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SUMMARY 
 

 Although people can typically maintain balance on moving trains, or press the 

appropriate button on an elevator with little conscious effort, the apparent ease of these 

sensorimotor tasks is courtesy of neural mechanisms that continuously interpret many 

sensory input signals to activate muscles throughout the body. The overall hypothesis of 

this work is that motor behaviors emerge from the interacting constraints and features of 

the nervous and musculoskeletal systems. The nervous system may simplify the control 

problem by recruiting muscles in groups called muscle synergies rather than individually. 

Because muscles cannot be recruited individually, muscle synergies may represent a 

neural constraint on behavior. However, the constraints of the musculoskeletal system 

and environment may also contribute to determining motor behaviors, and so must be 

considered in order to identify and interpret muscle synergies. 

 Here, I integrated techniques from musculoskeletal modeling, control systems 

engineering, and data analysis to identify neural and biomechanical constraints that 

determine the muscle activity and ground reaction forces during the automatic postural 

response (APR) in cats. First, I quantified the musculoskeletal constraints on force 

production during postural tasks in a detailed, 3D musculoskeletal model of the cat 

hindlimb. I demonstrated that biomechanical constraints on force production in the 

isolated hindlimb do not uniquely determine the characteristic patterns of force activity 

observed during the APR. However, when I constrained the muscles in the model to 

activate in a few muscle synergies based on experimental data, the force production 

capability drastically changed, exhibiting a characteristic rotation with the limb axis as 

the limb posture was varied that closely matched experimental data. Finally, after 

extending the musculoskeletal model to be quadrupedal, I simulated the optimal 

feedforward control of individual muscles or muscle synergies to regulate the center of 

mass (CoM) during the postural task. I demonstrated that both muscle synergy control 

and optimal muscle control reproduced the characteristic force patterns observed during 

postural tasks. These results are consistent with the hypothesis that the nervous system 

may use a low-dimension control scheme based on muscle synergies to approximate the 
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optimal motor solution for the postural task given the constraints of the musculoskeletal 

system. 

 One primary contribution of this work was to demonstrate that the influences of 

biomechanical mechanisms in determining motor behaviors may be unclear in reduced 

models, a factor that may need to be considered in other studies of motor control. The 

biomechanical constraints on force production in the isolated hindlimb did not predict the 

stereotypical forces observed during the APR unless a muscle synergy organization was 

imposed, suggesting that neural constraints were critical in resolving musculoskeletal 

redundancy during the postural task. However, when the model was extended to represent 

the quadrupedal system in the context of the task, the optimal control of the 

musculoskeletal system predicted experimental force patterns in the absence of neural 

constraints. 

 A second primary contribution of this work was to test predictions concerning 

muscle synergies developed in theoretical neuromechanical models in the context of a 

natural behavior, suggesting that these concepts may be generally useful for 

understanding motor control. It has previously been shown in abstract neuromechanical 

models that low-dimension motor solutions such as muscle synergies can emerge from 

the optimal control of individual muscles. This work demonstrates for the first time that 

low-dimension motor solutions can emerge from optimal muscle control in the context of 

a natural behavior and a realistic musculoskeletal model. This work also represents the 

first explicit comparison of muscle synergy control and optimal muscle control during a 

natural behavior. It demonstrates that an explicit low-dimension control scheme based on 

muscle synergies is competent for performance of the postural task across biomechanical 

conditions, and in fact, may approximate the motor solution predicted by optimal muscle 

control. 

 This work advances our understanding how the constraints and features of the 

nervous and musculoskeletal systems interact to produce motor behaviors. In the future, 

this understanding may inform improved clinical interventions, prosthetic applications, 

and the general design of distributed, hierarchal systems. 
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CHAPTER 1  

INTRODUCTION 
 

 Although people can typically maintain standing balance on moving trains, or 

press the appropriate button on an elevator with little conscious effort, the apparent ease 

of these sensorimotor tasks is courtesy of neural mechanisms that continuously interpret 

many sensory input signals to activate muscles throughout the body. One question that is 

central to understanding how the nervous system accomplishes this sensorimotor 

transformation is known as the “degrees of freedom problem” (Bernstein 1967). In most 

natural behaviors, task-level goals can be equivalently achieved with different kinetic or 

kinematic strategies (Kuo 2005; Todorov 2004; Yang et al. 2007), which can themselves 

be equivalently achieved with different spatial and temporal patterns of muscle activation 

(Gottlieb 1998; Lockhart and Ting 2007; van Bolhuis and Gielen 1999). Despite this 

redundancy, appropriate patterns of torques and muscle activity emerge easily during 

most motor tasks. How does this selection happen in the nervous system, and by what 

underlying mechanisms? 

 Bernstein hypothesized that to address the degrees of freedom problem, the 

nervous system might be organized to control multiple degrees of freedom as modules, 

rather than individually (Bernstein 1967). An advantage of modular organization is that 

higher motor centers could then operate on increasingly conceptual variables related to 

task-level motor performance, enabling sparser and more rapid computations (Ting and 

McKay 2007). This idea is supported by observations that task-level variables, such as 

the trajectory of the endpoint in reaching or targeting tasks (Adamovich et al. 2001; 

Bernstein 1967; Tseng et al. 2002; Tseng and Scholz 2005) and center of mass position 

during postural control (Gollhofer et al. 1989; Scholz et al. 2007) are more rigidly 

controlled during motor tasks than lower level variables such as individual joint angles. 

Neurophysiological studies also suggest that task-level variables are preferentially 

encoded within the nervous system. For example, in primates, the direction, velocity, and 

force of the hand are encoded in motor cortex during reaching movements (Georgopoulos 

et al. 1982; Georgopoulos et al. 1986; Scott and Kalaska 1997). Similarly, in cats, the 

length, orientation, and velocity of the foot, rather than the angles of individual joints, are 
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encoded at the level of dorsal roots during locomotion (Weber et al. 2007) and in the 

dorso-spinal-cerebellar tract during passive limb manipulation (Bosco et al. 2000). Above 

the level of the spinal cord in cats, in the mesencephalic locomotor region of the 

midbrain, simple pulse train stimulation is sufficient to induce locomotion, including gait 

transitions, when combined with treadmill movement (Grillner and Shik 1973), 

suggesting that at this high level, the relevant task-level variable may be, simply, “go.” 

MUSCLE SYNERGIES 

  We hypothesize that the nervous system resolves redundancy at the level of 

muscle activation by recruiting muscles in groups called muscle synergies, rather than 

individually, reducing the number of degrees of freedom that must be controlled and 

limiting the complexity of the resulting muscle activity (Ting and McKay 2007). We 

define muscle synergies as invariant patterns of activation across multiple muscles that 

serve as building blocks for the production of sophisticated muscle activation patterns. 

Neuroanatomically, muscle synergies may represent the connection strengths of 

polysynaptic neuronal networks within the CNS that impinge on the motor pools of 

multiple muscles. Our muscle synergy hypothesis assumes that 1) any given muscle can 

belong to more than one muscle synergy, 2) that the muscles within any given muscle 

synergy are activated in fixed proportion within the muscle synergy, and that 3) when a 

given muscle synergy is recruited during a motor task, all of the participating muscles are 

recruited by a common scaling coefficient according to their proportion. As an algebraic 

example, the net activation of a single muscle  resulting from the activation of two 

synergies  and , recruited according to scaling coefficients  and , respectively, 

can be expressed as the sum of the contribution of each muscle synergy: 

, where the coefficients  and  are the proportion of the 

recruitment of muscle 1 by the first and the second muscle synergy respectively. If the 

activation levels of all of the muscles  are assembled into a column vector , and the 

scaling factors of all of the muscle synergies  are assembled into a column vector , 

then the net activation levels of all of the muscles can be expressed as the matrix equation 

, where each muscle synergy  comprises a column of the matrix . 
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 Consistent with the muscle synergy hypothesis, low dimension muscle activity 

has been observed in many motor behaviors during studies of humans and animals 

(Cheung et al. 2009; Krishnamoorthy et al. 2003; Krouchev et al. 2006; Muceli et al. 

2010; Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007; Tresch et al. 1999). In 

these studies, patterns of electromyographic (EMG) activity are subjected to components 

analysis techniques. Universally, the number of underlying components required to 

adequately represent the EMG data is fewer than the number of sampled muscles, 

consistent with the hypothesis that the muscles are recruited by a smaller number of 

underlying muscle synergies. Although the essential evidence for the muscle synergy 

hypothesis is the small number of components required to describe the spatial recruitment 

of muscles, various extensions of the muscle synergy hypothesis exist that attempt to 

describe the temporal recruitment of muscles in the context of muscle synergies, 

including unit bursts (Kargo et al. 2010) and time varying-synergies (d'Avella et al. 

2006). 

 Muscle synergy recruitment has also been correlated with task-level 

biomechanical variables, consistent with their proposed role as the final output of the 

motor hierarchy. Muscle synergy recruitment has been correlated to center of mass 

(CoM) shifts in standing (Krishnamoorthy et al. 2003), foot and limb kinematics in 

walking (Ivanenko et al. 2003), foot acceleration in pedaling (Ting et al. 1999), and 

postural force generation during balance tasks (Torres-Oviedo et al. 2006). Observations 

that common muscle synergies are used across behaviors with different biomechanical 

contexts, such as swimming, jumping, and walking (Cheung et al. 2005; d'Avella and 

Bizzi 2005), as well as in different loading conditions (Cheung et al. 2009) suggests that 

the task-level functions of muscle synergies may be preserved across biomechanical 

contexts. Finally, it has been demonstrated that muscle synergy structure can be largely 

unaffected by altering (Kargo and Giszter 2008) or totally eliminating (Cheung et al. 

2005) sensory feedback during movements, although alterations in the recruitment of 

muscle synergies may be observed. 

 Although various components analysis techniques are used to identify muscle 

synergies, one method that is particularly useful is nonnegative matrix factorization, or 

NNMF (Lee and Seung 2001). Because muscles can only “pull,” the activation of each 
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muscle  is confined to the unit interval . NNMF is well suited to this natural 

nonnegativity, and enforces the simple constraint that all of the elements of each muscle 

synergy are strictly positive. Despite the fact that NNMF does not enforce any higher-

order structure on the identified muscle synergies – for example, orthogonality or 

assumptions of a particular population distribution – NNMF is often more successful than 

strictly orthogonal factorization techniques like principal components analysis (PCA) 

(Ivanenko et al. 2005; Ivanenko et al. 2004) at breaking complex patterns into meaningful 

parts. For example, when applied to a dataset of faces, the basis functions identified by 

NNMF resemble intuitive, spatially-localized physical features, like noses or mouths, 

whereas the bases identified by orthogonal decomposition techniques tend to represent 

more abstract, less spatially-localized features of the dataset, similar to the basis functions 

identified by Fourier decomposition (Lee and Seung 1999). 

BIOMECHANICAL CONSTRAINTS 

 In considering experimental data only, it is difficult to determine whether 

identified muscle synergy patterns reflect modular structure within the nervous system, or 

simply serve as a compact basis with which to describe the muscle patterns that satisfy 

the biomechanical constraints of the musculoskeletal system and task. Consider a 

hypothetical motor task requiring maximal performance – for example, generating the 

maximum possible torque at a single joint. If the muscles were controlled individually in 

this hypothetical task, the constraints of the musculoskeletal system would determine a 

unique pattern of muscle activity corresponding to the maximum possible torque. If the 

muscle activity from repeated presentations of this task were subjected to components 

analysis, a dominant component corresponding to that unique pattern would likely be 

sufficient to describe the muscle activity during all of the presentations very well. Should 

that component be considered a muscle synergy as defined above? Likely not – although 

the putative muscle synergy does describe the way that muscles are recruited, its structure 

reflects the biomechanical constraints of the musculoskeletal system and task, rather than 

modular structure within the nervous system. Although this hypothetical example 

represents a degenerate case, it illustrates that before identified muscle synergy patterns 
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can be attributed to modular structure within the nervous system, it must therefore be 

determined whether they simply reflect biomechanical constraints. 

 In particular, it has been suggested that muscle synergy patterns may emerge as 

the optimal way to control the musculoskeletal system given the biomechanical 

constraints of the musculoskeletal system and task, rather than reflecting explicit modular 

organization within the nervous system. During motor tasks, it has been suggested the 

nervous system may optimally minimize effort or energy (Fagg et al. 2002; Hoyt and 

Taylor 1981; Todorov 2004), execution error associated with irreducible noise (Harris 

and Wolpert 1998; Müller and Sternad 2009; Scholz and Schöner 1999), or a balance of 

the two (O'Sullivan et al. 2009). Although each of these different criteria will predict 

slightly different particular solutions to any given motor control problem, each predicts 

muscle patterns that are characterized by coactivation across multiple muscles, similar to 

the dependencies between muscles observed in experimentally-identified muscle 

synergies (Todorov 2004). Although the underlying mechanisms by which the nervous 

system might perform optimal control remain unclear, except in very abstract 

representations (Denève et al. 2007), it is therefore possible that experimentally-identified 

muscle synergies may simply serve as a convenient basis with which to describe the 

optimal control of individual muscles during motor tasks, rather than reflecting explicit 

constraints on muscle activation within the nervous system. 

