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SUMMARY

Supercavitating vehicles exploit supercavitation as a means to reduce drag and

achieve an extremely high underwater speed. Supercavitation is achieved when a body

moves through water at sufficient speed, so that the fluid pressure drops to the water

vapor pressure. In supercavitating flows, a low-density gaseous cavity entirely envelops the

vehicle and the skin drag of the vehicle is almost negligible. Hence, the vehicle can move at

extremely high speed in a two-phase medium.

The development of a controllable, maneuvering supercavitating vehicle has been con-

fronted with various challenging problems such as the potential instability of the vehicle,

the unsteady nature of cavity dynamics, and the complex and non-linear nature of the

interaction between vehicle and cavity. Furthermore, one of the major issues towards the

development of the vehicle is associated with the fact that major questions still need to be

resolved regarding the basic configuration of the vehicle itself, including its control surfaces,

the control system, and the cavity dynamics. In order to answer these fundamental ques-

tions, together with many similar ones, this dissertation develops an integrated design tool

to optimize the vehicle configuration given specific operational requirements, while predict-

ing the complex coupled behavior of the vehicle for each design configuration. Particularly,

this research attempts to include various operating trim conditions as well as maneuvering

flight directly in the vehicle configurational optimization. This integrated approach provides

significant improvements in performance in the preliminary design phase.

In addition to an integrated approach, this thesis investigates trim conditions and dy-

namic characteristics of supercavitating vehicles. The influence of operating conditions, and

cavity models and their memory effects on trim is analyzed and discussed. Unique charac-

teristics are identified, e.g. the cavity memory effects introduce a favorable stabilizing effect

by providing restoring fins and planing forces. Furthermore, this research investigates the

flight envelope for defining performance in turns. For a supercavitating vehicle, the flight
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envelope is significantly different from that of a conventional vehicle due to different hydro-

dynamic coefficients as well as unique operational conditions. The constraints limiting the

flight envelope are also identified and described.

This study presents configurational optimization for various cases: maximum range,

maximum turn rate and high maneuverability. The results show that trade-offs between

various performance indexes are required due to their conflicting requirements. Constraints

related to maneuver are shown to be very complex and can reduce the robustness of opti-

mization. As a conceptual attempt, a simple optimization strategy is developed to increase

computational efficiency and improve the capability to capture global optimum of this class

of problems. This simple strategy shows better solution with better computational efficiency

particularly for our problem.
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Chapter I

INTRODUCTION

1.1 Introduction to Supercavitating Vehicles

The maximum speed of conventional underwater vehicles such as torpedoes and submarines

is limited by the considerable skin friction drag on the hull. Speed of conventional under-

water vehicles does not exceed 40 m/s as a maximum limit, and most practical systems are

limited to less than half of this value [4]. While low speed is advantageous for acoustic and

hydrodynamic efficiency, the achievement of high speed for the next-generation underwater

torpedoes and projectiles is driven mainly by the requirements of modern marine warfare

and, in civilian applications, by the development of conceptual designs of high-speed pas-

senger submarines. The supercavitating Soviet torpedo Shkval, developed in 1977, has been

reported to attain underwater speeds of the order of 100 m/s.

Supercavitation is achieved when a body moves through water at sufficient speed, so

that the fluid pressure drops to the water vapor pressure. The process generally begins

at the trailing edge of the body, where a phase change occurs and a low-density gaseous

cavity forms. Flows exhibiting cavities entirely enveloping the moving body are called

“supercavitating”. A supercavity may be maintained through vaporous cavitation sustained

by sufficiently high speed or by ventilated cavitation through the artificial injection of gases.

When supercavitating flows are developed, the moving body is in contact with liquid water

only at its nose and partially over the afterbody. Hence, it experiences a substantially

reduced drag and can achieve much higher speed than conventional vehicles. Several new

and projected supercavitating underwater vehicles exploit supercavitation as a means to

achieve extremely high submerged speeds and low drag. The size of existing or notional

supercavitating high-speed bodies ranges from that of projectiles to heavyweight full-scale

torpedoes [5]. Recently, the Office of Naval Research (ONR) has supported the development

of small-scale supercavitating projectiles known as RAMICS in fig. 1 (Rapid Airborne Mine
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Figure 1: A schematics and prototype of RAMICS [1].

Clearance System) and AHSUM (Adaptable High Speed Undersea Munitions) [4, 6] as

self-protection marine munitions. The former is a supercavitating projectile targeting near-

surface mines, it is fired from a gun carried by a helicopter and travels in air as well as

water. The latter targets incoming torpedoes, and is fired from a submerged gun carried

by ships and submarines and travels under water at extremely high speed (∼ 1500 m/s).

The challenges in using the supercavitating flow scheme for underwater vehicles are

mostly associated with the strong and complex interactions between the cavity and the

vehicle. The interactions are nonlinear and exhibit memory effects caused by the cavity

shape being dependent upon the history of the vehicle motion and the trajectory. Other

challenges in controlling and maneuvering the vehicles are related to the fact that the center

of hydrodynamic pressure is placed forward of the mass center, thus violating the classic

condition of hydrodynamic stability. Also, a supercavitating vehicle may not experience

sufficient lift to sustain its level flight, and the drag force axially compressing the vehicle

may be the cause of vibrations and possibly structural failure as a result of buckling [7, 8, 9].
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1.1.1 Dynamics of supercavitating vehicles

The fundamental dynamic equations of motion for supercavitating vehicles are formulated

as equations accounting for flight dynamics of aircraft except that the operating motion is

in a complex two-phase medium, which features an inhomogeneous and unsteadiness-prone

interface between vapor and water. In usual operating conditions, the control surfaces of

a supercavitating vehicle are only partially immersed into water, which limits the control

forces and may impose difficulties on maneuvering the vehicle. The hydrodynamic loads

are affected by the interaction with the cavity which is highly nonlinear and depends on

the vehicle’s motion and trajectory. Also, due to the considerable role of the cavitator as

a lifting control surface, the center of pressure is located in the front part of the vehicle,

which is generally ahead of the center of gravity. Thus, uncontrolled motion of the vehicle

tends to be unstable.

Savchenko [10] summarized four possible modes of vehicle motion arising according to

vehicle velocity and supercavity development (see fig. 2):

1. Motion inside a two-cavity flow (V ∼ 70 m/s):

Due to low velocity, two partial cavities are developed at the leading edge and at the trailing

edge of the vehicle. A fully-wetted afterbody can exert a buoyant force to counteract the

vehicle weight in addition to the fins’ lift. The extended contact of the afterbody with

the fluid produces an additional drag force, which relocates the hydrodynamic drag center

behind the center of mass and thus acts on the vehicle as a stabilizing moment, while

however increasing the undesirable drag force.

2. Motion inside a fully-developed supercavity (V ∼ 50− 200 m/s):

A vehicle has two possible attitudes at this stage mainly due to the absence of the buoyant

force on the afterbody. First, a vehicle with control surfaces such as fins at the trailing

edge can maintain straight level flight without contact with the cavity boundary. Secondly,

for a vehicle without sufficient lift force at the afterbody such as finless projectiles, the

small portion of the afterbody of the vehicle can be planing on the lower cavity surface.

Planing occurs on the ellipsoidal cavity surface which may be inherently unsteady and its

interface may be partially broken up. In this configuration, the capacity of simulating the
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(a) Vehicle motion inside a two-cavity flow (V ∼ 70 m/s)

(b) Vehicle motion inside s fully-developed supercavity (V ∼ 50− 200
m/s)

(c) Vehicle motion with planing inside a fully-developed supercavity
(V ∼ 50− 200 m/s)

(d) Vehicle motion with tail-slapping inside a fully-developed supercav-
ity (V ∼ 300− 900 m/s)

(e) Vehicle motion with aerodynamic interaction inside a fully-
developed supercavity (V ∼ 1000 m/s and higher)

Figure 2: Four possible motions of a supercavitating vehicle.
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vehicle dynamics highly depends on the degree of accuracy in predicting cavity shape and

its dynamics.

3. Motion with tail-slap inside a fully-developed supercavity (V ∼ 300− 900 m/s):

At high speed, a supercavitating vehicle experiences periodic impacts against the cavity at

the afterbody. These periodic impacts (tail-slaps) are induced by initial disturbances on the

pitching angle and on velocity, and may produce steady or damped oscillatory motion with

respect to the cavity. For example, tail-slap motion is observed for high-speed projectiles

such as AHSUM, where the frequency of oscillation is of the order of 600 Hz for speeds of

600 m/s [4].

4. Motion including aerodynamic interactions inside a fully-developed supercavity (V ≥
1000 m/s):

At extremely high speed, a supercavitating vehicle experiences considerable aerodynamic

forces inside the vaporous cavity, which requires near-wall aerodynamic analysis due to the

relatively small intervening space between the vehicle hull and the cavity boundary. In

addition, the vehicle motion may be affected by vapor splashes near the cavity boundary.

1.1.2 Control strategies for supercavitating vehicles

A great amount of research has been devoted to the development of control strategies and the

analysis of stability of supercavitating vehicles. Previous investigations mostly considered

simplified rigid body models which allow the study of the complex interactions between

vehicle and surrounding cavity. For example in [11], a simplified single-degree-of-freedom

(SDOF) model for longitudinal dynamics has been developed in order to investigate the

vehicle stability with respect to memory effects and discontinuous nonlinearities associated

with planing. In the model, memory effects are described as a time delay representing the

interval required for a perturbation at the nose to affect the cavity shape on the afterbody.

A magnification factor also accounts for the dive motion of the vehicle with respect to the

cavity. The magnification factor depends on the magnitude ratio of pitching and diving

modes. The SDOF model captures some of the dynamic characteristics of a full 6 DOF

model and allows assessing the dynamic performance of the vehicle in a preliminary, yet
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efficient way. Further, the model shows evidence of chaotic behavior in certain conditions.

The pitch-dive longitudinal dynamics of supercavitating bodies has been investigated in [12,

4, 13, 14]. Rand et al. [4] for example, studied the characteristics of impacts between the

vehicle’s tail and cavity boundary (tail-slap) using a simplified model based on experimental

observations. The formulation considers a 2 DOF model which describes the motion of

the vehicle with respect to a horizontal cavity. The presented analytical results indicate

that in the considered configuration, the tail-slap leads to a harmonic motion at frequencies

which depend mostly upon the vehicle’s velocity. Kulkarni and Pratap [13] also investigated

dynamic behavior with tail-slaps, thus extending Rand’s work by eliminating the restriction

of straight flight. The authors evaluate impact loads by employing approximate added

mass expressions based on the theory of Milwitzky [15]. The results agree with those of

Rand et al., although it should be noted that their work still uses a very simplified model

from the viewpoint of dynamics, as it ignores gravity force and the vehicle is assumed to

be rotating about the nose. Dzielski and Kurdila [12] investigated control strategies for a

model with vertical and pitch DOF, which are modes susceptible to instabilities. Linear and

nonlinear control schemes have been developed to stabilize the vehicle’s oscillatory motion

with respect to the cavity. This oscillatory motion causes impulsive forces on the vehicle

due to large restoring planing forces and their short duration and thus, causes challenging

problems in designing appropriate actuation. Abed et al. [14] extended the previous pitch-

dive dynamic model of [12] by focusing on the tail-slap behavior also occurring in the

presence of partial cavities. They approximate a planing force as a piecewise linear function

and apply switching linear feedback control to stabilize the vehicle. They also investigated

bifurcations of solutions with regard to the cavitation parameters and found supercritical

Hopf bifurcations of fixed points and period-doubling solutions.

The dynamic characteristics and control scheme based on a full 6 DOF model has

been investigated in [16, 17, 6]. Goel [16] studied a 6 DOF model based on the strong

assumption that the cavity is fixed and the vehicle moves symmetrically inside the cavity.

Stability investigations on the linearized model at trim shows that the longitudinal and

lateral motions are both unstable without a control scheme. The results also indicate that an
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LQR (Linear Quadratic Regulator) controller achieves stable and good performance for the

pitch and roll rate tracking commands. Kirschner et al. [17] studied the trajectory stability

and dynamic performance of the vehicle under fins-supported and planing-supported level

flight and during a steady bank-to-turn. The fins-supported case shows violent pitching

oscillation as a result of initial perturbations. This behavior can be stabilized through

an LQR-based feedforward/feedback control. In [6], Kirschner and co-authors presented a

valuable overview of recent research and developments associated with supercavitating high-

speed bodies. They describe tests on free-running models such as AHSUMs and discuss some

results of supersonic underwater flight tests. Numerical and experimental results also show

the highly nonlinear and three dimensional behavior of the cavity. A real cavity may hardly

achieve axisymmetric shape in even well-controlled environments due to highly nonlinear

turbulent flow. A cavity usually has helical flows revolving circumferentially, which are

caused by a complex re-entrant flow. Also the cavity may undergo axial cyclic oscillations

associated with the re-entrant flow, which induce spike-like cyclic variations in the drag

coefficient. Finally, they conducted large-scale simulations using comprehensive and highly-

accurate hydrodynamic model (UNCLE-M) based on Reynolds averaged Navier-Stokes.

This code captures the considerable perturbations in cavity shape caused by a varying

angle of attack of the cavitator. The results indicate that the cavity can strike the body

during maneuvering and suggest that dynamic simulations based on simple hydrodynamic

models may not represent the real behavior of the vehicle.

1.1.3 Structural analysis of supercavitating vehicles

Limited investigations have been performed on the structural behavior of supercavitating

vehicles. Most of the work on simulation and control discussed above only considers rigid

models and does not account for the influence of elastic modes of deformation on perfor-

mance. Ruzzene and Soranna [18] investigated the dynamic response of a supercavitating

vehicle during tail-slap using a beam elastic model combined with a 2 DOF rigid model.

For rigid body motion, they used the same model presented in [4], which accounts for

horizontal translation and rotation about the nose. The effect of periodically placed ring
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stiffeners on the impact interaction between vehicle and cavity was investigated to demon-

strate how corresponding vibrations can be significantly reduced through the addition of

periodic ring stiffeners along the vehicle length. The dynamic behavior associated with

the vehicle flexibility has also been investigated by Choi et al. [19], who applied a modal

superposition technique to analyze the effect of flexibility on the stability of level flight

and on the forces and structural strains associated with specific maneuvers. Their results

indicate that the flexibility of the vehicle may be an additional source of instability. Drag

and thrust can act as large compressive forces on the vehicle and can produce structural

instabilities. Buckling of the vehicle has in fact been identified as one of the limiting fac-

tors for the speed of operation of supercavitating projectiles and should be investigated

also for larger torpedoes [7]. The unsteady nature of supercavitation typically causes rel-

ative, small amplitude oscillations between cavity and vehicle. A full investigation of the

stability of supercavitating vehicles hence requires to account for drag on the afterbody,

and for its time dependency. Static and dynamic buckling stability has been investigated

in [9, 8, 20, 21, 22]. Ruzzene [9, 8] used axisymmetric shells subjected to time-varying

axial forces to capture cavity-vehicle interaction and cavity dynamics. Harmonic loads and

step-wise periodic loads were considered as first approximations to highlight the possibility

of parametric resonance conditions. The extension of the stability regions was estimated

for varying velocity of the vehicle, frequency and amplitude of the force oscillations, and

pulse duration. In addition, the effect of periodically placed circumferential stiffening rings

on dynamic buckling stability was investigated. Alyanak et al. [20] conducted a detailed in-

vestigation on the structural characteristics of supercavitating vehicles using a high fidelity

finite element model developed using the commercial package GENESIS. Structural failures

during vehicle operation, stresses and natural frequencies as well as global buckling were

investigated along with the effect of longitudinal and ring stiffeners. In addition, multi-

disciplinary optimization was conducted to improve the stability of the vehicle. In [21],

Alyanak and co-authors extended their previous investigation through optimization of the

overall vehicle size (length and diameter), shape, and structural configuration. The optimal

size was identified in terms of length and maximum diameter of the vehicle under the spatial
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restrictions imposed by the cavity shape. Ahn and Ruzzene [22] extended studies of [9, 8]

through configurational optimization of the vehicle which investigates optimally tapered

and circumferentially stiffened designs to enhance the static and dynamic stability. They

exploited nine-node general shell formulation in order to account for non-uniform thickness

as well as time-varying non-axisymmetric axial forces.

1.1.4 Trajectory optimization of supercavitating vehicles

Although there are few applications of trajectory optimization to supercavitating vehicles,

trajectory optimization in aerospace applications has been one of the important and suc-

cessful branches of optimal control. The interest in optimal control has grown rapidly with

the advent of digital computers along with needs in aerospace applications such as civil

and military aviation and space exploration [23]. The goals of trajectory optimization in

aerospace applications are of diverse kinds as [24]: minimum fuel flight or maximum range

flight in civil airplanes, minimum flight time for reaching an assigned target state [25],

safety-related trajectory to avoid crash [26, 27] and engine failure [28, 29], optimal pursuit-

evasion flight [24], optimal interplanetary and orbital transfer [30, 31, 32], optimal launch

and re-entry trajectories [33], optimal rocket trajectories [34], trajectory based on onboard

guidance [35, 36], etc.

The optimal control problem, which is often called dynamic optimization, can be defined

as finding optimal control functions for certain performance indexes subject to dynamic

system equations and associated initial and boundary conditions. The performance index

is a function of states and controls. Its maximization provides trade-offs between cost of

terminal error, transient error, and control efforts [37]. A historical review of optimal control

can be found in [38, 39] and comprehensive introductions are found in [40, 41, 42, 37].

In practice, optimal control problems have been solved by two categories of numerical

methods: direct and indirect methods [23]. Indirect methods numerically solve the optimal

control problem as a boundary value problem imposed by the first order necessary con-

ditions of optimality according to the Pontryagin maximum principle. In contrast, direct
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methods numerically solve the optimal control problem transcribing an original continu-

ous problem into a parameter optimization one by means of discretization and suitable

basis functions, in which system equations are transformed to defect constraints by suit-

able numerical integration schemes. In general, approximate formulations can be obtained

by various numerical integration schemes such as second-order midpoint rule, second-order

trapezoid rule, fourth-order Hermite-Simpson formulation, and high-order Gauss-Lobatto

quadrature rules [31]. Comprehensive review and detail discussion on numerical methods for

trajectory optimization are provided by Betts [23], Hull [43], and Ross [44]. Particularly,

Hull [43] categorizes the various numerical methods according to the selected unknowns

(four different methods in terms of control and states parameters).

Various maneuvers of supercavitating vehicles can be found through the solution of an

optimal control problem, in which the time histories of vehicle controls and corresponding

states are determined according to a certain performance index. Although vast research

has been conducted for trajectory optimization in aerospace applications, few studies have

been performed for supercavitating vehicles. Kamada et al. [45] investigated and developed

a general framework for the maneuvers of a supercavitating vehicle through trajectory op-

timization. They employed the direct transcription method to solve for simple maneuvers

such as dives and turns and demonstrated that this methodology is effective for a super-

cavitating vehicle and general. In their work, the integrated square of the magnitude of the

controls is considered as a cost function, and a simple midpoint rule is used to discretize the

states equations. Scorcelletti et al. [46] also investigated turn and target-tracking maneuvers

of a supercavitating vehicle through the direct transcription method. One interesting result

is that they obtained three dimensional trajectories for optimal turn maneuvers instead of

in-plane turning trajectories as observed in [45, 47]. Although their work showed interesting

results, the following limitations must be highlighted : 1) memory effects from cavity advec-

tion have not been considered, 2) the cavitation number is considered as constant regardless

of underwater depth, which affects the vehicle maneuvers particularly during dive-climb and

three-dimensional trajectories.
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1.2 Objectives and Motivation

Supercavitating vehicles are high performance vehicles which operate at the boundaries of

the flight envelope. The development of a controllable, maneuvering supercavitating vehicle

has been confronted with various challenging problems such as the potential instability of

the vehicle, the unsteady nature of cavity dynamics, the complex and non-linear nature

of the interaction between vehicle and cavity, and the presence of hull vibrations induced

by strong vehicle/cavity interaction. Furthermore, one of the major issues towards the

development of the vehicle is associated with the fact that major questions still need to be

resolved regarding the basic configuration of the vehicle itself, including its control surfaces,

the control system, and the cavity dynamics. The answer to these fundamental questions,

together with many similar ones, requires integrated design tools capable of optimizing

the vehicle configuration subjected to realistic constraints. The objective of the thesis

is the development of a simulation-based design tool that answers the above needs and

which is capable of vehicle configuration optimization according to requirements dictated

by operational configurations. The posteriori analysis of the structural performance of

the optimized vehicles can assess of the feasibility of the considered configurations from

a structural perspective. This approach potentially provides a methodology to achieve

performance improvements that would not be otherwise obtainable.

1.3 Outline

Following this introductory chapter, chapter 2 presents the equations governing the dynamic

behavior of a supercavitating vehicle and introduces simplified models for the description

of cavity shapes and dynamics, and of the interaction forces between vehicle and cavity.

Chapter 3 presents investigations on trim operating conditions for level flight and level

turning flight. Also, a series of examples of flight simulations in response to assigned

control actions is provided. Two trimmed configurations are in particular considered with

two cavity models : fins-supported and fins and planing-supported. Chapter 4 presents the

configurational optimization of a supercavitating vehicle operating at trim where maximum

range and maximum turn rate are considered as primary performance indexes. The design
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conflicts between optimal vehicles of two performances are identified. The chapter also

provides a description of the flight envelope essential for evaluating turning performance

index. Configurational optimization studies follow in Chapter 5 where a maneuverability

is the considered performance index. Various vehicle maneuvers are defined through the

trajectory optimization tool developed at the Politecnico di Milano. The optimization

procedure developed in previous chapters is extended to account for trim performances

and maneuverability in Chapter 6. Finally, chapter 7 presents concluding remarks and

recommendations for potential extension of this research.
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Chapter II

FLIGHT MECHANICS MODEL

2.1 Overview

This chapter presents the equations governing the dynamic behavior of a supercavitating

vehicle and introduces simplified models for the description of cavity shapes and dynamics,

and of the interactions forces between vehicle and cavity. The model is used as a flight

simulator for supercavitating vehicles and as an engine for the optimization of the vehicle’s

configurational design.

A 6 DOF rigid body model describes the dynamic behavior of the vehicle. A schematic

of the vehicle configuration and of the applied forces is shown in fig. 3. The body is acted

upon by a system of forces corresponding to the interaction of the vehicle control surfaces

with the cavity boundaries. The control surfaces include the fins at the back of the vehicle

and the cavitator, whose primary function is the generation of the supercavity. The control

surfaces provide lift, and allow for roll, pitch and yaw control. Finally, the vehicle motion

is sustained by a propulsion force directed along the vehicle’s axis.

