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SUMMARY 

 

Technological advances in prevention, diagnosis, and treatment of diseases help predict 

disease, prolong life, and promote health. However, with the increase in volume and 

complexity of data and evidence, medical decision making can be a complex process. 

Many decisions involve uncertainties and tradeoffs, and can have serious consequences to 

patients and the clinical practice. For example, to design a radiation therapy treatment 

plan, physicians must determine the locations of over 50 seeds to deliver precise dosage 

to the tumor such that the cancer cells are killed while the functionalities of surrounding 

organs are preserved. To make such complex decisions, providers must balance the 

potential harm and benefit of medical interventions. Computational methods such as 

mathematical programming, simulation, and classification have found broad applications 

in these areas. 

 

In this dissertation, we investigate three topics: predictive models for disease 

diagnosis and patient behavior, optimization for cancer treatment planning, and public 

health decision making for infectious disease prevention.  

 

In the first topic, we propose a multi-stage classification framework that 

incorporates Particle Swarm Optimization (PSO) for feature selection and discriminant 

analysis via mixed integer programming (DAMIP) for classification. By utilizing the 

reserved judgment region, it allows the classifier to delay making decisions on ‘difficult-

to-classify’ observations and develop new classification rules in later stage. We apply the 

framework to four real-life medical problems: 1) Patient readmissions: identifies the 

patients in emergency department who return within 72 hours using patient’s 

demographic information, complaints, diagnosis, tests, and hospital real-time utility. 2) 

Flu vaccine responder: predicts high/low responders of flu vaccine on subjects in 5 years 

using gene signatures. 3) Knee reinjection: predicts whether a patient needs to take a 

second surgery within 3 years of his/her first knee injection and tackles with missing 



 xii

data. 4) Alzheimer’s disease: distinguishes subjects in normal, mild cognitive impairment 

(MCI), and Alzheimer’s disease (AD) groups using neuropsychological tests.  

 

In the second topic, we first investigate multi-objective optimization approaches 

to determine the optimal dose configuration and radiation seed locations in brachytherapy 

treatment planning. Tumor dose escalation and dose-volume constraints on critical organs 

are incorporated to kill the tumor while preserving the functionality of organs. Based on 

the optimization framework, we propose a non-linear optimization model that optimizes 

the tumor control probability (TCP). The model is solved by a solution strategy that 

incorporates piecewise linear approximation and local search. 

 

In the third topic, we study optimal strategies for public health emergencies under 

limited resources. First we investigate the vaccination strategies against a pandemic flu to 

find the optimal strategy when limited vaccines are available by constructing a 

mathematical model for the course of the pandemic flu and the process of the 

vaccination. Second, we analyze the cost-effectiveness of emergency response strategies 

again a large-scale anthrax attack to protect the entire regional population.  
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CHAPTER I 

OVERVIEW OF MEDICAL DECISION MAKING 

 
Medical decisions are intrinsically complex. They affect the health and clinical care of 

individuals and they can also influence or facilitate health policy development. Recent 

years have seen numerous technological advances in prevention, diagnosis, and treatment 

of diseases. These innovations assist in preventing illness, prolonging life, and promoting 

health.  However they also add new dimensions and extra complexity to the medical 

decision making process. More parameters, variables, and effects have to be taken into 

account to determine the best course of actions. Since medical decisions have substantial 

consequences and involve uncertainties and trade-offs, decision makers must balance the 

potential harm and benefit of their chosen interventions. Computational methods such as 

mathematical programming, simulation, machine learning and classification have found 

broad applications in this area to assist in determining the best decision(s), understanding 

the alternatives, and estimating the impact of each option. In the following sections, we 

briefly review some emerging challenges and opportunities in applying these 

computational methods. 

 

Disease diagnosis. Historically, diseases were detected when symptoms 

manifested themselves. Screening and surveillance methods including imaging, 

laboratory and blood tests help achieve earlier detection, resulting in improved quality of 

life and/or reduced morbidity. With the advent in human genome sequencing, 

microarrays, omics, and discovery of biomarkers, large-scale biological and clinical data 

are frequently generated.  These big data require powerful and sophisticated classification 

and predictive tools for effective analysis to accelerate the diagnosis process.   

 

Patient behavior. An important and challenging aspect in medical advances 

entails understanding patient behavior and outcome success. Learning patient behavior 

may allow hospitals to improve their care to the patients. One example is to predict the 
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length of stay of arriving patients and the unnecessary return visits in emergency 

department to avoid potential overcrowding.  

 

Treatment decisions. Treatment options are now readily available to many 

diseases that can cure or delay their progression. In some cases treatment decisions are 

one-time decisions, but in other cases treatment decisions recur, often involving the 

coordination of multiple treatment types to achieve control of one or more risk factors. 

An important application area is the design of radiation therapy treatment plans for 

cancer patients.  Here, the decision involves three major pieces 1)  selectingthe radiation 

sources, 2) deciding on the amount of radiation dosage to deliver, and 3) optimizing the 

delivery of the treatment. 

 

Disease prevention. Preventing diseases, especially infectious diseases, requires 

organized efforts of public health and the society. One key challenge is to deliver mass 

vaccine/medications to a population. The design of response logistics must consider the 

impact of epidemic and valuable resource simultaneously. The limited resources should 

be optimally allocated such that the loss from the disease is minimized or mitigated.  

 

In this dissertation, we investigate three topics in medical decision making: 

predictive models for disease diagnosis and patient behavior, optimization for cancer 

treatment planning, and public health decision making for infectious disease prevention.  

 

In the first topic, we propose a multi-stage classification framework that 

incorporates Particle Swarm Optimization (PSO) for feature selection and discriminant 

analysis via mixed integer programming (DAMIP) for classification. By utilizing the 

reserved judgment region, it allows the classifier to delay making decisions on ‘difficult-

to-classify’ observations and develop new classification rules in later stage. We apply the 

framework to four real-life medical problems: 1) Patient readmissions: identifies the 

patients in emergency department who return within 72 hours using patient’s 

demographic information, complaints, diagnosis, tests, and hospital real-time utility. 2) 

Flu vaccine responder: predicts high/low responders of flu vaccine on subjects using gene 
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signatures. 3) Knee reinjection: predicts whether a patient needs to undergo  a second 

surgery within 3 years of his/her first knee injection and tackles with missing data. 4) 

Alzheimer’s disease: discriminates subjects in normal, mild cognitive impairment (MCI), 

and Alzheimer’s disease (AD) groups using neuropsychological tests and biomarkers.  

 

In the second topic, we first investigate multi-objective optimization approaches 

to determine the optimal dose configuration and radiation seed locations in the design of 

high-dose rate brachytherapy treatment plans for cancer patients. Tumor dose escalation 

and dose-volume constraints on critical organs are incorporated to enhance  the dose to 

tumor for better tumor control while minimizing the damage to   healthy organs-at-risks 

and normal tissues. Based on the optimization framework, we propose a non-linear 

optimization model that optimizes the tumor control probability (TCP) directly. The 

model is solved by a solution strategy that incorporates piecewise linear approximation 

and local search. 

 

In the third topic, we study optimal strategies for public health emergencies under 

limited resources. First we investigate vaccine prioritization strategies against a pandemic 

flu to find the optimal strategy when limited vaccines are available by constructing a 

mathematical model for the course of the pandemic flu and the process of the 

vaccination. Second, we analyze the cost-effectiveness of emergency response strategies 

against a large-scale anthrax attack to protect the entire regional population.  
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CHAPTER II 

 OPTIMIZATION-BASED PREDICTIVE MODELS  

 
In this chapter we proposed a multi-stage classification framework incorporated with 

Particle Swarm Optimization (PSO) for feature selection and discriminant analysis via 

mixed integer programming (DAMIP) for classification to find the feature subsets that 

can correctly predict the medical outcomes.  

 

2.1 DAMIP 

2.1.1 Mathematical Programming Based Classification Models 

Classification is a fundamental machine learning problem of identifying the group status 

of new observations, on the basis of a set of observations of which the group 

memberships are known. This approach has been applied frequently in disease diagnosis 

where the disease stage of a patient is detected based on symptoms and lab tests. 

Traditional classification methods including linear discriminant analysis for two 

group classification problems (LDA) [49], quadratic discriminant analysis (QDA) [171], 

and other discriminant analyses, such as logit and probit, have been well studied over the 

past several decades. These models are parametric as they incorporate assumptions about 

the distribution of data. Mathematical-programming-based (MP) classification methods 

emerge in the 1960's, gain popularity in the 1980's, and have grown drastically ever since. 

Most MP approaches are nonparametric, and can be considered a valuable alternative to 

the classical models of discriminant analysis (DA) [178].  

 

2.1.1.1 Linear Programming Classification Models 

In a two group classification, the MP formulations define a hyperplane which allows the 

two groups to be separated [14, 52, 71, 123]. Models including minimizing the sum of 

deviations (MSD), minimizing the maximum deviation (MMD), and minimizing the sum 

of interior distances (MSID) were proposed and tested by computational studies by Freed 
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et al [53]. The objective function is L1-norm distance and is zero if the two groups can be 

perfectly separated by a hyperplane. By introducing gap between two regions and 

normalization constraints, Glover et al [65] proposed the Hybrid Model which includes 

different combinations of deviations in the objective function. Stam and Ungar [177] 

introduced a software package RAGNU for solving two-group classification problems 

using LP methods. Comparisons between the linear programming models and the 

traditional methods including LDA and QDA were performed by previous studies [45, 

81, 159]. To solve the issues with unbounded or trivial solutions [126], variant models 

were proposed, including normalization constraints [64], reverse of group designations 

[160], and regularization method [198]. 

 

Bennett and Mangasarian [19] proposed a robust linear programming model 

which minimizes the average of the deviations, and tested it in the diagnosis and 

prognosis of breast cancer [125]. Effect of introducing second-order terms of the feature 

values in the LP models were investigated by Silva [168] and Wanarat [190]. 

Asparoukhov and Stam [10] proposed MSD models to solve the two-group classification 

problem with binary features, which have been frequently found in medical data. 

  

Freed and Glover [54] extended the two-group LP models onto multi-group 

classification problems. An artificial misclassification cost is introduced for each group, 

and the sum of the misclassification cost for all groups is maximized. It uses single 

discriminant function and requires valuation of the misclassification costs. Bennett and 

Mangasarian [18] proposed a LP model that generates a piecewise-linear separation for 

multiple groups. It returns an error-minimizing separation if no feasible separation exists. 

Gochet et al [66] introduced the goodness and badness of fit for an observation with 

respect to a certain group, and solved a multi-group LP model that minimizes the badness 

of fit.  

 

2.1.1.2 Mixed Integer Programming Classification Models 
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Mixed integer programming generates linear discriminant functions by assigning binary 

variables associated to each observation. In two-group classification problems, binary 

variables can be used to represent the exact number of misclassifications. A basic model 

is to minimize the number of total misclassifications (MM). Variant models including 

hybrid models and model of minimizing the expected misclassification cost have been 

proposed in previous studies [1, 14, 15, 161, 167].  Pavur et al. [149] proposed secondary 

goals which maximize the difference between the discriminant scores of the two groups. 

Glen [61, 62] proposed IP techniques for normalization by adding normalization 

constraints into two-group models which maximizes the classification accuracy (MCA). 

From the MCA model, two-stage approaches that aim to identify the observations which 

are difficult to classify and solve a second model with these observations were  proposed 

in Glen [60] and Sueyoshi [181]. Glen [63] proposed piecewise-linear programming 

models to approximate the nonlinearity of discriminant functions of MCA. 

 

To extend the two-group models on multi-group classification problem, Gehrlein 

[59] proposed two MIP models of maximizing the number of proper classifications: a 

single function classification scheme (DSFC) and a multiple function classification 

scheme (DMFC). Stam and Joachimsthaler [175] studied the performance of MIP models 

compared to traditional methods including MSD, LDF, and QDF. MIP models perform 

better when the group overlap is higher, but there are no general conclusions yet [81, 

175]. 

 

2.1.1.3 Non-Linear Programming Classification Models 

Nonlinear discriminant functions can be generated from MP methods by transforming the 

variables [168], by forming dichotomous categorical variables from the original variables 

[60], or based on piecewise linear function [63]. Silva and Stam [169] proposed a second-

order model by introducing external deviations of each observation to the formulation. 

Stam and Joachimsthaler [176] proposed a class of nonlinear programming methods 

using Lp-norm distance as objective. Mangasarian et al. [124] proposed a non-convex 

model that can be solved in polynomial-time and works successfully for diagnosis of 

breast cancer.  
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Support vector machine (SVM) has been widely studied in the field of 

classification. SVM classification problem can be formulated as a convex quadratic 

programming for two-group classification problems. Mangasarian proposed a general 

mathematical programming framework for SVM (GSVM) [122]. Variant SVM based 

methods have been developed for solving large scale classification problems [21, 55, 

113], and problems in healthcare including breast cancer [114] and genome prediction 

[120]. Hsu and Lin [76] compared the SVM methods for multi-group classification that 

are derived from two-group SVMs.  

 

2.1.2 Anderson’s Model and DAMIP 

In this section, we first introduce Anderson’s model [9], a classification rule which 

incorporates misclassification limits, and then discuss the discriminant analysis – mixed 

integer programming (DAMIP) model which provides the optimal classification rule of 

Anderson’s model [57, 58]. 

 

We introduce the notations used in this chapter. Let ࣩ be the set of observations, 

࣡ be the set of groups, and ℱ be the set of features. Let n, G, and m denote the number of 

observations, groups, and features, respectively. The ith observation in ࣩ is denoted as 

௜ݕ) , (࢏࢞ = 	 ௜ݕ) , ,௜ଵݔ ,௜ଶݔ … ,  is the ࢏࢞ ௜ is group membership and the vectorݕ ௜௠), whereݔ

feature vector. In a classification problem, the discriminant function ݂: (ℱଵ × …× ℱ௠) 	→

	࣡	 is determined, it predicts the group membership of new observations based on their 

features.  

 

2.1.2.1 Anderson’s Model 

Assuming that the group density functions and prior probabilities are known, Anderson 

[9] showed that an optimal rule for the problem of maximizing the probability of correct 

classification subject to the constraints on the misclassification probabilities must be of a 

specific form when discriminating among multiple groups with a simplified model. This 

model is parametric – assuming data of each group follow certain distribution. Let ߨ௚ be 
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the prior probability of group ݃ and ௚݂(࢞) be the conditional probability density function 

of group ݃, ݃ ∈ 	࣡ for the data point ࢞ ∈ ℝ௠. Let ߙ௛௚ ∈ (0, 1), h, ݃ ∈ ࣡, ℎ ≠ ݃ be the 

predetermined limit on the misclassifications where the observations of group ݃ are 

classified to group h. The group assignment decisions of observations that are classified 

into reserved judgment region, denoted by group g = 0 are reserved. The proposed model 

is to seek for a partition {ܴ଴, ܴଵ, … , ܴீ} of ℝ௠, where ܴ௚ is the region assigned to group 

g and ܴ଴ is the reserved judgment region in which the group-assignment decisions of 

observations are reserved/delayed. The formulation of Anderson’s model is described as 

follows. 

 

max 			෍ ௚ߨ
௚	∈	࣡

න 	 ௚݂(ݔ)݀ݔ
	

ோ೒
  

.ݏ 			.ݐ න 	 ௚݂(ݔ)݀ݔ
	

ோ೓
	≤ ,ℎ		∀																						௛௚ߙ ݃ ∈ ࣡, ℎ ≠ ݃ (2.1.1) 

 

Anderson showed that there exist nonnegative constants ߣ௛௚, h, ݃ ∈ ࣡, ℎ ≠ ݃, 

such that the optimal decision rule, which is referred to the Anderson’s rule, is given by 

ܴ௚ = ൜ݔ ∈ ℝ௠: (ݔ)௚ܮ = 	 max௛	∈{଴}∪࣡
ൠ(ݔ)௛ܮ ,		݃	 ∈ {0} ∪ ࣡, (2.1.2) 

where 

(࢞)଴ܮ = 0 

(࢞)௚ܮ = ௚ߨ	 ௚݂(࢞) −	 ෍ ௛௚ߣ ௛݂(࢞)
௛∈࣡,௛ஷ௚

,			݃	 ∈ ࣡ 

For G = 2 the optimal solution can be modeled rather straightforward. However, 

finding optimal ߣ′s for the general case, G ≥ 3, is a difficult problem. The complexity 

increases as G increases [23, 24, 57, 58]. 

 

2.1.2.2 Discriminant Analysis via Mixed Integer Program (DAMIP) 

Gallagher et al. [57, 58] first proposed mixed integer programming formulations, named 

DAMIP, for obtaining the optimal ߣ′s in Anderson's rule. Let ௚ࣩ denote the set of 
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observations in group g, and ݊௚ denote the number of observations in group g. Let ݑ௛௚௜ 

represent the binary variable indicates whether observation i in group g is classified to 

group h, ℎ ∈ {0} ∪ ࣡. Thus ݑ௚௚௜ = 1 denotes a correct classification for observation i in 

group g. Gallagher et al. formulation is presented below.  

 

max				 ෍ ෍ ௚௚௝ݑ
௝∈ࣩ೒௚	∈	࣡

  (2.1.3) 

s.t. ܮ௛௚௝ ௚ߨ	= ௚݂൫ ௝࢞൯ −	 ෍ ௛௚ߣ ௛݂൫ ௝࢞൯
௛∈࣡,௛ஷ௚

, ∀	ℎ, ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.1.4) 

௚௝ݕ  − ௛௚௝ܮ ≤ ൫1ܯ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.1.5) 

௚௝ݕ  ≤ ൫1ܯ − ݃	∀ ,଴௚௝൯ݑ ∈ ࣡,			݆ ∈ ௚ࣩ (2.1.6) 

௚௝ݕ  − ௛௚௝ܮ ≥ ൫1ߝ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.1.7) 

௚௝ݕ  ≥ ,ℎ	௛௚௝, ∀ݑ	ߝ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.1.8) 

 ෍ ௛௚௝ݑ
௛∈{଴}∪࣡

= 1,		 ∀	݃ ∈ ࣡,			݆ ∈ ௚ࣩ (2.1.9) 

 ෍ ௛௚௝ݑ
௝∈ࣩ೒

≤ උߙ௛௚݊௚ඏ,			 ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ (2.1.10) 

௛௚௝ݑ  ∈ {0,1},				 ∀	ℎ ∈ {0} ∪ ࣡, ݃ ∈ ࣡, ݆ ∈ ௚ࣩ   

௛௚௝ܮ  ,ℎ		∀ 			,ݏݎݑ	 ݃ ∈ ࣡,			݆ ∈ ௚ࣩ   

௚௝ݕ  	≥ 0, ∀		݃ ∈ ࣡,			݆ ∈ ௚ࣩ  

௛௚ߣ  ≥ 0  ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ  

 

Constraints (2.1.4) define the loss functions ܮ௚(࢞) in Anderson’s rule, constraints 

(2.1.5)-(2.1.9) guarantee an observation is uniquely assigned to the group with the 

maximum value of ܮ௚(࢞) among all groups, and constraints (2.1.10) set the 

misclassification limits. Brooks [24] and Brooks and Lee [23] showed that DAMIP is 

polynomial solvable for G = 2 but is	ࣨ࣪-complete for a general G.  
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Lee et al. [110] proposed a linear programming approach, named DALP 

(discriminant analysis - linear program), as a heuristic method to obtain the λ’s in 

Anderson's rule. 

 

max				 ෍ ෍(ܿଵݓ௚௝ +	
௝∈ࣩ೒௚	∈	࣡

ܿଶݕ௚௝)  (2.1.11) 

s.t. ܮ௛௚௝ ௚ߨ	= ௚݂൫ ௝࢞൯ −	 ෍ ௛௚ߣ ௛݂൫ ௝࢞൯
௛∈࣡,௛ஷ௚

, ∀	ℎ, ݃ ∈ ࣡, ݆ ∈ ௚ࣩ (2.1.12) 

௚௚௝ܮ  − ௛௚௝ܮ ௚௝ݓ	+ ≥ 0, ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ, ݆ ∈ ௚ࣩ  (2.1.13) 

௚௚௝ܮ  ௚௝ݓ	+ ≥ 0, ∀	݃ ∈ ࣡,			݆ ∈ ௚ࣩ (2.1.14) 

௛௚௝ܮ−  + ௚௝ݕ ≥ 0, ∀	ℎ, ݃ ∈ ࣡, ݆ ∈ ௚ࣩ (2.1.15) 

௛௚௝ܮ  ,ℎ		∀ 			,ݏݎݑ	 ݃ ∈ ࣡,			݆ ∈ ௚ࣩ   

௚௝ݓ	  ௚௝ݕ			, 	≥ 0, ∀		݃ ∈ ࣡,			݆ ∈ ௚ࣩ  

௛௚ߣ   ≥ 0  ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ  

 

where ܿଵ and ܿଶ are constants/weights controlling the emphasis on correctly classifying 

observations or placing them in the reserved judgment region. Constraints (2.1.13), 

(2.1.14) and (2.1.15) link the objective-function variables with the ܮ௛௚௝ variables in such 

a way that correct classification of observations, and allocation of observations into the 

reserved judgment region, are captured by the objective-function variables. 

 

The DAMIP/DALP approaches have been successfully applied to various multi-

group disease diagnosis and biological/medical prediction problems [46, 47, 102, 108, 

109, 110, 111, 154]. 
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2.2 The PSO/DAMIP Machine Learning Framework 

In this section, we review the feature selection algorithms, discuss a heuristic method 

called particle swarm optimization (PSO), and introduce a machine learning framework 

based on PSO for feature selection and DAMIP for classification. 

 

2.2.1 Feature Selection Algorithms 

Feature selection is the process of selecting a subset of the relevant features for the use of 

model construction in data mining problems, including regression, classification, and 

clustering. The basic assumption of feature selection is that data contains redundant or 

irrelevant features. Using too many features in constructing classification models may 

result in over-fitting. An example of the use of feature selection is analyzing DNA 

microarrays, where there are thousands to millions of features, and a few tens to hundreds 

of subjects. The benefits of adopting feature selection techniques are 1) improving the 

prediction performance, 2) reducing over-fitting, 3) providing faster predictor, and 4) 

improving model interpretability.  

 

There are three main categories of feature selection algorithms: wrappers, filters 

and embedded methods. Wrapper methods use a search algorithm to search through the 

space of features and evaluate the subsets by running the classification models on them. 

Filter methods are similar to wrapper methods, but instead of evaluating by the 

classification models, a simple filter that is independent of the classification models is 

evaluated. Many filter methods provide a feature ranking rather than best subsets, where 

top ranking features can be used in classification models. Embedded feature selection 

algorithms are built in the classifier during the model construction. 

 

Feature subset selection which is to find an optimal subset of features in the space 

of features can be considered as a combinatorial optimization problem. Dash and Liu [33] 

described a feature selection algorithm as in four steps: subset generation, subset 

evaluation, stopping criterion, and result validation. Search strategies including branch 
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and bound [72, 139], greedy procedure and sequential search [153, 172, 179], and 

random search [166] have been widely studied.  

 

Tibshirani [185] proposed the Lasso (least absolute shrinkage and selection 

operator) model that estimates the coefficients ݓ௝ by solving the following quadratic 

program: 

min 			෍(ݕ௜ ଴ݓ	− −෍ݔ௜௝ݓ௝
௝∈ℱ

)ଶ
௜∈ࣩ

 

  

.ݏ ௝หݓ෍ห.ݐ
௝∈ℱ

≤  ݐ

݆		∀																																																			ݏݎݑ	௝ݓ								 ∈ {0} ∪ ℱ 

 

where t is a tuning parameter, and ݔ௜௝’s are standardized. Efron et al. [41] proposed the 

LARS (least-angle regression) model which estimates the coefficients in a regression 

model, one ݓ௝ at each step, based on the equiangular directions. LARS is 

computationally efficient, and can be easily modified to produce solutions for other 

estimators, like the Lasso. Both Lasso and LARS are embedded methods. 

 

Bertolazzi et al. [20] proposed the idea of solving feature selection using 

mathematical programming. The problem for the two group classification problem with 

binary features can be formulated as a set cover problem. Glen [62] incorporated an 

additional constraint into the two group mathematical programming model such that the 

optimal hyperplane contains no more than p features. Iannarilli and Rubin [79] propose a 

nonlinear integer program to find the feature subsets in multi-group classification 

problems.  

 

2.2.2 Particle Swam Optimization 

Particle swarm optimization was originally proposed by Kennedy and Eberhart [88]. It 

solves an optimization problem by iteratively trying to improve a candidate solution in 
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the population of candidate solutions, named particles. A particle is moved around in the 

search space based on its position and a randomly generated velocity. Its movement is 

influenced by its best known position (achieves the best objective value) and the best 

known position of the particles in its neighborhood. Let ࢞௜ denote the position and ࢜௜ 

denote the velocity of particle i. Let ࢖௜ be the best position of particle i so far. Initially, 

࢞௜ 	and ࢜௜ 	for each particle i are randomly generated within some predetermined ranges. 

At each iteration, ࢞௜ 	and ࢜௜ are updated by 

࢜௜ 	← 	࢜௜߱ + ௜࢖) − ࢞௜)ܿଵ݀݊ܽݎ(	) + ൫࢖௡∗(௜) − ࢞௜൯ܿଶ݀݊ܽݎ() 

࢞௜ 	← 	࢞௜ +	࢜௜ 

where ࢖௡∗(௜) is the position in the neighborhood of particle i that holds the best objective 

value so far, ݀݊ܽݎ(	) is a random number between 0 and 1, and ߱	, ܿଵ, and ܿଶ are 

parameters. The PSO algorithm can be terminate by criteria including number of 

iterations, target objective value, and the particle movement.  

 

In a feature selection problem, the selection of features can be represented as a 

binary vector, i.e., 1 means that the feature is selected and 0 means that the feature is not 

selected. Kennedy and Eberhart [87] modify the PSO algorithm to work on binary 

variables. Variant PSO based algorithms have been proposed for feature selection [2, 29, 

135, 184, 197].   

 

2.2.3 The PSO-DAMIP Machine Learning Framework 

Wu proposed a modified PSO algorithm to solve the feature selection algorithm where 

the number of selected features is determined [197]. We describe a PSO/DAMIP 

framework which uses the modified PSO algorithm for feature selection and the DAMIP 

model for classification. For particle i, let ࢜௜ denote the velocity and ࢞௜ represent a binary 

vector of length m where m is the number of features. ݔ௜௝ denotes whether the jth feature 

is selected in particle i. In each iteration of the modified PSO algorithm, a DAMIP model 

is solved using the selected features in each particle. Particle i records the current selected 

features ࢞௜ and the best achieved objective value of DAMIP thus far, denoted by ݕ௜. And 

࢜௜and ࢞௜ in the next iteration is then determined by a random combination of ࢜௜ , ࢞௜, ࢖௜, 
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and ࢖௡(௜) in the current iteration where ݊(݅) is the set of particles in the neighborhood of 

particle i. The algorithm is described as follows. 

 

Initialization: 

For each particle i,  

࢞௜ is generated by randomly selecting k 1’s and m-k 0’s, 

࢜௜ is a random number in (− ௠ܸ௔௫ , ௠ܸ௔௫) where ௠ܸ௔௫  is predetermined, 

௜࢖ ← ࢞௜, 

௜ݕ ← 0 . 

 

Update: 

For each particle i in each iteration,  

Run DAMIP model with the selected features by ࢞௜.  

If the objective value ݕ < ′ݕ௜, update  ࢖௜ ← ࢞௜, ݕ௜ ←  .′ݕ

࢜௜ 	← 	࢜௜߱ + ௜࢖) − ࢞௜)ܿଵ	݀݊ܽݎ(	) + ൫࢖௡(௜) − ࢞௜൯ܿଶ	݀݊ܽݎ(). 

࢞௜ is determined by selecting ݇ features with the largest values in ࢜௜. 

 

Termination: 

The PSO algorithm terminates when 1) the maximum number of iterations is 

achieved, or 2) the percentage of the number of moving particles is less than a 

threshold. 

 

We adopt the von Neumann neighborhood topology, a two dimensional grid with 

neighbors to the top, bottom, left and right, to construct the particles. The number of 

particles can be chosen as 9, 12, 16, 25, 36, or other numbers, depending on the size of 

the feature set. We set the parameters in the PSO algorithm: ௠ܸ௔௫ = 1, ߱ = 0.7298, and 

ܿଵ = ܿଶ = 1.49618, which are frequently used in studies.  
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2.3 Multi-stage Classification Model 

In this section, we introduce a multi-stage DAMIP-based classification model 

incorporated with reserved judgment region. In addition to the multi-stage framework, we 

propose modified DAMIP models to improve the performance at each stage. 

 

2.3.1 Multi-stage Classification Model 

The multi-stage classification model aims to improve the performance of the 

PSO/DAMIP framework by utilizing the reserved judgment region in DAMIP. A DAMIP 

model bisects the data set into ‘easy–to-classify’ subset which it classifies to specific 

groups, and ‘difficult-to-classify’ subset which it classifies to reserved judgment region.  

It delays making group-assignment decision to subjects that are difficult to be classified 

by the DAMIP with selected features. In the multi-stage model we propose, those 

subjects are moved to the next stage where new feature set is selected and new DAMIP 

classifier is developed. In such way the multi-stage framework constructs a chain of 

successive classifiers using different subsets of features. The classifier at the ith stage, 

denoted by ௜݂, can be represented by a discriminant function ݂(࢞௜,  which is ,(࢏ࣅ

determined by the feature subset ࢞௜, and the decision variables ࢏ࣅ in DAMIP. More stages 

do not necessarily produce a better model. At each stage, the framework selects the better 

of two models: a single-stage model that solves a DAMIP model without reserved 

judgment region, and a multi-stage model that solves a DAMIP model with reserved 

judgment region at this stage. The algorithm naturally terminates when there are no 

observations in the reserved judgment region. As more stages are processed, fewer 

observations remain for DAMIP and the constructed model consists of too many 

successive classifiers. This may result in over-fitting. Hence we propose two additional 

stopping criteria to terminate the process: 1) the number of observations is less than the 

minimum number of remaining observations, denoted by n, and 2) the maximum allowed 

depth, denoted by d is reached. n and d are pre-determined according to the number of 

observations and the number of selected features in the given data. Let S denote the set of 

observations to be used in a stage. The algorithm can be described as followed: 
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Initialization: 

ܵ ← ࣩ, (࢞ଵ,   .ܵ ଵ) is determined by solving the PSO/DAMIP framework withࣅ

ଵ݂ ← ݂(࢞ଵ,  (ଵࣅ

 

Update at stage i:  

(࢞௜,  .ܵ ௜) is determined by solving the PSO/DAMIP framework withࣅ

௜݂ ← ݂(࢞௜,  (௜ࣅ

ܵ ← ࣩ଴, where ࣩ଴ is the set of observations in the reserved judgment region at stage 

i-1. 

 

Termination 

The multi-stage model terminates at stage i  when 1) |ܵ| ≤ ݊, or 2)  ݅ ≥ ݀.  

if ܵ	 ≠ 	∅,  

Solve a PSO/DAMIP model without reserved judgment region using  ܵ. 

Let ூ݂ାଵ ← ݂(࢞ூାଵ,  .(ூାଵࣅ

      End if. 

Return the chain of classifiers ଵ݂, ଶ݂, …,	 ூ݂ ,	 ( ூ݂ାଵ	, if one exists). 

