0.24 
Layer 3 0.01 0.02 0.01 0.00 

(111) 

Total 
 

-0.20 
 

-0.48 
 

-0.44 
 

-1.00 
 

Layer 1 
(top layer) 

-0.25 
(-2.9)a 

-1.23 
(-2.9)a 

-1.85 
(-1.1)a 

-4.31 
(-2.3)a 

Layer 2 -0.07 -0.21 -0.01 0.07 
Layer 3 0.03 0.12 0.05 0.20 

(100) 

Total 
 

-0.11 
 

-0.44 
 

-0.60 
 

-1.35 
 

Layer 1 
(top layer) 

-2.35 
(-7.9)a 

-4.73 
(-7.9)a 

-5.17 
(-4.3)a 

-11.37 
(-5.8)a 

Layer 2 0.08 0.16 0.37 1.10 
Layer 3 -0.19 -0.52 -0.28 -0.79 

(110) 

Total -0.82 -1.70 -1.69 -3.68 
      

a Reference (Todd and Lynden-Bell, 1993) 

 



 134 

 
 
 
 
 
 
 

Table 4.5  Calculated surface elastic properties of low-index unrelaxed surfaces for 
several FCC metals.  The unit used is J.m-2 

  Ni Cu Pd Ag 

0Γ  1.4376 1.186 1.283 0.621 

( )1
11Γ  0.477 0.888 1.966 0.665 

( )2
1111Γ  6.868 2.310 -3.920 1.095 

( )2
1122Γ  4.212 1.293 -1.330 1.386 

(111) 

( )2
1212Γ  -1.310 -1.285 -3.069 -1.424 

0Γ  1.572 1.291 1.446 0.708 

( )1
11Γ  1.324 1.395 2.085 0.833 

( )2
1111Γ  -1.038 -1.171 -3.988 -1.919 

( )2
1122Γ  11.325 7.311 4.495 4.753 

(100) 

( )2
1212Γ  -0.907 -0.965 -3.979 -1.818 

0Γ  1.725 1.427 1.601 0.778 

( )1
11Γ [001]  0.888 1.184 2.010 0.886 

( )1
22Γ [110]  1.254 1.350 1.614 0.695 

( )2
1111Γ  0.381 -3.714 -19.554 -3.772 

( )2
2222Γ  -16.727 -12.921 -16.125 -10.246 

( )2
1122Γ  -6.909 -6.475 -11.560 -4.987 

(110) 

( )2
1212Γ  -9.593 -6.545 -6.966 -5.407 
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Table 4.6  Crystallographic characteristics of the symmetric tilt grain boundaries studied 
in this work 

Σ Misorientation Axis Boundary Plane Misorientation Angle 
5 [ 001] (310) 36.9º 
5 [ 001] (210) 53.1º 
3 [110 ] (111) 109.5º 
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Table 4.7  Calculated interface elastic properties of low-CSL symmetric tilt grain 
boundaries for copper 

 Σ5 [100]/(310) Σ5 [100]/(210) Σ3 [110]/(111) 
In-plane  (Units in J.m-2) 

0Γ  0.911 0.962 0.023 
( )1
11Γ  (tilt axis) 3.609 3.759 -0.004 
( )1
22Γ  -0.9888 -3.712 -0.004 
( )2
1111Γ  -10.679 -9.342 1.484 
( )2
2222Γ  -10.510 -15.931 0.465 
( )2
1122Γ  -14.908 -11.678 -0.120 
( )2
1212Γ  -2.489 0.862 1.472 

    

Transverse  (Units in nm for ( )1
3Λ  nm; (100Gpa)-1 for ( )2

22Λ ) 
( )1
3Λ  -0.086 -0.012 0.001 
( )2
11Λ  0.494 0.243 0.080 
( )2
22Λ  -0.185 0.674 0.080 
( )2
33Λ  0.121 -0.193 -0.046 

    
Poisson’s Effect  (Units in nm) 

111H  0.0003 0.0002 0.000 

122H  0.0002 0.000 0.000 

211H  0.046 0.239 0.178 

222H  0.057 0.458 -0.089 

311H  0.350 0.364 0.039 

322H  0.618 0.904 0.168 

 



 137 

 

 

 

 

 

 

 

 

 

Table 4.8  Calculated interface elastic properties of low-CSL symmetric tilt grain 
boundaries for copper without the effect of internal relaxation 

 Σ5 [100]/(310) Σ5 [100]/(210) Σ3 [110]/(111) 
In-plane  (Units in J.m-2) 

( )1
11Γ  (tilt axis) 1.266 1.123 -0.003 
( )1
22Γ  1.737 1.452 -0.003 
( )2
1111Γ  -0.854 3.067 1.669 
( )2
2222Γ  -5.092 -3.158 0.908 
( )2
1122Γ  -0.657 4.758 -0.860 
( )2
1212Γ  -2.489 0.862 1.472 

 



 138 

CHAPTER 5 

FROM AN ATOMISTIC DESCRIPTION TO A CONTINUUM 

FRAMEWORK: SIZE-DEPENDENT ELASTICITY 

 

 In this chapter, we focus on developing a continuum framework that incorporates 

the surface properties into the analysis of the macroscopic deformation of nanostructured 

materials.  In particular, we study the effects of surface properties on the effective 

modulus of nano-particles, nano-wires and nano-films as well as nanostructured 

crystalline materials.  Based on this approach, it is demonstrated that the overall elastic 

behavior of structural elements (such as particles, wires and films) is size-dependent.  

Although such size-dependency is negligible for conventional structural elements, it is 

shown that the size effect becomes significant when at least one of the dimensions of the 

element shrinks to the nanometer range.  Numerical examples are given to illustrate 

quantitatively the effects of the surface on the elastic properties of nano-size particles.  

Furthermore, the continuum model developed here clearly shows the influence of the 

third order elastic constants on the effective elastic stiffness of the nanostructural 

elements.  Subsequently, the interfacial thermodynamic properties introduced in chapter 4 

are used to formulate the interfacial conditions in a mesoscopic framework of 

polycrystals and nano-composites. 

 

5.1 Introduction 

 

 Nanometer-scale / nanostructured materials are of great technological interest due 

to their potential applications in miniaturized electrical, optical, thermal and mechanical 

systems.  A wide variety of micro-electromechanical systems (MEMS) and nano-
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electromechanical (NEMS) devices, which use (or will use) these nanostructured 

materials, depend on the stiffness and strength of components with dimensions on the 

order of the nanometer.  In these kinds of applications, it is important to understand and 

characterize the mechanical properties of the constituent structures.  Many researchers 

(Hall et al., 1991; Alber et al., 1992; Kondo and Takayanagi, 1997; Cuenot et al., 2004; 

Diao, 2004; Duan et al., 2005) have demonstrated, through both experiments and 

modeling, that the structure and properties of these nanostructured materials can be 

significantly different compared to more conventional and bulk materials, attributing 

these differences to the effects of surfaces. 

 The previous works most relevant to these observations are studies of surface and 

interface stress effects in thin films.  It has been found (Banerjea and Smith, 1987; 

Cammarata and Sieradzki, 1989; Kosevich, 1989; Nix, 1998) that the surface energy 

could increase the apparent in-plane bi-axial modulus of a Cu (100) free standing film of 

2 nm thick by about 15 ~ 25%.  Several researchers have examined the elastic properties 

of thin films grown along selected crystallographic orientations.  Young’s modulus in the 

[001] direction for (100) oriented Cu and Au films is found to decrease with a decrease of 

the film thickness while the Young’s modulus in the [110] or in [112] direction for the 

(111) Cu and Au films is found to increase as the thickness of the film decreases 

(Cammarata and Sieradzki, 1989; Wolf, 1991; Streitz, 1994; Streitz et al., 1994).  More 

recently, Miller and Shenoy (2000) developed a simple model to incorporate surface 

stress in determining the size-dependent elastic modulus of plates and rods.  Using 

atomistic simulations, Liang and coworkers (Liang et al., 2005) studied the elasticity of 

copper nanowires along [001], [110], and [111] crystallographic directions.  They 

observed a size-dependence in the elastic response of the different nanowires studied.  By 

doing a self-consistent comparison with the bulk response, they qualitatively showed that 

the overall nanowire elasticity is primarily due to nonlinear response of the nanowire 

core. 



 140 

 Nevertheless, few researchers have proposed a model incorporating the surface 

behavior into a continuum model.  Cammarata and Sieradzki (1989) proposed a simple 

surface stress model that explicitly introduced surface energy and surface stress into the 

equations for equilibrium of a thin film but that neglected the change of the film 

thickness caused by the surface relaxations. 

 The effect of the surface properties on the mechanical properties of 

nanocomposite and nanocrystalline materials can also be very significant but it has 

scarcely been studied.  Although Wu and coworkers (Wu et al., 2004) have studied the 

stress concentration near a nanohole and its influence on the elastic properties of a single 

crystal Ag from both atomistic and continuum viewpoints, they failed to consider surface 

effects in the continuum formulation.  Researchers like Sharma, Duan, or Huang (Sharma 

and Ganti, 2003; Sharma et al., 2003; Sharma and Ganti, 2004; Duan et al., 2005; Duan 

et al., 2005; Duan et al., 2005; Huang, 2006) addressed the issue of the size dependence 

of nanostructured materials and nanocomposites.  All of their works revisited the Eshelby 

solution and include the surface energy and interfacial stresses but assume that the same 

relationship between surface energy (or interfacial energy in this case) and surface stress 

exists for free surfaces and for bicrystal surfaces. 

 

5.2 Effective Modulus of Nanoparticle 

 

 Conventionally, the elastic modulus of a material is an intensive property.  It is 

defined as a point-wise quantity that relates the stresses and strains at each point in the 

material.  When a material is not homogeneous, such as a composite material, its elastic 

modulus may vary from point to point.  In this case, the concept of effective modulus can 

be introduced.  For example, effective modulus is used to characterize the overall 
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stiffness of a fiber reinforced composite, where the fiber and matrix have different elastic 

modulus. 

 Now consider a particle made of a single phase material.  On or near the particle 

surface, the atomistic structure is somewhat different from that of the bulk.  Therefore, a 

particle of a single phase material, strictly speaking, is not a homogeneous body.  The 

overall stiffness of the particle needs to be characterized by its effective modulus.  

However, when the particle size is large enough, the surface region is negligible in 

comparison to the particle volume.  In this case, the surface region can be neglected and 

the particle can be considered as a homogenous body.  Therefore, its elastic modulus is 

uniform and is the same as that of the material from which the particle is made.  This is 

no longer the case when the particle size shrinks to the nanometer range, where the 

surface region becomes significant in comparison to the particle size.  Consequently, the 

particle must be viewed as an inhomogeneous body, and the effective modulus of the 

particle needs to be used to characterize the stiffness of the particle.  Although the 

discrete atomistic nature of particles becomes important at small scales, nanostructural 

elements can be modeled using a continuum mechanics framework following the idea 

that “nanostructure=bulk+surface”.  In this section, a formulation is developed to 

compute the effective modulus of a particle that incorporates the effect of its surface. 

 To this end, consider a perfect crystal of infinite extent.  Within the infinite 

crystal, let Ω  be an ellipsoidal region consisting of a certain number of atoms.  Let the 

initial volume of Ω  be 0V , and its surface area be 0S .  Now imagine that Ω  is removed 

from the infinite crystal to become a stand-alone particle, as shown in Figure 5.1.  The 

newly created surface of the particle gives rise to surface stresses.  Consequently, the 

particle may deform.  The self-equilibrium state of the particle will be discussed later in 

this section.  For now, simply let V̂  and Ŝ  be the volume and surface area, respectively, 

of the particle in its self-equilibrium state. 
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 To describe the deformation of the particle, let us introduce a uniform strain ijε  in 

the bulk of the particle; ijε is measured from the perfect lattice of an undeformed crystal 

of infinite extent.  For an ellipsoidal particle, see Figure 5.2, the surface strain is related 

to the absolute bulk strain within the particle through a coordinate transformation 

  s

i j ij S
t tαβ α βε ε=   , (5.1) 

where the transformation tensor itα  for the ellipsoidal surface is derived in Appendix D. 

 The total strain energy of the particle corresponding to ijε  can be decomposed as 

a bulk phase bounded by a surface phase such that it can written as, 

  bulk surfaceU U U= +   , (5.2) 

where bulkU  is the total strain energy in the bulk of the particle, 

  
0 0

0 00
( ) (0)

ij

bulk ij ij
V V

ij

U
U de dV U U dV

e

ε
ε

∂
 = = − ∂∫ ∫ ∫   , (5.3) 

where U is the bulk elastic potential, which can be expanded into a series of the bulk 

strain tensor, 

  (3)1 1

2 6ijkl ij kl ijklmn ij kl mnU C Cε ε ε ε ε= + +�   , (5.4) 

where ijklC  and (3)
ijklmnC  are, respectively, the tensors of second and third order elastic 

constants of the perfect crystal lattice.  Substituting (5.4) into (5.3) and neglecting higher 

order in strains leads to 

  (3)
0

1 1

2 6bulk ijkl ij kl ijklmn ij kl mnU V C Cε ε ε ε ε = +  
  . (5.5) 

The total surface free energy on the entire particle surface follows from equation (4.19) 

  
0

0

0

( )

s

s

surface

S

U e de dS

αβε

αβ κλ αβ

 
 = Σ
  
∫ ∫   . (5.6) 

Substituting equation (4.24) with  into (5.6) yields, 
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0 0

0 0

0

( ) (0)

s

s

surface

S S

d
U de dS dS

de

αβε

αβ αβ
αβ

ε
 Γ   = = Γ −Γ   
∫ ∫ ∫   , (5.7) 

Note that in the case of free standing particles, no transverse load is applied.  Making use 

of the expansion equation (4.14) into (5.7), one has 

  
0

(1) (2) (3)
0

1 1

2 6
s s s s s s

surface

S

U dSαβ αβ αβκλ αβ κλ αβκλγη αβ κλ γηε ε ε ε ε ε = Γ + Γ + Γ  ∫   , (5.8) 

where the surface strain is related to the bulk strain within the particle through the 

coordinate transformation. 

  s

i j ij S
t tαβ α βε ε=   . (5.9) 

Substitution of (5.9) into (5.8) yields the strain energy stored in the surface of the 

ellipsoidal particle Ω  when it is subjected to the bulk strain ijε , 

  0 0 0

2 6surface ij ij ijkl ij kl ijklmn ij kl mn

V V V
U Q P

a a a
τ ε ε ε ε ε ε= + +   , (5.10) 

where a is the smallest of the three semi-axes of the ellipsoid and 

  
0

(1)
0

0
ij i j

S

a
t t dS

V
αβ α βτ = Γ∫   , (5.11) 

  
0

(2)
0

0
ijkl i j k l

S

a
Q t t t t dS

V
αβκλ α β κ λ= Γ∫   , (5.12) 

  
0

(3)
0

0
ijklmn i j k l m n

S

a
P t t t t t t dS

V
αβκλγη α β κ λ γ η= Γ∫   . (5.13) 

The fourth order tensor ijklQ  can be viewed as the surface rigidity tensor.  It represents 

the combined effect of the surface stiffness, (2)
αβκλΓ , and the surface geometry.  Note that 

the surface rigidity tensor has the dimension of force per unit length.  It possesses the 

usual symmetry of stiffness tensors, ijkl klij jikl ijlkQ Q Q Q= = = .  The integrals in (5.11) – 

(5.13) can be further written as 
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2 (1)

0 0

3

4ij i jt t d d
π π

αβ α βτ ρ φ θ
π

 = Γ  ∫ ∫   , (5.14) 

  
2 (2)

0 0

3

4ijkl i j k lQ t t t t d d
π π

αβκλ α β κ λ ρ φ θ
π

 = Γ  ∫ ∫   , (5.15) 

  
2 (3)

0 0

3

4ijklmn i j k l m nP t t t t t t d d
π π

αβκλγη α β κ λ γ η ρ φ θ
π

 = Γ  ∫ ∫   , (5.16) 

where 

  
2 2

2 2 2 2 2
2 2

sin sin cos sin sin cos
a a

b c
ρ φ φ θ φ θ φ= + +   . (5.17) 

It is important to observe that these tensors depend on the shape of the ellipsoid, but not 

the size. 

It then follows from substituting (5.10) and (5.5) into (5.2) that 

  (3)0 0 01 1

2 6ij ij ijkl ijkl ij kl ijklmn ijklmn ij kl mn

V V V
U C Q C P

a a a
τ ε ε ε ε ε ε   = + + + +   

   
  . (5.18) 

This gives the total strain energy of the particle when it deforms relative to the 

undeformed perfect crystal lattice of an infinite extent. 

