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ABSTRACT 

A methodology for synthesizing the electric load for a system starting 

from the elementary device models is proposed. Since the methodology is 

physically based and captures the stochastic nature of the decision processes 

which generate the load, it is more suitable than identification based 

approaches in applications such as load management. It generates a hierarchy 

of models from the customer or building level to the bulk power level. At 

each level, the methodology consists of four steps, the representation of 

primitive components, the classification of components, aggregation and model 

validation. This research focuses on modeling the load demand of a large 

number of similar devices at the lowest level. 

Each elementary device in the system is represented by two models: the 

functional model which gives the "on" or "off" status of the device and the 

electric device model which summarizes the effects of voltage and frequency. 

Only loads with similar functional and electric characteristics can be replac-

ed by an equivalent model. For such a homogenous group, statistical aggrega-

tion yields a model consisting of coupled ordinary and partial differential 

equations. The methodology is used to model the space heating of a large 

number of houses. Simulation of cold load pickup is used to illustrate the 

main features of the final model. Data requirements for such models are 

discussed and found to be modest. 
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1. INTRODUCTION AND SUMMARY 

1.1 Project Goal  

The objective of this project is to develop a methodology which can be 

used to synthesize models of power system load at various points in the sys-

tem. The methodology is physically based, i.e., the models are synthesized 

from physical models for the elementary devices (loads) in the system and 

their composition. The models are potentially useful for many areas of power 

system operation and planning such as automatic generation control, security 

assessment, emergency state control, restorative control, load management, 

operations scheduling, generation and transmission expansion planning, etc. 

The emphasis of the project has been in developing the overall methodolo-

gy for synthesizing load demand models in particular. This is an area where 

traditional approaches have been inadequate in certain application areas such 

as load management and restorative state control. Demand models for a parti-

cular class of devices (loads) are developed in detail to illustrate the 

feasibility of the approach. 

1.2 Background and Motivation of Research  

The modeling of power system loads is a very important problem since 

loads are ultimately the driving force behind the entire system. Power system 

load models can be divided into two types according to the kinds of questions 

which they address. The first type consists of load response models. These 

relate the real and reactive power injected at some point in the system to the 

voltage and frequency. The second type consists of load demand models. They 

provide the power demand at a given point in the system at some (present or 

future) time. 
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Load response models are useful for on-line operations such as automatic 

generation control, detection of emergencies, transient stability analysis and 

so on. Traditionally, they have been motivated by the need for simplicity [1-

3], with loads frequently in the form of a constant resistance, inductance, 

capacitance, or a combination thereof. These models are usually inaccurate 

when the system undergoes large excursions outside its normal steady state. 

More elaborate models based on finding the equivalent of a group of loads are 

also available [4-7]. 

Load demand models can either be long term (years) or short term (days to 

minutes). Long term load demand models are used primarily for planning and 

depend on economic factors which generate changes in the capital stocks of 

loads. Short term load demand models, which are the emphasis of this re-

search, are needed in the operation of the system. For example, total system 

load is needed for operations scheduling; bus load forecasts are useful for 

security assessment as well as online control. Furthermore, effective load 

management requires the use of load demand models. 

Short term load demand modeling and forecasting has been studied exten-

sively. Traditional approaches [8-18] are mostly based on model identifica-

tion. Empirical load data at the bulk (system or subsystem) level are used to 

find the parameters in a postulated model structure. These approaches can be 

roughly divided into two kinds: those utilizing the stochastic state space 

model [19] and those utilizing time series or ARIMA (autoregressive integrated 

moving average) models [20]. Since excellent surveys [21,22] and bibliogra-

phies [23,24] are available, we shall not go into the details here. A compar-

ison of these models can also be found in the thesis [25]. 

The identification based approach models the total load as seen by the 

utility by a black box, with little reference to the internal processes which 
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generate the demand and the load composition. Historical data is then used to 

generate the parameters values for- the black box. This approach may have been 

satisfactory in the past when things are quite static. With the introduction 

of new practices in operating electric power systems, the limitations in these 

approaches have begun to surface. One such practice which calls for the use 

of better models is load management. 

Load management can be defined as "the deliberate control or influencing 

of the customer load in order to shift the time and amount of use of electric 

power and energy" [26]. The use of load management thus requires a better 

understanding of the physical composition of the load and the customer 

behavior than is possible from an identification based model. For example, 

after a service interruption to a group of customers, the behavior of the load 

depends very much on the composition of the load and its physical characteris-

tics. Historical data can be useful in arriving at a load model, but only 

after a model structure appropriate for the group has been found. 

This need has motivated the research in so called physically based load  

modeling [27-39]. This approach explicitly recognizes the fact that the load 

at any point in the system is determined by a large number of devices with 

different characteristics and belonging to different consumers. A "bottom up" 

synthesis should then be used to generate the load at any point starting from 

the elementary component loads. The synthesis process can be either simula-

tion based, as in [27,28] or analytic as in [29,30,37-39]. Simulation based 

approaches have the potential of being more realistic since more complicated 

models can be used. They are not, however, suitable for analytical studies. 

Much of the work in physically based load modeling assumed that the 

component demands are more or less deterministic. Exceptions are the work 

reported in [38-40]. However, the fundamental decision processes which gener- 
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ate these demands are stochastic in nature. 	Emphasis on the stochastic 

aspects of the problem has been a feature of our research. 

1.3 Overview of Results  

We have developed a methodology for synthesizing the electric load at a 

point in the system starting from a description of the elementary devices. 

The fundamental decision processes which generate the load for each device are 

modeled by means of stochastic processes. These models are physically based 

and reflect the basic energy conversion function of the devices responding to 

the needs of the customers. 

The overall synthesis methodology is hierarchical in nature, moving in 

stages from the distribution level to the bulk power level. At each level, 

aggregation techniques are used to generate an aggregate model for a group of 

loads below that level. Four steps are needed at each level: modeling of the 

primitive loads, classification of loads, aggregation and model validation. 

These steps have been investigated for the lowest level. 

A canonical model for an elementary device is shown to consist of two 

parts: a functional model which accounts for the dynamics of energy storage 

in the load and an electric device model which describes the effects of a 

change in the voltage and frequency. These two models correspond to the load 

demand and response models at the elementary component or device level. 

Since aggregation of load response models is a better known topic, our 

emphasis in aggregation has been on load demand models. The functional models 

can be aggregated statistically to obtain the load demand models. The feasi-

bility of the aggregation technique has been illustrated on a class of func-

tional models which represent space heating or air conditioning. The result 

consists of coupled partial differential equations which can be used to 

describe the fraction of "on" loads in a class at any particular time. This 



model can be used to study effects of load management schemes as well as the 

payback phenomenon in cold load pickup. For this class of loads, the param-

eters needed for the model can be obtained readily by collecting data on the 

individual loads. Simulations have been conducted to highlight the use of the 

aggregate model using cold load pickup as the scenario. 

1.4 Report Organization  

This report is organized as follows. 	Section 2 describes the overall 

modeling methodology. A canonical model for the elementary component load is 

presented in Section 3. In Section 4, the classification of the elementary 

components loads into classes which can be aggregated is discussed. Section 5 

presents the aggregation of functional models to obtain an aggregate load 

demand model. The technique is applied to a class of loads corresponding to 

space heating. 	Some analytic results pertaining to this model are also 

given. 	Numerical simulation results for the cold load pickup problem are 

given in Section 6. Section 7 discusses the data requirements for this model 

as well as its validation. Some concluding remarks and suggestions for future 

research are given in Section 8. Several appendices contain the miscellaneous 

proofs and derivations. 

Some additional results related to this research can also be found in 

[25]. 
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2. OVERALL METHODOLOGY 

2.1 Model Hierarchy  

The overall load modeling methodology is bottom-up, i.e., the load model 

at any point in the system is to be synthesized using the elementary component 

loads as the starting point. Because of the structure of the system, it is 

natural to synthesize the system load in a hierarchical manner. Figure 2.1 

illustrates the natural hierarchy associated with the load models. At the 

lowest level in the hierarchy, we have the individual electrical devices 

(components). The next level consists of individual buildings. In many cases 

these correspond to individual customers or billing units. The individual 

customers are connected to the substations which constitute the next level. 

The substations are then connected to the overall system. Frequently the 

customers are partitioned into groups for load management. Some elementary 

loads corresponding to large machines may be directly connected to the substa-

tion or bulk power level. 

The overall load model can then be synthesized in a hierarchical 

manner. A load model at the building level can be found for the group of 

electrical loads in the building. The various building load models can then 

be used to synthesize the load model at the substation level. The substation 

level loads are then aggregated or combined to obtain the load model at the 

bulk power level. Frequently, however, it may be desirable to find models at 

the substation level from the elementary devices since there may be little 

similarity among the loads at the building level to warrant any meaningful 

aggregation. 

The different levels may exhibit different characteristics. For example, 

individual buildings are connected to a substation by the distribution network 
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which is usually radial. On the other hand, substations are usually connected 

by a network which is not radial. These differences in the network configura-

tion as well as in the types of loads will result in different load models at 

each level. However, certain basic steps will be used to generate the load 

model at one level using the load models at the lower level. These steps will 

be discussed in the next subsection. 

2.2 Procedure at Each Level  

At each level in the modeing hierarchy, four basic steps are needed to 

generate the load model at the next level. They are: 

(a) Modeling of the Primitive Components 

A model is postulated for each component at that level to reflect the key 

features affecting the load. If the level is the lowest one, then this step 

models the elementary component loads in the system. At any other level, the 

primitive component should already have a model which is the result of model-

ing efforts at a lower level. On the other hand, sometimes further manipula-

tion may be needed to bring out the relevant features at a given level. 

(b) Classification of Loads 

One would expect that only component loads which are similar can be 

aggregated or combined into equivalent loads at the next level. It is thus 

necessary to classify the loads into equivalent classes for which simplified 

models can be obtained. Similarity is a function of the representation of the 

load chosen for the level. At the lowest level, similarity can be defined in 

terms of demand and electrical characteristics. 

(c) Aggregation of Primitive Components 

The loads which are similar in characteristics are then aggregated to 

obtain an equivalewnt model for the group. In general, both load response and 

load demand models will be generated. The exact aggregation procedure depends 
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on the models to be aggregated. For example, load response models represented 

by dynamic system equations can be aggregated using techniques from system 

theory. Statistical techniques may be needed for aggregating load models 

represented by stochastic processes. 

(d) Model Validation 

The resulting models can be validated by comparing the predictions of the 

model with real data or a detailed simulation. 

As a result of these four steps, we gradually move up the model hierarchy 

to arrive at a model with the desired level of detail. We should note that 

for this procedure to be meaningful, the primitive components should have 

parameters which are either known or can be estimated from measurements. 

Furthermore, the complexity of the model is not spedified a priori, but 

depends on the natural complexity in the system reflected in the number of 

dissimilar groups and other factors. 

These four steps will be elaborated in the rest of the report by focus-

sing on the modeling of load demand at a substation starting at the lowest 

level. The application of the methodology at other levels will be similar 

although the detailed aggregation technique depends on the particular level 

and can be quite complicated if networks are involved. 
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3. REPRESENTATION OF ELEMENTARY COMPONENT LOAD 

3.1 Introduction  

Since the load modeling methodology is physically based, we need to 

develop models for the individual components or devices which constitute the 

elementary (primitive) loads in the system. These include individual lights, 

air conditioners, space heaters, water heaters, refrigerators, washers and 

dryers, etc., in the residential sector, and various industrial loads such as 

synchronous and induction motors, or arc furnaces in the industrial sector. A 

similar list can be given for the commercial sector. The power demand of each 

of these components is affected by a variety of inputs such as human use 

patterns, the weather, the system voltage and frequency. The exact relation-

ship depends on the particular component in question but may be dynamic in 

nature since the present load may depend on the past history of the influence 

factors. Furthermore, the relationship is usually nonlinear. Thus the model 

of an elementary component load is in general a nonlinear dynamic system. 

Such nonlinear dynamic systems are difficult to analyze and even more diffi-

cult to aggregate. To facilitate our analysis we hypothesize a canonical 

structure for each device based on an examination of the process by which the 

influence factors affects the load. This canonical model, used to represent 

each elementary load, consists of the interconnection of two dynamic sys-

tems: a functional model which relates the demand for the service of the 

component to the functional state of the device and an electrical model which 

summarizes the effect on the load demand due to changes in the voltage or the 

frequency. 

In the following subsections, we shall elaborate on the decomposition of 

the load model. 	This decomposition allows us to establish the connection 
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between load demand and load response at the component level. Once aggrega-

tion has been carried out, the same questions can then be answered at the 

system level. This canonical model has been reported previously in [31] and 

[41]. 

3.2 Structure of Individual Component Load Models  

For any individual component, the load (real and reactive power) depends 

on the time (hour of the day, day of the week, etc.), the weather, human use 

patterns, the voltage and the frequency of the electric supply. The depen-

dence is generally dynamic in nature so that a component load model is a 

dynamic system with the following inputs and outputs: 

Inputs - weather 

human use patterns 

voltage 

frequency 

Outputs - real power 

reactive power 

Note that the human use patterns may be a function of the weather which 

is usually dependent on time. The inputs can be divided into two types: 

a. Energy demand-generating inputs: These are inputs which generate a demand 

for the energy provided by the component. They depend on the time of the day, 

the weather and the human use pattern. The energy demand is the net input 

into the component load model and is independent of the voltage and frequen-

cy. It may be modified by actions such as time-of-the-day pricing and other 

incentives. 

b. System inputs: Inputs such as voltage and frequency originate from the 

supply end of the power system. They are independent of the individual ser-

vice demands, but are determined at the system level by the total load con- 
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nected, the configuration of the network and the state of the generating 

system. 

These two types of inputs interact to determine the output (load) of the 

component in the following manner. The main function of each component is 

energy conversion, transforming electrical energy into other types of energy 

on demand. This demand is the energy demand and depends on certain inputs as 

described above. The energy needed is provided by the energy converter and 

its supply depends on the system inputs, namely, the voltage and frequency. 

In many components, the physical construction allows for some storage of the 

energy demanded. In this case, a demand for the energy of the component may 

not result immediately in a demand for electricity. Rather, a control  

mechanism determines the operating state of the energy converter, whether it 

should be on or off, or somewhere in between, based on the energy storage and 

the energy demand. Table 3.1 lists several residential component loads, the 

types of energy demanded and whether storage is possible. 

The partition of the inputs into two types affecting different parts of 

the component with distinct functions suggests the decomposition of the load 

model into a functional model and an electric device model. The functional 

model has as its external inputs all factors which affect the energy demand of 

the component and generates the operating state of the energy converter as its 

output. Physically, it corresponds to the energy storage portion of the 

component (plus the part of the environment that affects the energy storage) 

and the control mechanism. The electrical device model has as its external 

inputs the voltage and frequency of the power supply and generates the elec-

trical loads as the output. Physically it corresponds to the energy conver-

sion portion of the component. 



Table 3-1. Residential Components as Energy Converters 

Component Type of energy demanded Possibility of energy storage 

Incandescent lights Thermal radiation in the 
visible range 

No 

Hi-Fi equipment Mechanical energy in the 
audio range 

No 

Electric oven Thermal energy Yes 

Electric water 
heater 

Thermal energy Yes 

Electric space 
heater 

Thermal energy Yes 

Washer Mechanical energy No 

A 

13 
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There is interaction between the two subsystems in the load model. The 

functional (operating) state of the functional model evolves according to the 

power supplied by the energy converter as well as the energy withdrawal due to 

the external inputs. The operation of the electric device model, of course, 

depends on the functional state. The interconnection of the two models are 

given in Figure 3.1. 

Mathematically we have the following. Let: 

u(t) be the vector of system inputs, i.e., voltage and frequency at time 

t, 

v(t) be the demand due to human use pattern 

w(t) be the weather input 

y(t) be the power demand at time t. 

Then the component load model is 

	

y(t) = F(t,u(T) ,v(T) ,w(T) , T 4 t) 	 (3.1) 

where F depends on the component under consideration. Note that in general 

y(t) depends on the past histories of the inputs. The decomposition of the 

load model implies that (3.1) is now replaced by the following three equations 

	

y(t) = F
e
(t,u(T),m(T), T 4 t) , 	 (3.2) 

p(t) = G(y(t)) 
	

(3.3) 

and 

	

m(t) = F
f
(t,v(T),w(T),p(T) T 4 t) 
	

(3.4) 



Voltage 
Frequency 

u(t) 

Weather 
w(t) 

Human Use 
Pattern 
v(t) 

Functional Model 

(Energy Storage 

and Control) 

Functional 

(Operating) State Electric Device 

Model 

Energy Conversion) 

Power Demand 

y(t) 

Power Supply 

p(t) 

Load Model 

Figure 3-1. Decomposition of Component Load Model 
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where m(t) is the functional state of the load and p(t) is the power sup-

plied. Fe  describes the electric device model and F f  the functional model. 

Note that as far as Fe is concerned, m(t) is an external input. Similarly, 

p(t) is the external input to the functional model. p(t) represents the 

feedback from the electric device model to the functional model and summarizes 

the effect of the system input u(t) on the functional state. In a water 

heater, for instance, a drop in the thermal power supplied by the energy 

converter due to a drop in the voltage will result in longer time for the 

water to heat up to the temperature of the thermostat setting. The functional 

state will then evolve at a different rate. 

3.3 Functional Model  

The functional model is a very important part of the overall component 

model. It is highly dependent on the intended use of the device and its 

interaction with the environment. Two devices which have the same electrical 

construction may have radically different functional models if they serve 

different purposes. One example is two identical heaters installed in two 

houses with different thermal characteristics. The functional model charac-

terizes the evolution of the load due to environmental and human use 

factors. In the absence of voltage and frequency changes, the functional 

model determines the dynamic behavior of the load demand. It is essential for 

components with energy storage and causes the component service demand and the 

electrical power demand to be in general different. As a result, a good 

understanding of the functional model is essential if one wants to understand, 

predict and manage the electrical power load. 

Given the power p(t) supplied by the electric device model, the func-

tional model relates m(t), the operating state of the electric device model to 

v(t) and w(t) which generate the energy demand for the component. One cannot 
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over-emphasize the point that the operating state of the component may not be 

the same as the energy demand. Take two water heaters with the same construc-

tion as an example. Identical demands for hot water may cause one water 

heater to turn on but not the other, depending on the initial temperature of 

the water. This is true whenever energy storage is possible in the compo-

nent. Thus, m(t) should not be assumed a prior but should be computed given 

v(t), w(t), and p(t). 

the external inputs into the functional model are v(t) and w(t). Since 

the use patterns for individual users are not known exactly, v(t) is a 

stochastic process. It is also reasonable to assume that conditional on w(t), 

the demand v(t) for different users will be independent. This will be used in 

the aggregation procedure later. The weather w(t) is actually a stochastic 

process, but can be assumed to be known if we want to characterize the 

behavior of a large number of component loads given the weather. m(t) may 

take on continuous values, as in the case of an incandescent light with a 

dimmer, or only discrete values as in a water heater. For discrete m(t), 

there may be two (Boolean or on-off) states as in the single element water 

heater or multiple states as in the dual element water heater. We shall be 

mostly concerned with the Boolean case. 

Before a general functional model is introduced, we shall consider three 

typical classes of functional models. These three classes are not exhaustive 

but represent the bulk of component loads in the residential sector. 

3.3.1 Memoryless Functional Nadel  

In many devices, such as incandescent and fluorescent lights, television 

sets, etc., there is no energy storage in the component. The functional model 

becomes a memoryless  or static system and m(t), the functional state of the 

component depends on the instantaneous value of v(t), the demand for service 

of the device. 
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m(t) = F
f
(t,v(t)) 
	

(3.5) 

Statistically, if v(t) has only two states such as in a fluorescent light 

and on and off being the two states, it can be represented by means of an 

alternating renewal process [42]. The durations over which the demand is on 

is modeled as a sequence of independent random variables t l , t2 , ... Similar-

ly the durations over which the device is off is modeled as another sequence 

of independent random variables T i , T 2 , ... An interval ti is followed by an 

intervalt.,then by t i+1  and so on. This is illustrated in Figure 3.2. m(t) 

will exhibit the same type of on-off behavior. The probability distributions 

oftherandomvariablest.and T i  may depend on time as well as another 

process such as the weather. If the probability densities of t i  and T i  are 

exponential, then v(t) is a Markov jump process with two states. 

In a general case, the magnitude of the demand v(t) may also be random 

but constant over each on period. We then have a general jump process. The 

functional state will also be a general jump process. This is the situation 

where the load is variable, as in an incandescent light with a dimmer. 

3.3.2 Weakly Driven Functional Model  

In some devices, the electrical energy is converted into other forms of 

energy which can be stored. Furthermore, the external factors which influence 

the energy storage behave like random noises with fairly flat spectral densi-

ties. An example may be found in the cooling or heating system of a build-

ing. In a residential building, heating and/or air conditioning account for a 

major part of the electrical load. The load model of such systems has been 

considered in [32]. The electrical part of the device turns on or off when 

the temperature reaches certain fixed values. To be specific, we shall 
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Figure 3-2. Service Demand Process v(t) 
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consider an electric heating system with a resistive heater activated by a 

thermostat. Heat is lost from the building through the walls, the floor and 

the roof. In addition, heat is also lost when somebody enters and leaves the 

building and gained from human activity. This type of effect can be modeled 

as noise. Functional models for a building can be very complicated. As a 

start we shall consider a highly simplified linear model given by the follow-

ing stochastic differential equation 

Cdx(t) = -a(x(t) - x
a
(t))dt + dv'(t) + p(t)m(t)b(t)dt 
	

(3.6) 

where 

C 	 is the average thermal capacity of the building 

a 	is the average loss rate through floors, walls and ceilings, 

etc. 

v'(t) 	is a Wiener process of zero mean and variance parameter v 

x(t) 	is the temperature inside the building 

xa (t) 	is the ambient temperature 

p(t) 	is the rate of heat supply from the resistive element 

m(t) 	is the binary functional state: 1 (on) or 0 (off) 

b(t) 	is the binary variable representing the load management control 

by the utility (1 if the device is connected, 0 otherwise). 

Division of (3.6) by C yields 

dx(t) = -a(x(t) - x a (t))dt + dv(t) + Rm(t)b(t)dt 	 (3.7) 

where the definition of a and R is obvious. v(t) is a Wiener process with 

variance parameter a = vC
-1/2 
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The switching of m(t) depends on the thermostat settings. Let 	and 

be the temperature at which the heater is turned off and on. Then for arbi-

trarily small time increment At; 

m(t + At) = m(t) + n(x(t),m(t);x 4. ,x_) 	 (3.8) 

where it is defined as: 

0 x < x < x + 
(x ,m;x + ,x) = 	-m 	x + < x 

	
(3.9) 

+m x < x_ 

Thus the functional model is composed of two interconnected subsystems 

(as shown in Figure 3.3): a linear system with a continuous state x(t) whose 

evolution depends on m(t) and a nonlinear system with discrete state m(t) 

whose transition is triggered by x(t). The continuous state system is the 

energy storage component while the discrete state system corresponds to the 

control mechanism. Notice that if the noise v(t) is absent, then the switch-

ing of m(t) between 0 and 1 is periodic. When noise is present, the cycling 

of m(t) is no longer deterministic. This type of cycling is observed in 

electric heaters and several other devices. 

3.3.3 Strongly Driven Functional Mbdel  

The strongly driven functional model has the same structure as the weakly 

driven functional model of the previous section. v(t), the service demand, 

however, is now not a noise process. Rather, it is conscious demand by the 

consumer and can be modeled as a jump process, i.e., a random driving input 

which is piecewise constant. An example of this type of functional model can 



p( t) 

w(t) 

continuous 
state system 

v(t) 

x(t) 
	

m(t) 

discrete state 
system 

Figure 3-3. Interconnection of Continuous and Discrete States 
Subsystems. 
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be found in the electric water heater. A simple model of this, derived in 

Appendix A is given by 

Cx(t) = -a(x(t) - xa (t)) - v(t)(xd  - xi (t)) + p(t)m(t)b(t) 	(3.10) 

wher e thesTnbols"e" def inec""Pper1d bcA- For x .l (t) constant the equa- 

tion is similar to equation (3.6) except that v(t) is now piecewise constant 

with random switching times and random amplitudes. The discrete state m(t) 

switches between 0 and 1 according to equation (3.8). 

Note that in this strongly driven model, m(t) is no longer a cycling 

process but depends on the arrival of the service demands. Furthermore, its 

switching time may also depend on the magnitude of v(t). 

3.3.4 Stochastic Hybrid State Model  

We now consider a general stochastic hybrid state model which includes 

all the special cases discussed earlier. 

Given p(t), the feedback from the electric device model, each functional 

model is a dynamical system driven by v(t), the service demand which is a 

stochastic process. The output process m(t) is the electric device operating 

state. While it is possible for m(t) to take on continuous values, the more 

interesting case is when m(t) is a jump process with a finite set of possible 

values. If one seeks a state variable description, then two kinds of states 

will be present, a continuous state x(t) and a discrete state m(t) which also 

happens to the output. This type of model is a stochastic hybrid state sys-

tem, which can be formalized as follows. 

Let x(t) be a n-dimensional vector. Let the service demand v(t) be of 

the form 



v 1 (t)  
v(t) = 11 

v
2 
(t) 

(3.11) 
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where v 1 (t) is a Wiener process and v2 (t) a jump process. Both v 1 (t) and 

v2 (t) may be vector-valued. 

The continuous state x(t) evolves according to the following stochastic 

differential equation 

dx(t) = f(x(t),m(t),v 2 (t),t)dt + g(x(t),m(t),v 2 (t),t)dv i (t) 	(3.12) 

where f and g are known functions. Note that the dependence on p(t) has been 

suppressed for the time being. The evolution of x(t) thus depends on the 

driving processes v 1 (t) and v 2 (t) as well as on the discrete state m(t) and 

the supplied power p(t) which is included in the functions f and g. 

The discrete state  m(t) takes values in a set 

M =
1
, m

2
, ...1 
	

(3.13) 

which may be assumed to be finite. For the special cases considered before in 

the previous sections 

M = {o, 11 . 	 (3.14) 

The switching of m(t) depends on the continuous state x(t). 	In the most 

general form, the probability of transition of m(t) from mj  to m i  at time t 

depends on the past histories of both x and m. This can be expressed as 

Pr(m(t+d,t) t ,mt ,m(t) = m.I = A..(x t ,mt ,t)dt 
	

(3.15) 



where 

xt  = fx(s), s < t} 

t 
m = {m(s), s < t} 

(3.16) 
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andA il istheinstantaneousrateoftransitionm.3 
 tom.given xt and mt . 

In Figure 3.3, the two subsystems can thus be deScribed by equations 

(3.12) and (3.15) respectively. It is obvious that both the weakly driven and 

strongly driven functional models are special cases of this general model. 

Since little is known about the aggregation of this general model, we will not 

pursue this formalism in this report. Further discussion can be found in 

references [31] and [41]. 

3.4 Electric Device Models  

The electric device model relates the electric power demand of the device 

to the supply voltage and frequency given the operating state of the electri-

cal portion. 

y(t) = F
e
(t,u(t) ,m(T) , T < t) 
	

(3.17) 

m(t), the operating state or functional state, may be Boolean, indicating 

whether the electrical device or energy converter is on or off. Or it may 

take on a continuous range of values as in the mechanical load a motor is 

called on to deliver. u(t), the system voltage and frequency, is an external 

input. y(t) is the electrical power demand on the supply system. p(t), the 

power supplied by the energy converter depends on the inputs m(t) and u(t) and 

affects the functional model. 
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Two components having identical functional models may have different 

electric models if the constructions of the energy converters are different. 

Under these circumstances, the responses of the two components to the same 

change in voltage or frequency will be different. For example, incandescent 

and fluorescent lights behave differently when there is a dip in the line 

voltage. When there is a feedback from the electric model to the functional 

model, the functional states will then also behave differently. 

Strictly speaking, the initial states of the electric device models are 

also quite important. In many components, however, the dynamics of the elec-

tric models is much faster than that of the functional model so that for all 

practical purposes, one may deal with a steady state electric device model. 

Since the modeling of electrical devices has been extensively studied 

(see references [4,5]), the rest of this report will focus on functional 

models and their aggregation. 
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4. CLASSIFICATION OF LOADS 

4.1 The Classification Problem  

Our goal is to represent the behavior of a group of loads by an equiva-

lent model. Obviously components which have widely different characteristics 

cannot be grouped together. Thus the next step in the load modeling methodo-

logy is to identify the component loads which can be considered together as a 

group for which an aggregate load model can be obtained. The groups should be 

disjoint but collectively they should span the entire set of loads. With this 

decomposition, the overall load can then be represented in terms of all the 

equivalent group loads. 

4.2 Homogeneous Groups  

In this section we provide a scheme for partitioning the elementary 

component loads into groups with similar characteristics. As we have seen in 

Section 3, each elementary device can be characterized by a functional model 

which reflects its energy supply and demand dynamics and an electric device 

model which is related to its electrical characteristics. Furthermore, a 

device in general belongs to only one customer indexed by k. This suggests 

the following natural partitioning of the elementary loads. Consider a parti-

tioning of all functional models into similar classes indexed by i and a 

similar partitioning of all electrical device models into similar classes 

indexed by j. All functional models in the same class would have similar 

energy storage characteristics. Likewise, all electric device models in the 

same class would react to a change in voltage and frequency in the same way. 

An elementary device is thus indexed by the triple (i,j,k) where 

i: functional class to which the device belongs; 

j: electrical class to which the device belongs; 
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k: kth customer. 

At the minimum the loads in each homogeneous group should have similar 

functional and electrical characteristics. Thus only devices or components 

with the same indices i and j can belong to the same homogeneous group. This 

condition is, however, not enough to guarantee similarity in the load behavior 

since different customers with the same components may generate different load 

profile if their use patterns are different. Thus we would further partition 

the set of customers into classes with similar use patterns such as education 

level, income, family size and so on. The effect of weather can also be 

incorporated if a class extends only over a limited geographical region. In 

some applications such as load management, it may also be desirable to have 

these classes coincide with the customers which are to be controlled together 

in load management. 

As a result, we now have the following partitioning of the elementary 

component loads. Two loads indexed by (i,j,k) and (i',j',k') are similar if 

i=i', j=j' and k and k' belong to the same customer class. A set of similar 

loads then form a homogeneous group. A homogeneous group thus consists of 

devices which are similar in functional characteristics, electrical character-

istics and use patterns. 



5. AGGREGATION OF FUNCTIONAL MODELS 

5.1 Problem Formulation  

Given a classification of the loads with homogeneous groups, the aggrega-

tion process attempts to find an equivalent model for each group of loads. 

This represents the most difficult part in the load modeling methodology and 

the bulk of the research has been devoted to this topic. 

Suppose the homogeneous group consists of the collection of devices 

represented by 107. Let Pi (t) be the power demand of the i th  device at time 

t. If the time constants are such that the electric and electromechanical 

transients can be nelgected, one has 

.(t) = P. 	flm.(t) P 	(Vi 	1 (5.1) 

wherePi  .(V,f) as function of voltage and frequency is given by the steady 

state electric device model, and milt) is the functional state. 

At the substation level, the total power demand for the group is given by 

n 
1) 07, f , t) 1  

1 	
(t) 

i=1 
(5.2) 

where we have assumed that the loss in the network is negligible. If the 

group is assumed to be homogeneous, the electric device models for the loads 

should be similar, i.e., for all i 

P.
1 
 (V,f) 	P 

eq
(V,f) 
	

(5.3) 
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where Peq (V,f) can be obtained as 
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If we define 

n 
P
eq

(V,f) =— 
1 L P,(V,f) 
n 

i=1 

m(t) = 	m. (t) 
n .L 	1 

1=1 

(5.4) 

(5.5) 

to be the fraction of loads which are "on" at any time, then (5.2) can be 

approximately written as 

P(V,f,t) m n P
eq

(V,f)m(t) 
	

(5.6) 

The following can be noted: 

- Equation (5.6) is an approximation which improves as the similarity of 

the individual models increases. 

- If it is desired to account for one type of dynamics (e.g. electro-

mechanical transients associated with induction motors running 

compressors for cooling), Peq (v,f) can be replaced by Peq (v,f,t) in 

(5.6) where Peq (v,f,t) represents the dynamics of an "equivalent" 

machine. 

- Although (5.6) can be modified to account for electrical transients, 

the calculation of m(t) need not be affected since any response model 

dynamics (electrical or electromechanical) are usually much faster 

than functional model dynamics (thermal). Thus the functional model 

"sees" only the steady-state of the response model. 

Equation (5.6) elucidates the advantages of the decomposition introduced in 

Section 3. This decompositon allows the separation of the aggregation problem 

into two decoupled tasks: electric device model aggregation (equation (5.4)) 



m.(t 
1 

m
n
(t) 
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to obtain the load response model and the functional model aggregation (equa-

tion (5.5)) to obtain the load demand model. The former is a deterministic 

aggregation problem and has been treated elsewhere [4-6]. Functional model 

aggregation, schematically represented in Figure 5-1, is a new stochastic 

aggregation problem and is our principal interest. The objective is to deter-

mine the dynamics of m(t) which will be called the aggregate functional  

state. Physically, m(t) represents the fraction of devices in the "on" state 

at time t. 

n 
m
2 
(t m.(t) 

i=1 1  

1 r 
m(t) = T1: . 1, Et(t) 

1=1 

n  

Fig. 5-1. Schematic Representation of Functional 

Model Aggregation. 

The solution of the aggregation problem is considered only in the weakly-

driven case (air conditioning and electric space heating). Important diffi-

culties occur at two levels with the strongly-driven case: the precise model-

ing of service demand and the mathematics associated with a jump process. 

In the following section, the aggregation problem is solved for the case 

of a homogeneous group of weakly-driven devices. This group consists of 

nearly identical devices with nearly identical functional models. A reason-

able example of this can be found in a large apartment complex. 
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5.2 Aggregation of a Homogeneous Group  

consider the case of a large homogeneous group of n weakly-driven 

devices. Also, for ease of discussion, suppose the devices are electric space 

heaters. We would like to compute m(t) for the group. The aggregation is 

based on the following assumptions. 