 

2.3.2 Modified DAMIP Models 

In the DAMIP model introduced by Gallagher [57, 58] and presented in Section 2.1.2, the 

size of the reserved judgment region is bounded by the misclassification rates specified in 

constraint (2.1.9). DAMIP is able to return good classification results through problem 

fine-tuning of the misclassification rates, especially when the groups are unbalanced. To 

ease this fine-tuning process, we envision that the classifiers in our multi-stage model to 

have the ability of balancing misclassifications and ‘difficult to classify’ observations in 

order to maximize the prediction accuracy through a multi-stage structure. For group g, 

let ߙ௚ be the misclassification rate, ߚ௚ be the proper classification rate, and ߛ௚  be the 

‘difficult to classify’ rate, i.e. the rate of reserved judgment region. These three 

parameters can be defined in DAMIP as follows: 
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௚ߙ =
1
݊௚
	 ෍ ෍ ௛௚௝ݑ

௝ఢࣩ೒௛ఢ࣡,௛ஷ௚

 

௚ߚ =
1
݊௚
	 ෍ ௚௚௝ݑ
௝ఢࣩ೒

 

௚ߛ =
1
݊௚
	෍ ଴௚௝ݑ
௝ఢࣩ೒

 

Recall  ݑ௛௚௝ is the 0/1 variable that denotes whether to classify an observation j in group 

g into group h,  Ng is the set of observations of group g, and ng is the size of Ng (i.e,  ng  = 

| Ng |). The three parameters satisfy that ߙ௚ ௚ߚ	+ + ௚ߛ 	= 1 for each group g. We propose 

three modified DAMIP models to 1) better utilize reserved judgment region and 2) 

handle imbalanced groups more efficiently.  

 

Variant 1: The base model 

	min				ݔܽ݉
୥	∈	࣡

 ௚  (2.3.1)ߚ	

s.t.   

௛௚௝ܮ  = ௚ߨ	 ௚݂൫ ௝࢞൯ −	∑ ௛௚ߣ ௛݂൫ ௝࢞൯௛∈࣡,௛ஷ௚ ,  ∀	ℎ, ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.2) 

௚௝ݕ  − ௛௚௝ܮ ≤ ൫1ܯ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.3) 

௚௝ݕ  ≤ ൫1ܯ − ݃	∀ ,଴௚௝൯ݑ ∈ ࣡,			݆ ∈ ௚ࣩ (2.3.4) 

௚௝ݕ  − ௛௚௝ܮ ≥ ൫1ߝ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.5) 

௚௝ݕ  ≥ ,ℎ	௛௚௝, ∀ݑ	ߝ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.6) 

 ෍ ௛௚௝ݑ
௛∈{଴}∪࣡

= 1,		 ∀	݃ ∈ ࣡,			݆ ∈ ௚ࣩ (2.3.7) 

௛௚௝ݑ  ∈ {0,1},				 ∀	ℎ ∈ {0} ∪ ࣡, ݃ ∈ ࣡, ݆ ∈ ௚ࣩ   

௛௚௝ܮ  ,ℎ		∀ 			,ݏݎݑ	 ݃ ∈ ࣡,			݆ ∈ ௚ࣩ   

௚௝ݕ  	≥ 0, ∀		݃ ∈ ࣡,			݆ ∈ ௚ࣩ  

௛௚ߣ  ≥ 0  ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ  

 

The base model aims to generate the optimal classification rule without using 

misclassification limits and reserved judgment. The objective is to maximize the 
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minimum value of correct classification rates ߚ௚ among all groups. It ensures that the 

minority groups are treated equally as the majority groups, and hence it can perfectly deal 

with imbalanced groups. Compared to Gallagher’s DAMIP model mentioned in 2.1.2, it 

removes the misclassification rate constraints (2.1.10) and hence drops the reserved 

judgment region. It produces a lower bound of the prediction accuracy of each group, and 

the optimal values ߚ௚ and the associated ߙ௚ can be used in the misclassification limits in 

DAMIP. 
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Variant 2: The ߚ −  model ߙ

	min				ݔܽ݉
୥	∈	࣡

	൫ߚ௚  ௚൯  (2.3.8)ߙ	−

s.t. ܮ௛௚௝ ௚ߨ	= ௚݂൫ ௝࢞൯ −	 ෍ ௛௚ߣ ௛݂൫ ௝࢞൯
௛∈࣡,௛ஷ௚

, ∀	ℎ, ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.9) 

௚௝ݕ  − ௛௚௝ܮ ≤ ൫1ܯ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.10) 

௚௝ݕ  ≤ ൫1ܯ − ݃	∀ ,଴௚௝൯ݑ ∈ ࣡,			݆ ∈ ௚ࣩ (2.3.11) 

௚௝ݕ  − ௛௚௝ܮ ≥ ൫1ߝ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.12) 
௚௝ݕ  ≥ ,ℎ	௛௚௝, ∀ݑ	ߝ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.13) 

 ෍ ௛௚௝ݑ
௛∈{଴}∪࣡

= 1,		 ∀	݃ ∈ ࣡,			݆ ∈ ௚ࣩ (2.3.14) 

 ෍ ௛௚௝ݑ
௝∈ࣩ೒

≤ උߙ௛௚݊௚ඏ,			 ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ (2.3.15) 

௛௚௝ݑ  ∈ {0,1},				 ∀	ℎ ∈ {0} ∪ ࣡, ݃ ∈ ࣡, ݆ ∈ ௚ࣩ   

௛௚௝ܮ  ,ℎ		∀ 			,ݏݎݑ	 ݃ ∈ ࣡,			݆ ∈ ௚ࣩ   

௚௝ݕ  	≥ 0, ∀		݃ ∈ ࣡,			݆ ∈ ௚ࣩ  

௛௚ߣ  ≥ 0  ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ  

 

The ߚ −  ௚ byߙ and	௚ߚ model maximizes the minimum difference between ߙ

moving a small proportion of observations into reserved judgment region. Instead of 

using misclassification rate constraints, it incorporates both ߙ and ߚ into the objective 

function to keep the reserved judgment region from getting too large  that weakens the 

performance of the model. 
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Variant 3: The ࢽ model  

෍				ݔܽ݉ ௚ߚ		
୥	∈	࣡

  (2.3.16) 

s.t. ܮ௛௚௝ ௚ߨ	= ௚݂൫ ௝࢞൯ −	 ෍ ௛௚ߣ ௛݂൫ ௝࢞൯
௛∈࣡,௛ஷ௚

, ∀	ℎ, ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.17) 

௚௝ݕ  − ௛௚௝ܮ ≤ ൫1ܯ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.18) 

௚௝ݕ  ≤ ൫1ܯ − ݃	∀ ,଴௚௝൯ݑ ∈ ࣡,			݆ ∈ ௚ࣩ (2.3.19) 

௚௝ݕ  − ௛௚௝ܮ ≥ ൫1ߝ − ,ℎ	௛௚௝൯, ∀ݑ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.20) 

௚௝ݕ  ≥ ,ℎ	௛௚௝, ∀ݑ	ߝ ݃ ∈ ࣡,			݆ ∈ ௚ࣩ  (2.3.21) 

 ෍ ௛௚௝ݑ
௛∈{଴}∪࣡

= 1,		 ∀	݃ ∈ ࣡,			݆ ∈ ௚ࣩ (2.3.22) 

 ෍ ଴௚௝ݑ
௝∈ࣩ೒

≤ උߛ௚݊௚ඏ,			 ∀݃ ∈ ࣡ (2.3.23) 

௛௚௝ݑ  ∈ {0,1},				 ∀	ℎ ∈ {0} ∪ ࣡, ݃ ∈ ࣡, ݆ ∈ ௚ࣩ   

௛௚௝ܮ  ,ℎ		∀ 			,ݏݎݑ	 ݃ ∈ ࣡,			݆ ∈ ௚ࣩ   

௚௝ݕ  	≥ 0, ∀		݃ ∈ ࣡,			݆ ∈ ௚ࣩ  

௛௚ߣ  ≥ 0  ∀	ℎ, ݃ ∈ ࣡, ݃ ≠ ℎ  

 

The ߛ model maximizes the prediction accuracy while limiting the size of reserved 

judgment region by adding constraints (2.3.23) on the percentage of reserved judgment ߛ௚  

for each group g. It provides accurate control of the reserved judgment region to avoid too 

many stages in the model. The maximum percentage ߛ௚തതത for each group g is predetermined 

according to the size of the problem. Thus the  ߛ model resembles the original DAMIP 

model (as described in 2.1.2.2) except it constrains the reserved judgment instead of 

constraining the misclassification rate.  

 

In two-group, the modified DAMIP models can be solved in polynomial time. 

The constraints that define (ݔ)ܮ in Anderson’s rule can be written as: 

ଵ௜ܮ = ଵߨ ଵ݂(ݔ௜) − ଶଵߣ ଶ݂(ݔ௜)																																					∀		݅ ∈ 		ࣩ, 

ଶ௜ܮ = ଶߨ ଶ݂(ݔ௜) − ଵଶߣ ଵ݂(ݔ௜)																																					∀		݅ ∈ 		ࣩ,  
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where optimal ߣଵଶ and ߣଶଵ are determined in DAMIP. Wu [197] proved that optimal ߣଵଶ 

and ߣଶଵ in a two group DAMIP model that maximizes the total correct classifications can 

be found by searching on the sorted array  ଶ݂/ ଵ݂ where ଵ݂ and ଶ݂ are the density functions 

in constraint (2.1.4) of group 1 and 2 respectively.   

 

When no reserved judgment region is used in the modified DAMIP model, i.e., 

the base model, we define a partition p on the sorted array ଶ݂/ ଵ݂ such that observations 

having ଶ݂(ݔ)/ ଵ݂(ݔ) 	≤ /(ݔ)are classified to group 1, and observations having ଶ݂ ݌	

ଵ݂(ݔ) > /are classified to group 2. By searching on the sorted array ଶ݂ ݌ ଵ݂, p* can be 

found such that the objective function which is the minimum of the correct classifications 

of the two group in the base model is maximized. An optimal solution of (ߣଵଶ,	ߣଶଵ) then 

can be determined by  గభାఒభమ
గమାఒమభ

=   .∗݌

 

When reserved judgment region is used in the DAMIP models, we define two 

partitions of the sorted array ଶ݂/ ଵ݂ ݌ଵ and ݌ଶ: observations having ଶ݂(ݔ)/ ଵ݂(ݔ) 	≤  ଵ are݌	

classified to group 1, observations having ݌ଵ < ଶ݂(ݔ)/ ଵ݂(ݔ) ≤  ଶ are classified to݌

reserved judgment region, and observations having ଶ݂(ݔ)/ ଵ݂(ݔ) 	>  ଶ are classified to݌	

group 2. By searching on the sorted array  ଶ݂/ ଵ݂ , (݌ଵ∗,		݌ଶ∗) can be found such that the 

objective function is optimized. An optimal solution of (ߣଵଶ,	ߣଶଵ) then can be determined 

by గభ
ఒమభ

= ଵ∗ and ఒభమ݌
గభ

=   .∗ଶ݌

 

The optimal partition may not be unique: any partition ݌ ∈ [݈ଵ, ݈ଶ) results in the 

same objective value as ݌∗ ∈ [݈ଵ, ݈ଶ) where ݈ଵ is the maximum value of  ଶ݂/ ଵ݂ of 

observations that is less than or equal to ݌∗ and  ݈ଶ is the minimum value of ଶ݂/ ଵ݂ of 

observations that is greater than ݌∗. A proper way of determining ݌∗ when searching on 

the sorted array is to choose the mid-point ݌∗ = 	 ௟భା	௟మ
ଶ

. The complexity of this algorithm 

is O(nlogn): it takes O(nlogn) to sort the array ଶ݂/ ଵ݂, and O(n) to search through the array 

to find the partition that reaches the optimal objective. 
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2.4 Medical Predictive Analysis  

We apply the classification framework to real-world medical predictive problems. In this 

section, the results of four applications are presented: readmissions in emergency 

department, flu vaccine responders, knee reinjections, and Alzheimer’s disease. 
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2.4.1 Readmissions in Emergency Department  

This section contains the paper appeared in American Medical Informatics Association 

Proceedings 2012, 495-504. 

 

A Clinical Decision Tool for Predicting Patient Care Characteristics: 
Patients returning within 72 Hours in the Emergency Department 

Eva K. Lee, Ph.D*,1,2,3, Fan Yuan1,2,3, Daniel A. Hirsh, MD4,5, Michael D. Mallory4,6, 
MD, Harold K. Simon, MD, MBA4,5  

1Center for Operations Research in Medicine and HealthCare; 2Industrial & Systems 
Engineering; 3NSF I/UCRC Center for Health Organization Transformation, Georgia 

Institute of Technology; 4Children’s HealthCare of Atlanta, 5Emory University School of 
Medicine, 6Pediatric Emergency Medicine Associates, Georgia.  

 
Abstract 

The primary purpose of this study was to develop a clinical tool capable of 

identifying discriminatory characteristics that can predict patients who will return within 

72 hours to the Pediatric emergency department (PED). We studied 66,861 patients who 

were discharged from the EDs during the period from May 1 2009 to December 31 2009. 

We used a classification model to predict return visits based on factors extracted from 

patient demographic information, chief complaint, diagnosis, treatment, and hospital real-

time ED statistics census. We began with a large pool of potentially important factors, and 

used particle swarm optimization techniques for feature selection coupled with an 

optimization-based discriminant analysis model (DAMIP)  to identify a classification rule 

with relatively small subsets of discriminatory factors that can be used to predict — with 

80% accuracy or greater — return within 72 hours. The analysis involves using a subset of 

the patient cohort for training and establishment of the predictive rule, and blind 

predicting the return of the remaining patients.  

 

Good candidate factors for revisit prediction are obtained where the accuracy of 

cross validation and blind prediction are over 80%. Among the predictive rules, the most 

frequent discriminatory factors identified include diagnosis (> 97%), patient complaint 

(>97%), and provider type (> 57%). There are significant differences in the readmission 
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characteristics among different acuity levels. For Level 1 patients, critical readmission 

factors include patient complaint (>57%), time when the patient arrived until he/she got an 

ED bed (> 64%), and type/number of providers (>50%).  For Level 4/5 patients, physician 

diagnosis (100%), patient complaint (99%), disposition type when patient arrives and 

leaves the ED (>30%), and if patient has lab test (>33%) appear to be significant. The 

model was demonstrated to be consistent and predictive across multiple PED sites.   

 

The resulting tool could enable ED staff and administrators to use patient specific 

values for each of a small number of discriminatory factors, and in return receive a 

prediction as to whether the patient will return to the ED within 72 hours. Our prediction 

accuracy can be as high as over 85%. This provides an opportunity for improving care and 

offering additional care or guidance to reduce ED readmission. 

 

*Corresponding author: eva.lee@gatech.edu 

 

2.4.1.1 Introduction 

Among patients who are discharged from the ED, 3%-4% return within 72 hours. Revisits 

can be related to the nature of the disease, medical errors, and/or care during their initial 

treatment [86, 115, 151].  

 

Early returns to the ED may involve patients who are in a high-risk population, but 

other factors, such as an overcrowded ED, which decreases efficiency, can also contribute 

to the problem [77, 85, 151, 185]. Alessandrini et al analyzed unscheduled revisits and the 

similarity of return visit rates between pediatric ED and general ED [3]. Previous studies 

have identified risk factors for the early return to the ED, including diagnosis, complaints, 

and patient demographic factors [127, 129]. Gordon et al. indicated that initial diagnosis 

may be a useful predictor of early ED return [69]. McCusker et al. developed a screening 

tool called the Identification of Senior at Risk (ISAR) to identify elderly patients at high 

risk of return to the ED [128]. Other efforts have focused on predictors of the return for 

pediatric mental health care [143], Acute Pulmonary Embolism [11], and chronic 

obstructive pulmonary disease (COPD) exacerbations [68].  
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Although these studies have identified factors that appear to be linked to return 

visits, little is known about actually predicting return visits. Studies have applied prediction 

and classification methods to a variety of types of healthcare data [92, 96, 146]. In 1997, 

Gallagher et al. presented a mixed integer programming model (DAMIP) for constrained 

discriminant analysis, an approach to classification with constraints to control the 

likelihood of misclassification [58]. Lee et al. subsequently demonstrated the capability of 

DAMIP on a wide variety of medical problems compared to other classification methods 

[23, 102, 108, 154]. In this study, we leverage DAMIP along with swarm optimization to 

develop a clinical tool capable of identifying discriminatory characteristics that can predict 

patients who will return to the ED within 72 hours.  We contrast the DAMIP results against 

other classification approaches. 

 

2.4.1.2 Methods 

This study was conducted in the EDs of two sites of Children’s Healthcare of Atlanta 

(CHOA): CHOA at Hospital 1 and CHOA at Hospital 2. Included in this study are 66,861 

patients who were discharged from the EDs during the period from May 1, 2009 to 

December 31, 2009. Patients were identified from the ED information system, including 

2519 patients (3.77%) who returned within 72 hours. The patients were classified into two 

groups as the input of the classification model: the patients who revisit within 72 hours, and 

other discharged patients.  

 

The data included 96 factors for each of the patients, including chief and secondary 

complaint, physician diagnosis, 5 factors related to demographic information, 8 factors 

related to patient arrivals, 44 factors related to the treatment and procedures received, and 

35 factors related to the hospital environment.  

 

Factors of patient information, diagnosis, and treatment have been used in previous 

studies to analyze the early return patients [3, 69, 127, 128, 129]. In this study, the 

demographic factors include age, sex, race, and weight; the hospital environment factors 

include day of week, time of arrival, method of arrival, payor status, triage category (acuity 



 

26 

level), number of patients in the ED, number of patients waiting for triage, number of 

available physicians, and number of available beds when the patient arrives; and the 

treatment factors include length of service, waiting time before a physician arrives, number 

of orders, number of requested resources, and whether they have taken CT scan, lab tests, 

radiology test, or IV therapy.  

 

The hospital environment data was extracted from the ED electronic medical record 

and tracking system (Picis ED PulseCheck) into the hospitals enterprise Oracle database. 

For ED descriptors and available patient level details, this occurred on an hourly basis. 

During extraction, variables were recorded and calculations for aggregate indicators were 

written to an Oracle datamart. Final patient data determined after the visit (final icd-9 

codes) were written to the datamart when they became available. 

 

Early return of patients is considered a measure of quality of health care [17]. Many 

studies have indicated that the errors in medical care or patient education may increase the 

risk of early return. However, studies have not adequately analyzed the effect of the 

hospital environment on the patient’s decision to revisit.  Previous studies have used 

logistic linear regression models to find patients at increased risk of return. However, these 

models fail to accurately predict a return visit since the association between the Boolean 

value of return and the risk factors is more complicated than linear association. In order to 

predict the revisit patients among the discharged patients, we used a classification model as 

the predictive model. The implemented classifier is discriminant analysis via mixed integer 

program (DAMIP) which realizes the optimal parameters of the Anderson’s classification 

model [9, 58, 108]. DAMIP aims to maximize the overall prediction accuracy using a set of 

factors, subject to an upper bound on the misclassification rate. In the next section, we 

describe the DAMIP-based machine learning framework. 

 

Machine Learning Framework for Establishing Predictive Rules 

The computational design of our machine learning framework focuses on the ‘wrapper 

approach’, where a feature selection algorithm is coupled to the DAMIP 

learning/classification module. The feature selection, classification and cross validation 
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procedures are coupled such that the feature selection algorithm searches through the space 

of attribute subsets using the cross-validation accuracy from the classification module as a 

measure of goodness. The attributes selected can be viewed as critical clinical/hospital 

variables that drive certain diagnosis or early detection. This allows for feedback to clinical 

decision makers for prioritization/intervention of patients and tasks.  

 

Optimization-Based Classifier: Discriminant Analysis via Mixed Integer Program 

Suppose we have ݊ entities from ܭ groups with ݉ features. Let ऑ = {1, 2,…  be the {ܭ,

group index set, ङ = {1, 2, … , ݊} be the entity index set, and ऐ = {1, 2,… ,݉} be the 

feature index set.  Also, let ङ௞ , ݇ ∈ ऑ and ङ௞ ⊆ ङ, be the entity set which belong to group 

݇.  Moreover, let ऐ௝, ݆ ∈ ऐ, be the domain of feature j, which could be the space of real, 

integer, or binary values.  The ݅th entity, ݅ ∈ ङ, is represented as 

௜ݕ) , ࢞௜) = ௜ݕ) , ,௜ଵݔ … , (௜௠ݔ ∈ ऑ × ऐଵ ×⋯× ऐ௠, where ݕ௜ is the group to which entity ݅ 

belongs, and (ݔ௜ଵ, … ,  ௜௠) is the feature vector of entity ݅.  The classification model finds aݔ

function ݂: (ऐଵ ×⋯× ऐ௠) → ऑ to classify entities into groups based on a selected set of 

features. 

  

Let ߨ௞	be the prior probability of group ݇	and ௞݂(࢞) be the conditional probability 

density function for the entity  ࢞ ∈ ℝ௠ of group ݇, ݇ ∈ ऑ.  Also let ߙ௛௞ ∈ (0,1), ℎ, ݇ ∈

ऑ, ℎ ≠ ݇,	be the upperbound for the misclassification percentage that group h entities are 

misclassified into group ݇.  DAMIP seeks a partition { ଴ܲ, ଵܲ, … , ௄ܲ} of ℝ௄ , where ௞ܲ , 

݇ ∈ ऑ, is the region for group ݇, and ଴ܲ is the reserved judgement region with  entities for 

which group assignment are reserved (for potential further exploration).  

 

Let ݑ௞௜ be the binary variable to denote if entity ݅ is classified to group ݇ or not.  

Mathematically, DAMIP can be formulated as    
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(Nonlinear DAMIP) [58, 108] 

max ෍ݑ௬೔௜
௜∈ङ

  (1) 

s.t. ܮ௞௜ = ௞ߨ ௞݂(࢞௜) − ෍ ௛݂(࢞௜)ߣ௛௞
௛∈ऑ,௛ஷ௞

 ∀	݅	 ∈ ङ, 
݇ ∈ ऑ 

(2) 

௞௜ݑ  = ቄ10		
if	݇ = arg max{0, :௛௜ܮ ℎ ∈ ऑ}
otherwise                             

 ∀	݅ ∈ ङ, ݇ ∈ {0} ∪ ऑ (3) 

 ෍ ௞௜ݑ
௞∈{଴}∪ऑ

= 1 ∀	݅ ∈ ङ (4) 

 ෍ ௞௜ݑ
௜:	௜∈ङ೓

≤ ,ℎ	∀ ⌊௛௞݊௛ߙ⌋ ݇ ∈ ऑ, ℎ ≠ ݇ (5) 

௞௜ݑ  ∈ {0,1}  ∀	݅ ∈ ङ, ݇ ∈ {0} ∪ ऑ  
݅	∀ ௞௜ unrestricted in signܮ  ∈ ङ, ݇ ∈ ऑ  
௛௞ߣ  ≥ 0 ∀	ℎ, ݇ ∈ ऑ, ℎ ≠ ݇  

 

DAMIP has many appealing characteristics including: 1) the resulting classification 

rule is strongly universally consistent, given that the Bayes optimal rule for classification is 

known [97]; 2) the misclassification rates using the DAMIP method are consistently lower 

than other classification approaches in both simulated data and real-world data; 3) the 

classification rules from DAMIP appear to be insensitive to the specification of prior 

probabilities, yet capable of reducing misclassification rates when the number of training 

entities from each group is different; 4) the DAMIP model generates stable classification 

rules regardless of the proportions of training entities from each group [23, 58, 102, 108, 

154]. 

 

In the ED readmission classification experiments and analysis, there are two groups 

of patients: Group 1: non-returning, Group 2: return within 72-hour. Each entity is a 

patient, and each feature is the factor. Patient data from the period May 1, 2009 to 

December 31, 2009 were randomly divided into two sets: a training set and an independent 

set for blind prediction. The DAMIP classifier is first applied to the training set to establish 

the classification rule. The accuracy of the rule is first gauged by performing 10-fold cross 

validation, and can be further gauged by applying the rule to the independent set of patient 

data for blind prediction. Blind prediction is performed only when the 10-fold classification 

for the training set satisfies a pre-set minimum accuracy criteria. To gauge the performance 
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of our classifier, we compare the results with linear discriminate analysis, Naive Bayesian 

classifier, support vector machine, logistic regression, decision tree, random forest and 

nearest shrunken centroid approaches that are implemented in the R© 

language/environment. 

 

By design, the machine learning process strives to identify the smallest set of 

discriminatory features that offers reliable prediction. In our application, a data stream can 

be fed automatically into our machine learning framework. In other applications, e.g., using 

hand-held device for early diagnostics etc., it is desirable that the final prediction rule 

depends on relatively few factors so that it is not a burden on the healthcare staff to enter 

the information.  Regardless of the input of data stream, these discriminatory features 

impact decisions for hospital policy, and thus should contain only the critical factors.  

 

Incorporating the Feature Selection Algorithm  

We developed a heuristic algorithm using particle swarm optimization (PSO) to iteratively 

search among subsets of factors. PSO, originally developed by Kennedy and Eberhart [88, 

152], is an evolutionary computation technique for solving optimization problems.  Below, 

we describe the DAMIP/PSO machine learning framework.  

 

Let n be the desired number of factors to be selected. Let m be the size of the 

particles population.  Let xi and pi be binary vectors representing sets of chosen factors. Let 

vi be a real-value vector representing the velocity of particle i. vi is randomly assigned 

during initialization. 

 

Associated with each particle is a current set of factors, xi, and a record of the best 

classification accuracy with its corresponding factor set, pi, reached thus far by this particle. 

We use a Von Neumann topology with 36 particles (6 × 6 block). Each particle’s 

neighborhood is defined by its top, bottom, left and right.   

 

At each iteration, the factor set for a particle is updated by the following algorithm: 
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o Step 1 Perform DAMIP classifier for cross validation on the training data using the 

selected set of factors xi; 

o Step 2 If the overall accuracy and the accuracy of each group in the 10-fold cross 

validation are over a pre-set value (e.g., > 70%), perform blind prediction using this 

rule on the independent set and output results. Otherwise go to Step 3.  

o Step 3 Update the velocity of the particle: The new velocity vi is obtained from the 

current velocity, the current factor set, and the best accuracy of this particle and its 

neighborhood and their corresponding factor set: 

    ,)(2211 iiNiiii xprcxprcvv 
 

where ω, c1 and c2 are fixed positive coefficients, r1 and r2 are randomly generated 

in the range (0,1), N(i) is the neighborhood of particle i. 

o Step 4 The highest n velocity entries of this new vi form the associated new factor 

set of this particle. 

 

The algorithm updates the m particles sequentially in each iteration, and terminates 

when it reaches a pre-determined maximum number of iterations. 

 

We implemented the DAMIP classifier and PSO feature selection algorithm in C++.  

In this study, the particle population is 36, and the machine learning process consists of 

1000 DAMIP/PSO iterations (= one complete learning cycle). Each cycle requires an 

average of 1,080 CPU seconds. The experiment is repeated 100 times with randomly 

selected starting subsets of factors to strategize our search space and to avoid local 

optimum.  

 

The output of the algorithm is a collection of discriminatory subsets of factors that 

are good candidates for the prediction of return visits within 72 hours. While users can set 

the desired number of discriminatory factors, the size of factors reported herein < 10) is 

reflected from our experimental findings (see Figure 2.4.1).  
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2.4.1.3 Results 

Due to the diversity of patients in the two hospital sites, we ran the classification model 

separately for each site. There were 27,534 ED patients at Hospital 1, 996 (3.62%) of 

whom returned within 72 hours; and there were 39,327 at Hospital 2, 1523 (3.87%) of 

whom returned within 72 hours. All patients went home after the first ED visit. In our 

analysis, the training set is 15,000 and 20,000 respectively, and the blind prediction set 

consists of the rest of the patients.  

 

Table 2.4.1. Selected characteristics of patient information 

 CHOA at Hospital 1 CHOA at Hospital 2 

 
Total 
number 

Percent 
(%) 

% of return 
in 72 hours 
(%) 

Total 
number 

Percent 
(%) 

% of return in 
72 hours (%) 

Total 27534 100 3.62 39327 100 3.87 
Day of week       
  Monday 4036 14.66 3.20 5835 14.84 3.75 
  Tuesday 3910 14.20 3.12 5514 14.02 3.46 
 Wednesday 3782 13.74 3.64 5481 13.94 3.45 
  Thursday 3794 13.78 3.61 5334 13.56 3.86 
  Friday 3683 13.38 4.13 5323 13.54 4.30 
  Saturday 4061 14.80 4.14 5660 14.39 4.47 
  Sunday 4268 15.50 3.51 6180 15.71 3.82 
       
Time of arrival         
  20:00-08:00 10681 38.79 3.95 16013 40.72 4.05 
  08:00-12:00 4110 14.93 3.58 5854 14.89 3.79 
  12:00-16:00 5772 20.96 3.50 8139 20.70 3.70 
  16:00-20:00 6971 25.32 3.23 9321 23.70 3.78 
       
Acuity Level       
1 1333 4.84 2.32 637 1.62 2.67 
2 8514 30.92 2.65 8382 21.31 3.30 
3 12060 43.80 3.91 18781 47.76 3.89 
4 5583 20.28 4.76 11372 28.92 4.36 
5 44 0.16 4.55 155 0.39 1.29 
 

The patient factors were acquired from the patient records and the ED information 

system. Table 2.4.1.1 shows the selected patient information for the two sites. We 

categorized free text factors including method of arrival, patient complaint, physician 

diagnosis, race, payor code, financial class, and disposition type via natural language 
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processing, and then ranked the categories for each factor based on the corresponding 

revisit rate.  

 

Good candidates for revisit prediction are obtained by filtering the good results 

among the 100 complete learning cycles. These results are filtered using the criteria that the 

accuracy of cross validation and blind prediction for both groups are over 70%.  Based on 

the filtered criteria, we found 7 sets of discriminatory factors for Hospital 1 and 70 sets of 

discriminatory factors for Hospital 2 with set size less than 10. The most frequent factors 

appearing among these discriminatory sets are listed in Table 2.4.1.2.  The factors patient 

chief complaint, patient diagnosis, and provider type appear in the list of both sites.

 

Table 2.4.1.2. Factors most frequently occurring among the 7 sets of discriminatory factors 

for predicting <72-hour returns at Hospital 1, and those most frequently occurring among 

the 70 sets of discriminatory factors for predicting <72-hour returns at Hospital 2. 

Hospital 1 Hospital 2 
Factor Name Frequency 

(%) 
Factor Name Frequency 

(%) 
Patient diagnosis 7 (100%) Patient diagnosis 68 (97.14%) 
Patient chief complaint 7 (100%) Patient chief complaint 68 (97.14%) 
Training Physician: Resident or 
Fellow. 

4 (57.14%) Physician Extender (i.e., 
nurse practitioners or others) 

51 (72.86%) 

If IV antibiotics was ordered. 4 (57.14%) If the patient received a 
radiological test 

27 (38.57%) 

Attending Provider Ratio (The 
provider ratio (PR) determines the 
volume of patients that can be 
evaluated and treated by the 
physician providers).  See 
http://www.ncbi.nlm.nih.gov/pubm
ed/11691670 for reference  

3 (42.86%) Expectant Patient: This is a 
patient is on the way to the 
ED who was called in by a 
care provider. 

21 (30%) 

Patient has been in ED in last 72 
hours 

3 (42.86%) Time it took when the first 
medical doctor arrived until 
the attending arrived 

19 (27.14%) 

Primary nurse involved 2 (28.57%) Patients who arrived 
ambulance 

14 (20%) 

Time when the patient got an ED 
bed to time until first medical 
doctor arrived 

2 (28.57%) Number of triaged patients at 
time 

13 (18.57%) 

Number of nursing resources 
requested 

2 (28.57%)   
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Figure 2.4.1 depicts the highest accuracy values achieved in DAMIP/PSO cross 

validation and blind prediction. The classification accuracy increases as the number of 

factors selected in the classification rule increases, and the highest accuracy was achieved 

when 4 to 10 factors were used.  Figure 2.4.1 also shows that performance levels off as the 

number of factors increases. We include both the cross-validation and the blind prediction 

results to reflect the consistency of predictive power of the developed classification rules.  

