

Title: Studies in Three-Dimensional Turbulent Boundary Layer Separation from Smooth Surfaces

ADMINISTRATIVE DATA
OCA CONTACT
Leamon R. Scott

1) Sponsor Technical Contact: $\frac{\text { Dr. H. Plumblee, Dept. 72-11, Zone } 403}{\text { Lockheed-Georgia Co., Marietta, GA } 30063}$.
2) Sponsor Admin./Contractual Contact: Bill Britton, Zone 383; Lockheed-Georgia Co., Marietta, GA 30063; phone 424-5250

Reports: See Deliverable Schedule Security Classification: N/A Defense Priority Rating: N/A

RESTRICTIONS
See Attached \qquad Supplemental Information Sheet for Additional Requiremen

Travel: Foreign travel must have prior approval - Contact OCA in each case. Domestic travel requires sponsor approval where total will exceed greater of $\$ 500$ or 125\% of approved proposal budget category.

Equipment: Title vests with
none proposed

COMMENTS:

COPIES TO:

Administrative Coordinator
Research Property Management
Accounting office
Procurement/EES Supply Services

Research Security Services
\checkmark Reports Coordinator (OCA)
Legal Services (OCA)

EES Research Public Relation Project File (OCA)
Other:
Project Title: "Studies in Three Dimensional Turbulent Boundary Layer Separation
From Smooth Surfaces"
Project No: E-I6-606
Project Director: Dr. S. G. Lekoudis
Sponsor: \quad Lockheed-Georgia Company
Effective Termination Date: 2/28/82
Clearance of Accounting Charges: 2/28/82
Grant/Contract Closeout Actions Remaining:None
\square Final Invoice and Closing DocumentsFinal Fiscal ReportFinal Report of Inventions
\square Govt. Property Inventory \& Related CertificateClassified Material CertificateOther
\qquad

Assigned to:

COPIES TO:

Administrative Coordinator Research Property Management Accounting Procurement/EES Supply Services

Research Security Services
EES Public Relations (2) Reports Coordinator (OCA) Computer Input Legal Services (OCA) Library

Project File
Other
\qquad

"STUDIES IN THREE-DIMENSIONAL TURBULENT BOUNDARY LAYER SEPARATION FKOM SMOOTH SURFACES"

Progress Report for the period June 1, 1981-October 31, 1981

to
Lockheed-Georgia Company Dept. 72-11, Zone 403
Marietta, Georgia 30063

by
S.G. Lekoudis

School of Aerospace Engineering Georgia Institute of Technology

Aclanta, Georgia 30332

Table of Contents

Page

1. Introduction 1
2. Task "0" 2
3. Task 1 22
4. Task 2 28
5. Task 3 29
6. Appendix A. 30
7. References 43

1. INTRODUCTION

This progress report sumarizes the work done under the contract e-16-606 from the lockheed-Georgia Company to the Georgia Institute of Technology, during the time period $6 / 1 / 81-10 / 31 / 81$. This report is submitted according to Reference 1 .

All tasks are examined. However there is progress reported on task " 0 " which is not included in Reference 1 . The reason is that the work reported under task " 0 " was initially planned to be done under a consulting agreement between S.G. Lekoudis and the Lockheed-Georgia Company. Because of difficulties in distinguishing the efforts, and the relation of the work in task " 0 " to separation, all efforts were performed under this contract and are reported in this document.

This task involves the coupling of two programs. The firat is a code that uses the most complete viscous/inviscid iteration technique available, to compute viscous transonic flows over single airfoils. The method, developed by the research department of Gruman Aircraft, is described in Reference 2 and in paper No. 10 of Reference 3. The second code solves the linearized two-dimensional Navier-Stokes equations for shock/boundary layer interactions. The method, developed by G. Inger and his co-workers, is described in paper No. 18 of Reference 3 and in Reference 4.

Before explaining the coupling, of the two codes, some justification for the effort is appropriato. It is known (Reference 3) that viscous effects dominate the performace of supercritical airfoils. Navier-Stokes solutions for fluws around single airfoils, at interesting Reynolds numbers, are very expensive. Moreover grid refinement studies that verify convergence, as far as cruncation errors, are not always available. Viscous/inviscid coupling schemes also have their shortcomings. Most of them neglect pressure gradient efiects in the cross stream direction. There are two areas of the flowfield around single airfoils where these pressure gradients are known to be important. One is around the trailing edge, as shown by Melnik and his co-workers (Reference 2). The other is the region of shock/boundary layex interaction (Papers No. 4 and 15 of Reference 3).

Normal pressure gradient effects close to the trailing edge were accounted for in a code developed over a number of years at Gruman

Aircraft (Reference 2). Similar processes for shock/boundary layer interactions were developed by Stanewsky et al (Paper 4 of Reference 3). In this task, a computer progran was developed, using both procedures, that resulted in the most sophisticated viscous/inviscid coupling procedure for computing transonic flows over single airfoils that exists. The method maintains the attractive features of viscous/mviscid coupling which are the good numerical resolution of separately computed regions of the flow, and the economy of the calculations.