Assumptions  

a. Common external inputs: The loads are geographically close together 

so that any variations in the common inputs such as weather can be 

ignored. 

b. Elemental Independence: Conditional on the weather and all other 

common inputs, the devices behave independently. In more rigorous 

terms, conditional on the common input proces such as the ambient 

temperature xa (t), all the random processes m i lt) are independent 

random processes. 

Based on these assumptions and using Kolmogorov's law of large numbers 

[43], for n "large enough," m(t) can be approximated by 

m(t) = E w1  (m.(t)) V i = 1,...,n 
	 (5.7) 

where E
w
(•) is the expected value operator conditional on weather treated as a 

known time varying input. 

Equation (5.7) is fundamental to our research. First, it is a process of 

going from a discrete random variable (m(t)) to a continuous one 

(Ew (m i (t))). As such, it can be considered as a diffusion approximation (by 

analogy to the process of going from a discrete random walk to a continuous 

Brownian motion). Secondly, in the context of stochastic processes, we can 

view the homogeneous group as an approximate but finite ensemble realization 
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of the stochastic process described by equation (3.7). The evolution of the 

states from t=0 to t=c° for any individual electric space heater would repre-

sent a particular sample path of the process. In this light, equation (5.7) 

can be interpreted as the process of estimating a statistical property of an 

ensemble (Ew (mi(t)) via a finite sample average m(t). 

5.2.1 Aggregate Functional Ibdel  

In this section, we present the results of the aggregation procedure 

which will be derived in Appendix B. 

Theorem 1 

m(t) evolves to the following system of coupled ordinary and partial 

differential equations, 

2 
dm 	0 	a , 	

1 	C12  a  f 
dt = 2 	ax Lit, (x+i t ' 	2 	ax -013% x—i t)  

(5.8) 

where f
1a

(A,t) and f
ob (AA) are the solutions of the following Coupled Fokker-

Planck Equations (CFPE): 

Dfl 
	 a 

at (A,t) = 	((a(A - xa (t)) - b(t)R)f1 (A,t)]as 

a2  a2 
+ — 	f (X,t) 

2 	as2 1 

in regions a, b of Fig 5-2 and: 

at

af
o 	a 	 a2 

 a2 
(A,t) = 	((a(A - xa(t))fo(A,t)] 	r 	2 fo (AA)  ax 

(5.9) 

(5.10) 

in regions b, c of Fig 5-2, subject to the following boundary conditions. 

Absorbing Boundaries: 
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a 	 f
lb 

m(t) 

x 

f
ob 

411111--- 

f 
oc 
	temperature axis 

x 
A 

Figure 5-2. Illustration of Dynamical System. x_ and x +  are the lower 
and upper edges of thermostat dead band respectively. m(t) 
is the total area under the "on" density at any time. The 
arrows represent the direction of temperature drift (in the 
case of electric space heating). 
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f
lb

(x
+
,t) = fob (x_ ,t) = 0 	t :> 0 	 (5.11) 

Conditions at Infinity: 

f
la

(-co,t) = f 
oc 

 (+03 ,t) = 0 	t > 0 	 (5.12) 

Continuity Conditions: 

f
la

(x
-
,t) = f

lb
(x
-
,t) 
	

t > 0 	 (5.13) 

f
ob

(x
+
,t) = f 

oc 
 (x 

+
,t) 
	

t > 0 	 (5.14) 

Probability Conservation: 

a 	 a —  aA fla (x - ,t) + aA flb (x - ,t) + 3A fob (x 
-
,t) = 0 , 	t > 0 	(5.15) 

a 	 a 	 a f 	x ,t) - 	 t > 0 	(5.16) ax oc 	aA fob ( x+'" 	flt.(x+'" = 

The above results can be interpreted in the following way. f
1
(A,t) 

and f
o (A,t) are actually probability densities for the "hybrid 

states" ix(t),m(t)1 of the functional model. To be more precise 

f
1 
 (A,t)dA = Pr[(A < x(t) 4 A + dA) n (n(t) = 1)] 

	
(5.17) 

fo (A,t)dA = Pr[(A < x(t) 4 A + dA) n (m(t) = 0)] 
	

(5.18) 
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Equations (5.9) and (5.10) describe how the probability densities of the 

temperature x(t) evolve given that it is in a given functional state m(t). 

The evolution depends on the heat (temperature) gain and loss rate as well as 

the noise variance parameter. Equation (5.8) and m(t) can be written as 

where 

= go (t) 	g1 (t) 

a2 afob 
g
o
(t) = 	 (x_,t) 
 2 	as 

(5.19) 

(5.20) 

and 

	

a
2 of 1b

g 1 (t)= - 
7- 	 ax  (x + ► t) 
	

(5.21) 

g 1 (t) and g o (t) are the rates of probability absorption from "on" to "off" 

through boundary x+ , and from "off" to "on" through boundary x_ respectively, 

at time t. Thus dm(t)/dt is the rate of loads being turned on minus the rate 

of loads being turned off. 

The boundary conditions fall into four classes. 	(5.15) and (5.16) are 

the conservation equations. They couple the partial differential equations 

(5.9) and (5.10) together and state that the probability lost by the on state 

has to move into the off state and vice versa. 

5.2.2 Approximate Analysis of the CFPE Model  

In this section we consider a simplified version of the equations (5.9) 

and (5.10) which are more amenable to analysis. It is assumed that most of 

the densities f
1
(X,t) and fo (X,t) are confined within the dead band. This 

should generally be true in practical situations. The dead band itself is a 

very narrow range of temperature (typically 1.1 °C). This means in equation 

(3.7), the charging rate (Rb(t) - a(X - x a (t))) and the discharge 

rate (a(X - x a (t)) are practically constant (for constant weather conditions, 
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and for the duration of the control b(t)). Designate these values by r and c 

respectively. Under the assumption (5.9)-(5.10) reduce to: 

at 	 3A 

3f1 	 a 	
1 	2 

a2 32 

2 1 
(A,t) = -r 	f (A,t) + 	f (A,t) 

as 
 

af a 
ato (A,t) = c 7)7  fo (A,t) + 2

2 82 2 fo(A,t) 
3A 

(5.22) 

(5.23) 

This approximation of the CFPE model becomes a system of space-homogeneous, 

linear time-invariant Fokker-Planck equations coupled through boundary condi-

tions (5.15)-(5.16). In the following, we develop results pertaining to 

(5.22)-(5.23) in the transform domain. 

For a given function f(t) denote by f*(s) the unilateral Laplace trans-

form of f(t) when it exists. Laplace transformation of (5.22)-(5.23) and 

(5.11)-(5.16) yields the following two groups of equations: 

*  
2 	2 

P1 - 	 sf1 
	 1 
(A,$) - f° (A) = -r 

3A  f1 	2 
(A,$) + 	

a 	
f

*1 
(A,$) 

as2  

in regions a, b and c of Fig. 5-2 and: 

f
1
(x
+ ,$) = 0 

lim * 
A+-03 

f 1(A ,$) = 0 

(5.24) 

(5.25) 

(5.26) 

* 	 a 	* 	 * 
- as f ia ( x-' s) 	fib (x-' s)  = 	

2
go (s)  a 

(5.27) 

a 	02 a 2  
P2 - 	 sf

o
(A,$) - f

o
(A) = c 	f o 
	2 
(A,$) + 	f (A s) ax as2 o ' 

(5.28) 
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in regions b and c of Fig 5-2 and: 

f
o
(x
-
,$) = 0 

lim00 fo
*
(X s) = 0 X++ 

a 	* 	a 	* 	 2 	* 
foc 	7TT (x .$) 	fob ( x+is )  = 	— 1 g 1 (s)  a 

(5.29) 

(5.30) 

(5.31) 

where go  and g 1  are defined in (5.20) and (5.21) 

f 1 (A,$) and f
o
(X,$) are completely decoupled except through boundary 

conditions (5.27) and (5.31). Therefore, if g i  (s) and go  (s)are considered to 

be known functions of s, systems P 1  and P2  can be solved separately. 

System P 1  is now considered. The second order linear differential equa-

tion (5.24) in A, with constant coefficients can be written in state form as: 

 

* f 
1 (A,$) 

-a7 	(A ' s)  

   

* f 
1 
 (X,$) 

3 
f 1 	is)  

  

a 
DX 

 

0 	1 

2s 	2r 

a2 62 

 

A  ,o,, 
'1" 

(5.32) 

     

        

         

Using the state transition matrix [19] for the above system, it is possible to 

write the solutions in regions a and b of Fig. 5-2 in terms of the value of 

the state at A = x_, i.e. in terms of f 1
(x

-
,$) and 

a 	* 
and 

Tr flb(x- 
,$) respectively: 

a 	* 
5T f  ia (x—' s)  or f

1
(x,$) 

* 
of 

f* (X,$) = (1)11 (X-x  - ,$)f*
1 
 (x _,$) ,$) + 

12 
 (X-x- 
	ax 
,$) 	(x 

—
,$) 

1  

12  
(X-x,$)f° (x)dx (5.33) 
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* 	 * 

	

3f
1 	 * 	 3f 1 

3X 
(X

' 
 s) = 0

21
(X-x

-
,$)f

1
(x

-
,$) + 0

22 
 (X-x

- 
 ,$) ---- (x — ,$) ax  

X 

J 

	 gi 

- 22 J 4"22' --x ' s)1(1
)(x)dx 

 
a x_ 

where it can be shown (Appendix C) that: 

  

(5.34) 

j(A,$) = [0 ij (X,$)] = exp 
0 
2s 

a
2 

1 
2r 

cc 
2 

 

A 	 (5.35) 

    

and 

'2 (s )A 
0 11 (A, $ ) 	6-1 (s) [ 6 1 ( s ) e 

6
1 
 (s)X 

(s)e  ] (5.36) 

-1r 
0
12

(X,$) = 6 (s)Le
el(s)A - e'2(s)x 

2s -1 	r 
6

1
(s)X 	6 (s)X 

0
21

(X,$) =
2 

— 6 (s)Le 	- e 2 	] 
a  

-1 	

0 1 (s)X 	e2 (s)X 

+ 22 (X ' s)  = 6(s)[81(s)e 	- 0 2
(s)e 

(5.37) 

(5.38) 

(5.39) 

With 

2 	, 2 	
L
, 2,1/2 

6(s) = 	r + BO ) 

a2 
t 

 

 

 

s 
6 1 (s)  = r 2 + 6( 2 ' 

 a 
(5.40) 

( 
6
2
(s) = --- - 	

s) 6 

a
2 	2 

(5.41) 
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Now consider boundary condition (5.26). It requires that as A 	-00 , f l (X,$) 

* 
remains bounded. However, the expression (5.33) for f l (A,$) contains an un- 

6 2 (4A 
stable exponential since for Re[s] > 0 as A 	-co, e 	+ +co. The unstable 

component of f 1 (A,$) can be written: 

-6 (s)x
- 
	 -6

2
(s)x

- a 	* 
lot) = e 2 	6 (s)6 -1 (s)f * (x 

-
,$) - e 	(s)e 	 fia(x-'s) 

A6 (s)A 
4.  2

2 
 f 6 - 1(s)e

-0
2
(s)x 

t _o.(x. 2  
1 a  

In order that f
1
(A,$) remain bounded, it is necessary that: 

* 
-6 2 (s)x_ * 	 -6

2
(s)x

- 
af

1a 
(6 1  (s)e 
	)f

1 
 (x - ,$) - e 	 aA (x -,$) 

2  , 	-co 	-6 2
(s)x 

 e + 	 (x)dx = 0 --2 r 

a 	
1 

Boundary condition (5.25) yields: 

	

6
2
(s)A 	6 1 (s)A 

f
1

• 

(x
+
,$) = 0 = f 1 

 • 

(x - ,$)[e 1 
 (s) e 	- 6 2 (s)e 	16-fl (s) 

* 

-1
6

1
(s)A 	6 (s)A af 

e 2 	] a lAb  0 (sqe 	- 	(x_,$) 

x+ 
22 f 0-1(sqe

6
1
(s)(x -x) 	6

2
(s)  (x -x) 

- e 	 lf° (x)dx 
1 

a x 

where A = x+ - x- (width of the dead band). 

Recalling (5.27) and using (5.43)-(5.44) we obtain: 

-00 6 (s)(x -x) 	 -6(s1A 
f1(x - ,$) = 2(a 2 6(s)) -1 [(g* ( s) - 1 e 2 
	- 	f

o
(x)dx) (1-e 	) 

o 	 1 
x 

(5.42) 

(5.43) 

(5.44) 
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-6 (s)A x. 	6 1 (s)(x+-x) 	62(s)(x +-x) 0  e  1 	f 	(e 	 - e 	 (x)dx] , 
x 

(5.45) 

af
l 	 -1r (x ,$) = 2(0

2
0(s)) 	1. 0 (s)g 

 
ax

a 	
— 	 0

(s)(1 - e
-6(s)A

)  

x 	- 
+ f e 

co 

(s)(x-xj 0  
f i ( x)dx (0 2 ( s) — el(s)e—e(s)A) 

-0
1
(s)A x 	0

1  (s) (x+ -x) 	62  (s)(x +-x) 0  
+ 0

1
(s)e 

f+ (e 	 e  
)f

1 (x)dx] , 
x 

* 
af

lb 
x
- 
 —e

2 
 (s)(x-x

-
) 
o 

ax 	
- rr 	 f 

(x —
,$) = 2(0

2 	1 	* 
0(s)) 	Lg0 (s) + 	e 	 f (x)dx) 

(5.46) 

0
2
(s) - e l ( s ) e-0(s)A) 

—e
1 
 (s)A x 	e

1 
 (s) (x - x) 	6 (s)(x

+ 
 -x) 

2 	) o +
1
(s)e 	

f+(e  
- e 	 if

1
(x)dx] . 

x 
(5.47) 

* * 
* 

af
la 	

af 
lb 

From knowledge of boundary conditions f i (x_,$), ax  (x_,$), -- T— (x_,$) and 

* 
equation (5.33) it is possible to write an expression for f

1
(A,$) everywhere. 

In region a of Fig. 5-2, using (5.33), (5.45), (5.46), we have: 

A 6 2 (s)(A-x) 
e
1' fA'' 

s' = 2(0 20(s)) -1 [ f e f
1
° (x)dx(1 - e

6(s)(A-x)
) 

_Go 

6
1 (s)(A-x -) -0 

(1 - e
(s)

) 
go (s)e  

x 	0 (s)(A-x) 	6(s) (x-x +) f+ e  1 
(1 - e 	 )f i

0  
(x)dx] 

A 
(5.48) 

Similarly, in region b of Fig. 5-2, using (5.33), (5.45), (5.47) we have: 
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6(s)(A-x + 
	* 
) 	6

2
(s)(A-x ) 

-rr 	 )r 

	

f
* 	 2 	1 

	

1 	
L((A,$) = 2(a 6(s)) 	1 - e 	 )(go (s)e 

A 	6 (s) (A-x) 	 x 	6 (s) (A-x) 	6 (s) (x-x ) 
J 	2 	° 	) 	r+ 	

1 
+ j e 	 f(x)dxj + j e 	 f° (x) (1-e 	 )dx1 

1  _co 
(5.49) 

Recalling (5.21) we have: 

a2 af lb 
g

1 
 (s) = - 	ax  ( ys) (5.50) 

Differentiation of (5.49) with respect to A yields: 

of 
(A,$) = 2(a2 6(s)) 	(1 - e

6(s)(A-x+ ) )3 	
6
2 
(s) (A-x ) 

DA 
-1 r 	 r * 

yTT  Lgo (s)e 

A 6 (s) (A-x) 
J e  2 f° (x)dxl 

_co 

2 	
6(s)(A-x+ ) 0 2 (s)(A-x ) 	A 02 ( 6)(A -x) 

e
r * 
Lgo (s)e 	 + f e 	 f

1
°  

a2 	
(x)dx] 

co_  

2 	r - 2(a 6(s)) -1  1. 1 - e 	 1f1(A) 

6
1
(s)(A-x) 	

2 	1 
6(s)(x-x+ ) 

-( 
+ f 	6 (s)e 	 2(a 6(s)) 	(1 - e 	 )f°1 (x)dx 

A 	1 

(5.51) 

At A = x+ , (5.51), (5.50) and (5.25) yield: 

6
2
(s)A 	x

+  62 
 (s)(x

+
-x) 

J + j e 	 fo(x)dx g 1 (s) = g o (s)e 	 1 _co 
(5.52) 

0(s)(A-x+ ) 0  
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Assuming go (s) is known, equations (5.48)-(5.49) and (5.52) represent the 

solution of P1 in the transform domain. 

We now turn to the problem of deriving corresponding results for system 

P2 , i.e. for the "off" density. Lengthy computations can be avoided if it is 

recognized that by using a change of variable: 

y =x+x- A 

and replacing r by c and g
o
(s) by g 1 (s) in equations (5.24)-(5.27), system P1  

can be transformed into a system formally identical to P2 . 

To verify this, note that: 

f
1 
 (A,$) = f

1 
(

• 

-y+ x
+ 
 + x- , s) = f

1 
(y,$) 

	

of 
1 	 3f1 

Tic f l

• 

(A,$) = - ay  (-y + 	+ 	 3y 
s) = 	(Y,$) 

a2 
	

* 
32 f*

1  32 f*
1

' 

3A
2 

f
1 ' 	2 
(A s) = 	(x

+ 
 + x- 
	 2 3 
- Y.  s) = - 	(Y,$) 

	

y 	 y a  

Substituting (5.53)-(5.55) into (5.24), and replacing r by c yields: 

*, 
*, 	 0' 	, 
	ay 

3f 1 	, 
, 

, 	2 	3 2 	*' 
sf

1 
(y,$) - f 1 (y) = c 	(y,$ ) + 	--I f l ( Y' s)  -77-- 	

ay 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

Futhermore (5.25)-(5.26) yield: 

*1 
f

1 
(x
-
,$) = 0 	 (5.27) 

lim 	*' 
f
2 (Y,$) 0 	 (5.58) 



x 	1 1 (s)(x-A) 	y(s)(x
-
-x) 

o + f e 	 (1 - e 	 )fo (x)dx] 
A 

(5.61) 
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Finally, using (5.54) and replacing g o (s) by g 1 (s) in (5.27) yields: 

Ty-  f1c(x+•s) - ay f 1b (x+' s)  =
-

2 g 1  (s) 
a 

(5.59) 

Clearly (5.56)-(5.59) is a system of equations formally identical to (5.28)- 

(5.31). This means that in general: 

f
o
(X,$) = f

1 
 (A,$) = f 1  (x+  + x-  - A,$) 
	

(5.60) 

i.e., the solution of system P 2  can be derived from the solution of system P 1 

 by replacing A by (x+  + x_ - A), r by c and g o (s) by g 1 (s). 

Using the above remark, the following results are obtained: In region b 

of Fig 5-2, 

y 2 (s)(x+ -A) 	+my ( s)(x-A) .. f* (X,$) = 2(a
2 
 y(s)) -1 [ (  (g *  (s)e 	 + 
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+00 y
2
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F 
fo (A,S) = 2(a2  Y(s)) -1  L f e 	 e(x)dx(1 - e 	 ) 

A 
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g1(s)e 	
(1 - e 
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A 	Y i (s)(x-x_) 	-y(s)(x_-x) 
+ 	e 	 (1 - e 	 :(x)dx 	 (5.62) 

Finally: 

* 	12 (s)A 	44° Y 2 (s)(x-x -) o 
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+ f e 	 fo (x)dx 
x 

(5.63) 

where in (5.61)-(5.63): 
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Equation (5.52) and (5.63) yield: 
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(5.64) 

(5.65) 

(5.66) 

x 	y
2
(s)A

2
(s)(x -x) 

_ e+ e  
go (s) F(s) 	 1 

f°(x)dx 

+0, 	Y 2 (s)(x-x ) 

J 
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f: 
F(s) 	

(x)dx 
 

(5.67) 
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where in (5.66)-(5.67) 

F(s) = 1 - e 
0 2 (s) + y 2

(s))A 

Recalling equations (5.19)-(5.21) we have: 

dm ( s) = go(s) - gi(s)  

(5.66)-(5.68) yield: 

—_* 	+co 2 dm 	 (1 	- e
8
2
(s)A

) 	
Y (s)(x-x ) 

(s) = f 	 e 	- f° (x)dx 
dt 	 F(s) 	 o 

x 

y (s)A 
(1 -

F
7
s; 	

) '2(s)(x+-x) 1 + 	 f(x)dx 

(5.68) 

(5.69) 

Equation (5.69) gives an expression for the Laplace transform of 
dm  (t), 
dt 

i.e. the rate of change of the aggregate functional state m(t) for the homo-

geneous control group. Equations (5.48)-(5.49), (5.61)-(5.62), (5.66)-(5.67), 

(5.69) together represent the complete solution of the CFPE model in the 

transform domain. The inversion problem of the Laplace transform in equation 

(5.69) is, however, nontrivial. 

5.2.3 Steady State Densities  

In this section, the steady state solution (if it exists) for the system 

(5.22)-(5.23) is determined by applying the final value theorem [44] to the 

Laplace transforms in equations (5.48), (5.49), (5.66) and (5.67). The fol-

lowing results are obtained. 
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where in (5.70)-(5.73), a superscript ss stands for steady-state, and: 

0 0 

lim 
s g1(s) = 

lim 	  
s+0 	s+0 	-0 2 (s) 	Y 2 (s))6 [5 f

° (x)dx 

1 - e 

J+ 0 + 	f
1
(x)dx] 

_00 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

However: 

03 	
x 

 

 

+ r J f:(x)dx + j f, 
0 
(x)dx = 1 

00 	' _ 
(5.75) 

and using L'Hopital's rule: 
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(5.74), (5.76) and (5.77) yield: 
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One can similarly show that: 
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Substituting (5.78)-(5.79) back into (5.70)-(5.73) yields: 

2rx 
	

2rx+ 	2rX 
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ss 	C 	r 	a 	a f
la

(X) - 	 - e 	] a  1(r+c) e 	
e 

(5.76) 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

r - 2-
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 (x

+ 
 - X) 

f ss (x) 	c 	[ 1 - e a 
lb 	t(r+c) 

2c - --- (X - x ) 
- 

ss 	r 	 a2 
f
ob

(X) = t(r+c) [1 - e 	 1 

(5.81) 

(5.82) 
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2 	2 a fs (A)  = 	
 [e a 	- ea 	] e oc 	A(r+c) (5.83) 

Finally, mss , the steady-state of m(t) is given by: 

- 	= r- _ss 
mss 	

t
la (A)dA + Jr+ fslb (X)dA 

x 

 

(5.84) 

Substituting (5.80)-(5.81) into (5.84) we obtain after simple computations: 

m ss 	r+c (5.85) 

Remark 1: The steady-state densities (5.80)-(5.83) are very important because 

they represent the natural state of the uncontrolled system. 

Remark 2: At this point, it is possible to verify whether, at least in a 

steady-state, the constant rates approximation of section 5.2.2 is valid or 

not. One should remember that the approximation rests on the assumption that 

under normal conditions most of the temperature probability densities lie 

within the dead band. A quantitative measure of the validity of this assump-

tion is the fraction of the probability density outside the dead band. 

For the on density, the fraction is: 

x 	 - 

f- 	(X)dA 	a
2
c 	 2 	 2 - 	s 

• [1 - e a  I —2— 	—2  	2r(r+c) 	  _ 	 a T r 	 ] 
la 

X 	 C 	
- 

2 
Ll - e TC 

J+ .E.ss,dx r + c J 	Li 'A' 

2rA 

(5.86) 

— 	 — A where a = a and T = — (average duration of on state). 	For the "off" 

density the corresponding measure is: 
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+0.0 
fssoc(x)dx 	

2 
x+ (71  T' r 	U 

L1 - e 
+0D 	 2 r f s

o
s, x , dx  

' 

(5.87) 

— A 
where T /  =- (average duration of "off" state). (5.86)-(5.87) will be used in 

section 6 where results of a numerical simulation of the CFPE model are 

reported. In both equations, it appears that "diffusion lengths" JVT and 

are the important quantities. 

Remark 3: 	Note the surprising result in (5.85) which indicates that the 

steady state fraction of devices in the "on" state is independent of the noise  

variance. On the other hand, the result is intuitive because: 

 

c  
r + c 

A/7 '  

A/7 + ti/T' 

T 
(5.88) 

SS 
1 / 	T 

(5.88) essentially states that at steady-state, the fraction of devices in the 

"on" state is the ratio of average "on" time divided by average cycle dura-

tion. 

5.2.4 Relationship to Previous Work  

In [29], Ihara and Schweppe have developed on somewhat more heuristic 

grounds a very simple model which closely resembles the approximate CFPE model 

in equations (5.22)-(5.23). The model is a traveling wave-type with a forward 

and backward wave traveling at different speeds (see Fig. 5-3). Although 

developed independently, the Ihara-Schweppe model can be shown to be related 

to our model. This is because it is a limiting case of the CFPE model under 

conditions that are now described. Consider equation (5.69) where the trans- 

d
t i 

form of — is expressed in terms of 0 2 (5), X 2 (s), i.e. r, c and a. Under the 
d 

conditions: 



x 

A1 

f
1  (A, t) 

r 

4 	 

f(A,t) 

4— 
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is• 

temperature axis 

	► - x+ 	 temperature axis 

Figure 5-3. Graphical Representation of the Ihara-Schweppe Model. 
Arrows indicate the direction of temperature drift. 
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a << r , 	 (5.89) 

and: 

	

a << c , 	 (5.90) 

i.e. when the effect of the noise in (3.7) is practically negligible. We have 

approximately: 

a
2 

82 	2 	
2s 

(s) = 	(1 - (1 + 	 )
1 
 j 

	

a 	 r 
2 

2 
1 	a

2
) 

,S —r
2 

(1 - (1 + -r • 2s —) 

	

a 	 r 
 

(5.91) 

Similarly, using (5.90) it can be shown that: 

SY 	) 2 (5.92) 

Equations (5.69), (5.91)-(5.92) yield approximately: 

S , —It 	 -1-0c, 	 —ST 	 — — ( x—x ) 
dm 	 1 	- e  (s) = f 	 • e c 	 (x)dx 

- 
f
o 

dt 	 _ ..._ 	 o 
x
- 1 - e

-s(T+T') 

s I
+ 1 - e

—ST' 	 — — (X
+ 
 -x) 

-
r  o 

1 	 e 	 f
1 
 (x)dx 	 (5.93) 

1 - e
-s(T+T') 

Now define: 



Then: 

x-x 
S — - — (x-x ) 	s( 	+ T)  

To (x,$) = e 	 - e 

X -x 
, - s  - t x+  -x) 	s( 	+ T.) r  

T 1 (x,$) = e 	 - e 
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(5.94) 

(5.95) 

(x-x ) 	 x-x 
To (x,t) = 6(t - 	) - 6(t - T - (J-1)) , 	 (5.96) 

(x+-x) 	 (x -x) 
T (x,t) = 6(t 	) 	o t   )r (5.97) 

where in (5'.96)-(5.97) 6(•) represents the Dirac delta function. 	It is pos- 

sible to show that: 

and 

* 
T
o 
_ _ 	 T T 

00 
M
o
(x,t) = L-1[ 	 ] - 1 	

— 
T + V)] 

1 - e-s(T + T') 	
i=0 ° [x,t-i( (5.98) 

T
1 
— — 

(x, s) 	00 
* 

M 1 (x,t) = L-1[ 	 ] 	/ T1 [x,t-i(T + 7')] 	(5 .9 9) 

1 - e-s(T 	T') 	
i=0 

Substituting (5.98)-(5.99) back into (5.93) yields: 

+00 

dt 
dm 

(s) = f M
o
(x,t)f

o
(x)dx - f

+ 
M

1
(x,t)f

1
(x)dx 

x+ 

(5.100) 

This is essentially the result in [29]. 

5.3 Aggregation of a Non-Homogeneous Group  

The aggregation problem has been considered only for the case of a class 

of devices described by equation (3.9) and where all the parameters involved 
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were essentially identical. Such a class was called a homogeneous group. In 

reality however, some spread in the parameters is to be expected. One way is 

to treat the parameters as random variables themselves. We would like to 

assess the effects of varying the parameters. 

Here, the analysis of section 5.2 is generalized to a group of devices 

exhibiting a measure of parameter spread. Such an aggregate of devices will 

be called a non-homogeneous control group. A perturbation approach is uti-

lized. Let the variable parameters be compiled into a vec- 

tor C = (C
1
,C

2'
...0

p
)
T 

C could contain parameters such as thermostat set•  

points, building insulation parameters, noise variance, weather (as a function 

of geographical location, not time). In this more general framework, a more 

accurate statement of (5.7) is: 

m(t) 2-'E[E[m. (t) 
- 

	 (5.101) 

If we denote: 

m(t,C) = E[m i (t)IC] 	 (5.102) 

Then the system of equations (5.8)-(5.16), i.e. the CFPE model can be inter- 

preted as giving m(t,C) for a particular choice of C. 

Now, assuming that m(t,C) is a smooth function of the parameters around 

their mean value vector 
-o 

 C , and for parameters narrowly distributed around C -o 
 , 

a second order truncated Taylor series can be written: 

7 am 
m(t,U = m(t,C ) + L 	(t,C)I 	(Ci  - C io ) 

i=1 	 C=C 



P  
[ 	/ i=1 

Furthermore, let: 

(5.104) 	yields after 

m(t) 

P 	a2i 
( ti —tio )( tj —tjo ) ] 

1!=10, 

2 
= 	[aii ] 

J 	i=1,...,p 
j=1,...,p 

on both sides: 

lt 	El ai
2  
j 

t=t 
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(5.103) 

(5.104) 

(5.105) 

/ 	2 	aE aE j=1 

EN 	EE - 	)(E - E ) T 

taking expected values 

	

P 	P '  
= m(t,t ) 	+ 	Ilum 2 

i=1 	j=1 ,== at 	at. 	 i 
i 	3 

The following remarks can be made: 

2 
- If covariance terms a.. (or the associated second partial derivatives 13 

in (5.103)) are sufficiently small, then it is reasonable to use the 

CFPE model (equations (5.8)-(5.16)) with parameter vector to  to com-

pute m(t). 

- In case a first order approximation proves insufficient, then (5.105) 

is a second order approximation which requires the estimation of 

2 
covariances a.. as well as the associated partial derivatives. 	If 13 

analytic estimation of these "sensitivity" coefficients is not pos-

sible, a numerical estimation has to be used. 

- As the parameter spread increases, higher order terms have to be 

introduced in (5.105). 	This means in effect the double penalty of 

having to estimate higher order moments of the joint parameters dis-

tribution, and higher order partial derivatives. At this point, it 
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becomes more advantageous to split the large nonhomogeneous group into 

several smaller groups with less parameter spread, and carry out the 

computations for each group separately. 
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6. SIMULATION RESULTS 

6.1 Introduction  

In Section 5 we develop the coupled Fokker-Planck equations (CFPE) model 

to describe the aggregate behavior of a large number of loads. This model is 

novel in the literature, especially in the power system area, although equa-

tions of a similar type have been obtained in studying nerve systems 

[45-49]. 	We have also analyzed an approximate version of this model and 

gained much insight about the steady state behavior. 	Unfortunately, our 

analysis does not apply to the more general time-varying case, or for large 

excursions of the system outside its normal steady state as in the case for a 

power outage of long duration. Therefore, in general one has to resort to 

numerical simulations. 

In this section, results of a numerical study of the CFPE model are 

given. The dynamics of homogeneous, nonhomogeneous and completely general 

groups of devices are investigated. This particular scenario chosen is cold 

load pickup [50]. The expected dynamics of the fractional (or per unit) 

demand in a group of devices following a temporary interruption of power 

supply is considered. All simulations are based on a "completely implicit 

difference scheme" developed in [25]. In selecting the data for the runs, 

effort was made to retain possible "on"/"off" switching time con-

stants (I and T'). However, the data is entirely fictitious and was mainly 

designed for the purpose of illustrating the dynamics of the CFPE model. 

Three groups of figures can be distinguished corresponding to properties of 

homogeneous, nonhomogeneous and general groups respectively. Data for each of 

the runs are given below. 
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6.2 Simulation of Homogeneous Groups  

The sensitivity of the post outage dynamics of an homogeneous group to 

changes in noise variance, average heating rate, and outage duration was 

studied by starting from base case values and observing the effect of a change 

in one parameter at a time. 

In the notation of equation (3.7), base case data was as follows: 

A = 1.1 deg C , 

xa (t) 
- 15 , 

= 35 

= .01774 (deg C mn) -1  , 

R = A = .4 (mn) -1  

n)  -1/2 = 	= 	,_ u 	.3 tni (6.1) 

The data in (6.1) yields approximately: 

- 
T 	T 2  '4  5 mn 	 (6.2) 

i.e. the average duration of the "on" time is approximately equal to that of 

the "off" time and they are both in the neighborhood of five minutes. 

Figures 6-1 and 6-2 demonstrate the effect of a change in noise variance 

for four different values of outage duration. Figures 6-3 and 6-4 demonstrate 
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Fig. 6-1. Dependence of Cold Load Pickup Dynamics on Normalized 
Noise Variance Parameters a. Outage Durations: (a) 1 mn, 
(b) 2mns. Values of a_in (mn) 1/ 2  are 	(1) c = .1, (2) c 

= .3, (3) a = .5, (4) a = 1.0. All other parameters are 
as in base case. 	The horizontal axis corresponds to 
time in minutes. 
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Fig. 6-2. Dependence of Cold Load Pickup Dynamics on Normalized 
Noise Variance Parameter a. Outage Durations are: 
(a) 5mns, (b) 30 mns. Values of a in (mn) -1/2  are: 
(1) a = .1, (2) a = .3, (3) a = .5, (4) a = 1.0. 	All 
other parameters are as in base case. The horizontal 
axis corresponds to time in minutes. 
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Fig. 6-3. Dependence of Cold Load Pickup, Dynamicson the Heating 
Rate Parameter R for an Outage Duration of 30 mn. Values 
RA-1  in (mn) -1  are .3, .344, .4 and .5 for responses (1), 
(2), (3), and (4) respectively. All other parameters are 
as in base case. 
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Fig. 6-4. Dependence of Cold Load Pickup Dynamics on Outage Duration. 
Outage durations are 2, 5, 10, 20, 30 and 50 mns respectively. 
All other parameters are as in base case. 
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the effect of changes in the average heating rate and outage duration respec-

tively. 