2.2 Equations of Motion

The equations of motion are conveniently formulated in a body-fixed reference frame FP,B,

with origin in P and triad B = (b1, b2, b3). A reference inertial frame FO,I is centered at

point O and has a triad of unit vectors I = (i1, i2, i3), as shown in fig. 4.

The equations of balance of linear and angular momentum (Euler’s equations) in the

body-attached frame can be written as

l̇B + ωB × lB = sB,

ḣBP + vBP × lB + ωB × hBP = mB
P , (1)

where the linear momentum is l = mvP + ST
P ω and the angular momentum is given by

hP = SP vP + JP ω. Letting ρV be the vehicle density, m =
∫
V ρV dV is the mass of the
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vehicle, SP =
∫
V ρV r×dV is the first moment of inertia, JP = − ∫

V ρV r×r×dV is the

inertia dyadic, vP and ω denote the linear velocity of point P and the angular velocity of

the body, respectively, while s and mP are the resultants of the applied forces and moments,

respectively. Here and in the following, the notation (·)A denotes components in the generic

A triad. If R is the rotation tensor that brings triad I into triad B, then the components

of a generic vector a in the two triads are related as aI = RI
I→BaB. Furthermore, a× is

the skew-symmetric tensor associated with a. Finally, the symbol ˙(·) = d · /dt indicates

differentiation with respect to time.

Figure 3: Configuration of supercavitating vehicle and applied forces.

P

O

P

O

Figure 4: Body-fixed and inertial frames.
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Equations (1) can be conveniently rewritten in the following compact form:

MBẇB + wB↙�MBwB = fB, (2)

where the generalized inertia tensor is defined as

M =




mI ST
P

SP JP


 , (3)

and the generalized velocity w and generalized force f are respectively given by:

w = (vT
P , ωT )T , f = (sT ,mT

P )T . (4)

In equation (2), (·)↙� is the South-West cross product operator [48]:

w↙� =




ω× 0

vP× ω×


 . (5)

The position and orientation of the vehicle with respect to the inertial frame can be

expressed through the position vector uP = (P − O) and a set of rotation parameters,

more specifically Euler parameters arranged in quaternion form for this work. The vehicle

kinematic equations can be written as

ḋ =




RI 0

0 E


wB, (6)

where d is the vector of the generalized coordinates defined as

d = (uT
P , qT

4 )T , (7)

with q4 = (q0, q
T )T denoting the quaternion. Again with reference to equation (6), E

relates the time rates of the rotation parameters with the body-frame components of the

angular velocity and is defined as:

E =
1
2




−qT

q0I + q×


 . (8)

Equation (6) implicitly enforces the derivative of the unit quaternion condition, which can

be expressed as:

q̇4 · q4 = 0. (9)
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The forces s acting on the vehicle can be written as

s = sT + sN +
nF∑

i=1

sFi + sI + sG, (10)

where sT = δT b1 is the propulsive thrust, sN is the hydrodynamic force at the vehicle

nose generated by the cavitator, sFi are the hydrodynamic forces generated by the nF fins,

sI are the contact forces due to the interaction of the vehicle with the cavity, and finally

sG = −mgi3 is the gravitational force. Similarly, the moments mP can be written as

mP = rPT × sT + rPN × sN +
nF∑

i=1

rPFi × sFi

+ rPI × sI + rPG × sG +
nF∑

i=1

mFi + mI , (11)

where rAB indicates a distance vector from point A to point B, T is the point of application

of the thrust, N is the cavitator location, Fi is the aerodynamic center of the ith fin, I is

the tail-cavity contact point and G is the center of gravity.

2.3 Cavity Models

The behavior of the cavity affects the forces at the nose of the vehicle, the immersion of the

fins in the fluid, and the contact forces between vehicle and cavity boundary. Particularly,

the planing and fins forces strongly depend on the dynamic behavior of the vehicle and on

the hydrodynamic characteristics of the cavity. The vehicle velocity affects the cavity shape

and size, which in turn modify the extension of the immersed area of the vehicle and the

magnitude of the resulting planing and fins forces. As a result, the vehicle-cavity system is

highly coupled.

In this work, simple supercavity models suitable for time domain dynamic simulation

are employed. It should be noted that supercavitation may in general be estimated more

accurately by approaches based on slender-body theory, boundary element methods, and

sophisticated computational methods relying on the solution of Navier-Stokes equations

along with models for the cavity re-entrant jet. In particular, cavity shapes obtained from

the approximate models presented below predict an unrealistically smooth closing of the

cavity at the rear portion, whereas in general, gas leakage from the cavity occurs and gases
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are turbulently mixed with liquid supplied by the re-entrant jet. Cavity perturbations due

to its radial expansion and floating-up also affect the process of gas leakage along with the

vehicle’s shape and vibrations at the closing region [49]. These phenomena are neglected in

the following simplified approximate models, which however are considered to be efficient

and accurate enough to reproduce the overall dynamic behavior of a supercavitating vehicle.

2.3.1 Munzer-Reichardt’s model

Munzer-Reichardt’s is an early model based on low-order potential flow. It predicts an

axisymmetric cavity shape described by the following expression [50]:

rc(ξ) =
dmax

2
(4ξ(1− ξ))1/2.4 , ξ = x/lmax (12)

where rc(ξ), dmax, and lmax are the cavity radius at location ξ along the centerline of cavity,

the maximum diameter and length of the cavity. The origin of the longitudinal coordinate

ξ is located at the front nose. The cavity length lmax and maximum diameter dmax are

given by [51]:

dmax = dc

√
Cd(σ, 0)

σ

lmax = dc

√
Cd(σ, 0)

σ2
ln

(
1
σ

)
(13)

where dc, Cd and σ are the cavitator diameter, the cavitator drag coefficient and the cavita-

tion number. The hydrodynamic drag, lift, and moment coefficients for a disk-type cavitator

with angle of attack, αc are given by [52]:

Cd(σ, αc) = Cdo(1 + σ) cos2 αc

CL(σ, αc) = Cdo(1 + σ) cosαc sinαc

Cm(σ, αc) ' 0 (14)

The cavitation number σ is defined as:

σ =
(p∞ − pc)

1
2ρwV 2

N

, p∞ = ρwgh + patm (15)

where p∞ and pc are respectively the ambient fluid pressure and cavity vapor pressure. Also,

VN , ρw, g, h, and patm are respectively the speed of the vehicle’s nose, the fluid (water)
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Figure 5: Non-dimensional cavity shape.

density, gravity acceleration, depth under water surface, and atmospheric pressure on the

water surface. The drag coefficient at zero angle of attack and cavitation number, Cdo, is

chosen to be 0.815 according to empirical formulation presented in [53]. Munzer-Reichardt’s

cavity model neglects gravity distortion effects, and assumes a steady cavity with internal

constant pressure pc. An example of cavity shape predicted by Munzer-Reichardt’s model

is shown in fig. 5.

2.3.2 Logvinovich’s model

Another formulation describing the shape of the cavity is based on Logvinovich’s model [54].

The model assumes that each cavity section expands independently of adjacent sections

without viscous effects (Logvinovich independence principle). Hence, the expansion depends

on fluid inertia and on the pressure difference between the cavity and the ambient liquid.

The cavity section obtains kinetic energy when it expands radially during separation at the

nose. This initial kinetic energy equals the work done by the pressure difference during

the cavity section expansion from initial radius to maximum radius. After expanding, the

cavity section contracts and obtains an amount of kinetic energy equal to the work done by

the pressure difference. Vasin derived the cavity radius based on the Logvinovich principle
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and energy conservation [55]. A review of [55, 54] are presented in what follows.

The cavity radius rc and radial expansion rate ṙc are defined as:

rc = rmax

√
1−

(
1− r2

o

r2
max

)(
1− t

tmax

)2

ṙc =
r2
max

rc

1
tmax

(
1− r2

o

r2
max

)(
1− t

tmax

)
(16)

where ro, rmax, and tmax are the initial cavity radius, the maximum cavity radius defined

in eq. (13), and the time required for the cavity to achieve its maximum radius. It should

be noted that assuming the initial radius ro = 0 and eliminating time leads to a formula

equivalent to Munzer-Reichardt’s model (eq. (12)) with a different exponent (2 instead of

2.4). From the physical viewpoint, the initial cavity radius ro in eq. (16) can be considered

as the cavitator radius dc/2. In general, the prediction of cavity shape has been conducted

through modified forms of eq. (16) based on the experimental data [54]:

rc = rmax

√
1−

(
1− ro

2

r2
max

) ∣∣∣∣1−
t

tmax

∣∣∣∣
2
κ

ṙc =
r2
max

rc

1
κtmax

(
1− ro

2

r2
max

)(
1− t

tmax

) ∣∣∣∣1−
t

tmax

∣∣∣∣
2(1−κ)

κ

(17)

where the correction factor is selected as κ = 0.85 based on Cdo = 0.82. The maximum

length of the cavity lmax and the time tmax are given by [54]:

lmax = dc

(
1.92
σ

− 3
)

tmax =
lmax

2V
(18)

The initial cavity radius is selected as ro = (7)
1
3

dc
2 = 1.92dc

2 , which matches the cavity

radius ro with one predicted by following empirical formula at x = dc [54]:

rc =
dc

2

(
1 +

3x

dc/2

) 1
3

(19)

The cavity shapes predicted by the various models are compared in fig. 6, where ‘adjusted

Logvinovich’ and ‘empirical’ refer to eqs. (17) and (19), respectively. It should be noted

that radial expansion rate of the cavity ṙc can considerably affect the apparent angle of

attack when the afterbody is planing [12]. Indeed, the cavity surface at the contact region
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Figure 6: Comparison of cavity shapes and radial expansion rate for cavitation number
σ = 0.03.
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Figure 7: Cavity shapes varying with the cavitation number σ = 0.05, 0.03, 0.02, 0.01.

forms a wetted wedge having an additional angle of attack due to the radial contraction

rate.

Fig. 7 shows how the cavity shape varies with the cavitation number particularly for

two cavity models, Logvinovich’s and Munzer-Reichardt’s ones. The cavity size increases as

the cavitation number decreases for both models. However, at high cavitation number the

former predicts a larger cavity, while at low cavitation number the situation is reversed. This

dependency of the cavity on the cavitation number significantly affects the trim conditions

and dynamic properties of the vehicle according to the vehicle operating conditions (e.g.

speed and altitude).

2.3.3 Cavity memory effects

By virtue of Logvinovich’s independence principle, the cavity centerline always traces the

trajectory of the cavitator and each cavity section radius is determined by the state of

cavitator when it is generated. As a result, cavity distortions caused by a disturbance of

the cavitator propagates towards the afterbody according to the vehicle speed with a certain

time lag which affects the vehicle dynamic behavior by changing hydrodynamic forces and

moment on the control surfaces. However, vehicle dynamic perturbations triggered by
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Figure 8: Cavity memory effects.

the cavitator generate corresponding transient cavity distortions. In general the time lag

and related effects here denoted as memory effects, depend on the history of the vehicle

motion, and vehicle dimensions and geometry. Normally, the cavitator generates a time-

varying cavity radius and curved cavity centerline which causes the center of the cavity cross

section at the fin’s location and at the afterbody to deviate from the center of the vehicle

cross section. This time-varying deviation and cavity radius at the afterbody produces

asymmetric fin immersion and/or changes in the vehicle operating configurations.

Figure 8 shows how memory effects affect cavity shape according to flight conditions.

The influence of memory effects on the cavity radius and length is shown in fig. 8 (a), where

the cavity b is generated during constant-velocity level flight, while the cavities a and c

are respectively generated during decelerating and accelerating level flight. The influence

of memory effects on the cavity centerline is also shown in fig. 8 (b), where the vehicle

performs a steady (constant speed) turning flight. The cavities a and b are respectively

evaluated without and with memory effects. Particularly, the cavity a is evaluated by

the instantaneous value of the cavitation number, which is determined on the basis of the
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current state of the vehicle.

2.4 Cavitator Force Model

The hydrodynamic forces acting on a circular cavitator can be conveniently expressed in

terms of a reference frame FN,N located at the cavitator center N and with triad of unit

vectors N = (n1, n2, n3), as shown in fig. 9. Unit vector n1 is perpendicular to the disk

surface. Its orientation with respect to the vehicle axis b1 is defined by the control angle

δN , so that the components of n1 in the body-fixed triad B, labeled nB1 , are

nB1 = (cos δN , 0,− sin δN )T . (20)

Unit vector n2 is orthogonal to the plane formed by the pair of vectors vN and n1, i.e.

n2 =
vN × n1

‖vN × n1‖ , (21)

where vN = vP + ω× rPN is the cavitator velocity, rPN being the distance vector between

the reference point P on the vehicle and the cavitator center N . Finally, unit vector n3

completes a right handed triad: n3 = n1 × n2. The components of the three unit vectors

n1, n2 and n3 measured in the body-attached triad B readily give the components in B of

the rotation tensor that rotates the B triad into the N triad:

RB
B→N =

[
nB1 |nB2 |nB3

]
. (22)

Hence, if vBN denotes the components of the cavitator velocity in the B triad, the com-

ponents of the same vector in the cavitator triad N are

vNN = RBT
B→NvBN = (uNN , 0, wNN )T . (23)

The cavitator angle of attack αN is measured in the vN , n1 plane (see fig. 9), and it is

computed as

tanαN =
wNN
uNN

. (24)

In the vN , n1 plane, the hydrodynamic force acting on the cavitator can be decomposed

into lift and drag components, which can be computed as [52]

LN =
1
2

ρwv2
NANCd(σ, 0) sinαN cosαN ,

DN =
1
2

ρwv2
NANCd(σ, 0) cos2 αN , (25)
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Figure 9: Cavitator reference frame.

where AN is the cavitator area. The hydrodynamic force can hence be expressed in the N
triad as

sNN =
(−LN sinαN −DN cosαN , 0, LN cosαN −DN sinαN

)T
, (26)

and transformed to the B triad as sBN = RB
B→NsNN . This formulation for the cavitator force

neglects the effects of hydrodynamic added mass and damping which are discussed in [56].

2.5 Fin Force Model

The fins are controlled to provide lift in the after-body section and to maneuver the vehicle.

We consider the 4-fin configuration shown in fig. 3. Each fin interacts with the surrounding
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Figure 10: Fin reference frame and angle of attack.

fluid with forces that depend on the immersion depth in the fluid, the velocity at the fin

location with respect to the fluid, the fin geometry and the angle of attack.

For convenience, the forces are first expressed in a reference frame FFi,Fi , with origin

Fi and triad Fi = (f1, f2,f3) fixed to the ith fin, as shown in fig. 10. Triad Fi is obtained

by a rotation that first brings B into the undeflected fin configuration F̂i = (f̂1, f̂2, f̂3),

f̂k = R̂ibk, k = 1, 2, 3, followed by a rotation δFi f̂2, with δFi denoting the deflection

of the ith fin, fk = R(δFi f̂2)f̂k, k = 1, 2, 3. The total rotation from B to Fi is hence

fk = RB→Fibk, RB→Fi = R(δFi f̂2)R̂i.

In the fin-fixed reference system, forces are determined in terms of the angle of attack
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Figure 11: Fin hydrodynamic force and moment coefficients.

26



and of the immersion depth, according to previously published results for wedge-shaped

fins [17]. The ith fin force and moment components in Fi (i = 1, . . . , 4) are given by

sFi
Fi

=
1
2
ρwv2

Fi
S2

fin

(
Cx(γFi , dFi), Cy(γFi , dFi), Cz(γFi , dFi)

)T
, (27)

mFi
Fi

=
1
2
ρwv2

Fi
S3

fin

(
Cmx(γFi , dFi), Cmy(γFi , dFi), Cmz(γFi , dFi)

)T
, (28)

where vFi is the magnitude of the velocity vector at the fin frame origin Fi, Sfin is the fin

span length and Cx, Cy, Cz are force coefficients defined in terms of the fin angle of attack

γFi and of the immersion depth dFi . Plots of the force coefficients are shown in fig. 11. Their

approximately bilinear behavior for assigned immersion depth ratio is associated with two

different flow regimes developing on the fin. The first flow regime occurs for low angles of

attack, when two separate cavities are formed at the base and at the leading edge of the

fin. For larger angles of attack the two cavities merge to form a supercavity that envelopes

all the surfaces except for the pressure face [17]. The procedure for the calculation of the

fins’ immersion depth is described in Section 2.7.

As in the case of the cavitator force, the considered formulation for the fin forces neglects

the effects of hydrodynamic added mass and damping. The fin angle of attack in the local

Fi triad is obtained from the components of the velocity vFi
Fi

= (vx, vy, vz)T . Accordingly,

we have

tan γFi =
vz

vx
. (29)

The fin force components are transformed from the Fi to the body-fixed triad B as

sBFi
= RB

B→Fi
sFi

Fi
.

2.6 Vehicle/Cavity Interactions

Supercavitating vehicles operate over a wide speed range (50-900 m/s), and experience

interactions with the cavity at the after body. Such interactions can be described according

to two basic modes: tail-slap and planing. Planing usually occurs at speeds of the order

of 50 − 200 m/s, while tail-slap motion is observed at 300 − 900 m/s [10]. During tail-

slap conditions, the vehicle undergoes an oscillatory motion with periodic impacts with

the cavity, while during planing the vehicle is in contact with the internal surface of the
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cavity. The corresponding planing interaction provides lift contribute to counteract the

vehicle weight and may stabilize the motion. As planing is expected to be the main mode

of operation for torpedoes, our model specifically includes the planing forces by models

described in [57] and summarized in section 2.6.2. In the next section, an overview of tail-

slap models proposed in the literature is given. These models, whose validity is limited to

specific operational conditions, are not used in our investigations.

2.6.1 Tail-slap

Tail-slaps are induced by disturbances and perturbations on the vehicle which result in

steady or damped oscillatory motion. This oscillatory motion can be approximated as a

rotational motion about the nose, and it has been observed in high-speed bullets such as

AHSUM [4]. Two simplified models have been proposed in the past. A simple formula-

tion describes the impact force as directly proportional to the immersion depth through

a constant stiffness obtained through empirical observations [53, 47, 19]. A second model

is obtained from the two-dimensional momentum-based formulation described in [4, 13],

where a simplified expression for the added mass is provided. The general impact problem

is described through the momentum conservation principle, which imposes that the mo-

mentum of a body before impact must equal the sum of the decreased momentum of the

wetted body and the gained momentum of the added mass of fluid after impact [58]. Due

to the absence of a refined impact model for a supercavitating vehicle, a more accurate

model may be obtained using Hassan’s planing model presented in [57] and summarized in

the following section, which may be extended to include a term related to the impact mass

m∗ḧ defined in eq. (30) below.

2.6.2 Hassan’s model for planing forces

In [57], Hassan presents a theory that describes forces and moments experienced by a

cylindrical body steadily planing on flat and cylindrical free surfaces. The model is in good

agreement with experimental data and it is intended for application to supercavitating

vehicles. The formulation extends the theory based on Logvinovich’s work for inviscid

flow [54, 59] by adding the skin friction force induced by fluid viscosity. The model considers
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a planing slender body in steady forward motion on an undisturbed free surface under the

assumption of small ratio of immersion depth to body radius and large Froude numbers. A

brief review of [54, 59, 57] are presented in what follows. The specific vertical force on the

foil planing along the undisturbed horizontal free surface can be expressed as [54, 59]:

P = m∗ḧ + ḣṀ (30)

The impact mass (m∗) and apparent added mass (M) associated with the non-holonomic

dynamics of spray sheet are related as [59, 57]:

ṁ∗ = 2(1+k)
2k+1 Ṁ

where the parameter k is defined as Vs/(2ḣ sinβ), with Vs denoting the average spray sheet

velocity, while β is the angle between Vs and the horizontal surface as shown in fig. 12.

Hassan’s model considers the steady planing force associated with the apparent added mass

in eq. (30) assuming a constant immersion rate (ḧ = 0). Accordingly, the specific force on

the planar section reduces to:

P = ḣṀ = ḣ2 ∂M

∂h
(31)

The planing force on the immersed portion of the body can be obtained by integrating

the specific force P (eq. (31)) over the planar section of the wetted surface measured along

the longitudinal axis. The planing moment about the center of the cross section at the

trailing edge of the immersed body is readily obtained. For the integration, the effective

immersion rate (ḣe = V⊥/χ ) is introduced to account for the average velocity of the thin

fluid layer as it is transported along the planing surface [57]. Hence, the planing force and

moment are given by:

sBp = −
∫ lp

0

(
V⊥
χ

)2 ∂M

∂h
dx n3

mB
p =

∫ lp

0
x

(
V⊥
χ

)2 ∂M

∂h
dx n2 (32)

where V⊥ is the component of the transverse flow velocity perpendicular to the body lon-

gitudinal axis, and lp is the length of the wetted region along the body centerline. Also in

eq. (32), the unit vectors n1,n2, n3 define a local triad on the vehicle/cavity contact area.
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Figure 12: Configuration of planing vehicle and wetted cross section (all forces and mo-
ments are described for positive value).

The expression for the unit vectors in terms of the vehicle velocity and body reference is

described in Section 2.7.

The transport parameter χ is defined as [57]:

χ = 1− tanαp

2ρwc

∂m∗

∂x
(33)

where ρw is the density of the fluid (water), αp is the angle of attack between the longitudinal

axes of the body and the horizontal free surface, and c is the lateral width of spray sheet

shown in fig. 12. The drag and moment due to viscous effects can be written as:

sBpf = −1
2
ρwV 2 cos2 αpCdpSwn1

mB
pf = −1

2
ρwV 2 cos2 αpCdpSwmn2 (34)

where Cdp is drag coefficient over a flat surface and V is the flow velocity along the horizontal

free surface, which is equal to the component of the vehicle speed along the horizontal free
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surface. The wetted area Sw and wetted area including moment arm, Swm, are defined as:

Sw =
∫ lp

0
2rφ(x)dx

Swm =
∫ lp

0

∫ φ(x)

0
2r2 cos θdθdx =

∫ Lp

0
2r2 sinφ(x)dx (35)

where θ and φ(x) respectively are the circumferential and maximum angle along the wetted

planar surface section shown in fig. 12, while x and r denote respectively the longitudinal

coordinate and the cylindrical body radius. The drag coefficient for a fully turbulent flow

as assumed in Hassan’s model, can be obtained from two formulae [60]:

Cdp =
0.031

(Re)1/7
(over a smooth plate)

Cdp =
(

1.89 + 1.62 log
(

lp
ε

))−2.5

(over a fully rough plate) (36)

where Re is Reynolds number based on the wetted longitudinal length, which is given by

Re = V lp/νk, with νk denoting the kinematic viscosity and ε is the average roughness height

of the wetted surface.