Solutions of the linearized Nivier-Stokes equations, for normal shocks interacting with turbulent boundary layers in transonic flow, have been obtained by Inger and his co-workers (Paper No. 18 of Reference 3). The obliqueness of the shock, for flow around airfoils (see Figure la) is empirically accounted for by evaluating the angle β from

$$
\begin{equation*}
\beta=90.0^{\circ}-37.8 * \sqrt{M^{\prime}-1.0} \tag{1}
\end{equation*}
$$

where M^{\prime} is the Mach number computed from inviscid theory, at the surface of the airfoil, before the shock. The incoming Mach number that enters the calculations for the interaction is then $M=M^{\prime} \sin \beta$. For the cases investigated β is around $7+$ degrees. The subscripts b, s and a denote before the interaction, at the root of the shock, and after the interaction. Assuming that the "incompressible" shape factor is $H=\left(H_{i}\right)_{b}$, the incoming Reynolds number is ($\mathrm{R}_{\boldsymbol{\delta}}$) b_{b}, the pre-shock Mach number is M , and $R=\log _{10}\left(R_{\delta}\right)_{b},{ }^{\text {rnger's }}$ analysis gives:

$$
\begin{equation*}
\left(c_{f}\right)_{s}=\left(0.252 \star R+3.4273-5.5 M+3.15 H-H^{2}\right)\left(c_{f}\right)_{b} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \ell_{u p}=\left(9.4 \mathrm{H}-108.0 \mathrm{M}+40 \mathrm{M}^{2}+61.124\right)\left(\delta_{\mathrm{b}}^{*}\right) \tag{3}\\
& \ell_{\mathrm{dn}}=\left(0.25 \mathrm{R}-6,414.8+8,758.4 \mathrm{H}-2,756.9 \mathrm{H}^{2}+\right. \\
&\left(10,639-14,659 \mathrm{H}+4,686 \mathrm{H}^{2}\right) \mathrm{M} \\
&+\left.\left(-4,439+6,157 \mathrm{H}-1,992 \mathrm{H}^{2}\right) \mathrm{M}^{2}\right)\left(\delta^{*}\right)_{\mathrm{b}} \tag{4}\\
&\left(\mathrm{c}_{\mathrm{f}}\right)_{\mathrm{a}}= {\left[\left(4,568-6,079 \mathrm{H}+2,061 \mathrm{H}^{2}\right) \mathrm{R}+(2,085.47\right.} \\
&\left.-2,695.05 \mathrm{H}+874.1 \mathrm{H}^{2}\right) \mathrm{M}+(-931.01+1,201.8 \mathrm{H}
\end{align*}
$$

$$
\begin{gather*}
\delta_{a}^{*}=\delta_{b}^{*}[1+(5.17+8.65 *(11-1.3)) *(M-1.0) * \\
(1.11 * \tanh (R-2.35))] \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
\left.\left.-389.7 \mathrm{H}^{2}\right) \mathrm{M}^{2}-1,188.548+1,539.911 \mathrm{H}-500.049 \mathrm{H}^{2}\right] \mathrm{c}\left(\mathrm{c}_{\mathrm{f}}\right)_{\mathrm{b}} \tag{5}
\end{equation*}
$$

Schematic variations of $\delta{ }^{*}$ and c_{f} in the interaction region are shown in Figure 1b. Also $\ell_{u p}=x_{s}-x_{b}$ and $\ell_{d n}=x_{a}-x_{s}$. Equations (2) to (6) were obtained by curve fitting numerical solutions of the linearized NavierStokes equations for normal shocks interacting with unseparated turbulent boundary layers.

The problem that arises in the coupling of this procedure is that $\ell_{u p}$ and $\ell_{d n}$ are of the order of $10^{-3}: 10^{-2}$ of the airfoil chord, and thus, are sometimes smaller than the spacing of the denser grid used in the
inviscid flow computations. Noting that further grid refinement would not change the width of the shock computed from the inviscid code, and to avoid this problem, we used a method which is justified by the asymptotic approach to equilibrium (at x_{b} and x_{a}) of the flow variables, according to the interaction theory. The incoming boundary layer profile at b is determined by checking the slope of $M^{\prime}(x)$ from the inviscid calculations. This location is denoted by the grid point N_{b} in Figure $l c$. The location N_{a} is determined by checking the slope $M^{\prime}=M^{\prime}(x)$ after the last supersonic point. Then the shock location N_{s} is equal to $\frac{1}{2}\left(N_{b}+N_{a}\right)$. This procedure, locates the interaction "box" shown in Figure lb at the center of the numerically smeared shock area given by the potential flow calculations. If $\ell_{\text {up }}$ is smaller than $x\left(N_{s}\right)-x\left(N_{b}\right)$ the boundary layer properties are kept constant till $x\left(N_{s}\right)-\ell{ }_{u p}$, and equal to the ones at N_{b}. The boundary layer calculations are initiated after $x\left(N_{s}\right)+\ell_{d n}$. To the author's knowledge, no Navier-Stokes solution exists with dense enough grid to capture the details of the interaction, as provided by the analysis used here.

Results for the RaE2829 airfoil (Reference 5), using the above procedure, are compared with viscous/inviscid coupling where boundary layer theory is used to mar ih under the shock, as developed by Melnik and his co-workers-(Reference 2). Figures 2 to 5 show computed upper surface displacement thicknesses. Figures 6 to 9 show the corresponding skin friction and Figures 10 to 13 the C_{p} distribution.

The results are sumarized in the Figures 14 and 15 where $C_{L}-\alpha$ curves are plotted.