 Because of surface stresses, the self-equilibrium state of the particle is different 

from the perfect crystal lattice of an infinite extent.  The strain tensor, îjε , that describes 

the deformation from the perfect crystal lattice to the self-equilibrium state of the particle 

can be found by minimizing the total strain energy.  To this end, consider 

  (3)

0 ˆ

1 1 1 1
ˆ ˆ ˆ 0

2
ij ij

ijkl ijkl kl ijklmn ijklmn kl mn ij

ij

U
C Q C P

V a a a
ε ε

ε ε ε τ
ε

=

∂    = + + + + =   ∂    
  . (5.19) 

This is a set of six quadratic equations which, in general, need to be solved numerically 

for the six components of self-equilibrium strain tensor îjε .  Once îjε  is found, the 

effective modulus tensor of the particle at the state of self-equilibrium can be defined as 

  
2

(3)

0 ˆ

1 1
ˆ

ε=ε

ijkl ijkl ijkl ijklmn ijklmn mn

ij kl

U
C C Q C P

V a a
ε

ε ε
 ∂  = = + + +   ∂ ∂   

  . (5.20) 
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Note that in deriving (5.20), it had to be assumed that the strain in the ellipsoid bulk is 

uniform.  Consequently, the effective modulus tensor given by (5.20) is generally an 

upper bound. 

 When the self-equilibrium strain is small, i.e., ˆ 1ijε 
 , the quadratic term in (5.19) 

can be neglected.  This yields the self-equilibrium strain, 

  
1

1 1
îj ijkl ijkl klC Q

a a
ε τ

−
 ≈ − + 
 

  . (5.21) 

Substitution of (5.21) into (5.20) leads to 

  
1

(3)1 1 1 1
ijkl ijkl ijkl ijklmn ijklmn mnkl mnkl klC C Q C P C Q

a a a a
τ

−
  = + − + +  
  

  . (5.22) 

This is the effective elastic modulus tensor of the particle.  Further, if one assumes 

  
1

ijkl ijklC Q
a

� ,  (3) 1
ijklmn ijklmnC P

a
�   , (5.23) 

equations (5.21)-(5.22) can be simplified to obtain the explicit expressions of the self-

equilibrium strain and the effective elastic modulus tensor, 

  11 1
îj ijkl kl ijkl klC M

a a
ε τ τ−≈ − = −   , (5.24) 

  ( )(3)1
ijkl ijkl ijkl ijklmn mnpq pqC C Q C M

a
τ= + −   , (5.25) 

where 1
ijkl ijklM C−=  is the compliance tensor of the bulk crystal. 

 As mentioned earlier, ijklQ  and ijklmnP  are independent of the particle size a.  

Therefore, the assumptions made in (5.23), for a given material, effectively place a lower 

limit on the particle size for which the explicit expressions (5.24) – (5.25) are valid.  All 

of our numerical experiments have shown that (5.23) is met for values of a as small as a 

few nanometers. 

 It is seen that the contribution of the surface energy to the effective modulus of 

the particle is inversely proportional to the particle size.  It will be shown later 
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numerically that the surface energy contribution is negligible unless the particle size 

approaches the nanometer range.  It is worth mentioning that if the surface stiffness 

tensor is independent of the location, i.e., the surface is homogeneous, then the tensor 

ijklQ  can be obtained analytically for spherical particles ( a b c= = ), wires, fibers and thin 

films.  Their expressions are given in Appendix F. 

 

5.2.1 Special Cases 

5.2.1.1 Thin Films 

 Consider a thin film made of a single crystal with cubic symmetry.  Further, it is 

assumed that the top and bottom surfaces of the film are isotropic (for simplicity of the 

expressions derived in the following).  In the crystallographic coordinate system shown 

in Figure 5.3, the second and third order elasticity tensors of the crystal are denoted by 

ijklC  and (3)
ijklmnC , respectively.  Using the Voigt notations, the non-zero, independent 

components of these tensors are 11C , 12C  and 44C  for ijklC , and 111C , 112C , 123C , 144C , 

155C  and 456C  for (3)
ijklmnC .   The relationship between indices of the Voigt and tonsorial 

notations is given in Appendix E.  For example, 11 1→ , 23 4→ , thus, 1123 14C C=  and 

(3)
112323 144C C= . 

 In this particular case, the integrals in (5.11) can be easily evaluated to yield the 

non-zero components of ijτ  and ijklQ  

  11 22 11τ τ= = Γ   , (5.26) 

  1111 2222
s sQ Q K µ= = + ,  1122

s sQ K µ= − , 1212
sQ µ=   , (5.27) 

where 11Γ , sK  and sµ  are related to (1)
αβΓ  and (2)

αβκλΓ  as indicated in Appendix E.  

Substituting the above into (5.25) yields the effective modulus tensor.  Non-zero 
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components of the effective modulus tensor for the thin film in terms of the Voigt 

notation are given in Appendix F. 

 It is seen from these expressions that the effective modulus tensor no longer has 

cubic symmetry.  It becomes orthotropic.  The quantities of interest are the two in-plane 

unidirectional Young's modulus in the X1 and X2 direction, 

  
1

2 2
33 12 22 13 12 13 23

1 11 2
23 22 33

2
X

C C C C C C C
E E C

C C C

+ −
= = +

−
  , (5.28) 

and, 

  
2

2 2
33 12 11 23 12 13 23

2 22 2
13 11 33

2
X

C C C C C C C
E E C

C C C

+ −
= = +

−
  . (5.29) 

Substituting Appendix (F5) – (F11) into (5.28) and keeping terms only up to (5.30) 1 a  

yields 

  ( )
1 1 11

1 s

X XE E K
a

κ χ= + + Γ   , (5.31) 

  ( )
2 2 22

1 s

X XE E K
a

κ χ= + + Γ   , (5.32) 

where 

  
1

2 2
33 12 22 13 12 13 23

1 11 2
23 22 33

2
X

C C C C C C C
E E C

C C C

+ −
= = +

−
 (5.33) 

and, 

  
2

2 2
33 12 11 23 12 13 23

2 22 2
13 11 33

2
X

C C C C C C C
E E C

C C C

+ −
= = +

−
 (5.34) 

are the unidirectional Young's moduli of the bulk crystal in the X1 and X2 directions 

respectively and 

  
2 2

33 13 33

33 13 33 13

2s

s

C C C

K C C C C

µ
κ

   +
= +   

+ +   
  , (5.35) 
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3 3 2 2
13 33 13 33 13 33

3332
33 13 33 13

2 2 2
11 12 12

11 112 11 12 123
12 11 11

2 2 2

( )

4 2
6 2 2

C C C C C C
C

C C C C

C C C
C C C C C

C C C

η
χ

 − − −
=  

+  

   
+ − + + − −    
    

  . (5.36) 

Clearly, κ  and χ  are due to surface stress combined with the non linear elastic behavior 

of the core of the film through its third order elastic constants. 

 Another quantity of interest is the in-plane biaxial Young's modulus defined as 

  
( )213 23

11 22 12
33

1
2

2b

C C
Y C C C

C

 +
 = + + −
 
 

  . (5.37) 

Substituting Appendix (F5) – (F11) into (5.37) and keeping terms only up to 1 a  yields 

  ( )11

1
2 s

b bY Y K
a

χ= + + Γ   , (5.38) 

where 

  
( )213 23

11 22 12
33

1
2

2b

C C
Y C C C

C

 +
= + + − 

  
 (5.39) 

the biaxial Young's modulus of the bulk crystal in the X1X2-plane and, 

  
2
13 13

333 331 1233 2
33 13 33 13 33 33

4 41 2 1 6
3

C C
C C C

C C C C C C
χ η

    
= − + − − +    

    
  . (5.40) 

Clearly, χ  is due to surface stress and third order elastic constants. 

 Under the biaxial loading, 11 22σ σ=  and 33 0σ = , one can define an effective 

biaxial Poisson's ratio, 33bν ε ε= − , where 11 22ε ε ε= =  because of the cubic symmetry 

in the 1 2X X -plane of the film.  Making use of the above equations in conjunction with 

Appendix (F5) – (F11), one arrives at 

  
( ) 2
13 23 13 1311

331 333 1232
33 33 13 33 33

4 22
1b

C C C C
C C C

C aC C C C

η
ν

 +  Γ
= + − − −  

  
  , (5.41) 
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where the first term of this sum is the biaxial Poisson's ratio for a bulk crystal.  It is noted 

here that when bν  is assumed to be independent of the film thickness, i.e., neglecting the 

second term in (5.41), the effective biaxial Young's modulus (5.38) reduces to the 

effective biaxial modulus derived by Streitz et al (1994). 

 The self-equilibrium strain of the film follows directly from (5.24), 

  
33

11
13

13

2 0 0

ˆ 0 1 0

0 0 1

ε

C

C
a

C

η
 

Γ  = − 
 − 

  . (5.42) 

Clearly the sign of 11Γ  determines whether there is a negative (contraction) or positive 

(dilatation) relaxation of the film in the plane directions.  For 13 0C > , positive 11Γ  would 

yield negative compressive in-plane strain and positive transverse stain.  The same result 

for the in-plane self-equilibrium 11 22ˆ ˆε ε=  has been obtained by Streitz et al. (1994). 

 

5.2.1.2 Thin Wire of Square Cross-section 

 Now, consider a thin wire of square cross-section made of a single crystal with 

cubic symmetry as shown in Figure 5.4.  Again, assume that the surfaces of the wire are 

isotropic.  The corresponding effective modulus tensor of the wire can be directly 

computed from the general formulas given by (5.24) – (5.25) .  The non-zero components 

of the effective modulus tensor are given in Appendix F, see (F21) – (F26). 

 It is seen from (F20) – (F25) that, just like in the case of the film, the effective 

modulus tensor becomes orthotropic.  The unidirectional Young's modulus in the axial 

direction is given by 

  ( )
3 3 11

1 s

X XE E K
a

κ χ= + + Γ   , (5.43) 

where 
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3

2 2
11 23 22 13 12 13 23

33 2
12 11 22

2
X L

C C C C C C C
E E C

C C C

+ −
= = +

−
 (5.44) 

is the unidirectional Young's modulus of the bulk crystal in the X3 directions and 

  
( )

2 2 2
11 12 11 12

2
11 12 11 12

2 4s

s

C C C C

K C C C C

µ
κ

 + +
= + + + 

  , (5.45) 

  

2
11

11 12 1122
11 12 12

2 2
12 11

111 11 123
11 12

3 2 4
( )

4
6

C
C C C

C C C

C C
C C C

C C

η
χ

  
= − −  +  

 
+ − +  
  

  . (5.46) 

The Poisson's ratios are given by 

  ( )13 13 11

1 sK
a

ν ν κ χ= + + Γ   , (5.47) 

and, 

  ( )23 23 22

1 sK
a

ν ν κ χ= + + Γ   , (5.48) 

where 

  22 13 23 12
13 2

11 22 12

C C C C

C C C
ν

−
=

−
  , (5.49) 

and, 

  11 23 13 12
23 2

11 22 12

C C C C

C C C
ν

−
=

−
  , (5.50) 

are the Poisson's ratio of the bulk crystal and 

  11 11 12
2 2

11 12 11 12

2

( ) ( )

s

s

C C C

C C K C C

µ
κ

+
= −

+ +
  , (5.51) 
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12
1112

11 12 11

11 12 11 12
112 123

12 11 12 11

1 2
( )

3 4 2
4 3

C
C

C C C

C C C C
C C

C C C C

η
χ

 
= − +  

   
+ − − + − +    
    

  . (5.52) 

The self-equilibrium strain is given by 

  

11 12

11 12

11 11 12

11 12

12

2
0 0

2
ˆ 0 0

2
0 0

ε

C C

C C

C C

a C C

C

η

 −
 
 
 −Γ −

=  
 
 
 
 

  . (5.53) 

 

5.2.1.3 Spherical Particles 

 Consider a spherical particle made of an isotropic elastic solid.  Furthermore, 

assume that the particle's surface is homogeneous and isotropic.  Clearly, this is an 

idealized case, for in reality a curved crystal surface inevitably involves different 

crystallographic surfaces, and thus becomes non-homogeneous and anisotropic.  It is 

nevertheless interesting to study such an idealized case because of the simplicity of the 

solution. 

 Under such assumptions, the tensors ijklQ and (3)
ijkl ijklmn mnpq pqR C M τ=  can be easily 

obtained analytically by setting a = b = c in the equations derived earlier.  Their 

expressions are given in Appendix F, see (F27) – (F29). 

 Making use of equations (F27) – (F29), one can easily find that the effective 

stiffness tensor is still isotropic for an isotropic spherical particle with isotropic surface.  

For such a particle of radius a, the effective bulk and shear moduli are 
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  14 3 4
3

3 2 3
sK K K L M N

a K

 Γ  = + − + +  
  

  , (5.54) 

  ( ) ( )121 1
6 3 4

5 3
s sK M N

a K
µ µ µ

 Γ
= + + − + 

 
  , (5.55) 

where K and µ  are, respectively, the bulk and shear moduli of the bulk material, L, M 

and N are the third order elastic constants related to ijkC , see Appendix E. 

 Making use of (5.24), one can compute the self-equilibrium strain of the spherical 

particle, 

  1121
ˆ

3ij ijkl kl ijM
a aK

ε τ δ
Γ

= − = −   . (5.56) 

Clearly, a positive 11Γ  would mean a contraction of the sphere due to surface stress. 

 

5.2.2 Atomistic Calculation for Computing the Effective Elastic Constants of 

Nanoparticles 

 As a partial validation of the model developed above, we performed atomistic 

calculations using a semi-analytical method for evaluating and analyzing the elastic 

properties of nanostructures such as nanowires and thin films. 

 The essence of the method is based on the Taylor expansion of an interatomic 

potential about the equilibrium (or relaxed) state of the studied nanostructure.  When 

subjected to a uniform strain field ijε , we showed in chapter 4 that the elastic stiffness 

tensor Cijkl of the nanostructure measured at the relaxed state is given by 
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where E(n) is a generic interatomic potential function for an atom n, rmn  is the position 

vector between atoms m and n, ( )nΩ  is the volume of the Voronoi polyhedron associated 
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with atom n.  More details of the methods are described in chapter 4, section 3.  This 

analysis implicitly accounts for the effects of that specific nanostructure’s shape and size, 

including the effects of surfaces which play an important role at the nanoscale. 

 Note that the elastic constants are defined with respect to the relaxed 

configuration of the nanostructures.  The method described here is not limited to wires 

and films.  It can be used to deal with nanostructures of more complex shapes and the 

sizes.  Obviously, this approach implicitly accounts for the surface effects that influence 

the properties of the structure.  It is therefore important to choose an appropriate 

interatomic potential function in order to have an accurate description of the properties of 

the material studied. 

 Furthermore, in the present case, the physical nature of the surface atoms is 

different from that in the bulk, and deviations from the bulk elastic behavior in small 

scale systems can be considered as manifestations of Gibbs-Thomson effects.  It had been 

shown in chapter 4 that the EAM potential used in this work adequately display the 

proper surface properties such as surface energy and surface stress.  Hence it ensures that 

surface properties are being modeled correctly so that their influence on small size solids 

are properly being taken into account when determining how the surface effects are 

causing changes in the elastic properties. 

 We extended the methodology to the characterization of the size-dependence of 

the elastic moduli of thin films and nanowires grown along the [001], [110], and [111] 

crystallographic directions for group 10-11 transition metals (Cu, Ni, Pd, and Ag).  

Figure 5.5 shows the orientations of the lateral surfaces of these nanostructures.  This 

homologous series of metals is chosen because they have similar atomic bonding 

characteristics that are different from those in ionic or covalent crystals.  Here, the full set 

of effective elastic constants for Cu, Ni, Ag and Pd nanowires and thin films are 

calculated. 
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 Nanostructures of different sizes are obtained by considering a top down 

fabrication approach (Gruber et al., 1999) by “cutting” them from bulk crystals in the 

desired crystallographic orientations.  Periodic boundary conditions (PBCs) are applied 

along the longitudinal direction and the lateral surfaces are kept free.  For nanowires, 

PBCs are applied along the X3 axis, illustrated in Figure 5.5.  For nanofilms, PBCs are 

applied in the X1 and X2 directions.  It is found that computational cell lengths of at least 

6 nm for wires and in-plane widths of at least 4 nm for films are sufficient to ensure 

results which are independent of the choices of computational cell sizes.  Therefore, a cell 

length of 20 nm used for all the nanowires and a cross-sectional size of 8 nm × 8 nm is 

used for all films.  The embedded atom method (EAM) potential developed by Daw and 

Baskes (Daw and Baskes, 1984; Foiles et al., 1986) is used in this work.  The atomic 

interactions are calculated up to the third nearest neighbor by truncating the EAM 

potential at the appropriate distance.  The reduced coordination of atoms near free 

surfaces induces a redistribution of electronic charges which alters the binding situation.  