Assuming a small wetted portion of a cylindrical afterbody planing on a cylindrical free

surface, the planing forces and moment are modified to read [57, 17]:

sBp = −πρwr2
cV

2 sinαp cosαp

(
r + hp

r + 2hp

)(
1−

(
∆

∆ + hp

)2
)

n3

mB
p = πρwr2

cV
2 cos2 αp

(
r + hp

r + 2hp

) (
h2

p

∆ + hp

)
n2

sBpf = −1
2
ρwV 2 cos2 αpCdp




4r ∆
tan(αp)

(
(1 + u2

c) tan−1(uc)− uc

)
+

r3

2∆ tan(αp)

(
(u2

s − 1
2) sin−1(us) + 1

2us

√
1− u2

s

)


 n1

mB
pf =

1
2
ρwV 2 cos2 αpCdp




8 ∆
hp

tan−1

(√
hp

∆

) (
r2 + 2r∆ + 2∆2

)
+

8
3(2∆ + r)

√
∆hp − 8

√
∆
hp

(
r2 + 2∆2

)− 16r
√

∆ ∆
hp


 lp n2

(37)

where ∆ = rc − r is the difference between the cavity radius rc and body radius r, uc =
√

hp/∆ and us = (2/r)
√

∆hp. Accordingly, the cavity vehicle interaction force, sI in

eq. (10) can be extended as: sI = sp +spf , while the relative moments can be added to the

moment equation (eq. (11)).
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2.7 Computation of Immersion Depths for Afterbody and Fins

This section presents the procedure for the evaluation of the immersion depths required

for the evaluation of planing forces and fin forces. The estimation is based on the expres-

sion of a time-dependent cavity whose centerline traces the cavitator trajectory based on

Logvinovich’s independence principle.

2.7.1 Planing immersion depth of the afterbody

The evaluation of the afterbody immersion into the fluid requires knowledge of the cavity

shape at the corresponding location. The cavity shape is determined by the velocity of

the cavitator at the time it occupied the current tail location, according to Logvinovich’s

independence principle. It is therefore required to establish the orientation of the cavity

relative to the current position of the vehicle. A schematic of the vehicle-cavity system

during a maneuver is shown in fig. 13. In the figure t and ti respectively denote the current

time and the instant of time corresponding to the previous integration step. Hence, the

current time can be expressed as ti + τ , where τ is the current time integration step. It is

assumed that the time discretization is sufficiently small for the cavity portion near the tail

to be approximated as a cylindrical surface with axis parallel to the cavity axis t.

At a generic time t, the positions of the tail and of the cavitator can be expressed in the

inertial frame as follows:

rT (t) = rG(t) + RBT
B→I(t)r

B
GT

rC(t) = rG(t) + RBT
B→I(t)r

B
GC (38)

where rT (t), and rC(t) denote the position vectors from the origin of the inertial frame

O. Also RBT
B→I , rBGC and rBGT are the rotation matrix and position vectors from the center

of gravity in body fixed frame. The axis of the cavity section formed by the cavitator at

instant tj is identified by the unit vector tj defined as:

tj =
rC(tj−1)− rC(tj)
|rC(tj−1)− rC(tj)| (39)

The evaluation of the unit vector tk defining the cavity axis at the contact region requires

knowledge of the time instants tk and tk−1 which denote the instants of time of cavity
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Figure 13: A schematic of vehicle-cavity system over the evolving time.

formation at the tail location. For this reason, it is convenient to define the projected

length of the distance from the past cavitator trajectory to the current tail location on the

cavity axis as follows:

d(tj) = (rT (t)− rC(tj)) · tj , j = 1, ..., i (40)

The projected length is positive (d(tj) > 0) when tj > tk and it is negative (d(tj) < 0) when

tj <= tk−1. The evaluation of the sign of d(tj) is used as a criterion to identify tk, whose

search is based on a standard bisection method. From tk and d(tk), one can estimate the

cavity radius and radial expansion rate as follows:

rc(t) = rc(∆t, σ)

ṙc(t) = ṙc(∆t, σ) (41)

where ∆t and σ are the passing time since the cavity section of contact region formed

and the cavitation number when the cavity section formed. They are obtained as a linear
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interpolation between the values at tk and tk−1:

σ = (1− η)σ(tk) + ησ(tk−1)

∆t = t− ((1− η)tk + ηtk−1)

η =
d(tk)

|rC(tk−1)− rC(tk)| , 0 ≤ η ≤ 1 (42)

Given the cavity axis at the tail location, one can obtain the unit vectors defining the

directions of planing moments and forces. The unit vector n2 can be obtained as:

n2 =
b1 × t
|b1 × t| (43)

By setting n1 = b1, unit vector n3 completes a right handed triad: n3 = n1 × n2. The

component of the tail velocity along the cavity surface V is given by:

v‖ = vT − (vT · n2)n2

v = |v‖ · t| (44)

where v‖ is the projected vector of the tail velocity vT on the n3-n1 plane, where vT (t) =

vG(t) + ω × rGT . The apparent angle of attack of planing can be defined as:

αp = cos−1(−t · b1)− ṙc

v
(45)

This apparent angle accounts for the effect of radial expansion rate ṙc. Finally, the planing

immersion depth hp can be expressed as:

b =
√
|rT (t)− rC(tk)|2 − d(tk)2

hp = r − rc − b

cos(αp)
(46)

where b is the distance between the center of afterbody cross section and the cavity center-

line.

2.7.2 Fins’ immersion depth

A similar procedure can be applied to calculate the fin immersion depth. A schematic of

the fin-cavity system during maneuvering is described in fig. 14. The past time tk and tk−1
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Figure 14: A schematic of fin-cavity system over the evolving time.

now define the cavity orientation at the fins’ location. The projected distance along the

cavity axis can now be expressed as:

d(tk) = (rF (t)− rC(tk)) · t (47)

where rF defines the position of the root of the fin. We denote as Q the point where the

fin intersects the cavity boundary. Its position is given by:

rQ(t) = rF (t) + ζf2 (48)

where ζ defines the non-submerged length of the fin and is a parameter that needs to be

determined, while f2 is the spanwise unit vector in the local fin frame F . The cavity

centerline corresponding to point Q is defined by the following position vector:

rR(t) = rC(tk) + ηt (49)

where the non-dimensional parameter η can be obtained by letting rRQ(t) · t = 0 where:

rRQ(t) = rF (t)− rC(tk) + ζf2 − ηt (50)
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which gives:

η = ζf2 · t + (rF (t)− rC(tk)) · t (51)

Substituting η into eq. (50) and imposing that rRQ(t) · rRQ(t) = r2
c , where rc is the

cavity radius, one obtains a quadratic scalar equation which can be solved for ζ. The fin

immersion can be then calculated as dFi = SFi − ζ where SFi is the fin’s span. The angle

of attack of the fin is related to the fin’s velocity at the hydrodynamic center H, which is

assumed to lie at the middle point of the immersed span as:

vFi = vG(t) + ω × rGH

rGH = rGF (t) +
1
2
(SFi + ζ)f2 (52)

2.8 Conclusions

This chapter describes the formulation of the dynamic equations for a supercavitating ve-

hicle. The model includes simplified hydrodynamic models which describe the cavity con-

figuration, and the interaction of the vehicle with the fluid through fins and nose. These

models are generally well accepted in the literature, but they are widely recognized as sim-

plified and highly approximated. However, they can be conveniently used as part of the

development of a dynamic flight simulator, as they are computationally inexpensive.

The developed model will be utilized in the next chapter for the analysis of trim con-

figurations. In addition, the trim problem will be used as part of an optimization process

which seeks for the optimal vehicle configuration to improve a selected performance index

during specified trim operating conditions. The formulation of the optimization problem

and the obtained results will be also discussed in the following chapter.
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Chapter III

ANALYSIS OF TRIM CONDITIONS

3.1 Overview

This chapter presents investigations of trim conditions and dynamic characteristics of a no-

tional supercavitating vehicle. The analysis is focused on level flight and level turning flight.

In level flight, two trimmed configurations are in particular considered: fins-supported, and

fins and planing-supported (fig. 15). In the first case, trim conditions are achieved when

propulsion counterbalances the combined drag of nose and fins, and when the lift gener-

ated by the fins and the nose balances gravity. In the second case, the planing force and

moment alleviate the lift requirements on fins and nose, and they induce additional drag.

In level turning flight, trim conditions are achieved by rolling the vehicle such that the

vertical component of the combined lift of nose and fins balances gravity, while the hori-

zontal component provides the centripetal force required for turning. Two cavity models,

Logvinovich’s and Munzer-Reichardt’s are considered in level flight and their effects on trim

are analyzed in detail. In addition, memory effects related to the cavity’s dynamic behavior

are also investigated.

3.2 Nominal Vehicle Configuration

The considered vehicle configuration reflects projected designs for supercavitating torpe-

does. A schematic of the vehicle is presented in fig. 16, while the vehicle nominal dimensions

are listed in Table 1. The cavitator is a circular disc, which can rotate about the body axis

b2 as shown in fig. 9. The cruciform fin arrangement shown in fig. 3 is considered, where

the fins oriented parallel to the axis of rotation of the cavitator are denoted as 2 and 4 and

are used as elevators, while fins 1 and 3 act as rudders and deflect the same amount.
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(a) Fins-supported configuration

(b) Fins and planing-supported configuration

Figure 15: Considered flight configurations.

Figure 16: Vehicle configuration.
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Table 1: Nominal vehicle dimensions.

Description notation value unit
Vehicle mass m 150 kg

Cavitator diameter dc 0.08 m
Vehicle length Lveh 4 m
Cone length Lcone 1.2 m

Aftertube length Laft 0.08 m
Vehicle radius Rveh 0.1 m
Nose radius Rnose 0.02 m

Aftertube radius Raft 0.05 m
Fin span length Lfin 0.2 m

Fin width cfin 0.1 m
Fin’s root location xfin 3.87 m

Vehicle mass center location xc.m. 2.31 m

3.3 General Formulation of The Trim Problem

The evaluation of the trim configuration for assigned vehicle motion can be formulated as

a non-linear algebraic problem, which can be expressed as:

φ(y,u) = 0, (53)

where y = {wB q4}T is a vector containing a subset of the vehicle states, while the control

vector u = {δT , δN , δF1 , δF2 , δF3 , δF4}T , includes the propulsion force δT , the cavitator angle

δN , and the fins deflections δFi (i = 1, · · · , 4).

The considered trim equations are explicitly expressed as:

φ(y, u) =




wB ×MBwB − fB(y,u)

vB −RB
B→Iv

I

ωB −RB
B→Iω

I

vB · b2




(54)

where the first set of equations corresponds to 6 Euler’s equations at trim, vI and ωI in the

second and third equation impose the desired velocity and angular velocity in the inertial

frame, and the last expression enforces the condition of the absence of “sideslip”. The

desired velocity and angular velocity define the assigned trim conditions. For example, the
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velocities are assigned as vI = [V 0 0]T and ωI = [0 0 0]T for level trim flight, while

vI = [V 0 0]T and ωI = [0 0 Ω]T define level turning flight conditions.

3.4 Constraints on Trim Conditions

For trim solutions to be found, the vehicle must operate within its flight envelope. The flight

envelope of a conventional aircraft is generally determined by various limitations such as

control surface stall, available thrust, and structural integrity, which all depend on operating

conditions and on vehicle configuration. A supercavitating vehicle is subject to additional

constraints related to the dimensions of the cavity in relations to the vehicle dimensions.

This section is devoted to the description and the formulation of constraints related to

cavity dimensions, while a complete discussion on the flight envelope will be presented from

a design perspective in the next chapter.

For assigned geometry and dimensions of the vehicle, the cavity constraints strongly

depend on cavitation number (σ), operating conditions (w), and vehicle attitude (Φ). The

constraints for level flight can be expressed as:

g = g
(
σ(V, h), w(V ), Φ(θ)

)
(55)

while for turning flight they are:

g = g
(
σ(V, Ω, h), w(V, Ω), Φ(φ, θ, ψ)

)
(56)

The cavitation number determines the cavity dimensions, which are directly related to

the speed of the vehicle and to the underwater depth h (eq. (15)). Particularly in turning

flight, the speed of the nose is determined by a specified velocity of forward motion V ,

defined by the angular velocity Ω about the vertical inertial axis i3. In addition, the angular

velocity Ω generates a curved cavity centerline which causes asymmetric fin immersions due

to the discrepancy between the center of the cavity cross section and of the vehicle cross

section at the fins’ location. This discrepancy can be enlarged or reduced by the vehicle

attitude, which defines the location of the vehicle cross section inside the cavity.

During fins-supported flight, the cavity should be small enough to allow the fins to be

immersed into the cavity and therefore to provide some lift. On the contrary, the cavity
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should be large enough to envelop the entire vehicle and avoid partial cavitation conditions,

whereby the behavior of the cavity becomes exceedingly complex and cannot be modeled

by the current formulation. Similarly for the fins and planing-supported configuration, the

vehicle needs a sufficient pitch angle in level flight and a suitable attitude in level turning

flight so that planing forces can supplement the lift provided by the fins. In this case the

requirement on the fin immersion can be relaxed.

3.4.1 Level flight

For fins-supported level flight, the constraints can be expressed as a set of inequalities

g <= 0, where:

g1 = Rveh − rc|ξ1
g2 = −dFi

g3 = −hp|ξ1 (57)

where ξ1 is a non-dimensional coordinate defining the location of the afterbody with respect

to the nose. The first constraint indicates that the cavity radius must exceed the vehicle

radius at the afterbody to avoid partial cavitation. The second constraint enforces the

requirement that fins penetrate the cavity boundary, which for level flight with zero pitch

angle also restricts the maximum radius of the cavity at the fins’ root. The third condition

imposes a constraint on the immersion depth which is positive in the case of planing (i.e.

when the afterbody is in contact with the cavity) and negative otherwise. In the case of

fins and planing-supported flight an additional condition imposes that the immersion depth

is small enough for the planing forces to be approximated by eq. (37). This additional

constraint can be approximated as:

g4 = hp|ξ1 − 0.3Rveh (58)
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3.4.2 Turning flight

In turning flight the constraints are defined as:

g1 = Rveh − rc|ξ1
g2 = −dFi

g3 = −hp|ξ1
g4 = n− ncav

g5 = n− nfin

g6 = hp|ξ1 − 0.3Rveh, if planing is allowed (59)

where the last two constraints, which are related to the stall of control surfaces, will be

described in detail in the next chapter.

3.5 Practical Implementation of Trim

The general trim formulation allows the evaluation of various operating conditions, which

include turns at an imposed angular velocity, and as a particular case, straight level flight.

As opposed to an aircraft, the condition of climb and dive cannot be found here as a viable

trim solution due to the variation of the cavitation number and related quantities (drag co-

efficients) with the underwater depth. The direct application of the general formulation for

trim however poses some difficulties related to the large number of equations and unknowns

and to the discontinuous nature of planing. Therefore, in the following sections, the trim

problem is reformulated in light of specific conditions to be investigated with the objective

of making its solution more robust.

The equations of motion (eq. (1)) are expressed with respect to the vehicle’s center of

mass C, and the vehicle kinematic equations (eq. (6)) are expressed in terms of the Euler

angles to read:

ḋ =




RI 0

0 H(Φ)


wB, (60)
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where

d = (uT
C ,ΦT )T (61)

Φ = [φ, θ, ψ]T (62)

H(Φ) =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ




(63)

with H(Φ) being based on the body rotation 3(ψ)-2(θ)-1(φ). Also, the velocity compo-

nents in body fixed frame are denoted as vB = [ u, v, w]T , ωB = [ p, q, r]T . The

vehicle is considered axisymmetric so that the inertia tensor of the vehicle reduces to

JC = [ Ix, 0, 0; 0, Iy, 0; 0, 0, Iz].

The trim solution is sought through the solution of the following optimization problem:

min
Φ∗,u∗

||f(Φ∗, u∗)||2,

s.t.: h(Φ,u) = 0 (64)

g(Φ, u) < 0,

where Φ∗ and u∗ are subsets of the Euler angles and of the control vectors. This notation

indicates that depending on the trim configuration to be evaluated, some of the Euler angles

and of the controls are set to specified values and therefore not considered as variables in

the optimization problem. Examples of particular choices for Φ∗ and u∗ based on specific

trim conditions are provided below. Also in eq. (64), g expresses the inequality constraints

defined in eq. (57), while f and h are respectively defined as:

f(Φ, u) = wB ×MBwB − fB(Φ, u)

h(Φ, u) =




vB −RB
B→IV i1

ωB −RB
B→IΩi3

vB · b2




(65)

Accordingly, the squared norm ||f ||2 of the residuals of Euler’s equations is the objective

function to be minimized under the set of flight path equality constraints which impose a

43



specified velocity of forward motion V , an angular velocity Ω about the vertical inertial

axis, and zero sideslip. Subsets of state (Φ∗) and controls (u∗) produce complete state and

control vectors through flight-path constraints (h) as well as the specification of trimmed

flight classes. These complete sets are used to evaluate cost function (||f ||2) and cavity-

dimension constraints (g). Based on the considered trim conditions under investigation,

the following set of unknowns and parameters are considered:

3.5.1 Level flight

All of the Euler angles are assigned and some of the controls are set to zero or constrained

as follows:

Φ = [0, θ0, 0]T

δF1 = δF3 = 0

δF2 = −δF4

where the vehicle pitch θ0 defines whether the vehicle is in contact with the cavity and

therefore whether planing forces are active on the body. Accordingly, the variables can be

expressed as:

Φ∗ = [ ]T

u∗ = [δT , δN , δF2 ]
T

When the solution of a trim problem is sought, the number of independent equations and

variables must be evaluated in order to avoid multiple solutions or infeasible solutions. The

conditions of steady state flight (ẇB = 0 in eq. (2)) enforce that the components of the

linear and angular velocity u, v, w, p, q, r are constants or zero. For level flight, eq. (60)

and eq. (65) yield zero angular velocity (p = q = r = 0). Further, the components of the

velocity in the body-fixed frame (u, v, w) are determined from the flight path constraints

h(Φ, u) in eq. (65). As a result, the two Euler angles θ, ψ and the control vector u are the

variables of the optimization-based trim problem. If all fins are symmetrically attached to

the vehicle and the cavitator angle is confined to rotate with respect to the body axis b2,
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then three components of forces and moments (sB · b2, mB
C · b1, mB

C · b3) in eq. (65) are

identically zero. Hence there are three independent equations in f(Φ∗,u∗) along with the

variables θ, ψ and u. In order to reduce the number of variables, we can further specify

θ = θo, ψ = 0, δF2 = −δF4 , δF1 = δF3 = 0. For fins-supported flight, the Euler angle θo

must be small enough for the vehicle afterbody not to contact the cavity interface. On the

contrary, for fins and planing-supported flight, θo must be large enough for planing to occur.

As a result of this process, there remain three variables (δT , δN , δF2) and three independent

equations which define a well-defined trim problem.

3.5.2 Turning flight

When the vehicle performs a turn, the cavity centerline has a curvature which causes the

center of the cavity cross section at the fin’s location and at the afterbody to deviate from

the center of the vehicle cross section. This discrepancy produces asymmetric hydrody-

namic forces and moments on the fins. Consequently, six equations in eq. (1) contribute

independently to trim, plus the zero sideslip condition expressed in eq. (65). The design

variables include the following subset of the states:

Φ∗ = [φ, θ, ψ]T

and a subset of the controls u. A square problem is obtained by specifying δF2 as any

arbitrary value δe and by letting δF2 = −δF4 . In here, δe is chosen as the trimmed control

value in level flight. Accordingly, the variables include the following subset of the controls:

u∗ = [δT , δN , δF1 , δF3 ]
T

This results in seven variables and seven independent equations. Alternatively, level turning

flight can be also performed allowing a small sideslip: the absence of sideslip vB · b2 can

be replaced by imposing the condition ψ = ψ0. In this case, the following parameters are

specified:

ψ = ψ0

δF1 = −δF3

δF2 = −δF4
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and the variables are:

Φ∗ = [φ, θ]T

u∗ = [δT , δN , δF1 , δF2 ]

3.5.3 Cavity memory effects

For trim solutions, one must specify the history of the vehicle motion according to the

considered trim configurations to determine the cavity shape at the current time. In general,

the vehicle motion in the past time can be determined by backward-integrating the vehicle

kinematic equations (eq. (60)). In level flight, the generalized velocity w and the Euler

angles Φ remain constant, while the position of the vehicle changes according to kinematic

equations (eq. (60)), which reduce to u̇C = vI for a straight trajectory. As a result, the

memory effects do not affect the cavity shape in level trim conditions. However, in level

turning flight, the cavity is generated along the cavitator trajectory and hence memory

effects are significant. For example, in steady (constant speed) turning flight, the history

of the vehicle motion is computed by backward-integrating the vehicle kinematic equations

(eq. (60)) and vB = RB
B→Iv

I and ωB = RB
B→Iω

I . The angular velocity in the inertial

frame ωI remains constant, while the rotation tensor RB
B→I changes according to the Euler

angles Φ and the linear velocity in the inertial frame vI is calculated by vI = ωI×uTC . At

a generic time t (the past time), the vector uTC denotes the position vector of the vehicle’s

center of mass from the center of turn (uTC(t) = uC(t)−uT (0)). At the initial time t = 0,

the position of the center of turn can be determined from the following relation:

uT (0) = uC(0)− uTC(0)

vI(0) = ωI × uTC(0) (66)

where the position vector of the center of turn uT is fixed in the inertial frame independent

of time. For example, if the vehicle has vI = [ v1, 0, 0]T and ωI = [ 0, 0, ω3]T at the

initial time, the center of turn is:

uT (0) = uC(0)− [ 0, − v1

ω3
, 0]T (67)
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3.6 Results for Level Flight

This section presents parametric studies and sample dynamic simulations for level flight.

Calculations consider the two cavity models described in the previous chapter and the trim

configurations shown in fig. 15. Sensitivity to different cavity formulations and influence of

pitch angle θ0 and velocity of forward motion V are investigated.

