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SUMMARY 

 

Polyethylene terephthalate is one of the most important engineering thermal 

plastics used for fibers, films and bottles. In the Chapter I, development and growth of the 

global PET solid-state resin market is reviewed. More than sixty years after its invention 

by British chemists, John Rex Whinfield and James Tennant Dickson in 1941, global 

consumption of PET resin grew at double-digit rates and reached 6.6 million metric tons 

by 2000. Consumption is projected to grow at an average rate of 9.6% per year through 

2005, reaching a level of 10.4 million metric tons.  Despite its wide applications and vast 

global market, PET has shortcomings, which limits it usage in many areas. PET has a 

glass transition temperature (Tg) of 80 oC, this temperature is too low so the PET bottles 

cannot be sterilized by washing it in boiling water. This is one of the reasons why PET 

containers are not recycled in US for food packaging again. For the same reason PET 

bottles and jars can not be filled with hot food. When used as tire cord, PET fiber will 

shrink and loose properties quickly above 100 oC, a condition frequently encountered 

when the car is running for long times in summer or a truck under heavy load. So the tire 

manufacture has to use more PET tire cords in a tire, than would be necessary If the PET 

fiber properties did not deteriorate as rapidly above 100 oC.   PET has good barrier to 

carbon dioxide, which makes it into shatterproof carbonated beverage bottle, but does not 

have enough barrier to oxygen, so PET bottle can not be used for contain alcoholic drinks, 

such as beer. Also PET does not have good dyeability and biocompatibility.  

Increase in glass transition temperature, high temperature mechanical properties, 

and dimensional stability is of great importance to further expand the applications of PET. 
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Significant research efforts have been made towards this goal, using a variety of 

approaches.  In this work, we attempt to improve the properties of PET melt spun 

filament. Three strategies have been investigated: (i) copolymerization of rigid 

comonomer, 4, 4’-bibenzoate unit into the PET structure, (ii) UV crosslinking of 

functionalized PET fiber, and (iii) Reinforcing PET matrix with carbon nanofibers.  

Chapter II to IV present the study on PET/BB fibers. In Chapter II crystal 

structure in random copolymers poly (ethylene terethphalate–co-4,4’ bibenzoate) 

(PET/BB) were studied by using wide angle X-Ray diffraction (WAXD). Composition of 

PET/BB fiber in terms of comonomer distribution in crystalline and amorphous regions 

were studied by FTIR spectroscopy using the amorphous peaks at 1580 and 1560 cm-1 for 

terephthalate (T) and bibenzoate (B) units respectively. Further, PET/BB55 fibers were 

hydrolyzed to selectively etch the amorphous regions. The compositions of hydrolyzed 

products were determined by spectroscopy methods. Crystallites were further studied by 

using, DSC, wide angle x-ray diffraction, and transmission electron microscopy. Results 

show that PET/BB copolymers crystallize differently than described by the non-periodic 

model (npl), at least not by uniform copolymer incorporation.  Crystal structure in low 

BB-content samples are “T” type and that of high BB-content copolymer are “B” type. 

Crystal structures are very close to that of respective homopolymer, PET and 

polyethylene bibenzoate, (PEBB). Crystalline region of high BB-content fibers are 

composed of mainly PEBB units. In PET/BB55 fiber, among the 30 wt % of the 

copolymer which was not etched, there is only one terephthalate unit per every 5 repeat 

units of bibenzoate. Crystal size of B type crystals along the c axis was found to be only 
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couple of repeat units long. Short chain segments rich in BB are sufficient to induce 

crystallization, to form PEBB crystals.  

Chapter III presents the crystallinity and orientation analysis of various PET/BB 

fibers. Study showed that those two groups of fiber i.e. high BB content fiber and low BB 

content fibers have different structure and morphology. In PET/BB15 and 35, the crystal 

structure is similar to PET fiber crystal structure and crystallinity decreases with the 

increasing BB content. Also this group of fiber has similar or poorer orientation as 

compared to the PET fiber.  On the other hand, high BB content fibers have much higher 

orientation and a different crystal structure. This crystal structure is similar to that of the 

homopolymer polyethylene bibenzoate (PEBB) as determined by WAXD study.  

In the light of Chapter II and III Chapter IV presents the dynamic mechanical 

study of PET/BB fibers. Fibers containing more than 40 mol% bibenzoate units exhibited 

much higher storage modulus (E’) as well as higher modulus retention at elevated 

temperatures than the low BB content fibers. The α-relaxation attributed to the glass 

transition temperature was not seen in the fully drawn and heat-treated PET/BB45, 55 

and 65 fibers. The β transitions of PET/BB fibers diminished with the increasing of BB 

concentration. This may explain the improved gas barrier properties of PET/BB films. A 

new secondary transition in high BB content fibers was tentatively attributed to the 

motion of the BB containing units.  

  Chapter V presents the crosslinking study of PET/PBA fiber with UV irradiation. 

Crosslinking moiety phenyl bisacrylate was incorporated in the polymer backbone. 

Several compositionally different poly(ethylene terephthalate-co-1,4-phenylene 

bisacrylate) (PETPBA) copolymers were melt spun into fibers. The resulting fibers were 
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subjected to UV irradiation to induce crosslinking. Evidence of crosslinking was obtained 

from FTIR, solid-state 13C-NMR, thermal analysis, and solubility. Irradiation of the fiber 

results in an increased glass-transition temperature, reduced thermal shrinkage, and 

enhanced modulus retention at elevated temperature.  

Chapter VI presents the reinforcement of PET fiber by carbon nanofibers (CNF).  

Poly(ethylene terephthalate) (PET) resin has been compounded with carbon nanofibers. 

The amount of carbon nanofibers utilized in each case was 5 wt%. Compounding 

methods included ball-milling, high shear mixing in the melt, as well as extrusion using a 

twin-screw extruder. PET/CNF composite resins were melt-spun into fibers using the 

conventional PET fiber spinning conditions.  The results show that CNFs can be 

incorporated into PET matrix with good dispersion and orientation. Compressive strength 

and torsional moduli of PET/CNF composite fibers were considerably higher than that for 

the control PET fiber. However the tensile properties of the composite fiber did not 

improved significantly. Lack of improvement of tensile modulus has been explained in 

the terms of graphite plane mis-orientation as well as carbon nanofiber aspect ratio.  

 Finally, Chapter VII summarizes the work done to improve the properties of PET 

fiber as well as recommendations for future work.  

 



 1

CHAPTER I 

 

INTRODUCTION 

 

 

1.1 Poly(ethylene terephthalate)  

British chemists, John Rex Whinfield and James Tennant Dickson, patented 

poly(ethylene terephthalate) (PET or PETE) in 1941, after advancing the earlier research 

of Wallace Carothers. Whinfield and Dickson along with inventors W.K. Birtwhistle and 

C.G. Ritchiethey also created the first polyester fiber called Terylene, first manufactured 

by Imperial Chemical Industries or ICI.1  

The saw that Carothers had not investigated the polyester formed from ethylene 

glycol and terephthalic acid. However, DuPont chose to concentrate on the more 

promising nylon research. By the time DuPont resumed its polyester research ICI had 

patented Terylene fiber and DuPont purchased the U.S. rights in 1945. In 1950, a pilot 

plant at Seaford, Delaware, produced PET fiber with the trade name Dacron.  Dupont's 

polyester research led to a range of trademarked products, including Mylar (1952), an 

extraordinarily strong PET film that grew out of the development of Dacron.  

Poly(ethylene terephthalate) is now one of the most important commercial 

thermoplastics. Development and growth of the global PET solid-state resin market has 

been quiteimpressive. More than sixty years after its introduction in the early-1940s, 

global consumption of PET resin reached 6.6 million metric tons in 2000. Consumption 
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is projected to grow at an average rate of 9.6% per year through 2005, reaching a level of 

10.4 million metric tons.2  

PET has wide applications because of its excellent combination of mechanical, 

optical, and gas barrier properties as well as excellent processability. PET can be 

processed by different methods such as melt spinning, inject molding, stretch blow 

molding, flat film extrusion and thermofoaming. It can be processed reliably at high 

speeds and in large volume. Accordingly many products can be made out of PET, such as 

synthetic fibers, biaxially oriented films, films for food packaging, blow molded 

carbonated drink bottles, photographic films, recording audio and video tapes, and 

electrical insulation material for capacitors.  

Polyester fiber is the most important synthetic fiber produced worldwide. In 1978, 

polyester's share of worldwide production by fiber type was 34%. By 1998, its share had 

grown to 54%. PET has taken global markets by storm as the material of choice for 

beverage bottles. In the past ten years, a large part of the production of beverage bottles 

has been converted to PET, particular for water bottles. PET has excellent properties as 

packaging material. It is light and strong. Bottles made of PET are practically 

unbreakable. Even when dropped from a certain height, a PET bottle has hardly a scratch 

on it. PET is tasteless. As a packaging material for food and drink the material has to 

satisfy very strict regulations. PET is as transparent as glass. Such clarity enhances the 

presentation value of a product.. PET provides a protective barrier in both directions, it 

stops oxygen getting in from the outside and it keeps in carbon dioxide for sparkling 

beverages. In addition, the material is also 100% recyclable. Discarded PET products can 

be recycled for other applications using a variety of recycling procedures. 
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PET is a material with a great future. Three regions (North America, Western 

Europe and Asia) accounted for about 91% of world production and 82% of world 

consumption. Asian producers are expected to be the major suppliers of PET. Continued 

overcapacity and relatively lower feedstock costs compared with North America and 

Western Europe will be the primary drivers of Asian exports.  

 

1.2 Limitations  

Despite its wide applications and vast global market, PET has shortcomings, 

which limits it usage in many areas. PET has a glass transition temperature (Tg) of ~80 oC, 

which is too low to allow PET bottles to be sterilized by washing in boiling water. This is 

one of the reasons why PET containers are not re-used in US. For the same reason PET 

bottles and jars cannot be filled with hot content.  

When used as tire cord, PET fiber will shrink and loose properties quickly above 

100 oC, a condition frequently encountered when an automobile is running long for time 

in summer or a truck under heavy load. This requires that more PET tire cords in a tire 

than would be necessary if the fiber properties did not deteriorate as rapidly.    

PET is a good barrier to carbon dioxide, which makes it useful for storage of 

carbonated beverage, but does not provide a high enough barrier to oxygen. This limits 

the use of PET bottles for storage of alcoholic drinks. In addition, PET does not have 

good dyeability or biocompatibility.  
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1.3. PET Modification  

Increasing the glass transition temperature, high temperature mechanical 

properties and dimensional stability are of great importance to further expand the 

applications of PET. Significant research efforts have been made towards this goal, using 

a variety of approaches. In this work, we attempt to improve the properties of PET melt 

spun filament. To improve the glass transition temperature and thermomechanical 

properties, it is critical to restrict chain motion in the amorphous region of the fibers. 

Increasing chain rigidity, crosslinking of the amorphous chains and introducing 

interfacial barrier by adding stiff nano-structures are all expected to be effective methods 

to enhance selected properties of PET. Three strategies have been investigated; (i) 

copolymerization of more rigid linear comonomer, 4,4’-bibenzoate unit into PET, (ii) UV 

crosslinking of functionalized PET fiber,  and (iii) Reinforcement of PET with carbon 

nanofibers.  

 

1.3.1. Increasing chain rigidity by copolymerization poly(ethylene terephthalate-co-

bibenzoate).  

Increasing the rigidity of polymer backbone will limit chain motion and thereby 

increase the glass transition temperature. However, this often elevates the melting 

temperature. Copolymerization to incorporate rigid linear units night serve as a general 

method to increase chain rigidity while avoiding an increase in the melting temperature.  

Initial report in the 1970’s on the  incorporation of 4-hydroxybenzoic acid (HBA) into 

poly(ethylene terephthalate) (PET)3 to form a thermotropic liquid crystalline polyester led 

to the development of Vectra, poly(hydroxybenzoate-co-hydroxynaphthalate), by 
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Celanese in 1980s. 4  The physical properties of a large number of liquid crystalline 

copolyesters derived from PET and a variety of dicarboxylic acids have been discussed 

and reviewed.5  The 4,4'-biphenyl moiety has been incorporated as a rigid structure unit 

both as a diol and diacid in wholly aromatic as well as in semiflexible polyesters.6,7 

Homopolymers prepared by condensation of 4,4'-bibenzoic acid (BB) and-alkanediols, 

HO(CH2)nOH, in which the number of repeating methylene groups ranges from 4 to 10, 

are all smectic.8,9,10,11,12,13,14,15,16,17 Modification of PET by BB resulted in an increase in 

Tg, strength, modulus, and gas barrier properties.18,19,20,21,22,23  

The high cost of liquid crystalline polyesters is primarily a result of the high cost 

of monomers (4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, trans-stilbene-4,4'-

dicarboxylic acid) coupled with commercial syntheses that require in situ acylation of 

phenolic groups and recovery and recycling of acetic acid byproduct. An economical 

process for the production of 4,4'-dimethylbiphenyl and its oxidation to BB has recently 

been reported.24 This provides new impetus for the careful examination of copolymers 

containing BB and especially its incorporation into PET under typical PET 

manufacturing conditions.  

In a previous paper25 it has been shown that the fibers spun from of PET/BB 

copolymers with high BB content show interesting spinning behavior, which results in 

fibers with dramatically improved properties. Polymers with 45, 55 and 65 mole % BB 

(i,e. PET/BB45, 55 and 65) spin like liquid crystalline polymers in that as-spun fiber 

obtained at low take-up speeds (i.e. a few hundred meters per minute) exhibit maximum 

achievable orientation. These fibers cannot be drawn further, even above the glass 

transition temperature. These fibers have modulus values in the range of 35 to 45 GPa, 
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which is approach the value for the thermotropic liquid crystalline copolyester Vectra. 

For example, Vectran fiber, a 75/25 copolymer of 4-hydroxybenzoic acid and 6-hydroxy-

2-naphtholic acid, HNA/HBA, has a modulus of ~60 GPa.26 As-spun fibers of PET, 

PET/BB5, 15 and 35 obtained under similar conditions are amorphous and not fully 

oriented. A hot drawing step must be applied to this group of fibers to achieve good 

orientation. Even then, the modulus of this group of fibers is only about 10 GPa. The 

processing conditions and tensile properties of PET/BB fibers from a previous study are 

shown in Table 1.1. Copolymers with higher levels of BB, PET/BB45, 55 and 65 provide 

fibers with much better retention of modulus at elevated temperatures than fibers of PET 

and copolyesters with low BB content. This is apparent by dynamic mechanical analysis, 

in which the tan (δ)  peak corresponding to the glass transition temperature completely 

disappears in the fully oriented PET/BB55 fiber. (Figure 1.1.)  

To understand the differences in mechanical and thermomechanical properties 

between high BB containing fibers and that of the PET and low BB containing fibers, it is 

very important to understand the structure and morphology differences between them. 

The studies reported in Chapter II, III and IV address the crystallization of PET/BB 

copolymers, crystal structure, crystallinity and orientation of PET and PET/BB fibers and 

the effect of the fiber structure on tensile and thermomechanical properties.  

 

1.3.2. UV crosslinking poly(ethylene terephthalate-co-phenylene bisacrylate)   

Crosslinking offen gives polymers with improved mechanical and chemical 

properties such as toughness, thermo-stability and solvent resistivity. High molecular 

weight PET can be prepared by solid-state polycondensation, but it is slow and requires 
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special equipment for large scale operation. Chain extension27  and crosslinking28  are 

common methods to improve the mechanical behavior of polyesters. However this is 

often achieved at the expense of processability.   Post-process crosslinking of polyesters 

is an attractive means for improving their thermal resistance without sacrificing their melt 

processibility.29 Radiation-induced crosslinking are expected to be suitable means for 

crosslinking PET fibers. 

It was reported that PET itself can be crosslinked by ultraviolet (UV) irradiation.30 

But such self-crosslinking has no practical value, since it takes a long time to achieve the 

crosslinking and depolymerizition upon UV-irradiation is unavoidable. Compounds 

containing α,β-unsaturated carbonyl functional groups, such as trans-cinnamic acid 

derivatives, 1,4-phenylene-bis(2-acrylic acid), undergo [2+2] cycloaddition in the solid 

state.  The efficiency of photodimerization of type is determined by the face-to-face 

geometry of the a, b unsaturated carbonyl groups. Phenyl bisacrylate group has been 

found to be thermally stable at polycondensation temperature of PET. Vargas et al31 

reported that phenylene bisacrylate structural units undergo rapid photochemical reaction 

in the solid state to form crosslinks. This constitutes a feasible approach for a polyesters 

which can be photochemically thermoset after fabrication as films and fibers. It was 

shown, by UV and IR spectroscopy (Figures 1.2. and 1.3.), that poly(alkylene 

terephthalate-co-1,4-phenylene bisacrylate) (PET/PBA) spin coated thin films undergo 

crosslinking upon UV(300 nm) irradiation. Absorptions due to PBA disappeared in few 

minutes.   