 Detailed musculoskeletal models are required in order to accurately quantify the 

biomechanical constraints of the musculoskeletal system and task, because the influence 

of the musculoskeletal system on task performance may be very sophisticated. Due to 

purely biomechanical mechanisms, the degrees of freedom of the musculoskeletal system 

may exhibit coordinated covariation in the absence of neural control. For example, during 

grasping movements in the human hand, joints in different fingers are coupled by the 

sophisticated tendon network, as well as by multi-slip extrinsic hand muscles (Schieber 

and Santello 2004; Valero-Cuevas et al. 2007). Purely biomechanical mechanisms within 

the musculoskeletal system of the cat hindlimb function to constrain the individual joint 

angles to a lower-dimension subspace, reducing the number of apparent degrees of 

freedom in a manner that could be attributed to active control (Bosco et al. 1996). 

Similarly, biomimetic mechanical systems can be appropriately designed so that the 
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dominant modes are very stable, and even sufficient to maintain complex behaviors like 

locomotion in a completely passive manner (McGeer 1990). 

 Finally, biomechanical constraints on maximal task performance may also inform 

strategy selection during submaximal motor tasks when these constraints are not active 

per se. For example, the forces produced during static and dynamic pedaling in the 

human lower limb reflect biomechanically favorable force directions. Although it may be 

possible to produce forces in other directions, a static musculoskeletal model 

demonstrated that the set of feasible forces (“feasible force set,” or FFS) that can be 

produced by the limb is elongated, with the orientation of the maximal possible force 

coinciding with the stereotypical force directions observed experimentally (Gruben et al. 

2003; Schmidt et al. 2003), suggesting that biomechanical factors influence self-selection 

of force directions when they are not explicitly specified by the task. Similarly, 

considering muscle activation, it has also been demonstrated that muscle activation 

patterns for submaximal force production are merely scaled versions of the patterns 

required for maximal force generation in both pedaling (Raasch and Zajac 1999) and 

finger pinch (Valero-Cuevas 2000), again suggesting that biomechanical constraints on 

maximal performance may inform motor performance in other regimes of the motor 

repertoire. 

THE AUTOMATIC POSTURAL RESPONSE 

 The studies presented here consider how the nervous system addresses 

redundancy during the automatic postural response (APR) to postural perturbations in 

cats. When a perturbation is issued, either as a translation of the support-surface in the 

horizontal plane, or as a rotation in either the pitch or roll axes, stereotyped, directionally-

specific patterns of muscle activity are evoked that begin at about 50 ms in a cat, and at 

about 100 ms in a human (Horak and Macpherson 1996). Although the muscle activity 

evoked during the APR was initially assumed to be – and was referred to as – a “reflex,” 

analogous to the monosynaptic stretch reflex elicited by tendon tap, APR muscle activity 

occurs later than the time at which stretch reflexes occur, and in some cases acts in direct 

opposition to the mechanical action of stretch reflexes (Nashner 1976). The APR likely 

requires supraspinal influences, as cats with complete spinal transection exhibit disrupted 

flexor responses to perturbation (Macpherson and Fung 1999). In particular, neural 
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centers at level of the brainstem have been implicated as necessary for the shortest 

latency components of the APR (Honeycutt et al. 2009), although components with later 

latencies may elicit longer feedback loops with cortical involvement (Jacobs and Horak 

2007). Consistent with this higher-level representation, APR muscle activity cannot be 

easily predicted from changes in local sensory variables, as would be expected with a 

stretch reflex; instead, the direction and magnitude of CoM destabilization is the only 

reliable predictor of the activity of muscles during the APR (Carpenter et al. 1999; Diener 

et al. 1988). 

 In addition to the sophisticated patterns of muscle activity associated with the 

APR, the patterns of ground reaction forces elicited during postural perturbation tasks are 

highly stereotyped. The forces observed during the force constraint strategy are as 

follows: during quiet standing, the ground reaction forces at each limb are directed 

downward and away from the center of mass (CoM), acting along diagonal axes when 

viewed in the horizontal plane. When a balance perturbation is issued, the muscle activity 

during the APR gives rise to corrective ground reaction forces at the limbs, which tend to 

be directed either towards or away from the CoM along the same diagonal axes as the 

quiet standing forces, with little dependence on the direction of the perturbation (Ting 

and Macpherson 2004). Macpherson (1988a) described this characteristic pattern of 

forces as the force constraint strategy, and suggested that it may represent a control 

strategy within the nervous system. 

 Many features of the APR are conserved across cats and humans, despite 

differences in morphology. For example, the patterning of muscles during postural 

responses in humans supported on their hands and feet is very similar to that in cats, 

characterized by reciprocal activation of antagonists in the lower limbs and co-activation 

or co-inhibition of antagonists in the upper limbs (Macpherson et al. 1989). Similarly, 

responses in cats change dramatically when standing bipedally on their hindlimbs, 

although they cannot completely assume plantigrade posture (Dunbar et al. 1986). Forces 

during human postural responses also exhibit a stereotyped force-constraint-like pattern 

that may be clinically relevant, as it is disrupted in patients with Parkinson’s disease 

(Dimitrova et al. 2004). 
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 The dependence of the APR on task-level, rather than local-level variables may be 

the reason that aspects of postural perturbation responses are common across cats and 

humans. Although CoM is an abstract task-variable that is not directly encoded by any 

particular sensory receptor, the displacement of the CoM is a reliable predictor of which 

muscles will be recruited during a given postural task (Gollhofer et al. 1989; Nashner 

1977). Similarly, the kinematics of the CoM predict the timecourse of muscle activation 

during postural tasks in both cats and humans (Lockhart and Ting 2007; Welch and Ting 

2009; 2008), suggesting that neural mechanisms of CoM state estimation may be shared 

across both species. CoM is likely estimated from multiple sensory modalities, the 

relative influences of which are likely reorganized during compensation to deficits. 

Vestibular loss, for example, increases the magnitude but does not alter the timing or 

pattern of muscle activation following postural disturbances in humans and cats (Inglis 

and Macpherson 1995; Runge et al. 1998); similarly, somatosensory loss delays the onset 

of the postural response but, again, does not change the pattern of muscle activation in 

humans or cats (Bloem et al. 2000; Inglis et al. 1994; Stapley et al. 2002). 

 In support of the hypothesis that the neural substrates of the APR in cats are 

organized hierarchically, both the muscle activity and ground reaction forces observed 

during the APR in cats can be described by a small set of five “functional” muscle 

synergies, which specify both a pattern of hindlimb muscle activation (a muscle synergy) 

and a correlated “synergy force vector” at the ground (Torres-Oviedo et al. 2006). When 

cats performed the task in various biomechanical conditions (anterior-posterior “stance 

distances,” Macpherson 1994), identical synergies were observed as in a control 

biomechanical condition approximating the natural posture of the animal (“preferred” 

stance distance). This suggests that the muscle synergies recruited for postural control 

may be organized to provide task level-functions, in this case endpoint force. Further, this 

generalization was apparent only when synergy force vectors were expressed in a 

coordinate system that rotated with the hindlimb axis in the sagittal plane. The fact that 

synergy force vectors are invariant in the intrinsic coordinates of the limb, although the 

postural task itself – generating an appropriate net response force at the ground with all 

four limbs – is based in extrinsic coordinates suggests that synergy force vectors may be 

internally represented in the intrinsic coordinates of the hindlimb. 



 

9 

 

 

 

 

 
Figure 1.1. Hypothesized feedback and feedforward representations of the sensorimotor 
transformation postural control. A. Postural control as a feedback process. In this 
representation, postural perturbations excite the dynamics of the musculoskeletal system; 
the resulting disturbances in somatosensory information is aggregated with other sensory 
information in a multisensory integration process to form an estimate of the kinematics of 
the CoM. This CoM estimate is then used in a central coordination process to recruit  
muscle synergies and to stabilize the body. B. Postural control as a feedforward process. 
Because the APR has a characteristic long latency (≥60 ms), the elements of the 
feedforward pathway can be examined by considering the earliest phases of the response, 
before ongoing feedback can have significant effects. The studies here isolate individual 
blocks of the hypothesized sensorimotor transformation (see text). 
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NEUROMECHANICAL APPROACH 

 The overall objective of the studies presented here was to investigate the neural 

and biomechanical constraints that determine muscle activity and ground reaction forces 

during the APR in cats. I treated the sensorimotor transformation during the APR as a 

feedback process, and then used mathematical modeling and data analysis techniques to 

characterize hypothesized elements of the feedforward pathway. A representation of the 

hypothesized feedback process is depicted in Figure 1.1A. When a perturbation is issued, 

it excites the dynamics of the musculoskeletal system, creating a suite of somatosensory 

inflow that is aggregated with sensory estimates from other modalities (including vision 

and vestibular sources, Peterka 2002) into an overall estimate of the CoM kinematics. 

This CoM estimate is then used in a central coordination process to recruit muscles 

throughout the body (Lockhart and Ting 2007; Welch and Ting 2009) in a small number 

of functional muscle synergies (Torres-Oviedo et al. 2006). APR muscle activity is then 

conveyed back through the musculoskeletal system to respond to the perturbation with 

ground reaction forces and changes in kinematic and kinetic variables at the periphery. 

Because of the characteristic long latency of the APR (≥ 60 ms), the elements of the 

feedforward pathway can be characterized by considering the initial phases of the APR, 

before ongoing feedback can have significant effects. Also, because postural 

perturbations introduce relatively small changes in joint angles throughout the body, 

static musculoskeletal models can be used, enabling a much wider range of analysis 

techniques than would be available if fully dynamic models were required. 

 In Chapters 2 and 3, I tested whether the forces associated with the force 

constraint strategy reflect biomechanical or neural constraints on the force production 

capability of the isolated cat hindlimb. Previous studies of musculoskeletal mechanics 

suggest that the diagonal axis is a primary torque direction for single muscles activated 

through direct nerve stimulation (Lawrence et al. 1993) or spinal reflexes (Nichols et al. 

1993), and for ensembles of muscles activated through reflex mechanisms (Bonasera and 

Nichols 1996; Nichols 2002; Siegel et al. 1999). Therefore, it is possible that 

biomechanical constraints on hindlimb force production may determine the forces 

observed during posture. Alternatively, if the force production capability of the hindlimb 

is not limited to the forces observed during posture, the force production capability may 



 

11 

be reduced if muscles are constrained to act in a limited number of muscle synergies. To 

test this, I quantified the force production capability of an anatomically detailed 

musculoskeletal model of the cat hindlimb parameterized to match experimental data of 

three cats. I compared the directions of small and large feasible forces to the patterns of 

forces observed during balance tasks. Then, I further constrained the muscles in the 

model to activate in simulated muscle synergies derived from experimental data and 

examined changes in the force production capability. 

 In Chapter 4, I tested whether the forces associated with the force constraint 

strategy reflect the optimal strategy to control the quadrupedal musculoskeletal system in 

a given postural configuration rather than modularity in motor outputs. Optimal control 

theory predicts various motor behaviors (Todorov 2004), and control effort or energy 

minimization is a strong predictor of behavior (Hoyt and Taylor 1981; O'Sullivan et al. 

2009). Therefore, it is possible that the muscle activity and forces observed during 

posture emerge from the optimal control of individual muscles during the postural task, 

without explicit neural constraints. To test this, I simulated the optimal feedforward 

control of individual muscles and muscle synergies in a quadrupedal neuromechanical 

model. I to simulate the balance task, I identified the optimal patterns of individual 

muscle or muscle synergy activation that could produce appropriate net forces and 

moments at the CoM during postural perturbations. I then compared the forces predicted 

by each control strategy to each other and to experimental data. 
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CHAPTER 2  

BIOMECHANICAL CAPABILITIES INFLUENCE POSTURAL 

CONTROL STRATEGIES IN THE CAT HINDLIMB 

This chapter was originally published as an article in the Journal of Biomechanics: 

McKay JL, Burkholder TJ, and Ting LH. Biomechanical capabilities influence postural 

control strategies in the cat hindlimb. J Biomech 40: 2254-2260, 2007. 

Used with permission by Elsevier. 
 