3.6.1 Influence of pitch angle and velocity of forward motion

Figure 17 shows the variation of the trim controls with respect to the specified pitch angle

θ0. The plots directly compare the results obtained using the two cavity models, and

show a clear transition between fins-supported and fins and planing-supported flight. For

convenience, the pitch angles corresponding to the onset of planing are indicated by vertical

lines in figs. 17.(a)-(c). The results show how Logvinovich model predicts a larger cavity,

which corresponds to a larger value of the pitch angle required for planing (θ0 = 1.331◦ for

Logvinovich, θ0 = 0.892◦ according to Munzer-Reichardt). It is interesting to observe that

all controls appear symmetric with respect to an angle θ0 < 0, which is due to the fact that

the trim angles for cavitator and fins are non-zeros for θ0 = 0. As the pitch angle increases,

the thrust force varies parabolically in the fins-supported region and increases rapidly in

the fins and planing-supported region. Also noteworthy is the fact that the thrust obtained

with Logvinovich’s cavity model is lower than the one found using Munzer-Reichardt’s. A

larger cavity in fact reduces the fins’ immersion depth, and the corresponding drag. The

reduction in immersion depth is compensated by a higher fins angle of attack as shown in

fig. 18.

Fig. 19 shows the variation of the trim controls with respect to the vehicle forward ve-

locity V . A main feature in the variation of the controls is that the elevator angle increases

with the velocity V as a result of the decreased immersion depth, while the cavitator angle

decreases in order to sustain the same lift which otherwise increases with the velocity. Con-

sequently higher thrust is required to counterbalance more drag induced by the decreased

cavitator angle as well as increased velocity. The discontinuous slope in the elevator angle
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Figure 17: Variation of controls in terms of pitch angle (cavitation number σ = 0.0294).
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Figure 18: Variation of elevator angle of attack with respect to pitch angle (cavitation
number σ = 0.0294).

variation is due to the bilinear behavior of the hydrodynamic fin coefficients. At low veloc-

ity, small control angles are required for trim and two separate cavities are formed on the

fin’s surface. In contrast, at high velocity, the large control angles required to compensate

for the reduced immersion depth cause the two cavities to merge into a single supercavity

(see fig. 11 (c)). This behavior is confirmed by the different velocity associated with the

discontinuity-onset predicted by Logvinovich’s and Munzer-Reichardt’s models. A larger

cavity in fact reaches earlier the conditions where the fin control angles are large enough to

generate the supercavity.

Planing leads to a higher increasing rate for the thrust for both cavity models and

requires higher cavitator angles as demonstrated in fig. 19 (b). For the vehicle to be planing,

a sufficient positive pitch angle must in fact be provided, which reduces the angle of attack

of the cavitator. As a result, the cavitator requires more deflection in order to maintain the

same lift. In this case we consider a small planing angle corresponding to a planing depth

hp|ξ1 = 0.01Rveh. Fig. 19 (c) shows that the fin control angles are negative for both cavity

models: this confirms that planing alleviates the fin’s lift requirements. The discrepancy

between the two cavity models decreases as velocity increases, as a result of the reduction

of the cavitation number (see fig.s 6 and 7). Accordingly, the fin immersion depth (fig. 20)

and the cavitator angle approach the same values at high velocity. It is important that
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Figure 19: Variation of controls in terms of forward velocity V (the planing depth is fixed
hp|ξ1 = 0.01Rveh when the vehicle is planing).
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Figure 20: Fin immersion depth versus speed of forward motion.

the patterns of variation in thrust and fin immersion depth ratio show a great similarity.

This implies that the difference of fin immersion depth is an essential reason for the trim

conditions to vary with the trim configurations as well as the cavity models.

3.6.2 Dynamic simulations

Sample simulation results are provided for the two trim configurations considered. The

vehicle’s equations of motion are integrated in time to predict the dynamic behavior of

the vehicle for assigned controls’ time histories. Specifying constant controls at the trim

values allows evaluating the validity of the estimated trim configurations, and their stability

with respect to numerical perturbations associated with the numerical integration process.

Perturbations of the trim configurations are also considered to highlight potential vehicle

instabilities. All the simulations consider Logvinovich model, and in the case of perturbation

on the trim controls a direct comparison is presented for results obtained with and without

the estimation of cavity memory effects described in Chapter 2.

3.6.2.1 Fins-supported level flight

The operating condition and trim controls for fins-supported level flight are presented in

Table 2. When the controls are maintained constant at the calculated trim values, the

simulations show that the vehicle maintains the required straight leveled trajectory (see

fig. 21), which indicates both the validity of the solution and the stability of the considered
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Table 2: Fins-supported straight level trimmed flight.

variable value unit

φ 0 degree
θ 0 degree
ψ 0 degree
V 78 m/s
Ω 0 rad/s
δT 18.3176e+3 N
δN -2.5673 degree
δF2 0.1576 degree
δF4 -0.1576 degree
δF1 0 degree

operating condition with respect to numerical inaccuracies.

Dynamic simulations are also conducted in the presence of perturbations on the ele-

vator’s control, whose considered variation is depicted in fig. 22. The angle is increased

starting at time 0.1 sec to reach a peak value of δF2 = 3.3◦ at 0.15 sec. It finally returns

to the trim value after 0.2 sec. The perturbation is quite large and sufficient to induce

planing motion and to test the vehicle’s stability in severe conditions. Results are obtained

for cavity models with and without memory effects so that their influence can be directly

observed. Figure 23 presents selected vehicle states in response to the considered perturba-

tion and shows the strong influence of memory effects on the behavior of the vehicle. Both

simulations show that the perturbations have a de-stabilizing effect on the motion of the

vehicle. However, the effect is most dramatic if memory effects are neglected. The corre-

sponding forces on fins and afterbody are shown in fig.s 24 and 25: the oscillatory behavior

of the vertical force components suggests the presence of interactions with the cavity and

planing. Neglecting memory effects in the formulation causes more severe interactions and

oscillations.
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Figure 21: Trajectory of vehicle during fins-supported trimmed flight.
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Figure 22: Time history of perturbed control angle.
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Figure 23: Simulation results during perturbed fins-supported trimmed flight considering
cavity with and without memory effects.
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Figure 24: Forces without memory effects.
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Figure 25: Forces with memory effects.
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3.6.2.2 Fins and planing-supported level flight

Results for fins and planing-supported straight level flight are presented in Table 3. The

simulations consider a small planing depth hp|ξ1/Rveh = 0.05, a total simulation time of 3

sec, and include memory effects.

Table 3: Fins and planing-supported straight level trim flight.

variable value unit

φ 0 degree
θ 0.4963 degree
ψ 0 degree
V 78 m/s
Ω 0 rad/s
δT 18.2920e+3 N
δN -3.0267 degree
δF2 -2.2046 degree
δF4 2.2046 degree
δF1 0 degree

During the simulation time, initial deviations from the desired level flight trajectory can

be observed as shown in fig. 26. Small oscillations can also be noticed in the angular and

linear velocity components shown in fig. 27.
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Figure 26: Trajectory in fins and planing-supported flight: vehicle configuration at 1.5,
1.8, 2.2, 2.5 sec.
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Figure 27: Linear and angular velocities of the vehicle during fins and planing-supported
trimmed flight.

Planing requires a positive pitching angle for the afterbody to be immersed into the

cavity boundary. In spite of the small pitch angle (planing depth), the planing force on the

transom is relatively large and can be responsible for the diverging oscillatory motion of the

vehicle particularly in the longitudinal mode as shown in fig. 27. Although the values are

extremely small within the simulation time, this shows the potential for instability of this

operating condition.

The behavior of the vehicle is again investigated in the presence of perturbations of the

controls. The same time history shown in fig. 22 is considered for the elevator angle. In

this case, however, the perturbation amplitude is much lower, equal to 1% of the trimmed

value. Representative simulation results for some of the states are presented in fig. 28, while

fig. 29 shows the corresponding time histories of the forces on fins and afterbody.

In spite of the small perturbation on the elevator angle, the planing force on the tran-

som causes the oscillatory motion of the vehicle particularly in the longitudinal mode. The

trajectory as represented by the z inertial coordinate (fig. 28 (a)) shows that the vehicle

deviates from the straight flight path and climbs while undergoing an oscillatory motion.

It is interesting that the period (about 0.0400 sec) of the oscillations is slightly lower than
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Figure 28: Simulation results during perturbed fins and planing-supported trimmed flight.
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Figure 29: Forces on fins and afterbody resulting from control perturbation.
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Figure 30: Detail of forces on the afterbody during perturbed fins and planing-supported
trimmed flight.

the characteristic time related to cavity memory effects (Lveh/V = 0.0470 sec). The hy-

drodynamic forces’ oscillatory variations reflect the oscillatory motion of the vehicle. The

transom periodically impacts the lower internal surface of the cavity which correspond to

force components along the z direction always below zero as shown in fig. 29 (b). This

can be clearly noticed from the detail of the force variation shown in fig. 30. This oscilla-

tion exists and shows the same patterns even if larger perturbations were considered. The

observed oscillatory motion can be interpreted as similar to the porpoising motion of a

high-speed marine craft, which consists in self-excited oscillations caused by the coupling of

the restoring coefficients between pitch and heave [61]. These oscillations can cause severe

structural damage of the control surfaces and can degrade their control effectiveness (see

fig. 29 (a)).

3.7 Results for Level Turning Flight

Trim in level turning flight is investigated in terms of the angular velocity Ω about the

vertical inertial axis i3. Solutions are obtained using the two cavity models. Investigation

of the influence of memory effects is then carried out using Logvinovich’s model only, so
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that the influence of cavity size and radial expansion rate are removed from the comparison.

3.7.1 Influence of angular velocity

Fig. 31 shows the variation of the trimmed controls with respect to the angular velocity

Ω for the two cavity models. The results are obtained for δF2 = −δF4 = 0.180◦. An

interesting and counterintuitive behavior can be observed for the required thrusts which

gradually decreases as the angular velocity increases. This surprising tendency is related

to the drag coefficient of the cavitator. When a conventional vehicle performs a turn, it

requires larger lift than in straight level flight to produce sufficient centripetal force. As a

result, the vehicle experiences a larger drag force. In contrast, the hydrodynamic drag force

of the cavitator decreases as its angle of attack increases (see eq. (25)). The cavitator angle

(magnitude) hence increases in order to produce sufficient lift. Particularly, in this case, the

d.o.f. of the cavitator is one and the lift by the cavitator plays an essential role. As observed

in level flight, the thrust force predicted by Logvinovich’s cavity model is smaller than the

one corresponding to Munzer-Reichardt’s, while the cavitator angles are approximately the

same. Significant variations can be observed between the control angles of two rudders (δF1 ,

δF3) which are shown in fig. 31 (c). The Euler angles corresponding to trim at increasing

Ω are shown in fig. 32, where the angles are normalized by their maximum value predicted

by Logvinovich’s cavity model with memory effects, i.e. φ = 84.2736◦, θ = 0.1112◦, and

ψ = 1.1091◦. The roll angle increases in order to convert the lift of the cavitator into

centripetal force. Pitch and yaw angles are relatively small and the yaw-to-pitch ratio is of

the order of 10 at high angular velocity. These angles vary with the roll angle and interact

with each other in order to maintain zero sideslip during level turning flight. Such small

angular values allow the roll angle in a bank-turn to be approximated as φ ≈ tan−1(V Ω
g ),

with g denoting gravity. It is interesting that when the angular velocity Ω is about 1 rad/s,

the discontinuous slopes for both attitude angles induce the slope discontinuity on two

rudder fin angles and on the thrust force in Logvinovich’s model. In contrast, all trimmed

controls and attitude in Munzer-Reichardt’s model have continuous slopes. This may be

related to the fact that the discontinuity-onset angular velocity in Logvinovich’s model
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Figure 31: Variation of controls in terms of angular velocity of turning flight Ω.
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Figure 32: Variation of normalized Euler angles in terms of angular velocity of turning
flight Ω.

is lower than Munzer-Reichardt’s model because the latter requires smaller fin angles of

attack.

3.7.2 Cavity memory effects

The influence of memory effects on the trim solutions is illustrated in fig.s 33 and 34.

Figure 33 compares the variation of thrust and cavitator control angle versus the velocity

Ω, and indicates that these two control values are not strongly affected by the addition of

memory effects. Strong influence can instead be observed on the fins’ angles and on the

Euler angles at high roll angles, as demonstrated by fig. 34. Memory effects induce larger

deflection of the rudder fins over the intermediate range of the roll angle. It is interesting in

particular that the deflection of the down rudder fin (δF3) without memory effects becomes

very large at high roll angle. Memory effects considerably affect attitude and fin immersion

at high angular velocity (i.e. at high roll angle). Figure 35 summarizes the variation of

the fin immersion depth ratio in terms of the roll angle as predicted by models with and

without memory effects. The schematic plot confirms that strong differences occur at high

roll angles, while for small values of roll differences appear negligible.

3.7.3 Simulations in level turning flight

A sample trim condition for fins-supported level turning flight is presented in Table 4, which

corresponds to a turn characterized by a large roll angle. Fig. 36 shows the trajectory
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Figure 33: Variation of controls with and without memory effects.
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Figure 34: Pitch and yaw versus roll angle with and without memory effects.

Figure 35: Schematic of variation of fin immersion depth versus roll with (solid lines) and
without (dotted lines) memory effects.
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Table 4: Fins-supported level turning flight.

variable value unit

φ 71.5055 degree
θ 0.0705 degree
ψ 0.2107 degree
V 85 m/s
Ω 0.3461 (n = 3) rad/s
δT 18.5240e+3 N
δN -6.9785 degree
δF1 0.09819 degree
δF2 0.1789 degree
δF3 -0.1274 degree
δF4 -0.1789 degree

resulting from the forward simulation with the considered trim controls. The behavior of

the vehicle in the presence of a perturbation of the controls is again analyzed by imposing

the same variation previously discussed on the elevator fins. Figure 37 compares trajectories

and Euler angles variation obtained with and without perturbations, and by considering or

neglecting memory effects. Again, the presence of the memory effects introduces a favorable

stabilizing effect, which mitigates the onset of unstable behavior and reduces the tendency

of the vehicle to deviate from the desired trajectory. For completeness, the hydrodynamic

forces and moments on fins and afterbody obtained during perturbed simulations with

memory effects are shown in fig. 38. The perturbation, which can be clearly observed from

the time histories of forces and moments on the fins, causes a single impact of the vehicle

with the cavity at about 0.19 sec.
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Figure 36: Trajectory of vehicle during fins-supported level turning flight.
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Figure 37: The comparison of trajectory of vehicle during fins-supported steady and
perturbed level turning flight.
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Figure 38: The hydrodynamic forces and moments applied to the fins and afterbody of
the vehicle during perturbed fins-supported trimmed turning flight.
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3.8 Conclusions

The flight mechanics model developed in the previous chapter is here applied to investigate

trim conditions and dynamic characteristics for supercavitating vehicles. A general formu-

lation for the trim problem is first introduced, followed by a discussion of the practical

implementation used to achieve a robust trim solution. Influence of operating conditions on

trim are presented for level flight and level turning flight. In addition, the influence of two

cavity models as well as memory effects are also investigated to complete the discussion.

In level flight, trim controls vary with the vehicle forward velocity as a result of the

decreasing fin immersion depth, while pitch angle affects the trim controls by changing the

angles of attack of the control surfaces. Particularly, a sufficient pitch angle causes a dra-

matic variation of trim controls by causing the transition between fins-supported and fins

and planing-supported flight. Dynamic simulations show that fins-supported flight appears

mostly stable, while fins and planing-supported flight is characterized by an inherent insta-

bility, i.e. diverging oscillatory motion. In level turning flight, the variation of trim controls

are presented for varying angular velocity, with and without memory effects. The results

show the counterintuitive fact that a higher angular velocity requires a lower thrust for

turning flight. In both trimmed flights, the cavity itself also influences trim conditions due

to different cavity size and radial expansion rate according to the cavity models. Further-

more, the cavity memory effects significantly affect dynamic characteristics of the vehicle

and introduce a favorable stabilizing effect.

In the next chapter, the trim configurations will be considered as part of an optimization

problem which seeks for the optimal vehicle configuration which maximizes the trimmed

performance.
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Chapter IV

VEHICLE CONFIGURATIONAL OPTIMIZATION FOR

PERFORMANCE IN TRIM FLIGHT

4.1 Overview

This chapter presents preliminary optimization studies aimed at maximizing the perfor-

mance of the vehicle during trim flight. Optimal vehicle configurations are sought to max-

imize range in level trim flight, both in fins-supported and in fins and planing-supported

configurations, and to maximize turn rate in level turning flight. The performance index

considered for level flight is the traveling range of the vehicle, which defines a compromise

between velocity of forward motion, payload mass and thrust. In contrast, the performance

index for turning flight is the maximum turn rate, which is determined as a compromise

between velocity of forward motion and load factor over the entire flight envelope. The

formulation of a proper performance index in turning flight is justified through the analysis

of the flight envelope for a supercavitating vehicle. The design conflicts between vehicle con-

figurations maximizing the two performance indexes are identified and a final optimization

is conducted by combining the two performance indexes.

4.2 Formulation of The Optimization Problem

The evaluation of the optimal vehicle configuration during flight can be formulated as an

optimization problem which maximizes a relevant objective function by finding optimal

values of configurational design variables. Mathematically, this optimization problem can

be formulated as:

max
d

C(d, y,u),

s.t.: c(d, y, u) ≤ 0. (68)

where C(d, y, u) is the design-relevant objective function, which is subjected to a set of

constraints c(d, y, u) ≤ 0, and is a function of the configurational design variables d as
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well as of states and controls y and u. The nominal configuration described in Chapter 3

(see fig. 16 and Table 1) is used as a starting point for the design, and the vector of the

considered configuration design variable is defined as:

d = { dc Lfin xfin Rveh Lveh Lcone Laft }T (69)

4.3 Optimization for Straight Level Flight

4.3.1 Range as a performance index

The traveling range during trimmed flight is the objective function to be maximized. The

range can be found in several ways according to the considered flight conditions. In this

study, the Breguet range equation, which is based on flight at constant velocity and lift-

to-drag ratio, is applied [2, 62]. If the vehicle is operating in steady level flight, then the

lift-to-drag ratio is FL/FD = W/δT from force balance considerations. Assuming constant

velocity, the range can be simply expressed as:

D =
∫ tf

ti

V dt = V (tf − ti) (70)

where subscripts i and f respectively denote the initial and final time, and V is the trimmed

velocity of the vehicle. The total flight time (tf − ti) can be expressed in terms of vehicle

weights at the initial and final stage Wi and Wf , specific impulse Isp, and lift-to-drag ratio

FL/FD as:

tf − ti = Isp
FL

FD
ln

(
Wi

Wf

)
(71)

Eq. (71) is readily obtained by integrating the following relation:

Ẇ = − W

(FL/FD)Isp
(72)

which is found through the rate of change of the vehicle weight Ẇ = −ṁpg, the momentum

equation of the thrust force δT = ṁpVeq, and the expression for the specific impulse Isp =

Veq

g , where it is assumed that the equivalent exhaust velocity Veq remains constant over

time. The equivalent exhaust velocity Veq accounts for the pressure difference in the engine

as well as the exit velocity of the jet [63, 64]. The specific impulse Isp is an important
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parameter measuring the efficiency of a propulsion system, which is defined as the total

impulse exerted by the propellant divided by the total weight of expelled propellant during

engine operation [63, 64]. Equations (70) and (71) lead to the following range equation:

D = V
FL

FD
Isp ln

(
Wi

Wf

)
(73)

For simplicity, it is assumed that the mass of propellants and the weight of warhead

(payload) are proportional to the total vehicle mass. Accordingly, the range in eq. (73) is

an objective function which combines a number of configuration and performance related

parameters through the following expression:

D = a0
V m

δT
, (74)

where

a0 = Ispg ln
(

1
1− rmp

)

and where thrust δT , vehicle mass m, and propellent-to-vehicle weight ratio rmp indicate

the values at the initial time. The constant a0 is an engine-specific, structure and material-

related value, which is not considered to vary in terms of the set of design variables. Also,

the range does not include the distances traveled before attaining trimmed velocity and

after burnout. In summary, maximizing the range corresponds to minimizing the thrust

force while maximizing speed and warhead weight. In the optimization problem described

by eq. (68), the objective function is therefore C = D(d, y, u) as defined by eq. (74).

4.3.2 Constraints

The constraints in eq. (68) are a combination of equality and inequality constraints, and

are based on geometric considerations and on limitations imposed by the dimensions of the

vehicle in relation to the dimensions of the cavity. The equality constraints are defined by

the considered trim condition, so that the optimization constraints can be expressed as:

c(d,y, u) =




φ(d,y,u)

gt(d, y, u)

gd(d)




(75)
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Figure 39: Effect of individual design variables on thrust and range for fins-supported
level flight.

where φ(d, y,u) defines the condition for trim as expressed by eq. (53) such that

φ(d, y, u) = 0

gt are cavity constraints defined in Chapter 3 (see eq.s (55), (56)), and gd are design-related

constraints defining upper and lower bounds imposed to vehicle dimensions and mass:

gt(d, y, u) ≤ 0

gd(d) ≤ 0

4.3.3 Analysis of parameters sensitivity

The interaction between cavity dimensions, control surfaces geometry, and vehicle operating

conditions is complex and highly nonlinear. Figure 39 shows the effects of individual design

variables and operating condition (vehicle’s speed V ) on range and thrust for fins-supported

level flight. The plot shows how the objective function changes in terms of the variation of

each design variables from its lower to upper bound. The results indicate that fin length,

vehicle radius and speed exert a dominant effect on the thrust force, while design variables

directly related to the vehicle weight have a more important effect on the range together with
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(a) Thrust force

(b) Range

Figure 40: Variation of thrust force and range with respect to the vehicle design variables
for fins-supported level flight.
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vehicle’s speed and cavitator diameter, which define the cavity dimension. Figures 40 (a)

and (b) show for example the variation of the normalized thrust force and the normalized

range in terms of cavitator diameter and vehicle velocity for fins-supported flight (both

are respectively normalized by nominal values in Tables 6). In the figure, maximum and

minimum values for range and thrust can be clearly identified for the proper combination

of the diameter dc and speed V .

4.3.4 Results

4.3.4.1 Preliminary optimization with reduced set of design variables

Based on the results presented in the previous section, a preliminary optimization with a

reduced number of design variables (V and dc) is carried out for the case of fins-supported

flight. Results are presented in Tables 5 and 6, which respectively list optimal design

variables, corresponding trim controls, and performance of the optimal configuration in

comparison with that of the nominal vehicle design. The corresponding optimal values

coincide with the maximum range shown in fig. 40 (b).