6.3 Simulation of NOnhomogeneous Groups  

Here, the effect of some parameter variance within the group was assessed 

by simulating with the mean data as well as two "neighboring" sets of data, 

and using this information to evaluate the sensitivity coefficients in (5.105) 

numerically. Subsequently (5.105) was used to generate post-outage dynamics 

in the nonhomogenenous group for various levels of parameter variance. Only 

the effect of one parameter, namely thermostat set point x_, was considered. 

The average data was identical to (6.1) except for 7:7 = .2 (mn) -1 / 2 . The 

results are summarized in Figure 6-5. 

6.4 Simulation of General Groups  

In this set of runs, the dynamics of a general group were simulated by 

assuming that, at the outset, it has been broken up into its constitutive 

homogeneous groups and, subsequently obtaining aggregate dynamics by super-

position of the individual dynamics for each homogeneous subgroup. 

The general group that was studied was assumed to be made up of sixteen 

homogeneous groups. Data for the homogeneous groups was as follows: 

A = 1.1 deg C 

x
a
(t) x- 

- 15 , 	A = 35 A 

= .01774 (deg C mn) -1 , 

li=r.(mn) 
-1 
 , 
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Figure 6-5. Effect of Spread in Thermostat Set Points on Cold Load 
Pickup Dynamics for a Nonhomogeneous Control Group. Mean 
values are as in section 6.3. -62  represents the normalized 

set point variance. The duration of the outage is 2 mn. 
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= 6 (mn) -1/2 
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for i = 1,...,4, and j = 1,...,4, where in (6.3): 

64 

(6.3) 

=R 	[r.] 

.35 

.4 

.5 

.6 

and v = [a.] = 

.1 

.3 

.5 

.8 

(6.4) 

     

The nominal size of the heating element was assumed to be identical for all 

devices. Several parameter distributions were studied. Each parameter dis-

tribution was characterized by a set of weights, w ij , such that: 

Pr[(1- = r.) n (a = 	= w.. (6.5) 

for i = 1,...,4, and j = 1,...,4, where in (6.5): 

  

W = [w..] is a given 4 x 4 matrix of weights. 

 

The following values of W were used: 

  

1 	1 	1 	1 
1 	1 	1 	1 	1 

W1 	16 	1 	1 	1 	1 
1 	1 	1 	1 

 

(6.6) 

   

(6.7) 

	

1 	3 	3 	1 
1 	3 	9 	9 	3 

W2 	64 3 	9 	9 	3 

	

1 	3 	3 	1 
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W3  -a 64 

9 	3 	3 	1 
9 	3 	3 	1 
9 	3 	3 	1 
9 	3 	3 	1 

(6.8) 

   

Finally, global dynamics were obtained using: 

4 
m(t) = X 	X w. m. (t) 

	
(6.9) 

i=1 j=1 

where in (6.9) 	j mi 
 (t) denotes the aggregate functional state with parameters 

r i anda—The results are summarized in Figure 6-6. 

6.5 interpretations of the Results  

The following groups of remarks can be made: 

(a) From Figures 6-1 and 6-2 it appears that: 

- The noise variance parameter a is crucial in shaping the dynami-

cal response of homogeneous groups. 	Therefore, ignoring this 

parameter completely, as is the case for the Ihara/Schweppe 

model, can result in serious error. 

- As the noise variance parameter increases there is a simultaneous 

decrease in post-outage dynamical fluctuations. 	The system 

reaches its steady-state faster. a acts like a damping factor. 

This is to be expected since an increase in system noise promotes 

an increase in the diversity of the system. This increase in 

diversity in turn tends to oppose the decrease in diversity 

caused by the power outage, thus yielding a more stable system. 

- Unlike its approximate version (5.22)-(5.23) which predicts that 

the steady-state connected fraction of devices is independent 

of a, the CFPE model simulator indicates a dependence of the 

steady-state on noise variance. 	However, the dependence is 
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Figure 6-6. Effect of Parameter Distribution on Cold Load Pickup 
Dynamics for a General Control Group. All values are 
as in section 6.4. The duration of the outage is 5 mn. 
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apparent only for large values of a. This is consistent with the 

constant rate approximation validity criterion developed in 

equations (5.86)-(5.87) as we now show. In the simulations of 

figures 6-1 and 6-2, T = 5 mn. Hence for a = 1.0, the perform-

ance criterion in (5.86) yields .82. This means that for a = 

1.0, 82% of the steady state "on" density lies outside the ther-

mostat dead band, thus invalidating the constant rates approxima-

tion. 

(b) From figures 6-3 through 6-4, we have respectively the predictable 

results that as the average heating rate increases, the steady state 

fraction of devices in the "on" state decreases (mainly because a 

device spends on the average less time in the "on" state) and as the 

outage duration increases the fraction of devices in the "on" state 

after the recovery increases, as well as the duration of the restor-

ation period. 

(c) From Fig. 6-5, it appears that post-outage dynamic fluctuations for 

a nonhomogeneous group decrease as the parameter variance within the 

group increases. As argued in (a), this effect can be understood by 

remarking that an increase in parameter variance results in an 

increase in the diversity of the system. 

(d) From Fig. 6-6, it appears that the parameter distribution within a 

general group can alter significantly the restoration dynamics 

following a power outage. Uniform and centered triangular parameter 

distributions yield smooth dynamics for our example. 
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7. DATA REQUIREMENTS AND MODEL VALIDATION 

7.1 Data Requirements and Parameter Estimation  

The load modeling methodology developed would be useless if the param-

eters needed for the model cannot be estimated. The data requirements for a 

physically based load modeling methodlogy are higher than those for an identi-

fication based modeling methodology. In the following we discuss ways of 

estimating the necessary parameters with respect to the space heating example. 

As a first step, we need to classify the loads into groups with similar 

characteristics. For this, the composition of the loads in the service area 

of interest is needed. Many utilities have conducted load research for their 

systems. As this data base becomes more established, the classification 

problem is likely to become more feasible. 

Once we have the devices in a homogeneous group, we can then estimate the 

parameters needed in the aggregate model. Consider first the constant heat 

rate approximation for space heating. 

The significant parameters in the approximate model are normalized heat 

gain rate r, heat loss c, and noise variance a for an individual dwelling. 

The gathering of such data for a significant sample of houses eventually 

allows the division of the sector into homogeneous groups as defined in Sec-

tion 4. It is only then that the methods of Section 5 can be applied. Here, 

we recall the definition of the parameters of interest: 

r = 	• [average value of r 1 (X,t)] 	 (7.1) 

-- 	1 
c = - • [average value of r

o
(X,t)] (7.2) 
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(7.3) 

where in (7.1)-(7.2): 

r i (A,t) = R-a(A - x a (t)) 	 (7.4) 

r
o
(A,t) = a(A - x

a
(t)) 	 (7.5) 

Recall that A is the width of the thermostat dead band. 

14-  f
1 
 (X,t)r

1 
 (A,t)dA 

3-cw  
f+ f

1
(A,t)dA 

_00 
+02 
f fo (A,t)ro (A,t)dA 
x 

- R-a(E (A,t) - x (t)) 	 (7.6) 

= a(E (AA) - x (t)) 	 (7.7) 

f f
o
(A,t)r

o
(A,t)dA 

where E
1
(A,t) and E

o
(AA) are expected mean temperatures in the "on" and "off" 

states respectively at time t. 	Let T = [t 1 ,t 2 ] be the time interval over 

which the load model is to be used. 	Throughout Sections 5.2.2-5.2.3, the 

quantities in (7.6)-(7.7) have been considered constant. This means in effect 

the following: 

(i) The noise variance a and the ambient temperature x a (t) cannot vary 

significantly over T. 

(ii) The expectations in (7.6)-(7.7) can be considered constant over T. 

In order to make (ii) possible, it will be assumed that the system starts in 

its steady-state and is not significantly removed from it during T. These 
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assumptions are made in addition to the dead band confinement asssumption 

discussed in Section 5.2.3. Clearly, the totality of the assumptions limits 

the applicability of the linearized model. However, if (i) and (ii) are 

verified, an algebraic estimation of a, r, c is possible from a record of the 

"on"/"off" cycling of the thermostat during the time interval of interest. To 

show this, first define the following: 

T: 	sample mean of "on" durations 

sample mean of "off" durations 

a2 : 	sample variance of "on" durations 

a
2 : sample variance of "off" durations. 

-T 

The probability densities of the "on" and "off" durations can be shown to be 

first passage time densities for (3.7) to go from x_ to x +  and from 	to x_. 

— 	 — 
The theoretical means of these passage times are given by r 

-1 
 and c -1  

	

—2 	—2 
a 

respectively. The theoretical variances are given by — and —
a 

respectively. 

	

3 	J3 

Therefore, we have the estimates: 

r 
1 
T 

(7.8) 

(7.9) 

(7.10) 

— 

c 

—2 	1 ( 3 2 
a 	= 	k. ."c a + T' 3 a2 ) 

2 -- T— -T 

Clearly, the answers obtained will be a function of weather and time of 

the day. Thus a table of coefficients as a function of weather and time would 

have to be set up for use under any conditions. Finally, it is believed that 

this same method can be extended for the estimation of the parameters in the 

more general (and in fact more widely applicable) temperature inhomogeneous 

model of equation (3.7). 
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7.2 Model Validation  

The emphasis of our research has been in the development of the load 

modeling methodology. Therefore, we have not conducted data collections to 

estimate the parameters or field tests to validate the models. We have dis-

cussed how parameters can be estimated from data in Section 7.1. In the 

following we briefly describe ways of validating the model and fine tuning its 

parameters. 

One way is to conduct a detailed simulation model of all the loads under 

consideration. Simulation results using this model can then be used to com-

pare with the results predicted by the aggregate model. The advantage of this 

approach is that all kinds of tests can be carried out to evaluate the model 

in different regimes of operation. Another possibility is to conduct actual 

field tests. If a homogeneous group can be isolated for testing, the valida-

tion method is quite straightforward. If one has to test the model at a 

higher level where networks of many groups are involved, more sophisticated 

techniques would have to be developed to include the effects of the network, 

etc. In particular, the loss in the network may have to be considered. 
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8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

We have developed a methodology for synthesizing the electric power 

system load starting from the elementary device models. The methodlogy goes 

through a hierarchy of models and terminates when the desired level is 

reached. At each level the four steps used are: modeling of primitive com-

ponents, classification of components, aggregation and model validation. The 

emphasis of our research has been the modeling of the elementary component 

loads and the aggregation of the functional models to obtain the load demand 

models. 

Compared to other work in physically based load modeling, our approach 

has the following characteristics: precise modeling of the decision processes 

which generate the elementary component demands and statistical aggregation of 

these demand processes. The former is accomplished through decomposition of 

the elementary model into a functional model and an electrical device model. 

The functional model is modeled by means of a stochastic hybrid state system 

to represent the actual process which generates the "on" or "off" status of 

the device. The continuous state corresponds to the state of the energy 

storage such as temperature and the discrete state corresponds to the actual 

functional state. Noise is assumed to be present. We believe that this model 

is a better representation of what actually goes on at the component level. 

Statistical aggregation of these elementary functional models is accom-

plished by using some results in the theory of stochastic processes. For the 

class of loads studied the resulting load model is given by a system of 

coupled ordinary and partial differential equations. These equations have 

very nice interpretations. The partial differential equations describe the 

dynamics of the population of loads which may be on or off. The ordinary 

differential equation gives the total fraction of loads which are on. 



73 

The model is applied to the cold load pickup problem where the effect of 

a service interruption on the demand dynamics is investigated. A simplifica-

tion model for the space heating of a house, similar to those used in [29] and 

[37] are assumed. The simulation results illustrated the computational feasi-

bility of the model and how it can be used for operational and planning 

studies. 

In our view this work contains some basic results needed for statistical 

physically based load modeling. Some additional areas which ought to be 

investigated to make the methodology practical are: 

1. Test and evalution of the aggregate model on real data. 

We have concentrated on the theoretical development of the aggregation 

techniques in our research and thus the resulting model has not been tested on 

real data. Field tests are absolutely necessary to validate the assumptions 

made in the canonical model as well as the aggregation scheme. Furthermore, 

we can also gain more insight on the actual data requirements as well as the 

sensitivity to parameter variations. 

2. Development of aggregate models for other types of loads. 

In our research we have developed an aggregate model for weakly driven 

functional models to demonstrate the feasibility of the approach. A highly 

simplified model for space heating has been chosen. One can consider more 

complicated models with higher dimensions to model the house. We believe the 

aggregate model will be structurally similar except for more complicated 

boundary conditions. 	Strongly driven functional models used to model the 

demand of water heaters can also be considered. 	The resulting aggregate 

models will probably be similar, although some further research on the theory 

of stochastic processes is needed. 
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3. Development of load management strategies. 

The models developed are particulary suitable for evaluating various load 

management strategies, either for actual implementation or for planning pur-

poses. This is particularly the case if some optimization schemes are to be 

used. An analytic model of the type developed may provide more guidance in 

this case than a purely simulation based model. 
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APPENDIX A. 

FUNCTIONAL MODEL FOR ELECTRIC WATER HEATER 

In this appendix, we consider a simplified model of a single element 

electric water heater. A complete model will involve more differential equa- 

tions but our model is sufficient for the intended use in this study. 

Let the following quantities be defined: 

v(t): 	hot water demand at time t (vol./sec.) 

x.(t): 	inlet water temperature 

C: 	tank thermal capacity 

x(t): 	tank water temperature at time t 

xd : 	desired water outlet temperature 

vh (t): 	hot water removed at temperature x(t) (vol./sec.) 

vc (t): 	cold water mixed with vd (t) (vol./sec.) 

a: 	heat loss constant 

xa (t): 	ambient temperature 

p(t): 	power supplied by the heater element 

m(t): 	functional state of the heater 

b(t): 	load management variable (1 when on, 0 when off) 

From volume balance, we have 

v(t) = v
h
(t) + v

c
(t) 

From heat balance, for small At, we have 

Cx(t+At) = Cx(t) - a(x(t) - xa (t))At - vh (t)(x(t) - xi (t))At 

(A.1) 
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+ p(t)m(t)At 	 (A.2) 

C(x(t+At) - x(t)) = -a(x(t) - x a. (t))At - vh (t)(x(t) - ,c
i
(t))At 

+ y(t)m(t)At 	 (A.2) 

Dividing by At and letting At approach 0, we obtain 

d
dt
x(t)  C 	=a0c(t) - xa (t)) - vil 	 1(t)(x(t) - x.(t ) ) 

+ y(t)m(t) 
	

(A.3) 

But 

v il (t)x(t)+N.7c1(t)x.(t) = v(t)xd 
	 (A.4) 

and 

vh (t)x i (t) + v
c
(t)x i (t) = v(t)x i (t) 

Thus 

v
h
(t)(x(t) - x

i 
 (t)) = v(t)(xd 
	i - x(t)) 

Substituting into equation (A.3), the equation becomes 

(A.5) 

(A.6) 

d
dt
x(t)  

C 	= a(x(t) - x
a
(t)) - v(t)(xd 
	1 
- x.(t)) + p(t)m(t) 	(A.7) 
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APPENDIX B 

THE AGGREGATION PROBLAM: FORMULATION AND SOLUTION 

We provide two separate proofs: a heuristic derivation of equation (5.8) 

and a more formal proof for the coupled partial differential equations and the 

boundary conditions. 

B.1 Deviation of Equation (5.8) 

The following "hybrid" probability densities will 

sequent developments: 

be needed in the sub- 

fc (X,t)dA = Pr[(A < x(t) < A + dA)Im(t) 	= 1] (B.1) 

fc (A,t)dA = Pr[(A < x(t) < A + dA)Im(t) = 0] (B.2) 

f
1  (A,t)dA = Pr[(A < x(t) < A + dA) n (m(t) = 1)] (B.3) 

f
o
(X,t)dA = Pr[(A < x(t) < A + 	n (m(t) = 0)] (B.4) 

We need to study the following problem: 

Given IT(t), f l (A,t), fo (A,t) at time t, express if possible m(t + 6t) in 

terms of the above mentioned quantities when (St is a small time increment. 

Let n 1 (t) be the total number of electric space heaters in the "on" state 

at time t. Also, for the "on" population of space heaters, let: 

n 1  (t) 

S
1 
 (t,dt) = 	m.(t + ót) 

i=1 
(B.5) 

Finally let: 
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p
1
(t,6t) = 	probability that an individual space heater remains in the 

"on" state at time t + St, given that it was in the "on" 

state at time t. 

q
1 
 (t,i5t) = 	1 - p 1 (t,6t). 

S 1 (t,(St) corresponds to the summation of n 1 (t) identically distributed inde-

pendent Bernoulli random variables with p 1 (t,6t) as probability of success and 

q 1 (t,6t) as probability of failure. For n 1 (t) "large enough," the central 

limit theorem [43] yields: 

S
1 
 (t,6t) 	n

1
(t)p

1
(t,6t) + G(0,n

1
(t)p

1
(t,(St)q

1
(t,(5t)) 
	

(B.6) 

where in (B.6) - indicates convergence in distribution and G(a,f3) denotes a 

Gaussian random variable with mean a and variance B. Similarly define: 

no
(t) 

So (t,(St.)=1.(t + (St) 
i=1 

(B.7) 

where no (t) is the number of space haters in the "off" state at time t. Also, 

let: 

p
o
(t,(5t) = 	probability that an individual space heater remains in the 

"off" state at time t + (St, given that it was in the "off" 

state at time t. 

q0 (t,61t) = 	1 - po (t,(St). 

It can be shown that for no (t) "large enough": 

S
o
(t,6t) 	n 

o 
 (t)q 

 o 
 (t,6t) + G(0,n 

o 
 (t)p 

o
(t,(St)q

o
(t,6t)) 	(B.8) 

(B.6) and (B.8) yield using the independence assumption: 
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n 1  (t+ 6t) - n
1 
 (t) 	-n

1
(t)q

1
(t,6t) + n

o 
 (t)q (t,6t) 

+ G[0,n
1
(t)p

1
(t,6t)q

1
(t,6t) 

+ n 
o
(t)p (t,6t)q

o
(t,6t)] 	 (B.9) 

Dividing equation (B.9) by n yields for n "large enoughTM: 

i(t + 6t) - 	= 111(t)q1 (t,6t) + (1 - Ti(t))q0 (t,6t) 	(B.10) 

Furthermore, dividing equation (B.10) by 6t and considering limits as 6t goes 

to zero yields: 

dr7 lim 1 
-m(t) o tss, Rc— q (t,6t) 	(1 - m(t), 

	lim 1 
dt 	- • u t 1 	 " 6t+0 6t clo (t ' 6" 

The limits in (B.11) can be evaluated as follows: 

[ 
6t+o 	6t 	6t+o 6t 

Pr x(e) > x 
 

for t'e[t,t + 6t]Im(t) 

- 

 

_ lim 1 
8t+0 (7,- Pr[x(t) - a(x(t') - xa (t'))(t'-t) 

lim 
q

1
(tat) 

lim 1 

(B.11) 

+ v(t') - v(t) > x+  for tle[t,t+6t]Im(t) = 1] 	 (B.12) 



- 2  lim 1 
dt+0 St [Pr[x(t) + Sv(t) > x +11m(t) = 11 

211-7(Ti a 

1 	202 ót f (Sv (u) - (B.15) 
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where equation (3.7) has been used. However as St+0, Sv(t) is of the order 

of Qom. Therefore, in the difference Sv(t) and a(x(t) - x a (t))St, the latter 

term can be neglected, in which case (B.12) reads: 

lim 1 
 (St► 0 dt - 1 ► 

 (t (St) 	stl+0m 	Pr[x(t) + v(t') - v(t) 	x+ 

for t'e[t,t+St]Im(t) = 1] 

(B.13) 

where in (B.13) Desire Andre 's reflection principle [51] has been used. 

(B.9) and the law of total probability yield: 

lim 1 	
' 
	= 	

lim 1 	I F 

	

j L 	x + ft) 	Fc (x -u,t)if (u)du et -N:1 6t - 1 ' 
 ( St) - 2 St+0 

6t 
— 

r 

1 + 	Sv 
0 

(B. 14) 

where Fc (X,t) is the distribution function associated with f c (A,t) and f
Sv 

 (u) 

is the probability density of Sv(t), i.e.: 

u 2 

Assuming fc0X,t) is twice differentiable, a Taylor series expansion of F c (x - 

u,t) in the neighborhood (left) of 	yields: 

c 
lim 1 	 lim i 7 r 	

of 

l 	
2 

dt÷o (St cli (t ' 6" = 2  (st-4.0 rt- 	Lfc (x ,t) 2 ax (x  + - 	,t)u 
0 

	

1  + 	u  

a 2 fc 

	

1 	
2 
1 ( 	) 31 

	

+ 
6 	

01(u),tju if
6v 

 (u)du 
ax 

(B.16) 



where x+-u < n(u) < x+ . Using (B.15) it is possible to show that: 

urn 1 	r  c 005t) -1/2 	m  
ot+0 at j  f i (x + ,t)u f tsv (u)du = 

0 

(B.17) 

The limit in (B.16) represents the rate of decrease of F(x ,t) at time t. 
1 

Now, the limit in (B.17) is infinite. This means that if f i (x+ ,t) is nonzero 

for a finite time St, F(x ,t) would decrease by an infinite amount which is 
1 

impossible (Fci (x+ ,t) is a probability). This means: 

f(x
+ 
 ,t) = 0 	V t 	 (B.18) 1  

(B.15), (B.16) and (B.18) yield: 

q (t,(St) 	 afc  

	

lim 	 1 2 	1 

	

Ot+0 	 = 	2 a 771  (x+ ,t) 

Similar arguments yield the following equations: 

f
c
o
(x 
-
,t) = 0 V t 

	

. 	(t,ot) 	afc 
lim  0 	1 2 	o 

- 	a 	(x ,t) 
Ot+o 	6t 	2 	ax 

(B.19) 

(B.20) 

(B.21) 

(B.11), (B.19) and (B.21) yield: 

2 af
c  

2 af
c  

a; . 11(t)(-— ax1  (x+
,t)) + (1-4T1(t))(2.-

2 	ax 
° (x ,t)) 

at  
(B.22) 
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Finally, if we note that: 
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Then (B.22) yields: 

-- 
f1 	1 

(x,t) = f
c 
 (x,t)m(t) 

fo (x,t) = fo (x,t) (1 - m(t)) 

02 afo cg 02 af i   

dt = 2 	ax (x+ ,t) + 	(x_,t) 
 2 	ax 

(B.23) 

(8.24) 

(B.25) 

Equation (B.25) clearly indicates that by solving for the dynamics of the time 
af 1 	 3f

o 
functions -5-;z-- (x+ ,t) and 	(x_,t) the evolution of the aggregate functional 

state m(t) can be determined. This will be the object of Appendix B.2. 

Finally, in light of equations (B.11), (B.19) and (B.21), the terms in 

the right-hand side of (B.25) can be interpreted as being the average fraction 
2 3f _ 

of devices that switch from "off" to "on" (1 3x
o (x_,t)) minus the average 2  

unit time at time t. 

B.2 Ensemble Analysis: The Coupled FOkker-Planck Equations (CFPE) !Model  

Here, a formal analysis of the dynamics of E w (m i (t)) is undertaken. 

Equation (5.7) is repeated below for convenience: 

m(t) = Ew(mi(t)) 	 (B.26) 

We have: 

Ew (m i (t)) = 1.Pr(m i (t) = 1) + 0.Pr(m i (t) = 0) 	 (8.27) 

o (
2 of 

fraction of devices that switch from "on" to "off" (- -2-- 	(x+
,t)) per 

but 



x+ 
m(t) = f f

1 
 (A,t)dA = F

1
(x
+
,t) 

-OD 

(B.29) 

(B.26)-(B.28) yield: 
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tPr(m.( ) = 1) = 	
1
(A,t) dA 
	

(B.28) 

where F
1
(X,t) represents the distribution function associated with f

1
(A,t). 

Equations (B.25) and (B.29) represent two alternative ways of comput-

ing m(t). At the end of this appendix their mutual consistency will be estab-

lished. 

As in the original derivation of the Fokker-Planck or forward Kolmogorov 

equation for Markov diffusion processes by Kolmogorov [52] and reported in 

[53], our proof starts from the Chapman-Kolmogorov equations [53]. For this 

particular hybrid state system, the Chapman-Kolmogorov equations can be modi-

fied as follows: 

1 	+0,  

	

= 	f f
ik 
 (P,t',z,T)f .(z,T,A,t)dz 

1 ]  
k=0 

	

for i=0,1 , 	j=0,1 	and any T e(t',t) 	 (B.30) 

and where transition probability density functions: 

f..(AW,A,t)d), = Pr[(A < x(t) ( A + dA) n (m(t) = j)i 

x(t') = P,m(t 1 ) = 	 (B.31) 

for i=0,1 , 	j = 0,1 have been introduced. Also, defining: 
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f° ( x) = f 1  (x,o) 
	

(B.32) 

fc0) (X) = fo (A,0) 	 (B.33) 

We can write: 

f i (X,t) = 0 
ki

0,0,A,t)f(a0)dA' 
k=0 

(B.34) 

for i=0,1. 

The derivations to follow are divided in two parts, A and B. In part A, 

we derive equation (5.9) only for f 1 (A,t) and on the interval (x_,x+], i.e. in 

region b of Fig. 5-2. The partial differential equations satisfied by f 1 (A,t) 

in region a, and by fo (X,t) (equation 5.10) in regions b and c of Fig 5-2 can 

be obtained using an exactly analogous procedure. In part B, we show that the 

boundary conditions (5.11)-(5.16) hold. 

A. Derivation of Equation (5.9) on the Interval (x_,x *1: 

Let E be an arbitrarily small positive number. 	Also, let R(A) be an 

arbitrarily non-negative continuous function such that: R(A) = 0 

for A < x + E and X > xi. , and the function is three times differentiable and 

vanishes together with its first three derivatives at x_ + e and x + . In the  

following, it is assumed that all the needed partial derivatives exist and are 

continuous in the interval of interest. It is also assumed that sufficient 

conditions (such as those dictated by Lebesgue's dominated convergence theorem 

[54]) are satisfied to allow interchange of orders of integration and differ-

entiation whenever applicable. For h > 0: 



89 

lim 
x+ f

11
(AW,A,t+h) - f

11
(AW,A,t) 

h+0 R(A)dA 
x +e 

x 

X 4-e 
2t f 11

(AW,A,t+h)R(A)dA 
	

(B.35) 

Using (B.30), and setting i=j=1, we have: 

+= 
f

11
(AW,A,t+h) = f f 11 (A',t',z,t)f 11

(z,t,A,t+h)dz 

(A0,t 1 ,z,t)f
01

(z,t,A,t+h)dz (B.36) 

Correspondingly, 

X 

I  a j 	at f11 (A0,t1,A,t)R(A)dA 

lim 1 Fr  x+ 	J. 
h+0 	Li 

 + 
f

11
(P,t',z,t)f

11 
 (z,t,X,t+h)R(A)dzdA 

x +e -00 

x
+ 

- 	f f
11 (AW,X,t)R(A)dA] 

x +e 

x+ 
lim 1 r  
h+0 IT , 

f f
10

(A' ,t 1  ,z,t) f
01 

(z,t,A,t+h)R(A)dzdA 
X +6 -m 

X +6 

(B.37) 

Now, define: 
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r 
T
lit 

= inft(t l -t):x(t') = )0,m(t 1 )=11x(t) = A,m(t) = 11 (B.38) 

Adt' 
for any A,  P, i.e. T 11t is the first passage time random variable [55] from 

hybrid state 	at at time t to hybrid state ( 1), ,). 

Then clearly for h infinitesimal: 

X 
4-02 	 X ,X 

J 	f f 10
(A0,t',z,t)f 

01 
(z
" t A t+h)dzdA < Pr[T

1t 	
h] 

X +E -m 

< Pr{sup x(t') > x + e , m(t') = 1 

for t'E[t,t+h]l(m(t) = 1) n (x(t) = x_)] 

< Pr[(R-a(x_ - x a (t))(t'-t) 

+ v(t') - v(t) > e, for ec(t,t+h)] 	 (B.39) 

where equation (3.7) has been used. 	However, as argued in Appendix B.1, 

as 1'1+0, 6v(t) is of the order of of E. Therefore, in the difference of 6v(t) 

and (R - a(x_ - xa (t)))h, the latter term can be neglected. (B.39) yields: 

1+ 	f f 10 (A',t',z,t)f 01 (z,t,A,t+h)dzdA < Pr[v(t 1 ) - v(t) 

> c for t'e[t,t+h]] < 2 PriOv(t) > e] 	 (B.40) 



lim 1 	r  
h+0 h 

x +c -00 

+00 
lim 1 
h+0 h I 

And: 

x+ 
lim 1 F f 
h+0 	L 

X +E 

+00 
f f

11
(AW,z,t)f

11
(z,t,A,t+h)R(A)dzdA 

• ■01:1 
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• 	• 	• 
where in the above, Desire Andre's reflection principle has been used. 

Consequently: 

x 
lim 1 0 	 r 

 h+0 h 	
f 

f
10
(AW,z,t)f

01
(z,t,A,t+h)dz R(A)dA 

x +c -00  

lim 2 4 11+0  IT  Pr[dv(t) 	c] m
ax (B.41) 

where Rmax  is the minimum of R(A) over the interval. Due to the almost sure 

continuity of sample paths of Brownian motion, [51], the limit in (B.41) must 

be zero. Now: 

(P,t',z,t)f
11

(z,t,A,t+h)R(A)dzdA 

f
11
(AW,z,t)f

11
(z,t,A,t+h)R(A)dAdz 

lim 1 	r  
h+0 h -00 

x
+ 
f f

11
(P,t',A,t)f

11
(A,t,z,t+h)R(z)dzdA 

x +c 

. 	= 	 +m 
lim 1 

f 
 , = 	 f f 	, z h+0 T i 1 11 (Al ' t'd"" 	11 (At 
	t+h)R(z)dzdA " -0, 	 -00 

(B.42) 
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x  
- 	f f

11
00,t',X,t)R(X)dX] 

x +e 

lim 1 i
+m 	 +co 

f
11 	" 

(X' t' X t)[ f f(X,t,z,t+h)R(z)dz-R(X)1dX] 	(B.43) f  11+0  

Using a Taylor series expansion for R(z), we have: 

1 
R(z) = R(A) + (z-X)R' 	

2 
(A) + — (z-A) 2Rm(X) 

1 
+ 6 
— (z-A) 3 R'"(n(X,z)) (B.44) 

where A < n(y,z) < z . 	Substituting (B.44) in (B.43), (B.37) and recalling 

(B.41), we obtain: 

x 

X +E 
1 a  at f il (Al ' tt i A t t)R Oo dx  

+w 	 +00 

1013 
r 

= 
lim 

f f
1 
 ( 1 ,t',X,t) 	j 

h 	
f11 (X,t,z,t+h)(z-X)dz R' (A) 

_m 	 _m 

+00 
1 

 f  f11 (A,t,z,t+h) 1 (z-X) 2dz R" (A) 
_m 

+m 

+ 
1 

f  f11 	
-6- 
1 

(A,t,z,t+h) 	(z-A) 
3
dz R"' (1(X,z))]dX 

_00 
(B.45) 

From equation (3.7): 
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im 	r  
h0 h J 

 '11 (x,t,z, t+h)(z-x)dz = [-a(A-x
a (t)) + Bb(t)] _co 

(B.46) 

and 

+op lim 	r  
h+0 h J '11 (A,t,z,t+h)(z-A) 2dz = (B.47) 

Also: 

+00 
li.rn 1 	r  

 h+0 	
c 

J 
 '11 (A,t,z,t+h) (z-A) adz = 0 

-  

(B.48) 

In (B.45), it can be shown that the integrand satisfies conditions that 

permit the application of Lebesgue's dominated convergence theorem [54]. In 

this case, the limit operation in (B.45) can be moved past the integral 

sign. Using (B.46)-(B.48) one obtains: 

+.0 
r a f 

J   
at  _ 11 (A.,t , ,A,t)11(x)dx = J f

11
(A",e,A.,t) 

x -FE 

2 

[(-a(A - x a (t)) + Rb(t)) 11 1 (A) + RN(A) 
0

idA 	 (B.49) 

Integration by parts (twice) of the right-hand side of (B.49) and recalling 

properties of R(A) yields: 

x
+ a fil (P,t.,A,t) 

x +e 

 

a + 	[—a(x—xa m) + 
Rb(t)] f11(AlFtl'Ait) 
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a
2 

3
2 

- —
2 	ax2 

f
11

(P,t',A,t)112(A)dA = 0 (B.50) 

Since (B.50) is satisfied for any positive R(A) (subject to the constraints 

mentioned earlier) and for an arbitarily small e, we conclude that for almost 

any A on (x_,x+]: 

a 

a 
+ — [-a(A-xa (t)) + Rb(t)]f

11
(P,t',A,t) 

0
2 2 

-
2 	ax2 f 11 (A',t',A,t) = 0 (B.51) 

Furthermore, 	starting 	from 	the 	Chapman-Kolmogorov 	equation 

for f01 (A',t',A,t) (equation (B.30)) and using a similar approach one can show 

that f01 (A',t',A,t) satisfies: 

a 
at fol(A.,t,,x,t) 

+—
a 

[-a(x-xa (t)) + Rb(t)]f
01

00,t 1 A,t) as  
a2 a2 

- 	— f
01 (A',t',A,t) = 0 2 	as 2 

(B.52) 

Setting t' = 0 in (B.51)-(B.52) and multiplying both equations by f7(A') 

and f
o
(P) respectively, we obtain after addition: 

rat 
a 

L 	fk1 (A',0,A,t) 
k= 0 
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a 
+— 

3A 
 [—a(x—xa (t)) + Rb(t)]f

k1
(a0,0,A,t) 

0
2 

a
2 

- —
2 	ax2 

f
k1 (a0 ,0,A,t)lf° (a0 ) = 0 (B.53) 

Integrating (B.53) from -co to +co, and using (B.33) we have after interchanging 

orders of integration and partial differentiation: 

at

afi 
 (A,t) + as [-a(A - xa (t)) + f 1  (A,t) 

a2 a2 
- — 
	
f 1  (A,t) = 0 

2 	as 2 1 
(B.54) 

This completes the derivation of equation (5.9). 