Consequently, atoms near surfaces relax or move away from their perfect lattice positions 

and, as a result, their energy is different from the values in bulk.  The nonlinear conjugate 

gradient method is used to minimize the energy of the system and to obtain the relaxed 

configuration.  Contractions in the longitudinal direction are observed upon relaxation.  

This self-equilibrium state is characterized by the relaxation-induced strain field îjε  given 

by equation (5.24) and the average stress over the entire structure, which is equal to zero 

since the structure is in a free-standing state. 

 In order to verify and validate those calculations, we have also performed a strain 

meshing of the calculation cell with strains in the two planar directions ranging from -1% 

to 1% and incremented by ±0.01% strain steps.  The meshing procedure used to calculate 

the elastic properties of interest is quite similar to the one described previously for 

surface properties: after the initial geometry is defined, depending on the dimensionality 

of the element, different boundary conditions are applied.  Periodic boundary conditions 
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are used in the two planar directions with free surfaces in the vertical direction to mimic a 

thin film (2D).  Periodic boundary conditions are used in the longitudinal direction with 

free surfaces in the two other directions to mimic nanowires in the longitudinal direction 

(1D).  No periodic boundary conditions are used to represent a free standing sphere (0D).  

After the initial relaxation of the nanoparticle, the element can be loaded in the desired 

direction(s) using the same methodology described earlier in this section and therefore we 

can obtain a meshing of the change of strain energy during the loading process with 

respect to the reference configuration as shown in Figure 5.6(a) for a thin film for 

example.  The general steps of the calculation can be outlined as follows, 

 (a)  Create the initial assembly using the given material properties (atomic weight, 

lattice spacing, EAM potential, crystallographic orientation, etc.). 

 (b)  Equilibrate the assembly to find the self equilibrium state. 

 (c)  Apply a small strain field, s

αβε , to the assembly and re-equilibrate. 

 (d)  Compute the strain energy density corresponding to this given strain field. 

 (e)  Increase the magnitude of s

αβε  and repeat steps (c) and (d). 

After repeating steps (c) – (d) a sufficient number of times, we obtain a mesh of the total 

energy of the atomic assembly.  After curve fitting, the effective elastic constants of the 

particle at the state of self-equilibrium ε̂  can be identified using the expression of the 

effective modulus tensor defined as, 
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The results obtained using this method agree well with the semi-analytical method and 

the continuum model as seen from Figure 5.6. 

The effective Young's moduli of thin films and wires of various thickness 

obtained from the semi-analytical model were compared with those calculated using a 

continuum model described earlier in section 5.2. 
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5.2.3 Numerical Results for Thin Films, Nanowires and Nanospheres 

 In this section, several numerical examples for the effective modulus and effective 

Poisson's ratio of spherical particles, wires of square cross-section and films are presented 

for four FCC materials (Cu, Ni, Ag and Pd) in three different crystallographic 

orientations.  The discussion here focuses on the elastic properties of these homologous 

materials and the underlying trends in the effects of surface orientations.  The values for 

the cubic (second order) and third order elastic constants of the single crystals and the 

surface properties required for the continuum model are taken from chapter 3 and chapter 

4 and are listed in Table 4.1, Table 3.2 and Table 3.3.  All the results discussed in this 

section are for unreconstructed surfaces.  As reported by several researchers (Ackland 

and Finnis, 1986; Diao, 2004; Liang et al., 2005), for certain orientations and materials, 

phase transformation and surface and structure reconstruction can occur when the 

characteristic size is sufficiently small.  Examples include [100]-oriented gold nanowires 

with cross-sectional areas smaller than 1.83 nm × 1.83 nm.  The sizes considered in this 

paper are larger than the critical sizes associated with lattice reorientation phenomena; 

therefore, issues related to structural changes are neglected in the analysis. 

 Figure 5.7 and Figure 5.8 respectively show the self-equilibrium strains during the 

initial relaxation of nickel nanowires as a function of wire thickness and the self-

equilibrium strains during the initial relaxation of silver thin films as a function of film 

thickness.  The results computed via equation (5.24) from the continuum model are also 

shown.  For the three crystallographic orientations and for all materials studied, the self-

equilibrium strains obtained from the atomistic calculations agree well with the values 

calculated using the model.  As seen from the continuum and semi-analytical model 

results, we can observe longitudinal contractions and lateral expansions that increase as 

the size of the wires decreases.  For a given wire size grown in the [110] and [111] 
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directions, the axial contractions have similar magnitudes but, they are much larger in the 

case of wires grown in the [100] direction.  For example, for a 2 nm wire, the equilibrium 

strain is approximately -2% for [100] wires and is around -1% for [110] and [111] wires.  

Table 4.2 shows that for all the metals studied, the intrinsic surface stress ( )1
ααΓ  of (100) 

surfaces is greater than the surface stresses of the two other surfaces, while they are 

similar for the (111) and (110) surfaces.  Due to the higher moduli in the [111] and [110] 

directions and smaller intrinsic surface stresses on the lateral surfaces, the relaxation 

strain is smaller for [110] and [111] nanowires than for [100] wires at a given thickness.  

Similar observations can be made for thin films.  Clearly, in both cases, the intrinsic 

residual surface stresses directly influence the magnitude of the self equilibrium strain.  

This observation is analytically confirmed by equation (5.24). 

 The effective unidirectional and biaxial moduli for single crystal Ni wires and Cu 

films of various thicknesses are plotted in Figure 5.9 and Figure 5.10, respectively.  For 

the Ni wires, the axial modulus for the [110] orientation increases as the wire diameter 

decreases, while an opposite trend is seen for the [100] orientation.  For a wire size of 2 

nm, the axial modulus for the [100] orientation is approximately 15% smaller than for its 

bulk counterpart (we calculated a reduction up to 35% compared to the bulk value in the 

case of 2nm Cu nanowires), while in the case of the wire grown in the [110] orientation, 

the axial modulus for a 2nm wire is approximately 23% higher than the value obtained in 

the bulk.  As seen from Figure 5.9, as the wire size is decreased from 8 nm to 2 nm, the 

axial Young’s modulus decreases by 28% for [100] wires and by only 2% for [111] 

wires, while it increases by 15% for [110] wires.  Similar trends are seen for the uniaxial 

modulus of Cu films since a film can be viewed as an array of wires placed side-by-side.  
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In the case of the biaxial Young's modulus of Cu thin films, as seen in Figure 5.10, we 

nevertheless observe opposite trends as compared with the uniaxial Young’s modulus of 

the nanowires.  Specifically, for a 2 nm film, the biaxial modulus for the (100) orientation 

is almost 33% higher than its bulk value.  We can see from Figure 5.10 that when the 

thickness of the film is reduced from 8 nm to 2 nm, the biaxial Young’s modulus 

increases by 22% and 4% with respect to its bulk value for the (100) and (111) films, 

respectively, while it is decreases by 4% for the (110) wires. 

 Another interesting observation is the similarity between the size-dependences of 

the uniaxial Young’s modulus for nanowires in the [100] direction and the uniaxial 

Young’s modulus in the (001) direction of the [110] films.  This can be qualitatively 

explained by considering the surface attributes for the (110) plane.  In particular, the 

trough and ridge structure of (110) surface results of atoms along the 110    direction 

separated by relatively wide troughs.  The nearest neighbors of the atoms in a row are 

other atoms in the same row and atoms in the layers underneath.  The only nearest 

neighbor bonds of the surface layers atoms that have components transverse to the 110    

row are those that connect them to the atoms in the second layer resulting in a higher 

uniaxial Young’s modulus in the 110    direction than in the [ ]100 . The Poisson's ratio for 

the wire and the biaxial Poisson's ratio for the film are plotted in Figure 5.11 for wires 

and films of various thicknesses.  The dashed lines indicate the bulk values without the 

effect of free surfaces.  It is seen that the bi-axial Poisson's ratio of the film decreases 

with decreasing film thickness, while the axial Poisson's ratio of the wire increases with 

decreasing wire thickness.  In both cases, a sharp change occurs around thickness of 2 
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nm.  It is interesting to note that molecular dynamic simulations by Diao, et al, (2003) 

have shown that single crystal gold wires undergo a phase transformation from face 

center cubic symmetry to body center tetragonal symmetry when the wire diameter 

reduces to around 2 nm due to surface stress, giving rise to a significant increase in 

Poisson's ratio (Diao et al, 2004). 

 Finally before closing this section, Figure 5.12 presents the results for all the 

materials studied and compares the uniaxial Young’s modulus for nanowires, uniaxial 

and biaxial Young’s modulus for thin films as a function of their characteristic sizes.  The 

Young’s modulus decreases for [100] wires, increases for [110] wires and remains 

essentially constant for [111] wires as the cross-sectional size is decreased (Figure 

5.12(a)).  For the thin films (Figure 5.12(b)), the biaxial Young’s modulus shows exactly 

the opposite trend to those seen in the nanowires for all the materials studied.  The size 

dependence trends observed for the uniaxial moduli of thin films grown in various 

orientations are also consistent among the materials analyzed.  Such a consistency in the 

elastic response is expected since the surface and bulk properties are quite similar for the 

materials in this homologous series. 

 

5.2.4 Influence of Non-Linear Elasticity of the Bulk Core and Surface Elasticity 

 Given the excellent correlation between the atomistic calculations from section 

5.2.2 and the model developed in section 5.2.1 we can go a step further in our reasoning 

and study the influence of several parameters on the size-dependence elasticity stiffness 

of the nanostructures in order to qualitatively and quantitatively understand their 

contribution to the elastic response. 

 As seen from equation (5.24) and based on the observations and remarks made in 

the previous section concerning the self-equilibrium strain, the intrinsic (or residual) 

surface stresses clearly drive the relaxation behaviors of nanostructural elements.  
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Therefore we can conclude that the knowledge of the intrinsic surface stress completely 

defines the relaxed state of nanostructural elements such as the wires and films studied 

here and it is characterized by equation (5.24). 

 Based on equation (5.25), two material properties clearly influence the softening 

or stiffening of nanoparticles: (i) the surface elasticity represented through the tensor ijklQ  

(which is a function of the surface elastic behavior and the shape of the nanostructural 

element) and (ii) the non-linear behavior of the core of the nanostructure.  In Figure 5.13 

– Figure 5.17, we show the influence of the surface elasticity and the influence of non-

linear behavior of the bulk on the effective properties of films and wires.  To study the 

influence of the nonlinear elastic behavior of the bulk, we plotted the ratio between the 

Young’s moduli of the nanostructural elements and the bulk moduli of the material 

studied when the surface stresses are held constant (surface stresses do not depend on the 

stretching of the surface and are equal to the intrinsic tensile surface stresses).  In this 

circumstance only the non-linear elastic behavior of the core of the nanoparticles is 

artificially taken into account.  On the other hand, to study the influence of surface 

elasticity, we plotted the ratio between the Young’s moduli of the nanoparticles and the 

bulk moduli when the non-linear elastic behavior of the bulk is neglected in equation 

(5.25).  Therefore in this case only the elastic behavior of the surfaces is expected to 

influence the effective properties.  In both cases, ratios greater than unity imply that the 

particular parameter considered contributes to the stiffening of the actual nanoparticles 

while ratios smaller than unity imply a softening induced on the structure studied.  Based 

on such a decomposition of surface and bulk effects, we can clearly identify several 

trends in the effective elastic responses of the nanowires and thin films. 
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5.2.4.1 Parameters Influencing the Size-Dependence of Nanowires 

 In the case of nanowires, we studied the influence of the non-linearity of the cores 

and the effect of the surface elasticity on the size-dependence for wires grown in the three 

basal crystallographic directions.  First, as seen from Figure 5.13 and Figure 5.16(a), we 

can observe that for the [100] crystallographic direction, the neglect of non-linear elastic 

behavior of the bulk or the invariance of the surface stresses with respect to surface 

strains makes the wire softer than its bulk counterpart.  For example, for a 2nm thick 

copper wire, the elastic behavior of the surfaces by itself softens the wire’s uniaxial 

Young’s modulus by 22%, while the non linear elastic behavior of its core reduces it by 

18%.  Therefore the non-linear elasticity of the bulk as well as the surface elasticity 

contribute to the softening of the nanowires grown in the [100] direction equally, which 

in turn is reflected in the overall decrease in the Young’s modulus with decrease in size. 

 On the contrary, when we consider wires grown in the [110] direction, the 

influence of surface elasticity on its effective modulus is rather negligible (a few percent 

for a 2nm thick wire for example) and only the non-linear elasticity of the bulk influences 

significantly the effective elastic stiffness of the wire.  As seen from Figure 5.13, the 

modulus ratio for the third order constants in the [110] orientation is greater than unity 

and therefore contributes to the stiffening of the nanowires (~20% increase in modulus 

with respect to the bulk for a 2nm wire).  Thus, the contribution of the surface elasticity 

on [110] nanowires is considerably smaller than the contribution of the non-linear 

elasticity of their core and as a result the effective modulus of the nanowire is larger than 

the bulk. 

 Finally, in the case of the nanowires grown in the [111] direction we notice that 

the non-linear elastic behavior of the bulk counteracts the effects of surface elasticity.  As 

seen from Figure 5.13, for a 2nm thick wire, the effect of the non-linearity increases the 

uniaxial Young’s modulus by approximately 6% with respect to the bulk modulus while 

the elasticity of the surface decreases it by 11% i.e the non-linear elasticity of the stiffens 
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and the elastic behavior of the surface softens the nanoparticle.  However, as seen from 

the changes in moduli, the contributions of the surface and the core acting individually 

are minimal. 

 For all three nanowire orientations and for all the studied materials, surface 

elasticity always contributes to the softening of the wires as compared to their respective 

bulk values.  This softening is moderate (7-22%) in the case of the (100) and (110) 

nanowires while it is negligible in the case of the [111] nanowires.  The non linear elastic 

behavior of the core of the wire, however, influences the size dependent softening or 

stiffening depending on the orientation.  These conclusions concur with the observations 

already made with atomistic simulations by Liang (2005) for copper nanowires. 

 

5.2.4.2 Parameters Influencing the Size-Dependence of Thin Films 

 In the case of thin films, we analyzed the effects of the surface and the core of the 

nanostructural elements on the uniaxial and biaxial Young’s modulus for the three basal 

crystallographic orientations.  As seen from Figure 5.14, for (100) films (Ni or Cu), the 

influence of the parameters on the size-dependence for the uniaxial Young’s modulus is 

opposite to that of the biaxial Young’s modulus.  The biaxial Young’s modulus of a film 

is greater than the bulk value when considering either the constant surface stresses or 

when the non-linearity of the core is neglected or when both  are acting simultaneously.  

For example, as illustrated in Figure 5.14 for a 2 nm thick film of nickel, the effect of the 

surface elasticity increases the modulus by 6% compared with the bulk modulus while 

the non linear elastic behavior of its core increases it by 15%.  On the contrary, when we 

examine the uniaxial behavior of that same thin film, the uniaxial Young’s modulus is 

smaller than its bulk value when either or both parameters are considered.  For a 2 nm 

copper thick film, the surface effects decrease the modulus by 12% and the third order 

elastic constants of the core decrease the modulus by 14% with respect to the Bulk 
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biaxial Young’s modulus.  Therefore, both, the non-linear elasticity of the bulk as well as 

the surface elasticity, are driving factors in the stiffening or softening of (100) thin films 

depending on the modulus considered. 

 For (110) and (111) films, while the influence of the non-linear elastic behavior 

on the biaxial modulus seems irrelevant (decrease of 4% of the biaxial modulus for 2 nm-

thick films of nickel), the elastic behavior of the surface appears to be the most influential 

parameter on the size dependent elastic biaxial modulus of the thin film.  Interestingly 

enough, we notice that for the uniaxial Young’s modulus of (110) films, both the non 

linear elasticity of the films’ cores as well as surface elasticity play a part in the size 

dependent softening of the film (for 2 nm-thick films of copper we notice a decrease of 

9% with the surface elasticity effect and a decrease of 8% caused by the non linear elastic 

behavior of the core).  As already noted in the previous section, the trough-and-ridge 

structure results in a greater softening of uniaxial Young’s modulus in the [ ]100  direction 

than in the 110    direction. 