Based on the successful development of PET/PBA copolymers, it is interesting to 

investigate the psoosibility of using UV-crosslinking to improve fiber properties. The 



 8

efficiency of cycloadition between oriented chains, and the effect of crosslinking on fiber 

properties is discussed in Chapter V.  

 

 

1.3.3. Reinforcing PET with carbon nanotube composite fibers (CNF).  

Carbon fibers for composite applications were developed during the 1960s and are 

being used as reinforcing materials in various matrices for high strength and high 

temperature applications. Carbon fibera have high tensile strength and good thermal 

stability. When added into polymer systems, carbon fiber can improve the 

thermaomechanical properties of the polymer composites. While the polymer softens at 

high temperature, carbon fiber properties do not change significantly . Carbon fibers have 

typical diameters of 7 – 10 µm, which is too large to add into polymeric fiber.  Carbon 

nanofibers developed in early 1980s32 have typical outer diameters of 50 – 200 nm. 

Multi-wall and single-wall carbon nanotubes were discovered in 1990s.33 Multi-wall tube 

have a diameter in the range of 20-80 nm, and single-wall nanotubes are only 0.7 to 1.5 

nm in diameter.  Carbon nanofibers, multi-wall carbon nanotubes, as well as single-wall 

carbon nanotubes (SWNT) are all being used to reinforce polymer matrices, and are 

suitable for reinforce polymeric fibers.  However, the cost, particularly for the single wall 

carbon nanotubes, is high. Currently SWNTs are expensive ($500/g) and can only be 

produced with mixed diameter and chirality. As-produced tubes, typically contain as 

much as 30 wt% catalytic impurity. On the other hand, carbon nanofibers, can be 

produced in high volumes at low cost, using natural gas or coal as feedstock.34,35 
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While single-wall carbon nanotubes are difficult to disperse and exfoliate into 

polymer matrices, carbon nanofibers and multi-wall nanotubes can be successfully 

dispersed in polymer matrices using melt processing. Thermoplastics, such as 

polypropylene 36 , 37 , 38  polycarbonate, 39 , 40  nylon,15, 41  poly(phenylene sulfide) 42 , and 

thermosets such as epoxy,43 as well as thermoplastic elastomers such as butadiene-styrene 

diblock copolymer 44   have been reinforced with carbon nanofibers.  Property 

enhancements include strength, stiffness, thermal stability, solvent resistance, glass 

transition temperature, electrical conductivity, reduced thermal shrinkage as well as 

optical anisotropy. 

Carbon nanofibers and carbon nanotube have high aspect ratios. Their shape and 

anisotropic properties make them more suitable to be incorporated into fibers. Instead of 

making polymer bulk composites, it is interesting to spin the composites into fibers. 

When the nanofibers or carbon tubes are highly oriented in the polymer fiber matrix, their 

properties will be fully utilized. The elongational shear during fiber spinning is the most 

efficient way to align the nano fiber and nanotubes. CNF has been successfully added in 

to polypropylene fibers.45  At 5 wt% CNF loading, the modulus and compressive strength 

of polypropylene increased by 50 and 100%, respectively. CNF exhibit good dispersion 

in the polypropylene matrix, as observed by scanning electron microscopy. (Figure 1.4.)  

It will be of great potential if carbon nanofibers and tubes can be successfully 

incorporated into PET fiber. Dispersion, alignment and interfacial strength are important 

factors to be addressed in this regard. Also the processability may be change with the 

addition of nanofibers. In Chapter VI, we describe how different types of carbon 

nanofibers are added in to PET. These nanofibers are different in diameter and surface 
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functionality. Different processing procedures, such as ball milling, melt mixing or 

compounding, and the effect of various nanofibers are discussed.     
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Table 1.1. PET/BB Fiber Processing Conditions and Tensile Properties.25 

Polymer IV 

(dL/g) 

Spinning 

tempera-

ture (°C) 

Draw 

ratio* 

Heat- 

Treat

-ment 

Tensile 

modulus 

(GPa) 

Tensile 

strength 

(GPa) 

Extension 

to break 

(%) 

PET  0.90 280 5 Y 10 ± 1 0.6 ± 0.1 28 ± 5 

PET/BB5 0.88 280 4 Y 10 ± 2 0.4 ± 0.1 22 ± 5 

PET/BB15 0.94 290 3 Y 8 ± 2 0.5 ± 0.1 21 ± 3 

PET/BB35 0.88 290-300 2 Y 15 ± 3 0.3 ± 0.1 9.0 ± 1 

PET/BB45 1.49 305-310 ND N 35 ± 3 1.0 ± 0.1 4.9 ± 0.4 

PET/BB55 0.92 320 ND N 32 ± 3 0.9 ± 0.1 5.1 ± 0.6 

 1.2 320 ND N 41 ± 5 1.1 ± 0.1 5.0 ± 0.7 

PET/BB65 0.9 310-315 ND N 45 ± 4 0.9 ± 0.1 4.7 ± 0.6 

ND – not drawn, N – No heat treatment, Y - Heat treated at 150 oC for 10 min. 
* Fibers drawn at 120 oC. 
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(a) 

(b) 
 

Figure 1.1. Dynamic mechanical properties of PET and PET/BB55 fibers at 1 Hz, (a) E'; 
(b) tanδ. 
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Figure 1.2. Infrared spectra of a thin film of PET containing 50% bisacrylate, before 

irradiation and after irradiation at 300 nm for 10 min at 25 °C.31 

 

 

Figure 1.3. UV-vis spectra of a thin film of PET containing 20% bisacrylate irradiated at 

300 nm for time t = 0 to 8 min at 25 °C.31 
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Figure 1.4. Scanning electron micrographs of fibers from PP/nano carbon fiber 
composite. 
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CHAPTER II 
 

 

CRYSTAL STRUCTURE AND COMPOSITION OF CRYSTALLINE 

AND AMORPHOUS REGIONS IN RANDOM POLY(ETHYLENE 

TERETHPHALATE–co-4,4’ BIBENZOATE) COPOLYMERS 

 

 

2.1 Abstract 

 Crystal structure in random copolymers poly (ethylene terethphalate–co-4,4’ 

bibenzoate) (PET/BB) were studied by using wide angle X-Ray diffraction (WAXD). 

Composition of PET/BB fiber in terms of comonomer distribution in crystalline and 

amorphous regions were studied by FTIR spectroscopy using the amorphous peaks at 

1580 and 1560 cm-1 for terephthalate (T) and bibenzoate (B) units respectively. Further, 

PET/BB55 fibers were hydrolyzed to selectively etch the amorphous regions. The 

compositions of hydrolyzed products were determined by spectroscopy methods. 

Crystallites were further studied by using, DSC, wide angle x-ray diffraction, and 

transmission electron microscopy. Results show that PET/BB copolymers crystallize 

differently than described by the non-periodic model (npl), at least not by uniform 

copolymer incorporation.  Crystal structure in low BB-content samples are “T” type and 

that of high BB-content copolymer are “B” type. Crystal structures are very close to that 

of respective homopolymer, PET and polyethylene bibenzoate, (PEBB). Crystalline 

region of high BB-content fibers are composed of mainly PEBB units. In PET/BB55 
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fiber, among the 30 wt % of the copolymer which was not etched, there is only one 

terephthalate unit per every 5 repeat units of bibenzoate. Crystal size of B type crystals 

along the c axis was found to be only couple of repeat units long. Short chain segments 

rich in BB are sufficient to induce crystallization, to form PEBB crystals.  

 

2.2. Introduction  

Poly(ethylene terephthalate–co–4,4’-bibenzoate) (PET/BB) copolymers 

crystallize across the entire composition range, especially upon orientation and 

annealing.1 Theories developed by Flory,2 Baur3 and Wunderlich’s4 based on random 

copolymer crystallization by homo-sequence aggregation and comonomer exclusion do 

not explain the crystallization behavior of random copolymers in the intermediate 

composition range. Co-crystallization of aromatic and semiaromatic copolyesters has 

been a subject of intensive research5,6,7,8,9,10 Hachibosh, et al.11 have shown that 10 to 

15% of the isophthalate units of poly(ethylene terephthalate-co-isophthalate) PET/I(with 

less than 15 mol% of I), enter into the crystalline phase. However, the comonomer units 

do not cocrystallize in the case of copolyesters with phthalate and sebacate. Differences 

in  the length of the repeat unit  and the conformational flexibility of the chain were 

found to be critical for isomorphous cocrystallization.  Windle and coworkers proposed a 

non-periodic layer (NPL) model for random liquid crystalline copolymers poly(1-

hydroxy-4-benzoic acid-co-2-hydroxy-6-naphtholic acid)8,9,10 and extended it more 

generally to semi-aromatic copolyesters e.g., PET/N.12,13 They found that these random 

copolymers crystallize by segregation and lateral matching of short chain sequences in 

the polymer backbone. The crystals therefore contain both types of monomers to form a 
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layered structure having periodicity perpendicular to the chain direction, but a non-

periodic structure along the chains. Similarly, Wendling et al. found the poly(ethylene 

4,4’-bibenzoate-co-2,6-naphthalate) (PEN/BB)5 random copolymers cocrystallize 

uniformly by aggregation of like and segregation of unlike repeat units. Biswas and 

Blackwell14,15 proposed a different explanation for crystallization of the same random 

copolymers: the plane start model. In this model there is no sequence matching but chains 

are in registry on one single plane in the crystal. It is uncertain whether these aggregates 

can reach the minimum size of thermodynamically stable nuclei and the plane start model 

can be considered as a special case where crystallization arise from aggregation of only  

one or two repeat units. The difference between the two models is difficult to discuss  X-

ray diffraction alone. The question really reduces to how many repeat units (or how long 

is the chain segment of same sequence) are needed to inducing crystallization.  

Fibers spun from of PET/BB copolymers wit high BB-content show interesting 

spinning behavior which results in fibers with dramatically improved properties. 

Polymers with 45, 55 and 65 mole % BB (i,e. PET/BB45, 55 and 65) spin like liquid 

crystalline polymers in that as-spun fiber obtained at low take-up speeds (i.e. a few 

hundred meters per minute) exhibit maximum achievable orientation. These fibers cannot 

be drawn further, even above the glass transition temperature. These fibers have modulus 

values in the range of 35 to 45 GPa, which is approaching to the value for thermotropic 

liquid crystalline copolyester Vectra. For example,  Vectran fiber, a 75/25 copolymer of 

1-hydroxy-4-benzoic acid and 2-hydroxy-6-naphtholic acid HNA/HBA, has a modulus of 

~60 GPa.16 On the other hand, as-spun fibers of PET, PET/BB5, 15 and 35 obtained 

under similar conditions are amorphous and not fully oriented. A hot drawing step must 
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be applied to this group of fibers to achieve good orientation. Even then, the modulus of 

the second group of fibers is only around 10 GPa. Moreover, PET/BB45, 55 and 65 fibers 

have much better retention of modulus at elevated temperatures than fibers of PET and 

copolyesters with low BB content. This is apparent by dynamic mechanical analysis, in 

which the tan (δ)  peak corresponding to the glass transition temperature completely 

disappears in the fully oriented PET/BB55 and 65 fibers.  

Given the strong influence of BB units on the fiber properties of PET/BB 

copolymers, we set out to examine the crystal structure of these copolymers and to 

compare these to PET/N12 and PEN/BB.5 Given the random nature of this copolymer and 

the potential for crystallization of particular segments along the backbone it is important 

to determine how the crystal structure and crystallinity varies as a function of polymer 

composition, as well as the composition of crystalline and amorphous phase. To study the 

composition of the crystalline regions in PET/BB, it was desirable to separate the crystals 

from the amorphous polymer. PET has been selectively hydrolyzed to remove amorphous 

regions and to preserve the crystals. 17,18  Thus we have followed a similar procedure to 

selectively remove the amorphous chains from the PET/BB55 fibers. This allows the 

composition of the amorphous and crystalline regions to be elucidated and for correlation 

of physical properties with phase structure and orientation. In this contribution we used 

X-ray diffraction to study the crystal structure as a function of copolymer composition.  

 

2.3. Experimental  

Poly(ethylene terephthalate – co – 4,4’ bibenzoate) copolymers were made by 

mixing dimethyl terephthalate and dimethyl bibenzoate during the melt condensation 
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with ethylene glycol.19 Polymer randomness was confirmed by sequence analysis using 

13C NMR spectroscopy.1 Fibers of PET/BB copolymer were melt-spun  as reported in a 

pervious study.1 Crystal structures of bulk polymers and fibers were studied by wide 

angle X-ray diffraction (WAXD) on a Rigaku Small/Wide Angle X-ray Scattering system 

with a MicroMax 002™ X-ray beam Generator (XBG), operating at 45 kV and 0.66 mA. 

CuKα irradiation was obtained by using a confocal Max-Flux® optics. 2D diffraction 

images were collected using a Rigaku R-AXIS IV++ detector. Air background scattering 

was subtracted after making a correction for absorption by the sample. Radial, equatorial 

and azimuthal scans were integrated using AreaMax® software and profile fittings were 

carried out using MDI Jade 6.1.   A linear background was fitted for all the curves. 

Profile fittings were repeated until the residual error of fit was less than 2%. The d-

spacing and crystal thickness of PET and PET/BB fibers were obtained from either 

equatorial scans or meridional scans, while radial scans were used for the bulk polymer.  

Crystal size was calculated by using the Scherrer equation,20 with a value of K of 0.9. 

Crystallinity was determined from the ratio of the peak area for crystalline peaks and the 

total area under the radial scan curves.21 

The composition the crystalline and amorphous regions of PET/BB were studied 

by FTIR spectroscopy using the peaks at 1580 and 1560 cm-1 for terephthalate (T) and 

bibenzoate (B) units, respectively. PET/BB55 fibers were hydrolyzed to separate the 

amorphous regions from the crystals. A mixture of water (50 mL) and fiber (0.86 g) was 

heated to 160 oC for 60 hours in an autoclave with a Teflon liner. These conditions were 

chosen based on previous reports of the hydrolytic etching of semicrystalline PET in 

which weight loss and lamella thickness levels off after 50 hours.18  The solid product 
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was removed by filtration and washed with dimethyl sulfoxide (DMSO).  IR spectra of 

the pristine fiber and hydrolyzed materials were obtained on a Perkin Elmer Spectrum 

One FTIR spectrometer. 1H-NMR spectra were obtained using a Varian Mercury Vx 300  

spectrometer at room temperature. The fiber and the DMSO-insoluble part were 

dissolved in trifluoroacetic acid-d1, while the DMSO-soluble fraction as recorded in  

dimethyl sulfoxide-d6.  Samples for transmission electron microscopy were prepared by 

depositing the aqueous suspension of the DMSO-insoluble part  onto carbon grids and 

drying in air at room temperature. Bright field images and selected area electron 

diffraction (SAED) patterns were collected on a JEM 4000 EX operated at 400 kV and 

recorded on Kodak Microscope Film (SO163). SAED patterns were taken at a camera 

length of 66 cm. The TEM camera length was calibrated by using the d-spacing of 

evaporated gold.   

 
2.4. Results and discussions  

2.4.1. X-ray diffraction on unorientated samples  

Wide angle X-ray diffraction (radial scans) of annealed bulk PET homopolymer 

and PET/BB copolymers are shown in Figure 1. The scans clearly indicate the crystalline 

nature the copolymer across the whole composition range. Crystallinity estimated from 

X-ray diffraction is plotted in Figure 2. The radial scan of PET/BB15 is similar to that of 

the PET. On the other hand, the radial scans of PET/BB45, 55 and 65 are comparable to 

each other and match the diffraction patterns of homopolymer poly(ethylene bibenzoate), 

PEBB by Li and Brisse.22 For PET/BB35, diffraction peaks corresponding to the crystal 

structures of both PET and PET/BB can be seen. These observations suggest that the 

crystal packing changes from that of PET to PEBB with increasing bibenzoate content, 
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and that at intermediate levels of bibenzoate (e.g. PET/BB35) both PET and PET/BB 

crystals co-exist. Hereafter, we refer the PET like crystals as “T” type crystal and PEBB 

like crystal structure as “B” type crystal.  The indexing for PET and PEBB homopolymer 

were used for T type unit cells and B type unit cells respectively. d-spacings observed for 

PET/BB copolymers (Figure 1) are listed in Table 1 for T type crystal structure and Table 

2 for B type crystal structure.   The presences of (101) and (110) diffraction peaks 

indicate that the crystal has a 3-D structure. For both crystal structures, the d-spacings 

change gradually with increasing bibenzoate content, which may be due to the 

incorporation of BB unit into T crystals or T unit incorporation  into B crystals. Both PET 

and PEBB crystallize in the triclinic form. Using the unit cell parameters of PET obtained 

by Fu et al.23 (a = 4.508, b = 5.882, c = 10.787, α =100.01, β =118.36, γ = 110.56), that 

of PEBB by Li and Brisse 22 (a = 5.75, b = 3.82, c = 14.62, α = 90.1, β = 90.3 γ = 78.1) 

and various d-spacing collected from Table 1 and 2, we calculated the unit cell 

parameters for PET/BB copolymer for both T type and B type crystals, which are 

compared in Figure 3a-c. In the lateral direction, the length of a and b in both T and B 

type crystals change as the composition changes, but there is a difference in lattice 

parameters between the two types of crystals. It is understandable that different 

comonomers may be able to enter the crystal of different type. Along the chain direction, 

length of the c-axis would change continuously, if the copolymer were to crystallized by 

sequence matching model (NPL), as in the case of PET/N12 However in PET/BB 

copolymers, (as shown in Figure 3c) as the amount of BB increase, there is a transition 

for a T type lattice a B type lattice structure at 35 mol% of B. For PET/BB35 two crystal 

forms coexist. The length of the c axis in T type crystal increase by the addition of the B 
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comonomer. However that of B crystals does not change significantly with the addition 

of T. These results suggest that in PET/BB copolymers, the T and B units do not co-

crystallize uniformly across the entire composition range of PET/BB.  