ABSTRACT 

 During postural responses to perturbations, horizontal plane forces generated by 

the cat hindlimb are stereotypically directed either towards or away from the animal’s 

center of mass, independent of perturbation direction. We used a static, three-dimensional 

musculoskeletal model of the hindlimb to investigate possible biomechanical 

determinants of this “force constraint strategy” (Macpherson 1988a). We hypothesized 

that directions in which the hindlimb can produce large forces are preferentially used in 

postural control. We computed feasible force sets (FFS) based on hindlimb 

configurations of three cats during postural equilibrium tasks (Jacobs and Macpherson 

1996) and compared them to horizontal plane postural force directions. The grand mean 

FFS was bimodal, with maxima near the posterior-anterior axis (-86 ± 8° and 71 ± 4°), 

and minima near the medial-lateral axis (177 ± 8° and 8 ± 8°). Postural force directions 

clustered near both maxima; there were no medial postural forces near the absolute 

minimum. However, the medians of the anterior and posterior postural force direction 

histograms in the right hindlimb were rotated counter-clockwise from the FFS maxima 

(p < 0.05; Wilcoxon signed-rank test). Because the posterior-anterior alignment of the 

FFS is consistent with a hindlimb structure optimized for locomotion, we conclude that 

the biomechanical capabilities of the hindlimb strongly influence, but do not uniquely 

determine the force directions observed in the force constraint strategy. Forces used in 

postural control may reflect a balance between a neural preference for using forces in the 
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directions of large feasible forces and other criteria, such as the stabilization of the center 

of mass, and muscular coordination strategies. 

INTRODUCTION 

 Forces generated by each limb of the cat during postural equilibrium tasks are 

characterized by a “force constraint strategy” whereby the directions of forces produced 

by each limb are more constrained than the directions of net force produced together by 

all of the limbs (Macpherson 1988a). A similar force constraint strategy has also been 

identified during bipedal postural control (Fung and Macpherson 1995; Henry et al. 

2001). It has been suggested by Macpherson (1988a) that such a strategy simplifies the 

coordination problem faced by the nervous system (i.e., the "degrees of freedom 

problem," Bernstein 1967), because an appropriate net postural response force is 

achieved by modulating the amplitudes of the individual limb forces without altering 

their directions. The stereotypical force directions observed in the force constraint 

strategy are as follows: during quiet standing, limb forces are directed downward and 

away from the center of mass, acting along diagonal axes when viewed in the horizontal 

plane. Following horizontal plane translation perturbations of the support surface, or 

rotation of the support surface about the pitch or roll axis, active postural response forces 

in each limb act along the same diagonal axes, regardless of the direction of the 

perturbation (Macpherson 1988a; Ting and Macpherson 2004). 

 We hypothesized that the limited directions of force produced by the cat hindlimb 

during postural responses are preferentially chosen because they are biomechanically 

favorable. Previously, acute studies have demonstrated the diagonal axis used in the force 

constraint strategy is also a primary torque direction for single muscles activated through 

direct nerve stimulation (Lawrence et al. 1993) or spinal reflexes (Nichols et al. 1993), 

and for ensembles of muscles activated through reflex mechanisms (Bonasera and 

Nichols 1996; Nichols 2002; Siegel et al. 1999). Similarly, forces produced during static 

and dynamic pedaling reflect biomechanically favorable force directions in the human 

lower limb. A static musculoskeletal model demonstrated the set of feasible forces 

(“feasible force set,” or FFS) that can be produced by the limb is elongated, with the 

orientation of the maximal possible force coinciding with the stereotypical force 

directions observed experimentally (Gruben et al. 2003; Schmidt et al. 2003). Although it 
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may be possible to produce forces in other directions, this study showed that 

biomechanical factors influence self-selection of force directions when they are not 

explicitly specified by the task.  

 We tested our hypothesis by quantifying the FFS of the cat hindlimb and 

comparing it to the directions of observed postural response forces in three cats 

performing postural equilibrium tasks (Jacobs and Macpherson 1996). The FFSs were 

based on experimentally measured kinematic configurations and constraints on individual 

muscle forces (Kuo and Zajac 1993; Schmidt et al. 2003; Valero-Cuevas et al. 1998). 

Because sagittal plane models (He et al. 1991; Hof 2001; Kaya et al. 2005; Prilutsky et al. 

1997) were inadequate for investigating horizontal plane forces, we created a three-

dimensional model based on the measurements of Burkholder and Nichols (2000; 2004). 

Our hypothesis that biomechanically favorable force directions are preferentially used 

during postural control would be supported if the FFS were elongated along the same 

axes as the force directions observed experimentally (e.g., Figure 2.1, solid oval).  

 

 
Figure 2.1.  The force constraint strategy (Macpherson 1988a).  Perturbations in 12 
directions in the horizontal plane (thin lines) elicit postural response forces that are more 
constrained in direction (thick lines).  Postural response forces exerted by the hindlimb 
act along a diagonal axis, regardless of perturbation direction.  We hypothesized that this 
behavior reflects a neural preference for using directions of maximum feasible force, 
represented by the idealized feasible force set (“FFS,” gray oval) (Gruben et al. 2003; 
Schmidt et al. 2003; Valero-Cuevas et al. 1998). 



 

 15 

METHODS 

 We constructed FFSs using a model of the cat hindlimb in postures based on 

kinematic data taken from 412 individual trials of three cats during translation 

perturbations of the support surface in 12 directions (Figure 2.1). We then compared 

active postural response force directions to the average FFS over all trials. Simulations 

and subsequent analyses were conducted in Matlab (The Mathworks, Natick, Mass., 

USA). 

MODEL OF THE CAT HINDLIMB 

 A three-dimensional static model of the cat hindlimb was developed based on the 

measurements of Burkholder and Nichols (2000; 2004). The model consists of seven 

rotational degrees of freedom 
  

� 

 q ( )  and 31 muscles (Figure 2.2). The hip joint was 

modeled as a ball joint, and the knee and ankle were each modeled using two non-

intersecting, non-orthogonal axes. Muscles were modeled as straight lines between origin 

and insertion points, with via points. Muscle moment arm values were determined with 

SIMM software (Musculographics, Inc., Santa Rosa, CA). 

 The transformation between a 31-element input vector of muscle excitations 

  

� 

 e 0 ≤ ei ≤ 1( )  and the (6 × 1) force and moment system 
  

� 

 
F fx fy f z mx my mz[ ]T⎛ 
⎝ 

⎞ 
⎠  

produced at the endpoint (approximated as the metatarsal-phalangeal joint, Jacobs and 

Macpherson 1996) is defined as: 

 

� 

F = J q( )−T R q( )FOFAFL q( )e  (2.1) 

All factors in Equation 2.1 except 

� 

FO  vary with the limb posture   

� 

 q ; this dependence is 

omitted for clarity. The last four factors map muscle excitations   

� 

 e  to a net joint torque  
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vector through 

� 

FAFL , the (31 × 31) diagonal matrix of scaling factors based on active 

muscle force-length characteristics, 

� 

FO , the (31 × 31) diagonal matrix of maximal muscle 

forces, and

� 

R, the (6 × 31) moment arm matrix (Valero-Cuevas et al. 1998; Zajac 1989). 

All muscles were assumed to be at 95% optimum fiber length for the mean posture of 

each cat (Burkholder and Lieber 2001). The term 

� 

J −T  maps the net joint torque vector to 

the endpoint force and moment system. A closed-form solution for the (6 × 7) system 

geometric Jacobian 

� 

J  was developed with Autolev software (Online Dynamics, Inc., 

Stanford, CA). All seven degrees of freedom were used to establish the limb postures. 

The degree of freedom corresponding to internal/external rotation of the femur was 

neglected (“locked”) during endpoint force calculation so that 

� 

JT  was (6 × 6) and directly 

invertible. This degree of freedom was chosen because it contributed primarily to the 

generation of moments rather than forces in the horizontal plane.  

 The complete model includes passive muscle forces   

� 

FPFL ⋅
 
1 , where 

� 

FPFL  is a 

(31 × 31) diagonal matrix of passive force-length scaling factors and   

� 

 
1  is a vector of 

ones: 

 
Figure 2.2. A three-dimensional model of the cat hindlimb. SIMM software 
(Musculographics, Inc., Santa Rosa, CA) was used to determine muscle moment arms for 
each of the 412 simulations. The model consists of seven rotational degrees of freedom 
and 31 muscles, based on the measurements of Burkholder and Nichols (2000; 2004). 
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� 

F = J −TRFO FAFLe + FPFL
 
1 ( )  (2.2) 

POSTURAL RESPONSE DATA 

 The kinematic and kinetic data used in this study have been presented previously 

(Jacobs and Macpherson 1996). Briefly, three cats (Bi, Ni, and Ru) were trained to stand 

on a moveable platform equipped with four triaxial force plates. Postural perturbations 

consisted of ramp-and-hold translations of the platform in one of 12 directions uniformly 

spaced in the horizontal plane (Figure 2.1). Although the perturbations were 

destabilizing, they resulted only in small changes in joint angles (≤ 5°), suggesting that a 

static musculoskeletal model is adequate to estimate feasible forces. The positions of the 

hip, knee, ankle, and metatarsal-phalangeal (MTP) joint centers were estimated from 

kinematic marker data (Fung and Macpherson 1995). 

 For the current analysis, we obtained the average kinematic configuration of the 

hindlimb in an 80 ms window before the onset of the perturbation in each trial (Figure 

2.3, gray lines). We also obtained the active postural response force vector, which was 

computed as the difference in force direction between the active force response period 

during an 80 ms window 120 ms following perturbation onset, and the background period 

(Fung and Macpherson 1995). 

 

 



 

 18 

 

 
Figure 2.3.  Model postures were based on kinematic data of three cats. Column A: 
sagittal view. Column B: posterior-lateral view. Light gray traces are kinematic data from 
each trial (Ru: N=134, Bi: N=118, Ni: N=160), used in the FFS computation. Black 
traces are the average kinematic data for each cat. Red traces illustrate the best fit of the 
model to the average segment angles in the frontal and sagittal planes for each cat. 
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FEASIBLE FORCE SETS 

 Feasible force sets were constructed for each of the 412 trials using linear 

programming. For each trial, numerical optimization was used to calculate the limb 

posture   

� 

 q  that minimized the mean squared error between the sagittal and posterior plane 

femur, shank, and foot angles of the model and those of the kinematic data; all residual 

segment angle errors were ≤ 10-4 ° (Fig. 3).  

 After the best-match   

� 

 q  was established, the muscle excitation vector   

� 

 e  producing 

the maximal biomechanically feasible force projection in each of 520 directions on the 

unit sphere was calculated subject to the constraint that all muscle excitations varied 

between 0 and 1. The FFS was then defined as the smallest convex polygon in the dorsal 

plane that encompassed the projections of these 520 forces. The vertices of this polygon 

represent unique   

� 

 e ; the distance from each point on the boundary of the polygon to the 

origin is the maximal biomechanically feasible force magnitude in that direction (Kuo 

and Zajac 1993; Schmidt et al. 2003; Valero-Cuevas et al. 1998). We have found that this 

method produces results identical to exact solutions produced with computational 

geometry tools (Avis and Fukuda 1992) (e.g., cdd, K. Fukuda; cddmex, F. Torrisi and M. 

Baotic) when the dimension of   

� 

 e  is ≤ 13 (data not shown). Exact solutions of this type 

are not feasible for larger numbers of muscles because computation time increases 

exponentially with the dimension of   

� 

 e . 

SENSITIVITY ANALYSIS 

 We tested the sensitivity of the FFS to morphological parameters and model 

architecture. A FFS was constructed based on the mean kinematic data of each cat. We 

then examined the changes in the maximal directions of these FFSs due to perturbations 

of ± 50% to all nonzero muscle moment arms, perturbations of ± 50% to the maximum 

force value for each muscle, and 1° perturbations to each joint angle (Lehman and Stark 

1982; Scovil and Ronsky 2006). In addition, we tested the influence of an externally 

applied moment limit, the use of the pseudoinverse of the full seven degree of freedom 

system Jacobian 

� 

JT( )+
, and of scaling individual segment lengths to match the kinematic 

data.  
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RESULTS 

All simulations exhibited strongly anisotropic FFS with maxima in both the posterior and 

anterior half-planes, (Figure 2.4A, solid red lines) consistent with stereotypical force 

directions observed in the force constraint strategy (Macpherson 1988a).  Inter-trial 

variance of the FFS was minimal; maximum coefficients of variation for points on the 

FFS were 9.0%, 15.5%, and 15.3% for cats Ru, Bi, and Ni (Figure 2.4, upper row), 

respectively. Because of this small variability and the general similarity of FFS shape 

across cats, all FFSs were combined into a grand mean for subsequent analysis (Figure 

2.4, lower row) except for the sensitivity analyses, which were performed about the mean 

posture of each cat. Sensitivity analysis results based on the mean posture of Ru are 

reported in detail here because they were the most sensitive.  

 The grand mean FFS was bimodal, with maxima nearly aligned with the 

posterior-anterior axis (-87 ± 8° and 71 ± 4°; mean ± SD); the anterior maxima had a 

small lateral component (Figure 2.4A, red dashed lines). The absolute minimum of the 

FFS was directed medially (177 ± 8°), and a second minimum was directed almost 

exactly laterally (8 ± 8°). The magnitude of the posterior maximum was 8.2 times the 

absolute minimum, while anterior magnitude was 2.8 times the absolute minimum 

(Figure 2.4B, solid red line).  