 For the three thin films’orientations and all the materials studied, the surface 

elasticity and the non linear elasticity within the core of the thin film have an effect on 

the size dependent softening or stiffening which highly depends on the orientation and 

elastic constants considered.  Furthermore, as expected, the trends observed for each 

orientation are consistent within the homologous series of metals. 

 Figure 5.16 and Figure 5.17 compare the effects of surface and core elasticity on 

the nanowire and thin film responses for all the materials considered in this work.  As 

seen from the figures, the trends observed for each orientation are consistent within the 

homologous series of metals.  Irrespective of the orientation considered, the surface 

elastic behavior is seen to soften the nanowires for each material (Figure 5.16(a)).  We 

note that in the case of palladium, the effect of the surface on the size-dependence 

elasticity of the [110] wire is slightly different from the rest of the materials studied.  
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While for copper, nickel and silver, the influence of surface elasticity on its effective 

modulus is rather negligible, we can observe that the contribution of the surface elasticity 

on [110] palladium nanowires makes the wire softer than the bulk.  For example, as seen 

from Figure 5.16(a), for a 2nm thick [110] palladium wire, the surface effects decrease 

the modulus by approximately 10%.  Using equation (5.25), we can show that this 

observation is primarily explained by the fact that the term (100) (110)
2222 2222Γ +Γ  drives surface 

effect on the size dependent elasticity of [110] wires.  In the case of (111) palladium thin 

film, while the effects of the surface are still negligible (less than 1% for a 2nm thick 

film), its sensitivity to the surface elasticity is different from the rest of the studied 

materials.  As seen from Figure 5.16(b) and Figure 5.16(c), while for copper, nickel and 

silver, the effects of the surface stiffen the (111) films for very small thicknesses, the 

surface actually softens the (111) palladium thin films.  This trend can be simply 

identified by looking more closely at Table 1.  Indeed (111) palladium surface has 

negative surface elastic constants while these for copper, nickel and silver are positive.  

From a physics point of view, this simply means that (111) palladium surface stresses are 

relaxed upon stretching.  The effect of core non-linearity is also similar for the materials 

resulting in consistency in the overall behavior also seen in Figure 5.17(a).  Similar 

observations can also be made for the uniaxial and biaxial moduli of thin films (Figure 

5.17(b) and Figure 5.17(c)). 

 

5.3 Eshelby nano-inclusion problem 

 

5.3.1 Interphase versus Interface 

 In the preceding chapter, when dealing with surface excess stress and surface 

excess strain, we have intentionally limited ourselves to continuum media.  Therefore, 



 165 

there is no microstructure, thus no characteristic length involved, and the interface is a 

mathematical surface with zero-thickness.  For realistic bimaterials, there typically exist 

two distinctive length parameters, namely, the atomic spacing (lattice parameter) d, and 

the radius of curvature of the interface D, where D is generally several order of 

magnitude greater than d for most of the problems of engineering interest. 

 For example, in a bicrystal, the equilibrium position and energy of atoms near the 

grain boundary are, in general, different from those of the atoms in the bulk of the 

crystals that constitute the bicrystal.  The transition from one bulk values to the other may 

take place over a few layers of atoms (Blakely, 1973; Dingreville and Qu, 2007; 

Dingreville and Qu, 2007).  Therefore, in the framework of continuum mechanics, an 

interface between two dissimilar materials may be considered as a region over which the 

material properties changes gradually from the bulk property of one material to the other.  

This transition region is regarded as the interphase of thickness h.  Field quantities in the 

continuum framework such as stress, strain and strain energy density may all vary 

continuously across the interphase.  Specifically, the displacement and traction are 

continuous across any surface (including the interface) within the interphase when 

measured by the microscopic length scale h.  It is in such length scale that the continuity 

of displacement and traction is specified that leads to, t t

+ −=σ σ  and s s

+ −=ε ε . 

 In many engineering materials like polycrystals and composites, in addition to 

discrete atoms, there might also be inhomogeneities, such as precipitates, grains, fibers, 

etc.  Let the characteristic length of these inhomogeneities be measured by D, the radius 

of curvature of the interface between an inhomogeneity and its surrounding medium.  

Since D is typically much greater than the atomic spacing h, in the mesoscopic 

framework of mechanics of materials where the focus is on the material's macroscopic 

behavior, the discrete atomic structure of the material is smeared (homogenized) into a 

continuum (Sharma et al., 2003; Sharma and Ganti, 2004; Duan et al., 2005; Zhang and 

Sharma, 2005; Lim et al., 2006).  In other words, the mesoscopic approach simply 
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implies that 0h D ≈ .  Intuitively, this is like observing the interface from a far distance 

so that one cannot see the atomic structure, nor the thickness of the interphase.  All one 

sees is that the properties jump from one bulk value to the other across the interface.  

Consequently, one may perceive that field quantities are discontinuous at the interface 

when measured by the mesoscopic length scale D.  Figure 5.18 illustrates schematically 

the two different views based on two different length scales. 

 The results from chapter 4 allow us to establish the relationship between 

microscopic properties (measured by h) and mesoscopic jumps of these properties across 

the interface measured by D. 

 

5.3.2 Mesoscopic Interfacial Conditions 

 In this section, our attention is given to equations valid at the mesoscopic length 

scale D.  The practical interest of this length scale arises from nano-grain crystalline 

materials, nano-particles reinforced composite materials, multi-layer nano-films, etc.  The 

main objective here is to develop the interfacial conditions for the displacement, strain 

and stress fields across the interface. 

 When the inclusion is large enough so that the interface excess energy is 

negligible, the problem is called the Eshelby inclusion problem (Eshelby, 1957) and the 

solution is called the Eshelby solution.  Eshelby solved the general problem of the elastic 

state of an inhomogeneity containing eigenstrains located within a foreign material and 

subjected to an applied external stress.  In Eshelby’s work, inhomogeneities are defined 

as embedded particles with material properties differing from the surrounding host 

material or matrix while eigenstrains are stress-free strains such as lattice parameter 

mismatch, thermal expansion, inelastic strains, etc.  In its present form, Eshelby’s 

formalism does not include the effects of the elastic surface properties (residual surface 
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tension, surface moduli) of inhomogeneities and their elastic state is entirely based on 

bulk properties. 

When the inclusion approaches nano-size, the interfacial excess energy becomes 

more prominent and needs to be taken into account in the Eshelby problem.  Although 

various solutions for the Eshelby nano-inclusion problems have appeared in the literature 

recently (Sharma et al., 2003; Sharma and Ganti, 2004; Duan et al., 2005; Duan et al., 

2005; Duan et al., 2005), none has taken the interface effects fully into account.  In this 

section, we will present the interfacial conditions for such Eshelby nano-inclusion 

problem, accounting the full interface effects. 

 To this end, we assume that the size of the inclusion D is small enough so that the 

effect of interface must be considered, but D is still large enough such that 0h D ≈ .  

Typically, this means that the inclusion size is between a few nanometers and a few 

hundreds nanometers for most crystalline materials / nanocomposites. 

 

5.3.2.1 Kinematic Interfacial Conditions: Displacement Fields Near the Interphase 

 First, consider the kinematic conditions.  Consider an interface S separating two 

dissimilar linearly elastic solids.  Without loss of generality, for any given point on the 

interface, a reference Cartesian coordinate system ix  ( 1,2,3i = ) can be chosen so that 

3 0x =  is the tangent plane of the interface at 1 2 0x x= = .  Thus, near the neighborhood 

coordinate origin, the interface can be described by the following equation, 

  1 2 3 1 2 3( , , ) ( , ) 0F x x x f x x x= − =   , (5.59) 

where it is assumed that 1 2( , )f x x  is a twice-differentiable function of xα  ( 1, 2α = ) near 

0xα = .  Thus, Taylor expansion of 1 2( , )f x x  near 0xα =  leads to 

  2
3 1 2

1
( , ) ( )

2
x f x x x x xαβ α β ακ= = +Ο   , (5.60) 
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where 11κ  and 22κ  are the two curvatures of the interface, and 12 21 0κ κ= = , provided 

that 1x  and 2x  are in the directions of the two major curvature lines of the interface at 

0xα = . 

A parametric form of the surface can be written as 

  1 1x y=   ,  2 2x y=   ,  3
1

2
x y yαβ α βκ=   , (5.61) 

where yα  are the coordinates of the interface, for a pair of yα  uniquely determines a 

point on the interface.  The metric tensor of the interface is thus given by, 

  i ix x
a

y y
αβ

α β

∂ ∂
=
∂ ∂

  . (5.62) 

In particular 

  2 2
11 11 11a yκ= +   ,  2 2

22 22 21a yκ= +   . (5.63) 

The unit tangent vector in yα -axis is given by 
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where ki  are the three unit vectors in the Cartesian system kx .  The normal of the 

interface can the be defined by, 

  11 1 1 22 2 2 3
3 1 2 2 2 2 2

11 1 22 21 1

y y

y y

κ κ

κ κ

− − +
= × =

+ +

i i i
e e e   . (5.65) 

 We are now ready to introduce an orthogonal rectilinear system ky  so that a point 

in the Cartesian coordinate system ix  can be written as i k k ix y= ⋅e i . This allows us to 

compute the metric tensor ijg  between these two systems.  At 0yα =  (equivalently 

0xα = ), we have, 
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g   . (5.66) 

The corresponding Christoffel symbol of the second kind is given by, 

  
2

m m
il

k j l

i x x
g

k j y y y

  ∂ ∂
= 

∂ ∂ ∂ 
  . (5.67) 

The small strain tensor is thus given by, 

  
1

2
ji

ij k

j i

u iu
u

k jy y
ε

 ∂  ∂
= + +    ∂ ∂   

  , (5.68) 

where 1 2 3( , , )m mu u y y y=  are the displacement components in the ky  coordinate system.  

Specifically at 0yα = , the two coordinate systems kx  and ky  coincide, and we have, 
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It thus follows (5.69) and (B.4) that the transverse strain tε  is given by 

  3
3 3

3 3 3

t u
u u

x x x

  ∂∂ ∂
= ⋅ ∇ + + + ⋅ ⋅ = + ⋅∇ + ⋅ ⋅ ∂ ∂ ∂ 

u u
ε P n κ P u P κ P u   . (5.70) 

where n is the normal of the interface, and ⊗P = I -n n  is called the surface projection 

tensor.  Furthermore it follows from (5.65) for yα  near 0yα = , here the normal vector of 

the interface 3n = e  can be written as 

  3i i in yαβ β αδ κ δ= −   . (5.71) 

Thus, we have the relationship at 0xα = , 
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κ
∂

= −
∂
 , or  s= −∇κ n   . (5.72) 

The surface gradient operator s∇  is defined through the regular three-dimensional 

gradient operator ∇  by, 

  
( )s

∂
∇ = ∇ −

∂ ⋅
n

x n
  . (5.73) 

By making use of the above, the transverse interfacial excess strain can be written as, 

  3 3
3

( )
h

t t t

h
u dx h

x
+ −−
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∫

u
∆ P κ P u ε ε   , (5.74) 

where +ε  and −ε  are uniform strain fields in the two materials, respectively, see chapter 4 

equation (4.6).  Carrying out the integral leads to, 

  ( )1 2 1 2 3 3( , , ) ( , , ) ( )
h

t t t

h
x x h x x h u dx h + −−

= − − + ⋅∇ + ⋅ ⋅ − +∫∆ u u P κ P u ε ε   . (5.75) 

When measured by the mesoscopic length scale D, i.e., 0h D ≈ , and accounting for the 

uniformity of the strain fields +ε  and −ε  (and therefore the uniformity of the 

displacement field) the above equations reduce to, 

 ( ) � �1 2 1 2 1 2 1 2( , , ) ( , , ) ( , , ) ( , , )t x x h x x h O h D x x h x x h D= − − + ≈ − − ≈∆ u u u u u   .(5.76) 

where � �u  is simply the jump in displacement across the interface in the mesoscopic 

length scale.  It is seen that, although the displacement is continuous everywhere within 

the interphase when measured by the microscopic length scale d, it is not continuous 

across the interface when measured by the mesoscopic length scale D.  The jump is 

nothing but the transverse interfacial excess strain which was computed in the 

microscopic length scale.  Thus equation (5.76) provides a bridge between the 

microscopic and mesoscopic length scales.  It transfers the atomistic information to the 

mesoscopic behavior.  Since t∆  is known from equation (4.22) as a function of the 

applied load sε  and tσ , equation (5.76) gives the condition for the displacement jump 
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across the inclusion-matrix interface in the Eshelby nano-inclusion problem.  Note that 

the interface considered here is still a coherent one, i.e., the displacements are continuous 

across the interfacial region between the inclusion and matrix.  The displacement jump in 

(5.76) is purely an artifact of vanishing thickness of the interfacial region.  In other 

words, if one uses a magnifying glass to zoom in a small (~ d) region near the interface, 

one would find that the displacement is continuous across the interfacial region.  

However, if one uses a telescope to view the entire inclusion (~ D), details of the 

interfacial region becomes invisible and the displacement will appear to be discontinuous 

across the interface. 

 To close this section, we mention that in all the above derivations, we have 

neglected the difference between contravariant and covariant components to simplify the 

notations.  The special choices of the coordinate systems make such simplification 

possible. 

 

5.3.2.2 Kinetic Interfacial Conditions: Traction Across the Interface 

 To obtain the kinetic conditions at the interface, consider an interface of area A0 

with normal n.  Let the area be bounded by the curve 0A∂ .  The outward normal vector of 

0A∂  that is tangent to A0 is denoted by m.  Again, measured by the mesoscopic length 

scale D, the "thickness" of the interface can be considered zero.  The traction vector on 

the top and bottom of the interface is therefore given by ⋅σ n  and − ⋅σ n , respectively, 

while the traction along the edge of the interface is given by s ⋅Σ m .  In this case, the 

static equilibrium of the interface requires, 

  � �
0 0

s

A A
dA ds

∂
⋅ + ⋅ =∫ ∫σ n Σ m 0   . (5.77) 

Applying the surface divergence theorem (Gurtin et al., 1998) to the line integral above 

yields, 
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  � � ( )
0

div s

s
A

dA⋅ + =∫ σ n Σ 0   , (5.78) 

where ( )divs  denotes the surface divergent operator as introduced in (Gurtin et al., 

1998). 

Since equation (5.78) holds for any surface area A0, we have immediately, 

  � � ( )div s

s⋅ + =σ n Σ 0   on the interface. (5.79) 

This is the same equation derived in (Gurtin et al., 1998) by a variational principle 

approach.  A more convenient form of (5.79) is, 

  � � : 0s⋅ ⋅ + =n σ n Σ κ ,  � � s

s⋅ ⋅ +∇ =P σ n Σ 0   on the interface, (5.80) 

The derivation from (5.79) to (5.80) is straightforward by using the following 

  s s⋅P Σ = Σ   ,  s⋅n Σ = 0 ,  ( ) ( ) ( )div div :s s s

s s s⋅ ⋅ + ∇n Σ = n Σ n Σ   . (5.81) 

 

 Summarizing, the interfacial conditions across the inclusion-matrix interface for 

the Eshelby nano-inclusion problem consist of the following equations on the interface at 

the continuum length scale, 

  

� �

� �

� �

: 0s

s

s

t

 ⋅ ⋅ + =


⋅ ⋅ +∇ =

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n σ n Σ κ

P σ n Σ 0

∆ u

  , (5.82) 

 

5.3.3 Inhomogeneity problem 

 In this section, our attention is given to formulating the Eshelby inhomogeneity 

problem incorporating the effect of interface properties. 

 Consider an elastic body/matrix D with elastic modulus 0C  containing an 

ellipsoidal inhomogeneity Ω with elastic modulus tensor 1C .  Let S be the interface 

between the matrix D and the inhomogeneity Ω .  Next, assume D is subjected to surface 
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traction 0 0= ⋅p nσσσσ  on the outer boundary of D, as shown in Figure 5.19.  We are to find 

the stress fields in D∪Ω .  If the effect of interface is neglected, the above is referred to 

as the Eshelby inhomogeneity problem. When the material properties of the 

inhomogeneity and the matrix are the same, i.e., 1 0=C C  the above problem is often 

referred to as Eshelby’s inclusion problem (Mura, 1987). 

