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I. GENERAL INTRODUCTION AND BRIEF SUMMARY -

More than a century ago the ancient art of papermaking was adapted to
continuous operation, its essential principles remaining unchanged. Thanks to
the successive mechanical improvements, the modern paper machine has vastly
increased capacity with only moderate gain in efficiency and at some sacrifice of
quality. Witnessing such a massive machine in so delicate an operation, one can
but feel impressed. However, when one proceeds to probe beneath the surface and
beyond the apparent, one begins to wonder if there could not be better means for
achieving the same purpose. The inventive man immediately directs his mind to
possible innovations while the research man becomes thoughtfully intrigued with
the complex problem. Both will contribute to the technology, though in different

ways.

Concerted research of the sheet-forming process was initiated some two
decades ago and became ever more intensified in recent years. Early findings
available in the literature have not yet been fully assessed, while improved
theories and new results are being rapidly accumulated. It appears to be timely
to initiate a unified treatment of the subject. As the Institute has done much
work in various aspects of the general problem, we deem it appropriate to take up
this ambitious task. The present review is the result of our effort in this
direction, and will be subject to further refinements and extensions as research

proceeds.

OUTLINE OF CONTENTS

The review is divided into three parts. Part One deals with theories
and laws. We have always treated the sheet-forming process as filtration of a

tompressible material. Only recently, we succeeded in constructing a broad
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mathematical model for the macroscopic description of the filtration process,
incorporating the essential features of fiber retention, flow resistance, mat
compressibility, and particle distribution. Fiber dispersion has remained the
missing link. An outline of these aspects and their interconnections is

presented in the diagram of Fig. I-1.

Theoretical treatment is necessarily an abstraction of a real system.
Its validity must be tested for its power of prediction. The empirical laws
founded on experiments need at least partial theoretical justification for
intellectual satisfaction. In both respects we have strived to present such

indications.

In Part One we begin with elementary concepts, appropriate definitions,
and basic relations concerning unsteady filtration. Next are introduced useful
expressions for fluid permeation, mat compression, particle attenuation, and
fiber retention. Each of these topics is subsequently treated in proper detail
and withrsomérrigdr, debénding onﬁour present understaﬁdihg;- We then proceeduto
obtain solutions for simple filtrations, some of which are well known in the field
and others quite new and interesting. The analysis of high-consistency filtration
is mathematically involved, but conceptually important for development of new types
of formers. At this point we attempt to show possible further generalization to

the case of incomplete fiber retention in a rigorous manner for future reference.

Qur past work has been criticized for its alleged failure to account for
the sheet structure. We are of the opinion that structure and drainage are inter-
related in the sheet-forming process. In an appropriate description of flow
through a fiber mat, the porous properties of the mat are necessarily taken into

consideration in the dynamic sense. It is, however, also possible to describe a
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static porous structure statistically and proceed to predict its dynamic behavior.
Accordingly, we present a review of some noted work in other fields with this
approach and point out its limitation. Several workers in the paper‘field prefer
dealing with the solid structure for the obvious reason that it is the object of
the sheet-forming process. In this sense the bonded structure of paper is con-
ceived in the orientation and contact of wet fibers. We also offer a rigorous
version of such a description, from which mat compressibility, as well as fiber

retention, may be deduced.

In the course of drainage studies, it was soon found that the fiber-wire
interaction should not be neglected in forming thin sheets. An approximate

analysis 1s presented to account for the effect of mat penetration into a wire

structure on drainage. This is a debatable treatment, though amenable to further
improvement. Because of its apparent importance, fiber flocculation has received
much attention, but the progress has been rather slow. From the previous work we

have tried to construct a consistent picture of the important factors governing
flocculation. It appears to us that a strictly hydrodynamic approach to this
critical problem will not be adequate for its eventual solution. Based on our
study of particle retention, the dynamic concept of fiber interactions due to
molecular, colloidal, and hydrodynamic forces is reviewed with the hope that this

broad approach may lead to more fruitful research.

As a technological review, it would be incomplete if it did not deal with
the operating principles of paper machines. The theory of table-roll suction is
critically examined. An analysis of two-wire forming is added to demonstrate the

use of the filtration theory in development of new types of formers.
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Part Two is concerned with experiments, results, and interpretations.
It naturally starts with compressibility tests. With the guidance of theory the
meaning of the compressibility constants are clarified to a largér extent than
previously. The limitation of the simple power function and the comparison of
more refined expressions are demonstrated. In concluding the chapter a compre-
hensive set of compressibility data accumulated over the years is presented with

a new analysis.

The chapter on permeation dealing with cylindrical fibers summarizes how
the flow expression covering a wide range of porosity and velocity is established.
These experimental facts should settle a large part of the persistent controversy
over whether drainage on a paper machine is controlled by viscous or by turbulent
flow through a fiber web. It should be mentioned that the porosity function so
established with the support of theory has begun to be accepted by most workers

in the paper field.

The results with cylindrical fibers are then utilized for evaluation of
two important;qeliulosic fiber properties, specific surface and volume. The
historical development of such work is recast in the new light, and the latest
fefinement is incorporated. From here we proceed to examine dynamic effects in
" rapid filtrations. Along the way our attention is temporarily diverted to the
phenomenon of fiber-wire interaction in forming thin sheéts, which is a more
thorny problem than it may appear to be.. We do offer some.way of dealing with

it, but not yet to our own satisfaction.

The problem of fine particle retention in the filtration process has
commanded our effort for some time. We deem it legitimate to devote two chapters

to this topic, one dealing with verification of the theory and the other with
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analysis of collection mechanisms, both from the hydrodynamic standpoint. The
retention of fiber, however, haé received a quite different treatment. It is
based largely on the probability theory. The experimental support of the
predicted initial retention is one of the satisfying experiences in research.

In the more complex case of subsequent retention, we have partially resolved the
problem by empiricism with the aid of theory. The final chapter is a brief
summary of the hydrodynamic behavior of fiber suspensions. Regretfully, space
requirements have permitted only minor considerations of a number of excellent

references on this subject.

By the end of Part Two the review has already become lengthy, and from
the research viewpoint, we may rightfully conclude it at this point. However,
we are conscious of the often-heard opinion that some illustrations of possible
applications could be a more effective way of communicating research findings to
practicing engineers. In this light we have made a deliberate attempt to prepare
Part Three within the extent of our contact with commercial operations. Most
applications are naturally in developing, designing,‘énd operating paper machines.
As our knowledge of the sheet-forming process is far from being complete, the
methods of application necessarily entail approximations. In some cases we are
able to demonstrate that such methods are superior to accumulated experience or

pure intuition, but in others our results may not be very convincing.

In this final part we begin with a discussion of pressure-suction formers
which have proven advantageous for certain grades of paper. Our treatment of the
fourdrinier machine leaves much to be desired. Nevertheless, some limited uses
of the suggested method are demonstrable. The chapter on two-wiré forming is
timely 1n view of its recent rapid development. The cylinder machine is excluded

not only because of our inability to do much about it but also based on the
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evidence of its being obsolescent both in principle and in practice. As an
addendum we use the final chapter to relate some actual case histories of applica-
tion. Needless to reiterate, the review contains more new information that will
sooner or later be utilized in dealing with practical problems than our limited

experience can show at the present time.

SUMMARY OF RESULTS

The most precise way of summarizing quantitative information is by
means of mathematical expressions. The following provides, at a glance, the

major findings to date about the sheet-forming process.

Mat Compression

The static compressibility of a fiber mat is expressed in mat density

¢ as a function of compacting pressure Pe with three parameters c, , M,

and N in the following form:

C -C = Mpg .
The value of ¢, 1is estimated to be 10°2 g./cc. For first compression of

freshly formed mats in the range ¢, << ¢ , the simple power function applies
to mats as thin as 14 g./sq. m. in basis weight. Both M and N are related

to the modulus of elasticity E :

log [_MEHEE;%}_] = N log [—%L] )
Pr

For cellulosic and synthetic fibers above their critical axis ratios, N wvaries
from 0.22 to 0.45, and M'/E is constant at 10°1€ sq. cm./dynes, M' being a

positive number. The critical axis ratio Ef/if is itself dependent on E,
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its value for glass fibers being about 500, for nylon fibers about 100, and for
most cellulosic fibers less than 100. The'simple power function is also appli-
cable to mechanically conditioned mats after several compression-recovery cycles,
but with smaller N and larger M than first compression. Recovery is never

complete. Creep under constant load in both compression and recovery follows
N
¢ ~c, = (M +M log t)pf .

This expression is applicable to time t as short as 1071 sec. With some
reservations the static compressibility function may be used for dynamic condi-

tions by replacing o with pressure drop.
Fluid Flow

Fluid flow through compressible fiber mats involves both viscous and
inertial resistances. The pressure drop Ap across the mat of basis weight W
is related to the velocity U 1in terms of mat porosity e , specific-volume v

surface §v , fluid density p , and viscosity p :

The average Kozeny factor E , which is equivalent to the viscous resistance

coefficient, is expressed by the porosity function:

3
- e =\
k = kl—?z—t—gsy;— (L +Xk(1-¢)]

The values of k; and k, are 3.5 and 57, respectively. The average

porosity is defined by
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e = 1-(1- N/2)2vM(Ap)N
{n which v 1is the fiber specific swollen volume. The value of the inertial
resistance coefficient b' 1is O.1. This flow expression based on cylindrical

fibers covers a velocity range of 1-400 cm./sec. and a porosity range of 0.75-
0.95. For ¢ < 0.75 , k 1is practically constant at 5.5. The same expression
is also applicable to wire screens with k equal to 5.15 and Db' slightly

dependent on velocity in turbulent flow.

Constant-Rate Filtration

The flow expression without the inertial term is used for the evaluation
of specific surface and volume of cellulosic fibers in constant-rate filtration,

forming a thick mat from a dilute suspension - of consisténcy s at a low .

velocity. The simple filtration expression is
2
Ap lew

(1 + k2v363] R

where QO is the filtrate velocity, and §E = ng . Both §w and v are

pressure dependent and may be represented by powe; functions i; a limited range.
The average specific surface is about 5 x 10° sq. cm./g. and swollen volume about
2 g./cc. for a classified unrefined pulp. With conventional refining the surface
may increase to as much as 3 x 10* and volume to 3, again for classified fibers.
Using high-consistency refining the corresponding values are 2 X 10* and 3.2.

When fines are included, the apparent surface can be as large as 8 x 10%*, while

the specific volume remains practically unchanged .

In rapid drainage the flow expression is used in its complete form.

There appears to be no discernible dynamic effects. In forming thin sheets
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the pressure drop is higher due to fiber-wire interaction than would be predicted
by adding the pressure drops across the sheet and the wire at the same drainage

The discrepancy may be corrected by
e = 1-1Ivc,

I being an experimentally determined factor which approaches exponentially the
value of (1 - E/2)2 with increasing basis weight. At a basis weight of 10 g.
per sq. m., the wire, viscous, and inertial resistances are about equally divided
in terms of pressure drops. With increasing basis weights viscous resistance

becomes controlling.

High-consistency filtrations involve appreciable relative water-fiber

motion. The filtration equation becomes dependent on both z and t co-ordi-
nates:

dc dc vy 0 Y dc

5t * UO” oz M, Oz ( a. oz ) = 0,

which utilizes the compressibility function:

CY - Cg = Mopf
and the slow flow expression:
a = k1usffv?lzc7/2[l + kevsca]

This high-consistency filtration equation can be solved numerically with specified
initial and boundary conditions. By solving the more general equation graphically
for constant-rate filtration in transition flow, it is shown that the filtration

resistance for l% consistency is only 80 of that for 0.1% consistency at the same
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pasis weight. The average mat moisture i is about 30% higher at the same

pressure drop, indicating a more diffuse structure from high-consistency forming.

Particle Distribution

When fine particles are collected in a fiber mat formed by filtration,

their distribution ig exponential:

m' - mé EAfW W
) = —— (-5

- 1n (1 -
s fpf

m

“'m and m' are the free and bound particle-fiber mass ratios, respectively, the

~ subscript s referring to the suspension. A., V., and P are the

£ -t

“Hprojected area, volume, and density of the fibers in the mat of basis weight W

E 1is the collection efficiency taken to be constant from w=0 to w=W.
This expression has been experimentally confirmed for both incompressible and
campressible mats formed from simple filtrations with titanium dioxide-dacron and

fines-sulfite systems, respectively.

The collection efficiency is dependent on three major mechanisms:

Diffusion B

d( )

~Ys pde A
syt

£

d3p pd U
8 (peabl) (— )

Impaction E

2

and

d
Interception E = y(7§B~ - 0.085) ;
f

..
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d 1is diameter and ‘D is diffusivity. The subscripts p and f are for
particle and fibers, respectively. The coefficients o , B , and vy are
representative of particle-fiber adhesion which is governed by the natural
molecular attraction and the imposed ionic repulsion. They are, in turn,

strongly dependent on the nature of the particle and fiber surfaces.

The removal of bound particles from a formed mat with uniform particle

distribution is also expressed as an exponential function with three parameters

m , A, and 1,
m' -m = A exp(-t/ty)

From this evidence the specific rate of particle detachment is deduced to be con-

stant at slow velocities.

Fiber Retention

The initial fiber retention BD— in mass fraction on a wire screen

as deduced from the probability theory has been exberimentally verified under

idealized conditions. The subsequent retention for mat build-up is expressed by
W -W = 1 1n 1-Q@1 - Rn) exp(-—knw) ,
s ko Ro

or in terms of filtrate consistency s

59 and suspension consistency s

5o = s(1 - Ry) exp(-kW) ,

ky 1s the retention coefficient which varies from 5 x 10°® to 2 x 10® sq. cm. /g.

according to the known data.
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Constant-Pressure Filtration

In the case of slow filtration at constant pressure with incomplete

fiber retention, the filtration equation is

(1 W)d (kW) _ K2 sp (Ap)dt
1o (=R ) expl-kol) K peRv (1 - 2)/2[1 + I (1 - §)(1 - oh)
which can be integrated numerically. For small fiber losses the solution 1s

approximated by

K uRv (L - ;)ye[l +ky (1 - €)21(1 - sm)W
2(s - 5,)o(4p)

This equation has been used for design of pressure-suction formers.
Conclusion

Possible applications of the findings just summarized are illustrated
in Fig. I-2, which is a diagram of various types of formers in use or develop-
ment with indication of their main operating features. From the review of the
status of the sheet-forming process, we have arrived at a set of criteria for
paper machines. These are (1) high consistency, (2) uniform dispersion,

(3) symmetrical drainage, (4) complete retention, and (5) preferred orientation.
While they are obviously desirable features, the means of achieving them may
not be easy. In this review we offer a feasible method of analysis for design
and operation of two-wire formers, which may largely meet the prescribed
criteria, except the key problem of fiber flocculation. In this respect will
the major breakthrough come through research, we hope, to the sheet-forming

technology.
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PART ONE

THEORIES AND LAWS
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II. ELEMENTARY CONSIDERATIONS OF UNSTEADY FILTRATION

The system under general consideration consists of a porous medium
composed of solid structural elements and a fluid. The process to be analyzed is
the consolidation of the solids suspended in a fluid into a porous structure by
removal of the excess fluid. Specifically, we are dealing with the sheet-forming
process, in which a suspension of fibers and fine particles in water is drained

through a wire screen to form a thick mat or a thin sheet containing retained

particles.

This analysis was recently presented in three separate but related
papers by Nelson (II-1), Ingmanson (II-2), and Han (II-3). Earlier work of Hisey
(II-4) and Meyer (II-5) has also been consulted. For specific details the reader

is referred to these publications.

CO-ORDINATE FRAME

For the purposé of analysis, a rectangular co-ordinate frame will be
chosen for a mat in contact with a screen in the X-y plane and the positive z
axis directed upward, its origin being located at the contact. The screen is
considered as one boundary of the system, and for the time being, is assumed merely
to support the mat and to exert no influence whatsoever on the process. The other
boundary is usually the mat-suspension interface which consists physically of
nothing more than discontinuities in some of the quantities serving to describe
the system. Thus, the system to be analyzed is confined by a stationary boundary
at z = 0 and a moving boundary at z = E(E) » z and t Dbeing the independent

variables, Other initial and boundary conditions will be specified at the

appropriate points of analysis.
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In a preliminary analysis the fibers are considered as solid cylinders
distributed uniformly on the supporting screen, with their axes oriented randomly
in the x-y plane. Swollen fibers with complicated structures will be dealt with
in Part Two. Fine particles, if present, are supposed to occupy an insignificant

volume of the system and to be all alike in their behavior, statistically.

Two essential features of the system, however, are to be preserved. It

is readily compressible and highly porous.
MACROSCOPIC VARIABLES

The dependent variables of practical concern are all "macroscopic"
quantities in the very nature of a porous medium. These are the averages of the
corresponding "microscopic" quantities over small volumes of the system so that
fluctuations in the resulting quantities are not appreciable. It is essential to
the adequacy of the treatment that the distancestypical of such volumes should not
greatly exceed the distances within which the resulting averages undergo sighificar
change. It is further understood that the microscopic quantities themselves are

the averages of molecular fluctuations.

One macroscopic property of a porous structure is obviously its porosity
or void fraction. In any small portion of the system, the fluid is thought of as
occupying the fraction e of the total volume concerned in the averaging process,

the solid fracticn being accordingly (1 - ¢) .

The flow takes place downward, opposite to the 2 direction. The super-
ficial velocity U of the fluid is defined as the volume of fluid which flows, per
unit time, across a surface in the x-y plane, per unit area of the surface. Follo

ing the macroscopic concept and provided that it varies only with zZ,
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_ _
U = TL;A uwdA = eu ‘ (11-1) ,

where u is the average of the microscopic velocity u over the fluid area, and
A the total area of the surface. By convention, these velocities are negative
with respect to the z direction. Treating the solid phase also as a continuum,

we define similerly the superficial velocity of the fibers as

1 -
U, = —— udd = (1 - el (11-2)
f A j f f ’
(1-¢)A
where Ef is averaged over the solid area. The superficial mass fluxes of the

fluid and the fibers are then pU and pr , respectively, p being the fluid

density and Pe the fiber density.

To describe the transport of fine particles in the system we make a
distinction between free and bound particles. Free particles are suspended in
the fluid and bound particles are attached to the fibers. We express the free
particle concentration C as the number of particles per unit volume of fluid
and the bound particle concentration C' as the number of particles per unit
volume of fibers. The respective fluxes are taken to be UC and gfg' , each
expressed as the number of particles carried across the x-y plane per—unit time and

per unit area. The Jjustification of these definitions was discussed in (II-l).

CONTINUITY CONDITIONS

By the principle of mass conservation, the rate of accumulation of each
component (water, fibers, and particles) per unit volume of system must be equal

to the net influx of that component. Thus, the three continuity conditions are
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L lee) = - 2 (ov] (11-3) ,
a [ _ a L
=T pf(l e)]l = ~ [prf] (IT-4) ,
and
d . d '
Sg-lec+ (1 -e)c'] = - S [UC + U] (11-5) .

In the sheet-forming process the fluid, water, is incompressible.

Equation (II-3) thereby, at constant temperature, reduces to
o _ U (II-6) .

While the mat is deformable, the fiber itself may be taken to be incompressible,

i.e., Pe being constant. By this assumption Equation (II-4) becomes
3 an ) . ) .
St T T (11-7)
Hence,
U U 8
S T TS (11-8)

which, upon integraticn with respect to 2z at constant A , with the boundary

condition U, =0 at z =0, yields

U+U, = U (Ir-9) ,
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indicating that the sum of the instantaneous superficial water and fiber velocities
at any plane in the system must always equal the filtrate velocity which is
necessarily the same as the approach velocity of the suspension or slurry.

This conclusion is illustrated in Fig. II-1.
RELATIVE VELOCITY

Since water and fiber are in relative motion, there is invariably
dissipation of energy, as revealed by the loss of pressure. On the microscopic
scale, the relative velocity of concern is (E - Ef) . Averaging it over the

fluid area as before, we define the relative superficial velocity as a macroscopic

quantity to be

= T -u = - -
U, = e(u-u,) U- U (I1-10) ,

in which it will be assumed that the fibers move as a "layer" at the same velocity
Ef o The change of gr is depicted in the previous figure. Its magnitude

increases rapidly from zero at the mat face to a maximum at the screen.

The concept of relative velocity is important in dealing with filtration
of high-consistency suspensions because in such cases the amount of water being
squeezed out of the mat due to the reduction of porosity constitutes a sizable
fraction of the drainage. If the suspension is dilute, the water velocity
through the mat is so large, compared with the fiber velocity, that the relative
velocity is practically the velocity of the water itself. In the simplest case
of forming an incompressible mat, the fibers, once deposited, are no longer in
motion. Then the instantaneous flow is constant in the mat. From this discus-
sion it will be shown later that for the same drainage the smaller the relative

velocity, the less is the energy dissipation.
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Figure IT-1. Superficial Velocity Distributions in a Fiber Mat
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FORCE RELATIONSHIPS

If the force required to produce acceleration in the flow direction, in
either water or fiber, can be ignored, a simple relation exists, connecting the

nydrostatic pressure, p , and the compacting pressure, Ef :

op
_gg_ o Zf_ (T1-11)

Pe is the total force per unit area sustained by the system, corrected for the

hydrostatic pressure. Upon integration we obtain

P-Dy = Prg - Pr (T1-12)
and

P-P, = Ppy - P (I1-13)

For greater- generality the force required for acceleration in the z
direction, as well as the gravitational effect, should be taken into account.

A force balance for each phase per unit volume results in

and
Su, op '
0p(1 = e e + Uy | = - 3 - (L - ¢)(og - p)e - 2 (11-15) .

The last term in each equation accounts for the average shear stress arising from
the water-fiber interaction due to their relative motion, p' being the pressure

exerted by the water on the fiber.
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Since the fiber velocity is generally small compared with the water
velocity, the inertial forces of the fibers may be neglected, and the two equatio
reduce to a single one in terms of the fluid superficial velocity:

L. -2 fp+ (1- 6o - plez]

d d(u U U
= 57 (p + egz) + pe aé [e) S Agé /e) ] (1I-16)
This may be called the equation of motion. If the fluid acceleration can also be

neglected, as will be the usual case, the three pressure gradients are equal,

neglecting the gravitational force:

dp
op' T
aﬁ = gg = T 5z (II-17) ,

which reverts to Equation (II-11).



ITI. PRELIMINARY INTRODUCTION OF EMPIRICAL EXPRESSIONS

Further development of the macroscopic equations of continuity and motion

requires appropriate expressions for describing the rate of the process and the state

of the system. Such relationships have been established experimentally under
; simplified conditions and subsequently generalized or refined. The pertinent
ones with accepted validity or utility will be reviewed here. These are

concerned with fluid permeation, mat compression, particle attenuation, and fiber

retention.
FLUID PERMEATION

Steady isothermal slow flow of an incompressible viscous fluid through
a homogeneous undeformable porous medium in one direction obeys the well-known

Darcy law (III-1):

U = -%F—(po - p, - raL) (111-1) ,

where and are the fluid pressures at the upper and lower boundaries of

By, 1§

the medium, respectively, and pgL accounts for the gravitational pressure.
The coefficient K, 1is often called Darcy's permeability. It is inversely
proportional to the viscosity p of the fluid and dependent on at least two
geometric properties of the medium: void fraction e and specific surface §; ,

both based on the volume of the medium. For low to medium porosities the Kozeny-

Carman (III-2) expression of Darcy's permeability applies:

. < = e2 - (11I-2)
o = WE T HEIT-F ‘

in which the Kozeny factor k 1is practically constant, and § is the specific

surface based on the volume of the solid element.
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However, at higher porosities it was soon found that the Kozeny factor
itself is porosity dependent. For fiber structures Davis (III-3) correlated the

variation of k with e in the following form:

—_ es - -
k = k"?I'f—;EVE' (1 +kg(1 - ¢)3] (I11-3) ,

where k; and k, are two constants. Carroll (III-4) recently proposed another

correlation which has the advantage of covering a wide porosity range:
k = Xk + explk (¢ - )] (ITI-k)

For flow beyond Darcy's region the Forchheimer (III—S) formula is often

used:
Py - Py, - Pel
2 = alU| + bR (I1I-5) ,
where a and Db are flow resistances. a is equivalent to the reciprocal of.

Darcy's permeability K, .

When the flow is slow, the viscous effect predominates, and Forchheimer's

formula reduces to Darcy's law. In transition flow the inertial effect repre-
sented by the quadratic velocity term becomes significant. For turbulent flow
the Darcy term is inappreciable, and only the quadratic term is retained. In

this sense a and b are the viscous and inertial resistances, respectively.

According to Equation (III-2), the viscous resistance may be expressed as

a'—ii—éaﬁli— San | (III-6) ,

where ' 1is the viscous resistance coefficient at moderate porosities.
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Ergun (III-6) proposed'the correlation for the inertial resistance as
b = B'——'—e—a— SVO (III'7) b

where R' 1s the inertial resistance coefficient, also at medium porosities.
MAT COMPRESSION

The compressibility of a homogeneous fiber mat, subject to a uniform
compacting load in quasi equilibrium, was first described by Qviller (III-?),
followed by Campbell (III-8), and lately modified by Ingmanson and Whitney

(II1-9). The Ingmanson form is

N
c -c = Mpg (rrz-8) ,
where ¢ is the mat density (mass of fibers per unit mat volume) at the applied

pressure Do , and ¢

¢, that at zero P - M and N are the compressibility

constants.

By his analysis Wilder (III-10) suggested an alternate compressibility

function:
¥ - ¥ = Mo, (III-9)

If ¢, << ¢, either function reduces to Campbell's simple form:

¢ = Mpg (IT1-10)

PARTICLE ATTENUATION

The attenuation of fine particles suspended in a fluid in steady

permeation of an incompressible homogeneous fiber mat was originally described,
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in connection with aerosol filtration, by
C. = C.e (I1I-11) ,

where K 1is the attenuation coefficient. For flow downward, QL and EO are

the particle concentrations at the upper and lower boundaries of the mat,

respectively.

The attenuation coefficient may be further resolved into the geometric

factors of the fiber mat by

A

K = E—2 (1-¢) (ITI-12) ,
Ve

in which éf/zf is the cross-sectional area of the fibers projected in the

direction of flow per unit volume of the fibers and E represents the collection

efficiency of the mat.
FIBER RETENTION

The retention of fibers on a screen may be expressed in the following
form as suggested by Estridge (III-11):
1 1 - (1-8,)e 5"

W = W+ 1n
s ks Ro

(III-13) ,

where W 1is the mass of fibers retained and ES that approaching the screen,

per unit area. R, 1is the initial retention in mass fraction and ED the reten-
tion coefficient. In terms of fiber consistencies an equivalent expression was

earlier presented by Han (III-12):

= s(1 - R )e oV (TII-1%) ,

50
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which relates the fiber consistehcy R in the filtrate to the basis weight, W,

s being the fiber consistency in the suspension.

Consistency is expressed in

the mass of fibers per unit mass of the suspension or filtrate.
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IV. PARTIAL JUSTIFICATION OF PERMEATION LAWS

The laws of permeation have been introduced on the empirical basis.
Because of the complexity of flow in porous media these laws cannot be rigorously
derived from the fundamental hydrodynamic equations. It is, however, possible
to demonstrate their macroscopic validity by the space average of the microscopic
flow which obeys the Navier-Stokes equation. The following treatment is modified

from the original paper of Irmay (IV-1).
MICROSCOPIC FLOW

The Navier-Stokes equation in vectorial notation for steady imcompressibl

isothermal .flow of a viscous fluid is
pu - Vi = -Vp + pg + pRu (Iv-1) ,

which may also be written as

VE = v(p + pgz + o|ul[3/2) = o x (v xU) +uRu (v-2) ,
where
—Oa _ _
[Wf® = W 4B+ (1Iv-3)
E is Bernoulli's energy per unit volume. The first term on the right side of

Equation (IV-2) involves vorticity (v x U) and the second term viscous dissipa-

tion.
Taking the divergence of Equation (IV-2), we have

v -v(p+opegz+p|ifr/2) = v - [pux (vx0)]+v - uRrd  (IV-k)



-29-

For slow flow the inertia terms which are of the second order in E may be

s

neglected, and the last term is zero by virtue of the equation of confinuity:
v T - o @)
Hence,
P(p +pgz) = O (1V-6) .

This is the Laplace equation for creeping flow, which formally resembles that for
irrotational or potential flow. As pointed out by Rouse (EK;E): "...these
systems (potential flow) are distinguished by initial'absence of vorticity and
negligible viscous influence. Paradoxically, however, potential theory is also
highly useful in analyzing the percolation of fluids through permeable media,

provided that viscous action dominates--i.e., that the flow is laminar."

At any point in the pore space the flow obeys Equation (IV-2). Whereas
we have treated the macroscopic flow through a porous medium as one dimensional,
the microscopic flow in the void space is obviously three dimensional. The =z

component of the flow gives

aE _ o] a (ua IP) ( _ auz- auZ )
Sz T T2 oz Wk Tt P TS T Wy

B"’uz aauz éauz
+“(W_+W—+Tzr_) ' (Iv-7) ,

from which both Darcy's law and Forchheimer's formula may be approximately deduced

as follows.
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SPACE AVERAGE

Consider a volume sufficiently large so as to include a great number of
the solid elements of the porous medium, yet sufficiently small so that its macro-
scopic properties do not change appreciably. By averaging the velocity compo-

nents over such a space occupied by the fluid, we may say

Ex = Ey = 0 (1v-8)

Furthermore, if the average of one factor 1s zero, and there is no correlation

between two factors, then the following equation is correct:

Buz' Buz
HXT = uyT = 0 (IV—9) .

Thus, by the process of space average, Equation (IV-7) becomes

TE 0 *Ru 83uz ) Bauzr

S = Tt v ) vl st ) (1V-10)

MACROSCOPIC SIMILITUDE

Let d, Dbe the smallest distance of separation between the solid-elemer
surfaces. As an approximation the space average of the second derivatives of

u, may be expressed in terms of EZ and dy >

Fu Ru Fu u
~z— e (Iv-11) ,
T z E: |
where ¢ serves as a pore shape function. The minus sign is incorporated

because these second derivatives can be shown to be always negative.
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If d 1is .a representétive diameter of the solid elements composing

’
-

an isotropic medium, then

—~a - —& ' - .
5 T (Iv-12)

Furthermore, by the definition of superficial velocity,

- - U
Yy = v = = (IV‘l?) )

in which the velocities are understood here to be positive.

Therefore, if all the quadratic terms may be neglected, Equation (IV-10)

is simplified to

9 ,— 1 -
- S rem) = G LoeP oy (1v-14)
which is the differential form of Darcy's equation. Recognizing that the specific

surface §v is inversely proportional to d , we have

—

ea

R X Gy

(IV‘lS) b

in which fhe viscous resistance coefficient ¢g' may. be interpreted as the

Kozeny factor k in the Kozeny-Carman form of Darcy's law.

If the quadratic terms are significant, we can, in the first place,
still eliminate the dynamic pressure term in E Dbecause by virtue of Equations

(IV-5) and (IV-8)

0 -
SR - e e )

|
o

(Iv-16) .
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In the second place, since the quantity (E; + E§) is always zero at the greatest
contraction d, and always positive in the converging zone, its derivative with
respect to z 1is always negative. In the diverging zone there often occurs

flow separation. Here the derivative is either zero or mildly positive.

Hence, by averaging this derivative over both converging and diverging zones,

the result is

(2 4 2) < o (Iv-17)

By these deductions the macroscopic similitude calls for

-
u -
%Z—(ui+u§r) = -B doz = - 2 o eae) 62 (Iv-18) ;

thereby Equation (IV-10) reduces to the differential form of Forchheimer's

formula:

- —gz—(ﬁ + pgz) = a‘—ii—éggzi— Suu + B'—ﬁl—éggl— s,pP  (IV-19) ,

with the resistances a and b expressed in the same way as before:

a = a'il'—ae.)z— 2 (III-6)

€

and

b - gtt-elgy ' (II1-7) .




=33
V. FURTHER ELABORATION OF RESISTANCE COEFFICIENTS s

The expression for steady flow through homogeneous undeformable porous

media with negligible gravitational effects has been shown to be
A (L -¢ 1 - vV-1)} .
—L—%l— = o' o )2 szv-“'lUl + Bv_(__zs_S_)_ Svplﬁ ( )

It remains to clarify the two resistance coefficients ' and B' , and their

possible connection, especially with regard to fiber mats.
VISCOUS FLOW

It has been mentioned that o' , or the Kozeny factor k , is
porosity dependent in the high-porosity range. This point was early analyzed
by Emersleben (V-1). Lately, Happel (V-2) proposed a free-surface model to
arrive at a similar conclusion. His solution for the case of creeping flow
through a regular assemblage of cylinders is reviewed here in view of its

particular pertinence to the permeability of fiber mats.

In Happei's model each cylinder in the aséémblage is considered fo be
sufrounded.by a concentric envelope of fluid with a free surface, constituting
a8 unit cell. = The cylinder is supposed to be moving in the direction perpendic-
ular to its axis at a uniform velocity U (posixive) in-a stationary fluid.