 

 
Figure 2.4.1. The highest prediction accuracy obtained via DAMIP/PSO for the two 

hospital sites. The solid lines represent the accuracy of cross validation, and the dashed 

lines represent the blind prediction accuracy. H1: Hospital 1, H2: Hospital 2, CV: 10-fold 

cross validation, BT: blind prediction.  

 

Table 2.4.1.3 contrasts DAMIP/PSO results with other classification methods. 

Uniformly other classification methods suffer from group imbalance and the classifiers 

tend to place all entities into the Non-return group. In particular, linear discriminant 

analysis, support vector machine, logistic regression, classification trees, and random forest 

placed almost all patients (> 99%) into the “Non-return” group, by sacrificing the very 

small percentage of “Return” patients. This table also showcases the importance of 

reporting the classification accuracy for each group, in addition to the overall accuracy.  
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Acuity level is a crucial indicator of ED patient treatment resource and service 

needs. To better understand the 72-hour readmission characteristics of patients across 

different acuity levels, we perform DAMIP/PSO classification on patients with acuity level 

1, 2, 3, and 4/5 – level 1 being the highest acuity.  We combine Levels 4 and 5 patients in 

this analysis since there are only 44 and 155 Level 5 patients in each hospital respectively. 

The classification results, reported in Table 2.4.1.4, show higher classification and 

predictive accuracy for Level 1 and Level 4/5 patients. This may be explained by the fact 

that these patients have less diagnosis uncertainty than those in Levels 2 and 3.  

 

Specifically, patients with Level 1 acuity have the lowest re-admission percentage 

(Table 2.4.1.1). These patients have the highest acuity, and thus require the most urgent 

rapid service. The prediction accuracy for these patients can be as high as 88%. Patients at 

Levels 4 and 5 have the highest re-admission percentage (Table 2.4.1.1). These patients 

have less pain severity, and are more concerned with quality of service. The most frequent 

factors shown in the discriminatory sets at the two hospitals are listed in Tables 2.4.1.5a, 

and 2.4.1.5b. We observe similarities between the two hospital sites for Level 1 patients 

(and Level 4/5 patients) critical readmission factors. For Level 1 patients, among the 

acquired discriminatory sets with good predictive results, time when the patient arrived 

until he/she got an ED bed, patient complaint, type/number of providers, and patients 

receive radiologic/CT scans are common and most frequent factors in both sites.  For Level 

4/5 patients, patient diagnosis, patient complaint, disposition type when patient arrives and 

leaves the ED, if the patient has a lab test, and if an IV was ordered are among the most 

critical readmission factors in both hospitals.  
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Table 2.4.1.3. Comparison of DAMIP/PSO results against other classification methods. 

 
10-fold Cross Validation 

Accuracy 
Blind Prediction Accuracy 

Hospital 1 Training Set: 15,000 Blind Prediction Set: 12,534 

Classification Method Overall 
Non-
return 

Return Overall 
Non-
return 

Return 

Linear Discriminant 
Analysis 

96.3% 99.6% 5.5% 96.1% 99.6% 5.3% 

Naïve Bayesian 51.6% 50.3% 87.0% 51.7% 50.2% 89.2% 
Support Vector 
Machine 

96.5% 100.0% 0.0% 96.2% 100.0% 0.0% 

Logistic Regression 96.5% 99.8% 5.9% 96.3% 99.8% 8.3% 
Classification Tree 96.6% 99.9% 4.4% 96.3% 100.0% 3.0% 
Random Forest 96.6% 100.0% 1.5% 96.3% 100.0% 1.9% 
Nearest Shrunken 
Centroid 

62.7% 62.9% 50.0% 48.7% 48.2% 64.7% 

DAMIP/PSO 83.1% 83.9% 70.1% 82.2% 83.1% 70.5% 
Hospital 2 Training Set: 20,000 Blind Prediction: 19,327 

 Overall 
Non-
return 

Return Overall 
Non-
return 

Return 

LDA 96.2% 100.0% 0.1% 96.0% 100.0% 0.3% 
Naïve Bayesian 53.4% 52.2% 83.9% 54.4% 53.2% 84.2% 
SVM 96.3% 100.0% 0.0% 96.0% 100.0% 0.0% 
Logistic Regression 96.3% 100.0% 0.0% 96.1% 99.9% 3.3% 
Classification Tree 96.2% 100.0% 0.0% 96.0% 100.0% 0.0% 
Random Forest 96.2% 100.0% 0.5% 96.1% 100.0% 0.5% 
Nearest Shrunken 
Centroid 

60.5% 60.6% 50.1% 45.8% 45.1% 61.2% 

DAMIP/PSO 80.1% 81.1% 70.1% 80.5% 81.5% 70.0% 
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Table 2.4.1.4. DAMIP/PSO classification results for patients in each of the acuity levels.  

 Training set Testing set 

Acuity Size 
10-fold Cross Validation 

Accuracy 
Size Blind Prediction Accuracy 

Hospital 1  Overall Non-
return Return  Overall Non-

return Return 

1 700 87.9% 82.9% 92.8% 633 85.1% 85.3% 76.4% 
2 5000 76.0% 76.4% 71.4% 3514 73.2% 73.6% 71.6% 
3 6000 80.2% 81.0% 70.2% 6060 80.3% 81.1% 70.3% 
4 and 5 3000 85.2% 81.1% 89.2% 2627 81.0% 81.0% 81.3% 

Hospital 2  Overall Non-
return Return  Overall Non-

return Return 

1 350 77.2% 75.6% 78.8% 287 76.4% 76.4% 75.0% 
2 4500 74.8% 75.3% 70.0% 3882 74.2% 74.7% 70.5% 

3 
1000

0 
77.5% 78.2% 70.1% 8781 77.5% 78.2% 70.0% 

4 and 5 6000 80.1% 83.7% 76.5% 5527 78.3% 78.4% 76.2% 
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Table 2.4.1.5a. Factors most frequently occurring among the 236 sets of discriminatory 

factors for predicting <72-hour returns for acuity-level 1 patients at Hospital 1, and those 

most frequently occurring among the 42 sets of discriminatory factors for predicting <72-

hour returns for acuity-level 1 patients at Hospital 2. 

Hospital 1 Hospital 2 
Factor Name Frequency (%) Factor Name Frequency (%) 
Patient diagnosis 230 (97.46%) Time when the patient 

arrived until he/she got a 
bed 

27 (64.29%) 

Time when the patient 
arrived until he/she got a 
bed 

228 (96.61%) Number of beds 
reserved at time 

24 (57.14%) 

Payor type 180 (76.27%) Patient chief complaint 24 (57.14%) 
Patient chief complaint 178 (75.42%) Physician extender (i.e.. 

Nurse Practitioners or 
others). 

22 (52.38%) 

Number of residents in ED 129 (54.66%) Month 16 (38.1%) 
Number of medical 
students in ED 

106 (44.92%) If the patient received a 
radiologic test 

12 (28.57%) 

If the patient received a CT 
scan for his/her head 

80 (33.9%) Patient’s weight 11 (26.19%) 

If the patient had a rapid 
strep test 

77 (32.63%) If the patient received 
Chest X-Ray 

11 (26.19%) 

Number or waiting patients 
divided by the number of 
available beds29  

66 (27.97%)   
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Table 2.4.1.5b. Factors most frequently occurring among the 246 sets of discriminatory 

factors for predicting <72-hour returns for acuity-level 4/5 patients at Hospital 1, and those 

most frequently occurring among the 491 sets of discriminatory factors for predicting <72-

hour returns for acuity-level 4/5 patients at Hospital 2. 

Hospital 1 Hospital 2 
Factor Name Frequency (%) Factor Name Frequency (%) 
Patient diagnosis 246 (100%) Patient diagnosis 491 (100%) 
Patient chief complaint 246 (100%) Patient chief 

complaint 
487 (99.19%) 

Disposition type when 
patient first arrives 

206 (83.74%) Disposition type when 
patient leaves 

399 (81.26%) 

if the patient 
comprehensive metabolic 
panel 

122 (49.59%) Called in, patient is on 
way  

210 (42.77%) 

Disposition type when 
patient leaves 

72 (29.27%) If the patient had any 
lab tests done  

166 (33.81%) 

Number of patients in bed 
waiting to be discharged 

69 (28.05%) Disposition type when 
patient first arrives 

163 (33.2%) 

Time when patient arrived 
until a first medical doctor 
arrived on scene 

44 (17.89%) Month 145 (29.53%) 

Arrival method 43 (17.48%) Acuity level when the 
patient leaves 

138 (28.11%) 

If an IV of ondansetron 
was ordered 

42 (17.07%) If an IV of fluids was 
ordered 

117 (23.83%) 
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2.4.1.4 Discussion and Conclusion 

In this study, we developed a machine-learning framework combining a PSO feature 

selection algorithm and a DAMIP classifier to predict patients who will return to the ED 

within 72 hours. We used this model to select sets of discriminatory factors to establish 

classification rules, and to develop prediction criteria based on these rules that differentiate 

the revisit patients from the rest of the patients with predictive accuracy over 80%.  

 

The input factor pool included patient information, patient complaint, physician 

diagnosis, operations and treatment, and hospital real-time utilization records. For Level 1 

patients, among the acquired discriminatory sets with good predictive results, time when 

the patient arrived until he/she got an ED bed, patient complaint, type/number of providers, 

and patients receive a radiologic/CT scan are common and most frequent factors in both 

sites.  For Level 4/5 patients, physician diagnosis, patient complaint, disposition type when 

patient arrives and leaves, if the patient has a lab test, and if an IV was ordered are among 

the most common factors across the two hospitals. We also note that some key hospital 

environment factors (e.g., time when the patient arrived until he/she got an ED bed, 

type/number of providers) appear among the most frequently chosen factors. Besides the 

common factors, the predictive factors for the two sites are different due to the diversity of 

the patients and the hospital characteristics. This supports the point indicated by Joynt et al. 

that the hospital location may affect readmission of the patients [82].  

 

Our classification model was demonstrated to be consistent when the hospital 

environment varies, and its objective can be extended from short-term revisit to any class 

of revisit. The DAMIP/PSO machine learning framework is generalizable for predictive 

analytics across different hospital sites. It can adapt to different feature input and identify 

the appropriate set of discriminatory features for consistent prediction.  

 

Among the ED patients, about 3-4% are return patients. Their returns may be 

related to their first visit experience. Being able to anticipate and predict return patterns 

may facilitate quality of ED service and quality of patient care and allow ED providers to 
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intervene appropriately.  The DAMIP/PSO classifier is able to blind predict with over 80% 

accuracy, and outperforms other classifiers.  

 

Based on the set of discriminatory factors with high accuracy, we developed a 

decision support tool for predicting patients returning within 72 hours. When implemented 

in clinical settings, the tool can potentially acquire data in real-time from the ED database 

and acquire the current hospital resource status. As the relevant factors for a patient are 

entered by the ED staff or through automated data-streaming, the system will return 

readmission prediction status of the patient.  Since each discriminatory set of factors 

corresponds to a delivery or policy change, and requires action from ED staff, we would 

expect the set of discriminatory factors to be rather small, as discovered in our study.    

 

 
Figure 2.4.2. A sample user interface of a prediction tool for 72-hour return. Key features 

are typed in or selected. 

 

 Figure 2.4.2 shows a simple user interface based on a set of factors that predicted 

return visits with accuracy over 80%. After the required patient data is entered, and the 

employee clicks the “predict” button, the tool will retrieve the hospital related factors from 

the hospital database system, and present the revisit prediction result based on the 

implemented criteria. Such a computerized system allows real-time decision making, and 

ongoing learning and retraining of the predictive rule (and thus the discriminatory factors) 

as the ED data evolves over time.  
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We caution that these are only preliminary results based on a subset of patients in 

predicting readmission cases. Currently, we are conducting more detailed analysis where 

different patient cases will be drawn for training, and consistency among the discriminant 

features will be analyzed. Although we obtain better predictive accuracy (> 85%) when 

more discriminatory factors are selected, it is important to keep in mind that using too 

many factors is impractical. 
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2.4.2 Flu Vaccine Responders 

In this section, we apply the classification model to predict the flu vaccine responders. The 

analysis and results of three data sets are presented. 

 

2.4.2.1 High Responders versus Low Responders 

HAI stands for “hemagglutination inhibition”. Hemagglutination happens when the virus 

envelope protein called hemagglutinin (HA) binds to the sialic acid receptors on cells 

causing the formation of a lattice. When there is no virus or very low amount of virus, the 

hemagglutination will not occur and the red blood cells will sink to the bottom of a well 

and form a visible button. The amount of antibody in a serum by mixing several dilutions 

of the serum (in different wells) with a fixed concentration of virus that normally causes 

hemagglutination can be found through test: If a button (red blood cells that sank to the 

bottom) can be seen, it means that the antibody level on the serum on a given dilution is 

enough to prevent the hemagglutination of red blood cells. The objective of HAI assay is to 

detect the highest dilution of serum (that contains the Influenza-antibodies) that prevents 

hemagglutination. Therefore, this assay is an indirect measure of antibody level for each 

virus strain. 

 

Each shot of vaccine contains 3 flu virus strains and each virus strain has its own 

HAI titer response. We will use the “maximum response” which is the “maximum log2 

fold-change among all 3 strains”. If a vaccinee has a log2 HAI response (day 28/day0) of 1, 

2 and 0 for strain 1, 2 and 3, respectively, the maximum HAI response will be equal to 2, 

which is a 4-fold increase HAI response. 

 

We operationally classified the vaccinees as ‘low HAI responders’ or ‘high HAI 

responders’ based on whether or not a fourfold increase occurred after vaccination. The 

high or low responder is measured by Method 1 (4-fold increase on day 28 versus day 0 

and 1:40 titers on day 28 for at least one strain out of 3). 
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It takes 28 days to identify a patient’s HAI responses after he/she takes the flu shot 

vaccine. In this study, gene signatures are collected by the Emory Vaccine Center for each 

subject before the vaccination and at day 3 and day 7 after the vaccination. We propose a 

machine-learning model that can predict the maximum HAI responders using the gene 

signatures. This scheme can correctly predict ≥ 80% of the patients as being high or low 

responders, and shorten the time of measuring the antibody levels for the flu shot from one 

month to a few days. This could significantly accelerate the process of flu shot 

development. 

 

2.4.3.2 Analysis 1 

This study involves 213 subjects from 5-consecutive-year trials (2007-2011) in Analysis 1, 

among which 141 subjects are with high responses and 72 subjects are with low responses. 

Each subject’s maximum HAI response of all 3 strains and responder (High or Low) on day 

28 are given. For each subject, we selected 54,613 gene signatures that correlated with the 

magnitude of HAI response on day 3 or day 7. 170 subjects are collected in day 3 data set 

and 200 subjects are collected in day 7 data set as shown in Table 2.4.2.1. We aim to use 

minimum number of gene signatures to predict high responders versus low responders. 

 

Table 2.4.2.1. Number of subjects of high/low responders in day 3 / day 7 data sets 

Year Total 
(Day 3 / Day 7) 

High Responders  
(Day 3 / Day 7) 

Low Responders 
(Day 3 / Day 7) 

2007 9 (9/9) 7 (7/7) 2 (2/2) 
2008 28 (26/26) 21 (19/19) 7 (7/7) 
2009 28 (27/28) 16 (16/16) 12 (11/12) 
2010 75 (74/66) 64 (63/55) 11 (11/11) 
2011 73 (34/71) 33 (17/32) 40 (17/39) 
Total 213 (170/200) 141 (122/129) 72 (48/71) 

 

In the initial analyses, 2/3 of the subjects are randomly selected as training set for 

10-fold cross-validation and the remaining subjects are used as testing set for blind 

prediction. With the PSO/DAMIP framework, we identified 13 and 6 sets of genes 

containing no more than 5 gene signatures which achieve over 80% accuracy in both 10-
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fold cross-validation and blind prediction using day 3 and day 7 data sets respectively as 

shown in Table 2.4.2.2.  

 

Table 2.4.2.2.a. Prediction accuracy using day 3 data (13 sets) 

Gene Signature Set 
10-Fold Cross-Validation (CV) Blind Prediction (BT) 

Overall High Low Overall High Low 
200628_S_At 
202278_S_At 
203066_At 
212960_At 

0.818 0.756 0.839 0.814 0.818 0.812 

201089_At 
210427_X_At 
212960_At 
231420_At 

0.811 0.756 0.830 0.925 0.818 1.000 

1553798_A_At 
201089_At 
212960_At 
214279_S_At 

0.811 0.756 0.830 0.814 0.818 0.812 

210823_S_At 
212760_At 
212960_At 
226008_At 

0.804 0.783 0.811 0.814 0.909 0.750 

1569142_At 
202443_X_At 
212317_At 
214723_X_At 

0.804 0.756 0.820 0.851 0.909 0.812 

206749_At 
210756_S_At 
212960_At 
214723_X_At 

0.804 0.756 0.820 0.888 0.909 0.875 

1569142_At 
209268_At 
212960_At 
215671_At 

0.811 0.756 0.830 0.851 1.000 0.750 

1569142_At 
212960_At 
219237_S_At 
221584_S_At 

0.804 0.756 0.820 0.851 1.000 0.750 

1569142_At 
201137_S_At 
212960_At 
223139_S_At 

0.804 0.756 0.820 0.814 0.818 0.812 
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Table 2.4.2.2.a. (continued) 

Gene Signature Set 
10-Fold Cross-Validation (CV) Blind Prediction (BT) 

Overall High Low Overall High Low 
209268_At 
212960_At 
216570_X_At 
230013_S_At 

0.804 0.756 0.820 0.814 0.909 0.750 

208771_S_At 
212960_At 
214279_S_At 
216570_X_At 

0.811 0.756 0.830 0.814 0.818 0.812 

204311_At 
210427_X_At 
212960_At 
219237_S_At 

0.811 0.756 0.830 0.814 0.818 0.812 

208771_S_At 
212960_At 
223189_X_At 
226278_At 

0.818 0.783 0.830 0.814 0.909 0.750 

 

Table 2.4.2.2b. Prediction accuracy using day 7 data (6 sets) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

1554408_A_At 
205692_S_At 
211430_S_At 
213012_At 

0.803 0.800 0.805 0.888 0.818 0.937 

202182_At 
205692_S_At 
211430_S_At 
213012_At 

0.803 0.800 0.805 0.888 0.818 0.937 

203655_At 
208639_X_At 
211430_S_At 
213012_At 

0.803 0.800 0.805 0.814 0.818 0.812 

203655_At 
210046_S_At 
211430_S_At 
213012_At 

0.803 0.800 0.805 0.814 0.818 0.812 

205692_S_At 
211430_S_At 
211868_X_At 
213012_At 

0.815 0.800 0.823 0.888 0.818 0.937 
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Table 2.4.2.2b. (continued) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

203655_At 
211430_S_At 
212902_At 
213012_At 

0.809 0.800 0.814 0.814 0.818 0.812 

 

Next we used 4 of the trials as the training set and used the remaining one trial as 

the testing set, and hence 5 runs were executed. The sets of gene signatures that correctly 

blind predict the testing set in each run using day 3 and day 7 data sets are presented in 

Table 2.4.2.3 and Table 2.4.2.4, respectively. 

 

Table 2.4.2.3. Prediction accuracy using day 3 data set. 

a. Prediction accuracy when the testing set is the trail in 2007 (4 sets) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

1552665_At 
213933_At 
228389_At 
232321_At 
242012_At 

0.852 0.75 0.89 1 1 1 

1565777_At 
205538_At 
217896_S_At 
242012_At 
242712_X_At 

0.852 0.75 0.89 1 1 1 

205538_At 
217896_S_At 
231088_At 
242012_At 
242712_X_At 

0.852 0.777 0.88 1 1 1 

1559679_A_At 
224595_At 
234632_X_At 
242012_At 
242712_X_At 

0.852 0.777 0.88 1 1 1 
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b. Prediction accuracy when the testing set is the trail in 2008 (5 sets) 

Gene Signature Set 10-fold CV BT 
Overall High Low Overall High Low 

1555007_s_at 
200089_s_at 
213237_at 
223941_at 
224595_at 

0.801 0.806 0.8 0.909 0.833 0.937 

1559679_a_at 
211366_x_at 
217039_x_at 
224595_at 
242012_at 

0.801 0.806 0.8 0.818 0.833 0.812 

1559679_a_at 
203725_at 
213632_at 
224595_at 
242712_x_at 

0.834 0.774 0.855 0.863 0.833 0.875 

200099_s_at 
231088_at 
242012_at 
242712_x_at 

0.834 0.774 0.855 0.818 0.833 0.812 

1553970_s_at 
1559679_a_at 
217896_s_at 
224595_at 
242712_x_at 

0.826 0.774 0.844 0.863 0.833 0.875 

 

c. Prediction accuracy when the testing set is the trail in 2009 (9 sets) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

1558431_At 
203031_S_At 
211976_At 
213237_At 
243878_At 

0.841 0.75 0.869 0.913 0.777 1 

217039_X_At 
226675_S_At 
242012_At 
242712_X_At 
45714_At 

0.825 0.75 0.847 0.913 0.777 1 
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c. (continued) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

212761_At 
219944_At 
242012_At 
242712_X_At 
45714_At 

0.808 0.75 0.826 0.913 0.777 1 

209140_X_At 
219944_At 
242012_At 
242712_X_At 
45714_At 

0.808 0.75 0.826 0.869 0.777 0.928 

225388_At 
227235_At 
242012_At 
242712_X_At 
45714_At 

0.808 0.75 0.826 0.826 0.777 0.857 

227235_At 
229390_At 
242012_At 
242712_X_At 
45714_At 

0.808 0.75 0.826 0.869 0.777 0.928 

212761_At 
226675_S_At 
236338_At 
242012_At 
45714_At 

0.808 0.75 0.826 0.826 0.777 0.857 

212761_At 
213426_S_At 
226675_S_At 
242012_At 
45714_At 

0.816 0.75 0.836 0.826 0.777 0.857 

213237_At 
227235_At 
242012_At 
242712_X_At 
45714_At 

0.808 0.75 0.826 0.869 0.777 0.928 
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d. Prediction accuracy when the testing set is the trail in 2010 (5 sets) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

1557895_At 
211976_At 
213237_At 
224595_At 
231272_At 

0.831 0.785 0.857 0.803 0.888 0.789 

1553970_S_At 
1569780_At 
200091_S_At 
224595_At 
239507_At 

0.87 0.821 0.897 0.818 0.777 0.824 

211976_At 
213237_At 
217234_S_At 
224595_At 
231272_At 

0.844 0.785 0.877 0.803 0.777 0.807 

1559679_A_At 
214252_S_At 
215671_At 
224595_At 
242757_At 

0.818 0.785 0.836 0.803 0.777 0.807 

1559753_At 
213237_At 
214003_X_At 
224595_At 
232321_At 

0.818 0.75 0.857 0.803 0.777 0.807 

 

e. Prediction accuracy when the testing set is the trail in 2011 (5 sets) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

1569780_At 
213237_At 
224595_At 
231272_At 

0.83 0.72 0.86 0.88 0.833 0.923 

213237_At 
221136_At 
224595_At 
231272_At 

0.805 0.72 0.827 0.84 0.75 0.923 

221136_At 
222268_X_At 
224595_At 
231272_At 

0.813 0.72 0.838 0.8 0.75 0.846 
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e. (continued) 

Gene Signature Set 10-Fold CV BT 
Overall High Low Overall High Low 

1554241_At 
213933_At 
224595_At 
228438_At 

0.813 0.72 0.838 0.84 0.75 0.923 

203031_S_At 
222527_S_At 
224595_At 
226941_At 
242012_At 

0.813 0.72 0.838 0.8 0.75 0.846 

 

Table 2.4.2.4. Prediction accuracy using day 7 data set. 

a. Prediction accuracy when the testing set is the trail in 2007 (33 sets) 

Gene Signature Set 10-fold CV BT 
Overall High Low Overall High Low 

1554242_a_at 
211058_x_at 
211430_s_at 
228434_at 
231309_at 

0.843 0.847 0.841 1 1 1 

1554242_a_at 
211430_s_at 
228434_at 
231309_at 
241248_at 

0.843 0.83 0.85 1 1 1 

1554242_a_at 
205692_s_at 
211639_x_at 
228814_at 
231288_at 

0.837 0.813 0.85 1 1 1 

1554242_a_at 
211430_s_at 
228434_at 
231309_at 
232594_at 

0.837 0.813 0.85 1 1 1 

1553551_s_at 
1554242_a_at 
211430_s_at 
228434_at 
231309_at 

0.831 0.83 0.831 1 1 1 

… 
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b. Prediction accuracy when the testing set is the trail in 2008 (39 sets) 

Gene Signature Set 10-fold CV BT 
Overall High Low Overall High Low 

1556489_at 
202712_s_at 
203655_at 
209540_at 
211430_s_at 

0.821 0.796 0.835 0.863 0.833 0.875 

1555892_s_at 
1569269_s_at 
205692_s_at 
228434_at 
231309_at 

0.827 0.777 0.855 0.818 0.833 0.812 

1555892_s_at 
1567663_at 
202712_s_at 
205692_s_at 
228434_at 

0.821 0.777 0.845 0.863 0.833 0.875 

… 
 

c. Prediction accuracy when the testing set is the trail in 2009 (4 sets) 

Gene Signature Set 10-fold CV BT 
Overall High Low Overall High Low 

201398_s_at 
211430_s_at 
211647_x_at 
215565_at 
231309_at 

0.805 0.76 0.828 0.833 0.8 0.857 

202355_s_at 
205692_s_at 
206641_at 
215214_at 
217227_x_at 

0.812 0.8 0.818 0.833 0.7 0.928 

202355_s_at 
205692_s_at 
211645_x_at 
227721_at 
231309_at 

0.805 0.74 0.838 0.833 0.8 0.857 

205692_s_at 
217029_at 
221184_at 
227721_at 
231309_at 

0.832 0.7 0.898 0.833 0.8 0.857 
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d. Prediction accuracy when the testing set is the trail in 2010 (4 sets) 

Gene Signature Set 10-fold CV BT 
Overall High Low Overall High Low 

201090_x_at 
205692_s_at 
211637_x_at 
231288_at 
243478_at 

0.817 0.823 0.812 0.81 0.777 0.816 

1554242_a_at 
215214_at 
231288_at 

0.808 0.745 0.859 0.844 0.777 0.857 

202355_s_at 
205692_s_at 
228434_at 
231309_at 

0.8 0.764 0.828 0.827 0.888 0.816 

1555092_at 
205692_s_at 
228434_at 
231309_at 

0.8 0.725 0.859 0.844 0.888 0.836 

 

e. Prediction accuracy when the testing set is the trail in 2011 (3 sets) 

Gene Signature Set 10-fold CV BT 
Overall High Low Overall High Low 

211430_s_at 
213046_at 
223565_at 
231309_at 

0.828 0.769 0.847 0.758 0.735 0.785 

211430_s_at 
217258_x_at 
223565_at 
231309_at 

0.81 0.73 0.835 0.758 0.764 0.75 

202557_at 
206641_at 
231309_at 
238875_at 

0.783 0.73 0.8 0.758 0.764 0.75 

 

In the next step, we reversed the previous analysis, i.e., used one year trial to predict 

all of the other trials. Due to lack of subjects in 2007, we combined 2007 trial with 2008 

trial. The selected gene signature sets can be different between trials because of two 

reasons. First, the flu virus and vaccine between each year are different. Second, 

PSO/DAMIP framework uses a modified PSO algorithm as the feature selection method to 
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select subsets of gene signatures and cannot identify all good subsets. A gene signature set 

that predicts the high/low responders for all years can be considered as general predictors 

for the high/low responders of the flu vaccine for any given year. And we observed that 

gene signatures that are most frequently shown in the selected sets have significant impacts 

on the prediction accuracy. Therefore, we designed a new feature selection algorithm based 

the original PSO algorithm and incorporated with feature ranking method to find the 

common good sets in all of the 4 trials, i.e., the sets that can correctly predict the subjects in 

all of the 4 trials. Feature ranking methods such as Pearson’s correlation coefficient are 

frequently used when the number of feature candidates is large, but significant features and 

subsets can be excluded due to the different measurement between the feature ranking 

method and DAMIP classifier. In this study, it is critical to find as many good subsets as 

possible for each trial in order to find the common sets. We designed the algorithm as 

follows.  

 

In step 1, the PSO/DAMIP framework is executed for 100 replicates, and all of the 

sets with no more than 10 gene signatures that can correctly predict over 75% of the 

subjects in blind prediction are selected. Then, the gene signatures in the selected sets of 

each trial are ranked by their occurrences, and the gene signatures that are commonly 

shown in top 200 of each of the 4 gene signature rankings are selected as the gene 

candidate set. Next in step 2, DAMIP is executed for all no-more-than-5 gene signature sets 

in the gene candidate set to establish their corresponding classification rules for each trial. 

And we report the sets that can correctly predict on all trials. 

 

We applied the modified PSO/DAMIP framework to discriminate the subjects with 

high/low responders. 46 gene signatures and 66 gene signatures are found from step 1 for 

day 3 data and day 7 data, respectively. Table 2.4.2.5 represents the common sets using day 

3 data or day 7 data. Specifically, 21 sets that can predict all trials with prediction accuracy 

over 70% and 944 sets that can predict 3 trials out of 4 with prediction accuracy over 70% 

are found by the modified feature selection algorithm using day-3 data set. And 175 sets 

that can predict all trials with prediction accuracy over 70% and 10,686 sets that can 

predict 3 trials out of 4 with prediction accuracy over 70% are found using day-7 data set. 
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We highlighted the gene signatures that occur most frequently among the good results as 

shown in Table 2.4.2.6. 

 

Table 2.4.2.5. Common sets that well predict all trials. 

a. Using day 3 data set (21 sets) 

Gene Signature 
Set 

2007-2008 2009 2010 2011 
CV BT CV BT CV BT CV BT 

205987_at 
208575_at 
217896_s_at 
224285_at 
231272_at 

0.862 0.736 0.826 0.741 0.738 0.792 0.72 0.745 

1559679_a_at 
211976_at 
213237_at 
228389_at 
231272_at 

0.793 0.798 0.913 0.733 0.757 0.868 0.88 0.771 

1552665_at 
1553970_s_at 
200628_s_at 
203066_at 
224595_at 

0.896 0.771 0.826 0.733 0.727 0.766 0.72 0.754 

1555082_a_at 
213237_at 
216380_x_at 
223865_at 
224595_at 

0.827 0.736 0.782 0.733 0.723 0.788 0.72 0.754 

211976_at 
213237_at 
217896_s_at 
224285_at 
231272_at 

0.862 0.745 0.782 0.766 0.787 0.844 0.84 0.72 

… 
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b. Using day 7 data set (175 sets) 

Gene Signature 
Set 

2007-2008 2009 2010 2011 
CV BT CV BT CV BT CV BT 

1554069_at 
1555892_s_at 
205692_s_at 
228434_at 
231309_at 

0.793 0.756 0.75 0.758 0.724 0.782 0.79 0.765 

209540_at 
211430_s_at 
213882_at 
228434_at 
231309_at 

0.827 0.75 0.75 0.805 0.844 0.756 0.725 0.819 

211430_s_at 
213502_x_at 
213882_at 
228434_at 
231309_at 

0.862 0.777 0.791 0.751 0.879 0.73 0.741 0.801 

211430_s_at 
213882_at 
215457_at 
228434_at 
231309_at 

0.827 0.777 0.75 0.812 0.862 0.739 0.741 0.837 

206063_x_at 
215176_x_at 
231309_at 
236207_at 
237867_s_at 

0.758 0.743 0.75 0.751 0.81 0.747 0.725 0.792 

… 
 

Table 2.4.2.6. Gene signatures with highest occurrence 

Day 3 Day 7 
Gene signature Occurrence (21 set) Gene signature Occurrence (944 set) 
213237_at 16 211430_s_at 121 
211976_at 10 231309_at 105 
1559679_a_at 7 228434_at 43 
224595_at 7 221184_at 32 
217896_s_at 6 1555892_s_at 31 
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2.4.3.3 Analysis 3 

In Analysis 3, 109 subjects with high responses on day 30 from 2007 to 2011 are 

given as shown in Table 2.4.2.7. The subjects are split into two classes, “persistent” 

responders and “temporary” antibody responders. Persistent responders are the subjects are 

with high responses on day 30 and also day 60+, and temporary antibody responders are 

the subjects are with high responses on day 30 but low responses on day 60+. For each 

subject, 6699 gene signatures on day 3 and 5520 gene signatures on day 7 are given. Due to 

lack of subjects in 2007 and 2011 trials, we combined 2007 trial with 2008 trial and 2011 

trial with 2010 trial. And we applied the PSO/DAMIP framework on each of the three trials 

to find the gene signature sets that achieve the best prediction accuracy. The results are 

shown in Table 2.4.2.8. 