 The equilibrium equation for the stress field is given by, 

  ( ) 0div =σ   , D⊂ ∪Ωx   . (5.83) 

The stresses are related to the strains through the Hooke’s law 

  0 :=σ C ε ,   D⊂x   , (5.84) 

  1 :=σ C ε ,   ⊂ Ωx   . (5.85) 

 In the classical Eshelby problem, the inhomogeneity is assumed perfectly bonded 

to the matrix and the interfacial excess energy is neglected.  In this case, the traction and 

displacement are continuous across the interface, 

  � �=σ 0  ,   � �=u 0   , (5.86) 

where � � ( ) ( )
S S+ −⊂ ⊂

≡ −
x x

σ σ x σ x . 

The above problem was solved by Eshelby in 1957.  Since then, the Eshelby’s solution 

has played a critical role in developing mesomechanics of heterogeneous media. It is not 

an over statement that the Eshelby solution is the corner stone of modern mechanics of 

materials. 

 However, in many cases, the condition of perfect bonding at the 

inhomogeneity/matrix interface is inadequate for the description of the physical nature 

and mechanical behavior of the interface region.  Grain boundary sliding in polycrystals 

and granular materials are common phenomena.  Several models incorporate some of the 

interface properties into the solution of the inclusion properties. 



 174 

 Free sliding models for example allow for free tangential slip at an interface but 

exclude relative normal displacement.  Physically speaking, free sliding models may 

represent grain boundary sliding in polycrystal behavior of precipitates at high 

temperature.  Free sliding models have been used for example to analyze the local elastic 

fields and effective properties of composites by Gharemani (Ghahremani, 1980), Jasiuk 

et al. (Jasiuk et al., 1987) among others.  In this model the normal traction and 

displacement are assumed to be continuous across an interface, and the shear traction is 

assumed to be zero, i.e. 
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

⋅ ⋅ =
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n σ n

P σ n

u n

  . (5.87) 

 In the linear spring model case, the interface tractions are assumed to be 

continuous, but the displacements can be discontinuous across an interface, and the 

displacement discontinuities are proportional to the interface tractions. 

  

� �

� �

� �

0

α

β

 ⋅ =


⋅ ⋅ = ⋅
 ⋅ ⋅ = ⋅

σ n

P σ n P u

n σ n u n

  , (5.88) 

where α  and β  are interfacial elastic parameters in the tangential and normal direction 

respectively.  Linear spring model has been used to study the stress fields in composites 

by many researchers such as Qu (Qu, 1993) or Lipton (Lipton and Vernescu, 1996) for 

example .  It was shown for example, that in the case of slightly weakened interfaces, the 

modified Eshelby tensor would write in the form, 

  ( )( ) *( ) : := + −ε S T x I S ε   , (5.89) 

where ( )T x  accounts for the displacement jump condition given by the spring stiffness 

constants.  Equation (5.89) provides the first-order asymptotic solution for the total strain 
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field inside an ellipsoidal inclusion with slightly weakened interface.  It is seen that the 

strains are no longer uniform inside the inclusion. 

 Recent works (Sharma et al., 2003; Sharma and Ganti, 2004; Duan et al., 2005; 

Zhang and Sharma, 2005; Lim et al., 2006) revisited the Eshelby solution including the 

surface energy and interfacial stresses such that the boundary condition transforms into, 
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s
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n σ n Σ κ

P σ n Σ

u

  . (5.90) 

It was shown for example, that in the case of spherical inhomogeneities, assuming that 

the same relationship between surface energy (or interfacial energy in this case) and 

surface stress exist for free surfaces and bicrystal surfaces and by neglecting the 

transverse interfacial behavior, the modified Eshelby tensor would write in the form, 

  ( ) ( )* 1: 2 : :sκ −= −ε S ε C S I   , (5.91) 

,where κ is the curvature of the interface, the scalar s is related to the in-plane surface 

stress.  As a consequence, the elastic state of inclusions is rendered size-dependent. 

 The mesoscopic boundary conditions described by equation (5.90) does not 

account the interfacial excess energy fully.  This is because equation (5.90) neglects the 

transverse deformation of the interface.  As discussed in section 5.3.2, when the 

transverse deformation of the interface is accounted for, the mesoscopic interfacial 

condition should be 

  

� �

� �

� �

:s

s

s

t

 ⋅ ⋅ = −


⋅ ⋅ = −∇


=

n σ n Σ κ

P σ n Σ

u ∆

  . (5.92) 

The boundary value problem described by the governing equations (5.83) – (5.85) and 

boundary conditions (5.92) has not been solved.  As stated in the future recommendation 
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in chapter 6, its solution is being investigated and the results will be presented in the near 

future. 

 

 

5.4 Summary and Conclusions 

 

 The main purpose of this chapter is to develop a continuum framework that casts 

the atomic level information into continuum quantities that can be subsequently used to 

analyze, model and simulate the macroscopic behavior of nanostructured materials, 

bridging the gap between discrete systems (atomic level interactions) and continuum 

mechanics. 

 In particular, we studied the effects of surface free energy on the effective 

modulus of nano-particles, nano-wires and nano-films as well as nanostructured 

crystalline materials and we propose analytical expressions valid for any shape of 

nanostructural elements / nano-inclusions (integral forms).  Explicit expressions of the 

effective elasticity tensors were obtained for thin films, wires and spherical particles.  

The solutions derived here show that the overall elastic properties of structural elements 

(such as particles, wires, films) are size-dependent.  Although such size-dependency is 

negligible for conventional structural elements, it becomes significant when at least one 

of the dimensions of the structural element shrinks to nanometers.  Numerical examples 

for a variety of materials were given in the chapter to quantitatively illustrate the effects 

of surface free energy on the elastic properties of nano-sized particles, wires and films.  It 

is found that the effect of surface energy on the elastic behavior becomes significant 

when one of the characteristic dimensions is below about 15 nm. 

 Also, similarly to what has been presented in chapter3, and in order to corroborate 

the above mentioned framework, a semi-analytical method for computing the elastic 
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properties of nanostructural elements has been developed.  This method is semi-analytical 

in that it expresses the elastic properties explicitly in terms of the inter-atomic potential.  

It requires only one molecular statics calculation to obtain the self-equilibrium state 

(relaxed state) of the nanostructural elements.  Compared with existing methods, this 

method has several advantages including (i) it does not require extensive computational 

resources (~90% reduction in CPU time as compared to full atomistic techniques); (ii) it 

directly gives the full set of elastic properties; (iii) it is very general and applies to any 

inter-atomic potential, although an EAM potential was used in this paper in the numerical 

examples; and (iv) it implicitly accounts for the effects of the shape and size of the 

nanostructure studied.  Nanostructures of different geometric shapes and sizes such as 

nanowires, nanofilms, and nanoparticles have been studied using this method in a 

uniform manner without modifications to the formulation.  In addition to its efficiency 

and simplicity, this method yields results which are in excellent agreement with those 

measured from experiments and predicted by other atomistic methods. 

 By using the both of the methods mentioned previously, the size-dependence of 

the elastic properties of nanowires and nanofilms of Cu, Ni, Ag and Pd with the [111], 

[100] and [110] crystallographic orientations has been investigated.  The results show 

that the size, orientation and shape of the nanostructures influence elastic constants in 

different manners.  Specifically, for the materials studied, decreasing the characteristic 

size of the nanowires from 8 to 2 nm results in decreases of the elastic modulus of up to 

80% for [100] oriented wires and up to 8% for [111] oriented wires and increases 

between 15% and 37% for [110] oriented wires.  In the case of nanofilms, as the film 

thickness is decreased from 8 to 2 nm, the biaxial modulus can change by up to 50%, 7% 

and -5% for [100], [111], and [110] films, respectively.  Among the materials in this 

homologous series analyzed, similar trends in elastic properties are observed, consistent 

with what is reported in the literature. 
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 The continuum framework mentioned above clearly enables the study of the 

influence of (i) the surface elasticity and (ii) the non-linear behavior of the core of the 

nanostructure on the softening or stiffening of nanoparticles.  Several interesting 

conclusions were found.  First, it was uncovered that the knowledge of the tensile 

residual surface stress completely defines the relaxed state of nanostructural elements.  

Second, for the three nanowires’ basal orientations and for all the studied materials, the 

influence of the surface elasticity always contributes to the softening of the wires 

compared to their equivalent bulk (up to 22% compared with bulk values) while the non 

linear elastic behavior of the core of the wire affects the size dependence by either 

softening or stiffening it depending on its orientation.  Finally, in the case of the thin 

films, we demonstrated that, depending on the crystallographic orientation and the 

modulus considered, the surface elasticity as well as the non linear elasticity of the core 

of the thin film can contributes to either a size dependence softening or stiffening of the 

thin films.  These results put light on the fact that the knowledge and the clear 

understanding of the surface elastic behavior and the non linear elastic behavior of the 

bulk are crucial for accurately predicting the elastic properties of nanostructural elements. 

 Finally the extension of the Shuttleworth relation presented in chapter 4, enables 

us to establish the relationship between microscopic properties and mesoscopic jumps of 

these properties across the interface.  More specifically, we derived the kinematic and 

kinetic interfacial conditions.  In turn, these boundary conditions can be used in the 

formulation of the Eshelby inhomogeneity problem incorporating the effect of interface 

properties. 
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Figure 5.1  A particle is created by removing it from a bulk crystal 
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Figure 5.2  An ellipsoidal particle 
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Figure 5.3  A single crystal thin film 
 
 
 
 
 
 
 
 

 

Figure 5.4  A thin wire of square cross-section 
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Figure 5.5  Atomistic structures and the crystallographic orientations used in the 
simulation cells.  Periodic boundary conditions are applied in the 
longitudinal directions (X3 axis in the case of nanowires, X1 and X2 axis in 
the case of thin films).  The transversal directions are kept traction free 
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Figure 5.6  (a) Strain energy density meshing as a function of in-plane strains for Cu thin 
film (b) Comparison of the in-plane uniaxial Young’s modulus of Cu films 
between meshing method and continuum model presented in section 5.2.1 
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Figure 5.7  Self Equilibrium strain of nickel nanowires as a function of the nanowires 
thickness for different crystallographic orientations calculated using the 
EAM potential after energy minimization and compared with self 
equilibrium strain calculated from equation (5.24) 



 184 

 
 
 
 
 
 
 
 
 
 
 

Thin Film Thickness (nm)

0 10 20 30 40

C
o
n
tr
a
c
ti
o
n
 S
tr
a
in

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

111 Atomistic

100 Atomistic

110 [X1] Atomistic

110 [X1] Atomistic

111 Model 

100 Model 

110 [X
1
] Model 

110 [X2] Model

 
Figure 5.8  Self Equilibrium strain of silver thin films as a function of the films thickness 

for different crystallographic orientations calculated using the EAM potential 
after energy minimization and compared with self equilibrium strain 
calculated from equation (5.24) 
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Figure 5.9  Effective longitudinal Young’s modulus of silver nanowires as a function of 

the nanowires thickness calculated using the semi analytical method and 
compared to the effective longitudinal Young’s modulus calculated from 
equation (5.43) 
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Figure 5.10  Effective biaxial Young’s modulus of copper thin films as a function of the 

film thickness calculated using the semi analytical method and compared to 
the effective longitudinal Young’s modulus calculated from equation (5.38) 
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Figure 5.11  Poisson's ratio for the films and the wires of various sizes 
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Figure 5.12  Comparison of elastic responses of nanowires and thin films for Cu, Ni, Ag 

and Pd; (a) Effective longitudinal Young’s modulus of nanowires, (b) 
Effective biaxial Young’s modulus of thin films and (c) Effective uniaxial 
Young’s modulus of thin films as a function of the film thickness for various 
orientations for the studied materials.  Atomistic calculation results are 
compared to the effective longitudinal Young’s modulus calculated from 
section 5.2.1 
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Figure 5.13  Relative effects of surface elasticity and third order elastic constants for 

copper nanowires 
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Figure 5.14  Relative effects of the surface elasticity and third order elastic constants for 

nickel thin films on the biaxial modulus 
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Figure 5.15  Relative effects of the surface elasticity and third order elastic constants for 
copper thin films on the uniaxial Young’s modulus 
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Figure 5.16  Comparison of the effects of surface elasticity on (a) uniaxial Young’s 
modulus of nanowires, (b) biaxial Young’s modulus of thin films and (c) 
uniaxial Young’s modulus of thin films as a function of the film thickness 
and orientation for Cu, Ni, Ag, and Pd 
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Figure 5.17  Comparison of the effects of core elasticity on (a) uniaxial Young’s 

modulus of nanowires, (b) biaxial Young’s modulus of thin films and (c) 
uniaxial Young’s modulus of thin films as a function of the film thickness 
and orientation for Cu, Ni, Ag, and Pd 
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Figure 5.18  Interphase vs. interface: different views based on different length scales 
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Figure 5.19  Schematic of the inhomogeneity problem 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Summary of Significant Contributions 

 The work presented in this dissertation proposes an innovative approach that 

combines continuum mechanics and atomistic calculations to develop nanomechanics 

theories for modeling and predicting the macroscopic behavior of nanomaterials.  The 

discrete atomic structures are cast into thermodynamic quantities and used in a continuum 

framework.  The methodology itself can be used to determine a wide range of effective 

properties including effective thermal expansion, effective conductivity, effective 

dielectric constants, etc., as long as the appropriate thermodynamic variables are selected.  

Furthermore, the process of including surface/interface energy into a continuum 

mechanics formulation is an innovative approach to link discrete molecular level 

microstructure to continuum level modeling. 

 In terms of fundamental science, this approach provides useful information on 

interfacial mechanics and on how interfacial structure affects macroscopic material 

behavior.  In terms of engineering applications, this methodology proves to be a useful 

tool for multi-scale modeling of heterogeneous materials with nanometer scale 

microstructures.  The results from this research will make the following fundamental 

contributions: 

(a) Providing surface elastic behavior for several material systems.  These data 

are very useful in many fields including surface science, tribology, fracture 

mechanics, adhesion science and engineering, etc. 
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(b) Providing a tool to model and predict the effective properties of 

nanostructured materials.  This will accelerate the insertion of nano-size 

structural elements, nano-composite and nanocrystalline materials into 

engineering applications. 

 

 We recall the four main objectives to this dissertation:  (i) to understand the 

general behavior of interfaces considered as dividing surfaces; (ii) to provide atomistic 

tools in order to efficiently determine the behavior of  interfaces and surfaces; (iii) to 

develop, a continuum framework that accounts for the interface effects by casting the 

atomic level information into continuum quantities and that can be used to analyze, 

model and simulate macroscopic behavior of nanostructured materials; (iv) to understand 

the effects of surfaces on the overall behavior of nano-size structural elements (particles, 

films, fibers, etc.) and nanostructured materials.  It is clear that each of these objectives 

has been addressed by the work presented in this dissertation.  In particular, the 

significant contributions of this work are summarized as follows: 

 

• An easy and simple unified analytical method has been developed for calculating 

the full set of third order elastic (TOE) constants for single crystal materials based 

on their interatomic potentials.  The method developed here requires only the 

construction of the crystal of interest.  Once the atomic coordinates of the atoms 

are known, higher order elastic properties can be expressed analytically based on 

the interatomic potential and its spatial derivatives.  Although EAM was used in 

the present work, the methodology can be applied to any interatomic potential.  

The method is analytical in that it involves only numerical evaluation of the 

interatomic potential and its derivatives.  The TOE constants of single crystal Cu, 

Ni, Au, Ag, Pt, Pd and Al were calculated using this method.  The comparison of 
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our results with available literature data shows good agreement with existing 

experimental data. 

• The effective TOE constants of Cu, Ni, Au, Ag, Pt, Pd and Al polycrystals were 

obtained from their single crystal data using micromechanics tools such as the 

self-consistent method as well as Voigt and Reuss-type estimates.  Although some 

data are available in the open literature, it is believed that the method presented in 

Chapter 3 is the only simple unified analytical method to evaluate the TOE 

constant for single crystals and isotropic aggregates.  Compared with other 

existing methods, this method has several advantages including (i) it does not 

require extensive computational resources (~99% reduction in CPU time as 

compared to full atomistic techniques); (ii) it directly gives the full set of elastic 

properties for both single crystals and polycrystals; (iii) it is very general and 

applies to any inter-atomic potential, although an EAM potential was used in this 

work in the numerical examples.  Therefore, it constitutes a valuable tool to 

characterize anharmonicity properties of single crystal and polycrystal materials 

(such as thermal expansion, Grüneisen parameters, specific heat, interactions of 

thermal and acoustic phonons, or defects’ properties of crystals for example). 