The radius of the cylinder is r; and that of the fluid envelope is r,

The equation of continuity and the Navier-Stokes equations for steady
incompressible two-dimensional creeping flow in cylindrical co-ordinates (E

and ) - are



3l

d g
—5;—(rur) el 0 (v-2) ,
Ru du
1 Op o) 1 9 1 r 2 9
- St e (v-3)
and
Fu du
1 dp ) 1 9 1 8 2 T
ur o8  or [ r oOr (rue)] S ™ T (v-1)
The boundary conditions are specified to be
r = r,, u, = Ucosd , Uy = -U sind (V-5)
du ou u
] 1 ]
and r = r, , u, = 0, St Ber - = = 0 (v-6) .

Without giving the details of his solution for velocity and pressure
distributions; Happei présentedrthe drag force per unit length of the cylinder

as

YU

- e

r:
r :

1 Ko _ 1 0 i ]
T, 2 ry + r:
i i

Since the porosity of a unit cell is related to its radii by

r

e = 1-(5) | (v-8) ,

the drag force may also be expressed in terms of porosity,

_ YU
Fo= L[l 1 1~ (1-cF (v-9) .
2 L' T - T TTF-eF
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Now the pressure drop acfoss the assemblage of cylinders of diameter d.

+

-

{s related to the drag force by

lap| = uL(lﬂ&ae)lFL (V-10)

Hence, Darcy's permeability, according to the free-surface model, is

da
£ 1 1 - (L -¢eP
o= 32u(l - ¢) [:m 1 -¢ 1+((1-Z)3 (v-11) .

Since the specific surface §v for a cylinder is h/g , the Kozeny factor is

seen to be

2¢3

c T - e)[ln L G'TF] (e

1 -
1 -¢ 1+ (1-¢)f

Happel's solution may be compared with the previously introduced
empirical correlations (III-3) and (ITII-4). For further treatment of permeation,
Davis' equation is more realistic and convenient than Happel's. Accordingly, we
shall use the Dé§i§ porosity function for the viscous resistance in accordance

with Equation (III-6):

e = k- lak-eRlRy (v-13)

TRANSITION FLOW

The pattern of flow may be characterized by the Reynolds number which
represents the ratio of inertial to viscous forces. The Reynolds number is the
product of a characteristic velocity and a characteristic linear dimension of the
flow system, divided by the kinematic viscbsity (u/p) of the fluid. From the

previous analysis (Chapter IV) if we may, as suggested by Han (V-3), choose Ez

——
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as the characteristic velocity and V@§7d as the characteristic dimension which
includes the effect of pore shape on the flow, then the Reynolds number for porous

media is defined as

Re‘ = z = plUI (V—lu)

i Vo' (1-¢€)Sp

Since in the flow expression (V-1) the second resistance term repre-
sents the inertial effect and the first the viscous effect, their ratio should be
proportional to the Reynolds number,

8'o|U .
T ?Lej)svu « Re (V-15)

Accordingly, we obtain, in combination with the Davis porosity function (III-3),

B' = bW = b[h—————7-i 1+k21—e)3]]’/2 - (v-16) ,

and finally, substituting this into Equation (III-?),
_ ' ]/2 . 9/2 _ 74 - 3 1/2 -
b = b'k{e '2(L - e)*[1 + k(1 - ¢)?)] 5,P (v-17) .

It is seen that the flow expression contains three empirical constants, k , k; ,

and b' , which are to be experimentally determined.

The steady flow expression may also be put in a dimensionless form:

ealApI A/QT.(]- = C)SVH
Jot (1 - ¢)s,oRL i P1U]

+ Db (v-18) ,

or simply




£1 = i 4 b (v-19) ,

where f' 1s the friction factor defined by the term containing the over-all

pressure gradient in Equation (V-18).

GENERALIZED EXPRESSION

-In filtration of a high-consistency suspension to form a compressible
mat at a rapid rate, the solid phase consisting of fibers. 1s in appreciable
motion, as previously explained. Consequently, it is the relative superficial
velocity to be related to the fluid pressure gradient in the macroscopic descrip-

tion of flow:

3
(p gngz) - au_ + DRsgn(U,) (V-20) ,

where the viscous and inertial resistances, a and b , have the same respec-

tive meanings as before, and sgn(gr) has the value +1 if gr is positive and

the value -1 if gr is negative.
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VI. APPROXIMATE FORMULATION OF COMPRESSIBILITY FUNCTIONS

Fiber mats are more or less compressible. The static compressibility
of a fiber mat may be represented empirically by several functions, among which
three similar ones have been introduced in Chapter III, and are commonly used in
dealing with filtration of compressible materials. These functions cannot yet
be derived rigorously because of complexity of fiber structures. In the
following the approximate development of Wilder's function based on the bending

of elastic fibers is reviewed from his work (III—lO).

FIBER CONTACTS

Consider a uniform mat composed of a large number of cylindrical fibers
oriented randomly in the x-y plane with negligible orientations with the z axis.
As will be shown later (Chapter XII), the number of apparent contact points, N,

per unit area of the mat, when all the fibers are projected on the x-y plane, can

be calculated from

N, = N%E%/n (vi-1) ,

where Ef is the number of fibers per unit area and L, the length of a fiber.

The basis weight of the mat is simply

W o= Nf(nd?/M)prf (VI-2)

If we imagine that the mat consists of a number of similar layers, each

one-fiber diameter thick, then the mat density without an applied load is

o = — (VI-3) ,
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vhere n 1s the number of such léyers. The projected intersections in one layer
between two adjacent layers may be considered to represent the virtual éontact
points for that layer. Since two adjacent layers contain QHf/n fibers, the

pumber of virtual contacts per unit area per layer is, according to (Vi-1),

2
<2Nf a<Lf

n = 2
c,0 n i

where the first factor 2 accounts for the fact that there is an adjacent layer

) (VIi-k) ,

on each side of any layer concerned. Utilizing Equations (VI-2) and (VI-3),

we arrive at

128c,2

feo T TREE (VI-5)

The average distance between two virtual contact points is called the

segment length, Ls . Since the total fiber length per unit area per layer is

Efgf/g » the segment length under no applied load may be calculated from

m™d_p
£7f
Ls,o = Sm (Vi-6) ,
in which the possible complication of fiber ends is ignored. If we consider

that, as an average, the virtual contacts are distributed alternately above and

below a fiber, the segment length, LS o’ between two points supported from
=

below will be twice the value indicated in (VI-6). This mat density-segment

length relationship was first derived by Onogi and Sasaguri (VI-1).
BENDING ASSUMPTION

As a uniform compacting load is applied to the mat described above,

deformation will occur by virtue of several possible mechanisms. If mat
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compressibility is due entirely to elastic bending between frictionless supports

( Pe remaining unchanged), the segment length will decrease from the initial

value L to some value LS as proportionately more contacts are formed under
Zs, =

the applied load. Lacking precise knowledge of the bending mechanism, we assume

a power function between Ls and ¢ , such that

L
5 = (S0 )Yo -
2= (D) (VI-7) ,
5,0
where vy, is of the order of unity. Then the number .of virtual contacts per
unit area per layer is
N_L
£°f
" T mL_ (ve-8)

Upon application of an infinitesimal load per uniti area, dgf , the

incremental force sustained by each -contact in the layer is- dgf/gé . Using

the simple beam theory, the reduction in thickness of the layer is

L3 dp
_ 4L - S f (VI-9) ,
n N'EI nc

where N' 1is a number dependent on the distribution of load and support, E
the modulus of elasticity, and I the moment of inertia. Expressing L as

W/c and utilizing Equation (VI-3), we have

3

de 1 s
= T N'EIdfco,> n 4Pp (VI-10)

Since by the previous assumptions, Ls and n, are related to c¢ by
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. Yo -1
napfdfco

L = (vi-11)
s 16cYo
o
Gl Yo Yo
and n, = PR (Vi-12) ,

and the moment of inertia of the beam so supported is

nd}
I = zh——— (VI-13) )

the differential equation for mat compression due to fiber bending alone becomes

s
= dp
163N EcS Yo T

Mo 2 g (VI-13)

Integrating for the whole mat between the limits: ¢, at zero Re and ¢ at

Ef , the resulting compressibility expression is

M'(by, - 1)e5
4o~ 1 4Yy- 1 0 f
. ¢ - c = P (VI-14) ,
1 ° Ecg—qu £

where M' has absorbed all the numerical values.

Onogi and Sasaguri (Yl;i) further stated that if a distribution of 2z
orientations is introduced by the compression process, Equation (VI-6) will no
longer hold. Assuming the distribution function to be propoftional to sinfo ,
where @ 1is the angle that a fiber makes with the z axis, they developed the

relationship:

L

[& 1 ' 1
Pe = | Ky (Ls/df) + ki P ka'(LSTdf) + k] I( d: ) (vi-15) ,
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where k's are constaﬁts. This would indicate that the effect of z orienta-
tions could be equivalent to reducing the value of vy, to less than unity which
is strictly true for the case of random orientation in the x-y plane only. In
Wilder's development this effect has been included in the assumption that the

value of vy, 1is of the order of unity.

SIMPLIFIED FORMS

Wilder's static compressibility function (VI-14) has been simplified to
A (T11-9)
Co N‘b pf 9 >

where M, 1implies its dependence on ¢, . If the value of vy 1is 3 ,
Wilder's equation agrees in form with the function developed earlier by Van Wyk

(VI-2). When ¢, << ¢ , it reduces to Campbell's form:
o wN : : _—
c = Mpg (III-10) .
By this analysis Wilder's form is more tenable than Ingmanson's form:

cC-cy = Mpg (111-8) .
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VII. ANALYTICAL TREATMENT OF PARTICLE COLLECTION

The collection of fine particles by a fiber mat during permeation, as
governed by the attenuation law, will be explained in some detail with clarifica-
tion of the meaning of collection efficiency. The same law will then be extended

to the filtration process for the analysis of particle distribution in fiber mats

(11-1, II-3).
ATTENUATION LAW

Consider a suspension of fine particles in a fluid permeating steadily
through a stationary fiber mat of a fixed thickness L . By virtue of their
motion, some particles will collide with the fibers and others will penetrate
through the mat. For a large number of particles the chances of their
capture are statistically determinable. It is reasonable to assume that the
more particles there are approaching an infinitesimal layer of fibers, the more
will be captured. With this contention the rate of particle attenuation in the
flow direction mayibe said to be directly proportioﬁal to the particle concentra-

tion. Thus, as the flow is opposite the z direction,

daC

- —d—(m)—- = KC- (VII-1) .

If all factors influencing particle collection remain constant throughout the mat,
K will be independent of zZ . By integration from O +to 4& , we arrive at the

previously introduced attenuation expression:

C, = C.e (III-11) .




o

In this derivation it is implied that the concentration is uniform as
the particles approach a "layer" of fibers. After attenuation some sort of
mixing process presumably takes place so that the concentration is uniform again.
The mixing process is probably very effective at the intersections of a large

number of interconnected pores.
COLLECTION EFFICIENCY

The term "collection efficiency" was conceived in the field of aerosol
filtration, and has since been widely accepted as a rational basis for evaluation
of fiber filters. The original concept was based on the idealized case of a
single cylinder placed in a fluid stream moving in the direction perpendicular to
the axis of the cylinder. The collection efficiency of the cylinder was defined
as the ratio of the number of particles collected by the cylinder to the total
number of particles in the fluid stream approaching the cross-sectional area of
the cylinder. This definition of collection efficiency may be generalized for

application to fiber mats.

In an infinitesimal layer of a mat, the total cross-sectional area of
the fibers projected in the direction of flow is (éf/yf)(l - e)d( -z) . The

fraction of the approaching particles collected by this layer will be

g(éf/zf)(l - ¢)A(L - z) , E Dbeing the collection efficiency of the fibers in a

collective cense. Across this layer the free particle concentration is attenuated
from C by -dC . It then becomes apparent that
ac Af
-2 = E~—— (1 - ¢)a(L - 2z) (Viz-2)
C Vf

Comparing with Equation (VII-1), it is seen that



K = E.——- (1 - ¢) (I11-12)

For cylindrical fibers the relation becomes

K = E._“_QE(_;.?@)_ (VII-3) .

PARTICLE FILTRATION

In a filtration process, as fibers are deposited on a screen, the excess
water with free particles permeates through the mat already formed. During the
passage of the fluid, some free particles become. attached to the fibers. However,
the deposited fibers may also be in motion. Therefore, again, the relative
velocity must be taken into account. Suppose an observer is moving along with a
layer of fibers at the same velocity; then the rate of particle retention will be

described by the observer as
1 I
(1 - 9) St I rl (VII-k)

Now, if the observer looks at a stationary frame of the system, he also
- sees the motion of the fibers carrying bound particles. As a consequence the

rate of increase of bound particles in the layer will be described as

(1-¢) %-E—' T LA (VII-5)
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Recalling the equations of particle and fiber continuity:

“gt—[eC+ (1 -¢)'] = -%—[UC+UfC'] (II-5)
ou
and S - o (11-7)

we may utilize these equations in conjunction with the retention equation (VII-S)

to yield the attenuation equation:

a - .
e T__ag +U—a—§ = k|u_|c (VII-6)

For steady penetration (3C/dt = 0) through an incompressible mat (Hf = 0)
opposite to the z direction (|gr| = |U]) , the last equation reduces to Equa-

tion (VII-1) since L 1is constant and U 1is negative.

INCOMPRESSIBLE MAT

In forming an incompressible mat of uniform porosity, the decrease of
free particles in the flow direction through the mat already formed follows the
attenuation law (VII-1). Integrating from z to L and setting the free

particle concentration in the suspension as (C_, .the result is

-5
¢ = ¢ eX(L-z) (VII-7)
s
Meanwhile more fibers are deposited on the mat. Suppose the mat face
moves at a constant velocity U' . Then, taking partial differentiation of

Equation (VII-7) with respect to the independent variables t and 2z , we hav

oC - -KU'C e—K(U't—z) (VII-8)
S
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and
- ' -

C_ o o K(U'E-2) (VII-9) .

z s
Under the prescribed conditions (e = constant, U = constant, and U, = 0) ,
the equation of particle continuity (II-5) reduces to

1
c TBE +(1-¢) T_afé = U Tag (VII-=10)

Combining the above three equations, we obtain a single partial differential

equation to describe the retention process:

oc! . eU! - U -K(U't-z)
=5 = KT ¢ (VII-11) ,

which may be integrated with respect to t to yield

o= -ch—e,U(H)— e KWE-2) oy (VII-12)

If the bound particle concentration in the suspension is gé ,. the integration

constant is evaluated to be

= ! eU' - U -
fz) = C+ Coprr—ar (VII-13) ,
and the solution is
¢t - ¢ =, %= er eK(@-2z) g, (VII-14) .

If it is desired to express all quantities in mass units, the follow-

ing relations apply:-
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-

the

to

P.(1 - ¢)
g = — T (VII-15)
Y
p.(1 - ¢)
L = —b (VII-16)
W
mpf(l -¢)
c = (VII-17)
W_€
b
mp.(l-ce.)
C = £ g (VII-18)
S W_e
P s
m'pf
C' = —— (VII-19)
D
mPe
and C! = ——— (VII-20)
s W
D
where m and m' are the masses of free and bound particles per unit mass of
fluid and fibers, respectively, with the subscript s , if present, referring
the suspension. Ep isrthe massrperrparticleiand esrrthe,void fraction of the .

suspension.

The relation between the superficial fluid velocity and the mat face

velocity may be established by a fiber balance:
- ——==U = (1 - ¢)U (VII-21)

Since for a dilute suspension, |g'| <<|g| s

U - U °s

U Lo
Ta-sT T TaE e T T T . (VII-22)

Substituting these relations into Equation (VII-14), the solution for the bound

particle distribution becomes
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e A

COMPRESSIBLE MAT

Beginning with the partial differential retention and attenuation

equations:
(1-¢) SS' + U g’g = ku_|c (VII-5)
and
¢ gg + U %g = KU |c - (VII-6) ,

it is seen at once that the first equation reduces to Equation (VII-11) for the

incompressible case under the condition: |§f| << |g| .

To solve for the compressible case under simplified conditions and in

mass gquantities, we proceed with conversion of these equations into suitable

forms. Introducing two new independent variables as
z
w'o= Wt)-w = W- pfj (1 - ¢)dz (VIT-ob) ,
o)
and
t' =t (Vvir-2s) ,

the original variables are related to the new ones, respectively, by

—%— = -p.(1 -¢) —%,— (VII-26)

and



R s = LI
Since
_?% = -p J‘Z-ge—dz (VII-28) ,
t £y 7Ot

and from the equation of fiber continuity (II-7),

Z
d¢
dz = U VII-2
.J; Et z f ( 9) )
Equation (VII-27) becomes
5 o) aw  d )
St = U St @ et o (vIz-30) .

Now the retention and attenuation equations may be expressed in terms of the new

independent variables, respectively, as

(1 -¢) _g_fcf_:+ (1-¢) _%;W_,%_S; = K|u.|c (VII-31)
and
3¢ ‘ aw | 3¢
e -3 - [pf(l - e) U - e ~pv| S = K|Ujc (VII-32) .

Under the previous prescribed conditions of slow filtration of a dilute
suspension, the mat could be considered to be in successive equilibrium states,
and the transition of particles from the free to bound state: would be nearly
independent of time at the same relative position of the growing mat. Thus,

Equations (VII-31) and (VII-32) are simplified, respectively, to
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oC! KUC :
vt T T T - e)@watn) (v11-33)
and
oC_ ) KUC (VIT-34)
w' * p?ﬂ-aU—e@MHV)

The rate of accumulation of fibers in the mat for constant-rate filtra-

tion may be calculated by a fiber balance:

aw S .
at" e PV (VII-35)

For a dilute suspension its magnitude is negligible compared with pf(l - é)g in
Equation (VII-34). Substituting the definition of K , which is E(1 - e)éf/yf s

into the same equation, we obtain

- S (VIT-36)

Upon integration at constant time and collection efficiency, the result is

A
C = C exp(- —=—uw") (VII-37)
S VePr
Utilizing this result, Equation (VII-33) becomes
_%C_: _ AfEesCs exp(- A_fE__ w') (VII-58) ,
v VePp (L - 6.) VePe

50 that upon integration again, we arrive at the solution:
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€sCs AgE
C' = CS' + —]-_-—_-—e—s— (1 - exp(- Tfaf—W')] (VII-59)

By converting the concentrations to mass ratios and w' to w , the final solu-

tion becomcs

— - - KW (1 -2
— = l-exp[ T_rpfl-e 1 -7 :l (VII-23) ,

which turns out to be exactly the same as the incompressible case after all the
involved mathematical manipulations. The reason for this result is implicit in

the assumption of quasi equilibrium in slow filtration.
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VIII. THEORETICAL TREATMENT OF FIBER RETENTION

-

The retention of fibers on a screen is treated statistically with the aid
of the probability theory. This analysis was initiated by Estridge (III-11) and

further developed by Nelson (II-1) and Abrams (VIII-1). At present only the

{dealized initial retention can be predicted. However, on the basis of the theory,

the subsequent retention may be at least rationally described.
RETENTION PROBABILITY

Consider a suspension containing J types of fibers approaching a screen

in the x-y plane. If the concentration of the ith-type fibers is 91 ; expressed

in the number of fiber centers per unit volume of the suspension, and the probability

that this type of fibers will be retained is Bi , expressed as the number of ?

fibers of the ith type retained to the total number of fibers originally in the

suspension (provided that the total number is very large), then the number of the

ith-type fibers dHi removed from a volume dYs ;  Which reaéh the plane of the

screen with a velocity |u| in time dt is

dN.
i

dt

= Hcipi |u|axdy (VIII-1)

The total number of fibers retained is obtained by summing all types of fibers:

an,
= = zjjcipi |u|axdy (VIII-2)

For convenience we define an average of CiPi as

C.P.udxd
- H it i (VIII-3)

il . jfudxdy
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Since the denominator is simply the volumetric flow rate dXs/dE , Bquation

(VIII-3) may be simply written as

dN,
_dV; = XC,P, (VIII-L) ,

provided |u| is independent of x and y .

If 91 is not dependent on x and y , the average of the product,

9151 ;, Wwill be the same as the product of §i and Ei . The subsequent devel-

opment is then largely a matter of evaluating Ei

—

INITTAL RETENTION

The initial retention of a fiber 1s dependent on (1) the position and
orientation of the fiber at its close approach to the screen, (2) the dimensions,
shape, rigidity, and surface characteristics of the fiber, (5) the geometry of
the screen and the surface characteristics of the-wires, (4) the hydrodynamic
conditions near the screen, and (5) the interference and interaction of the
neighboring fibers. It is not possible to account for all these factors in a
guantitative manner; only the idealized case can be rigorously dealt with. In
his pioneering work Estridge made the analysis of initial retention from a dilute
uniform suspension of rigid cylindrical fibers flowing perpendicular to a screen

constructed of very thin parallel and cross wires in a uniform arrangement.

Let the spacing between repeating parallel wires be d, and that between
cross wires be dj , constituting a screen of rectangular meshes. The two extreme
cases will be gé/go = o for parallel wires and gﬁ/go = 1 for square meshes.

Now consider a suspension of fibers, differing only in their lengths, approaching

a screen. For rectangular meshes the repeating geometric element is a right
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¢riangle of two sides 90/2 and §5/2 . The average retention probability needs

only to cover this elementary area:

P, = ———
1 dydg

4o /2 34/2
8 f fdo P, dxdy (VIII-5) .

o] (o]

with all the preceding simplifications the probability function Ei is dependent

only on the orientation of fibers, the length of fibers, the spacings of the wires,

and the friction between the fibers and the wires.

When a fiber of length Qf

approaches the screen at a certain orientation

and strikes. one wire, the fiber will be retained if it bridges across a second

wire. By analyzing all the different combinations of the fiber-wire geometry,
Pi may be evaluated as a function of the position x-y . The average probabil-

ity Ei is then arrived at by evaluating the integrals of Equation (VIII-5S).

Upon repeating the analysis for various fiber lengths, Ei is derived as a function

of Ef

go/Ef with the parameter §5/§° . By this method of analysis Estridge derived

for a given screen. For different spacings the results may be related to

the initial retention probabilities for the two extreme cases of parallel wires

and square meshes.

Later, Nelson employed the Monte-Carlo method for evaluation of the
initial retention probabilities on a digital computer. His method is based on
the use of random numbers for the orientation of a fiber and the x and y
co-ordinates of its center with respect to the wire spacings. By a large number
of trials (10%* ) moderate accuracy is easily achieved, but more precise results
require a rapidly increasing volume of calculation. Nelson's results are shown
in Fig. VIII-1, which are in agreement with Estridge's for the condition of little

friction between fiber and wire.



Figure VIII-1. 1Initial Fiber Retention Probabilities
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Nelson and Abrams then developed the scanning line method predicated on
the frequency function of the lengths of segments of scanning lines, falling
within unobstructed areas in the plane of a screen. The results of initial

retention calculated by this method again agree with those of the previous two

methods.
SUBSEQUENT RETENTION

It is usually more convenient to deal with the mass rather than the
number of fibers. The mass fraction of retention, which may be called retention

efficiency, is related to the retention probability Ei by

aw 1 -
dws = = HER N (VIII-6) ,

vhere s. 1s the consistency of the ith-type fibers in the suspension.

A retention curve of W vs. Es will have the slope at the origin, with

a finite value of R, for initial retention, and end with a unity slope for

complete retention. The intercept of the unity slope with the W_  axis at

W =0 gives the total loss of fibers through the screen.

The build-up of a fiber mat is much more difficglt to treat theoretically.
An analysis of subsequent retention would require a knowledge of how the geometry
of the openings changes with the deposition of fibers and how this change affects
the retention probability. At present the scanning line method offers some

promise of dealing with this problem.

In the scanning line method the network dimensions may be specified by
one angle and two distances (Fig. VIII-2), the angle being ¢ measured from the

X axis, and the distance being L, and L, measured from the point to

X—
x, Y,
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Figure VIII-2. Fiber Co-ordinates (top) and Network Dimensions (bottom)
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the first crossing of a member of the network in the ¢ +m and ¢ directions,
respectively. The probability of retention can then be expressed as some complex
relationship between the frequency distribution functions for L, (= L +-£2) s

L and ©

For negligible fiber-element friction the probability of retention for

randomly oriented straight rigid fibers is given by

L./2 12 Y. I
§i - féif { jof f(Ls) [La <fH£_ - I%:>2 + —EE— arctan (1§/u %‘Lg)yé ] dL,
Le 12 L y 12 L./2 - L
« | Lf/2f (L) [ TT8f (7 - 1) (ol - 12) "+ o arctan (Lafo-Li );2 ]d.La}

(VIII-7)

The frequency function f(Es) has been evaluated for networks composed of uniform

rectangular openings:

1

for O0<L, <d, , f(Ls) = W (viiz-8) ,
[¢]

agdy

(8 + 8B (5 - &3)'2

for dy < L, <dJ , (L) (VIII-9) ,

and for 4 s L, s (a8 + do‘z)ya R

azay . 4,042 1

f(L,) = -
? (@ + Q)B(E - @)% (4 +aB(R - 42)2  a, + 4

(VIII-10)

Finally, for a network composed of randomly oriented fibers,
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| f(Ly) = (1/L;) exp(-Ly /Ly ) (VIII-11) .

With these frequency functions Equation (VIII—?) may be integrated to yield the
retention probabilities. The results of Abrams' calculations are shown in

Fig. VIII-3..
RETENTION EXPRESSIONS

By the random network model the retention curve may be closely described

by
aw - _ 1. @ ) exp( /T) (VIII-12)
—EW; = - - Ry ) exp ‘QbLf L, - ’
where ¢, has a theoretical value of 0.31, according to Abrams. From statistical

considerations, the average network distance ié is related to the mass of fibers

retained by

- f
L = —5 (VIII-13) ,
f
where Yo is the mass per fiber. Integration of the combination of Equations
(VIII-12) and (VIII-13) results in Estridge's expression:
" 1 - (1-Ry) exp(-k,W)
WS -W = ko 1n Ro (III 13) )
with the additional implication:
212
= VIII-1h
ko % ( )
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By differentiating the fiber retention equation (I11-13), ‘we return to

dw

—awg = 1 - (L -Ry) exp(-kyW) (VITI-15) .

If the filtrate and suspension densities are nearly the same,

aw
dws = S (VIII-16) .

Combining with the previous equation, the result is Han's filtrate consistency

expression:

5 = s(1 - Ry ) exp(-kyW) (IIT-1%)
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IX. INTEGRATED SOLUTIONS FOR SIMPLE FILTRATIONS

-

In the elementary analysis of filtratioﬁ, it is assumed that the presence
of a screen would not affect the process in any way. The screen would offer no
resistance to the flow of water and would retain the fibers completely. Further-
more, the fiber suspension is supposed to be well dispersed and the mat formed to
be uniform in the x-y plane. The fibers are identical in their essential

characteristics and constant in density.

If the suspension is dilute, the relative velocity 1s practically the
same as the filtrate velocity. If the flow is slow, the fluid inertial effects
maey be ignored. The gravitational effect on the piezometric head is generally
negligible. Under these simplifications the filtration process can be treated
adequately by Darcy's law with the aid of the compressibility and porosity

functions, as shown by Ingmanson (IX-1) and Whitney, Ingmanson, and Han (IX-2).

The somewhat more complicated cases of constant-pressure filtrations in
rapid flow and with incomplete fiber retention have also been developed by Han and

Ingmanson (IX-3).
FIBER BALANCE

The mass of fibers in the formed mat is directly proportional to the

volume of the suspension. For unit area,
W = W, = spV (1x-1) ,

and the mass of the wet mat is the difference between the suspension and the

filtrate,

mW = pV_ -pV (1x-2) ,



6l -

where i is the average mat moisture expressed as the mass ratio of the wet to

dry mat. Eliminating ps!s , We obtain, by virtue of a fiber balance,
spVO
W = EEEE— (IX“B) .
1 - sm :

SLOW DRAINAGE

When the flow is slow and practically constant through the mat, Darcy's

law may be expressed in the form:

I P A (IX-4) .

&
el

o]
ot
o
jon]
N

In early treatment of the subject, the specific filtration resistance R was

introduced as

a = Ruc : - i ) '(IX‘S) 5

in order to put the resistance R on the basis of fiber mass. Its dimensions

are length per unit mass.

Since by definition the local mat density is

¢ = p(l-e) = - (1x-6)

the Darcy equation is transformed, in terms of the readily measurable variables,

to

at = ®Rp aw (IX-7)
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At any instant this simple filtration equation may be integrated at constant

temperature to give

L 1 |ap|
I T dp = — (IX-S) >
Pg R

where E is the average specific filtration resistance of the mat at |Ag| .

AVERAGE RESISTANCE

The integral in Equation (IX-8) may be evaluated with a compressibility
function. Using the simple form (III-10) and the known viscous resistance from

(v-13),

R o=k (2/0,) /0,210 + 1, (/0,0 ] (1x-9)

It will be shown later that for porosities larger than 0.9, the term containing

ky 1is negligible compared with unity. Then, by the pressure relationship

(rr-11),
P, A Pr.0 )
1 f I -N/2
——dp = da IX-10) .
Jp R T o P P (
0 1%y f,L
)

(IX-11) .

If we assume that at the mat-suspension boundary the mat density is practically

zero, then the two limits are 0 and Ef 0= EL - Py - Hence the value
—, —

D ,L =

of the integral is



-66-

pig | Apll'N/2

klserya (1 - n/2)

From Equation (IX-8) we find
R o= g (2/672)(2 - /2) (u]ap] V)2 (1x-12)

For the sake of convenience, we define an average porosity ¢ so that
the average filtration resistance E will yield the same flow as demanded by the

integration of Equation (IX-7),

o |
i

1 - (1 - n/27 (M|ap|V/e,) (1x-13) .

Hence,

R = X (/o)1 - ) (IX-14) .

For porosities less than 0.7, the Kozeny factor k , or its equivalent

o' , 1n the viscous resistance a 1is nearly constant, so that

«'E(1 - P
R = = (1X-15) .
3
€ Mpf

An average porosity may then be similarly derived to be
- N
e = 1-(1-nN)Map|"/e,) (IX-16) .

The difference between the two average porosities is quite small because

(1 -N/2P = 1-N+N¥/MA = 1-N (IX-17) ,
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provided N 1is a small fraction. For example, when N = 0.3 , the discrepancy
amounts to only 3%. If we choose the first definition, the average filtration
resistance may be generalized to cover the range of porosities for- which the Davis

porosity function holds:

R = x (sev/pf)(l - E)V?[l + k(1 - €)2) (Ix-18) .

In constant-pressure filtrations the pressure drop across a mat is fixed,
and consequently the flow decreases és the mat grows at constant moisture E .

Combining the fiber balance and the filtration equation, we have

(1 - sm)|ap|
spuR

at (1x-19) .

v dVo

Integrating at constant s , the filtrate volume is

- am 2
v, = 2@ s‘f)IAplt] (1X-20)
sSprR
or
pR(1 - sm)WP
t = . IX-21
which is the well-known parabolic law of constant-pressureifiltration.
In constant-rate filtration the flow is fixed. Therefore, the pressure
drop rises as the filtration proceeds. Since the basis weight is directly pro-

portional to the filtration time, the resulting solution for constant-rate filtra-

tion is

sppRU%
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RAPID DRAINAGE

From the previous discussion of flow resistances, it is reasonable to
expect that the permeation expression for transition flow will hold at any instant

during simple filtrations:

a (1 - ¢)(s? o' [ ot 2
) O - O log) 0l J@ Gyo/er) F e
€ €

in which

-3

—_— % — e _— -
o = k = ky W[l+k2(l 6)3] (IX 2&)

The same expression may also be presented in the dimensionless form:

o + b (IX-25) ,

Re!
where

e |an]

_ € pio
T f (IX-26)
— 2
! U
\/ o Svp O‘W

and

N
Re' = 0 (1x-27)

——

J & (- Dsu

Because of the presence of the quadratic velocity term, the use of the average
filtration resistance E becomes impractical, and instead, a filtration parameter
will be introduced in the following treatment of simple filtration in transition

flow.
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Differentiating the fiber balance (IX-3) with respect to. t , we obtain

A (1x.26)
Substituting this into Equation (IX-23), the result is
( §¥*>2 + —%%i - —%;— = 0 (1x-29) ,
where
W o 1(1 - sm)W (1X-30)
J & (- Dssu
and K% = 525 (1 - sm)o|ap] (1x-31) .

—_3
e - 4 .3
@@ (1 - ¢) sstps/p,

The solution at constant pressure with the new variable and parameter is

t = 2K*[ L + 1

JL + LK*/W* + 1 (/1 + hKx/wx - 1)

% %
é 1 X+ BREWE + 1 (1X-32) .
JI + LK¥w* - 1

For small values of K¥* and large values of t the flow will be in

Darcy's region, and the solution reduces to the parabolic law:

t o= = (1X-33) .

In the other extreme for large values of K*¥ and small values of t , the viscous

effect becomes negligible. The solution then assumes the form:



2
t = — IX-34) .
5 qxle (1x-34)

Figure IX-1 shows these relationships for K¥ = 10°® sec.
INCOMPLETE RETENTION
In the case of some fiber losses, the fiber balance calls for

W= sp V. - 5opV, (IX-35)

Combining with Equation (IX-2), we obtain

W= (I1X-36)

This equation may be differentiated at constant pressure to give

(1 - sm)aw: = spdVy- pd(sV,) S (IX-37) .
By definition,
s = —VB-IO 53V, (IX-38) ;
hence,
d(sgVy) = sqdvg (1X-39) .