From these results, it seems that the interaction is responsible for a loss in lift. Also the pressure distribution changes only close to the
shock, as compared with the original code (Reference 2). Thus the capability of the original code to accurately predict measured pressure distributions is maintained in the new program (Reference 6). Moreover the computed shock is "crisper" and moves slightly ahead, as compared with the one computed using simple boundary layer theory underneath it. At the time of the writing of this report another airfoil, the LG4-512 is being used to evaluate the developed method and comparisons with experiments are being done.

It is recommended that the method be used to study the initiation of shock/induced separation. Although the theory is not valid at separation, it should give a good indication when it is about to occur, because of its ability to accurately compute pressure distributions. The computing times are not affected by the interaction and they are almost identical to the original code (Reference 6).

(a)

Figure 1 Schematic of the Flowfield la the Shock/Boundary Layer Interaction Region.

DISPLAMEMFNT IMDUNESS

FRLSSH: Wh Whationd

Figur. 15

3. TASK 1

The objective of this task is to develop a procedure that can be used to compute three-diaensional boundary layer flows close to separation. Use of the thin shear layer equations at separation is not possible in the direct mode, i.e., when the external pressure distribution is prescribed. The reason is the singularity"of the thin shear layer equations at separation, that makes the numerical iategration of the equations impossible past the location of the sepraration. In this discussion, by sepa:ation we mean catastrophic separation and not recirculating bubbles.

Experiments show that mrmal stresses are important close to separation (Reference 7). Thus, the: dasumption that pressure gradients normal to the wall are negligible, used in the thin shear layer equations, might not be a grod approximation cluse to separation. For flows at interesting Reynolds numbers, the subject seems controversial because, for some cases, reasonable as reoment was obtained with viscous/inviscid coupling schemes that use simple boundary layer theory (Paper No. 26 of Reference 3 and Reference 8). For some other uses, inclusion of normal pressure gradients seemed necessary (Paper No. 30 of Reference 3). Some comments on the subject are made at the end of the discussion about this task.

Under this task a procedure was devoloped, that combines the capability of computing boundary layers past the separation point with the ability to account for pressure gracliont effects normal to the wall. A description of this procedure for two-dimensional flows follows.

It is known (Reference 9, 10 and 11) that the boundary layer singuiarity is removable when the equations are being solved in the so called inverse mode. In this mode, the displacement thickness δ^{*} is prescribed and the pressure gradient is being computed. In this way, calculations can proceed past the location of scparation. Also procedures have developed that account for nomeglioible pres:ure gradients normal to the wall (Reference 12). It seems reasonable to combine the two methods into one, and have a procedure that allows calculations with normal pressure gradient effects through separation.

Assume a two-dimensional, boundary layer flow growing on a wall (xcoordinate), with a prescribed displacement thickness $\delta^{*}(x)$. Let y be the coordinate normal to the wall, u and v the velocity components in the x and y direction respectively, and p is the pressure. Also, assume that at each streamwise station $x, p=c(x) f_{x}(y)$ and at the initial station, a velocity profile is available. The following steps would do the job.

1) Calculate the boundary layer at the next streanwise step using the inverse mode, with $\delta^{*}(x)$ as given, but with $\partial \mathrm{p} / \partial \mathrm{x}$ partially "known" function of y. In this process, $C(x)$ is obtained at the next x station, together with the cxteral freestream velocity.
2) Calculate profy firm the yommentun equation ar the next station, using the velocities computed. Thus, oblain a new $f_{x}(y)$ at the next station.
3) Repeat steps 1-2 for all strommiss stations. If reverse flow is encountered, its ok.
4) Repeat steps 1-3 using the new "eigenfunctions" $f_{x}(y)$ for the pressure and use centrd differences for $\partial \mathrm{p} / \partial \mathrm{x}$, until convergence is obtained.

Notice that the old values of p are used through one sweep in the x direction. This is because it was found (Reference 12 where the direct mode was used) that this way the process converged. This procedure of updating the pressure corresponds to a Jakobi iteration, instead of a Gauss-Seidel iteration.

The procedure described can use any of the existing turbulence models. If coupling with an inviscid code is required, it can be done by iteratively equating the boundary layer edge velocities computed by the procedure, with the ones from the inviscid code that "sees" an equivalent body, displaced by δ^{*}.

In order to check this procedure, two boundary layer programs were combined. The first solves the two-dimensional incompressible laminar and turbulent boundary layer equations for arbitrary pressure gradients in the direct mode. The second is a boundary layer program that solves the same equations in the inverse mode (Reference 18). During checkout of the second program, mistakes have been found in the code and have been corrected. A list of the combined program is provided in Appendix A, together with some explanation of what the subroutines do. The input parameters are:

1) Number of streamise stations (NXT)
2) Station where transition from laminar to turbulent flow occurs (NTR)
3) Station where the program switches from direct to inverse mode (INV)
4) Step size of the grid normal to the wall at the first step ($\Delta_{n l}$)
5) Factor for the geometric growth of the grid normal to the wall (VGP)
6) Freestream velocity (UREF)
7) Reynolds number based on the coordinate of the last streamise station
8) The coordiates of the streamwise stations. Notice that $x(N X T)=1$. 9) The pressure coefficient C_{p} at the first INV-l stations.
9) The displacement thickness δ^{*} at the last NXT-INV stations.