 

• Similarly to the method developed to evaluate the TOE, a semi-analytical method 

for computing the elastic properties of nanostructural elements (such as 

nanowires, nanotubes and nanofilms) has been developed.  This method is based 

on the Taylor series expansion of an interatomic potential about the relaxed state 

of a nanostructure and implicitly accounts for the effects of shape, size and 

surface of the nanostructures.  Calculations were carried out to quantify the size-

dependence of the elastic moduli of nanofilms and nanowires with [001], [110], 

and [111] crystallographic growth orientations for groups 10 and 11 transition 

metals (Cu, Ni, Pd, and Ag).  This method is semi-analytical in that it expresses 
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the elastic properties explicitly in terms of the inter-atomic potential.  It requires 

only one molecular statics calculation to obtain the self-equilibrium state (relaxed 

state) of the nanostructural elements.  Compared with existing methods, this 

method has several advantages including (i) it does not require extensive 

computational resources (~90% reduction in CPU time as compared to full 

atomistic techniques); (ii) it directly gives the full set of elastic properties; (iii) it 

is very general and applies to any inter-atomic potential, although an EAM 

potential was used in this work in the numerical examples; and (iv) it implicitly 

accounts for the effects of the shape and size of the nanostructure studied.  

Nanostructures of different geometric shapes and sizes such as nanowires, 

nanofilms, and nanoparticles can be studied using this method in a uniform 

manner without modifications to the formulation.  In addition to its efficiency and 

simplicity, this method yields results which are in excellent agreement with those 

measured from experiments and predicted by other atomistic methods. 

 

• A general framework has been developed to incorporate the surface free energy 

into the continuum theory of mechanics.  Analytical expressions were derived for 

the effective elastic modulus tensor of nano-sized structural elements that account 

for the effects of surface free energy.  Explicit expressions of the effective 

elasticity tensors were obtained for thin films, wires and spherical particles.  The 

solutions derived show that the overall elastic properties of structural elements 

(such as particles, wires, films) are size-dependent.  Although such size-

dependency is negligible for conventional structural elements, it becomes 

significant when at least one of the dimensions of the structural element shrinks to 

nanometers.  Numerical examples for nanospheres, nanofilms and nanowires with 

[001], [110], and [111] crystallographic growth orientations for groups 10 and 11 

transition metals (Cu, Ni, Pd, and Ag) were given in to quantitatively illustrate the 
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effects of surface free energy on the elastic properties of nano-sized particles, 

wires and films.  The results are in excellent agreement with atomistic 

calculations performed separately.  It is found that the effect of surface energy on 

the elastic behavior becomes significant when one of the characteristic 

dimensions is below about 15 nm. 

 

• By using both of the methodologies mentioned above, the size-dependence of the 

elastic properties of nanowires and nanofilms of Cu, Ni, Ag and Pd with the 

[111], [100] and [110] crystallographic orientations has been investigated.  The 

results show that the size, orientation and shape of the nanostructures influence 

elastic constants in different manners.  Specifically, for the materials studied, 

decreasing the characteristic size of the nanowires from 8 to 2 nm results in 

decreases of the elastic modulus of up to 80% for [100] oriented wires and up to 

8% for [111] oriented wires and increases between 15% and 37% for [110] 

oriented wires.  In the case of nanofilms, as the film thickness is decreased from 8 

to 2 nm, the biaxial modulus can change by up to 50%, 7% and -5% for [100], 

[111], and [110] films, respectively.  Among the materials in this homologous 

series analyzed, similar trends in elastic properties are observed, consistent with 

what is reported in the literature. 

 

• The continuum framework mentioned earlier clearly enables the study of the 

influence of (i) the surface elasticity and (ii) the non-linear behavior of the core of 

the nanostructure on the softening or stiffening of nanoparticles.  First it is shown 

that the knowledge of the tensile intrinsic surface stress completely defines the 

relaxed state of nanostructural elements.  Second, for the three nanowires’ basal 

orientations and for all the studied materials, the influence of the surface elasticity 

always contributes to the softening of the wires compared to their equivalent bulk 
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(up to 22% compared with bulk values) while the non linear elastic behavior of 

the core of the wire affects the size dependence by either softening or stiffening it 

depending on its orientation.  In the case of thin films, the surface elasticity and 

the non linear elasticity of the core of the thin film contribute to either the size 

dependence softening or stiffening of the thin films depending on the 

crystallographic orientation and the modulus considered.  These results put light 

on the fact that clear understanding of the surface elastic behavior and the non 

linear elastic behavior of the bulk are crucial for accurately predicting the elastic 

properties of nanostructural elements. 

 

• We derived in this work a new relationship between the interfacial excess energy 

and interfacial excess stress for coherent interfaces that is applicable to interfaces 

in elastic solids under general loading conditions.  It is shown that the well-known 

Shuttleworth relationship between the interfacial excess energy and interfacial 

excess stress is valid only when the interface is free of transverse stresses.  The 

new formulation accounts for both in-plane and transverse deformation of the 

interface, and naturally introduces the interfacial stiffness and compliance tensors, 

as well as the transverse interfacial excess strain.  Dually, the concept of 

transverse interfacial excess strain is also introduced, and the complementary 

Shuttleworth equation is derived that relates the interfacial excess energy to the 

newly introduced transverse interfacial excess strain. Such new formulation of 

interfacial excess stress and excess strain naturally leads to the definition of an in-

plane residual stresses tensor (1)Γ , an in-plane interfacial stiffness tensor (2)Γ , a 

transverse interfacial compliance tensor (2)Λ , and a coupling tensor H  that 

accounts for the Poisson's effect of the interface, and fully characterizes the elastic 

behavior of coherent solid bimaterial interfaces upon deformation.  It was shown 

that when both constituents of the bimaterial are isotropic, the interface is 



 202 

transversely isotropic.  Explicit expressions of the interfacial tensors were derived 

for such transversely isotropic interface in terms of five elastic constants of the 

interface. 

 

• We proposed in this work semi-analytical methods to evaluate and calculate 

interfacial elastic properties.  The methods presented in this dissertation are based 

on the idea of expanding the atomic energy and atomic stress into power series of 

surface strains and transverse stresses and accounting for internal relaxation by 

appropriately incorporating the equilibrium and traction conditions across the 

interface.  The theoretical framework of the generalized Shuttleworth relationship 

helps us to subsequently obtain analytical expressions for the interface elastic 

properties, such as the surface density, intrinsic surface stress and surface elastic 

stiffness and compliance.  Basal free surfaces and low order CSL grain 

boundaries have been studied using this method in a uniform manner without 

modifications to the formulation.  To evaluate these analytical expressions, one 

only needs to know the relaxed configuration of the atomic assembly of interest.  

In comparison with other existing methods, the semi-analytical methods 

developed here reduce the amount of computation significantly (~95% reduction 

in CPU time as compared to full atomistic techniques).  They also directly give 

the full set of elastic properties and can be applied to any inter-atomic potential, 

although an EAM potential was used in this work in the numerical examples.  

More importantly, because of the analytical nature of these methods, they provide 

a much better understanding of the interface characteristics and enable us to 

analytically evaluate the elastic response of a certain interface under any given 

load without any further computation. 
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• By using the aforementioned methods, surface elastic properties of low-index 

surfaces (111), (100) and (110) of Cu, Ni, Ag and Pd were obtained.  The results 

show the presence of a tensile surface stress in all the surface orientations 

considered, which indicates that these surfaces tend to contract within the surface 

plane.  Comparison of our results with available literature data on 0Γ  and 
( )1
αβΓ  

shows good agreement.  The surface elastic stiffness data for these materials are 

believed to be new to the literature.  The semi-analytical method presented in 

section 4.3.1 also enabled us to study the effects of relaxation on the surface 

elastic constants of free surfaces.  These results clearly uncovered the importance 

of accounting for the surface relaxation and its impact on the surface elastic 

properties.  It is found that, on one hand, the relaxation effects do not or 

moderately affect the intrinsic surface energy and intrinsic surface stresses (few 

percents).  But on the other hand, the elastic constants are strongly influenced by 

the relaxation. 

 

• Finally, the extension of the interface theory allows us to establish the relationship 

between microscopic properties and mesoscopic jumps of these properties across 

the interface.  More specifically, we derived the kinematic and kinetic interfacial 

conditions.  We showed that the jump in displacement across the interface is 

directly linked to the interfacial strain and the curvature of the interface 

considered.  Similarly, the jump in stress across the interface is directly linked to 

the surface stresses lying on the interface and its curvature. 
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6.2 Recommendations for Future Work 

 

 One of the fundamental issues addressed in modeling macroscopic mechanical 

behavior of nano-structured materials based on their discrete structure is the large 

difference in time and length scales.  On the opposite ends of the time and length scale 

spectrum are atomistic simulation and continuum mechanics, each of which consists of 

highly developed and reliable modeling methods.  

 Both the continuum models and the atomistic methods developed in this work 

provide a mine of information on the link between the atomic-level elastic constants and 

the macroscopic response of the systems studied.  The basic geometries (wires, thin 

films) and atomic assemblies (free surfaces, low CSL grain boundaries) studied in this 

dissertation were chosen because they constitute the building-blocks of simple 

nanostructures and show the path for more complex systems.  Consequently, there are a 

number of issues that are not addressed in this work. 

 

• Based on the previously discussed observation that in nanostructured materials a 

significant number of atoms reside in the grain boundary region, a 

micromechanics composite model could be developed to evaluate the yield stress 

as a function of the grain size.  This model could be developed based on the 

approach described in chapter 5 and in conjunction with the concept of secant 

moduli of the different constituent (Weng, 1981) and field theory (Khachaturyan, 

1995).  The constituent nanostructure (either nanocomposites or nanostructural 

elements) would be modeled with a grain-size dependence plasticity that 

incorporates the interfacial properties concept developed in this work.  Similarly 

to the approach developed in this work, the overall stress-strain relation of the 

nanostructure could be calculated in terms of the secant modulus secant
ijklC  such that 
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secant
ij ijkl ijCσ ε= .  Note that, in this context the secant modulus secant

ijklC  would not only 

be a function of the given state of plastic stress and plastic strain but would also 

depended on surface behavior.  This model would enable the characterization of 

the overall elasto-plastic behavior of diverse nanostructures and their yield 

strength as the grain size decreases. 

 

• Since the semi-analytical method presented in chapter 4 section 4.3.2 is written in 

a general form, calculation should be performed on more complex systems.  Ionic 

free surfaces could constitute such system, since it would be of great interest to 

calculate surface properties for these type of materials as size dependence of the 

mechanical properties of ZnO nanobelts as been uncovered experimentally (Lucas 

et al., 2007) as well as through Molecular Dynamics calculations (Kulkarni et al., 

2005; Kulkarni and Zhou, 2006).  Knowledge of these surface properties could be 

subsequently used in the continuum framework presented in chapter 5 to correlate 

with those experiments. 

 

• The use of this semi-analytical method could also help uncover abnormal 

phenomena such as the elastic structural transition mentioned in chapter 4.  

Indeed, by studying the evolution of the excess energy of interfacial system for 

different grain boundaries with close structures, we could construct a viability 

space (defined by 7 dimensions: 3 in-plane strains, 3 transverse stresses and the 

interfacial excess energy) that would predict the evolution of the interface 

structure in that loading space. 

 

• As suggested in the summary and conclusion of chapter 3, some efforts should 

address the variational estimates and derivation of possible bounds for the TOEC.  
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The existing results for nonlinear heterogeneous solids, already considered in the 

literature (Willis, 1990), may be of significant help.  Similarly, another extension 

of this work would carry on efforts to present a unified method to determine the 

effective TOEC for transversely isotropic and orthotropic aggregates of cubic 

crystals estimates and assess bounds for the overall moduli.(Qu and Cherkaoui, 

2006).  Furthermore, parallel to the analytical method presented here, a thorough 

experimental study measuring the TOEC for single crystals and polycrystalline 

would greatly complement this work. 

 

• Based on the discussions presented in chapter 5 section 5.3.3, the classical 

formulation of Eshelby for embedded inclusions needs to be revisited and 

modified by incorporating the previously excluded interface stresses, interface 

strains and interface energies.  The extension of the interface theory provides us 

with both the discontinuity boundary conditions across the interface and the 

governing equation of interface.  It is expected that, in this generalized 

micromechanic framework, stresses and strains fields would be functions of the 

interface properties and the size of the inhomogeneities. The dependence of the 

elastic moduli on the size of the inhomogeneities will highlights the importance of 

the surface/interface in analysing the deformation of nano-scale structures which 

in turn would be applicable to analysis of the properties of nano-composites and 

nanocrystalline materials. 
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APPENDIX A 

TAYLOR EXPANSION OF THE EAM POTENTIAL 

 The many-body EAM potential postulates that the total energy of an atom n can 

be written as 

  ( ) ( ) 1
( ) ( )

2
n n mn

m n

E G V rρ
≠

= + ∑   , (A.1) 

where the first term on the right hand side is the embedding energy and the second term 

is the pair interaction energy.  The variable mnr  represents the scalar distance between 

atom m and atom n.  The electron density ( )nρ  at the site of atom n is taken as a linear 

superposition of the contributions from all neighboring atoms which are assumed to be 

spherically symmetric, i.e., 

  ( ) ( )n mn

m n

rρ ρ
≠

=∑   . (A.2) 

Throughout this work, we use the Taylor expansion of the potential energy with respect 

to the strain such as, 

  ( ) ( ) ( ) ( )1 1

2 6
n n n n

n ij ij ijkl ij kl ijklmn ij kl mnE A A A Aε ε ε ε ε ε= + + +   , (A.3) 

with the quantities ( )nA , ( )n
ijA , ( )n

ijklA  and ( )n
ijklmnA  defined by, 
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It follows from (A.4) – (A.6) that, for the EAM potential given by (A.1) 
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Making use of the chain rule of differentiation, the derivatives can be carried out 

explicitly for the pair interaction potential, 
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 ′
 ′′+ − + +
 
 

  , (A.13) 

where a prime, double primes and triple primes on the function indicate the first, second 

and third derivatives, respectively, with respect to the argument of the function.  For 

example, 2 2( )V r d V dr′′ = . 