The filtrate consistency expression has been introduced to be

Ja. s(l-Ro)e'kow = s ol (I1X-40)

Combining Equations (IX-37), (IX-39), and (IX-40), we arrive at
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Figure IX-1. Constant-Pressure Filtration in Transition Flow

'TL'



-72-

(1 - sm)aW = (s - s'e‘kow)pdvo

(IX-k1)

Substituting this into Equation (IX-7) for slow filtration at constant pressure,

utilizing Equation (IX-8), and arranging the result to a dimensionless form, we

find

(ko W)A (kW) _ K2sp|Ap|at

T - (s'/s) exp(-KoW) uR(1 - sm)

Let

W= kW

and 0 = sp|Ap|t

uR(1 - sm)
Equation (IX-42) is simplified to

W

1 - (s'/s) exp(-W0) awe = ate

This equation has been solved numerically on a computer to yield W

(I1X-42)

(IX-k3)

(IX-4k4) ;

(IX-k45)

functions of t° with the parameter E'/i . The results of evaluation are

presented in Fig. IX-2.

At complete fiber retention the function reduces to the parabolic law:

0 < -%- (wo

(IX-46)

When there 1s some fiber loss, deviation from the parabolic law is significant

only in early times of filtration, and diminishes rather rapidly, as filtration

proceeds, by virtue of the eiponential nature of the filtrate consistency
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Figure IX-2., Effect of Fiber Loss on Constant-Pressure Filtration
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op op
o s -
Equation (X-3) is thereby transformed into
dc dc y O Y de
=t +* Vo5 - T ( — . ) = O (x-5) ,

in which the constant pf is cancelled out.

The mat-suspension boundary, z = E(E) » may be calculated by a fiber
balance:

L(t)

d (c - ¢, )dz (x-6) ,

005 = Uy = aT

0 0

where the mat density ¢, at the boundary is assumed to be equal to the consis-
tency of the suspension, which is taken to be constant. This condition is satis-
fied if the suspension or slurry is kept in a state of uniform dispersion. It is
ad&aﬁtégeoﬁsrto tréat the upper boﬁndary aé stationary by introducing a new

independent variable 1 = E/E s so that

d d d N 4L d

o _ 1 (x-7)
> S T 9’ ot T T T LT aE T, (R

The filtration equation (X-5) and the fiber balance (X-6) become, respectively,

with the new variable

dc 1 ar dc v
st T Y VS wmE S

and

“oUy = e (L] (¢ - co)am] (x-9) ,
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where the filtrate velocity is now expressed as

y-1
_ y c dc
Yo = ML <a an 1=0

CONSTANT PRESSURE

In the case of a constant-pressure filtration, we proceed to convert the

(X-10) .

partial differential equation (X-8) to an ordinary differential equation by

introducing

c(Mt) = o*x(M¥) , T = W

(X‘ll) )

with T¥ as a constant parameter. Noting that dc/dt = O in this case and

letting

-

Equation (X-8) now assumes the form:

-

E a *Y  gox do¥
anx (; d,(\,:]*>+(1]*-10) d?]*

Also, Equations (X-9) and (X-10) become, respectively,

&
Jo (c* - cglan*

¥
c&lo

and

;. Ya
% = (Fg) o

0

(X-lQ) )

(X-13) .

(X-14)

(x-15) ,
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(y-1)

* *

with I, = <C gc*> = constant (x-16) .
a M w0

For a given constant pressure drop across the mat during filtration, the

mat density at the screen is known from the compressibility function and the mat

resistance by the viscous resistance formula. Therefore, Equation (X-13) may be
solved numerically. However, if we make use of Emmons' (X-2) approximation:
a = a'c! = a'cxY (X-17)

where a' 1is a constant; putting

L o= 7 2yt (x-18) ,

a'My
Fquation (X-13) is simplified to

42 c* - -de¥

e+ (W - %) = 0 o - (x-19),
1 dc*
h = (= —— X-20
where I* o Tane :%*=O ( )

Equations (X-14) and (X-15) remain the same except that I, is replaced by I .

Equation (X-19) may be integrated to yield the mat density distribution:

’n*
() = ory e ol1 T exp(rie - @ /2)ans] (x-21)

Upon introducing the solution so obtained to (X-14) and (X-15), the resulting

equations may be solved numerically for I* and T¥ .
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CONSTANT RATE

A suitable transformation of the system of equations for constant-rate

filtrations may be obtained by means of new variables:

C(ﬂ:t) = CoY(n)t) P
T o= |uglt/L o,
d L = (}—iﬁi—— ts (x-22)
an - :é'Mo >

The filtration equation and the fiber balance with the new variables are,

respectively,
S+ (/o) S-S - o (x-23)
and
oY 1
- = (y - 1)an (x-24)
& - |

The initial and boundary conditions may be specified as

Y(M,0) = Y(L,7) = 1 (X-25)
It can be shown that
Y(Mr) = 1+ ) B (D" (x-26) ,
n=1

where the coefficients En may be computed from
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The solutions must satisfy the condition

and so on until §n(l)

4B aB
1 n-1
] d‘nn ) _%_ B, = - g n=1,273,... (x-27)
dBn
il B f;Bndn at M =0 (x-28) ,
=0 . For v<< 1, the solution is

Y1) = 1+ B (M),

¢}
where B (M) = {Dlexp(-n/2P + (Ja/2)n er£(n/2)] - D3N}/(D, +Dz) ,
o)
D, = exp(-1/4) + ( J/2) erf(2/2) ,
o 1 2
Dy = J [erf(1/2) + erf(1/2) - 2erf(1/2)] ,
n X n-1 o
and erf(x) = I erf(x)dx , n =1,2,3,..., erf(x) = erf(x) (X-29) .
Equation (X-23) is identical with Emmons' for the constant-rate case.
His upper boundary, however, is placed at T} = © while we have T =1 . The
solutions for mat density distribution are therefore different. The present

solution indicates discontinuity at the mat-suspension Boundary whereas Emmons

describes an exponential decay-type layer.

MAT THICKENING

Filtration ends with the disappearance of a free slurry or suspension.

Further removal of water from the formed mat is accomplished by compression.

This process of thickening is considered complete when air begins to enter the
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mat face. The analysis of mat thickening at constant rate was initiated by
Hisey (I1-4). We wish to make a new analysis in accordance with the present
theory .

We assume that the mass of fibers remains constant during thickening.

Thus ,

L(t)Jicdn = constant (X-30)
At the upper mat face, gr =0 . However, this layer moves with a superficial
velocity B

Uep = (1 - ¢, )dL/dt (X-31)

It follows that the filtrate velocity becomes simply

Uy = dL/at (x-32)

We use Emmons' approximation (X-17) again and introduce the following

‘nondimensional variables:
}\(T) = L/Lb ’

gE(MT) = /g,
and T = (—aﬁr)t : (x-33) ,

where Iy is the mat thickness at t = 0O and gg a suitable reference mat
density. The filtration equations are transformed into the thickening equa-

tions:
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Horeng o g oo e

and
[Jigdﬂ]T=o = xjigdn = constant (X-35) .

The boundary conditions valid for T > O are

(S0 = 5 B tO)

and (—g%—)n=l = 0 (X-36) .

In constant-pressure thickening we assume a succession of dynamic equi-

librium states so that
e = g - 1 (X-37) .

The initial and boundary conditions now are

EMO0) = 1, A(0) = 1
EMe) = & , N(®) = 1/E (x-38)

However, for O < T < » , the mat density distribution is continuously changing.

Equation (X-34) may be solved numerically under these conditions.
The constant-rate thickening is characterized by

h
at

= constant = -2h (x-39)

Introducing new variables:
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gx(n, ™) ,

§(T1;T) = ,
‘ 2ha'
T* = ~—2;;XN€—Lb—ln(l —-—YMQLD—T)
and 2 = 1 - -Ebéigblﬂ—-T (x-k0) ,

the thickening equation becomes

TE R0 ew,

with Equation (X-35) unchanged, except the value of the constant being
J;g(n,o)dn , with €(1M,0) as a given initial mat density distribution.
o)

Equation (X-41) may be solved by separation of variables.
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XI. GENERALIZED EQUATIONS FOR FILTRATION ANALYSIS

In the previous analysis of filtration it was assumed that the discrete
fibers would be completely retained on a screen. To account for the effect of
incomplete retention, the fibers are divided into two parts: retained and
unretained. Furthermore, if there are several types of fibers in the suspension
each type will have different retention probabilities at different locations.
Thus, the mat will have an increasing number of retained fibers as the filtration

proceeds until complete retention is reached.

The following treatment is due to Nelson (XI-1). Only the partial

differential equations will be developed to describe the filtration process with

incomplete fiber retention.
MODIFIED DEFINITIONS
For incomplete fiber retention the solid fraction is now defined by-

L-e = Z(wi + U%) ) i = 1,2,3---) (XI—l) s

where wg and wi are the volume fractions of the retained and unretained fiber

of the ith type, respectively.

While the definition of the superficial fluid velocity remains the same

as before,

U = eu (11-1) ,
there are two superficial fiber velocities. For the unretained fibers of each
type, the definition is

W = wew (Xxr-2) ,
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where the velocities Ei may, in general, differ from u . For the retained
fibers, however, there is a common velocity Ef so that
Up = @3l (xI-3)
On summing all types, we obtain
_ ZUi
= XI-4
sy Ewi ( )

ADDITIONAL EQUATIONS

There is no change in the continuity condition for the incompressible

fluid,

_gf— - T 3z (1I-6)

If all types of fibers have the same density pf ,  which remains constant, the

equation of continuity for the ith-type fibers is

gt (w; +&8) = - ‘gE" (U, + 1)) (x1-5)
and the summation of all types results in
R R 6

In the case that the fibers are all of the same type and completely retained,

the last equation reduces to the previous one (II-7).

The relative velocity is expressed the same as before,

§) = U -'ea

, " (1r-10) ,
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except that Ef must satisfy Definition (XI-4). We now define a local retenti

probability fg for the ith-type fibers as the probability of capture in a thin

layer of the mat, per unit thickness of the layer. The process of fiber retent:

in the undeformable case will then be described by

- BB (xx-7)

More generally, the derivative must be understood as a rate of change measured a

a point fixed in the (retained) solid phase, and W must be replaced by U% i
=z i

the relative superficial velocity of the unretained fibers of the given type.

~

The latter is expressed as

[};‘ . = Uol - ojiuf (XI-8)

y1

In a stationary co-ordinate frame, the resulting equation of fiber

‘retention becomes

dw. TU, Aw,
i i i PQIUp
il“r

5t T Tw, oz (X-9)

1l

It should be noted that, in principle, there are differences between the local
retention probability as defined here and the retention probability discussed
previously. The incident fibers at a given level will no longer display the
same kind of randomness in trajectory and orientation, and the presence of
unretained fibers may modify the fluid flow. One possible consequence is that
the local retention probability may depend, to some extent, on the relative

superficial velocity.
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PARTICLE RETENTION

To extend the previous discussion of fine particle retention, under the
conditions of solid-phase heterogeneity and incomplete fiber retention, it becomes
necessary to distinguish between several particle concentrations and fluxes. In
principle, a fine particle concentration and its flux must be associated with the
fluid, for each type of unretained fibers, and for each type of retained fibers.
In addition, it will be necessary to consider separately the attachment of free

particles to unretained and to retained fibers of each type.

The definitions of the particle fluxes are UC for free particles,
[ng for bound particles attached to the unretained fibers of the ith type, and
for bound particles attached to the retained ith-type fibers. The

conservation of small particles requires that
2 [eC + S(w.C! + uPC2)] = - 0 fuc + 2(U,c! + ®R)] (XT-10)
St € ivi T WM T T Ty ivi T Yivi

In any case where the definitions of particle fluxes are satisfactory, and the
fluid is incompressible, Equation (XI-10) may be simplified somewhat by application
of the equation of continuity for the fluid (II-6). The new particle continuity

equation reduces to the old one (II-5) under the previously prescribed conditions.

We now have to describe the processes by which fibers are retained, and

by which free particles become attached to them. For the first of these, we have
dwl
I% = %'U%,il (XI-11) .

There will also be a relation



= - (X1-12) ,

which will be discussed further below, and

ac
i dat

1
i

w = K |u.lc+ Bw g (X1-13)

1

In the last equation, the first term on the right side represents the acquisitior
of free small particles from the fluid, where the attenuation coefficient is

related to the collection efficiency by

K, = B, w2 w, (XI-14)

The second term represents the effect of the addition of fibers of the given type

as these are.retained at the locality in question.

Cdncerning tﬁe uhspecified funéﬁion C ; information will be fequired”
from other sources. The attachment of free pa;ticles to unretained fibers may
depend on relative motion with respect to the fluid, on diffusion, on saturation,
and possibly on other effects in addition to the probable dependence on free
particle concentration. A circumstance which might be realized under suitable
conditions is that each g% may be a constant, determined by the manner of

preparation of the suspension.

The generalization outlined above serves as a basis for future

development.
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XIY. STATISTICAL DESCRIPTIONS OF POROUS STRUCTURES

The objective of the sheet-forming process is to form a fiber mat of
a desirable structure. Because of its complexity the porous structur¢ has so far
defied a complete description. Certain efforts have lately been made in the
vgrious fields dealing with porous media to initiate some more rigorous analysis
of the problem than previously. All work is based on the statistical treat-

ment . We attempt here to present a brief survey of such work.
PORE GEOMETRY

Chalkeley, Cornfield, and Park (511;;) studied pore geometry by the
statistical method. Debye, Anderson, and Brumberger (zzg;g) used the same
principle to determine the specific surface of porous catalysts. Their work
is summarized in the following, based primarily on a recent paper by Prager

(XII-3).

A function f(z) of a position vector E within the porous medium
is introduced such that the function has the value of unity if i is in the void
region and zero if i is in the solid region. A complete knowledge of f(i)
would amount to a detailed specification of.the pore geometry. In its nature,

f(r) 1is a stochastic function.

The volume average of the function itself is the porosity or void

fraction:

e = <f@)> = =3 [, [E)NT (x11-1) ,
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where <f(?)> is cailed the one-point average. It represents the probability

that if a pin is thrown at random on a much enlarged cross section of an isotropic

porous medium, the pin head will land in the void region. Thus,
¢ = lim -%— (XII_Q) )
N, —~o Nt
t
where N, denotes the number of times when the pin head is in the void region

and Nt the total number of throws. The porosity so determined is the total

porosity including sealed pores, such as isolated bubbles or fiber lumina.

The surface of the void region may be ascertained by adding a length
vector § to the position vector E and carrying out the averaging process over

all possible orientations of E . The resulting two-point average,
S(B) = <f@)f(F +6)> (XI1-3) ,

indicates the- probability- that a pin having the length and direction of the
vector § will land with both its ends in voids. Again, for an isotropic
medium, §(3) will depend on the magnitude of 3 only. At & =0, the
product of f(i) by itself is obviously unity and its volume average is simply
€ . At & = o , the probabilities of two events in two voids wide apart are
independent of each other; the volume average of each being ¢ , the product is
therefore ¢? . Thus, the correlation function §(§) decays continuously from

€ to ¢ as § varies from O to o .,

If one end of a pin length § 1is fixed in a void, the probability that

the other free end will also be in void is

P,y = S(8)/e (XII-k) ,
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and the probability that the free end will be in solid is obviously
P, = 1-PF, = 1-58(8)/e A (XII-5) .

If the pin is thrown randomly, it is equally probable that the ends will

be in different environments,

B, - — _p, - 6_13_6(51_ (XII-6) ;

thus the probability of "dissimilar ends" can be written as

P, = eBgo + (L-¢e)By = 2[e - 5(5)] (XII-7)

If we aliow § to become very small and to take on all possible spatial orienta-
tions, while restricting its two ends to remain always in different environments,
the pin must cut and follow the surface between solid and void. From geometric

considerations the probability of dissimilar ends may be derived.

The end of the pin situated at an originvin solid must be within some
distance h< & from the surface. For a range of values of this distance between
h and h +dh , the volume which can be covered by the pin per unit volume of
thé porous medium ié Sdh . Furthermore, only certain orientgtions of the pin,
so fixed at one end, will allow the free end to penetrate'the surface. The

probability of penetration is

2ng (6 - h) ,
P = —,_—En—é,—sodh (X11-8) ,

and the probability of dissimilar ends is twice the integrated value of penetra-

tion:
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6
- L -h - Sab -9’
Py = esof0 55— dh = =4 (XI1-9]

By comparing this result with Equation (XII-7) it is seen that the specific sw

is

S, = -k [ﬂé)—é'e—] (XII-10

When & becomes small as previously stated, §(6) approaches ¢ , and the

value in the bracket approaches that of the derivative of §(6) with respect -

5§ at 5§ =0, and

s, = (35 (XTI-11

where the derivative is always negative.

Debye, et al. proceeded to establish the form of the correlation
function §(5) ‘for a completely random and isotropic porous medium. If the -
of length & has one end fixed in void, P, will change only if the additio

of A6 will allow the pin to cross the surface of void into solid or vice ver:

The free end of the pin must lie within a sheet of thickness A§ cos
to allow 6§ + A8 to cross into solid, ¢ Dbeing the angle which the pin makes
with the normal to the surface. The average value of this thickness is given
by the integral over all possible orientations of §

n/2
A . A8
—E——j; sing cosp dp = . (X11-12

The change in Py , when &6 is changed by A% is
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AP, = <—°—>\ P, . (XTI-13)

-

since it is possible for the free end of the pin to be already in solid, an
additional term is introduced to account for the positive contribution to B,

by the growth of § into another void region. Thus,

bRy = '(‘S"‘)(‘lﬁé— 1% +<l = e)( )Plo (XII-14) ,

which in the limit becomes

dp P, P,
11 _ 12 10 - .
ds - _Eb'[ € 1l - ¢ ] (XII-15)

Substituting Equations (XII-4) and (XII-5) for P, and B, , respectively, we

obtain

dggé) = —E’ﬂ-[—?—y—f i)_'ee ] (XII-16) ,

the solution for which is

- e[ ] pa1-17)

Thus, for an isotropic medium with é random distribution of voids and
solid elements, the correlation function is exponential. In order to define the
shapes of the pore region, at least a three-point average .is necessary. Such a
treatment becomes very involved mathematically. Furthermore, the extension of
the theory to anisotropic porous media such as fiber mats perhaps needs substantial

modifications.
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Prager proceeded to outline a general method of predicting the permea-
bility of an isotropic medium by the principle of the least energy dissipation.
Using the three-point average, Weissberg and Prager (XII-4) calculated the viscou:

resistance of a bed of widely dispersed spheres to be 25% below the true value.

PORE INTERCONNECTIONS

The often-used term "pore size" is not well defined. A common way of
characterizing the pore-size distribution is made in terms of capillary pressure
in a partially saturated medium, such as Parker's work (glz:é) on fiber mats.
Across a curved interface between two fluid phases occupying a capillary, a
pressure difference exists, arising from the surface tension of the liquid. The
pressure on the concave side of a liquid meniscus is always greater than that on

the convex side.

In a system of capillaries, a quantity of liquid will distribute itself
iﬁ thé small péfés untiira state bf eduilibriuﬁ is feachea, af which all of:the
liquid-gas interfaces will have the same curvature. Conversely, if a pressure
difference is imposed on the system of capillaries completely filled with liquid,
the liquid will be displaced from the system by a gas until the remaining liquid
is Just sufficient to océupy the small pores in accordance with the capillary law
The volume of liquid retained per unit volume of the void space is called satura-
tion. By measuring the capillary pressures at various degrees of saturation, th
equivalent radii or pore sizes may be calculated on the construction of a capille

model.

To describe the pore geometry adequately, not only the pore-size
distribution, but also the interconnection of the pore spaces must be considered.

Fatt (XII-6) proposed a network model in two dimensions, in which cylindrical
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tubes of a certain radius distribution are interconnected in a definite manner.
The choice of size distribution and network form were left open to pré&ide
flexibility in model construction. The number of cross connections per tube is
called the B, factor, a number depgnding on the network form. Two models of

Fatt, a square and a triple hexagonal network, have B, factors of 6 and 10,

respectively.

By taking a certain pore-size distribution and network form, the
capillary pressure-desaturation or pore-size distribution curve may be consfructed
with the aid of a random number table and with the assumption that the length of
a segment of a tube between two cross connections varies with its radius in a

definite manner such as

L, = BoTo O (x11-18) ,

Bo and vy, are dependent on the network form and porosity.

The network model is reduced to a bundle of tubes if vy, = O and

Bop = = . By analysis of these networks Fatt. arrived at the following conclu-

"sions: (1) The form of the capillary pressure curve obtained on a porous medium

is" determined almost entirely by the pore-size distribution while the network
structure has little or no effect. (2) The observed dynamic properties of
porous media, such as permeability, are determined entirely by network structure

while pore-size distribution has little or no effect.

Rose (XII-7) further expanded the square network to three dimensions
and called it a tetrshedron 3-D network. The B, factor for tetrahedron is 22.
By choosing a certain pore-size distribution and a certain tube segment length-

radius function, the model may be constructed by programming on a computer.
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It is then possible  to predict permeability of this model. However, such pre-

dictions have not yet been made because of considerable calculations involved.

From the above brief review of the recent advance in model simulation
of porous media, it appears that a major defect is in the omission of pore shape.
In spite of all the elaborate construction of pore-size distribution and cross
connections, some empirical factor may still have to be introduced to bring the

models into agreement with the experimental data.
FIBER INTERSECTIONS

Some workers such as Kallmes and Corte (XII-8) have approached the

problem of fiber structure by dealing with the solid elements, rather than the

pores. From such a standpoint, the treatment must begin with an account of fibe:
intersections in the structure. The following analysis is due to Nelson (XII1-9).

Let us consider straight fibers of a single length L. and of negligib!

f

transverse dimensions. The fibers are to be arranged in spacé in such arﬁay tha{
the centers of their projections on the x-y plane occur randomly and uniformly in
some region, the number of centers per unit area being Ef . The orientation of
each fiber will be specified by a polar angle 6 measure; from the positive z
axis, and an azimuth ¢ which is the angle between the positive x axis and the
projection of the fiber, as shown in Fig. VIII-2. For convenience, a preferred
direction along each fiber (and its projection) will be chosen, such that

0O<9 < ﬂ/2 . We must now determine, or assume, a frequency function g(e) , fc
the angle 6 , and it will be supposed that this has been normalized so that

hn/2

Iy g(6)ie = 1 (XII-19)
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To complete the specification, the values of the azimuth ¢ are to be
' random and uniform on the interval C s ¢ < 27, and it is assumed that 6 , ¢ ,
and the fiber center location in the x-y plane are uncorrelated. We wish to

calculate the frequency of intersections in the x-y plane.

The frequency function f(g?) for the projection Ef of half the fiber

length will be required in the sequel, and from the relation R, = (Ef/2) sing we

conclude that

(arcsin{2R_/L.]1)
g(arcsin[2R./L; (X7-20)

2 6
f(Rf) - _f_.JiL_l_ =

2
g CO%® bt - (2R _JLP

Let the center of the projection of one fiber fall at point g in the

X-y plane (Fig. XII-1) and let the value of R for this fiber be R All

~f —f

other fiber projections are to be considered in classes, within each of which
the azimuth ¢' has nearly the same value. The number of fiber projections,
per unit area, having values of ¢' within a small interval Ag' , is Nidg' ,
where Ny = Hf/(2”) . For one such class of fiber projections, we select those
cases for whi;h the center lies in a narrow strip (having the azimuth ¢') of
width Ah , at a distance h from H . We consider first the intersections

which may result when the azimuth of the fiber projection with center at H has

a given value, P .

The probable number of centers of fiber projections, of the class

considered, falling within a rectangle of area AEABf , at a distance Bf from

point J , 1is §1A¢'A§A5f . Of these, a fraction will have polar angles 6

such that actual intersections will result. Allowing for this, the count is



Figure XII-1.

Evaluation of Fiber Intersections
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f/2
Noy = Mg AhARff (R )R (X11-21)
Re
Integration with respect to Bf yields
Lf/2 Lf/2
NC’2 = N, Ag'Ah X 2f I dede (X11-22)
Rp
or
L,./2
N = 2N A 'AhJ‘ f R!f (R" )AR" (X11-23) .
c,2 159 R S

The probability that ¢ will fall in a given small interval Ag is Am/(En)
We now multiply by this probability and integrate over the allowable range,

inserting first a factor of 2 to account for equivalent orientations of the

projection which has its center at H . The result is 1
2 h
N, 5 = 2N, o =5 arccos _f (XII-24) |
!
We may now integrate with respect to h , obtaining
L./2
N oy 'J T RUF(RM)AR" x 2R! (XII-25)
c,h SRR PR (A S £

The variable B% has the frequency function f(g%) 5 multiplying by

this, and integrating with respect to R we find

1
= ’

L./2 L./2
u 1 f "n i i f t t 1
Ne s = — Ndp jo Rff(Rf)de X 2 Jo Rff(Rf)de (XII-26)
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or

8~ rrbe/? ?
Nos = = Moo U'o Rof (R AR, | (XII-27) .

Integration over the various strip orientations ¢' now gives

8 Le/2 :r 8)
NCJ6 = — N Uo Rff(Rf)de (X11-2
Fiber projections, such as the one having its center at H , occur so as

to provide, on an average, Hf centers per unit area. We therefore multiply the

last result by N but we must also divide by 2, inasmuch as we will have counted

f J

every fiber intersection twice. The expectation value of the number of intersec-

tions per unit area is thus

NC’,{ = fuo Rff(Rf)de]2 (X11-29) .
If all the fibers lie in the x-y plane, or are parallel to 1t, we have
g(8) = O when 0<6@g < n/2 , and thus g(6) is singular in the manner of a
delta function at n/2 . The quantity in the square bracket in Equation (XII—29)

becomes Lf/Q ; and we find

N = (L/m )N@sz (XII-30) ,

which is Equation (VI-1).

If the fiber orientation is isotropic, we have g(e) = sin® . The
quantity in the square bracket in Equation (XII-29) is found to be (n/8);_f s

which gives
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NCJ7 = (n/16)1\12fL§. (XII-31)

As might be expected, this quantity is smaller than that computed from (XII-30),

given the same Eféf product; the ratio is approximately 1.621:1.
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XIII. INITIAL EXPLORATION OF FIBER-WIRE INTERACTION

Aside from its effect on fiber retention, a wire screen also contributes
resistance to flow. In the later period of a prolonged filtration the wire
resistance can be safely neglected, compared with that of a thick mat. During
the intérmediate times the assumption that the pressure drops across the mat and
the wire are additive is reasonable. However, in the beginning of filtration
such an assumption may lead to serious errors in predicting drainage because.of
hydrodynamic interactions between a thin mat and its supporting structure.

The following analysis is an initial attempt by Meyer (XIII-l) to resolve this

problem.
TRROTATIONAL FLOW

The hydrodynamic potential theory dealing with irrotational flow of an
ideal fluid (constant p and zero u ) is a mathematical abstraction of a real
" system in which vorticity generated in the boundary zone does not appreciably

disturb the main flow (IV-2). Such flow follows the Laplace equation:
Ro = O (XI1r-1) ,

where the potential ¢ 1is a scalar function applicable to fields such as electri-

cal, magnetic, gravitational, temperature, and pressure. A vector called its
gradient can be derived from a potential by partial differentiation. For irrota-
tional flow, ¢ is the velocity potential (Ex = Xp/dx, 4, = Xp/ 3y, EE = aw/ag

Meyer considered steady two-dimensional irrotational flow through an
array of parallel cylinders (Fig. XIII-1) as a simplified simulation of a wire

screen.  Introducing the stream function ¢ , such that
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Figure XIII-1.
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u,o= 0, u, = - -5%— , u, = —§§— (XI11-2) ,

the equation of continuity (IV-5) calls for

(XIII-3) .

2
i
(@]

Furthermore, the velocity at the surface can only be tangential, that is,

gy .
e - 0 (XIII-4) ,

where S represents the surface element; thus, at the surface,
as® = dy® + dz2 (XIII-5)

Let r, be the radius of the cylinders and d, the center-to-center
distance between the cylinders. For potential flow around a single cylinder with
the approach velocity u, the well-known solution of Equations (XIII-1),

(XITI-3), and (XIII-4) is expressed in terms of the complex potential:

2
{ i = _.EQ. -
o +1iy = U_(Z + Z ) (XI11-6) ,
where Z 1is the complex variable, 2z + iy . Now for flow through an infinite

array of cylinders with spacing d, , 1t can be shown that the solution is

. d . mr, nZ
o + iy = U2+ —;Q-s1nh2(—7i?—) coth( 3 )] (XIII-7)

Upon taking the imaginary part of the solution we have

d, . mr, sin(2my /4, ) )
R o il (o7 (g vt =y g (xIr1-8)
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pecause Of the symmetry of the array it is sufficient to evaluate ¢{ in the range

of 0y s (QD/E) and -® <z < 4w .

For a real fluid there will be an irreversible loss of pressure as a
result of the flow. We assume that the velocity distribution remains the same
from z = -® to z = O , and all energy dissipation occurs in the downstream

because of flow separation.
FLOW CONVERGENCE

The macroscopic viscous flow through a homogeneous fiber mat follows the

Laplace equation:

#p = O (XI11-9) ,

in which the gravitational effect is neglected, and p may be treated as the
potential ¢ . For two-dimensional flow, the superficial velocity components

may be expressed in terms of the stream function ¢ :

d 5] .
u =0, U = -TB-VZ—, U, = jbﬂ'r— (XIII-10) ;

then according to Darcy's law and continuity condition, we arrived at the same
equation as (XIII-3). 1In view of the similarity between the viscous flow through
the mat and the potential flow through the simplified screen, we consider that the
previous solution (XIII-8) would also be applicable to the mat-wire combination if
we interpret the approach velocity to be u, - For an isotropic mat with constant

resistance, we modify the Darcy law for two-dimensional flow as

- gp = gﬁ’r = U_n(y,z) (XTII-11) ,
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where

e cosh(2nz/d, ) cos(Cny/d, ) - 1
d, [cosh(2nz/d,) - cos(emy/d, )12

w(y,z) = 1 - 2sink®( (XIII-12)

This is equivalent to saying that the streamlines of superficial flow through a

thin mat, originally straight in the flow direction, become curved, owing to the
obstruction of the cylinders, the dimension of which is very large compared with
that of fibers. Via such an abstraction we proceed to integrate Equation (XIII-
The integration is performed first in the z direction over the mat thickness and

then in the y direction to obtain an average % for the flow.

The mat with thickness I, may lie flat on or drape slightly over the
cylinders, as shown in Fig. XIII-1. For the sake of simplicity, its deflection

contour is described by
6 = NyT, sim (my/d,) (XIII-13)

with the maximum deflection N, 1, located at the midpoint between the cylinders
The deflection parameter n, may vary from zero for a flat mat to (l/2)(n§o/c_1D

for the draped mat. The integration limits may be specified as
2y = -rgll + Ly/r, - n, sin®(my/d,)] < ‘z s oz + L
and
0 s y < 4,/2.

The result is expressed as

—al-——LAEL— = Uxn (XIII-1h)
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where
_ 5 d0/2 Zy +1y
no= ——————-I J w(y,z)dzdy (XIII-15) .
ol do
In this way n is obtained as a function of the deflection parameter
n, the relative mat thickness parameter I,r, , and the cylinder spacing
parameter fb/go . The double integral has been evaluated numerically, and the

results are shown in Fig. XIII-2 in terms of these parameters at Eo/go = 0.227,

equivalent to a screen porosity 0.65. It is seen that » is either equal to or
larger than unity. At a finite 1n, , its value increases rapidly with decreasing
§3/§> for thin mats. Conversely, it approaches unity as the mat becomes rela-

tively thick. The pressure drop calculated from Equation (XITI-14) includes
the additional energy loss in the mat due to curved flow in the presence of
downstream cylinders. For a flat mat, n, =0 , and % =1, indicating no

effect of flow convergence by this analysis.
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XIV. HYDRODYNAMIC APPROACHES TO FIBER FLOCCULATION

-

The problem of fiber flocculation is of such a complex nature that it
has so far defied a precise definition. Broadly speaking, the'flocculation of
fibvers in a fluid consists of fiber motion, collision, and interaction in a field
of forces. The forces involved arise from mechanical, electrostatic, and
molecular origins. For the sake of clarity and at the risk of oversimplification,
we shall restrict our discussion largely to an aqueous suspension of cylindrical

fibers.
FIBER MOTION

In order for the collision of fibers to take place, they must approach
one another by virtue of their motion. The motion of fibers is -governed by
hydrodynamic forces. The simplest case is slow translation in a viscous fluid.
The steady linear motion of an infinitely long cylinder in a direction perpendicu-
lar to its axis in an infinite expanse of a Newtonian fluid (its stress being

directly proportional to the rate of strain) follows Lamb's solution (XIV-1):

hnuULf
P = 2.002 - 1n Re (XIv-1) ,
where Em is the force required to maintain a linear velocity U . The Reynolds

number, Bgf ; 1s defined as pgfg/u y Which is restricted to much less than

unity.
It is obvious that Lamb's solution is the limiting case of a finite
c¢ylinder. Burgers (XIV-2) developed an expression for slow translation of a

finite cylinder with a large axis ratio as
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hnuULf
Fo = In (2L./d, - 1/2)

(XIv-2)

This is closely related to Oberbeck's solutions for ellipsoids (XIV-3). Solu-
tions for curved cylinders have been developed by Tchen (XIV-4). For a cylinder
with a uniform radius of curvature r and an angle § between r at one end

and the bisector, Tchen's general result is

F_ = 2muUryf _ (X1v-3) ,

where the friction coefficient, nugm ; 1s a known function of § and Lf/gf s
- depending on the direction of motion. Tchen's solution reduces to Burgers' for

straight cylinders.

