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SUMMARY 

 

With the recent interest in single fraction Stereotactic Body Radiation Therapy 

and the emerging prominence of the Rapid Arc radiotherapy technique capable of 

delivering a fast and accurate treatment, the in-field primary dose and out-of-field dose 

assessments are becoming increasingly important. Currently, full physics Monte Carlo 

calculations for dose calculations have been regarded as a ‘gold standard’ for dose 

assessments of the target and OAR (organ at risk). However, these Monte Carlo 

calculations require very long computation times. The current treatment planning 

methods provide shorter calculation times, but issues such as heterogeneities and model-

based parameter calculations cause challenges and affect dose calculation accuracy. This 

thesis describes a new and fast dose estimation method leveraging parallel computing 

called EDK-SN, “Electron Dose Kernel-Discrete Ordinates”. This new method uses 

hybrid electron dose kernels driven by linear Boltzmann (discrete ordinates) photon 

transport method to carry out dose calculations. The method has proven effective for fast 

and accurate computations of out-of-field whole body dose calculations benchmarked to 

Monte Carlo with isotropic monoenergetic photon sources.  

This thesis accomplishes adaptation of clinical Varian phase space data for use 

with general Monte Carlo codes including MCNP, and mapping accurate phase space 

data into the application of optimized EDK-SN dose calculation method with a 15-year-

old patient phantom. The EDK-SN method with improved source term modeling is 

demonstrated to fall within accuracy of the measured golden beam data for a clinical 

water phantom.  
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CHAPTER 1 

INTRODUCTION 

 

 With the recent interest in Intensity-Modulated Radiation Therapy (IMRT) and 

Stereotactic Body Radiation Therapy (SBRT), capable of delivering fast and accurate 

radiotherapy treatments, quantification of in-field (primary) dose and out-of-field (leakage and 

scattered) dose is increasingly important to the radiation therapy physics community.  Accurate 

dose in both measurement and computation contributes significantly to treatment plan quality 

and also to maximizing dose to the patient tumor.  In particular, the estimation of out-of-field 

dose is increasingly important with the associated increase of monitor units, again, with the 

popularity of IMRT, and quantification of late effects quantifiable to doses as low as 5 cGy in a 

pregnant patient fetus (Stovall, Blackwell et al. 1995, Kry, Titt et al. 2006). 

  Currently, full physics Monte Carlo calculations for dose estimation have been regarded 

as a ‘gold standard’ for dose assessments of the target and OAR (organ at risk) (Varian 2011). 

However, full physics Monte Carlo calculations typically require very long computation times. It 

is true that current treatment planning methods provide much shorter calculation times such as 

Anisotropic Analytical Algorithm (AAA), Pencil Beam Convolution (PBC), and Collapsed Cone 

Superposition Convolution (CC); however, issues such as heterogeneities and model-based 

parameter calculations can lead to significant challenges and affect dose calculation accuracy.  

 In this dissertation, a new and fast dose estimation method leveraging parallel computing 

called EDK-SN, “Electron Dose Kernel-Discrete Ordinates” is applied and improved for clinical 

applications. This new method uses hybrid electron dose kernels driven by linear Boltzmann 

(discrete ordinates) photon transport method to carry out dose calculations. The method has 

proven effective for fast and accurate computations of whole body dose calculations 
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benchmarked to Monte Carlo with simple isotropic monoenergetic photon sources. This thesis 

focuses on the development of a fully optimized EDK-SN dose calculation method applied with 

real clinical sources and standards with phantom validation.  The research also analyzed the 

impact of different spatial and angular SN grids to determine dose, combined with an optimally 

discretized energy spectrum using the real Varian Clinac head model from the Varian Clinical 

Linear Accelerator (VCLA) Laboratory housed in the Radiological Science and Engineering 

Laboratory (RSEL) at Georgia Tech. Moreover, the results obtained from this new method are 

compared with the results obtained from the full physics photon-electron Monte Carlo code, 

MCNP.  The work will culminate in a fully validated EDK-SN methodology applied to real 

clinical protocols and validated with Monte Carlo.   

1.1 Thesis Significance 

 Full physics Monte Carlo calculations for in-field and out-of-field dose calculations have 

been regarded as a ‘gold standard’ for dose assessments of the cellular target region and OAR 

(organ at risk).  However, these Monte Carlo calculations require very long computation times. 

Alternatively, “model” based algorithms are available; the current Anisotropic Analytical 

Algorithm, also initialized as AAA, (Varian 2011) and Pencil Beam Convolution Algorithm 

(PBC) can each provide shorter calculation times with comparable results, but heterogeneities 

may challenge dose calculation accuracy, sacrificing up to 20% error in small in-field regions 

(Chetty, Curran et al. 2007). Any model-based source also inherently sacrifices accuracy. The 

out-of-field dose calculation can lead up to 15% (Chetty, Curran et al. 2007) error in the 

model-based algorithm computed doses compared to actual dose measurements. Recently, the 

Acuros XB system has been adapted and integrated into the Varian Medical Systems Treatment 

Planning System (TPS) with the intention to resolve heterogeneities in different mediums, 

providing results comparable to full Monte Carlo.  However, the Acuros XB algorithm has 

adapted the AAA linear accelerator parameters, using the mathematical Gaussian kernel 

approximation of the photon source distribution (Failla, Wareing et al. 2011), and does not fully 
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model the Linac head source particle distribution for individual particles, including photons, 

electrons, and protons, for energy, space and angle distributions. Also, this approach sacrifices, 

to a certain extent, the large field and out-of-field dose calculation accuracy due to deterministic 

transport calculation round up when dealing with photon-electron coupled transport calculations. 

Hence, while the approach used in Acuros XB improves speed, it still sacrifices accuracy 

compared to the traditional, full physics Monte Carlo calculations.   

 This thesis applies a new, fast convergence dose estimation approach leveraging parallel 

computing called “EDK-SN”, more specifically an “Electron Dose Kernel” discrete ordinates 

(DO) calculation. This novel approach uses hybrid electron dose kernels solved by linear 

Boltzmann (discrete ordinates) photon transport method for heterogeneous, voxelized phantoms 

in a parallel computing environment to carry out radiotherapy dose calculations. Prior to this 

work, the EDK-SN method was demonstrated to be effective for fast and accurate computations 

of in-field and out-of-field whole body dose calculations for simple test sources (Al Basheer 

2008).  Evolving on that effort, this thesis further refines and adapts the EDK-Sn methodology 

with application to clinically relevant cases and phantoms.  The results obtained with this new 

method have demonstrated independent agreement with the results obtained from the Monte 

Carlo photon-electron transport calculations for the selected organ doses from a 15-year-old 

computational male patient phantom. The EDK-SN method yields a speedup of ~8 (e.g. 1 hour 

versus 8+ hours) over traditional parallel full physics Monte Carlo, with less than 10% difference 

of the predicted dose noted in homogeneous materials, and up to 20% in heterogeneous media 

(smaller given stochastic uncertainties). Furthermore, the EDK-SN method splits the beam into 

discrete angles, energy, and space, therefore performs fast convergence on a discretized 

Cartesian grid based on distributed high performance computing photon transport, reducing 

global error when compared with a Monte Carlo computation using the same parallel 

computational resources. 
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1.2 Chapter Organization 

Chapter 2 provides literature review and background for model-based calculation 

methods in treatment system planning practice.  Chapter 3 describes the deterministic transport 

methods used for EDK-SN.  Chapter 4 describes the improvements over the original EDK-SN 

method and the validation of EDK to golden beam data.  Chapter 5 discusses how the PHSPMC 

software enables the use of Varian-based Phase Space data in the Monte Carlo code applications. 

Chapter 6 describes the Varian-based Phase Space Application to a 15-year old male phantom, 

using both the EDK-SN method and the Monte Carlo code MCNP, and showing an advantage of 

the EDK-SN method over the MCNP.  Finally, the conclusions of the thesis are provided in 

Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND 

 

 This chapter provides a brief review of the current methods used in the commercially 

available TPS for radiotherapy. These methods are used to compare and contrast the results 

obtained using the EDK-SN method.   

2.1 Model-based Calculation Methods Used in Varian Treatment Planning System 

The following model-based photon treatment 3D absorbed dose calculations are 

currently/widely adapted in Varian Treatment Planning Systems (8.0 and newer versions). 

2.1.1 Model based Anisotropic Analytical Algorithm (AAA) 

 The Anisotropic Analytical Algorithm (AAA) (Ulmer and Harder 1995, Sievinen, Ulmer 

et al. 2005, Varian 2011) is a convolution superposition algorithm using three-dimensional 

beamlets.  The underlying mechanism for photon modeling is that the primary photon beams are 

determined using the Monte Carlo method. The AAA is a 3D pencil-beam kernel-based 

superposition algorithm (Ulmer, 2005), and includes separately modeled Linac head 

contributions from three separate sources: primary photons, extra-focal photons and 

contaminating electrons.  Each of the three sources has an associated fluence, an energy 

deposition density function, and a scatter kernel. Six exponential and Gaussian curves are used to 

model the characteristics of dose distribution (Ulmer, 2000). 

 Two important calculation parts are defined in the convolution algorithms: TERMA (total 

energy released per unit mass), which describes the energy deposited to the medium by the 

interactions of primary photons, and a scattering dose kernel, which describes the energy 
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deposited about a primary photon interaction site. The dose at any point can be calculated from 

the convolution of the TERMA with the kernel: 

 

          pD r r K r r d = T r K r r d




    r r   (1) 

To be more specific, 

 

            p r r rD r r K r r d = T r K r r d

  




    r r   (2) 

 

 pT r  is the TERMA, which is the photon fluence  r , scaled by the mass attenuation 

coefficient 



. The term  K r r d r is the scattering kernel at each point, and   r r r r 

 is 

the radiologic distance from the dose deposition site to the primary photon interaction site.  

 In Varian Eclipse TPS, the dose calculation algorithm calculates the dose deposition 

using the fundamental physical parameters determined from the configuration algorithm. The 

clinical beam is also divided into beamlets, each having a beamlet intensity.  For each beamlet, 

energy deposition is calculated using an “energy deposition density” function convoluted by a 

pre-calculated photon scattering kernel, which is parameterized. The volumetric dose distribution 

is calculated for the patient body volume via a matrix of three dimensional calculation voxels 

utilizing a specific calculation grid.  The voxels are aligned such that they are divergent along the 

beam fan-lines.  Each voxel has a density  , determined from CT images. The density is the 

same in each organ for heterogeneous CTs.  The convolutions are then performed on all 

beamlets, which compose the clinical beam.  The final absorbed dose is the superposition of all 

individual beamlet convolutions, and is computed from primary photons and the extra-focal 

photons, as well as the contamination from electrons (Varian 2011).   

 Good agreement is obtained between the true Monte Carlo calculation results. However, 

the AAA also has a tendency to overestimate the dose to a denser medium following passage 
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through less dense tissue, such as the lung. Effects vary with field size. The smaller the tumor, 

the larger the difference between the AAA and the true Monte Carlo calculation results. 

However, as discussed below, in terms of handling inhomogeneous cases such as lung tissue, the 

AAA is still favored over the Pencil Beam Convolution Algorithm (PBC).  In addition, the 

Pinnacle Collapsed Cone Algorithm is very similar to the AAA in terms of performance, 

however, improving on heterogeneous correction (Ulmer and Harder 1995, Miften, Wiesmeyer 

et al. 2001, Sievinen, Ulmer et al. 2005, Fogliata, Vanetti et al. 2007). 

2.1.2 Model-based Pencil Beam Convolution Algorithm (PBC) 

 Prior to the AAA algorithm, the PBC algorithm (Ahnesjö, Saxner et al. 1992) was 

developed. Similar to the AAA, the PBC algorithm is based on pencil beam kernel convolution. 