Table 2.4.2.7. Subjects of Analysis 3. 

 Total Persistent 
(P) 

Temporary 
(T) 

2007-2008 23 9 14 
2009 16 6 10 
2010-2011 70 20 50 
Total 109 35 74 

 

Table 2.4.2.8a. Prediction results of 3 trials in Analysis 3 for day 3 data set. 

Year Gene Sign-
ature Set 

10-fold Cross-Validation 
(CV) 

Blind Prediction (BT) 

Overall P T Overall P T 

2007 
-2008 

211430_s_at 
213046_at 
223565_at 
231309_at 

0.95 1 0.909 0.811 0.705 0.846 

2009 

218972_at 
1570001_at 
214873_at 
225118_at 
234405_s_at 

0.875 0.833 0.9 0.808 0.75 0.83 

2009 

218972_at 
1570001_at 
214873_at 
225118_at 
234405_s_at 

0.875 0.833 0.9 0.808 0.75 0.83 
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Table 2.4.2.8a. (continued) 

Year Gene Sign-
ature Set 

10-fold Cross-Validation 
(CV) 

Blind Prediction (BT) 

Overall P T Overall P T 

2009 

1570001_at 
214873_at 
225118_at 
220556_at 
234405_s_at 

0.875 0.833 0.9 0.821 0.75 0.849 

2009 

218972_at 
1570001_at 
214873_at 
225118_at 
206326_at 

0.875 0.833 0.9 0.808 0.75 0.83 

2010 
-2011 

205997_at 
205375_at 
202040_s_at 
241987_x_at 
208664_s_at 

0.905 0.909 0.904 0.833 0.8 0.857 

 

Table 2.4.2.8b. Prediction results of 3 trials in Analysis 3 for day 7 data set. 

Year Gene 
Signature Set 

10-fold Cross-Validation 
(CV) 

Blind Prediction (BT) 

Overall P T Overall P T 

2007  
- 2008 

240301_at 
1558791_at 
223388_s_at 
201249_at 

0.84 0.705 0.884 0.811 0.705 0.846 

2009 

206481_s_at 
220226_at 
214725_at 
201852_x_at 
1557446_x_at 

0.812 0.833 0.8 0.808 0.7 0.849 

2009 

206481_s_at 
220226_at 
214725_at 
203443_at 
1557446_x_at 

0.812 0.833 0.8 0.808 0.75 0.83 

2009 

206481_s_at 
220226_at 
205003_at 
214725_at 
1557446_x_at 

0.812 0.833 0.8 0.808 0.7 0.849 
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Table 2.4.2.8b. (continued) 

Year Gene 
Signature Set 

10-fold Cross-Validation 
(CV) 

Blind Prediction (BT) 

Overall P T Overall P T 

2009 

206481_s_at 
220226_at 
231131_at 
205003_at 
214725_at 

0.812 1 0.7 0.808 0.85 0.792 

2010  
-2011 

227525_at 
218482_at 
209588_at 
201954_at 
227452_at 

0.867 0.727 0.904 0.777 0.733 0.809 

2010  
-2011 

237151_s_at 
218482_at 
203777_s_at 
209588_at 
227452_at 

0.83 0.727 0.857 0.777 0.733 0.809 
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2.4.3 Predicting Response to Intra-articular Injections of Hyaluronic Acid for 

Knee Osteoarthritis 

2.4.3.1 Introduction 

A new CDC study reports that the lifetime risk of knee osteoarthritis (OA) with symptoms 

is nearly one in two, or 46%. The study authors also found that nearly two in three obese 

adults will develop painful knee osteoarthritis over their lifetime. The study provides what 

is likely the first lifetime risk estimate of symptomatic knee osteoarthritis in the United 

States. Knee osteoarthritis—a common form of arthritis that wears away the cartilage 

cushioning the knee joint—is a leading cause of arthritis disability. In 2004, $14.3 billion 

were spent on hospital costs associated with total knee replacements. 

 

At least 18% of out-patient visits to military treatment facilities by active duty 

personnel are attributed to painful knee disorders.  The management of knee pain depends 

on the diagnosis, inciting activity, underlying medical conditions, body mass, and 

chronicity.  In general, non-operative management is the mainstay of initial treatment and 

includes rehabilitation, activity modification, weight loss when indicated, shoe orthoses, 

local modalities, and medication.  The oral medication often prescribed is an analgesic, 

usually with anti-inflammatory properties.  Supplements, such as chondroitin sulfate and 

glucosamine have been shown to have a role.  Since 1997, the regimen has expanded to 

include viscosupplementation.  These agents are preparations of hyaluronic acid or their 

derivatives (HA) which are sterilely injected into the knee.  Research studies have clearly 

demonstrated that HA improves knee function.  

  

The goal of this study is to evaluate two different HA preparations to determine 

which patient population or patient characteristics would benefit most from their use.  The 

study uses a prospective, double blinded clinical trial.  A clinical predictive model is 

developed to uncover discriminatory patterns that can predict outcome.  This predictive 

model can be implemented as part of a clinical practice guideline for evidence-based 

intervention.  The model enables providers to administer HA products more selectively and 



 

60 

effectively to targeted population to maximize cost effectiveness and the percentage of 

patients who experience a successful HA trial.  

 

2.4.3.2 Predictive Analysis 

We apply the method of discriminant analysis via mixed integer programming (DAMIP) on 

the HA data to uncover patient and treatment factors that predict optimal response to intra-

articular injections of hyaluronic acid for knee osteoarthritis. The model determines which 

patient variables lead to the best outcomes of HA. 

 

 Figure 2.4.3 shows the machine learning framework where features are first 

selected via particle swarm optimization. The resulting classification rule is subsequently 

established via the DAMIP classifier. Ten-fold cross validation evaluation is performed. If 

the results satisfy the pre-set conditions, the classification rule is reported. Blind prediction 

using this rule is then performed.  

Figure 2.4.3. Machine learning framework for predictive analytics 

 

In 10-fold cross validation, the training set is partitioned into 10 roughly equal 

parts. In each run, 9-fold are selected to form the rule, and the remaining 1-fold is then 

tested, counting how many of them are classified into which group. Through 10 folds 

procedure (where each fold is being validated exactly once), we obtain an unbiased 

estimate of the classification accuracy.  
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Blind prediction is performed on patients that are independent of the training set to 

gauge the predictive power of the established rule. These patients have never been used in 

the machine learning analysis. We run each patient through the rule, and it returns a status 

of the patient. The status is then checked against the clinical status to confirm the accuracy.  

 

 The above two study aims together will culminate in a clinical decision algorithm 

for the use of viscosupplementation in the treatment of knee OA.  For example, a provider 

determines that HA is indicated for a particular patient.  The provider would then enter 

specific variables into a clinical computer program and a response set would be generated 

for the potential outcome after using hyaluronic acid injections.  The optimal HA agent(s) 

would be ranked.  The provider would then take this information into account as part of the 

clinical decision process to select the HA agent for the individual patient.   

 

For this HA study, we perform computational experiments for the following 

studies:  

o predicting reinjection status using data collected up to i) at first injection, ii) after 

T0, iii) after T5.   

o predicting treatment responder status at T5:  

o WOMACP20, Treatment Responder Status Using 20% Reduction in WOMAC Pain 

Scale (0 = Non-Responder, 1 = Responder),  

o KOOSP20,  Treatment Responder Status Using 20% Reduction in KOOS Pain 

Scale (0 = Non-Responder, 1 = Responder),  

o OARSI,  

o predicting recovery status at T5, recovery on any KOOS Scale 

 

We also perform the prediction over each of the two types of injections to gauge 

their similarities and differences in treatment outcome characteristics.  

 

Table 2.4.3.1 shows the number of patients in the training set and the blind 

prediction set for prediction reinjection status using data up to i) at first injection, ii) after 

T0, iii) after T5.  In this analysis, for every attribute in which there is any missing data, an 
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associated binary attribute is created to capture if data is missing or not for this field. The 

missing data is then be filled with median value of the associated demographic population.  

 

Table 2.4.3.2 shows the training set and blind prediction statistics used for 

predicting treatment responder status and recovery status. We eliminate those patients 

where the predictor variables are missing. 

 

Table 2.4.3.1. Training set and blind prediction set characteristics for predicting reinjection 

status. 

Type Of Analysis  Training Set Blind Prediction Set 

Predicting Re-
Injection Status: 

Number 
Of 
Attributes 

Total 
Subjects 

No 
Reinjec
tion 

Reinj
ection 

Total 
Subjects 

No 
Reinjec
tion 

Reinj
ection 

Using Data Up To 
At First Injection,  27 150 111 39 53 40 13 

Up To After T0 483 150 111 39 53 40 13 

After T5 1215 150 111 39 53 40 13 

 

Table 2.4.3.2. Training set and blind prediction set characteristics for predicting treatment 

responder status and recovery status. 

Predicting Treatment 
Responder /  Recovery 
Status At T5 

Total Subjects Training Set 
Blind Prediction 

Set 

All 

Group: 
Tot
al 

Non-
Respo
nder 

Resp
onde

r 

Tot
al 

Non-
Resp
onder 

Res
pon
der 

Tot
al 

Non-
Resp
onder 

Res
pon
der 

KOOSP20 141 71 70 71 33 38 70 38 32 
KOOSRecovery 141 84 57 71 39 32 70 45 25 
KOOSOARSI 141 80 61 71 37 34 70 43 27 
WOMACP20 141 75 66 71 34 37 70 41 29 
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Table 2.4.3.2. (continued) 

Predicting Treatment 
Responder /  Recovery 
Status At T5 

Total Subjects Training Set 
Blind Prediction 

Set 

Synvisc 

Group: 
Tot
al 

Non-
Respo
nder 

Resp
onde

r 

Tot
al 

Non-
Resp
onder 

Res
pon
der 

Tot
al 

Non-
Resp
onder 

Res
pon
der 

KOOSP20 76 36 40 40 17 23 36 19 17 
KOOSRecovery 76 44 32 40 21 19 36 23 13 
KOOSOARSI 76 44 32 40 20 20 36 24 12 
WOMACP20 76 37 39 40 18 22 36 19 17 

Euflexxa 

KOOSP20 65 35 30 35 20 15 30 15 15 
KOOSRecovery 65 40 25 35 22 13 30 18 12 
KOOSOARSI 65 36 29 35 21 14 30 15 15 
WOMACP20 65 38 27 35 21 14 30 17 13 

 

For every attribute in which there is any missing data, an associated binary attribute 

is created to capture if data is missing or not for this field. The missing data is then be filled 

with median value of the associated demographic population. We eliminate those patients 

where the predictor variables are missing.  

 

2.4.3.3 Results for Predictive Analysis 

Analysis Involving Both Injections 

We summarize below the best predictive rules and the associated discriminatory attributes 

for each of the analysis. Tables 2.4.3.3a - 2.4.3.3c show the prediction accuracy for no-

reinjection versus re-injection when using attributes collected up to i) at first injection, ii) 

after T0, iii) after T5 respectively. We can observe the high accuracy in predicting success 

for patients using screening and T0 attributes alone (86% blind predictive accuracy).  This 

is very promising for identifying patients who should be targeted for HA intervention (with 

expected success outcome). Including attributes until T5 increases significantly the 

accuracy for predicting the reinjection group (89%).  
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Table 2.4.3.3a. Best predictive rules for re-injection status when using only screening 

attributes. 

Using attributes 
collected up to first 
injection,  

10-fold cross validation  blind prediction 

Attributes 
Overall  No-

reinjection 
Re-
injection Overall  No-

reinjection 
Re-
injection 

>= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 
Injector 0.71 0.71 0.71 0.72 0.72 0.71 
ScreenWeight 
ScreenCurrentlySmokeCigarettes 
ScreenNumberPerDay 
MissIdctr_ScreenEverSmoked 
ScreenWD 
Injector 0.71 0.71 0.71 0.72 0.72 0.71 
ScreenWeight 
ScreenCurrentlySmokeCigarettes 
ScreenNumberPerDay 
MissIdctr_ScreenEverS
moked 
ScreenCompleted 
 

Table 2.4.3.3b. Best predictive rule for re-injection status when using screening + T0 

attributes. 

Using attributes 
collected up to after T0 10-fold cross validation  blind prediction 

Attributes 
Overall  No-

reinjection 
Re-
injection 

Overall  No-
reinjection 

Re-
injection 

>= 0.8 >= 0.7 >= 0.7 >= 0.8 >= 0.7 >= 0.7 
ScreenCompleted 0.85 0.89 0.74 0.81 0.86 0.71 
T0KneeEffusionL 
T0MarxCutting 
T0MarxCuttingSymptomFree 
T0SelfEff8 
T0ConfidenceInjector 
T0Medication2Effective 
T0Medication3Effective 
T0ExerciseEffective 
T0OtherTXEffective 
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Table 2.4.3.3c. Best predictive rule for re-injection status when using screening + T0 to T5 

attributes. 

Using attributes 
collected up to  after T5 10-fold cross validation  blind prediction 

Attributes 
Overall  No-

reinjection 
Re-
injection 

Overall  No-
reinjection 

Re-
injection 

>= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 
MissIdctr_T0KOOSA16 0.84 0.84 0.83 0.83 0.81 0.89 
MissIdctr_T1ROMR 
MissIdctr_T1MedFrequency 
MissIdctr_T2MedsPrescribed 
MissIdctr_T4WomA2 
MissIdctr_T5ThighSizeDiff 
T5KOOSPN8 
MissIdctr_T5StaffFriendly 
 

  

Screening + T0 + T1 + 
T2 + T3 + T4+ T5 with 
category attributes 
modified (highlight in 
yellow) to reflect the 
demographic success 
rate ranking 

10-fold cross validation  blind prediction 

Attributes 
Overall  No-

reinjection 
Re-
injection Overall  No-

reinjection 
Re-
injection 

>= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 
T0EQRateHealth 0.86 0.88 0.8 0.81 0.81 0.82 
MissIdctr_T0ImproveWalk 
T0ImproveKneel 
T0ImproveRun 
T0Medication3Effective 
T5KOOSPN8 
T5KOOSSP4 
T0EQRateHealth 0.85 0.87 0.8 0.83 0.83 0.82 
T0Medication3Effective 
T0PhysicalTherapyEffective 
T5KOOSPN8 
T5KOOSSP4 
T5SF11d 
MissIdctr_T0MARXINTERFERE 
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Tables 2.4.3.4a – 2.4.3.4d present the best predictive rules for predicting various treatment 

responder status and the recovery status. 

 

Table 2.4.3.4a. Best predictive rule for predicting treatment responder status KOOSP20 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSP
20 = 0 

KOOSP2
0 = 1 

Overall  
KOOS
P20 = 0 

KOOSP
20 = 1 

>= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 
T0KOOSPN1 0.80 0.82 0.79 0.74 0.74 0.75 
T0MarxDeceleratingSymptomFree 
T0OSTEOARTHRITISDEGENERATIVEARTHRITISproblem 
T2MedsNarcotics 
MissingValue_T3SANE 
MissingValue_T4WomA13 
MissingValue_T0MARXPLUS 
MissingValue_T0Mancuso 
 

Table 2.4.3.4b. Best predictive rule for predicting recovery status KOOSRecovery 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSRec
overy = 0 

KOOSRec
overy = 1 

Overall  
KOOSRec
overy = 0 

KOOSRec
overy = 1 

>= 0.75 >= 0.7 >= 0.7 >= 0.75 >= 0.7 >= 0.7 
Injector 0.79 0.74 0.84 0.76 0.76 0.76 
T0MedsNarcotics 
T0KOOSQ1 
T0RelievePain 
T0ImproveStairs 
T3Alignment 
T3WomA12 
MissingValue_T4ThighSizeDiff 
T4ROMR 
MissingValue_T4WomA5 
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Table 2.4.3.4c. Best predictive rule for predicting treatment responder status KOOSOARSI 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSOA
RSI = 0 

KOOSOA
RSI = 1 

Overall  
KOOSOA

RSI = 0 
KOOSOA

RSI = 1 
>= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 

T3MedsNarcotics 0.72 0.71 0.73 0.74 0.77 0.703 
T4VASPainMoving 
MissingValue_T4WomA7 
T4StaffSkills 
T0KOOSADL 
T0BellamyWStif 
 

Table 2.4.3.4d. Best predictive rule for predicting treatment responder status WOMACP20 

10-fold cross validation  blind prediction 

Attributes 
Overall  

WOMAC
P20 = 0 

WOMAC
P20 = 1 

Overall  
WOMAC
P20 = 0 

WOMAC
P20 = 1 

>= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 
ScreenEverSmoked 0.73 0.71 0.76 0.71 0.71 0.724 
T0EQRateHealth 
T3MedFrequency 
T3WomA5 
T3WomA16 
MissingValue_T4WomP2 
T4WomA12 
MissingValue_T4WRecoveryADL 
 

Analysis for Synvisc  

We next summarize the results when we consider each injection separately. Tables 

2.4.3.5a-2.4.3.5d show the predictive rules for predicting treatment responder status and 

recovery status for patients injected with Synvisc. 
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Table 2.4.3.5a. Best predictive rule for predicting treatment responder status KOOSP20 

with Synvisc. 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSP
20 = 0 

KOOSP
20 = 1 

Overall  
KOOSP
20 = 0 

KOOSP
20 = 1 

>= 0.8 >= 0.75 >= 0.75 >= 0.8 >= 0.75 >= 0.75 
T0MARXNOSYMP 0.83 0.82 0.83 0.81 0.84 0.76 
T0MarxDeceleratingSymptomFree 
T0OSTEOARTHRITISDEGENERATIVEART
HRITISproblem 
MissingValue_T4OverallTreatment 
ScreenCurrentlySmokeCigarettes 
 

Table 2.4.3.5b. Best predictive rule for predicting treatment responder status 

KOOSOARSI with Synvisc. 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSOA
RSI = 0 

KOOSOA
RSI = 1 

Overall  
KOOSOA

RSI = 0 
KOOSOA

RSI = 1 
>= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 >= 0.7 

Injector 0.73 0.72 0.73 0.83 0.86 0.80 
T0SF11c 
T2KneeEffusionR 
MissingValue_T2SANE 
T4MedsNone 
T4WomA10 
 

Table 2.4.3.5c. Best predictive rule for predicting treatment responder status WOMACP20 

with Synvisc. 

10-fold cross validation  Blind prediction 

Attributes 
Overall  

WOMAC
P20 = 0 

WOMAC
P20 = 1 

Overall  
WOMAC
P20 = 0 

WOMAC
P20 = 1 

>= 0.8 >= 0.75 >= 0.75 >= 0.8 >= 0.75 >= 0.75 
T0SF11c  0.83 0.78 0.86 0.83 0.84 0.82 
T0KOOSPN8 
T0MarxStairsSymptomFree 
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Table 2.4.3.5d. Best predictive rule for predicting recovery status KOOSRecovery with 

Synvisc. 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSRec
overy = 0 

KOOSRec
overy = 1 

Overall  
KOOSRec
overy = 0 

KOOSRec
overy = 1 

>= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 
T0RelievePain  0.83 0.81 0.84 0.83 0.83 0.85 
MissingValue_T0ANEMIAOROTHERB
LOODDISEASEproblem 
MissingValue_T0MarxPivoting 
T0ImproveWalk 
T310ThighSizeR 
T3WomA9 
T4WomA1 
T0KOOSPain 
T0WStif 
T0EQ5Value 
 

Analysis for Euflexxa  

Tables 2.4.3.6a-2.4.3.6d show the predictive rules for predicting treatment responder status 

and recovery status for patients injected with Euflexxa. 

 
Table 2.4.3.6a. Best predictive rule for predicting treatment responder status KOOSP20 

with Euflexxa. 

10-fold cross validation  blind prediction 

Overall  
KOOSP
20 = 0 

KOOSP2
0 = 1 

Overall  
KOOSP20 

= 0 
KOOSP20 

= 1 
Attributes >= 0.85 >= 0.8 >= 0.8 >= 0.85 >= 0.8 >= 0.8 
ScreenAge 0.88 0.88 0.88 0.88 0.82 0.93 
T0MedsNarcotics 
T0SF3a 
T0SF3b 
T0SF4d 
T0ACLINJURY 
T0SelfEff2 
T4VASPainMoving 
T4WomP2 
MissingValue_T3BellamyWStif 
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Table 2.4.3.6b. Best predictive rule for predicting treatment responder status 

KOOSOARSI with Euflexxa. 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSOA
RSI = 0 

KOOSOA
RSI = 1 

Overall  
KOOSOA

RSI = 0 
KOOSOA

RSI = 1 
>= 0.85 >= 0.85 >= 0.85 >= 0.85 >= 0.85 >= 0.85 

T0SF4d 0.86 0.86 0.86 0.87 0.88 0.86 
T0SF7 
ScreenMaritalStatus 
T2MedsNone 
T4BellamyWADL 
MissingValue_T4WRecoveryStif 
T0SF4d 0.91 0.95 0.86 0.87 0.88 0.86 
T0SF7 
ScreenMaritalStatus 
T2MedsNone 
T4WomA12 
MissingValue_T4WRecoveryStif 
ScreenAge 0.89 0.90 0.86 0.87 0.88 0.86 
T0SF4d 
T0SF7 
T310ThighSizeR 
T3WomA1 
T4VASPainMoving 
T4WomP2 
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Table 2.4.3.6c. Best predictive rule for predicting treatment responder status WOMACP20 

with Euflexxa. 

10-fold cross validation  blind prediction 

Attributes 
Overall  

WOMAC
P20 = 0 

WOMACP
20 = 1 

Overall  
WOMACP

20 = 0 
WOMACP

20 = 1 
>= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 >= 0.8 

ScreenEverSm
oked 

0.89 0.86 0.93 0.83 0.82 0.85 

T0PainExpect 
T0Confidence 
T1KneePain 
T2PainOnPalpL 
T2MedsOTC 
T3KneeEffusionL 
T4MedsNone 
T4WomP4 
T4WOMACP20PFS 
 

Table 2.4.3.6d. Best predictive rule for predicting recovery status KOOSRecovery with 

Euflexxa. 

10-fold cross validation  blind prediction 

Attributes 
Overall  

KOOSRec
overy = 0 

KOOSReco
very = 1 

Overall  
KOOSRec
overy = 0 

KOOSReco
very = 1 

>= 0.85 >= 0.8 >= 0.8 >= 0.85 >= 0.8 >= 0.8 
T0AntalgicGa
it 

0.86 0.86 0.85 0.90 0.89 0.92 

T0MedFrequency 
T0KOOSS2 
T0ImproveDailyTasks 
T0TimeSymptoms 
T3KneePain 
T4WomA3 
T0KOOSSym 
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2.4.4 Alzheimer’s Disease 

2.4.4.1 Introduction 

Alzheimer's disease (AD), the 7th leading cause of death in the United States, is a 

progressive and irreversible brain disease which causes memory loss and other cognitive 

problems severe enough to affect daily life. Dementia is a collection of symptoms of 

cognitive function problems, such as thinking, remembering, or reasoning problems, and 

AD is the most common cause of dementia. Mostly AD occurs in people over 65, although 

familial AD has an earlier onset. Currently, AD is incurable; drugs are used to manage the 

symptoms or to prevent or slow the progress of the disease. 

 

Mild cognitive impairment (MCI) is a condition that there is clear evidence of 

cognitive problems, most often involving short term memory, but normal day to day 

functioning is preserved. In other words, MCI is a situation between normal aging and 

dementia. People with MCI may or may not develop dementia in the future, but people 

with MCI are at higher risk of developing dementia than those without MCI. 

 

The evaluation of AD or MCI is based on patient information including complete 

medical history, Neuropsychological exam, laboratory tests, neuropsychological tests, brain 

scans (CT or MRI), and information from close family members. Neuropsychological 

changes in the expression of cognitive declines are important to the diagnosis of AD and 

MCI. Statistical analyses as predictive analysis tools are applied to neuropsychological data 

to understand MCI patents [119, 182]. Besides statistical analyses, classification models are 

applied to neuropsychological data for predicting brain damage [180] and whether 

nondemented elderly declined to diagnosis of dementia or Alzheimer’s disease [91]. 

 

In addition to the traditional diagnosis, the clinical diagnosis of MCI and AD is 

increasingly aided by biomarkers predictive of underlying pathology. A number of recent 

studies generated additional enthusiasm for a blood-based test to predict non-demented 

control and AD [156, 157]. Identifying MCI and AD remains challenging. Hu [78] 
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measured levels of 190 plasma proteins and identified 17 analytes associated with the 

diagnosis of MCI or AD. 

 

We apply the multi-stage classification model to predict the control, MCI, and AD 

groups using two data sets: The first one was the neuropsychological test data that 

conducted by Emory Alzheimer's Disease Research Center in 2011; the second one was 

plasma biomarkers information collected by 2 independent centers (University of 

Pennsylvania, Philadelphia; Washington University, St. Louis, MO). We present the 

prediction results for both data sets in the following sections. 

 

2.4.4.2 Predictive Analysis Using Neuropsychological Data 

The neuropsychological tests conducted in this data set includes Mini Mental State 

Examination (MMSE), Clock drawing test, Word list memory tasks by the Consortium to 

Establish a Registry for Alzheimer's Disease (CERAD), and Geriatric depression scale 

(GDS). The MMSE is a screening tool for cognitive impairment, which is brief, but covers 

five areas of cognitive function, including orientation, registration, attention and 

calculation, recall, and language. The clock drawing test assesses cognitive functions, 

particularly visuo-spatial abilities and executive control functions. The CERAD word list 

memory tasks assess learning ability for new verbal information. The tasks include word 

list memory with repetition, word list recall, and word list recognition. The GDS is a 

screening tool to assess the depression in older population. 

 

Data of 267 subjects with known groups were collected as shown in Table 2.4.4.1. 

Among the 267 subjects, 2/3 of the subjects in each group are randomly selected as training 

set for 10-fold cross validation, while the remaining subjects are selected as testing set for 

blind prediction. 107 features are included for feature selection and classification. Among 

the 107 features are 3 features representing age, gender, education year, 15 features from 

Clock drawing test, 11 features from GDS, 13 features from MMSE, and 65 features from 

word list memory tasks. 
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464 feature sets of no more than 10 features that can correctly predict more than 

80% of the subjects in both 10-fold cross validation and blind prediction are found by the 

PSO/DAMIP framework. The feature sets that achieve the best prediction accuracy are 

presented in Table 2.4.4.2. The overall prediction accuracy of 10-fold cross validation and 

blind prediction are over 85%, while the prediction accuracy of each group is over 80%. 

The prediction accuracy no longer improves when more features are used in the 

classification model. In Table 2.4.4.3, we highlight the features that most frequently occur 

in the 464 feature sets.  

 
Table 2.4.4.1. Group information of 267 subjects in neuropsychological data set. 

 Total Control MCI AD MCI or AD 
Training 178 72 51 55 106 
Testing 89 36 26 27 53 
Total 267 108 77 82 159 

 

Table 2.4.4.2. Prediction accuracy of the best feature sets. 

Feature set 10-fold Cross-Validation Blind Prediction 
Overall Ctrl MCI AD Overall Ctrl MCI AD 

cClockNumbers4 86.0% 87.8% 80.0% 88.3% 86.2% 88.2% 80.6% 90.9% 
cClockCenter 
GDS6 
Score for What is 
the year? 
MMSE Total 
cWL1Arm 
cWL1Ticket 
cWL2Ticket 
cWLrTotal 
cWRyCabin 
cClockNumbers4 86.0% 89.2% 80.0% 86.7% 85.1% 85.3% 80.6% 90.9% 
cClockHands4 
cClockCenter 
Score for What is 
the month? 
Score for Where are 
we? 
MMSE Total 
cWL1Ticket 
cWLrTotal 
cWRyButter 
cWRnVillage 
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Table 2.4.4.2. (continued) 

cClockNumbers2 86.0% 87.8% 80.0% 88.3% 85.1% 85.3% 80.6% 90.9% 
cClockNumbers3 
cClockNumbers5 
cClockCenter 
Score for What is 
the month? 
Score for Where are 
we? 
MMSE Total 
cWL1Ticket 
cWLrTotal 
GDS15Total 85.5% 86.5% 80.0% 88.3% 83.9% 82.4% 80.6% 90.9% 
MMSE Total 
cWL1Arm 
cWL1Letter 
cWLcrCabin 
cWL1Ticket 
cWLrTotal 
cWRnMounain 
ncWRyCabin 
cClockNumbers4 86.6% 89.2% 82.2% 86.7% 86.2% 88.2% 80.6% 90.9% 
cClockCenter 
Score for What is 
the year? 
Score for What is 
the month? 
Score for Where are 
we? 
MMSE Total 
cWL1Ticket 
cWLrTotal 
cWRyButter 
cWRnVillage 

 
Table 2.4.4.3. Features with the highest occurrences in the 310 feature sets. 

Feature Test Occurrences 
MMSE Total MMSE 100.0% 
cWLrTotal Word list 94.4% 
cWL1Ticket Word list 94.2% 
cClockCenter Clock 76.1% 
Score for What is the year? MMSE 59.5% 
Score for What is the 
month? MMSE 53.4% 
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2.4.4.3 Predictive Analysis Using Plasma Biomarkers 

Data of 352 subjects with complete information are collected as shown in Table 2.4.4.4. 2/3 

of the subjects in each group are randomly selected as training set for 10-fold cross 

validation, while the remaining subjects are selected as testing set for blind prediction. We 

use 31 features for feature selection including gender, age, education years, MMSE, and 10 

indicators and 17 analytes that identified by Hu [78]. 

 

92 feature sets of no more than 10 features that can correctly predict more than 80% 

of the subjects in both 10-fold cross validation and blind prediction are found by the 

PSO/DAMIP framework. The feature sets that achieve the best prediction accuracy are 

presented in Table 2.4.4.5. The overall prediction accuracy of 10-fold cross validation and 

blind prediction are over 85%, while the prediction accuracy of each group is over 80%. 

The prediction accuracy no longer improves when more features are used in the 

classification model. In Table 2.4.4.6, we highlight the features that most frequently occur 

in the 464 feature sets. 

 

Table 2.4.4.4. Group information of 352 subjects in plasma biomarkers data set. 

 Total Control MCI AD MCI or AD 
Training 250 35 133 82 215 
Testing 102 21 62 19 81 
Total 352 56 195 101 296 

 

Table 2.4.4.5. Prediction accuracy of the best feature sets. 