 The histogram of the active postural force directions was also bimodal (Figure 

2.4B, gray bars), with peaks located near the FFS maxima (Figure 2.4B, compare red and 

black dashed lines), consistent with the hypothesis that biomechanically favorable force 

directions are preferentially used. The medians of the posterior and anterior postural force 

direction histograms were rotated counter-clockwise relative to FFS maxima by a 

moderate but statistically significant amount (-22° and –21°, respectively; Wilcoxon 

signed-rank test, p < 0.05). There were few directly lateral forces where FFS magnitude 

was small (Figure 2.4B, near 0°), and notably, no medial forces near the absolute 

minimum of the FFS (Figure 2.4B, near 180°). 
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Figure 2.4.  FFSs and active postural force directions for cat Ni (top row), and the grand 
mean across all cats (bottom row). Angle conventions are defined in Figure 2.1. A: 
Dorsal plane FFS mean ± SD (red thick and thin lines, respectively). FFS maxima 
(dashed lines) are directed either posteriorly or anteriorly with small lateral components. 
FFS minima are in the medio-lateral directions. The mean FFS of the individual animal 
and the grand mean are bimodal, similar to the two-vector force constraint strategy. B: 
FFS magnitude from A (solid red line, left hand scale), plotted against force direction and 
histogram of active postural response forces (gray bars, right hand scale). Postural force 
directions are bimodal with peaks (dashed gray lines) clustered near the maxima of the 
FFS (dashed red lines). No active forces were directed medially, near the FFS minima. C: 
Active postural forces generated by the hindlimb (black circles) are not directly opposite 
to the perturbation direction (dotted black line). Instead, forces tend towards directions of 
high feasible force magnitude (red shaded area) and away from regions of low feasible 
force magnitude (gray shaded area). The FFS maxima therefore act as attractors of force 
direction that have stronger influence on lateral perturbation directions (-90° to 90°) than 
medial perturbations (≤ -90° or ≥ 90°). 
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 The anisotropic shape of the FFS qualitatively predicted the nonlinear relationship 

between perturbation direction and active postural force direction (Figure 2.4C) first 

reported by Macpherson (1988a, Figure 8B). Active force directions in response to a 

specific perturbation direction were not directly opposite to the perturbation direction 

(Figure 2.4C, dotted line). Instead, the active forces tended to gravitate towards directions 

where feasible forces were high (Figure 2.4C, red shaded area) and away from directions 

where feasible forces were low (Figure 2.4C, gray shaded area). Deviations from the 

linear response were more acute for perturbations directed laterally; postural forces either 

clustered around the anterior FFS maxima (-90° to 0°) or were dispersed (0° to 90°; 

notice the larger error bars in this region in Figure 2.4).  

 The FFS was robust to various perturbations to the model parameters. The results 

of the sensitivity analysis performed about the mean posture of Ru are summarized in 

Table 2.1; results for Bi and Ni were equally or less sensitive in general. The FFS maxima 

were insensitive to ± 50% perturbations to individual muscle moment arms and 

maximum muscle forces, eliciting maxima direction changes of ≤ 14° and magnitude 

changes of ≤ 27% across all cats. Sensitivity to individual joint angles was ≤ 3.5° for 

posterior maxima and ≤ 10.2° for anterior maxima; the increased sensitivity of anterior 

maxima is not critical because the anterior maxima were more broadly tuned in general. 

We found only small changes in FFS maximum directions (≤ 9.1°) when we scaled the 

model segment lengths to each cat, and comparably small changes (≤ 9.8°) when we 

recreated the analysis using the pseudoinverse  of the full seven degree of freedom 

system Jacobian in Equation 2.2. The largest sensitivity values were associated with 

external limits placed on the endpoint moment. FFS maxima directions were moderately 

affected by moment limits ranging between 0.001 N-m and 10 N-m (≤ 17.6°), but the 

FFS magnitude was scaled considerably (≤ 85.3%). In all cases, however, FFSs retained 

their bimodal shape, and FFS magnitudes exceeded observed postural force magnitudes. 

 

J
T( )

+
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Table 2.1. Sensitivity of FFS maxima (cat Ru) to model architectural and morphological 
parameters. Sensitivity of posterior and anterior maxima directions and magnitudes are 
expressed separately; in general anterior maxima directions are more sensitive but are 
also less acutely tuned. This analysis was conducted about the mean limb posture for cat 
Ru; sensitivity values for Bi and Ni were similar or less sensitive in general. 

 Direction Magnitude 

 Posterior Anterior Posterior anterior 

Moment limit = 0.001 N-m 1.0° -0.3° -42.5% -82.7% 

Moment limit = 1 N-m 3.8 -17.6 -31.2 -64.9 

Moment limit = 10 N-m -3.4 9.6 3.6 -0.8 

Pseudoinverse -3.4 9.8 3.6 -0.1 

Altered segment lengths -3.3 9.1 14.1 8.0 

1° perturbations to joint 
coordinates ≤ 3.5 ≤ 10.2 ≤ 3.8 ≤ 1.7 

± 50% perturbations to 
moment arms ≤ 5.1 ≤ 13.6 ≤ 23.9 ≤ 6.8 

± 50% perturbations to 

� 

FO  
values ≤ 4.9 ≤ 13.5 ≤ 15.8 ≤ 12.0 
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DISCUSSION 

 We used a musculoskeletal model of the cat hindlimb to assess the possible 

biomechanical determinants of the stereotypical force directions observed during postural 

control. We hypothesized that postural forces are preferentially chosen in directions of 

biomechanically favorable force production. Experimental horizontal plane force 

directions were distributed bimodally, with peaks near the directions of maximum force 

predicted by the model. However, they were consistently rotated with respect to these 

maxima, which were almost directly anterior and posterior. Thus, the anisotropy of the 

FFS may influence, but does not completely determine the choice of force direction 

during postural control. 

 The elongated shape and orientation of the FFS was consistent between animals, 

across all trials, and was insensitive to variations in model parameters, including 

maximum muscle forces, moment arms, kinematic configuration, segment lengths, and 

endpoint moment constraints. Similarly, Kuo and Zajac (1993) reported minimal 

sensitivity of their feasible acceleration sets to morphological parameters and variations 

among standing postures in the human. The FFS shape is probably most strongly 

influenced by the kinematic description of the model (Valero-Cuevas et al. 1998), 

however, altering the number of kinematic degrees of freedom (via the use of the 

pseudoinverse of the full rank system Jacobian) did not significantly alter our results. 

Similarly, scaling the model segment lengths to match the morphology of each cat had 

little influence. Therefore, it is not likely that using a subject-specific model (Zajac 2002; 

Zajac et al. 2002), rather than our generic, unscaled model of the cat hindlimb would alter 

our results. Because endpoint moment data are unavailable, we could not estimate the 

exact effects of endpoint moment on the FFS (cf., Valero-Cuevas et al. 1998). However, 

the high sensitivity to limits on endpoint moment is not considered to be critical because 

the bimodal structure of the FFS was unchanged even for the most extreme limits on 

endpoint moment. 

 The external force and moment during a postural task could affect the peak force 

directions predicted by the FFS.  The endpoint forces and moments during standing result 

from gravitational forces, muscular forces from the other limbs and trunk, and forces due 

to unmodeled muscles in the hindlimb.  Adding the background force during standing 
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would effectively translate the origin of the FFS in a posterior and lateral direction, 

increasing the maximum force magnitude in the anterior direction. This could account for 

the relatively small anterior force peak (Figure 2.4B) in the FFS compared to the 

experimental force directions, which were measured during active unloading on a 

background of extensor activity (Macpherson 1988a). The addition of unmodeled pelvic 

muscles that contribute to flexion could also increase the anterior force magnitudes. As 

discussed above, maximum endpoint moment constraints affect FFS magnitude more 

than shape. The largest changes to force maximum directions were ≤ 17.6°, when a 

moderate constraint was applied (≤ 1 N-m). Therefore, the addition of more realistic 

external forces and moments are not predicted to significantly alter force maximum 

directions, only magnitudes. 

 It is possible that the large number of muscles in our model decreased the 

sensitivity of the FFS to individual model parameters. For example, while single muscle 

forces predicted by optimization have been reported to be highly sensitive to parameter 

values (Kaya et al. 2005; Raikova and Prilutsky 2001), multiple muscle activation 

patterns have not (van Bolhuis and Gielen 1999). Similarly, in dynamic simulations of 

the human leg, Scovil and Ronsky (2006) report considerable sensitivity of single muscle 

forces to muscle model parameter perturbations, but reduced sensitivity of the overall 

model behavior (e.g., the ground reaction force during walking).  

 In contrast to maximal effort tasks (e.g., Pandy et al. 1990; Valero-Cuevas et al. 

1998), the postural task presented here imposed no explicit biomechanical constraint on 

single limb force direction. While total force generated by all four limbs must oppose the 

perturbation direction, the nervous system is free to choose single limb force directions 

that may optimize arbitrary criteria (cf., Crowninshield and Brand 1981; Harris and 

Wolpert 1998; Kaya et al. 2005; Scott 2004; Todorov 2004). 

 Using a diagonal axis of force production may simplify the neural control 

mechanism required to coordinate force direction and amplitude during postural 

responses, but is not imposed by biomechanical limitations in hindlimb force production. 

The force of each limb could be controlled by modulating a limited number of muscle 

activation patterns (Ting and Macpherson 2005) that produce forces in an equally limited 

number of directions. Although postural force magnitudes (≈ 1-2 N) are small, using a 
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biomechanically favorable force direction may also be energetically advantageous, and 

beneficial in an uncertain environment when the magnitude of the postural perturbation is 

unpredictable. Valero-Cuevas et al. (1998) has suggested that solutions to “maximal 

effort” tasks may represent functional units of neuromechanical organization applicable 

to tasks requiring submaximal effort. Scaled versions of the muscle excitation patterns 

determined by the maxima of the FFS of the human index finger are used over the entire 

voluntary range (Valero-Cuevas 2000). 

 Other factors not modeled here that could influence the choice of force directions 

used in postural control include interlimb coordination and stability criteria. The 

considerable anisotropy of the FFS may reflect hindlimb biomechanical capabilities tuned 

for locomotion, and not necessarily postural control. Large posterior forces are consistent 

with propulsion during locomotion, and anterior forces are used in the deceleration phase 

of gait. The maximal force directions of the FFS would have limited capacity to resist 

lateral perturbations. While the use of the diagonal force direction is not explicitly 

predicted by the FFS, the diagonal forces are still consistent with biomechanically 

favorable directions of force production, with the added benefit that lateral force 

components can also be generated. Moreover, rotation of the force vectors in each limb 

towards the center of mass is consistent with a self-stabilization strategy (Bauby and Kuo 

2000; Holmes et al. 2006; Kubow and Full 1999), reducing torques about the center of 

mass. 
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CHAPTER 3  

NEUROMECHANICAL MODELING OF FUNCTIONAL MUSCLE 

SYNERGIES FOR POSTURAL CONTROL IN THE CAT 

This chapter was originally published as an article in the Journal of Biomechanics: 

McKay JL, and Ting LH. Functional muscle synergies constrain force production during 

postural tasks. J Biomech 41: 299-306, 2008. 

Used with permission by Elsevier. 
 

ABSTRACT 

 We recently demonstrated that five functional muscle synergies were sufficient to 

characterize both hindlimb muscle activity and active forces during automatic postural 

responses in cats.  Notably, functional muscle synergies based on data from a 

biomechanical condition approximating the natural posture of the animal were sufficient 

to reproduce muscle activity and active forces when the hindlimb posture was varied in 

the sagittal plane. We predicted that as posture varies the forces produced by functional 

muscle synergies (synergy force vectors) rotate with the limb axis.  Here, we first used a 

detailed, 3D static model of the hindlimb to confirm that this strategy is biomechanically 

plausible: as we varied the model posture, simulated synergy force vectors rotated 

monotonically with the limb axis in the parasagittal plane (r2 = 0.94 ± 0.08).  We then 

tested whether five functional muscle synergies provide the same force-generating 

capability as 31 individuated muscles.  We compared feasible force sets (FFS) of the 

model with and without a synergy organization.  FFS volumes were significantly reduced 

with the synergy organization (F = 1556.01, p << 0.01), and as posture varied, the 

synergy-limited FFSs changed in shape, consistent with changes in experimentally-

measured active forces.  In contrast, nominal FFS shapes were invariant with posture, 

reinforcing prior findings that postural forces cannot be predicted by hindlimb 

biomechanics alone.  We propose that an internal model for postural force generation 

may coordinate functional muscle synergies that are invariant in intrinsic limb 
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coordinates, and this reduced-dimension control scheme reduces the set of forces 

available for postural control. 

INTRODUCTION 

 A common finding among studies of the neural control of movement is 

“dimensional collapse,” whereby the behavior of neuromechanical systems that are in 

theory highly redundant (Bernstein 1967) and computationally formidable to control can 

be described with only a few degrees of freedom (Flash and Hochner 2005; Grasso et al. 