  

2.4.2. X-ray diffraction of fibers  

Radio wide angle X-ray diffraction scans of PET/BB fibers are shown in Figure 4. Flat 

plate diffraction photographs of PET/BB fibers are shown in Figure 5a-f. The crystals of 

fibers, again, can be divided into two groups. PET/BB15 and 35 have T-type crystals, 

PET/BB45, 55 and 65 fibers have B-type crystals. However, in the case of high BB-

content fibers the (010) and (110) present in bulk annealed polymers are absent that the 

chain packing is not perfectly ordered in the 010 plane normal direction.  Crystal size 

determined from this peak at ~25o (3.5 Å d-spacing) is about 3 nm. Annealing at high 

temperature result in separation of this broad peak into two separate peaks corresponding 

to (010) and (110) diffractions as observed for the annealed bulk polymer. On the other 

hand chain packing in the (100) and (101) normal directions is efficient as can be seen 

from the sharp diffraction spots.  

Meridian scans of PET/BB45, 55 and 65 fibers are plotted in Figure 6. (001), 

(002), and (005) diffraction spots are observed. (the (106) diffractions also appeared due 

to leaching of their intensities into the meridian direction). Two diffraction peaks at 14.71 

and 7.34 Å, corresponding to the (001) and (002) diffractions of PEBB, respectively, can 

be seen in PET/BB55 and 65. The crystal thickness of B type crystal structure along the 

chain direction determined from the (001) peak using the Scherrer equation is 75 Å, 

which corresponds to the length of about 5 PEBB repeat units. In addition, horizontal 
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streaks are seen in diffraction pattern of high BB-content fibers (Figure 4d-f). These  

narrow and high intensity streaks are a prominent feature in the meridional direction of 

the high BB-content fibers. The 3.5 Å spacing of the horizontal streak in PET/BB55 fiber 

is less than the expected spacing of the (004) plane for PEBB, which is 3.65 Å. The width 

of the horizontal streaks corresponding to a domain size of about 49 Å, which is about  

the length of three repeat units along the PEBB chain axis. The BB average sequence 

length in PET/BB55 is calculated to be 2.3, based on a ideal random copolymer 

distribution.  Similar horizontal streaks were observed in many rigid rode polymers as 

well as semi-aromatic polyester fibers.12 The origin of streaks has been ascribed to  

diffraction from single chaind, and the position of the streak is therefore a function of 

copolymer composition. The aperiodic spacing of the streaks are accord with the 

aperiodic nature of the structure along the random chains. 

To further examine the meridional streak observed in PET/BB fibers, we stretched 

a amorphous copolymer at room temperature (PET/BB55 has a Tg of 105 oC) to provide a 

noncrystalline but oriented fiber.  WAXD of this fiber shows a  diffuse diffraction in the 

equatorial direction and horizontal streaks in the meridional direction. Upon annealing, 

the fiber crystallizes and the meridional streaks observed in the amorphous fiber were 

preserved. These streaks disappeared when the fiber was heated without constraint to 

~200 oC, while the diffraction pattern of the crystal survived. These observations suggest 

that the streaks in PET/BB45, 55 and 65, fibers originate from the oriented chains in the 

amorphous regions of the fiber rather than from the crystals. The fact that we observe 

diffraction from crystals and amorphous chains, in PET/BB55 and 65 indicates that the 

crystals are formed by pure PEBB units rather than a random sequence as in the case of 
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PET/PEN copolymer.12,13 The crystalline regions in high BB-content fibers give sharp 

periodic diffractions spots, while the amorphous region gives aperiodic diffraction streaks. 

The streaks are dominated in intensity due to large volume fraction of the amorphous 

regions. A similar situation was found in a wholly aromatic copolyester fiber composed 

of p-hydroxybenzoic acid, 4,4’-dihydroxydiphenyl, terephthalic acid and isophthalic acid, 

where both diffraction spots and horizontal streaks in the meridional direction were 

observed.24 The diffraction spots came from the PHB crystals and the streaks originated 

from the disordered chains.  

From X-ray analysis, we conclude that high BB-content fiber crystallizes in the 

PEBB form, rather than homogeneous incorporation of the two monomer units in crystals 

by sequence matching. The difference in the c-axis length, between T (10.75Å) and B 

(14.62Å) crystals is significant, which may not be easily compensated for by rotation of 

the ethylene glycol unit. To determine the composition of the crystallites in the 

copolymers we carried out spectroscopic analysis and hydrolytic etching.  

 

2.4.3. Vibration spectroscopy  

FTIR can be used to estimate the composition of the crystalline and amorphous 

regions of PET/BB fibers. The V8a vibration mode from the terephalate unit is symmetric 

to the inversion center of the molecule in the crystalline state so it is IR-inactive.  In the 

amorphous regions the chains deviate from a symmetric position and the V8a motion 

becomes IR active with absorption at 1580 cm-1, thus this peak is only a characteristic of 

the terephthalate rings in the amorphous regions.25,26 Due to the centrosymetric nature of 

the PEBB crystal structure,22 the same situation occurs with respect to bibenzoate units in 
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PET/BB copolymers. FTIR spectra of PET and PET/BB fibers are shown in Figure 7. In 

PET there is only one peak at 1580 cm-1. With the incorporation of BB a new peak 

appears at 1560 cm-1 and its intensity increases with increasing BB content. The ratio of 

these two peaks gives the relative concentration of the two monomers in the amorphous 

regions. Combined with the crystallinity data obtained from the wide angle X-ray 

diffraction, the distribution of repeat units in the amorphous and crystalline regions can 

be calculated,  Table 5. This result shows that in low BB-content fibers the BB units are 

mainly in the amorphous region. However, in high BB-content fibers the crystalline 

region is rich in BB units and the amorphous region has both BB and T units.  

 

2.4.4. Hydrolysis 

 Under our hydrolysis conditions, it is expected that only the amorphous regions 

are hydrolyzed and that the crystalline regions remain intact. After hydrolysis the residual 

solid was washed several times with DMSO at room temperature to give DMSO-soluble 

and insoluble fractions. Hydrolysis of 860 mg of PET/BB55 fiber gave 250 mg of 

DMSO-insoluble solid. Both the DMSO-soluble and insoluble parts were subjected to 

FTIR and NMR analysis.  

The FTIR spectra of PET/BB55 fiber together with the DMSO-insoluble and 

soluble fractions are shown in Figure 8. For the fiber, there are no observable acid or 

ethylene glycol end group absorptions (i.e., O-H stretch). The absorption at 1750-1720 

cm-1  (carbonyl stretching), 1200-1150 cm-1 (CO-O stretching) and 1100-1050 cm-1, (O-

CH2 stretch) are characteristic of main chain polyesters. The absorptions at 1370 and 

1340 cm-1 arise from the ethylene glycol wagging in gauche and trans conformations, 
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respectively.  After hydrolysis, the IR spectrum of the DMSO-insoluble part resembles 

that of the polymer, except the prominence of –OH stretching at 3600 cm-1, broadening of 

the carbonyl stretching vibration to lower frequency, and the decreased absorbance at 

1100 cm-1, which are all indications of a decrease in the length of the polymer chain. The 

ratio of the absorbances at 1370 and 1340 cm-1 indicates that the trans/gauche ratio 

increases upon hydrolysis. This is consistent with selective etching away the amorphous 

regions since the gauche contribution of the original polymer only comes from the 

amorphous regions. The IR spectrum of the DMSO-soluble part is dramatically different 

from that of the fiber and the DMSO-insoluble part. The bands at 2850 cm-1 and 1650 are 

characteristic of an aromatic carboxylic acid rather than an ester. The ethylene glycol 

CH2 wagging mode 1370 and 1340 cm-1 and the ester O-CH2 stretch at 1018 cm-1 are all 

absent, suggesting that the hydrolysis byproducts are mainly low molecular weight acids 

rather than polyester and the ethylene glycol formed by the hydrolysis reaction would be 

removed during evaporation of the DMSO. 

More quantitative results can be obtained from 1H NMR. The spectrum of the 

pristine polymer, and the DMSO-insoluble and soluble parts are shown in Figure 9.  The 

spectrum of the fiber shows a ratio of aromatic to aliphatic units of 1:1, consistent with 

the structure of the polymer. The ratio of the phenyl and biphenyl rings is 45:55, 

consistent with the ratio of comonomers used in the polymerization. The spectrum of the 

DMSO-soluble part indicates a ratio of 1,4-phenyl and 4,4’-biphenyl units of 52 to 48.  

On the other hand, in the DMSO-insoluble part the ratio between aromatic units to 

ethylene glycol units is close to 50:50. The ratio between phenyl and biphenyl unit is 

17:83. This result suggests that the DMSO-insoluble part, i.e. crystalline regions, consists 
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mainly of bibenzoate units. There are some terephthalate units in this fraction, which 

might be incorporated inside the crystal or lie between the lamella planes. In the case of 

PET, Calleja et al.17  have shown that hydrolytic etching is inefficient towards removal of 

the chain segments within the intralamellar regions.  

X-ray diffraction radio scan of the DMSO insoluble part is shown in Figure 10, 

which indicates a degree of crystallinity of 87%.  The d-spacings listed in Table 6 match 

those of the PEBB crystal.5,22 Thus, the DMSO-insoluble portion consists of crystal 

lamellae of B. The mass-balance and crystallinity of the DMSO-insoluble fraction 

corresponds to a weight percent crystallinity in the pristine fiber of 29%. This is in good 

agreement with the X-ray crystallinity index of the pristine fiber prior to hydrolysis 

(30%). PET/BB55 polymer annealed at 210 oC for 10 hours shows crystallinity of 32%. 

Assuming there was no significant increase in crystallinity took place during the 

hydrolysis, these results suggest that the hydrolysis is selective for ester linkages in the 

amorphous regions. Crystal thickness normal to (100), (101) and (001) diffraction planes 

for PET/BB55 fiber and that of the DMSO-insoluble part are compared in Table 6. The 

crystal thickness normal to the (100) plane increased significantly upon hydrolysis, which 

may be due to lateral aggregation of crystallite.  However, crystal thickness in the (101) 

and (001) normal directions did not change. This is expected as chains are being cut and 

the crystal size cannot increase along the chain direction. Thus, we obtained thin lamellar 

crystal plates of BB rich polymer by hydrolysis. 

The DMSO-insoluble part was dispersed in water and deposited on a carbon grid 

and observed by transmission electron microscopy.   Typically, lamellar crystal aggregate 

were observed. (Figure 11)  Electron diffraction pattern (Figure 12a) can be assigned by 
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using the unit cell of the PEBB crystal (Table 7).   The pattern suggests that the view 

direction of this image is corresponds to the ( 111 ) direction of the PEBB crystal and that 

the lamella is composed of 100 twinned crystallites.   This, coupled with the chain 

packing in the unit cell suggests that the polymer chains in the each twinned crystal are 

anti-parallel.   Diffraction pattern from other different lamella (Figure 12b) can also be 

assigned by PEBB unit cell viewed from  (101) direction. These results further confirm 

that the crystal structure of BB rich PET/BB copolymers is dominated by PEBB units.  

The terephthalate units, which observed by FTIR, must lie between the lamellar crystals.  

 

 

2.5. Discussion  

From the X-ray diffraction analysis above we conclude that PET/BB random 

copolymers crystallize into either T or B type crystals depending on the copolymer 

composition. The difference of the length of the c axis between T type and B type 

crystals suggests that crystals are not formed by sequence matching, but rather by 

relatively pure segments of T or B units.  In copolymer with intermediate levels of BB, 

random BB rich chain segments of five repeat units, e.g. “BBTBBB” aggregate and 

crystallize to form B crystals. The probability to find this type of chain segments in 

random PET/BB45 to 65 is significant.  

Homopolymers of 4,4’-bibenzoate and various diols have been shown to be liquid 

crystalline.22,27,28,29,30,31 Mesophase and transient liquid crystallinity have been reported in 

PET, 32 , 33 , 34 , 35  and PET/N copolymers. 36  Although, no direct evidence of liquid 

crystallinity from thermal and rheological analysis was obtained, we did observe a highly 
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birefringent and mobile phase for PET/BB45 at 210 oC, under shear upon cooling from 

the isotropic melt.1 Spinning behavior and mechanical properties of PET/BB45, 55 and 

65 suggests the formation of a liquid crystalline phase. With the increased chain rigidity, 

as a result of bibenzoate unit providing sequences rich in high BB units, it is possible that 

the few homo-sequences of B unit segments aggregate in the melt and form a transient 

liquid crystalline regions of limited size, which than crystallize into thin plate-like 

crystals. Thus, a structured melt formed during melt spinning could provide for better 

fiber orientation. We will show in a separate paper that the amorphous chains in high BB-

content PET/BB fiber indeed have much better orientation than that of PET and low BB-

content fibers.37 The resulting structure imparts superior physical properties to fibers than 

the conventional two phases (i.e. crystalline and amorphous) of the same composition. 

 

2.6. Conclusions.  

The results of this study show that PET/BB random copolymer can develop 

significant crystallinity over the entire composition range, but in two different forms. 

There is not a continuous change between these two forms, but rather there is a 

discontinuity at 35 mol% of BB. This is inconsistent with the NPL model for 

cocrystallization.   PET crystals are formed in low BB-content copolymer. Thin PEBB 

crystals are formed by lateral registry of only a few repeat units in copolymers containing 

45 to 65 mol% of  BB.   
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Table 2.1. d-spacings (in Å).for T type crystals in PET/BB unoriented samples 
 
 
 

 

 

 

 

 

Table 2.2. d-spacings (in Å) for B type crystals in  PET/BB unoriented samples For 
comparison PEBB d-spacings  from literatures are also given. 
 

Polymer (100) (101) (010) (110) 

PET/BB35 5.490(2) 5.149(1) 3.634(1) 3.356(1) 

PET/BB45 5.523(1) 5.159(1) 3.648(1) 3.365(1) 

PET/BB55 5.563(1) 5.193(2) 3.665(1) 3.378(2) 

PET/BB65 5.549(1) 5.208(2) 3.667(1) 3.386(1) 

PEBB22 5.628 5.252 3.699 3.404 

PEBB5 5.545 5.206 3.651 3.377 

 

Polymer ( 110 ) (010) (ī10) (100) 

PET 5.447(3) 5.028(6) 3.898(5) 3.392(8) 

PET/BB15 5.454(1) 5.013(7) 3.898(6) 3.471(3) 

PET/BB35 5.432(4) 4.983(4) 3.886(4) 3.473(2) 
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Table 2.3. d-spacings (in Å) of the T type crystals in PET, PET/BB15 and PET/BB35 
fibers. 
 

 

 

 

 

 

 

 
Table 2.4. d-spacings (in Å) of B type crystals in PET/BB45, PET/BB55 and PET/BB65 
fibers.  
 

Fiber (100) (101) - (001) 

PET/BB45 5.610 (2)) 5.230(1) 3.560(4) 14.30(8) 

PET/BB55 5.607(3) 5.22(3) 3.583(3) 14.87(5) 

PET/BB65 5.629(3) 5.24(1) 3.580(1) 14.75(1) 

 

Fiber (010) ( 101 ) (100) 

PET 5.036(6) 3.892(4) 3.453(8) 

PET/BB15 5.082(7)) 3.901(6)) 3.464(3) 

PET/BB35 5.260(6) 3.791(4) 3.471(2) 
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Table 2.5. Monomer distribution in the amorphous and crystalline regions as estimated 
by FTIR for PET/BB fibers 
 

Amorphous region Crystalline region  Fiber Crystallinity 

(wt%) 

Aa
1560/ 

A(1560+1579) B T B T 

PET 40 0 0 60 0 40 

PET/BB15 30 0.12 10 65 5 20 

PET/BB35 21 0.30 30 60 5 15 

PET/BB45 23 0.40 30 50 15 5 

PET/BB55 30 0.43 30 40 25 5 

PET/BB65 43 0.52 30 30 35 5 

a: area under the peak. 