In the case of the embedding energy we have, 

  ( )
( )

( )
mnq

mn i
qm qnmn mn

i

r
r

r r

ρ
ρ δ δ

∂ ′= +
∂

  , (A.14) 

  ( )
2 ( )

2 3
( ) ( )

( ) ( )

pn pn pn pnq
pn pni k ik i k

pm qp qnmn pn pn pn pn

i k

r r r r
r r

r r r r r

δρ
ρ ρ δ δ δ
  ∂ ′′ ′= + − +  ∂ ∂   

  , (A.15) 
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3

2
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2

1
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pn

rr r r
r r

r r r r rr

r
r r r r

rr

ρρ
ρ ρ δ δ

ρ
ρ δ δ δ δ δ

   ′∂    ′′′ ′′= − −  ∂ ∂ ∂      

 ′
 ′′+ − + +
 
 

  . (A.16) 

For the background electron density and, 

  ( )
( )

( ) ( )
mnq

pq mn i
qm qnmn mn

p qi

rG
G r r

r r
ρ ρ δ δ

≠

 ∂
′ ′= + 

∂  
∑   , (A.17) 

  

( )

( )

2 ( )

2

( )

               ( )

q
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pm qp qnmn pn mn pn
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pm qp qnpn qn
u q i k

G
G r

r r r r

G r
r r

ρ ρ
ρ δ δ δ

ρ
ρ δ δ δ

≠

≠

   ∂ ∂ ∂′′= +   ∂ ∂ ∂ ∂   

  ∂′+ +  ∂ ∂  

∑

∑

  , (A.18) 

  

( )

( )

3 ( )

2 2

2

q
mn

pn mn sn pn mn sn
m ni k u i k u

mn

pn mn sn mn pn sn
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sn pn mn

u i k

G
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r r r r r r

G r
r r r r r r

r r r

ρ ρ ρ
ρ

ρ ρ ρ ρ
ρ

ρ ρ

≠

≠

   ∂ ∂ ∂ ∂ ′′′=     ∂ ∂ ∂ ∂ ∂ ∂    

     ∂ ∂ ∂ ∂ ′′+ +       ∂ ∂ ∂ ∂ ∂ ∂       

  ∂ ∂
+  

∂ ∂ ∂  

∑

∑

( )
3

mn

pn mn sn
m n i k u

G r
r r r

ρ
ρ

≠

 ∂ ′+    ∂ ∂ ∂   
∑

  . (A.19) 
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 APPENDIX B 

“T” STRESS DECOMPOSITION 

Consider an inhomogeneous, linearly elastic solid with strain energy density per unit 

undeformed volume given by 

  0

1

2ij ij ijkl ij klw w Cτ ε ε ε= + +   , (B.1) 

where ijε  is the Lagrangian strain tensor.  Note that all the material constants in (B.1) 

have the proper symmetry and may depend on the spatial coordinate ix , but are not 

necessarily positive definite.  The corresponding second Piola-Kirchhoff stress tensor is 

thus given by 

  ij ij ijkl kl

ij

W
Cσ τ ε

ε
∂

= = +
∂

  . (B.2) 

It can be easily shown that (B.2) is equivalently to 

  3
s s s t

k kC Cαβ αβ αβκλ κλ αβσ τ ε ε= + +   ,  3 3 3
t t s t

j j j j k kC Cκλ κλσ τ ε ε= + +   , (B.3) 

where the summation convention is implied, and the lower case Roman subscripts go 

from 1 to 3 and the lower case Greek subscripts go from 1 to 2, and 

 s

αβ αβσ σ= ,  s

κλ κλε ε= ,  3
t

j jσ σ= ,  32t

α αε ε= ,  3 33
tε ε=  , s

αβ αβτ τ= , 3
t

j jτ τ=   . (B.4) 

Making use of the above notation conventions, we may write (B.1) in an alternative form 

  0

1 1 1 1

2 2 2 2
s s t t s s t t

j j j jw w αβ αβ αβ αβτ ε τ ε σ ε σ ε= + + + +   . (B.5) 
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 If 3 3j kC  as a second order tensor is invertible, then it follows from the second of 

(B.3) that 

  t t t s

k kj j kj j kM M αβ αβε τ σ γ ε= − + −   , (B.6) 

where 

  1
3 3kj k jM C−=  , 3j jk kM Cαβ αβγ =   . (B.7) 

Substituting (B.6) into the first of (B.3) yields 

  ˆs s s s t

j jCαβ αβ αβκλ κλ αβσ τ ε γ σ= + +   , (B.8) 

where 

  ˆs s t

j jαβ αβ αβτ τ τ γ= −   , 3
s

j jC C Cαβκλ αβκλ αβ κλγ= −   . (B.9) 

Substituting (B.6) – (B.8) into (B.5) yields 

  0

1 1
ˆ ˆ

2 2
s s s s s t t

j kj kw w C Mαβ αβ αβκλ κλ αβτ ε ε ε σ σ= + + +   , (B.10) 

where 

  0 0

1
ˆ

2
t t

kj k jw w M τ τ= −   . (B.11) 

 In matrix notations, (B.6), (B.8) and (B.10) can be written, respectively, as 

  :t t t s= − ⋅ + ⋅ −ε M τ M σ γ ε   , (B.12) 

  ˆ : :s s s s t= + +σ τ C ε σ γ   , (B.13) 

  0

1 1
ˆ ˆ : : :

2 2
s s s s s t tw w= + + + ⋅ ⋅τ ε ε C ε σ M σ   . (B.14) 
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 If the material is isotropic, i.e, 

  ( )ijkl ij kl ik jl il jkC λδ δ µ δ δ δ δ= + +   , (B.15) 

where λ  and µ  are the Lamé constants.  It thus follows from (B.7), (B.9), and (B.15)that 

  3 3 3 3( )k j k j kjC λ µ δ δ µδ= + +   , (B.16) 

  3 3

1

( 2 )kj k j kjM
λ µ

δ δ δ
λ µ µ µ

+
= − +

+
 , 32i iαβ αβ

λ
γ δ δ

λ µ
=

+
  , (B.17) 

  ( )2

2
sCαβκλ αβ κλ ακ βλ αλ βκ

λµ
δ δ µ δ δ δ δ

λ µ
= + +

+
  , (B.18) 

  3ˆ
2

s s t s t

j jαβ αβ αβ αβ αβ

λ
τ τ τ γ τ τ δ

λ µ
= − = −

+
  . (B.19) 
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APPENDIX C 

ATOMIC LEVEL STRESS AND INTERNAL RELAXATION 

Atomic Level Mapping 

 In order to account for the inner displacements, we first define an atomic level 

mapping between the undeformed and deformed configuration by 

  ( )ˆ ˆm m m m

i i ij ij jr r rε ε±− = + �   , (C.1) 

where ijε
±  corresponds to a homogeneous deformation of atom m and m

ijε�  describes the 

“inner” relaxation (or additional “non-homogeneous” deformation) of atom m with 

respect to a homogeneous deformation.  The positive (or negative) sign should be 

selected if atom m is in the upper (or lower) crystal.  The atomic position of atom m is 

measured from a fixed reference point. 

The homogeneous deformation of the bicrystal assembly can be described by an in-plane 

deformation s

αβε  and a transverse loading t

iσ  ("T" stress).  Derivations and detailed 

expressions are presented in the Appendix.  The homogeneous deformation is expressed 

as a function of these two global variables such that (C.1) transforms into, 

  ( )ˆ ˆ ˆm m s t m m m

i i ij ijk k j ij jr r A B r rαβ αβε σ ε± ±− = + + �   , (C.2) 

with, 

  ( )3 3

1

2ij i j j i i jA αβ α β αβ αβδ δ γ δ γ δ± ± ±= − +   , (C.3) 

  ( )3 3

1

2ijk jk i ik jB M Mδ δ± ± ±= +   ,  

where jαβγ ±  and jkM ±  are given in the Appendix B.  Note that ijA αβ
±  and ijkB±  are known 

tensors and characterize the homogeneous behavior of the bicrystal. 

The difference in position of two atoms near their relaxed state is therefore given by, 
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  ( )ˆ ˆ ˆmn mn mn s mn t m m n n

i i i ik k ij j ij jr r A B r rαβ αβε σ ε ε− = + + −� �   , (C.4) 

where, 

  ( ) ( ), , , ,ˆ ˆ ˆmn m n mn n m m n

i ij ij j ij j ij jA A A r A r A rαβ αβ αβ αβ αβ
± ± ± ±= + − −   , (C.5) 

and, 

  ( ) ( ), , , ,ˆ ˆ ˆmn m n mn n m m n

ik ijk ijk j ijk j ijk jB B B r B r B r± ± ± ±= + − −   . (C.6) 

 

Total Energy of the Atomic Assembly 

 As reported by Johnson (1972), one can expand the energy density of  an atom n  

about its equilibrium configuration. 

 

( ) ( )

( )( )

( )
( )

ˆ
1 ˆ

( )

1 ˆ

ˆ

1
ˆ ˆ                    

2

i inm nm

i nm nm

i i k k

i k nm nm

nN
n n nm nm nm

nmr r
mn r rm n

nN
nm nm np np

nm np
p

r rp n

E
w E r r r

r

E
r r r r

r r

=
=

=≠

=
=≠

1 ∂
= + −
Ω ∂

∂
+ − − + 

∂ 

∑

∑ �

  . (C.7) 

The total strain energy density of the system, E, is defined by the sum n

n

w∑ .  

Substituting equation (C.4) into equation (C.7) yields for the total strain energy of the 

atomic assembly, 

 

( )

(1) (1) (2) (2)
0

1 1 1

1 1 1

1 1

2 2
1

      
2

s t s s t t s t

k k uv u v u u

N N N
n n s n t n mn n m

ij ij ijk k ij ijkl ij kl

n n m

E E A B A B Q

K D G L

αβ αβ αβκλ αβ κλ αβ αβ

αβ αβ

ε σ ε ε σ σ ε σ

ε σ ε ε ε
− − −

= = =

= + + + + +

+ + + +∑ ∑∑� � �

  , (C.8) 

with, 

  ( )( )
0 ˆ

1
mn mn

n nm

r r
n m nn

E E r
=

≠

=
Ω∑ ∑   , (C.9) 

  
( )

(1)

ˆ

1

mn mn

n
mn

inm
n m nn i r r

E
A A

r
αβ αβ

≠ =

∂
=

Ω ∂∑ ∑   , (C.10) 
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( )

(1)

ˆ

1

mn mn

n
mn

k iknm
n m nn i r r

E
B B

r≠ =

∂
=

Ω ∂∑ ∑   , (C.11) 

  
2 ( )

(2)

ˆ

1

mn mn

n
mn mn

i knm nm
n m nn i k r r

E
A A A

r r
αβκλ αβ κλ

≠ =

∂
=

Ω ∂ ∂∑ ∑   , (C.12) 

  
2 ( )

(2)

ˆ

1

mn mn

n
mn mn

jl ij klnm nm
n m nn i k r r

E
B B B

r r≠ =

∂
=

Ω ∂ ∂∑ ∑   , (C.13) 

  
2 ( )

ˆ

1

mn mn

n
mn mn

j i kjnm nm
n m nn i k r r

E
Q A B

r r
αβ αβ

≠ =

∂
=

Ω ∂ ∂∑ ∑   , (C.14) 

which describe the homogeneous behavior of the assembly upon a deformation 

configuration ( ),  s t

kαβε σ  while, 

  

( ) ( )

ˆ ˆ

( ) ( )

ˆ ˆ

1
ˆ

2

1
ˆ     

2

pn pn pn pn

pn pn pn pn

p n
n n

ij j pn pn
p nn i ir r r r

p n
n

i pn pn
p nn j jr r r r

E E
K r

r r

E E
r

r r

≠ = =

≠
= =

 ∂ ∂
= −  Ω ∂ ∂ 

 ∂ ∂
 + −
 Ω ∂ ∂ 

∑

∑
  , (C.15) 

  

2 ( ) 2 ( )

ˆ ˆ

2 ( ) 2 ( )

ˆ ˆ

1
ˆ

2

1
ˆ        

2

mn mn mn mn

mn mn mn mn

p n
n n pn

ij j kpn qn pn qn
p n q nn i k i kr r r r

p n
n pn

i lpn qn pn qn
p n q nn j l j lr r r r

E E
D r A

r r r r

E E
r A

r r r r

αβ αβ

αβ

≠ ≠ = =

≠ ≠
= =

  ∂ ∂  = −
 Ω ∂ ∂ ∂ ∂   

  ∂ ∂  + −
 Ω ∂ ∂ ∂ ∂ 
  

∑∑

∑∑

  , (C.16) 

  

2 ( ) 2 ( )

ˆ ˆ

2 ( ) 2 ( )

ˆ ˆ

1
ˆ

2

1
ˆ      

2

mn mn mn mn

mn mn mn mn

p n
n n pn

iju j kupn qn pn qn
p n q nn i k i kr r r r

p n
n pn

i lupn qn pn qn
p n q nn j l j lr r r r

E E
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r r r r

E E
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r r r r

≠ ≠ = =

≠ ≠
= =

  ∂ ∂  = −
 Ω ∂ ∂ ∂ ∂   

  ∂ ∂  + −
 Ω ∂ ∂ ∂ ∂ 
  

∑∑
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  , (C.17) 
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2 ( ) 2 ( )
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ˆ ˆ      
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≠ = =

≠
= =

=
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 Ω ∂ ∂ ∂ ∂ 

∂
−

Ω ∂ ∂

∑

∑
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( )( )
2 ( )

ˆ

ˆ ˆ ˆ ˆ 1

1
ˆ ˆ ˆ ˆ      1

4

mn

mn mn
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j l j l mn

n
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i k i k mnnm nm

n j l r r

r r r r

E
r r r r

r r

δ

δ
=

+ −

∂
− + −

Ω ∂ ∂

  , (C.18) 

represent the components of perturbation response of the system introduced by the non-

equivalency of the atomic ensemble such as in grain boundaries or multi-species 

compounds. 

 

Atomic Level Stress 

 The virial stress on atom n is given by, 

  
1

1

2

N
n mn

ij jmn
mn i
m n

E
r

r
σ

=
≠

∂
=

Ω ∂∑   . (C.19) 

Expanding the atomic level stress ( )n
ijσ  with respect to mn

ir  near ˆmnir , where ˆmnir  is the 

equilibrium configuration of the bi-crystal, gives 

  ( )
ˆ

1 ˆ

ˆ
mn mn

mn mn

nN
ijn n mn mn

ij ij k kmnr r
m k r rm n

r r
r

σ
σ σ

=
= =≠

∂
= + −

∂∑   , (C.20) 

where 

  
1 ˆˆ

1

2
pn pnmn mn

n N
ij pn

jmn mn pn
pk n k i r rr r p n

E
r

r r r

σ

= == ≠

∂  ∂ ∂
=  ∂ Ω ∂ ∂ 

∑   . (C.21) 

Substituting the mapping of equation (C.4) into equation (4.81) gives, 



 217 

  

( ) ( )
1 1ˆ ˆ

1 1ˆ ˆ

ˆ

ˆ                                         

mn mn mn mn

mn mn pn pn

n nN N
ij ijmn mn mn s mn t

k k k kl lmn mn
m mk kr r r rm n m n

n nN N
ij ijm m

l klmn pn
m pk kr r r rm n p n
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r r

r
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σ σ
ε σ

σ σ
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= == =≠ ≠

= == =≠ ≠

 ∂ ∂ − = + ∂ ∂ 
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∂ ∂+ − ∂ ∂

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∑ ∑� ˆn n

l klr ε


 


�

  , (C.22) 

Consequently, when substituting equation (C.22) into equation (4.81), we obtain for the 

atomic level stress, 

  
1

, ,

1

N
n n s n s t n t nm m

ij ij ij kij k ijkl kl

m

C M Tαβ αβσ τ ε σ ε
−

=

= + + +∑ �   , (C.23) 

where, n

ijτ , 
,s n

ijC αβ , 
,t n
kijM  and nm

ijklT  are known constants given in terms of the interatomic 

potential E and its partial derivative with respect to the interatomic distance r, with, 

  
ˆ

1 ˆ

1
ˆ

2mn mn

mn mn

N
n n mn

ij ij jmnr r
mn i r r
m n

E
r

r
τ σ

=
= =
≠

∂
= =

Ω ∂∑   , (C.24) 

  ,

1 ˆmn mn

nN
ijs n mn

ij kmn
m k r rm n

C A
r

αβ αβ

σ

= =≠

∂
=

∂∑   , (C.25) 

  ,

1 ˆmn mn

nN
ijt n mn

kij lkmn
m l r rm n
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r

σ

= =≠

∂
=

∂∑   , (C.26) 

  ( )
1ˆ ˆ

ˆ ˆ1
mn mn pn pn

n nN
ij ijmn m n

ijkl l mn l mnmn pn
pk kr r r rp n

T r r
r r

σ σ
δ δ

== =≠

 ∂ ∂ = − − ∂ ∂ 
 

∑   , (C.27) 

Considering that the total energy of the system containing N atoms is ( )

1

N
n

n

E E
=

=∑ , we 

can evaluate equation (C.22) and equation (C.24) such that, 

  
( )

1 1 ˆ

1
ˆ

2 mn mn

qN N
n mn

ij j mn
m qn i r r
m n

E
r

r
τ

= = =
≠

 ∂
=   Ω ∂ 

∑ ∑   , (C.28) 



 218 

 
2 ( ) ( )

1 1 1ˆ ˆˆ

1
ˆ
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= = == == ≠
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∑ ∑ ∑   . (C.29) 

 

Finding the Internal Relaxations 

 The conditions of mechanical equilibrium and traction continuity across the 

interface yield, 

  ,t n t

j jσ σ=   . (C.30) 

Substituting equation (4.84) into equation (4.83) gives a system of 3N equations for the 

6N unknowns n

ijε� . 

  
1

, , ,
3 3 3

1

N
t t n s n s t n t nm m

i i i k i k ikl kl

m

C M Tαβ αβσ τ ε σ ε
−

=

= + + +∑ �   . (C.31) 

Using equation (4.85), one can express the transverse relaxation ,t n
iε�  as a function of the 

in-plane relaxation strain ,s n
αβε� , in the in-plane homogeneous strains s

αβε  and the 

transverse stretching t

iσ . 