1998; Sanger 2000; Zatsiorsky et al. 2003).  Recent studies of muscle coordination, in 

particular, have demonstrated that the superposition of a few muscle activation patterns, 

defined as muscle synergies, is sufficient to describe muscular activity during many 

natural behaviors in humans and animals (Cheung et al. 2005; Krishnamoorthy et al. 

2003; Poppele and Bosco 2003; Ting and Macpherson 2005), although due to motor 

abundance an infinite number of such patterns are theoretically possible. 

 The hierarchical structure suggested by these results has provided substantial new 

insight into the neural control of movement, however, comparably few studies have 

examined muscle synergies quantitatively from the perspective of biomechanical function 

(e.g., Loeb et al. 2000; Raasch and Zajac 1999; Valero-Cuevas 2006).  Comparing 

muscle synergies across subjects or animals, for example, is difficult not only because of 

experimental limitations (e.g., electrode placement) but also, because muscle synergies 

that appear distinct may be functionally equivalent due to biomechanical redundancy.  

Similarly, because the number of synergies cannot be controlled in experiments, 

estimating the number of synergies that are sufficient for task performance is an open 

question, albeit an important one from the perspective of rehabilitation (Latash and 

Anson 2006). 

 In a recent study (Torres-Oviedo et al. 2006), we demonstrated that 

electromyographic and kinetic data from automatic postural responses in cats could be 

simultaneously decomposed into a small set of five “functional” muscle synergies, which 

specify both a pattern of hindlimb muscle activation (a muscle synergy) and a correlated 

“synergy force vector” at the ground.  Significantly, cats performed the task in various 

biomechanical conditions (anterior-posterior “stance distances,” Macpherson 1994) using 

the same synergies as in a control biomechanical condition approximating the natural 



 

 29 

posture of the animal (“preferred” stance distance).  However, the generalization was 

apparent only when the synergy force vectors were expressed in a coordinate system that 

rotated with the hindlimb axis in the sagittal plane.  This result was compelling because it 

suggests that an internal model (Kawato 1999; Shadmehr and Mussa-Ivaldi 1994) for 

limb force production during postural control coordinates synergy force vectors that are 

invariant in the intrinsic coordinates of the limb, although the postural task itself - 

generating an appropriate net response force at the ground with all four limbs - is based in 

extrinsic coordinates. 

 The first aim of the present work was to verify whether the rotation of synergy 

force vectors we observed experimentally was feasible in the context of a detailed 

musculoskeletal model of the cat hindlimb (Burkholder and Nichols 2004; McKay et al. 

2007).  Although we demonstrated that the EMG and force components of the 

experimentally-identified functional muscle synergies were correlated, we could not 

demonstrate that this relationship was causal.  Synergy force vectors identified in the 

control posture of each animal from our earlier study (Torres-Oviedo et al. 2006) were 

used as source data, and simulated muscle synergies corresponding to each synergy force 

vector were determined with numerical optimization (e.g., Crowninshield and Brand 

1981; Harris and Wolpert 1998; Kurtzer et al. 2006; Valero-Cuevas et al. 1998).  We then 

applied these muscle synergies to the model in other postures to test whether the resulting 

force vectors were oriented consistently with respect to the limb axis. 

 The second aim of the present work was to assess the impact of a muscle synergy 

organization on the functional capabilities of the model.  In particular, we tested the 

hypothesis that constraining the muscles to coactivate in synergies would limit the 

model’s total force-production capacity.  We quantified the force-production capacity of 

the model with its feasible force set ("FFS," Valero-Cuevas et al. 1998).  The FFS is a 

convex manifold in three-dimensional “force space;” the length of the vector from the 

origin to any point on the FFS is the maximum force that can generated by the model in 

that direction, subject to limits on individual muscle forces.  The FFS is a useful 

descriptor because neural deficits reduce its volume and influence its shape (Kuxhaus et 

al. 2005).  We computed FFSs across postures assuming 1) control of individuated 

muscles (nominal FFS), and 2) control only of the simulated muscle synergies 
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determined earlier (synergy-limited FFS).  We then compared the FFSs from the two 

conditions (cf. Valero-Cuevas) to identify systematic changes; a reduction in FFS volume 

associated with the synergy constraint, for example, indicates the synergy organization 

limits force-production capacity, similar to a neuromuscular deficit (Kuxhaus et al. 2005).  

Finally, we investigated whether the stereotyped, posture-dependent changes observed in 

postural force production (the “force constraint strategy,” Macpherson 1994) were 

predicted by posture-dependent changes in the nominal or synergy-limited FFS shape. 

METHODS 

 We used a static musculoskeletal model of the cat hindlimb (McKay et al. 2007) 

and kinematic and kinetic data of three cats performing a horizontal translation balance 

task at four (cats Bi and Ru) or three (cat Ni) postural configurations to simulate 

functional muscle synergies based on those of Torres-Oviedo et al. (2006).  Details of the 

laboratory experiment are presented in that work, and are omitted here for brevity.  

Model postures approximating the average background period kinematics of each animal 

in each postural configuration (11 in total) were calculated as in an earlier study (McKay 

et al. 2007).  Due to practical limitations we could not use previously reported muscle 

synergies directly.  Therefore, muscle activation patterns that could produce each of the 

five synergy force vectors reported from the control (“preferred”) posture in each animal 

were determined using two optimization criteria drawn from the literature: “minimum-

noise” optimization and “maximum-force” optimization. 

 We examined the endpoint force vectors of these simulated muscle synergies as 

hindlimb postural configuration varied to test the prediction (Torres-Oviedo et al. 2006) 

that changes in these vectors would be confined primarily to rotation in the sagittal plane.  

With this tested, we conducted an FFS analysis to assess whether a muscle synergy 

organization based on our simulated synergies would impact the force-production 

capability of the model by reducing FFS volume.  A total of three FFSs were calculated 

for each of the 11 animal / posture combinations; first assuming individuated control of 

muscles (nominal FFS), then assuming only individuated control of the simulated 

synergies from the minimum-noise optimization (minimum-noise synergy-limited FFS), 

and last, assuming only control of the simulated synergies from the maximum-force 

optimization (maximum-force synergy-limited FFS).  Finally, we compared the nominal 
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and synergy-limited FFSs with experimental postural force data to determine whether the 

stereotyped, posture-dependent changes observed in postural forces were qualitatively 

predicted by posture-dependent changes in the FFSs.  Statistical tests were considered 

significant at p < 0.05.  

HINDLIMB MODEL 

 The 3-dimensional hindlimb model is presented in detail in (McKay et al. 2007).  

Briefly, the model is a matrix equation relating 31-element muscle excitation vectors 

� 

e  

to the six-element force and moment system 

� 

F  produced at the endpoint, approximated 

as the metatarsal-phalangeal joint: 

 

� 

F = J q( )T⎛ 
⎝ 

⎞ 
⎠ 

+

R q( )FOFAFL q( )e  (3.1) 

Where the vector 

� 

q is comprised of the model’s seven rotational degrees of freedom at 

the hip, knee, and ankle; 

� 

J q( )T⎛ 
⎝ 

⎞ 
⎠ 

+

 is the pseudoinverse transpose of the geometric system 

Jacobian, 

� 

R q( ) is the moment-arm matrix, 

� 

FO  is the diagonal matrix of maximal muscle 

forces, and 

� 

FAFL q( )  is the diagonal matrix of scaling factors based on active muscle force-

length characteristics.  Muscle moment arm values and fiber lengths were determined 

with SIMM software (Musculographics, Inc., Santa Rosa, CA). 

MUSCLE SYNERGIES 

 In our muscle synergy model (Torres-Oviedo et al. 2006; Tresch et al. 1999), 

muscle excitation vectors 

� 

e  are produced by the linear combination of a few non-

negative muscle synergies   

� 

w1,w2,…,wNSYN , where the number of synergies 

� 

NSYN  is fewer 

than the number of muscles 

� 

NMUS .  Although the muscles within a synergy have a fixed 

proportional activation, the organization is somewhat flexible because any given muscle 

can belong to more than one synergy.  Therefore, because several synergies may act on a 

given muscle, the net activation of that muscle is the sum of activations due to each 

synergy.  In matrix form, this relationship is: 

 

� 

e = W c  (3.2) 
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Where   

� 

w1,w2,…,wNSYN  are the columns of 

� 

W  and 

� 

c  is a vector of synergy activation 

coefficients.  Combining Equations 3.1 and 3.2 yields an expression for the force and 

moment system 

� 

F c due to synergy activation 

� 

c : 

 

� 

F c = J q( )T⎛ 
⎝ 

⎞ 
⎠ 

+

R q( )FOFAFL q( )W c  (3.3) 

OPTIMIZATION MODELS 

 Practical limitations necessitated that we could not use previously reported muscle 

synergies directly.  In particular, as no absolute normalization data (e.g., maximum 

voluntary contraction Lloyd and Besier 2003) was available, EMG records in (Torres-

Oviedo et al. 2006) were presented in arbitrary units which were unsuitable for use in the 

model.  In addition, the model includes a superset of the muscles studied earlier, with the 

addition of adductor femoris, adductor longus, flexor hallicis longus, gluteus maximus, 

gluteus minimus, peroneus brevis, peroneus longus, peroneus tertius, pectineus, 

pyrformis, quadratus femoris, tibialis posterior, vastus intermedius, and the omission of 

tensor fasciae latae. 

 To resolve these issues, simulated muscle synergies based on experimentally 

measured synergy force vectors from the preferred posture of each animal were 

determined with two different optimization models. Given a synergy force vector 

� 

f wi , 

the unique muscle synergy 

� 

wi  that achieves 

� 

f wi  while minimizing signal-dependent 

noise (equivalent to muscular stress, e.g., Crowninshield and Brand 1981; Harris and 

Wolpert 1998; Kurtzer et al. 2006) can be determined with quadratic programming.  

Notice that this formulation differs slightly from the “force-sharing problem” (e.g., van 

Bolhuis and Gielen 1999) because we consider endpoint forces as opposed to joint 

torques.  First we partition Equation 3.1 to separately consider the rows corresponding to 

endpoint force (

� 

AF ) and moment (

� 

AM ): 

 

� 

AF

AM

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ≡ J q( )T⎛ 

⎝ 
⎞ 
⎠ 

+

R q( )FOFAFL q( )  (3.4) 

Then, 

� 

wi  is given by 
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� 

minimum noise :
minimize : wi

T wi

such that : f wi = AF wi

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (3.5) 

Equivalently, the unique muscle synergy 

� 

wi that maximizes feasible force in the direction 

of 

� 

f wi  subject to limits on individual muscle forces (Valero-Cuevas et al. 1998) is given 

by 

 

  

� 

maximum force :

maximize : f i ⋅ AF wi( )

such that : f wi × AF wi( ) = 0

0 ≤ wij ≤ 1, j = 1, 2,…, NMUS

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 (3.6) 

Where 

� 

wij  denotes the 

� 

jth element of 

� 

wi .  For convenience, the cross-product constraint 

of Equation 3.6 was realized as the equivalent linear equality constraint 

� 

f wi × AF wi( ) = 0 0 0[ ]T .  Solutions 

� 

wi  were subsequently normalized by their maximum 

value. 

 Notice that because muscle synergies 

� 

wi  are normalized to unit maximum value, 

enforcing the constraint (Equation 3.6) implicitly limits the elements 

� 

ck  to the interval 

� 

0,1[ ] in the synergy-limited force set calculation; this is in contrast to our experimental 

studies (Ting and Macpherson 2005; Torres-Oviedo et al. 2006), where 

� 

ck  are allowed to 

assume any non-negative value. 
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Figure 3.1. Drastically different muscle synergies producing identically-oriented synergy 
force vectors.  The simulated muscle synergies shown were calculated to produce forces 
aligned with the synergy force vector shown in red for cat Ru in preferred posture (see 
Figure 2.1) using (A) minimum-noise and (B) maximum-force optimization criteria.  The 
minimum-noise optimization, equivalent to muscle stress minimization (Crowninshield 
and Brand 1981), results in less coactivation than the maximum-force optimization. 
 

NOMINAL AND SYNERGY-LIMITED FEASIBLE FORCE SETS 

 Nominal FFSs were constructed similarly to a previous study (McKay et al. 

2007).  Briefly, the muscle excitation 

� 

e  producing the largest possible force projection in 

each of 1000 directions distributed on the unit sphere was calculated using linear 

programming subject to the constraint that muscle activations varied between 0 and 1: 

 
  

� 

0 ≤ e j ≤ 1, j = 1, 2,…, NMUS  (3.7) 

The FFS was then defined as the smallest three-dimensional convex polygon that 

encompassed these 1000 force projections.  It was determined using the convhull package 

in Matlab. 