The wall effect on the motion of a particle was recently generalized by

Brenner (XIV-5) to be

1
1 - kw[Fm7ZBnuwa)]

F
— (XIv-4) ,

[o o]
in which gw is the diameter of a circular wall or the distance between two flat
walls. The constant Ew is supposed to be dependent 6nly on the shape of the

boundary. The two particular values of Ew are 2.104 for a circular wall and

1.004 for two parallel infinite flat walls. In both cases the particle must

move parallel to and symmetrical with the walls.

For somewhat higher Reynolds numbers (Bg > 1) the inertial effect

must be taken into account. Brenner suggested the generalized correction:

F
F ®

2]
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Above the unity Reynolds number flow separation begins to occur and a wake of
eddies is developed behind the moving particle. The drag coefficient, defined
gimilarly as the friction factor, becomes a complex function of the Reynolds

number.

When a number of particles are present in a confined space, their
motion is influenced by one another as well as by the boundaries. Even the
simplest case of gravitational settling of spheres in a very dilute suspension
requires involved mathematical solutions of the hydrodynamic equations. Happel
(ZIY:Q) has attained partial success in this analysis, but encountered difficul-
ties in dealing with agglomeration of particles, which is of chief interest in

the phenomenon of flocculation.

When a fiber is present in a shear field, its center will follow the
motion of the fluid, provided its inertia is negligible. In addition, it will
execute rotation under the influence of a torque arising from the velocity
gradient. As a consequence of rotation, it develops a force which imparts
perturbations to the shear field, as manifested by an apparent increase of the
fluid viscosity. In the simplest case of fibers suspended in a Newtonian fluid
undergoing viscous flow with a linear shear field, the ends of a fiber will
rotate in a spherical elliptical orbit, describing a surface roughly corresponding
to a double cone, with the period of rotation directly proportional to the axis
ratio and inversely proportional to the velocity gradient in accordance with
Jeffrey's analysis (EIY;I) of ellipsoids. Burgers analyzed the effect of
rotation on the shear field for a very dilute suspension and concluded that the

8pparent viscosity of the suspension would increase by the following amount:

= 1 +¢dPC - (xIv-6) ,
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where

£ = 6[ln(§if/df) - 1.80] sin*@ sin®2p

(XIV-7)

C 1s the volume concentration (volume of fibers per unit volume of suspension),
and of a coefficient to account for the effects of axis ratio and average
rotating orbit. The spherical co-ordinates 6 and ¢ , describing the

orientation of a single fiber, are defined in Pig. XIV-1.

For higher concentrations, Blakeney (XIV-8) introduced a correction

term to Burgers' expression as follows:

S = 1 +PC +RO(PCP (x1v-8) ,

where f° 1is an empirical factor.
FﬁOC FOﬁMATIONV

When two fibers approach each other and result in a collision, a
disturbance in the motion of either fiber must occur. For neutral fibers a
doublet is formed, which is a temporary association of the two fibers in a
common motion at the instant of collision. The doublet has a finite 1life, at
the end of which the two fibers separate from each other. The collision
involves an interpenetration of the rotating orbits and the separation resulté
in different orbits from the original ones. By analogy with the earlier analysi
of spheres, Mason (XEKLQ) asserted that the collision frequency of rigid fibers
in a dilute suspension is proportional to the product of concentration and

velocity gradient. He further suggested that above a certain concentration sucl

interaction becomes almost continuous. The concentration at which free rotatior
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are inhibited was shown to be inversely proportional to the square of the axis
ratio. At higher concentrations the formation of multiplets becomes highly

probable.

The motion, collision, and interaction of fibers in a shear field were
viewed by Mason as the hydrodynamic process of floc formation. In this way a
floc can grow in size upon acquiring more fibers. Meanwhile the flocs are
progressively broken down under the fluid shearing action. A dynamic equilib-
rium is established between the growth and breakdown of the flocs. The state of
dynamic equilibrium shifts to the direction of higher dispersion with increasing

dilution and shear.

The interaction of neutral fibers in a floc is dependent on their
distance of separation. In investigations of water-solid interfaces, some
workers, especially Derjaguin (XIV-10), hypothesized the existence of a rigid
water layer with a shear modglusrfrpm lQ‘6 to 10'4,dynes/cm.? at a thickness of -
therofder of 10°% cm. The rigidity was attributed to the orientation of polar
molecules on the solid surfaces. It was also possible to conceive an "immobile"

water layer associated with microscopic roughness of an apparently smooth surface

(XIv-11). With such a concept the average distance of separation could be from
104 to 10°® cm., depending on the surface roughness. In any case a very thin
layer of water must adhere to the surface. If the layer consists of only two

to three molecules, its thickness would be of the order of 1077 cm.

Once the fibers come into close proximity, further reduction in the
distance of separation would necessitate viscous flow of the water in the mobile
layer. This is a time-dependent process, the frictional force being inversely

proportional to the time of interaction. In view of the possible existence of
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a rigid or immobile layer, the magnitude of such forces could be large at short
times, or the final distance of separation could be appreciable at a higﬁ velocity
of approach. From the foregoing discussion of the hydrodynamic factors involved

in a floc, it appears that the possible range of separation is somewhere between

104 and 1077 cm., and the probable average value is of the order of 10°% to 107©

cm.

The attractive forces which tend to hold fibers together are always
present. For neutral molecules the Van der Waals-London potential energy of
attraction due to the dispersion effect is very nearly proportional to the dis-
tance of separation raised to the negative 6th power. The attraction potential
between two macroscopic bodies appears to be inversely proportional to the 2nd or
%2rd power of separation (XIV-12). Accordingly, the attractive force decreases
with the separation to the power -3 or -4. Roughly speaking then, if the dis-
tance of separation is 10°® cm., the potential energy of attraction is negligible
while at 10°® the attractive forces become appreciable. In light of the previous
account for the distance of separation, the attraption between fibers would be,
in general, raéherzsmall, but could be very large at some points of virtual

contact.

Most practical fibers are not neutral; Ceilulosic fibers carry weak
negative charges in distilled water. The existence of zeta potential and the
possibility of increased thickness of the immobile water layer have also been
demonstrated (XIV-13). 1In the presence of ionic compounds certain ions tend to
adsorb preferentially onto the fiber surfaces, then a diffuse layer of the
opposite ions will be surrounding the fibers. As a result of the ionic inter-
action, the fibers become strongly repulsive to one another. The electrostatic

repulsion is of the exponential nature beginning at a separation of about 10°% cm.
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Cellulosé fibers possess hydroxyl grdups which are polarizable.
Consequently, attraction potential due to orientation and induction effects
should also be taken into consideration. On the other hand, they are also com-
posed of glucose polymers, the ends of which are soluble in water. If these
dissolved ends constituting a part of the fiber surface tend to orient with one
another in an orderly manner between approaching fibers, it would mean a de-
crease in entropy, and therefore would prevent themselves from doing so. This
phenomenon may be called the entropic barrier. The entropic repulsion is also
of the exponential nature beginning at a separation of about 10°% cm. (XIV-1h).
Thus, either attraction or repulsion may be reinforced by introducing a suitable
polymer which would adsorb on the fiber surfaces, the result depending on the

nature of the polymer.

From the above review of the possible mechanisms of floc formation,
perhaps only one point has emerged clearly: Fiber flocculation is an extremely

complex phenomenon.
FLOC DISPERSION

Aside from the chemical means of preventing fibers from flocculation,
the state of dispersion is maintained by shear stress. An initial attempt to
describe flocculation would be to establish the size of a floc subject to its
stresses. Meyer's approach (XIV-15) to this problem is interesting; a brief

account of his analysis follows.

Consider an isolated floc as a porous sphere of fibers suspended in a
simple shear field, such as shown in Fig. XIV-1. A rigid sphere will execute
a uniform spin about the z axis with the angular velocity w , which has been

shown to be directly proportional to the velocity gradient G 1in the Xx-y plane.



-117-

If we now boldly assume that flow takes place through a porous floc without
causing significant perturbations in the external flow field, the fléc, subject
to tension and compression, would tend to deform into a prolate-ellipsoid. The

maximum tensile stress sustained by a floc of radius r, 1is estimated to be

o . = i3 (XIV-9)

max

where a 1is the viscous flow resistance of the floc. Conversely, if we know
the tensile strength of a floc, the maximum floc size would be determinable.from
the velocity gradient and viscous resistance. This approach might lead to an
approximate description of the state of flocculation in a turbulent shear field
provided the interactions of flocs among themselves and with the flow field would

not render the analysis untenable.

—Xh
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XV. RATIONAL ANALYSIS OF TABLE-ROLL SUCTION

The analysis of table-roll suction was initiated by Wrist (K!:i),
independently formulated by Taylor (Z!:g), and recently extended by Meyer (Zy;z)
This development, concurrent with the work on filtration by Ingmanson, Han, and
Nelson, signaled a new approach to the modern art of sheet forming. It is
worthy of a critical review for the simple reason that an appropriate union of t
two interdependent factors, suction force and flow resistance, will greatly

clarify drainage on the fourdrinier machine.

ORIGINAL CONCEPTION

Wrist's conception of table-roll suction involved only simple physical
reasoning. He first assumed that as the wire moves away from the contact with
the roll, the two adjacent points remain almost in a vertical line and separate
with the velocity ng/go (Fig. XV-1). If the drainage velocity U, is equal
to this valﬁe, thé sﬁZtion can be calculated as that which would be producédrinr
a cylinder with a porous top by the downward motion of a piston. Assuming that
the flow is viscous through the porous medium at constant resistance a, , the

suction would be Eogwf/fo

Wrist's contention would then lead to the prediction that the suction
in the table-roll nip should increase indefinitely with X . To explain why ti
suction stops increasing, he proceeded to make a second assumption that it céas<
to increase at the point at which the inertia of a stream moving at gw reache:

atmospheric pressure against an adverse pressure gradient. This assumption

would predict the existence of a maximum suction equal to pgz/E ;  which would

ocecur at X = (l/2>zppgﬁ/éb
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The two-assumptions are incompatible with each other, as pointed out ’
Taylor. The first implies no lateral pressure gradient in the nip while the
second affirms the existence of such a gradient except at the point of the maxi:
suction. In spite of this inconsistency, Wrist's work has cleared away the

previous misconceptions and led to a rational analysis of the table-roll action.

According to Wrist's simple theory, the drainage (volumetric flow rate

per unit width is equal to (l/8)£§p?gz/é§ from zero to maximum suction.
HYDRODYNAMIC ANALYSIS

Referring to Fig. XV-1l, Taylor began his analysis with the contention
that the pressure at any point in the nip varies with x only, the small varia-
tion with respect to 2z being ignored. In general, the drainage velocity is a

function of the suction:

Y

7U = f(H;) ’ Q; = pa -p 7 (val) ,

where 1p, 1s the suction which is the differenée between the atmospheric pressu

18 and the hydrostatic pressure p .

If there is no mixing of the water in the nip, the variation of the
velocity and pressure along a streamline such as Xx - 5? follows the Bernoulli

law:

B -0 = Yeel(GP -] (xv-2)

For a stream with unit width and depth dz , the condition of continuity require

— 0 -
Uodx = uxdz (xv-3)
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The combination of the last two equations results in
Udx = [ + -2 (B - ) %z (XV-h)
w P

A further condition which must be satisfied is that the nip is completely filled

with water. Since the nip is narrow, its depth may be taken as
20
: 2
20 = _Lgll__ = J dz (Xv-5) ,
2r, o

and the condition of complete filling may be expressed as

(x°)?

o .
2r, (XV_6)

In the case of viscous flow through the mat and the wire, the drainage

is assumed to be proportional to the suction:
Bo = &Uj, (xXv-7)
Then Equation (XV-6) at constant g, becomes

0 [pg/ (Y20t2)]ley/ (rq0U, )ix]

2
(2] - R e
o) o} -~ - =
W [+ =8 - = nl"2/y,
which has been rendered to the dimensionless form:
X P
(¥R = J 0 y dax (Xv-9) .
° [1+H8 -5J)?2

In the other extreme of turbulent flow through the mat-wire system, the drainage

is assumed to be proportional to the square root of the suction:



(Xv-10)

If b, remains constant, Equation (XV-6) may be similarly expressed in the

)

dimensionless form:

X0 Y,
r - | [T « (xv-11)

in which E, and ¥ remain as before, and

x0 b, X b,
X = ™ 55 X = A (xv-12)

The solutions of Equations (XV-9) and (XV-11) under the boundary conditions:

3 =0, at ® =0 and B =0, as x® - o, were given by Miller (XV-L).
The general shape of the suction distribution curves are similar for both cases,
as sketched in Fig. XV-1. They reach the maximum value pgz/E at X0 = 1/2 a
fall to practically zero at z? = 1.5 . The suction is alw;&s higher for
Viscoué drainége than that for fﬁrbuleﬁt drainége prior to the maximum: The

reverse is true after the maximum.

The drainage per unit width for the viscous case is

6 - Lo - L e i Ceee )

Integrating numerically with Miller's values, the result was found to be

0.2951, U2 /&2

Taylor also analyzed the case of complete mixing by turbulence in the
nip without surface friction. For viscous drainage he concluded that the maxi-

mum suction will increase by a factor of 1.4 over the nonmixing case.
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Bergstrim (zz;z) deait with wire wrapping around the roll. He con-
cluded, on the basis of Taylor's theory, that the suction profile wouid have the
game general bell shape with the identical maximum suction but a narrower spread,
as a8 result of the change in the nip geometry. He further demonstrated that
increasing drainage resistance along the nip would still produce similar suction

profiles, again with a narrowing spread compared with that for constant resistance.
POSSIBLE EXTENSION

Meyer extended Taylor's analysis to include both viscous and inertial
effects in the nip. He treated the flow as two-dimensional (x,z) and showed that
the boundary-layer equations apply. For viscous flow through the mat and wire,

he arrived at the drainage equation

6 = G/, (D] e

The first parameter in the function represents the effect of the differential

wire-roll speed. For a foil, !R = 0 . For a table roll without slipping,
QR = Hw . Tn both cases this parameter becomes inconseguential. The second

parameter accounts for the combined effects of the mat resistance and the flow
pattorn in 'he o wip. Mover s contention is that the second parameter will
accutnl, tor o omeximunm suction different from Taylor's constant value (OUW/Q)

due to the additicnal energy loss in the nip.
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XVI. EXPLORATORY DISCUSSION OF TWO-WIRE FORMING

High-consistency and symmetrical drainage are desirable features of
two-wire forming for high-speed machines. In view of its future importance,

we have made a preliminary analysis of two-wire formers, based on the filtration

theory. The following is a brief summary of Meyer's recent work (XVI-1), which
is subject to experimental verification and further modification. A schematic

diagram of two possible wire arrangements is shown in Fig. XVI-1.
CONSTANT PRESSURE

The top sketch in Fig. XVI-1 shows a hypothetical forming zone between
two stationary symmetrical straight wires converging at small angles 6 . For
viscous flow of a pure fluid at constant resistance g, maintained at a constant

external pressure p, , the internal pressure p. and the drainage velocity EO

would remain constant along the forming zone:

pi-po

U, = U, sinp = (XvI-1)
0] 0 g
and
l e
Py +~-zr-pUg = constant (xvi-2) ,

where U, 1s jet velocity.

Accordingly, as shown in the bottom sketch, for wires moving at the
horizontal velocity Hw equal to U, the angle ©® must decrease in order to

accommodate increasing web thickness at constant pressure for an incompressible

material:
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P; -k = &aLU, sin® = uR U, (xXvi-3) .

By a simple fiber balance the basis weight may be calculated from

t

x0
W = ps f Udt = —o— J U, dx (XVI-b)
o O U 0

W X

Assuming no fiber-wire interaction and a constant wire resistance R, we have

Co RUq
= u(R U, + ——I Uydx) (XVI-5) ,
w

Ap = p(Rw + RW)UO

which may be solved to yield the drainage velocity:

_}/
: _ _bp [ 2c,RAp _ ] ° _
X Uy = my 1+ “RiUw (X - x) (xv1i-6) ,

where 59 is the forming length for the desired final basis weight Ef as

0 - [+ RW/R )2 - 1)/[2c,Rop/(uERU, )] (xvI-T)

The contour of the wires follows the equation:

u y
_ W 2c, RApXO:IQ_[ 2¢ RAp ] }
H = g { [l + __E%iﬁ;—_ 1+ “Rwa (XVI1-8)

From this analysis the major conclusion is that the approach flow will
remain uniform at constant pressure provided the wires are symmetrically convex
shaped. However, the wire ‘contour will have to change with operating conditions

in order to insure satisfactory formation.




-127-

VARYING PRESSURE

If straight symmetrical, rigidly supported wires are used, the internal
pressure will change at constant external pressure. Assuming again viscous flow
at constant wire and specific resistance, the filtration equations may be solved
for 6 and 5? . In this case, adjustment of these two geometric factors of
the forming zone together with applied suction would accommodate a range of
operating conditions provided the internal pressure rise would not cause serious
difficulties in mechanical operation and sheet formation. Furthermore, this
concept is also applicable to compressible mats. It can be shown that the
internal pressure would rise to a maximum and then fall to the initial value.

The drainage would be less than the constant-pressure case at the same maximum

pressure for the same forming length.
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"How sound a theory actually is can be shown by experience alone. To t
subject to mathematical analysis, practically any problem in fluid motion must be
idealized to some extent, but it is experience which limits the assumptions of the
theorist to those which are physically reasonable rather than merely mathematicall
convenient, In problems not too far afield from others already solved, prior
experience is often sufficient. Wholly new problems, on the other hand, may well
require new experiernce, else unguided simplifications will very likely lead to
rhysically impcssible conclusions. Mathematical analyses, in other words, must
not onLy be limited to realistic hypotheses but must ultimately be subjected to

o

experimental verificatica.

(Fouse, Hunter, Ed., Advanced mechanics of fluids.
Chap. I. p. 3. New York, John Wiley % Sons, 1959



PART TWO

EXPERIMENTS AND RESULTS
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XVII. MAT COMPRESSIBILITY BY STATIC COMPRESSION

The behavior of a fiber mat in response to compressive stresses 1s far
from being a simple phenomenon because of the complex structure of the mat and the
viscoelastic nature of most fibers. The experimental studies of Ingmanson
(111-9), Wilder (III-10), Jones (XVII-1), and Elias (XVII-2) have clarified a

number of important points, but many questions remain to be answered.

In review of the static compressibility experiments we restrict the
gystems to the unbonded wet state under a uniformly applied load. Our primary
purpose is to establish the compressibility functions introduced in Part One. We
also attempt to explain some of the underlying factors so far as our present

understanding permits.
COMPRESSIBILITY TESTS

A rather elaborate device was used by Wilder and Jones in their experi-
ments, as shown in Fig. XVII-1. The major features of the apparatus are (1)
forming a uniform mat, (2) minimizing the edge effects, (3) applying a steady

load, and (4) providing a swift and precise measurement of the mat thickness.

A uniform mat is formed on a septum from a very dilute and well-
dispersed fiber suspension at a slow constant rate. The forming method will be
described in detail in a subsequent chapter. To minimize edge effects the mat
1s made relatively large (3 to 5 in, diameter) and kept unconfined by removing
the forming tube and trimming the mat circumference if necessary. The steady
application of a load is achieved by means of a movable piston guided in its
downward travel and counterbalanced by a weight; additional weights are then

gently placed on the piston. The initial mat thickness is measured with a

e —— e



-130-

e e

Compressibility Apparatus

Figure XVII-1.
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cathetometer or a dial micrometer and the change of thickness with a linear
veriable differential transformer in conjunction with an audio oscillator and a
vacuum tube voltmeter. With such apparatus data may be obtained for compression

and recovery, as well as creep and recovery.
GENERAL BEHAVIOR

The complex response of a fiber mat to compression and recovery is
illustrated in Fig. XVII-2, taken from Jones' study. These data are for loblolly
pine summerwood pulp, prepared by the kraft process, bleached to 0.3% residual
lignin, and classified for the removal of fines. In the log-log plot the first-
compression data of mat density vs. applied pressure for a freshly formed mat
under successively increasing loads may be divided into linear and curved regions.
The linear region extends upward from approximately 10 g./sq. cm. in applied
pressure. Toward lower pressures the data tend to curve with diminishing slopes.
It is also to be noted that two sets of the first-compression data taken at two
different time intervals (5 and 15 min.) under identical loads have closely the
same slopes, but slightly different positions, in the entire experimental range.
The gradual change of deformation in response to compression with respect to time

1"

at constant load is called "creep."

At any time during the first compression, if the load is decreased, the
mat loosens, but never recovers to the full extent corresponding to the original
lower compression. The recovery, which is also time dependent, proceeds with
further decrease of load. At a certain point of recovery, if the mat is sub-
Jected to compression again, the deformation in the second compression will be
less than that of the first. Thus, the compression-recovery cycles exhibit hys-

teresis. The portion of data indicated in the figure represents the sixth cycle.
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To clarify some of these and other complications, supporting experimental

¢
-

evidence will be cited.

POWER FUNCTION

The linear region of first-compression data may be represented by a

povwer function:

c = (L-e)v = mp (XVII-1) ,
where Py is understood to be the applied pressure. The swollen specific
volume is defined as

Vf +V
v o= (xvir-2) ,
Pr

Yf and V being the volumesofdry fiber and fluid, respectively. For solid

fibers v 1is simply the reciprocal of the pycnometric density, Pp -

The lower limit of o in such experiments is related to the maximum

fluid drag forces, Ap , attained in forming the mat. The larger the final

- fluid stresses, the higher will be the lower limit of the power function. On

the other hand, the upper limit appears to be indéfinite; its value is as high as

the applied pressures of the known experiments have reached.

Jones' data for cylindrical fibers (nylon, dacfon, and glass) indicated
clearly that both M and N increase with the axis (length-diémeter) ratio until
a "critical" value is reached, beyond which they remain practically constant.

The critical value for nylon is about 100 and for glass about 500. The differ-
'ence between the two fibers appears to be attributable, at least, to the modulus

of elasticity and interfiber friction. The first factor has to do with reversible
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and the second with irreversible effects on compressibility. For the time bei
we shall confine our attention to the systems above their critical axis ratios

further clarification of the compressibility constants.

The dependence of compressibility on modulus of elasticity is demon-

strated in Wilder's equation (VI-1h4), which may be grossly simplified to

Pe ]1/ (byo-1) )

¢ LTE Pr
If v, is 3/2, N will be 1/5, and M will be directly proportional to Pe
and inversely proportional to Eys . Jones' data are  summarized in Table

XVIiI-1.

TABLE XVII-1

DATA FOR CYLINDRICAL FIBERS

P P - E,

) "'f_ -

Fiber g./ce. . microns g./sq. cm. x 1077 N
Nylon 1.1k 16.8-46.2 0.31-1.3%3 0.20
Dacron 1.39 22.7 1.7 0.25
Glass 2.56 5.1-12.9 4.4 -103 0.26

When the experimental values of M for all these fibers are adjuste
to the nylon density by direct proportionality, they correlste with the moduli

of elasticity as

M « (—%}—-)0'24 (XVII-4)
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ﬁ%.It is to be noted that both theoretically and experimentally, fiber diameter does

'not appear to be explicitly involved in compressibility. In Wilder's develop-
ment the diameter comes into play in both contact points and moment of inertia in
the opposite way, and its effects are cancelled out. Jones' results seem to
gsupport this implication. The value of N being less than 1/3 or Yo being

greater than unity is somewhat puzzling from the viewpoint of the current theory

(Chapter VI).

The power function may also be developed in other manners. By

dimensional analysis one may arrive at

. L, U4 N
+ - GG e

Above the critical axis ratio, Ny =0, and M« pf/gg , as assumed before.

From bulk modulus considerations Wrist (XVII-3) proposed the following expression:

b N
c by
= <——p > (XVII-6) ,
° f;0
where ¢, is the mat density at the reference pressure Be o - By his conten-
T2

tion, the modulus of elasticity, but not the density, is implicated in M .

Mechanical conditioning involving compression-recovery cycles removes
a part of the irreversible effects in mat response to further compression.

According to Jones, the nonrecoverable deformation (hysteresis) arises primarily

from repositioning of the fibers due %o slippage. The hysteresis loop becomes
narrower and narrower for each subsequent cycle. After a number of cycles, the
mat is said to be mechanically conditioned. When this state is reached, the

response to further compression becomes stabilized although there remains
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partial recovery or minor hysteresis. Disregarding the more complicated probler
of recovery, the high-pressure region for mechanically conditioned compression
may still be represented by the simple power function. Its slope is smaller,

while its position is higher, than in the corresponding case of the first com-

pression. From Jones' data for the same fibers:
1 21
M « (jE—P- (XvII-7) .

THREE -PARAMETER MODELS

To extend the correlation to the curved region, it is necessary to

incorporate a third parameter. in the compressibility function. A logical choic
is to introduce the quantity [V In both Ingmanson's form,
N
c-c = Mp, , (111-8) ,

and Wilder's form,

¥ - = Mo, (III-9) ,
Cy 1s meant to be the mat density at zero applied load. The value of ¢, ,
however, has not yet been precisely determined. Since mat density involves

fiber density or specific volume, a more appropriate quantity to use for the
purpose of comparison is solid fraction (1 - ¢) . Ingmanson estimated a value

of solid fraction to be about 0.02 for an expanded wood fiber mat formed at a lo

pressure drop of the order of one cm. of water. The value from Elias' work on
glass fiber mats was also about 0.02. Wilder obtained a value of 0.04 from his
creep data for wood fiber mats. Using the fiber sedimentation technique, Jones

arrived at the value 0.04 for glass fiber mats, corrected for the compressive
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stress due to the weight of the fibers themselves. This value is also in rough

agreement with that extrapolated approximately from his first-compression data.

In view of the apparent uncertainty, we merely consider ¢ as an

e}
ad justable parameter and proceed to compare the above two forms of compressibility
functions by statistical correlation of some selected data of Jones. The data
quoted in Table XVII-2 are for mechanically conditioned mats of glass fibers and
kraft pulp. By using a linear least-squares-regression technique the appropri-
ate values of the slope and intercept of the lines plotted from the data may be
determined by assigning a series of values for the exponents N and vy . If

the lowest point is excluded in each case, the correlation is excellent for either
compressibility function. However, deviations in the low range are also appar-
ent, as shown in Fig. XVII-3 and XVII-L4. It appears that Wilder's form is

slightly superior to Ingmanson's at very low loads. There is no significance

in the extrapolated values of - ¢ 1n these correlations.
COMPLICATING EFFECTS

Most fibers are viscoelastic in nature. Their response to stress is
time dependent. The creep of wood fiber mats in compression was first reported
in (EEE;Q), These data indicated a linear relationship between mat density and
logarithm of time over a range of 20 sec. to 25 min. Wilder established that
for both first compression and mechanically conditioned compression, as well as
recovery from compression, his data may be correlated by incorporating the time

effect as follows:

c-¢c = (M +M log t)pr (xvir-8)

This represents a four-parameter model applicable to times as short as 107! sec.
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TABLE XVII-2

MECHANICALLY CONDITIONED COMPRESSIBILITY DATA

Glass fibers: d_. = 12.9 microns; Ly = 6.3 mnm.;

(1

2.37 g./cc.; E = 7h.k x 107 g./sq. cm.

O
"

L
Kraft pulp: gf = 43.6 microns; Lp = 2.8 mm. ;
3_ = 3.5 cc./g. )
Glass Fiber Mat Kraft Pulp Mat
Pe s g./sq. cm. c, g./cc. Pe s g./sq. cm. c, g./cc.

0.385 0.0439 0.043 0.0341
0.82k 0.0497 0.106 0.0364
1.32 0.054k2 0.385 0.0432
1.77 0.0575 0.82k ' 0.0486
2,69 0.0627 1.32 ' 0.0526
5.0k , -~ 0.0725 1.77 ) © 0.0554
7.94 0.0805 2.69 0.0594
13.0 0.0890 5,04 0.0662
16.8 0.0947 7.9% . 0.0721
23.5 0.101k4 13.0. 0.0793
34,3 0.1095 16.8 0.0833
Ls.h 0.1156 23.5 0.089k4
59.5 0.1219 34,3 0.0966
80.2 0.1293 45k 0.102k4
59.5 0.1086

80.2 0.1162
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Rapid cycles of pressures, such as vibrations, produce a more compressed

st This effect has been observed in static compressibility tests, thé vibra-
tions arising from a pump used in forming the mat. Figure XVII-5 reveals the
parked difference in the first-compression response of kraft pulp mats under normal

conditions and under vibrations.

When a mat is formed in a filtration tube, the fibers close to the wall
tend to drag themselves along the wall in their downward flow, resulting in some
orientations with the 2 direction around the circumference of the formed mat.

The more rigid and the higher surface friction of the fibers such as glass fibers,
the more pronounced is this edge effect. With more flexible fibers such as nylon
and cellulosic fibers, the edge effect is not critical provided the mat is suffi-
ciently large and thick. For most compressibility tests a well-formed mat 3 in.

in diameter and 1/4 in. thick is adequate.

Since friction is involved in the edge effect during compression, the
surface of the confining tube in a compressibility tester may also influence the
test results. With certain pulps such discrepancies between Lucite and brass
have been detected. Aside from its surface characteristics, Lucite or Plexiglas
being transparent, is preferred to brass as a material for the confining tube.
The clearance between the tube and the piston should be about 0.0025 to 0.005 in.
Too little or too much clearance may incur difficulties in piston operation or

cause edge effects.

We have formed mats from relatively high-consistency suspensions (up to
0.5%) in the compression tube by simply stirring the suspension until it is well
dispersed and letting the fibers settle under gravity. A permeable piston is then

lowered smoothly and slowly in the tube till the settled fibers are compressed into
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8 high-porosity mat. In this way we avoid the possible hysteresis involved in the
gime -consuming method of mat forming by slow filtration of a dilute suépension.
For all practical purposes the compressibility results by the settling method are

the same as by the filtration method.

As mentioned before, Jones found the change of compression response

below the critical fiber axis ratio. In general, the lower the modulus of

on fiber repositioning. By means of his ingenious apparatus (Fig. XVII-6), Elias \

observed the existence of z orientations of glass fibers in a newly formed mat and

the effect of such orientations on the mat compression behavior. As the axis
ratio decreased, the average Z orientation increased. This effect became very
pronounced below the axis ratio 250 and was appreciable even at 500. Compaction

of the mat reduced the z orientation of the fibers. He concluded that the segment

length at a given solid fraction increased as the mean z orientation of the fibers

decreased, in agreement with the Onogi-Sasaguri theory. Elias also found that the
interfiber friction had an appreciable effect on the compression response, in

accord with Jones' findings. Low friction increased compressibility.

Wood pulps generally exhibit slopes or N. values higher than 1/5. It
has been suggested that this fact may be partially due to fiber cgrl. Such a
view seems to be supported by Jones' results of a compressibility test on curled
nylon fibers. As shown in Fig. XVII-7, they have larger slopes than straight

nylon fibers. The higher values of N may be a consequence of z orientations.
THIN MATS

The compressibility measurements for thin mats involved considerably more

difficulties than for thick ones. Most of these experimental problems were solved



Figure XVII-6. Apparatus for Observation of Fiber Orientations
: Under Compression
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by Chang (XVII-4). The mats were formed by the filtration method without using
a pump to avoid vibrations. To facilitate transfer of the mats to the compressi
bility apparatus, the septum of the filtration tube was covered by a piece of
tea-bag tissue. The mat, together with the tissue, was placed face down on a
solid brass plate to maintain a flat mat surface, and the tissue was then peeled
off. The plate was inserted in the Jones apparatus and rigidly supported by a
stainless steel plate. The solid piston was lowered with the guidance of a
Jacobs chuck for precise alignment and fixed positioning during the addition of
weights (Fig. XVII-8). Dacron and classified sulfite fibers were used in these

experiments.

As the wet mat was compressed between two solid parallel plates with ar
unconfined circumference, it began to bulge laterally when a load was applied.
Under such a condition the internal stress and density distributions could not be
uniform in the radial direction. The bulging part of the mat was trimmed for
separate weight determination. It was found that for both dacron and sulfite
fibers the bulging fraction tended to decrease with increasing load; this tendenc
was more pronounced with more compressible sulfite mats. The average percentage

of bulge by weight were 8.2 and 7.1 for dacron and sulfite, respectively.

By an approximate analysis it may be shown that the average mat density

at a given load should be based on the plate area and corrected for the bulge as

ol

W(l - 3
( LBn/ ) (XVII—9)

where B, 1s the weight fraction of bulge based on W . Since the values of B
were less than 10} , the correction was applied to the compressibility constant

using the average values of B, instead of each data point.



—lh?-

SHEET PLATE G

-

W\\\\\\\\\\\\\\

JACOB

. W W W WS W, V. W W . W W W W W ¥

LVDT

IRON CORE

N
N :
"y\ SONONUN N NN NN NN NNNNNNANNY

GUARD
CELL

S

CHUCHK

SUPPORTING
ARM M

PISTON ROD

[PI

AN\

WEIGHT

WEIGHT SUPPORT

BUBBLE LEVELER
N\ 5 3 : PISTON

4 FIBER MAT

\Zéé? <6§<<<§<<\48RASS PLATE
S.S. PLATE

C222

BRASS CYLINDE

L/ El NN NN NNNNN NN NNAN

7,1/1,, A

Figure XVII-8.