  
1

, , ,

1

N
t n t n n t n s nm s m

i i ij j i i

m

X Y Zαβ αβ αβ αβε ς σ ε ε
−

=

= + − −∑� �   , (C.32) 

with, 

  
1

, ,
3 3

1

N
t n nm t m

i j i j

m

Sς τ
−

=

= −∑   , (C.33) 

  ( )
1

,
3 3 3

1

N
n nm t m

ij j k ik ik

m

X S Mδ
−

=

= −∑   , (C.34) 

  
1

,
3 3 3

1

N
n nm s m

i j i j

m

Y S Cαβ αβ

−

=

=∑   , (C.35) 

  
1

3 3 3
1

N
nm np pm

i j i j

p

Z S Tαβ αβ

−

=

=∑   , (C.36) 

and, 
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1

3 3 3 3
nm nm

j k j kS
−

 = Τ    , or 
1

3 3 3 3
1

N
nm mp

i j j k ik np

m

S T δ δ
−

=

=∑   . (C.37) 

 In order to solve for the 6N unknowns of equation (4.85), we furthermore need to 

consider that the application of a prescribed “mixed” loading configuration (in-plane 

prescribed deformation and transverse prescribed traction) to the bicrystal produces a 

finite strain and a minimization of strain energy density by internal relaxation.  In other 

words, once we substitute the transverse relaxation from equation (4.86) into equation 

(C.8), the total strain energy must be minimum with respect to any arbitrary spontaneous 

in-plane relaxation strain, i.e., 

  
,
0 ;

s n

E
n

αβε
∂

= ∀ ∈Ω
∂ �

  , (C.38) 

where Ω is the total bicrystal assembly.  It is seen that equation (4.87) is now a system of 

3N equations for the 3N unknowns ,s n
αβε� . 

Then, we solve for the internal in-plane relaxation, 

  , , , ,s n s n s n t s n s

i iM Qαβ αβ αβ αβκλ κλε η σ ε= − +�   , (C.39) 

with, 

  
1 1 1

, ,
3 3 3 3

1 1 1

N N N
s n nm m p pm pq qm pm t p

i i i j i j j

m p q

J K K Z L Z Lαβ αβκλ κλ κλ κλ κλη ς
− − −

< > < >
< > < >

= = =

      = − − −          
∑ ∑ ∑   , (C.40) 

  
1 1 1

,
3 3 3 3

1 1 1

N N N
s n nm m p pm pq qm pm p

i i ji j j k j k ki

m p q

M J G G Z L Z L Xαβ αβκλ κλ κλ κλ κλ

− − −
< > < >
< > < >

= = =

      = − − − −          
∑ ∑ ∑   , (C.41) 

 
1 1 1

,
3 3 3 3

1 1 1

N N N
s n nm m p pm pq qm pm p

i i j i j i i

m p q

Q J D D Z L Z L Yαβκλ αβµν µνκλ κλ µν µν µν κλ

− − −
< > < >
< > < >

= = =

      = − + −          
∑ ∑ ∑   , (C.42) 

and, 

  

1
1 1

3 3 3 3
1 1

N N
mn mn mp pn pm pn pm pq qn

i i i i j i j i

p q

J L L Z Z L Z L Zαβκλ αβκλ κλ αβ κλ αβ κλ αβ

−
− −

< > < > < > < >
< > < > < > < >

= =

  
= − + + −  
   

∑ ∑   . (C.43) 
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Substituting equation (4.88) back into equation (4.86) leads to the internal transverse 

relaxation, 

  , , , ,t n t n t n t t n s

i i ij j iM Qαβ αβε η σ ε= + −�   , (C.44) 

with, 

  
1

, , ,

1

N
t n t n nm s m

i i i

m

Z αβ αβη ς η
−

=

= +∑   , (C.45) 

  
1

, ,
3 3

1

N
t n n nm s m

j k ij i j

m

M X Z Mαβ αβ

−

=

= −∑   , (C.46) 

  
1

,

1

N
n n nm s m

i i i

m

Q Y Z Qαβ αβ κλ κλαβ

−

=

= −∑   , (C.47) 

 

Atomic Level In-plane Stress 

 The in-plane virial stress on atom n can be extracted from equation (4.83), 

  
1

, , ,

1

N
s n n s n s t n t nm m

i k k kl kl

m

C M Tαβ αβ αβκλ κλ αβ αβσ τ ε σ ε
−

=

= + + +∑ �   . (C.48) 

Substituting the internal relaxations from equation (4.88) and equation (C.44) yields for 

the in-plane stress 

  , ,s n n s n s n t

i iC Qαβ αβ αβκλ κλ αβσ π ε σ= + +   , (C.49) 

with, 

  
1 1

, ,
3

1 1

N N
n n nm t m nm s m

k k

m m

αβ αβ αβ αβκλ κλπ τ η η
− −

= =

= + Τ + Τ∑ ∑   , (C.50) 

  
1 1

, , , ,
3

1 1

N N
s n s n nm t m nm s m

i i

m m

C C Q Qαβκλ αβκλ αβ κλ αβµν µνκλ

− −

= =

= − Τ + Τ∑ ∑   , (C.51) 

  
1 1

, , ,
3

1 1

N N
n t n nm t m nm s m

i i j ji i

m m

Q M M Mαβ αβ αβ αβκλ κλ

− −

= =

= + Τ − Τ∑ ∑   . (C.52) 
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APPENDIX D 

COORDINATE TRANSFORMATION 

 Consider the ellipsoid Ω  shown in Figure 5.2.  When the ellipsoid is subjected to 

a uniform strain field, ijε , the surface of the ellipsoid deforms accordingly.  Let the two-

dimensional surface strain tensor, s

αβε , be defined in a local coordinate system 1 2 3( , , )i i i , 

where 1i  and 2i  are tangent to the surface, and 3i  is normal to the surface.  Clearly, the 

choice of 1i  and 2i  is not unique.  The following approach is taken to uniquely define the 

local coordinate system on the ellipsoidal surface. 

 In the spherical coordinate system, 

  1 cos sinr θ φ=X , 2 sin sinr θ φ=X , 3 cosr φ=X , 0 2θ π≤ ≤ , 0 φ π≤ ≤ . (D.1) 

A point on the surface of the ellipsoid can be represented by the vector, 

  ( ) 1 2 3, cos sin sin sin cosa b cθ φ θ φ θ φ φ= + +R I I I   . (D.2) 

A local coordinate system at this point may be introduced by the following three unit 

vectors, 

  3 1 2 3
1

1
cos sin sin sin cos

a a

d b c
θ φ θ φ φ = + + 

 
i I I I   , (D.3) 

  2 1 2
2

1
sin cos

a

d b
θ θ

θ θ
∂ ∂  = = − + ∂ ∂  

R R
i I I   , (D.4) 

  
2

2
1 2 3 1 2 3

1 2 1 2 1

cos cos sin cos sin
da a

cd d bcd d d
θ φ θ φ φ= × = + −i i i I I I   , (D.5) 

where, 

  
2 2

2 2 2 2 2
1 2 2

cos sin sin sin cos
a a

d
b c

θ φ θ φ φ= + +   , (D.6) 

  
2

2 2
2 2

sin cos
a

d
b

θ θ= +   . (D.7) 
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The transformation matrix between the global (I1, I2, I3) and the local 1 2 3( , , )i i i coordinate 

systems is thus given by, 

  

2
2

1 2 1 2 1

2 2

1 1 1

cos cos sin cos sin

1
sin cos 0

1
cos sin sin sin cos

ij

da a

cd d bcd d d

a
t

bd d

a a

d bd cd

θ φ θ φ φ

θ θ

θ φ θ φ φ

 
− 

 
 

  = −  
 
 
 
  

  . (D.8) 

Therefore, according to the tensor transformation rule, the surface strain in the local 

coordinate system can be written as 

  s

i j ijt tαβ α βε ε=   . (D.9) 

For a spherical particle (a = b = c), the transformation matrix reduces to 

  

cos cos sin cos sin

sin cos 0

sin cos sin sin cos
ijt

θ φ θ φ φ
θ θ

φ θ φ θ φ

− 
   = −   
  

  . (D.10) 
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APPENDIX E 

BULK AND SURFACE ELASTICITY TENSORS 

 For isotropic solids, the number of independent elastic constants is reduced to 

only two independent constants for ijklC .  They are 

  11 22 33

4

3
C C C K

µ
= = = +   ,  12 13 23

2

3
C C C K

µ
= = = −   , (E.1) 

  44 55 66C C C µ= = =   , (E.2) 

where K is called the bulk modulus, µ  the shear modulus. 

For isotropic solids, (3)
ijklmnC  has three independent non-zero constants L, M, N.  They are 

related to ijkC  (in the Voigt notation) by 

  111 222 333 6 8C C C L M N= = = + +   , (E.3) 

  144 255 366C C C M= = =   , (E.4) 

  112 113 122 133 223 233 2C C C C C C L M= = = = = = +   , (E.5) 

  155 166 244 266 344 355 2C C C C C C M N= = = = = = +   , (E.6) 

  123C L=   ,  456C N=   . (E.7) 

In terms of the Kronecker delta ijδ , these elasticity tensors can be written conveniently 

as, 

  
2

3ijkl ij kl ik jl il jk ij klC Kδ δ µ δ δ δ δ δ δ = + + − 
 

  , (E.8) 

 
( )
(

)

(3)
ijklmn ij kl mn

ij km ln ij kn lm im jn kl in jm kl ik jl mn il jk mn

ik jm ln im jk ln il jm kn im jl kn ik jn lm in jk lm

il jn km in jl km

C L

M

N

δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

=

+ + + + + +

+ + + + + +

+ +

  . (E.9) 
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Next, consider the surface elasticity tensors (1)
αβΓ  and (2)

αβκλΓ .  Again, it follows from the 

definition equation (4.14) that certain symmetry conditions must be met, 

  (1) (1)
αβ βαΓ = Γ , (2) (2) (2)

αβκλ κλαβ βακλΓ = Γ = Γ   . (E.10) 

In general, (1)
αβΓ  and (2)

αβκλΓ  can be anisotropic in the surface (where they are defined).  For 

isotropic surfaces, both (1)
αβΓ  and (2)

αβκλΓ  should be isotropic.  It can be shown (Aris, 1962) 

that (1)
αβΓ  is isotropic if and only (1) (1)

12 21 0Γ = Γ =  and (1) (1)
11 22Γ = Γ , and (2)

αβκλΓ  is isotropic if 

and only (2) (2)
1112 1222 0Γ = Γ = , and (2) (2) (2) (2)

1111 2222 1122 12122Γ = Γ = Γ + Γ .   This is the case if the 

surface has a rotation axis of three-fold or higher symmetry (Buerger, 1963). Therefore, 

for a (111) surface, which has three-fold symmetry, and for a (100) surface, which has 

four-fold symmetry, the surface stiffness tensors can be written as 

  (1)
11αβ αβδΓ = Γ   , ( )(2) s sKαβκλ αβ κλ ακ βλ αλ βκ αβ κλδ δ µ δ δ δ δ δ δΓ = + + −   . (E.11) 
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APPENDIX F 

EFFECTIVE ELASTIC PROPERTIES OF NANOPARTICLES:  

SPECIAL CASES  

 

Films 

 For the film shown in Figure 5.3, the integrals in (5.11) – (5.12) can be written as 

integrals on the top and bottom surfaces of the film.  On these surfaces, the integrands in 

both integrals are constants.  Thus, they can be easily carried out to yield (5.26) and 

(5.27).  Consequently, the non-zero components of the fourth order tensor 

(3)
ijkl ijklmn mnpq pqR C M τ=  are obtained as 

  112 111
3333 11

12 11

2
C C

R
C C

η
 

= Γ − 
 

  , (F.1) 

  123 112 112
1133 2233 11

12 11

2C C C
R R

C C
η
 +

= = Γ − 
 

  , (F.2) 

  111 112 112
1111 2222 11

12 11

2C C C
R R

C C
η
 +

= = Γ − 
 

  , (F.3) 

  123112
1122 11

12 11

2
CC

R
C C

η
 

= Γ − 
 

  , (F.4) 

where ijkC  are related to their third order elastic constants as indicated in Appendix E and 

η  is defined by (F.11).  The non-zero components of the effective elasticity tensor for the 

thin film in terms of the Voigt notation can then be obtained from (5.25), 

  11 111 112
33 11

11 12

2 C C
C C

a C C

η  Γ
= + − 

 
  , (F.5) 

  123 11211 112
13 23 12

11 12

2 C CC
C C C

a C C

η  +Γ
= = + − 

 
  , (F.6) 
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  ( ) 112 111 112
11 22 11 11

11 12

21 s s C C C
C C C K

a C C
µ η

  +
= = + + + Γ −  

  
  , (F.7) 

  123 112
12 12 11

11 12

1
( ) 2s s C C

C C K
a C C

µ η
  

= + − + Γ −  
  

  , (F.8) 

  155144
44 44 11

11 12

1
2s CC

C C
a C C

µ η
  

= + + Γ −  
  

  , (F.9) 

  155 144 15511
55 66 44

11 12

2C C C
C C C

a C C

η  +Γ
= = + − 

 
  , (F.10) 

where η  is a non-dimensional constant given by 

  
( )( )

11 12

11 12 11 122

C C

C C C C
η =

+ −
  . (F.11) 

Note that the positive definiteness of the strain energy density requires 11 12C C> .  Thus, 

0η ≥  if 12 0C ≥ . 

 

Wires 

 For the wire shown in Figure 5.4, the integrals in (5.11) – (5.12) can be written as 

integrals on the lateral surfaces of the wire.  On these surfaces, the integrands in both 

integrals are constants.  Thus, they can be easily carried out to yield, 

  11 22 11τ τ= = Γ  ,  33 112τ = Γ   , (F.12) 

  1111 2222
s sQ Q K µ= = +  ,  3333 2( )s sQ K µ= +   , (F.13) 

  1133 2233
s sQ Q K µ= = −   , 2323 1313

sQ Q µ= =   . (F.14) 

Consequently, the non-zero components of the fourth order tensor (3)
ijkl ijklmn mnpq pqR C M τ=  

are obtained as 

  111 112 111 112
1111 2222 11

12 11

3 2( )C C C C
R R

C C
η
 + +

= = Γ − 
 

  , (F.15) 
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  111 112 112
3333 11

12 11

2
2

C C C
R

C C
η
 +

= Γ − 
 

  , (F.16) 

  112 123 112
1122 11

12 11

2
2

C C C
R

C C
η
 +

= Γ − 
 

  , (F.17) 

  123 112 112 123
1133 2233 11

12 11

3 2( )C C C C
R R

C C
η
 + +

= = Γ − 
 

  , (F.18) 

  144 155 144 155
2323 1313 11

12 11

3 2( )C C C C
R R

C C
η
 + +

= = Γ − 
 

  , (F.19) 

  144 155 155
1212 11

12 11

2
2

C C C
R

C C
η
 +

= Γ − 
 

  . (F.20) 

The non-zero components of the corresponding effective elasticity tensor are thus given 

by 

  ( ) 111 112 111 112
11 22 11 11

11 12

2( ) 31 s s C C C C
C C C K

a C C
µ η

  + +
= = + + + Γ −  

  
  , (F.21) 

  ( ) 112 111 112
33 11 11

11 12

21
2 2s s C C C

C C K
a C C

µ η
  +

= + + + Γ −  
  

  , (F.22) 

  123 11211 112
12 12

11 12

2 2 C CC
C C

a C C

η  +Γ
= + − 

 
  , (F.23) 

  112 123 112 123
13 23 12 11

11 12

2( ) 31
( )s s C C C C

C C C K
a C C

µ η
  + +

= = + − +Γ −  
  

  , (F.24) 

  144 155 144 155
44 55 44 11

11 12

2( ) 31 s C C C C
C C C

a C C
µ η
  + +

= = + + Γ −  
  

  , (F.25) 

  155 144 15511
66 44

11 12

22 C C C
C C

a C C

η  +Γ
= + − 

 
  , (F.26) 
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Spherical Particles 

 For spherical particles, the integrals in (5.11) – (5.12) reduced to spherically 

symmetric tensors.  Thus, they can be easily carried out to yield, 

  ( )4 1 2
6

3 5 3
s s s

ijkl ij kl ik jl il jk ij klQ K Kδ δ µ δ δ δ δ δ δ = + + + − 
 

  , (F.27) 

  112ij ijτ δ= Γ   . (F.28) 

Consequently, the fourth order tensor (3)
ijkl ijklmn mnpq pqR C M τ=  is obtained as 

( )11 112 28 2
3 6 3 4

3 3 3 3ijkl ij kl ik jl il jk ij klR L M N M N
K K

δ δ δ δ δ δ δ δ
Γ Γ   = + + + + + −   

   
  . (F.29) 
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