 

Table 2.6. Comparison of crystal thickness (in Å) before and after hydrolysis 

hkl (100) (101) (001) 

PET/BB55 
fiber 

96  73 75 

DMSO-
insoluble 
part  

150 78 71 
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Table 2.7. d-spacings (in Å) of DMSO insoluble part obtained from X-ray and electron 
diffraction. For comparison literature values are also given. 
 

hkl dobs, X-ray dobs, ED Li, Brisse 22 Lu, Windling 5

100 5.58 5.2 5.62 5.54 

010 3.65 3.7 3.69 3.65 

110 3.37 - 3.44 3.37 

101, 011  5.21 - 5.26 5.2 

111  3.3 3.32 - 

111   2.7 2.80 - 

021  4.44 - 4.43 4.53 

002 8.89, 7.53 - 7.36 8.71 

201 2.75 - 2.78 - 

202  2.6 0.263 - 

212 2.33  2.34 - 

007 2.06  2.06 - 

300 1.85  - - 
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Figure 2.1. WAXD (radial scans) of PET and PET/BB bulk copolymers  
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Figure 2.2. Crystallinity in PET/BB copolymers as measured by X-ray method. Solid 
symbol:  annealed bulk polymer, Open symbol: heat-treated fibers.  
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Figure 2.3. PET/BB unit cell parameters as a function of copolymer composition 
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Figure 2.4. WAXD (radial scans) of PET and PET/BB fibers.  
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                             (a)                                                                    (d) 
 

   
                                  (b)                                                               (e) 
 

       
                            (c)                                                                       (f) 
Figure 2.5. WAXD of PET and PET/BB fibers. (a) PET, (b) PET/BB15, (c) PET/BB35, 
(d) PET/BB45, (e) PET/BB55, (f) PET/BB65. 
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Figure 2.6. WAXD meridional scans of PET/BB fiber.  
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Figure 2.7. FTIR of PET and PET/BB fibers in the vicinity of V8a absorption region.   
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Figure 2.8. FTIR of (a) PET/BB55 fiber; (b) DMSO insoluble part (c) DMSO soluble 
part. 
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(a) PET/BB55 polymer 
 

 
 

(b) DMSO soluble part 
 

Figure 2.9. 1H-NMR of (a) PET/BB55, (b) DMSO soluble part and (c) DMSO insoluble 
part. 
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( C)  DMSO insoluble part 
 

Figure 2.9. 1H-NMR of (a) PET/BB55, (b) DMSO soluble part and (c) DMSO insoluble 
part.(continued from previous page) 
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Figure 2.10. WAXD radial scan of the DMSO insoluble part  
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Figure 2.11. Transmission electron micrograph of the DMSO insoluble part from 
hydrolyzed PET/BB55 fiber.  
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(a) 

 

 

(b) 

Figure 2.12. Selected area electron diffraction from isolated lamellar crystals obtained by 
hydrolytic etching of PET/BB55 fiber. (a) 111 diffraction and (b) 101 diffraction.  
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CHAPTER III 

 

 

STRUCTURE AND MORPHOLOGY OF POLY(ETHYLENE 

TEREPHTHALATE–co -4,4’-BIBENZOATE) PET/BB FIBERS 

 

 

3.1. Abstract 

Crystallinity and orientation in poly(ethylene terephthalate–co-4,4’-bibenzoate) 

PET/BB fibers were studied by wide angle X-ray diffraction and FTIR spectroscopy. 

When drawn to their respective maximum draw ratios, the morphology of high 

bibenzoate (BB) containing fibers, PET/BB45, 55 and 65, PET/BB fibers is dramatically 

different than that of low BB-content, PET/BB35, PET/BB15 and PET fibers. (PET/BBx 

represents PET/BB copolymer containing x mol % of 4,4’-bibenzoate). High BB-content 

fibers are more extended and better oriented. Approximately 90% of the ethylene glycol 

units in high BB-content fibers are in the trans conformation whereas only 80% are in 

trans conformer in low BB-content and PET fibers. High BB-content fibers have higher 

overall orientation (f > 0.85) than that of low BB-content fibers (f ~ 0.6). While 

orientation of the crystalline regions are all very high, fc = (~0.95), in both groups of 

fibers, the amorphous regions of the high BB-content fibers has significantly higher 

orientation (fa ~ 0.8) than the low BB-content fibers and PET fibers (fa ~ 0.4). 
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3.2. Introduction  

Poly(ethylene terephthalate – co - 4,4’-bibenzoate) (PET/BB) copolymers have 

received significant attention in recent years on account of  their considerable commercial 

potential in high performance fibers and films.1,2   Recent innovation in terms of making 

bibenzoate monomers3which has the potential to lower the cost of PET/BB copolymers to 

a competitive price, provided us with the impetus to investigate the structures of these 

materials. In a previous paper1 it was shown that PET/BB copolymers with various 

compositions show interesting spinning behavior which results in fibers with dramatically 

improved properties. Polymers with 45, 55 and 65 mole % BB (i,e. PET/BB45, 55 and 65) 

spin like liquid crystalline polymers in that as-spun fiber obtained at low take-up speeds 

(i.e. a few hundred meters per minute) exhibit maximum achievable orientation. These 

fibers cannot be drawn further, even above the glass transition temperature. These fibers 

have modulus values in the range of 35 to 45 GPa, which is approaching to the value for 

thermotropic liquid crystalline copolyester Vectra. For example, Vectran fiber, a 75/25 

copolymer of 1-hydroxy-4-benzoic acid and 2-hydroxy-6-naphtholic acid HNA/HBA, 

has a modulus of ~60 GPa.4 On the other hand, as-spun fibers of PET, PET/BB5, 15 and 

35 obtained under similar conditions are amorphous and not fully oriented. A hot drawing 

step must be applied to this group of fibers to achieve good orientation. Even then, the 

modulus of the second group of fibers is only around 10 GPa. Moreover, PET/BB45, 55 

and 65 fibers have much better retention of modulus at elevated temperatures than fibers 

of PET and copolyesters with low BB content. This is apparent by dynamic mechanical 

analysis, in which the tan (δ)  peak corresponding to the glass transition temperature 
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completely disappears in the fully oriented PET/BB55 and 65 fibers. To understand the 

differences in mechanical and thermomechanical properties between high BB-content 

fibers and in PET and low BB-content fibers, it is very important to understand the 

structure and morphology differences between them. In this paper we describe the 

crystallinity and orientation of PET/BB fibers. Wide angle X-ray diffraction and infrared 

dichroism has been used to study crystallinity and orientation in these fibers.  FTIR 

dichroism has proven to be a powerful tool to study the orientation of the individual 

copolymer unit.  With the use of IR microscope, exactly the same location of the sample 

can be probed in parallel and perpendicular directions, thus eliminating the needs for 

thickness correction (why this is relevant).  

 

3.3. Experimental  

Poly(ethylene terephthalate-co-bibenzoate) (PET/BB) copolymers containing 

various amounts of bibenzoate (BB) were produced from dimethyl terephthalate, 

dimethyl 4,4'-bibenzoate, and ethylene glycol according to the literature method. 5 

Specific polymers used in this study are listed (along with their intrinsic viscosities) in 

Table 1. Intrinsic viscosity was measured in dichloroacetic acid solution at 25 oC. The 

Mark-Houwink-Sakurada (MHS) parameters for PET/BB copolymers have not been 

determined. The relationship between intrinsic viscosity, and viscosity average molecular 

weight, Mv, was assumed using the MHS parameters for PET (Table 1).  

                                83.04 )(107.1][ vM−×=η                                         (1) 

The issues of polymer randomness, crystal structure and the composition of the 

crystalline and amorphous regions have also been addressed in previous studies.1  Fibers 
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were spun at 270 – 310 oC and drawn to their maximum draw ratios either by on-line 

drawing, in the case of PET/BB45, 55 and 65, or by a separate drawing step on a hot 

plate at 120 oC (for PET/BB15, 35 and PET fibers).  All fibers were further heat-treated 

at constant length at 150 oC for 10 minutes. Fiber spinning and processing conditions are 

listed in Table 2. Tensile modulus, birefringence and densities of various fibers are also 

given. X-ray diffraction was carried out on a Rigaku Small/Wide Angle X-ray Scattering 

system with a MicroMax 002™ X-ray beam Generator (XBG), operating at 45 kV and 

0.66 mA. CuKα irradiation was obtained using confocal Max-Flux® optics. A small 

bundle of fibers were placed vertically in the beam path. 2D diffraction images were 

collected using a Rigaku R-AXIS IV++ detector. Air background scattering was 

subtracted after making a correction absorption due to the sample. Radial, equatorial and 

azimuthal scans were integrated using AreaMax® software and profile fittings were 

carried out using MDI Jade 6.1.  A linear background was fitted for all of the curves. 

Profile fittings were repeated until the residual error of fit was less than 2%. Percent 

crystallinity was obtained from the ratio of the area of the crystalline peaks and that over 

the entire range. FTIR spectra of the fibers were obtained on a Perkin Elmer Spectrum 

One FTIR spectrometer.  IR spectra were collected in transmission mode at 4 cm-1 

resolution with the unpolarized beam, as well as with beam polarized parallel and 

perpendicular to the fiber axis. The molecular orientation is defined as the probability 

distribution function of the angle θ between the polymer chain axis and the fiber 

direction.6 IR dichroism allows the determination of an orientation function (f) equal to 

the averaged second-order Legendre polynomial of the orientation distribution function: 
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For a given transition moment, the orientation function is related to the experimentally 

observed dichroic ratio D (= A///A⊥ ) by: 
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where, A//, A⊥ are the peak areas in parallel and perpendicular directions. The intrinsic 

dichoric ratio (D0) of a perfectly oriented sample is given by 

                    D0 = 2cot2α                                            (4) 

where α is the transition moment angle, which is the angle between the polymer chain 

axis and the transition moment direction of the vibrational mode under discussion. The 

birefringence of the fibers was measured using the Leitz Ortholux polarizing microscope 

and a Zeiss 122 order compensator.  Three fibers were measured for each sample.   

 

3.4. Results and discussion  

3.4.1. X-ray diffraction: Crystallinity  

Wide angle X-ray diffraction radial scans of copolymer fibers are shown in Figure 

1. The structure of crystals in PET/BB fibers can be divided into two groups. PET/BB15 

and 35 have a crystal structure reassembleing that of PET. PET/BB 45, 55 and 65 have 

crystal structures similar to that of the crystal structure of the poly(ethylene bibenzoate) 

(PEBB) homopolymer.7 Peaks can be indexed to PET-like and PEBB-like structures, 

Table 3 and 4. Crystal thickness normal to various reflection planes are also given. A 

detailed study on crystal structure on PET/BB copolymers has been presented in Chapter 
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II. One significant difference between the two crystal forms is that the PEBB-like crystal 

structures in high BB-content fibers have crystal thickness of 100 Å along (100) normal 

direction, which is more than twice that of the PET-like crystals in fibers of  PET and low 

BB-content fibers. The other crystal dimensions are comparable in the two groups of 

fibers. Thus, the crystals in high BB-content fibers are larger than those in PET and low 

BB-content fibers. Crystallinity indices of various fibers (Table 5) were obtained from 

the ratio between the sum of area under the crystalline peaks versus the total area under 

radial scans.  Examples of peak fittings are shown in Figure 2. Crystallinity of the PET 

fiber is about 40%, which is typical for fiber obtained under the processing condition 

used. Addition of the bibenzoate unit lowers the crystallinity significantly. At 35% BB, 

the crystallinity is only about 20%. However the crystallinity increases again with 

incorporation of more bibenzoate and reaches 43% in PET/BB65 fibers.  

 

 

3.4.2. X-ray diffraction: Crystallite orientation  

The degree of uniaxial orientation of a polymer chain axis is described by the 

Herman-Stein orientation function:  

2
1cos3 ,

2 −><
= zcf

φ
                            (5)  

 where >< zc,
2cos φ  is the average cosine square angle of the  chain axis of the polymer 

makes with the draw direction, Z. For an isotropic material, f = 0. For a fully oriented 

chain, f = 1; f = -0.5 when the chain is oriented perpendicular to the draw direction. 

Orientation of crystallites in polymer samples is commonly determined by X-ray 
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diffraction. Wilchinsky’s treatment 8 , 9  is the most generally used method to 

measure >< zc,
2cos φ .  

According to this method, the average square cosine angle, <cos2 φ c,Z>,  is given by: (e, f, 

g are director consines of N with respect to the axes X, Y and c, respectively) 
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The following conditions were applied to simplify Wilchinsky’s equation: (1) for the 

(hk0) reflection, the director cosine g is 0, so that e2+f2 = 1; (2) in uniaxial orientation, 

<cos2φx,z> = <cos2φy,z> since the transition moments are equally distributed around the c-

axis (3) using the orthogonal relationships between the two sets of director cosines e, f, 

and g, and <cosφx,z>,  <cosφy,z> and <cosφc,z>. this reduces equation (6) to: 
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                                         (7) 

For PEBB, the unit cell parameters, a = 5.75, b = 3.82, c = 14.62, α = 90.1o, β  = 90.3 o 

γ  = 78.1 o reported by Li and Brisse7 , this suggests that the unit cell is almost monoclinic, 

i.e. α ≈ β ≈ 90o.  Therefore the normal of (100), N(100), is perpendicular to both the b 

and c axes, Thus, <cosφx,z> = 0, and equation (7) is further reduced to:   

><−>=< zzc ,100
2

,
2 cos21cos φφ                                             (8) 

The Herman-Stein orientation function is thus obtained by measuring <cos2φ(100),z> from 

the azimuthal scan of the (100) reflection, and is given by: 

                                ><−= zfc ,cos31 100
2φ                        (9) 
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However, in the case of PET the unit cell is triclinic; three (hk0) reflections are needed to 

determine the orientation of the crystallites accurately. In this study, we adopt equation 

(10) developed by Gupta and Kumar10 to calculate the fc based on (010), (110) and (100) 

reflections.  
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The average cosine square angle <cos2 φ hkl,Z> the normal of (hkl) plane N(hkl) made with 

the fiber direction, Z, can be calculated from the azimuthal intensities, I(φ), as follows: 
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Azimuthal intensities were scanned at the tail ends of the (010), )011( and (100) peaks for 

PET, PET/BB15, PET/BB35 fibers, and along the (100) for higher BB-content fiber. The 

calculated orientation factors, fc, of the crystallites in various fibers are shown in Table 5. 

Orientations of the crystalline regions are all above 0.95, indicating the crystals are 

highly aligned along the fiber direction. The two phase approximation for the overall 

orientation factor f includes contributions from the of orientation of crystalline phase fc 

and amorphous phase fa, equation (9), where Vc is the volume fraction of the crystalline 

phase. 

            )1( cacc VfVff −+=                                               (12) 

While the crystalline regions are all highly oriented, the birefringence of the fibers  

increase upon increasing the amount of BB incorporated.  (Table 2).  Increasing the 
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amount of BB units results in an increase in orientation. Considering the significant 

change in tensile modulus, we expect a major increase in the orientation of the chains in 

the amorphous regions of these fibers.  

 

3.4.3. Vibrational Spectroscopy   

FT infrared spectra of drawn and heat-treated PET and PET/BB fibers are shown 

in Figure 3. The peaks corresponding to carbonyl carbon oxygen (C=O) stretching at 

1730 cm-1, COO stretch at around 1260 cm-1   and COC stretch at 1120 cm-1  in the 

spectra of PET/BB are all very similar to those of PET fibers. In PET/BB new peaks 

appear at 1560, 1401, 1008, 845, 780 and 760 cm-1 due to addition of the bibenzoate units.  

We will discuss the orientation of the aromatic rings first and then the ethylene 

glycol units. The orientation of the aromatic ring can be determined from various 

aromatic C-H bending or stretching vibrations, in Table 6. The in-plane-bending peak 

from the phenyl ring at 1018 cm-1and from the biphenyl ring at 1008 cm-1 give the overall 

orientation of each unit. On the basis of the reported transition moment angle of 20o for 

this vibration,11 the calculated orientation factor for phenyl rings in PET fiber is 0.6. The 

orientation factor of the phenyl rings in PET/BB15 and 35 are lower ascribable in part to 

a of lower achievable maximum draw ratio. However, in PET/BB45, 55 and 65 the 

phenyl ring orientation factor is much higher (0.79-0.84). For the biphenyl ring, if we use 

the same transition moment angle of 20o, similar trends are observed (Table 6). However, 

the orientation factor for the biphenyl rings is significantly higher than that of the phenyl 

ring in high BB-content fibers. It is reasonable that the biphenyl ring will have higher 

orientation due to its larger aspect ratio, which makes it easier to orient during the fiber 
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spinning and drawing processes.  A strong peak at 730 cm-1 in PET arises from benzene 

ring out-of–plane C-H bending and has a strong perpendicular dichroism with a transition 

moment angle close to 90o.1415 This peak is too strong to be used for orientation analysis 

OF PET fiber. However in higher BB-content copolymers this peak has moderate 

intensity due to the reduced concentration of terephthalate units.  The C-H out-of-plane 

bending from the BB unit appears at 756 cm-1. Again, the overall orientation of BB and T 

units are significantly higher in high BB-content fibers and the BB has better overall 

orientation than the T units.  