Thin Mat Compressibility A

yy
| 4 4

pparatus



-148-

Chang's results are presented in Fig. XVII-9 and XVII-10, in which the
solid line represents arbitrarily a basis weight of 100 g./sq. m. The dotted
curve above the solid line is for thicker mats and that below for thinner mats.
These curves are the limits of the range investigated, roughly from 14 to 570 g.
per sq. m. It should be mentioned that variations of N with basis weight
were quite small, less than #5%, but deviations in M spread from -9 to +22%.,

However, the deviations were random in both cases.

Data were also obtained for the same fibers with the edges confined.
The average values of the compressibility constants for both unconfined and

confined conditions are reported below:

Unconfined Confined
M N M N
Dacron 0.0091 0.29 0.0066 0.25
Sulfite 0.0025 0.38 0.0022 0.38
. N
M in (g./cc.)/(dynes/sq. cm.)-.

From these data it appears that thin mats behave very similar to thick
mats in first compression, which i1s a rather surprising finding. In fact,
experimental conditions generally account for more discrepancies in compressi-

bility tests than basis weight, whatever its actual minor influences may be.
DATA CORRELATION

To conclude this chapter on static compressibility we present a
comprehensive set of first-compression data in Table XVII-3, which have been

accumulated in the past years since Ingmanson's work. Both synthetic and
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TABLE XVII->

COMPRESSIBILITY CONSTANTS

First compression:

Hydrodynamic properties:

Pressure range:

Fibers

Nylon
Dacron
Glass
Orlon

Pulps

Bagasse

Cotton linters (1)
White oak
Groundwood

Cotton linters (2)

Douglas-fir summerwood (1)
Western hemlock (1)

Aspen (1)

Western hemlock (2)
Douglas-fir summerwood (2)

Spruce (1)

Jack pine

Douglas-fir springwood (1)
Jack pine (1)

Aspen (2)

Spruce (2)

Jack pine (2)

Douglas-fir springwood (2)
Southern pine

OO0 0O

O OO OO OO0 OO0 O OO OO0

[eNeoRoNe]

(=

.225
. 254
271
.286

.230
.276
.300
.326
.3%2

.362
37

2775
375
.383

.387
391
.396
.395
400

406
415
37
RICSE

N
i

ém I<

, dimensionless

, (g./cc.)/(dynes/sq. cm.)E

, cc./g.
, sq. cm./g.

10* - 1P dynes/sq. cm.

M X 108 v
10.4 0.904
6.6 0.725
6.32 0.391
L.s55 0.826
8.68 3.38
6.65 1.57
5.%2 2.76
5.95 2.85
3.12 1.43
1.93 2.54
2.27 1.95
2.07 2.51
2.15 2.35
1.50 2.35
1.81 2.55
1.33 3.42
l.27 5.75
1.62 2.52
1.52 2.96
1.57 2.55
1.20 3.48
0.78 L.12
0.71 2.54

x 1078

1.82
1.70
6.15

-3
O F 1 Ov 00U W
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cellulosic fibers are included. Among the latter the majority is wood while

range extends from bagasse to cotton. The processes involvgd in the preparat:
of these fibers were extremely diverse, covering the conventional commercial p
as well as some laboratory specialties. While the data are generally for the
unrefined state, refining does not affect the compressibility constants to a

significant extent for most pulps.

It is interesting to add Han's (XVII-5) analysis of these data in lig

of Wilder's compressibility function:

M (byg -1)p.°

c*Yo= t co‘LYO_l = p (VI-1k4) ,
EcS™4Yo £
o
where M' is ne/(léﬁy') . In the pressure range of the data, the second ter
may be neglected. The equation reduces to

M (hyg - 1)pg® 1/ (byy -1)
[
Ec06—4Yo f

or

(el
|

o N
K E> N'Nco SN-1 :]Pf (XVII-10) .

Thus, log [ MNNCSN—I ] = N log [—%L]

SN

(XVII-11)
Pe

A plot of the first logarithmic term against N would be linear
provided M'/E were constant. Such a plot is shown in Fig. XVII-11. The
value of ¢

¢, was chosen to be 102 g./cc. and the values of pp are indicate

in the plot. From the slope of this plot the value of M'/E is evaluated to -
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106, When E is 10'! dynes/sq. cm., M' 4is of the order of 10°%, and N'
of the order of 1C*F. The intercept of the line is about 10, i.e., as N

approaches zero, the first term approaches unity.

In Wilder's development the number N' has to do with the mode of fiber
bending or deflection, which is dependent on the distributions of load and support
Then the empirical evidence of M' being linear with E -indicates that the
compression behavior responds, directly and indirectly, to the modulus of
elasticity alone. Since the fibers included here are viscoelastic in nature,
the indication of such an oversimplified picture is rather surprising. Neverthe-
less, this finding is an interesting one which may lead to new thinking about mat

compressibility.

On reflection, the present evidence would also cast some doubt about
the legitimacy of Jones' correlation (XVII-4) that M is inversely proportional
to (pfs/g)E without taking into account the possible effects of other factors
such ag S o, MY, and N itself. All these results serve to show the

importance of interaction in dealing with fibrous materials, especially those of

cellulosic origin.
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XVIII. STEADY PERMEATION OF CYLINDRICAL-FIBER MATS

In Part One the concept of resistance to flow through fiber mats was
agéeloped in a partially analytical manner. We now proceed to demonstrate its
'alidity,-as well as its limitations, by the results of carefully controlled
experiments. In these experiments flow through relatively thick mats formed from
very dilute suspensions of selected types of fibers was systematically investigated
{n order to determine those known factors governing permeation. The suspension
pust be sifficiently dilute to achieve uniform dispersion and the mat sufficiently
thick to minimize the effects of the supporting septum. The results of such
experiments reported by Ingmanson, Andrews, and Johnson (XVIII-1) and by Ingmanson

and Andrews (XVIII-2) are summarized here.
EXPERIMENTAL SYSTEMS

The experimental setup is shown in Fig. XVIII-l, which is self-explanatory.
The details of the permeation tube assembly are illustrated in Fig. XVIII-2. These
diagrams represent the actual apparatus then in use after considerable modifications

of the initial version.

A general procedure for permeation experiments is outlined as follows:
Dry and clean fibers are introduced into hot water in a suction flask which is then
gradually evacuated to a gently boiling condition for the purpose of deaeration.
The deaerated fiber slurry is siphoned over into the dilution water in a feed tank,
care being taken to prevent the free surface from disturbances which might cause
the entrainment of air bubbles on the fiber surfaces. The dilute fiber suspension
in the tank is mildly agitated to break up.any fiber bundles and to maintain a state

of uniform dispersion, the consistency of the suspension being about 0.01%.
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The sepfum which is a perforated plate covered with a coarse backing w
(35 mesh) and a fine face wire (100 mesh) is thoroughly cleaned and dried. Aft
it is assembled with the permeation tube, flushing water flows upward through th
tube to wet the septum and to remove air bubbles. The tube is then completely
filled with water, and the fiber suspension is admitted to the tube beneath the
surface. A mat is formed at a constant flow rate, sufficiently high to maintai

mild turbulence in the tube but low enough to avoid large-scale eddies.

A permeable piston is lowered and compresses the mat to the desired po
ity by weights as in the compressibility test. The water-recirculating line is
connected to the tube, and any air entrapped in the system is removed by bleedin
through a suitable vent. Flow through the mat is then initiated and slowly
increased to the desired rate. At a steady state the corresponding pressure dr
is noted and corrected for that of the septum. A series of successive points a
increasing flow rates is obtained in a single permeation run. The last datum p
is limited to a pressure drop not exceeding l% of the ioad iﬁ order fo ﬁainfeih
uniform porosity. The mat thickness may be measured with a cethetometer or dia
micrometer, and the basis weight determined by drying and weighing the fibers.
The water used in permeation is deionized and distilled. The recirculating wat
is thoroughly filtered in each cycle, or some decay of permeability will occur

because of contaminations.

Glass, dacron, and nylon fibers were used in these experiments. Thei
dimensions can be precisely determined microscopically and their densities pycnc
metrically. In the case of nylon fiber which is known to be slightly swollen i
water, its pycnometric specific volume may be corrected for swelling (about 3%)
from microscopic measurements of the fiber cross sections in a wet state. The

compressibility constants of the simple power function may be established from
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first-compression tests in the range of pressure drops to be used in the permeation

runs. The characterization of these fibers is summarized in Table XVIII-1.
TABLE XVIII-1
CHARACTERIZATION OF CYLINDRICAL FIBERS
- a = b ¢ d e
Le > de > S, » Yo M,

Fiber mn. mn. sq. cm./cc. cc./g. g.s. units N f
Glass 0.94 16.5 2L20 0.38L4 - -
Dacron 5.30 17.1 2340 0.709 0.0066 0.254
Nylon 6.47 19.5 2050 0.904 0.010k4 0.225
ar- _ 2

L = B;Le" /2L, -
b= 2

e = 2N dp / N, de
c

§I = u@z .
d . .

For nonswelling fibers, v = l/pf .
e N

(g./cc.)/(dynes/sq. cm.)= .
£ Dimensionless.
UNIFORM MATS

Glass fibers, being relatively rigid, can be formed into mats of very

high porosities, but they are not satisfactory for lower porosities (<0.8) because

of their fragile nature.

Nylon fibers are suitable for the intermediate porosity

range by virtue of their low modulus of elasticity, but not feasible for porosities

larger than 0.9 because extremely low pressure drops are required to form such

high-porosity mats.

Dacron fibers occupy an intermediate position.
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An example of permeation data for glass fibers is given in Fig. XVIII-3,
in which the flow rate is plotted vs. the pressure drop across the mat with
porosity as the parameter. Within the experimental'range the data indicate direct
proportionality, in agreement with Darcy's law. FProm the slopes of these lines
the permeability coefficients (pK,) may be calculated with the known values of th

mat thickness and the water viscosity.

Proceeding with the evaluation of the Kozeny factor in accordance with
the Kozeny-Carman equation, it becomes apparent at once that E is far from being
a constant for these high-porosity mats. In fact, its value increases rapidly

with increasing porosity, as shown in Table XVIII-2.

TABLE XVIII-2

VARIATION OF KOZENY FACTOR

W € K
sq. cm. X 1CP "~ cc./cc. ' Experimental Happel's Prediction
1.69 0.911 9.57 11.5
1.31 0.900 8.75 10.7
1.00 0.879 7.84 9.k
0.67 0.852 7.23 8.8
0.36 0.805 6.51 7.k

As discussed in Chapter V, variation of the Kozeny factor with porosity
is to be expected. Upon checking the experimental value of k with Happel's
prediction by his free-surface model, the general trend appears to be correct,
but the discrepancy is quite large. For this reason the Davis form with two
adjustable parameters seems to be more suitable for correlation. Considerably

more data have been collected with nylon fibers to extend the range of interest.
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PRESSURE DROPR CM. WATER

Figure XVIII-3.

Permeation Data of Uniform Fiber Mats
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The final correlation is shown in Fig. XVIII-L. From these data the Davis

correlation was established as

— ea - -
k = 3.5 (1_6_)172— (1 +57(2 - ¢)2) (XVIII-1)

The original Davis values for ky and ks were 4.0 and 56, respectively
based on air permeability data for fiber filters. It is to be mentioned that the
Davis equation should not be used for low porosities as it will yield rapidly
decreasing values of k while it has been amply demonstrated that the Kozeny
factor remains nearly constant at relatively low porosities. Figure XVITI-L
indicates the average value of k for fiber mats to be 5.5, which has been common]
accepted for porosities less than 0.75. Happel's equation predicts 5.6 for
porosity 0.60. For many types of porous media with porosities between 0.3 and 0.7

the Kozeny factor lies between 4 and 6, according to Carman (XVIII-3).

Carroll's (III-U4) three-parameter correlation overcomes the shortcoming
of Davis' correlation at low porosities. They are compared in the same figure.
It is seen that Carroll's curve fits the whole experimental range better than does

Davis'. The Carroll correlation is
k = 5.0 + exp[lk(e - 0.80)] (XVIII-2)
PRESSURE DISTRIBUTION

A special tube with multiple pressure taps was used to measure the
internal fluid pressures inthick mats under fluid stresses during permeation.
Data were taken with increasing flow rates to avoid hysteresis effects. The

pressure distribution data for dacron and nylon fibers are shown in Fig. XVIII-5S.
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The permeation expreséion for slow flow through uniform fiber mats of

s
.

high porosities, using Davis' porosity function is
Ll - o e - Ryl (XVIII-3)

The pressure gradient is, therefore, constant.

When a mat is subjected to fluid stresses, an internal pressure distribu-
tion will develop. By an analysis similar to that for the average filtration
resistance in Chapter IX, we may arrive at a pressure distribution with respect to
z . Substituting the simple compressibility function for the solid fraction,
omitting the factor in the brackets for porosities larger than 0.9, which is’

justified by Equation (XVIII-1), and differentiating the resulting expression, we

obtain

dpf
dz

= K us’;‘,U[vMpr]% (XVITI-L) .

Upon integration. over the mat thickness from O to L and the corresponding

pressure drop from -0p to 0, the result is

- = kus2|u| (1 - 38/2)[vM(p, - pO)N]72 (XVIII-5)

The integration may also be performed from O to Z yielding the same expression
applicable to any position z . Dividing one by another, the pressure distribu-

tion is expressed by

P - P, [ . ]1/<1-5N/2) (TT1-6)
- :
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This power function 1s represented by the solid curve in Fig. XVIII-5. Its
agreement with the experimental data for high-porosity mats is excellent in both
cases. For an incompressible mat, N 1is equal to zero, and the pressure dis-

tribution becomes linear as previously stated.

In a similar manner the high-porosity viscous flow expression may be
derived on the fiber mass basis:

= = kus2|U|(1 - N/E)v%[M(pL - po)N]’/2 (XVIII-7) .

Thus, from Equations (XVIII-5) and (XVIII-7) the over-all mat demsity <@ is
related to the over-all pressure drop by a modified compressibility function:
N
)

M(pL - P (Xv1iII-8)

The validity of this relation is demonstrated in Fig.VXVIII-6L in which the data .
points are compared with the solid line representing the equation for nylon fiber

mats under fluid stresses.

For intermediate porosities the quantity in the brackets of Equation
(XVIII-3) should be taken into account. The resulting differential expression
may be integrated graphically with the aid of the static compressibility data to
arrive at apressure distribution. Since porosity distribution cannot be readily
measured, it may be calculated from the pressure distribution. The results of
such calculations for dacron and nylon fibers are shown in Fig. XVIII-7, in whicl
a wood pulp mat is included. The dashed part of each curve implies uncertainty

because it is based on extrapolation of the compressibility data.
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TRANSITION FLOW

It has been shown in Part One that a more general flow expression for

uniform mats including both viscous and inertial effects is

¢3|ap| Ja' (1 - e)Svu
Ja (1 - €)s PPL ~ PlUl

+ Db (XVITI-9) .

For compressible mats this expression may be used with the following average

quantities:
€av
- _ ) a i
Upy = Koy = 35 VA (1 +57(2 eav) ] (XVIIr-io) ,
' (1-¢_)
av
and ey = L - (1 - 5N/2375vM|Ap|N (XVIII-11)

Similarly, the flow expression may also be written on the mass basis;

MS?(l - ¢)s

BE

o

EsjAp[ v

N

o' VSVDUQW

+ b (XVIIr-i2) ,

"in which the average quantities have been defined by Equations (IX-24) and (IX-13)

as
2 .
o = kK = 3.5 -———y—e [1+57(1 - €)3] (XVIII-13)
(L -%¢)e2 :

and ¢ = 1-(1-n/22vmap" (XVIII-1k) .
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The two mean expressions of Equation (XVIII-9) are equivalent to each other thr:
the relationship (XVIII-8). For filtration purposes, however, the latter base
fiber mass is more convenient to use, and consequently has been presented in the

simple form:

fr = + b (1x-25) .

A large amount of experimental data has been collected with cylindrice
fibers. All data are plotted as f' vs. EET in Fig. XVIII-8. The value of
was determined to be 0.1. It is interesting to note that in terms of pressure
drop, the inertial resistance is 9% of the total at unity Re' and 91% at 100.

Flow below unity Re' may be considered to be in Darcy's region.
SCREEN RESISTANCE

The resistance of grids, screens, and fabrics to fluid flow hasrbeen
extensively investigated. Previous attempts ét corfelatioﬁs %ere based on
simplified models of flow through orifices and around cylinders. In his study
air flow through open-weave fabrics, Robertson (XVIII-4) adopted the orifice mod
and accordingly correlated the discharge coefficient with the Reynolds number.
He found that at high flow rates the discharge coefficient was larger than unity
in contrast to the case of a single orifice. Wieghardt (XVIII-5) and Cornell
(XVIII-6) considered flow around cylinders and used the drag coefficients for th
purpose of correlation. Grootenhuis (XVIII-7) succeeded in correlating air flo
through screens of square meshes in terms of the friction factor and the Reynold:
number, In all these correlations the major parameter was the fractional open

area.



FRICTION FACTOR, f'

10.0
80 U, CM./SEC.
3-DENIER NYLON WATER 8 064 - 1.3
6.0 AN 3-DENIER NYLON WATER O i -15
3 3-DENIER NYLON WATER X I - 160
\‘ I5-DENIER NYLON  WATER 'y 1 -160
40 . 3-DENIER DACRON WATER O I - 160
3-DENIER DACRON  AIR A 110 - 390
2.0
A
{.0
0.8
0.6
04
0.2 X
X
o | ],
0.4 0.2 04 06 08 10 40 60 80 100 200 400 600 800 100

REYNOLDS

NUMBER, Re’

Figure XVIII-8. Correlation of Flow Data for Cylindrical-Fiber Mats

-TL1-



-172-

We have treated the papermaking wire screens as a porous structure
(XVIII-8), and assumed that the flow resistances follow Forchheimer's law (I1I-5,

By this concept the correlation (XVIII-9) would be applicable also to wire screer

Furthermore, for turbulent flow the inertial resistance coefficient E'
becomes a mild function of the Reynolds number, as was demonstrated by Ergun

(ITI-6) with flow through packed beds:

b - — (XVITI-15)

(Re')"
The value of n is about 0.1 based on data compiled by Carman (XVIII-3). With

this knowledge we modified our correlation to

froe =L, (XVIII-16)

Re'! (Re ' )n

For a given screen and fluid this equation reduces to

ALp + b, |u|=n (XVIII-17)
U ) o

Upon differentiation we obtain

d—é?%/}l = T, (1 - n)ul™ (XVIII-18)

Thus, a logarithmic plot of the derivative vs. U would result in a straight’
line. This method was used to correlate the water flow data for conventional
twill-weave 54 to 100-mesh screens and yielded the average value 0.1l for n .
The second plot of f'(Re') vs. (Bg')l-a would give the slope b . The value
sO obtained was 0.2. This correlation is shown in Fig. XVIII-Q. In the same

figure the correlation for fiber mats is indicated by the dashed curve. It
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appears that the'inertial effects in the transition flow (1 < Re' < 100) for
wire screens are somewhat larger than for fiber mats. This is probably due t«
eddies formed behind the screen as a result of flow separation from the indivic
wires. At either lower or higher Reynolds numbers the two curves are expectec

to approach each other.

In the correlation the measured average porosity and thickness of the
screens were used. The surface area was calculated from the diameters of the
strands. The average value of the Kozeny factor evaluated from the low flow ¢
is 5.1 in the porosity range 0.6-0.7. This value is in the range of the prev:
cited values for porous media. The maximum deviation of the data from the cw
is +10%. By introducing an additional parameter, the pitch-diameter ratio, tl
correlation was improved to about 1+6%. There was some evidence that very coar
screens and some fabric wires do not follow this particular correlation. Sinc
the resistance of a screen can be so easily measured, it is questionable if fur

refinement of the correlation is worthwhile.
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XIX. HYDRODYNAMIC PROPERTIES OF CELLULOSIC FIBERS

Cellulosic fibers have wide distributions of dimensions. Their cross
sections are more nearly elliptical than cylindrical. They are not only flexible
in bending, but also conformable on contact. They have a high capacity for
swelling and a tendency to deswell at increasing pressure and temperature. Their
geometric properties are neither uniform nor continuous along their length. The
ease with which they become fibrillated complicates their surfaces, which are not

precisely definable even on a macroscopic scale.

These complications have necessitated the use of gross properties which
are only approximately interpretable in terms of the behavior observed experimen-
tally. Nevertheless, the hydrodynamic method of evaluation has been found useful
for the reason that several important steps in the processing of pulps are essen-
tially hydrodynamic in nature. Two commonly accepted properties are specific
surface and volume. Experimental values for the same fibers used in compressibil-

ity tests have been included in Table XVII-3.
TESTING METHODS

The determination of these two properties was initiated by Robertson and
Mason (XEZ;}), using the permeation method. They encountered two major experimen-
tal difficulties: permeability decay and nonuniform porosity. The problem of
decay, as manifested by creeping increase of pressure drop or decrease of flow rate,
will be discussed later. The necessity of maintaining a uniform mat (because the
porosity function had not then been established) by compressing it with a
substantial load and using low pressure drops limited the useful range of data and

rendered subsequent evaluation less reliable.
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Ingmanson'(zzli) used constant-pressure filtration for the same purpose.
In this method, while a mat is formed at a constant head, the filtrate volume is
measured in consecutive time intervals. As an experimental technique it also
involves certain inherent problems. The initial portion of data must be discarde
on account of the septum effects. Several runs must be made in order to cover a
sufficient range of pressure drops for the subsequent analysis. The mat is also

subject to creep during the run.

Ingmanson (251:2) then adopted the constant-rate filtration method. Hi:
latest version of the apparatus is shown in Fig. XIX-1. Its essential feature is
to record the pressure rise as a mat is formed at a known flow rate. For the
purpose of pulp evaluation the following experimental conditions should be satis-

fied:

1. A dilute suspension of soaked, deaerated, and classified fibers kept
in mild agitation and constant temperature flows smoothly into a filtration tube

filled with water.

2. The flow is turbulent in the tube but viscous through a sufficiently

thick mat.
3. Vibrations from pump and other sources are to be avoided.

The constant-rate method has largely overcome the two last-mentioned difficulties

with the constant-pressure method.
DATA ANALYSIS

From the known suspension consistency and flow rate, the basis weight of

the mat at any time (discarding the initial period) is calculated from the fiber
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balance (IX-3). " The corresponding pressure drop across the mat is read from t
recorded pressure-time curve, and corrected for the septum resistance. The
average specific filtration resistance is then calculated from the constant-rat

filtration equation:

ﬁ _ 1l - Sﬁ IAPI
- spqu% t

(1X-22 -
E may then be plotted or tabulated as a function of Ap , wusually in the range
10-100 cm. of water. A comprehensive set of filtration resistance data for woc
pulps is shown in Fig. XIX-2 and XIX-3. The correlation of E with "freeness
illustrated in Fig. XIX-k. It is obvious that freeness is insensitive in both

high and low regions.

The differential constant-rate filtration equation may be rearranged i

the so-called rectified form:

—LL;AP = ——-—kl; (1 + kpv8c®) (XIX-1)
c dt . BV

where S is the specific surface based on the fiber mass, and is equal to v8

B is'called the filtration constant and represents the quantity (1 - sﬁ)/(gps

in Equation (IX-22). If the suspension consistency is much less than 0.1%, E?

reduces to l/(gppg%) . The mat density c¢ at the septum is calculated from th

simple compressibility function. By taking the slopes from the corrected press
time chart at various pressure drops, Equation (XIX-1) may be plotted as slope/,

vs. ¢3 . If the resulting plot is a straight line, then gw and Vv can be

evaluated from its slope and intercept. This procedure involves a loss of

experimental precision. Instead of taking derivatives, the pressure drops may 1
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read and corrected from the chart at various times, as in the calculation of the
average filtration resistance. The rectified equation now assumes the integrate

form:

k (1 - N/2)s?
JJATIL[— = + { B°f/ )Sw [1 + kv (1 - N/2)8c3 ) (X1X-2)
c t \'

By introducing the average mat density in accordance with its definition (IX-13):

c = (L-@e)/v = (0 - N/2)2M|Ap|N = (1 -0N/2)Rc (X1X-3) ,

L the alternate form of Equation (XIX-2) becomes

K, 5 |
_ap| | —L—W—[l+k2v333] (XIX-4)

The following example from Ingmanson and Andrews (XIX-2) may be given

~as an illustration of the constant-rate method:

Pulp classified bleached sulfite
iv
" U, 1.80 cm./sec.
| =
; " 0.827 x 1072 g./(cm.)(sec.)

0.0196 x w02 g./g.
1.90 x 10® (sq. cm.)(sec.2?)/g.2

Hglm

The filtration and compressibility data are shown in Fig. XIX-5. The data are
then plotted in Fig. XIX-6 in the rectified form (XIX-4). The result is nonlinea
. curving concave-downward. If linearity is forced to fit most of the data and
! extrapolated to zero mat density, such as shown by the dashed line, the resulting
values for specific surface and volume are 5030 sq. cm./g. and 2.16 cc./g.,

respectively, using 3.5 for ky, and 57 for k, . These are obviously sort of
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average values. They may bé compared with the average values determined micro-
scopically, which are 5,370 and 1.64, respectively. It should be mentioned that
the microscopic method always yields a lower specific volume because of the

difficulty in preparing fiber cross sections in a fully swollen state.
COMPENSATING FACTORS

The deviation from linearity should be examined in some detail. At the
outset one may question the legitimacy of the integration process from which the
definition of the average mat density or porosity has been derived, i.e., the

evaluation of the integral (IX-10):

Jr@ - e)ap, -

In connection with this question there are two points to be clarified. One is

the doubtful assumption of unity porosity or zero mat density at the mat-suspension
boundary. However, whatever reasonable value is chosen for the solid fraction at
the mat face, it will not affect the integration result to a significant extent as
the flow resistance is determined predominantly by the rest of the mat at substan-
tially lower porosities. The other point has to do with the use of the abbrevi-
ated Davis porosity function, which is only valid for porosities greater than 0.9,
in order to perform the integration analytically. If the integration is carried .
out numerically for lower porosities, using the Davis function in its complete form,
the results are not more than 7% lower than those based on the average porosity
definition (XIX-3). Furthermore, the small discrepancies are nearly the same

for a large number of different pulps throughout the porosity range concerned.

We therefore conclude that the use of average porosity is justifiable and the

cause of deviation from linearity lies somewhere else.
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It is eﬁtirely possible that the porosity function based on cylindrica
fibers may vary with fiber shape and contact area, thus rendering its use for
cellulosic fibers'questionable. Bliesner (zgz;é) prepared flattened synthetic
fibers of approximately elliptical cross section and with an average aspect (wid
to thickness) ratio 3-4. Using the theory of Onogi and Sasaguri (VI-1) for
contact points and the equation of Van den Akker (XIX:E) for projected contact
area, he demonstrated considerable departure of the porosity function for flatte
fibers from cylindrical ones, based on his air permeability data with the assump
of the maximum possible projected area. Labrecque (Elzli) proceeded to recalcu
Bliesner's data to account for incomplete contact, as estimated from Bliesner's
photomicrographs of fiber arrays, and arrived at porosity functions as shown in
Fig. XIX-'f. For both nylon and orlon fibers the Kozeny factor increases with
increasing aspect ratio at the same porosity while the general trend of the
functions remains the same and tends to converge at high porosities. In the
dynamic sense, resistance increasesrwith fiber flattening (a larger pore shape
factor than unity for éylindrical fibers) and depreases with contact area (a
smaller surface area available to flow), the former being a stronger influence i

the practical porosity range.

The data for wood pulp (Fig. XIX-3), however, indicate that for the
intermediate porosity range the deviation from linearity is the least. This
may indicate a fortuitous compensation by a third factor which is thought to be
the deswelling of cellulosic fibers under pressure. Deswelling will cause a
higher porosity or lower resistance at the same mat density. The inclusion of
the deswelling factor would also account for the larger deviation of both higher
and lower porosities. As the pressure drop increases, deswelling increases the

actual porosity while the Kozeny factor remains relatively constant at a value
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higher than previously assumed. Thus, the discrepancy would become larger with

. the increasing mat density. In the other direction, as the pressure drop decrea:

the Kozeny factor tends to the assumed function whereas deswelling continues to

increase the actual porosity, resulting in a lower resistance than expected.
DESWELLING ESTIMATE

In light of the experimental evidence and its interpretation, Meyer
(X1X-6) suggested an approximate method of finding the dependence of specific
volume and surface on compacting pressure. He put Equation (XIX-4) in a

modified form:

S2
Y [1 + ky*veca] (XIX-5)

p * = kf
v
Assuming Vv and §w to have some representative mean values for any two points
1 and 2 along a short segment of the curve (Fig. XIX-6) and using Lagrange's
interpolation formula, he estimated their dependence on pressure from the

following equations:

Ys
_ pf - of -
= e (x1x-6)
and
o} *px - c3pf 1//2 ’//4
S = [ k¥(cd - c3) M (XTX-7)

The results of calculation for the sulfite pulp are shown in Fig. XIX-8.
It is seen that the specific surface on the mass basis increases only mildly

while the specific volume decreases pronouncedly with increasing pressure drops.
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PERMEABILITY DECAY

The decay of permeability of wood pulp mats is a familiar phenomenon
An example is illustrated in Fig. XIX-9. The first experimental factor causi:i
decay is the gradual retention of foreign particles in a mat from a large volun
of water flowing through the mat. By thoroughly cleaning the entire system ar
using distilled and filtered water, this source of trouble may be eliminated, t
only with extreme care. A second factor is the fines in wood pulp, which may

partially overcome by extra classification.

With these precautions a permeation experiment was carried out by
Andrevws (zzz:z). A mat of 105 g./sq° m. was formed, and the pressure drop
readings were taken quickly over a flow range of 10-160 cm./sec. When the
highest flow was reached, the velocity was successively decreased, allowing the
mat to expand slowly until the lowest point was reached again. After repeatin

the procedure for six cycles, it was found that the same pressure drop-velocity

" curve could be'attrained° The whole conditioning process took eight hours, aft

which permeation was maintained at the highest flow for one hour. During this

hour no decay was observed.

The results of this experiment agree with the known effect of mechani
conditioning on compressibility behavior (Chapter XVII). The power of the com
pressibility function reduces from that for the first compression to about less
than half the original value in the case of a conditioned mat. This serves to

explain the decay of a freshly formed mat in the previous permeation experiment:
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XX. 'DYNAMIC EFFECTS IN CONSTANT-RATE FILTRATION

In simple filtrations so far described, possible dynamic effects have be
either avoided or discounted. When drainage of a fiber suspension is suddenly
initiated by an external force, the fluid must undergo acceleration because of th
unbalanced forces acting on the system. With viscoelastic fibers the response o:
the mat to the compacting force is time dependent. This is another. factor to be
taken into consideration in "dynamic" drainage. Finally, if the system is subje
to disturbances, instability may set in, depending on the nature and magnitude of

the disturbances as well as the ability of the system in damping them.

To clarify some of these factors, we have used a dynamic drainage teste:
which is capable of performing a complete filtration test in a relatively short

time. The experiments were performed by White (XX-1) and Andrews (XX-2).
DRAINAGE TESTER

The tester consists of a tube and piston with a driving mechanism. The
quité tube is 7.6 cm. in diameter and 100 cm. tall. The top of the tube is fit:
with fwo flanges between which a wire screen is clamped . Thé open end is enclose
in a box for the flow to return through a pipe by gravity into a receiver. The
steel piston has a Teflon sleeve in contéct with the tube wall to improve lubrica-
tion and sealing. The piston is rigidly connected with a driving member. The
original driving mechanism was a rack and pinion system connected to a variable
speed reducer and engaged by a hand-operated clutch. It was later changed to a
hydraulic system with actuating and control valves. The former system is shown

in Fig. XX-1. Both systems operate in the speed range of 1-100 cm./sec.
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Near the lower flange on the tube wall is located a pressure tap which
is connected by a plastic tubing to one of two transducers covering a pressure
range up to 700 cm. of water and calibrated with a manometer. The output of
either transducer is received by an oscilloscope. The pressure trace on the

oscilloscope is recorded by a Polaroid camera.

With the rack and pinion mechanism, when the clutch is engaged, the
inertial system consisting of the piston, rack, pinion, and the driven member of
the clutch undergoes rapid acceleration to reach the driving speed. This initial
acceleration as measured by means of an accelerometer is shown in Fig. XX-2. ThS*
acceleration rises to a maximum, then falls to a minimum, and finally oscillates
about the zero value. This period lasts within 0.05 sec. Thus, the piston
accelerates from zero to a mean velocity in this short period of time and then
continues to oscillate about the mean velocity with a major frequency of the gear;;
teeth number per stroke time and an amplitude less than one cm./sec. The pressur
of the water in the tube also oscillates about a ;neaz{ value with the same'major

frequency and an amplified amplitude due to external disturbances. The temporal

mean values of velocity and pressure, however, are reliable.
TEST RESULTS

Preliminary sheet-forming tests were made with 3-denier dacron fibers
and 52-mesh screen. The tube was rapidly filled with a dilute suspension in
upward flow. As soon as the suspension reached the screen, the clutch was -
engaged and at the same instant an electric timer and the pressure-recording
instrument were activated through microswitches. The piston motion was arrested
by a mechanical clutch release when the piston reached the screen. The stroke ti
was of the order of one second. After the run the fibers on the screen were

collected, dried, and weighed.
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For each run the pressure drops EE were translated from the pressur
trace and correcﬁed for the screen resistance at arbitrary intervals. The

corresponding basis weights were determined by
W o= psU(t - t,) (Xx-1)

where 1, 1is the time lag in synchronizing the initiation of drainage and pres:

trace by extrapolating the latter to zero pressure.