B. Boundary Conditions  

We discuss only equations (5.11), (5.12), (5.13), and (5.15). 	The 

remaining boundary conditions follow by analogy. Equation (5.11) has already 

been established in B.1 (equations (B.18) and (B.20)). Equation (5.12) fol-

lows from the continuity of f 1 (A,t) on (-co,x+] and the fact that it must be 

integrable on that interval (the integral is a probability and is accordingly 

finite). Equation (5.13) expresses the continuity of f 1 (A,t) across boundary 

x_. Assumptions of continuity can always be made as long as they do not 

generate contradictions. We now proceed to establish equation (5.15). It is 

clear that equations (5.9) and (5.10) are mathematically reminiscent of a 

diffusion process (in the presence of a gravitational field). In what fol- 

lows, the analogy is used freely. 	In Fig. B-1, an infinitesimal strip of 

width e on either side of x_ is considered. 	Let Ll (t,c), L2 (t,c) , L3 (t), 

L4 (t) represent respectively: 
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A 

L
4 
 (t) 

A 

Figure B-1. Graphical Representation of the Flow of Probability within 
a Rectangular Strip of Width 2E around x. 
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- The rate at which probability diffuses from left to right past the 

edge at x-e. 

- The rate at which probability diffuses from right to left past the 

edge at x+e. 

- The rate at which probability diffuses from f i (X,t) to fo (A,t) past 

the edge x+ . 

- The rate at which probability diffuses from f o (A,t) to f 1 (A,t) past 

the edge x_. 

Finally A l (t,e) and A2 (t,e) are the hatched areas represented in Fig. B-1. 

Using equations (B.55), we have: 

3 	
3F

1 
L 1 	 at 	 at (t,e) = - --- A (t,e) = - 	(x-  - e,t) 

= [-a(x_-e - xa (t)) + Rb(t)] fla(x--e't) 

a2  
fla(x- 
	e,t) 

where use has been made of: 

af
la 

(A,t) = 0 lim 	41 	lim 
X -0-  -co `1a"'" = A+ -00 aA 

Furthermore: 

aA
/  

at (t,e) 	at  [Fox...,t) - Fox_ + e,t)] 

a2  
= -[-a(x

+
-x

a
(t)) + Rb(t)]f

1b
(x
+
,t) +  ax f ib (x+A )  

(B.55) 



aA 

at e (t,E) = -L
2
(t,E) - L

3
(t) (B.58) 
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a2 
+ [ -a(x 	

2 
+e - x

a
(t)) + Rb(t)lf lb

(x
+
+e,t) - — 

 ax 
f
lb

(x +e,t) (B.56) 

Using (5.11) the first term on the right hand side of (B.55) can be dropped 

from the expression. Furthermore, from (B.19) we recognize that: 

0
2 

 L
3 (t) =2 	flb(x+•t)

- (B.57) 

Also: 

(B.56)-(B.58) yield: 

0 
2 	

a f  x lb

2 
L
2
(t,E) = 	 (x 

-
+e,t)-[-a(x

-
+E-x

a
(t))+Rb(t)lf

lb
(x+6,t) 	(B.59) a  

Let I(t,e) be the rate of probability increase within the rectangular strip in 

Fig. B-1, then from probability conservation: 

I(t,e) = L
1
(t,e) + L

2
(t,E) + L

4
(t) 

Also, recalling (B.21): 

a2  
L4 (t) (t) = — aA fob (x - ,t) 

(B.60) 

(B.61) 

In (B.62), letting E go to zero and using the continuity of f 1 (X,t) at x_, 

(B.55) and (B.59), we obtain: 



99 

a
2 	

a
2 lim I(t,e) = 0 = - 	 3 , 

e+0 	 T.  3A f la bc-'"  r 	f1b (x-'"  

2 a 	3 + — 	f (x ,t) 2 3X ob - (B.62) 

and hence (5.15). This completes the proof of the theorem. 	 • 

Remark 1:  The fact that the limit in (B.41) is zero has an important signifi-

cance. It means that for h infinitesimal, the Chapman-Kolmogorov equation in 

(B.36) (written from t to t+h) reduces to the ordinary Chapman-Kolmogorov 

equation for a one dimensional Markov process. This in turn, means that the 

various transition probability densities defined in (B.31) behave "locally" 

like transition densities of some one dimensional Markov process. Therefore, 

it is no surprise that each of them satisfies individually some Fokker-Planck 

equation. In this light, boundary conditions (5.11) can be viewed as standard 

for Markov diffusion processes encountering an absorbing boundary. 

Remark 2:  It is possible to show that (B.29) is consistent with (B.25). We 

have: 

x  
m(t) = f f 1  (A,t)dA + J f 1  (A,t)dA 

X 

i.e. 

- 3f 	
x+ af t 1 

dt 	
(A,t)dA + f 	(X,t)dX 

x 
(B.63) 

Recalling (5.9), (5.11) and (5.13) one obtains: 

2 
dm 	a 3 	 a2 3 	 a

2 
a 4 

dt = 2 -3T f 1a (x- A) 	/- 3A f 1b (x- it) 	2 3X L 1b lx+ 1 " (B.64) 



Using (5.15) , (B.64) yields: 

2 
dm 	a 	a 	 '3

2 

	fob 
	4.1 f 	(x . 1 

dt 	2 	dA 1b ' + -t' + 2 	a), 'ob‘ x-''' 
(B.65) 
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APPENDIX C 

COMPUTATION OF TRANSITION MATRIX IN (5.35) 

We use a transform technique to compute the state transition matrix in 

(5.35). If y represents the complex variable in the transformation, we have: 

CA,$) = L-1  
-1 

2s 	2r 
Y- a2 a

2 

(C.1) 

   

where in (C.1), L-1  1•1 represents the inverse Laplace transform operator. 

From (C.1): 
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(1)(A,$) = L 1  
a  

  

22 
1  a 

} (C.2) 
Y2  g - 2yr - 2s 

 

2s 

a  

 

       

which yields: 

0
11

(A,$) = L-1  [ 
2 	

ya
2 -  2r 

 
a (I - 0 1 (s)) (Y - 0 2 (s) ) 

= 6
-1 	r 

(s)I. 6  (s)e 	- 	(s)e
1(s)A 6

2
(s)A 

1 
(C.3) 

where in (C.3), 6(s), 8 1 (s), 6 2 (s) have already been defined in (5.40)-(5.41) 

r (1)
12

(A,$) = L 1 L 
2 

a
2 

 
a (Y - o l (s))(Y - 0 2 (s)) 

= 6-1(s)[e
8

1
(s)A 	

e
6
2
(s)A 	

(C.4) 
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(I) 21 (X's) 	
L
-1

[ 
a
2 (y 	

2s 

- 6 1  (s)) -  6 (s))2 	
J 

6
1
(s)X 	6 2 (s)A -1  

. 2: [e  - e 	]6 (s) 
Q 

	

-1r 
[ 	

Ya  

a 	

2 
(I)
22

(X,$) = L 	2 
	- 6 1 (e))(1 - 6 2 (0) 

6 1 (s)A 
	62 (s)X

1 
 

	

-1 	r 
= 6 	(s)L 6  (s)e 	- 6

2
(s)e 

(C.5)  

(C.6)  
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SUMMARY 

A new model based on the Fokker-Planck equation is proposed to 

describe the electric behavior of large aggregates of electric space 

heaters or air conditioners. An understanding of the dynamics of 

such loads is essential for the construction of effective load man-

agement policies when load management by direct device control is 

considered. 

The synthesis of the model follows the general philosophy of 

physically-based load modeling approaches, where the demand of indi-

vidual components at the user level is modeled first. Subsequently, 

these component demands are aggregated to obtain the load at a point 

in the system. 

The point of departure for the construction of the model is a 

recently proposed stochastic hybrid-state model for the demand of 

individual devices. The originality of the proposed approach lies in 

the method of aggregation which, like the methods of statistical 

mechanics from which it is inspired, yields an aggregate model which 

is exact in a limiting statistical sense. 

The model is a system of coupled ordinary and partial differ-

ential equations (Fokker-Planck). A number of approximate analytical 

properties of this system are derived. Thus a better understanding 

of its dynamics is achieved. Subsequently, a more accurate numerical 

simulation algorithm is proposed and implemented. With this simula-

tion tool at hand, cold load pickup dynamics are obtained for various 

outage durations and various load mixes. 

vii 



viii 

From a practical standpoint, the results of this research 

appear to be promising. At a more theoretical level, the thesis 

presents a method (and no such method appears to exist in the litera-

ture) of writing Fokker-Planck equations for a particular hybrid-

state (discrete/continuous) Markovian process. This leads one to 

speculate about the possibility of generalizing the results to a 

larger class of hybrid-state Markov processes. 



CHAPTER I 

A REVIEW OF CLASSICAL LOAD MODELING METHODS 

1.1 Introduction  

Power system load modeling can be said to encompass any acti-

vity aimed at modeling the dynamic behavior of electric loads (viewed 

as active and reactive power demands) either as a function of time 

(demand models), or of power system voltage and frequency (response  

models). 

The vast majority of the work in the electric load modeling 

literature for both response and demand modeling is devoted to model 

identification based approaches [14]. These approaches are based on 

fitting parameters in a predetermined model structure to empirical 

load data at the bulk (system or subsystem) level. Until recently, 

no effort was aimed at relating explicitly model structures to the 

physical composition of the load. Hence the selected structures 

always appeared to be ad hoc. 

Traditional load response models [1-3] have been motivated by 

the need for simplicity. Thus some of the selected models have taken 

the form of a constant resistance, inductance, capacitance, or a 

combination of these [1,2]. The resulting models do not work well 

when the power system undergoes large excursions outside its normal 

steady state. 

A highly successful area of model building has been the con-

struction of load demand models for prediction purposes both in the 

1 
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short and the long term. Although the models suffer from the same 

weakness as the response models (ad hoc nature), their greater suc-

cess is in part owed to the fact that they are selected from a class 

of models such as stochastic state-space or ARIMA (Autoregressive 

Integrated Moving Average) models known to be sufficiently rich to 

fit a large number of physical processes. In section 1.2 we describe 

the above model structures in some detail, and briefly survey the 

results in the literature. 

1.2 Traditional Load Demand Models  

If we ignore the refinements due to the introduction of 

weather -dependent modeling [4,5], the traditional load demand model-

ing approaches in the literature [5-9,13-18] can be roughly divided 

into two kinds: those utilizing a stochastic state space model to 

represent the evolution of the load, and those utilizing time-series 

or ARIMA models (11]. Usually, the choice of representation dictates 

the techniques subsequently involved in the identification of the 

models and the on-line updating of their parameters, as well as the 

form of the load predictor. In what follows, we describe the models, 

and discuss the identification and estimation techniques encountered 

in the load modeling literature. 

Stochastic State-Space Models  

If we ignore the possibility of introducing exogenous inputs 

(weather variables or others), the model is of the form: 

x 	= A x 	W 
--k+1 	

+ 
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m  Eict 4' 4 	 (1.2) 

where xk  is the state vector e R
n
. y is the output vector R

r 

(representing measurements at various stations), Ak  is in general a 

time-varying [nxn] matrix of parameters, and H is an [rxn] constant 

output matrix. 4S and are independent Gaussian vector processes, 

also independent of ci: c  , and such that: 

E[Wk ] 	E[NT] a  0 
 —k 

(1.3) 

where k  and Ilk  are respectively [nxn] and [rxr] positive definite 

matrices, and 6 k4 is the Kronecker delta. 

It is also assumed that the initial state vector is a Gaussian 

random vector independent of Hie  such that E[x(0)] = x 

and E[(x(0) - x )(x(0) - x )
T
] = Po . The modeling approaches either 

assume that all parameters (1.1)-(1.2) are entirely known from physi-

cal considerations [6], or that some or all of them are to be esti-

mated [5,7,9]. They either assume that the output measurement is 

scalar [5,6], or a vector [7,9] (thus allowing for a more realistic 

modeling of the actual load measurement procedure). The model param-

eters can be held constant [6], or allowed to drift slowly as in 

[5,7,9]. Finally in [9], the parameters in the covariance matrices 

in (1.3) are viewed as stochastic processes. 
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The chief advantage of representation (1.1)-(1.2) is that, 

once the required parameters are identified, it allows the recursive 

processing of the incoming measurements for state estimation and or 

prediction. The method used is the Kalman filter [10]. Under the 

assumptions discussed upon introduction of the model, the output of 

the filter is optimal in the sense of being a minimum variance 

unbiased estimate of the state. 

If the parameters of the model do not vary, they can be iden-

tified off-line. However, it is desirable to allow the model to be 

adaptive, i.e. to change its own parameters as the measurements on 

which it was based become outdated. For this purpose, equation (1.1) 

can be rewritten as: 

x 	= f(P , 	) + W 
—k+1 	—k 	—k 

(1.5) 

where Pk  represents the vector of parameters inlIk . Now these param-

eters can be viewed as a stochastic process [5,81 such that: 

P 	P + n 
--k+ 1 —lc —* 

(1.6) 

where n is a zero mean white Gaussian process with covariance 

matrix Y(k). Equation (1.2) can then be rewritten as: 

(1.7) 



(1.5)-(1.7) constitute an augmented state dynamic system that could 

estimate the parameters and states of (1.1)-(1.2) simultaneously. 

However, because of the cross terms between states, it is no longer 

linear, and the extended Kalman filter [10] must be used. Because of 

its poor convergence properties when the number of parameters is 

larger then the number of states, and also because the dimension of 

the filtering problem could go up to n(n+1) in the worst case, a two 

stage (parameter/state) prediction algorithm is suggested in [7]. 

This same procedure is applied in [9], except that an additional two 

stage estimator is incorporated to estimate the parameters of the 

input noise covariance matrices (2 , 910, which themselves are now 
viewed as stochastic processes. 

Input noise covariance matrices At  in [6], and ja, 94c  in [7] 

are viewed as constants. The important problem of estimating these 

matrices on line is considered in [6,7]. 

ARM Models  

ARMA models were first introduced by Box and Jenkins in [11] 

where they were studied in depth as a means of fitting a model to 

past history time series data. 

The models of Box and Jenkins were subsequently generalized by 

Kashyap and Rao [12] to the case of vector time series data, i.e. 

multiple output systems, and the attending identification problems 

were discussed. Generally speaking, in the load modeling literature, 

state space approaches [5-9] are prevalent. However, some authors 

have preferred time series load models [13-17]. Although most use 

scalar time series [8,13-15,17], Mahalanabis [16] introduced load 

5 



models using vector time series. We discuss only scalar time series 

models. 

The basic model introduced by Box and Jenkins is of the form: 

x
k 

= 	4).xk-i +8u 
. 	k-j i=1 	 3=u 

(1.8) 

where {xk} is the scalar time series of interest, and {u k }  is a 

sequence of white Gaussian random variables, with zero mean and var- 

iance au
2 
 , representing an unmeasurable input. 100 and {e i } are 

constant parameters. 

If no l(p i l are present in (1.8), the model is called a pure 

moving average (MA) model. If the lel (j ' 0) are absent, the model 

is called a pure autoregressive (AR) model. As clearly seen, (1.8) 

is simply a scalar stochastic difference equation. 

If the backward shift operator is introduced (Bu k = uk-1 ), 

(1.8) can be re. —tten as: 

O(B)x
k 

= 8(B)u
k 
	 (1.9) 

where 0(B) and 0(B) are appropriate polynomials in B. Note that one 

can easily go from (1.9) to an equivalent state-space formulation 

(1.1), where prediction via Kalman filtering can be used. 

Model (1.8) can be refined in two ways [11] when the original 

time series is a nonstationary process: 

(a) Nonperiodic, nonstationarities can sometimes be eliminat-

ed if a high enough degree of differencing is applied to 
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the original time series. This is the detrending proce-

dure and should generally eliminate polynomial trends. 

For that purpose, define the one step difference 

operator V 1 
such that: 

Vx=x- x 
1 k 	k 	k-1 

(1.10) 

If d is the degree of differencing, (1.9) can now be 

rewritten: 

(B) V
dxk 	e (B) u

k 

(1.11) is called an autoregressive integrated moving 

average (ARIMA) model. 

(b) After the elimination of nonperiodic nonstationarities, 

the time series could still contain periodic nonstation-

arities. This is particularly true for load demand time 

series which clearly exhibit daily and weekly periodic 

nonstationarities. The periodic trends could be elimi-

nated using a high enough degree of m
th step 

differencing, where m is the periodicity of interest. 

For that purpose, define the m
th step difference 

operator V
m 

such that: 

V
m
x
k 
= x

k 
- x

k-m 
	 (1.12) 
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If e is the degree of mth step differencing, then (1.11) 

becomes 

e 
O(B)V

1
V
m
x
k 

= 8(B)u
k 

. (1.13) 

However, at this stage, it could be found that the noise 

process uk  still has periodic correlations. If we now 

view uk as the output of a linear filter such that: 

11)(B
m
)u

k 	
0(B

m
)v

k 
	 (1.14) 

where vk is a white Gaussian noise sequence, *(Bm ) 

and 0(Bm) are polynomials in Bm (•Bm), then (1.13)-(1.14) 

yield: 

d  
0(B)Ip(B

m
) 17

1
V

1
e  
x
k 	

8(3)003
m

)vk • (1.15) 

Multiple periodicities can be modeled likewise. 

When the general form (1.15) is used, the models are called 

ARIMA multiplicative seasonal models [10]. Galiana et. al. [14], 

Reyhani and El-Abiad [13] have used ARMA models. The model param-

eters are estimated using maximum likelihood techniques [14], or via 

an estimate of the autocorrelation function of the process [13]. 

Reyhani et al. [13], further introduced an algorithm for the determi-

nation of the structure (orders) of their model. Singh et. al. [8], 

used an AR model, and introduced smoothing techniques (in the sense 
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of estimation theory) 	in constructing the load predictor. 

Mahalanabis et. al. [16], dealt with a vector AR model, and gener-

alized the structure determination algorithm in Keyhani et. al., to a 

vector time series. 

In [14], the parameters are constant and estimated off line. 

In constrast [8,13,16] consider adaptive models. In [8] a two stage 

(state/parameter) estimation procedure analogous to the one developed 

in [7] is proposed. A simple Kalman filter is utilized in [13,16] 

for on-line parameter estimation. 

Finally, Vemuri et. al. [15] and Hagan and Klein [17] intro-

duce seasonal ARMA scalar models (1.15). Vemuri's model is not 

adaptive. At this point it is of interest to note that prediction or 

parameter updating (when present) in all of the above methods, except 

[15], [17], [13], is accomplished via state-space techniques due to 

their attractive recursive character. However, Hagan and Klein work 

entirely in the framework of ARMA models. The parameters are first 

identified off-line via maximum likelihood techniques. They are then 

updated on-line using a result in on-line maximum likelihood estima-

tion developed by Gertler et. al. [18]. Finally, prediction is 

accomplished via the techniques developed by Box and Jenkins [11]. 

In summary, ARIMA models are attractive because of their abi-

lity to model accurately a range of time-series originating in a wide 

variety of physical phenomena. In particular, multiple periodicities 

can be easily incorporated via multiplicative seasonal models, in 

contrast to the situation with stochastic state-space models. How-

ever, at this stage, the predictive and adaptive methods developed 



10 

for state space models appear to be much more attractive. Many 

authors [8,13-16] have tried to take advantage of both approaches by 

formulating their original model in ARMA form, identifying the param-

eters and subsequently converting the model to its equivalent state 

space representation for load prediction [8,13-15], and parameter 

updating [8,13,16]. 

1.3 Towards Physically-Based Load Modeling  

The literature study in section 1.2, although brief, is indi-

cative of the high degree to which identification based approaches to 

electric load modeling, at least in the area of demand modeling, have 

been refined. With the gradual introduction of new concepts in elec-

tric utilities practice however, questions have arisen that high-

lighted the limitations of such approaches. This point is now 

illustrated in the case of load management. 

Load Management can be defined as the deliberate control or 

influencing of the customer load in order to shift the time and 

amount of use of electric power and energy" [19]. The effort is 

directed toward producing a constant demand profile. This is because 

the existence of peaks and valleys in the load demand curve results 

in increased generation costs and diminished system reliability. 

Three methods of load management may be defined: (1) direct 

control of specific customer appliances; (2) voluntary load control 

by the customer (i.e. the use of economic incentives and disincen-

tives offered through the electric rate structure to encourage volun-

tary changes in customer consumption patterns and appliance mix); and 

(3) the use of thermal energy storage on the customer side of the 

meter under either utility or customer control. 
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Clearly, these three forms of load management require detailed 

understanding of the physical composition of the load and of customer 

behavior. Neither load physical composition nor customer behavior 

are significantly reflected in the load models discussed in section 

1.2. This deficiency has prompted research in the synthesis of so 

called "physically-based" load models [20,23-25,29-34]. 

In the present research, we address the problem of synthesiz-

ing physically-based load models in the evaluation of load management 

policies of the first kind (direct control of user appliances). 

In load management via direct device control (method 1), the 

utility modifies the load shape by acting directly on the power 

system. Accordingly, with the prior agreement of the users partici-

pating in the load management program, and at appropriate hours of 

the day (period of peak demand), service is interrupted intermittent-

ly for a selected class of customer appliances. Favored types of 

appliances for this method of load management have traditionally been 

electric water heaters, electric space heaters and air condition-

ers, because all of these are associated with some form of energy 

storage. The existence of stored energy makes a temporary interrup-

tion of power to the device hardly noticeable by the user. In an 

uncontrolled power system however, there exists a natural diversity 

(i.e. only a fraction of the total number of connected devices is in 

the "on" state at any particular time). The application of direct 

controls tends to disrupt this natural diversity. Thus, excessive 

load management can create undesirable electric demand peaks upon 



12 

restoration of service. Models are needed (and are presented here) 

to evaluate this type of effect. 

The rest of the thesis is organized as follows: in chapter 

II, necessary background in the area of physically-based load model-

ing is presented. In chapter III, we draw on previous work in this 

area [29] and the theory of Markovian processes [38,39] to obtain 

models of the electric load component of large groups of controlled 

electric space heaters or air conditioners as a function of the con-

trol strategy. In chapter IV, some approximate analytical properties 

of the models are developed. Finally, in chapters V and VI, the 

dynamic behavior of the models is investigated via numerical tech-

niques. Simulation results are presented. 



CHAPTER II 

BACKGROUND IN PHYSICALLY-BASED LOAD MODELING 

2.1 Physically-Based Load Modeling  

This research fits within the general area of physically-based 

electric load modeling. Grouped under this name are all research 

efforts utilizing a constructive approach (starting from load demand 

at the individual user level) for the synthesis of particular 

components of electric loads. Broadly speaking, the literature on 

physically-based load models deals either with general methodologies 

or with particular load models. 

General Methodologies (20,29-34]: Here, a general theoretical 

framework for model synthesis is articulated with little focus on the 

actual application. We have developed the following general load 

model synthesis procedure which serves as a framework unifying the 

various model synthesis methodologies in the literature: 

(a) First, a selection criterion is formulated which allows 

the identification of components of electric load exhi-

biting similar characteristics. 

The similarity could for example, be in the electrical 

characteristics of the loads (e.g. air conditioners, 

water heaters), or in terms of the particular group of 

customers utilizing the devices (e.g. residential, com-

mercial, etc.), or any combination of properties. 

Components which satisfy the same selection criterion 

will be called a group. 

13 



Fig. 2-1. Schematic Representation of General 
Load Model Synthesis Procedure 

14 



15 

(b) A general model structure . is determined for the electric 

demand of any device within a group. 

(c) Based on step (b), data is collected for the identifica-

tion of models for elemental load demands within groups. 

(d) The elemental models are aggregated to obtain the overall 

electric behavior first of a group, then if necessary of 

an ensemble of groups. 

(e) The model is validated by demonstrating its accuracy 

either by means of simulation-based method (i.e. compare 

the output of the model to a detailed simulation of the 

actual load), or by comparison with results from an 

actual field experiment. 

This general load model synthesis procedure is schematically repre-

sented in Fig. 2-1. The various approaches in the literature to date 

differ in the following respects: 

- The selection criterion in (a) is more or less discrimina-

tory. 

- The models in (b) are simple [29], or highly detailed 

[20,30-33] deterministic [20] or probabilistic [29-33]. 

- The aggregation method is either simulation-based [201, or 

capitalizes on the statistical properties of the aggregated 

models [29-33]. 

Among general synthesis methodologies, the work of Chong and Debs 

[29] is particularly relevant to this research and will be discussed 

in detail in section 2.2. 
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Particular Load Models  [20,23-25,33-35]: 	Here, either an 

existing load synthesis methodology is applied to solve a particular 

load modeling problem, or a load synthesis methodology is created for 

a particular problem with no reference to previous work. The nature 

of the models depends strongly on the intended application. Impor-

tant application areas are planning [33-34], load management using an 

inverted rate structure [35], and load management using directive 

device control [20,23]. An important area of research where modeling 

needs are closely related to load management method 1 is the cold 

load pickup problem [26]. This is the problem of predicting load 

behavior following a power outage. Devices associated with energy 

storage play an important role in the load dynamics in this problem. 

In the literature, electric load models for groups of devices 

under load management range from the purely simulation-based [20,23] 

to completely analytic models [24,25]. Simulation-based approaches 

have the disadvantage of being costly, and do not lend themselves 

easily to analysis. On the other hand, the models are more realistic 

than purely analytic models because a greater modeling complexity is 

allowed. 

References [24,25] both present analytic models of aggregate 

loads of electric space heaters. They have the common shortcoming of 

ignoring noise processes due to customer behavior, a weakness which 

is corrected in the modeling procedure of this dissertation. 

Furthermore, it will be shown in Chapter IV that our results incor-

porate [24] as a particular case. 
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2.4 The Classification of Chong and Debs  

This research builds upon a device model classification pro- 

posed by Chong and Debs in [29]. 	In their work, two models are 

associated with every electrical device: 	an electrical response 

model and a functional model. 

1. The Electrical Response Model: This corresponds to the 

portion of the device associated with energy conserva-

tion. 	For example, the resistance associated with an 

electric water heater. Among the inputs to this model are 

voltage and frequency. 

2. The Functional Model: This is mainly useful in conjunc-

tion with devices that normally have a discrete number of 

modes in which to operate. For example, thermostat con-

trolled electric space heaters oscillate between "on' and 

"off" modes. Among inputs to this model are weather w(t) 

and service demand v(t) (which summarizes the role of the 

customers). 

Functional and response models are interrelated as shown in Figure 

2-2. As we proceed to analyze functional models further, it will 

become apparent that this response/functional device model decomposi-

tion is tantamount to a model component decomposition into a deter-

ministic subsystem with fast dynamics and a probabilistic subsystem 

with slow dynamics. The functional models of devices associated with 

energy storage are dynamic. This means that their operating state 

m(t) is not a memoryless function of service demand. For example, 

there is no fixed relationship at each instant of time between the 
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demand for hot water and the functional state ('on'/'off') of a ther-

mostat-controlled water heater. 

Among dynamic functional models, Chong and Debs distinguish 

two types, weakly-driven and strongly-driven, depending on the nature 

of service demand v(t). A stochastic hybrid-state model (contin-

uous/discrete) is associated with either case (see Fig. 2-3). The 

continuous state represents the energy storage component of the 

model. The discrete state m(t) corresponds to the switching mecha-

nism. The two types of dynamic functional models are now discussed. 

Weakly-Driven Functional Model. Here, the role of the custo-

mer (i.e. service demand) is indirect in the form of a noise pro-

cess. An example may be found in the cooling or heating system of a 

building. To be specific, consider an electric space heating system 

with a thermostat-controlled resistive heater. Heat is lost from the 

building through the walls, floor, and roof. In addition, heat is 

lost when somebody enters and leaves the building and is gained from 

human activity. This type of effect can be modeled as noise. A 

simplified hybrid-state model is proposed by Chong and Debs for the 

group of devices which are weakly driven. 

The continuous state x(t) (temperature) is governed by the 

first order differential equation: 

Cdx(t) = -a(x(t) - x
a
(t))dt + dv(t) + P(t)m(t)b(t)dt 
	

(2.1) 

where 

C: 	is the average thermal capacity of the building 
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a: 	is the average loss rate through floors, walls and 

ceilings 

v(t): 	is a Weiner process of zero mean and variance param- 

eter v 

x(t): 	is the temperature inside the building 

x
a
(t): is the ambient temperature 

P(t): 	is the rate of heat supply from the resistive element 

m(t): 	is the functional state (1 or 0) 

b(t): 	is a binary variable representing the control applied 

by the utility. It is 1 if the device is connected, 0 

otherwise. 

Division of (2.1) by C yields: 

dx(t) = -a(x(t) - xa (t))dt + dv 1 (t) + Rm(t)b(t)dt 	(2.2) 

where the definition of a and R is obvious. v'(t) is a Wiener pro-

cess with variance parameter a = vC
1/2 

The discrete state m(t) is governed by a thermostat with 

temperature setting x+  and x_. Mathematically, for arbitrary small 

time increment At: 

m(t + At) = m(t) + w(x(t),m(t);x 4. ,x_) 

with w defined as 
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0 	x < x < x+ 
w(x,m;x4. ,x.. ) = 	-m 	x > x+ 

1-m x 4 x 

(2.3) 

Thus (as shown in Fig. 2-3), the functional model is composed of two 

interconnected subsystems: a linear part with a continuous state 

x(t) whose evolution depends on m(t), and a nonlinear part with dis-

crete state m(t) whose transition depends on x(t). Notice that if 

the noise v(t) is absent, then the switching of m(t) between 0 and 1 

is periodic. When noise is present, the cycling of m(t) is no longer 

deterministic. This type of cycling is observed in electric heaters 

and several other devices. 

Strongly-Driven Functional Models. The model structure here 

is essentially the same as for the weakly-driven case. However, 

service demand is no longer a noise process. Rather, it is a con-

scious demand by the consumer and can be modeled as a jump process, 

i.e. a random driving input which is piecewise constant. An example 

of this type of functional model can be found in the electric water 

heater. The general model for the devices which are strongly driven 

is given by: 

CX(t) = -a(x(t) - xa (t)) - v(t)(xd  - xi (t)) + P(t)m(t)b(t) (2.4) 

where the above variables are the water heater analogs of equation 

(2.2), and x(t) is again the continuous state (temperature). 

In equation (2.4): 

v(t): 	is the hot water demand at time t (vol/sec) 
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x.(t): is the inlet water temperature 

xd : 	is the desired water outlet temperature. 

Forx.(t) constant, (2.4) is similar to (2.1), except that 

v(t) is now piecewise constant with random switching times and random 

amplitudes. 	The discrete state m(t) will switch between 1 and 0 

according to equation (2.3). 	Thermostat-controlled electric space 

heaters or air conditioners have dynamic functional models of the 

weakly-driven type (equations (2.2)-(2.3)). 

In summary, Chong and Debs have developed the device re-

sponse/functional model decomposition and a general (hybrid-state) 

representation for dynamic functional models. Within the framework 

of the general load synthesis methodology (Fig. 2-1), this represents 

the completion of steps (a) and (b). 

The hybrid state model of Chong and Debs for weakly-driven 

devices (Equations (2.2)-(2.3)) constitutes the starting point of our 

model building endeavor. We use this model as a general representa-

tion for functional models of electric space heaters or air condi-

tioners, and proceed to implement the remaining steps of the load 

synthesis methodology in Fig. 2-1. In the next chapter the aggrega-

tion problem for this particular class of devices is formulated and 

solved. Before undertaking the analysis of the parameter estimation 

problem (step (c) of the methodology) some theoretical results need 

to be developed. As a result, questions of parameter estimation are 

postponed until chapter IV. 



CHAPTER III 

THE AGGREGATION PROBLEK: FORMULATION AND SOLUTION 

3.1 Exact Formulation of the Aggregation Problem  

Step d of the general load synthesis methodology (Fig. 2-1) is 

aggregation. It represents the most difficult step associated with 

the methodology and the major part of our work will be concerned with 

its solution. In the following, the aggregation problem for a group 

of devices is defined. 

Given a collection of devices represented by indices 114, the 

associated aggregation problem is that of determining the dynamics of 

total power demand for that group as a function of time, system 

voltage and system frequency. Let Pi (v,f) represent a steady state 

response model for the i th 
device. If as a first approximation 

electrical and electromechanical transients for the devices are ne-

glected, one has: 

n 
P(v,f,t) 	Pi (v,f)m i

(t) 
	

(3.1) 

where P(v,f,t) represents the total real power demand for the aggre-

gate. Furthermore, if we define: 

1 
n  

P eq 	n 
(v,f) 	P

i 
 (v,f) (3.2) 

m(t) = 2- 	 m.(t) n i.1 1 (3.3) 

23 
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Then (3.1) can be approximately written: 

P(v,f,t) = n P eq (v,f)m(t) (3.4) 

The following can be noted: 

- Equation (3.4) is an approximation which improves as the 

similarity of the aggregated response models increases. 

- If it is desired to account for one type of dynamics (e.g. 

electromechanical transients associated with induction 

motors running compressors for cooling), P eq (v,f) can be 

replaced by Peq (v,f,t) in (3.4) where Peg (v,f,t) represents 

dynamics of an "equivalent" machine. 

- Although (3.4) can be modified to account for transients, 

the calculation of m(t) need not be affected since any 

response model dynamics (electrical or electromechanical) 

are usually much faster than functional model dynamics 

(thermal). 	Thus the functional model "sees" only the 

steady-state of the response model. 