The program uses an eddy-viscosity model fur the turbulence calculations. The program runs in both the direct and the inverse mode, and separated laminar profiles have been obtained. However there are difficulties in converging with separated turbulent profiles and work is being done to overcome the problem. The next step will be to code the described method using the code described in Appendix A as the base.

The extension of the procedure to three-dimensions is, in principle, straightforward. In three-dimensions, one of the two separation patterns may exist. The first is the closed pattern (Figure 16a) where streamlines coming from the stagnation region never reach the region with backflow. The second is the open pattern (Figure l6b). Both have been discussed in the literature (Reference 13). Remembering that the ultimate objective of this effort is to compute the loads on a realistic configuration, using viscous/inviscid interaction, at high Reynolds numbers, we examine these patterns separately.

Computing through ihe sepadation line of the closed type will require the solution of the tiree-dinensional boundary layer equations in the inverse mode. Such solutious have been generated recently in France (Reference 14) using integral techniques. Sophisticated turbulence models will require finite-difference solutions of the boundary layer equations using the inverse mode. Such solutions have not appeared yet. The same solutions are required, if the scheme described for the two-dimensional problem shows that pressure gradients normal to the wall have a significant effect in the location of siparation. Howrever if the pressure gradient in

Figure 16. Sepatalion Patterns
the cross-stream direction turns out to be of minor significance, a viscous/inviscid coupling can proceed with a closed separation line predicted by simple boundary liyer theory. Such a calculation is possible and is the simplest attempt to compute the flowfield around a body with massive separation. It might be that boundary layer separation from wing surfaces at high Reynolds numbers is such a type of separation. However, for the case of afterbodies, of equal or maybe of more importance, is the case of the open separation.

Computing a separation line of the upen type could be accomplished with a use of three-dimensional boundary layer theory in the direct mode, plus the technique described previously for the two-dimensional case. In this type of separation a vortex sheet would spring from the separation line. Experiments (References 15,16) indicate that counterrotating streamwise vortices might be responsible for the vortex sheet that emanates from the smooth surface. Thus, while the flow has a large streamwise component of the velocity, willout any indication of backflow, crosaflow of opposite signs at the two sides of the vortex generates the open separation. To apply the procedure described before one would use the equivalent in thred-dimensions of the work reported in Reference 12 .

Assume an external pirsiur: distribution $p(x, z)$ given, where x and z define the surface of the developing boundary layer. In a viscous/ inviscid coupling procedure, this would correspond to the state of the iterative procedure where the inviscid thow has just been recomputed. The following steps would do the job, with an assumption of $p(x, y, z)$ that matches the given pressure distribution at the boundary layer edge.

1) Calculate the boundary layer at the next streanwise plane, but with $\partial p / \partial x$ and $\partial p / \partial z$ "known" functions of y.
2) Using the computed velocities, compute the pressure from the y momentum equation starting with the known pressure at the boundary layer edge.
3) Repeat steps 1 and 2 for all the streamwise planes.
4) Repeat steps l-3 using the newly computed pressures, until convergence is achieved.

From the above discussion, it is obvious that the capabilities of simple boundary layer theory in prediciing the location of separation for three-dimensional, high Reynuads number, turbulent fluws has not been really investigated in any depth. In this task a technique was developed that simply combines two previous'y used procedures, calculations in the, inverse mode and incorporation of the y-momentum equation in the calculations, into a way of computing two or three-dimensional boundary
layer flows past the separation.

4. TASK 2

Although work on this Lask has not started, some comments are appropriate. S. Ragab of Lockheed-Georgia has developed a threedimensional boundary layer core for laminar flows around an ellipsoid of revolution. Because of the car mat horough testing of the numerics of this program, it is proposed that the new code will be used for this task. Thus the code developed by Nasl and Scraggs and mentioned in Reference 1 will not be used. Mr. Ragab is continuing his work on the code with the incorporation of an eddy viscosity model.

5. TASK 3

Again, although work on this task has not started, some comments are appropriate. Work on the potential flow with free vortices is continuing at NSRDC (Reference 17). In order to obtain the computer code (Reference 1), Lockheed might have to follow a procedure as a defense contractor, because the code is not releaseable otherwise. This problem is bring investigated.
6. APP NDLXA

Direct-Inverse Two-Dimensional Lncompressible Boundary Layer
 Program for Laminar and Turbulent Flows