Table 5: Reduced optimal design configuration for fins-supported level flight.

Dimension value lower bound upper bound unit
dc 0.0404 0.02 0.10 m
V 172.0734 76 200 m/s

controls value unit
δT 25.8036e+3 N
δN -2.1179 degree
δF2 0.0765 degree
δF4 -0.0765 degree
δF1 0 degree

Table 6: Performance of reduced optimal vehicle in fins-supported level flight.

Nominal Optimal unit [%]
D 638.7 999.9 m +56.5 %
V 78 172.0734 m/s +120.6 %
δT 18.3176e+3 25.8036e+3 N +40.9 %
m 150 149.9452 kg -0.04 %
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4.3.4.2 Optimization with full set of design variables

The optimization is then performed by considering the full set of design variables. The re-

sults obtained for fins-supported, straight level flight are presented in Tables 7 and 8. The

computations are based on the application of Logvinovich’s cavity model, although calcula-

tions have also been performed with Munzer-Reichardt model, whose results are omitted for

the sake of brevity. Only the optimal design configurations obtained using the two models

are presented to show the strong effect of cavity model on the final solution. Table 7 shows

the optimal values for the design variables in comparison with lower and upper bounds

considered in the optimization. It is remarkable that the results of the optimization not

only include configurational design parameters, but also indications regarding the operating

conditions of the vehicle, in this case identified by the velocity of forward motion V . In

addition, it can be observed how the mass coincides with the imposed upper bound, which

may indicates the need for additional investigations, where such bound is relaxed. Table 8

summarizes the performance of the optimized vehicle with respect to the nominal vehicle

described in section 3.2. The optimization produces a remarkable improvement in perfor-

mance, which translates into a 44.1% increase in velocity, a 37.5% reduction in thrust and a

combined 145.9% increase in range. The comparison between optimal and nominal vehicle

is shown in fig. 41 (a).

The results obtained for the case of fins and planing-supported level flight are presented

in Tables 9 and 10, while the optimized vehicle configuration is presented in Fig. 41 (b). Sim-

ilar improvements in performance are achieved in this configuration. Finally, fig. 42 shows

the optimized configurations based on Munzer-Reichardt cavity model, which confirms the

strong effect of the cavity model on the design process, and underlines the importance of

correctly capturing the vehicle/cavity behavior through sufficiently accurate models.
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Table 7: Optimal design configuration for fins-supported level flight.

Dimension value lower bound upper bound unit
dc 0.0400 0.04 0.11 m

Lfin 0.1500 0.15 0.25 m
xfin 2.2975 Lcone Lcone + Lfuse m
Rveh 0.0957 0.05 0.15 m
Lveh 4.0823 3.5 4.5 m
Lcone 0.4082 0.1 Lveh 0.9 Lveh m
Laft 0.0798 0.01 Lveh 0.1 Lveh m
m 160.0000 140 160 kg
V 112.4102 76 120 m/s

controls value unit
δT 11.4524e+3 N
δN -4.5000 degree
δF2 0.2473 degree
δF4 -0.2473 degree
δF1 0 degree

Table 8: Performance of optimal vehicle in fins-supported level flight.

Nominal Optimal unit [%]
D 638.7 1570.5 m +145.9 %
V 78 112.4102 m/s +44.1 %
δT 18.3176e+3 11.4524e+3 N -37.5 %
m 150 160.0 kg +6.7 %

Table 9: Optimal design configuration for fins and planing-supported level flight.

Dimension value lower bound upper bound unit
dc 0.0684 0.04 0.11 m

Lfin 0.1500 0.15 0.25 m
xfin 3.0857 Lcone Lcone + Lfuse m
Rveh 0.1053 0.05 0.15 m
Lveh 3.5156 3.5 4.5 m
Lcone 0.4258 0.1 Lveh 0.9 Lveh m
Laft 0.1930 0.01 Lveh 0.1 Lveh m
m 160.0 140 160 kg
V 78.7096 76 120 m/s

controls value unit
δT 1.240e+4 N
δN -4.5000 degree
δF2 0.2473 degree
δF4 -0.2473 degree
δF1 0 degree
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Table 10: Performance of optimal vehicle in fins and planing-supported level flight.

Nominal Optimal unit [%]
D 625 1021 m +63 %
V 78 79 m/s +1.2 %
δT 1.871e+4 1.240e+4 N -34 %
m 150 160 kg +6.7 %

(a) Fins-supported flight

(b) Fins and planing-supported flight

Figure 41: Optimal configurations of supercavitating vehicles based on the Logvinovich’s
cavity model.

(a) Fins-supported flight

(b) Fins and planing-supported flight

Figure 42: Optimal configurations of supercavitating vehicles based on the Munzer-
Reichardt’s cavity model.
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4.4 Optimization for Level Turning Flight

4.4.1 Turn rate and load factor

In supercavitating vehicles, the cavitator provides a significant contribution to the total lift.

For a vehicle with a one d.o.f. cavitator, as assumed here, the centripetal force required

for turning can only be achieved through a proper roll angle. The turning maneuvers

achievable by the considered vehicle configuration therefore belong to the family of banked

and coordinated turns. In a coordinated turn, the turning performance can be quantified

in terms of vehicle velocity V and load factor n, which are related by the linear and angular

momentum balance equation (eq. (1)). The load factor n is defined as the total lift, provided

by cavitator and fins, divided by the vehicle weight. For level coordinated turning flight

with non-zero Euler angles, the turn rate Ω (angular velocity about the vertical inertial axis

i3) and turn radius R can be expressed with respect to velocity and load factor as follows:

Ω =
g

V


cos θ sin θ sinψ +

√
(n2 − 1)

(
1− cos2 θ sin2 ψ

)
+ sin2 θ

sin2 θ + cos2 θ cos2 ψ




R =
V 2

g


 sin2 θ + cos2 θ cos2 ψ

cos θ sin θ sinψ +
√

(n2 − 1)
(
1− cos2 θ sin2 ψ

)
+ sin2 θ


 (76)

which yields the following relationship between load factor n and roll angle φ:

n =
1

cosφ

(
cos θ

1 + tanφ sin θ tanψ

)

φ = sin−1




cosψ
(
cos θ sin θ sinψ +

√
(n2 − 1)

(
1− cos2 θ sin2 ψ

)
+ sin2 θ

)

n(sin2 θ + cos2 θ cos2 ψ)




= tan−1

(
V Ω
g

cosψ/

(
cos θ − V Ω

g
sin θ sinψ

))
(77)

If one considers θ = ψ = 0, then, eq. (76) and (77) are reduced to familiar forms for a

simple bank turn:

Ω =
g
√

n2 − 1
V

R =
V 2

g
√

n2 − 1

φ = cos−1

(
1
n

)
(78)
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Figure 43: Variation of turn rate and radius in terms of speed and load factor.

A finite amount of pitch and yaw are however required for the coordinated turn of

a supercavitating vehicle because the asymmetric fin immersion produces asymmetric fin

forces and moments. Fig. 43 (a)-(b) show how the turn rate and turn radius vary with

vehicle velocity and load factor. Also, fig. 44 illustrates the discrepancy between roll angles

evaluated according to eq. (78) for a simple bank turn, and eq. (77) for a coordinated

turn with pitch and yaw. The small difference between the two values shows that in the

considered configuration, the turns can be approximated as simple bank turns, and therefore

that, based on eq. (78), maximizing the turn rate Ω corresponds to maximizing the load

factor while minimizing the vehicle velocity.
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Figure 44: Difference between roll angles predicted from eq. (77) and eq. (78) at V = 85
m/s, n = 5).

4.4.2 Flight envelope limitations

In conventional aircraft, the load factor is restricted by available engine thrust and structural

design limitations, while the minimum velocity is generally limited by aerodynamic stall.

Figure 45 shows for reference purposes the flight envelope of a conventional missile (a

rocket-propelled medium-range missile based on the AIM-7 Sparrow [2]).

In supercavitating vehicles, the turn performance is dominated by constraints on hy-

drodynamic forces and moments as well as on supercavity dimensions, which cause their

flight envelope to be significantly different from that of conventional vehicles. The main

contributors to the flight envelope of a supercavitating vehicle are discussed in what follows.

4.4.2.1 Thrust

When a conventional vehicle operates in turning flight, it requires larger lift than in level

flight in order to produce sufficient centripetal force. As a result, the vehicle is also subject

to a larger drag. Therefore maximum available thrust is a limiting factor for turning flight.

For a supercavitating vehicle, maximum available thrust imposes limits on the velocity in

straight level flight as a result of the increase of the required thrust with the vehicle velocity.

In contrast, in level turning flight, thrust decreases with the load factor as shown in fig. 46,

which is due to reduction in cavitator drag as its angle of attack increases (see eq. (25)). This

behavior is clearly demonstrated in fig. 47, which compares the hydrodynamic coefficients
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Figure 45: V-n diagram for a rocket-propelled medium-range missile based on the AIM-7
Sparrow [2].

of the nose-cavity interactions with conventional aerodynamic coefficients.
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Figure 46: The variation of thrust with respect to the velocity and load factor for level
turning flight of the nominal supercavitating vehicle (thrust normalized by nominal value
18.3176 kN).

4.4.2.2 Structural integrity

Structural considerations also impose limitations on the load factor. The maximum bending

moment on the vehicle body is limited by considering the same maximum load factor used

in missiles nstr = 30. In addition, the bending moment at the fins’ roots varies in terms of

immersion depth, vehicle velocity and turn rate. Its variation in terms of load factor and
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and load factor (moment is normalized by the vehicle weight).

vehicle velocity is shown in fig. 48. The contours show that the bending moment reaches

its maximum values for a narrow velocity range, approximately centered at 77 m/s.

4.4.2.3 Hydrodynamics

Finally, the turn performance of a supercavitating vehicle is limited by supercavity-related

constraints. First, minimum and maximum velocities are defined by the hydrodynamic stall

of the cavitator and fins respectively. In addition, the minimum velocity of the vehicle is

limited by the transition between partial and fully-developed supercavity. Next, the vehicle

must have sufficiently immersed fins to sustain trim flight and maneuvering flight. Finally,

it is desirable for the vehicle to avoid planing during turning flight. Without a suitable

control scheme, planing forces cause oscillatory motion of the vehicle during steady level

turning flight as described in Chapter 3. Furthermore, if the vehicle performs turning flight

from fins-supported level flight, a suitable control scheme is required to manage the onset of

planing and discontinuous slope of fin angles. Also turning from a fins and planing-supported

level flight causes the planing region to vary with roll angle, which must be accounted for

during the transition. These supercavity-related constraints affect turn performance as well

as flight envelope.
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At assigned load factor for turning flight, the minimum velocity is defined by the max-

imum lift coefficient (CL) associated with the stall of the cavitator, while the maximum

velocity is limited by the stall of the fins. Minimum and maximum velocities can be derived

from forces and moment equilibrium as:

LB = −
(
sBN +

∑
sBFi

)
· b3 = nW

xcmsBN · b3 = (xfin − xcm)
∑

sBFi
· b3 +

∑
mB

Fi
· b2 (79)

where LB is the magnitude of the total lift by cavitator and fins, and mB
Fi
· b2 is the pitch

moment of the i-th fin about the vehicle cross-sectional center at the fin’s root. Also,

xcm and xfin respectively denote distances of the vehicle center of mass and the fin’s root

from the nose. Minimum and maximum velocities imposed by stall are obtained when lift

coefficients reach maximum values, i.e. sBN · b3 = (sBN · b3)max and sBFi
· b3 = (sBFi

· b3)max.

The corresponding load factor limits are:

ncav =
1

W (xfin − xcm)

(
xfinsBN · b3 −

∑
mB

Fi
· b2

)

nfin =
1

Wxcm

(
xfin

∑
sBFi

· b3 +
∑

mB
Fi
· b2

)
(80)

At low velocity, the stall velocity of the cavitator determines the maximum load factor

because the fin’s lift is much larger than that of the cavitator due to the correspondingly

large fin immersion depth. On the contrary, at high velocity, the situation is reversed.

Equation (80) contains general forms which can be applied to all flight conditions. The

simplified expression presented below are instead useful to better understand how design

variables of the vehicle affect turn performance. For the case of zero pitch and yaw angle

in eq. (76), and assuming that mB
Fi
· b2 is relatively small compared to sBFi

· b3 and that the

maximum lift of the cavitator and fins are respectively limited by the maximum cavitator

angle αNmax and maximum fin’s angle γFimax, yields the following expressions for the load
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factors:

ncav =
ρwv2

NANCd(σ, 0) sin(2αN )
4W (xfin − xcm)/xfin

nfin = S2
fin

(
sin(φ)

[1
2
ρwv2

F2
Cz(γF2 , dF2) +

1
2
ρwv2

F4
Cz(γF4 , dF4)

]

− cos(φ)
[1
2
ρwv2

F1
Cz(γF1 , dF1) +

1
2
ρwv2

F3
Cz(γF3 , dF3)

])
/(Wxcm/xfin) (81)

Partial cavity conditions may be considered as an inherent flight mode of supercavitat-

ing vehicles particularly at launch and/or water entry. For simplicity, this study focuses on

operation with a fully-developed supercavity. This imposes another limiting constraint on

the vehicle velocity, which largely depends on the cavitation number and the cavitator’s di-

mension. For both straight level flight and level turning flight, sufficient fin’s hydrodynamic

forces are required for lift when the vehicle does not exploit planing. As a result, the suffi-

cient fin immersion depth imposes limitation on velocity. Finally, the fins-supported flight

scheme without planing imposes a limit on the load factor particular at low speed. When

the vehicle performs a turn, the cavity centerline has a curvature which causes the center

of the cavity cross section at the afterbody to deviate from the center of the vehicle cross

section. This discrepancy can produce planing flight as well as asymmetric fin immersion

depth particulary when the vehicle performs a rapid turn.

4.4.3 V-n diagram

All the constraints discussed above are summarized in the V-n diagram of fig. 49, which

represents the flight envelope of the nominal supercavitating vehicle described in Table 1.

The diagram is clearly more complex than the one for a conventional missile (see fig. 45).

In the figure, area 1 and 2 respectively correspond to the partial cavity and the planing

regions in which the vehicle is assumed not to operate. Areas 4, 5, 6 and 7 define regions

where at least one fin is not immersed into the cavity boundary and hence has zero control

effectiveness (4 - one fin, 5 - two fins, 6 - three fins, and 7 - four fins). Consequently,

area 3 represents the possible fins-supported flight zone, which is limited by the geometry

and dimensions of the vehicle in relation to the dimensions of the cavity. Boundaries a

and b are respectively the minimum velocity imposed by the stall of the cavitator and
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Figure 49: V-n diagram of the nominal supercavitating vehicle based on hydrodynamics
but neglecting aerodynamics inside a cavity.

the maximum velocity defined by the stall of the fins. It should be noted that the latter

imposes a maximum velocity limit, instead of minimum velocity due to the decrease of the

fin immersion depth for increasing velocity and load factor. Experimental data show that

the lift coefficient for the cavitator increases until about αN max = 60◦ and it decreases

after that peak angle [53] (see fig. 47). However, in this study, αN max = 30◦ is considered

as a maximum angle for the cavitator in eq. (25). Also, the maximum angle of the fins is

assumed to be γFi max = 30◦. Furthermore, the boundary d is the maximum load factor

selected as representative of the structural integrity of the vehicle body, and the boundary c

represents the minimum velocity imposed by the structural integrity of elevator fins, which

is identified by a normalized moment (with respect to the vehicle weight) at the fin’s root

(allowable normalized bending moment of c = 12). The remaining area 8 indicates the

possible flight region for the supercavitating vehicle during level turning flight.

In the V-n diagram, the point at the intersection between boundaries a and b is denoted

as “maneuver point”, and the corresponding velocity is the “corner velocity”. At this point,
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Figure 50: The variation of V-n diagram with respect to the cavitator diameter and fin
span length when αN max = 30◦ and γFi max = 30◦ (the contour lines denote constant turn
rates).

the supercavitating vehicle can simultaneously achieve maximum turn rate and minimum

turn radius. Maximum turn rate or minimum turn radius can be achieved by increasing

the load factor imposed by the cavitator’s stall and fin’s stall. The load factor for the

stall of the cavitator (ncav) can be extended by increasing the cavitator diameter and/or

by reducing the restrictions on the maximum stall angle by placing the vehicle center of

mass backward. Also, it can be extended by decreasing the vehicle weight (see eq. (81)).

The limit defined by the stall of the fins (nfin) can be extended by increasing the fin span

length, by placing the vehicle center of mass forward, and by decreasing the vehicle weight

(see eq. (81)). Fig 50 shows how the stall velocities of the cavitator and the fins vary with

the cavitator diameter and the fin span length. It should be noted that the limitation on

the allowable maximum moment at the fin’s root introduces trade-offs with the fin’s stall

velocity due to the strong dependency on the fin span.
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4.4.4 Considered performance index

The maximum turn rate Ω for steady turning flight is considered as the objective function to

be maximized. In this operating condition, maximum turn rate and minimum turn radius

(eq. (76)) are important performance characteristics. As mentioned earlier, the maximum

turn rate and minimum turn radius can be simultaneously obtained at the maneuver point

(at the corner speed) in the V-n diagram. The maximum turn rate Ω at the corner speed

is considered as the objective of the optimization to follow. Its expression is obtained by

letting V = Vcorner in eq. (76) to obtain:

Ω =
g

Vcorner


cos θ sin θ sinψ +

√
(n2 − 1)

(
1− cos2 θ sin2 ψ

)
+ sin2 θ

sin2 θ + cos2 θ cos2 ψ


 (82)

4.4.5 Constraints

For the fins-supported level turning flight problem, gt in eq. (75) is defined as in eq. (59).

In eq. (59), the first inequality constraint defines the region 1 related to partial cavitation

in the V-n diagram of fig. 49, the second constraint corresponds to regions 4, 5, 6, and 7,

and the third condition is related to planing (region 2). The last two conditions correspond

to boundaries a and b related to the stall of the control surfaces, while the design-related

constraints gd include the constraints associated with structural integrity which can be

expressed as:

gd 1 = n− nstr

gd 2 = (Vmin)c − V (83)

which respectively express the limitation on the bending moment on the vehicle body

(boundary d), and the boundary c in the V-n diagram.

4.4.6 Implementation of optimization procedure

In general, the optimization procedure of eq. (68) is a straightforward approach producing

efficient solutions for well-defined problems such as those with quadratic objective and

linear constraints. However, if the constraints are affected by numerical noise and they
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are active during the optimization iterations, the problem may produce non-optimal results

or be infeasible. In practice, the constraints behave as uncertain parameters, and may

require proper handling such as the reduction of the feasible region and/or probabilistic

analyses [65].

In this case, the trim process developed in Chapter 3 provides a primary constraint.

Although the trim solver is accurate and numerically well-behaved inside the feasible design

space, finding a solution on the boundary between the feasible and infeasible design space

can be time-consuming and sensitive to the initial guess for trim states. Unfortunately,

in the optimization problem which seeks for the maximum turn rate over the entire flight

envelope, the maximum value of the objective function will be achieved at such constraint

boundary, i.e. at the corner speed. Therefore the direct application of the optimization

procedure of eq. (68) to the maximum turn rate case is affected by noisy constraints. In

contrast, in the maximum range case, the trim solver searches for solutions well inside the

feasible design space (as shown in fig. 40 (b)). Consequently, the procedure of eq. (68) with

the design variables V,d produces solutions in a stable and efficient way.

As a practical alternative, a multi-level optimization procedure using hydrodynamic

forces and moment balance equation described in the previous section is employed. The

hydrodynamic forces and moment balance equation replaces the trim solver in a lower-

level optimization, which is nested inside the system-level optimization. The lower-level

optimization finds the best operating conditions (V and n at maneuver point) for each

assigned design variables d from the system-level optimization. This methodology is highly

dependent on the approximate formula based on hydrodynamic forces and moment balance

equation, which has shown to produce very stable and reliable solutions.

4.4.7 Parameters sensitivity

Figure 51 shows the effects of the individual design variables on the maximum turn rate, and

compares them with their effects on thrust and range in steady level flight. These results

differ from the ones presented in fig. 39 as they are obtained for velocity V assigned as the

optimal value in level flight (see Table 7). For turning flight, velocity V and load factor n
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Figure 51: Effect of individual design variables on thrust, range, and maximum turn rate
for fins-supported level flight.

correspond to the maneuver point defined by the corner speed. The two most dominant

design variables are the fin span, which is closely related to the control authority of the fins,

and, surprisingly, the vehicle cone length. The variation of maximum turn rate in terms

of fin span and cone length presented in fig. 52 (a) shows an approximately linear relation:

the maximum turn rate increases almost monotonically with the two design variables. This

suggests that a cone-shaped vehicle with long fin span may be capable of more aggressive

turns. Figure 52 (b) shows the variation of turn rate with respect to cavitator diameter and

fin length when all other design variables are fixed at the nominal values. As one might

expect, the maximum turn rate increases with the dimensions of both control surfaces. It is

also interesting to observe that for relatively long fin span (Lfin > 0.25), and small cavitator

diameter, the maximum turn rate depends only on the cavitator diameter.

4.4.8 Results

4.4.8.1 Preliminary optimization with reduced set of design variables

A preliminary optimization is carried out by considering only dc and Lfin as design variables.

The results presented in Tables 11 and 12, identify the maximum value for the turn rate
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Figure 52: Variation of maximum turn rate in terms of selected design variables.

Table 11: Reduced optimal design configuration for fins-supported level turning flight.

Dimension value lower bound upper bound unit
dc 0.09 0.07 0.09 m

Lfin 0.30 0.20 0.30 m
m 150.6048 140 160 kg
V 101.8298 80 120 m/s
n 19.2256 1 30
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Table 12: Performance of reduced optimal vehicle in fins-supported level turning flight.

Nominal Optimal unit [%]
Ω 1.2106 1.8512 rad/s 52.9%
V 83.2364 101.8298 m/s 22.3%
n 10.3257 19.2256 86.2%
δT 15.2520e+3 28.1745e+3 N 84.7%

in fig. 52 (b). The vehicle with these optimal dimensions of control surfaces produces a

considerable improvement (52.9%) in maximum turn rate, which is achieved by increasing

vehicle velocity and thrust and a correspondingly higher load factor.

4.4.8.2 Optimization with full set of design variables

The results obtained with the full set of design variables are presented in Tables 13 and 14.