However, in terms of handling modeling of lateral electron transport directly in the AAA, the 

PBC used simplified heterogeneity correction method based on the relative electron densities 

based on CT scans. Three density correction methods have been used: Batho Power Law (PBC-

BPL), Modified Batho (PBC-MB), and Equivalent Tissue Air Ratio (PBC-ETAR). First, a 

relative dose distribution was calculated within a homogenous water equivalent phantom, then an 

inhomogeneity correction factor (ICF) was applied. This factor corrects for the variation in tissue 

density. ICF is defined as the dose in a heterogeneous medium divided by the dose at the same 

point for homogenous phantoms. Specific correction methods were discussed in the references 

provided (Batho 1964, El‐Khatib and Battista 1984, Wong and Purdy 1990, Thomas 1991, 

Ahnesjö and Aspradakis 1999, Papanikolaou, Battista et al. 2004). The PBC algorithm does not 

model the lateral spread of the full physics of the scattering kernels, and uses correction-based 

patient heterogeneities calculation in terms of modeling lateral electron spread in 3D scattering 

kernels, which is typically less accurate compared to the AAA method (Fogliata, Vanetti et al. 

2007). 
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2.1.3 Model-based Electron Dose Calculation Method – Generalized Gaussian Pencil Beam 

Algorithm 

 The Generalized Gaussian Pencil Beam (Lax 1987, Hyödynmaa 1994) algorithm was 

derived from the Fermi-Eyges electron multiple scattering theories.  The radial absorbed dose 

distribution is calculated as a sum of three Gaussian functions(Varian 2011).  This takes into 

account large-angle scattering and range straggling. For a three dimensional implementation, the 

integration of absorbed dose is replaced with summation of a set of square pencil beams 

uniformly distributed throughout the entire field.  Pencil beams outside the field are also 

included in the calculation to take into account for in-air scattering. The intersection with patient 

and the fan-line are calculated first. If the pencil beam is blocked and the weight of the beam is 

smaller than the relative value of the electron depth dose of the blocked beam at the surface, the 

electron depth dose of a blocked beam is used.  The dose contribution from each pencil beam is 

summed to the point of calculation matrix.  The calculation matrix represents a plane in the 

object.  The final step is to add the bremsstrahlung to the dose distribution as a photon field.  The 

bremsstrahlung contribution does not take into account the inhomogeneity effect.  

2.1.4 Monte Carlo Method  

 General-purpose Monte Carlo codes used in Medical Physics include MCNP6, GEANT4, 

EGSnrc, and PENELOPE. The Monte Carlo full physics dose calculation is usually very time 

consuming compared to the aforementioned methods. Currently, the accuracy of the Monte Carlo 

calculation is the highest, especially in heterogeneous regions. The difference between Monte 

Carlo calculations and other commercial codes could be up to 15-20% (Krieger and Sauer 2005, 

Chetty, Curran et al. 2007). 

2.1.5 Acuros: Deterministic Transport in Treatment Planning 

 The Acuros dose calculation method (Bush, Gagne et al. 2011, Failla, Wareing et al. 

2011) for the Eclipse treatment planning system is based on solving the governing equation: 
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Linear Boltzmann equation (LBE) for photon and electron transport.  The background discussion 

for deterministic transport is provided in Chapter 3.  Acuros XB is adapted from the discrete 

ordinates (SN) transport code Attila.  

 Acuros adapted the AAA model based Linac head model; it performs a fast calculation 

compared to full Monte Carlo simulation, however at the cost of losing full particle physics 

information from the Linac head. Acuros XB directly calculates the absorbed dose in the 

heterogeneous medium, therefore showing better agreement with the Monte Carlo method than 

the model based calculation methods. However, The electron-photon coupled transport does not 

include bremsstrahlung generated by the electrons, and therefore will compromise some 

accuracy in the calculation (Bush, Gagne et al. 2011, Failla, Wareing et al. 2011). Also, fully 

coupled deterministic photon-electron computations have shown to be challenging to fully 

achieve local convergence based on various SN orders and electron cross sections (Dionne 2007).  

While the heterogeneous correction in Acuros does yield better results than the aforementioned 

model-based algorithms due to the use of SN transport, the out-of-field accuracy has not been 

fully evaluated in this system at present. 
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CHAPTER 3 

DETERMINISTIC TRANSPORT FUNDAMENTALS  

  

 This chapter discusses the necessary fundamentals of deterministic transport method and 

it serves as a prerequisite for the discussion of the EDK-SN method in the next chapter.  The 

latter portion of this chapter also introduces the Georgia Tech Varian Clinac, where Appendix A 

provides a specific application of adjoint detector response.  The intent of Appendix A is to 

demonstrate the tremendous effort required in obtaining suitable multi-group cross sections for 

medical physics and shielding-related applications. 

3.1 Deterministic Transport Method 

 The Boltzmann transport equation was originally derived to solve particle balance 

between molecular dynamics of gases.  It can also be used to derive a balance of particles for 

electron transport.  As it pertains to this thesis, electron transport, simulated by using a Monte 

Carlo driven kernel that indirectly solves the electron transport equation, is driven by photon 

fluxes solved using the 3D discrete ordinates code PENTRAN. 

3.1.1 Linear Boltzmann Transport Equation 

 There are many ways to go about presenting the linear Boltzmann transport equation; in 

this thesis, the starting basis is time-independent form of the equation, which describes the 

balance of photons (but would also apply to neutrons) at position r  and energy E  oriented 

along direction ̂   (Bell and Glasstone 1970): 
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The first term to the left side describes the total collisions.  The second term on the left 

side describes the particle streaming component, which is the directional derivative of the 

angular flux.  The directional derivative generalizes the notion of a partial derivative, in which 

the rate of change of angular flux is considered along coordinate curves, such as x, y, z for 

Cartesian coordinates.  This is implemented in the multi-group form of the LBE given in 

Equation (3).  The first term to the right side is the net scattering component, which involves a 

fairly complex treatment with an associated differential scattering cross section.  The second 

term to the right side is the source term, which is the simplest term to model, especially if the 

photon source is well-characterized and known as a function of position, energy, and direction. 

Commonly, the transport equation is recast in a transport operator H , in which the net 

scattering component is subtracted from both sides of Equation (1), and it characterizes a fixed 

source problem in the following form: 

 fixedH S    (2) 

  

 

3.1.2 Discrete Ordinates Formulation of the Linear Transport Equation 

 As developed by Carlson in 1958 (Carlson and Bell 1958), the angular flux (angular 

domain) is discretized into a careful choice of discrete directions such that a function can be 

evaluated at discrete points on a surface. Then, flux moments are preserved with quadrature 

integration over the discrete set of points. The spatial domain is handled by forming finite 

difference relationships based on the Boltzmann equation to evaluate the streaming. 
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3.1.3 Multi-group Application of the Linear Boltzmann Equation 

 The generalized multi-group LBE in 3D Cartesian coordinates is provided below:   
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where the triplet  , ,    represents the three direction cosines, the triplet  , ,x y z
 
 represents 

the 3D Cartesian coordinate position, and the doublet   cos ,     refers to the polar and 

azimuthal angles.  The rest of the terms in Equation (3) are described in Table 1.  The partial 

derivative terms are further simplified by using differencing schemes, which handles the spatial 

discretization of transport operator H   (Sjoden 1997, Sjoden 2007, Yi 2007). 

 There are several observations in the application of Equation (3). For example, 

multi-group cross sections related to the physical problem are now required.  In particular, a total 

cross section from groups 1 to G are needed, as well as the absorption cross sections and 

scattering cross sections with Legendre moments, with higher moments better treating 

anisotropic scattering behavior.  For this thesis, Legendre order P3 and higher are applied for 

photon transport to ensure sufficient scattering accuracy.  In other words, one must consider the 

appropriateness of energy bin boundaries and number of bins necessary to capture the high 

fidelity afforded by the point-wise cross sections used by the Monte Carlo method.  Multi-group 
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cross section generation then becomes an important tool to preserve proper photon transport 

physics. 

 The cross section libraries for Monte Carlo simulations using MCNP5/X/6 software use 

the ENDF6/7 cross sections; for deterministic transport with PENTRAN, CEPXS was used to 

generate photon multi-group cross sections for medical physics.  Furthermore, in photon cross 

section generation, only downscattering cross sections were generated. This preserves one-way 

scattering physics in that only high-energy group photons can scatter into the low-energy groups.  
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Table 1: Discrete ordinates form of LBE terms defined. 

Entity Meaning or Expanded Definition 

 lP    thl  Legendre polynomial spanning 1 to Legendre Order L 

 k

lP    thl ,
thk  associated Legendre polynomial 

 , , , ,g x y z     Angular flux for some group g   

, ( , , )g l x y z    thl  Legendre scalar moment for group g   

 , ( , , )C g l x y z    thl ,
thk  cosine associated Legendre polynomial scalar flux moment  

for group g  

 , ( , , )S g l x y z    thl ,
thk  sine associated Legendre polynomial scalar flux moment  

for group g  

g   Total group macroscopic cross section 

, ,s g g l    thl  moment of the scattering cross section from g  into g  

 , , , ,fixed

gS x y z  
 
 External source term at position  , ,x y z

 
 and direction  , 

 
 

 , , ,g l x y z    Flux moment which expands to (Relation A):  
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3.1.4 Advances in 3D Quadrature and the Quadratures Used 

An improvement to 3D quadratures is a significant research topic and too broad for the 

thesis scope.  It is important to identify the quadratures used in this thesis.  The majority of 

computations used Legendre-Chebyshev (Pn-Tn) quadrature as is included in the PENTRAN 

software (Sjoden and Haghighat 1997, Longoni 2004). 

 In an initial thesis effort, the author contributed to prior research (Manalo, Yi et al. 2013) 

in identifying fixed source term modeling using Ahren’s and Beylkin’s Icosahedral quadratures 

(Ahrens and Beylkin 2009).  Ultimately, because of the overhead costs in memory that were not 

optimized in the PENTRAN code, the more accurate Icosahedral quadratures were not 

considered for use in 3D deterministic transport modeling for medical physics applications.  

However, it should be mentioned that using Icosahedral quadratures significantly reduces the 

ray-effects for anisotropic sources, as linear accelerator head modeling particles are composed of 

highly forward peaked bremsstrahlung photon beams.  An illustration of ray mitigation using the 

Icosahedral quadratures with a periodic boundary fixed source problem is shown in Figure 1. 

 

Figure 1. The ray mitigation with icosahedral quadratures. 
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 In PENTRAN, the primary quadratures are the level-symmetric (the lower order) and 

Pn-Tn quadratures (the higher order).  The Pn-Tn quadratures are of considerable interest for 

anisotropic problems, for example, a beam source and photon scattering in water and tissue 

phantoms.   

A 3D quadrature is a set of directions and the corresponding weights allowing for 

effective numeric volumetric integration.  For the discrete ordinates method, the ‘N’ in SN 

indicates a discrete number of directions per octant, which is  2 / 8N N  .  For example, Figure 

2 defines S8 level-symmetric quadrature with 10 ordinates per octant (with associated level-

symmetric weights not listed).  Primarily, the legacy 3D quadrature in use is the level-symmetric 

quadrature, which has positive weights until S20.  While there are methods to extend the 

level-symmetric quadrature strategy, PENTRAN incorporates the use of Pn-Tn quadrature as the 

default quadrature above S20, in which polar angles are set equal to Legendre polynomials of 

order N and azimuthal angles are determined by solving for roots of Chebyshev polynomials 

(Longoni 2004).  The spatial directions of the Pn-Tn quadrature for S20 are provided in Figure 3. 
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Figure 2. The S8 level-symmetric quadrature in one octant. 

 

 

 

 
Figure 3. The S20 Pn-Tn quadrature in one octant. 
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3.2 Modeling the Linear Accelerator Head Model for Use in SN Transport 

 The EDK-SN method was adapted to a full Monte Carlo linear accelerator head model 

using phase space information for the Varian Clinac. This is an improvement over the previously 

applied step source approach. The EDK-SN method was used to compute in-field and out-of-field 

dose, which will be presented in Chapter 4. 