INVERSE (Main Routine)	Performs the downstream marching and the iteration process
INPUT	Reads input data
IVPL	Initiates a profile at the first station
GRID	Defines the grid normal to the wall
EDDY 1	Calculates the Reynolds stresses when the program is in the inverse mode
EDDY	Calculates the Reynolds stresses when the program is in the direct mode
CMOM	Computes the coefficients of the momentirn equation when the program is in the direct mode
ICONZ1	Computes the coefficients of the momentum equation when the program is in the inverse mode
SOLV4	Inverts the block-tridiagonal matrix of the resulting finite-difference formulation of the boundary layer equations.
OUTPUT	Prints the output quantities


```
    PRJGRAM INNERSE(INPUT,GUTHUT,TAFLS=INPUT,TGTEG=QUTPUT)
```



```
    10OMmON /OLCPTHCTM(0:)
```



```
    ITMAX=5:
    MA=0
    CEL(1)=6.C'
    VX=1
    GALL ENPUT
    XALL IVOL
    P2(1)=0.0
    P1(1) =0.5
    STEPエUE (INV-1!/UNEF
    STEFH=SQRT(XIINV-1)/(UE(INV-1)/URST)।
    0O 10 J=1,NP
    N{J.\frac{1}{N}=STEP
    WRIfE(6,9100) |x,X(NX)
    ITEC
    IF(NX,GT.1) CEL(NX)=0.5*{X(NX)+X(NX-1:1/(X(NX)-X(NX-1))
    IF(NX.GE.INV) UE (NX)=UE(NX-1)
    IF(NX.GE. INVI GO TO DO
    PLP=P&{NX)+CEL(NX)
    P2P=P2(NX) +CEL(NX)
    IT=IY+1
    IF(NX.LT. INV) GO TU S゙心
    H1=X(NX-: )
    DUOS=(H1*(HI*2*H2)*UE(NX)+H2**2*(U(NX-2)-(H:+H2)**2
    i UE (NX-I))/(H:NHC*(H:+H2)
    P2(NX)=X(NX)*DUDS/UE{NXI
    P:(NX)=0.5* (P? (NX)+:.l)
    P12=P1 (NX),GEL(NX)
    P2?=P2(NX)+C组(NX)
    IF&NX,NE. INY) GO TJ ? %
```



```
    OO 40 J=:NF
    F(J,1)=F(J,1)*STEF*ST?!:!
    F(J,2i=F(J, i)
    U(J,1)=U(J, 1)*55:0
    U(J,č)=U(,i,i)
```



```
    V(J,2)=V(J,1)
    W(J.1)=5T!\mp@code{O}
    W(J,?)=W{J.i:
    4S EONTINUE
    OE:A(1)=ЈETL(1:*ST゙:**H
    CO45J=2:*2
    OETA(J) =UEIG(J-:\*リこ:
    A(J)=0.5*DETA(J=1)
3045 ETA(J)=ETA(J-1)+D:GN(J-:
```

IF(It.LE. ITMAX) GO TJ 70

PZOGRAM INVERSE $7417 \quad O P T=: \quad$ PMOR:P

SUBROUTINE INPU:

1 IMENSION CPQETHETATOU
ETAE =6.0
READ (S,8000) NXT,NTP,INJ, DE:HIII,VGF,JPEF,REYN
$N X H=I N V-1$

$004 \quad I=I N V, N X T$
4 REAO (5.820 () OSO (i)

WRITE(6.9000) NXT,NIR,IHV, ETAE, UETA(1), VGP, REYN
5 DO (J) J=UREF: SQRT(1.2-CF(J)
$0880 \mathrm{I}=2 \mathrm{NXM}$

A2 $2(x(1)-x(1-1)+(x(1+1)-x(1))$
A 3 : $(x(\bar{I}+1)-x(I))+(x(I+1)-x(i-1))$
DUDS $=-(x(I+1)-X(I)) / A+U E(I-1)+(X(I+1)-2.0 * X(I)+X(I-1))$
1
$A Z^{*} U E(I)+(X(I)-X(I-1)) / A 3+U E(I+1)$
GO 1070
$A 1=(x(I-1)-x(I-2)) *(x(I)-x(I-2))$
$A 2=(x(I-1)-X(I-2)) *(X(I)-x(I-1))$

1
P2(I)=X(I)/UE(I)*UU)
90
33

P1(I) $=0.5 *(F 2(I)+: .3)$
008 JE1. NXM
UEOUREF=UE JJ/UREF
8 WRITET6,9) J, XSJJ.C. (N), P2 (J), リEOUETF DO $10 \mathrm{~J}=\mathrm{INV}$, NX:
10 WRITE (6,11) J, X(J), DLUC (3) RETURN
FJRMAT
FJRMAT(3:5.4F10.C)
5000
FORMAT(F2U. 101

 END

```
    SUBROUTINE GFOWTH
    COMHON /BLCO/ NP,NX,NXT,NTM,INV,ETAE,VGP,CNU,DETA(G1),A(61)
    L ETA(O:),DSU(O1),GAMMA1,GAMMA2,UREF
CO4MON/BLEF/F(6:&2),U(EL,?),V(OI,2),W(G1,2),B(61,2)
1 , OELV(GI),J,GF(G:),OELL(GI),OELW(%1)
NPJ=NP
    NP1=NP+1
    NP=NP+1
    IF(NX,EQ.NTR) NP=NP+3
    IF(NP.GT.61) NP=61
    00 35 J=NP1 NP
    F(J,1) =U(NPOO.1)*(ETA{J)-ETA(NPC)I+F(NPO,:1
    U(J,1)=U(NPO,1)
    V(J,1)=0.0
    B(J,1)=EINPO,1)
    H(J,I)=W(NPO,1)
    F(J;2) =U(NPO:2)*(ETS(J)-ETA (NPO)) +F(NPU.?)
    U(J,2)=U(NPO,2)
    V(J,2)=V(J,1)
    9(J,2)=|(NPO,2)
    W(J,2)=W(NPO:,\frac{c}{<})
    COVTINUE
    NNP=NP-(NP1-1)
        NRITEIG,GSOG NNF
    RETURN
    FORMAT (IHO,5X,13HETAS JKOWTH -.I3.I4H -POINTS ADOED)
    ENO
```