The optimization increases the fin’s span as in the reduced optimization case, but reduces

the cavitator’s diameter. In addition, the mass coincides with the imposed lower bound,

which shows the opposite tendency to the case of maximum range. Table 14 summarizes the

performance of the optimized vehicle with respect to the nominal vehicle. The remarkable

improvement in turn rate performance is obtained at the expense of higher thrust and load

factor which translates into a 148.9% increase in maximum turn rate and a 160.9% increase

in load factor. The comparison between optimal and nominal vehicle is shown in fig. 53,

in which the thick outline depicts the optimal configuration of the vehicle. This optimized

configuration shows little similarity with the optimized configurations based on maximum

range (see fig. 41), and it is interesting to note a vague resemblance to existing cone-shape

designs for supercavitating vehicles and the Soviet torpedo Shkval shown in fig. 54

Figure 53: Optimal configurations of supercavitating vehicles based on maximum turn
rate during fins-supported level turning flight.
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Table 13: Optimal design configuration for fins-supported level turning flight.

Dimension value lower bound upper bound unit
dc 0.0769 0.07 0.09 m

Lfin 0.3000 0.20 0.30 m
xfin 2.7327 Lcone Lcone + Lfuse m
Rveh 0.1256 0.05 0.15 m
Lveh 3.7348 3.5 4.5 m
Lcone 2.6695 0.1 Lveh 0.9 Lveh m
Laft 0.3523 0.01 Lveh 0.1 Lveh m
m 140.0 140 160 kg
V 87.6658 76 120 m/s
n 26.9428 1 30

controls value unit
V 87.6658 m/s
Ω 3.0134 rad/s
φ 87.7838 degree
θ 0.1046 degree
ψ 2.7020 degree
δT 26.5419e+3 N
δN -20.6597 degree
δF2 0.1789 degree
δF4 -0.1789 degree
δF1 0.0133 degree
δF3 -0.0453 degree

Table 14: Performance of optimal vehicle in fins-supported level turning flight.

Nominal Optimal unit [%]
Ω 1.2106 3.0134 rad/s 148.9%
V 83.2364 87.6658 m/s 5.3%
n 10.3257 26.9428 160.9%
δT 15.2520e+3 26.5419e+3 N 74.0%
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Figure 54: Configuration of the existing supercavitating vehicle Shkval [3].

4.5 Optimization Based on A Combined Performance Index

4.5.1 Objective function

In this section, a combined performance index including maximum range and turn rate is

considered as an objective for fins-supported flight. The corresponding objective function

is defined as:

C(d, y, u) = w1D̄ + w2Ω̄ (84)

where D̄, Ω̄ are values for range and turn rate, normalized with respect to the ones cor-

responding to the nominal vehicle, while wi (i = 1, 2) are the optimization weights. The

weights are arbitrarily selected as w1 = w2 = 0.5.

4.5.2 Implementation of optimization procedure

The optimization procedure is formulated to include the two considered trim conditions,

i.e. level and turning flight, and the objective function defined above. Mathematically, the

optimization procedure is formulated as follows:

max
d

C(d, ŷ, û), (85)

s.t.: c(d, ŷ, û) ≤ 0. (86)

where ŷ, û are vectors containing states and controls corresponding to the considered trim

configurations, while c(d, ŷ, û) defines an array of equality and inequality constraints which
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define design and operational constraints:

c(d, ŷ, û) =




φ(d, ŷ, û)

gt(d, ŷ, û)

gd(d)




(87)

The operational constraints φ include the two trim conditions and can be expressed as

follows:

φ(d, ŷ, û) =




φS(d, yS , uS) = 0

φT (d,yT , uT ) = 0


 (88)

where φS(d,yS , uS) = 0,φT (d,yT , uT ) = 0 respectively define the level flight and turning

trim problems, while yS , uS and yT , uT are the corresponding state and control vectors.

Accordingly, in eq. (86):

ŷ =
[

yT
S , yT

T

]T

and

û =
[

uT
S , uT

T

]T

Also:

gt(d, ŷ, û) < 0

gd(d) < 0

The optimization is implemented in ModelCenterTM, which is interfaced with the Matlab c©
routines defining the various constraints and the objective function. A schematic of the

Model Center implementation of the combined optimization process is shown in fig. 55.

4.5.3 Results

4.5.3.1 Optimization with reduced set of design variables

As in previous cases, design variables related to control surface dimension dc and Lfin are

first considered. The results of the reduced optimization presented in Tables 15 and 16 are

based on the application of Logvinovich’s cavity model with memory effects. This optimal

vehicle has an enhanced turning performance but reduced level flight performance as a result

of the compromise to be found between the two requirements in the objective function.
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Figure 55: Flowchart of optimization using ModelCenterTM.

Table 15: Reduced optimal design configuration for a combined performance of fins-
supported flight.

Dimension value lower bound upper bound unit
dc 0.0775 0.07 0.09 m

Lfin 0.2565 0.20 0.30 m

Table 16: Performances of reduced optimal vehicle in fins-supported flight.

Range
Nominal Optimal [%] unit

D 0.6828 0.5908 -13.5% m
V 89.2686 95.2409 +6.7% m/s
δT 19.6097e+3 24.2355e+3 +23.6% N
m 150 150.3262 +0.2% kg

Turn rate
Nominal Optimal [%] unit

Ω 1.2106 1.4552 +20.2% rad/s
V 83.2364 106.5493 +28.0% m/s
n 10.3257 15.8455 +53.5%
δT 15.2520e+3 23.0818e+3 +51.3% N
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4.5.3.2 Optimization with full set of design variables

The results obtained for the full set of configurational design variables, and based on fins-

supported flight conditions, are presented in Tables 17, 18 and 19, which summarize the

performance of the optimized vehicle with respect to range and turn radius. As in the

reduced case, the optimization produces a great improvement in turning performance but a

reduction in level flight performance. The comparison between optimal and nominal vehicle

is shown in fig. 56.

Table 17: Optimal design configuration for a combined performance of fins-supported
flight.

Dimension value lower bound upper bound unit
dc 0.0700 0.07 0.09 m

Lfin 0.3000 0.20 0.30 m
xfin 2.9560 Lcone Lcone + Lfuse m
Rveh 0.1112 0.05 0.15 m
Lveh 4.0472 3.5 4.5 m
Lcone 2.4168 0.1 Lveh 0.9 Lveh m
Laft 0.1238 0.01 Lveh 0.1 Lveh m

Figure 56: Optimal configurations of supercavitating vehicles based on a combined per-
formance of maximum range and maximum turn rate during fins-supported flight.
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Table 18: Controls and states of optimal configuration.
Level flight

controls/states value unit
V 82.7920 m/s
δT 23.6273e+3 N
δN -0.8823 degree
δF2 0.0942 degree
δF4 -0.0942 degree
δF1 0 degree

Turning flight
controls/states value unit

V 96.0004 m/s
Ω 2.6817 rad/s
φ 87.6871 degree
θ 0.0935 degree
ψ 2.3139 degree
δT 27.0604e+3 N
δN -19.4478 degree
δF2 0.0942 degree
δF4 -0.0942 degree
δF1 -0.0338 degree
δF3 -0.0514 degree

Table 19: Performances of optimal vehicle in fins-supported flight.
Range

Nominal Optimal [%] unit
D 0.6828 0.5115 -25.1% m
V 89.2686 82.7920 -7.3% m/s
δT 19.6097e+3 23.6273e+3 +20.5% N
m 150 145.9699 -2.7% kg

Turn rate
Nominal Optimal [%] unit

Ω 1.2106 2.6817 +121.5% rad/s
V 83.2364 96.0004 +15.3% m/s
n 10.3257 26.2750 +154.5%
δT 15.2520e+3 27.0604e+3 +77.4% N
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4.6 Conclusions

The trim analysis developed in the previous chapter is here applied to investigate configura-

tional optimization for supercavitating vehicles. A description of performance in level flight

and level turning flight is first provided, followed by a detailed discussion on the constraints

limiting the flight envelope. The flight envelope of a supercavitating vehicle is significantly

different from that of a conventional vehicle due to different hydrodynamic coefficients as

well as a unique operational conditions, which strongly affect turning performance. A gen-

eral formulation for the optimization problem is first introduced and a discussion of the

practical implementation used to achieve a robust optimization solution is presented. The

trim evaluation process is used as part of an optimization problem which seeks for the

optimal vehicle configuration. The considered objective functions are the vehicle range,

maximum turn rate, and their combination. The range is formulated as a compromise be-

tween vehicle velocity, mass and available thrust. The maximum turn rate is obtained at

the corner speed, in which minimum turn radius is simultaneously obtained.

The optimization process yields design configurations which significantly improve the

vehicle range or maximum turn rate in fins-supported flight. Also, the solutions of the opti-

mization problem not only provide vehicle configuration, but also the corresponding optimal

operating conditions, in terms of velocity and load factor. However optimal configurations

indicate that a trade-off between two performances is required due to their conflicting re-

quirements.

The developed optimization process will be expanded to account for maneuverability as

an objective in the next chapter.
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Chapter V

OPTIMIZATION OF MANEUVERING SUPERCAVITATING

VEHICLES

5.1 Overview

This chapter expands the previous analysis by including maneuvering conditions as part of

the optimization process. A trajectory optimization code, named TOP, for supercavitating

vehicles developed at the Politecnico di Milano (Milan, Italy) is used to define optimal

configurations for vehicles performing specific maneuvers [66]. Given a vehicle configuration

at a sampling design point, the trajectory planner computes the trajectory maximizing an

assigned performance index. The objective of the configuration optimization attempted in

this chapter is to define the configuration of the vehicle providing the best performance as

defined by the trajectory planner.

The chapter first provides an overview of the trajectory optimization technique imple-

mented in the TOP code, and presents some examples of typical maneuvers. Preliminary

optimization results are then presented where the trajectory code is part of system level

optimization problem, whose objective is to maximize a performance index related to the

considered maneuver.

5.2 Overview of the Trajectory Optimization Technique

The trajectory optimization code computes maneuvers for supercavitating vehicles based

on a set of requirements. Computing a maneuver means determining the time histories of

the vehicle controls and the associated time histories of the states. Any computed maneuver

must always satisfy a certain number of requirements. Maneuvers must be first compat-

ible with the vehicle dynamics, i.e. they must satisfy the equations of motion within the

admissible limits imposed by the vehicle flight envelope and the necessarily limited control

authority of the vehicle actuators. Moreover, maneuvers should minimize some cost func-

tion, such as the time necessary to accomplish a given goal, or maximize the final vehicle
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velocity, or yet again the control effort necessary to steer the vehicle. In fact, optimality

provides a way to select one meaningful solution among the typically infinite possible differ-

ent ways of achieving a same goal. Finally, maneuvers must satisfy operational constraints

imposed by the vehicle user.

5.2.1 The Maneuver Optimal Control Problem

All the above mentioned requirements can be met by expressing each maneuver as the

solution of an appropriate optimal control problem [40]. The problem time domain is here

noted Ω = (0, T ), with boundary Γ = {0, T}, where the final time T is possibly unknown.

The dynamic equations of a rigid supercavitating vehicle introduced in Chapter 2 (eq.s (2,6))

are for convenience rewritten in compact form as

ẏ − q(y,u) = 0, (89)

The optimal vehicle state time histories yopt(t) and associated control policy uopt(t) define

an optimal maneuver and minimize the cost function

J = l(y, u, t)
∣∣
T

+
∫

Ω
L(y, u, t) dt, (90)

where the first term is the terminal cost, while the second is the integral term of the cost

function. As previously stated, the optimal solution must satisfy the vehicle equations of

motion (eq. (89)), which can therefore be interpreted as constraints of the optimization

problem. Constraints on the states and the controls further characterize and define the

maneuver, for example by providing initial and final conditions, or by providing operational

and flight envelope limits. For generality, all these conditions can be expressed as inequality

constraints in the form x ∈ [xmin, xmax], i.e. xmin ≤ x ≤ xmax. Equality constraints are

enforced by simply selecting xmin = xmax. The initial and terminal state conditions can be

written as:

ψ(y(0)) ∈ [ψ0min ,ψ0max ], (91a)

ψ(y(T )) ∈ [ψTmin , ψTmax ], (91b)

102



while non-linear constraints on states and controls can be expressed in general as:

g(y, u, t) ∈ [gmin, gmax]; (92)

similarly, constraints at a (possibly unknown) internal event Ti are:

g(y, u, Ti) ∈ [gTimin
, gTimax

]; (93)

integral conditions on states and controls can be given as:
∫

Ω
h(y, u, t) dt ∈ [hmin,hmax], (94)

and finally upper and lower bounds are:

y ∈ [ymin,ymax], (95a)

u ∈ [umin,umax]. (95b)

According to optimal control theory, an optimal solution to this problem is determined

by first defining an augmented performance index, obtained by adjoining the system gov-

erning equations (89) and constraints (91a–94) to the performance index (90) through the

use of Lagrange multipliers (co-states). Next, the stationarity of the augmented index is

imposed, resulting in the definition of a set of differential equations in the states, co-states

and controls, together with a set of associated boundary conditions [40].

5.2.2 Numerical Solution

This approach is however not always necessary nor convenient. In fact, one can avoid the

derivation of the optimal control equations altogether [67] by discretizing the system equa-

tions (89) on a grid Th of the computational domain through some numerical discretization

method. This defines a set of unknown parameters, which are represented by the discrete

values of the states and controls on the computational grid. At this point, the problem

cost function (90) and the boundary conditions and constraints (91a–94) are expressed in

terms of the discrete parameters x. This process defines a finite-dimensional Non-Linear

Programming (NLP) problem which can be written as

min
x

K(x),

s.t.: c(x) ∈ [cmin, cmax],
(96)
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where K is the discrete counterpart of the cost J in eq. 90, while c are the optimization

constraints, which include the discretized system dynamic equations, the discretized con-

straints and the boundary conditions. Here again, necessary conditions for a constrained

optimum are obtained, similarly to the case of optimal control, by combining the objective

K with the constraints through the use of Lagrange multipliers, and imposing the station-

arity of the augmented cost function. The resulting large but sparse problem can be solved

efficiently by sequential quadratic programming (SQP) methods [68] or interior point (IP)

methods [69]. The discretized time grid is 0 ≡ t0 < t1 < . . . < tn−1 < tn ≡ T , composed

of n intervals T i = [ti, ti+1] of size hi, i = 0, . . . , n− 1. Since T is in general unknown,time

is mapped onto a fixed domain parameter s = t/T , s ∈ [0, 1]. This yields the generic time

step length as hi = T (si+1 − si), i = 0, . . . , n − 1, which is now expressed in terms of the

step length in the s space and of the unknown maneuver duration. The discretized system

dynamics equations can be written on the generic interval T i as

yi+1 − yi − hiq
(yi + yi+1

2
, ui

)
= 0, i = 1, . . . , n− 1, (97)

where yi, yi+1 are the values of the states at times ti, ti+1, respectively, and ui is the constant

value of the controls within T i. Note that, coherently with their algebraic nature, controls

are treated as internal unknowns, which reflects the fact that no boundary conditions can be

associated with these variables. Given the discretization of the equations expressed by (97),

the NLP variables x are defined as

x =
(
yT

i (i = 0, . . . , n),uiT (i = 0, . . . , n− 1), T
)T

, (98)

i.e. they include the state values at the grid vertices, the control values on each grid

element and, possibly, the final time. The cost function and all problem constraints and

bounds, including eq.s (97), are expressed in terms of the NLP variables x to yield the finite

dimensional optimization problem 96.

5.2.3 Implementation issues

The success of direct transcription methods is directly dependent on the efficiency and

robustness of the nonlinear programming (NLP) solvers. There are various commercial NLP
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packages such as NPSOL, SNOPT and CFSQP [36]. Due to the advanced development of

numerical linear algebra, large scale problems can be solved through the exploitation of

the sparsity of the matrices [23]. The code TOP uses SNOPT [70], a sequential quadratic

programming (SQP)-based NLP solver developed by the Stanford Systems Optimization

Laboratory. The solver is particularly efficient as it allows the user to provide the gradient

of the objective function, as well as the Jacobian of linear and nonlinear constraints. It

is in particular efficient when dealing with sparse problems, as the sparsity pattern can

be directly provided by the user, which allows the code to neglect all zero terms, thus

significantly reducing the computational cost. As a result, SNOPT requires relatively few

evaluations of the problem functions and hence it is especially effective for problems with

expensive objective and/or constraint functions [70].

The TOP code version available for this work has limitations regarding the implemented

cavity model, which does not account for memory effects. Although this restriction may be

critical for highly aggressive maneuvers, the accuracy of the current formulation is consid-

ered sufficient for moderate maneuvers involving a smoothly curved flight path. This is one

of the reasons motivating the choice, in this work, to consider turn maneuvers corresponding

to a maximum heading change of 40◦.

Finally, one should mention that the flight path predicted through TOP is to a certain

degree sensitive to user-defined parameters such as the number of nodes used for time

discretization, and the initial guess. Fig. 57 shows for example the result of a convergence

test made using TOP. The performance index (in this case maneuver time) resulting from

the trajectory optimization is plotted versus the number of nodes in the time grid to show

how convergence of results is achieved upon refinement of the grid and that, for the case

at hand, a 40-node grid could be considered sufficient for an accurate prediction of the

considered optimal maneuver.

The solution of NLP problems generally exhibits a dependence on the initial guess.

Suitable initial guesses can be obtained through the application “bootstrap” and “contin-

uation” techniques [46]. The bootstrap technique consists in the iterative solution of a

specified problem on progressively finer grids. At each iteration, the initial guess is chosen
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Figure 57: Convergence test regarding to the resolution of discretization for the minimum
flight time of heading-changing fins-supported flight.

as the solution from the previous iteration, projected on the refined grid. The application

of the bootstrap technique prevents the divergence of the solution and enhances the con-

vergence rate for complicated problems. Good initial guesses can be also found through the

continuation or “homotopic” approach [30]. A difficult problem, such as a highly aggressive

maneuver, is solved incrementally, by formulating and solving a set of simpler problems,

and by considering the solution of one problem as an initial guess for the subsequent one.

For example, the optimal path corresponding to a 180◦ heading change, can be solved as the

progressive solution of 10◦-heading change problems, with the initial guess derived directly

from the solution of the previous problem.

5.2.4 Examples

This section presents a series of examples obtained using the TOP code, which briefly

illustrate the capability of the code, and have been used as part of this work to gain

familiarity with the code, its sensitivity to user-defined parameters and its input-output

structure. Such familiarity is essential to formulate an optimization problem based on

TOP, as presented in the next section.
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The vehicle configuration used for the simulations reflects the nominal configuration

considered in this work (see Table 1). The optimization cost function used in the following

studies is

J = w1T
2 + w2

∫ T

0
u̇ · u̇ dt, (99)

where T denotes the total unknown time required to perform a desired maneuver, while the

second term of the cost includes the control velocities u̇. This second contribution is here

introduced to provide a limit to the control rates, which would reflect limited actuation

capabilities of the control actuators. Also, in eq. (99), w1, w2 are user defined weight

parameters that scale the contribution of the two terms of the cost. The examples below

reproduce part of the results presented in [46].

5.2.4.1 Dive Maneuvers

A vehicle initially flying at trim conditions (V =85 m/s) is required to dive to an assigned

depth where it continues to operate at the same initial trimmed state. Optimal trajectories

for a final depth varying between 5 m and 50 m are shown in fig. 58. The results are

obtained through the application of the continuation technique, whereby the results of each

optimization are used as a starting guess for the next dive. The maneuvers correspond

to minimum time performance requirements as defined by selecting w1 = 1, w2 = 1/100

in eq. (99). Constraints on the controls and on their rates are imposed: for example

the thrust is constrained to vary between 0 and δTmax = 33, 000 N, which is an arbitrary

upper limit imposed by the generic propulsion system considered in this study. Figure 59

presents the time histories of the corresponding controls. The plots show how the thrust

and the cavitator angle vary in an approximately linear fashion between their minimum

and maximum values. Such linear variations are the result of the control rates reaching

the corresponding imposed bounds. It is worthwhile noting that all the controls return to

their initial value as the maneuver is completed and the vehicle reaches the designated trim

state. The rudder controls time histories are omitted in this case as they remain identically

equal to zero. Finally, fig. 60 shows the time histories of the horizontal and vertical velocity

components in the body-fixed frame, together with the pitch rate.
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Figure 58: Family of dives for increasing final depth.
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Figure 59: Control time histories for the diving problem.
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Figure 60: State time histories for the diving problem.

109



5.2.4.2 Turn Maneuvers

Shown in fig. 61 is a family of turns for heading changes varying from 10o to 180o. The

vehicle is initially at trim flying with an horizontal velocity of 85 m/s, and it is required

to achieve a trimmed state at the same velocity after the specified change in heading. The

maneuvers in fig. 61 are again minimum time turns, obtained through the application of

a continuation technique. It is interesting to observe how all of the resulting trajectories

are three dimensional, and are somewhat different from the simple level turn in the xy

plane which one might expect. The vehicle Euler angles (in the 3-2-1 sequence) shown in

fig. 62 for some representative turns confirm that significant roll and pitch occur during

these maneuvers.
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Figure 61: Family of turns for heading change varying between 10 deg and 180 deg.
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Figure 62: Time histories of Euler angles during representative turns.

111



5.3 Optimization of Maneuvering Vehicles

5.3.1 Design variables and objective function

A conceptual design for the vehicle is here investigated. The nominal configuration described

earlier is used as a starting point for the design. The vector of the configuration design

variable is defined as before:

d = { dc Lfin xfin Rveh Lveh Lcone }T (100)

The optimization is performed by considering a turn maneuver where the vehicle has to

complete a heading change of a specified angle. A performance index C related to the

specified maneuver is considered as the overall objective to be optimized. The optimization

problem can therefore be again described as follows:

max
d

C(d, y, u),

s.t.: c(d, y, u) ≤ 0. (101)

In eq. (101), c(d, y, u) denotes the array of equality and inequality constraints which define

design and operational constraints:

c(d,y, u) =




J(d, y, u)− Jmin(d, y, u)

gt(d, y, u)

gd(d)




(102)

with

J(d, y, u)− Jmin(d, y, u) = 0

gt(d, y, u) < 0

gd(d) < 0

where J is the cost function considered in the TOP code. Equation (101) describes a

formulation where the optimization of the trajectory is implemented as a constraint to a

system level optimization, which seeks for the optimal configuration of the vehicle. Given,

a configuration d, the TOP code finds the optimal time histories for states and controls
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according to the specified performance index J . The system level optimization seeks for

the configuration allowing to perform the specified maneuver with optimal performance as

defined by the index C.