Feature set 10-fold Cross-Validation Blind Prediction 
Overall Ctrl MCI AD Overall Ctrl MCI AD 

MMSE 
ApoE_1 
tTau 
Ab42 
BNP 
Resistin 
IGFBP2 
tTauG91 
LoAbHiTau 
SAP3 

 

81.6% 91.4% 72.9% 91.5% 80.4% 81.0% 75.8% 94.7% 
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Table 2.4.4.5. (continued) 

MMSE 
ApoE_1 
tTau 
Ab42 
BNP 
SAP 
IGFBP2 
tTauG91 
LoAbHiTau 
Resistin3 

 

81.6% 91.4% 72.9% 91.5% 80.4% 81.0% 75.8% 94.7% 

MMSE 
ApoE_1 
tTau 
Ab42 
IGFBP2 
tTauG91 
LoAbHiTau 
BNP3 
Resistin3 
SAP3 

 

81.6% 91.4% 72.9% 91.5% 80.4% 81.0% 75.8% 94.7% 

 
 

Table 2.4.4.6. Features with the highest occurrences in the 92 feature sets. 

Feature Occurrences 
ApoE_1 100.0% 
tTau 100.0% 
Ab42 100.0% 
IGFBP2 100.0% 
tTauG91 100.0% 
LoAbHiTau 100.0% 
MMSE 100.0% 
BNP 59.8% 
Resistin 52.2% 
SAP3 52.2% 
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CHAPTER III  

CANCER TREATMENT PLANNING 

 
This chapter investigates optimization approaches applied to radiation therapy in cancer 

treatment. The key to the effectiveness of radiation therapy for the treatment of cancer lies 

both in the fact that the repair mechanisms for cancerous cells are less efficient than that of 

normal cells, and the ability to deliver higher doses to the target volume. Thus, a dose of 

radiation sufficient to kill cancerous cells may not be lethal for nearby healthy tissue. The 

goal of radiation therapy is to conform the spatial distribution of the prescribed dose to the 

tumor volume while minimizing the dose to the surrounding normal structures. One key 

treatment of radiation therapy is high-dose rate (HDR) brachytherapy which allows 

localized high-dose radiation delivery to the tumor target via short-term implantation of 

radioactive seeds. HDR brachytherapy treatment plans are assessed by tumor control 

probability (TCP) which measures the probability of killing all cancerous cells in the 

affected organ. In the first section, we introduce a TCP-driven HDR treatment planning 

system for cervical cancer. The treatment planning is facilitated by dose escalation on the 

tumor that is guided by the advanced imaging techniques. In the second section, we 

introduce a nonlinear optimization system that maximizes TCP directly in HDR 

brachytherapy treatment planning. It maximizes the nonlinear function TCP while 

preserving the healthy tissues by adopting dose volume constraints. To tackle the nonlinear 

optimization problem, we propose a solution strategy that couples local search with 

piecewise linear approximation of TCP. 

 
  



 

79 

3.1 Biological Planning for High-Dose Rate Brachytherapy: Application to 

Cervical Cancer Treatment 

This section contains the paper appeared in Interfaces - The Daniel H. Wagner Prize for 

Excellence in Operations Research Practice 2013; 43(5): 462-47. EK Lee, F Yuan, A 

Templeton, R Yao, K Kiel, JCH Chu. Biological planning for high-dose rate 

brachytherapy: Application to cervical cancer treatment.   

 

Biological Planning for High-Dose-Rate Brachytherapy:  

Application to Cervical Cancer Treatment 

 
Eva K. Lee, Fan Yuan  

Center for Operations Research in Medicine and HealthCare, Georgia Institute of Technology, Atlanta, Georgia 30332 

{eva.lee@gatech.edu, fyuan3@isye.gatech.edu} 

Alistair Templeton, Rui Yao, Krystyna Kiel, James CH Chu  
Rush University Medical Center, Chicago, Illinois 60612 

{Alistair_Templeton@rsh.net, Rui_Yao@rsh.net, Krystyna_Kiel@rsh.net, James_C_H_Chu@rush.edu} 

 
Cervical cancer has a high mortality rate (approximately 35 percent) in the United States 

and is difficult to treat successfully. One promising treatment is high-dose-rate 

brachytherapy, which entails delivering high-dose radiation to the tumor via the temporary 

implantation of radioactive seeds. This treatment promises to be particularly effective in 

eradicating tumors, while preserving the organs. Yet, major obstacles to successful 

treatment remain, especially (1) determining the best seed type, spatial configuration of 

seeds, and seed dwelling time, and (2) improving the probability that the treatment will 

eliminate all malignant cells. We developed an advanced planning model to simultaneously 

address both of these issues. To permit taking advantage of the best available information, 

our model works with inputs from positron emission tomography. We begin with a 

multiobjective, nonlinear, mixed-integer programming model that is initially intractable. To 

solve the model, we introduce an original branch-and-cut and local-search approach that 

couples new polyhedral cuts with matrix reduction and intelligent geometric heuristics. The 

result has been accurate solutions, which are obtained rapidly. Clinical trials at Rush 
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University Medical Center have demonstrated superior medical outcomes. These analytical 

techniques are applicable not only to cervical cancer, but also to other types of cancer, 

including breast, lung, and prostate cancer. 

 

Key words: cancer therapeutics; cervical cancer; tumor control probability; integer 

programming; biological optimization; high-dose-rate brachytherapy. 

______________________________________________________________________ 

3.1.1 Introduction 

Almost a million cancer patients in the United States receive some form of radiation 

therapy each year [7]. Radiation is delivered using either external beam technology or a 

procedure known as brachytherapy. Brachytherapy uses a radioactive substance sealed in 

needles, seeds, wires, or catheters. which are placed directly (permanently or temporarily) 

into or near the cancer. This allows a full tumoricidal effect to eradicate the tumor from 

within the cancer site, while ensuring that minimal radiation reaches the healthy 

surrounding tissues. For high-dose-rate (HDR) brachytherapy, patients receive treatment 

through catheters during 3 to 10 outpatient sessions over a period of five days to two 

weeks. Brachytherapy preserves organs, usually with no loss of functionality; thus, it is 

rapidly becoming the choice of treatment for prostate, breast, cervix, and uterus cancer. 

 

Operations research (OR) has brought breakthrough advances in treatment-planning 

optimization, as evidenced by the 2007 Franz Edelman award work by Memorial Sloan 

Kettering Cancer Center (MSKCC), which saves half a billion dollars in yearly operations 

and delivery costs via intelligent real-time OR-based treatment-planning approaches, while 

the tumor control probability (TCP) (i.e., the probability of extinction of clonogenic tumor 

cells by the end of treatment) improves from 65 percent to 95 percent [107]. 

 

This work brings two first-of-its-kind advances to HDR brachytherapy treatment 

design. First, TCP, which depends upon a highly complex function that models the 

responses of cancer cells and normal cells to radiation, is incorporated in the planning 

objective. This is distinct from the dose-based planning that is commonly employed in 
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current treatment design. Second, positron emission tomography (PET) information, which 

relates cancer cell proliferation and distribution, is incorporated within the constraints, 

facilitating targeted, escalated dose delivery to improve the overall clinical outcome of 

HDR treatments. 

 

This work is distinct from the MSKCC in three ways: (1) HDR brachytherapy uses 

temporary implants that require multiple sessions; in addition to determining seed 

positions, the dwell time also has to be optimized. (2) This is the first time that TCP, an 

important measure of desired outcome, has been successfully incorporated in a treatment-

planning analytical model; we determine the TCP function from a complex biological 

model, and place it in the objective. (3) This is the first time that PET tumor cell 

proliferation and distribution are incorporated within radiation therapy (external beam or 

brachytherapy) for dose-escalation planning.  

 

The optimization models we develop, which are TCP driven and PET-image guided 

and permit HDR with dose escalation, initially prove to be intractable. The intractability 

arises from three sources. First, our models share the denseness properties of previous 

treatment-planning models [107]. We found that even without the complications that 

nonlinear TCP functions and PET-based dose escalation introduce, we could not solve the 

associated treatment-planning instances using competitive optimization software, even after 

we ran this software for several months of CPU time. Second, the extreme nonlinearity of 

our TCP functions increases the difficulties. Third, the competing PET-based dose 

escalation constraints that seek to go between cancer pockets and critical normal tissues 

offer only a tight solution space. 

 

We focus our discussion on cervical cancer, although the methodologies are 

applicable to most types of cancer. Cervical cancer ranks as the second most common 

cancer in women worldwide, with about 500,000 new cases and 250,000 deaths annually. 

Almost 80 percent of cervical cancer cases are in less-developed countries [194]. The 

majority of cervical cancer cases (75 percent) are caused by the human papilloma virus 

[140]. The cancer grows slowly, and in its early stages may not have any symptoms. Thus, 
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the mortality rate remains high at about 35 percent. In the United States in 2013, an 

estimated 12,340 women will be diagnosed with cervical cancer and about 4,030 women 

will die from it [140]. About 0.68 percent of women born today will be diagnosed with 

cervical cancer at some time during their lifetimes [75].  

 

The five-year survival rate for women diagnosed with cervical cancer is close to 75 

percent [142]. The choice of treatment depends on the stage of the cancer, the size of the 

tumor, the patient's desire to have children, and the patient’s age. Standard treatments 

include surgery, chemotherapy, and radiation therapy. With advances in radiation-therapy 

modalities and their organ-preserving characteristics, it is rapidly becoming the treatment 

of choice for cervical cancer [138].  

 

In this paper, we describe our original treatment-planning models as we applied 

them to cervical cancer, and we describe our computational breakthroughs that permit 

rapid, accurate solutions. Our planning methods were implemented by the Rush University 

Medical Center. To the best of our knowledge, Rush University conducted the first and 

only clinical trial in the United States for HDR brachytherapy with PET-based dose 

escalation applied to cervical cancer. We report on how, with modeling assistance, the 

Medical Center was able to increase its treatment success and improve its quality of care, 

thus reducing both mortality and personal and financial burdens for cervical cancer 

patients. 

 

3.1.2 Challenges and Objectives  

With advances in computed tomography (CT) and magnetic resonance (MR) imaging 

technology, it is possible to produce contours of gross tumor volume, clinical target volume 

(CTV), planning target volume (PTV), and organs at risk (OARs), and to view the radiation 

dose within these contours as radionuclide implant locations and dwell times are adjusted. 

This in turn enables the use of optimization technology to derive custom treatment plans 

that best achieve the clinical goals of delivering a full tumoricidal dose to eliminate the 

cancers, while minimizing the doses to OARs [36, 56, 73, 83, 90, 99, 183]. Inverse 
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planning and multiobjective optimization with penalty costs have become more commonly 

used to address the trade-off between treating the tumor and sparing the OARs, while the 

optimization solution process remains a major challenge [4, 74, 89, 95, 136, 162]. Because 

treatment planning is intrinsically combinatorial in nature, relaxation and heuristic 

algorithms (e.g., linear programming or simulated annealing) have been typically employed 

[4, 16, 74, 84, 89, 136]. 

 

PET imaging is an important advance for cervical cancer brachytherapy treatment 

planning [13, 188]. The ability of PET imaging to accurately define the primary lesion by 

including positive lymph nodes in the PTV facilitates treatment planning. The use of FDG-

PET (i.e., PET with fluorodeoxyglucoseas as a radiopharmaceutical tracer) offers a unique 

method for visualizing tumors, which permits treatment optimization [121]. Integrated PET 

and CT for treatment planning for three-dimensional conformal radiation therapy improves 

the standardization of volume delineation [27]. MR spectroscopy (MRS)-guided dose 

escalation for prostate cancer indicates that the TCP can be dramatically improved if 

biological information can be included within a personalized treatment design [107, 203]. 

This work differs from the dose-escalation work of Zaider et al. [204] in that, in addition to 

incorporating dose-escalation constraints within the treatment constraints, our model 

incorporates, within the objective function, data on the radio resistance and sensitivity of 

both tumor and normal cells to drive the optimization process. 

 

The crux and challenges of HDR brachytherapy dose distributions include the 

following. (1) The seed type, spatial configuration, and dwell time per treatment must be 

determined. (2) Tumor control, a very complex biological relationship, depends on the time 

of the treatment, radioactive decay of the radioisotope, dose received, volume and density 

of tumor cells, and biological radiosensitivity and radioresistancy of the normal and tumor 

cells. (3) Current therapies treat the diseased organ as a homogeneous mass; however, 

advances in PET imaging can now distinguish cell populations based on cell density, and 

the metabolic activities of tumor cells, clearly differentiating them from the normal healthy 

cells. Such capability demands advances in treatment-planning optimization where tumor 
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biological knowledge is incorporated, if true personalized targeted treatment is to be 

realized and result in improvements in local TCPs.  

 

This work tackles complex biological treatment planning via an OR approach, as 

we describe below.  

 

o We derive novel OR-based TCP-driven PET-image-guided dose-escalation 

treatments based on the technology of multiobjective nonlinear mixed-integer 

programming (NMIP). This marks the first time that TCP is incorporated both 

within the treatment optimization and as a plan objective; this is also the first time 

in which PET-image cell-proliferation knowledge is coupled within the treatment-

plan solution space. 

o We derive generalized conflict hypergraphs and uncover new polyhedral theory and 

facial structures for these NMIP instances.  

o We design a rapid branch-and-cut and local-search solution engine that couples 

novel cutting planes, matrix reduction, and intelligent geometric heuristics, along 

with a local hybrid genetic algorithm, to arrive at good solutions to these 

intrinsically NP-hard and intractable treatment-planning instances. 

  

We test the robustness of the resulting plans. The clinicians evaluate the quality of 

the plans based on the TCP, dose distribution, and other clinical metrics that are important 

indicators of treatment outcomes. 

 

3.1.3 Materials and Methods  

High-Dose-Rate Brachytherapy    

HDR brachytherapy treatment is given in 3 to 10 sessions, depending on the type of cancer 

being treated. The HDR system uses a single tiny highly radioactive source of Iridium-192, 

which is laser welded to the end of a thin, flexible stainless steel cable. The source is 

housed in an afterloader (i.e., a remote control device that mechanically places the 

radioactive source at predetermined positions within the applicator and stores the source 
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between treatments). The computer-guided afterloader directs the source into the treatment 

catheters or applicator, which has been placed in the patient. The source travels through 

each catheter in predefined steps, called “dwell” positions. The distribution of radiation and 

dose is determined by the dwell positions at which the source stops and the length of time it 

dwells there. This ability to vary the dwell times is similar to having an unlimited choice of 

source strengths. This level of dose control is possible only with HDR brachytherapy. 

 

A major advantage of HDR is that the final doses are known before any radiation 

treatment is given. Because the patient and implant position is the same as when the 

treatment plan is devised, the doses are accurate. Further, because of the high radioactivity 

of the Iridium-192 source, the treatment time takes only minutes, rendering little 

opportunity for the implant to move and deposit a radiation dose where it is not intended.  

 

The gynecological HDR procedure can be briefly summarized as follows. First, in 

the operating room, catheters are inserted into a patient who is under local, general, or 

spinal anesthesia. Interstitial catheters are inserted through the body tissue to encompass 

the tumor. For cervical treatment, a template is sutured to the skin to hold the treatment 

catheters in position. A CT scan is taken to determine the exact location of the catheters in 

relationship to the diseased organ and normal tissues. The CT images are used for 

treatment-planning optimization. The dosimetrist (i.e., a specialist who has the expertise 

necessary to generate radiation dose distributions and dose calculations, in collaboration 

with a medical physicist and a radiation oncologist) designs the plan on a computer and 

customizes the radiation doses to conform to the target volume, while minimizing the doses 

to the nearby normal tissues. After the physician has approved the treatment plan, the 

computer transfers the treatment-plan instructions to the HDR remote afterloader. On the 

day of the treatment, the patient is moved into the brachytherapy treatment room. The ends 

of the treatment catheters that protrude outside the body are connected to “transfer” tubes, 

which are then connected to the afterloader. The programmed instructions guide the 

afterloader on where to direct the source and how long to leave the source in each dwell 

position. The patient is alone in the treatment room as the treatment is being given, and the 

therapists and nurses continually monitor the treatment through an intercom and closed-
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circuit TV cameras. The entire treatment process takes approximately 30 to 90 minutes, 

depending on the size and complexity of the implant and the activity of the source. Upon 

treatment completion, the sutures holding the catheters in place are clipped and the implant 

is gently removed. Figure 3.1 depicts the delivery of HDR brachytherapy for cervical 

cancer. 

 

 
Figure 3.1. On the far left, we show the cervix anatomy (top) and the associated HDR 

treatment with the applicator (bottom). The remaining images on the top show the Ir192 

radioactive seeds and the Vienna ring CT-MR applicator. The CT image (bottom middle) 

shows the catheters and seed positions with respect to the diseased cervix. The image is 

used for treatment-planning optimization. The bottom right shows a transverse view with 

isodose curves overlaid. 

 

PET Image  

For our study of a group of cervical cancer patients, we obtained both PET images and CT 

scans. The biological PET image is first fused onto the treatment CT image (see Figure 

3.2). PTVs, critical structures, and OARs are delineated from CT images. The enhanced 

PET signal allows the identification of dense pockets of cancer cells, which define the 

boost target volume (BTV). HDR plans are optimized to deliver a prescribed dose of 35 Gy 

Ir192 to the PTV and 37 to 40 Gy to the BTV, following 45 Gy of external beam 

radiotherapy.   
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Figure 3.2. This figure shows the CT treatment image for the cervix (left), and the 

resulting image with an overlay of the PET image for plan design and optimization (right). 

We can clearly observe the PET tumor pockets (bright spots) inside the cervix. 

 

Novel OR-Based Treatment-Planning Model  

The OR challenges we faced are: 

1. Effectively modeling the TCP within the treatment-planning objective; 

2. Incorporating the PET-image information for biological targeted dose escalation; 

and 

3. Advancing computational strategies to solve the associated intractable nonlinear 

combinatorial instances. 

 

Dose calculation is based on guidelines from the American Association of Physicists in 

Medicine (AAPM) task groups for brachytherapy [158], which we describe in detail in the 

appendix. 

 

To the extent that PET can indicate the presence of faster-proliferating and (or) a 

higher density of tumor cells, recognizing such regions in the organ could be consequential 

in terms of tumor control. Therefore, we incorporate the TCP in our treatment-planning 

process. Specifically, we are interested in: (1) the maximal TCP gain obtainable by 

incorporating PET information in treatment planning, and (2) the largest fractional tumor-

pocket volume for which PET-guided planning remains useful. Clearly, if tumor cells are 

uniformly spread throughout most of the cervix volume, the gain would be insignificant. 

 

We generalize the TCP based on a reliable biological model [203], which is derived 

by using birth and death processes. The parameters include the number of tumor cells, their 
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survival probability, and the birth and death rates. The survival probability depends on the 

dose delivered, its timing and duration, and the repair of sublethal damage. We describe the 

full TCP model in the appendix. 

 

In our treatment-planning model, we represent each anatomical structure by a 

collection of discretized voxels (three-dimensional volumetric pixels), and choose sizes 

such that they are conducive for modeling. Each dwell location is modeled via two 

variables: a binary decision variable to indicate whether a radioactive seed will be 

deposited and a continuous variable to denote the associated dwell time. We impose 

constraints to ensure 95 percent PTV coverage, while restricting the underdose to the PTV, 

and upper- and lower-dose bounds for OARs and PTVs. We then strategically choose dose 

levels and parameters so that the overall PTV dose remains relatively homogeneous, as the 

clinicians desire, while protecting the OARs by using the maximum dose that the organs 

can tolerate to avoid inflicting severe and permanent harm. In the escalated-dose case, the 

PET-identified region receives an escalated dose over the prescribed dose. Not all the dose 

bounds can be satisfied simultaneously because of the close proximity and conflicting dose 

targets of cancerous and normal cells; therefore, our first objective is to find a treatment 

plan that satisfies as many dose bound constraints as possible. This helps to achieve a rapid 

dose fall-off from the PTV-prescribed dose, ensuring that the prescribed dose conforms to 

the tumor shape, while minimizing damage to healthy normal tissues. The second objective 

incorporates the TCP function, which depends on the time of the treatment, radioactive 

decay of the radioisotope, dose received, volume and density of the tumor cells, and 

biological radiosensitivity and radioresistancy of the normal and tumor cells. This results in 

a multiobjective NMIP problem, which is intractable by existing computational techniques. 

We present the full model in the appendix. 

 

Computational Challenges and Solution Strategies 

The treatment model has three objectives: (1) the temporal delivery objective that governs 

the dwell times; (2) the dose volume-based objective that, along with the temporal 

objective, guides the optimization engine to a solution that best satisfies the imposed 
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dosimetric and volumetric constraints for conformal treatment; and (3) the biological and 

clinical TCP objective.   

   

To apply our multiple-objective mixed-integer programming (MIP) solution 

strategies, we begin by first solving the MIP instance that requires the minimum PTV 

coverage, while minimizing the maximum dwell time across all the possible seed locations.  

 

For the dose volume-based objective, these MIP instances inherit the dense dose 

matrix properties as in the MSKCC brachytherapy instances [107]. Using a competitive 

commercial solver, the solver does not return a feasible solution, even after running for a 

month of CPU time on an Intel Xeon E5430 Quad Core Xeon Processors at 2.66 GHz, 

1333 MHz FSB, and 12 MB Cache per processor.  

 

We employ hypergraphic polyhedral cuts to accelerate the solution process. In 

particular, Easton et al. [38] introduce the notion of uniform hypergraph and derived facial 

structures of uniform hypercliques. In their work, they show that these hyperclique 

inequalities can help to successfully solve the small, yet 100 percent dense, previously 

intractable market-share instances. Lee and Zaider [107] show that hypercliques, along 

with novel matrix-reduction approaches and clever geometric-based heuristics, can help 

solve these intractable MIP instances to optimality. Furthermore, the solution process can 

be achieved within seconds; thus, the real-time treatment-planning process, which has since 

become standard across the United States, for prostate permanent implants, was realized. 

 

In our work, the challenges are more complex; these challenges include the 

multiobjective nature of our problem, the highly nonlinear TCP objective, and the 

competing dose escalation and OAR dose distribution within the solution space. 

 

We advance the polyhedral theory work of Easton et al. [38] and introduce the 

concept of generalized conflict hypergraphs. Within this high-dimension construct, we 

derive new polyhedral theories, including generalized hyper-clique, hyper-oddholes, hyper-
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antioddholes, hyper-webs, hyper-antiwebs, and hyper-star facial structures, and their 

associated Chvátal-Gomory (CG) ranks [100, 101]. 

 

Computationally, we tackle the dose volume-based and the biological tumor control 

objectives simultaneously using a branch-and-cut and local-search approach. We caution 

that because TCP is highly nonlinear, it is difficult to convexify or linearize it for actual 

branch-and-cut solution exploration. Specifically, we solve the MIP instance with the dose 

volume-based objective via a branch-and-cut algorithm that couples new polyhedral cuts, 

along with matrix reduction and intelligent geometric heuristics algorithms. When we 

obtain an integer solution, or when a heuristic within the branch-and-cut setting returns a 

feasible solution, we perform a local search to examine the TCP values across the entire 

neighborhood. Given a seed configuration with dwell times, we calculate the associated 

TCP based on the resulting PTV and PET-pocket dose volume histograms. We then keep 

the best solution (i.e., the solution with the maximum TCP value) as the incumbent 

solution. The local search involves swapping and a hybrid genetic algorithm, where one 

can rapidly examine the neighborhood space to identify the best TCP-value solutions. 

 

Such an approach guarantees the return of a feasible solution, while exploiting the 

best possible TCP values within the neighborhood feasible space. In addition to deriving 

novel general hypergraphic structures and encapsulating them within a rapid computational 

engine for solving these instances, we also investigate polyhedral approaches in MIP 

convexification of posynomial and signomial functions [164, 165]. We expect further 

advances in directly addressing the TCP objective using these novel cutting planes and 

polyhedral results, which we have obtained from special classes of nonlinear MIPs. 

 

We examine multiple variations to determine the one with the best performance in 

terms of dose distribution to various organs and the associated TCP. The variations include 

minimizing the overdose and underdose to the PTV, and (or) a combination of these. The 

overdose and underdose can be obtained by transforming the binary variables L
Pv  and U

Pv in 

Constraints (6) and (7) (see the appendix) into continuous variables to capture the dose 

differences. The weights in the objective function can be nonlinear to the overdose or 
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underdose amount (e.g., it can be piecewise linear or quadratic penalties). Other variations 

include maximizing the dose fall-off from the prescribed PTV dose.  

 

3.1.4 Validation and Results  

To gauge the feasibility, characteristics, and potential benefit of PET-image-guided dose 

escalation, our initial validation consists of 15 cases in which the patient has cervical 

cancer. Each patient had previously received a 45 Gy dose of external radiation. The PTV 

ranges from 82.8 to 137.47 cm3 and the BTV ranges from 10 percent to 41 percent. For 

each case, we contrast three alternative strategies: (1) a standard HDR plan with no dose 

escalation, (2) a BTV escalation with the same PTV prescription dose, and (3) a BTV 

escalation with a reduced PTV prescription dose. For both escalation strategies, we 

consider two variations (a 37 Gy increase and a 40 Gy increase to the BTV), and observe 

the effects on PTV and OAR dose profiles and TCP quality.  

 

Figure 3.3a illustrates the dose volume histogram and dose profiles for a patient 

with a BTV that is 19.39% of the cervix. The y-axis is the cumulative volume, and the x-

axis is the radiation dose received. In this figure, the standard plan is labeled by a square, 

escalated PET > 37 Gy with 35 Gy PTV prescribed dose is labeled by circles, escalated 

PET > 37 Gy with 33 Gy reduced PTV is labeled by an x, escalated PET > 40 Gy with 35 

Gy PTV prescribed dose is labeled by triangles, and escalated PET > 40 Gy and 33 Gy 

reduced PTV dose is labeled by rhombuses. We can observe the escalated dose of the BTV 

versus the PTV. Further, compared to the standard plan, dose reduction occurs in the 

rectum and bladder in the escalated plans with a BTV > 37 Gy. We observe a larger 

reduction when we increase the BTV to > 40 Gy. This translates to a reduction in normal 

tissue toxicity and complications. Figure 3.3b illustrates similar trends for a small BTV 

volume (i.e., 6.3%of the PTV).  
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Figure 3.3a. This figure shows the dose volume histogram for a cervical cancer patient 
with a BTV that is 19.39% of the PTV.  
 : Standard HDR plan (PTV prescribed dose = 35 Gy); there is no separate curve for 

the PET.  
o :Escalated PET (PTV prescribed dose = 35 Gy, PET > 37 Gy). 
*    :Escalated PET and reduced PTV dose (PTV prescribed dose = 33 Gy, PET > 37 

Gy). 
Δ   :Escalated PET (PTV prescribed dose = 35 Gy, PET > 40 Gy).  
 :Escalated PET and reduced PTV dose (PTV prescribed dose = 33 Gy, PET > 40 

Gy). 
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Figure 3.3b. This figure illustrates the dose volume histogram for a cervical cancer patient 

with a BTV that is 6.3% of the PTV.  

 

To contrast the dose distributions of the standard versus escalated plans, Figure 3.4 

illustrates clear hot spots (i.e., high dose, 150 percent isodose curves) around the PET-

identified voxels in the escalated plan; however, they are absent in the standard plan. 
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Figure 3.4. This figure contrasts the isodose curves of a standard plan (top left), an 

escalated plan with 35 Gy of PTV prescribed dose (top right), and an escalated plan with 33 

Gy of PTV prescribed dose (bottom left). We can observe the very conformed 100 percent 

isodose curves to the PTV contour. The 150 percent isodose curves in both escalated plans 

around the PET-identified pockets are clearly absent from the standard plan. The 120 

percent isodose curve is tighter in the bottom escalated plan, reflecting the lower dose to 

PTV because of the lower prescribed value (33 Gy versus 35 Gy). 

 

For the 15 cases, the TCPs for standard plans range from 52 percent to 64 percent. 

For dose escalation, when an escalated dose of > 37 Gy is placed in the PET-identified 

tumor pockets, all escalated plans show a slight reduction of 0.5 percent to 12.4 percent in 

the rectum and bladder dose, while 99 percent of the BTV receives over 40 Gy. The 

resulting TCP values range from 87 percent to 99 percent. When the BTV is less than 15 

percent of the PTV, dose escalation can be delivered with a virtually identical PTV dose, as 

in the standard plan.  
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When the BTV is over 20 percent of the PTV, dose escalation to PET-identified 

voxels intrinsically increases the PTV dose by 1 percent. Boosting the BTV to 40 Gy 

results in no dose increase to the PTV in all plans. When the PTV is prescribed as a 

reduced dose of 33 Gy, independent of the size of the BTV, escalation can be achieved, 

while the dose to the PTV, bladder, and rectum are reduced simultaneously All plans can 

be generated within a CPU minute. This allows for real-time OR-based treatment planning 

and on-the-fly dynamic reconfiguration. 

 

Table 3.1 highlights the TCP for three representative patients: BTV < 10 percent of 

PTV (small), 10 to 25 percent (medium), and > 25 percent (large). On all patients, the TCP 

of all escalated plans is over 70 percent. Specifically, when the BTV is boosted to over 40 

Gy, the resulting TCP is uniformly high (> 87 percent). We list the plans A to E according 

to improvements to the TCP. The best TCP (Plan E) is achieved when we boost the PET-

identified pockets to over 40 Gy, while maintaining the PTV dose at 35 Gy. This can be 

partially explained by the fact that there remain cancer cells loosely populated outside the 

PET-identified pockets. Hence, a prescribed dose of 35 Gy is able to eliminate these cancer 

cells, but a prescribed dose of 33 Gy may not be as effective. Table 3.2 contrasts the dose 

received by the OARs. For brevity, we focus on the plans where the PTV all receives 35 

Gy prescribed dose (i.e., plans A, B, and E). 
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Table 3.1. This table contrasts the TCPs in various plans. The boldface values represent the 

TCP associated with escalated plans. 

BTV/PTV ratio category Small Medium Large 
PTV (in cc) 82.5 131.5 89.7 

PET-identified volume (BTV in cc) 5.2 25.5 26.0 

Ratio: BTV/PTV 6.3% 19.39% 28.99% 

Treatment-planning model Tumor control probability 
(TCP) 

A: Standard HDR plan (PTV dose = 35 Gy) 0.6052 0.6358 0.5942 

B: PET-guided escalated plan (BTV > 37 Gy, PTV = 35 Gy) 0.8741 0.9383 0.9663 

C: PET-guided escalated plan (BTV > 37 Gy, PTV = 33 Gy) 0.8401 0.7382 0.7849 
D: PET-guided escalated plan (BTV > 40 Gy, PTV = 33 Gy) 0.9777 0.9465 0.9638 

E. PET-guided escalated plan (BTV > 40 Gy, PTV = 35 Gy) 0.9861 0.9639 0.9730 
 

Table 3.2. This table displays the dose distribution in standard plans versus escalated plans 

(using the same prescribed PTV dose). D90 (cGy) represents the dose received by 90 

percent of the organ and D 2cc is the minimum dose to the most exposed two cm3 of 

OARs. 