In a series of duplicate runs it was found that their discrepancies we
as large as 50% at early times and became as close as 6% toward the end. The
early large discrepancies were attributable to various sources of random errors
experimental measurements and translations. The average data of several duplic
runs were reliable. These results are shown in Fig. XX-3 and compared with the

previously established correlation (XVIII-12)° The maximum deviation is lO%.

The apparent absence of nonequilibrium effects in the average results
these experiments may be attributed to three factors: (1) low compressibility d
dacron fiber mats, (2) dilute éusbeﬁsiéns, aﬁd (3) insufficiently short forming
times. The low compressibility is reflected by the nearly linear relationship
between the pressure drop and the basis weight. Flow pulsations and pressure
fluctuations in the tester were probably not of sufficient magnitudes to affect
the compressibility. As the mats were formed from a dilute suspension, the mot
of fibers, once deposited, was negligible. The mats were in a state of quasi-
equilibrium just as in slow filtrations. The time scale from slow filtration i
the regular apparstus to rapid drainage in the dynamic tester was two decades.
This reduction might not be enough to show the time-dependent effects. Further

more, while the compressibility behavior is dependent on the rate of pressure
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rise, the considerable increase in the tester, as shown below, might still be

insufficient for dacron mats.

Slow Rapid

Filtration Drainage
Forming time, sec. 10 101
Pressure rise, dynes/(sq. cm.)(sec.) 108 108

A classified bleached sulfite pulp was then used in the dynamic
drainage tester with a 100-mesh screen in a speed range from 20 to 100 cm./sec
The reproducibility was again satisfactory, about 3-8%. However, upon compar
with the known correlation, the pressure drop from the test results was always

higher than the calculated value for the same filtration time, the discrepancy
!

inereasing with increasing velocities. Such a comparison is shown in Fig. XX
for the high-velocity range. Because of the low consistency (about 0.004%) ti

high-velocity runs covered basis weights up to about 30 g./sq. m.; even the 1lov

- velocity data with a 0.01% consistency extended the basis weights to only 70 g.

per sg. m. For further analysis the complete set of data were smoothed and

"tfansformed into pressure drop-basis weight curves which are shown in Fig. XX-t

In view of the large discrepancies, the initial step of analysis was

check the data for linearity by the differential‘form of the Forchheimer law:

1 dlap|l Ru + R'p0 (XX-1)
7 aw ~

where the resistances R and R' are understood to be functions of the pressu
drop. Trherefore, st a given pressure drop, the data should show a straight 1i
with sloge B’p and intercept Ru . The results of this analysis at several

chosen pressure drops indicated definite concave-upward curvatures in the whole
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'yange of velocities. By further analysis it was revealed that the discrepancy

| becaﬁe smaller and smaller as the basis weight approached 50 g./sq. m.

The possible causes of such discrepancies were thought'to be the change
of compressibility behavior and the fiber-wire interaction. The change of
compressibility behavior could be due to pressure pulsations or inherent in thin
mats. The first factor could not be very large in view of the previous agreement
gsecured in the same tester in the case of dacron fibers. The second factor,
which was originally thought to be important, turned out to be also minor when
the experimental evidence for the compressibility of thin mats showed nearly the
same behavior as thick ones, as presented in Chapter XVII. A tentative conclusion
was that the additional flow resistance was probably caused by the fiber-wire
interaction. Figure XX-6 shows photomicrographs of a thin mat and a relatively
thick mat of the sulfite fibers used. For the former the mat may be only 2 to 3
fibers thick, while the latter amounts to about a dozen fiber diameters. What is
called the fiber-wire interaction was viewed by Ingmanson (55;2) primarily as the
bending of the flow lines around the individual wires of the screen, as discussed
in Chapter XIII. The convergence of flow through the screen openings was thought

to incur additional energy losses.

Before proceeding to explore the problem of fiber-wire interaction, we
conclude this chapter by stating again that the time-dependent dynamic effects
which we were seeking have failed to reveal any particular significance in these

rapid drainage results.
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Figure XX-6. Photomicrographs of Sulfite Mats
(Top: 12.1 g./sq. m. and bottom: 37.7 g./sq. m., both LOX)
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XXI. FIBER-WIRE INTERACTION IN SHEET FORMLING

The resistance of a wire screen supporting a thick mat can be justifiably
neglected. As the basis weight is reduced to less than 300 g./sq. m., the wire
resistance becomes proportionately important, the pressure drops across the mat and
the wire being additivef For cylindrical fibers this rule applies to basis weight
as low as 50 g./sq. m. However, for thin sheets of cellulosic fibers there are
complications involved other than fiber-wire interaction. Our attempt to clarify
the different effects is necessarily of an exploratory nature. The experimental

work was performed by Andrews (XXI-1) and the data analysis by Meyer (XXI-2).
EXPERIMENTAL RESULTS

The dynamic drainage tester described in the last chapter exhibited
pressure pulsations caused by mechanical vibrations. To reduce their possible
influences on the test results, a hydraulic drive was substituted for the rack-and-
pinion mechanism. The modified apparatus is shown in Fig. XXI-1. The hydraulic
drive consisted of a pump, an actuating valve, a control valve, and a cylinder.

The cylinder, with a 36-in. stroke and cushioned on the rod end, was rigidly mounted

to maintain alignment with the flow tube.

With the aid of an accelerometer the initial accelerating period of the
piston was found to be reduced to a maximum of 0.0l sec. The piston velocity was
established by motion pictures aiming at a 10-cm. span and cross checked by the
pressure trace. The results agreed with each other. Vibrations were still

noticeable in the pressure trace, but they were much less severe than before.

The screens used were 100-mesh plain weave, 48-mesh plain weave, and

T+ x 58 semitwill weave. They were calibrated both in the permeability apparatus
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and the drainage tester over a velocity range of 1-100 cm./sec. The results are

shown in Fig. XXI-2.

A dilute suspension of classified bleached sulfite fibers was used in
this work. The average fiber length determined microscopically was 2.05 mm. In
one experiment the fiber length was cut to 1.25 mm. without altering the cross

sections significantly.

Since the screens were unsupported by a backing plate, they were subjected

to deformation. To minimize the screen deformation, the highest basis weight was
limited to 100 g,/sq. m. at a velocity of 20 cm./sec. With the improved sensi-

tivity of a second pressure transducer it was possible to reduce the basis weight

to as low as b g./sq.'m° The set of low basis weight data is shown in Fig. XXI-3,

in which the pressure drop has been corrected for the screen resistance by sub-
tracting the calibrated value for the screen (Fig. XXI-2) from the measured value

for the mat-screen combination.
DATA REDUCTION

The rav data were replotted in the form of pressure drop vs. flow
velocity with basis.weight as the parameter in selected increments from 10 to 100
g./sq, m. Two'sets of data are shown in Fig. XXI-4 and XXT-5. The former

corresponds to Fig. XXI-5 and the latter differs only in fiber length.

On inspection the data showed certain definite trends. (1) With the
same screeﬁ the shorter fibers cause higher pressure drops. (2) For both fiber
lengths there is little difference between the semitwill- and plain-weave data.
(3) The 100-mesh screen shows lower pressure drops at lower basis weights. The
differences due to screens tend to vanish with increasing basis weights, as

expected.
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Using the analysis presented in Chapter XIII, the Forchheimer formula

may be rewritten as
_J%_I_ = (Ru + RpWU)uU (XXI-1)

where Ap is the pressure drop corrected for flow through the screen alone, U
the approach or piston velocity (equivalent to the previous Qm) and n 1is the
interaction factor due to flow convergence. It is assumed without justification
that the analysis based on viscous flow could be extended to transition flow

provided the inertial term is not dominant.

The compressibility of thin mats for these fibers was presented in

Chapter XVII. Under the confined condition the compressibility function was
¢ = _}_;__6_ = 0.0022|aplo- 38 (XXT-2)

By the analysis -in Chapter XIX for the aependenée of the hydrodynamic properties ¢
cellulosic fibers, the specific surface and volume of these fibers were found to t

correlated by

Sw - QQS‘AP‘O.Oee (XXI—B)

and
v = 12.6|ap|70-18 (XX1-4)

The values of E and ET may now be evaluated from (XVIII-12):

= = (Xx1-5) ,
€
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~ A

R' = 0.1 —% 8, . (XXI-6)
€
e = 1-(1-n/2rwap|" (xT-7)
-3
kK =

3.5 ﬁ?e— [1+57(1L-¢)®] for e¢>0.76 (xx-8) ,

and ‘

k

5.5 for e< 0.76 (XxX1-9) .

From these relationships the value of % was determined from Equation XXI-1,

using the experimental data of Ap , W, and U .

Because of the assumptions involved in both the previous analysis
(Chapter XIII) and the present data reduction, a direct comparison of theory and |
experiment is not yet feasible. However, the general characteristics of the

analytical curves in Fig. XIII-2 may be approximated by
n o= 1+ explnd - (Ly/ro)") (Xxr-10) ,

" - where L, 1is proportional to the mat deflection factor 1n, ,. and (Lb/go)' to

the relative'mat thickness parameter, Lb/fo . By use of the following relation-
ships:
& = 1- -TQL—EZ— (XXT-11)
and
¢ = -“L% (xxT-12) ,

we find that
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_Lb_ = g v N (XXI"lB) )
do (1 - & M(L - N/2)? |4p]

where d, 1is the center-to-center spacing of the wires or approximately the

dimension of the screen openings, and the screen porosity. Equation (XXI-10)

€o

may now be transformed to

Ll —]  ooa-w)

In (h - 1) = K -
) 1 - [ do (1 - € M(L - N/2)?|ap|

where K, and K, are two constants for a given fiber-wire combination.

The results so plotted are shown in Fig. XXI-6 for the semitwill screen.
It is seen that the logarithm of (Z - 1) is linear with the basis weight up to
about 40 g./sq. m. at constant pressure drop, and (w - 1) decreases with increasi
pressure drop at constant basis weight. This qualitative agreement merely serves

to indicate a reasonable method of accounting for- the fiber-wire interaction. -

In fact, Ingmanson (XX-5) has previously considered thin mats as having
a uniform porosity and suggested using the same flow correlation (XVIII-12) by

introducing a correction factor I for the average porosity:

e = 1-TIve (XXT-15)
and
I = (1-0N/22 + (N - ¥/k)exp(-KW) (XX1-16) ,
where X, 1s to be experimentally determined. Thus, as the basis weight decrease:

I increases and ¢ decreases, resulting in a higher velocity at a pressure drop

defined by (XXI-1) or conversely a higher pressure drop across the mat than that
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without a supporting screen at the actual approach velocity. In the other direc-
tion as the basis weight increases, I decreases exponentially and approaches the
value of (1 - E/E)2 , which satisfies the original definition of average porosi-

(XxT-7).
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XXII. GRAPHICAL RESULTS OF HIGH-CONSISTENCY FILTRATION

In filtration of high-consistency suspensions the relative superficial
yvelocity must be taken into account. An analytical procedure has been presented
in Chapter X. However, the final solutions remain to be computed. Previously,
Ingmanson (II-2) employed a graphical method for the same analysis. His results

are outlined below.
LOW VELOCITY

The macroscopic continuity equation may be written on the fiber mass

basis as

v dc AU f
3 T S - (XxT1-1) .

For slow flow with complete fiber retention and negligible fiber-wire interaction,

i the macroscopic equation of motion reduces, with Darcy's law, to

1 dp
U, = ol rale- (xxt1-2) ,

which may be converted at constant t to the integral form:

W PL 1
f Udv = - f v (XXTI-3) .
w b
In terms of the Davis porosity function,
R = klsfrv%cyz[l + ky (ve )3 ] (XXII-k) ,

and using the Ingmanson compressibility function:
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cC = cg + M[p - pLIN (XXII-5)

the right side of Equation (XXII-3) is integrable at constant u , s, and ¢,

For the left side the relative superficial velocity may be expressed by its

definition as

U-(1- vc)UO p
U, = U-———1U, = — (XXI1-6)

Since the continuity condition (XXII-1) relates the temporal rate of change of the
local mat density to the velocity gradient on the mass basis, it is possible to

evaluate the left integral by a trial-and-error graphical technique for specific

conditions. An example is given as follows:
Pulp Classified, bleached sulfite fibers
S, 3800 sq. cm./cc.
X_ 2.35 cc./g.
S 0.01 g,/cc.
Pr 1.6 g./cc.
ﬁ_ 0.k11
M 0.00132 (g./cc.)/(dynes/sq. cm.)E
s X 1P 0.01, 0.1, 0.5, 0.8, 1.0 g./g.
EO 1.29 cm./sec.
i 0.00934 g./(cm.)(sec.)
o 1.0 g,/cc,

The constant-rate filtrations specified above will show the largest effect of

high consistency on mat density.
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In the beginning of the analysis, the assumption of constant U being

equal to Uy is made. Then Equation (XXII-3) results in

Ug(W - w) = f(&p) (xxaI-7) ,

where f(Ag) is graphically evaluated from the right-side integral with the
given conditions. Since the local mat density is related to the pressure drop
by the compressibility function, we may express ¢ as & function of w , corre-
sponding to Ap for a given basis weight W or time ¢t . In the process we

need to know the average mat moisture E from the following relations:

W= —E— fult (xx11-8)
1 - sm
and
W
m o= 0.38 4 —l—f Loaw (xxaI-9) ,
W Jg C

the constant 0.38 being derived from the known values of Pe and p . The
evaluation of ﬁ is carried out graphically. The results are a family of ¢
vs. w curves with t as the parameter. Under the assumption U = EO , these

mat density distribution curves are alike, only being displaced outward from the

origin as the filtration proceeds. Each curve terminates at ¢ at the mat

=0

face W .

By cross plotting, the distribution curves are converted to ¢ vs. t
curves at constant W . Slopes are then taken from these curves, and the product
(X/E)(BS/BE) so obtained is numerically the same as Bg/éﬂ according to the

continuity condition. Thus, a plot of velocity "gradient" vs. w will yield a




B

-218-

family of curves at various times. By graphical integration of these curves,

the velocity change from the origin to any position is obtained:

U-Uy = -Up = flw) at t (XXII-10) ,-

from which the values of U , which has been assumed to be the same as HO s
may now be evaluated, as a first approximation, by the difference of HO - Hf .

Finally, U, is obtained from its definition (XXI1-6) and plotted against w

at time t T By integrating graphically these relative velocity distribution
curves, a new set of mat density distribution functions is evaluated with the aid
of Equation (XXII-3). This completes the first trial. The procedure is
repeated until a new set of mat density curves agrees closely with the previous

one. The final results are for a given suspension consistency, and the entire

process must be repeated for other consistencies.

The results of two trials for 0.5% consistency are shown in Fig. XXIT-1.

The effect of consistency on porosity distribution is shown in Fig. XXII-2.
HIGH VELOCITY

Ingmanson (XXIT-1) proceeded to analyze the case of transition flow in
high-consistency filtration. The filtrate velocity was taken to be 65 cmo/sec,,
and . the other conditions remained the same as before. The flow equation is now

written as
-— - ' -
=y = R, +R pU’; sgn(Ur) (XxI1-11) ,
where

R' = b'kzlasvvy‘*c-y‘*(l - vc)_%[l + kg(vc)s]]/z (XXII-12)
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The integral form of Equation (XXII-1ll) used for analysis becomes

W P N
I aw = -I ‘ dp (XXII-13) .
o D, Ruﬁ&} + R pUi

In the initial step, gr was again assumed to be 90 , and a master
curve of ¢ vs. W at t was con;tructeda The remaining procedure was carried
out as before; only it became more complicated because of the presence of the
quadratic velocity term. The results of the analysis were very similar to the

previous case of viscous flow. At the given velocity the inertial resistance

amounted to about 20% of the total resistance in terms of pressure drops.
MAJOR INDICATIONS

The main effect of high-consistency forming is a more diffuse strﬁcture
with a higher moisture content than the mat formed from a dilute suspension'when
the comparison is made at the same pressure drop and flow rate. Such a compari-
son is shown in Fig. XXII-3. In essence, a significant part of water is merely
squeezed out of the mat formed from high consistency. Thus, less pressure drop
is required to reach the same basis weight than in the case of low-consistency

forming at the same rate.

Since high-consistency filtrations involve flocculation to a pronounced
extent, Ingmanson used the permeation experimehts to demonstrate the effect of
high consistency on mat structure. An entire suspension of the specified fibers
at a known consistency was introduced into the filtration tube and thoroughly
agitated to result in an apparently uniform fiber network. Water was then
admitted to the tube and allowed to permeate the network at a very low rate. The

flow was slowly increased until the pressure drop reached the desired range of
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10-90 cm. of water. These experiments were satisfactory for l% consistency at
which the initial structure was strong enough to minimize fiber settiing and

network disintegration into flocs.

The permeation data for one basis weight from l% consistency are shown
in Fig. XXITI-k, They are compared with the filtration results for 0.01%
consistency at which both flocculation and relative velocity effects are negli-
gible. The agreement between the two sets of results indicates that the mat
formed from a three-dimensional fiber network has the same specific resistance and
therefore the same two-dimensional structure as one formed from the free deposition
of individual fibers. This evidence should remove some of the persistent doubt
about the usefulness of the laboratory filtration results under idealized condi-
tions to the practical sheet-forming process. However, the effect of floccula-
tion, in the sense of floc formation, on drainage and sheet structure remains to
be clarified. Generally speaking, flocculation resulting in a large-scale
nonuniform sheet will increase drainage, but this effect should be distinguished
from that of relative flow of water and fiber through a structure macroscopically
homogeneous in the X-y plane. Flocculation tends to decrease the specific
filtration resistance while relative velocity merely reduces the driving force or

pressure 4rop.
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XXIII. EXPERIMENTAL VERIFICATION OF PARTICLE-FILTRATION THEORY

The theory of fine-particle filtration has been presented in Chapter
ViI. The experimental verification of the analytical results for both incom-
pressible (II-3) and compressible cases by Han and Chang (XXIII-1) will be
presented here. A brief study of particle removal by permeation will also be

reported.
INCOMPRESSIBLE MATS

Dacron fibers of high modulus of elasticity were used in forming
incompressible mats. Titanium dioxide particles which had been treated on their
surfaces with sodium hexametaphosphate as a dispersing agent were chosen for the
initial experiments. The particles were made into a slurry of 75% solids,
stirred in a Waring Blendor until a minimum viscosity was reached (in about 20
min.), and kept, after dilution, in a slowly rotating jar to prevent the particles

from settling.

In order that the particles could be retained to a measurable extent,
the dispersing action of the phosphate ions was partially counteracted by intro-
ducing to a dilute suspension certain ionic compounds which would not adsorb on
the particles. Calcium, sodium, and hydrogen chlorides were found to be effec-
tive for this purpose. The suspensions of particles and fibers, both adjusted

to the desired ionic condition, were mixed in an agitated tank.

Filtration was performed with the mixed suspension in the usual manner
until a very thick mat was formed at constant rate. At the end of the filtration,
the water in the tube was drained slowly through the mat until it reached the mat

face, and the water below the septum was emptied by bleeding air through a tap
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located just under £he septum. After its removal from the tube, the mat was
sectioned by hand into several layers which were dried and weighed. The dried
layers were ashed, and the ash was converted to the sulfate form. Hydrogen

peroxide was used to form a stable color in the solution, which was measured with
a spectrophotometer. By comparing light transmission of the peroxide sample
with the original sample without peroxide at the same temperature, the result in
percentage transmission was converted to the titanium dioxide concentration by

the use of a calibration curve.

The cumulative masses of particles and fibers in successive layers were
plotted against each other, and the slopes were determined on the smooth curve.

These were experimental values of m' in Equation (VII-23) simplified to

m' - m'

S w

-In (1 - —m—s—) = K'(L - =) (XX1TI-1) ,

where | K Kb . i kXXiII-Z)”.
po(l - ¢) mdoPp

The value of gé was also determined, with some uncertainty, from the last data

point of the curve, corresponding to the mat face. That of m, was calculated
from the difference between the known value of the total mass o; free and bound
particles per unit mass of fibers in the suspension and the value of gé . The
data were plotted in accordance with Equation (XXIII-1), and a linear rglationshi]
resulted, as shown in Fig. XXIII-1. From the slope of the line the value of

collection efficiency E was determined from Equation (XXITII-2).

Permeation experiments were carried out under the same ionic conditions
for the purpose of determining the collection efficiency of a preformed mat

according to Equation (III-11):
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T o (XXIII-3)

The value so determined served as a check against that from filtration.

The results of these experiments are summarized in Table XXIII-1. The
discrepancy between the filtration and permeation values of collection efficiency
was about 13%. This rather large discrepancy was attributable to the experiment:
errors. The major part probably occurred in the particle measurement. In the
case of permeation, a single determination of the retained particles was suffi-
cient for the evaluation of E . For filtration, however, the involved colori-
metric analysis of titanium dioxide was performed on each layer of the mat. In
any single analysis the sample had to be ashed, chemically treated, and transferre
All these manipulations entailed some losses of the particles. The total loss

could conceivably account for the smaller value of E from filtration.
COMPRESSIBLE MATS

In the subsequent experiments a classified sulfite pulp was used in

forming compressible mats. The average fiber length Lf was 2.11 mm. and the
average width Qf was 0.029 mm. The specific volume v was 2,26 cc./g., and
the number of fibers per gram n. was 2.78 x 17, The proJjected area per unit

—

volume of the fibers was calculated to be 10® sq. cmu/cc. from

A n_ L
r _ _f ﬁ?i_ (XXITI-k)
i v
f
The particles were fines from the same sulfite pulp. They were

obtained by dry and wet grinding of the fibers to the size range of 0.5-2 microns

in the first batch and 0.05-0.5 micron in the second batch. An electron
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TABLE XXIII-1

VERIFICATION OF PARTICLE RETENTION

Particle TiO2
gp 0.15 micron
o 3.9 g./cc.
Fiber dacron
de 0.0169 mm.
p_ 1.41 g./ce.
Suspension
TiOo conen. 2.31 x 10°¢ g./cc.
Fiber concn. 6.84 x 105 g./cc.
CaCls concn. 1.9 x 108 g.-moles/cc.
pH 3.6
T 23°cC.
U 1.0 cm./sec.
Ap (final) 1.9 cm. Hs0
Mat
L L.0 em.
€ 0.98
E (from filtration) 3.5 x 1073
E (from permeation) 4.0 x 1073
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micrograph of the second batch of fines is shown in Fig. XXIII-2. The fines wer
tagged with radiocactive silver-110. The radiocactivity was measured with a
Geiger-Miller counter in counts per minute (c.p.m.), corrected for background
radiocactivity, under a fixed geometry over the sulfated ash of the fines in a

planchet. The counting results were significant only on a relative basis.

When a suspension of the fines and fibers was prepared by dilution, it
was found that the retention of fines in the mat was insufficient (almost none )
for a precise measurement of their radioactivity. By providing similar ionic
conditions as in the hydrophobic system of titanium dioxide particles and dacron
fibers, retention was considerably improved. However, at low pH values there
occurred serious leaching of radioactivity to the solution. A leaching test the
showed that at pH 6.5 only 5% of the radioactivity was lost. The final proce-
dure was to add only calcium chloride dihydrate or sodium chloride to the suspen-

sion without the use of hydrochloric acid to lower the pH.

It is interesting to mention that in the other extreme a uniform
particle distribution in a mat could alsc be achieved by imposing highly favorabl
colloidal and hydrodynamic conditions to the particle-fiber suspension. When a
relatively concentrated suspension of the sulfite fines and fibers was stirred
intermittently for 25 hr. at pH 6.4 with a sufficient concentration of calcium
chloride and then diluted to make a filtration run, the resulting mat exhibited
an almost uniform fines distribution, as shown in Fig. XXIII-3. In this case
nearly all fines were bound to the fibers prior to the filtration or the fibers
became so saturated with fines that further cpllection was negligible during the

filtration.

Under a majority of experimental conditions the sulfite system behaved

in a manner somewhere between the-two extremes of little retention and pseudo



-23%1-

Xw:

ines

ite Fi

icrograph of Sulf

Electron M

Figure XXIII-2.

=
=

i

iy




C.PM. x 10-3

-232-

©

%
(SEPTUM)

Figure XXIII-3.

w, G.

Uniform Particle Distribution




-0%3.

saturation. Such data are shown in Fig. XXIII-hk, It is seen that the top part
of a mat from its face downward is a sloping line in agreement with the theory
while the bottom part near the septum, being a horizontal line, indicates a
condition of saturation. The unsaturated and saturated regions are Jjoined by a
curve of an uncertain transition region. The lower the collection efficiency and
basis weight, the shorter is the saturation region. We wish to emphasize that
the so-called saturation is probably a pseudo stable state which may be easily

altered by small disturbances.

From the discussion in Chapter XIV on flocculation, we may conceive
that the hydrodynamic, electrostatic (colloidal), and molecular forces are oper-
ative between fines and fibers and among themselwes. To carry the analogy
farther, we may imagine that the energy of interaction would vary along the sur-
faces. In a given force field, the rates of attachment and detachment might
become temporarily equalized so that a precarious dynamic equilibrium could be

so maintained.

Purther experiments were conducted to show possible particle distribu-

tion in thin mats. These mats were divided into layers with a Beloit sheet
splitter. The results for thin mats as shown in Fig. XXIII-5 are in excellent
agreement with the theory. This is perhaps another demonstration of the useful-

ness of a mathematical model and controlled experiments in the research of a
complex subject. Table XXIII-2 summarizes the results of the sulfite system.
The agreement in collection efficiency between the filtration and permeation
experiments is much better than in the titanium dioxide-dacron system because of

the sensitive measurement of radioactivity.
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TABLE XXIII-2

RETENTION OF FINES IN COMFRESSIBLE MATS

Fines, micron 0.5-2 0.05-0.5
CaClpy concn. x 108,

g.-moles/cc. 1.9 1.9 1.9
NaCl concn. x 10P,

g.-moles/cc. 1.0 1.1 1.0 1.0
pH 6.4 5.8 5.1 6.3 6.0 6.2 6.3
T, °C. 23 21 21 26 21 26 26
W, g./sq.m. 1140 650 650 1140 370 140 110
E x 108

Filtration 71 3.8 1.0 .1 4.3 2.3 2.6

Permeation .70 4.5 2.5 2.7

FINES REMOVAL

A thick mat was formed from the sulfite suspension under the conditions-
of nearly complete attachment of the fines to the fibers prior to the filtration.
A solution of the same ionic concentrations as those in the suspension was per-
meated through the mat at a fixed velocity. During permeation, the radioactivity
of the mat was monitored as illustrated in Fig. XXTII-6. The results are shown
in Fig. XXIII-7. As suggested by Nelson (XXIII-2), these curves may be repre-

sented by the function:
m' -my = A exp(-t/ty) (XXII1-5) ,

where the total number of bound particles m' 1s proportional to the measured
radioactivity. The values of A , my , and t, were thus evaluated from the

data.
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Fines Removal Experiment

Figure XXIII-6.
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Nelson further considered the removal of bound particles in the washing
process to be represented by the detachment coefficient D, having the dimensions
of reciprocal time. The detachment process was supposed to compete with the
reattachment process (described by the collection efficiency E) In the cumu-
lative-mass co-ordinate system, Equations (VII-31) and (VII-32) for the free and

bound particle concentrations become, respectively,

A
oC! f
=t < E Tf— lUlC - Dy C! (XXIII-6)
and
A
oC l-¢ 1 oC f
<~ = — [ || 5+ -E 7, |u|c +Dyc'] (XXIII-7)

These two equations may be solved numerically together with the viscous flow
expression and the compressibility function under specified initial and boundary
conditions. The results of computation from the washing experiments are

summarized in Table XXITII-3.

TABLE XXIII-3

FINES REMOVAL BY WASHING

U, Ay, My Y% E, Dy,
c.p.m./g. c.p.m./g. . sec.”!

em. /sec. X 1074 x 1074 sec. x 108 X 10°
1.0 0.5 3.5 102 L4t 1.03
2.0 0.7 3.3 78 2.82 1.0k
3.5 1.15 2.85 1k 1.94 1.04
5.0 1.3%5 2.65 92 1.53 1.05

- o,oouu7g'?s,

(J=al
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If the collection efficiency were assumed to be zero, Equation (X II-6

would reduce to an exponential solution with the value of D evaluated to be

pud o}
0.0101 sec.”t. Thus, it appears that the more general treatment developed here
is being applied to a limiting case, in which reattachment is a comparatively

unimportant process.
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XXIV. COLLECTION MECHANISMS IN PARTICLE FILTRATIONS

The collection of particles in fiber mats was studied extensively in
aerosol filtration. Recently, Han (XXIV-1) made a dimensional analysis of
available data and offered suitable correlations for practical uses. The
results of the analysis are presented here on account of their close relationship

with liquid filtration.
GENERAL CONSIDERATIONS

In the absence of external and imposed forces, gravitational, electro-
static, magnetic, thermal, and chemical, the coilision of particles with a fiber
arises from three well-known aerodynamic factors. Particles with negligible
mass will collide with a fiber as they follow the fluid motion to the neighbor-
hood of the fiber within a distance of their radii. This is called interception.
While the fluid must spread around the fiber, approaching particles tend to
execute less curved trajectories, depending on their inertia, and head toward the
fiber, resulting in impaction. Very small particles exhibit Brownian motion
due to the Bomﬁardment of the fluid molecules. As they are passing by the
fiber, collisions can result from their zigzag motion. This mechanism of

collection is often referred to as diffusion.

Diffusion increases with decreasing particle size and fluid velocity,

but is independent of particle density. On the contrary, impaction is enhanced
by high velocities with large and heavy particles. Interception is favored
primarily by increasing particle sizes. Whatever mechanisms may be operative in

a fiber mat, retention increases with decreasing mat porosity and fiber diameter

as expressed in Equation (VII-3).
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The assumption will be made that a definite percentage of particles
colliding with fibers results in adhesion. For a given particle-fluid-fiber

system, at least the following variables will affect the collection efficiency:

E = f(dp’ pp> D, p, 1, Uy df’ 6)---) (XXIV']-) ’

where D 1s the diffusion coefficient or diffusivity of the particles in the

fluid. The seven stated variables may be reduced to four dimensionless parame-

ters: the Reynolds number, Bﬁf , as pgfg/p ; the Schmidt number, Sc , as

u/pg ; the diameter ratio, Bd as ip/if 5 and the impaction number, I ,
2 0] . . . .
as BQEDEE£/18 . The last parameter containing the density ratio Bp , defined

as (pp - p)/o , 1is deduced from the law of motion, the number 18 arising from
the Stokeé resigstance for a sphere in slow motion. Thus, the correlations to be

developed will involve one or more of these parameters or their combinations:

E = f(RefJ Rd)

I, ¢) (XXIV-2)

The sources of experimental data chosen for this analysis are listed
in Table XXIV-1. In these experiments the particles were believed to be mono-

dispersed.
IMPACTION-INTERCEPTION

In aerosol filtration the particle diameter is often of the order of
the mean free path (10°® cm.) of the air molecules. The particles have a ten-
dency to slip between the molecules, resulting in less resistance than indicated
by Stokes' law. To account for the higher particle mobility, the Cunningham
correction factor is introduced. At ordinary air temperatures and pressures

the approximate correction is



Source

Particle
P ./cc.
BJ g/

d_, micron

X

Fiber
gf’ micron
M;t
€
Alr
px 10, g./cc.

ux 0%, g./(cm.)(sec.)

g, cm./sec.

TABLE XXIV-1

DATA OF AEROSOL FILTRATIONS

IPC
(XK1V-1)
aluminum'L, polystyrene
oxide latex
3.99 1.05
0.0036-0.0078 0.26-0.8
dacron dacron
17.5 17.5
wet formed wet formed
0.78-0.91 0.7-0.73
1.0 1.0
1.8 1.8
30-450 30-800

Wong

(XXIV-2)
sulfuric
acid

1.59
0.4-1.3
glass
5.5-9.6
wet formed

0.9-0.95

1.1
1.9
20-200

" Chen Thomas
(XXIV-3) (XXTV-4)
dioctyl benzene azo
phthalate naphthol
0.98 1.26
0.15-0.72 0.29
glass glass
2.5 10.6
dry formed '
o
0.93-0.98 0.94-0.98 b
1.2 1.2
1.8 1.8
1-50 1-100
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K = 1+ 0.16 x 10-4/dp (XXIV-3)

Theoretical analysis by Davis (III-3) indicated that E 1is a functior

of I and Bgf when impaction dominates. Since both parameters contain U ,
it is desirable to separate I 1into two factors, E? and Bgf . E? is

defined as (E?/l8)(REBp) and called the inertia number.