FTIR dichroism allows for the determination the orientation of terephthalate units 

in the amorphous region by analysis of a peak at 1579 cm-1, characteristic of 1,4 para-

para ring stretching mode V8A.12 When we treat the vibration of ethylene glycol links and 

the terephthalate units separately this vibration should only be Raman-active in the pure 

crystalline form of PET, due to the centrosymmetric nature of the configuration of the 

terephthalate units in the crystal.13 However it is IR-active in the amorphous region of the 

PET: As the C=O adjacent to the ring rotates out the plane of the ring, the OC-Ph-CO 

segment deviates from coplanarity, thereby breaking the centrosymmetry.  Thus this peak 

is characteristic of the amorphous regions.14,15  In the 4,4’-bibenzoate unit this vibration 

appears at 1560 cm-1. FTIR spectra of various fibers in the range of 1600 – 1540 cm-1 are 

shown in Figure 3.  In PET/BB copolymers there two peaks in this region, the 1579 cm-1 

and 1560 cm-1 peaks. The 1579 cm-1  peak arise from the terephthalate unit and the 1560 

cm-1  peak corresponds to the bibenzoate unit, as deduced from analysis of dimethyl 

terephthalate and dimethyl 4,4’-bibenzoate as model compounds.    Table 7 lists the 

dichoric ratio (D) of the peaks at 1579 and 1560 cm-1. It can be seen that the amorphous 
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region of the low BB-content fiber and PET fiber has low orientation, but the amorphous 

region of the high BB-content fiber are highly oriented. It can also be seen that in the 

whole composition range, BB units in the amorphous region has higher orientation than 

the T units.  

The ethylene glycol unit in PET/BB can adopt either trans- or gauche 

conformation and will give rise to different absorption peaks corresponds to CH2 

wagging: trans, 1340 cm-1; gauche 1370 cm-1.  In the crystalline region the EG units are 

purely trans. In the amorphous region they can be in either form.16 Spectra of various 

fibers in the range of 1300-1400 cm-1 are shown in Figure 5. The amount of gauche and 

trans configurations can be obtained from the spectra, Table 6. In low BB-content fibers, 

80% of the EG units are in a trans conformation, which is typical of oriented PET fiber. 

However in PET/BB45, 55 and 65 fibers, there is significantly more trans conformer. 

After taking into account the crystallinity, we can calculate the percentage of trans 

conformers in the amorphous regions of fibers as show in Table 8. Approximately 85% 

of the ethylene glycol units in the amorphous regions of PET/BB45, 55 and 65 fibers are 

in the trans conformation.  Trans-Conformers accounts for only 65% in the amorphous 

regions of PET fiber.   This result suggests that the chains are more extended in 

PET/BB45, 55, and 65 than in the case of PET and low BB-content fibers.  

Orientation of the trans conformer can be obtained from the dichorism of the 

peaks at 1340 cm-1 (α = 21o) and 973 cm-1 peaks (rans glycol C-O stretching, α = 4o.17) 

as shown in Table 8. The trans conformers in the high BB-content fibers are highly 

oriented along the fiber direction, much more so than in the case of low BB-content and 

PET fibers. This suggests that the chains in high BB-content fibers are more extended 
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and oriented. WAXD of all the fibers shows high orientation (fc ~ 0.95) of the crystalline 

regions. This further suggests that for PET and low BB-content fibers the amorphous 

chains are not very well aligned, but for high BB-content fibers the amorphous regions 

are highly aligned. By using the overall orientation factor calculated from 1018 and 1008 

cm-1 for T and B (Table 6) one can calculate the orientation factor of the fibers, ffiber by 

using the following relationship: 

           BBTTfiber fff Χ×+Χ×=                         (13) 

where fT, fB and XT, XB are the orientation factor and mole fraction of T and B units 

respectively. Then the orientation factor of the amorphous regions of the fibers can be 

obtained by using the equation (12) and the orientation factor of the crystalline region fc 

obtained from X-ray (Table 5). The calculated orientation factor for the fibers and their 

amorphous regions are given in Table 9. As can be seen from Table 9, the orientation of 

high BB-content fiber is much higher than the orientation of the PET and low BB-content 

fibers. In the amorphous regions the orientation factor, fa , for PET and low BB-content 

fibers are bellow 0.4 while that of the high BB-content fibers are all above 0.8, which is 

the most prominent difference between these two groups of fibers.  

 

3.5. Discussion  

From this analysis we see that fibers of high BB content  PET/BB copolymers 

processed using a spinning process analogous to the process of making liquid crystalline 

polymeric fibers posses highly extended and oriented chains. The orientation is much 

greater than for polymers processed by conventional two step (spin and draw) processing 

of PET and low BB-content copolymers. Higher chain extension and orientation 
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contributes to the  improved tensile modulus of high BB-content fibers. In the amorphous 

regions of high BB-content fibers, 90% of the ethylene glycol units are in their trans 

conformation and the amorphous chains are highly aligned (fa ~ 0.85 ).  

Onset of macroscopic chain motions at the glass transition temperature results in 

chain relaxation and loss of mechanical properties. In PET the scope of cooperative 

motion at Tg is on the order of seven repeat units. The amorphous region of PET and low 

BB-content fibers are poorly oriented (fa~0.4) and contain a large portion of  ethylene 

glycol units in a gauche conformation (Table 8).  This accounts for the presents of a 

strong glass transition. The amorphous region of high BB content fibers has a lower 

fraction of ethylene glycol units in the gauche conformation, and the amorphous regions 

are highly aligned (fa ~ 0.85). The macroscopic motion of the chains is retarded and 

dynamic mechanical analysis reveals the absence of a tan(δ) peak associated with a glass 

transition.1  Homopolymers of 4,4’-bibenzoate and various diols have been shown to be 

liquid crystalline. 18 , 19 , 20 , 21 , 22 , 23  Transient liquid crystallinity has been discovered in 

PET24,25,26,27 and PET/PEN copolymers.28 The spinning behavior of PET/BB45, 55 and 

65, the highly extended and orientated structure of the resulting fibers and their tensile 

properties, as well as thermomechanical properties suggest the formation of a liquid 

crystalline phase in the spinning process. Thus, the structured melt formed during melt 

spinning provides for better orientation which imparts superior physical properties to the 

fibers compared to those prepared by a conventional spin and draw process. 

 

3.6. Conclusions  
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The most important finding of this study is that high BB-content fibers are much 

more extended (90% ethylene glycol conformer are in trans) and have significantly 

higher orientation (f = 0.85) than PET and low BB-content fibers (f = 0.6). These 

differences are more evident in the amorphous regions. fa for high BB-content fibers is 

~0.8, while that of PET and low BB-content fibers is ~0.4.  
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Table 3.1. Intrinsic viscosity and molecular weight for various copolymers. 

Polymer a IV (dL/g) Mv (g/mol) 

PET 0.90 30,700 

PET/BB15 0.94 32,300 

PET/BB35 0.88 29,800 

PET/BB45 0.92 31,400 

PET/BB55 0.92 31,400 

PET/BB65 0.90 30,700 

a PET/BBx represents poly(ethylene terephthalate-co-4,4’-bibenzoate) copolymer containing x mol % of 
4,4’-bibenzoate. 
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Table 3.2. Fiber processing conditions and physical properties. a 

Polymer Tm 

(°C) 

Spinning 

temperatur

e (°C) 

Draw 

ratiob 

Tensile 

modulus 

(GPa) 

Birefringence  

PET  260 280 6 12 ± 2 0.18 ± 0.02 

PET/BB15 245 270 4 10 ± 2 0.21 ± 0.02 

PET/BB35 230 270 3 9 ± 3 0.26± 0.02 

PET/BB45 245 290 ND 38 ± 3 0.36 ± 0.04 

PET/BB55 275 300 ND 40 ± 5 0.451 ± 0.006 

PET/BB65 290 310 ND 45 ± 4 0.40 ± 0.06 

a: all fibers were heat-treated at constant length at 150oC for 10 min.  
b: fibers were drawn on a hot plate set at 120 oC; ND,  not drawn was performed.  
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Table 3.3. d-spacings (Å) and crystal thickness (in parentheses, Å) for PET-like 
structures in PET, PET/BB15 and PET/BB35 fiber from the equatorial WAXD-scan. 
 
 

 

 

 

 

 

 

 

 

Table 3.4. d-spacings (Å) and crystal thickness (in parentheses, Å) for PEBB-like crystal 
structures in PET/BB45, PET/BB55 and PET/BB65 fiber from equatorial WADX-scans. 

 

Fiber (100) 010 (110) 

PET/BB45 5.546  

(92) 

3.614 

(42) 

3.492 

(44) 

PET/BB55 5.607 

(96) 

3.657(4) 

(38) 

3.543 

(41) 

PET/BB65 5.629 

(100) 

3.651 

(41) 

3.541 

(44) 

PEBB7 5.628 3.699 3.404 

 

Fiber (010) ( 101 ) (100) 

PET 5.028 

(56) 

3.828 

(45) 

3.372 

(38) 

PET/BB15 5.073 

(60) 

3.898 

(45) 

3.471 

(40) 

PET/BB35 5.260 

(48) 

3.786 

(34) 

3.473 

(45) 
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Table 3.5. Crystallinity, crystal orientation and birefringence of PET and PET/BB fibers.  

 

Fiber Crystallinity 
(wt%) 

fc 

PET 41 0.95 

PET/BB15 37 0.94 

PET/BB35 21 0.95 

PET/BB45 23 0.98 

PET/BB55 32 0.97 

PET/BB65 43 0.98 
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Table 3.6. Orientation of phenyl and biphenyl rings in PET/BB and PET fibers. 

 

 

 

 

Fiber 1018 C-H in-
plane 

bending of T 

1008 C-H in-
plane 

bending of 
BB 

730 C-H out 
of plane 

bending of T 

756 C-H out of 
plane bending 

of BB 

PET 0.60 - - - 

PET/BB15 0.56 0.33 - 0.55 

PET/BB35 0.54 0.48 0.46 0.67 

PET/BB45 0.79 0.93 0.68 0.88 

PET/BB55 0.82 0.92 0.69 0.90 

PET/BB65 0.84 0.94 0.67 0.92 
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Table 3.7. Dichroic ratio (DR) of the 1579 and 1560 cm-1 peaks in various fibers 

Fiber DR1579 DR1560 

PET 2.2 - 

PET/BB15 2.4 4.48 

PET/BB35 2.3 4.43 

PET/BB45 7.1 16.1 

PET/BB55 7.3 15.2 

PET/BB65 7.7 16.6 
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Table 3.8. Ethylene glycol gauche, trans conformer index and orientation of the trans 
conformer. 
 

Fiber I1340/ 
(I1340 + I1370) 

X-ray 
Crystallinity 

% trans in 
amorphous 

region 

f1340 f972 

PET 0.80 41 64 0.65 0.64 

PET/BB15 0.81 37 65 0.47 0.58 

PET/BB35 0.78 21 65 0.47 0.58 

PET/BB45 0.90 23 85 0.86 0.89 

PET/BB55 0.90 32 84 0.85 0.91 

PET/BB65 0.92 43 86 0.85 0.90 
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Table 3.9. Orientation factor of the fibers and orientation factor of the amorphous regions 
of the fibers.  

 

Fiber fall fa 

PET 0.60 0.39 

PET/BB15 0.54 0.33 

PET/BB35 0.48 0.343 

PET/BB45 0.86 0.84 

PET/BB55 0.88 0.83 

PET/BB65 0.91 0.86 
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Figure 3.1. WAXD (radial scans) of PET and PET/BB fibers.  
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Figure 3.2. Curve fittings for selected fibers (a) PET, (b) PET/BB35, (c ) PET/BB55.
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Figure 3.3. FTIR spectra of drawn and heat-treated PET and PET/BB fibers. From top to 
bottom are PET/BB65, 55, 45, 35, 15 and PET fibers respectively. (a) non-polarized, (b) 
polarization direction parallel to fiber axis. (c)  polarization direction perpendicular  to 
fiber axis. 
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Figure 3.4. FTIR spectrum of various fibers in the range of 1600 – 1540 cm-1. 
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Figure 3.5. FTIR spectrum of various fibers in the range of 1400 – 1300 cm-1. 
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CHAPTER IV  

 

 

DYNAMIC MECHANICAL PROPERTIES OF 

POLY(ETHYLENE TEREPHTHALATE-co-4,4’ BIBENZOATE) FIBERS 

 

 

4.1. Abstract 
 

Dynamic mechanical properties of poly(ethylene terephthalate-co-4,4’-

bibenzoate) random copolyester fibers have been investigated. Fibers containing more 

than 40 mol% of bibenzoate units exhibited much higher storage modulus (E’) as well as 

higher modulus retention at elevated temperatures than the low BB content fibers. The α-

relaxation attributed to the glass transition temperature was not seen in the fully drawn 

and heat-treated PET/BB45, 55 and 65 fibers. The β transition at about -50 oC in  

PET/BB fibers diminished with the increasing of BB concentration. This may explain the 

improved gas barrier properties of PET/BB films. Anthor transition at about 70 oC in of 

high BB content was observed and attributed to the motion of the BB containing units.  

 
4.2. Introduction  

Poly(ethylene terephthalate -co- 4,4’ bibenzoate) PET/BB  has been proven to be 

random. Fiber spinning, structure and mechanical properties of different compositions of 

PET/BB have been reported in previous chapters. Incorporation of BB into copolymers of 

PET results in an increase in glass transition temperature from 80 °C to 110 °C for 
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PET/BB65. However, the α-relaxation (corresponding to glass transition) is fully 

suppressed in highly oriented and crystalline PETBB55 fibers.  In this chapter we are 

interested in the dynamic mechanical relaxation of various fibers as a function of 

commoner composition, fiber orientation, and cystallinity. Relaxation processes in 

polymers are a subject of intensive research.1,2,3  

Asrar4 reported two transitions in PET/BB58 film at about 75 and 125 °C with 

peak tan(δ) values of about 0.05 and 0.3, respectively. The 125 °C transition can be 

attributed to the main chain motion in the PET/BB58 film. The 75 oC transition in 

PET/BB58 film was interpreted as due to possible of two phases resulting from 

compositional inhomogeneity.   

 

4.3. Experimental   

Dynamic mechanical analysis was carried out on a Seiko DMS (Model 220). A 

static stress of ~10 MPa and dynamic strain of 0.1% was applied for these tests. 20 mm 

gage length and 20 filaments were used for each test. Activation energy of various 

transitions were calculated using Arrhenius equation.5  

 

4.4. Results and Discussion  

Storage modulus (E’) of PET/BB fibers as a function of temperature are compared 

in Figure 4.1. E’ of low BB content fibers, PET/BB5, 15 and 35 resemble that of PET 

fiber. However, high BB content fibers have significantly higher E’ than that of PET fiber 

and low BB content fibers. These results are in agreement with the tensile test. High BB 

content fibers also have better modulus retention at elevated temperatures. E’ of the 
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PET/BB65 fiber at 150 oC is as high as that of the PET fiber at room temperature. High 

modulus retention at elevated temperatures is of significant importance in industrial 

applications such as tire cord reinforcement.  

Tan (δ) curves reveal different relaxation processes between these two groups of 

fibers. As shown in Figure 4.2a, PET and low BB content fibers have distinct tan (δ) 

peaks in the temperature range of 120 to 140 oC, which arises from the glass transition. 

The glass transition temperature of the bulk polymers measured by DSC increases with 

the increasing BB mole fraction, indicating increase in polymer chains rigidity. In 

dynamic mechanical tests, the tan(δ) peak arising from glass transition occurs at 

progressively lower temperature when the BB content increases up to 35 mol%. Whereas, 

in high BB content fibers the peaks corresponding to the glass transition are not observed. 

In attempt to explain these differences fiber structure and morphology has to be 

considered. Crystallinity, amorphous orientation and percent trans conformer in the 

amorphous regions of PET/BB fibers obtained from previous chapters are shown in Table 

4.1. Density of amorphous PETBB556 has been reported to be 1.307 g/cm3, which is 

lower than the density of the amorphous PET (1.335 g/cm3) and amorphous PEBB (1.32 

g/cm3).7 This indicates incorporation of the bibenzoate moiety disrupts the chain packing, 

hence increases the free volume of the amorphous region and lowers the glass transition 

temperature of low BB content fibers.  

On the other hand, the glass transitions are not seen in the high BB content fibers 

(Figure 4.2 b).  Rather a new tan (δ) peak appeared at about 80 oC with the tan (δ) 

magnitude of ~0.05. This transition temperature is lower than the glass transition 

temperature measured on the bulk polymer by DSC. It has been demonstrated that this 
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transition dose not arise due to the main chain motion (glass transitions) of the high BB 

content fibers8. We termed this transition as a sub Tg transition β2. Origin of this peak 

may come from the motion of the bibenzoate units similar to that of the terephthalate 

units in PET at ~-50 oC, which we termed as  β1 transition. 