Patient 
  D90 (cGy) D2cc (cGy) Mean dose (cGy) 

 Plans PTV PET 
pockets Bladder Rectum Bladder Rectum 

Small 

STANDARD  3,735.8 4,091.3 2,650.37 2,400.57 2,272.5 2,006.5 
B: BTV > 37 Gy, PTV 
= 35 Gy -0.7% +3.2% -6.5% -0.2% -0.5% -0.9% 

E: BTV > 40 Gy, PTV 
= 35 Gy -0.6% +4.6% -6.1% -0.2% -0.5% -0.8% 

Mediu
m 

STANDARD 3,675.4 4,135 2,602.77 2,654.15 1,782.2 2,006.1 
B: BTV > 37 Gy, PTV 
= 35 Gy +0.8% +3.8% +3.1% -3.2% -1.0% -0.9% 

E: BTV > 40 Gy, PTV 
= 35 Gy +0.4% +6.5% +2.3% -2.0% -1.8% -2.6% 

Large  

STANDARD 3,666.2 4,046 2,791.26 2,881.11 1,189.3 3,042.2 
B: BTV > 37 Gy, PTV 
= 35 Gy -0.7% +3.1% -8.5% -7.5% -6.4% -6.9% 

E: BTV > 40 Gy, PTV 
= 35 Gy +0.1% +7.1% -5.0% -8.5% -1.7% -12.4% 
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3.1.5 Findings, Implementation, and Challenges  

With the precision of the HDR brachytherapy delivery, a TCP improvement in treatment 

plans can be readily realized in the outcomes of actual treatments. TCP offers biological 

information about tumor and normal cells and their radiosensitivity and radioresistancy to 

radiation doses; thus, incorporating such information in optimized personalized treatment 

plans is invaluable. Coupled with TCP knowledge, advances in biological and functional 

imaging offer new opportunities to incorporate radiobiological parameters within the 

planning process. The OR-based treatment-planning algorithm we describe herein allows 

for TCP-driven PET-enhanced personalized treatment, which facilitates the targeted 

delivery of escalated doses and improvements in overall clinical outcomes. 

 

Our study reveals improvements both in local tumor control and OAR toxicity, two 

competing and desirable goals that were previously thought to be unachievable 

simultaneously. The work herein showcases the importance of novel modeling and 

breakthrough optimization solution strategies in personalized treatment-planning advances. 

The dose escalation is sensitive to the size of the PET BTV. In addition, we have 

demonstrated that it is possible to reduce the PTV dose, while escalating doses to the BTV, 

as plans C and D, in which the PTV receives only 33 Gy.  

This work addresses three unique challenges.  

o The TCP function is complex and highly parametric, and is sensitive to the density 

of cancer cells and the radiobiological characteristics of normal and tumor cells.    

o The biological-driven MIP treatment models are intractable using existing 

methodologies and competitive solvers, because they would require breakthroughs 

in polyhedral theory and computational advances. This is the first time that TCP is 

being incorporated within a treatment-planning optimization modeling and solution 

process. This is also the first time that PET-image-guided dose escalation is being 

performed. 

o The actual gain in local tumor control must be validated through clinical trials to 

quantify the associated treatment outcome improvements that are realized through 

PET-guided dose escalation.  
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In practice, the sophisticated modeling and novel and fast optimization algorithm 

ensures that there is no increase in solution time for escalated dose planning. The radiation 

oncologists must guide us regarding the proper escalated dose values.  

 

Rush University Medical Center began a clinical trial for PET hot HDR dose 

resteering in July 2011. All patients enrolled were diagnosed as having International 

Federation of Gynecology and Obstetrics (FIGO) IIB or IIIB cervical cancer. In a FIGO 

IIB cancer, the tumor has spread to the parametrial area (i.e., tissue surrounding the uterus); 

in a FIGO IIIB cancer, the tumor has grown into the pelvic wall and (or) causes 

hydronephrosis or nonfunctioning kidneys [8]. The patient’s treatment included whole 

pelvic radiation therapy with concurrent chemotherapy. The radiation therapy treatment 

schemes included external beam treatments for the cervix and parametrium, along with 

HDR to the cervix with boosted PET-positive doses. The HDR CTVs were delineated 

based on CT and MR imaging positive volumes. The PET-positive volumes were boosted 

to 50 percent higher doses than those delivered to CTVs. Some cases were treated with the 

Syed applicator; others were treated with the tandom-ring applicator, in conjunction with 

three or four parametrial interstitial needles. 

 

All patients who entered the study received two treatment plans: one using the in-

house treatment-planning algorithm for dose escalation and another using a commercial 

algorithm with options for manual fine-tuning. The attending physician was responsible for 

selecting the final plan. Acceptable boost plans were achieved for all patients. These 

boosted plans were then successfully delivered to all patients. For the boosted plans, the 

PET pockets received elevated doses compared to the standard plans, while doses to the 

bladder and rectum were reduced. The clinician was pleased with the performance of the 

PET-image-guided targeted-dose escalation and the successful completion of the clinical 

study. The hospital is planning to continue the study by enrolling additional patients. The 

results thus far indicate that such dose escalation is feasible to deliver and is beneficial to 

the cancer patients. The techniques are applicable to the treatment of other types of cancer, 

including breast, lung, prostate, and esophagus cancer.  
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3.1.6 Impact and Significance 

As we state above, cervical cancer is the second most common cancer in women 

worldwide; approximately 500,000 new cases are diagnosed each year [194]. In developing 

nations, it is often the most common cause of cancer-related death among women and a 

leading cause of death overall [141]. In this section, we discuss the significance of our 

work.  

 

Quality of Care and Quality of Life for Patients   

o Compared to standard HDR plans, PET-guided dose-escalation plans improve 

tumor control consistently across all patients. This translates to improvements in 

cure rates and reductions in mortality.   

o Clinical evidence shows a reduction of the radiation dose to the bowel, bladder, and 

rectum. Thus, our system reduces side effects and complications. This has a 

profound impact on both health-care costs and the patient's quality of life.  

o The planning process requires only seconds to return good treatment plans. This 

offers quality assurance in treatment delivery (image-guided or not), independent of 

the training and experience of the operators. It helps to ensure a uniform quality of 

care among patients and across all hospital sites.   

 

Advancing the Cancer Treatment Frontier  

o The work marks the first time that complex TCP is incorporated within treatment 

planning, and as an objective in driving high-quality treatment plans. 

o This work also marks the first time that PET images are incorporated within the 

treatment-planning environment for targeted dose-escalation planning optimization. 

o The fast solution engine and the seamless incorporation of functional imaging 

information allows treatment-plan optimization and reoptimization in real time 

based on new images. as the patients receive daily treatments. This opens up the 

potential for next-generation adaptive real-time image-guided HDR brachytherapy.  

o With advances in biological imaging, such as PET and MRS, incorporation of such 

knowledge within treatment modalities will soon become standard for personalized 
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treatment planning. To the best of our knowledge, Rush University’s radiation 

therapy clinical trial is the first and only one in the country that delivers PET-based 

dose- escalation HDR brachytherapy for patients with cervical cancer. Our work 

has the potential to set the national standard and guidelines for biological image-

guided brachytherapy treatment. 

o Observing the clinical trend, brachytherapy is rapidly becoming the treatment of 

choice, because its side effects are generally less severe when compared to external 

beam radiation therapy and surgery, and because of its effectiveness for early-stage 

treatment. Further, brachytherapy preserves the organ and its functionality. The 

latter is of special concern to younger early-stage cancer patients who still look 

forward to bearing children.  

o The methodologies are applicable to brachytherapy (both high-dose rate and low-

dose rate) for other types of cancer, including prostate, breast, bileduct, lung, and 

sarcoma. 

 

Advances in Operations Research Methodologies 

o This study marks the first use of sophisticated combinatorial optimization 

approaches to tackle the complexities inherent in incorporating TCP as a clinical 

objective within HDR brachytherapy. The resulting treatment plans offer superior 

TCPs with simultaneous toxicity reduction to OARs. This can be a precursor to 

subsequent clinical trials. 

o This study is the first in which PET images are incorporated within the planning 

optimization model, giving rise to the competing goals of escalating the dose to the 

tumor, while simultaneously not increasing the dose to the OARs. 

o The highly nonlinear multiobjective MIP environment offers a powerful modeling 

paradigm. However, the resulting intractable instances demand theoretical and 

computational breakthroughs to solve these instances for actual clinical delivery.  

o We introduce a new concept of generalized conflict hypergraphs and derive 

polyhedral results, including hypercliques, hyper-oddholes, hyper-antioddholes, 

hyper-webs, hyper-antiwebs, and hyper-star facial structures, and their associated 

CG ranks. 
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o The branch-and-cut and local-search approach described herein couples new 

polyhedral cuts, along with matrix reduction and intelligent geometric heuristics. 

This approach can successfully address the highly complex and nonlinear TCP 

function and the dose-based objective. It can rapidly return good, feasible solutions.  

o Independently, this work motivates our polyhedral investigation on MIP 

convexification of posynomial and signomial functions [141, 142], an area that 

deserves advances in its own right, because many real-world problems can be 

modeled as complex NMIPs that demand theoretical and computational advances. 

 

Within the medical community, there is an urgent push to incorporate the 

radiobiological characteristics of normal and tumor cells, and biological and functional 

imaging advances, within treatment delivery to realize and improve clinical outcomes and 

tumor control. Our work provides proof of concept of the feasibility and potential clinical 

benefits of such personalized, targeted treatment-planning design and delivery. Moreover, 

the resulting plans offer improvements in tumor control and reduce the radiation to the 

OARs, two competing and desirable characteristics that were previously thought to be 

unachievable simultaneously. 

 

Our rapid operator-independent biological treatment-planning system provides the 

groundwork for advancing the technological frontier of image-guided brachytherapy. It 

opens up opportunities to conduct complex clinical investigations that may otherwise be 

impossible, as evidenced in MRS-guided dose-escalation studies [147, 126, 127, 128, 129, 

130, 131]. The sophisticated OR modeling paradigm provides great flexibility in 

realistically modeling the clinical problem, and the novel rapid solution engine objectively 

returns the best possible plans.  
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Appendix 

Dose Calculation  

Let )r(D  denote the dose contribution per minute of a seed to a voxel that is r units away. 

The two-dimensional dose-rate calculation can be represented as ),r(D  , which is 

calculated based on the AAPM task groups for brachytherapy TG43U1 and U2 [139].   

 
),,r(F)r(g

),r(G
),r(GS),r(D:D K 


 

00

2  
 

(1) 

where Sk is the air kerma strength (U, 1U = 1 cGy cm2/hour), kS/),r(D 00   represents 

the dose-rate constant (cGy/hr-U), )(rg  is a radial dose function, ),( rG  represents a 

geometry function, with ),( 00 rG  as the geometry function at the reference point ),( 00 r , 

where 10 r cm and 900  , and ),( rF  is a two-dimensional anisotropy function. The 

values for the geometry function ),( rG  are obtained from tabulated data.  

 

Incorporating the TCP within the Treatment-Planning Objective 

To the extent that PET can be taken to indicate the presence of faster-proliferating and (or) 

a higher density of tumor cells, recognizing such regions in the organ could be 

consequential in terms of tumor control. We incorporate the TCP within our treatment-

planning process. Specifically, we are interested in (1) the maximal TCP gain obtainable by 

incorporating PET information in treatment planning, and (2) the largest fractional tumor-

pocket volume for which PET-guided planning remains useful. Clearly, if tumor cells are 

uniformly spread throughout most of the cervix volume, the gain would be insignificant.  

 

We generalize the TCP based on a reliable biological model developed by Zaider 

and Minerbo [204]. The formulas are derived using the birth and death processes. For 

brachytherapy, the TCP equation is  
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where n  is the initial number (at time 0t ) of tumor cells, )(tS  is the survival probability 

of tumor cells at time t, and b  and d  are the birth and death rates of these cells, 

respectively. 

 

The birth rate b  and the death rate d  relate to two parameters: potential doubling 

time potT  and tumor cell loss factor  , where potTb /693.0  and bd / . In the TCP 

calculation, the time t  in Equation (2) is typically taken to be the duration of the treatment 

period or the expected remaining life span of the patient.  

 

For simplicity and convenience in Equation (2), we use the linear quadratic 

expression for the survival function: 
2)()( DtqDeDS   , where D  is the dose delivered 

over the time interval t , and )(tq  makes explicit the repair of sublethal damage. In the case 

in which the dose rate decreases exponentially, 
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where   is the radioactive decay constant of the radioisotope ( 0.0094  d-1 for 192Ir) and 

0/1 t , where 0t  is the average time for the sublethal damage repair, typically in the 

order of one hour.  

 

To complete the TCP calculation, we give numerical values to the parameters n , 

potT ,  ,  ,  , and 0t  to represent the response of the rapidly proliferating and (or) 

radioresistant segment of tumor cells. 
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 The TCP value is sensitive to the volume and density of cells. We take the volume 

and density of cells in the cervical tumor ranges from 810  to 1010 cells/cm3. The 

potential doubling time is taken as 15potT  or 20potT  days, and the cell loss factor is 

taken as 5.0  or 75.0 . In addition, 487.0  Gy-1, 055.0  Gy-2 for 

radiosensitive cells, and 155.0  Gy-1, 052.0  Gy-2 for radioresistant cells, whose 

values are determined from in vitro cell-survival measurements. For the sublethal damage 

repair constant. we take 10 t  hour.  

 

Novel TCP-Driven PET-Image-Guided Treatment-Planning Model 

We employ a multiobjective MIP model for HDR brachytherapy treatment planning. The 

model incorporates the TCP as the objective function, in addition to the rapid dose fall-off 

function to ensure dose conformity to the tumor region. 

Briefly, let jx  be a 0/1 indicator variable for recording placement or nonplacement 

of a seed in grid position j and jt  be the continuous variable for the dwell time of a seed in 

grid position j . The total radiation dose at voxel P  is given by  

 ,t||)XP(||D
j

jj    (3) 

where jX  is a vector corresponding to the coordinates of grid point j , |||| 
 
denotes the 

Euclidean norm, and )r(D  denotes the dose contribution per minute of a seed to a voxel 

that is r units away.  

 

The target lower and upper bounds, PL  and PU , for the radiation dose at voxel P 

are represented by the following dose constraints:   

 
P

j
jj Lt||)XP(||D                        (4a) 

 .Ut||)XP(||D P
j

jj                        (4b) 
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For each voxel P  in each anatomical structure, a binary variable is used to capture 

whether or not the desired dose level is achieved. For simplicity, we use the BTV to 

represent the set of tumor voxels identified by the PET images.  

 

The TCP-driven PET-image-guided dose-escalated multiobjective treatment model 

is given by the following model: 

Maximize  
P

U
PP

L
PP vv )( 

 

Maximize TCP
 

 subject to                           

  PrDose
j

jj t||)XP(||D  P in BTV  (5) 

 
P

L
PP

j
jj L)v(Mt||)XP(||D  1  P in PTV-BTV 

P in OARs (6) 

 ,U)v(Nt||)XP(||D P
U
PP

j
jj  1  P in PTV-BTV, 

P in OARs (7) 
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j
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 L
Pv , U

Pv , },1,0{jx 0jt    

           

PrDose represents the clinical prescribed dose to the tumor, and   (  > 1) 

represents the dose-escalation factor. This factor is guided by clinicians as well as its effect 

on normal tissue complication. Constraint (5) ensures that the PET-identified tumor voxels 

receive escalated doses. In Constraints (6), and (7), L
Pv  and U

Pv  are 0/1 variables. If a 

solution is found such that L
Pv  = 1, then the lower bound for the dose level at point P  is 

satisfied. Similarly, if U
Pv  = 1, the upper bound at point P  is satisfied (see Constraint 7).  

 

The constants PM  and PN  are chosen appropriately for the PTV and for various 

OARS. For PTV, PM  corresponds to the underdose limit, whereas PN  corresponds to 
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overdose limit, and PL  = PrDose corresponds to the prescription dose. PM  and PN  are 

strategically chosen so that the overall PTV dose remains relatively homogeneous (e.g., 

PN  / PM  < 1.2), as the clinicians desire. For the OARs, PN represents the maximum dose 

tolerance that the organs can sustain, without inflicting severe and permanent harm. These 

values are determined from clinical findings and are part of the planning procedures and 

guidelines. For cervical cancer treatment, Constraint (6) does not apply to any OAR. 

 

In Constraint (8),  corresponds to the minimum percentage of tumor coverage 

required (e.g.,   = 0.95). Because all the PET-identified tumor voxels satisfy the 

prescribed dose bound (and beyond), we count those in PTV-BTV and these BTV-voxels 

to ensure that overall it satisfies   percent of the tumor volume. Here, PTV  represents the 

total number of voxels used to represent the PTV of the cervix. Constraint (8) thus 

corresponds to the coverage level that the clinician desires. In Constraint (9), the duration tj 

in grid position j is positive only when this position is selected. Its value is bounded by the 

maximum time limit Tj. The time usually is bounded by the length of the treatment session, 

which is usually between 20 and 30 minutes, depending on the tumor stage and prognosis 

condition. Constraint (10) limits the number of seeds used to MaxSeeds. The constant can 

be omitted; however, in some cases, clinicians know their desired numbers, which they tell 

the planner. 

 

Note that BTV voxels are excluded in Constraint (7) because there is no reason to 

place an upper bound on the dose to these tumor voxels. Constraint (5) ensures that no 

underdose for PET-identified voxels exists; thus, Constraint (6) is unnecessary for these 

voxels. 

 

 The first objective is to find a treatment plan that satisfies as many bound 

constraints as possible; this is surrogate to rapid dose fall-off, ensuring conformity of the 

prescribed dose to the tumor. The parameters P and P  allow us to prioritize the 

importance of various anatomical structures. Using a weighted sum is important for the 

cervical cancer cases to balance the volume of the cervix versus the nearby OARs (e.g., 
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bladder, rectum, and bowel). The second objective function incorporates the TCP function, 

which depends on the time of the treatment, radioactive decay of the radioisotope, dose 

received, volume and density of tumor cells, and the biological radiosensitivity and 

radioresistancy of the normal and tumor cells.  
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3.2 TCP Optimization in Cancer Treatment Planning 

In this section, it includes a paper that is prepared for submission to the International 

Journal of Radiation Oncology, Biology and Physics. 

3.2.1 Introduction 

In radiation therapy, radiation is delivered using either external beam technology or using 

internal seed implantation which is known as brachytherapy. For high-dose rate (HDR) 

brachytherapy, the radioactive substance that sealed in the seeds or catheters are placed 

temporarily into or near the cancer to eradicate the tumor while minimal radiation is 

delivered to the healthy tissues. Recent advances in functional imaging, such as magnetic 

resonance spectroscopy (MRS) and positron emission tomography (PET), facilitate 

identification of the tumor cells based on their molecular characteristics, which allows the 

treatment planning to deliver escalated dose to the tumor inside the target organ [50, 107]. 

The improvement on the overall clinical outcome in HDR treatment using dose escalation 

guided by PET imaging has been shown in our previous studies [93]. 

 

Operations research approaches such as linear optimization, mixed integer 

programming, and multi-objective optimization, have been wildly applied to construct the 

treatment planning optimization models [30, 32, 34, 43, 48, 93, 94, 162]. The goal of 

treatment optimization is to deliver the prescriptive dose to the tumor while limiting or 

minimizing radiation to healthy cells and critical organs in the neighborhood of the tumor. 

The radiation dose to the healthy cells and critical organs in treatment optimization can be 

controlled by dose volume constraint and generalized equivalent uniform dose (gEUD). 

Dose volume constraint on an organ limits the portion of the organ that receives more than 

a given prescriptive dose [34, 43, 48]. Generalized EUD for an organ is given by gEUD =

(1/݊∑ ݀௜௔௜ )ଵ/௔, where n is the number of voxels in the structure, di is the dose to voxel i, 

and a is a parameter. Craft et al incorporated the gEUD as an objective into the multi-

objective optimization model for IMRT treatment planning [32]. The function f(d) = da in 

gEUD is fitted with a three-segment piecewise linear convex function. Thus the multi-

objective optimization can be constructed as a two-step linear programming problem: 
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minimizes the excess of the piecewise linear gEUD function over the maximum desired 

level in the first step, and uses the solution from the step 1 model as constraints to find the 

Pareto optimal treatment plan in the second step. 

 

Tumor control probability (TCP) is an estimated function of the probability of 

killing all malignant cells in the affected organ given a dose of radiation in radiation 

therapy. In treatment planning of radiation therapy, TCP has been wildly used for assessing 

the biological response of the treatment plans [43, 50, 80, 147, 191, 205]. Mohan et al 

investigated the balance between TCP and normal tissue complication probability (NTCP) 

[134]. Potential improvement on TCP from a treatment plan has been investigated [174]. 

When an integral total dose volume or energy deposition is given, the maximum TCP value 

can be obtained by solving the TCP equation with Lagrange multipliers [40, 173, 200], and 

the obtained dose distribution can be served as the prescription dose in the following 

inverse planning [201]. Levin-Plotnik et al. discussed about finding the dose distribution 

that maximizes the TCP function while the mean dose is fixed and given [116]. Zaider et al 

derived an analytical expression of TCP taking into account the length of the treatment and 

the stochastic process of eradiating tumor cells [204]. To find the dose distribution with 

optimal TCP while constraining on the dose requirement on the health tissues remains 

challenging. 

 

We incorporated the TCP into the objective of the multi-objective optimization 

model in previous study [43]. The optimal TCP is found within the neighborhood of the 

solution obtained from various optimization models. In this study, we build an optimization 

model that maximizes the TCP directly and satisfies the dose requirements on the targeted 

organ, and healthy tissues in order to preserve their functionalities while delivering an 

escalated dose to the tumor. We focus on the optimal treatment planning of HDR 

brachytherapy on cervical cancer using dose escalation guided by PET imaging. We design 

a solution strategy that first fits the piecewise linear approximation of the TCP function, 

then solves the piecewise-linear optimization problem that maximizes the piecewise linear 

approximation of TCP, and finally performs a local search to improve the TCP value within 

the neighborhood of the solution. 
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3.2.2 Methodology 

TCP is a function computing the probability that no malignant cells are left in the affected 

organ. It can be estimated in the treatment planning by using spatial dose configuration and 

the dwell time per treatment. Let ݔ௝ be a 0/1 indicator variable for recording placement or 

non-placement of a seed in grid position j and ݐ௝ be a continuous variable for the dwell time 

of a seed in grid position j. The total radiation dose received by voxel P  in a treatment can 

be calculated as: 

 
j

jjjP Tt,t|XP|DTd )()( , 

where ܶ denotes the duration of the treatment, ௝ܺ denotes a vector corresponding to the 

coordinates of grid point ݆, | ∙ | denotes the absolute distance, and ܦ(| ∙ |) denotes the dose 

contribution per minute of a seed to a voxel. Let ݊௣ represent the number of tumor cells in 

the representing area of voxel ܲ. Therefore, the TCP equation at the end of the treatment 

according to the model developed by Zaider and Minerbo [204] is given by: 
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Our optimization model maximizes the TCP that also  satisfies the dose requirement 

given by the physician. We employ PET-image to facilitate our treatment planning by 

identifying the dense pockets of cancer cells. The volume delineated by PET-image defines 

the boost target volume (BTV). Thus escalated dose can be delivered to BTV while the 

prescriptive dose is delivered to the rest of the volume in the planning target volumes 

(PTV), which is the cervix in this study. In addition to killing the cancer cells and 

preserving the functionality of the cervix, a treatment plan should preserve the 

functionalities of the surrounding critical organs including rectum, bladder, and bowel. For 

convenience of reading, we denote PTV-BTV as the set of voxels in the region of PTV and 

outside the region of BTV, and BTV as the set of voxels in the region of BTV. Let PrDose 
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denote the prescriptive dose for PTV-BTV, and BTV_PrDose denote the escalated 

prescriptive dose for BTV.  Let OAR denote the set of voxels in critical organs. In our 

study, OAR can be split into three subsets surrounding the cervix: RECTUM, BLADDER, 

and BOWEL.  

 

We incorporate partial dose volume constraints on the maximum/minimum dose to 

PTV-BTV and BTV and maximum dose constraints to RECTUM, BLADDER, and BOWEL. 

For example, a constraint of a maximum dose to RECTUM can be that 95% of the voxels 

must receive no more than 90% of the prescriptive dose and 100% of the voxels must 

receive no more than 120% of the prescriptive dose. Let ߙ௦ denote the voxel coverage 

percentage, ߚ௦ denote the percentage of the prescriptive dose, and ܮ௦,௞௉  denote a 0/1 

indicator to denote whether the dose to voxel ܲ ∈  ௦ forߚ	 satisfies the dose requirement ݏ

set s in 	{ܸܲܶ, ,ܸܶܤ-ܸܶܲ ,ܴܧܦܦܣܮܤ,ܯܷܶܥܧܴ  The prescriptive dose of tumor .{ܮܧܹܱܤ

that can kill the tumor cells is instructed by physicians. Recall BTV_PrDose and PrDose 

denote the prescriptive dose for BTV and PTV-BTV respectively where BTV_PrDose is 

PrDose plus the escalated dose on BTV. The multiple sets of dose constraints can be used 

with different combinations of (ߙ௦ ,  ௦) as shown in Table 3.3. Specifically, a hardߚ

constraint is set for the minimum dose to BTV that the escalated prescriptive dose of BTV 

must be satisfied. For the minimum dose to PTV-BTV, two constraints are set: 100% level 

at 93% of the prescriptive dose, 95% level at 100% of the prescriptive dose. For the 

maximum dose to PTV-BTV and BTV, three levels of coverage are predetermined: 90% 

level at 150% of the prescriptive dose, 95% level at 160% of the prescriptive dose, and 

100% level at 200% of the prescriptive dose. For organs in OAR, four levels for the 

maximum dose are pre-determined: 100% level at 120% of the prescriptive dose, 95% level 

at 90% of the prescriptive dose, 90% level at 80% of the prescriptive dose, and 80% at 60% 

of the prescriptive dose.  
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Table 3.3a. Partial dose volume constraints for minimum dose requirements. 

Set s % of covered 
voxels (ߙ௦) 

% of prescriptive 
dose (ߚ௦) 

Prescriptive 
dose 

BTV 100% 100% BTV_PrDose 

PTV-BTV 100% 93% PrDose 
95% 100% PrDose 

 

Table 3.3b. Partial dose volume constraints for maximum dose requirements. 

Set s % of covered 
voxels (ߙ௦) 

% of prescriptive 
dose (ߚ௦) 

Prescriptive 
dose 

BTV 
100% 200% BTV_PrDose 
90% 150% BTV_PrDose 
95% 160% BTV_PrDose 

PTV-BTV 
100% 200% PrDose 
95% 160% PrDose 
90% 150% PrDose 

OAR 

100% 120% PrDose 
95% 90% PrDose 
90% 80% PrDose 
80% 60% PrDose 

 

Let TCP(D) denote the TCP value given a dose configuration ܦ = {݀௉}, ܲ	 ∈  ܸܶܤ

for simplicity and the fixed treatment duration T = 20 min. The optimization model then 

can be formulated as a nonlinear mixed integer programming: 
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Maximize TCP(D) 
Subject to                           

 Dose received by voxels   
 

0)(  P
j

jj dt|XP|D   (3.2.1) 

 Maximum dose constraints on PTV-BTV and OAR   
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P
sP   1  ܲ ∈   ,ݏ

s = PTV-BTV , OAR (3.2.2) 
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sP

P
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

 ܲ ∈  , ݏ
s = PTV- BTV, OAR (3.2.3) 

 Minimum dose constraints on PTV-BTV   
 

   .DosePrDosePrLd BTVPTVBTVPTVBTVPTV
P

BTVPTVP    1  
(3.2.4) 

  ܲ ∈  ܸܶܤ-ܸܶܲ
 

BTVPTVBTVPTV
BTVPTVP

P
BTVPTV NL 


    ܲ ∈  (3.2.5) ܸܶܤ-ܸܶܲ

 Minimum dose constraints on BTV   
 .PrDose_BTVdP   ܲ	 ∈  (3.2.6) ܸܶܤ

 Maximum seeds constraint   

 Seedsmaxx
j

j    (3.2.7) 

    10100 ,L,,x,xTt P
sjjj   ܲ	 ∈  (3.2.8)  ݏ

 

 ௦, and ௦ܰ represents the numberߙ ௦ value corresponding to a givenߚ denotes (ߙ)௦ߚ

of voxels in set s.  Constraints (1) derive the dose at voxels from the duration of seeds and 

the dose rate function. Constraints (3.2.2) - (3.2.3) ensure that the maximum dose coverage 

constraints are met for all voxels in PTV-BTV and OAR. Constraints (3.2.4) - (3.2.5) ensure 

that the minimum dose coverage constraints are met for all voxels in PTV-BTV and OAR. 

Constraints (3.2.6) ensure that the minimum dose requirements for voxels in BTV are 

satisfied. Constraint (3.2.7) limits the number of seeds to maxSeeds. This constraint can be 

omitted, or in some cases, clinicians have their desired numbers in which they can inform 

the planner. The duration tj in grid position j is positive only when this position is selected, 

and its value is bounded by the treatment duration T.  
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It is difficult to solve the optimization problem with the nonlinear objective TCP 

function, this is true also for the convexified and linearized version of the TCP function due 

to its sensitivity and highly nonlinear characteristics. We design a solution algorithm 

described as follows. 

 

The optimization problem is equivalent to a convex optimization problem that 

maximizes the logarithmic function of the TCP function log(TCP(T, dP)) since the TCP 

function is a non-decreasing function with: 

   









P
P

P
P dTCPlogdTCPlogDTCPlog )()( . 

Furthermore, the logarithm function log TCP(dP) is a concave function that values in (-∞, 

0] as TCP(dP) is a non-decreasing function on [0,1]. By fitting log TCP(dP) with a concave 

piecewise linear function where the numbers and the length of segments are pre-determined 

by the minimum and maximum dose requirements, the optimization problem can be 

converted into a piecewise linear optimization problem, and ultimately a linear 

optimization problem that maximizes the concave piecewise linear approximation of the 

TCP function.  

 

In the final step, we perform local search within the neighborhood of the obtained 

optimal solution that maximizes TCP(D) rather than the piecewise approximation of it. A 

simulated annealing algorithm is executed for 1,000 iterations in which subgradients of the 

dwell time vector t are found by swapping 0.01 minute of seed duration from one seed 

location to another to search for an improvement direction.  

 

3.2.3 Results 

To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose 

escalation, initial validation consists of fifteen cervical cancer patient cases. These patients 

have all received prior 45 Gy of external radiation dose. The PTV ranges from 82.8 to 

137.47 cm3 and the BTV ranges from 10% to 41%. For each patient case, 3 alternative 

strategies are contrasted: a) standard HDR plan with no escalation, b) BTV escalation with 
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the same PTV prescription dose, and c) BTV escalation with reduced PTV prescription 

dose.  For both escalated strategies, we consider two variations (37 Gy boost to BTV vs. 40 

Gy boost) and observe the effect on PTV and OAR dose profiles and TCP quality.  

 

For the fifteen patients, the tumor control probabilities for standard plans range 

from 48% to 63%. For dose escalation, when an escalated dose of > 37 Gy is placed on the 

PET-identified tumor pockets, in all escalated plans, there is slight reduction (2-5%) in 

rectum and bladder dose, while 99% of BTV receives over 40Gy. The resulting TCP values 

range from 82% to 99%. When the BTV is less than 15% of the PTV, dose escalation can 

be delivered with virtually identical PTV dose as in the standard plan. When BTV occupies 

over 20% of the PTV, dose escalation to PET-identified voxels intrinsically increases PTV 

dose by 1%.  Boosting BTV to 40Gy results in no dose increase to PTV in all plans.  When 

PTV is prescribed a reduced dose of 33Gy, independent of the size of the BTV, escalation 

can be achieved while dose to PTV, bladder and rectum are simultaneously reduced.  All 

plans can be generated within a CPU minute. This allows for real-time OR-based treatment 

planning and on-the-fly dynamic re-configuration. 