3.2.1 Linear Accelerator Discrete Energy Spectrum Modeling 

 Figures 4 and 5 show the 6-MV and 18-MV spectra obtained from commissioned Eclipse 

treatment planning system data for Georgia Tech’s Clinac iX.  The graphed spectra demonstrate 

the discretization of 16 and 40 energy transport groups (results generated by Mathematica).  The 

16 group and 40 group structures were analyzed to provide a reasonable matchup between the 

discrete probability density function (PDF) and to the continuous PDF; furthermore, they were 

selected to provide a convenient parallel decomposition choice as the factor of 4 is compatible 

with parallel CPU architecture in that CPUs for research were 16-core CPUs per socket.  A goal 

for deterministic transport modeling has been to minimize the number of multi-groups while 

preserving accuracy.  A more refined spatial spectrum method will be discussed in Chapter 4. 

The 6 MV and 18 MV spectra were initially used in a shielding study by author provided in 

Appendix A.  However, because they are the simplified uniformly space distributed photon 

spectrum source terms, it does not correctly represent the real Linac head particle information 

including particle angles and magnitude.  A more detailed full phase space particle information 

including spatial intensity map was obtained using Varian phase space information discussed in 

Chapter 5. Only the 6MV Linac is used, due to the neuron contamination for the 18MV Linac 

(Vanhavere, Huyskens et al. 2004).  
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Figure 4. The 6-MV Linac head spectra obtained from commissioned Eclipse treatment planning 

system data for Georgia Tech’s Clinac iX.  The continuous spectrum is shown in blue line, the 

discretized histogram is shown in red line with 0.25 MeV per energy group up to 2 MeV and 0.5 

MeV per group from 2 to 6 MeV, which makes a total of 16 energy groups. 

 

 

Figure 5. The 18-MV Linac head spectra obtained from commissioned Eclipse treatment 

planning system data for Georgia Tech’s Clinac iX.  The continuous spectrum is shown in blue 

line, the discretized histogram is shown in red line with 0.25 MeV per energy group up to 2 MeV 

and 0.5 MeV per group from 2 to 18 MeV, which makes a total of 40 energy groups. 
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 These illustrations show that 16 energy groups and 40 energy groups are respectively 

handled using the multi-group method in the PENTRAN transport calculation system. 1,2,4,8 or 

40 CPUs can decompose each group individually and simultaneously.  Each energy group will 

report photon flux at the end of the calculation.  The dose calculation are implemented based on 

the photon results coupled to the Monte Carlo generated electron dose kernels (described in 

Chapter 4) on either a 1 cm or 0.5 cm grid with a semi-conformal adaptive dose map. 

3.2.2 Discrete Spacing Model and Resolution: Angular Considerations for Source Modeling 

 Before attempting to apply a phase space to discrete ordinates transport method, a simple 

phantom problem was designed with a simple cone source at 100 SSD and a 40 cm x 40 cm x 40 

cm water phantom. The field size is a 10 cm x 10 cm at the isocenter. To approximate the 

directional source behavior, an isotropic source was collimated to a cone source with an angle 

opening of 5.72 degrees.  As shown in Figure 6(a), the entire space, including source, air, and 

water, was discretized with 1 cm x 2 cm x 2 cm grids in air and 1 cm x 1 cm x 1 cm grids in 

water.  As shown in Figure 6(b), the photon beam source is a 10 cm x 10 cm surface source, 

which was projected into the water phantom. 
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Figure 6. Spatial discretization of the photon source: (a) SSD Point Source (Red Point on Bottom 

of Purple Surface), and (b) 10cm x 10cm surface source facing the water phantom. 

 

 

3.2.3 Discrete Ordinates Splitting Modeling and Ray Effect 

The following SN orders in the transport model were evaluated:  20, 32, 40, 50, 62, and 

100. Figures 7-9 show the progression of quadratures from S32, S50, and S100. Only when the SN 

order is higher than 50, will the discrete angles have at least one directional cosine along the +z 

axis (the photon penetrating direction) less than the 2.86 degree cone source, which corresponds 

to the 10 cm x 10 cm field at the water phantom surface with SSD = 100 cm.  The effect of this 

quadrature modeling is shown in Figure 10. 

The initial attempt was to apply hybrid calculations using a version of PENTRAN, 

termed PENTRAN-CRT, which includes both the SN and the method of characteristics (MOC).  
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More specifically, a user is able to select a transport method on a coarse mesh basis: SN or MOC. 

The calculations using S62 resulted in severe ray effects, in that the photon fluence is only 

calculated along discrete angular ordinates in the +z direction, especially with the MOC ray 

tracing transport method.  As a result, the EDK-SN was pursued using only SN transport (not 

MOC) inside each coarse mesh, with the source mapped directly onto a coarse mesh surface. 

The S62 Pn-Tn quadrature was generally applied for the EDK-SN.  Figure 11 shows that a 

single spatial energy PDF at a point source, transported using MOC is not sufficient for transport 

accuracy, and thus dose accuracy.  Accurate source terms must then be modeled providing large 

enough surface mesh to mitigate any source-based ray effects.  Ray effects in 3D SN are always 

present regardless of quadrature choice as this is a function of the hyperbolic nature of the 

streaming operator (Lathrop 1968), but they can be mitigated with increasing ordinate resolution.  

The choice in quadrature order is a trade-off between maximal accuracy and computation time. 

 

 

Figure 7. Pn-Tn S32 (136 angles per octant). 
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Figure 8. Pn-Tn S50 (325 angles per octant). 

 

 

 

Figure 9. Pn-Tn S100 (1275 angles per octant). 
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Figure 10.  Discrete angle splitting using Pn-Tn S62. 

 

 

Figure 11.  An example of significant ray effects in angular sources with the MOC. 
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3.3 Georgia Tech Varian Clinac 

 This section provides a brief introduction to Georgia Tech’s Varian Linear Accelerator as 

some results of the thesis will be compared with the golden beam data obtained using the 

Clinac’s associated treatment planning system. 

3.3.1 Georgia Tech Varian Clinac 

 In 2012, a Varian Clinac iX Linear Accelerator (VCLA) was installed in Boggs Building 

at Georgia Tech as part of the NRE/MP Program in the new Radiological Science and 

Engineering Laboratory (RSEL). The VCLA vault was designed according to NCRP 151 (NCRP 

2005), with surrounding shielding materials and thicknesses of the Clinac room, shown in Figure 

49 in Appendix A. The 4-feet-thick primary wall concrete is listed as wall A and B1, and the 2-

feet-thick secondary wall of high density concrete is indicated by walls C and D1 (McGinley 

2011).  

 Appendix A discusses the development of suitable multi-group cross sections for discrete 

ordinates (SN) transport simulations of the vault using 6 MV and 18 MV Clinac source spectra.  

The radiation transport forward-adjoint technique is applied to assess shielding effectiveness, and 

to benchmark the results with clinical measurements and Monte Carlo (MC) simulations.   
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Figure 12.  The Varian Clinac iX Linear Accelerator located in the basement of Boggs Building 

at Georgia Tech. 
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CHAPTER 4 

MONTE CARLO - ELECTRON DOSE KERNELS (EDK) GENERATION 

AND SN TRANSPORT FLUX COUPLING 

 

This chapter discusses the important elements in hybrid coupling of Monte Carlo-based 

EDK to deterministic transport driving a solution for absorbed dose distribution in a water 

phantom.  Also, a discussion is included on the need for accurate source terms and comparison of 

the relative dose in a water phantom obtained with MCNP and PENTRAN.  Figure 13 is a 

visualization of the Varian phase space of the photon source terms that can be applied to both 

MCNP and PENTRAN for use in a dose calculation in a water phantom.  The photon flux spatial 

intensity distribution map, which was generated using Matlab, generated by extracting each 

particle information from the Varian phase space data for a 6MV, 10cm by 10cm field size, is 

illustrated below. 

 

 

 
Figure 13.  The 3D contour of phase space of the photon source terms that are applied to SN 

method for driving EDK. 



28 

 

4.1 Electron Dose Kernels 

 This section provides two forms of the EDK method: a generalized EDK formulation, 

and a detailed step-by-step methodology with noted improvements in application of EDK-SN.   

4.1.1 General EDK-SN Formulation in PENTRAN 

The EDK-SN method, or “electron dose kernel-discrete ordinates method” was developed 

to calculate voxelized organ doses in the human body principally for applications in high-energy 

external photon beam therapy.   The initial computational approach was proposed by G. Sjoden 

et. al.(Al-Basheer, Sjoden et al. 2009). This thesis used a simple, hypothetical flat MV source 

that was later improved and expanded (Huang, Sjoden et al. 2009, Huang, Sjoden et al. 2010) 

The initial work of the EDK-SN method was tested with an 8 MV flat photon beam 

source directed at the middle anterior of a 15-year old male phantom, and the results were found 

to agree with Monte Carlo results in a homogenous phantom to within 10% in far out-of-field 

regions (Al Basheer 2008) except in strongly heterogeneous regions, where it became difficult to 

validate the accuracy of the Monte Carlo, compounded by the often significant inherent 

uncertainties in the stochastic simulations (Knöös, Wieslander et al. 2006, Fogliata, Vanetti et al. 

2007).   The EDK-SN method was demonstrated using CT-based voxelized anatomical patient 

phantoms and calibration phantoms. It has been shown that the EDK-SN method can be an order 

of magnitude faster than Monte Carlo simulations for whole body dose (Al-Basheer, Sjoden et al. 

2009, Huang, Sjoden et al. 2009, Huang, Sjoden et al. 2010).   

To begin the EDK-SN procedure, one first rapidly solves for the photon transport 

deterministically over the entire phase space of the phantom using 3D discrete ordinates method 

with PENTRAN on parallel computers. In this step, discretization of a phantom is performed as 

required among the energy, angle, and spatial variables using parallel computation for rapid 
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global solution.  The photon net current in each Cartesian voxel is derived from the solution of 

the Boltzmann equation. At the end of this step, the photon flux, photon current, and net current 

vector direction are determined spanning the phase space of the phantom or CT dataset, as 

appropriate.  Then, this highly detailed angular discrete data, rendered globally, is used to project 

the absorbed dose and map it into the surrounding voxels. The final absorbed dose is calculated 

by summing on a mesh by mesh basis, scaled by the magnitude of the photon fluence, using the 

electron dose kernels (EDKs).   Fine mesh scalar fluxes are not considered as they do not provide 

a directional component.  A flowchart is provided in Figure 14 to describe the dose calculation 

flow, including the EDK-SN 3D dose computation system and the full Monte Carlo 3D dose 

computation, which will be introduced in the following sections.  
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Figure 14.  A flowchart describing the EDK-SN process and Full Monte Carlo process in order to 

obtain 3D dose. 

  

4.1.2 Advancement of the EDK-SN Method 

This section provides additional discussion on the advancement of the EDK-SN method. 

The method employs CT-based voxelized anatomical patient phantoms, and the absorbed doses 

are computed in three steps described below. 
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4.1.2.1 Step 1 

Deterministic discrete ordinates calculations of the photon transport equation are 

performed with discretization of the energy, angle, and space variables.  In steady state, the 

multi-energy group transport equation is described by Equation (3) in Section 3.1.3. 

The photon net current is derived from the solution of the transport equation. At the end of this 

step, the photon current, including flux and direction, will be calculated everywhere inside of the 

phantom or CT dataset.  

For any SN calculation, the PENTRAN code preserves angular information explicitly in 

scalable parallel-stored local arrays. The total net current is represented by netJ  , which is 

composed of nxJ , nyJ , and nzJ   in Cartesian coordinates along x, y and z shown by Equation (1). 

nxJ , nyJ , and nzJ  are the net components of partial currents along each axis, as shown by 

Equation (2). ˆ
uj  is the unit vector of the total net current netJ  for a specific voxel, as shown by 

Equation (3).  Solving the Boltzmann transport equation enables direct calculation of netJ  from 

angular flux for each voxel in 3D.           