SUBROUTINE GRID

io

15

20
3000
 IF($V G P-1.0) . L E \cdot 0.011) G 0$ IO 5
 GO TO 10
NP=ETAE/DETA1: * 1. DOUL
IFINF.LE, 6i) GO TO ij
KRI TE (6, 9000)
STOP
ED ($\mathrm{D}_{1}=0,0$
DETA(J)aVGP *DETA (J-1)
A(S) $=0.5$ DETA(J-1)

RETURN
FORMAT $1 H 0,3 G H N P$ EXCEEUED
EMD
E:--PROGRAM TERMINATED


```
    SUBROUTINE ECOY
    COMMON /HLCOA NH,NX,WD, ANYP,INV,E゙TAE,VGP,CNU,OETA(G11,A(G1).
    1 ETA(51),LSSID1), GAMMA2,GAMHAZ, UREF
    COYMON/BL.CC/ X(60),UL(OO),PL(UO),P2(GG),CEL(GO\),RX(GO),CF,PI)
    1 COMMON (PTHETA (SO)
    COYMON/BLCP/F(01,2),U(61,2),V(61,2), h(61,2),日(61,2).
```



```
    THE=0,O
    OO 30, J=2 NP
    F2aU(J,2)*(1:-U(J,2))
    THE=THE+C.5*(FI+F2)*CETAIJ-1)
    F1EF2
    FHE=THE*X(NX)/SQRT(2X(t| ))
    RTHE=UE(NX)*THE/CNU
    IFIRTHE.GE:500U.OS GJ TO +j
    Z1=RTHE/425.-1,j
    PI=0.55*(1.-EXP(SO2T12:)-0.298*2:1)
    A1=0.015B+:.55/(1.+DJ)
    GO TO 45
    UFINTG=UEINTG+(UI+U2)*(X(I)-X(2-i))* J. 5
    U1= U?
    GG=6*355-0&*UE (NX)**3/(PX(1NP-1)**1.34*GNU**2)
    EXPTA=GG* (X(NX)-X(NT-1-1))*ULINIG
    IF(EXPTM.LE.10.0) GOTO 1S
    WRITE(6.916O) GG.UEINTG,EXPTM
    GOTO 20
    GAMTR=1.0-E゙XP(-EXPTA)
    COYTINUE
    IFLGO=0
    RX2=SQRT(R)(NX))
    RX4=SQRT(RX2)
    PPLUS=P2(NXI/(R)***V(1,2)**:5)
    R\times2 16=R×2*0.16
    CNxSQRT(1,0-111.8*PMLI'S)
    CRSQV=CN*RX4*SQRT(VIL:2)//25.3
    J=1
    53 IFOFLCR.EO.11 GOTTO-FIO
    YOA xCRSQN早六(J)
    EOVI=RX216*ETA(J)**て*V(J,2)*(1.[-FXF(-YOA))**2*GAMTR
    IF\EDVIGLT, EOVO\G, TO SUS
    100 EOV=EDVO
    GO TO 300
388
    EQV=5QVI
    J=J*1
    IF(J:LE:NP) GO TOSC
    RETURN
```

 T4.? CPTE: FMOH:
 FTN \(4.0+528\)
 ENJ

1 COMMON , KTHETA(6)

COMMON /BLCA/S1(61), S2 (51), S3(61), Si4 (61), S5(61), S6(61),57(61)
1
SB(61),R1(Gil, R2(f1), F3 (bi), Ri.(61)

$00100 J=2$, NP
$\left.\cup S B=0 \cdot 5^{*}(U(J, 2) * * ?+1,1 J-1, ?) * ?\right)$
$F V E=0 \cdot 5^{*}(F(J, 2) * V(J, 2)+F(J-1, \dot{C}) * V(J-1, \dot{c}))$

U日: $0: 5+(u(J: 2)+\cup(J-1 ; 2)$
$V B=0.5 *(v(J, 2)+v(J-1 ; 2))$

IF (NX.GT.İ GO TO 10
$\mathrm{C} F \mathrm{~B}=0.0$
$\mathrm{~V}=0$

$645=0: 0$
60 10
$C_{F} B=0.5^{*}(F(J, 1)+F(J-1,1))$
CVB=0.5*(V(J.1) +V(J-1, 1)

$S 1(J)=B(J, 2) / D E Y A(J-1)+(F 1 P * F(J, 2)-C E L(N X) * C F B 1 * O * E$
$S 2(J)=-B(1-1,2) 1 / D E T A(J-1)+(P 1 P * F(J-1,2)-C E L(N X) * C F B) * 0.5$

$S_{S}(J)=0,5 *(P 1 P * V(J-1,2)+C E L(N X)+C V B)$
S5 (J) = - P 2p* U (J.2)
SG(J) =-P2F*U(, $-1,2)$
$57(J)=0.0$
SF (J)=0.0
IF (NX.EA. 1) 60 IO 30

CRB=F $\mathrm{CO}_{3}(\mathrm{NX})+\mathrm{CEL}(N X)$ (CFVA-CUSB)-CLB
$30 \mathrm{CRE}=-\mathrm{P} 2(\mathrm{NX})$

R4(J-1) $=\mathbb{C} .6$
GOYTINUE
$\left.\begin{array}{ll}R 1 \\ R 2 & 1 \\ 1\end{array}\right)=0.0$
$R 2(1)=0.0$
$R 3(N P)=0$.
R $4(N P)=0.0$
RETURN

SUZRDUTINE ICOHZ:

 1 - RTHETA(OD)