 Synergy-limited FFSs were constructed using an analogous procedure.  For each 

synergy-limited FFS, the synergy activation vector 

� 

c  producing the maximal 

biomechanically feasible force in each of 1000 directions distributed on the unit sphere 

was calculated using linear programming subject to the constraint (Equation 3.7) and the 

additional non-negativity constraint 

   

� 

0 ≤ ck, k = 1, 2,…, NSYN  (3.8) 
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STATISTICAL TESTS   

 A series of linear regressions was performed to identify systematic variation in the 

orientation of synergy force vectors, nominal FFSs, and synergy-limited FFSs as the limb 

moved through the workspace.  Sagittal and horizontal plane orientation data were treated 

separately.  While angles of synergy force vectors in the sagittal and horizontal planes 

were calculated directly, orientation of the FFSs and synergy-limited FFSs was quantified 

by calculating the sagittal and horizontal plane angles of the 3D vector in 

� 

fx fy fz[ ]T  

from the origin to the FFS centroid (cf. Kuxhaus et al. 2005).  Similarly, orientation of 

the limb itself was quantified with the sagittal and horizontal plane angles of the “limb 

axis,” the 3D vector in 

� 

x y z[ ]T  from the hip center to the MTP. 

 Multiple ANOVA was applied to the pooled FFS and synergy-limited FFS 

volume data.  Synergy organization, stance distance, and experimental animal were tested 

as independent variables. 

RESULTS 

 Simulated synergy force vectors rotated monotonically with the limb axis in the 

sagittal plane as postural configuration varied, consistent with the predictions of Torres-

Oviedo et al. (2006) (Figure 3.2).  Synergy force vector angles were more highly 

correlated to limb axis angles in the sagittal plane (r2 = 0.94 ± 0.08, µ ± σ) than in the 

horizontal plane (r2 = 0.75 ± 0.25).  The slopes of the regression lines were near unity in 

the sagittal plane (0.86 ± 0.44) and distributed about zero in the horizontal plane 

(0.28 ± 0.46); a slope of 1 would result if the synergy force vectors were fixed in the 

reference frame of the limb axis. 

 This monotonic rotation of synergy force vectors with the limb axis was 

independent of the optimization model used to derive the synergies.  Minimum-noise and 

maximum-force synergy force vectors were aligned closely and differed primarily in 

magnitude, despite considerable differences in the muscle activation patterns from the 

two optimizations (Figure 3.1).  Large variations in muscle activity across animals been 

previously demonstrated during quiet standing even though the forces produced were 

similar (Fung and Macpherson 1995). 
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Nominal FFSs (Figure 3.3, gray polygons) were nearly isotropic in the sagittal plane, 

anisotropic and oriented along the anterior-posterior axis in the horizontal plane (cf. 

McKay et al. 2007).  As posture varied, small changes were observed in the nominal FFS 

orientation, resulting in regression slopes that were near zero in both sagittal (0.06 ± 0.25; 

r2 = 0.77 ± 0.15) and horizontal planes (0.01 ± 0.03; r2 = 0.60 ± 0.50). 

 Synergy-limited FFSs were qualitatively very different from the nominal FFSs 

(Figure 3.3, Figure 3.4, white polygons) and were considerably more anisotropic in both 

the sagittal and horizontal planes, in particular with considerably reduced posterior force 

magnitude.  From the standpoint of synergy-limited FFS shape, the only substantial 

difference between the two synergy optimization criteria was that FFSs based on 

maximum-force synergies encompassed some boundaries of the nominal FFSs, whereas 

minimum-noise FFSs did not.  Synergy-limited FFSs rotated with the limb axis as posture 

 
Figure 3.2.  Synergy force vector rotation with postural configuration. Left: synergy force 
vectors from the control condition (preferred posture, P), as presented by Torres-Oviedo 
et al. (2006), used as source data. Average hindlimb kinematics are shown in black. Data 
shown are from cat Ru.  Right: when simulated muscle synergies based on synergy force 
vectors at left are applied to the model in other postural configurations, the resulting 
synergy force vectors rotate monotonically with the sagittal-plane limb axis.  Similar 
results are obtained whether minimum-noise (solid) and maximum-force (dashed) 
optimization is used to derive the simulated muscle synergies. 
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varied, primarily in the sagittal plane (slope = 1.41 ± 2.32; r2 = 0.92 ± 0.05 (sagittal); 

slope = 0.33 ± 0.17; r2 = 0.75 ± 0.14 (horizontal)). 

 Changes in the synergy-limited FFS as posture varied (Figure 3.4) were 

qualitatively similar to the changes in the distributions of active postural forces measured 

experimentally (Macpherson 1994).  In the sagittal plane, active forces and synergy-

limited FFSs both rotated closely with the limb axis.  In the horizontal plane, active 

forces and synergy-limited FFSs were elongated along a posterior diagonal axis at “long” 

posture and more widely distributed, with increased anterior force magnitude at “short” 

and “shortest” postures; these stereotypical changes have been described previously as 

the “force constraint strategy” (Macpherson 1988a). 

 Multiple ANOVA (Figure 3.5) revealed that the synergy organization caused a 

highly significant reduction in FFS volume (F = 1556.01, p << 0.005).  Tukey-Kramer 

pairwise comparisons applied post-hoc detected significant differences between the 

synergy-limited FFS volumes and nominal FFS volumes but no difference (p > 0.05) 

between the two optimization criteria.  There was a significant main effect of stance 

distance (F = 4.47, p < 0.012); post-hoc tests revealed that FFS volume was highest in 

preferred posture.  No effect of animal was detected (F = 1.53, p > 0.22).  To increase 

statistical power, separate ANOVAs were performed to test the effect of posture on the 

three (nominal, minimum-noise, maximum-force) datasets; these results indicated 

significant effects of posture on the nominal FFS volumes (F = 11.8, p < 0.004) but not 

on the synergy-limited FFS volumes (F = 0.31, p < 0.82; F = 0.25, p < 0.86). 
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Figure 3.3. Nominal FFS (gray), maximum-force synergy-limited FFS (white), and 
simulated maximum-force synergy force vectors (colored lines) for cat Bi in all postures.  
A: sagittal projection.  B: horizontal projection.  Enforcing the muscle synergy 
organization dramatically reduces the volume of the FFS in all postures.  The synergy 
force vectors span the synergy-limited FFS, so that any point on the synergy-limited FFS 
can be reached with a linear combination of the synergy force vectors.  While the 
nominal FFS is largely invariant across postures, the synergy-limited FFS rotates with the 
hindlimb axis in the sagittal plane, and changes shape acutely in the horizontal plane. 
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Figure 3.4. Nominal FFS (white), minimum-noise synergy-limited FFS (gray), and active 
postural forces (dark gray; magnified 10x) for cat Bi in all postures.  Active postural 
response forces are averaged across time windows as in Torres-Oviedo et al. (2006).  A: 
sagittal projection.  B: horizontal projection.  The synergy-limited FFS is a substantially 
better predictor of the distribution of postural forces than the nominal FFS at all postures, 
Particularly in the sagittal plane, where the synergy-limited FFS rotates closely with the 
envelope of postural forces.  While the nominal FFS predicts almost no change in force 
production in the horizontal plane as posture varies, the synergy-limited FFS predicts 
stereotypical changes along a posterior diagonal axis (downwards and to the right, in the 
figure) at long (L) posture and increased anterior forces (upwards, in the figure) at 
shortest (SS) posture, as is observed experimentally (Macpherson 1994). 
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Figure 3.5. Changes in nominal and synergy-limited FFS volume with posture.  Data are 
presented as µ ± σ.  Synergy-limited FFSs have significantly reduced volume (multiple 
ANOVA; F = 1556.01, **p << 0.005) compared to nominal FFSs.  Tukey-Kramer 
pairwise comparisons applied post-hoc detected significant differences between the 
synergy-limited FFS volumes and nominal FFS volumes but no difference between the 
two optimization criteria.  There was a significant main effect of postural configuration 
(F = 4.47, *p < 0.012); post-hoc tests revealed that FFS volumes in preferred (P) posture 
were significantly higher than in shortest (SS) posture.  No effect of animal was detected 
(F = 1.53, p < 0.23).  To increase statistical power, separate ANOVAs were performed to 
test the effect of posture on the three (nominal, minimum-noise, maximum-force) 
datasets; these results indicated significant effects of postural configuration on the 
nominal FFS data (F = 11.8, p < 0.004) but not on the synergy-limited FFS data (F = 
0.31, p < 0.82; F = 0.25, p < 0.86). 
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DISCUSSION 

 The primary motivation of this work was to demonstrate the feasibility of the 

functional muscle synergy architecture proposed in our previous, experimental study 

(Torres-Oviedo et al. 2006) in the context of a detailed biomechanical model.  Here we 

show that simulated synergy force vectors rotate monotonically with the limb axis in the 

sagittal plane as posture varies (Figure 3.2), similar to that shown during experiments in 

the behaving animal.  This result is important because it suggests that synergies can be 

coordinated throughout the workspace to perform functional tasks in extrinsic coordinates 

with a parsimonious internal model based on a polar coordinate transformation. In the 

case of balance control, the gravitational vector remains fixed although the synergy force 

vectors vary with postural configuration.  This type of computation is documented in the 

nervous system; for example, a cascade of polar transformations occurs in the first stages 

of voluntary reaching (Flanders and Soechting 1990). It is thought that the initial 

proprioceptive frame for the transformation – at the level of the dorsal spinocerebellar 

tract – is likely a polar scheme based on limb length and orientation (Bosco et al. 1996; 

Poppele et al. 2002).  Mechanistically, this transformation does not have to be explicit; as 

a neural substrate capable of computation in different reference frames has been 

demonstrated (Avillac et al. 2005).  More work is required in this exciting area. 

 The second result, is that we demonstrate the muscle synergy organization comes 

at a “cost” in terms of the force-production capability of the limb.  When the synergy 

architecture was imposed, it caused a dramatic reduction in FFS volume (Figure 3.5).  

This indicates that large regions of the FFS are inaccessible with only the synergies 

recruited for postural control.  Based on this result we predict that tasks like locomotion 

will recruit additional synergies to reach the remainder of the FFS.  Synergies that are 

“shared” among tasks and “specific” to particular tasks have been identified in other 

animal and human preparations (d'Avella and Bizzi 2005; Krishnamoorthy et al. 2004).  

However, it is only by examining muscle synergies in a biomechanical context that we 

are able to compactly illustrate why this might be the case. 

 The considerable changes in both FFS volume and shape associated with the 

synergy organization also suggest it may prove valuable to consider the implications of 

muscle synergies when using models to predict behaviors involving submaximal forces, 
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as opposed to “maximal” tasks (e.g., Kargo et al. 2002; Kuo and Zajac 1993; Valero-

Cuevas et al. 1998), where behavior is likely limited by biomechanics alone.  We have 

previously demonstrated that the nominal FFS is a weak predictor of postural forces in 

preferred posture (McKay et al. 2007).  In contrast, the nominal FFS has been 

demonstrated as a good predictor of endpoint force in other tasks, for example for forces 

ranging between 200 and 650 N in the human lower limb (Schmidt et al. 2003) and 

maximal forces in the finger (Valero-Cuevas et al. 1998).  Our results suggest that this 

disparity is because the forces required for the postural task are small enough (~1-2 N) 

that the constraints associated with the nominal FFS are simply not active.  However, 

when we overlaid the experimental active postural response forces and the synergy-

limited FFSs, we noted favorable agreement throughout the workspace (Figure 3.4), 

suggesting that the limited range of forces available with the synergy organization was 

determining behavior. 

 These results were generally independent of the optimization criteria used to 

derive the synergies.  While both optimization criteria used here predict behavior in some 

circumstances (Crowninshield and Brand 1981; Kurtzer et al. 2006; Valero-Cuevas 

2000), the primary reason for selecting these particular criteria from the many models of 

their type that have been proposed (Crowninshield and Brand 1981) was the drastically 

different solutions they produce (Figure 3.1). Although the specific criterion that best 

predicts postural muscle activation patterns is unknown, we can hypothesize that any 

function laying between the extremes of penalizing muscle activation relatively 

drastically (“minimum-noise”) or not at all (“maximum-force”) would yield similar 

results. We also noted with interest that the drastically different, but functionally 

equivalent muscle patterns illustrate the difficulty to the experimenter posed by 

biomechanical redundancy when inferring differences in function from redundant 

datasets.  Although variations in muscle synergy composition may be observed across 

trials or subjects (e.g, d'Avella and Bizzi 2005; Torres-Oviedo et al. 2006), the functional 

significance of such differences may be occluded by biomechanical redundancy. 

 Energetic optimality has historically been an elegant guiding principle in the 

study of movement (cf. Alexander 1989; Hoyt and Taylor 1981). When examining the 

motor hierarchy, both biomechanical and neural optimality principles may be 
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simultaneously active. We noted that the volume of the nominal FFS, which reflects 

biomechanical limitations on force production, was significantly higher at the preferred 

posture (Fig. 5), consistent with the idea that the kinematics of this self-selected posture 

optimize this criterion. Similarly, Fung and Macpherson (1995) have used an inverse 

dynamic analysis to demonstrate that the preferred posture kinematics minimize total 

joint torques for antigravity support. At other postures, the limb is levered at the girdle, 

preserving the intralimb geometry and locally minimizing joint torques. Similar 

kinematic invariance has been demonstrated repeatedly across species (Helms-Tillery et 

al. 1995; Sumbre et al. 2006). Therefore, we were surprised that the volume of the 

synergy-limited FFS, which reflects the combined biomechanical and neural limitations 

on force production for the task, did not vary significantly across postural configurations.  