Equation (3.4) elucidates the advantages of the Chong-Debs func-

tional/respone model decomposition [29]. This decomposition allows 

the separation of the aggregation problem into two decoupled tasks: 

response model aggregation (equation 3.2) and functional model aggre- 

gation (equation 3.3). 	The former is a deterministic aggregation 

problem and has been treated elsewhere [26-28]. 	Functional model 

aggregation, schematically represented in Fig. 3-1, is a new stochas- 
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tic aggregation problem and is our principal interest. The objective 

is to determine the dynamics of m(t) which will be called the aggre-

gate functional state. Physically, 1(t) represents the function of 

devices in the •  on• state at time t. 
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Fig. 3-1. Schematic Representation of Functional 

Model Aggregation. 

The solution of the aggregation problem is considered only in 

the weakly-driven case (air conditioning and electric space heat-

ing). Important difficulties occur at two levels with the strongly-

driven case: the precise modeling of service demand and the mathe-

matics associated with a jump process. 

In the following section, the aggregation problem is solved 

for the case of a homogeneous control group of weakly-driven 

devices. A homogeneous control group is defined as a group of nearly 

identical devices with nearly identical functional models and subject 

to the same control within a load management program. A reasonable 

example of this can be found in a large apartment complex. 
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3.2 The Case of a Homogeneous Control Group  

Consider the case of a large homogeneous control group of n 

weakly-driven devices. Also, for the purpose of this analysis, sup-

pose the devices are electric space heaters. The following 'elemen-

tal independence assumption' (Chong and Debs [29]) is made throughout 

this work: conditional on weather information, load demands of in-

dividual devices correspond to independent stochastic processes. 

Based on this assumption and using Kolmogorov's strong law of large 

numbers [37], it is possible to conclude that for n 'large enough:' 

m(t) = Ew (mi (t)) 	V = 1,...,n 	 (3.6) 

where E
w
(•) is the expectation operator conditional on weather in-

formation (weather is treated as a known time varying input). 

Equation (3.6) is fundamental to this work. First, it is a 

process of going from a discrete random variable (p(t)) to a contin-

uous one (Ew (m i (t))). As such, it can be considered as a diffusion 

approximation (by analogy to the process of going from a discrete 

random walk to a continuous Brownian motion). Secondly, in the 

stochastic processes context, we could view the homogeneous control 

group as an approximate, because finite, ensemble realization of the 

stochastic process described by equation (2.1). The evolution of the 

states from t=0 to t== for any individual electric space heater would 

represent a particular sample path of the process. In this light, 

equation (3.6) can be interpreted as the process of estimating a 

statistical property of an ensemble (Ew (m i (t)) via a finite sample 
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average (m(t)). In section 3.2.1, this "physical" interpretation of 

equation (3.6) is utilized to generate some preliminary results and 

gain an intuitive understanding of the dynamics of E w (mi (t)) by 

examining instead the dynamics of the aggregate functional 

state m(t). Guided by these results, we consider in section 3.2.2 a 

formal derivation of the dynamics of B w (m i (t)). A system of coupled 

partial differential equations of parabolic type (Fokker-Planck equa-

tions [38,39]) is obtained. This system of equations together with 

equation (3.6) constitute the solution of the aggregation problem in 

the homogeneous control group case. 

3.2.1 Some Preliminary Results  

The following "hybrid" probability densities will be needed in 

the subsequent developments: 

fc (X,t)dX = Pr[ (A < x(t) 4 A + dX)Im(t) 	= 1] (3.7) 

f:, (X,t)dX = Pr{ (A 	< x(t) 4 A + dA)Im(t) 	= 0] (3.8) 

f
1 
 (X,t)dX = Pr[ (X < x(t) 	< A + dA) n (m (t) 	= 1)] (3.9) 

f
o
(X,t)d). = Pr[ (A < x(t) 	4 A + dA) n (m(t) 	= 0)] (3.10) 

We propose to study the following problem. 

Given i(t), f i (X,t), fo (A,t) at time t, express if pos-

sible m(t + 6t) in terms of the above mentioned quantities when 6t is 

a small time increment. 
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Let n 1 (t) be the total number of electric space heaters in the 

"on" state at time t. Also, for the on population of space 

heaters, let: 

n
1
(t) 

S
1
(t,6t) = 	m (t + dt) 

i=1 
(3.11) 

Finally let: 

p 1 (t,6t) = probability that an individual space heater 

remains in the on state at time t + dt, given 

that it was in the on state at time t. 

cl 1 (t,6t) = 	1 - p i (t,dt). 

S 1 (t,6t) corresponds to the summation of n 1 (t) identically distribut-

ed independent Bernoulli random variables with p1 (t,6t) probability 

of success and g 1 (t,6t) probability of failure. For n 1 (t) "large 

enough," the central limit theorem [37] yields: 

S
1 
 (t,dt) 	n

1
(t)p

1
(t,(5t) + G(0,n

1 (t)p 1
(t,(5t)g

1 
 (t,dt)) 
	

(3.12) 

where in (3.12) - indicates convergence in distribution and G(a,0) 

denotes a Gaussian random variable with mean a and variance O. 

Similarly define: 

n
o
(t) 

So  (t,1510 = ]■ 	(m.(t + 6t) 
i=1 

(3.13) 

where no (t) is the number of space haters in the "off" state at time 

t. Also, let: 
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Is
o (t,6t) = probability that an individual space heater 

remains in the "off" state at time t + 6t, given 

that it was in the "off" state at time t. 

1 - po (t,60. q
o
(toSt) = 

It can be shown that for no (t) "large enough n": 

S
o
(toSt) - n 

o 
 (t)p 

 o  (t,6t) + G(0,n o  (t)p o
(t,dt)q

o
(t,6t)) 

(3.12) and (3.14) yield using the independence assumption: 

n 1  (t + dt) - n 1  (t) - -n1 	+ n (t)q (tp5t) 1 	 1 	 0 	o 

(3.14) 

+ G[0,n
1
(t)p

1
(t,(50q

1 
 (t,dt) 

+ no (t)P0 (t, 6t)(10 (t, 05t)] 	 (3.15) 

Dividing equation (3.15) by n yields for n "large enough": 

-- 	 - 	-- 	 __ 
m(t + dt) - m(t) = -m(t)qi (t,dt) + (1 - m(t))q0 (t,t5t) 	(3.16) 

Furthermore, dividing equation (3.16) by ót and considering limits 

as (St goes to zero yields: 

di 
= 

 
6t+0 dt q

0 (t,dt) (3.17) -E --m(t) 6t4.0 dt q l (t,60 + (1 - ;Wm))  lim 
1 

The limits in (3.17) can be evaluated as follows: 



lim 
q

1
(t

'
6t) 

lim 1 Pr[sup x(t') > at+o 	 ot+o at 

for t'e[t,t + 6t]lm(t) = 1] 

lim 1 
Pr[sup[x(t') - a(x(t') - x

a
(t'))(t'-t) 

a  6t+0 at 

+ v(t') - v(t)] > x+  for t'e[t,t+6t]Im(t) = 1] 	(3.18) 

where equation (2.1) has been used. However as 6t+0, 6v(t) is of the 

order of aIt. Therefore, in the difference 6v(t) and a(x(t) - 

xa
(t))6t, the latter term can be neglected, in which case (3.18) 

reads: 

6lt+0 
im 1 

Ot q. 	
lim 1 

(t,6t) 	6t+0 at Pr[sup(x(t) + v(t') - v(t)) > =  

for t'E[t,t+6t]Im(t) = 1] 

= 2 6lt+0 
im 1 

6t 
 r LPr[x(t) + 6v(t) > x .01m(t) = 1 (3.19) 

where in (3.19) Desire Andre 's reflection principle [47] has been 

used. (3.15) and the law of total probability yield: 

lim 1 q .(t,6t) = 2 lim 1 	r c J Lyx+ , t) - 177(x+-u,t) if isv (u)du 
6t+0 Ot i 	 6t+0 6t 

0 

30 

(3.20) 



i2.17-6—t-  a 

1  
e 

2026t 
f
6v

(u) = (3.21) 

+ -6- 1 	1 f 	 1 31 Ln(u),tju jf 6 (u)du 
ax

2 (3.22) 
B
2
fc  

31 

where F'(A,t) is the distribution function associated 

and f
6v

(u) is the probability density of 6v(t), i.e.: 

u
2 

with fc (A,t) 

    

Assuming f(A,t) is twice differentiable, a Taylor expansion 

of F i (x+-u,t) in the neighborhood (left) of x i. yields: 

8f
c  co 

lim 1 	 lim 1 r r C 	 1 	1 	2 
6t+0 Ot 	 6t+0 6t 

g.(t,6t) = 2 	j Lf i (x+ ,t)u - 	(x.i. ,t)u 
 2 ax 

where x+-u < 	< x+ . Using (3.17) it is possible to show that: 

co 

6t
lim 	

fAc xi.,t)u f
6v 

 (u)du = 0(6t) -1/2  
0 

1 
J 
r 

+0 6t  
+ CO (3.23) 

The limit in (3.22) represents the rate of decrese of F.ci (x+ ,t) at 

time t. Now, the limit in (3.23) is infinite. This means that 

if fc (x+ 
 ,t) is nonzero for a finite time 6t' 1  Fc (x+' 

 t) would decrease 
 

by an infinite amount which is impossible (Fci (x+ ,t) is a probabili-

ty). This means: 

f
c
(x+  ,t) = 0 	Vt 	

(3.24) 

(3.21), (3.22) and (3.24) yield: 
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lim q 1
(t,6t) 

1 2 
aft 

6t+0 	at 	
m - 1.4.; a ax  (x+ ,t) (3.25) 

Similar arguments yield the following equations: 

fc (x 
-
,t) - 0 	fit 

o  

c 

6t+0 	 2 
lim 

qo (t,6t) 	
af 
o 1 2 

— a 
ax 
 (x_,t) 

(3.26) 

(3.27) 

(3.16), (3.25) and (3.27) yield: 

2 afc  2 afc  di = 
m "" ( i—  ax

1 cx+ ,o) + ( 1.;i(t))(22  .— ax ° (x_,t)) 	(3.28) dt  

Finally, if we note that: 

c 	-- 
f1 	1 (x,t) m f (x,t)m(t) 

-- fo (x,t) = fo (x,t)(1 - m(t)) 

Then (3.28) yields: 

di a 	 a 	o 
2 of 	 2 of 

(x ,t) + 	(x ,t) 
dt m  2 ax 	 2 ax 

(3.29) 

(3.30) 

(3.31) 

Equation (3.31) clearly indicates that by solving for the dynamics of 
af t 	 afo 

the time functions — 
ax (x

+ ,t) and 	(x_,t) the evolution of theax 

aggregate functional state m(t) can be determined. This will be the 

object of section 3.2.2. 
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Finally, in light of equations (3.17), (3.25) and (3.27), the 

terms in the right-hand side of (3.31) can be interpreted as being 

the average fraction of devices that switch from "off" to 
2 3f

o  "on" C2 
3x 

 I- 	(x_,t)) minus the average fraction of devices that 

f a 	o 
2 3f 

switch from on to "off" (- — 	(x,t)) per unit time at time 

	

2 3x 	+  

t . 

3.2.2 Ensemble Analysis: The Coupled Fokker-Planck Equations (CIME)  

Model 

Here, a formal analysis of the dynamics of Ew (m i (t)) is under-

taken. Equation (3.6) is repeated below for convenience: 

	

= Ew (m i (t)) 	 (3.32) 

We have: 

Ew  (m i  (t)) = 	(t) = 	+ 	Pr 	t) lE 0) (3.33) 

but 
x+ 

Pr(m
i
(t) = 1) = f f

1 
 (X,t)dA 
	

(3.34) 

(3.32)-(3.34) yield: 

x+ 
m(t) = $ f

1 
 (X,t)dA = F

1
(x
+
,t) (3.35) 

where F
1
(A,t) 	represents the distribution function associated 

with f
1
(A,t). Equations (3.31) and (3.35) represent two alternative 

ways of computing m(t). At the end of this section their mutual 
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la 	
f
lb 
- 

m (t)

100.  

temperature axis 

11. 
A 

Fig. 3-2. Illustration of Dynamical System. x _ and 	are the lower 
and upper edges of thermostat at dead band respectively. 
m(t) is the total area under the "on" density at any time. 
The arrows represent the direction of temperature drift 
(in the case of electric space heating). 

f 
oc 

X - E 

L
3 
(t) 

to. 
A X X +E 

L
4
(t) 

Fig. 3-3. Graphical Representation of the Flow of Probability within 
a Rectangular Strip of Width 2E around x_. 
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consistency will be established. 	The vector stochastic process 

s(t) a ( x(t) ) can be regarded as a hybrid-state (discrete/continuous) m(t) 

Markov process. 	Two hybrid state probability densities f i (a,t) 

and f
o
(A,t) as defined in section 3.2.1 can be associated with it. 

We now establish the following result. 

THEOREM 1: 

The hybrid state probability densities f l (A,t), fo (A,t) sat-

isfy the following system of coupled Fokker-Planck equations: 

3f
1  

-5;E  (x,t) - 157  ((a(A - xa (t)) - b(t)H)f 1  (A,t)1 

2 	
a2 

+ — 	f (A,t) 
2 	as 1 (3.36) 

in regions a, b of Fig 3-2 and: 

at

3f
o 	a 	 o2 32 

(X,t) = 	((a (a - xa (t))fo (A,t)] + 	2  fo(A,t) 	(3.37)ax ax 

in regions b, c of Fig 3-2, subject to the following boundary condi-

tions. 

Absorbing Boundaries: 

f lb (x+ ,t) = f
ob

(x
-
,t) = 0 	vt > 0 
	

(3.38) 

Conditions at Infinity: 

f la (-°°,t)  = foc(+el'A) - 
	

Vt > 0 	 (3.39) 



Continuity Conditions: 

	

f
la

(x
-
,t) = f

lb
(x

-
,t) 	Vt > 0 
	

(3.40) 

	

f
ob

(x
+
,t) = f 

oc 
 (x

+ 
 ,t) 	Vt > 0 	 (3.41) 

Probability Conservation: 

- 	f (x ,t) + 
a 
  f (x ,t) + 

a 
 f (x ,t) 	> 0 	(3.42) 

	

aA la - 	ax lb - 	ax ob - 

a 	
- ,t) 	

a 
f (x 	 f f 	 " 

't' 	
a  c 	 Vt > 0 	(3.43) 

	

ax oc +' - 	ax ob+ 	ax 

Proof: 

As in the original derivation of the Fokker-Planck or forward 

Kolmogorov equation for Markov diffusion processes by Kolmogorov [48] 

and reported in [38], our proof starts from the Chapman-Kolmogorov 

equations [38]. For this particular hybrid state system, the 

Chapman-Kolmogorov equations can be modified as follows: 

1 	+0 

	

f
ij

(P,t',A,t) = 	fik (P, 
	

fkj 
t 1 ,z,T) 	(z,T,A,t)dz 

k=0 -0 

	

for i=0,1 , 	j=0,1 	and any T E (t',t) 	(3.44) 
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and where transition probability density functions: 



f
ij

(AW,A,t)d), = PrE(A < x(t) 4 A + dA) n (m(t) = 

x(t') = A',m(t') = 	 (3.45) 

for i=0,1 , 	j = 0,1 have been introduced. Also, defining: 

We can write: 

ea) = f 1  (AO) 1  

f:(A) = fo (A,0) 

1 4.= 
f i a,t) = 	f f ki (A 1 ,0,A,t)f k (P)W 

k=0 -co 

(3.46) 

(3.47) 

(3.48) 

for i=0,1. 

The derivations to follow are divided in two parts, A and B. 

In part A, we derive equation (3.36) only for f 1 (A,t) and on the 

interval (x_,x+), i.e. in region b of Fig. 3-2. The partial differ-

ential equations satisfied by f 1 (A,t) in region a, and by fo (A,t) 

(equation 3.37) in regions b and c of Fig 3-2 can be obtained using 

an exactly analogous procedure. In part B, we show that the boundary 

conditions (3.38-3.43) hold. 

A. Derivation of Equation (3.36) on the Interval (x ,x 4 ]: 

Let c be an arbitrarily small positive number. Also, let R(A) 

be an arbitrarily non-negative continuous function such that: R(A) = 

0 for A < x + c and A > x+ , and the function is three times differ- - 

37 
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entiable and vanishes together with its first three derivatives 

at x + c and x+. In the following, it is assumed that all the 

needed partial derivatives exist and are continuous in the interval 

of interest. It is also assumed that sufficient conditions (such as 

those dictated by Lebesgue's dominated convergence theorem [49)) are 

satisfied to allow interchange of orders of integration and differen-

tiation whenever applicable. For h > 0: 

lim 	r+ f 11 (A',t',A,t+h) - f 11 (A',t',A,t) 

h+0 
x +c 
	  R(A)dA

h 

x+ 
f L at f11 (AW,A,t+h)R(A)dA 

x +c 

Using (3.43), and setting i=j=1, we have: 

+= 
f 11 (A',t',A,t+h) = f f

11
(X',t',z,t)f

11
(z,t,A,t+h)dz 

+= 
+ I f

10
(PW,z,t)f

01
(z,t,A,t+h)dz 

Correspondingly, 

a  
at - 

f 

11 (x 'i v i x,t)R(A)dx  

x 
lim 
+0 h 

rr+ 	I f 11
(PW,z,t)f

11
(z,t,A,t+h)R(X)dzdA h 	L i  

x + 

(3.49) 

(3.50) 



x  
- I f

11 (AW,A,t)R(A)dA] x +c 

x+ 
lim 1 

TT ' 
r 

	

f
10
(P,t 1 ,z,t)f

ol 
 (z,t,A,t+h)R(X)dza 	(3.51) h+0   x +C 

Now, define: 

. 	r 
T
llt 	

InftW-t):x(t 1 ) = P,m(t')=11x(t) = A,m(t) = 11 	(3.52) 

AdO 
for any A,A', i.e.llt is the first passage random variable [40] 

from hybrid state ( 1 )to hybrid state ( 1  ) at time t'. A 	 A' 

Then clearly for h infinitesimal: 

+= 	 x ,x +c 
f
10

(A0,t 1 ,z,t)f (z t,A t+h)dzdA 4 Pr 
01 	

k 	4 hi 

4 Prksup x(t') 	x_ + e 

for t'E[t,t+h]l(m(t) = 1) n(x(t) = x)] 

4 Pr[sup(R-a(x_ - xa (t))(t'-t) 

+ v(t') - v(t)) > c, for t' c(t,t+h)]] 	 (3.53) 
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where equation (2.1) has been used. However, and as argued in sec-

tion 3.2.1, ash h+0, dv(t) is of the order of air). Therefore, in the 

difference of dv(t) and (R - a(x_ - xa (t)))h, the latter term can be 

neglected. (3.53) yields: 

fop 
f f

10
(A',e,z,t)f

01
(z,t,A,t+h)dzdA < Pr[sup(v(t') - v(t)) 

> t for t'c(t,t+h)] < 2 Pr[dv(t) > c] 	 (3.54) 

A 	A 

where in the above, Desire Andre's reflection principle has been 

used. Consequently: 

x 4. 
0 < 

l
+0 IT 	•
im 1 	f 	f f

10
(Al,e,z,T)f

01
(z,T,A,t+h)dz R(A)dA 

11  x +c 

lim 2 
< h+0 	Pr[dv(t) > c]K (3.55) 

K is an upper bound for R(A) on [x_+c,x +]. Due to the almost sure 

continuity of sample paths of Brownian motion, [47], the limit in 

(3.55) must be zero. Now: 

4  
4- 	

0, 

lim 1 	r 
 10.0 	
r 

1 	j f
11
(AW,z,t)f

11
(z,t,A,t+h)R(A)dzdA 

- x +c 

+. x 
'Am 1 

 h+0 h 
r 

J f
11

(A",t 1 ,z,t)f
11 

(z,t,A,t+h)R(A)dAdz 
7: 
-03  x +E 

■170 



x 
1im1 J 	f f

11 
(P,t',A,t)f

11 (A,t,z,t+h)R(z)dzdA h+0 h 
-02 x —c  

+co 
lim 1 4.= 
h+0 h f f 11 (P '""t)  

f f
11

(A,t,z,t+h)R(z)dza 
•=4:0 

(3.56) 

And: 

x 4. 
lint 1 r 	r  

 h+0 IT 	J 	
r f

11
(P,t 1 ,z,t)f

11
(z,t,A,t+h)R(A)dza 

X 

x 
 

- 	f f
11 (A'A',z,t)R(z)dz] 

X +c 

lim 1 r 

h-20 h [ j f 11
(AW,A,t)[ f f

11
(A,t,z,t+h)R(z)dz-R(A)]&] 	(3.57) 

Using a Taylor expansion for R(z), we have: 

1 R(z) = R(A) + (z-A)R'(A) + 
2 
 (z-A)

2
R'(X) 

1 
+ 6 
— (z-A) 3 

R'"(n(A,z)) (3.58) 

where A < n(y,z) ( z . 	Substituting (3.58) in (3.57), (3.51) and 

recalling (3.50), we obtain: 

x
+ 2 

X 4- f C 
at f

11 (AW,A,t)R(A)dA 

41 
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+0, 	 +00 
lim 	 1 

(X,t,z,t+h)(z-X)dz n i (X) h+0 f f 11 (A'AsAA)  47 f f 11 
=AD 

+0,  
1 	r 

+ 	f11 (X,t,z,t+h) 
1

(z-X)
2
dz R"(X) 	• 

44D 

h 	
1 f 	
6 

11 (X,t,z,t+h) 	(z -X)
3
dz R" . (n(X,z))1dX (3.59) 

From equation (2.1): 

lim 
 h+0 	J 

1 r  
' 11 (X,t,z,t+h)(z-X)dz 	[-a(X-xa (t)) + Rb(t)] 	(3.60) 

and 

4,0* 
lim 1  
h ► 0 	

r 
A.11 (X,t,z,t+h)(z-X) 2dz 	a2  (3.61) 

Also: 

+. 
lim 1 

 h► 0 h J 
r 

(X,t,z,t+h)(s-X) 3dz '• 0 ' 
4 

11  -co 
(3.62) 

In (3.59), it can be shown (proof 1, appendix B) that the 

integrand satisfies conditions that permit the application of 

Lebesgue's dominated convergence theorem [49]. In this case, the 

limit operation in (3.59) can be moved past the integral sign. Using 

(3.60-3.62) one obtains: 



x
+ 

I a  at fli(v't''x't)ROodl = f [f (A' t." A t) 

2 
(-a(A - xa (t)) + Rb(t)) R' (A) + R" (A) 	 (3.63) 

Integration by parts (twice) of the right-hand side of (3.63) and 

recalling properties of R(A) yields: 

I C1-  3t f 11 (Al ' ti ' A ' t)  

a 
+ — [ -a(A -x

a
(t)) + Rb(t)]f 11 (A' ,t 1  ,X,t) BA 

a2 3 2 
- — 	f (AW,X,t))11(A)dA = 0 2 	

3A
2 11 

(3.64) 

Since (3.64) is satisfied for any positive R(A) (subject to the con-

straints mentioned earlier) and for an arbitarily small e, we con-

clude that for almost any A on (x_,x 1.]: 

a 
at f 11 (VAI ' X ' t)  

+ 
a

[-a(x-xa (t)) + 

a
2 

3
2 

- 	f (V,t',X,t) = 0 	 (3.65) 
2 	

3A
2 11 
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Furthermore, starting from the Chapman-Kolmogorov equation 

for f
01

(X 1 ,t',A,t) (equation (3.44)) and using a similar approach one 

can show that f
01

(Al,t',X,t) satisfies: 

a f ol  (x , , t , ,x,t) 

11__ [_a(x—xa (t)) + Rb(t)lf
01 

(Al,t'A,t) 8). 

2 n 2 
a 	" 	f (A 1 ,t',A,t) = 0 

- 2 	ax2 01 
(3.66) 

Setting t' = 0 in (3.65)-(3.66) and multiplying both equations 

by f7(A 1 ) and f(0) (M) respectively, we obtain after addition: 

2 

[ at f  k1  (A1,0,A,t) 
k=0 

+ a [—a(x—xa (t)) + wt.)] flow'°,x," 

2 n 

2 

2 

2 
a 	" 	f (A 1 ,0,A,t)lfZ(P) m 0  - 	ax 	k1 

(3.67) 

Integrating (3.67) from -40 to +=, and using (3.47) we have after 

interchanging orders of integration and partial differentiation: 

at

afi 

 ax
a  (x,t) + [-a(). - xa (t)) + Rb(t)lf ()LA) 

a
22 

- L 	,L1 	0 
2 	ax2 (3.68) 
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This completes the derivation of equation (3.36). 

B. Boundary Conditions  

We discuss only equations (3.38), 	(3.39), (3.40), and 

(3.42). The remaining boundary conditions follow by analogy. Equa-

tion (3.38) has already been established in 3.2.1 (equations (3.24) 

and (3.26)). Equation (3.39) follows from the continuity of f i (a,t) 

on (-00,x+] and the fact that it must be integrable on that interval 

(the integral is a probability and is accordingly finite). Equation 

(3.40) expresses the continuity of f i (a,t) across boundary x_. 

Assumptions of continuity can always be made as long as they do not 

generate contradictions. We now proceed to establish equation 

(3.42). It is clear that equations (3.36) and (3.37) are mathemati-

cally reminiscent of a diffusion process (in the presence of a 

gravitational field). In what follows, the analogy is used freely. 

In Fig 3-2, an infinitesimal strip of width c on either side of x_ is 

considered. Let L 1 (t,E), L2 (t,c) , L3 (t), L4 (t) represent respec-

tively: 

- The rate at which probability diffuses from left to right 

past the edge at x-c. 

- The rate at which probability diffuses from right to left 

past the edge at x+c. 

- The rate at which probability diffuses from f i (a,t) 

to f
o
(A,t) past the edge x+ . 

- The rate at which probability diffuses from f o (A,t) 

to f
1 
 (A,t) past the edge x_. 
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Finally Al (t,e) and A2 (t,e) are the hatched areas represented in Fig. 

3-2. Using equations (3.68), we have: 

a 	BF
1 

L
1
(t,e) = - — A1 
	at (t,c) = 	(x

— 
 - c,t) 

8t  

= [-a(x_-e - xa (t)) + Rb(t)] 
f la (x--c,t)  

2 
 

— 	-57 f la (x- 	E 't)  
(3.69) 

where use has been made of: 

im 
3f 

A 
	 l 	1a im 

A 	
f
la

(A,t) = A 	(A,t) = 0 

Furthermore: 

at2 
 

(t,e) = 	[Fi (x+ ,t) - 
F1(x+ + e,t)]

at 

	

2 
	4 	4 	4.. = -[-a(x+-xa (t)) + Rb(t)]f ( lb+'t-) 

	

2 	8X `lb'x '" 

2 

	8 + [-a(x +e - x
a
(t)) + Rb(t)]f lb(x++E't) 

2 -33 f 1b (x-+E ' t)  
(3.70) 

Using (3.38) the first term on the right hand side of (3.69) can be 

dropped from the expression. Furthermore, from (3.25) we recognize 

that: 

(3.71) 



aA2 (3.72) 
at (t,e) = -L

2
(t,e) - L

3
(t) 

Also: 
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(3.70)-(3.72) yield: 

02 
L
2
(t,e) = 

2 
a 

f ib (x_+c,t)-[-a(x_+e-xa (t))+Rb(t)]f ib (x++e,t) (3.73) 

Let I(t,e) be the rate of probability increase within the rectangular 

strip in Fig. 3-2, then from probability conservation: 

I(t,e) = L
1
(t,e) + L

2
(t,e) + L

4
(t) 

Also, recalling (3.27): 

2  
L4

(t) = 2 	as f0b(x_,t) 

(3.74) 

(3.75) 

In (3.76), letting c go to zero and using the continuity of f 1 (A,t) 

at x_, (3.69) and (3.73), we obtain: 

2 
c4.0 	,e) =0= - aa  2 ax lex . 	: -) + — — f ( 	) f 	t , 	2  lim I(t 	 aax  lb. x 

_.t. 

2 
a 	a + — — f (x ,t) 
2 as ob - 

(3.76) 

Hence (3.42). This completes the proof of the theorem. 	 • 
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Remark 1:  The fact that the limit in (3.55) is zero has an important 

significance. It means that for h infinitesimal, the Chapman-

Kolmogorov equation in (3.50) (written from t to t+h) reduces to the 

ordinary Chapman-Kolmogorov equation for a one dimensional Markov 

process. This in turn, means that the various transition probability 

densities defined in (3.45) behave "locally" like transition densi-

ties of some one dimensional Markov process. Therefore, it is no 

surprise that they each satisfy individually some Fokker-Planck equa-

tion. In this light, boundary conditions (3.38) can be viewed as 

standard for Markov diffusion processes encountering an absorbing 

boundary. 

Remark 2: 	It is possible to show that (3.35) is consistent with 

(3.31). We have: 

x x 
 

f f
1 
(A,t)dA + f f

1 
 (A,t)dA 

i .e. 

x- 	
x
+ 3f — 	 af t 

1 	 1 
dt 	j at 

(A,t)dA + f at (A,t)dA 
_co " 	x 

Recalling (3.36), (3.38) and (3.40) one obtains: 

(3.77) 

dm  . 0
2 a 	 2 a 	 2 

8 
dt 2 	f ia (x-A )  - a 

	
f ib (x-A )  " 

a 
TW f1b(x+A) (3.78) 

Using (3.42), (3.78) yields: 



2 
dm =a 	a 4  , 	 4.%

2 a 4  , 
dt la  2 	as Alb`x+ 1 " 	2 	ax -01:0x-i t)  

which is precisely equation (3.35). 

(3.79) 
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3.3 The Case of a lion-Homogeneous Control Group  

The aggregation problem has been considered only for the case 

of a class of devices described by equation (2.1) and where all the 

parameters involved were essentially identical. Such a class was 

called a homogeneous control group. In reality however, some spread 

in the parameters is to be expected. In fact they can best be 

thought of as random variables themselves. How can the effect of 

this parametric variability be assessed? 

Here, the analysis of section 3.2 is generalized to a group of 

devices exhibiting a measure of parameter spread. It is nevertheless 

assumed that the devices are still subjected to the same control 

within a load management program. Such an aggregate of devices will 

be called a homogeneous control group. A perturbation approach is 

utilized. Let the potentially important highly variable parameters 

be compiled into a vector E = g 1 g2 ,...tp) T E could contain param-

eters such as thermostat set points, building insulation parameters, 

noise variance, weather (as a function of geographical location, not 

time). In this more general framework, a more accurate statement of 

(3.6) is: 

i ( t ) 	(t ) I E ] 	 (3.80) 
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If we denote: 

m(t,t) = E[m i (t)K] 	 (3.81) 

Then the system of equations (3.35)-(3.42), i.e. the CFPE model can 

be interpreted as giving m(t,t) for a particular choice of F. 

Now, assuming that m(t,F) is a smooth function of the param-

eters around their mean value vector 
-o
E , and for parameters narrowly 

distributed around 
-o
t , a second order truncated Taylor series can be 

written: 

Furthermore, 

(3.83) 

al; m(t,k1 = m(t,i0) + 	L 	at (t,E) 
i=1 

::17ac.  

(t i  

mS.0 

iJo 

=1,...,p 
j=1,...,p 

on both 

 , 

- t
io

) 

3 	3o )] 

sides: 

a2ij  tut 

(3.82) 

(3.83) 

(3.84) 

[[t,) I 
i=1 	j=1 	i 	3 	ltmg 

let: 

2 
E[ (t - E ) a 	t - 	)

T
I 	- 	[ 044 ] 

-J 

yields after taking expected values 

2-- 
= 	

1 	a 
m(t) 	m(t,t ) 	+ 	

2 i=1 	j=1 	aEmi aE  j 



51 

The following remarks can be made: 

- Ifcovariancetemso.
2  
. (or the associated second partial 

derivatives in (3.82)) are sufficiently small, then it is 

reasonable to use the CFPE model (equations 3.35-3.42) with 

parameter vector E to compute m(t). 
—o 

- In case a first order approximation proves insufficient, 

then (3.84) is a second order approximation which requires 

theestimationofcovarianceso..as well as the associated 

partial derivatives. 	In Chapter IV, some ideas for the 

analytic estimation of these "sensitivity" coefficients 

will be discussed. 	However, a numerical estimation is 

always possible. 

As the parameter spread increases, higher order terms have 

to be introduced in (3.84). This means in effect the 

double penalty of having to estimate higher order moments 

of the parameters joint distribution, and higher order 

partial derivatives. At this point, it becomes more advan-

tageous to split the large homogeneous group into several 

smaller groups with less parameter spread, and carry the 

computations for each group separately. 

This completes the discussion on the aggregation problem. 



CRAFTER IV 

ANALYSIS OF THE CFPE MODEL 

4.1 Introduction 

The CFPE model is a system of two Fokker-Planck equations 

(3.63) and (3.37) coupled through boundary conditions (3.42-3.43). 

In the following, the origins and importance of the Fokker-Planck 

equation in the literature on stochastic processes are briefly dis-

cussed. 

The Fokker-Planck or forward Kolmogorov equation is a partial 

differential equation of a type called parabolic. It evolved from a 

study of a mathematical model of Brownian motion proposed by Einstein 

in 1905. Statistical physicists were interested in determining the 

average characteristics of the behavior of a high order system (note 

the similarity to the aggregation problem) without actually solving 

the equations which determine the system. 

In the years that followed Einstein's formulation of his 

model, a series of works by Smoluchowski, Fokker, Planck, Ornstein, 

were devoted to the study of his model and the derivation of the 

Fokker-Planck equations. 

The developments in statistical physics stimulated work by 

mathematicians in the general area of stochastic processes. The 

connection between the Fokker-Planck equation and the general Markov 

diffusion processes (loosely speaking Markov processes with contin-

uous sample paths), was being gradually elucidated. In 1931, 

52 
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Kolmogorov [48] presented his forward (Fokker-Planck) and backward 

equations for Markov diffusion processes, of which Brownian motion 

was an important but nevertheless particular example. 