In Chapter III, it was reported that amorphous regions of the high BB content 

fibers are highly extended and oriented (also see Table 4.1) so the macroscopic main 

chain motion associated with Tg do not  occur in these fibers.  De-densification of the 

amorphous region also occurs in the high BB content fibers (Table 4.1). PETBB45 shows 

two tan (δ) peaks, the one at 106 oC is due to the glass transition, which has not been 

totally eliminated by the fiber morphology, perhaps due to the low degree of crystallinity. 

The other peak at 80 oC is the secondary transition β2. The loss of main chain motion is 

responsible for much improved mechanical property retention at elevated temperatures 

for high BB content fibers. . 

 Various transition temperatures and their activation energies in PET and PET/BB 

fibers are listed in Tables 4.2 and 4.3 respectively.  The β1 relaxation is presented in all 

the fibers and has about the same activation energy. The β2 relaxation in the high BB 

content fibers has much higher activation energy. As the amorphous chains in high BB 

content fibers have more BB units in them and they are almost extended, it is easy to see 

the motion of these chains will require more energy. The activation energy of the α 

relaxation in the low BB content fibers have values typical of PET fiber.  

Although both low and high BB content copolymer fibers as well as PET fiber 

have sub-Tg transition occurring at about –50 oC (Figure 4), the intensity of this peak 

decrease with increasing BB content. In discussing this peak, Ward1 wrote, “In PET the 
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effect of crystallinity on the β-relaxation is very small and has led to a very complex 

interpretation in terms of this loss peak being composed of several relaxation processes.” 

While this peak has been studied for over half a century, recent publications9,10,11,12,13 on 

this topic clearly suggest that the origins of this peak are not yet well understood and 

investigations on this topic remain an active area of research. As the β relaxation in PET 

is not significantly effected with crystallinity, it appears that this relaxation (β1) in 

PET/BB fibers is also not effected by degree of crystallinity and orientation. Tan(δ) peak 

areas of the low temperature transition (-50 oC) for various drawn and heat-treated 

PET/BB samples are integrated, and the peak area ratios of PET/BB to PET (A/Ao) is 

plotted against BB mole fractions in the amorphous region of the fibers (data obtained 

from chapter II) in Figure 4.4. From this figure we can see that the peak area decreases 

linearly with increasing bibenzoate content. This would suggest that the motion 

contributing to this transition is only involves the terephthalate not the bibenzoate 

containing repeat units, or the corresponding motion for the bibenzoate unit occurs at 

higher temperature. The fact that the β1 relaxation in PET/BB is reduced and β2 

relaxation is observed at much higher temperature than the corresponding relaxation in 

PET may explain the superior gas transport barrier properties of PET/BB over PET.14 The 

understanding of sub-Tg transition in copolyesters will open a methodology for designing 

new and improved gas barrier polymeric materials.  

 

4.5. Conclusions 

PET/BB45, 55 and 65 fibers have much higher storage modulus and modulus 

retention at elevated temperatures than PET and low BB content fibers. The glass 



 87

transition of high BB content fibers is fully depressed by their orientation and 

crystallinity.  β1 relaxation is observed to decrease with increase of BB content. A new 

sub-Tg transition β2 is observed in the high BB content fiber, which is proposed to related 

to the motion of bibenzoate units.  
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Table 4.1 Physical properties of PET/BB fibers. 

Fiber Crystallinity 

(wt%) 

fa
1 % transa

2  

PET 40 0.39 64 

PET/BB15 30 0.33 65 

PET/BB35 21 0.34 65 

PET/BB45 23 0.84 85 

PET/BB55 30 0.83 84 

PET/BB65 43 0.86 86 

1. fa: orientation factor of the amorphous regions  
2. Percentage of trans EG conformation in the amorphous regions 
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Table 4.2. Transition temperatures (oC) of PET/BB fibers at different frequencies. 
 

Transitions temperatures (oC) at 0.1, 1 and 10 Hz Fiber 

β1 β2 α 

PET -62, -51, -38  133, 138, 144 

PET/BB5 -59, -49, -39  118, 123, 129 

PET/BB15 -60, -49, -39  109, 114, 119 

PET/BB35 -60, -51, -41  108, 114, 119 

PET/BB45 -60, -52, -42 75, 78, 82 96, 101, 106 

PET/BB55 -62, -53, -43 78, 84, 89 - 

PET/BB65 -63, -55, -45 78, 82, 88 - 

 

Table 4.3. Activation energy of transitions in PET/BB fibers. 

Activation energy (kcal/mole) Fiber 

β1 β2 α 

PET 18 - 140 

PET/BB5 20  140 

PET/BB15 20  140 

PET/BB35 21  141 

PET/BB45 22 102 123 

PET/BB55 23 104 - 

PET/BB65 23 103 - 
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 Figure 4.1. PET/BB fiber storage modulus (E’) at 10 Hz  
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(a) 

 

 
(b) 

Figure 4.2. Tan(δ) at 10 Hz  (a) low BB content fibers. (b) High BB content fibers. 
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Figure 4.3.  β1 relaxation of PET/BB fibers (at 10 Hz).  

PET/BB5 

PET 

PET/BB15 
PET/BB35 

PET/BB45 

PET/BB55 
PET/BB65 



 93

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
BB mol% in the amorphous regions

A/
A o

 

 
Figure 4.4. β1 peak area ratio between PET/BB and PET (A/Ao) as a function of BB 
mole fraction in the amorphous region. 
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CHAPTER V 

 

 

CROSSLINKING STUDIES ON POLY(ETHYLENE TEREPHTHALATE-

co-1,4 PHENYLENE BISACRYLATE) 

 

 
5.1. Abstract 

Several compositionally different poly(ethylene terephthalate-co-1,4-phenylene 

bisacrylate) copolymers, PETPBA, were melt spun into fibers. The resulting fibers were 

subjected to UV irradiation to induce crosslinking. Evidence of crosslinking was obtained 

from FTIR, solid state 13C NMR, thermal analysis and solubility.  Irradiation of the fiber 

results in an increased glass transition temperature, reduced thermal shrinkage, and 

enhanced modulus retention at elevated temperature.   

 

5.2. Introduction  

Compounds containing α,β - unsaturated carbonyl functional groups possess 

well-characterized photochemistry. trans-cinnamic acid derivatives undergo [2+2] 

cycloaddition in the solid state and isomerize to the cis compound in solution. Since the 

discovery of the dimerization of trans-cinnamic acid upon UV irradiation in 1895, 

photocrosslinkable polymers containing cinnamic acid derivatives have been developed 

mainly for printing, lithographic, and resist applications.1 It is of interest to investigate 

the effect of photo-crosslinking on thermal and mechanical properties of a thermoplastic 
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polymer, where the reactive chromophores form part of the maim chain.  Poly(ethylene 

terephthalate) (PET) is a commercially important polymer which finds applications in 

textiles, and as reinforcement fiber in tires, as well as in food and beverage packaging2,3.  

Opportunities for extending the range of PET applications include enhancing its gas 

barrier properties, as well as maintaining its mechanical properties at elevated 

temperatures.  Crosslinking is one of the most effective ways to improve these 

properties.4  In the case of thermoplastics, where melt processing of the polymer is an 

important consideration, a post-processing UV crosslinking step is an attractive approach 

by which to improve thermo-mechanical properties without sacrificing melt 

processability. Random copolymers of PET and the photochemically active comonomer, 

p-phenylene bisacrylate (PBA), have been synthesized by melt polymerization5.  PBA 

was chosen because it is difunctional and thermally stable under PET polymerization 

conditions; the resulting copolyesters undergo photochemical [2+2]-cycloadditions upon 

UV irradiation. The photochemistry of PBA has been thoroughly elucidated.6,7,8,9,10,11 The 

steric requirement of the reaction was thought to be too stringent for cycloaddition to 

occur between cinnamoyl units in an amorphous polymer.1,10 While this view was 

supported by early research, subsequent research has shown that compounds containing 

cinnamoyl units do react in the amorphous regions. Effect of solid matrix on the 

efficiency of the cycloaddition process has been demonstrated by Egerton et al.11  Ethyl 

cinnamate undergoes cyclodimerization in high yields in the glassy state.12  Evidence for 

cyclodimmer in irradiated polymer films has been reported for poly(vinyl cinnamate) and 

copolymers,13,14,15 poly[1,4-bis(2-hydroxyethoxy) cyclohexane-(phenylene-bisacrylate)], 

poly[1,4-bis(2-hydroxyethoxy) cyclohexane-(cinnamate)],11 liquid crystalline main chain 
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copolyesters16,17 and poly(ester imide).18,19  Gas chromatographic analysis of some these 

films after hydrolysis show that photocycloaddition is the principal method of 

crosslinking. In this paper we show the evidence of PBA crosslinking in PET matrix and 

the effects of resulting crosslinking on the thermal and mechanical properties of PETPBA 

fibers.  

 

5.3. Experimental  

5.3.1. Sample preparation  

Monomeric PBA, and PET-co-PBA copolyesters were prepared using the 

published methods.5 Polymers were produced from the dimethyl 1,4-

phenylenebisacrylate, dimethyl terephthalate, and ethylene glycol, using a manganese 

acetate/antimony oxide catalysts system, polymerizing in the melt at 285 °C.  Polymer 

samples used in this study are listed in Table 1.  The designation PETPBAx indicates the 

copolyester in which x mole % of aromatic diester structure units are 1,4-phenylene 

bisacrylates (PBA). Intrinsic viscosity (IV) measurements were made using 1% (w/w) 

solutions of polymer in dichloroacetic acid at 25 oC. 

 

5.3.2. Fiber processing  

Before spinning, polymer samples were dried under vacuum at 80 °C for 48 hours. 

The spinning was carried out on a small-scale fiber extrusion unit manufactured by 

Bradford University Research Ltd. After spinning, the fibers were drawn on a hot plate at 

105 oC to a draw ratio of between 3 and 4; and then heat-treated at 150 oC at constant 
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length in an oven.  Fibers were irradiated using a Rayonet photochemical reactor 

equipped with medium pressure Hg bulbs producing a maximum intensity at 300 nm.   

5.3.3. Characterization   

Infrared spectroscopy of fibers was carried out on a Perkin Elmer SpectrumTM One 

FTIR spectrometer equipped with an Auto-IMAGE microscope. Solid–state NMR 

measurements were carried out on a Bruker DSX-300 spectrometer in a Bruker double-

resonance MAS probe head. A standard cross-polarization (CP) pulse was used with 1H 

and 13C 90o pulses of 4.5 µs. Recycle delays of 5 s and sample spinning speeds of 5 kHz 

were employed. 2k scans were accumulated for signal averaging. Differential scanning 

calorimetry (DSC) was performed on a TA instruments Q100 DSC. Melting temperature 

(Tm) and enthalpy of melting (∆Hm) were measured from the first heating cycle. 

Crystallization temperature (Tc), and enthalpy of crystallization (∆Hc) were measured 

from the first cooling cycle. Heating and cooling rates were 20 oC/min.  

  Fiber tensile properties were tested on an Instron tensile tester (model 5567) at a 

gage length of 2.54 cm and cross-head speed of 5 mm/min.  Dynamic mechanical 

analysis (DMA) was carried out on Rheometric Scientific™ RSAIII; a static stress of ~10 

MPa and dynamic strain of 0.1% was applied on 10 mm gage length samples containing 

20 filaments. Fiber shrinkage was measured on a TA instruments Thermo-mechanical 

analyzer (TMA-2940) at a stress of 50 KPa. Fiber solubility was tested in trifluoroacetic 

acid (TFA). 
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5.4. Results and Discussion 

PBA can be successfully incorporated into PET using the typical melt polymerization 

process.5 There are few examples5,19,20 in the literature of successful incorporation of such 

reactive comonomers in condensation polymers where polymerization is carried out at 

high temperatures. The thermal properties and intrinsic viscosities of the polymers used 

in this study are given in Table 1.   

The fiber spinnability and post-spinning drawability of the PETPBA copolymers are 

similar to those of PET for all copolymer compositions used in this study. Evidence of 

crosslinking upon irradiation was collected from changes in the FTIR and solid-state 

NMR spectra as well as from changes in solubility, thermal behavior and mechanical 

properties of the fibers. Figure 1 shows the FTIR spectrum of the fibers irradiated at 300 

nm for different times. Peaks are normalized with respect to the benzene stretching 

vibration at 1580 cm-1. The absorption due to the bisacrylate double bound stretching 

mode at 1635 cm-1 is reduced with time. After 16 hours of irradiation, a considerable 

number of the double bonds remain unreacted. With UV irradiation, as crosslinking 

occurs at the fiber surface, the resultant bleaching allows further radiation penetration, 

and hence crosslinking occurs at greater depth with increased irradiation time.21 

Structure of the irradiated fiber was studied using 13C solid state NMR (Figure 2).  

Upon UV irradiation, intensities of the 142 and 118 ppm peaks, corresponding to the 

olefinic carbon atoms of the PBA unit, decreased. Consistent with formation of the 

cyclobutane carbons of the photodimer, low intensity new peaks appeared between 30 

and 50 ppm.21, 22  The development of a shoulder on the carbonyl peak at 170 ppm 

indicates the generation of unconjugated carbonyl groups.   
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Before irradiation, the fibers dissolve completely in trifluoroacetic acid (TFA).  After 

irradiation for 1 hour, PETPBAx fibers become insoluble, except for the PETPBA1, 

which is still soluble. By comparison, PET fibers dissolve rapidly even after 5 hours of 

irradiation. Irradiation also affects thermal properties of PETPBA fibers, especially at 

higher PBA mole fractions. As shown in Table 2, the melting temperature of PETPBA15 

decreases by 8 oC after 1 hour of irradiation, and decreased by more than 40 oC after 5 

hours of irradiation.  The heat of melting did not change significantly as a result of UV 

irradiation. After 1 hour of irradiation, copolymers containing low mole fraction 

biscarylate, exhibited lower crystallization temperatures and decreased enthalpy of 

crystallization, while PETPBA15 did not crystallize under the experimental conditions 

employed herein. This is attributed to crosslinking preventing/retarding crystallization.  

Photocrosslinking also results in change in mechanical properties of PETPBA15 

fibers.  Tensile tests show that after 5 hours of irradiation, fiber tensile strength (0.16 ± 

0.02 before irradiation to 0.21 ± 0.03 GPa after irradiation) and modulus were moderately 

affected (6.3 ± 0.6 GPa before irradiation to 7.0 ± 1.0 GPa after irradiation), and 

extension to break decreased from 30% to 17% as a result of the photochemical treatment. 

By comparison, 5 hours of UV irradiation had no significant effect on the mechanical 

properties of the PET fiber. Dynamic mechanical properties of irradiated and unirradiated 

fibers are given in Figure 3. Irradiated fibers exhibit increased modulus retention above 

Tg.  At 120 oC, storage modulus of the irradiated fiber is about two times that of the 

unirradiated fiber. However, at higher temperatures (above 170 oC), irradiated fibers 

show sharper drop in storage modulus. This is because irradiated fibers have relatively 

low melting temperature. With irradiation, Tan(δ) peak temperature increased by more 
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than 25 ºC and the magnitude of the tan(δ) peak decreased significantly and peak 

broadens towards higher temperature.  Fiber shrinkage as a function of temperature is 

given in Figure 4. Fiber irradiated for over five hours exhibit significantly reduced 

shrinkage up to about 150 ºC. While, above this temperature these fibers show higher 

shrinkage, as irradiated fibers exhibit significantly lower melting temperature.  Upon 

melting, irradiated fibers do not break until they reach degradation temperature, while 

uncrosslinked (e. g. PET, Figure 5a) fiber breaks immediately. These observations are 

consistent with crosslinking in the amorphous regions.    

 

5.5. Conclusions  

Fibers from PETPBA copolymer can be spun by conventional melt spinning and 

crosslinked by UV irradiation as shown by IR and NMR spectroscopic techniques as well 

as solubility test. As expected, crosslinked fibers show increased Tg and reduced thermal 

shrinkage.  
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Table 5.1.  Thermal properties of fibers (Data in brackets are for fibers irradiated for one 
hour, and the data in brackets with † are for fibers irradiated for five hours ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample  IV 

(g/dL) 

Tm  

(°C) 

∆Hm 

(J/g) 

Tc 

(°C) 

∆Hc 

(J/g) 

PET 0.64 253 

(253) † 

44 

(45) † 

199 

(199) † 

37 

(36) † 

PETPBA 3.4 0.60 246 

(245) 

46 

(46) 

197 

(170) 

35 

(19) 

PETPBA 4.4 0.61 247 

(247) 

39 

(37) 

195 

(159) 

32 

(7) 

PETPBA 15  0.57 228 

(220) 

(185) † 

37 

(39) 

(34) † 

172 

(  -  ) 

( - ) 

27 

( - ) 

( - ) 



 103

 

 

Figure 5.1.  FTIR of PETPBA15 irradiated for different times. 
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Figure 5.2. Solid state 13CNMR of PETPBA 15 fibers.  (a) Unirradiated, and (b) 

irradiated for 15 hours. 
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Figure 5.3. DMA of PETPBA15 fibers (a) unirradiated, (b) irradiated for 5 hours, (c) 
irradiated for 10 hours.  
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Figure 5.4. Effect of crosslinking of thermal shrinkage. (a) PET irradiated for 5 hours, 
(b) unirradiated PETPBA15, (c) PETPBA15 irradiated for 1 hour, (d) PETPBA15 
irradiated for 5 hours, and (e) PETPBA15 irradiated for 10 hours. 
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CHAPTER VI 
 

 
PROCESSING, STRUCTURE, AND PROPERTIES OF FIBERS FROM 

POLYESTER/ CARBON NANOFIBER COMPOSITES 

 

 

6.1. Abstract  

Poly(ethylene terephthalate) (PET) resin has been compounded with carbon 

nanofibers. The amount of carbon nanofibers utilized in each case was 5 wt %. 