The cost function in TOP is assigned as:

J = w1T
2 + w2

1
T − To

∫ T

To

δ2
T dt + w3

1
T − To

∫ T

To

u̇ · u̇dt (103)

where T , δT , and u denote respectively flight time, thrust, and controls. The weighting

factors w1, w2, and w3 are selected as 10, 1, and 1 for the flight time, thrust control effort,

and control rates. Control rates are important to obtain a physically feasible solution,

compatible with actuation limitations, and to ensure smooth controls’ time histories.

It should be noted how the selection of performance index J , weights wi and objective

function in the system level optimization is somewhat arbitrary, and a more extensive

investigation of relevant flight conditions as well as maneuvers should be performed to obtain

a meaningful objective and performance index for TOP. However, this is a first attempt of

introducing a maneuvering condition as part of the optimization process, and therefore

a simple, somewhat relevant maneuver is considered. Further developments may need to

consider strategic considerations or a detailed analysis of the flight envelope and operating

conditions for this class of vehicles. It is however expected that such considerations could

be implemented in a similar way as part of the system level optimization.

5.3.2 Constraints

Constraints in TOP are selected as part of a proper definition of the heading-change ma-

neuver. The vehicle starts from level trimmed flight with zero pitch angle and zero heading

angle to reach the same trimmed flight conditions at a heading angle of 40◦ after complet-

ing the maneuver. At each system level optimization iteration the vehicle geometry and

dimensions, as well as hydrodynamic coefficients, such as the cavitation number, are fed

to the parameter input file of TOP. Initial guesses in TOP are calculated based on trim

conditions updated at each optimization iteration. For example, angular velocities are set

to zero at the initial and final time, controls are assigned as the trimmed values, positions

in the inertial frame are assigned based on a horizontal circular path approximating the
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trajectory, for a guessed time and trimmed velocity, and the attitude at initial and final

stages are respectively given by Φi = [0 , 0 , 0]T and Φf = [0 , 0 , 40◦]T . Additionally,

proper bounds are defined for states and controls throughout the maneuver. In the con-

sidered optimization, the maneuvering time is one of the unknowns which is bounded by

assigning a suitable lower and upper value.

5.3.3 Implementation of optimization procedure

Given the complexity of the problem and expensive computation of maneuvers, response

surfaces methodology will be first attempted to replace the maneuver tool TOP with simple

approximate expressions. Response surfaces approximate objective function and constraints

according to the following expressions:

Ch(d,y,u) =
∑

i

NiC(di, y, u) (104)

and

ch(d,y,u) =
∑

i

Nic(di,y,u) (105)

where Ni is a set of basis function. The response surfaces are obtained by sampling the

solution space at points characterized by the values of the design variables di. Adaptive

sampling can be used for refining the response surface approximation in the neighborhood

of the solution. For each point di, the trajectory optimization tool TOP is called for

evaluating the performance corresponding to the specific vehicle configuration, which in

turn contributes to the approximation of cost and constraints. Given the response surfaces

approximation, the configurational optimization loop (see eq. (68)) can be expressed as

max
d

Ch(d, y,u),

s.t.: ch(d, y, u) ≤ 0.

which can be solved using a gradient based optimization approach.

In this work, as a first response surface approximating function, the following simple
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polynomial regression will be used

y = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

n−1∑

i=1

n∑

j=2,j>i

βijxixj

+
n∑

i=1

βiiix
3
i +

n∑

i=1

n∑

j=2,j 6=i

βiijx
2
i xj +

n−2∑

i=1

n−1∑

j=2,j>i

n∑

k=3,k>j

βijkxixjxk (106)

where y and x are the approximate response and design variables. The unknown parameter

βs are usually determined by least-square linear regression analysis by fitting the response

surface to sampling data [71]. When one has little knowledge about the true response, a

low order model is first considered. The order of the model is then increased by adding

higher order terms if a low order model suffers from lack of fit. Typically, first and second

order models are used.

In spite of computational efficiency and simplicity, the response surface methodology

(RSM) has inherent disadvantages as the difficulty of avoiding infeasible sampling points

during the Designs of Experiments (DoE) and limitations of representing the complex non-

linearity of a true model. In this study, the first problem is circumvented by sufficiently

reducing the range of the design variables so that most of the sampling data remains in

the feasible region and the number of failed cases is small. The second disadvantage can

be mitigated through other metamodeling techniques such as Kriging, which shows a bet-

ter capability of capturing the nonlinearity of the model [72]. Instead of exploring various

available metamodeling techniques, here the capability of RSM is taken into consideration

by achieving optimization with and without simple RSM based polynomial regression as

defined in eq. (106).

5.3.4 Optimization for minimum flight time

A first optimization is performed by considering the maneuver time T as the objective

function. Accordingly, the cost function considered in eq. (101) is defined as:

C(d, y,u) = T (d, y, u) (107)

It is interesting to note that the cost function J of TOP itself includes the flight time.

Therefore, the minimum flight time obtained in the system-level optimization corresponds
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Figure 63: Comparison of minimum flight time estimated through direct solution and
response surface approximation.

(a) Third order response surface (b) True response surface

Figure 64: Variation of the minimum flight time versus vehicle radius and cone length.

to the minimum out of the possible trajectories and considered configurations for the vehicle.

The minimum flight time can be also considered as a good measure of maneuverability and

an important characteristic along with other performance indexes such as range and turn

rate in steady flight.

Figure 63 compares the minimum flight time estimations for a number of configurations

as estimated through the direct solution of the trajectory optimization problem and through

the approximation through response surfaces. Specifically, the flight time along the abscissa

denotes the value computed at the sampling points, while the ordinate corresponds to the
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(a) Third order response surface (b) True response surface

Figure 65: Variation of the minimum flight time versus vehicle radius and fin location.

one predicted by the produced response surface. The results correspond to third order

polynomial regression equation (full cubic model), whose DoE is based on 3 levels of full

factorial sampling. As shown in the figure, the accuracy of response is quite low. Figures 64

and 65 show the variations of the minimum flight time in terms of selected configuration

variables. The flight times are respectively estimated through third order response surfaces

and true maneuver tool TOP. Fig. 64 shows the variation of minimum flight time in terms of

vehicle radius Rveh and cone length Lcone. Comparison of the two contours shows sufficient

similarity, which suggests that good predictions can be obtained with small sampling levels.

In contrast, the variation of minimum time with respect to vehicle radius (Rveh) and fin’s

location (xfin) in fig. 65 shows considerable differences between regression polynomial and

true response surfaces. This indicates that a trade-off between the accuracy of response

surface and computational cost must be considered.

Figure 66 summarizes the effects of the individual design variable on the minimum flight

time, in comparison with the other performance indexes previously considered. The results

show the dominant effects of the fins’ location xfin, and to a lesser extent of the vehicle

radius Rveh and cone length Lcone. The influence of the various configuration parameters on

the minimum maneuvering time is clearly in contrast with that on the other performance

indexes. It is particularly interesting that the fins’ length, which has the dominant effect on
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Figure 66: Effects of individual design variables on various performance indexes.

the maximum turn rate in trim conditions, has little influence on the minimum time turn

maneuver.

5.3.4.1 Optimization results

As in previous cases, a preliminary optimization is conducted by considering a reduced set

of design variables, which includes fins’ location (xfin), vehicle radius (Rveh), and vehicle

cone length (Lcone). These parameters are identified as relatively dominant in fig. 66. The

results of the reduced optimization are presented in Tables 20 and 21, which are obtained

using third order response surfaces constructed based on 3 level full factorial sampling

data. As implied in fig. 65, the rich nonlinearity of the design space degrades the accuracy

of response surface approximation, particularly of second order model. In spite of deficient

accuracy, the vehicle with this optimal configuration produces a considerable improvement

(−34.2%) in minimum maneuvering time, which is achieved by increasing the vehicle radius

and vehicle cone length. It should be noted that minimum flight times are all reevaluated

by the actual analysis tool (TOP) with optimal configurations found through approximate

response surface.

The results obtained by considering the full set of design variables are presented in
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Table 20: Optimal design configuration for reduced design variable set: minimum time
40◦ heading-change maneuver.

Dimension value lower bound upper bound unit
xfin 3.9898 Lcone + 0.4Lfuse Lcone + Lfuse m
Rveh 0.1039 0.075 0.12 m
Lcone 1.9608 0.1 Lveh 0.9 Lveh m

Table 21: Performance of optimal design configuration for reduced design variable set:
minimum time 40◦ heading-change maneuver.

Nominal Optimal unit [%]
T 4.7038 3.0972 second -34.2%

Tables 22 and 23. Table 22 lists the optimal value of the design variables as well as lower and

upper bounds considered in the optimization process. The comparison between optimal and

nominal vehicle is shown in fig. 67. This configuration shows a similarity with the optimized

configuration (cone-shape design in fig. 53) based on maximum turn rate except for an

opposite trend in the fins’ length (this is also implied in fig. 66). The optimal vehicle is able

to perform the required maneuver with a considerably reduced (−47.0%) maneuvering time.

The comparison of optimized trajectories performed by optimal and nominal vehicles is also

shown in fig. 68. The predicted trajectories show that the optimized vehicle performs the

required maneuver in a more aggressive fashion, which suggests a higher maneuverability.

This statement is partially supported by the evaluation of the flight time of optimized

and nominal vehicles for heading-change maneuvers of increasing angles. The results are

summarized in fig. 69, which shows that the optimal vehicle performs better, in terms of

minimum time, than the nominal one over a broad range of turning maneuvers. Figure 70

shows the corresponding trajectories of the optimal vehicle.

5.3.5 Optimization for minimum average thrust

A second example is conducted by considering the following cost function in eq. (101):

C(d,y, u) = δTavg =
1

T − To

∫ T

To

δT dt (108)
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Table 22: optimal design configuration for full design variable set: minimum time 40◦

heading-change maneuver.

Dimension value lower bound upper bound unit
dc 0.085 0.079 0.085 m

Lfin 0.200 0.20 0.30 m
xfin 2.4424 Lcone + 0.4Lfuse Lcone + Lfuse m
Rveh 0.11252 0.075 0.12 m
Lveh 3.5 3.5 4.1 m
Lcone 1.7374 0.1 Lveh 0.9 Lveh m

m 142.74567 140 160 kg

Table 23: Performance of optimal design configuration for full design variable set: mini-
mum time 40◦ heading-change maneuver.

Nominal Optimal unit [%]
T 4.7038 2.4907 second -47.0%

Figure 67: Optimal configurations of supercavitating vehicles based on minimum flight
time during fins-supported heading-changing maneuver.
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Figure 70: The trajectory of the optimal vehicle according to heading angles.

For the performance index of TOP, the same cost function defined in eq. (103) is used

with differently assigned weighting factors, which are selected as 0, 1, and 1. In addition,

maneuvering time is fixed at 10 sec instead of being unknown as the previous case. This

class of performance and conditions will estimate the effect of vehicle configuration on the

control efforts (time-average thrust) during a heading-changing maneuver of the vehicle

at given mission time together with minimum control efforts and control speed. As the

minimum maneuvering time case, third order response surface constructed based on 3 level

full factorial sampling data is used to approximate real maneuvering tool TOP.

The results obtained by considering the full set of design variables are presented in

Tables 24 and 25. In contrast to the previous case, the optimal vehicle seeking minimum

thrust shows little improvement. This may be caused by inappropriate modeling of RSM on

the true response rather than by physical inherent characteristics. In the table, δTmax and

Pavg respectively represent maximum thrust and time-average power (thrust times vehicle

velocity) during maneuvering. Although they are evaluated at the nominal and optimal

cases only, their improvements shows strong coherency to each other.

For a complete discussion, optimization without RSM is performed over wider range

of design variables. Tables 26 and 27 present the results. The optimal vehicle is capable

of performing the maneuver with a meaningfully reduced (−22.0%) average thrust. The

comparison between optimal and nominal vehicle is shown in fig. 71.
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As suggested by the complex design space in fig. 65, this optimization results also indi-

cates that the limited ability of RSM (particularly simple polynomial regression) to capture

the complex nonlinearity of the design space may lead to little effectiveness of the optimiza-

tion process. This difficulties may be avoided in two ways: by sufficiently restricting the

design space (essentially, a smooth function will be well captured by polynomial regression

in a small region) and exploiting other metamodeling techniques able to better capture

the complexity of the design space. Complex nonlinearity of the design space essentially

leads to a multi-modal structure problem requiring global optimum searching schemes. This

features will be discussed in more detail in the next chapter.

Table 24: Optimal design configuration for full design variable set: minimum average
thrust 40◦ heading-change maneuver.

Dimension value lower bound upper bound unit
dc 0.0791 0.079 0.085 m

Lfin 0.2002 0.20 0.30 m
xfin 3.4928 Lcone + 0.4Lfuse Lcone + Lfuse m
Rveh 0.1196 0.075 0.12 m
Lveh 3.5010 3.5 4.1 m
Lcone 1.8522 0.1 Lveh 0.9 Lveh m

m 160.0 140 160 kg

Table 25: Performance of optimal design configuration for full design variable set: mini-
mum average thrust 40◦ heading-change maneuver.

Nominal Optimal unit [%]
δTmax 20.2089e+3 19.2232e+3 N -4.9%
δTavg 19.6719e+3 19.1294e+3 N -2.8%
Pavg 3.3997e+6 3.26426e+6 J/s -4.0%
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Table 26: Optimal design configuration for full design variable set: minimum average
thrust 40◦ heading-change maneuver (without RSM).

Dimension value lower bound upper bound unit
dc 0.0690 0.02 0.1 m

Lfin 0.1883 0.15 0.25 m
xfin 3.3621 Lcone Lcone + Lfuse m
Rveh 0.0968 0.05 0.15 m
Lveh 4.0586 3.5 4.5 m
Lcone 1.0276 0.1 Lveh 0.9 Lveh m
Laft 0.0722 0.01 Lveh 0.1 Lveh m
m 147.5363 140 160 kg
V 82.8902 76 120 m/s

Table 27: Performance of optimal design configuration for full design variable set: mini-
mum average thrust 40◦ heading-change maneuver (without RSM).

Nominal Optimal unit [%]
δTmax 20.2089e+3 15.8075e+3 N -21.8%
δTavg 19.6719e+3 15.3369e+3 N -22.0%
Pavg 3.3997e+6 2.5785e+6 J/s -24.2%

Figure 71: Optimal configurations of supercavitating vehicles based on minimum average
thrust during fins-supported heading-changing maneuver.
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5.4 Conclusions

The optimization process developed in the previous chapter is expanded to account for the

vehicle’s performance during a maneuver. The maneuver is defined by a set of operational

and physical constraints and it is identified through the solution of a trajectory optimization

problem. Given a vehicle configuration, the solution of the trajectory optimization prob-

lem identifies the trajectory, and the associated controls’ histories maximizing an assigned

performance index. The code utilized for the trajectory optimization has been developed

at the Politecnico di Milano, and it has been here integrated as part of the configurational

optimization process. In this chapter, the vehicle design is optimized in order to maximize

a specified performance index related to the maneuver of the vehicle. The entire opti-

mization process hence relies on two nested optimization loops. The inner loop consists in

the evaluation of the optimal trajectory for a given vehicle configuration, while the outer

loop performs a system-level optimization which seeks for the optimal vehicle configuration

maximizing a maneuver-related performance index.

The considered reference maneuver consists in a heading change of a specified angle,

which is optimized based on the minimization of the required time together with correspond-

ing control efforts and rates. Two examples of system level optimizations are presented.

The first one considers as system-level cost function the maneuver time. The computational

cost for the evaluation of the cost function is reduced through the application of polyno-

mial regression RSM. The analysis shows that although the accuracy of the approximating

response surfaces suffers from the complex behavior of the true model, the process is able

to produce a meaningful improvement in performance. A second case considers thrust as a

performance index. The application of the RSM in this case does not produce a meaningful

improvement in performance. In contrast, the solution without approximations, despite a

longer computational time, yields better results. The application of RSM may therefore

suffer from lack of accuracy at the cost of great computational efficiency, while the direct

evaluation of maneuver code may suffer from expensive computation as well as local minima

due to inherent nonlinearity and multi-modal structure of the design space.

In the next chapter, the vehicle optimization will be attempted by including the various
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operating conditions considered so far. Specifically, trim conditions in level and turning

flight, as well as the considered reference maneuver will be considered as constraints in a

system-level optimization which seeks to maximize a selected performance index.
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Chapter VI

INTEGRATED VEHICLE OPTIMIZATION

6.1 Overview

This chapter presents the configurational optimization of a supercavitating vehicle based

on the combination of various performance requirements and design constraints developed

in the previous chapters. The vehicle range is selected as the primary objective, while trim

performance and maneuverability are considered as constraints. Specifically, the optimiza-

tion process described in this chapter seeks for a maximum range vehicle which satisfies

specified trim conditions as well as pre-defined maneuvering requirements. In particular,

the maneuver constraint is implemented by pre-assigning an upper bound on the maneu-

vering time. The lower the time, the more stringent the requirements on the vehicle’s

configuration, while a loose (large) maneuvering time introduces a loose constraint on the

process, which may remain mostly inactive during the optimization process. The method-

ology under consideration considers a limited spectrum of operating conditions, but it is

formulated in a way that may allow its extension to include a number of such operational

constraints, as required by specific mission requirements.

This methodology, attempts to include maneuvering flight as well as trim performance

in the initial phase of the design process, can provide significant benefits and lead to a better

performance according to desired mission profiles of the vehicle. In addition, the selection

and the design of the control surfaces and of their degrees of freedom can be directly driven

by the vehicle performance during critical maneuvers, or/potentially by the objective of

extending the flight envelope.

As design conflicts between various performances are observed in previous chapters,

their effect on the primary objective is estimated through the analysis of the history of

the active constraints during the optimization iterations as well as of the final optimal

solutions. Furthermore, difficulties related to nonlinearity and multi-modal structure of
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the design space motivate the development of a simple methodology whose effectiveness

is initially demonstrated on a sample problem characterized by a well-behaved objective

function and discontinuous, multi-modal non-convex constraints.

6.2 Formulation of The Optimization Problem

The optimization procedure in eq. (68) is extended to include various trim conditions and

maneuvers. The optimization procedure can be again expressed as:

max
d

C(d, yS ,uS), (109)

s.t.: c(d, ŷ, û) ≤ 0.

where ŷ, û are vectors containing states and controls corresponding to the considered trim

configurations, while c(d, ŷ, û) defines an array of equality and inequality constraints cor-

responding to design and operational constraints:

c(d, ŷ, û) =




φS(d, yS , uS)

φT (d,yT , uT )

T (d)− T ∗

gt(d, ŷ, û)

gd(d)




(110)

where

φS(d, yS ,uS) = 0,

φT (d, yT ,uT ) = 0

respectively define the level flight and turning trim conditions, with yS , uS and yT , uT

denoting the corresponding state and control vectors as described in Chapter 4. Accordingly,

in eq. (110):

ŷ =
[

yT
S , yT

T

]T

û =
[

uT
S , uT

T

]T

The level flight state vector includes the condition of zero angular velocity, as well as all

the conditions on the remaining states pertaining to level flight as discussed in Chapters 3
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and 4. The state vector for turning flight is defined by the same velocity V considered for

level flight and an assigned angular velocity Ω which is specified by selecting a value for the

load factor n.

The third constraint in eq. (110) is:

T (d)− T ∗ ≤ 0 (111)

which expresses a condition on the maneuvering time for the heading-change maneuver con-

sidered in the previous chapter. Specifically, T denotes the maneuvering time corresponding

to the optimal heading-change maneuver obtained using the trajectory optimization code.

The result corresponds to a given configuration d, and to initial and final trim states cor-

responding to level flight at velocity V . Hence the maneuver begins and ends at trimmed

states with a vehicle velocity V coincident to the one considered as an input to the level

flight trim constraint. The maneuver constraint imposes for T to be smaller than a prede-

fined value T ∗. Reducing the value of T ∗ makes the constraint more stringent, and more

influential on the final solution.

The final conditions:

gt(d, ŷ, û) < 0

gd(d) < 0

impose bounds on the cavity dimensions and on the design variables as previously indicated.

The range D as described in Chapter 4 is selected as the objective:

D = C(d, ŷ, û).

6.3 Exploration of the Design Space

The range during level flight as an objective has shown to behave quite regularly in the initial

optimization considered in Chapter 4. This clearly leads to an optimization problem which

is easy to solve and does not typically suffer from the presence of local minima. An example

of variation of range in terms of two design parameters (V and dc) was shown in fig. 40.

The introduction of turning trimmed flight as a constraint does not introduce significant
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Figure 72: Variation of the minimum flight time in terms of V and dc for a heading-change
maneuver.

complexity, while the addition of the minimum maneuver time complicates the problem.

In fact, the constraint introduced by the maneuvering time is characterized by a complex

nonlinear behavior which affects the design space. Figure 72 shows for example the variation

of the minimum flight time for the heading-change maneuver in terms of V and cavitator

diameter dc. Depending on the minimum time T ∗ selected in eq. (110), the maneuvering

constraint may produce a non-convex and/or discontinuous design space. This is illustrated

in fig. 73. Selecting T ∗ = 4.9 sec generates a single non-convex feasible region, while

imposing a smaller time such as T ∗ = 4.5 sec produces three disconnected feasible regions.

Figure 73 also depicts as a dot the optimal solution found within the considered ranges for

V and dc, which correspond to the case without turning and maneuvering constraints, or

the case when such constraints are loose and not active. It is interesting to note, that this

optimal value falls outside of the feasible space when a stricter requirement is imposed on

the maneuvering time.

In general, the multi-modal structure of the design space causes difficulties, in particular

when the response surface methodology with polynomial regression is applied. If constraints

produce a non-convex and discontinuous feasible design space, the optimization problem
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Figure 73: Feasible design regions for different choices of minimum allowed time for the
maneuver.

becomes notoriously difficult in terms of global minimum evaluation and computational

efficiency.

In this study, we attempt to develop a simple strategy to overcome such difficulties for

the cases under consideration. The effectiveness of this simple methodology is evaluated by

solving a well-known non-convex and discontinuous problem. In addition, the application

of more sophisticated meta-models and optimization strategies such as Genetic Algorithms

is still under investigation.