 

Table 3.4 highlights the tumor control probability for three representative patients: 

BTV 10% of PTV (small), 20-30% (medium), and 41% (large). On all patients, TCP of all 

escalated plans is over 80%. Specifically, when BTV is boosted to over 40Gy, the resulting 

TCP is uniformly high (> 89%). We list the plans A –E according to improvement in TCP. 

The best TCP (E) is achieved when we boost the PET-identified pockets to over 40Gy 

while maintaining the PTV dose at 35 Gy. This can be partially explained by the fact that 

there remain cancer cells loosely populated outside the PET-identified pockets. Hence a 

prescribed dose of 35 Gy is able to eliminate these cancer cells, but a prescribed dose of 33 

Gy may not be as effective. Figure 3.5 illustrates the dose volume histogram and dose 

profiles for the three patients listed in Table 3.4. 
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Table 3.4. Comparison of TCPs in treatment plans. Plan B - E: Minimizing total overdose 

in cervix incorporated with TCP. Plan B1 and C1: Solving the linear relaxation problem of 

maximizing TCP. 

BTV/PTV Ratio Category Small Medium Large 

Planning Target Volume (PTV in cc) 82.5 131.5 89.7 

PET-identified volume (BTV in cc) 5.2 25.5 26.0 

Ratio: BTV/PTV 6.3% 19.39% 28.99% 

Treatment Planning Model  Tumor Control Probability 

A. Standard HDR Plan (PTV dose = 35 Gy) 60.5% 63.6% 59.4% 

B. PET-guided Escalated Plan (BTV > 37 Gy, PTV = 35Gy) 87.4% 93.8% 76.6% 

C. PET-guided Escalated Plan (BTV > 37 Gy, PTV = 33Gy) 84.0% 63.8% 68.5% 

D. PET-guided Escalated Plan (BTV > 40 Gy, PTV = 33Gy) 97.8% 94.7% 96.4% 

E. PET-guided Escalated Plan (BTV > 40 Gy, PTV = 35Gy) 98.6% 96.4% 97.3% 

B1. TCP Optimization Plan (BTV > 37 Gy, PTV = 35Gy) 99.0% 97.8% 99.1% 

C1. TCP Optimization Plan (BTV > 37 Gy, PTV = 33Gy) 96.3% 91.9% 96.5% 
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Figure 3.5. Comparison of Dose volume histogram between dose escalated plan (B) and 
TCP optimization plan (B1).  
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CHAPTER IV  

PUBLIC HEALTH DECISION MAKING 

Public health emergencies such as pandemic flu and bioterrorism attack require public 

health administrators to assess the upcoming event and determined the needed resources to 

mitigate the impact of the emergencies. When the resources are limited, it is critical to 

allocate the resources optimally and strategically such that the loss from the emergency is 

minimized. For example, the number of infections in a flu pandemic can be minimized by 

vaccination that prioritizing the high-risk groups. On the other hand, when the resources are 

adequate to prevent the emergency, it is beneficial for the public health department to adopt 

the most efficient strategy such that the effort and budget can be saved for other incidents. 

  

In this chapter we discuss two topics: In the first section, we investigate  

vaccination strategies against a pandemic flu to find the optimal strategy when limited 

vaccines are available by constructing a mathematical model for the course of the flu 

development and the process of the vaccination; in the second section we analyze the cost-

effectiveness of emergency response strategies against a large-scale anthrax attack where 

the entire population in a city must be protected  within 48 hours. 

 

  



 

119 

4.1 Strategies for Vaccine Prioritization  
This section contains the paper to be appeared in Interfaces - The Daniel H. Wagner Prize 

for Excellence in Operations Research Practice 2015; EK Lee, F Yuan, F Pietz, BA 

Benecke. Vaccine Prioritization for Effective Pandemic Response. 

 

Vaccine Prioritization for Effective Pandemic Response 
Eva K Lee *, Fan Yuan *, Ferdinand Pietz †, Bernard Benecke 

‡ 

*School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, †  
Strategic National Stockpile,‡ Global Disease Detection and Emergency Response, Centers for Disease Control and 

Prevention, GA. 
 

Abstract  

When vaccine availability is limited, prioritized vaccination is considered the best 

strategy to contain a (flu) pandemic. We derive a mathematical decision framework to 

track the effectiveness of prioritized vaccination through the course of a pandemic. Our 

approach couples a disease propagation model with both a vaccine queuing model and 

optimization engine to determine the optimal prioritized coverage in a mixed vaccination 

strategy. This approach demonstrably minimizes infection and mortality.  

 

The study reveals there is an optimal coverage for the high-risk group that results 

in the lowest overall attack and mortality rates, given known outbreak characteristics, 

vaccine inventory levels, and individual risk factors,  Such information is critical to 

public health policy makers as they determine the best strategies for population 

protection. This is particularly important in determining when to switch from a prioritized 

strategy focusing on high risk groups to a non-prioritized strategy where the vaccine 

becomes publicly available. This analysis highlights the importance of non-interrupted 

vaccine supply. Although the 2009-H1N1 supply eventually covered over 30% of the 

population, the resulting attack and mortality rates are inferior to a scenario in which only 

20% of the population is covered by a non-interrupted supply. Early vaccination is also 

important: a 3-week delay diminishes a 9.9% infection reduction to a mere 0.9%.  

 

The optimal trigger for switching from prioritized to non-prioritized vaccination is 

sensitive to infectivity and vulnerability of the high-risk groups. Our study underscores 
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the importance of throughput efficiency in dispensing and its effects on the overall attack 

and mortality rates. The more transmissible the virus is, the lower the threshold for 

switching to non-prioritized vaccination. Our model is generalizable, and allows 

incorporation of seasonality and virus mutation of the biological agents. The system 

empowers policy makers to make the right decisions at the appropriate time to save more 

lives, better utilize limited resources, and reduce the health service burden during a 

pandemic event.   

   

*The findings and conclusions in this paper are those of the authors and do not 

necessarily represent the official position of the Centers for Disease Control and 

Prevention. 

 

4.1.1 Introduction 

When limited vaccines are available, prioritized vaccination is considered the best 

strategy to mitigate the impact of a (flu) pandemic [132, 187]. Traditionally, healthcare 

workers and volunteers involved in vaccinations [150], children, elderly, and others 

with underlying medical conditions receive priority for receiving vaccine. The 

effectiveness of prioritizing elderly, however, has been under debate [170]. Previous 

prioritized vaccination strategies focused largely on spatial distribution of the population 

and age, with the goal of minimizing the severity of the pandemic measured by 

infections, deaths, years of life lost, and cost [130, 133, 163, 196]. Prioritizing children 

from ages 5 to 17 years old and an early start of the vaccination campaign are stressed for 

reducing morbidity and mortality [28]. Tuite et al investigated the optimal ranking for age 

stratified groups and risk stratified groups under unlimited vaccine availability [186]. 

Willinga et al reported an importance leveling strategy to decide the vaccination coverage 

for risk groups under limited vaccine availability [189]. Mylius et al compared 

complications ranking and infection ranking strategies [137]. Yang et al. report that 

vaccinating children before adults may mitigate a severe epidemic if vaccine coverage of 

the population is high and vaccination starts early enough [199].  
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Previous work has proposed strategies for optimal vaccine distribution by an 

iterative guessing routine [118], by linear approximation [130,131], and via a stochastic 

simulation framework [148]. Most United States public health departments use a mixed 

vaccination strategy that starts as prioritized then switches to a non-prioritized strategy 

after a certain time interval [26]. Determining when that switch should occur is critical 

and vital.  

 

Past studies assumed that vaccination takes no time and all vaccinees receive 

vaccine simultaneously once vaccines arrive [130, 131, 186]. Others assumed that 

vaccination occurs before the pandemic [117]. A proper disease spread model must 

consider the distribution of vaccinations over time, including such important factors as 

supply interruptions and varying patient arrival rates. 

 

This project was initiated ahead of the H1N1 flu when the lead author was invited 

to a White House public health event. The White House Director for Medical 

Preparedness Policy sought technical advice and recommendations for better optimizing 

population protection initiatives. The computational system and the paper emerged from 

that effort. 

 

The goal is to design a system that empowers policy makers with strategies for 

mass infection and casualty mitigation during pandemic under strained time and limited 

vaccine supplies. Our work takes all the critical factors into account by coupling a 

vaccine dispensing queuing model with a vaccination optimization module. These are 

driven by a disease propagation model that aims to determine the optimal trigger for 

switching from prioritized to non-prioritized vaccination so as to minimize infection and 

mortality severity throughout the pandemic’s course when vaccine supplies are limited.  

We contrast two propagation models: systems of ordinary differential equations (ODE) 

versus an individualized agent-based model. In both cases, a 6-stage disease transmission 

model is used, and the vaccination process is characterized by operations and service 

distribution data collected via time-motion studies in seasonal and H1N1vaccination 

events at various sites across the nation [98]. 
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We analyze the sensitivity of the optimal switch trigger (i.e., trigger for switching 

from a prioritized to a non-prioritized dispensing strategy) over these parameters: vaccine 

availability, start of vaccination, dispensing throughput efficiency, triage accuracy, 

outbreak characteristics, infectivity rate, and risk factors.  

 

We believe this work is the first mathematical-computational model to combine 

disease propagation, dispensing operations, and optimization capability; and the first that 

allows rapid determination of optimal switch triggers. Moreover, it includes innovative 

computational strategies to derive good near-optimal solutions. To the best of our 

knowledge, previous studies on vaccine prioritization did not include all the critical 

details considered herein in their models, nor were they used by the CDC, or used 

otherwise, to influence public-health policy making.  

 

CDC confirms that this is the first time an actionable and operational switch 

trigger has been defined, an advance that is critical and vital to better mitigation of 

infections and mass casualties. The study confirmed the importance in the establishment 

of the National Institute of Translational Medicine for rapid medical countermeasures and 

drug design. The system, RealOpt-VacOpt, has been in use since 2011 for advising on 

vaccine distribution, prioritization, and triage strategies. In particular, the CDC Strategic 

National Stockpile escalated their dispensing training with a team of dedicated CDC 

public health experts who are providing hands-on training with RealOpt-POD to improve 

operational performance. 

 

4.1.2 Materials and Methods 

Models and Parameters 

To study the infectious status of the population, we develop mathematical computational 

models that capture a 6-stage SEPAIR disease propagation process (susceptible (S), 

exposed (E, infected but not infectious), infectious (P, infectious but not yet 

symptomatic), asymptomatic (A, infectious and asymptomatic), symptomatic (I, 
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infectious and symptomatic), and recovered and immune (R)) along with the stochastic 

vaccination process inside point-of-dispensing sites (PODs) (Figure 4.1). For comparison, 

we take two approaches. The first integrates a system of ordinary differential equations 

for disease progression with a queueing model for vaccine dispensing (ODE-queueing), 

and an optimization module for finding the optimal switch trigger while tracking the 

vaccination and disease propagation process. The second replaces the ODE-queueing 

model by agent-based simulation [97]. The disease spread here is tracked in great detail 

as individuals go through the vaccination process. Optimization is performed over the 

ODE system or within the simulation environment to determine the optimal mixed 

strategy.   

     

 
 

 

 

 

 

We stratify the population into five risk groups: normal adults, children 10 years-

old and younger, healthcare workers, pregnant women, and patients with underlying 

disease conditions. The latter four are considered high-risk groups for influenza related 

complications; i.e., they have higher probability of being infected, and have higher 

mortality rate once they are infected [37].  

 

The novel 6-stage SEPAIR transmission model is used to track the disease 

progression of each individual [97,195]. The measure of transmission is the basic 

reproduction number R0 [35, 51, 70]. We create three more stages: special care (SC), 

vaccinated and immune (V), and deceased (D). SC tracks the individuals with influenza-

like symptoms who choose to self-quarantine at home, or are treated by the doctors for 

the illness. Consequently, these symptomatic individuals do not infect others. V tracks the 

Figure 4.1. This figure shows the 
patient flow inside a typical point-
of-dispensing (POD) site for flu 
vaccination. Based on collected 
H1N1 mass vaccination data, 
triage service time is fitted with a 
triangular distribution of (0.25, 
2.642, 3.75) (minute), whereas 
dispensing is estimated with a 
triangular distribution of (0.2, 
0.684, 1.633) (minute) 
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individuals who have received vaccines, developed immunity, and are protected by the 

vaccines.   

 

PODs are set up for dispensing the flu vaccine; and each individual receives only 

one shot of the vaccine [26]. Due to heterogeneous system behaviors inside and outside 

the POD, the vaccination model is divided into three components: outer-POD, intra-POD, 

and post-POD. All individuals stay in outer-POD at the beginning. Once a prioritized 

vaccination strategy begins, high-risk individuals will arrive at the POD and receive 

vaccine. 

 

The computational model characterizes the services inside the POD, including 

paperwork, triage, vaccination, and special care as shown in Figure 1. Other stations, 

such as orientation and medical and mental evaluation can also be incorporated. 

Individuals in any of the SEPAIR stages will arrive at the POD to be vaccinated.  

Everyone except symptomatic individuals receive vaccines. Inside the POD, health care 

workers triage individuals with influenza-like symptoms and assign them to consultation, 

treatment, or hospitalization as necessary. Vaccines only work on individuals in 

susceptible stage. However efficacy is not inherently100% [26]. Therefore, some 

vaccinated individuals (about 10%) return to the community with their immune status 

unchanged. With only one vaccine per individual allowed, they do not come back to the 

POD. (The model itself can accommodate the use of 2 or more vaccine doses per 

individual.) Appendix A presents the ordinary differential equations and queueing model 

for disease propagation and POD operations  

 

Past studies assumed that vaccination takes no time and all vaccinees receive 

vaccine simultaneously once the vaccines arrive [130,186]. Others assumed that 

vaccination occurs before the pandemic [118]. Neither assumption reflects realistic or 

typical on-the-ground situations. For more practical views, we integrate vaccination 

operations from actual events within our transmission models to study the overall disease 

propagation process.   
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During CDC time-motion studies for flu and H1N1 mass dispensing, we collected 

arrival rates and service times. These observed data are incorporated into our model.  

Specifically, we consider the case where the arrival rate decreases as the number of non-

vaccinated individuals in the population decreases. During the prioritized vaccination 

stage, only high-risk, not-yet-vaccinated people will come.  

 

We assume that the initial arrival rates for prioritized strategy and non-prioritized 

strategy are similar. Since the high-risk population is significantly smaller than the non-

high-risk one with this assumption, we infer that high-risk individuals are more willing to 

receive vaccine under the prioritized strategy than the overall population. This 

appropriately aligns with the assumption that the high-risk individuals are more willing to 

receive vaccine compared to the general population [39, 145]. Motivated public health 

campaigning helps facilitate this process. 

 

Let J be the total number of risk groups, j=1, 2, …, J, where “1” represents the 

low-risk group (normal adults). The arrival rate λ(t) at time t can be expressed as a linear 

function of the current non-vaccinated live population. Let N denote the total population, 

N’ denote the high-risk population: 
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if non-prioritized 

strategy is being used, 

if prioritized strategy 

is being used.

Here, λ0 is the initial arrival rate, N0(t) is the non-vaccinated non-special care live 

population outside the POD at time t, and N0, j(t) denotes the number of individuals of 

group j in N0(t). Figure 4.2 illustrates an example of the variation of arrival rates under 

mixed strategy. N0 = N initially.  
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We use the symbol g to denote the switch trigger. The prioritized strategy is halted 

when the percentage of vaccine covering the high-risk individuals reaches an optimal 

value for g.  

 
Let AR represent the overall attack rate, and ARj represent the overall attack rate 

in group j. The attack rate is a form of incidence that measures the proportion of persons 

in a population who experience an acute health event during a limited period (e.g., during 

an outbreak), calculated as the number of new cases of a health problem during an 

outbreak divided by the size of the population at the beginning of the period. The optimal 

switch trigger g* that minimizes the total number of infections and mortality can be 

obtained by solving the following nonlinear optimization problem: 
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where VEj(t) represents the number of vaccinees in group j, N’ represents the high-risk 

population, VS(t) represents the total vaccine supply by time t, VS represents the overall 

vaccine supply level, and u is an upper bound of the prioritized coverage. (1) ensures that 

the number of high-risk individuals who receive vaccine is no greater than g fraction of 

total available vaccine supply under the prioritized strategy. (2) ensures that the total 

number of vaccinees will not exceed the total vaccine supply at any time. Both VEj and 

ARj are output from the ODE system. The system collects the value of VEj continuously 

to maintain feasibility of the constraints. Thus, once the total number of vaccinees 

Figure 4.2. Arrival rate for 2009 H1N1 
supply when mixed strategy was used: 4 
batches of vaccine supply were available at 
day 1, day 45, day 60, and day 75, 
respectively. The mixed strategy switched 
from prioritized to non-prioritized on Day 
63. This is just an illustration; this is not an 
optimal strategy 
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reaches the current vaccine supply, prioritized vaccination stops. At that point, the PODs 

are shut down until the next batch of vaccines arrives. This reflects the actual practice 

where POD planners keep track of their total vaccine inventory, and maintain headcounts 

of arrival to ensure proper closing of the entrance door.  

 

In our model, the optimal switch trigger is obtained by a line search algorithm for 

a given scenario where the objective function value is calculated through the ODE-

queueing or the simulation system. We perform multiple iterations with random initial 

switch trigger values. It is computationally intensive to solve the ODE-queueing-

optimization system, with each instance requiring about 4000 CPU minutes to solve. 
 

Optimization within a simulation environment is also difficult and remains a 

challenge. We employ our large-scale computational system developed at CDC, 

RealOpt©, to achieve the results [98].  

 

Design of Experiments 

The model allows us to stratify the risk groups and their vulnerabilities. We use ηj to 

denote the risk-factor of the infection rate for group j, ηj ≥ 1, where 1 represents the 

standard risk factor for normal adults. Then, η2 =2 implies that the infection rate for 

children 10 and younger is two times that of normal adults. In our study, we also contrast 

the optimal switch trigger with high-risk group including children (0-10 years-old) versus 

the scenario that excludes school children (6-10 years-old).   

 

We perform our analysis based on the 2009 H1N1 vaccine supply, which arrived 

in four batches: the first batch covered 10.0% of the population; the subsequent three 

batches covered 6.67%, 4.0%, and 10.0% of the population, and were available 45 days, 

60 days, and 75 days respectively after the first batch [26].  

 

Early vaccination has been shown to be crucial to contain the pandemic [67]. We 

consider early vaccination from two factors: i) vaccine supply without interruption and ii) 

vaccination start time. We study their joint impact on optimal switch trigger in a mixed 
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strategy.  

 

We contrast the 2009 H1N1 vaccine supply schedule to two other levels: 20% and 

40% continuous supply. In the mathematical model, the time horizon is set to 90 to 120 

days, and the time unit is in minutes. The reproduction number R0 ranges from 1.0 to 2.0. 

We analyze vaccination effectiveness under different start times (no delay to 3-week wait 

until arrival of vaccines) as well as different initial numbers of infection, 0.5% to 2.0% of 

the population.  

 

To illustrate the importance of integrating vaccination operations into the disease 

propagation study, we contrast the attack rates and mortality rates when vaccination 

throughput varies. Our default triage accuracy is set to 95%. We also experiment with 

triage false positive and false negative rates ranging from 50% to 100% to gauge their 

importance. To validate the performance of our models, we contrast the results from the 

agent-based stochastic simulation-optimization model to the ODE-queueing-optimization 

model. We also compare our results against the actual infection estimates of the H1N1 

pandemic as reported by the CDC [26, 144].  

 

4.1.3 Results 

We report optimal switch triggers for the mixed vaccination strategy for three scenarios 

of vaccine supply: 1) The 2009 H1N1 vaccine supply schedule; 2) 20% vaccine supply; 

and 3) 40%. The analysis is performed for the state of Georgia with a population of 

9,687,663 [25]. Forty-three point-of-dispensing sites are setup strategically for mass 

vaccination to protect the region [98].  

 

The high-risk groups consist of 14.8% children 10 years-old and younger, 3.0% 

healthcare workers and volunteers, 1.2% pregnant women, and 0.3% patients with 

underlying disease conditions. Each individual is assumed to receive only one shot of 

vaccine [26]. 
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The switch trigger is expressed in terms of the percentage of vaccine used for the 

high-risk population before vaccination is opened up to the general population. The term 

full non-prioritized strategy refers to the case when the switch trigger is 0%, meaning a 

non-prioritized strategy is employed from the outset, where no distinction is made of the 

risk factors among the population. The term full prioritized strategy means that vaccine 

will be given first to all high-risk individuals before it will be distributed to the general 

population. Thus, the switch trigger for a full prioritized strategy is 100% if the number 

of available vaccine doses is less than the number of individuals in the high risk 

population, and is equal to the ratio of the high risk population to available doses 

otherwise. Note that when the vaccine supply is less than that of the high-risk population, 

a full prioritized strategy means all vaccine will be used for the high-risk group and 

nothing is left for the general population. The term mixed strategy refers to a situation 

where a specified percentage of vaccine is used first to vaccinate the high risk group, 

after which any remaining vaccine is used to vaccinate the general public.  

 

 

 
 

Figure 4.3 shows plots of the overall attack rate and mortality rate as a function of 

the high-risk group coverage when the reproduction value R0 = 1.2, and the initial 

infection of the population is 1%. We indicate the global minimum of each curve and 

Figure 4.3. Plot of the overall 
(day 0 to day 90) attack rate 
and mortality rate as a 
function of percentage of 
high-risk coverage when R0 = 
1.2 (blue = 2009 H1N1 
supply level, red = 20% level, 
green = 40% level). Solid 
lines denote attack rates, and 
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mark on it the associated optimal switch trigger, g, with respect to the three vaccine 

supply levels. We note that an increase of attack rate of 1% in our study amounts to 

96,876 sick individuals. 

 

Table 4.1 shows the optimal mixed strategies under the three vaccine supply 

scenarios as R0 varies, and compares the associated attack rate for the optimal mixed 

strategy to those resulting from the full prioritized strategy, and the full non-prioritized 

strategy. When R0 = 1.2, under the 2009 H1N1 vaccine supply schedule, the optimal 

mixed strategy occurs with switch trigger of 46.9%. The attack rate increases by 1.54% 

and 36.78%, respectively, for the full prioritized coverage and the full non-prioritized 

strategies. Across all R0, these strategies produce an average attack rate increase of 0.84% 

and 16/96% respectively, when compared to the optimal mixed strategy for H1N1 

vaccine supply. Note that for the 40% vaccine supply level, the full prioritized strategy is 

strikingly inferior to the optimal mixed strategy. (Attack rates increase by 77% or more 

for all R0.) 

 

Independent of the vaccine supply level, the optimal switch trigger decreases as 

R0 increases. This indicates that the start time for non-prioritized vaccination should 

begin earlier when the pandemic is more severe. Likewise, when the level of vaccine 

supply is relatively high, the start time for non-prioritized vaccination should also begin 

earlier. In general, the percentage of high-risk population receiving vaccine decreases as 

the vaccine supply level increases and as the pandemic is more severe. There is a slight 

abnormality for 2009 H1N1 vaccine supply (74.5% high-risk coverage versus 71.7% for 

20% vaccine level). This is partly due to the supply interruption. For the same reason, for 

a given R0, the 2009 H1N1 vaccine supply schedule contributes to the highest attack rate 

when compared to the other two supply levels.  

 

 

 

 

 



 

131 

Table 4.1. Optimal mixed strategy and associated attack rate, and comparison 

with attack rates for the full prioritized strategy, and the full non-prioritized strategy, as 

vaccine supply and R0 vary.  

R0 
Vaccine 
Supply 

Optimal mixed strategy % increase in attack rate 
w.r.t. optimal attack rate, AR* 

Optimal switch 
trigger g = % of 
vaccine used 
for high-risk 

% of high-risk 
receiving 
vaccine 

Attack rate 
AR* Full prioritized Full non- 

prioritized 

1.2 
20% 69.19% 71.7%   9.37% +6.30%* +37.14% 
2009 H1N1 46.90% 74.5% 14.98% +1.54% +36.78% 
40% 26.12% 54.1%   5.48% +81.75% +9.12% 

1.6 
20% 69.00% 71.5% 33.72% +8.16% +15.90% 
2009 H1N1 32.73% 52.0% 46.48% +0.88% +10.20% 
40% 20.27% 42.0% 16.20% +125.12% +12.59% 

2.0 
20% 59.25% 61.4% 52.76% +8.23% +5.14% 
2009 H1N1 32.67% 51.9% 64.75% +0.11% +3.89% 
40% 16.45% 34.1% 32.25% +77.05% +5.89% 

* The % increase in attack rate is computed as (AR – AR*)/AR*, where AR is the attack 
rate of the indicated strategy, and AR* is the rate for the optimal mixed strategy. 

 

Figure 4.3 and Table 4.1 highlight one very important result: although the 2009 

H1N1 vaccine supply eventually covered 30.67% of the population, the resulting attack 

and mortality rates are inferior to the scenario when vaccine supply level is only 20% but 

available for continuous use with no supply disruptions.   

 

Figure 4.4a contrasts results obtained from the ODE-queueing model with those 

obtained from the individual-based stochastic simulation model for the optimal mixed 

strategy (46.9%), the full prioritized strategy, and the full non-prioritized strategy under 

the 2009 H1N1 vaccine schedule when R0 = 1.2. From simulation, the attack rates are 

14.32%, 14.51%, and 19.53% respectively for the optimal mixed strategy, the full 

prioritized strategy, and the full non-prioritized strategy. Note that 0.19% infection 

amounts to 18,406 infections. We observe similar trends: by day 94, optimal mixed 

strategy results in 1.54% and 36.78% infection reduction with respect to the other two 

strategies in the ODE-queueing model, and 1.36% and 36.38% reduction in the 

individual-based stochastic simulation model. Figure 4.4b zooms in to show the 

difference between the optimal mixed strategy and the full prioritized strategy. 
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In Table 4.2, we contrast optimal mixed strategies for various risk-factor 

combinations for pre-school children and school children in two scenarios: i) all children 

10 years and younger are included in the high-risk group (14.8%); ii) exclude school 

children (age 6-10, 6.6%) from the high-risk group. In the first scenario the optimal 

switch trigger increases when the risk factor of preschool children and/or of school 

children increases.  

 

If school children (age 6-10) are excluded from the high-risk group, the optimal 

switch trigger increases when the risk factor of pre-school children increases or the risk 

factor of school children decreases. 

 

  

Figure 4.4b. A closer look at the 
difference between the optimal mixed 
strategy versus full prioritized strategy 
 

Figure 4.4a. Attack rate curves for the ODE-
queueing model (dotted) versus the individual-based 
stochastic simulation model (solid) when R0 = 1.2 
for 3 vaccination strategies under the 2009 H1N1 
vaccine supply scenario.   
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Table 4.2. The table contrasts the optimal switch trigger (%) against risk factor 

combinations for pre-school and school children. Risk factor 1 represents no added 

risk, 2 means twice as likely to get infected if exposed, and 4 means four times as 

likely to get infected.  
 

Vaccine supply level: 20% 
2009 H1N1 vaccine 

schedule 40% 

High risk 
group 

School 
children 
risk factor 

Preschool children risk factors 

1 2 4 1 2 4 1 2 4 

Include all ≤ 
10 years old  

1 32.04 62.63 75.46 32.98 38.97 50.42 15.97 16.07 20.99 
2 56.26 69.19 77.30 34.06 46.90 50.48 16.07 16.12 23.40 
4 72.09 76.04 77.88 50.42 50.48 50.75 20.27 23.40 25.81 

Exclude 6-10 
years-old 

1 28.85 60.99 72.28 47.40 47.59 47.65 13.94 14.14 24.70 
2 28.18 60.78 72.18 47.34 47.53 47.65 13.90 14.09 24.70 
4 10.42 60.69 70.25 3.15 47.40 47.53 5.45 14.09 24.66 

 

To quantify the importance of early vaccine availability, Figure 5a compares the 

daily prevalence of infection for optimal mixed strategies given a single-batch 10% 

supply versus the 2009 H1N1 vaccine supply schedule for different scenarios related to 

when initial vaccination begins. For the case of no delay, with vaccination beginning on 

day 0, the H1N1 supply schedule begins to show reduction in daily prevalence starting at 

day 45 and eventually achieves over two-fold reduction (at day 90, 0.08% vs. 0.27%). 

There is no difference prior to day 45 since the H1N1 schedule starts out at only 10%, but 

eventually covers 30% of the population. However, in the cases for which there is a delay 

in initial vaccination, the reduction becomes nearly negligible.  
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Figure 5b compares the overall attack rates (left figure) for optimal mixed 

strategies given four supply levels and different scenarios as to when initial vaccination 

begins. It shows that when vaccination starts on time, the 2009 H1N1 supply results in 

9.9% reduction in overall infections compared to a single-batch 10% supply (14.98% 

versus 16.63%). However, when vaccination is delayed for 3 weeks, the associated 

reduction is only 0.9%. A similar trend is observed for the mortality rates (right figure). 

These figures highlight the importance of starting vaccination as early as possible.  

 

 
 

 

 

 

Figure 4.6 (left) shows the optimal switch triggers for several combinations of 

reproduction number and initial number of infected individuals with respect to the initial 

Figure 4.5b. This figure contrasts the overall (day 0 to day 90) attack rates (left) and 
mortality rate (right) associated with four different supply scenarios in the face of an initial 
delay in availability ranging from zero to three weeks. The optimal switch triggers are 
100%, 69.19% and 31.20%, respectively, for 10%, 20%, and 30% vaccine supply levels. 
The differences in both attack and mortality rates are less profound as the delay increases.  

Figure 4.5a. This figure shows the 
percentage of population that are infectious 
at the end of each day resulting from the 
2009 H1N1 supply (dashed curves) versus 
10% vaccine supply (solid curves) when 
vaccination begins on time,1 week delay, 2 
weeks delay, and 3 weeks delay and is 
dispensed according to the associated 
optimal mixed strategy. Here, R0 = 1.2, 
initial infected population is 1.0%. The x-
axis represents the number of days since the 
pandemic began.  
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vaccine supply level. The optimal switch triggers appear to converge as the vaccine 

supply level reaches around 50%. Recall that the percentage of high risk population in 

our study is 19.3%. Figure 4.6 (right) shows that when the vaccine supply is less than 

13.8% of the population, independent of the pandemic severity and the initial population 

infection, all vaccines will be given to the high-risk individuals. Table 3 shows the 

maximum vaccine supply level under which all will be dispensed to the high-risk 

population. This table reinforces that to achieve optimal infection and mortality reduction 

it is not always necessary to vaccinate all high-risk individuals first.  

 

 
 

 

 
 

 

 

 

Table 4.3. From Figure 4.6 (right), the maximum vaccine supply level under which all 

will be dispensed to high-risk individuals.  

(R0, α) R0 = 1.2 R0 = 1.6 R0 = 2.0 
α = 0.5 17.9% 17.5% 16.0% 
α = 1.0 17.7% 17.2% 15.1% 
α = 2.0 17.2% 16.0% 13.8% 

 

Figure 4.7 shows the resulting attack rates and mortality rates for the three 

vaccine supply levels and varying dispensing throughput efficiency rates. Observe that 

Figure 4.6. This figure (left) shows optimal switch triggers (percentage of vaccine 
dispensed to the high-risk group) against the vaccine supply levels in the optimal mixed 
strategy for nine different scenarios (R0, α) of initial reproduction rates, R0, and percentage 
of initial infection, α. The high-risk population is at 19.3%. The graph shows that, even 
when there is quite limited supply of vaccine, it is advantageous to begin vaccination of the 
general population before vaccinating all those in the high risk group. A magnified view 
(right) regarding the vaccine level versus percentage used for high-risk individuals before 
switch. 
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the attack rate increases as the dispensing throughput decreases, with the increase more 

significant when the dispensing throughput is low. A similar trend is observed across all 

three vaccine supply levels. A similar trend is also observed for the mortality rates. This 

underscores the importance of dispensing efficiency, even within an optimal mixed 

strategy with no vaccination delay. Accepting that server variability in dispensing is 

unavoidable, dispensing throughput efficiency is highly influenced by optimal resource 

allocation at the dispensing sites, as shown in recent CDC large-scale dispensing studies 

[189, 190]. 