These results suggest that synergy force vectors may be specifically selected among all 

possible force vectors to minimize posture-dependent changes in synergy-limited FFS 

volume.  This is but one of many possible “neural optimality” criteria that may work in 

concert with kinematic criteria; the contributions of both types of mechanisms should be 

considered to fully understand the neuromechanical coordination of the task.  
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CHAPTER 4  

THE FORCE CONSTRAINT STRATEGY REFLECTS OPTIMAL 

COORDINATION ACROSS LIMBS 

INTRODUCTION 

 The goal of this study was to understand the neural and biomechanical 

mechanisms underlying the patterns of ground reaction forces during postural tasks in 

cats known as the force constraint strategy (Macpherson 1988a; b). When a postural 

perturbation is issued, either as a translation of the support surface in any of several 

directions in the horizontal plane, or as a rotation of the support surface in the pitch or 

roll axes, stereotyped, directionally-specific patterns of muscle activity known as the 

automatic postural response (APR) are elicited at about 60 ms after perturbation onset. 

Due to neuromechanical delays, changes appear in the ground reaction forces at each of 

the limbs approximately 60 ms later. During this active period, the ground reaction force 

at each hindlimb tends to be directed along a diagonal axis either towards or away from 

the center of mass (CoM), regardless of the perturbation direction. 

Comparison of forces during the active and passive periods of the postural 

response suggests that the force constraint strategy may result from active control 

mechanisms within the nervous system. During the passive period 0-20 ms after 

perturbation onset, the musculoskeletal system is stabilized only by background postural 

tone. However, during this early period there is no evidence of the stereotypy observed 

during the active response, and the ground reaction forces in each limb are simply 

directed in the direction of the perturbation. Because of this difference, it was suggested 

by Macpherson (1988a) that the nervous system might address the inter-limb redundancy 

in partitioning an appropriate response force among the limbs by controlling the 

magnitude of the ground reaction force at each hindlimb without modulating its direction. 

 The stereotypical force directions in the force constraint strategy do not reflect 

limitations in the force production capability of the hindlimb, also supporting the role of 

active nervous system control. Previous neurophysiological studies suggested that the 

diagonal axis is a primary torque direction for single muscles within the hindlimb 

(Lawrence et al. 1993; Nichols et al. 1993). These studies suggested that the force 
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production capability of the hindlimb might be limited to diagonal forces, in which case 

the force constraint strategy would be attributable to purely biomechanical mechanisms. 

To test this, we calculated the manifold of forces that a detailed musculoskeletal model of 

the isolated hindlimb (Burkholder and Nichols 2004) could produce given the constraints 

on the activation of individual muscles (the feasible force set, or FFS; McKay et al., 

2007). We demonstrated that while larger forces were feasible in the anterior-posterior 

directions, the hindlimb could generate forces significantly larger than those observed 

during postural control in any direction. 

Altering the postural configuration of the animal can modify the force constraint 

strategy without drastic changes in muscle activity, suggesting that biomechanical factors 

other than the biomechanical constraints of the isolated hindlimb may play a role. When 

cats are required to perform the postural task in different postural configurations created 

by shortening the stance distance between the fore- and hind-feet, the reliance on 

diagonal forces in the hindlimbs is relaxed, and a wider range of force directions is 

observed (Macpherson 1994). The changes in ground reaction forces can be attributed 

primarily to biomechanical mechanisms, because the tuning curves of individual muscles 

with respect to perturbation direction scale, but do not appreciably shift, across postural 

configurations (Torres-Oviedo et al. 2006). Despite this, in our analyses of the hindlimb 

musculoskeletal model, we demonstrated that the hindlimb FFS does not vary 

appreciably across postural configurations (McKay and Ting 2008), suggesting that the 

biomechanical constraints on force production in the hindlimb were not a likely source 

for these changes. However, because we previously considered the hindlimb in isolation, 

we could not estimate the effects that interactions between redundant limbs would have 

on motor solutions. 

 A simplified control scheme based on functional muscle synergies that map 

muscle activation patterns to force vectors that rotate with the limb axis may explain the 

pattern of variation with postural configuration (Torres-Oviedo et al. 2006). Muscle 

synergies have been proposed as a general control strategy used by the nervous system to 

simplify control problems by coupling the activation of multiple muscles into groups 

(Bernstein 1967). Muscle synergies are defined as common patterns of activation across 

multiple muscles that may be organized in terms of biomechanical function, for example, 
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propulsion or body support in human locomotion (Neptune et al. 2009) or crank 

propulsion in human pedaling (Raasch and Zajac 1999). Previously, five muscle 

synergies were identified that were adequate to describe the activity of muscles 

throughout the hindlimb during the postural task (Torres-Oviedo et al. 2006). Each 

muscle synergy was correlated with a unique ground reaction force vector that rotated 

with the axis of the hindlimb in the sagittal plane as the postural configuration was 

varied. Because of this rotation, although four of the five muscle synergies produced 

diagonally-oriented force vectors in the longest postural configuration, in the shorter 

postural configurations, the force vectors were directed primarily downward, producing a 

wider range of force projections in the horizontal plane. 

 We previously verified that functional muscle synergy constraints were feasible 

and limited the force production capability of the hindlimb; however, because we 

considered only a single limb, we could not test the feasibility of controlling a muscle 

synergy organization in the context of multiple limbs. One limitation of the previous 

analysis was that the presumed causal relationship between the identified muscle 

synergies and the identified muscle synergy force vectors could not be verified within the 

biomechanical constraints of the musculoskeletal system. To address this critique, we 

demonstrated in the musculoskeletal model that simulated muscle synergies could 

produce force vectors that rotated in the sagittal plane as postural configuration was 

varied, in a manner very similar to that observed in experimental data (McKay and Ting 

2008). In further analyses, we demonstrated that when the muscles in the model were 

constrained to activate in simulated muscle synergies, the volume of the hindlimb FFS 

was drastically diminished, and exhibited changes with postural configuration. This 

suggested that muscle synergy constraints could limit the set of forces that were feasible 

for the postural task to near the regimes observed in data, consistent with a role of muscle 

synergies as the primary determinant of the force constraint strategy. However, because 

we considered only the constraints on force production in a single limb, we could not 

determine whether the control of the experimentally-observed muscle synergies in 

multiple limbs would produce the postural forces observed in each limb for particular 

perturbation directions. 
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 Simplified neuromechanical models suggest that functional muscle synergies may 

emerge from the optimal control of individual muscles. Other researchers have 

demonstrated that the optimal control of individual muscles can produce low-dimension 

muscle patterns similar to muscle synergies although no central constraints on muscle 

activation may exist in the nervous system (Kurtzer et al. 2006; Todorov 2004). 

Therefore, functional muscle synergies observed during postural control may simply 

serve as a convenient basis with which to describe muscle patterns generated by the 

optimal control of individual muscles during the postural task, rather than reflecting 

nervous system constraints on muscle activation. However, it was unclear from these 

studies whether or not this phenomenon was universal, due to the abstract (Todorov 

2004) or highly biomechanically-constrained (Kurtzer et al. 2006) nature of the 

neuromechanical models used. 

 Simulations of the optimal control of individual muscles to regulate the center of 

mass (CoM) in an inverted pendulum model explain aspects of the postural response, but 

cannot predict force patterns. The CoM is a strong determinant of muscle activation 

patterns during postural control, as similar muscle patterns are recruited during 

translation and rotation perturbations of the support surface that cause similar CoM 

motion, although opposite changes may be elicited in individual joint angles (Ting and 

Macpherson 2004). In an inverted pendulum model of postural control, the optimal 

control of individual muscles to regulate the CoM reproduced the temporal patterning of 

muscles throughout the cat hindlimb both before and after peripheral neuropathy 

(Lockhart and Ting 2007). However, because the musculoskeletal system was abstracted 

to a pendulum, variables like ground reaction forces could not be predicted. Additionally, 

because only diagonal perturbations were considered, the model was unable to predict 

muscle tuning curves. 

 Here, we hypothesized that the forces observed in the force constraint strategy 

reflected the optimal motor solution for controlling the CoM given the constraints of the 

quadrupedal musculoskeletal system. In a quadrupedal model, we simulated the optimal 

feedforward control of individual muscles to generate net forces and moments at the 

CoM suitable for countering the disturbances induced by postural perturbations. We 

demonstrate that the optimal control of individual muscles reproduces the diagonal forces 
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associated with the force constraint strategy; across postural configurations, the changes 

in postural forces and stereotypical scaling of muscle tuning curves are also reproduced. 

When we simulated control of the center of pressure (CoP), un-physiological forces were 

predicted, demonstrating that the choice of the task variable is critical to accurately 

predicting postural force patterns. We also simulated the control of simulated muscle 

synergies derived from experimentally-observed synergy force vectors. Muscle synergy 

control predicted ground reaction force patterns that were very similar to those predicted 

by optimal muscle control and to experimental data, verifying that low-dimension control 

strategies are feasible to produce appropriate control of the CoM across postural 

configurations. Additionally, the force patterns predicted by muscle synergy control 

exhibited active unloading, in which the flexion responses of the limbs are produced by 

activation of flexor muscles rather than the deactivation of extensor muscles used in 

weight support. Active unloading was represented in the experimental data, but was not 

captured by the optimal muscle control solution. This suggests that aspects of the force 

constraint strategy may satisfy additional criteria besides those explicitly modeled by our 

optimal control formulation. We propose that using a common set of muscle synergies 

may allow a low dimension approximation of the optimal control of the musculoskeletal 

system, possibly enabling faster computation time, but at the expense of increased 

energetic cost compared to optimal muscle control. 
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METHODS 

SUMMARY 

 To quantify possible differences in motor performance and energetic cost 

associated with controlling muscle synergies or individual muscles, we simulated balance 

tasks in a quadrupedal neuromechanical model of a cat. We created the quadrupedal 

model by extending an existing model of the cat hindlimb (Bunderson et al. 2010; 

McKay et al. 2007; McKay and Ting 2008). The hindlimb model was parameterized to 

match three healthy cats performing balance tasks in either a self-selected (preferred) 

postural configuration, or in any of three altered postural configurations created by 

manipulating the distance between the fore- and hind-feet (Torres-Oviedo et al. 2006). 

 Because a musculoskeletal model of the forelimb was unavailable, we modeled 

the forelimbs in two ways. In the symmetrical quadrupedal model, we assumed that the 

musculoskeletal capabilities of the forelimbs were identical to those of the hindlimbs. In 

the asymmetrical quadrupedal model, we assumed that the musculoskeletal capabilities of 

the forelimbs allowed only vertical forces, so that they could be used only as struts. We 

viewed these two models as corresponding to high (the symmetrical model) and low (the 

asymmetrical model) amounts of musculoskeletal redundancy during balance tasks. 

 In each simulation, either individual muscles or five muscle synergies in each 

limb were activated to generate net restoring forces and moments at the CoM, or net 

corrections in the CoP, that were appropriate to correct disturbances introduced by 

support surface translation perturbations. Muscle synergies were based on synergy force 

vectors previously observed in the preferred postural configurations of the same animals 

(McKay and Ting 2008). 

 Simulations were performed to minimize each of three cost functions: minimum 

control cost, in terms of either total squared muscle activation (∑e2) or total squared 

muscle synergy activation (∑c2), or minimum energetic cost, in terms of the total squared 

activation of each muscle weighted by its mass (∑(m•e)2). We compared the patterns of 

horizontal-plane forces predicted by the simulations to each other and to experimental 

data, and quantified the performance of each simulation in terms of the amount of 

simulated muscle activation. 
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EXPERIMENTAL DATASET 

 We based all simulations on previously-collected data of three healthy cats (Bi, 

Ru, Ni). The cats were trained to stand unrestrained with weight evenly distributed on 

four force plates mounted on a moveable perturbation platform and to remain in place 

when the platform translated in any of 12 directions in the horizontal plane (Figure 4.1A). 

Perturbations were 15 cm/s velocity and 5 cm amplitude (Macpherson et al. 1987). The 

cats performed the task in either a control postural configuration (preferred 

configuration), or in up to three altered postural configurations created by manipulating 

the stance distance between the fore- and hind-feet. The following stance distances were 

examined in each of the animals: Bi: 30 cm, 27 cm (preferred), 20 cm, and 13 cm; Ru: 40 

cm, 29 cm (preferred), 24 cm, and 18 cm; Ni: 29 cm (preferred), 24 cm, and 18 cm. A 

minimum of five trials of each perturbation direction in each stance distance were 

collected. 