 

 net
ˆˆ ˆ

nx ny nzJ J i J j J k     (1) 
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4.1.2.2 Step 2 

In this step, the highly detailed angular data rendered globally over the phantom from the 

SN solution is used to project the dose and map it to surrounding voxels; the dose is accumulated 

on a mesh by mesh basis, scaled by the magnitude of the photon fluence, using the Electron Dose 

Kernels (EDKs).  The EDKs are pre-computed using full physics charged particle Monte Carlo 

electron transport for a single monoenergetic pencil photon beam in either soft tissue, bone, or 

lung tissue, and adapted to any direction on the unit sphere so as to enable coupling to photons 

traveling in any direction determined via the SN calculations.  

The electron dose kernel fraction in distal voxels  , ,i j k  due to a primary photon at 

   , ,i j k  can be determined in terms of the initial photon energy for a particular energy group. 

Figure 15 shows a schematic of photons in a ‘dose-driving voxel’ (DDV) at location    , ,i j k  

creating charged particles and energy deposition in voxels distal from the DDV.  By partitioning 

the energy deposited in voxel (i, j, k), into multiple energy bins aliased to the SN multi-group 

energy structure, the fractional electron dose kernel contribution per unit photon flux per source 

particle in the forwardly peaked current direction can be constructed.  A partial MCNP input 

deck is provided Appendix B. 
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Figure 15.  A schematic of photons in a ‘dose driving voxel’ (DDV) at location (i’,j’,k’) creating 

charged particles and energy deposition in voxels distal from the DDV. 

 

 

Figure 16 shows the MCNP generated electron dose kernel for a 0.5 cm x 0.5 cm x 0.5 cm for a 

0.5 MeV energy bin. The dose kernel in each energy group will be rotated along the ˆuj  direction 

in step 3. 

 
 

Figure 16.  An illustration of the 3D EDK Dose kernel (cross-sectional view) in water.  The dose 

kernel is pre-calculated for each energy group, and pre-stored for any photon current-driven 

rotations. 

 

4.1.2.3 Step 3 

The final step involves rotating the EDK kernel using quaternion rotation, and projecting 

the EDK kernels along the photon current direction, for each energy group, and then summing up 
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to obtain the absorbed dose for each voxel.  The rotation is necessary because the dose kernel 

was initially generated along a positive z-axis, but for each voxel there is a different photon 

current direction.  In each voxel, the kernel needs to rotate along the photon current direction 

prior to summation across energy group contributions.  The absorbed dose for voxel  , ,i j k  can 

be expressed as: 

   

                                 
, , , , , , / , ,

N
g S S gg g

D i j k EDF i j k i j k M i j k   (4) 

 

where
 

 , ,gEDF i j k
 
 is the electron dose kernel fraction in group g,  is the photon 

normalization factor,  
 

, ,
NS g

i j k  is the scalar flux, and  , ,M i j k   is the mass of the voxel.  

The normalization factor   is dependent on the mesh size.  
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4.1.2.4 Net Current Projection 

 In this subsection, quaternion rotations on EDK dose kernel along direction ˆuj  , with 

magnitude  were implemented, improving on prior application of Euler rotation for 

EDK-SN.  Figure 17 illustrates the EDK kernel rotation. 

 

 

 

Figure 17.  EDK rotation from grid A into A’. 

 

By using quaternion rotation to rotate electron dose kernel, in particular rotating 

pre-computed EDKs along the quaternion, enables projection dose to the appropriate 3D voxel. 

Using quaternion rotation not only improves speed over the Euler angle rotation method, it also 

avoids the problem of gimbal lock. This rotation algorithm improved storage, and provided a 

faster rotation calculation for the EDK kernel.  In particular, the older Euler angle representation, 

as the old method pre-stored rotations in files, making it necessary to read a file for each rotation 

performed. 
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4.1.2.5 Quaternion Rotation and Application to EDK 

 This section describes the basics of the quaternion rotation and how the quaternion 

rotation is applied to rotate EDK to netJ .  A diagram of quaternion rotation is shown in Figure 18. 

 

Figure 18.  A diagram demonstrating a 90-degree quaternion rotation. 

 

A rotation through an angle of   around the axis defined by a unit vector u  
 

   (5) 

 

can be represented by a quaternion q . This can be performed using an extension of Euler's 

formula shown in Equation (8).  The point (w,x,y,z) represents a rotation around the axis directed 

by the vector u(x,y,z) by an angle.  

To summarize, any quaternion is an expression of Equation (6). The quaternion rotation 

angle between the rotation axis and the new vector is indicated by Equation (7). The unit 

quaternion q  can be further written in terms of rotation angle as shown in Equation (8). The 

resulting rotated vector  can be obtained through Equation (9). 
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     ˆˆ ˆq w xi yj zk   (6) 

 

      1 1 2 2 22cos 2sinw x y z   (7) 

 

      cos /2 sin /2q u   (8) 

   

 
       

       
   

1 cos sin cos sin
2 2 2 2

v qvq u v u   (9) 

 

Quaternions are analogous to an axis-angle rotation, and are numerically stable in 

prevention of an issue termed ‘gimbal lock’ which is the loss of a degree of freedom in 3D 

gimbal.  Three components are space (x,y,z) , and the fourth component w is a rotational 

component. In the EDK kernel application, the dose position and magnitude are calculated upon 

rotating the kernel through the rotating axis of netJ , through quaternion rotation. 

The EDK-SN method serves as a critical link in accumulating the absorbed dose in each 

fine mesh driven by fluence in the DDV.  Accumulation of the dose in each voxel of tissue is 

possible because the accumulated dose in each voxel for each photon energy group is based on 

the SN-computed photon flux which is then projected, due to electrons streaming along the 

photon current vector, derived from the SN simulation. The EDK-SN dose calculations were first 

performed for several slab phantoms using material specific absorbed dose kernels with 1 cm x 1 

cm x 1 cm mesh size. This was later improved to a 0.5 cm x 0.5 cm x 0.5 cm mesh size.  An 

example of this mesh improvement is shown in Figure 19.   The goal for the EDK-SN method 

would be to apply the same precision as a computational phantom with voxel sizing of 2 mm x 2 

mm x 2 mm.  The improvement to 5 mm is an additional refinement (this is the finest resolution 

given the computational resources available at Georgia Tech), which can better characterize 

volumetric detail and reduce ray effect; consider in Figure 18 the improvement in beam 



38 

 

resolution where the midline of the beam has a ‘fatter’ middle section of the beam, which is 

clearly not evident in using 1 cm meshes. 

 

 

Figure 19.  Total dose distribution on a 11×11×11cm3 water phantom with 1.0 cm meshes and 

0.5 cm meshes.  

 

 

4.2 Source Modeling for the EDK-SN Method 

 A single probability distribution for energy was used in Chapter 3, when using a 

representative Clinac 6MV spectrum to serve as the effective source term for adjoint detector 

response modeling, as was seen with the probability distribution functions (PDFs) in Figure 4 

and Figure 5.  The gains in phase space accuracy are lost when reducing the phase space to a 

source having only a single energy spectrum.  While a single PDF representation is acceptable 

for many-group photon cross section generation for shielding calculations (Appendix A as an 

example), more energy and space distributions are needed for the EDK-SN dose application. 

The challenge involves applying multiple spatial distributions to match the variation of 

the source term spatially, as a function of energy. To minimize computational burden, analysis 

was performed to consider suitable sampling for sufficient source term accuracy.  This was done 
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by running 5 separate radial source problems within the PENTRAN code. The energy PDFs for 

radial rings of 0.5 cm segments were generated from the Varian phase space, and are shown in 

Figure 20.  This figure represents a significant analysis accomplished by reading the data in 

Matlab, and programming a discretization of the source term to convert the phase space to ring 

distributions. Figure 20 shows the correct spectrum mapping in Monte Carlo and deterministic 

transport for spectrum modeling according to the Varian phase space information. The same 

figure also demonstrated the real phase space distribution in 3D histogram. According to the 

photon distribution, a five ring-shaped histogram has been computed and applied to Sn 

calculation. The ring radii consist of 0 cm to 0.5cm, 0.5cm to 1 cm, 1cm to 1.5 cm, 1.5 cm – 2 

cm, and an outer ring; to simplify further the radius 2 cm (diameter 4 cm) to the rest of the 10 by 

10 cm compose the same histogram. All SN current results on these five rings are summed at the 

end.  Figure 21 shows the application of the modeling of one of the five source rings. 

 

 



40 

 

 
 

Figure 20.  Photon distributions of phase space for 5 radial segments of the Varian phase space 

for SN calculations. 

  

Figure 21.  Modeling and results with SN computation: (a) Ring source (1 of 5) (b) photon flux 

distribution at source plane in Group 1 (energy range 5.5 to 6.0 MeV). 
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4.2.1 EDK-SN Improvements in Accuracy with Realistic Source Term Modeling 

It is important to show the improvements in using the Varian phase space data, which are 

qualified and benchmarked to the Varian measured representative golden beam data (GBD), over 

using a user-parameter driven source term with spectrums obtained from a TPS. 

As an example, using the user-parameter driven source term method, percent depth dose 

curve was calculated using MCNP (normalized to maximum dose point) and compared to 

clinical chamber CC04 measurement comparison. A 6MV photon beam is incident into 

60×60×60 cm3 water phantom, SSD setup at 90 cm, under different collimator field sizes 4×4 

cm2, 10×10 cm2, and 30×30 cm2 square field.  The resulting tally vs. comparison is given in 

Figure 22 and errors are reported in Figure 23.  The percent depth dose (PDD) errors were 

generally in the range of 5%, with some increase in error to 10% for the smallest field size.  This 

level of accuracy was not sufficient within 5% dosimetric accuracy requirements for in-field 

clinical applications, with just the use of a Monte Carlo source term defined using SDEF within 

MCNP.  These figures demonstrate the requirement to obtain a more accurate source term. 

According to International Commission on Radiation Units and Measurements (ICRU), 

an ICRU report (Shalek 1977) recommended that the dose be delivered to within 5% of the 

prescribed dose in field.  Considering the many steps involved in delivering dose to a target 

volume in a patient, each step must be performed with an accuracy to within 5% to achieve the 

ICRU recommendation (Kutcher, Coia et al. 1994). As achieved in the computation results, 

beyond the dose build-up region, the PDD deviation between MCNP simulation results with 

simplified 6MV monoenergetic spectrum will induce error more than 5% error for in-field dose 

beyond 15 cm depth in homogenous phantoms, even for standard 10 cm by 10 cm field size in 

Figure 22, compared to the real water phantom measurement (with IBA CC04 detectors); 
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Therefore, corrected phase space information for different locations, direction of the particles 

and spectrum must be corrected into the source modeling in EDK-SN computation.  

Photon flux distribution with 0.5 cm meshes as calculated using PENTRAN for a 6 MV 

clinical photon beam is represented by an equivalent cone source projected to the water block 

surface.  There are 12 energy groups of 0.5 MeV bin width (highest energy in upper-left corner, 

lowest energy in lower-right corner).  The smaller the field size should be accompanied with a 

higher SN order.  Figure 24 provides a 10 cm x 10 cm photon surface source calculation with the 

flux distribution in the 40cm x 40cm x 40 cm water phantom for a S20 deterministic transport 

calculation, and Figure 25 provides a flux distribution for S40 with smaller divergence angle.  

Figure 26 is a detailed local YZ view for one group, at a lower 1 cm resolution and some minor 

ray effects, which are mitigated further when using 0.5 cm meshes and a minimum of S40 

quadrature. 
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Figure 22.  The PDD profiles obtained with Monte Carlo calculation using various simulated 6 

MV beams based on the user-parameter driven source term method. 