6.4 A Simple Optimization Strategy

6.4.1 Methodology

The developed approach is based on the assumption that the problem under consideration

features a regularly varying objective function, and complex constraints. The process con-

sists in several stages. At the first stage, the minimum of the regular objective function is

found through an unconstrained optimization, in order to avoid the solution being trapped

in local feasible regions. The main idea is illustrated in fig. 74. For example, if one considers

the requirement of minimum maneuvering time as T ∗ = 4.5 second, the initial guess may

cause the solution to be trapped in a local feasible space (lower left corner of the figure),
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Figure 74: Example illustrating a heuristic optimization strategy.

which is far from the optimum value corresponding to the unconstrained case. At the second

stage, constraints are evaluated at the optimum value to verify whether they are violated or

not. If this optimum value lies in a feasible region, then the process is considered complete.

In contrast, if constraints are violated, a feasible design point is searched in a region neigh-

boring the optimal value, defined by a predetermined radius (red circle in the figure). The

radius restricts the design space around the unconstrained global optimum. Once a feasible

point is found through a random search, the design space is centered at this feasible point

and the constrained optimization is performed in this restricted space (green circle in the

figure), whose radial distance from the found feasible design point will be the same as the

previous reduced region. The radius of the reduced search space is selected on the basis of

some knowledge of the design space. For example the constraints can be evaluated along

the optimization path generated during the unconstrained optimization. This information

can be used to evaluate the number of transitions between feasible and infeasible regions,

and the percentage of feasible points out of the entire number of design points evaluated

along the path line. This data can guide the selection of the search radius.

As a result, this method looks for the optimum value in a feasible region close to the
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unconstrained optimum value. In addition, it is expected to find the solution with a sig-

nificantly lower number of constraints evaluation. This simple approach has the above

advantages particularly when the optimization problem has the following characteristics:

1) the objective function is well-behaved and continuous over the entire design space, 2) the

objective function is computationally inexpensive, 3) the constraints produce a non-convex

and discontinuous feasible design space, 4) the evaluation of the constraints is computa-

tionally expensive. In addition, upon restriction of the design space, both constraints and

objective can be better approximated through response surfaces. For a more robust and

efficient method, the choice of the reduction of the design space and random search may be

further sophisticated through probabilistic and statistic estimations based on accumulated

information about the design space before the second stage optimization.

In the next section, the developed approach is tested on sample examples.

6.4.2 Example

The considered problem will be solved using the developed approach and the results and

optimization performance will be compared with those from a standard, gradient-based

constrained optimization performed on the full design space.

The following problem is considered

min
x

f(x) =
∑N

i=1(xi − 3)2 (112)

s.t.: c(x) ≤ 0.

where

c(x) = 50

(
N∑

i=1

sin(ωixi)2 +
N∑

i=1

(xi)2 + (
N∑

i=1

xi)2
)
− c0

and

ω1 =
2π

1 + |x1|1/3
, ωi =

2π

1 + |xi|
In eq. (112), N is the number of design variables, while ωi and c0 are parameters which

define the shape of the constraints. Two problems are solved for N = 3, 4, and values of

c0 respectively equal to 150, and 250. Finally ωi varies such that the wavelength of the

constraint decreases for increasing distance of the design points from the origin (xi = 0, i =
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Figure 75: Design space and solutions: red circle point is the solution from the developed
method, while the blue square indicates solutions found through the standard gradient
method.

1, · · · , 4). The objective function has a global minimum at xi = 3, i = 1, · · · , 4 when the

constraints are neglected.

Figure 75 shows the variation of the design space in terms of two design variable x1, x2.

For visualization purposes, the design space is presented for x3 = x4 = 0. In the figures,

the solutions given by this heuristic approach are denoted by red circle points, while the

solutions given by the standard approach are denoted by the blue squares. Also, Tables 28

and 29 present optimal solutions and computational efficiency in terms of total number of

function calls according to method and initial guess (i.g.).
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Table 28: Comparison of solutions between standard and heuristic methods for N = 3.

f x1 x2 x3 obj. calls con. calls
i.g. 0 0 0

standard 0.1770 2.8648 2.7183 2.7183 98 98
heuristic 0.0043 2.9638 3.0384 3.0384 70 78

heuristic & RSM 0.0075 2.9321 3.0284 3.0456 50 28
i.g. 1.5 1.5 1.5

standard 0.2954 2.8281 2.6841 3.4076 183 183
heuristic 0.0043 2.9638 3.0384 3.0384 59 62

heuristic & RSM 0.0062 2.9318 3.0248 3.0302 48 33

Table 29: Comparison of solutions between standard and heuristic methods for N = 4.

f x1 x2 x3 x4 obj. calls con. calls
i.g. 0 0 0 0

standard 0.2248 2.8730 2.7363 2.7363 2.7363 84 84
heuristic 0.0019 2.9597 2.9941 3.0103 3.0103 70 82

heuristic & RSM 0.0124 2.9958 3.1050 3.0077 3.0365 71 35
i.g. 1.5 1.5 1.5 1.5

standard 4.6659 1.3810 1.7414 2.4075 2.6687 134 134
heuristic 0.0004 2.9930 3.0114 3.0114 3.0114 79 81

heuristic & RSM 0.0116 2.9748 2.9999 3.0001 3.1049 53 41
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Figure 76: Evolution of design variables during optimization procedure for N = 3 with
i.g. x1 = x2 = x3 = 1.5.
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The solutions obtained through the standard approach tend to be trapped by local

minima and the quality of the solution depends on the initial guess. In contrast the two-step

approach seems to be effective in handling the complexity introduced by the constraint, both

in terms of quality of the solution and of number of required function calls. The developed

approach is also tested in conjunction with the RSM method, specifically a second-order

polynomial regression based on D-optimal sampling points available in MATLAB c©, which

uses coordinate exchange algorithms to minimize the generalized variance of the parameter

estimators [73]. The solutions obtained show a good accuracy and efficiency in terms of

number of function calls. Figure 76 shows the evolution of the design variables during the

optimization iterations corresponding to standard optimization and the developed method

without RSM. Figure 76 (b) shows that the first stage of optimization process (without

considering constraints) reaches the optimum solution with a small number of function

calls (13) due to the convexity of the objective function, while the second stage of the

process successfully proceeds to find the feasible optimum solution with active constraints.

6.5 Optimization results

6.5.1 Preliminary optimization with reduced set of design variables

A preliminary optimization with a reduced number of design variables (V and dc) is carried

out for fins-supported flight as performed in Chapter 4. In order to capture the influence

of various constraints on maximum range, several cases are conducted with increasing re-

quirements on turning load factor n, and on maneuvering time T ∗. As a first case, the

optimization is carried out with all constraints being relaxed, i.e. with sufficiently low load

factor and large maneuvering time. Results are presented in Tables 30 and 31. As one

might expect, the solution of the optimization with highly relaxed constraints coincides

with the solution obtained Chapter 4 (see Table 5 and 6). Figure 77 shows the evolution of

objective, constraints, and design variables during the optimization process. In fig. 77 (b),

constraints related to trim conditions represent the squared norm ||f ||2 of the residuals of

Euler’s equation (eq. (65)), constraints related to vehicle weight are normalized by 100 kg as

: m
100 − mub

100 for upper bound and mlb
100 − m

100 for lower bound, and the maneuvering constraint
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Table 30: Reduced optimal design configuration with relaxed constraints.

Dimension nominal optimal lower bound upper bound unit
dc 0.08 0.0404 0.02 0.10 m
V 78 172.0734 76 200 m/s

Constraints
Load factor n 1.1

Maneuvering time T ∗ 40 sec

Table 31: Performance of reduced optimal vehicle with relaxed constraints.

Nominal Optimal unit [%]
D 638.7 999.9 m + 56.5 %
T 4.9927 5.5508 sec + 11.2%
V 78 172.0734 m/s + 120.6 %
δT 18.3176e+3 25.8036e+3 N + 40.9 %
m 150 149.9452 kg - 0.04 %

is plotted as T
T ∗ − 1. Also, all normalized constraints values are set to 1 in case of violation.

During the optimization process none of the constraints are active except for one instance

at iteration 4, when the vehicle configuration cannot even support level trim. The design

variables in fig. 77 (c) are normalized with respect to the values selected as “nominal”. It

should be kept in mind that without achieving level trim, turning flight and maneuvering

conditions cannot be obtainable.

As a second case, the optimization is performed with relatively strict constraints, i.e.

with higher load factor and smaller maneuvering time. Results are presented in Tables 32

and 33. The achieved performance is reduced by the active constraints. The histories of

objective, constraints and design variables are shown in fig. 78, which clearly shows how the

Table 32: Reduced optimal design configuration with active constraints.

Dimension value lower bound upper bound unit
dc 0.0432 0.02 0.10 m
V 175.8683 76 200 m/s

Constraints
Load factor n 2

Maneuver time T ∗ 5.5 sec
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Figure 77: Evolution of objective, constraints, and design variables during optimization
process with relaxed constraints.
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Table 33: Performance of reduced optimal vehicle with active constraints.

Nominal Optimal unit [%]
D 638.7 994.2 m + 55.7%
T 4.9927 5.4764 sec + 9.7%
V 78 175.8683 m/s + 125.5%
δT 18.3176e+3 26.5258e+3 N + 44.8 %
m 150 149.9479 kg - 0.03%

optimization is affected by the tightly active constraints, and particularly by the constraint

on the maneuvering time. In addition, the figure indicates that the maneuvering time is

strongly conflicting with the vehicle range.

6.5.2 Optimization with full set of design variables

The optimization is then performed by considering the full set of design variables. As with

the reduced optimization cases, the optimization is first performed with relaxed constraints

and then with strict constraints.

The results of the optimization with relaxed constraints are presented in Tables 34

and 35. In the same way, the solution of the optimization with highly relaxed constraints

coincides with the solution obtained in Chapter 4 (see Table 7 and 8). In addition to the

same improvement in velocity, thrust and range, the optimal vehicle also produces a 23.7%

reduction in maneuvering time. The obtained vehicle configuration shows that the mass

coincides with the imposed upper bound, while the size of control surfaces coincides with

the lower bound. Figure 79 (a) shows the history of constraints during optimization process,

in which the occurrence of active constraints is low.

As a second case, the optimization is performed with relatively strict constraints. These

results are presented in Tables 36 and 37, where stricter constraints reduce improvement

in performance. Figures 79 (b) and (c) respectively show the history of constraints by

heuristic and standard approaches in the beginning stage of the optimization process. With

such strict constraints, violations are frequent and the standard optimization in particular

suffers from lack of convergence. Figure 80 shows the optimized configurations for both

cases.
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Table 34: Optimal design configuration with relaxed constraints.

Dimension value lower bound upper bound unit
dc 0.0400 0.04 0.11 m

Lfin 0.1500 0.15 0.25 m
xfin 2.2975 Lcone Lcone + Lfuse m
Rveh 0.0957 0.05 0.15 m
Lveh 4.0823 3.5 4.5 m
Lcone 0.4082 0.1 Lveh 0.9 Lveh m
Laft 0.0798 0.01 Lveh 0.1 Lveh m
V 112.4102 76 120 m/s
m 160.0 140 160 kg

Constraints
Load factor n 1.1

Maneuver time T ∗ 40 sec

Table 35: Performance of optimal vehicle with relaxed constraints.

Nominal Optimal unit [%]
D 638.7 1570.5 m + 145.9%
T 4.9927 3.8070 sec - 23.7 %
V 78 112.4102 m/s + 44.1%
δT 18.3176e+3 11.4524e+3 N - 37.5 %
m 150 160.0 kg + 6.7 %

Table 36: Optimal design configuration with active constraints.

Dimension value lower bound upper bound unit
dc 0.0412 0.04 0.11 m

Lfin 0.1508 0.15 0.25 m
xfin 2.4486 Lcone Lcone + Lfuse m
Rveh 0.0943 0.05 0.15 m
Lveh 4.1244 3.5 4.5 m
Lcone 0.4370 0.1 Lveh 0.9 Lveh m
Laft 0.1013 0.01 Lveh 0.1 Lveh m
V 112.7372 76 120 m/s
m 155.8 140 160 kg

Constraints
Load factor n 2

Maneuver time T ∗ 4.5 sec
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Table 37: Performance of optimal vehicle with active constraints.

Nominal Optimal unit [%]
D 638.7 1512.2 m + 136.8 %
T 4.9927 4.3612 sec - 12.6 %
V 78 112.7372 m/s + 44.5 %
δT 18.3176e+3 11.6169e+3 N - 37.9 %
m 150 155.8 kg + 3.9 %

In order to identify how the constraints are active and how these affect the final optimal

solution, optimization is carried out with different requirements on the maneuvering time T ∗

and, with n = 2. The results are listed in Table 38. In all cases, the same lower and upper

bounds considered in Table 34 are applied for velocity, design variables and vehicle weight.

The results show how the primary performance is adjusted by the imposed requirements

on maneuvering time. As the required maneuvering time decreases (more stringent), the

performance of the vehicle decreases. The preliminary study shows that the constraints

produce cross-coupling effects on the primary performance. For example, the history of

active constraints of turn rate and vehicle weight changes due to different optimization

path caused by maneuvering time constraint being active. As a result, according to mission

profile, we can implicitly investigate trade-offs between various requirements and primary

performance.

The results shows that the solutions obtained by the simple optimization strategy (cases

1, 2 and 3 in the table) produce a more significant improvement than those by standard

approach (cases standard 1 and 2). Furthermore, the results also show the tendency that

the effectiveness of the simple approach increases as the constraints are more stringent. This

implies the two facts. First, the design space restricted by the considered requirements on

turn rate and maneuvering time is a discontinuous and multi-modal surface. Second, the

considered simple strategy is also effective in our problem.
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Figure 79: Evolution of constraints during optimization process.
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Table 38: Performance of optimal vehicle with various constraint limitations

Performances Constraints
Cases D (m) T (sec) V (m/s) δT (N) m (kg) n T ∗ (sec)

1 1551.4 4.5596 111.8540 11.3672e+3 157.7 2 5.50
2 1512.2 4.3612 112.7372 11.6169e+3 155.8 2 4.50
3 1498.0 4.0918 112.3307 11.3822e+3 151.8 2 4.25

standard 1 1535.1 4.5892 113.5646 11.7217e+3 158.4 2 5.50
standard 2 1450.0 4.4462 120.0000 13.0621e+3 157.8 2 4.50

(a) Relaxed constraints n = 1.1 and T ∗ = 40 sec

(b) Strict constraints n = 2 and T ∗ = 4.5 sec

Figure 80: Optimal configurations of supercavitating vehicles.
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6.6 Conclusions

The vehicle configuration is optimized by integrating several operational requirements in

the optimization process. Specifically, trim conditions in level and turning flight, as well

as a heading-change maneuver are considered as constraints in a system-level optimization

which seeks to maximize range during straight level flight. The requirements on turning

performance and maneuverability affect the final optimal solution when all constraints are

active based on the imposed limitations. Strict requirements reduce the amount of im-

provement in performance as a result of their restricting the feasible design space, while the

solutions with relaxed constraints approach those previously obtained during the optimiza-

tion process without constraints. The integrated approach provides a framework allowing

designers to identify trade-offs as a result of conflicting needs defined by several operating

conditions.

The results in this chapter show how constraints related to the considered maneuver may

introduce significant complexity in the design space, and make the solution of the optimiza-

tion more difficult. A simple optimization strategy is employed to handle a disconnected

design space and to improve the computational efficiency of the process. However, failure

to achieve convergence in certain specific cases indicates that the considered approach may

still not be robust enough, and suggests the need for additional investigations on alternative

optimization techniques better suited for the problem at hand.
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Chapter VII

CONCLUDING REMARKS AND RECOMMENDATIONS

7.1 Conclusions

The main goal of this work is the development of a simulation-based design tool providing

guidelines on basic vehicle configuration, hydrodynamic configuration, and control system

for supercavitating vehicles. For this objective, a design tool capable of configurational

optimization of the vehicle subjected to operational design requirements is developed.

The fundamental engine of the design tool is a dynamic flight simulator. The flight

mechanics model for a 6 DOF rigid vehicle is developed with detailed implementation of

hydrodynamic models. Particularly in this research, the interaction of the vehicle with cav-

ity through control surfaces and afterbody is calculated without simplification in order to

account for cavity memory effects. Two simplified models, Munzer-Reichardt’s and Logvi-

novich’s, are employed to describe the cavity configuration and dynamics. Although they

are widely recognized as simplified and highly approximated ones, they can be conveniently

used as part of the development of a dynamic flight simulator with merit of computational

efficiency and sufficient accuracy for a preliminary study.

Prior to configurational optimization, the developed dynamic flight simulator is first

utilized to investigate trim conditions and dynamic characteristics of supercavitating ve-

hicles. The operating conditions, cavity models and their memory effects has significant

influence on trim conditions for two classes of trimmed flights: level flight and level turning

flight. In particular, the cavity memory effects introduces a favorable stabilizing effect on

the dynamic behavior of the vehicle by providing restoring fins and planing forces. Dynamic

simulations also show that fins-supported flight is desirable in terms of vehicle stability and

control effectiveness, while fins and planing-supported flight shows potential for instability

of a diverging oscillatory motion.

The configurational optimization of a supercavitating vehicle is performed to maximize
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range, turn rate, and their combination at both trimmed flights, where the trim evaluation

process is used as part of an optimization problem. In turn rate case, the maximum turn

rate is defined at the corner speed over entire flight envelope, which is significantly different

from that of a conventional vehicle due to different hydrodynamic coefficients as well as a

unique operational conditions. The optimization process yields design configurations which

significantly improve the vehicle range or maximum turn rate at each flight condition. In

addition, the solutions of the optimization problem not only provide vehicle configuration,

but also the corresponding optimal operating conditions, in terms of velocity and load

factor. However optimal configurations indicate that a trade-off between two performances

is required due to their conflicting requirements.

The configurational optimization is also applied to maneuvering vehicles employing poly-

nomial regression RSM. The maneuver is identified through the solution of a trajectory

optimization problem, which is carried out through a trajectory optimization code devel-

oped at the Politecnico di Milano and here integrated as part of the optimization process.

The computational cost is reduced through the application of polynomial regression RSM.

However, the RSM may suffer from lack of accuracy at the cost of great computational

efficiency, while the direct evaluation of maneuver code may suffer from expensive compu-

tation as well as local minima due to inherent nonlinearity and multi-modal structure of

the design space imposed by maneuvering requirements.

As a final demonstration of integrated design tool, trim conditions in level and turn-

ing flight, as well as the considered reference maneuvers are considered as constraints in a

system-level optimization which seeks to maximize a selected performance index. In general,

the primary objective and constraints will be determined according to the vehicle mission

profile. In this work, maximum range is selected as a primary objective, while level and

turning trim conditions, and reference maneuver are selected as constraints. Hence the re-

quirements on turning performance and maneuverability affect the final optimal solution as

active constraints. For instance, strict requirements reduce amount of improvement in per-

formance by reducing feasible design space. This integrated approach provide remarkable

improvement in performance in the preliminary design phase by bringing various design
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requirements together without pre-restrained design space. In addition, it provides design-

ers a tool to find trade-offs between conflict design performances. Furthermore, during

optimization process, it may play as a useful tool to indirectly explore and identify the ex-

istence of conflicts between feasible design spaces, which may vary according to considered

performance and requirement. Therefore, this approach potentially gives good information

and insight particularly when designers make a decision about a desirable and affordable

performance in early stage of design. In current work, constraints related to maneuver are

extremely complex and reduce the robustness of optimization. As a conceptual attempt, a

simple strategy is developed to increase computational efficiency and improve the capability

to capture global optimum for this class of problems. This simple strategy shows better

solution with better computational efficiency particularly for our problem.

7.2 Recommendations for Future Research

This research has developed a simulation-based design tool to achieve a improved design

by integrating various performances and realistic requirements, which particularly includes

maneuvering flight in the vehicle configurational optimization. With additional efforts in

the following area, the potential advantages of this tool may be further improved.

• Refined optimization For a complex design space, a simple optimization strategy and

polynomial regression RSM were used for global optimum and computational effi-

ciency. This can be further improved with a more accurate metamodelling (e.g., Krig-

ing) capturing the complexity of constraints and global optimum-searching method-

ology (e.g., GA). In addition, considering control system such as the numbers of fins

and the DOF of the cavitator angle leads to a mixed continuous-discrete variable op-

timization problem which requires suitable methods including branch and bound or

approximation methods.

• Refined geometric definition of vehicle In this current work, we used seven variables

for vehicle geometry and control surface dimension. This can be further sophisticated

through a more refined shape definition and non-dimensional parameter. For exam-

ple, a common non-dimensional parameter in missile aerodynamics, the fineness ratio
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(Lveh/(2Rveh)) can be used. Further, non-dimensional parameter such as Lveh/(dc)

can be developed to improve the design process for supercavitating vehicles. Also

the restriction on the basic shape by the cone and cylindrical body can be relaxed or

specified through topology optimization before configurational (sizing) optimization.

• Extension of requirements The posteriori analysis of the structural performance of

the optimized vehicles can be added to allow the assessment of the feasibility of the

considered configurations from a structural perspective. Also, propulsion limitation as

well as sophisticated weight estimation can be included. Particularly, a refined weight

estimation must address the influence of system components such as propulsion.

• Extended refined dynamic simulator 6 DOF rigid body simulator has been established

based on the relatively simple but appropriate hydrodynamic models including cavity

memory effects. The work can be extended to fully account for the coupling between

flexible body dynamics and the fluid, the cavity and the vehicle controls (aero-servo-

elasticity), jet damping and so on. Further refinement may be considered to account

for flights in launching stage through developing partial cavity dynamics. Refined

vehicle dynamic models along with refined hydrodynamics may influence the dynamic

behavior and the stability of the vehicle.

• Extended maneuvering code The current trajectory optimization tool developed at

the Politecnico di Milano can be further refined. For example, the cavitation number

considered as a constant can be relaxed, which affects the vehicle maneuvers par-

ticularly during dive-climb and three-dimensional trajectories. In addition, the tool

can be essentially extended according to more refined flight simulator. For example,

development of flight mechanics model for launching stage can be readily included

into trajectory optimization tool through multi-phase analysis, which will account for

vehicle trajectory over entire flight range and hence address more realistic conditions.

• Stability analysis The dynamic behavior of the vehicle is highly affected by the cavity

memory effects. Therefore a classical dynamic stability based on linearized dynamic
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equations is inappropriate for this class of vehicle. A sophisticated stability analysis to

account for the memory effects, i.e. the time-lag related effects should be developed.

• Structural aspect The more information of vehicle dynamic characteristics from re-

fined models can trigger fundamental structural study of this kind vehicle. From the

results of simulation, structural aspects of the vehicle will be further investigated,

which will enable structural analysis to be based on appropriate and realistic config-

urations and loading conditions.
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