Compounding methods included ball-milling, high shear mixing in the melt, as well as 

extrusion using a twin-screw extruder. PET/CNF composite resins were melt-spun into 

fibers using the conventional PET fiber spinning conditions. Morphology and mechanical 

properties of these composite fibers have been studied. The results show that CNFs can 

be incorporated into PET matrix with good dispersion. Compressive strength and 

torsional moduli of PET/CNF composite fibers were considerably higher than that for the 

control PET fiber.  

 

6.2. Introduction 
Single1,2,3and multiwall carbon nanotubes4,5,6,7,8 as well as vapor-grown carbon 

nano fibers9 are promising candidates for reinforcing various polymer matrices.  Vapor 

grown carbon nano fibers which typically have diameters in the 50 to 200 nm range are 

also referred to as multiwall carbon nanotubes.  By comparison, diameter of single wall 
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carbon nanotubes (SWNTs) are of the order of 1 nm and multiwall carbon nanotube 

(MWNT) diameter can be upwards of a few nanometers.  Carbon nanotubes as well as 

nanofibers exhibithave good thermal10 and electrical conductivity11 and possess excellent 

mechanical properties. 12    Thermoplastics such as polypropylene 13 , 14 , 15 , , 16 , 17 

polycarbonate 18 , 19 , 20 , 21  nylon,15, 22  poly(ether sulfone) , 23  poly(phenylene sulfide), 24 

thermosets such as epoxy,24,25 acrylonitrile-butadiene-styrene23, as well as thermoplastic 

elastomers such as butadiene-styrene diblock copolymer26  have been reinforced with 

carbon nano fibers (CNFs).  Carbon nano fibers have been blended into polymer matrices 

using conventional mixing methods such as use of twin-screw extruder 13, 20-22 high shear 

mixer,6,24 as well as two-roll mill.26 To improve CNF dispersion and nanofiber/polymer 

interfacial strength, carbon nano fibers have been purified,16 ball milled,15,26,24 

functionalized,16 and surface treated with plasma.24, 15,26  

Ball-milled CNF/nylon 15 composites have slightly improved tensile strength and 

double the modulus of unreinforced material, while ball milled CNF/PP 15 composites 

have double the tensile strength and quadruple the modulus of unreinforced material.  

CNF/PP composites made by air-etched fiber, CO2-etched fibers, and fibers covered with 

low concentrations of aromatics possessed significantly better mechanical properties than 

did fibers whose surface was heavily coated with aromatics.15  In studying ball milled and 

plasma treated carbon nano fibers in epoxy and poly(phenylene sulfide) (PPS) matrices, 

Patton et al 26 found flexural strength to increase by up to 68 % over neat resin at 19.2 % 

reinforcement. 

Along with the efforts towards on improvementing  of matrix polymer the 

mechanical properties, research on preparation of multifunctional materials has was also 
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been carried out. 14,17,26,27,28,29 Lozano et al.17 prepared CNF/PP composites and observed 

a percolation threshold for electrical conduction of 9-18 wt % CNF. With addition of 1 

and 5 wt % HDPE, Wu et al 31 found the percolation threshold of PMMA/CNF (CNF 

from Showa Denko Co.) composites was reduced from 8.0 to 4.0 phr (parts per hundred 

parts) and that it could an be further reduced to 1.5 phr after annealing.  The drastic 

decrease in percolation threshold was attributed to the selective adsorption of HDPE in 

PMMA/CNF composites.  

The rheological,17,22,23 crystallization,16 and thermal degradation behavior 16 of 

polymer/CNF composites have also been studied.  Lozano et al showed that the 

incorporation of 30 wt % CNF into PP raised the working temperature of the resin by 100 

ºC 16.  They also showed that addition of CNF increased the rate of PP crystallization 16. 

Increased polypropylene crystallization rates haves also been reported with addition of 

single wall carbon nanotubes (SWNT) 30.         

In this study, different grades of CNFs have been melt blended into poly(ethylene 

terephthalate).  Melt blended PET/CNF composites have been spun into fibers. 

Processing, properties, and morphology results of these studies are reported herein. 

presented in this paper. 

 

6.3. Experimental  

Various garades of carbon nanofibers (CNFs) used in this study are listed in Table 

1 and were obtained from Applied Sciences Inc., Cedarville, Ohio.  Elemental analyseis 

of the carbon nano fibers wereas carried out byat Atlantic Microlab, Inc. Surface 
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composition of carbon nanofibers was determined by X-ray photoelectron spectroscopy 

(XPS) using a Surface Sciences SSX-100 ESCA spectrometer employing Al Kα X-rays.  

The structure of the CNFs wasas also studied by Raman and FTIR spectroscopies.  The 

Raman spectra were taken at room temperature using a Holoprobe Research 785 Raman 

Microscope made by Kaiser Optical System, Inc. using T785 nm excitation wavelength. 

FTIR spectra of CNFs were collected on Spectrum One FTIR spectrometer made by 

Perkin-Elmer Instruments.  Samples for FTIR measurement were prepared by grinding 

dry carbon nano fibers with potassium bromide, then pressing into pellet of 1 cm 

diameter.  The final spectra were average of 16 scans with a resolution of 4 cm-1.  The 

thermal stability of CNFs in air was studied using TA Instrument TGA 2950 in the 

dynamic heating rate mode.  In this mode, to maximize weight change resolution, heating 

rate wasis continuously adjusted automatically in response to the changes in the sample’s 

decomposition rate.31 The heating rate was set as 50  ºC/min with a resolution of 4 ºC and 

sensitivity as 1 ºC. 

 Poly(ethylene terephthalate) (PET) of intrinsic viscosity 0.9 dl/g was obtained 

from KoSa (Spartanburg, SC) and was cryogenically grounded in powder form of particle 

size in the 0.7 to 1 mm range.  This PET powder was dry-mixed with 5 wt % as received 

CNFs either by ball milling or by hand mixing, and the mixture was vacuum dried at 150  

ºC for over 24 hours.  Melt compounding was carried out on a Haake Rheocord 90 either 

using the twin-screw extruder (TW100) or the Rheomix 600 mixer with roller type rotors.  

The twin screw extruder has four heating zones. The temperatures from the feeding zone 

to die zone were set as 250, 270, 275, and 280  oC, respectively.  The screw speed was 30 

rpm, and  a circular die of 3 mm diameter was used.  The temperature in the Rheomix 
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600 mixer was 280  oC, rotor speed 50 rpm, and the compounding time was 5 minutes.   

During extrusion and melt mixing, a cloud of dry nitrogen gas was maintained over the 

polymer to minimize degradation.  The extruded material was quenched in a room 

temperature water bath, before being fed to the pelletizer.  The PET/CNF from the mixer 

was cryogenically grounded using Alpine Augsburg R010/6 grinder from the Alpine 

American Corp.  Various compounding approaches used in this study are listed in Table 

2. 

For fiber spinning, PET/CNF composites wereas vacuum dried at 150  ºC for at 

least over 48 hours and the fibers were spun at 290 oC using a small-scale fiber spinning 

system (manufacturer Bradford Research Ltd.) using a single hole spinneret of 250 µm 

diameter and were taken up at 54 m/min take up speed.  As spun fibers were drawn at 

120  ºC to their maximum draw ratios (which was about four in most cases) and heat-

treated in an oven at 150  oC for 10 minutes at constant length.  

As received carbon nanofibers were observed in StereoScan 430 scanning 

electron microscope (from Leica Cambridge Ltd) without any conducting coating.  For 

scanning electron microscopy, PET/CNF composite samples (from twin-screw extruder 

or rheomix mixer) and composite fibers were fractured in liquid nitrogen and coated with 

gold using a sSputter cCoater (from Edwards High Vacuum International).  Selected as 

spun PET/CNF composite fibers were dissolved in trifluoroacetic acid at room 

temperature and carbon nano fibers filtered using a 1 µm size filter (Gelman Laboratory 

TF-1000 PTFE Membrane Filter).  Carbon nano fibers removed from this process were 

again observed in the SEM.  
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Single filament tensile tests were carried out at 2.54 cm gauge length on an 

Instron tensile tester (model 5567) at a 100% per minute strain rate.  At least 20 samples 

were tested in each case.  Fiber diameters were measured using laser diffraction.32  

Dynamic mechanical analysis was carried out on a Seiko DMS (Model 220) at 

approximate 1.75 MPa static stress and 0.1 % dynamic strain at 1 Hz at a heating rate of 5 

°C/min.  Initial sample lengths used for testing wereas 20 mm.  Fiber compressive 

strengths wereas measured using by the loop test 33,34 assuming compressive modulus 

values to be equal to those of the same as tensile modulis.  Torsional modulis wereas 

measured using a pendulum test.35 Melting temperatures and enthalpiesy of melting on 

drawn and heat-treated fibers wereas determined using a differential scanning calorimeter 

Q100 (TA Instruments, Inc.).  X-ray diffraction was carried out using the synchrotron 

source at Brookhaven National Laboratory (X-ray wavelength 0.1542 nm). Rheological 

behavior of CNF/PET composites was investigated using a Haake Rheostress RS150 

rheometer with 20 mm parallel plates and 1 mm gap at 290 oC.  

 

6.4. Results and Discussion 

Various grades of carbon nano fibers along with their bulk and as well as surface 

elemental compositions are listed Table 1.  The Vvarious fiber designations used below 

are have been explained in the Table footnote.  PR-21 hais a larger fiber diameter (about 

200 nm) fiber than does the PR-24 (about 100 nm).  The bulk oxygen analyses of content 

in PR-24-AG, PR-24-PPO, and PR-24-ISO show is comparable contents, while the 

surface oxygen content in PR-24-PPO and PR-24-ISO areis higher than the other fibers 

tested.  The sulfur content in PR-24-ISO was higher than the other nanofibers. Bulk 
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oxygen content of the pyrolytically stripped (PS grade) fibers are is lower than thoseat for 

the as grown fibers (PR-24-AG), while the surface oxygen content of the two wereas 

comparable.  High temperature heat-treated fibers showed the lowest oxygen content 

(PR-24-HT in Table 1).  

The ratio (ID/IG) of the Raman intensities of the disordered band (D-band) at 

approximately 1355 cm-1 to that of the graphitic band (G-band) at approximately 1590 

cm-1, can be taken as a measure of the crystalline order in graphitic systems.  The 

sSmaller ID/IG ratios suggests fewerless defects, lessand amorphous carbon, and higher 

graphitic order.36,37 Figure 1 shows Raman spectra of the various carbon nano fibers 

employed in this study.  The PR-21-PS is Tthe largest diameter (200 nm) carbon nano 

fiber, PR-21-PS, and has the highest ID/IG ratio of all the fibers listed in Table 1, 

suggesting that this fiber is most disordered.  The lowest value (for PR-24-HT) observed 

is obviously the result of the high temperature heat-treatment process used in the 

manufacture of that product.  Pyrolytic stripping (PR-24-PS) as well as in-situ (PR-24-

ISO) or post oxidation processes (PR-24-PPO) do not seem to affect the order 

significantly, as the ID/IG ratios for these fibers are approximately equal to is about the 

same as that for the PR-24-AG.  

FTIR spectra of nano fibers show three peaks at ca. 3430, 1575, and 1230 cm-1 

(Figure 2).  The latter two peaks may be assigned to the carbon skeleton38 while the 3430 

cm-1 peak suggests that these CNFs contain hydroxyl functional group on their surfaces.39  

Although the peaks between ca. 3000 cm-1 andto 2000 cm-1 cannot’t be clearly assigned 

for PR-24-AG, one can deduce that after various treatment applied to of as-grown fibers 

(PR-24-AG), can remove some functional groups may be removed, (as PR-24-PS, PR-24-
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PPO, and PR-24-HT show a relatively flat curve in that wavenumber range).  

Thermogravimetric analysis shows that nanofibers, with high oxygen content (PR-24-AG, 

PR-24-PPO and PR-24-ISO), begin to lose weight just above 300  ºC, while for fibers 

containing lower oxygen levels (PR-24-PS and PR-21-PS), the onset of degradation is 

above 500  ºC (Figure 3).  The onset of degradation for PR-24-HT, which has the least 

amount of oxygen, is close to 700 ºC.     

A high resolution transmission electron micrograph of the type of carbon nano 

fibers used in this study is given in Figure 4.  Light part of the image on the right is the 

hollow core, in the middle are the nearly parallel graphitic planes, and on the left is the 

disordered CVD carbon.  In these carbon nano fibers, nearly parallel tube walls appear to 

make a small angle to the fiber axis. make an angle  Scanning electron micrographs 

(Figure 5) show that all as received nano fibers have large aspect ratios (as large as 100 

or higher).  The diameters of these nanofibers vary from several tens of nanometers to 

few hundred nanometers.  Some catalystic impurity and amorphous carbon may also be 

present in these samples.17   The About 2- to 5 % residual weight seen in TGA curves 

may be the result of the presence of the catalystic impurity.  The entangled or clumped 

carbon nanofibers could be expected to retard the rate of matrix slow down the polymer 

penetration by a considerable amount. Calculations have shown that the rate of polymer 

melt permeability in clumps of 100 nm diameter carbon nano fibers is expected to be 

lower 10-4 times slower than that for the 10 µm diameter conventional carbon fibers by a 

factor of 10,000.15  

When the dry PET/CNF mixtures wereas poured in the mixer, the torque (at 50 

rpm) was initially as high as 100 Nm.  However wWithin 2 minutes, however, the torque 
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decreased to below 20 Nm and remained at this level for remainder of the processing 

time.  The intrinsic viscosity of the control PET drops from 0.91 to 0.62 dl/g after either 

extrusion or mixing, which may be a result of hydrolytic degradation, while the fiber 

spinning process only decreased the intrinsic viscosity of PET from 0.62 to 0.61 dl/g. 

Figure 6 shows a scanning electron micrograph of a PET/CNF composites before fiber 

spinning, showing good carbon nanofiber dispersion. N  in all cases.  

Both the control PET, as well as samples 1, 2, 3 and 9 (Table 2) spun quite well.  

The spinneret was frequently clogged during the spinning of samples 4, 5, and 7.  Sample 

6 initially exhibited good spinning behavior but as spinning progressed, it exhibited 

increasing resulted in frequency of t melt fracture.  The viscosity of sample 8 at 290  ºC 

was very low, and yet the spinneret was being clogged frequently during spinning of this 

composite.  Due to these spinning difficulties, no further work was carried out on samples 

4 to 8.  Three of these four unsatisfactory samples contained carbon nano fibers with 

greater than more that 2 wt% oxygen and exhibited had onsets of thermal degradation at 

approximatelyabout 300  ºC.  

Ball milling or hand mixing followed by extrusion (samples 1 and 2) showed no 

obvious differences in spinnability.  However, hand mixing followed by extrusion 

(sample 2) produced samples which exhibited better spinnability over those prepared by 

hand mixing followed by melt mixing (sample 5).  As spun control fibers, as well as 

fibers of composites 1, 2, 3, and 9 were drawn at 120 oC to their maximum draw ratios, 

followed by heat-treatment at 150 oC for 10 minutes at constant length.  A draw ratio of 

approximately 4six was achieved in each case.  Figure 7 shows a scanning electron 
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micrograph of the tensile fracture of PET/NCF as-spun fiber (sample 1). Significant fiber 

pullout can be observed in the photograph., showing that   

The typical stress-strain curves for the drawn and heat-treated fibers are given in 

Figure 8, and their average mechanical properties are listed in Table 3.  Tensile moduli of 

composite fibers are slightly higher than that offor the control PET, and tensile strengths 

of these composite fibers are is either only comparable (sample 9) or lower (samples 2, 

and 3) than that measured for unfilled fibers.  The reinforcement efficiency of nano fibers 

will depend on their intrinsic mechanical properties, aspect ratio, volume fraction, as well 

as on the fiber/matrix interfacial strength.  A modified Cox 40 model can be used to 

calculate the Young's modulus of the PET/CNF composite fiber15.  This model estimates 

stress transfer to nanofibers of length l, diameter d, axial tensile modulus Ef and volume 

fraction V in a matrix of modulus Em with the factor 

)4/ln()1( VfEv
mE

d
l

π
β

×+
=                                   (1) 

where ν is the matrix Poisson ratio. Combining this with the rule of mixtures, modified 

Cox model gives the following equation for Ec:  
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Where q is the orientation factor of the reinforcement, which in our case is nanofiber.  