 

 
Figure 23.  The percent differences between the PDD obtained with Monte Carlo calculations 

and the measured data for a 6-MV beam. The Monte Carlo calculations were based on the user-

parameter driven source term method.    
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Figure 24.  PENTRAN flux distribution using 0.5 cm mesh with S20 quadrature. 
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Figure 25.  PENTRAN flux distribution using 0.5 cm mesh with S40 quadrature. 
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Figure 26.  YZ plane view of flux in energy range 1.5 cm to 2 cm (photon flux) using 1 cm 

resolution. 
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4.2.2 Comparison of the EDK-SN Results to the Varian Golden Beam Data (GBD)    

In order to compare EDK-SN to Varian GBD measurement data, a water phantom 

problem is constructed with a 10 cm x 10 cm Varian TrueBeam impinging on a 30 cm x 30 cm x 

30 cm water block.  Figure 26 compares the PDD obtained with the EDK-SN method with that of 

Varian GBD, and it shows an average error of 3.7%.  This proves the EDK-SN method possesses 

sufficient accuracy to match the midline dose using the phase space source term, discussed in 

Section 4.2, and 12 energy group cross section modeled from CEPXS library.  The quadrature 

and Legendre moments for this model was S62-P3 using 0.5 cm x 0.5 cm x 0.5 cm fine mesh size. 

 

 

Figure 27.  The comparison between the PDD obtained with the EDK-SN method and that of 

Varian GBD. The average error is 3.7%. 
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CHAPTER 5 

ADAPTING VARIAN PHASE SPACE TO MCNP PHASE SPACE AND 

BENCHMARK WITH EDK-SN METHOD 

 

This chapter discusses the importance of using Varian linear accelerator data, and 

provides a software framework that uses this data in MCNP and PENTRAN.  The method of 

using Varian phase space data was favored versus the original proposal using publically 

available data sets. The adaptation of Varian phase space data to an MCNP phase space is 

performed in order to convert initial binary data to HDF5 binary(The HDF Group 1997-2015), a 

hierarchical data file format that is able to store large phase space data.  The HDF5 binary file 

format is then converted to MCNP’s surface source binary data structure.  Figure 28 is a 

visualization of the phase space at the source plane using Varian TrueBeam data. 
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Figure 28.  A subset of phase space 2D contour data of a Varian TrueBeam with 10cm x 10cm 

field size using PHSPMC in MCNP domain. 

 

As previously researched, the International Atomic Energy Agency (IAEA) database 

included typical Varian and Elekta machine phase space information, and, depending on the 

specific machine, phase spaces that are usually located above the secondary jaws (Chetty, Curran 

et al. 2007, Fogliata, Vanetti et al. 2007). Instead of a single spatial representation, to improve 

the match to a clinical linear accelerator head source, a multiple radial ring model was applied to 

adapt an appropriate surface source in the discrete ordinates transport model.   A typical Clinac 

head geometry is shown in Figure 29 and the head components are shown in Figure 30. 
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Figure 29. Illustration of Linac head modeling: full geometry with primary components – image 

reference: (Varian 2011). 

 

 

Figure 30.  Geometry of the head components – image reference: (Constantin, Sawkey et al. 

2011). 
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The phase space information provides the particle angle, space, and energy information 

from the Linear accelerator head model, but did not include the secondary jaws or any blocks, or 

MLC information. To include the secondary jaws and MLCs, the user has to define them 

specifically in the BEAM system to get new phase space information. 

5.1 Converting Varian Phase Space Information to Surface Sources Suitable for MCNP 

5.1.1 Defining Phase Space and Using Varian Data 

 A phase space, as defined in the medical physics community, is a set of particle track 

data. The data for each particle track include energy, particle type, direction of travel (2 variables 

in angle), and spatial position (3 variables for 3D).  Therefore, at a minimum, 7 variables are 

needed to compose a single particle track on a scoring plane. A fully compliant phase space in 

practice applied to a Monte Carlo transport code would allow for sufficient fidelity.   

  

 Initial data provided by Varian phase space were provided using the standard formats 

recommended by IAEA (Capote, Jeraj et al. 2006).  The reason for using the IAEA format is to 

provide a consistent phase space input data interface for codes such as GEANT4, EGSnrc, and 

PENELOPE, and other Monte Carlo codes.  Varian Medical Systems, utilizes their full 

engineering diagram specifications of their hardware components to perform the most accurate 

model in GEANT4.  A listing the recommended format for phase space is provided in Table 2. 
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Table 2: IAEA phase space format (Capote, Jeraj et al. 2006). 

Variable Meaning Type Size 

X X spatial position (cm) Real 4 

Y Y spatial position (cm) Real 4 

Z Z spatial position (cm)  Real 4 

U Direction cosine along X Real 4 

V Direction cosine along Y Real 4 

E Energy of particle in MeV Real 4 

Statistical_Weight Weight of particle Real 4 

Particle_Type Particle type Integer 2 

Sign_of_W The sign of direction cosine W Logical 1 

Is_New_History True/False if particle is new Logical 1 

Float_Extra Extra float values (optional) Real n*(Real) n>=0 

Integer_Extra Extra integer values (optional) Integer n*(Integer) n>=0 

 

 Varian supplied TrueBeam phase space data, and were originally generated using the 

GEANT4 code.  These data with the IAEA phase space format (Constantin, Perl et al. 2011) 

match the Golden Beam Data to within 1% for seven different photon beams (Constantin, 

Sawkey et al. 2013).  Because of the high degree of accuracy, it is vitally important to make full 

use of phase space information provided by Varian.   

 One other benefit of the IAEA phase space format, is the compactness of the 

specification, as the files can be provided in a binary format suited for stream file I/O. 

Unfortunately, the concept of standardizing phase space particle track data was not a part of the 

MCNP development, as the code was originally developed based on the needs for nuclear 

physics and nuclear engineering applications. In order to write a particle track in MCNP, a 

tracklist (which is the same as a phase space) comprising 11 records shown in Table 3 is used in 
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the data/payload portion of the MCNP binary file. The format conversion process is discussed in 

the next section. 

Table 3: MCNP tracklist format written by PHSPMC framework. 

Variable Meaning 

Record Number of 8-byte records in track (usually 11) 

NPS Index value for history 

Bit Array Particle type and has sign of W direction cosine 

Weight Particle weight 

Energy Energy in MeV 

Time Time value (not used for static/non-transient source) 

X X spatial position (cm) 

Y Y spatial position (cm) 

Z Z spatial position (cm) 

U Direction cosine along X 

V Direction cosine along Y 

Surface Assigned surface value (specific to MCNP) 
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5.1.2 Converting and Verifying Software Framework 

 Phase space data conversion to MCNP tracklist format is outlined in the following 

software framework, termed “PHSPMC” (Phase space to Monte Carlo for MCNP): 

1. A Matlab script identifies individual phase space components, and converts the IAEA 

format phase space to the HDF5 (The HDF Group 1997-2015) file format. 

2. The HDF5 file is read using Python and h5py (Collette 2013) library.  

3. A Fortran binary file containing the surface source is written by using a template input 

deck with a surrogate surface source, similar to the MCNP input that will actually be run 

with the true phase space.  This is achieved using the Python PyNE API (Scopatz, 

Romano et al. 2012). 

4. The MCNP SSW (surface source write) binary file is written for use as a SSR (surface 

source read) in the active input. 

 

 In order to accommodate MCNP, the ability to write a suitable phase space was identified 

by writing surface sources to the SSR/SSW cards.   This data was written using the specific 

Fortran format as was originally designed for the SSR/SSW option in MCNP.  Of particular 

difficulty is the ability to write a binary surface source header, which was not well documented, 

as the surface source subroutines were not accessible for outside development, though it is 

available in the source code.  To remedy the documentation issues, the PyNE (Python for 

Nuclear Engineering) API was used, as there was an ability to write phase space information 

from existing problems and properly form headers and payload/data from external phase space 

data. The phase space data conversion was accomplished by using a template MCNP input file 

with a surrogate source, which is nearly identical to the input file that is to be run using the 

Varian phase space.  The reason that a template file is required is that MCNP writes header 

information that was not well documented – it was simpler to use MCNP directly to write a 

header using an existing problem, than identifying/aliasing a true original header from scratch.   

The PyNE API tool, which can be used with Python scripting, and in particular the API’s MCNP 



55 

 

class is able to parse working problem outputs, making it easier to decode surface source 

headers.   

 Matlab was used as a primary tool for reading of binary data. In the course of this thesis 

investigation, the tool allowed for the automatic saving of ‘workspace’ data to HDF5 with 

Matlab 7.3+ and the higher versions (Mathworks 2015).  This in turn allows a workspace in the 

Matlab GUI to be saved in the HDF5 h5 file format.   The H5 file format is independent of the 

operating system, allowing for cross-platform work across Windows, Linux, and Mac OS 

platforms. As such, a user does not need to worry if the file is in ‘Little-Endian’ or ‘Big-Endian’ 

format. 

 In order to work with HDF5 in Python, h5py (developed by Collette) was used to interact 

with the data inside of Python script. The ‘h5py’ library was primarily intended to work with 

astronomic and space physics data comprising millions of data points (Collette 2013) but was 

always designed to allow for generic interfacing with HDF5.  The HDF5 data format is 

generically suited for multidisciplinary science and engineering applications.  One significant 

feature is the partial file I/O capabilities.  This feature saves time and allows one to work with a 

file of gigabyte to terabyte size and access parts of file I/O data. Without this convenience, the 

files had to be read in before processing. 

5.1.3 Validation of Framework with the Water Phantom Problem 

 To validate the data conversion framework, a MCNP calculation was performed with the 

phase space as the primary source term directed towards a 30 cm x 30 cm x 30 cm water 

phantom.   The specific distances at 100.5 cm, 101.5 cm, 102 cm, 105 cm, 110 cm, 115 cm, 120 

cm, 125 cm, and 130 cm from the source were tallied to generate PDD in the water phantom.  

These distances were chosen to align with the Varian GBD. 

 The computation times to generate PDD and radial dose profile (RDP) were on the order 

of days, but they can be reduced to several hours if it runs in parallel. Table 4 provides a listing 



56 

 

of computational wall clock times (wall time is measured by stopwatch– instead of user CPU 

time, time spent in non-kernel processes, which is less than or equal to wall time).  Serial wall 

times are provided, as some of the parallel computations used a varying number of parallel 

processors, typically from 64 to 256 processors.  Furthermore, providing the serial wall time is 

an appropriate indicator of the need for high performance computers, as model-based TPS 

calculations are limited to a few workstations that need to fit within the linear accelerator console 

area. Electron-photon collisions are roughly 1 million per single initial photon history.  

Furthermore, specific dose tallies are cast for each problem to simplify administration of data 

collection; with EDK-SN the entire photon flux data is available, therefore, all dose data is 

available within a single computation.  In real wall-time, computations in parallel are 

predominantly decided in phase space decomposition: for the PENTRAN water phantom 

problem, there are16 energy groups, 75 coarse meshes with 90,000 fine meshes, and a 

decomposition of 24 processors: 8 in angle, 1 in group, and 3 in space (with 8x1x3=24) .  

Regardless of how the problem is decomposed, EDK-SN can obtain more accurate global results 

relative to Monte Carlo.  In using Monte Carlo MCNP, specific tallies must be requested prior to 

the calculation start. Also interesting, is the lack of statistical confidence in out-of-field dose for 

Monte Carlo, despite the massive number of histories run; this is clearly another benefit for 

EDK-SN, which is more consistent in driving flux and dose calculations within convergence 

parameters, which is fully expected as 3D SN transport fully solves for photon fluence to 

convergence within a user-specified inner tolerance (typically 1E-4) and folded with the dose 

projection.   
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Table 4: Computational wall time effort (* = average of fine mesh tallies) for dose. 

Problem Type Histories Code Average* 

Relative 

Error (%) 

Serial Wall 

Time 

(minutes) 

RDP 2.5 million MCNP 4.477 8190  

RDP 12.5 million MCNP 2.792 40950 

RDP 25 million MCNP 1.134 81900 

PDD 2.5 million MCNP 1.023 7900 

PDD 6.1 million MCNP 0.1 39600 

PDD 25 million MCNP <0.1 79000 

RDP & PDD N/A EDK-SN 0.5 * 4140 

             * Inner convergence tolerance = 1E-4 and Monte Carlo kernels were generated to be 

accurate to 0.5% relative error.  