The impaction data of IPC were obtained with polystyrene latex particl
at high velocities. They are shown in Fig. XXIV-1. There appear three distir
guishable regions: a linear region represented by the solid lines, a curved
region as an extension toward lower velocities, and an apparently anomalous
region consisting of abnormally low data points. The linear region is believed
to be representative of impaction. Within the precision of data, the four line
corresponding to four particle sizes are parallel to one another with a slope of
5/2, The larger the particle size, the lower is the air velocity for the
particles to reach the impaction region. A correlation for impaction may be

established as
E = B(R°)(Ref)72 = B(I)(Ref)]’/e 4 (XXIV-L)

The average value of 8 is 0.24,

The data of IPC were confined to a very narrow porosity range. The
effect of porosity on E , however, may be qualitatively deduced. At the same
porosity the average pore size of a fiber mat is roughly proportional to the
fiber diameter. As the pore size increases, the chance of impaction decreases.
With the same fibers the pore size increases with increasing porosity, resulting

in more impactional misses. Meanwhile, as the porosity or pore size increases,
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the fluid velocity in the pore- ¢ 1¢ases at the same approach velocity. This
further reduces the chancez -¢ @opoition.

The data of Wong =~ ) " wider range of Ry (0.05-0.3) than those of
IPC (Bd 0.015-0.045). Wong ' roiilts are shown in Fig. XXIV-2 as replotted frop
his original data. According v Wong, impaction ceases to be effective below a
critical impaction number which he nuggested to be 0.16.  Accepting the existence
of critical impaction, we may lnl"V that the horizontal part of the curves
represents interception which npprt’s to be independent of the velocity and to be
a function of the diameter reflr wmly. Proceeding with this evidence, we have
found that interception also brvimrii ineffective below the minimum value 0.085
for Bd

5, - y{ly - 0.085) (XXIV-5) ,

where vy is O.k. If this anulynis is correct, the previous implication of
negligible interception in the |1V twpaction data.was justifiable.

We now deduct E, 1w (lw reported E for all Wong's data; the
net value presumably represent: Lhe vollection efficiency due to impaction alone.

In this way we have arrived al the sumé correlation:

(@ - w0 = B(Rey)’ (XTV-6)
The value of B for Wong's system s 0.06. The two sets of data are compared
in Fig. XXIV-3. They show very wwnilar patterns and have the same degree of

scattering.
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DIFFUSION-INTERCEPTION

Theoretical analysis of diffusion indicated that E is proportional to
the diffusion number (g/gfg) to the power from 1/2 to 2/3. The diffusion

number is the reciprocal of the Peclet number, which is the product of the Schmidt

number and the Reynolds number.

A part of Chen's data for low Bd values may be considered to be
diffusion-controlling. By a graphical analysis these data, as shown in Fig. XXIV -k,

may be correlated by -
B = alse) /2 (Ref)—y2 (XxIv-7) ,

the value of ¢ being 0.8. Additional support for this correlation is obtained
from Thomas' data. They show the same slope with ¢ equal to 0.3. It is seen

that Thomas' data exhibit increasing deviations at Bgf

larger than O.1.

Previous work at IPC dealt with very small particles in transition flow
(0.1 < Bgf < 10) . The IPC data also shown in the same figure may be correlated

by
E o= ofsc) ! (Ref)—?ls (XXIV-8)

The value of ¢ is 0.23. By comparing the three sets of data, it appears that
diffusional collection is affected by flow pattern. In creeping flow a dimensional
analysis will show that the collection efficiency is dependent on the diffusion
number alone. As the Reynolds number increases, fluid inertial effects set in.

The change of flow pattern, as discussed before, is gradual, and a very rough

criterion for transition is unity ng . It is reasonable to expect that in
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transition flow, while the diffusional characteristics of a system remain the same,

the dependence on flow should undergo slow changes.

In an analysis (II-3) of Johnson's data (XXIV-5) for water filtration
of titanium dioxide particles by nylon fiber mats, the conclusion was reached from
both theoretical consideration and experimental evidence (Fig. XXIV-5) that

collection efficiency was dependent on the diffusion number to the power 2/5 for

Ref < 1. The reason for the discrepancy between gas and liquid filtrations is
not known. One possibility would be the increasing agglomeration of titanium

dioxide particles with increasing velocity in Johnson's experiments.

The effect of interception on diffusion is more complex than in the case

of impaction. It is dependent on both Bd and R The effect of porosity

4 =t
on diffusion is generally minor because of the counteracting factors of decreasing
pore size and increasing pore velocity. The IPC data for ¢ between 0.75 and
0.92 are in agreement with this deduction. At very high porosities Chen demon-
strated that E decreases linearly with increasing e , the maximum effect being

about 30% in the porosity range of 0.9-0.98.
DIFFUSION-IMPACTION

In the absence of interception, the two mechanisms are considered to be
independent and additive, subject to the limitation of critical impaction. The

curved region of the IPC data in Fig. XXIV-1 may be so represented by

E = oz(Snye (Ref)_% + B(® )(Re )72 (XXIV-9) .

f

Taking the derivative off E with respect to Bgf

and setting it to zero, we

obtain the minimum point at
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Re (XXIV-10) .

 [lafse T 77
= 15pF0

Examining the original data, the only apparent minimum is located at Bgf 0.75
for the smallest particle size. With the known value of B , « 1s evaluated
to be 5.5. Using this value, all four curves may be reconstructed, as shown in

the figure. They appear to be in fair agreement with the trend of the data

except the abnormal points.

Obviously, the curves should cross each other because diffusion decreases

and impaction increases with increasing particle size; the minimum occurs at

progressively lower Reynolds number as the particle size increases. Furthermore,
at a certain value of Bgf , 1lmpaction ceases to be effective, and a linear
region of pure diffusion will be reached sooner or later. The dashed lines

represent such extrapolations.

In a similar manner, Wong's data for Bd at 0.08 may be analyzed, using

the power 1/2 for Bgf in diffusion. At the minimum value of 0.2 for Bgf , the
coefficient ¢ has a; estimated value of 2. The curve representing the cgﬁbined
effects of diffusion and impaction is shown in Fig. XXIV-2. For higher Bd )
interception comes into play, and this method of analysis is no longer appl;cable.
The abnormally low points in the IPC data exist in the neighborhood of
unity Bgf . The scattering is more pronounced with the larger particles. A
possible ;xplanation for this anomaly could be that impaction might not become
effective in transition flow if diffusion persisted locally in a mat. As pointed

out by Fuchs (XXIV-6), transition of aerosol behavior exists in the range of

particle sizes between 0.1 and 1 micron. The combination of changing particle
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behavior and flow pattern would account for the instability observed. Wong's

data show a similar pattern.

ADHESION-DETACHMENT

The coefficients @ , B , and <y include all factors not accounted
for in the correlations. The major factor should be the degree of adhesion which
results from the molecular attraction between particles and fibers on their close
encounter in the range where Van der Waals-London forces are operable. Whether a
particle will adhere to a fiber (or another particle) or not is dependent on all
the forces, molecular, aerodynamic, gravitational, and electrostatic, acting at
the site of collision. It is the net force, or rather the energy of interaction,
which ultimately determines the fate of the particle. Obviously, different
particle-fluid-fiber systems have different degrees of adhesion. Even for

apparently the same materials, the nature and treatment of surfaces will result in

~ widely different collection efficiencies under the same filtration conditions.

In Table XXIV-2 the values of o and B are arranged in a descending
order, Solid particles appear to have the lowest adhesion. However, when the
same fibers are coated with a viscous o0il, adhesion is considerably improved.

With the same kind of fibers, adhesion of liquid particles can vary widely. It

is also interesting to compare the first two sets of data for which both « and B
values are available. The ratio of ¢ values is only 1.7 while that of corre-
sponding B values is 4. The much lower adhesion of the liquid particles in the
impaction region is probably due to shattering of droplets on impact and re-entrain

ment of finer particles by air.
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TABLE XXIV-2

COMPARISON OF COEFFICIENTS

Air filtration Diffusion (&) Impaction (B)
Polystyrene latex-dacron,

coated with oil 3.5 0.24
Sulfuric acid-glass 2.0 0.06
Dioctyl phthalate-glass 0.8
Benzene azo B-naphthol-glass 0.3-0.4
Aluminum oxide-dacron A 0.23

Water filtration

Titanium dioxide-nylon 11
Titanium dioxide-dacron 4.8
E x 1
CaCls NaCl
Fines-sulfite (lst batch) 70 L

Fines-sulfite (2nd batch) I 2

With liquid filtrations the situation becomes more complex when colloidal
conditions are imposed. The fines prepared from the same pulp in two different
batches show a considerable difference. Flocculation of particles could account

for a part of the discrepancy.
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XXV. EXPERIMENTAL SUPPORT FOR FIEER-RETENTION THEORY

The probability theory of fiber retention was reviewed in Chapter VIII.
The experimental evidence for initial retention was supplied by Estridge (II1I-11),

Andersson and Bartok (XXV-1), and Bloom (XXV-2). Abrams (VIII-1) and Han (III-12)

dealt with subsequent retention.

INITTIAL RETENTION

Estridge considered four idealized cases as follows: (I) parallel wires
with uniform spacing and randomly oriented fibers, assuming no friction on contact
with a wire, (II) same wires and fibers, assuming no slippage at contact, (III) sam
wires, with approaching fibers oriented randomly only in the x-y plane, and (IV)
square-mesh screens with other conditions the same as in Case I. His predictions

are shown in Fig. XXV-1 as solid curves.

- For retention experiments he used'simple filtfation apbarafus with means
of collecting and weighing the straight rigid‘nyldn fibers of narrow cuts retained
on and passed through a grid of very fine wires from an extremely dilute suspension
at a slow rate. By making a series of runs with a given fiber-wire combination,

a set of retention data was obtained. From a plot of W vs. Hs a smooth curve was

constructed and the slope at the origin was taken to be Ei for initial retention.
The data points are shown in Fig. XXV-1. Their agreement—with the curves, in
general, is good. Because of the loss of precision in taking the slopes, the data
points for parallel wires are not accurate enough to distinguish the three assumed
cases. In Estridge's experiments, minor variations in flow rate, pitch-to-diamete:

ratic, and suspension consistency were found to have no significant effects on the

retention results. |
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Estridge also recalculated the data of Andersson and Bartok for rayon
fibers passing through 28-mesh screens in a modified Bauer-McNett classifier, using
the net dimension of the screen openings. The results are seen to be in good

agreement with Case IV for square meshes.

Bloom experimented with fibers in different length-distributions. He
demonstrated that for fibers having the same mass per unit length Estridge's

general equation (VIII-6) is valid: .

Ve 3 P3Ny
R, - —faiid (xxv-1)

Four different distributions of nylon fibers (Lf = 1.5-5.1 mm.) were used with a

square-mesh grid (4, = 2.54 mm.) . Bloom's results are also included in Fig.

XXV-1, the values of fiber length being weight averages.
SUBSEQUENT RETENTION

Abrams modified the filtration apparatus to accommodate the measurement
of fiber retention in incremental steps so that a complete set of data could be
obtained in a single run. A schematic diagram of his apparatus is illustrated in
Fig. XXv-2. Rectangular grids having openings with aspect (length-width) ratios
1, 2, and 3, constructed of 0.01%-cm. diameter stainless steel wires and fibers cut

from 4.1 and 4.5 x 108 -cm. diameter nylon filaments were used in the experiments.

Retention data were obtained as before. In addition, photographs of the
fiber networks were taken periodically throughout an entire run and were used late:
to establish the distributions of network distances L, . The random scan-line
measurements of the network photographs provided frequency distributions as discus:

in theory. The average retention probabilities Ei were then determined by
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substituting the estimated distribution functions from the photographs into
Equation (VIII-7) and integrating accordingly. The results determined from the

retention data and from the theory based on the frequency distribution data are

compared in Fig. XXV-3. The discrepancies are very large, the actual retention
being lower than the predicted. The two curves, however, are in agreement with
each other for initial retention. Abrams attributed the discrepancy in subsequen

retention to suspension-network interactions which were not taken into account in

the theory.

Because of the inadequacy of the theory, Abrams reverted to the semiempi
cal treatment. He evaluated the values of ¢, (VIII-12) from his data, and four
that they varied from 0.07 to 0.17, as compared with the theoretical value of 0.3)
There was, however, no discernible pattern with respect to fiber length or opening

dimensions.

VVThe earlier wdrk of ﬁaﬁ on fiber réteﬁtion was entirely empirical. lﬁy
intuition he correlated his white water consisteﬁcy data from sheet-forming
experiments in an exponential form. The sheet former was of the rotary suction
type covered with conventional wire screens (80 x 57-mesh facing wire and 20-mesh
backing wire) and the fibers were classified from a sulfite pulp. His correlati
is shown in Fig. XXV-U, in agreement with Equation (III-14). If the line is
extrapolated to zero basis weight, the initial white water consistency is 2.7 x 1
or 0,027%. Since the suspension consistency was 0.262%, the initial retention
probability would be 0.9. This value appears to be reasonable for a long-fiber
stock and the combination screens used. The value of ko is 0.045 x 10* sq. cm
per g., which is smaller than Abrams' lowest value 0.06 x 10* corresponding to hi

o Vvalue 0.1. The agreement is about as good as can be expected.
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XXVI. HYDRODYNAMIC BEHAVIOR OF CYLINDRICAL FIBERS

The motion, collision, and interaction of fibers in a fluid constitute
the dynamic behavior of a fiber suspension. However, observations and interpre-
tations of such phenomena involve considerable difficulties because of the boundary
and other effects often associated with experimental conditions. We attempt here .
to review some studies of the relatively simple phenomena, by which more complex

ones may be eventually clarified as our understanding increases.

FIBER SEDIMENTATION

The creeping motion of a finite cylinder, as discussed in Chapter XIV,
was studied by Han (XXVI-1) by means of sedimentation in a cylindrical vessel.
The results are shown in Fig. XXVI-1. The lower curve represents Oberbeck's
solution for a prolate spheroid with its long axis perpendicular to the direction

of motion at a constant velocity. The drag force in an infinite fluid is
F_ = 6muurf(x) (xvi-1) ,

where, for semiaxis ratios (x) larger than unity,

8/3)

flx) = = ,E (xxvi-2) ,
e X 27— 1n [ X - 1)
SRR (x® - 1) G

I, being the raedius of a spheroid. For x =1, f(x) =1, and Equation (XXVI-1)
reduces to Stokes' formula for a sphere. For x > 10, F, o is the same as

Burgers' solution for cylinders:

hnuULf

© in (2Lf/df - l/g) (XIV_E) ’
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where Ef/gf is the axis ratio.
The experimental data show clearly the wall effect. Using Brenner's
correction (XIV-L), the value of Ew was found to be very close to unity. This

value agreed with Brenner's theoretical value for parallel walls, rather than that
for cylindrical walls. Anyway, after the correction for the wall effect the
experimental curves merged into a single one. The corrected drag force within
the experimental range was alwayé higher than the theoretical prediction by a
constant factor of h/}. This discrepancy may be attributed to the difference in
shape between an ellipsoid of revolution and a cylinder. It is conceivable that
as both become infinitely long, their drag forces approach each other and tend to
agree with Lamb's solution (XIV-1). With this contention the experimental results
are transformed into the drag coefficient as a function of the Reynolds number

with the axis ratio as the parameter:

. F_ ) unuUdff(Lf/df) i 8nf(Lf/df) (o)
- - - - )
® Aprg/2 Lfdprz72 (Lf/df)Ref
where f(gf/gf) is the same as f(x) . Similarly, Lamb's solution may be
expressed as
8m
Co = Re, In (7.h/Ref) (XxVI-k)

The resulting plot is shown in Fig. XXVI-2, in which the data of Jones
and Knudsen (XXVI-2) for cylinders with very small axis ratios (1-30) in the
Reynolds number range of 1072 to 1 and those of Wieselberger (XXVI-3) for an

infinite cylinder at Bgf

larger than unity are included. The linear region

representing the axis ratios from 5 to 1000 indicate creeping motion. The curve
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region for an infinite cylinder reveals inertial effects. The lines, when
extended to higher Reynolds numbers, sooner or later cross the curve. The

intersections occur at

Lp/d;
Ref = exp[2 - W] (XXVI-5)

The extension of the lines would begin to curve because of inertial effects.

Wieselberger measured the drag force on cylinders at Re. from 5 and upward.

£

He found that the drag coefficient was also dependent on the axis ratio, but to a
much milder extent and in the opposite direction. Thus, if the lines were
extended beyond the curve, they would cross one another in order to reach

Wieselberger's region of high Reynolds numbers.

Han also found that curved cylinders moving concave-downward deviate

approximately from Tchen's solution (XIV-4) by the same factor of 4/3 as straight

cylinders. Tchen's solution for this case is
F, = 2mulryf_ (xxv-3) ,
_ _ sin2y
£ = 1/2[(“1”r + ft) + (£, f.) 2y 1,
radial f = s
- 2
r 1n (Lf/df + er)
2tan(y/L) siny 5
e = 1n + -
r N7 ol
tangential f = 2
- P
t 1n (Lf/df) tey

_ 2tan(y/4) 3 siny )
e, = In /) + =5 0 2 (XXV1-6) .
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The sedimentation results of curved cylinders with radii of curvature 0.61 , o.9h,
and 1.4L5 are compared with Tchen's solution in Fig. XXVI-3. It is seen that for
both experimental results and theoretical predictions the effect of curvature is

significant only above the axis ratio 10°.
SUSPENSION VISCOSITY

Mason (XXVI-4) initiated the study of fiber suspensions in Couette flow.
Myers (XXVI-5) constructed a concentric-cylinder viscometer with an air bearing for
the inner rotating cylinder in order to measure very low torques. His apparatus
is shown in Fig. XXVI-4. The same apparatus was used by. Blakeney (XXVI-6) to
obtain viscosity data for straight rigid nylon fibers at an axis ratio 20, dispersed
in tetrachloroethane--paraffin oil solution (p = 1.1k) at very low volume concentra-
tions. The apparent viscosity was determined from the slope of a linear plot of
the measured torgque vs: angular velocity in accordance with the well-known equation:

a2 /n 2
_ 1 r /ro ) T
g T 7—mhr;~r w

(XXVI-7)

The apparent viscosity was then corrected for end effects by calibration curves.

Blakeney also took photographs of the fiber suspensions for the purpose
of determining the fiber orientation factor sin;esin22¢ in Burgers' expression
(XIV-7). His final results are shown in Fig. XXVI-5. In the low concentration

range up to 0.4 x 102 there is a linear region in agreement with Burgers' theory:

= 1+ oPC (XIv-6)

The experimental value of P as determined from the slope of the line is 1.98, as

compared with the value 1.95 determined from Burgers' theory with the
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photographically evaluated average orientation factor 0.0563. According to
Burgers, the orientation factor may vary from (h/n)(gf/éf) for completely random

orientations to 2(gf/gf) for random orientations in the x-y plane only. At the
axis ratio 20, his values would be from 0.064 to O.1. Again, there seems to be

some minor defect in Burgers' theory, probably in his accounting for the orienta-

tion factor based on Jeffrey's analysis of ellipsoids (XIV-7).

The curved part is of particular interest in the behavior of fiber
suspensions. First of all, in spite of the higher concentrations the system still
exhibits the Newtonian behavior. Secondly, the deviation from the linear relation-
ship begins at the concentration 0.42 x 10°2. This value happens to be close to
Mason's "critical concentration," (3/2)/(£f/gf)2 , at which the hydrodynamic
interaction of fibers is supposed to become—ap;reciable. Thirdly, the orientation
factor determined from the photographs changes significantly with the concentration,

as shown in Table XXVI-1.

TABLE XXVI-1

EVALUATION OF THE ORIENTATION FACTOR

c sin§6sin?2¢
0.106-0.k424 0.0563 (av.)
0.504 0.0881
0.557 0.0665
0.66% 0.0575

With the fiber interactions and the change of fiber orientations in

mind, Blakeney proposed the empirical correlation for the curved region:
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K
HS = 1+oPC+B(PCP . (xw-8),
for which B° was evaluated to be 468 from his data. The fit was fair over the

inflection part and poor at higher concentrations.

In Blakeney's experiments the wall effect was negligible. Both Myers
and Blakeney found the pronounced effect of curved fibers on viscosity (fiber
rotation) in the linear region, in contrast to the linear motion of a curved fiber.
For a slight curvature (176°) at the same axis ratio 20, the apparent viscosity
increased by as much as 30% at the critical concentration. Blakeney also coinci-
dentally observed the effect of flocculation. When a low torque was applied to a
certain dispersed suspension at the beginning of one experiment, the fibers immed-
iately began to form flocs (not a uniform network ), which continued to grow until
an apparently stable size was reached at the fixed shear field. The growth of the
flocs caused a decrease in the angular velocity and an increase in the apparent
viscosity. As the torque was increased the flocs were breaking down slowly until
a smaller stable size was attained. The general behavior of a flocculated
suspension was of the Ostwald-Philippoff type which consists of three regions: two
Newtonian regions joined by a non-Newtonian region. With fiber suspensions the
first Newtonian region is usually indistinguishable experimentally because very low
angular velocities are required. At a given concentration flocculation could
increase the viscosity considerably, depending on the state of flocculation. For
example, an effect as much as 60% was observed at concentration 0.1 x 10°2 for

nylon fibers in glycerine-water.



-27&-
SUSPENSION FLOW

Flow of fiber suspensions in a tube or pipe has been investigated by
several workers, among whom Daily (XXVI—?) has presented some interesting data.

Their work is briefly reviewed here.

The general behavior of fiber suspensions in pipe flow may be divided
into three regimes: (1) Plug flow in which a cohesive fiber network moves as a
whole at velocity U 1in the central part of the pipe, leaving a clear-water
annulus next to the pipe wall. The flow is laminar in the annulus. An increase
of velocity reduces the annulus thickness. In this regime the pressure gradient
is approximately proportional to g?; . (2) Mixed flow in which the laminar flow
becomes unstable and fibers are entrained in the annulus layer. Further increase
of velocity produces more mixing until the plug completely disintegrates. In
this regime the ﬁressure gradient becomes approximately proportional to g}.es.
(3) Turbulentrflow yhich manifests a lower friction than that of pure water at the-
same velocity. In this regime, the pressure gradient is approximately propor-

tional to g?

It is a common practice to present pipe flow data in terms of friction
factor and Reynolds number. Such a plot for nylon fibers is shown in Fig. XXVI-6,
based on Dailyfs data. The major features of the flow have been outlined above.
Further interpretation, however, is difficult not only because of the non-Newtonian
behavior of the probably flocculated suspensions but also due to the lack of
adequate understanding of turbulent flow in general. For instance, Daily (XXVI-8)
later showed that suspensions of rigid spheres always resulted in higher friction

losses than water, even in the turbulent regime.



"FRICTION FACTOR

1.0
0.8
0.6
NYLON FIBER, 1.5 DENIER
04 O 0.10%
A 0.25%0
® 0.50%
A 2 IN. PIPE
0.2 ‘\\
N
0.1
0.08 A i\
0.06
\\ \
_ -
004 —
b\
K (,WATER i~
0.02 AN
\\
0.0l
103 2 4 6 8 104 2 4 6 8 10° 2

REYNOLDS NUMBER

Figure XXVI-6. Correlation of Pipe Flow

-Gle-



-276-

"If blind faith in mathematical analysis is so apt to result
in erroneous conclusions, one is inclined to repeat the question asked
by engineers of past centuries: why waste time with theories when
experimental evidence is invariably required? Those engineers them-
selves unwittingly provided the answer by accumulating field and
laboratory data out of all propoftion to the new knowledge thereby
obtained."

(Rouse, Hunter, Ed. Advanced mechanics of fluids.

Chap. I. p. 5. New York, John Wiley & Sons, Inc.,
1959.)




PART THREE

APPLICATIONS AND APPROXIMATIONS
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XXVII. DYNAMIC DRAINAGE IN PRESSURE-SUCTION FCRMERS

Applications of the filtration theory to centinuous formers have

demonstrated its usefulness and clarified some misconceptions concerning their

operations. The pressure-suction formers are more amenable to analysis than
others, and will therefore be discussed first. They are usually classified into
three types: rotary, horizontal, and inclined. The general features of their

operation, however, are very similar.
ROTARY FORMERS

The drainage experiments with a rotary former reported by Han (III—12)
were most detailed at that time. The forming unit was essentially a suction roll
with a short roof over the forming area (Fig. XXVII-1). The centrifugally cast
bronze roll was 10 in. in diameter with drilled and countersunk holes in its shell.
Inside the roll was fitted with a suction box covering an effective forming area
6 in. on the circumference and 2 in. wide in the cross direction. The suction box
was provided with s movable partition to divide drainage into two parts for the
purpose of incremental flow measurements. The Plexiglas roof was molded to a
parabolic curve in conformance with the simple filtration theory (Chapter X).

Six pressure taps were located aslong the roof and connected to individual manometers
through an air purge system. The roll was covered with a 20 x 20-mesh backing
wire and an 80 x 57-mesh facing wire. Air nozzles were used for removing the wet
web and water showers for cleaning the wires and filling the drainage koles. A
flow diagram of the complete apparatus is shown in Fig. XXVII-2. In making a run
the roll was set at a desired speed and a supply of fresh water to the system was
initiated. The hesvy steck wes then delivered to the suction line of the fan pump,

through which the diluted stock was sent to the forming section. Vacuum and water
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flow were adjusted until the roof was completely filled, with a very small amount

of the free slurry emerging with the web from the lip of the roof. The white

water was drained to the saveall and discarded. When the over-all operation

reached a steady state, various measurements and samples were taken at each parti-
tion setting in the vacuum box until the entire forming zone had been scanned. A
sulfite pulp refined to a Canadian standard freeness of 600 was used as the originalA

stock. The results of one complete run are summarized in Table XXVII-1.

In the table the pressure drop was obtained from the measured values of

hydrostatic head and suction. The total Bernoulli head (gravity, velocity, and

static) along the roof was found to be nearly constant. The drainage velocity
U, was determined graphically from the slope of the drainage curve (go vs. X)
The local white water consistency was calculated from the relationship:
S5 = 5 * qo(ds/dqo) (XXVII-1)
The basis weight was then derived by integrating the fiber balance:
p(S = So)
UaWw = ———dgq (Xxvir-2) ,
w - 0
1 - sm
where the web moisture m was determined from a wet mat density test. Finally,

the total drainage resistance was evaluated from the simplified Darcy's law:

Apt
0 1R

(XXVII-3)
t

In the analysis of drainage the total resistance was plotted against
the basis weight. The result showed an initial curved region, followed by a

linear region. If the wire resistance was assumed to be constant, then the



TABLE XXVII-1

DRAINAGE RESULTS

Forming length (gw) - 15.6 cm., forming width = 5.08 cm.

Wire speed (Eﬂ) = 45.5 cm./sec.
) = 0.0062 g./g-, viscosity (u) = 0.012 g./(sec.)(cm.), density (p) = 1.0 g./cc.

Web moisture (m) = 30 g./e.
12 15.6

Inlet consistency (s
Forming length, x, cm. 0 0.5 1 2 L 6 8 10
Roof height, H, cm. 2.3 1.95 1.68 1.29 0.85 0.58 0.kl 0.32 0.25 0.15 .
Pressure drop, Ap,/eg, cm. Hz0 17.1  16.9 16.6 15.9 1.3 12.7 11.3 10.5 10.5 10.3 %9
Drainage, Q» cc.7(sec.)(cm.) 0 2.16 3.15 L.13 5.51 6..0 7.18 7.78 8.36 9.25
Uy em. /sec. 98 25 .5 9.5 6.1 L.7 3.6 3.0 2.7 -
White water consistency, g./g-
s, X 10 - - 1.6 1.43 1.20 1.06 0.95 0.89 0.83 0.76
5 X 104 2.7 1.h 1.0 0.75 0.k5 0.32 0.2k 0.20 0.16 0.13
Basis weight, W x 10®, g./sq. cm. 0 1.2 1.8 2.4 33 39 kbk ko7 5.2 5.6
0.1+ 0.55 0.95 1.3 1.9 2.2 2.5 2.8 3.1 -

Resistance, R_t x 1075, 1/cm.
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derivative of the total resistance with respect to the basis weight would be the

~—

average specific filtration resistance R . The value so obtained in the line:

region was 0.68 x 1B cm./g. at the pressure drop 10 cm. water, as compared witl

0.65 x 10 determined by a constant-rate filtration test on a sample of the exit

web., The curved region could be correlated by a quadratic equation:
_ R, -F
R't = RW + Riw + —e—w;—— W (XXVII-LI-)

where Bw is the wire resistance, Ei the initial web resistance, and E the

final web resistance at Hf . Bw may be estimated from the screen resistance

data (Chapter XVIII). Ei and Ef may be measured by filtration tests. Witr

an existing former the couch sample will yield Ef

directly. If the fines are
then removed from the couch sample by classification and another filtration test

is made on the classified sample the result will be close to Ei

With these épproximations the drainage equation for a thin web may be

written as

E§£ 2Ri + Rf

pr(s -s

o)
Ul - sm)

(XXVII-5)
For high basis weights Bw may be neglected and both Ei and Ef assumed to bt
constant at E . Equation (XXVII-5) then reduces to Equation (IX-47), in which

t 1is the forming time and equal to Ew/gw .

In operating a suction former it is desirable to match the stock and w
velocities for the purpose of minimizing the shearing action between the free sl
and the formed web. The clearance of the roof, which determines the average

velocity of the free slurry, is consequently a function of the drainage. The
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throat or slice opening at the inlet of the roof is fixed by the desired basis weight

at a given stock consistency:

Wf(l - sm) ‘
LI RSN boet-6)

where ¢, 1s the volumetric flow rate of the inlet stock per unit width. The

roof curve may be related to the drainage by

q
H 0
_ - 1 - XXVIT -
H, 95 ( 7)

Three runs were carried out in which the web from the preceding one was
redispersed and used as the stock for the next. This series of experiments was
designed to ascertain the effect of fiber loss on drainage pattern. Neglecting

the initial drainage, the results could be correlated by a power function:

C'__Zg,fjl _ _;j_w | (XXVII-8) .

The value of n 1increases with increasing fiber loss as shown in Fig. XXVII-3.
In the rare case of complete retention, the above equation becomes parabolic with
n =2, as indicated by Equation (IX-20). Taking the fiber loss into considera-
tion, the roof contour may be approximated by

_E_ >~ 1 - (~§_)yn (XXVII-9)

o W
For a more rigorous treatment, Equation (IX-45) based on the exponential nature of

fiber loss should be used.

Very recently, Amneus (XXVII-1) extended the dfainage analysis for rotary

formers to the transition flow. He contended that the exponential concept of fiber
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retention is similar to the "blocking" concept of cake filtration early suggested

by Hermans and Bredeé (XXVII-2):

A
€

A
e,v

= exp(—KeW) (XXvir-io) ,

where ée is the effective flow area for drainage through the web-wire combina-

ée W that through the wire alone, and Ee is supposed to be a constant.
2
He further assumed that the inertial term of the transition flow equation may be

related to the effective flow area by

bp, = £QJ—L—pUQO - BAQ 5 (XXVII-11) .

Combining the two equations at constant drainage the result is

Apt

pr

= exp(KeW) (Xxvir-i2) ,

in which Ap, -is the pressure drop across the web-wire combination and Ap.  that
=t =w

across the bare wire. It is implied that B' 'is the same for wire and web. Ke
may be evaluated experimentally. When complete fiber retention is reached, the
pressure drop becomes nearly a parabolic function of the basis weight

(Agt o H"g) according to his results of a simple constant-rate drainage test.

With these approximations Amneus proceeded to désign the roof contour
for a specific furnish-wire combination, basis weight, and operating speed in a
manner similar to that for the previous case. He showed good agreement in drainage
measured on the pilot former so designed and by the drainage tester. A general

agreement was also obtained from a production former.



HORIZONTAL FORMERS

The IPC web former designed by Heller (XXVII-3) consists of a horizontal
wire supported by a flat suction box. A schematic diagram of the entire system is
shown in Fig. XXVII-4, followed by two photographic views (Fig. XXVII-5 and

XXVII-6).

The results of a comprehensive study with this former by Ingmanson and
Chang (XXVII-4) are reviewed here. A classified sulfite pulp was used in these
experiments with an 80 x 72-mesh semitwill wire. The resistance of the wire was
determined by permeation. The compressibility constants were found to be 0.00286

for M and 0.346 for N. The dependence of specific surface §w and volume Vv
on pressure was evaluated by the method outlined in Chapter XIX from filtration
and dynamic drainage data. The mat moisture m was determined from the average

mat density at known pressure drops.

Two.series of runs were made. Each series consisted of several runs
at various constant pressure drops across the web. fn each subseries the wire
and slice velocities were kept constant while the white water consistency in the
wire pit was varied, The wire velocity ranged from 5 to 22 cm./sec., the basis
weight from 11 to 220 ga/sq. m., the total pressure drop from 10 to 70 cm. of

water, and the inlet consistency from 0.04 to 0.5%.

For the analysis of drainage data, the construction of a correction
diagram was helpful. Assuming a pressure drop across the bare wire, the corre-
sponding filtrate velocity was obtained from the wire resistance data. The
presswe drop across the web was taken to be the difference between the measured
over-all value and the assumed wire value. The basis weight was calculated from

the flow expression (IX-23), and the filtrate volume by the fiber balance (IX-36).
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A filtration curve, (dE/dYO) vs. V., was plotted and the area under the curve
yielded the forming time if the filtration process was carried out batchwise. For
a continuous former the forming length is simply the product of the wire speed and
the forming time. Finally, correction for the effects of high consistency on
drainage rate and fiber balance were incorporated by

ol - %) J (XXVII-13)

- _Ig ’2][__.__
[Apt pr] = LRuUOJu + R'pUOJi — VOJﬁ

The correction factors gﬁ and gﬁ were derived from the previous graphical

analysis of high-consistency filtrations (Chapter XXII). Their definitions are
—_ we N
J, = Ur/UO = (XXVII-1k4)
and -,
1l - sﬁé h
J = — (Xxvrir-1s) . %
m —
1l - sm

In both definitions the subscript e refers to equilibrium filtration at very low
consistencies. It is to be noted from Fig. XXII-3 that the mat moisture lines are
not exactly parallel, and consequently gﬁ is slightly pressure dependent. The

deviation, however, is not large, the maximum being 6% at 1% consistency. The

correction diagram so constructed is illustrated in Fig. XXVII-T.