1
BEL=1.0f(X(NX)-X(NX-1))
GAKMA =
GAMMAZ=ETA(NP)-OSO (NX)*SORT (REYN)
OO 30 JI2,NP
elake $=1.5$
FFU(UQRI: T, O) FLARE=O.
F8=0.5:(FiJ, 2$)+F(J-1,2) i$
UB=0.5F(U(J,2)+U(J-1,2))
$V 8=j, 5 *(V(J, 2)+V(J-1,2))$
$F Y^{B=g} \cdot 5^{14}\left(F(J, 2) * V(J, 2)+F\left(x^{-1}, 2\right)+V(J-1,2)\right)$
USB=0: EM $\left(U(J, 2)+=2+U(j-1,2)^{-1} 22\right)$
$W S 8=0.5^{*}(W(J, 2) * * 2+W(J-1,2) *=2)$
DERBV = (B(fl(2)*V(J,2)-B(J-1,2)*V(J-1,2))
1
CF3 $=0.5^{\prime \prime}(F(J, 1)+F(J-1,1))$
$C \cup B=0.5^{\prime \prime}(U(J, 1)+U(J-1,1))$
$C V B=0.5$ " $(V(J, 1)+Y(J-1,1))$

1
$C U S B=0 . g_{j}^{*}(U(J, 1) * * 2+U(J=1,1) * * 2)$
$C W S B=0.5 *(W(J, 1) * * 2+N(J-1 ; 1) * * 2)$

1 CRB= BE DETA (J-1)
CRB=8EL(CFVB+(CWSd-CUSU*FLARE))-CDERAV
§ $1(J)=8(J .2) / 0 E T A(J-1)+0.5 * 3 E L *(F(J, 2)-C F 9)$

S4(J) $=0.5$ * $\mathrm{E} E L+(V(J-1,2)+C V 3)$
$S 5(J)=4 E L * U(J, ? 1 * F L A R E R E$
$S G(J)=A E L$
S7(J) $=8 E 6$ ($W(J .2)$

RI(J) $=F(J-1, ?)=F(J, 2)+J E!A(J-1) * \cup B$

i
- (VB*FA)
$R_{4}(J-i)=0.0$

$R 3(N P)=W(N P, Z)+G A M M A Z-F(N P, 2)$
$R 4(N P)=G: J$
RETURN
END
GAMMAZ $=-G A M M A$?
A11 (1)=1.
A13 (1) = C. 0
A14(1) $=0$
A22 $11=1.0$
A23(1)=0.a
A24 (i) $=0.0$
$W 1(1)=81(1)$
$\begin{aligned} & H^{3} \\ & 4\end{aligned}(1)=R 43(1)$

AA $2=A 23(J-1)-A(J)+\lambda 22(J-\leq 1$
$A A 3=S 2(J)-A(J) " S 6(J)$
QEI=AAC*A11(J-1)-AAL*A2:1J-1)
$A J S=A(J) * 2$
G11(J) =-(AA2+AZ1(J-:) *AJSI/UET
G12(J)=(A11(J-I)-AJS+AA1)/DET

G22 J) $=(A 11(J-1)=A A S-S 4(J) \cdot A A 1) / D E T$
$623(J)=A 12(J-1) * G 21(J)+422(J-1) * G 22(J)-56(J)$
$G 24(J)=A 14(J-1) * G 21(J)+424(J-1) * G 22(J)-58(J)$
A11 $(J)=1.0$
$A 12(J)=-A(J)-G 13(J)$
$A 13(J)=A(J)=G 13(J)$
A14 (J) $=-614$ (J)
A21(J) =53(J)
A22(J)=55(J)-Gころ(J)
A23 $(J)=S 1(J)+A(J)+G 23(J)$
A24 (J) $=57(J)-G 24(J)$
Hi(J)=R1 (J)-G11 (J)*H1(J-i)-j12(J)*N2(J-i)-W3(J-1)*G13(J)
1 -G14 (J)*W4(J-1)

W3(J) =23 (J)
$44(\mathrm{~J})=04(\mathrm{~J}$
CONTINLT
1

SUBROUTINE CUTFUT

1
ETA（G1），USU（G1），GAGMA1，GAMAAC，UREF，REYN
COMMON／BLCC／X SOJ
1 COMMON FTTHETA（6U）

OIMENSION YOUSioil，UF＇（Si）
IF（NX．GE．INV）GO TO 4 CC
F1×0．i
THETA1 $=3 . J$
$00150 J=2, N^{\circ}$
$E 2=U(J, 2)+(1 .-U(J, 2)$

F1＊F2

$D E[S=(E T A(N P)-F(N P, 2), \quad$ X $(N X) / S G R T(G(N X))$
H＝DELS／THETA
CF：20＊V（A，2）／SQRT（RX（Hx））
RTHETA（NXII：UE（NX）THETA／CNU
RDEL SIUE（NXIFDELSICNU
YODSO J＝N N
YODS（J）＝（EfA（J）＊x（NX）／S RT（2x（iN））1）／D：LS
UP（J）：SQRT（UE（NX）／（X（NX）＊C（U））：V（J，2）＊DELS
GJ TO 600
THETA1：0＂0
$F 1=0.0$
DO $450 \mathrm{~J}=1$ NF
$F 2=(U(J, z) \quad U(N P, 2)) *(1, j-(U(y, 2) / U(N P, 2 i))$