 

 
When triage fails to identify individuals with flu perhaps due to lack of symptoms 

(false-negative), the resulting attack and mortality rates increase slightly. However, the 

optimal switch trigger remains rather constant. This trend is observed on all vaccine 

supply levels and we briefly illustrate the results for vaccine level 20%. Figure 4.8a 

shows the attack rate decreases from 9.46% for 50% triage accuracy to 9.27% at 100% 

triage accuracy. The optimal switch trigger remains at 69.19% throughout. However, 

when healthy people are being triaged as infected (false positive), the optimal switch 

trigger decreases, signaling earlier vaccination to the general public (Figure 4.8b).  

 

 

 

  

Figure 4.7. Contrast of the overall 
(day 0 to day 90) attack rates and 
mortality rates associated with 
three supply scenarios with 
respect to dispensing throughput 
efficiency. Solid lines denote 
attack rates, and dotted lines 
denote mortality rates. 
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Figure 4.9 contrasts the CDC reported attack rates for the 2009 H1N1 pandemic 

versus our simulation results. The curves are obtained by varying the values for three 

parameters: the initial infection rate, the reproduction number, and the switch trigger.  

 
 

4.1.4 Impact and Significance 

In this study, we propose a ‘mixed model’ approach to quickly determine the optimal 

‘switch trigger’ in a mixed vaccination strategy to minimize both infection and mortality 

over the course of a pandemic. We do this by interoperably coordinating a disease 

Figure 4.8a. Effect of triage accuracy (results 
from false negative) on overall attack rate and 
mortality rate. Attack rate increases slightly 
from 9.27% to 9.46%.  A triage error of 10% 
results in 9.31% attack rate 

Figure 4.8b. The optimal switch trigger drops 
from 69.19% to 56.16% when triage accuracy 
for healthy individuals is reduced by 10% (false 
positive, red line). It remains at 69.19% 
independent of any Type II errors committed. 

Figure 4.9. Contrast of attack 
rates for the 2009 H1N1 pandemic 
from our study versus actual CDC 
reported data. The solid curves are 
our results. The dashed curves 
represent the CDC reported attack 
rates from the 2009 pandemic. 
Each line of our results represents 
a combination of two parameters: 
the reproduction number, and the 
switching time. Example: (1.1, 60) 
refers to R0 = 1.1, with optimal 
switch trigger (g=52.1%) happens 
at Day 60 after vaccination begins. 
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propagation model with a vaccine queueing model and an optimization engine. For 

realism and pragmatic purposes, we integrate vaccination operations from actual events 

within our models to study overall disease propagation process. We perform our study 

using census data and hospital information from Georgia and the 2009 H1N1 vaccine 

supply. This work advances both the scientific and public health policy frontiers.  

 

Mathematical OR Advances  

This study offers unique features that have not been previously investigated / 

incorporated: 

o This is the first mathematical-computational model marrying disease propagation 

with optimization capability that allows rapid determination of the optimal switch 

triggers – that is, the timing for switching from the prioritized vaccination strategy 

to the non-prioritized strategy during the course of the pandemic. It is also the 

first model that mathematically defines “optimal switch trigger” that minimizes 

the overall attack and mortality rates. Using the computational decision 

framework, optimal switch triggers can be obtained based on the parameters of 

the high-risk individuals, the characterization of the pandemic, the vaccine supply 

availability, and the vaccination rate. The implicit relationship between the 

optimal switch trigger and the parameters is made explicit and appropriately 

modeled. 

o This is also the first model which incorporates actual vaccination operations and 

dispensing processes. Mathematical models have been developed to evaluate 

various vaccination strategies, including early vaccination [67], sequencing the 

order of the vaccination for the risk groups, and aiming on various objectives to 

mitigate the influenza [186]. Our study determines the optimal switch trigger, 

accounting for supply levels and actual dispensing operations. The findings 

highlight the importance of these factors within the policy making process. 

o The ODE+queueing+optimization model are computationally intensive. We 

derive rapid solution techniques to obtain good near-optimal solutions. Similarly, 

when replacing the ODE disease propagation and POD queueing model with an 

individualized agent-based simulation model (ABM), the resulting 
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ABM+optimization model remains computationally challenging. We derive 

efficient computational strategies in solving these instances, as well. [98].  

o The model is generalizable for other types of infectious diseases. It can also 

handle seasonality and virus mutation of the biological agents. This information is 

critical to public health policy makers and decision makers as they determine the 

best strategies for population protection during pandemics when vaccine supplies 

are limited and time is critical. 

 

 To the best of our knowledge, previous studies on vaccine prioritization did not 

include all the critical details considered herein in their models, nor were they used by 

the CDC, or used otherwise, to influence public-health policy making.  

 

Implementation, Public Policy, and Health Impacts 

The system, RealOpt-VacOpt, was designed and implemented in Java for portability. It 

has been in use since 2011 for advising on vaccine distribution, prioritization, and triage 

strategies. The public health implications are that policy makers can evaluate better trade-

offs faster to save more lives and better utilize limited resources during a pandemic 

event. We outline briefly some of these decisions (obtained from our system) adopted by 

policy makers and their implications below. 

o Optimal switch time to minimize overall attack and mortality rates CDC confirms 

that this is the first model to define and determine an actionable and operational 

switch trigger, an advance that is critical and vital to better mitigation of 

infections and mass casualties.  Given outbreak characteristics, vaccine inventory 

level, and individual risk factors, there is an optimal switch trigger for prioritizing 

vaccines that results in lowest overall attack  and mortality rates.  This optimal 

strategy is a significant improvement over full prioitized and full non-prioritized 

strategies. Such information is critical to public health policy makers as they 

determine the best strategies for population protection, and in particular when to 

switch from a prioritized strategy focusing on high risk groups to a non-prioritized 

strategy in which vaccine is made available to the general public. Our model is 

the first that incorporates virus characteristics, disease spread, and dispensing 
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operations to optimize vaccine strategies.  

 The optimal switch trigger is sensitive to the infectivity and vulnerability of the 

high-risk groups. Specifically, we illustrate the effect to the optimal switch trigger 

when the vulnerability of the pre-school and school children vary. A full non-

prioritized strategy may be preferred if some high-risk individuals are excluded 

from the prioritized groups (i.e., school children or elderly). Furthermore, we 

present the optimal switch trigger under different levels of pandemic severity as a 

function of the early vaccine availability, where the importance of early vaccine 

availability is emphasized. (Figures 4.5a, 4.5b) 

 The results reflect that a full prioritized strategy to cover all of the high-risk 

individuals is not an optimal strategy (Figure 4.3, Table 4.1). When early vaccine 

supply is limited at a low level, the doses should all be given to the high-risk 

individuals (Figure 4.6, Table 4.3). But the optimal switch trigger decreases as 

more vaccine becomes available. And this value converges as the vaccine supply 

is above 50% (Figure 4.6). Uniformly under various reproductive values, 

population infection levels, and vaccine supply levels, vaccinating a fraction of 

the high-risk individuals in the mixed strategy offers the best disease mitigation 

results compared to a full prioritized or full non-prioritized strategy.  

 The analysis indicates that timely vaccination and a mixed strategy are critical. 

Further, delayed vaccination and batched vaccine supply reduce effectiveness and 

raise overall attack and mortality rates. The more transmissible the virus is, the 

lower the optimal switch trigger. For very transmissible viruses, the non-

prioritized strategy should begin promptly. 

o Improved understanding of vaccine supply and importance of timeliness of 

vaccination: The analysis highlights the importance of non-interrupted vaccine 

supply: although the 2009 H1N1 vaccine supply eventually covered over 30% of 

the population, the resulting attack and mortality rates are inferior to the scenario 

when a supply covering only 20% of the population is available without supply 

interruption. This finding challenges the traditional rolling-out policy where 

supplies are acquired and shipped in batches. It also highlights the importance of 

early vaccination: the 2009 H1N1 supply results in 9.9% reduction in overall 
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infections when compared to a single-batch 10% supply, but the reduction is only 

marginal (0.9 %) when vaccination is delayed for 3 weeks. These findings are 

critical to the important policy decisions that public health leaders must make: the 

acquisition and the timing for vaccination. The system and the results confirmed 

the decision in the establishment of the National Institute of Translational 

Medicine for rapid medical countermeasures and drug design. 

o Importance of efficient dispensing operations: Our study underscores the 

importance of dispensing throughput efficiency and its effects on the overall 

attack rates and mortality rates (Figure 4.7). As a result, the CDC Strategic 

National Stockpile escalated their dispensing training with a team of dedicated 

CDC public health experts. The CDC team provides regular hands-on RealOpt-

POD mass dispensing training to state/local/tribal public health emergency 

response coordinators to improve operational performance. 

o Understand the effect of triage: Triage operations have proven to be expensive for 

mass dispensing. CDC has been undecided regarding triage since their own 

analysis indicated that addition of triage within a POD can slow down dispensing 

throughput by over 20%. Our analysis herein informed CDC decision makers that 

errors made by false negatives pose negligible effect on the overall attack and 

mortality rates (Figure 4.8a). Removing triage saves resources and improves 

dispensing throughput, which is critical to improving the overall attack and 

mortality rates. 

o An objective tool for policy analysis and decision making: The computational 

decision framework is generalizable and flexible and can be used for analysis of 

any type of infectious disease. Such an objective decision framework empowers 

policy makers to better understand the health implications of their decisions. The 

resulting policy directly impacts the overall ability to protect population health of 

this nation and beyond. 
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Appendix: The ODE-queuing disease propagation model  

We define the disease progression stage space as Φ = {S(susceptible), E(exposed), 

P(infectious), A(asymptomatic), I(symptomatic), RC(recovered and immune)}, along 

with SC = special care, V = vaccinated and immune individuals, and D = deceased. The 

individual flow between these stages is illustrated in Figure 4.S1. The risk group space ߁	 

= {1, 2, 3, 4, 5} represents the five risk groups: normal adults, children 10 years-old and 

younger, healthcare workers, pregnant women, and patients with underlying disease 

conditions. We assume POD has K service stations. To track individuals from each risk 

group and where these individuals are, we use double indices, i, j, where i runs from Ω = 

{0, 1, …, K, K+1} and j ∈ ߁	 to indicate live individuals a) outside the POD (outer-POD, 

i = 0), b) inside the POD (inside-POD, in one of the K service stations, i = 1, …, K), and 

c) exiting the POD when the vaccine fails (post-POD, i= K+1). Individuals who are 

vaccinated and are immune will move to stage V. Let ϑi,j be the number of individuals of 

group j at station i with disease stage ϑ, where i ∈{0,1,…,K, K + 1}, j ∈ ߁	, and ϑ ∈ Φ. 

Finally, let Ni , i ∈{0,1,…,K, K+1} denote the number of live individuals (under 

different disease stages) at each station: outside the POD, inside the POD, and post-POD.   

 

The transmission model is shown in Figure 10. We apply our model to a 

population of 9,687,653 with specific percentages for each risk group. Table S1 

summarizes the input model parameters.  

 

For discussion brevity, we let K = 2, so that station 0 is outer-POD, station 1 is 

triage station, station 2 is vaccination station, and station 3 is post-POD. The allocation of 
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nurses and their service times at triage and vaccination listed in Table 4.S1 are the real 

numbers obtained from time motion study in H1N1 flu campaigns. The outer-POD 

disease progression is expressed via equations (1-1) to (1-7):  
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Equations (2-1) to (3-7) represent the rates of change in the population inside the POD:  
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where service rate hi,j is given by   
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and represent the real service rate for the individuals staying at transmission stage ϑ from 

group j at POD station i. Equations (5-1) to (5-7) represent the rates of change in the 

population who go back to the community (outside of the POD) without immunity (that 

is, they received vaccine but did not become immune):  
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Equations (6) and (7) represent respectively two outcomes for the transmission flow: 

deceased and vaccinated. 
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Equation (8) represents the infection flow, which relates to the objective function of the 

optimization problem. Equation (9) cumulates the vaccine consumption, which is used to 

keep the model feasible. 
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Thus, everyone who goes to the POD gets vaccinated (if they are in the proper risk 

group) except those being triaged as infected, who will be sent for treatment in the 

hospitals or for special care. 
 

 
Figure 4.S1. This figure shows the diseases progression stages. Each stage is further 

stratified by the risk groups.  

 

Table 4.S1. Model parameter description. 

Parameter Description Base case value (at time t=0) 

Ω Station space 
Ω = {0, 1, …, K, K+1}, where 0 is outer-POD, 1, …, K 
are service stations inside the POD. Station K is the 
vaccination station, station K+1 represents post-POD. 

Φ 
Disease progression stage 
space 

Φ = {S(susceptible), E(exposed), P(infectious), 
A(asymptomatic), I(symptomatic), RC(recovered and 
immune)}.  

Γ Risk group space 
{1, 2, 3, 4, 5} ({normal, children 10 or younger, 
healthcare workers, pregnant women, patients with 
underlying disease conditions}) 

Π Risk group population 
distribution 

{0.807, 0.148, 0.03, 0.013, 0.002}. [26]  

N 
Total population of the 
region   

N’ High-risk population  N’ = (1 – π1) N, where π1 = 0.807. 

Vj 
Number of vaccinated and 
immune individuals in 
group j. 

At time t = 0, Vj = 0.  

V 
Total number of vaccinated 
and immune individuals  

.



j

jV
 

SC Special care At time t = 0, SCj = 0.  

Dj 
Number of deaths in group 
j. 

At time t = 0, Dj = 0.  
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Table 4.S1. (continued) 

Ni 
Number of non-special care 
live individuals at station i  

}1,...,,1,0{,  KKiRCIAPESN iiiiiii
 

At time t = 0, N0 = N, N1 = … = NK = NK+1 = 0. 

Ni,j 
Number of non-special care 
live individuals of group j at 
station i  

 jKKiRCIAPESN jijijijijijiji },1,...,,1,0{,,,,,,,,

 

., i
j

ji NN 
   

α Initial infection percentage 1.0%, range 0.5% - 2.0%    
AR Attack rate At time t = 0, AR = αN.   

AR j Attack rate in group j. 
.ARAR

j
j 

 

  

At time t = 0, AR j = πj ·AR. 

η  
Relative risk factor for each 
risk group {1, 2, 1, 3, 3}. 

1/ μE Mean exposed duration 1 day  

1/ μP Mean pre-symptomatic 
duration 

1 day  

1/μA 
Mean asymptomatic 
duration 3 days  

1/ μI Mean symptomatic duration 3 days  

1/ μH 
Mean duration before 
special care from showing 
symptom 

2 days 

1/ μSC Mean special care duration 5 days 
pS  Symptomatic probability  2/3  

βj 
Baseline infectivity rate for 
group j ISASP

j pp
R




/1/)1(/1
1

0 
   

pV Vaccine effectiveness 90% 

pH 
Percentage of symptomatic 
patients being hospitalized 

20% 

mj Mortality rate for group j 0.12%   

m_scj 

Mortality rate for group j 
after special care (or 
hospitalization) 

mj / 2 

ϑi   
Number of individuals at 
station i with disease  stage 
ϑ 

At time t = 0,  
S0 = (1- α)N,  
E0 = αN · Δ · 1/ μE,  
P0 = αN · Δ · 1/ μP,  
A0 = αN · Δ · (1- pS) · 1/ μA,  
I0 = αN · Δ · pS · 1/μI,  
V0 = 0, SC0 = 0, D0 = 0, RC0 = 0,  
where Δ = (1/ μE + 1/ μP + (1- pS) ·1/ μA + pS ·1/μI) -1 , 
ϑi = 0, for i ≠ 0. 

   
   
   



 

147 

Table 4.S1. (continued) 

ϑi,j   
Number of individuals of 
group j at station i with 
disease  stage ϑ 

ϑi,j ≥ 0, i ∈{0, 1, …, K, K+1}, j ∈ Γ, and ϑ ∈ Φ. 
.

1
, i

J

j
ji  

  
At time t = 0, ϑi,j = πj ·ϑi, for i ∈{0, 1, …, K, K+1}, j ∈ Γ. 

VEj 
Number of vaccinees in 
group j. At time t = 0, VEj = 0. 

VS(t) Cumulative vaccine supply 

For 2009 H1N1 vaccine supply 
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where N0 is the number of non-vaccinated live 
individuals outside the POD, N is the total population, 
and N0,j denotes the number of non-vaccinated live 
individuals of group j outside the POD. λ0 is the initial 
arrival rate, λ0 = 12.018 / min at time 0.  
 

ρj (t) 
Arrival allocation for high-
risk groups  
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if prioritized 
strategy is being 
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λj (t)   Arrival rate for group j = λ(t) ρj (t) 

ni 
Number of nurses at station 
i   

STi Service time at station i   
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4.2 Dispensing Medical Countermeasures in Response to an Anthrax Attack  

4.2.1 Introduction 

Once a large-scale anthrax attack happens, people may die by the end of 48 hours if they 

do not receive medical countermeasures against anthrax. It is crucial that all individuals 

living  in the metropolitan area where the attack occurs receive medications within the 48 

hour timeframe. An individual needs to take 2 pills of ciprofloxacin or doxycycline per 

day for 60 days until the epidemic has terminated to be kept from infection. In addition to 

the medications, individuals must be registered with the government and be instructed by 

physicians in a face-to-face meeting in order to ensure the he/she is fully protected.  

 

Strategies for dispensing medical countermeasures against a large-scale anthrax 

attack, including postal delivery [6] and mass dispensing by Point-of-Dispensing (POD) 

[5, 12, 22, 31, 112, 192, 193] have been examined by numerous researchers. Postal 

delivery is to deliver the medical countermeasures by USPS postal carriers to each 

household in the city. Mass dispensing at POD is to let the population pick up the 

medical countermeasures at PODs, which are set up at public places in the city. However, 

these two strategies are not flawless: Postal carriers can only deliver a fixed amount of 

pills to each household rather than providing the enture prescriptive dose to each 

individual; to dispense the medical countermeasures in PODs within 48 hours may 

increase the risk of infection due to the congestion in the PODs. We herein consider a 

postal delivery and POD refill strategy, named Postal+Refill, to protect the entire 

population by delivering initial medications by postal carriers within the first 24 hours 

and refilling medications at PODs in the following days. People who finish their initial 

medications need to pick up sufficient medications at PODs such that they are kept from 

infection till the end of the epidemic. This strategy takes the advantage of both postal 

delivery and mass dispensing at POD: postal delivery provides fast temporary prevention 

to the entire population; and mass dispensing ensures people are instructed by the 

physicians and receive sufficient medications.  
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4.2.2 Model Description 

In a Postal+Refill strategy, the initial medical countermeasures must be dispensed by 

postal delivery to the entire affected population in the first 24 hours after the attack. The 

medications are prepared by the public health departments within the first 12 hours, and 

then postal carriers deliver medication to each household in the following 12 hours. A 

bottle of 20 pills is delivered to each household, which provides temporary protection 

from anthrax. The length of the protection depends on the size of a household, i.e., 20 

pills provide 6-day prevention to a family of 3, or 5-day prevention to a family of 4.  

 

Households are required to refill their medications before they finish their 

temporary medications. Every individual must be registered with the government and be 

instructed by physicians face-to-face in order to make sure he/she receives enough 

medications and understand its full usage. During the postal delivery of the initial 

therapy, mass dispensing events in PODs are set up and organized in the city. POD 

locations are selected from a candidate list that consists of schools, gyms, clinics, and 

other public common areas. The employees in these candidate locations are pre-trained 

by CDC such that the locations are well prepared. Starting from the second day which is 

24 hours after the attack, the PODs are open to public and dispense the sufficient 

medications (≥ 60 pills per person per instruction of physicians) to the population.  

 

To plan a Postal+Refill strategy in the city, public health emergency planners 

must determine within the first 12 hours: 

1. Number of postal carriers and police force required, 

2. The POD locations and the covered population of each location, and 

3. The staff resource required at each POD and their responsibilities.  

 

In our analysis, four metropolitan areas are considered in evaluating the cost and 

the staff resource requirement of the Postal+Refill strategy: Washington DC, New York 

City, City of Chicago, and City of Los Angeles as shown in Figure 4.10. 
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Figure 4.10. Metropolitan area of the four metropolitan areas 

 

In postal delivery, USPS postal carriers follow the postal carrier routes to deliver 

one bottle of pills (20 pills) to every household in the city regardless of the household 

size. Postal delivery routes are the regular mailing routes that go through the city and 

serve each of the households along the route. To estimate the required staff and budget 

for postal delivery, we make the following assumptions. First, each of the carriers covers 

two regular postal carrier routes in a zip-code area within 12 hours. Extra carriers are 

required at a higher cost (150% of the regular cost) if the current workforce cannot cover 

all of the postal carrier routes in the city. Second, additional routes are used to deliver the 

pills to the population who do not reside at a permanent address in the city. Third, one 

police officer is assigned to each carrier for security, and 20% additional security officers 

for consolidating the delivery units in the city. The estimation of the required work forces 

and the operation cost is listed in Table 4.4. 
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Table 4.4. Required work forces in Day 1 postal delivery 

Metropolitan Area 
Washingt

on DC 
New York 

City 
City of 

Chicago 
City of Los 

Angeles 
Population 599,657 8,363,710 2,853,114 3,833,995 
Number of households 233,330 3,254,362 1,110,161 1,491,827 
Number of USPS carriers in the 
city 

531 3067 1755 1108 

Ratio of postal carriers to 
households (10-3) 

1.51 0.85 1.14 1.02 

Number of postal carriers required 352 2,762 1,268 1,936 

 
Number of postal carriers 

on regular routes 
320 2200 1018 1428 

 
Number of postal carriers 

on additional routes 
30 562 250 94 

 
Number of additional 

postal carriers required 
0 0 0 414 

Number of security officers 
required 

422 3,314 1,522 1,826 

Unit cost per postal carrier (per 
12-hour shift, Estimated by hourly 
salary + rough estimate of  fuel 
cost 

320.2 330 326.1 335.15 

Unit cost per security officer 372 408 418.8 494.4 
Total labor cost  243,654  2,038,356  944,533  1,606,009  

 

Starting from Day 2 (the second day after the anthrax attack), PODs are open to 

the public so that households can register and pick up the remaining pills that will 

provide protection from anthrax. To determine the locations of PODs and the covered 

population for each POD, we build a mixed integer programming model in RealOpt-

Regional© [98] that minimizes the number of PODs in the city and subjects to the travel 

distance to the POD less than or equal to 15 miles. Households are required to pick up the 

refilled pills in the POD on any day no later than the refill due day. Given the initial 

medications of 20 pills, the refill due day of a household depends on the household size 

(Table 4.5). PODs are designed to open 12 hours a day until Day 10 (20 pills prevent a 

family of 1 person for 10 days).  For simplicity, we assume that a household will arrive 

on any day between Day 2 and the refill due day with equal probability. Thus, the 
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designed throughput at PODs on any open day must satisfy the expected arrivals 

(percentage of population) on this day as shown in Table 4.5.  

 

In a general dispensing process, households go through the following steps: 

arrive, register and file forms, get triaged by healthcare workers, pick up pills from 

physicians, and leave. The process at each city can be slightly different (Figure 4.11) 

according to the feedbacks from the previous POD operational drills. The distribution of 

the processing time at each step is estimated using CDC time motion studies in full-scale 

drills or actual dispensing operations. Six types of staff are recruited to operate a POD: 

volunteer, nurse/MD, health technician, security, traffic controller, and interpreter. Their 

responsibilities are different as shown in Table 4.6. For some major ethic groups, e.g., 

Hispanic population or Chinese population, interpreters are required at each step when 

over 5% of the arrivals speak Spanish/Chinese rather than English.  

 

To avoid the increased risk of infection, a household is designed to stay in the 

POD with no more than 30 minutes including all waiting times and processing times. The 

minimum number of worker-shift of each type of staff at a POD that can serve the 

expected arrivals and the maximum duration of each household is determined by a 

simulation optimization model in RealOpt-POD© [44,42,98] using the POD layout used 

by the city. The required numbers of worker shifts of all cities are shown in Table 4.7. 
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Figure 4.11. Layout of the PODs in the four cities.  
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Table 4.5. The required throughput at PODs (% of population). 

Household 
size Refill due 

Day  
2 3 4 5 6 7 8 9 10 Total 

4+ (10%) Day 2 100% 0% 0% 0% 0% 0% 0% 0% 0% 100% 

3 (55%) Day 3 50% 50% 0% 0% 0% 0% 0% 0% 0% 100% 

2 (30%) Day 5 25% 25% 25% 25% 0% 0% 0% 0% 0% 100% 

1 (5%) Day 10 11% 11% 11% 11% 11% 11% 11% 11% 11% 100% 

Required throughput:  45.6% 35.6% 8.1% 8.1% 0.5% 0.5% 0.5% 0.5% 0.5% 100% 
 

Table 4.6. Staff responsibilities 

 
Greeting and 
form filing Triage Drug 

dispensing Security Traffic 
Control 

Volunteer* Y     
Nurse/MD Y Y Y   
Health 
technician Y     

Security Y   Y  
Traffic 
controller Y    Y 

Interpreters Y Y Y Y Y 
*: no volunteer recruited in New York City 

 

Table 4.7. Worker shifts required for Postal+Refill strategy 

 
 

Washington 
DC 

New York 
City 

City of 
Chicago 

City of Los 
Angeles 

Number of PODs 9 99 39 61 

Work force 
required 

Volunteer 432 0 2,188 3,838 

Nurse/MD 621 5,188 2,456 3,390 
Health 
Technician 472 3,148 2,432 2,664 

Security 532 5,898 2,000 2,612 

Traffic Control 540 5,346 3,861 3,843 

Interpreters 344 4,295 750 995 

Total 2,941 23,875 13,687 17,342 
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4.2.3 Cost-effective Analysis 

We compare the Postal+Refill strategy to another strategy -- the 36-hour mass dispensing 

strategy which has been adopted by many cities. 36-hour mass dispensing strategy 

prepares PODs and medical countermeasures in the first 12 hours and dispenses the 

medications in the PODs in the following 36 hours so that the population is protected 

within 48 hours after the anthrax attack. The two strategies are evaluated by the estimated 

required work force and the total cost including labor cost and operation cost. 

 

The Postal+Refill strategy operates 9 days (from Day 2 to Day 10), while the 36-

hour mass dispensing strategy operates three consecutive 12-hour shifts and the 

healthcare workers cannot cover two consecutive shifts.  Postal+Refill requires more 

worker shifts compared to the 36-hour POD mass dispensing in the scenarios of three 

cities with the exception of the City of Chicago as shown in Table 4.8a. However, in 36-

hour mass dispensing strategy, the healthcare workers cannot cover two consecutive 

shifts, the number of workers required to participate in training is more than those in 

Postal+Refill strategy in the scenarios of three cities except Washington DC as shown in 

Table 4.8b.  

 

The cost of each strategy consists of two parts: training cost and operation cost. 

Training cost is the cost for setting up drills and training healthcare workers for learning 

and practicing their responsibilities during the real event, while operation cost is the cost 

that occurs during the real event. We assume each POD must complete 3 days training. 

The labor cost during an event can be estimated by the average hourly salary in the city 

for a particular position (including vehicle cost for postal carriers) as shown in Table 4.9. 

The site cost spent in an event, such as power, water, and rent, is difficult to measure, and 

can range from $0 to $10,000 depending on the location and the size of the event. When a 

default daily operation cost per POD is assumed to be $5,000, the total cost of 

Postal+Refill strategy are lower than that of the 36-hour mass dispensing strategy in the 

three cities with the exception of  Washington DC as shown in Figure 4.12, Figure 4.13, 

and Table 4.10. The 36-hour mass dispensing strategy costs more in training because it 

uses more PODs and requires more workers. When the daily POD operation cost ranges 
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from $0 to $10,000, the Postal+Refill strategy always costs more than the 36-hour mass 

dispensing strategy in Washington DC, while it always costs more in City of Chicago and 

City of Los Angeles (Figure 4.14). In New York City, the Postal+Refill strategy is the 

cost-effective strategy when the daily POD operation cost is less than $8,751.  

 

Table 4.8a. Number of worker shifts  

 
Washington 

DC 
New York 

City 
City of 

Chicago 
City of Los 

Angeles 
Postal+Refill 3,293 26,636 14,954 19,277 
  postal carriers 352 2,762 1,268 1,936 
  healthcare workers  2,941 23,874 13,686 17,341 
36-hour mass dispensing 1,929 23,763 13,389 19,530 

 

Table 4.8b. Number of workers. 

 
Washington 

DC 
New York 

City 
City of 

Chicago 
City of Los 

Angeles 
Postal+Refill 1,692 13,638 7,503 9,836 
  postal carriers 352 2,762 1,268 1,936 
  healthcare workers  1,340  10,876  6,235  7,900 
36-hour mass dispensing 1,286 15,842 8,926 13,020 

 

Table 4.9. Labor cost ($ per shift) 

 
Washington 

DC 
New York 

City 
City of 

Chicago 
City of Los 

Angeles 
Postal carrier 320.2 330 326.1 335.15 

Police officer 372 408 418.8 494.4 

Volunteer 0 0 0 0 

Nurse/MD 363.6 427.2 256.8 405.6 

Health Technician 232.92 279.6 249.6 247.2 

Security 372 408 418.8 494.4 

Traffic Control 218.4 168 145.2 157.2 

Interpreters 540 351.6 230.4 321.6 
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Table 4.10. Cost of the two strategies 

 
Washington 

DC 
New York 

City 
City of 

Chicago 
City of Los 

Angeles 
Postal+Refill 2,945,205 26,700,041  9,931,429  15,321,289  

    Postal delivery         243,654  2,038,356  944,533  1,606,009  

    POD refill cost      2,701,551  24,661,685  8,986,896  13,715,280  

        training cost      1,324,217     12,295,557   4,423,150    6,721,271  

        operation cost      1,377,334  12,366,128  4,563,745  6,994,009  

        number of PODs 12 99 39 61 
36-hour mass 
dispensing      2,253,130  28,928,318  11,182,939  19,827,174  

        training cost  1,442,087   18,790,546   7,260,293   12,913,116  

        operation cost         811,043  10,137,773  3,922,646  6,914,058  

        number of PODs 12 115 47 73 
 

 
Figure 4.12. Worker allocation in 4 metropolitan areas under Postal+Refill strategy and 

36-hour mass dispensing strategy. 
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Figure 4.13. Cost comparison of the Postal+Refill and the 36-hour mass dispensing. 

 

 
Figure 4.14. The cost-effective strategy when the POD operation cost varies. Blue: 36-

hour mass dispensing costs less. Orange: Postal+Refill costs less. 
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4.2.4 Conclusion 

In summary, the Postal+Refill strategy delivers the initial medications to the population 

by postal carriers within 24 hours and dispenses the remaining pills at PODs in the 

following days. It allows extra time to set up the PODs for pill refill by providing 

temporary protection to the entire population by postal delivery, and reduces the infection 

risk of congestions in the PODs by extending the dispensing process from less than 2 

days to 9 days. As shown in our analysis, this strategy is more effective in the cities with 

high population density in terms of the required work forces and the cost. Compared to 

the mass dispensing strategy, it benefits from the reduced work load for training the 

PODs and workers for dealing with the potential congestions in the first two days. 

However, security concerns may be an issue since postal workers could become target of 

hoax or opportunistic criminals. Citizens may not take the pills if there is rumored or 

reported illness due to individuals taken tempered pills.  
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