The Fokker-Planck equation represented an indirect way of 

studying the evolution of a class of stochastic processes without a 

close analysis of the properties of their sample paths (or trajector-

ies). However, it created a first connection between the study of 

stochastic processes and the general theory of differential equa-

tions. It was Wiener [50] who initiated the study of sample paths 

for the particular case of Brownian motion. His work was extended 

by Levy [51]. Further developments in this field ultimately led to a 

complete theory of stochastic differential equations (Ito and McKean 

[52], Dynkin [53]), essentially a device to reconstruct trajectories 

of a stochastic process. 

An important advance in the study of Kolmogorov's equations 

was made in the years 1952-53 when Feller [54] applied the theory of 

semi-groups to the investigation of the general boundary conditions 

for these equations. Feller's results are reported by Bharucha-Reid 

[38]. 

Due to the frequent occurence of Markov diffusion processes as 

models of physical processes, the Fokker-Planck equation appears in 

numerous applications (engineering, biology, ecology, physics, 

etc.). An important engineering application is the analysis of 

phase-lock loops [44] in electrical communication systems. Unfortu-

nately, the types of Fokker-Planck equations that appear there 

(periodic coefficients) bear little relationship to the CFPE model. 
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The Fokker-Planck equation also plays a role in the solution 

of an important problem in the literature on stochastic processes: 

the first-passage time problem, i.e. the determination of the proba-

bility density for a random variable of the type defined earlier in 

equation (3.52). In section 4.2.1, it is established that success in 

determining the dynamics of the CFPE model analytically rests on the 

ability to solve two first passage time problems. 

First passage time problems occur in a variety of areas (stor-

age theory and the theory of dams [57], level crossing problems in 

communications theory [44]). We are particularly concerned with 

their occurence in the analysis of mathematical models of nervous 

system activity, because as will be shown in section 4.2.2, some pas-

sage time problems are encountered which are formally identical to 

what is needed for a solution of the CFPE model dynamics. 

Inspired by the results in nervous system modeling research, 

we formulate and analyze in section 4.3 a mathematically more tract-

able approximation of the CFPE model. 

4.2 Some Relevant Results in Nervous System Modeling  

4.2.1 Two First Passage Time Densities and Their Importance in the  

Dynamics of the CFPE Model  

We propose to study the following problem. Assuming that in 

equation (2.1), the ambient temperature process is a constant, solve 

for Ew (mi (t)) in a homogeneous control group if it is given that: 

f' 
 (l) = 6(X-x ) 

1 
(4.1) 
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discrete 
state 

m(t ) 

A 

1 

4-  T 1 -310  4 	T0 	 4---  T ' — 4—  T1 —AO< T i ) 

sli
t 

Fig. 4-1. A Typical Trajectory of Discrete State m i (t). 
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OA) = 0 	 (4.2) 

In (4.1) 6(.) is the Dirac delta function. 

The problem is approached from the standpoint of renewal pro-

cesses. Fig. 4-1 represents a typical trajectory of m i (t). From 

(4.1), it is known that the device is on a time zero and the temp-

erature state is x_. Let
i

T! be respectively the durations of 

on time and "off" time for the i th cycle. In view of the switching 

mechanisms described in equation (2.3), T i  and Ti can be considered 

as first-passage time random variables from x_ to x +  for a device 

initially on and vice versa for a device initially "off", respec-

tively. 

For a constant ambient temperature process xa (t) and con-

sidering the properties of white noise, it is clear that the se-

quence IT is a sequence of identically distributed independent 

random variables. The same holds for {ti} _=. The following func-

tions are now defined: 

f (u): probability density function of T, i=0,t1,*2,... (4.3) 

f 
T•  .(u): probability density function of 

ti, i=0,t1,t2,... (4.4) 

f
T
(u) = ft *  f 

T'  .(u) 	
(4.5) 

f (1) (u) = f
T
* 	* fT (u) (4.6) 

i times 
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In the above * indicates the convolution operation. Also, define the 

sequence of events: 

Al  = [T
1 
 > 

A2  = [((T 1  + T; < 	n ( (T 1  + T; + T 2 ) > t)] 

• • • 

• • • 

1 

i-1 	 i-1 
= 	(T 	T ] ) < t) n (T

i 	 3 
+ 	(T . + Tt > 	] 

j=1 	 j=1 
(4.7) 

Recalling (4.1)-(4.2) we have 

Ew (mi (t)) = Pr [in. (t) = 1] 

CO 

= Pr[ U A.] . 	 (4.8) 
i=1 1  

co 
However {A i } i.1  is a disjoint sequence of events. Consequently: 

CO 

Ew  (11.(t)) = 	Pr (Ai)
( 4 . 9 ) 

i=1 

Using the densities in (4.3)-(4.5) and independence, we have: 

co 

Pr(A 1  ) = f f (u)du 

t 
Pr(A2

) = f 	f 	fT (u)fT
(v)du dv 

O t-v 
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go,  
Pr (A ) = f 	f 	f

T 	T (u)f (i) (v)dudv 
o t-v • 

• 
• 

(4.10) 

(4.9)-(4.10) yield: 

c

®

^ rrt 0* 
Ewjm i (t)) = f f (v)dv + L Li

0 ft-V f T (u)f T (v)dudv] (4.11) 
i=1 

Equation (4.11) clearly indicates the dependence of Ew (mi (t)) on two 

density functions f (u) and fT (u), or recalling (4.5), fT (u) 

and f
T2 
 (u). This means that success in determining analytically the 

dynamics of Ew (mi (t)) depends on our ability to solve two first-

passage time problems: switching time from on to "off" given that 

the device is initially on and at temperature x_, and switching 

time from "off" to on given that the device is initially "off" and 

at temperature x+ . 

4.2.2 First-Passage Time Problems in the Modeling of Neuronal  

Activity  

As elaborated in section 4.2.1, success in analyzing the 

dynamics of the CFPE model rests on the ability to determine two 

first-passage time densities f (u) and fT ,(u) ((4.3)-(4.4)). The 

literature on nervous system modeling [41] presents numerous examples 

of such problems. In the following, some of the stochastic models 

encountered and the associated first-passage time problems are dis-

cussed. Relevant results are underlined. The focus is on the model-

ing of neuronal electric activity. 
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Neurons have an 'all or none' behavior which depends on their 

electric potential hitting a critical value known as the action po-

tential, upon which a neuronal discharge occurs. What is important 

here is the distribution of interarrival times of the spikes. Each 

neuron receives signals from many other neurons through terminal 

contacts referred to as synapses. If the number of synaptic inputs 

to a neuron is large, if the inputs are relatively independent, and 

if the electrochemical effect of each input is small relative to the 

neuron's threshold, the electric potential process (similar to our 

temperature process x(t)) can be viewed as being analogous to the 

position of a particle undergoing a random walk, with the action 

potential being analogous to the position of an absorbing barrier for 

the particle. Gerstein and Mandelbrot [55] first suggested such a 

random walk model,.thus stimulating research into stochastic models 

for neuronal activity. The early random walk models had discrete 

inputs and were - ambersome to analyze. Subsequently, approximations 

were made that allowed the input to be a white noise process, thus 

yielding diffusion models [56]. Among the diffusion models, two are 

particularly relevant to this research. 

The Perfect Integrator Model with Constant Threshold: 	Here, the 

input is a Gaussian white noise process with mean m and variance a. 

The dynamics of the neuron potential v(t) are given by: 

dv(t) a  mdt + a dw(t) 	 (4.12) 



60 

w(t) is a zero mean, unit variance, white noise process. 	If the 

threshold (or action potential) is a constant k, and if the rest 

level is xo , the probability density of spikes interarrival times is 

a first passage time density across a constant level and has been 

obtained in closed form [41]: 

P(t) 
k - x

o 	
-(k - x

o - mt)
2 

exp[ 
a(21rt 3) 1/2 2a

2
t 

(4.13) 

The Leaky Integrator Model with Constant Threshold: This model is 

exactly analogous to the previous one, except that, in the absence of 

input, v(t) decays exponentially to some rest value x r . The dynamics 

of v(t) obey: 

dv(t) = - 1 — (v(t) - x
r
)dt + mdt + a dw(t) (4.14) 

Again here, for a threshold k and a reset potential x o, the probabi-

lity density of spikes interarrival times is a first-passage time 

density across a constant barrier. Note that before hitting k, v(t) 

evolves like an Ornstein-Uhlenbeck process [39]. Although the leaky 

integrator model has been extensively investigated [42,43], the 

problem of determining analytically the first passage time density in 

this case was never solved. A perfect similarity can be noted 

between the dynamics of v(t) the electric potential, and x(t) the 

temperature process in the "on" state (equation 2.1, m(t) = 1), and 

in the "off" state (equation 2.1, m(t) = 0). Edges x +  and x_ are 

analogous to the action potential k and the reset potential x o . 
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Finally, for constant ambient temperature, x r is analogous to 

xa (t). Thus, the solution of f (u) and f T ,(u) ((4.3)-(4.4)) is for-

mally equivalent to the determination of spikes interarrival densi-

ties in the case of the leaky integrator model. In view of the known 

analytic intractability of the latter model, it can be concluded that 

the CFPE model will also be intractable. Approximations must be 

made. 

In the following section, a simplified version of the CFPE 

model is formulated and analyzed. 

4.3 Approximate Analysis of the CFPB Model - 

The Contant Rates Approximation  

Using the nomenclature developed in the preceding section, the 

constant rates approximation is tantamount to going from a leaky 

integrator model to a perfect integrator model. It is assumed that 

most of the densities f
1 
 (AA) and f

o
(A,t) are confined within the 

dead band. This should generally be true in practical situations. 

The dead band itself is a very narrow range of temperature (typical-

ly 1•1 °C). This means in equation (2.1), the charging rate (Rb(t) 

- a(A - x a (t))) and the discharge rate (a(A - x a (t)) are practically 

constant (for constant weather conditions, and for the duration of 

the control b(t)). Designate these values by r and c respectively. 

Under the assumption (3.36)-(3.37) reduce to: 

af 1 	a 	02 a2 at (x,t) 	-r 	fl(A,t) 	r 	2 f l (A  ' t)  ax 

3f 3 	 a
2 

3
2 

(A,t) 	c 	f (A t) + — 	f (A,t) at 	3A o ' 	2 	3A2 o 

(4.15) 

(4.16) 



go (t) 2 	ax (x ,t) (4.18) 
a
2 3f

o  
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This approximation of the CFPE model becomes a system of space-

homogeneous, linear time-invariant Fokker-Planck equations coupled 

through boundary conditions (3.42)-(3.43). In the next two sections 

4.3.1 and 4.3.2, we develop results pertaining to (4.15)-(4.16). 

4.3.1 Results in the Transfora Domain  

A Direct Approach. Let us define the following functions: 

2 of 

g1 (t) 	— 2 	(x+i t)  
(4.17) 

Recalling (3.25, 3.27), g 1 (t) and go (t) can be be interpreted as 

rates of probability absorption from "on" to "off" through boundary 

x+ , and from "off" to "on" through boundary x_ respectively, at time 

t . 

Also, for a given function f(t) denote by f*(s) the unilateral 

Laplace transform of f(t) when it exists. Laplace transformation of 

(4.15)-(4.16) and (3.38)-(3.43) yields the following two groups of 

equations: 

a 	* 	2 
a
2 

 P 1  - 	sf(X,$) - f° (X) = -r -57 	
c 

(X,$) + 	---2  f 1  (x,$) 
ax 

(4.19) 

in regions a, b and c of Fig. 3-1 and: 

(4.20) 



it 

0 

2s 

02 

1 

2r 

a2 

f
*
1
(A,$) 

a s f l 

2 - 
2 a 

(X  ' s)  

a 
	f (A ,$) 

ax 07 f l (A ' s)  

j 
r01 

f 
 0 

(A) (4.27) 
1 	1 
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lim f* (A,$) = 0 As-A0 

3 	* 	 * 	 * 
- IT f 1a (x-' 8) 	1D7 fib(x-'s) 	

2 
gO(B) 

0 

P2  - 
It' 	02 8 2 	* 

sf* (X,$) - OA) = c 
ax 

f 
 0 ' 	2 

(A s) + — — f
o 
 (A,$) 

as 
2 

in regions b and c of Fig 3-1 and: 

(4.21) 

(4.22) 

(4.23) 

f
o
(x
-
,$) = 0 

lim * A+ 	fo (A,$) = 0 

a f *
(x  od+A) —

a * 
(x 8 ) 	(s)  ax 

f* 
(x ' 2 1 

0 

(4.24) 

(4.25) 

(4.26) 

f
1
(A,$) e--: f

o
(A,$) are completely decoupled except through 

A 
boundary conditions (4.22) and (4.26). Therefore, if g 1 (s) and go (s) 

are considered to be known functions of s, systems P 1  and P2  can be 

solved separately. 

System P 1  is now considered. The second order linear differ-

ential equation in A (4.19), with constant coefficients can be 

written in state form as: 
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Using the state transition matrix [10] for the above system, it is 

possible to write the solutions in regions a and b of Fig. 3-1 in 

terms of the value of the state at A = x_, i.e. in terms of f 1 (x_,$) 

a 	* 	 * and .7- f. 
a 
 (x 

 - 	
a ,$) or f l (x_,$) and 	f1b(x-18) respectively: 

A :  

Where 

and 

* 
f 	(A,$) 1 

af 1 

= (0 11 (A-x- ,$)f 1
* 
 (x- ,$) 	+ (0

12 
 (A-x 

A 
--- J 	(A-x,$)f° (x)dx 22  0 	x 	12 	1 

(A,$ ) 	+ 

A 
2 f 	 o 

22 

-  ,$) 

(A-x 	,$) - 

B) 	that: 

0 	1 
2s 	2r 

a
2 	2 

a 

— e 2We] 

e 	(s)x 
— e 2  

(s)x 
 

2 	- e 

• 
af 1 
— ax (x — ,$) 

afo 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

ax 

it 

el(s)A  

(x 	,$) 

	

ax 	— 

A 

] 	, 

- 

-J 	
22 	1 

(A-x,$)f(x)dx 
2  0 	x   

can be shown (proof 2, Appendix 

j(A•s) 	= [4) ii  (X ,$) ] = exp 

1 	 82(s)x  . 11 0, ,$) 	e— (s)[e l (s)e 

e.(s)x 
$12(A,$) 	m 8-1 (s)[e 

el(ox 2s 
$ 21 (A ' s) 	m 

	

[ e - 
a 



+2 
02 

-e (s)x 
fo (x)dx = 0 

1 
(4.38) 
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(s)A 	e
2 
 cox 

0 22 (A ' s) 	0-1(13)[611(8)e 	- e l (s)e 	] 

(s) = 22 (r
2  + 2sa2 )1/2 , 

a 

	

r 	e(s) 
e l (s) 	+ 	2  a 

( 6
2
(s) = 	s) 

	

a 	

e 

	

2 	2 

With 

(4.34) 

(4.35) 

(4.36) 

Now consider boundary condition (4.21). 	It requires that 

as A + 	f 1 (A,$) remain bounded. 	However, the expression (4.28) 

for f
1
(A,$) contains an unstable exponential since for Re[s] > 0 

6
2
(s)A 

as A + 	e 	4. +co. 	The unstable content of f1 (A,$) can be 
1 

written: 

-6
2 
 (s)x 	

-1 	
-8 (s)x 

r 	- 	 2 	- a 
la) m [e 	6 1  (8)6 (s)f 1  - ,$) - e (s)e 	ax - 

F
ial

, x
-' s '

I  

A 	-6(s)x
- _o 	

6
2
(s)A 

+ 22 
	

6 -1 
(s)e 	t (x)dxle 

1 
a x_ 

(4.37) 

In order that f 1
(A,$) remain bounded, it is necessary that: 

* 
-6 (s)x -6

2
(s)x

- 
af l (6

1 
 (s)e 

2 	-)f1* (x -'s) - e 	-17a  (x_,$) 

Boundary condition (4.20) yields: 



66 

	

2
(s)A 	

81 	
J 

(8"  
f 1 (x+

,$) = 0 	
* 
f(x - ,$)[8 1  (s)e 	

- 8
2
(s)e 	8(s) 

1  

-1 
	e l (s)e 	e

2 
 (s)A 	f1b 

+ 8(s)[e 	- e  DX (x
+

,$) 

e (s) (x —x) 	e 2 (s)(x...-x) 
_ 2 r 6-1 1eq e  1 

- e 	 if° (x)dx (4.39) 
02 ix_ 	 1 

Where A x+ - x- (width of the dead band). 

Recalling (4.22) and using (4.38)-(4.39) we obtain: 

+- e (s)(x -x) 
* 	5 f 1 (x- ,$) - 2a 
	[ u (s) Ogo(s) - j e 2 	- 	fo (x)dx)( 

 1_e-8(s)A) 

x 
1 

—8 1 (s)Ae 1 (s)(x+-x) 	e 2 (s)(x -x) 
- e 	

+ (e 	 e 
)f
0
(x)dx] , (4.40) 

x 

* 
af la 	 r 
ax  (x_,$) = 2(a

2 
 8(s))

-1 
 1. 8 1 (s)g0 (s)(1 - e

-8(s)A
) 

x 	—e 2 (s)(x-x ) 
+ 	e 	 f° (x)dx (8

2
(s) - 8 1  (s)e

-8(s)A
) 

 -co 

—e (s)A x 	e 1  (s)(x + —x) 	e (s)(x —x) c — el(s)e  1 	f+ ( e 	 e  2 	+ 	) f
1(
x.. )dx] 

(4.41) 

* 
of 	

* 1b 	
x 	-8 (s)(x-x ) 

rr 	r+ 	2 

	

(x -  ,$) = 2(a
2
8(s))

-1 
 Lig

o
(s) + j e 	 f(x)dx) 

-40 

(82 (s) - 61(s)e-8(s)A ) 
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•Itb/e 	 ,..0 

	

—e 1  (s)A x 	e 1  (s)(x+  —x) 	e (s)(x+  -x) o 
- 	

,

A)um 

	

,_,_ 	f+(e 	 e  2 	
)
) e _] 

x 
(4.42) 

	

* 	 * 
* af 1a 	af 1b 

	

From knowledge of boundary conditions f 1 (x_,$), ax 	(x_,$), ax 

(x_,$) and equation (4.28) it is possible to write an expression 

for f 1 (A,$) everywhere. 

In region a of Fig. 3-2, using (4.28,4.40-4.41), we have: 

	

A 6,, 	

1

(8)(A-x) 	 6(s)(A-x) 
el (A,$) = 2(0 26(s)) -1 	e f- (x)dx(1 - e 

) 
 

	

* 	
6

1 (s)(A-x ) 
(1 - e

6(s)A
) go (s)e  

	

x 	6
1  (s)(A-x) 	6(s)(x-x+) 0  f + e   

(1 - e 	 )f i (x)dx] (4.43) 

Similarly, in region b of Fig. 3-2, using (4.28, 4.40, 4.42) we have: 

	

6(s)(A-x+ 
	* 
) 	6

2
(s)(A-x ) f 

	

f 1 (A,$) = 2(0
2 	-1 
6(s)) 	Ll - e 	 1r

o
(s)e 

A 	6
2 (s)(A-x) 6 1 (s)(X-x) 

	

+ f e 	 f
1
o
(x)dx + f e 	 f

1
° (x)dx] 	(4.44) 

Recalling (4.17) we have: 

* 
2 af a 	lb 

g 1  (s) = - 	ax  (x+ ,$) (4.45) 

■03 

Differentiation of (4.44) with respect to A yields: 
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e(s)(x—x+) la 	* 	e2 (s)(A-x ) 
* 

af t 	 —1 
(A,$) m 2(0

2
0(0) 	- e 	 7-- [g (s)e ax 	 ax 	0 

A 0 (s)(A-x) f e  2 
f° (x)dx] 1 

2 
9(s)a-x,) * 	02 (s)(A-x_) 	A 02 	0  (s)(A-x) 

+ 	e 	 [go (s)e 	 + 	e 	• 	f (x)dx] 
1 

8(s)(A-x ) 
r - 2(a2 0(s)) -1  1. 1 - e 	

+
f
0
(X) 

1 

+
x
+ 8 (s)e

e 
1 (s) (A—x) 	 e(s)(x—x,) n  -( 

2(0
2 	1 
0(0) i1 - e 	 )f-1 (x)dx 

A 1  

(4.46) 

At A = x+ (4,46), (4.45) and (4.20) yield: 

e 2 (s)A 	x4  0 2 
 (s)(x

+
-x) 

1 
g 1 (s) = go (s)e 	+ j e 	 f

1
o
(x)dx 

-02 
(4.47) 

Assuming go (s) is known, equations (4.43)-(4.44) and (4.47) represent 

the solution of P 1 in the transform domain. 

We now turn to the problem of deriving corresponding results 

for system P2, i.e. for the "off" density. Lengthy computations can 

be avoided if it is recognized that by using a change of variable: 

y =x+x- A 

and replacing r by c and g
o
(s) by g

1 
 (s) in equations (4.19)-(4.22), 

system P1  can be transformed into a system formally identical to P 2 . 

Tb verify this, note that: 
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f
1 
 (A,$) = f

1
(-y + x+ 	x-  x) = f 1  (y,$) 

*1 
af 1 	 af 1 a f l

• 

(A,$) In .
■ 

ay 
( y 	][4. 	

ay 
+ x_, s) = 	(Y,$) 

a 2 	* 	 1 	 1  a 2 f a2 f ' 

2 	 2 
f

1
(A,$) = 	

* 

(x
+ 
 + x

-  - 
	

2 

* 

y, s) = 	 (y,$) 
ax 	ay 	 ay  

(4.48) 

(4.49) 

(4.50) 

Substituting (4.48)-(4.50) into (4.19), and replacing r by c yields: 

*1 
3f

1 
2 	

'
2 

3 2 

2 
 sf

1 
(y,$) - f

1 
(y) = c 

3y 
 (y,$) + 	f

1
' 
 (y,$) 

ay  

Futhermore (4.20)-(4.21) yield: 

*11 
f

1 
(x
-
,$) = 0 

lim 
f
*'

(y,$) = 0 
y++=,  2 

(4.51) 

(4.52) 

(4.53) 

Finally, using (4.49) and replacing go (s) by g 1 (s) in (4.22) yields: 

a 	, 	2 g* (s) f1c (x+,$) - TiF f i
*
b

(
x+'s' a 

(4.54) 

Clearly (4.51)-(4.54) is a system of equations formally identical to 

(4.23)-(4.26). This means that in general: 

fo

• 

(X,$) = f
1 
 (A,$) = f 1 

 • 

(x
+ 

+ x
- 

- A,$) (4.55) 
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i.e., the solution of system P2  can be derived from the solution of 

system P1  by replacing A by (x +  + x_ - A), r by c and g o (s) by g i (s). 

Using the above remark, the following results are obtained: 

In region b of Fig 3-2, 

* 	 2 	11- ( * 	
y
2
(s)(x

+
-A) 	+= Y2  (s)  

f(A,s) = 2(o Y 	L(g 1 
 (s)e 	 + f e ` 	Ox)dx) 

y(s)(x -A) 
(1 - e 	 ) 

x 	y (s) (x-A) 	y,(8)(x -x) f- e  1 
(1 - e ` 	)0x)dx] 

A 
(4.56) 

In region c of Fig. 3-2, 

co4 	y
2
(s)(x-A) 	 y(s)(x -A) 

fo a,$) = 2(021(x))-1 
r 

	

L 1 e 	 Ox)dx(1 - e 	 ) 

* 	Y 1 
 (s)(x

+
-A)

( 	
-y(s)A 

g1(s)e 	 (1 - e 

A 	Y l (s)(x-x_) 	-y(s)(x -x) 
+ f e 	 (1 - e 	 )f° (x)dx 
x 

(4.57) 

Finally: 

* 	Y2 (s)6 	Y2(s)(x-x -)  o g
o
(s) = g

1 
 (s)e 	+ f e 	 fo (x)dx (4.58) 

where in(4.56)-(4.58): 



F(s) 	fo(x)dx 
x 

y
2
(s)(x-x ) 

f e (4.62 
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, 	c 	Y(s) 

	

Y 1 (s) 	+ 

	

2 	2 a 

c 	y (s) 

	

Y2 (s) (s) 	2- - 
2 a 

Equation (4.47) and (4.58) yield: 

4.  8
2
(s)A y

2
(s)(x-x ) 

g
*
1 (s) 	f 

e  

	

F(s) 	 f:(x)dx 
x 

x 	
8
2
(s)(x

+-x) 
f+ e  

F(s) 	1 
fo (x)dx 

(4.59) 

(4.60) 

(4.61) 

y
2
(s)A e

2 (s)(x+-x) 

go(s) * f
+ e  

F(s) 	 1 
fo (x)dx 

where in (4.61)-(4.62) 

02 (s) + Y 2 (s))A 
F(s) 	1 - e 

Recalling equations (3.31), (4.17)-(4.18) we have: 

dm 
(s) * g:(s) - g:(s) 

dt 
(4.63) 



	-Ow 
x+ 
	A x 

CO 

t 
g
o
(u)du 

fc) (A) 	 I 
1  Absorbing 

1 	 $ barrier 
i 

g (t): 

72 

6(A-A0 ) 	 Absorbing 
barrier 

p. 
I g 

a
(A ,t) 
 o 

0 	A 	 a 	 A • 
0 

Fig. 4-2. Brownian Motion with Drift p across an Absorbing 
Barrier. ga (X0 ,t) is the rate of probability 
absorption across the barrier. 

Fig. 4-3. Graphical Illustration of the Process of Probability 
Escape and Probability Injection in the CFPE Model. 



(4.61)-(4.63) yield: 

	

* 	440 	
- 	 

6 2  (s) 	y (s)(x-x_) 0 

	

dm 	
r 

1 
t F(s

e 
 ) 	

2 1  
(s) = f 	 e 	 f0(x)dx 

dt  
x 

Y2  (s)A 

	

If 	(1 - e 2 	)  82 (s) (x+-x)e-  1 + 
	F(s) 	

f
1 
o 
 (x)dx (4.64) 

Equation (4.64) gives an expression for the Laplace transform 

of dm — (t), i.e. the rate of change of the aggregate functional 
dt 

state m(t) for the homogeneous control group. 	Equations (4.43)- 

(4.44), (4.56)-(4.57), (4.61)-(4.62), (4.64) together represent the 

complete solution of the CFPE model in the transform domain. In 

section 4.3.1 the inversion problem of the Laplace transform in equa-

tion (4.64) will be considered. 

A Superposition Approach. The results in the preceding sec-

tion can be obtained in a natural way if superposition arguments are 

used. First however, some impulse response-like (or Green functions 

[58]) need to be determined. 

In the following, a relationship is derived between the first-

passage time density for a Brownian motion x(t) with positive drift 

and variance a
2 

across a barrier a, given x(o) = A
o
. The derivations 

are based on Cox [39]. 

On the interval (-=,a) (see Fig. 4-2), the conditional proba-

bility density Pa (a,t,A0) of x(t) satisfies the Fokker-Planck equa-

tion [313]: 
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—co 

a 
= f P

a (X,t,Ao)dA 
(4.68) 
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8P 	
aP 	 2 82 

 P 

3t
a  (X,t,A ) = p 

3Aa 
 (X,t,A 

 o 	2 
) + — 	(X,t,A0) ax 2

a  

with initial conditions: 

lim 
t+0 Pa()""Ao) 	

6(A 
 - Ao )  

and absorbing boundary condition: 

P
a
(a,t,A

o
) = 0 

(4.65) 

(4.66) 

(4.67) 

Let ga (Ao ,t) represent the corresponding first -passage time density 

across a, we have: 

t 
Pr[-00 < x(t) 4 alx(o) = Ao] = 1 - f g a (x0 ,T)dt 

0 

Differentiating (4.68) with respect to t and assuming the 

orders of integration and differentiation in the right-hand side of 

(4.68) can be interchanged yields: 

a 	8P 

3ta AAo 
g
a
(A
o
,t) = f - 	(A 	)(IA (4.69) 

(4.65), (4.67) and (4.69) yield: 

2 3P 
a  g

a
(A
o
,t) = - 	a(a,t,A0)2 (4.70) 



2u (a - A0 ) 	(A - Ao  - 2(a - Ao) - ut)
2 

0 
2 	

20
2
t 

- exp[ I] 
	

(4.72) 
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Equation (4.70) expresses the fact that at any time t, the first 

passage-time density is equal to the rate of probability absorption 

into barrier a. 

The system (4.65)-(4.67), (4.69) is solved in [39] (see 

Appendix C for derivations). The results are as follows: 

(a - A0 ) 	(a - A
o 

- ut)
2 

ga(Ao't) 	a(2irt
3
)/2 

exp[ 
2a

2
t 

1 (a - A
o - ut)

2 
r 	r Pa (AA,A0 ) 	/ LexpL 

a(21. t) 2 	 20
2
t 

(4.71) 

For our particular problem the following densities are needed: 

g 1  (A ,t) 
(x_ - A) 

-r 3 	exp[ 
a(211. t )'2  

(x+ - A - rt)
2 

(4.73) 
2a

2
t 

go (A,t) 

P 1 (A,t,A0 ) = 

(A - x_) 	(A - x - ct)
2 

3exp[ 	2 
a(21:t )' 2 	 20t 

1 [ exp[ - 	
- A

0 - rt)
2 

/ lex')
[ 
- 

a(21. 0'2 	 20
2
t 

(4.74) 

2r (x+  - A0) 	(A - A0  - 2(x+  - A0) - rt) 2 

a 
- exp[ 	'

2 	
20

2
t 
	 ]] 	(4.75) 

P
o
(A,t,A

o
) 1 r 	(Ao r = ------17 LexpL 

a(2nt) 2  

- A - ct)
2 

2a
2
t 

	

2c (A- x) 	(A - A - 2(A - x ) - ct)
2 

	

- 	0 
exp[ 	 ]] 	(4.76) 

0 
2 

20
2 0 

 t 



Using superposition arguments, it can be shown that: 

A 	 t 
g i  (t) = f f7(A)g 1 (A,t)dt + f g

o 
 (T)g.(x 

- 

o 
(4.77) 

The above quantities are represented in Fig. 4-3. In the following, 

a heuristic proof of equation (4.77) is given. For this particular 

problem, and in view of the mathematical analogy with heat diffusion, 

we shall think of probability as a "substance" diffusing across 

various boundaries. Two rates of probability diffusion are of inter-

est: g 1 (t) and go (t). These rates were introduced in equations 

(4.71)-(4.18). g 1 (t) is the total rate of probability diffusion at 

time t from on to "off" across the boundary at x+ ; go (t) is the 

total rate of probability diffusion at time t from "off" to on" 

across x_. Now (4.73) gives an expression for the probability dif-

fusion rate at time t and across x+' due to an impulsive initial 

density of magnitude 1 and at temperature A. This means (using 

linearity) that an impulsive initial "on" density of magni-

tude f° (A)dA at A contributes at time t an infinitesimal increment in 

the diffusion rate across x of size f ° (A)g
1 
 (A,t)dA. The complete 

contribution of f(A) can be obtained by adding up all elementary 
1 

contributions. This yields the first integral in the right-hand side 

of equation (4.77). Futhermore, if g o (t) is the total rate of proba-

bility diffusion from "off" to "on" across x_, then by "probability 

conservation," this probability must be injected back into the "on" 

probability density of x_ (see Fig. 4-3). Let go (T)dT be the amount 
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of probability injected during the time interval [T,T + dt], then its 

effect on the rate of probability diffusion across x +  at time t is 

identical to the effect of an impulse in the probability density at 

x_ and at time t-T, i.e. g0 (T)g 1 (x_,t-T)dt. On the time interval 

[0,t], the total contribution of the "injections" to g 1 (t) is 

obtained by adding up the effects of all elementary contributions. 

This explains the second integral (convolution) on the right-hand 

side of equation (4.77). Clearly, throughout the above discussion, 

time invariance of (4.15)-(4.16) is assumed. This is equivalent to 

assuming a constant ambient temperature xa (t). 

A similar analysis yields for go (t): 

o 
g
o
(t) = f f

o 
 (A)g 

o
(A,t)dA + f g

1
(T)g

o
(x
+
,t-T)dt 

Finally, f 1  (A,t) and f0 (A,t) evolve according to: 

x 
f 1  (A,t) = f

i. 
 f

1

0  
(x)P1  (A,t,x)dx + f P

1
(A,t-T,x

-
)g
o
(T)dt 

(4.78) 

(4.79) 

f
o
(A,t) = f f

o 
 (x)P

o 
 (A,t,x)dx + f P0 (A,t-T,x

+  )g 1  (T)dt o  
(4.80) 

Note that (4.77)-(4.80) represent an alternative integral equation 

representation of (3.36)-(3.43). It can be solved by first solving 

the coupled integral equations (4.77)-(4.78) for g 1 (t) and go (t) and 

subsequently substituting these functions into (4.79)-(4.80). 
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In the following we show that (4.64) can be retrieved using 

(4.77)-(4.78). Recall from (3.31) that the Laplace transform of 

is given by: 

* dm 
(s) 	g

*
(s) - g i (s) dt 

Laplace transformation of (4.77)-(4.78) yields: 

J+ 0 
	 * 	* 

g
*
1 
 (s) 	j

+ 
 f

1
(A)g 1

*  (A,$)dA + g
o
(s)g

1
(x
-
,$) 

(4.81) 

(4.82) 

+00 * 
g
o
(s) 	

o 
J f

o
(A)g

*
(A,$)dA + g

1
* 
 (s)g

o
(x ,$) 

o  

(4.81)-(4.83) yield: 

* * 

dm* 	
+00 g

o
(A,$)(1 - g i (x_,$)) 0  

dt (s) ot f 	
* 	* 	

f0(A)dA 
x_ 1 - g0 (x+ ,$)g 1 (x_,$) 

* * 
_ +00 g

1 
 (A,$)(1 - g0 (x+ ,$)) 0  

f
1
(A)dA * * 

x
+ 
 1 - g

o
(x
+
,$)g

1
(x
-
,$) 

(4.83) 

(4.84) 

The following are Laplace transform pairs (391: 

, 2 
,(-r + yr + 2sa

2
)) g

1
(A
o
,t) 	 exp(-(x -A 

o 
a
2 

(4.85) 

      

-c + ic2  + 2sa2  g 
o 
 (A ,t) 	 exp(-(A

o 
- x ( 
	

2 	
)) 	

(4.86) 
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Using (4.85)-(4.86) and recalling the definitions (4.35)-(4.36), 

(4.59)-(4.60), we obtain: 

y
2 (s)(X-x ) 

go (A ' s) 	e  

Y2(s)A 
g
o
(x
+
,$) = e 

 

8 2 (8)(x+-X) 
g
*
1 
 (A,$) = e 

8 2 (s)A 
g
*
1
(x -,$) = e 

(4.87) 

(4.88) 

(4.89) 

(4.90) 

Substituting (4.87) - (4.90) back into (4.84), equation (4.64) is re-

trieved. 