A series of graphs are now presented to demonstrate the accuracy of the successful 

conversion of the Varian phase space data for use in MCNP.  Figure 31 shows the comparison of 

PDD obtained with MCNP with the Varian GBD, and Figure 32 provides the percent differences 

between the two data sets shown in Figure 30.  Both Figure 33 and Figure 34 provide a set of 

RDP graphs and percent difference between GBD and MCNP results.  Overall, matchups 

between GBD and MCNP are physically appropriate.  In particular, both PDD and RDP 

comparisons are accurate, with errors generally below 2%.  As a comparison, the error with 

EDK-SN was previously shown to be less than 3.7% in Figure 27. 

 To obtain sufficient resolution in PDD and RDP, *F8 tallies were obtained using 10 or 20 

times the original phase space by performing modified phase space concatenation, which is 

discussed in Section 5.1.4 Extending/Repeating Phase Space Information and Recommendations.  

Figure 35 and Figure 36 show, respectively, the PDD and associated relative errors. Figure 37 



58 

 

and Figure 38, respectively, show the RDP at chosen depths and the associated relative errors.  

For the PDD case, the basis phase space is shown where statistical noise is present in Monte 

Carlo, which is not present in EDK-SN.  The EDK-SN inner tolerances are set to 1E-4. 
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Figure 31.  Comparison of PDD obtained with MCNP and the Varian GBD. 
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Figure 32.  The percent differences between the PDD obtained with MCNP and the Varian GBD. 
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Figure 33.  Comparison of RDP obtained with MCNP and the GBD. 
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Figure 34. The percent differences between the RDP obtained with MCNP and the Varian GBD. 
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Figure 35.  The PDD obtained with the *F8 tallies with 2.5 million photon histories. The 

statistical fluctuation is clearly shown. 

 

 

 

Figure 36.  The relative errors associated with the PDD obtained with the *F8 tallies with 2.5 

million photon histories.   
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Figure 37.  The RPD obtained with the *F8 tallies along a water phantom for various depths 

(with the phantom front face at z=100 cm) with 50 million photon histories. 

 
Figure 38.  The relative errors associated with the RPD obtained with  the *F8 tallies. along a 

water phantom for various depths (with the phantom front face at z=100 cm) with initial histories 

of 50 million particles. 
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5.1.4 Extending/Repeating Phase Space Information and Recommendations 

 Varian provided phase space data in the size of 2.5 million photons, which is often not 

enough for MCNP to produce statistically acceptable results. In order to significantly increase 

the photon histories, the phase space data can be multiplied.  However, this requires header 

adjoined to multiple tracklists.  The header itself must be modified in order to increase the total 

number of tracks.  Hence, using the PyNE API along with basic Linux utilities is needed to grow 

the phase spaces as necessary.  Some of the larger file-sets were in excess of 1 TB; hence, further 

growth became impractical working on a high performance computing (HPC) cluster limited to a 

few TBs. The procedure for modifying the MCNP surface source is shown in Table 5.  

 

Table 5: Modifying MCNP surface source. 

Format Surface Source Format 

Standard Header Tracklist 

 

Concatenated Modified 

Header 

Tracklist  Tracklist Copy 

(times N) 

 

 

5.2 Future Work and Recommendations for Phase Space Applications with MCNP 

 This chapter provides a conversion of GEANT-4 phase space data in IAEA format to 

MCNP’s data format.  Without this work, it would not be possible to generate comparisons of 

EDK-SN to MCNP for calculating organ doses using Varian phase space data. 

 The current software framework is sufficient to convert the Varian phase space data to 

MCNP surface source input.  There are several recommendations for future work in this regard.  

The first recommendation is to consolidate the software package into a single Python script.  The 

second recommendation is to improve the scalable parallel file I/O using HDF5.  Since wall 

clock phase space file format processing takes 15 minutes to 2 hours, adding parallelization to 
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file I/O would reduce the time.  The third recommendation is to improve the surface source 

subroutines in the Fortran/C components in MCNP.  This requires some collaboration with the 

Los Alamos National Laboratory (LANL) MCNP development team.  One noted weakness of 

the surface source phase space is the inability to perform a ‘continue’ run.  This can be done with 

a defined SDEF forward source term in the input deck.  The current strategy is to concatenate 

multiple tracklists.  This strategy was conveyed in Table 5 in the previous section. The fourth 

recommendation is to coalesce the PHSPMC framework underneath a single language.  The 

logical choice is to reduce all the steps of the framework to Python scripting, as it is necessitated 

from using PyNE.   The performance of the phase space modification could also be improved by 

writing in compiled C language. 

           In summarizing the computational results, the MCNP results indicate that the statistical 

errors associated with the Monte Carlo Calculation for out-of-field doses could be up to 20%. 

The deterministic EDK-SN method eliminates the increasing statistical errors for out of field 

dose, as indicated in the previous chapter. The final set of dose calculations using both the 

MCNP and EDK-SN for whole-body organ doses will be demonstrated in the next chapter. 
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CHAPTER 6 

ORGAN DOSE CALCULATIONS FOR A 15-YEAR OLD MALE 

PHANTOM: COMPARISON BETWEEN MCNP AND EDK-SN 

The University of Florida ALRADS group provided computational phantoms with 

detailed organ identification (Bolch, Lee et al. 2010) based on the real CT patient data.  The 

ALRADS phantom data were provided in 0.2cm x 0.2 cm x 0.2 cm resolution.  In this chapter, a 

15-year old male phantom data (302 mm x 139 mm x 836 mm) was used by both EDK-SN and 

the MCNP, and the results are compared.  The patient phantom global boundaries span x from 0 

to 60 cm, y from 0 to 27 cm, and z from 0 to 167 cm. 

6.1 Implementing the Phantom to MCNP and PENTRAN 

 

 The phantom data was first processed by the GHOST-3D code (Ghita, Al-Basheer, and 

Huang) to obtain the suitable voxel size data.  The resolutions for this study were updated to 

match those used in the EDK kernel, which was improved from 1 cm to 0.5 cm.  The increase in 

resolution by a factor of 2 required an 8-fold increase in computer memory for a 3D phantom 

calculation.  In order to permit the problem to fit on Georgia Tech’s PACE HPC platform, a 

truncated chest model was used such that the overall mesh number would only increase by a 

factor 2 compared to the original 1 cm resolution model.  The global boundaries for the truncated 

phantom span x from 0 to 40 cm, y from 0 to 27 cm, and z from 0 cm to 59.5 cm.  Individual 

organ material voxels were simplified to four principal materials: bone, air, tissue, and water.  

This approach reduced the runtime memory storage of cross sections, and also simplified 

EDK-SN in application of heterogeneous correction.  
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Figure 39 is an iso-surface view of the full patient at 1.0, 0.5, and 0.2 cm resolutions. 

Figure 40 is a sagittal view of the 15 year-old male phantom with selected organ identification 

(Lee, Lodwick et al. 2008). Figure 41 is a sagittal view of the four material phantom model with 

1.0 cm and 0.5 cm resolution as a result of downsampling.  Figure 42 is an alternative coronal 

view. 

 

 

 

 
 

Figure 39.  The 15-Year Old ALRADS patient phantom with 2 mm, 5 mm, and 1 cm voxel 

resolutions (iso-surface shown). 
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Figure 40.  The 15-Year Old Male ALRADS phantom sagittal view with organ identification 

(Lee, Lodwick et al. 2008) 
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Figure 41.  (b) A partial sagittal view of the full patient phantom modeled in MCNP, and (b) A 

sagittal view of the 15-Year Old NURBS/ALRADS phantom modeled in PENTRAN with two 

voxel sizes, 1 cm and 0.5 cm modeled in PENTRAN. 

 

 

Figure 42.  (a) A coronal view of the full patient phantom modeled in MCNP, and (b) A coronal 

(cross section) view of the patient phantom with four material cross sections modeled in 

PENTRAN. 
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The full phantom model spanned x from 0 cm to 60 cm, y from 0 cm to 27 cm, and z 

from 0 cm to 167 cm with a volume of 270540 cm3 , occupying 2.1 million fine meshes with 0.5 

cm mesh resolution.  The truncated chest model reduced the dimensions (in x, y, z) to 40 cm, 27 

cm, and 59.5 cm, with volume 64,260 cm3 occupying 514,080 fine meshes with 0.5 cm mesh 

resolution.  The location of the 10 cm x 10 cm field size source is shown in Figure 43, which 

spans x in width from 15 cm to 25 cm, y equal to 0 cm, and z from 37.5 cm to 47.5 cm.  The 

final truncated chest phantom model and flux in the lowest energy group in log-scale are shown 

in Figure 44.   

The source model applied the ring-based technique presented in the last chapter, as part 

of the results of the PHSPMC framework.  The resulting calculation used S50 quadrature and P1 

Legendre moments in the (12 group) multi-group cross sections.  The full model is highly 

scalable given more processors and memory.   The calculation was performed using 672 MPI 

tasks, with 5.5 GB per processor using 12 nodes of 56 CPUs, and was completed in a wall time 

of 139 minutes.  It is important to consider the computational time, as it needs to be fast enough 

to satisfy the daily clinical workflows.  

 The EDK-SN calculation of dose mapping was performed upon successful convergence of 

the PENTRAN calculation of both scalar flux and magnitudes of current.  The MCNP 

calculation was performed with the phase space derived from PHSPMC framework.  Increasing 

phase space histories were considered in order to reduce the statistical errors due to fine mesh 

tallies, as shown in Table 7.  Because different numbers of processors were used for various 

computations, equivalent single node (64 CPU) parallel computation wall times are estimated 

from the MCNP provided computer times to allow for appropriate comparisons.  The EDK-SN 

calculation is efficient in providing whole body dose everywhere in the phantom without 
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statistical error within 2 hours of wall clock time; however, in comparison, with Monte Carlo, to 

achieve less than 1% error in dose calculation takes 15.31 hours on 64 CPUs. 

 To simplify comparison, only organs with sufficiently small relative errors (< 1%) and 

the organs in the chest region were considered.  The Varian TrueBeam phase space source is 

verified by using the mesh tally option for flux to visually confirm proper source term 

placement; the natural logarithm of relative flux is shown in Figure 45 and the corresponding 

relative error is shown in Figure 46 using the MCNP case with 4800.  Normalized organ doses 

(cGy) are obtained from cell *F8 (MeV) tallies in MCNP, multiplying 1.6 E-8 Joules per MeV, 

then dividing by cell mass to obtain dose in cGy.   At 1.5 cm water depth, the source delivered is 

normalized to 100 cGy using a 10 x 10 cm field.  Similarly, EDK-SN results are accumulation of 

doses as a function of fine mesh for the specific organs shown in Table 6.  The organ doses 

obtained with MCNP and EDK-SN agree with each other to within a range of -6% to 13%. 

The EDK Monte Carlo kernels for the lung are scaled for heterogeneity corrections 

according to the lung voxel electron density, of 0.26 to 1 relative to water electron density (Khan 

and Gibbons 2014), as applied similarly with the Eclipse AAA lateral scattering kernel 

correction method (Varian 2011).  The primary photons and inter-voxel scattering fluence for 

different voxels in the phantom are directly calculated by the PENTRAN deterministic method, 

corresponding to the different material cross section information for each voxel. Final absorbed 

doses are also obtained by dividing by the local material density in g/cc for each voxel in 

EDK-SN method.  
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Figure 43.  An iso-surface of the truncated chest phantom model with source on xz plane, which 

spans x in width from 15 cm to 25 cm, y = 0 cm, and z in height from 37.5 cm to 47.5 cm in the 

model. 