FixF？
THETA＝THETA1／SQRT（REYN）
－OELSE（ETA（NP）－（UREF／Uc（NX））＊F（NP，2））／SQRT（REYN）
CFI2：C＊V（1．2）／EURT（REYN）
RTHETA（NX）＝UREF＊THETA／CNU

```
        RRELSEUREFERELS/CNU
                YODS(J)= (ETA\J)/SQRT(REFNI!/DEL
                UP(JI=SURT (UKEF,ENUI)*TJ.दi*OE!S
            WTTE(6.44OO)
        HRIfE(E,GEUJ!(J,ETH(J),F(J,2),リ(J,2),V(J,こ1,B(J,2)
    1
```



```
    1HRITE:E.450?1
    1
        WRITE(G.3000) N(NNX), YHGTA,JLS,H,CF, R(INX), PTHETAINXI,RDELS,
    1
                                UL(NX), H+(!)
        NX=NXX+1
        NX=NX+1
        O0 250 J= &,NP
        U(J,il=U(J,2i
        V(J, 1)=v(J,2)
        A(J,2)=4(J, 友)
        REIURN
        CONTINUE
```

 250
 300
 STOP
 4400
 1 RORMAT \(13 \times, 7\) HOUOYOOS, \(3 x, 4\) HYODS
 \(50 \%\) FORMAT(1H. IJ.F10. \(3,6 E 14,6)\)
 900 FORHAG
9000 FORHATIHO:6X:1HX:11X:SHYH:TA, $10 X, 4 H D E L S, 11 X, 1 H H, 13 X, 2 H C F /$
1 IH: $6 x, 1 H R, 1 J X$, GHFTHETA, $5 x, 5 H R D E L S, 11 X, 2 H U E, 12 X, 2 H P 2 /$
END.

7. REFERENCES

1. "Studies in Three-Dimensional Turbulent Boundary Layer Separation from Smooth Surfaces" Research Proposal subuitted to the LockheedGeorgia Company by the Gorgia Tech Research Institute on March 24, 1981.
2. "An Improved Viscid/Inviscid Tnteraction Procedure for Transonic Flow over Airfoils" by Melnik, R.E., Chow, R.R., Mead, H.R. and Jameson A., Final Report for Contract No. NASI-12426 (CR number waiting approval from NASA-Langley) 1981.
3. "Computation of Viscous/Inviscid fateractions" ACARD Conference Proceedings, No. 291, 1981.
4. "Analytic Investigation of Transonic Normal Shock-Boundary Layer Interaction" by W.H. Mason and G.R. Inger, VPI Engineering Report Aero-027, 1974.
5. "Experimental Data Base for Computer Program Assessment" AGARD Advisory Report No. $138,1979$.
6. "Validation of the GRUMFOLL Computer Code" by S. Ragab and S.G. Lekoudis, Lockheed-Georgia Engineering Report LG8l-ER0093, 1981.
7. "Features of a Separacing Tublent Boundary Layer in the Vicinity of Separation" by Simpson, R.L., Strickland, J.H. and Barr, P.W., Journal of Fluid Mechanics, Vol. 79, Part 3, pp. 553-594, 1977.
8. "Analysis of Stalled Airfoils by Simultaneous Perturbations to Viscous and Irviscid Equations" by Gilmer, B.R. and Bristow, D.R., AIAA Paper 81-1239.
9. "Viscous-Inviscid Interaction Analyses of Transonic Turbulent Separated Flow" by J.E. Carter. ATAA Paper 81-1241.
10. "Transonic Viscous-Tnvis id Interaction over Airfoils for Separated Laminar or Turbulent Flows" by Gordon, R. and Rom, J., AIAA Journal, vol. 19, No. 5, pp. 545-552, 1981.
11. "Singularities in Three-Dimensional Turbulent Boundary-Layer Calculations and Separation Phenomena" by Cousteix, J. and Houdeville, R., AIAA Journal, Vol. 19, No. 8, pp. 976-985, 1981.
12. "Calculation of Turbulent-Inviscid Flow Interactions with Large Normal Pressure Gradients" by Mahgoub, H.E.H. and Bradshaw, P., AIAA Journal, Vol. 17, No. 10, pp. 1025-1029, 1979.
13. "Three-Dimensional Laminar boundary layers and the $O K$ of Accessibility" by Cebeci, T., A. Khattab and Stewartson, K., McDonnel1-Douglas Report J 8716, 1980.
14. "Singularities in Thre-Dimensional Turbulent Boundary Layer Calculations and Separation Phenomena" by I. Cousteix and R. Houdeville, AYAA.I., Vol. 19, No. 8, pp. 976-985, 1931.
15. "Flow Separation on a splecoid at Incidence" by T. Han and V.c. Patel, J. Fluid Mech., Vol. 92, Part 4, Fp. 643-657, 1979.
16. "Mean Fluw Measurements in the Three-bimensional Boundary Layer over a Body of Revolution at Incidence" by B. Ramaprian and V.C. Patel and D.H. Choi, J. Pluis Mecti., Vol. 103, Pp. 479-504, 1981.
17. F. Thrasher of NSRDC. Personnel Communications, November 3, 1981.
18. Engineering Dalculatio Methods for Turbulent Flows, by P. Bradshaw, T. Cebeci and J. Whitelaw, Academic Press, 1981.