In closing this section, it is verified that equation (4.64) 

and equation (4.11) both obtained using independent approaches are 

consistent equations. The following derivations are heuristic. A 

mathematically more rigorous discussion is included in the next sec-

tion were the inversion problem of the transform in (4.64) is 

considered as well as the problem of determining the steady-state (if 

any) of f i (X,t) and fo (),,t). 

Formal differentiation of (4.11) yields: 

447 (t)1; 
dt dt 

= 	t 
= -f (t) + 	[- f f (t-v)f (i) (v)dv 

i=1 	0 

+ f f
T 
 (u)f (i) (t)du] 
 T 

(4.91) 



1 - f
T
(s) 

* 	* 
dm
-A 	 f

T
(s) - f (s) 

(11) dt 
(4.95) 

However, if we note that: 
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OD 

f f (u)du = 1 
0 

Then (4.91) yields: 

( (t) = -fT (t) + 	[f * f (i) (t) + f
T

)  (t)j 
i=1 

Laplace transformation of (4.93) yields: 

din (s) = -f T (s) + [1 - f (s)i[ 	(f* (s)) i ] 
dt 

i=1 

(4.94) can be rewritten: 

(4.92) 

(4.93) 

(4.94) 

where use has been made of the series expansion: 

1  = 1 + f*  (s) + f*2 (s) + 
1 - f*  (s) 

(4.96) 

for IfT (s)I < 1. Finally, recalling that f t (t), fv (t) are probabi-

lity densities of on and *off" durations respectively, i.e. first 

passage time random variables, we have: 

fT (t) = g 1 (A,01 
fAvax 

(4.97) 



0 2 	((s)A y2 (s)A 
e 	 - 1) dm 

(s) m 	  dt 	 (0
2
(s) + y

2 (s))A 
1 - e 

(4.101) 
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f
TI 

(t) - g
o
(A,t)I 

lAwX
+ 

	 (4.98) 

Equations (4.5), (4.97)-(4.98) yield: 

0 2 (s)A f
*
(s) = g

*
1
(x 
-

,$) = e 	 (4.99) 

f
*
(s) = g

1  *
(x - ,$)g

*
o 
 (x

+ 
 ,$) = e (0

2
(s) + y

2
(s))A 	

(4.100) 

Then: 

The above can be obtained from (4.64) by substituting the initial 

densities f
1
(A) and f

o (A) for which (4.101) was obtained, i.e.: 

fo (A) 	b(a — x- ) 
	

(4.102) 

f0 00 	0 	 (4.103) 

This proves the mutual consistency of the two results. 

4.3.2 Results in the Time Domain  

Steady-State Densities.  In this section, the steady-state (if 

it exists) for system (4.15)-(4.16) is determined by applying the 

final value theorem [45] to the Laplace transforms in equations 

(4.43), (4.44), (4.61), (4.62). The following results are obtained: 



lim s f * f ss al  
la l 	s+0 	la

(a
' s)  

 

82 

2r 	 2rA - — (x -A) 
1 	* 	o2 	 2 
- 

s+0  s go
(s))e 	 [1 - e-m  ] r  

fs b 
	s+0 
(A) 	lim 

s f
*lb (X,$) l  

1 lim 	* 
s+0 s fob

a,$) r 

(4.104) 

(4.105) 

 

fs
ob 

(A) 	lim 	* 
s+0 

s f
ob

(A,s 

2c - -1 

	

(s+i0 	

(A-x ) 
cc s 4(80[1 - e 	 ] , 	(4.106) 11 

 
1 
	lrn 

_ 2c a...2c 1 	_ 2Ac 

a 
1 	+ 	2 fss a)  . 	im 	

* 
1 fl 

s g(s))e - 	(1 - e g  ) . 	(4.107) oc 	c 	121-0.0 	1 

where in (4.104)-(4.107), a superscript ss stands for steady-state, 

and: 

lim 	 lim 	 
(s) 

s+0 	1 	6+0 	-0 2 (s) + 
y 	 ( s ))p [I 0 g 6)dx 

2  1 - e 

r+ + j f
1
o  
(x)dx] (4.108) 

However: 

co 
r 	 r 
J fo

0 	 + 
(x)dX + J f

1
0  
(x)dx sc 1 

x 
(4.109) 



and using L'Hopital's rule: 

lim 
s+0 	-(6

2
(s) + y

2
(s)) 

1 - e 

	

lim 	 1  (4.110) 

	

s+0 	-(62 (s) + Y
2 
 (s) d  

Ae 	
Ti; (6 2 (s) 	Y2 (s))  

But, recalling (4.35) and (4.61), we have: 

2a
2 

	

as (62(8) 	
1 

12 (8))  - 
a 	

g
2 [

, 

2a2 
	 ] 	(4.111) 

r
2 
 + 2sa2 	ic2  + 2sa2  

(4.108), (4.110)-(4.111) yield: 

lim 	* 	1 
s+0 

s g* (s) 
A A - + 
I c 

One can similarly show that: 

lim 	 1  
s g

o
(S) '8  A  

13+0 	 A - + 
I c 

(4.112) 

(4.113) 

Substituting (4.112)-(4.113) back into (4.104)-(4.107) yields: 

2rx 2rx+ 	2rA 
- 2 	

- 

2 	2 
a 	a fs (A)  . 	c 	r e  

- e 
la 	A(r+c) L 

(4.114) 

r 
- 

2
-2  (x+  - A) 

fs (A) 	
[1 - e a  

lb 	A(r+c) 
(4.115) 
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ss a 
fob (A)   [1 - e 

A(r+c) 

c 
- 22 (A - x- ) 

I (4.116) 

2cx
+ 	2cx -- 2cA 

2 	2 
ss 	r 	 0

2 
j e 

A(r+c) 

Finally, mss , the steady-state of m(t) is given by: 

f 
	ss 	r+ ss 

m
ss 

= j f
la

(A)dA + j f
lb

(A)dA 

(4.117) 

(4.118) 

Substituting (4.114)-(4.115) into (4.118) we obtain after simple 

computations: 

c 
m = 
ss r+c 

(4.119) 

Remark 1: 	The steady-state densities (4.114)-(4.117) are very 

important because they represent the natural state of the uncontrol-

led system. 

Remark 2:  At this point, it is possible to verify whether, at least 

in a steady-state, the constant rates approximation of section 4.3 is 

valid or not. One should remember that the approximation rests on 

the assumption that under normal conditions most of the temperature 

probability densities lie within the dead band. A quantitative 

measure of the validity of this assumption is the fraction of the 

probability density outside the dead band. 
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For the on density, the fraction is: 

2rA 7 _ _ Ss 	 a „ 2
c 	ria(A)dA 	

• [1 -e 	
0 2 

-42D 
	  • 2r(r+c)  

J+ fSB OOCIA 	 r  

  

2 

 

-c72T [ 1 
2  

--2 
- e 

TO
j (4.120) 

-- 0 	— 
where a = 	and T — 

A 
(average duration of on state). 	For the 

A 

"off" density the corresponding measure is: 

f 

▪ 

 fElS (A)dx 	
2 

x+ 
	  = 

0T'
1 	e 	

T'l 
2 

 

▪ fss (X)dA 

(4.121) 

where T

- s 

 = — A  (average duration of "off" state). (4.120)-(4.121) will 

be used in chapter VI of the thesis where results of a numerical 

simulation of the CFPE model are reported. In both equations, it 

appears that "diffusion lengths" ;VT and 717.  are the important quan-

tities. 

Remark 3: Note the surprising result in (4.119) which indicates that 

the steady state fraction of devices in the on state is independent  

of the noise variance. On the other hand, the result is intuitive 

because: 
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m - 

SS I + c _ — A/T + A/TI 	T 1  t T 
(4.122) 

(4.122) essentially states that at steady-state, the fraction of 

devices in the "on" state is the ratio of average on time divided 

by average cycle duration. 

Infinite Series Solution for the Equal Rates Case. Here, the 

inversion problem of the Laplace transform in (4.96) is considered. 

From (4.96): 

.,co 	 x 
dm j 	

, r f:(A)I0 (A,t)dA - f-  fc) (A)I (A,t)dA 
x dt 	 1 

where: 

y
2
(s)(A-x ) 	6

2 
 (s)A 

1 le 	- (1 - e 	)  
I
o
(A,t) - L_  (y

2
(s) + 8

2
(s))A 

1 - e 

I (a ,t) - 
L-1 l 

02(5)(x+ 
e

-mr 	Y2 (s)A 
1 - e  

) 

1 	 (Y2 (s) + e 2 (s))A 
1 - e 

(4.123) 

(4.124) 

(4.125) 

r 	1 and in (4.124)-(4.125) L 1 1•1 represents the inverse Laplace trans- 

form operator. The problem is to determine the functions I
o
(AA) 

and I
1
(A,t), i.e. to find the inverses of the Laplace transforms in 

the right-hand sides of (4.124)-(4.125). The inversion is first 

carried out for the special case where the average heat gain rate r 

and the average heat loss rate c have a common value p. In this 

case, recalling (4.35) and (4.61): 



So: 

6 
Re[(s + 1)

1/2
] = R

1/2 
cos 2 — > 0 (4.129) 
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Y2 (s) /A,  6
2
(s) = P(s) 
	

(4.126) 

where p(s) denots the common function of s. Some preliminary lemmas 

must be established before our main result can be developed. 

LEMMA 1: 

For Re[s] > 0, the principal determination of (s+1) 11/2 is such 

that Re[(s+1) 1/2] > 1. 

Proof: 

Let s+1 = Re j e  where in general: 0 4 8 4 2w . In this case, 

since Re[s] > 0: 

0 4 6 2 
	2 
— or 3w — 4 e < 2w 
	

(4.127) 

We now work with the function: 

(s + 1)112 = Ft/2 06/2 	 (4.128) 

The above function is analytic over the range of 8. From (4.126): 

2
< 4 	3w e o 	< 	or er. 4 —2  < 

Now since Re[s] > 0: 

Re[s + 1] > 0 	 (4.130) 
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R cos 6 > 1 , 	 (4.131) 

R > 1 . 	 (4.132) 

and: 

(4.131)-(4.132) yield: 

R(1 + cosh) > 2 , 

or 

6 
R cos

2
2 
 — > 1 . (4.133) 

(4.129) and (4.133) yield the required result. 

LEMMA 2: 

Let I
o
(X,$) 	converge 	in 	a 	right-half 	plane 	such 

that Re{s} > a
o
. Let a

1 be any positive (nonzero) real number. 

Finally let a be max (ao ,a 1 ). Then, for Re{s} > a we have the series 

expansion 

p(8) (a-x ) 	P(s)(A+A-x_) , nAp(s)  
Io (A,$) - 	[e 	 - e 	 je 

i*0 
(4.134) 

Proof: 

Since Re{s} > max(ao ,a 1 ), and a 1  is a strictly positive num-

ber, then Re {s} > 0. Now: 

2 
p(s) 	P 	1/1) 	2sa2 	

1 ( 

	

Q 	
( -P P 	 /1 + 2a2s) 

a 
(4.135) 

(4.139), the fact that Re {s}> 0 and Lemma 1 yield: 
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Re{P(s)} < 0 

This means: 

le
2iAP(s)

I < 0 for i > 1 . 	 (4.136) 

(4.134) follows fromm (4.124) and (4.136) using the identity: 

1 
 1  

x = 1+ x+ x
2 
+ ... for Ix' < 1 -  (4.137) 

The following theorem on the term by term inversion of a Laplace 

transform in the form of an infinite series is quoted without proof. 

THEOREM 2:  [45] 

A function f
*
(s) may be described as an infinite series of 

Laplace transforms in Re[s] > xo , i.e.: 

* 
f (s) = 1 f (s) 

i=0 

For this, all integrals 

f e-st f
i
(t)dt = f (s) 
	

(1=0,1,...) 

must exist in a common half-plane Re[s] > xo . Two additional stipu-

lations are also required: 

(i) The integrals 

OD 

f -st 
e 
	

Ifi (t)Idt = 4 1 (s) 	(i=0,1,...) 
0 



(ii) The series 	0.
1
(x
o 
 ) shall converge. 

i=0 
Then 1 fi (t) converged absolutely to a function f(t) for 

i=0 
almost all t > 0 and we have the transform pair: 
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shall exist in the half plane Re[s] 	xo. 
GO 

f
i (t) 	 1 f

*
i (s) 

i=0 	 i=0 

CLAIM: 

In the equal rates case, I o (A,t) can be expanded as: 

GO 

Io (A,t) = 	g (A + 2iA,t) - go (A + (2i+1)A,t) 	(4.138) 
i=0 

where the function go (a,t) has already been defined in (4.80). 

Proof: Using lemma 2, it is shown that theorem 2 can be applied for 

the term by term inversion of (4.138). In this case set: 

P(s)(2iA + A - x-) 	P(s)(X - x + A(2i+1)) 
f i (s) = e 	 - e 	 (4.139) 

Also, recalling (4.80) and (4.90)-(4.92): 

f i (t) = go (A + 2iA,t) - go (A + (2i+1)A,t) 	(4.140) 

Note that we have the transform pair: 

f i (t) •-•
1 
 (s) for Re[s] 	0 
	

(4.141) 
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This is because the terms of the right hand side of (4.144) can be 

interpreted as probability of first passage time random variables and 

therefore: 

f g
o
(A + 2iA,t)dt = f g

o
(A + (2i+1)A,t)dA 

4 1 < W 	 (4.142) 

Now set xo = a where a has been defined in lemma 2. Condition (i) of 

theorem 2 is satisfied because: 

+. 
f le-stf.(t)Idt 4 f If i (t)Idt for Reis] > a 

< f lgo (x + 2iA,t)Idt + f lgo (a + (2i+1)A,t)Idt 

4 2 	 (4.143) 

Finally, condition (11) of theorem 2 is satisfied since: 

Ya) m / 	e-at lyt)Idt 
i=0 	n=0 o 

co co 
f 41 j e 	Ligo (a 	2iA,t)1+1g0 (X + (2i+1)A,t)lidt 

n=0 o 
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= 	P(a) (A + 2iA 	x_) 	= 	P(a)(X + (2i+1)A - 
4 	e 	 + 	e 

i=0 	 i=0 
(4.144) 

But a is a positive number. Using lemma 1 and (4.136) we obtain: 

/ ,i(a) 
 

i=0 	 1 - e
2P(a)A 

< 	 (4.145) 

Consequently, the term by term inversion of (4.138) can be carried 

out, and the claim is proved. One could similary show that: 

OD 

I, (A,t) = I 	(g
1 
 (A + 2iA,t) - g

1 
 (A + (2i+1)A,t)) 

i=0 
(4.146) 

Remark 1:  There is a simple physical reason which makes the equal 

rates case particularly easy to deal with. Normally, if r # c, the 

switching pattern is as follows: 

Fig. 4-4. Switching Pattern in the General Case. 

If r=c, the process in Fig. 4-4 can be replaced by a contin-

uously upwards process: 



x + 241 

+ 

93 

Fig. 4-5. Equivalent Dynamical Pattern for r=c. 

The convolutions in (4.10) simplify because the probability 

density for a cycle duration becomes a first passage time problem 

with a barrier twice as remote as for the on cycle density. For 

two cycles, it is four times as remote, etc. 

Remark 2: Although (4.137) and (4.145) represent a very particular 

case of the dynamics of (4.14)-(4.15), the traveling wave nature of 

the CFPE model is clearly exhibited. Once a probability impulse 

starts traveling, it gives rise to two types of contributions in the 

form of two infinite series: a positive "forward traveling" contri-

bution and a negative "backward traveling" or "return" contribution. 

Remark 3: (4.138) and (4.146) can be written in terms of normalized 

variables. We have: 

go  (A+ 2iA,t) = 
X + 2i

3

A - x
- expl. 

r  (X + 2iA - ct)
2 

/2 a(2wt ) 	 tat 

3: + 2i - 	 - 	- 	) 2  
= 
.3(210)/2 	

exp{ 	  —2 	
(4.147) 

2a t 

where the — indicates division by A and i'has been defined in 

(4.126). Similarly: 

(x -A) 	- 	- ti.7) 2  
g (X + 2iA,t) = -----3-plexp[ 	  

1 	 —2 
a(2nt )' 	 2021 

(4.148) 
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Remark 4:  Theorem 2 guarantees that the summations in (4.138) and 

(4.146) are absolutely convergent. In chapter six, results of a 

numerical evaluation of m(t) based on equation (4.146) are summarized 

in the form of a figure (Fig. 4-6). The question of determining the 

effect of noise variance parameter a on the dynamics of m(t) is given 

particular consideration. 

Further Approximations for the Distinct Rates Case.  Here, 

some further approximations are proposed in an attempt to generalize 

the results in (4.138) and (4.146) to the distinct rates case. 

Consider the inversion of the Laplace transform in (4.124). 

Using lemma 1, p. 87, and recalling (4.92)-(4.95) we have the infi-

nite series expansion: 

* 
Io (A,$) * 	go (a + iA,$)g i (x+  - iA,$) 

i*0 

* 	* 
- go (a + iA,$)g i (x+  - (i+1)A,$) 	(4.149) 

In the time domain the products in the right-hand side of (4.149) 

correspond to convolution operations of first-passage time densi-

ties. Now recalling remark 1, p. 92, we know that in the equal rates 

case, the products can be combined together to yield the transform of 

a new first passage time density. No such result seems to hold for 

the distinct rates case. However, if the products in (4.153) are 

approximated in some sense with the transform of some first passage 

time density, then term by term inversion can be carried out, thus 



gb (a,$)g i (b,$) = • exp(p
ab 

a
2 

2 1/-* 	(4.150) + 2sa
ab

) 
1 

ab 
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yielding results analogous to (4.148) and (4.150). 	This means in 

effect setting: 

for appropriate lab and aab. 
/ab 

 and  a
ab 

can be obtained by imposing 

that the mean and variance of the approximating density be exactly 

equal to the mean and variance of the density resulting from the 

convolution in the left hand side of (4.150). The approximation 

becomes perfect in the equal rates case. In this case, elementary 

calculations (proof 3, Appendix A) show that: 

Ib ( A,t) = 
CO 

/ • 	/ 	[ 	
1 

(2nt -)' 2  i=0 

(1 - pb (i,i,T)t) 2  
• exp[ 	

2 
2a0 (i,i,A) 

1  
exp[ 	 1] 

2a0
2  
(i,i+1,7) 

(4.151) 

where in (4.151): 

for i,j 1,2,.... 

with: 

	

a2 	. 	= 
2 
• 3 

(X+I) 	 

(12(T+i) + j] 3  

	

P 
	 1 	a 3 (x+i) + j  

T 	B (A+i) + j 

(4.152) 

(4.153) 



2 L.J .,X) 	a
2 
	

(A+i) + 03j — 	
— • 

(1 1 
(4.154) 

((A+i) + j8) 3  
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A similar result can be derived for I 1 (A ' t) with: 

and: 

- 1  • 
	1 	

(4.155) 
(A +i) + Jo 

for i,j = 1,2,... 

Note: 	Intuitively we expect the approximation to get better and 

better as 0 + 1. 	The approximation displays the travelling wave 

properties previously encountered in (4.138) and (4.146). Due to the 

absence of a theoretical bound on the error, the only means of evalu-

ating the approximation is numerical. Finally, the expressions 

for I
o
(A,t) and I

1 
 (A,t) can be used to compute analytically the "sen- 

sitivity" coefficients in (3.82). 

4.3.3 Estimation of Parameters in the Approximate Model  

Recalling step c of the general load synthesis methodology 

(Fig. 2-1, p. 14), it is necessary to define and obtain the minimal 

amount of data for the estimation of the parameters of the group 

models in step b. A reasonable solution to this difficult problem is 

vital for the implementation of the methodology. Also step c can 

account for an important fraction of the cost of the approach propos-

ed in this thesis. For this reason, one should strive to make the 
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required measurements as easy as possible, and keep their total num-

ber low. 

In this section a simple approach is proposed for estimating 

the significant parameters in the approximate model, i.e. normalized 

heat gain rate r, heat loss c, and noise variance a for an individual 

dwelling. The gathering of such data for a significant sample of 

houses eventually allows the division of the sector into homogeneous 

groups as defined in section 3.1. It is only then that the methods 

of chapter III can be applied. Here, we recall the definition of the 

parameters of interest: 

1 
r =— A • [average value of r 1

(A,t)] 

-- 	1 
c = 	• [average value of r

o
(A,t)] 

(4.156) 

(4.157) 

— a 
0 = A 

(4.158) 

where in (4.156)-(4.157): 

r
1 
 (A,t) = R-a(A - x

a (t)) 
	

(4.159) 

r
o
(A,t) = a(A - x

a
(t)) 
	

(4.160) 

Recall that A is the width of the thermostat dead band. 

rA = f .  f1
(A,t)r

1
(A,t)dA = R-a(E

1  (A,t) - xa (t)) 
	

(4.161) 
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440 
f f (A,t)r

o
(A,t)clA = a(E

o
(AA) - x

a
(t)) 
	

(4.162) 

where E
1 
 (AA) and E

o
(A,t) are expected mean temperatures in the "on" 

and "off" states respectively at time t. Let T = (t 1 ,t2] be the time 

interval over which the load model is to be used. Throughout chapter 

IV, the quantities in (4.161)-(4.162) have been considered 

constant. This means in effect the following: 

(i) The noise variance a and the ambient temperature xa (t) 

cannot vary significantly over T. 

(ii) The expectations in (4.161) - (4.162) can be considered 

constant over T. 

In order to make (ii) possible, it will be assumed that the system 

starts in its steady-state and is not significantly removed from it 

during T. These assumptions are made in addition to the dead band 

confinement asssumption discussed in section 4.3. Clearly, the 

totality of the assumptions limits the applicability of the lineariz- 

ed model. However, if (i) and (ii) are verified, an algebraic 

estimation of 0, r, c is possible from a record of the "on"/"off" 

cycling of the thermostat during the time interval of interest. To 

show this, first define the following: 

	

T : 

	 sample mean of "on" durations 

	

T': 	sample mean of "off" durations 

	

0
2

: 	sample variance of on durations --rc 

0
2 

: sample variance of "off" durations. 
—T ,  

As pointed out earlier, the probability densities of the "on" and 
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"off" durations are first passage time densities given by g 1 (x_,t) 

and go (x+ ,t) respectively. 

The theoretical means of these passage times are given by r -1 

— -1 	 3 2  
and c 	respectively. 	The theoretical variances are given by Li 

—2 
and a respectively. 

Therefore, we have the estimates: 

1 
r = — T 

— 1 
C 

(4.163) 

(4.164) 

. 	a
2 

-2 	1 	
(12  (—r 4.  —T ) 

T 

a = -i k.  

	

3 	
T1

3.1 
— — 

(4.165) 

Clearly, the answers obtained will be a function of weather 

and time of the day. Thus table of coefficients as a function of 

weather and time would have to be set up for use under any condi-

tions. Finally, it is believed that this same method can be extended 

for the estimation of the parameters in the more general (and in fact 

more widely applicable) space inhomogeneous model of equation 2.1. 

4.3.4 Relationship to Previous Work  

In [26], Ihara and Schweppe have developed on somewhat more 

heuristic grounds a very simple model which in essence however, 

closely resembles the approximate CFPE model in equations (4.14)-

(4.15). The model is a traveling wave-type with a forward and back-

ward wave traveling at different speeds (see Fig. 4-6). Although 

developed independently, the Ihara-Schweppe model can be shown to be 
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temperature axis 

111. 
temperature axis 

Fig. 4-6. Graphical Representation of the Ihara-Schweppe 
Model. Arrows indicate the direction of temperature 
drift. 
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related to our model. This is because it is a limiting case of the 

CFPE model under conditions that are now described. Consider equa- 

dm tion (4.64) where the transform of — is expressed in terms dt 

of 0
2 (s), A 2

(s), i.e. r, c and a. Under the conditions: 

a << r 	 (4.166) 

and: 

a << c 	 (4.167) 

i.e. when the effect of the noise in (2.1) is practically negli-

gible. We have approximately: 

21 

	

e 2  (S). I2 	- (1 	2 
2sa ) 42 ) 

a 

2 

	

r
2 	- (1 	• 2s (1-2-)) a  

r 

Similarly, using (4.167) it can be shown that: 

Y 2 (s) 	- —c 

Equations (4.65), (4.168)-(4.169) yield approximately: 

-41: 	 40, 	-ST 	 - s--  (X-X
-

) 
dm 

(s) = f 	
1- e 	

---- , • e c 
f
o
o  
(x)dx 

dt 
x
- 1 - e

-s(T+T ) 

(4.168) 

(4.169) 



x
+ 1 - e

-ST / 	 - -- (X
+ 
 -x) 

- 	
r 

 1 	 f
1  o
(x)dx 

-00 
1 - e

-s(t+.0) 
(4.170) 
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Now define: 

Then: 

X -X 

C 
8 , 

m' t -X ) 	6 (-- C  --- + T) 
*  

	

T
o
(x,$) = e 	 - e 

-x 
- 

• 

(x -x) 
✓ + 	

s(x+ + 71 ) 

	

T
1
(x,$) = e 	 - e 

(x-x„) 	 x-x 
T 
0
(x,t) = 6(t - 	) - 6(t - T 	( 	

- 

) 

(x,-x) 	 (x,-x) 

	

T
1 
 (x,t) = 6(t - 	• 	) 	6(t - 1 1  - 	r 	)r 

(4.171) 

(4.172) 

(4.173) 

(4.174) 

where in (4.173)-(4.174) 6(•) represents the Dirac delta function. 

Using theorem 2, it is possible to show that: 

* 
T

o 

 
- 1r 	  

M
o
(x,t) = L 	] = 	To

[x,t-i(T + t')] (4.175) 

1 - e
-sFr + 7') 	i=0 

and 

M
1
(x,t) = L-1 [ 	 ] = 	T

1
(x,t-i(7 + 7') (4.176) 

1 - e-8 (T 	t') 

T1
(x,$) 
	

CID 

Substituting (4.175)-(4.176) back into (4.170) yields: 
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* 	+= 	 x  

	

dm 	 o 
(s) = f M

o
(x,t)f

o
(x)dx - f M

1
(x,t)f

1 
o 
(x)dx dt x+ 	

-00 
(4.177) 

This is essentially the result in [26]. 
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CHAPTER V 

NUMERICAL SIMULATION OF TEE CFPE MODEL 

In chapter IV, a number of analytical results have been 

developed for an approximate version of the CFPE model (4.14)-

(4.15). These results provide great insight into the dynamics of the 

CFPE model and could allow the study of important questions such as 

the issue of stability. Unfortunately they do not apply to the more 

general time-varying case, or for large excursions of the system 

outside its normal steady state as in the case for a power outage of 

long duration. Therefore, in general, one has to resort to numerical 

simulation. 

In this chapter, a numerical algorithm for the simulation of 

(3.36)-(3.43) is developed. The algorithm appears to be a reasonable 

compromise between ease of programming and computational efficiency 

for a given accuracy. The purpose of the numerical simulator is to 

allow a study of the dependence of the dynamics of a homogeneous or 

general control group on various parameters, as well as to test the 

•reasonableness" of the CFPE model as a description of aggregate load 

dynamics. In section 5.1, we describe results concerning some numer-

ical difference methods for the approximation of a particular class 

of parabolic partial differential equations anayzed in [46]. The 

class is general enough however, to incorporate the equations of the 

CFPE model as a particular case. In section 5.2, a so-called 

'completely implicit difference scheme' for the simulation of the 
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dynamics of the CFPE model is developed. The computer implementation 

of this scheme is carried out in chapter VI, where numerical results 

are reported. 

5.1 A Brief Description of Some Difference Methods  

for the Numerical Solution of a Class of  

Parabolic Partial Differential Equations  

Let u(x,t) be a function of two variables x and t, satisfying 

a general second order P.D.E. (Partial Differ.ential Equation). 

A(x,t)u
xx 

 + 213(x,t)u
xt 

+ C(x,t)u
tt 

+ D(x,t,u,u
x
,u

t
) a 0 	(5.1) 

where A(x,t), B(x,t), C(x,t) are arbitrary functions. 	Subscripts 

indicate partial differential with respect to the corresponding var-

iables. Thus, for example: 

a2u(x,t)  
(5.2) u = 

xt 	ax at 

Let the discriminant of (5.1) be defined as: 

A(x,t) = B
2
(x,t) - A(x,t) C(x,t) (5.3) 

Definition  (59]: (5.1) is said to be a parabolic P.D.E. if: 

A(x,t) = 0 	 (5.4) 
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In general, second order P.D.E.'s of the form (5.1) can also exhibit 

hyperbolic (A(x,t) > 0) or elliptic (A(x,t) < 0) behavior. 

Clearly, equations (3.32) of the CFPE model are parabolic. In 

[46], difference methods for the solution of P.D.E.'s of the form: 

u
t 	

a(x,t)u 	2b(x,t)u + c(x,t)u - d(x,t) = 0 	(5.5) 
xx 

are considered. (5.5) incorporates (3.32) as a particular case. 

Suppose it is desired to approximate the solution of (5.5) 

over a semi-infinite rectangular strip R of the form: 

R:[0 4 x 4 L; t 3 0] 	 (5.6) 

Difference methods attempt to approximate u(x,t) over the points of a 

grid: 

	

Rn,k :[xl  = jh 	j=0,1,...,J+1 ; tn= nk, n=0,1,...] 	(5.7) 

where h = L/(J+1). At each point (x j ,tn) of the net, a quantity 

v(xj ,tn) is sought to approximate the solution u(x j ,tn) of (5.5). 

(5.5) is replaced by a difference equation which is obtained using a 

specific difference approximation formula for the derivatives involv-

ed. 

The following notation is used [46]: 
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v(x.,t ) E v
n 

, u(x.,t ) E U. 
3 n 	 3 n 	3 

(5.8) 

for all quantities or functions defined at the points of R. 	In n,k' 

addition, the following interpolation formula is used to define the 

quantity at intermediate values of t: 

v(x
j
,t
n 

+ a
k

) E v
j

+a 
 E av

j
+1 
 + (1-a)v 
	

(5.9) 

for some fixed a: 	0 4 a 4 1. 	Finally, partial derivatives are 

approximated as follows: 

1 	n+a 	naN 
u
x
(x

j
,t
n
+a

k
) 	

( 
2h vj+1 - v3.

+
-1  j , 4  

1 r  n+a 	n+a 	n+aN  
Lixx (xj' tn "k" —°7 * -21/ ' " ' 

h
2 	3+1 	 3-1  

(5.10) 

	

ut3 
(x.,tn +a) 
	

k 
.livn.+1 

	

3 	
_vn.i. 

Setting x= . and t=tn  + a k 
 in (5.1) and using (5.10) yields [46]: x3   

n+1 	n 	n+ar n+a 	n+a 	n+a N 
v. 	- v. - pa. 	Orj+1 - 2v. 	3 

+ v. .) 
3 	3 	 -1  

n+a r  n+a 	n+a 	n+aN 
- pa. 	 2v. 	+ v. 4 ) 

3 	
v3+1 	

3 	3-1  

	

n+a n+a 	n+a N 	n+a n+a 	n+a r 

	

vi+1 	v3-1 	
3 	3 	3 

(5.11) 



h
2 

k < 
2a(x,t) + h

2
(x,t) 

(5.13) 
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Where in (5.11), the mesh ratio p = k/h 2 , and j=1,...,J+1. Substi-

tuting (5.9) into (5.11) together with initial condition and boundary 

values information yields a system of linear equations of the form: 

n+1 	n+1 

	

a .v. 	+ a_v. 	+ a .v 	Is S
nn+1 

	

i3 3 	z3 3 	33 n+1 	i 
(5.12) 

for j=1,...,J+1, which can be solved recursively. 	The solution 

requires no calculations if a=0, thus yielding the so-called explicit  

scheme. For a # 0, the scheme is called implicit and some labor is 

involved in solving the equations. Finally for a=1, the scheme is 

called completely implicit. 

Two performance criteria can be used to compare the various 

schemes: 

Accuracy: i.e., what is the least upper bound to the error in 

terms of step sizes in the simulation? 

Computational Complexity: i.e., what is the total number of 

operations involved in the algorithm? 

However, no scheme is useful unless it is stable, i.e. the error 

should not build up from one computation to the next. The following 

results are proved in [461: 

- The explicit scheme is stable for: 

Thus a fine spatial net requires a 'finer" time net and the 

number of steps to reach at time t is of the order of 



2h
2 

k < 
2a(x,t) + h

2
c(x,t) 

(5.15) 
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t/h2 . Finally the error at each step is of the order of 

h2 . 

The completely implicit difference scheme imposes no re-

striction on p but requires somewhat more labor to solve 

the equations. The total computations required to reach a 

time t can be made considerably less than in the explicit 

case by choosing k sufficiently large. The error bound, 

however, is now of the form 

Ierrori 4 0(h
2
) + 0(k) 
	

(5.14) 

and thus, in the interest of accuracy k must not be too 

large. 

1 
- The Crank-Nicholson (a is -1 difference scheme is stable 2 

for: 

The net spacings are related as in the explicit difference scheme but 

the time step can be twice as large. Since the solutions of the 

implicit equations do not require twice the amount of computations 

used to solve the explicit equations, a saving may be made in the 

total work required to reach a time t. In addition, the error bound 

is now of the order 

terror! < 0(h
2
) + 0(k

2
) 
	

(5.16) 
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which is an improvement over the completely implicit scheme. In the 

light of the above remarks, a completely implicit difference scheme 

was preferred. 