  

Figure 44.  PENTRAN SN model and flux calculation: (a) A cross-sectional view of the truncated 

chest phantom and (b) a plot of relative photon flux in log scale of the lowest energy range. 
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Figure 45.  A confirmation of the total (sum of all energies) phase space source term using total 

F4 mesh tally option in MCNP (4800 computer minutes).   
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Figure 46.  A corresponding view of relative error of the F4 mesh tally with a selected MCNP 

calculation  (4800 computer minutes) with relative error increasing as a function of distance from 

the phase space source. 
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Table 6: Comparison of relative organ absorbed doses (*F8 = MeV) obtained with MCNP and 

EDK-SN. 

 

 
Organ / 

CM Position1 

Density 

(g/cc) 

Volume2 

(cc) 

Normalized 

Mean Organ 

Dose (cGy)+ 

*F8 Rel. 

Error 

(%) 

EDK-SN 

Dose 

(cGy) 

% Difference 

(MC-EDK)/ 

MC 

Source 

(30, 0, 127.5) 

-  1.000E+02 - - - 

Heart 

(31.78, 12.56, 126.2) 

1.05 609 1.614E+01 ~0% 1.576E+01 2.34 

Thymus 

(29.90, 14.81, 135.7) 

1.03 32 1.538E+01 ~0% 1.501E+01 2.38 

Lung(R) 

(23.32, 16.75, 126.8) 

0.24 2043 5.188E+00 ~0% 5.392E+00 -3.94 

Lung(L) 

(37.58, 17.31, 127.2) 

0.24 1715 4.713E+00 ~0% 4.991E+00 -5.92 

Liver 

(24.85, 12.15, 114.2) 

1.05 1230 2.644E-01 ~0% 2.504E-01 5.28 

Gall Bladder Content 

(28.03, 13.08, 111.6) 

1.03 45 2.581E-01 0.58% 2.250E-01 12.83 

Pancreas 

(34.30, 16.83, 108.4) 

1.04 108 1.954E-01 ~0% 1.730E-01 11.46 

Stomach Content 

(35.25, 12.39, 109.1) 

1.02 208 1.954E-01 ~0% 1.715E-01 12.27 

Small Intestine Wall 

(29.91, 14.25, 98.64) 

1.03 770 1.473E-01 0.84% 1.317E-01 10.53 

1 Center of Mass Position in the Full Phantom, MC Computer Time = 66331, Sn Toler. = 1E-4 
2 Some volume differences between original 15-year UF NURBS phantom result from 

downsampling. 
+ *F8 Tally in MeV converted to cGy 
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Table 7: Reduction of *F8 (based on ‘SI wall’ tally) relative error with increasing particle 

histories for MCNP calculation (wall time for PENTRAN calculation was 139 minutes). 

Histories Relative Error 

(%) 

Improvement 

Factor  

Computer Time 

(serial) 

Equivalent Wall 

Time (hours)  

(on 64 CPUs) 

(parallel) 

- 35.36 - 4857 minutes / 

80 hours 

1.25 

2.5 million 4.09 8.64 15903 minutes / 

265 hours 

4.14 

25 million 0.84 42.1 66331 minutes / 

1105 hours 

17.27 

Deterministic 

EDK-SN 

0.5* NA Parallel 2.3 

  * SN Inner Tolerance = 1E-4, S50P1 
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6.2 Discussion for the EDK-SN Method 

 It is important to conclude the status of the EDK-SN methodology, and recommendations 

for additional research.  Identification of the EDK method limitations can provide insights on 

improving both EDK and similar methods.  As it pertains to the EDK method, limitations related 

to use of the MCNP energy cutoff card are discussed. 

 Without the energy cutoff, the intergroup photon interactions are over-counted due to the 

primary photons contributions from other groups.  The over-counting is unavoidable, as problem 

physics are duplicated with each subsequent source window.  Hence, the total dose is 

overestimated, and this is progressively worse with increasing the number of source windows.  

This overestimation is shown in Figure 47. 

 With the energy cutoff, any photon particle generated below the source window, does not 

account for the subsequent secondary bremsstrahlung generated; this underestimates the total 

amount of photons due to secondary electron-induced bremsstrahlung photons; hence, the total 

dose is underestimated, as shown in Figure 48.  In the application to EDK-SN for the thesis, a 

cutoff was applied not to double counting the intra-energy groups’ photon scattering. Although 

the energy no-cutoff kernel will preserve the bremsstrahlung photons, however, at 6 MeV, this 

portion is only at less than 1% of the total electron deposited (Khan and Gibbons 2014). 

Therefore, final calculation used the cutoff card to stop particle transport below that energy 

group in MCNP. 

 Satisfactory results to meet the proper in-between model may be obtained by providing 

modifications to the energy cutoff card (in source code).  One recommendation is to perform the 

EDK application within GEANT4, using the C++ API.  The Monte Carlo tool is programmable 

to detail energy cutoff assumptions.  
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 In summary, the accuracy falls between the two models, as simple averaging is not a 

problem-specific approach, with specific patients spanning wide ranges with age, size, and 

physiology. 

 There is another significant physics limitation, which is the assumption that EDK makes 

in aliasing the net current to project the cloud dose kernel; an even more accurate handling of the 

dose kernel could be calculated by applying detailed information directly from angular flux, 

which PENTRAN can provide.  Use of the net current reduces the angular contribution, in such a 

way that the cloud dose kernel is biased to co-align with the beam, instead of accounting for 

multiple sub-component contributions along each discrete ordinate path.  However, requiring 

angular flux detail in PENTRAN for each spatial fine mesh, is a significant storage hurdle; for 

example, S62 quadrature would require the storing of angular flux information across 3968 

ordinates for a single fine mesh.  Outside of the thesis scope, one improvement would be to 

embed the EDK calculation directly inside the PENTRAN source code to create a dedicated 

application, and avoid the angular flux overhead.  

 One other limitation is the beam divergence and modeling capabilities limited by discrete 

ordinates transport.  Increasing the field area of the beam at a distance works to improve the 

source term model. Additional memory savings are needed - one improvement is to reduce the 

overhead in angular flux storage and pre-calculate contributions to the angular flux moments. 
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Figure 47.  Electron dose kernel with no energy cutoff for energy range 0.5 to 1 MeV. 

 

 

Figure 48.  Electron dose kernel with energy cutoff for energy range 0.5 to 1 MeV. 
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6.3 Summary of Improvements to EDK-SN Method 

 The thesis demonstrates several advancements of the EDK-SN method: 

 

1. An improvement to source term accuracy for deterministic photon transport calculation 

using PENTRAN. 

2. An improvement of source modeling by constructing spatial PDFs converted from the 

clinical linear accelerator particle phase space data. 

3. An improvement in rotation algorithm by using quaternion rotation.  

4. An improvement in fine mesh grid from 1.0 cm to 0.5 cm. 

5. A different heterogeneity correction method was used to obtain absorbed dose in lung 

organs. 

 

The listed improvements are an evolution of the original EDK-SN method (Al Basheer 

2008) with a focus on modeling with accurate source terms that are representative of the linear 

accelerator beams, for both Monte Carlo and SN transport calculations. The EDK-SN method is 

effective in a water phantom problem compared to the measured clinical golden beam data.  This 

is sufficient in proving the accuracy of the method as well as demonstrating the superiority in 

computational speed versus the Monte Carlo method.  It has also been shown that the absorbed 

doses, in both water and real patient phantoms calculated with the improved EDK-SN method, 

agree well with that obtained with the MCNP method. 
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CHAPTER 7 

CONCLUSIONS 

    

 In conclusion, this thesis presented a new and fast dose calculation tool called EDK-SN.  

The method effectively uses Monte Carlo electron dose kernels driven by linear photon 

deterministic transport.  In addition, the thesis improves on EDK-SN deterministic source term 

modeling and provides a software framework for converting Varian TrueBeam phase space data 

for use in MCNP.  Also, the EDK-SN method was effectively benchmarked using water phantom 

calculations to Varian golden beam data to within 3.7% difference.  Finally, selected organ doses 

for a 15-year-old male phantom calculated by MCNP and EDK-SN were compared and the 

results agree with each other to within -5 to 11%. 

 The EDK-SN also demonstrates speedup compared to Monte Carlo with the use of 

parallel computational resources, taking 2 hours to perform an 3D whole body converged organ 

dose computation in a computational 15-year-old phantom, whereas the Monte Carlo 

computation takes 16 or more hours to achieve similar error goals. 
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APPENDIX A 

APPLICATION OF DETERMINISTIC TRANSPORT METHOD IN 

MEDICAL PHYSICS: GEORGIA TECH CLINICAL SHIELDING 

TRANSPORT CALCULATION  

 The below work demonstrate multi-group cross section development with SN 

computation for photon flux, to compute adjoint response for linear accelerator in medical 

physics shielding calculation. This work is to demonstrate the novel SN application for medical 

physics application, and is adapted from the authored transaction (Huang, Manalo et al. 2012).  

This study is tangentially related to the thesis, by relation to its connection to the research Clinac 

at Georgia Tech.  More importantly, this study motivated the initial 6MV and 18MV 

commissioning spectra study, which ultimately led the pathway for researching Varian-generated 

phase space data. 
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Figure 49.  Georgia Tech Boggs building basement clinac vault shielding floor plan (McGinley 

2011). 

 

  

 Regulatory shielding designs are conservatively over-designed and thus yield an 

increased concrete shielding cost.  Again, the most important issue is to identify a computational 

framework to justify a reduction in shielding requirements, starting with a computational 

evaluation of detector fluxes in concrete shielding, by performing deterministic transport 

calculation and continuous and multi-group Monte Carlo transport codes. 

 Based on a single source spectrum representative of a Clinac 6 MV head adapted from 

the Varian treatment planning system, transport calculations were performed to estimate the 

photon flux after concrete shielding.  Materials involved were a 10 cm concrete shield, and a 1 

cm detector. The purpose of the study was to compare flux between Monte Carlo and 

deterministic (SN) codes, with the objective of understanding differences in SN multi-group flux 

behavior to Monte Carlo (continuous and multi-group).  This research was intended to provide a 
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reduced multi-group structure for future SN shielding transport calculations. As linear photon 

transport only calculates photon flux, dose calculations are only then determined via photon-

electron dose conversion tables. 

 Practical dosimeters in use today at radiotherapy facilities are typically badge dosimeters, 

such as Al2O3 for optically stimulated luminescent dosimeters / thermoluminescent dosimeters 

(OSLD/TLD), and LiF (TLD).  Energy responses for these materials are well characterized, for 

example, see Mobit’s paper on energy response factors for LiF and Al2O3 (Mobit, Agyingi et al. 

2006) and Scarboro’s paper on applying cavity theory for determining energy response for 

Al2O3:C OSLs (Scarboro and Kry 2013).  The use of LiF and Al2O3 dosimeters are commonly 

used in verification of patient entrance dose in radiotherapy and also for standard detector 

badges. Therefore, LiF and Al2O3 were selected as primary detector study materials. 

 

A1.1 Description of Spectrum Source Term Used for Shielding Analysis 

  

 The Varian Clinac iX series operates with both high-energy photon beams and electron 

beams. For the photon beam shielding calculation, SN transport was applied; for the electron 

beam shielding calculation, a full physics Monte Carlo calculation can then be performed with 

EDK.  The photon beam energy can operate at 6 MV (6X) or 18 MV (18X). This study presented 

the 6X operation mode, as the 18X mode would require a photo-neutron study. A spectrum for 

this analysis, representative of an equivalent 6X spectrum was used, as is shown in Figure 50. 
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Figure 50.  Representative 6X photon spectrum. 

 

 The 6MV photon transport calculation was based on a 984 group cross-section, spanning 

0 to 24 MeV, adapted from the Sandia National Lab CEPXS code (Lorence, Morel et al. 1989). 

The resulting 984 group cross-section was then compared to continuous XCOM: Photon Cross 

Section Data from NIST (NIST 2011). Figure 51 computes both discrete (CEPXS) and 

continuous XCOM cross-sections for LiF.  In the range of 50 keV– 6 MeV, the maximum 

difference among the discrete cross section and the continuous cross section was designed to be 

more than 5% in the energy range of interest (50 keV – 6 MeV).   
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Figure 51.  Comparison between 984-group CEPXS generated total cross section and XCOM 

continuous microscopic cross section for up to 10 MeV photon beam for LiF. 