For one oriented nanofibers, q is 1. Volume fraction of carbon nanofibers in our case is 

3.6% (based on 5 wt% CNF and using densities of 2.0 and 1.40 g/cm3 for CNF and PET, 

respectively), matrix modulus is 10 GPa (Control PET in Table 2), and Poisson's ratio ν 
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for PET is 0.37 41. Figure 9, assuming ideal orientation (q = 1) for the nano fiber, shows 

the predicted modulus for the PET/CNF composite fiber based on equation 2 as a 

function of CNF aspect ratio at various nano fiber modulus values.  This figure shows 

that for the ideally oriented nano fibers, significant reinforcement is expected to be 

obtained when CNF aspect ratios greater than 50 and preferablye 100 are used in 

nanocpomposites. 

To determine the carbon nanofiber aspect ratio in the composite fibers, as spun 

composite fibers were dissolved in trifluoroacetic acid, and nano fibers were removed by 

filtrationered using a 1 µm size sieve filter.  The filtered solutions wereis black in color, 

which suggests that some carbon nano fibers of smaller length passed through the filter.  

Scanning electron micrographs of carbon nano fibers recovered from the composite fiber 

shows significantly reduced nano fiber lengths (Figure 10) as compared to the as received 

nano fibers.  The process of This represents length reduction during mixing, melt 

blending, and fiber processing clearly lead to attrition of the nano fibers.  Decreasing 

carbon nano fiber lengths while detrimental to tensile properties, would be beneficial to is 

good for processing, consistent with as suggested by the good spinnability of samples 1 

and 9.  There may be an optimum nanofiber length which provides for it to be an 

effective reinforcement, yet still facilitating easy processing. Therefore, controlled ball 

milling for a short period may be optimal, helpful, which does not degradinge nanofiber 

length significantly, but providing adequate at the same time disentanglement es them, 

thusto facilitateing melt processing. Though adequate nano fiber disentanglement can 

also be achieved by hand-mixing, it may be less practical than ball milling in industrial 

practice.compounding.  
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Dynamic mechanical properties (Figure 11) show that the storage modulis for the 

composite fibers areis somewhat higher than that for the control PET.  This is consistent 

with the tensile test results.  Variation in tan(δ) behavior as a function of temperature 

between the control and the composite fibers was not considered significant.  While there 

is only moderate improvement in tensile modulus, compressive and torsional properties 

of the composite fibers are increased up to 50% higher as compared to the control fiber 

(Table 3).  Compressive failure in polymeric fibers occurs by yielding which results in 

the formation and propagation of kinks.36  Nano fibers may act as barrier for kink 

propagation, thus resulting in improved compressive strength.  Carbon nano fibers have 

high torsional modulus,42 which may be responsible for the increase in torsional modulus 

in the composite fiber. Tensile modulus is affected by fiber aspect ratio and orientation. 

We have already discussed the issue of aspect ratio. As discussed later, graphitic planes 

in carbon nano fiber exhibit much lower orientation than the PET fiber. These factors 

serve to explain why tensile modulus is not improved significantly.  

Studies on PP/CNF17 and PMMA/CNF composite fibers43 showed that carbon 

nano fibers can be well dispersed into PP and PMMA though conventional mixing 

process.  With the addition of CNF, the compressive strengths of PP and PMMA 

composite fibers could be improved significantly.  Not Unlike PET/CNF composite fibers, 

the moduli of PP/CNF and PMMA/CNF fibers were also increased significantly 

compared to their parent fibers.   

Differential scanning calorimetry results (Figure 14) show that both PET as well 

as PET/CNF composite fibers fully drawn and heat-treated melt at 255 ºC and exhibited 

36% crystallinity.  This was calculated based on the enthalpy of 100% crystalline PET as 
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138 J/g.44  However, although the melting point and crystallinity of two samples (C2 and 

sample 9) are very comparable, their melting behavior does show some difference. Fibers 

containing nano fibers have a narrower melting peak as compared to the control PET 

fiber.  This difference may suggest that composite fibers possess more perfect crystals or 

a narrower distribution of crystal size than the control PET fiber.  Wide angle X-ray 

diffraction (WAXD) pattern (Figure 13) of the composite fiber shows (002) graphitic 

spacing at two-theta angle of about 26.2. From this X-ray diffraction pattern, Herman’s 

orientation factor for the graphitic plane in carbon nanotube was estimated to be 0.22 

while for the c-axis orientation in PET the Herman’s orientation factor was estimated to 

be 0.94. Atomic force microscope images (Figure 14) showed that carbon nano fibers 

exhibit good orientation with respect to the fiber axis. The significant orientation 

difference between PET and carbon nano fibers obtained from WAXS at least in part is 

due to the fact that graphitic planes in the nano fibers are not aligned parallel to the nano 

fiber axis. However The low graphitic plane orientation further explains the relatively 

low modulus of the PET/CNF composite fiber. TEM studies on CNF found the average 

misorientaion of graphtic layer to that of the fiber axis is around 15o, which implies a 

much lower tensile modulus of the CNF (50 GPa) than previous reported.45 

Figure 15 shows the shear viscosity of control PET, and composite samples 2 and 

9.  At low shear rates (below 10 s-1), composite samples have higher viscosity than the 

control PET, while at high shear rates (100 s-1) viscosity of all three samples was the 

same. The composite samples exhibited pseudo-plastic behavior throughout the entire 

range of shear rates used in this study, while the control PET exhibited Newtonian 

plateau. Similar viscosity behavior has also been reported on polypropylene composites 



 122

filled with vapor grown carbon fiber VGCF46, and on polycarbonate filled with multiwall 

carbon nanotubes. 47  

 

6.5. Conclusions 

Poly(ethylene terephthalate) (PET) resin was compounded with several grades of 

carbon nanofibers, each at 5 wt % filler loading.  Compounding methods included ball-

milling, high shear mixing in the melt, as well as extrusion using a twin-screw extruder.  

PET/CNF composite resins were then melt-spun into fibers using conventional PET fiber 

spinning conditions.  Morphology and mechanical properties of these composite fibers 

have been studied and show that CNFs can be incorporated into PET matrix with good 

dispersion.  While tensile strength and modulus were not increased significantly by the 

addition of nanofibers, compressive strength and torsional moduli of PET/CNF 

composite fibers were considerably higher than that for the control PET fiber. 
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Table 6.1. Characterization of various carbon nanofibers (CNFs) used in this studya 

 
 

a. Designation and post processing method were obtained from Applied Science, Inc. 
b. ID and IG are the relative intensities of the D and G bands of Raman spectra, respectively 

(details in text). 
c. Based on the results of XPS, H and N are not considered.  
d. Element analysis was performed by Atlantic Microlab, Inc. 
e. PS indicates pyrolytically stripped. 
f. Polynuclear Aromatics Hydrocarbons.  
g. Grade 21 is reported to be a larger diameter fiber than 24. 
h. AG stands for as grown. 

Surface 
Composition (wt%)c

Composition (wt%) by element 
analysisd CNF Processing 

method ID/IG
b 

C O S C O H N S Other

PR-24-HT 
Fiber 

graphitized at 
3000 oC 

0.7 
99.2 0.8  99.1 0.3 0.4 0 0 0.2 

PR-24-PSe Surface cleaned 
of all PAHsf 

1.6 97.9 2.1  96.3 0.6 0.6 0.6 0.4 1.4 

PR-21-PSg 
High surface 

area version of 
standard fiber 

3.1 
95.0 5.0  96.5 1.2 0.4 0.4 0.3 1.2 

PR-24-AGh 
Slight surface 
contamination 

by PAHs 

1.5 
95.5 4.5  94.1 2.2 0.7 0.6 0.5 1.8 

PR-24-PPO 

Post production 
chemically 
oxidized 

version of PR-
24-AG 

1.6 

92.9 7.1  94.5 2.1 0.4 0.6 0.4 2.0 

PR-24-ISO 
In situ oxidized 
version of PR-

24-AG 

1.8 
90.6 7.6 1.8 95.0 2.2 0.7 0.7 1.1 0.3 
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Table 6.2 Processing of PET/CNF (5 wt%) composite 
 

Compounding 

Sample1 code CNF used 
Dry mixing2 

Melt 
mixing

5 

C1 None  E 

C2 None  M 

1 PR-24-PS BM3 E 

2 PR-24-PS HM E 

3 PR-21-PS HM E 

4 PR-24-AG HM E 

5 PR-24-PS HM M 

6 PR-24-PPO HM E 

7 PR-24-PPO HM M 

8 PR-24-ISO HM E 

9 PR-24-HT BM4 M 
 
1. C1 and C2 are control PET samples 
2. BM: ball milling; HM: hand mixing PET powder with CNF for about 10 min before melt mixing 
3. Ball milling for 24 h 
4. Ball milling for 1 h 
5. E: twin-screw extruder; M: Rheomix 600 mixer  
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Table 6.3. Mechanical properties of PET/CNF (5 wt%) composite fibers 
  

Sample 
code 

Fiber 
diameter 

(µm) 

Tensile 
modulus 

(GPa) 

Tensile 
strength 
(GPa) 

Elongation 
at break 

(%) 

Compressive 
strength 
(GPa) 

Torsional 
modulus 

(GPa) 

C2* 24 ± 3 10 ± 3 0.43 ± 
0.08 26 ± 2 0.08 0.7 

2 27 ± 6 11 ± 2 0.33 ± 
0.06 18 ± 7 0.12 1.0 

3 27 ± 5 11 ± 3 0.25 ± 
0.10 13 ± 8 0.10 0.9 

9 25 ± 2 11 ± 2 0.42 ± 
0.06 20 ± 4 0.09 1.1 

*C1 has similar mechanical properties as C2. 
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Figure 6.1. Raman spectra of various carbon nano fibers. 
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Figure 6.2. FTIR spectra of various carbon nano fibers 
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Figure 6.3. Weight loss in air as a function of temperature in various carbon nano fibers.   
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Figure 6.4. TEM image of the wall of a carbon nano fiber (from Applied Sciences Inc.). 

Distance between graphitic planes is 0.334 nm. 

 

 

(a) (b) 
 

 

Figure 6.5. Scanning electron micrograph of as received carbon nano fibers: (a)PR-24-
PS; (b) PR-21-PS. 
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Figure 6.6.  Scanning electron micrograph of PET/CNF(PET/PR-24-HT) composite 
(sample 9 in Table 2). 
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Figure 6.7.  Scanning electron micrograph of PET/PR-24-PS as spun fiber (sample 1 in 
Table 2). 
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Figure 6.8. Typical stress-strain curves for drawn and heat-treated PET/CNF composite 
fibers. 
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Figure 6.9. Cox model estimation for PET/CNF composite fiber tensile modulus 
assuming ideal CNF orientation. 
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Figure 6.10.  Scanning electron micrograph of carbon nano fibers extracted from 
PET/PR-24-PS as spun fiber.  

1 µm 



 135

 

1.0E+09

1.0E+10

1.0E+11

0 50 100 150 200 250 300

Temperature (oC)

E
' (

P
a) 3

2
9

C1

 

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

0 50 100 150 200 250
Temperature (oC)

ta
n 

( δ
)

2
3
9

C

 
Figure 6.11. Dynamic mechanical properties for drawn and heat treated PET/CNF 
composite fibers (sample numbers refer to Table 2).  
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Figure 6.12. Differential scanning calorimetry scans of drawn and heat-treated PET (C2) 
and PET/CNF (9) fibers. Sample numbers refer to Table 2. 
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Figure 6.13. WAXD pattern of PET/CNF composite fiber. 
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Figure. 6.14. Atomic force microscope image of PET/CNF composite fibers.  
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Figure 6.15. Shear viscosity for CNF/PET composite 
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CHAPTER VII 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

7.1. Conclusions 
 

PET fiber is a highly structured material, in the sense that the fiber properties  

strongly depend on fiber morphology, i.e. crystallinity, crystal structure, as well as  the 

orientation of amorphous and crystalline regions. The amorphous regions of the fiber 

play significant role in determining  the thermomechanical properties and dimensional 

stability. The density of physical crosslinks in the amorphous region either by chain 

entanglements or by crystallites, the effective chain length between crosslinking points, 

chain segmental orientation and mobility are important factors to consider when 

attempting to modify the structure of PET fiber by either changing the fiber processing 

conditions or by modification of its chemical structure.       

In this thesis, it has been shown that in the case of PETBB copolymer , addition of 

more than 45 mole percent bibenzoate units has brought profound changes in fiber 

structure and properties. Crystal structure changed from PET type crystal to PEBB type 

crystal structure at 35 mol% of  BB. In 45 to 65 BB composition range, the copolymers 

are able to crystallize with considerable degree of crystallinity. The crystals thus formed 

are relatively large in lateral direction but the thickness along the polymer chain is limited 

due to random distribution of the two comonomer units. These thin plate crystals are 
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distributed randomly along the fiber direction with extremely high orientation. 

Amorphous region of drawn PET fiber has low orientation fa ~0.4, however in the case of 

high BB containing fibers the orientation factor of the amorphous regions is ~0.8. While 

the amorphous regions of PET fiber consists of less rigid PET  chain segments, the 

amorphous regions of high BB containing fibers consists of more rigid PET/BB chains. 

These differences contribute to the much improved tensile and thermomechainical 

properties of PET/BB 45, 55 and 65 fibers.  

In the second part of this thesis, PET/PBA fibers were UV crosslinked after 

prolonged irradiation. Crosslinked structures were identified by solid state NMR 

spectroscopy. Crosslinking results in improved tensile and thermomechainical properties 

as well as improved solvent resistivity. However, the property improvements were less 

than desired and the crosslinking time was too long to be practically meaningful. This 

was attribute to the following reasons. First, the probability for phenyl bisacrylate group 

encountering at 15 mole percent of PBA concentration in the copolymer is considered 

low to give a high enough crosslinking density that is significant to compared as the 

density of physical entanglement in PET fiber. Second, the effective penetration depth of 

UV irradiation was found to be relatively low. Unreacted phenyl bisacrylate groups act as 

strong UV absorber, thus forming a screening effect, resulting in reduced UV intensity. 

The steric requirements of the reaction are also stringent for cycloaddition to occur 

between units in amorphous regions, especially under the glass transition temperature of 

PET.  

For the PET/CNF composites, no significant improvement in fiber tensile 

properties was observed in this study by the addition of carbon nanofibers. This was 
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particularly attribute to carbon fiber breakage during melting spinning and fiber 

processing. CNF recovered from composite fibers were found to have significantly 

reduced length. While the orientation of CNF in PET fiber were found out to be generally 

good, X-ray diffraction indicated the misorientaion of the graphite layers in CNF. TEM 

studies on CNF found the average misorientaion of graphtic layer to that of the fiber axis 

is around 15o, which implies a much lower tensile modulus of the CNF (50 GPa) than 

previous reported. However, the compression and torsional properties of the composite 

fibers were significantly higher than the control PET fiber. Presence of nanoscale objects 

within the fiber prevent kinking and kink propagation causing compression failure.  

 

7.2. Recommendations for future work.  

7.2.1. PET/BB 

Further annealing of high BB containing fiber at suitable temperatures has the 

potential to further crystallize the fiber, as the amorphous chains are highly aligned. 

Keeping the polymer in the melt state for longer time during melt spinning may help the 

development of more stable liquid crystalline phase. Use of specially designed spinneret 

can result in further improvement in chain orientation. In terms of chemical structure, it 

would be worth  making blocky structure of PEBB if transesterfication during melt can 

be limited. One may also try to use longer linear aromatic monomer fragment.   

 

7.2.2 Crosslinking  

Further increase in PBA concentration may incur situation similar to PET/BB 

copolymer system. Addition of more PBA unit will increase the chain rigidity and help 
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orientation. Then crosslinking may be more likely due to higher functional group 

concentration as well as better orientation. Above certain PBA concentration, the crystal 

structure is expected to be changed to PBA type. It will be interesting to see crosslinking 

happen in the crystalline regions.  

Crosslinking groups be incorporated as short side chains, which may be more 

mobile and thus yield higher crosslinking efficiency. It may also be desirable to allow 

functional groups come off from the branch, free to move and crosslink with in the matrix. 

A simpler version of that would be to use both blend type and copolymer type 

crosslinking agent at the same time.    

7.2.3 Carbon nanotube reinforcement  
 

Mutiwall and single wall nanotubes of appropriate diameter and well aligned 

graphite layers along the tube axis are likely to be the best candidates for mechanical 

property reinforcement. However MWNT and SWNTs are more difficult to disperse. 

There will always be balance between interaction and processability. The interface area 

and the interaction between polymer chain and the nanotube will increase with the tube 

length and its aspect ratio, which is also likely to increase the melt viscosity.   

 