5.2 An Implicit Difference Scheme for the  

Numerical Simulation of the CFPE Model  

Reformulation of the CFPE Model in Terms of the Probability Distribu-

tions 

The CFPE model is repeated here for convenience. 

Dynamics 

, af 	 a r
as at (art) 	Lri(X,t)fia,t)] 	

0
2 

1'0
2 fia,t)] 

as 
2 

af 	 2 ,2 ' a 	r 	 i 	a 	rd (A,t) 	Er (A,t)f (A,t)j + 	r--- f (A t)] 
ax 

at 	ax 	0 	 2 	2 o ' 

Boundary Conditions  

f
1 
 (x 

+
,t) = f

o
(x
-
,t) = 0 

f
1 
 (-0*,t) = f

o
(+00 ,0 = 0 

fla (x 
-
,t) = f

lb
(x
-
,t) 

(5. 17 ) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

fob 
(x+  ,t) 	foc+ ,t) 	 (5.22) 

af
lb 	 af la 	 afo (x ,t) 	(x ,t) = 	(x ax 	— 	as (x_ ,t) 	 ax 	—,t)  (5.23) 
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3f 	 3fob oc 	
3f 

ax  (x+ ,t) 	(x+ ,t) = -557- (x+ ,t) (5.24) 

Since distribution functions are generally smoother than density 

functions, the above dynamics are rewritten in terms of the following 

functions: 

F
1 
 (x,t) = J f

1 
 (A,t)dA 

■03 

(5.25) 

x 
Fo (x,t) = 5 f 

o
(A,t)dA 

+.  
(5.26) 

For x < x_, integration of (5.17) with respect to A from -00  to x 

yields: 

at

BF1 
	 lim 
(x,t) = r

1
(x,t)f

1
(x,t) - 

A+-= 
r

1
(A,t)f

1
(A,t) 

2 of 	 of 3f
1 

+ 	( ax ' (x,t) - 
lim 

8A (A,t)) (5.27) 

Assuming the limits in (5.27) are zero, we have: 

2 
F
1t

(x,t) = r
1
(x,t)F

1x
(x,t) + 

2 F1xx (x,t) 
	

(5.28) 

For x_ < x < x+, integration of (5.17) with respect to A from x_ to x 
yields: 



3F 	 ap 

at 	- at 	= r 1  (x,t)f 1  (x,t) - r
1 
 (x - ,t)f

1 
 (x_,t) 

2 af, 
+ 	(x,t) 

afaxlb 
(x _ ,t)  

However at x_ (5.28) yields: 

ap 1 	 a2 af la 
at (x _ ,t) 	r 1

(x
- ,t)f 1

(x
-
,t) + 	at  (x_,t) (5.30) 

Substituting (5.30) into (5.29) and recalling (5.23) yields: 

0
2 a2 F

it (x,t) = r 1 (x • t)F lx (x,t) + 2 ---F 1xx 
(x,t) + 

2 
---F 

 oxx 
(x 
-
,t) (5.31) 

Equations (5.28) and (5.31) represent the on part of the dynamics 

of the CFPE model'in regions a and b of Fig 3-2 respectively, in 

terms of F 1 (x,t). 

Using a CThilar procedure, it can be shown that for x > x4: 

02 F
ot

(x,t) = r
o
(x,t)F 

ox 
 (x,t) + 

2  ---F  oxx 
 (x,t) (5.32) 

and for x_ 4 x < x
+ • 

2 2 
F
ot

(x,t) = r
o (x,t)F ox 

 (x,t) + 
2  F  oxx 	2 

(x,t) + 	F
1xx 

 (x
+ 
 ,t) (5.33) 

Approximating the CFPE Model  

The following notation is used: 
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k: time step , 

h: temperature step , 

F
1i

• 

 = F
1
(x

1 
+ (i-1),nk) 

F
oi

• 

 = F
o
(x
- 

+ (i-1)h,nk) . 	 (5.34) 

Note, that in the above, since it is not possible to let x go to 4 

or -= in the simulation, artificial boundaries must be introduced to 

limit the size of x. These boundaries however, should be placed "far 

enough" so as not to introduce any significant error in the prob-

lem. We chose to use reflecting boundaries. It was assumed that x 1 

 and xo are the minimum and maximum temperatures respectivly where a 

device can be found with any significant probability. 

Dynamics  

For an implicit scheme we have: 

n+1 . 1 rFn+1 	
F . 

F  
jxi 	2n L j(i+1) 	3(1-1).1  ' 

Fn+1 	1 rFn+1 	
2Fr14.1 	

Fn+1 	1  , 
jxxi 	h2 L j(i+1) 	7 1 	3(i- 1) J  

n+1 	1 r 
F
n+1 	Fn .  

jti 	k 	ji 	3 1  

(5.35) 

(5.36) 

(5.37) 

for j=0,1. Using (5.35)-(5.37), (5.28) and (5.32) can be approximat-

ed by 



n+1 

F1,1+1 	rfillE 	n+1 
J(i-1 ) I  2h 	II ] 	Fji[ 2 i + 1] 

n+1 

+
n+1 	r 	

r.„ 

F . -1.1  - 	" 	
Fn 

j(i+1) 2h m  7 1  
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(5.38) 

For j=0,1, i to be specified later, n > 0 and: 

a
2
k 

(5.39) 

 

2h
2 

Furthermore, F ixx (x+ ,t) can be approximated using: 

1 F
1
(x
+-h,t) m F 1 (x+ ,t) + F 1x (x+ ,t)h + 2 --F1xx (x+  ,t)h

2 

(5.40) and (5.19) yield: 

F1xx(x+,t) 	
2 

m 	S1  (t) 

where 

S
1
(0 E F

1 
 (x

+ 
 -h,t) - F

1
(x
+
,t) . 

(5.40) 

(5.41) 

(5.42) 

Similarly, one can write: 

1 F
o
(x
-
+h,t) 	Fo (x- ,t) + Fox  (x - ,t)h + - 2 

 -F 
 oxx  (x - ,t)h

2 
(5.43) 

(5.43) and (5.19) yields: 
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F
oxx (x- 	

2 
,t) = -Iso (t) 
	

(5.44) 

where: 

So (t) E Fo (x±h,t) - Po (x .. ,t) 	 (5.45) 

Substituting (5.42) and (5.45) into equations (5.31) and (5.33) re-

spectively yields: 

2 2 

Pjt
(x,t) - 	S (t) = F. (x,t)F. (x,t) + 

2 
 7r.- F. 	(x,t) 3x 	 3xx 

h
2 j 

(5.46) 

for j=0,1. Using (5.35)-(5.37), (5.46) is approximated as 

3 1  

n+1 
n+1 

F.',-1) 	1;  1 

r., k 
--] 2h 	+ zji [1 + 211] 
	Fn+1 	

n+1 

3 t1 	

r.. k 

J(i+1)11 [  2h J 

=71 + 2p S". 1 	 (5.47) 

for j=0,1, i to be specified later and n > 0. 

Boundary Conditions  

It remains to approximate boundary conditions (5.19)-(5.22), 

as well as the artificial reflecting boundaries introduced at x=x 1 

 for the on density and at x=x0  for the "off" density. 

A. Reflecting Boundaries  

	

F1 1  = 0 Vn 	0 	 (5.48) 1 
a. 

b. 	 F
n 	

0 Vn > 0 	 (5.49) 
o 



and: 

1 F (x +h,t) = F
1
(x ,t) + F 1x 	 2 

(x- ,t)h + — F 	(x ,t)h 
2 

1 - 	 1xxb - (5.55) 

B. Absorbing Boundaries  

a. At x+' we have from(5.31): 

a
2 

a2 F
1t (x

+ ,t) = r 1 (x
+
,t)F

1x (x,t) + 
2 F1xx (x+  ,t) + 2 Foxx (x -

,t)(5.50) 

Using (5.19), (5.35)-(5.37) and recalling (5.44), we obtain: 

n+1 
(-2p)F

1(J
1
-1) 

+ (1 + 2u) F
n+1
iJ

1 
=

J
1 

Fn  + 2p S
n+1 

(5.51) 

where 	= x 1  + (J 1  - 1)h. 

b. At x_, we have from (5.33) 

2 
	

2 
F
ot

(x
- ,t) = r o  (x  - ,t)F  ox  (x  - ,t) + 2 — F oxx (x  - 

,t) + 
2 
— F

1xx 
 (x 

-
,t) (5.52) 

Using (5.19), (5.35)-(5.37) and recalling (5.41), we obtain: 

n+1 	n+1 	 n+1 (1 + 2p)F
01 

- 2p F
02 

= Fn  + 2p S 1 01 

C. Probability Conservation 

a. At x_ we have: 

1 F
1  (x - -h,t) = F 1  (x - 	 2 

,t) - F
1x

(x
- ,t)h + —F1xxa 

 (x 
-
,t)h

2 

(5.53) 

(5.54) 
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Adding (5.54) and (5.55) we obtain: 

1 F
1 
 (x - -h,t) + F

1
(x
-
+h,t) = 2F

1 
 (x - 
	2 
,t) + --F1xxa (x 

-
,t)h

2 

+ -2" 1 
F 

xxb
(x
- ,t)h

2 
(5.56) 

(5.23), (5.44) and (5.56) yield: 

F
1xxa

(x
-
,t) = [F

1  -- (x h,t) - 2F
1
(x
-
,t) + F

1 
 (x +h,t) + So (t)j — (5.57) 

1 

h
2 

Furthermore, subtracting (5.54) from (5.55) yields: 

2 
r F

1
(x
-+h,t) - F 1  (x - 	 2 

-h,t) = 2hF lx (x_,t) + — LFlxxb (x 
- ,t) - F 1xxa (x- ,] 

(5.58) 

(5.58) and (5.44) yield: 

i F
1x

(x
-
,t) = [F 1  (x - +h,t) - F

1
(x
-
-h,t) + S

o
(t)i 

6  2h 

At x=x_, (5.28) yields: 

2 
F
1t

(x
-
,t) = r

1 
 (x - ,t)F

1x  (x - ,t) + 2 F1xxa (x -
,t) 

(5.59) 

(5.60) 

From (5.57), (5.59) and (5.60) and recalling (5.35)-(5.37) we have: 
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n+1 	 n+1 
r
1L1

k 	
n+1 	

r 1L 
k 

n+1 	 n+1 	r 	1 
l(L -1) 

[-y + 

	

2h 	
+ F1L [1 + 2y] + F

1(L +1) 1. -11 	2h 
1 	 1 	 1 

n+1 
r
1L 

k 
Fin 	sn+1 r p 4. 	1 

	

1L 1 	o 	I 	
2h 

(5.61) 

where 

x_ = x
1 
 + (L, - 1)h . 

b. At x+ , a similar derivation yields: 

rn+1 k 	 r
n+1

k 

0(L 

OLO 1 + Fn+1 	 OL
o n+1 	 n+1 

F 	
- 

o 
1) [-P + 	01,

0 
L i  + 43 4.  FO(L

o
+1) 	2h  

rn+1 k 

= Fn 	
OL 

- ( 0  - Sn+1 
OL 	2h 	1  

0 

(5.62) 

where: 

x
+ 

= x_ + (L
o 

- 1)h . 

D. Summary of the Equations 

Combining (5.38), (5.47)-(5.49), (5.51), (5.53), (5.61)-(5.62) 

we obtain: 

A F
n+1 

 = D
n+1 

-1-1 	-1 
Vn > 0 	 (5.63) 

and 

A Fn+1  = Dn+1 
-0-0 	-o 

0 	 (5.64) 

where in (5.63)-(5.64): 
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b 1  (2) 	c 1  (2) 	0 

a 1 (3) 	b 1  (c) 	c 1 (3) 0 

0 	a 1 (4) 	b 1 (4) 	c 1 (4)  

• 111 • 	0 

•• • 	0 

0 	•• • 	0 

• 
0 • 

• 
0 	

. 
. 	 . 

• • 

0 	0 	0 

Fn
+ 1 

 —1 

n 
P —1 

c i  (J 1 -1) 

a l  (J 1 ) 	b 1  (J 1 ) 0 

n+1 
F

12 

F
n+1 

P 
: 

F
n+1 
1J 1  

(2)  
n 

d, (3) 
J 

d(J
1 
 ) 

1  

(5.65) 

b0 (1) 	co (1) 	0 	 • • • 	0 

ao (2) 	b0 (2) 	co (2) 0 	 • • • 	0 

0 	ao (3) 	bo (3) 	co (3) 0 	• • • 	0 

0 	0 	 . 

. 	 . 

0 	 0 	. 	 0 

co  (Jo  -2) 

0 	0 	0 	0 	a l (J 1 ) 	bo (30-1) 
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n+1 
F
01 
n+ 1 

F02 

F
n+1 
o(J

o
-1) 

n+1 
r ii  k 

a 1 (i) = -p + 2h 	for i = 2,...,J 1 
 -1 

a
1
(J

1
) - 2p 

rn+1 k 
1i 

b 1 (i) = -p +2h 	for i = 2,...,J 1 
 -1 

b
1
(J

1
) = 1 + 2p 

n+1 r 

2h k for i = 2,...,J
1
-1 c

1
(i) = -p 

_n+1 
-o 

and 

(5.66) 

(5.67) 

d 1 (i) = F1i , for i = 2,...,L
1
-1 

d
1
(L

1
) = Fr 	+ So  

1L 
n+1 ( +  

1 

n+1 
r 1L k 

. 	 n 
dn (1) = 

1i
+ 2p So

+1 
 , for i = L

1
+1,...

'
J

1 1  (5.68) 

n+1 
r
oi 

k 
a (i) 	+ 2h 

for i = 2,...,J0-1 

b
o
(i) = 1 + 2p , for i = 1,...,J

o
-1 



co (1) = -24 
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n+1 
r 	k 

co (i) 	-P 	
oi 

- 	, for i = 2,...,J
o
-1 2h 

n . 
d
o
(1) = F

oi 
+ 2p S

n+1 
' for i = 1,...,L

o
-1 

1  

n+1 
r
oL 

k 

dn (L ) = Fn 	(  o 	osn+1 
o o 	oL 	L  2h 	1 

0 
 

do (i) = F
oi 

, for i = L
o
+1,...,J

o
-1 

Also: 

n+1 	n+1 	n+1 

	

S 1 	= F1(J -1) - Fiji 
 ,  

n+1 	n+1 	n+1 
S
o 

= F
2 

- F 
1 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

Note that all the entries in D, and Do  are known at time n except 

n+1 	n+1 for S
1 	and So . We shall set: 

and 

n+1 	n 
S i 	= Si  

S
n+1 = Sn 

 . 
0 

(5.73) 

(5.74) 

This yields two decoupled tridiagonal systems (5.65)-(5.66) which can 

be solved separately at each time step. The algorithm (5.63)-(5.64), 
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(5.73)-(5.74) was implemented on the Georgia Tech Cyber. Numerical 

results are reported in chapter VI. 



CHAPTER VI 

SIMULATION RESULTS 

In this chapter, results of a numerical study of the dynamic 

properties of homogeneous, nonhomogeneous and completely general 

control groups are reported. The results are summarized in a series 

of figures on pp. 128-133. These figures represent the expected 

dynamics of fractional (or per unit) power demand in a group of 

devices following a temporary interruption of power supply (cold load 

pickup). All simulations are based on the discretized version of the 

CFPE model in equations (5.63)-(5.64). In selecting the data for the 

runs, effort was made to retain possible "on"/"off" switching time 

constants (t and r'). However, the data is entirely fictitious and 

was mainly designed for the purpose of illustrating the dynamics of 

the CFPE model. Three groups of figures can be distinguished corre-

sponding to properties of homogeneous, nonhomogeneous and general 

control groups respectively. Data for each of the runs are given 

below. Finally, in Fig. 6-6, we report results of a numerical study 

of the properties of the infinite series in (4.146). 

6.1 Simulation of Homogeneous Control Groups  

The sensitivity of the post outage dynamics of an homogeneous 

control group to changes in noise variance, average heating rate, and 

outage duration was studied by starting from base case values and 

observing the effect of a change in one parameter at a time. 
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In the notation of equation (2.1), base case data was as fol- 

lows: 

A= 1.1 deg C, 

xa (t) 

A 
- 15 , 

a 
A - .01774 (deg C mn) 

-1 
 , 

— = .4 (mn)
-1 

, 

 

 

— 

a ,- .3 (mn)
-1/2 

. (6.1) 

The data in (6.1) yields approximately: 

T 0  T' la 5 mn , 	 (6.2) 

i.e. the average duration of the "on" time is approximately equal to 

that of the "off' time and they are both in the neighborhood of five 

minutes. 

Figures 6-1 and 6-2 demonstrate the effect of a change in 

noise variance for four different values of outage duration. Figures 

6-3 and 6-4 demonstrate the effect of changes in the average heating 

rate and outage duration respectively. 
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6.2 Simulation of Nonhomogeneous Control Groups  

Here, the effect of some parameter variance within the control 

group was assessed by simulating (5.63)-(5.64) for the mean data as 

well as two "neighboring" sets of data, and using this information to 

evaluate the sensitivity coefficients in (3.84) numerically. Subse-

quently (3.64) was used to generate post-outage dynamics in the 

nonhomogenenous control group for various levels of parameter var-

iance. Only the effect of one parameter, namely thermostat set point 

x_, was considered. The average data was identical to (6.1) except 

for a .2 (un) -1/2 . The results are summarized in Figure 6-5. 

6.3 Simulation of General Control Groups  

In this set of runs, the dynamics of a general control group 

were simulated by assuming that, at the outset, it has been broken up 

into its constitutive homogeneous control groups and, subsequently 

obtaining aggregate dynamics by superposition of the individual 

dynamics for each homogeneous subgroup. 

The general control group that was studied was assumed to be 

made up of sixteen homogeneous groups. Data for the homogeneous 

groups was as follows: 

A = 1.1 deg C 

x
a
(t) 

A 	
= 15 , 

x 

A 
= 35 , 

= .01774 (deg C mn) -1  , 
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m(mn)
-1/2 

7 
(6.3) 

for i = 1,...,4, and j = 1,...,4, where in (6.3): 

R = 	[r 

.35 

.4 

.5 

.6 

, 	and 	V E (0A w 

.1 

.3 

.5 

.8 

(6.4) 

The nominal size of the heating element was assumed to be identical 

for all devices. Several parameter distributions were studied. Each 

parameter distribution was characterized by a set of weights, w ij , 

such that: 

frit. = r
i )n (i . la,)] = wii 	 (6.5) 

for i = 1,...,4, - Ind j = 1,...,4, where in (6.5): 

111=hc
ijJis a given 4 x 4 matrix of weights. 

The following values of W were used: 

W 
—1 

W
=  

—2 

= 
1 
16 

1 

1 
1 
1 
1 

1 
3 
3 
1 

1 
1 
1 
1 

3 
9 
9 
3 

1 
1 
1 
1 

3 
9 
9 
3 

1 
1 
1 
1 

1 
3 
3 
1 

(6.6) 

(6.7) 
64 



127 

W 
-1 

= 
1 
64 

9 
9 
9 
9 

3 
3 
3 
3 

3 
3 
3 
3 

1 
1 
1 
1 

(6.8) 

Finally, global dynamics were obtained using: 

4 4 
= 	w .

ij
(t) 

i=1 j=1 
(6.9) 

where in (6.9)(t) denotes the aggregate functional state with 

parameters r i  and a3 . The results are summarized in Figure 6-6. 

6.4 Numerical Evaluation of Theoretical Impulse Response  

Here the dynamics of the aggregate function state m(t) were 

evaluated for an initial distribution fo (A) = 6(A-x ), by numerical 

integration of the following theoretical expression: 

10 

dt = I l (x_,t) = 	bg
1
(x_ + 2iA,t) - 

g1(x- 
+ 2(i+1)A,t)] (6.10) 

The above equation is based on (4.146). 
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( 3 ) 

   

     

     

(1) 

Fraction of Devices "ON" 

0.00 	20.00 	40.00 	60.00 	130.00 	100.00 	120.00 

(a)

 Fraction of Devices "ON" 

(b) 

Fig. 6-1. Dependence of Cold Load Pickup Dynamics on Normalized 
Noise Variance Parameters a. Outage Durations: (a) 1 mn, 
(b) 2mns. Values of a_in (mn) -1/2 are: (1) a = .1, (2) 
= .3, (3) a = .5, (4) a = 1.0. All other parameters are 
as in base case. 	The horizontal axis corresponds to 
time in minutes. 
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(4)  
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Fraction of Devices "ON" 
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(4) 

    

      

 

(3) 

    

      

      

       

       

40.00 	e0.00 	00.00 	100.00 	120.00 0.00 
	

2b11°  

(b) 

Fig. 6-2. Dependence of Cold Load Pickup Dynamics on Normalized 
Noise Variance Parameter a. Outage Durations are: 
(a) 5mns, (b) 30 mns. Values of a in (mn) -1/2  are: 
(1) a = .1, (2) a = .3, (3) a = .5, (4) a = 1.0. All 
other parameters are as in base case. The horizontal 
axis corresponds to time in minutes. 



(1)  

(2)  

(3)  

(4)  
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Fraction of Devices "ON" 

0.00 	211.00 	40.oe 	ab.00 	eb.00 	100.00 120.00 
Time in Minutes 

Fig. 6-3. Dependence of Cold Load Pickup. Dynamics on the Heating 
Rate Parameter R for an Outage Duration of 30 mn. Values 
RL-1  in (mn) -1  are .3, .344, .4 and .5 for responses (1), 
(2), (3), and (4) respectively. All other parameters are 
as in base case. 
8 

cco 	20.00 	4b.00 	so.00 	abzo 	100.00 	12ozo 
Time in Minutes 

Fig. 6-4. Dependence of Cold Load Pickup Dynamics on Outage Duration. 
Outage durations are 2, 5, 10, 20, 30 and 50 mns respectively. 
All other parameters are as in base case. 
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Fig. 6-5. Effect of Spread in Thermostat Set Points on Cold Load 
Pickup Dynamics for a Nonhomogeneous_Control Group. 
Mean values are as in section 6.2. a z  represents the 

normalized set point variance. The duration of the 
outage is 2 mn. 
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Fig. 6-6. Effect of Parameter ]Distribution on Cold Load Pickup 
Dynamics for a General Control Group. All values are 
as in section 6.3. The duration of the outage is 5 mn. 
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Fig. 6-7. Theoretical Impulse Responses for Four Values of Normalized 
Noise Variance Parameter. Values of a in (mn) -1/2  are: 
(1) a = .1, (2) a = .3, (3) a = .5, (4) a = 1.0. 	T = T 1  = 
5 mn in all four cases. 
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6.5 A Few Observations on the Results  

The following groups of remarks can be made: 

(a) From Figures 6-1 and 6-2 it appears that: 

- The noise variance parameter a is crucial in shaping 

the dynamical response of homogeneous control 

groups. Therefore, ignoring this parameter complete-

ly, as is the case for the Ihara/Schweppe model, can 

result in serious error. 

- As the noise variance parameter increases there is a 

simultaneous decrease in post-outage dynamical fluctu-

ations. The system reaches its steady-state faster. 

a acts like a damping factor. This is to be expected 

since an increase in system noise provokes an increase 

in the diversity of the , system. 	This increase in 

diversity in turn tends to oppose the decrease in 

diversity caused by the power outage, thus yielding a 

more stable system. 

- Unlike its approximate version (4.14)-(4.15) which 

predicts that the steady-state connected fraction of 

devices is independent of a, the CFPE model simulator 

indicates a dependence of the steady-state on noise 

variance. However, the dependence is apparent only 

for large values of a. This is consistent with the 

constant rate approximation validity criterion devel-

oped in equations (4.125)-(4.126) as we now show. In 

the simulations of figures 6-1 and 6-2,7 = 5 mn. 
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Hence for a = 1.0, the performance criterion in 

(4.125) yields .82. This means that for a = 1.0, 82% 

of the steady state on density lies outside the 

thermostat dead band, thus invalidating the constant 

rates approximation. 

(b) From figures 6-3 through 6-4, we have respectively the 

predictable results that as the average heating rate 

increases, the steady state fraction of devices in the 

▪on state decreases (mainly because a device spends on 

the average less time in the "on" state) and as the out- 

age duration increases the fraction of devices in the 

▪on state after the recovery increases, as well as the 

duration of the restoration period. 

(c) From Fig. 6-5, it appears that post-outage dynamic fluc-

tuations for a nonhomogeneous control group decrease as 

the parameter variance within the group increases. As 

argued in (a), this effect can be understood by remarking 

that an increase in parameter variance results in an 

increase in the diversity of the system. 

(d) From Fig. 6-6, it appears that the parameter distribution 

within a general control group can alter significantly 

the restoration dynamics following a power outage. 

Uniform and centered triangular parameter distributions 

yield smooth dynamics for our example. 

(e) The theoretical results in Fig. 6-7 are consistent with 

the simulation results in Figures 6-1 and 6-2, namely: 
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- As the noise variance parameter a increases, the 

dynamics become smoother. 

- a acts essentially like a damping factor. 

This suggests that the constant rates approximate model 

(4.14)-(4.15) retains some of the essential dynamic fea-

tures of the exact CFPE model (3.36)-(3.43). One 

important difference however, is that for the approximate 

model, there is no dependence of the steady-state con-

nected fraction of devices on noise variance. 

6.6 Future Work  

One important final step remains to be taken before bringing 

the general load synthesis procedure of Figure 2-1 to completion: 

step e, or model validation. This implies a preliminary parameter 

estimation phase for a practical system, followed by the application 

of the results of this thesis to generate a model for the prediction 

of cold load pickup dynamics for the system. The predicted dynamics 

would then be compared to actual dynamics measured under the same 

conditions. Only after the completion of this task can the practical 

success or failure of our approach be unequivocally assessed. 

It is likely that, in case of failure, the root of the problem 

be a possibly oversimplified group model (equation 2.1). In the 

light of the preceding remark, a first extension of this work would 

be to investigate how well the results obtained generalize to the 

case of a more complex (more states?) group model. It is not unex-

pected that for the more general case, one would have to deal with 

first passage times over hyperplane problems. Secondly, only the 
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case of what was refered to earlier as "weakly-driven" functional 

models was studied here. An obvious extension of this work would be 

the solution of the aggregation problem for the "strongly-driven" 

case, the practical benefit being the ability to model the loads due 

to groups of electric water heaters. Finally, on the theoretical 

level, the fundamental result of the thesis is expressed in equations 

(3.36)-(3.43). These equations characterize the evolution of 

"hybrid" probability densities f i (a,t), fo (A,t) associated with the 

hybrid-state vector Markov process ( x( "). Whereas continuous-state 
m(t) 

Markov processes have probability densities which satisfy the Fokker-

Planck equation under fairly weak conditions, no formally correspon-

dant result is known for the case of hybrid-state Markov processes. 

It is our conjecture that it is possible to write a system of equa-

tions similar to (3.36)-(3.43) i.e. a combination of Fokker-Planck 

equations associated with boundary conditions expressing a "conserva-

tion of probability" principle for a broad class of hybrid-state 

Markov processes still to be characterized. We feel this conjecture 

is well worth investigating. 

6.7 Conclusion  

It is our opinion, that the major contribution of this thesis, 

other than helping to bring about the solution of a very practical 

problem, has been to demonstrate that for modeling groups of loads 

for which assumptions of "elemental independence" (section 3.2) hold, 

methods inspired from the still very dynamic field of statistical 

mechanics can be applied with some success. At an earlier date, and 

in the area of neural networks, parallel conclusions were reached by 
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J. D. Cowan in his article "A Statistical Mechanics of Nervous Acti-

vity" [60]. It is hoped that the few results presented here will 

encourage further research in this direction which, although more 

perilous and expensive (in terms of data requirements) than the now 

classical time series parameter identification approaches to load 

modeling, could yield in the long run physically more meaningful and 

therefore more versatile analytical electric load models. 



APPENDIX A. 

MISCELLANEOUS PROOFS 

In this appendix three proofs are presented. In proof 1, it 

is shown that the interchange of limits and integration order can be 

carried out in (3.59). In proof 2, the state transition matrix in 

(4.30) is calculated. Finally, in proof 3, equations (4.151) through 

(4.155) are established. 

PROOF 1: 

From (3.60) we have: 

CD 

lim 1 
I h+0 

(A,t,z,t+h)(z-A)dA = -a(A-xa (t)) + Rb(t) -17J f '11  (A.1) 

Let us set: 

m(A,t) = -a(A-x a (t)) + Rb(t) 	 (A.2) 

(A.1) implies that for some c > 0, there exists 6(c) > 0 such that 

for Ihl < 6(c): 

CO 

h
1 f f

11 
 (A,t,z,t+h)(z-A)dz - m(A,t)I < 

-m 
(A.3) 

From (A.3) we have: 

CO 

IT L. fll (A,t)z,t+h) (z-A)dzl < c 	m(A,t) 
	

(A.4) 
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for all h such that Ihl < 6(c). Furthermore, since RIM is contin-

uous on the compact interval [x_ + c,x+] and zero elsewhere, it must 

be bounded for all A. Let k be an upper bound. Similarly, the con-

tinuous function of A, Im(A,t)I on the compact interval [x_ + c,x4. ] 

must be bounded. Let M(t) be an upper bound. Using (A.4) and the 

preceding remarks: 

1 
1111(A)f 11 (AW 	h ,A,t) 	f f11 

 (A,t,z,t+h)(z-A)dzI 

= 0 for A E [x + c,x +] 

	

4 k(c + M(t)) f
11
(P,t 1 ,A,t) 
	

(A.5) 

for A E [X 	C,X] and for Ih1 < 6(c). 

But: 

f+ 	f
11
(P,t 1 ,A,t) k(c + M(t))dA 4 k(c + M(t)) 

	

< = 	 (A.6) 

(A.5) and (A.6) show that for Ih1 < 6(c) the integrand of: 

h
li
0 f [
m 	 1 

f
11 	- 
(P.t 1  A t) h — f f

11 
 (A,t,z,t+h)(z-A)dz R'(A)]dA (A.7) 

+  -00 

x +C 
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is dominated by the function defined by the right-hand side of (A.5), 

independent of h and that furthermore, this functionis absolutely 

integrable. By virtue of Lebesque's dominated convergence theorem, 

we can carry the limit operation past the integral sign. A similar 

proof holds for the remaining terms of (3.63). This completes proof 

1. • 

PROOF 2: 

We use a transform technique to compute the state transition 

matrix in (4.30). If Y represents the complex variable in the trans-

formation, we have: 

-1 

1- (X ' s)  - L  -1 	2s 	y--12r 
Y 

a 	a 

(A.8) 

where in (A.8), L-1  1•1 represents the inverse Laplace transform 

2 2 

operator. From (A.8): 

L-1  

which yields: 
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1 (A.10) 
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where in (A.10), 0(s), 6 1 (s), 6 2 (s) have already been defined in 

(4.35)-(4.36) 

2 
-1  	a  

0 
$12(A's) 	L2

(i - 81(6))(Y - 02(0)
]  

8 1 (s)y 	e 2 (s)y 
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r (I)

22
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a
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e 2 (sg 
r 61 
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(s)e 	- 6

2
(s)e 

This completes proof 2. 

PROOF 3: 

Equation (4.153) is rewritten for convenience: 

	

f  2 	2 ,1/21 
li
ab 

+ LI.'
ab 
 + 2sa

ab
j 	

ji  
g
*
(a,$)g

*
(b,$) = expf.- 

p 	

J o 	1 	 2 
a 
ab 

(A.11) 

(A.12) 

(A.13) 

• 

(A.14)  

In accordance with the developments in section (4.3.2), we 

impose the condition that the first and second moments (or equiva-

lently the mean and variance) of the probability density function 

which transforms into the left-hand side of (A.14) be exactly retain- 
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ed by the approximating density function. This means in effect the 

following: 

pu 	+ ( u 2  + 280 2  ) 1/2 ] 
- 

a 
W 
	 a s 	ab 	ab 	ab  
o(a,$)g

*
1 	 2 (b,$)11 	- - a --- exp[ 

II s=0 ab 
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and using (4.85)-(4.86) and (A.17)- (A.21) we have: 
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(A.15), (A.17) and (A.21) yield: 
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rc  1.1 ab ac + br (A.25) 

(A.16), (A.19) and (A.23) yield: 

a
2 
„ a

2
a
2 
, 2ab „ b 2 

„ b2a2 

r2 	r2 ' rc 	c2 ' c
2 

(A.25) and (A.27) yield: 

Equations (4.151) through (4.155) are easily obtained from 

(A.25) and (A.28) by substituting appropriate values for a and b. 

This completes the proof. • 



APPENDIX B 

DERIVATION OF FIRST PASSAGE TIME DENSITY FOR 

BROWNIAN NOTION WITH DRIFT 

This appendix is based on Cox [39]. Equation (4.65) is re- 

written here for convenience: 

aP
a 	

ap 	 2 a 2P 
TE— (A,t,x) o 	

p uta 	) 	 a 
(AtA  ) 

	

o 	2 --Tr i 'o ax 

Subject to the conditions: 

lim 
t4-0 Pa(A't110) - 6(A - 10)  

P
a 
(a,tdtso) - 0 

(B.1) 

(B.2) 

(B.3) 

If condition (B.3) is ignored for the moment, it can be easily veri-

fied that: 

P(A,t, A0) = 1 	
(A -A 

o 
 - pt)2 

exp[ 
20

2
t 

(B.4) 

satisfies (B.1) and (B.2). 

Using the method of images, it is possible to simulate a zero 

boundary condition at a by placing an impulsive source at (A 0  - 2a), 

i.e. symmetrically located with respect to the absorbing boundary at 

a, and of magnitude A to be determined. This is graphically repre- 

sented in Fig. B-1. 
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Fig. B-1. The absorbing boundary can be simulated by means of an 

additional source of appropriate magnitude and symmetri-

cally located. 

The resulting density would be the superposition of the densities due 

to each source separately, i.e.: 
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Boundary condition (B.3) yields: 
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(B.5) and (B.6) yield: 
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2
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(B.7) 

(4.71) follows from (4.70) and (B.7). 

This completes the derivation. 	 • 
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