 

 Briefly presenting forward and adjoint detector response, standard texts and references 

provide for calculation of adjoint detector response with adjoint group importance in a detector 

volume based on a forward source volume (Bell and Glasstone 1970).  A minor adjustment is 

made so that the partial leakage adjoint function can be used properly in conjunction with a 

source surface (where normally volumetric sources are considered).     

 Normally, by considering a forward source in the linear Boltzmann transport equation: 

                                                        (A1.1) 

where  is the forward transport operator,  is the angular flux,  is the angular source, and 

 is the detector front surface.  Here, the define the forward response and adjoint response are 

defined as  

                                                    (A1.2) 

                                                        (A1.3) 
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where the brackets denote integration over the phase space, and  is the adjoint angular 

importance function, with  as the detector volume. 

 In the assumption of an isotropic flux, the partial current density is given by .  

Analogously, the expression in the adjoint form (where it is assumed that the source is isotropic), 

suggests .  It can be shown that this effectively adjusts the adjoint response rate to: 

                                                             (A1.4) 

Adjoint response is then calculated using adjoint group partial leakage given an isotropic surface 

source. 

 The initial evaluation constituted a 1D SN Geometry model using 984 photon groups in 

an S20, P3 calculation using PENTRAN (Sjoden and Haghighat 1997), with the application of a 

6X source spectrum (supplied as a surface source incident to a 10 cm concrete slab), followed by 

a 1 cm detector region (LiF or Al2O3) using 110 fine meshes.  Cross sections of orders P3, P7, P11 

were generated using CEPXS.  The adjoint model was constructed by supplying the detector 

absorption cross section as the source term located in the detector volume. 
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A1.2 Resulting Adjoint Detector Responses for LiF and Al2O3 

  

 Figure 52 shows the detector absorption cross sections for Al2O3 and LiF to which one 

sets to the adjoint source. Figure 53 displays the relative computed adjoint importance (x-axis in 

log scale for both figures) on the opposite side of the shield where a source would originate.  

Also, Figure 53 indicates that the overall adjoint importance of Al2O3 in the range of 0 to 6 MeV 

is higher than that of LiF by factor of 3. Preliminary calculations show that adjoint and forward 

responses are equivalent, as shown in Equation 4.2, 4.3, and 4.4 (convergence to 1E-4).   

 The detector flux results are shown using the forward transport model with PENTRAN, 

in Figure 54 with a broad peak centered at 80 keV, and sharp peaks at 184.9 keV and 534.8 keV.  

In comparison to the continuous energy Monte Carlo (MCNP5) simulation, the same flux peaks 

are present. However, in the MCNP5 calculations, the 534.8 keV peak is stronger (not in figure 

but indicated by vertical line) compared to the SN result, due to the multi-group averaging effect 

in the calculations. Overall, flux shapes are consistent between Sn and MC calculations.   

 In conclusion, the adjoint calculations show that Al2O3 has a stronger adjoint importance 

in the source location than compared to LiF. Also, the 984-group structure and cross section set 

are identified to be suitable for future Sn shielding calculations, with both SN and Monte Carlo 

identifying the same broad and sharp peak locations in the energy spectrum for both Al2O3 and 

LiF. Moreover, dose conversion methods are to be applied to convert photon flux to dose rates. 
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Figure 52.  Al2O3 and LiF detector absorption cross sections (1/cm vs E (MeV), log-log plot). 

 

 

Figure 53.  Adjoint importance in source location from SN Transport with PENTRAN code 

(log-linear plot). 
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Figure 54.  Detector flux results with SN Transport and MCNP multi-group (average relative 

error ~1%, log-linear plot). 
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APPENDIX B 

EXAMPLE MCNP (PARTIAL) INPUT DECK USED FOR EDK DOSE 

KERNEL GENERATION 

EDK -  0.5  mesh - by Mi Huang 

c  

c adjustment of photon importances to 1 in the water phantom cells 

c TTB approxmation is on (but may not be an issue when 'mode p e' is used) 

c 

c this is the new basis run for edk kernel on gt-pace cluster 

c 

c  -----  begin cell definitions  ----- 

1      1      -1.0 -1    imp:p=1 imp:e=1 vol=0.125 $ EDK Cell Meshes 

c  ----- some cells not shown (too long) 

10648  1      -1.0 -10648 imp:p=1 imp:e=1 vol=0.125 $ EDK Cell Meshes 

c  ------------------------------------------------------------------- 

90011  1      -1.0  -90001 : -90002 : -90003 : -90004 : -90005 : -90006 : -90007 

      : -90008 : -90009 : -90010 : -90011  imp:p=1 imp:e=1 vol=2662.0 $bottom 

90012  1      -1.0  (-90012 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90013  1      -1.0  (-90013 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90014  1      -1.0  (-90014 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90015  1      -1.0  (-90015 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90016  1      -1.0  (-90016 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90017  1      -1.0  (-90017 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90018  1      -1.0  (-90018 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90019  1      -1.0  (-90019 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90020  1      -1.0  (-90020 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90021  1      -1.0  (-90021 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90022  1      -1.0  (-90022 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90023  1      -1.0  (-90023 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90024  1      -1.0  (-90024 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90025  1      -1.0  (-90025 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90026  1      -1.0  (-90026 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90027  1      -1.0  (-90027 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90028  1      -1.0  (-90028 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90029  1      -1.0  (-90029 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90030  1      -1.0  (-90030 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90031  1      -1.0  (-90031 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90032  1      -1.0  (-90032 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90033  1      -1.0  (-90033 90000) imp:p=1 imp:e=1 vol=181.5 $ Outer ring water meshes 

90034  1      -1.0  -90034 : -90035 : -90036 : -90037 : -90038 : -90039 : -90040 

      : -90041 : -90042 : -90043 : -90044  imp:p=1 imp:e=1 vol=2662.0 $top 

99999  0      90001 90002 90003 90004 90005 90006 90007 90008 90009 90010 

              90011 90012 90013 90014 90015 90016 90017 90018 90019 90020 

              90021 90022 90023 90024 90025 90026 90027 90028 90029 90030 

              90031 90032 90033 90034 90035 90036 90037 90038 90039 90040 

              90041 90042 90043 90044 imp:p,e 0  

c  -----  end of cell definitions  ----- 

  

c  -----  begin surface definitions  ----- 

1     rpp   0.0   0.5   0.0   0.5   0.0   0.5 

c  -----  some rpps not shown ----- 

10648 rpp  10.5  11.0  10.5  11.0  10.5  11.0 

c  ------------------------------------------------------------------- 

90000 rpp   0.0  11.0   0.0  11.0   0.0  11.0 

90001 rpp  -5.5  16.5  -5.5  16.5  -5.5  -5.0 

90002 rpp  -5.5  16.5  -5.5  16.5  -5.0  -4.5 

90003 rpp  -5.5  16.5  -5.5  16.5  -4.5  -4.0 

90004 rpp  -5.5  16.5  -5.5  16.5  -4.0  -3.5 

90005 rpp  -5.5  16.5  -5.5  16.5  -3.5  -3.0 

90006 rpp  -5.5  16.5  -5.5  16.5  -3.0  -2.5 
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90007 rpp  -5.5  16.5  -5.5  16.5  -2.5  -2.0 

90008 rpp  -5.5  16.5  -5.5  16.5  -2.0  -1.5 

90009 rpp  -5.5  16.5  -5.5  16.5  -1.5  -1.0 

90010 rpp  -5.5  16.5  -5.5  16.5  -1.0  -0.5 

90011 rpp  -5.5  16.5  -5.5  16.5  -0.5   0.0 

90012 rpp  -5.5  16.5  -5.5  16.5   0.0   0.5 

90013 rpp  -5.5  16.5  -5.5  16.5   0.5   1.0 

90014 rpp  -5.5  16.5  -5.5  16.5   1.0   1.5 

90015 rpp  -5.5  16.5  -5.5  16.5   1.5   2.0 

90016 rpp  -5.5  16.5  -5.5  16.5   2.0   2.5 

90017 rpp  -5.5  16.5  -5.5  16.5   2.5   3.0 

90018 rpp  -5.5  16.5  -5.5  16.5   3.0   3.5 

90019 rpp  -5.5  16.5  -5.5  16.5   3.5   4.0 

90020 rpp  -5.5  16.5  -5.5  16.5   4.0   4.5 

90021 rpp  -5.5  16.5  -5.5  16.5   4.5   5.0 

90022 rpp  -5.5  16.5  -5.5  16.5   5.0   5.5 

90023 rpp  -5.5  16.5  -5.5  16.5   5.5   6.0 

90024 rpp  -5.5  16.5  -5.5  16.5   6.0   6.5 

90025 rpp  -5.5  16.5  -5.5  16.5   6.5   7.0 

90026 rpp  -5.5  16.5  -5.5  16.5   7.0   7.5 

90027 rpp  -5.5  16.5  -5.5  16.5   7.5   8.0 

90028 rpp  -5.5  16.5  -5.5  16.5   8.0   8.5 

90029 rpp  -5.5  16.5  -5.5  16.5   8.5   9.0 

90030 rpp  -5.5  16.5  -5.5  16.5   9.0   9.5 

90031 rpp  -5.5  16.5  -5.5  16.5   9.5  10.0 

90032 rpp  -5.5  16.5  -5.5  16.5  10.0  10.5 

90033 rpp  -5.5  16.5  -5.5  16.5  10.5  11.0 

90034 rpp  -5.5  16.5  -5.5  16.5  11.0  11.5 

90035 rpp  -5.5  16.5  -5.5  16.5  11.5  12.0 

90036 rpp  -5.5  16.5  -5.5  16.5  12.0  12.5 

90037 rpp  -5.5  16.5  -5.5  16.5  12.5  13.0 

90038 rpp  -5.5  16.5  -5.5  16.5  13.0  13.5 

90039 rpp  -5.5  16.5  -5.5  16.5  13.5  14.0 

90040 rpp  -5.5  16.5  -5.5  16.5  14.0  14.5 

90041 rpp  -5.5  16.5  -5.5  16.5  14.5  15.0 

90042 rpp  -5.5  16.5  -5.5  16.5  15.0  15.5 

90043 rpp  -5.5  16.5  -5.5  16.5  15.5  16.0 

90044 rpp  -5.5  16.5  -5.5  16.5  16.0  16.5 

c  -----  end of surface definitions  ----- 

  

c  -----  begin data card  ----- 

mode  p e 

m1 01001 -0.11 08016 -0.89 $ H2O 

sdef    x=d1 y=d2 z=d3  erg=d4 AXS=0 0 1 dir=1.0  vec=0 0 1 

si1  H    5.0 5.5 

sp1  D    0 1 

si2  H    5.0 5.5 

sp2  D    0 1 

si3  H    0.0 0.5 $ z-position 

sp3  D    0 1 

si4  H    7.5 8.0   

sp4  D    0 1 

c  ----- 

f14:p 5071 5072 5093 5094 5555 5556 5577 5578 t 

f24:p 90022 

c 

c  ----- 'kerma' tally below ----- 

c 

f16:p 1 10646I 10648 t 

c f26:p,e 1 10646I 10648 t 

c 

E16     0.0  7.5 8.0 $ target line replaced two 

c 

c  -----  absorbed dose tally below ----- 

c 

*f18:p,e 1 10646I 10648 t 

*f28:p,e 90022 

E18     0.0  7.5 8.0 $  

E28     0.0  7.5 8.0 $ 

*f38:e 1 10646I 10648 t 

*f48:e 90022 
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E38     0.0  7.5 8.0 $ 

E48     0.0  7.5 8.0 $ 

c phys:p 4j 1 TTB may not matter so much when 'mode p e' is employed 

ctme 4800 

c 

c  ---- photon cutoff 

c 

cut:p 1j 7.5 $  

prdmp 2j 1 

totnu 

print 

c  -----  end data card  ----- 
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