The corrected results reveal the relative importance of wire, viscous,
and inertial resistances in sheet forming. (The effect of fiber-wire interaction
on drainage in these experiments was found to be negligible.) As an example, the
pressure drops due to wire <ABW) , Viscous (AEV) and inertial (ABi) resistances

as a function of the basis weight are depicted in Fig. XXVII-8. Based on this
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diagram the analysis of Han fér viscous resistance E at high basis weights is
Justifiable, while Amneus' analysis of rapid drainage, assumed to be in inertial
and wire resistances only, appears to be fortuitous because at very low basis
weights the omission of viscous resistance was possibly compensated by that due

to fiber-wire interaction.

The forming length measured at the IPC web former in Ingmanson and Chang's
experiments ranged from 0.4 to 4 cm. The deviations from the predicted values
were almost always negative (actual length shorter than calculated length), the
largest discrepancy occurring at very short forming lengths which were especially
difficult to measure precisely. The average of 29 runs was -24%. ‘The majority

of runs was within -20%.

Treating web forming as a constant-pressure process, they further
analyzed the drainage data in accordance with Equation (IX-32). The pressure drop
across a thick web was determined from Fig. XXVII-8, and fhe values of W*¥ and K¥
were then calculated from the known system specifications. The calculated results
are shown in Fig., XXVII-Q for two different run conditions. The actual two data
points are also included for comparison. The agreement is satisfactory in view
of the imprecise measurement of the forming time. It is interesting to note that
the limiting slopes of these curves shift toward the lower time scale as the value

of the filtration parameter K* decreases.

Some of the web formation showed apparent flocculation. A crude test
was initiated to ascertain its effect on drainage. About a hundred samples of
ca. 0.5 cm. were punched out of a sheet. Of these samples, half were from the
thick spots and half from the thin spots. By measuring the basis weight and area
of each sample, calculating the weighted average flow for the flocculated sheet,

and comparing the result with the actual drainage, the discrepancy was found to be
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only about 4%, Thus, it appears that flocculation had only a very minor effect
on drainage under the experimental conditions. Improved formation was achieved
by adding 0.5% locust bean gum, based on the dry fiber weight, to the same stock

which had shown flocculation.

Another interesting series of experiments was made with regard to fiber
orientations. In these runs dyed dacron fibers were introduced to the stock.
The samples were examined microscopically, and the fiber orientation results are
illustrated in Fig. XXVII-10, which consists of four runs under different forming
conditions. The tensile strength of these samples was also measured in both

machine and cross directions. The results are summarized in Table XXVIT-2.

TABLE XXVII-2

FIBER ORIENTATION AND TENSILE RATIO

Curve Orientation Zero-span Tensile,a
in Fig. Tensile, 1b./in. Parameters 1b./in.
XXVII-10 M.D. C.D. M.D./C.D. o B B/« M.D. C.D. M.D./C.D.

1 11.4 19.8 0.58 0.307 0.037 0.120 39.2 36.5 1.08
2 46.0 30.6 1.50 0.290 0.090 0.309 37.8 31.8 1.19
3 2.9 2.6 1.12 0.3635 0.1h2 -0.390  33.7 LL.8  0.75
L 5.0 5.9 0.85 0.271 0.151 0.556 35.9 26.8 1.35

® Corrected to 45 1b./(25 x 40 in.-500).

There is no apparent correlation between fiber orientation and sheet
tensile, contrary to the common belief. Zero-span tensile, however, is related to
fiber orientations, and consequently a better indication of sheet "squareness."

According to Van den Akker (XXVII-5), the angular distribution function may be

expressed by
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P(6) = o + B sin®e (XXVII-16) ,

where 6 1is the fiber angle with respect to the cross direction, and ¢ and B

are two orientation parameters. The values of o and B are evaluated, respec-
tively, from the zero-span tensile ratio (M.D;/C,D,),. Be., by
21 - R
a = o (XXVII-17)
rr(9Re + 11)
and
32(Re - 1) 6
B = "(9Re TII) (XXVII-18)
The ratio § /o may be used as an indication of "squareness." If this ratio is ;

positive, the sheet has a preferred orientation in the machine direction; if nega- 1
tive, orientation is toward the cross direction. A square sheet would have a

zero value of B /a . The results of calculations appear to be in general agree- |

ment with the shapes of the curves as numbered.

For a very free but easily flocculated stock such as one of synthetic
fibers with large axis ratios, very low consistencies are often necessary to achieve
satisfactory formation. In such cases the slice opening necessary to match the
stock and wire velocities would be impractical on a horizontal wire. For example,
if the stock consistency is given at 0.05% and the basis weight is desired at
120 g,/sq. m., the slice opening has to be 24 cm. With narrower openings, the
higher slice jet velocity would tend to shear the weak web on the slower wire,
resulting in stock rolling and poor formation. One solution for these extreme
cases 1s to use an inclined wire at very low speeds. The high-velocity jet would

impinge the wire at an angle and thus reduce the severity of disturbances. Since
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shear is dependent on velocity difference, rather than velocity ratio, the inclined.

wire device would have the same difficulty at high speeds.

The specific filtration resistance of synthetic fibers (nylon and orlon)
is of the order of 10° cm./g., as compared with 1®-1(° for wood fibers. Since
they are also less compressible, the increase in resistance is only 20-30% with a
tenfold increase in pressure drop. At such low resistances, gravity drainage on
an inclined wire under a deep pond is feasible at very low speeds. The approximate

drainage equation based on viscous flow is

2 .
stpg sing

i = RW + R W (XXVII-19) ,
)
where 6 1is the angle of inclination of the wire to the horizontal plane. The

following data from an experimental former may be used as an illustration

(XXVII-5):

Fiber 1/k-in. orlon
s | 0.0005 g./cc.
W 0.0122 g./sq. cm.
U 0.013 g./(cm.)(sec.)
U, 1.1 cm./sec.
e_ 30°
E 2 x 1® cm./g.
R 1 x 10* 1/cm.

1

The forming length calculated from Equation (XXVII-19) is 5.7 cm., as

compared with the actual length 5.1 cm.
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In the 1950's both fotary and horizontal suction formers were experi-
mented with in a comparatively crude manner. As far as drainage waé concerned,
the results always indicated higher rates than predicted by viscous flow at the
same pressure drop. Some data (XXVII-6) in terms of filtration resistance are

compiled in Table XXVII-3 to indicate the discrepancies.

TABLE XXVII-3

COMPARISON OF DRAINAGE

R x 108, cm./g.

C.S. Freeness 8p, cm. Hx0 Machine Lab. Ratio
Rotary Former
Book 300 62 6.3 11 0.58
Book 300 160 11 17 0.65
Book 295 105 7.4 13 0.57
Book 325 L8 4.0 7.4 0.54
Book 360 125 9 12 0.75
Kraft _ 590 48 1.2 1.9 0.63
Tissue | 640 17 0.51 8.1 0.63
Tissue 6L0 L1 0.9k, 1.1 0.82
Horizontal Former
News 160 7.3 3.2 6.3 0.52
News 160 15 5.3 8.1 0.65
News 180 15 5.2 7.5 0.69

Av. ca. 0.65
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With all the fefinements described before in connection with the IPC
web former, the improvement in drainage predictions appears to be only moderate.
There remains an overprediction of forming time of about 20-25%. We believe this
dicrrepancy to be largely due to the difference in compression conditions. In the
laboratory filtration test the mat is subjected to a macroscopically uniform
pressure drop over its entire area except around the circumference due to wall
effects. On a former the web is exposed to continuously varying pressure drops
in the machine direction. Thus, the individual fibers in the web are experiencing
different degrees of compression at the same instant. As a result, the portion
of the web at a higher pressure drop tends to transmit the compressive stresses to
the adjacent portion at a lower pressure drop. In other words, the highly com-
pacted fibers are supported by their less stressed neighboring fibers and so on.
The net effect of this nonuniform compression would be a tendency for the web to be

less compacted than under the laboratory uniform load condition.

The extent to which this honuniform compression effect takes place will
depend on the ability of the fibers to support one anofher, which is related to
fiber orientation, interfiber friction, and basis weight. The maximum effect may
be cxpected to be for long fibers, oriented only in the plane of the web, with
high friction and large basis weight in a short forming zone, such as table roll
nip. If this interpretation is correct, the drainage resistance would be smaller

on a machine because of the more porous web structure.
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XXVIII. THE PUZZLE OF FOURDRINIER DRAINAGE

The application of the table-roll suction theory to drainage on four-

driniers, as attempted by Ingmanson (XXVIII-1, XXVIII-2), showed very large devia-

tions from laboratory filtration results. The filtration resistance on table rolls
was found to be smaller than that determined from a laboratory test by an order of

magnitude. This puzzle has remained unsolved to date.

DATA ANALYSIS

Two commercial machines, one making bond paper and another making bvoard,

were dealt with. The operating conditions are summarized in Table XXVIII-1.

TABLE XXVIII-1

OPERATING CONDITIONS OF TWO FOURDRINIERS

Bond Machine Board Machine

50% cotton linters, 50% kraft,
Furnish 50% sulfite 50% groundwood
Headbox consistency, % 0.555 1.21
White water consistency, % 0.119 0.112
Temperature, °F. 90 90
Wire mesh 70 x 56 60 x 38
Wire speed, ft./min. 343 2h3
No. and diam. of table rolls 39 (4-1/2 in.) 37 (6-3/8 in.)
Basis weight 15.7 1b./(17 x 22 in.-500) 130 1b./3000 sq. ft.

The measured drainage and white water consistency at the table rolls of
the bond machine are shown in Fig. XXVIII-1 and XXVIII-2, respectively. The total
resistance of the web-wire combination at each table roll was calculated from

Taylor's formula (Xv-13):



FLOW RATE FROM TABLE ROLLS, qO,LITERS/SEC.
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- W = 2 -
R, = [ g ] = 6.75 X 103/q0 (XXVIII-1) ,
where R, 1is in units of cm.~!. The average basis weight increase was calculated

-t

from

(XXVIII-2)

>
=
|

_ <S - SO pqO
- 1 - sm U
w

Using the value 77 for E from trial and error, the values of Bt were calcu-

lated as a function of ﬂh . By assuming a constant wire resistance, the slope

of the Bt Vs, Eh curve was taken to be the average specific filtration resistance

which is shown in Fig. XXVIII-3. It is seen that E increases linearly with the

basis weight. This increase was attributed to the increasing retention of fines

and filler in the web, as evidenced by the correlation in Fig. XXVITI-k.

The value of E at the final basis weightrwas 0.5 xﬂlﬁﬁ cm./g; To
check this value, a web sample was taken at the couch roll and measured for
specific}filtration resistances in a laboratory test. It was found that the
machine value of E corresponded to a pressure drop of 0.5 cm. of water based on
the laboratory results. According to Taylor's theory, the maximum suction of this
machine would be 15.4 cm. of water, and the pressure drop across the web would be
about 10 cm. of water after deducting the wire resistance. The discrepancy in
terms of pressure drop was alarmingly a factor of éO! Accepting the theoretical
suction, the lowest value of E would be about 5 x 1078 by the laboratory test,

which is ten times the machine figure.
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APPROXIMATE APPLICATION

In spite of the unresolved discrepancy, Taylor's theory and laboratory
filtration test have been utilized for the estimate of wire length under a given
set of conditions. From the linear relationship between specific resistance and

basis weight, the total resistance is assumed to be quadratic:
(XXVIII-3) ,

which is the same as Equation (XXVII-4). Combining Equations (XXVIII-1) and

(XXVIII-2), we have

0.29514 P32,

S -~ S
AW - l: 0,1’1]
R 1 - sm

= 5 : (XXVITT-4) .

If the average basis weight is treated as a continuous function of the

table roll number, the derivative of E with respect to roll number is closely

AE . Upon integration we have
R -R 5 =) =Y 4
t 2wf 5 i 2Wf 2
R. - R
— 3 — £ —
+[2<f 1>R +—1—R]w +REAEW +RW
3 2wf W 3 i W i W
(XXVIII-5) ,

in which N 1is the total number of table rolls.
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This approximation was applied to the board machine. With the labora-

tory-determined values of ﬁf for the couch sample, Ei for the sample after

removal of fines, and E for both samples as functions of pressure drop, an

effective pressure drop across the web was arrived at by trial and error:
(XXVIII-6) ,

where the fraction 1/20 accounts for the previously mentioned discrepancy.
Equation (XXVIII-5) was then solved for the roll number from the known values of

Bw 5 E& and E% at Age . The result of calculations showed N to be 3L

under the known conditions. The actual number was 37. By this approximation

we have estimated wire length for commercial machines to operate at higher speeds.
COMPUTER PROGRAMMING

On the basis of the filtration theories and laws (Chapters IT and III),
Schoeffler and Sullivan (XXVIII-3) proceeded to apply the mathematical models to
computer programming for data processing of fourdrinier drainage. In addition to
the continuity conditions, flow expressions, compressibility functions, and reten-
tion relationships, they incorporate other empirical parameters to account for

machine conditions.

The fourdrinier is divided into three sections: (1) from the slice to
the first table roll, (2) from the first to last table rolls, and (3) from the end
of the table-roll section to the wet line over the suction boxes. In the first
section it is assumed that the drainage is due to gravity alone. = Over the table-
roll section the effect of the table rolls is taken to be the average suction
being proportional to the square of the wire speed. Over the suction boxes the

average applied vacuum is used.
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Solutions of the set of equations were carried out on a digital computer.
Fach partial differential equation is reduced to a finite difference equation. A
satisfactory "grid" size was found to result if the web was divided into 100-200

"layers" in the drainage direction and about a quarter of these in the machine

direction. The boundary conditions are specified to be
t
H = K - [ Udt (XXVIII-T) ,
O O
] L
W o= = [ (1-¢)z (XXVIII-8) ,
vV Y%
pp(L,t) = 0, p.(0,t) = -Ap (XQIII-9) ,
e(L,t) = ¢ , US(L,t) = Uy (XXVIII-10)
At each time, a value of web thickness and drainage volume is assumed. The equa-

tions are then solved, starting at the web face from the boundary conditions.

When the solution reaches the wire, the pressure drop must equal the known value,
the drainage must equal the suspension flow, and the basis weight must satisfy

the fiber retention, or the iterative process be repeated. In the machine direction
the solution starts at t = O and proceeds until the free slurry vanishes at the
wet line. The information so obtained is sufficient to calculate drainage,

white water consistency, average web density, etc. at various points of interest

along the wire.

Several years ago we were of the opinion that the simple filtration
model was not then gquite adequate for the purpose of data processing to a useful
extent. In fact, we considered that an indiscriminate use of such sophisticated

and powerful tools as digital and analog computers on paper machines would yield
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little to justify their costs. Unfortunately, the premature attempts and failures

have dampened some enthusiasm for ultimate automatic control of paper machines.

We believe that our present refinedAmodels could be the basis for rational applica-
tions in operation analysis of a paper machine, and with the improvement of in-
strumentation the day of profitable automation for papermaking may not be too far

away.
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XXIX. SIMPLIFIED DESIGN OF TWO-WIRE FORMERS

Two-wire formers have received much attention since the original version
of Inverform for boardmaking. Recently, Gustafson and Parker (XXIX-1) presented
some results of their experiments with a new device for forming book paper, which
consists essentially of a horizontal, converging forming zone with a special inlet
for improved formation. An analysis of drainage design by Ingmanson (XXIX-2) for

such a former is presented here, which may contribute to its further development.
DESIGN PROCEDURE

The general design calls for forming a web between two horizontal,
converging wires travelling at a high speed from a high-consistency stock with
incomplete retention. A schematic diagram of the forming zone is shown in Fig.
XXIX-1, which is purposely exaggerated in its z scale. It is assumed that a free
jet of the stock enters the forming zone at the same horizontal wire velocity g&
The wire convergence is to be so designed as to maintain a constant pressure in zhe
free slurry while it drains equally through both wires. As the wires converge

upon the entering jet, by virtue of its incompressibility, the drainage velocity

HO will be taken to correspond to the vertical wire velocity along the entire

forming zone. Under the prescribed velocity conditions,
dz
Uy = U, o= (XXIX-1)

By knowing HO as a function of x , the symmetrical contour of the wires is
thereby fixed. The basis weight of the web increases as drainage is forced
through the wires. If atmospheric pressure is maintained outside the wires, a

hydrostatic pressure will develop in the free slurry. This internal pressure may

be kept constant by proper wire convergence.
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The specific case ﬁnder consideration is a hO-g./sq. m. book paper formed

at 2150 f.p.m. from a stock at 1% consistency. The forming conditions are

summarized in Table XXIX-1l, which correspond closely to those of Gustafson and

Parker.

Furnish

§ s SQ. cm./cc.

Wires

Thickness, cm.

TABLE XXIX-1

FORMING CONDITIONS

Raw stock for coating
7200
2.80
0.00207
0.375
0.5

500

64 x 51l-mesh twill

0.0551

Surface per unit volume of screen,

sq. cm./cc.

Porosity

Operating conditions

58 .4
0.661

Symmetrical, horizontal, two-wire

Agt/pg , in. of water ' 10
s j g./g. 0.01
T, °C. 25
u , f.p.m. 2150

—W

W, g.,/sq° m.

Lo
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As has been shown before (Chapter XVII), a filtration curve of (QE/QXO)
vs. YO is constructed, from which the forming time is obtained for the specified
basis weight and converted to the forming length at the given horizontal wire speed.
The results of calculations after correction for high consistency are shown in

Fig. XXIX-2. It is seen that U, wvaries from 100 to 5 cm./sec. over the basis

0
weight range from 0 to 20 gu/sq, m. on each wire. In this region of flow the
inertial effect occupies a significant part of the total pressure drop. At unity
basis weight, the inertial resistance term is about 20%, while at 20 it has decreased
to 2%. At the same basis weights, the wire resistance accounts for 60% and 1% of

A_E_t , Trespectively. For viscous flow only, with negligible wire resistance and

complete fiber retention, the filtration curve becomes linear.

Next, 90 is determined as a function of x by graphical integration of
the filtration curve. The slope (EE/Qf) is evaluated from Equation (XXIX-1).

The resulting contour of the wires is shown in Fig. XXIX-5 as 2z vsS. X . This

completes the drainage design.
OPERATING FEATURES

The entrance height of the forming zone is fixed by the jet thickness
which is calculated from the over-all fiber balance, allowing for incomplete reten-
tion. In this particular case, the retention is 67%, in close agreement with the
experimental value of 69%. The forming length as designed is 22 cm. The

internal pressure is 10 ir., of water above the external pressure.

For practical operation the wires will be supported by suction boxes.
Then the internal pressure may be kept at a desired value such as atmospheric
pressure., The vacuum in the curved suction boxes may be easily equalized to give

symmetrical.drainage, resulting in the shortest forming length. High internal
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pressures should be avoided because they will cause difficulty in sealing as well

as Bernoulli's effect in slowing the jet velocity.

If two straight wires with constant slope were used, the drainage
velocity would remain essentially constant, and the internal pressure would
increase exponentially at constant external pressure. For a final pressure drop,
say, 10 in. of water, the forming length required would be roughly double that at

constant pressure. This result is also in general agreement with the experimental

observations.
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XXX. MISCELLANEOUS ILLUSTRATIONS OF HYDRODYNAMIC EVALUATION

Hydrodynamic evaluation of pulps as presented in Chapter XIX has been
used in research and practice. We conclude this review by relating a number of
such applications to illustrate its power as well as limitations. For certain
reasons, refefenées to the actual cases are omitted, and they should not be quote

in any manner.
PULP EVALUATION

Sheet Strength

The correlations of hydrodynamic properties of wood pulps with handshee
tensile have been well established. Figures XXX-1 and XXX-2 show the correspon-
dence of sheet tensile with specific surface and specific volume, respectively, f
a bleached sulfite pulp, whole and classified. The implications of such correla:
tions a?g quite clear. ‘The increase of surface area by refining contributes to
tensile at a decreasing rate, while the increase in swollen volume is almost
linear with tensile within the practical range. Conventional refining unravels
fiber surfaces but also creates fines,. some of which do not assist in bonding to ¢
significant extent. Swelling, however, enhances fibgr conformability in wet

pressing, and therefore improves bonding.

Surface Unravelling

Classified unbleached sulfite fibers were stirred in a British disintegr
tor for the purpose of unravelling the fiber surfaces. The original and resultin
fibers were analyzed by filtration tests and checked against sheet tensile, as

follows.
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Fibers Original 15,000 Counts 300,000 Counts
S5, sq. cm./g. 10,780 38,400 70,800
v , cc./g. 0.96 3.21 3.88
Tensile, 1b./in. 29.9 Lo.7 1.l

Most of the newly created surface areas were due to the unravelled
primary and outer secondary wall fragments which comprised only about 3% of the
classified fiber mass and contributed considerably to bonding. However, the
additional surfaces created by prolonged unravelling appeared to be detrimental

to bonding, in spite of the increase in swelling.

Hemicellulose Sorption

Additives such as locust bean gum are often adsorbed on fiber surfaces
to enhance bonding. The rate of sorption is dependent on specific surface as

demonstrated below with the sorption of partially methylated gum on sulfite fibers.

S, » sa. em. /g. Initial Rate x 10°, sec.”?
9,260 14.8
11,780 16.1
15,610 17.9
29, 900 26.5

These data indicate a linear relationship. However, for different
pulps and refining conditions the accessibility of the hydrodynamic surfaces for

sorption should also be taken into consideration.
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Cellulose Modification

Sodium carboxymethylation of cotton linters was found to increase swollen

volume and bonding without significant effect on surface area.

Sy

=W v, Relative
Degree of Substitution sq . cm,/go cca/go Bonding
0.002 (control) 20,250 1.L8 1
0.019 19,600 2.1k 1.5
Q0,0L0 22,800 2.32 2

Decrystallization of highly purified cotton cellulose by aqueous ethyl-
amine was found to increase specific volume and decrease specific surface. A

corresponding decrease in fiber strength was also noted.

Crystallinity index 70.1 69.4 62.8 56.0 52,1

v, g./cc. C 2.40 2.38 5.02 3.08 3.0
s, e1. em./e. 0 3920 3520 3350 32140

Zero-span tensile, kg./sq. m. ol .8 ol .7 21.0 20.9 20.2

Hypochlorite Bleaching

Bypochlorite bleaching of neutral sulfite semichemical aspen pulp
indicated that the specific volume of the bleached pulps was linear with their
residual Klason lignin content. The specific surface increased mildly. The

strength of handsheets improved considerably.

High-Coanslistency Refining

Conventional refining of pulps does not alter the mat compressibility

to a significant extent because of the counterbalancing effects of fiber-length
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reduction and fines productién. High-consistency refining showed an increase of
compressibility by 15% for a kraft pulp over conventional refining; although the
compressibility was practically independent of the level of refining just as in

conventional refining. In the compacting pressure range of 10-100 cm. of water

the values of E remained the same for both cases.

At the same freeness level, high-consistency refining indicated about
the same degree of fiber swelling as, but considerably lower surface area than,

conventional refining.

High-Consistency

Unrefined Conventionally Refined Refined
High Low High Low
Freeness Freeness Freeness Freeness
s, » sa. em. /g. 7,800 18,700 37,600 14,600 20,800
v, cc./g. 2.60 3.00 3.27 2.93 3.16
€ g./cc., i
at 50 cm. water 0.118 0.118 0.118 0.130 0.130

Microscopic examination of high-consistency refined pulps showed little
fiber-length reduction, near absence of fines, and gentle peeling of the outer
secondary walls, All these factors tended to contribute to tear, tensile, and

burst.

MACHINE OFERATION

Wet Breaks

“A mill substituted a foreign pulp for its own pulp on one paper machine
and encountered less frequent wet breaks at the couch roll. All conventional
methods (freeness, beating curves, and handsheet tests) failed to reveal signifi-

cant differences in the two pulps. By filtration tests samples of the two pulps
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showed close filtration resistances. However, in conjunction with compressibility
tests, it was found that the foreign pulp had a significantly higher specific
volume, 2.5 cc./g. as compared with 1.8 for the original pulp. By further refining

of the original pulp the machine runnability was improved as expected.

Furnish Adjustment

A fourdrinier machine developed occasional difficulties in producing
satisfactory corrugating medium. Samples from the stuffbox and the reel under
good and poor conditions were submitted for analysis. The results are summarized

as follows:

Board sample Good Poor
Basis weight, 1b./1000 sq. ft. %24 27.0
Caliper x 108 11.6 10.3
Apparent density 2.8 2.6
Burst, pt./100 1b.. - : : 179 146
Tensile, 1b./(in.){100 1b.), M.D. : 154 133

c.D. 75 , 59
Thwing formation L.s5 4.8

Stock sample

C.S. freeness 285 360
S, 7 s9. cm. /g. 36, 300 31,100
v, cc./g. 2.77 2.h1

Repulped board sample

s, » sa cm./g 25,350 28,900

v, cc./g. 1.85 1.78
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The 20% larger burst and tensile of the good board was attributed
primarily to the 15% greater specific volume, indicating some differénces in
pulping and refining between the good and poor pulps. The reverse of specific
surface in the corresponding repulped samples was also noted. This was thought
to be due to a greater loss of fines from the white water system when the machine
was making good board. By classifying the stock and repulped board samples and
considering the fraction through 150-mesh screen as fines, it was estimated that
7.6% and 4.5% of the inlet stocks were lost from the white water system for good
and poor board, respectively, in agreement with the filtration data. By adjusting
pulping and refining to increase the specific volume of the poor pulp and reducing

the fines retention in the poor board, the problem was eventually solved.

Ply Difference

Difficulties were experienced in maintaining drying rate and burst of
Jjute linerboard on a cylinder machine. Samples of the furnishes and board were

taken for examination.

Machine Operation Sample §w , Vo,
sq. cm./g. ce./g

A normal filler 39,350 1.92
top liner 54,800 2.1k

wet web 39,700 1.98

B good filler 36,300 1.95
top liner 42,400 2.18

wet web 41,400 1.60

B poor filler 42,900 1.91
top liner 45,300 2.38

wet web 40,200 1.70
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As the filtration resistance of the three web samples showed only 5%
variations, the rate of water removal at the wet end should be about the same in
spite of the different furnishes. The good and poor board from Machine B should
also have nearly the same strength. By repulping these web samples the following

test results on handsheets were obtained:

Good Web Poor Web
Basis weight, 1b./1000 sq. ft. 13.5 13.6
Caliper, points h.7 4.8
Burst, pt./100 1b. L2 48
Tensile, 1b./in. 12.6 13.6

It turned out that the "poor" web was somewhat better than the "good"
web, in conformance with the filtration results. Therefore, the difficulties

were not in the wet end, nor with the furnishes.

- Temperature Increase

A special twin-cylinder machine was manufacturing insulation board.
It was desired to increase the production by raising the stock temperature. Wet
samples of two grades of board were tested for filtration resistance at two
temperatures. Board B was made from the same stock as Board A, except for the

addition of 22% resin.
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R x 108, cm./g.

Ap/eg 25°C. 480c. -

em. Hz0 Board A Board B Board A Board B
50 1.26 1.16 1.65 1.k0
60 1.35 1.25 1.79 1.53
70 1.44 1.33 1.92 1.65
80 1.53 1.h2 2.0 1.75
90 1.61 1.51 2.16 1.87

It was concluded that at 25°C. the increase in production with Board B
over Board A was 9% by area. By raising the stock temperature the production of
A would gain 1% per °C. and that of B, 1}1/2% per °C. These predictions were
confirmed in actual operations. The compressibility tests on the same samples
indicated a 25% increase in apparent density of Board B over A. The hydrody-

namic properties were evaluated to be as follows:

§w ; SQ. cm./g. v, cc./g.
Board A 11,900 2.45
Board B 9,650 2.31

As Board B contained resin, a part of the fines in the stock would be
agglomerated through adhesion, accounting for its lower specific surface.
Furthermore, there would be more uniform distribution of fines in the board.

Fines agglomeration and adhesion to the fibers would be enhanced at higher
temperatures due to the presence of the resin. These factors could contribute to
a 50% better temperature effect on drainage than Board A, as revealed by the

filtration results.
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Suction Capacity

The fourdrinier machine was making mimeo at 470 f.p.m. The problem
was concerned with suction box capacity. A web sample was taken at the couch roll
and tested for permeability with moisture-saturated air. The equilibrium permea-
bility data are shown in Fig. XXX-3. The volumetric flow rate is directly
proportional to the pressure drop up to 12 in. mercury, indicating absence of

slip, negligible compressibility, and little inertial effects.,

Since the contact time of the web with the boxes was very short, about
0.1 sec., the desired air resistance should be in the initial period of unsteady-
state permeation, which is shown in Fig. XXX-k. The zero-time flow (é = L9g.5
sq. cm.) was considered to correspond to the machine condition. This value was
used to estimate air flow through a suction box area of 820 sq. in. at a vacuum
of 6 in. of mercury. The flow rate would be 12 cu. ft./min° of free air at
70°F. and 1 atm. If the same area were used on the intended new Rotabelt to be -
operated at 20 in. of mercury, the flow rate would be 50 cu. fto/min, of free air.
Tt was concluded that the original specifications of 500 cu. ft./min. for the

Rotabelt contained an unreasonably large safety factor.
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NOMENCLATURE

area
numerical coefficients

free particle concentration; volume or number concentration
bound particle concentration

diffusivity; width; coefficient

collection efficiency; energy; modulus of elasticity

drag force

velocity gradient

height; location

porosity correction factor; impaction number; moment of inertisa;
constant :

correction factor; location
attenuation coefficient; permeability; constant

attenuation factor

length; thickness

compressibility coefficient

numerical coefficient

number; compressibility power

numerical constant

probability; pressure variable

viscous filtration resistance; retention fraction; distance; ratio
inertial filtration resistance

Reynolds number

Reynolds number for porous media

specific surface; arc length; correlation function
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§£, = Schmidt number

13
1

temperature; torque

= superficial velocity

=

U’ = mat face velocity

v =  volume

W = mass of fibers

X = X dlstance variable
Y = mat density variable
Z = complex variable

Lower case:

a =  viscous resistance

a' = constant

b = inertial resistance

b = inertial resistance constant

c = Vmat density

d = diameter; distance of separation

d’ = distance of separation

€ = angular factor

f = friction factor

T = friction factor for porous media; friction coefficient
g z gravitational constant

h = distance; constant

J = J type

k = Kozeny factor; coefficient; constant

k* 2 constant

m : mass ratio of free particles to fibers; mat moisture
_I:n. ¢ -

mass of bound particles. to fibers
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n =  number; power

P = pressure

B' = pressure

q =  volumetric flow rate per unit width
r = r co-ordinate; radius
S = coﬁsistency

s' = consistency coefficient
t = time co-ordinate

T = time variable

u = velocity

v = specific volume

W = mass co-ordinate; mass
LA = mass variable

X = X co-ordinate

Ng = Yy co-ordinate

z = z co-ordinate

Greek symbols:

o = pore shape factor; diffusion correlation cocefficient; fiber orienta-
tion parameter; constant

o' = viscous resistance coefficient

B = pore shape factor; impaction correlation coefficient; fiber orienta-
tion parameter; constant

B! = inertial resistance coefficient

% = interception correlation coefficient; compressibility power
) = length of a vector

€ = porosity

C = unspecified function

M0 = distance variable
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8 co-ordinate; angle
correction factor
thickness variable
viscosity

mat density variable
density

stress

time variable

® co-ordinéte; angle; potential function
semiaxis ratio
stream function

solid fractions; angular velocity

atmospheric; apparent
average

contact; center

diameter

equilibrium; effective
fiber; final

distance

ith type; initial; inside
mat face

origin; reference to zero; outside; per unit volume of system;
Darcy; fiber retention

particle
table roll

relative; r direction
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N

1,2,3...

=535~

suspension; segment

total; tangential

per unit volume of fiber

wire; per unit mass of fiber; wall

direction

| =

direction

I<

direction

™

origin; filtrate

Miscellaneous:

il

I

= number

infinite

density

average In
vector log
explained in text sgn
positive magnitude z

dot product

cross product

del

Laplacian

error function

= exponential function
function

function

integral

natural logarithm
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This review was prepared by S. T. Han with the close co-operation
of his associates, W. L. Ingmanson, H. Meyer, R. W. Nelson, B. D. Andrews,
and N. L. Chang. While its contents have been critically examined, the
author remains solely responsible for any errors of commission or omission,
as well as possible obscurity or even incomprehensibility. No apology,
however, is offered for the extensive use of mathematics. In view of the
previous fruitful effort in the sheet-forming research, we hopefully
anticipate continued generation of results, through diligence and under-
standing, useful to the paper industry which the Institute is dedicated to
serve. If the reader finds some use of this review, the author and his
colleagues will feel aﬁply rewarded for the many hours devoted to its
preparation.
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