 For each cat, EMG, kinematic, and ground reaction force data were collected 

during each trial. Chronic indwelling EMG from 16 left hindlimb muscles and 3D ground 

reaction forces at each paw were collected at 1,000 Hz. Details of the EMG processing 

and analyses for these animals were presented in an earlier work (Torres-Oviedo et al. 

2006). Ground reaction forces were low-pass filtered at 100 Hz. Positions of kinematic 

markers located on the platform and the left sides of the body were collected at 100 Hz 

and used to estimate sagittal- and frontal-plane joint angles of the hindlimb. Locations of 

joint centers were estimated from marker positions by subtracting off joint radii, skin 

widths, and marker widths and subsequently used to compute joint angles. 

 CoM location was estimated based on ground reaction force data and kinematic 

data. For each animal in each postural configuration, baseline CoM location in the 

horizontal plane was estimated as the location of the CoP averaged during the 

background period of each trial (300-150 ms before perturbation onset) and then 

averaged across trials. CoM location in the horizontal plane at any time point was then 

estimated by calculating the net horizontal plane forces, dividing by the mass, and then 

integrating twice (Ting and Macpherson 2004). CoM height was estimated from the 

positions and masses of body segments during the background period of each trial and 

then averaged across trials. 
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 The constraints for the simulated balance tasks were based on the net forces and 

moments at the CoM, as well as the net changes in the CoP, averaged across cats during 

the active period of the automatic postural response (APR, Macpherson, 1988a;b). After 

perturbation onset, the EMG activity associated with the APR occurs at a latency of 60 

ms. Initial APR muscle activity results in changes in kinetic and kinematic variables after 

an additional neuromechanical delay of about 60 ms. We therefore defined the active 

period of the postural response for either ground reaction force, CoM, or CoP data as an 

80 ms window beginning 120 ms after perturbation onset. Because we were interested in 

the changes in ground reaction forces, CoM kinetics, and CoP position associated with 

the active response, baseline levels calculated over a 150 ms window before perturbation 

onset were removed. 

 Simulations attempted to reconstruct the average ground reaction forces during 

each perturbation direction exhibited by each cat during the active period of the APR. As 

with the CoM kinetics and CoP position variables, average ground reaction forces were 

calculated over an 80 ms window beginning 120 ms after perturbation onset. Baseline 

levels calculated over a 150 ms window before perturbation onset were removed, and 

active ground reaction forces were then averaged for each perturbation direction of each 

cat in each postural configuration. 

NEUROMECHANICAL MODELS 

Hindlimb model 

 All simulations were based on an existing musculoskeletal model of the cat 

hindlimb. The hindlimb musuloskeletal model is three-dimensional, with seven rotational 

degrees of freedom – three at the hip joint, and two at each of the hip and ankle – and 31 

muscles (Burkholder and Nichols 2004; McKay et al. 2007; McKay and Ting 2008). A 

fully dynamic version of the model is available for detailed forward simulations 

(Bunderson et al. 2008; Bunderson et al. 2010). However, because of the small changes 

in joint angles (≤6°) observed during the balance tasks discussed here, a static version 

was appropriate. In the formulation used here, the hindlimb model is a matrix equation 

relating 31-element muscle activation vectors  to the 3D ground reaction force 

 

e 
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 at the limb endpoint. The equation for the right hindlimb model is 

therefore: 

 

In this equation,  designates the right hindlimb model and its dependence on the 

seven joint angles . To avoid supermaximal activation of muscles, we constrained the 

elements of   to the unit interval in all simulations. Detailed descriptions of the model 

, and the procedure for identifying best-match values of  for each cat in each 

postural configuration have been presented previously (McKay and Ting 2008).  

Symmetrical quadrupedal model 

 To create the symmetrical quadrupedal musculoskeletal model, we reflected the 

hindlimb model across the sagittal and frontal planes. After concatenating the additional 

limbs, the quadrupedal model relates 124-element muscle activation vectors  (31 

elements per limb) to both the 3D ground reaction force  at the endpoint of each limb 

and to the 6D reaction force and moment  at the CoM. The net reaction 

force at the CoM  is the sum of the ground reaction forces at each limb endpoint. 

The net reaction moment at the CoM  is the sum of moments at the CoM due to 

each ground reaction force, calculated via the cross product with the vectors from the 

CoM to the endpoints of each limb. 

 We oriented the endpoints of the four limbs in the quadrupedal model 

symmetrically with respect to the CoM location (Figure 4.4). In all postural 

configurations, the stance width between the left and right limbs was assumed to be 8 cm 

and the stance distance between the fore- and hind-limbs was assumed to be the nominal 

stance distance reported above. Preliminary examinations revealed that more detailed 

kinematic estimates of endpoint position did not appreciably change the results of the 

simulations. The height of the CoM above the plane of the feet was estimated from 

kinematic data and morphological parameters separately for each cat in each postural 

configuration. Across postural configurations, mean CoM heights for each animal were 

as follows (mean ± SD): Bi: 12.6 ± 0.4 cm; Ru: 15.2 ± 0.4 cm; Ni: 12.7 ± 0.8 cm. 
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Asymmetrical quadrupedal model with strut forelimbs 

 To create the asymmetrical quadrupedal musculoskeletal model, we constrained 

the symmetrical model so that the forelimbs could exert only vertical forces. This was 

accomplished by setting the  and  rows of the musculoskeletal models for the 

forelimbs to zero; otherwise, the symmetrical and asymmetrical quadrupedal models are 

identical. Particularly in shorter postural configurations, the forelimbs have been 

described as “struts,” exerting primarily vertical, rather than shear, forces (Macpherson 

1994). This modification ensured that the lateral components of postural forces in the 

simulations were generated by the hindlimbs alone, similar to the anterior-posterior 

asymmetries observed in experimental data. 

Muscle synergies 

 We simulated muscle synergies as patterns of coactivation across multiple 

muscles in each limb. Muscle synergies were assumed to be identical across limbs. 

Mathematically, this relationship is  for the right hindlimb, where each 

column of  comprises an individual muscle synergy, and  is a vector of muscle 

synergy activations (Torres-Oviedo et al. 2006). In all simulations, we constrained the 

elements of and  to be nonnegative. The equation that relates the muscle synergy 

activation in the right hindlimb to the 3D ground reaction force at the endpoint is: 

 

All muscle synergies used here were based on 5 muscle synergy force vectors extracted 

from ground reaction force data from the preferred postural configuration of each cat 

during the APR (Torres-Oviedo et al. 2006). Using these synergy force vectors, we 

subsequently identified the muscle synergies in the model as the patterns of simulated 

muscle activation that generated each synergy force vector with the lowest total squared 

muscle activation (McKay and Ting 2008). 

SIMULATED BALANCE TASKS 

 In each simulation, either individual muscles or five muscle synergies in each 

limb were activated to generate net restoring forces and moments at the CoM (the CoM 

task), or net corrections in the CoP (the CoP task) appropriate to counter the effects of 

postural perturbations. 
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 In the CoM task, net forces were directed in the direction of the perturbation in 

the horizontal plane, and 2.5 N in magnitude, and directed in the direction of the 

perturbation in the horizontal plane, and net moments were directed perpendicular to the 

direction of the perturbation and 0.75 N-m in magnitude (Figure 4.3B). For example, 

during anterior perturbations, a 2.5 N directly anterior CoM force, and an 0.75 N-m CoM 

moment clockwise about the leftwards axis were required. For all cats, the net vertical 

CoM force was constrained to 30 N to resist gravity, and the vertical ground reaction 

force at each foot was constrained to be nonnegative, so that no limbs could “pull.” No 

constraints were placed on the vertical (“yaw”) moment at the CoM. In simulations of 

muscle synergies, muscle synergy activations were further constrained to be nonnegative 

with respect to a background level identified by constraining the net vertical CoM force 

to 30 N while constraining the net horizontal forces to zero.  

 In the CoP task, corrections in CoP location were 3.3 cm in magnitude and 

directed opposite the direction of the perturbation (Figure 4.3C). CoP was defined as the 

spatial average of the foot locations, weighted by the vertical ground reaction force at 

each foot. CoP has been hypothesized to be an important regulated variable in the 

nervous system because the deviation between the CoP and the vertical projection of the 

CoM into the horizontal plane (the CoG) determines the instantaneous stability of the 

musculoskeletal system in some contexts (Winter 1995). One criticism of the CoP as a 

regulated variable is that CoP location is not affected by – and therefore is not a good 

candidate variable to explain – horizontal plane forces. Corrections in CoP location 

corresponded to an equivalent net moment at the CoG of 1.0 N-m magnitude, directed 

perpendicular to the direction of the perturbation. Constraints on vertical forces and 

numerical procedures were otherwise identical to the CoM task. 

Cost functions 

 Simulations were performed to minimize each of three criteria, or cost functions. 

In  optimal muscle control, simulations were performed to minimize either the control 

cost, the total squared muscle activation (∑e2), or an estimate of the energetic cost, the 

total squared activation of each muscle weighted by its mass (∑(m•e)2). In muscle 

synergy control, both of these cost functions were minimized in the presence of muscle 

synergy constraints, as well as with the addition of muscle synergy control cost, total 
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squared muscle synergy activation (∑c2). All simulations were formulated as constrained 

quadratic programming problems and solved with quadprog.m in Matlab (The 

Mathworks, Natick, MA, USA). 

 We developed the mass-weighted muscle activation cost function (∑(m•e)2) to 

obtain a more accurate proxy for minimizing the energy usage in the muscles than 

squared muscle activation. Minimizing squared muscle activation or squared muscle 

synergy activation minimize control cost, which is often assumed in control theory as a 

proxy for the amount of energy used in a control task, particularly in the context of the 

neural control of movement (Fagg et al. 2002; Todorov and Jordan 2002). In the simple 

muscle model used here, minimizing squared muscle activation is numerically identical 

to minimizing squared muscle stress, which has also been presented as a proxy for 

maximizing endurance, or equivalently minimizing energy (Crowninshield and Brand 

1981). However, neither minimizing control cost nor minimizing muscle stress is 

necessarily directly related to minimizing the metabolic energy expended in the muscles 

(O'Sullivan et al. 2009). ATP hydrolysis activity, and therefore the rate of energy usage 

(Joules/second) in single human muscle fibers is related to fiber stress (N/cm2) (Szentesi 

et al. 2001). The total rate of energy usage in any given muscle is therefore proportional 

to the muscle stress multiplied by the total volume of muscle fibers, assumed to be the 

muscle volume. Because the density of mammalian muscle is approximately constant 

(Yamaguchi 2001), the volume of each muscle is proportional to its mass, so that by 

weighting the stress of each muscle by its mass, the total squared energy usage 

(Joules/second)2 can be minimized to within a constant. 

COMPARISONS BETWEEN MODELS 

 To determine which simulated central coordination process best approximated the 

central coordination process used by cats during postural perturbations, we quantified the 

fits of ground reaction forces predicted in each simulated balance task to experimental 

data. For each postural configuration in each cat, we calculated the coefficient of 

determination (R2) and uncentered squared correlation coefficient (uncentered-R2) 

between the modeled forces and average experimental forces across the 12 perturbation 

directions for which experimental data was available. We primarily considered fits to 

hindlimb forces in the horizontal (X-Z) plane, as the vertical forces were largely uniform 



 

56 

across models due to the constraints of the task; however, fits to 3D forces were 

considered as necessary. Values for each fit statistic were subjected to two-way ANOVA 

(factors: model type × animal) with Tukey-Kramer post-hoc tests. Fit statistics for the 

symmetrical and asymmetrical models were treated separately; in the symmetrical model, 

only data from the preferred postural configuration of each cat was considered. All results 

were evaluated at a significance level of α = 0.05. All averaged data are presented as 

means ± SD.  

 We also compared the total muscle activation and energetic cost associated with 

each central coordination process in the asymmetrical model. We calculated the RMS 

simulated hindlimb muscle activation predicted by each central coordination process for 

each postural configuration in each cat. These values were then subjected to two-way 

ANOVA (factors: model type × animal) with Tukey-Kramer post-hoc tests. Subsequent 

statistical analyses are detailed as necessary in the presentation of Results. 

FORCE PRODUCTION IN THE ISOLATED HINDLIMB 

 Because initial simulations of optimal muscle control in the symmetrical four-

hindlimb model predicted large forces along the anterior-posterior axis in the hindlimbs, 

we examined how anisotropies in the force production capability of the isolated hindlimb 

might inform the distribution of the forces among the limbs. We considered the isolated 

left hindlimb parameterized to cat Bi in the preferred postural configuration. We 

identified the unique pattern of muscle activation or muscle synergy activation that 

produced a 1 N force in directions distributed throughout the horizontal plane in 5° 

increments while minimizing each of the cost functions described above, using quadratic 

programming as elsewhere. Subsequently we examined the dependence of the each cost 

function on the direction of hindlimb force. 

FORCE CONTRIBUTIONS OF SUBSETS OF MUSCLE SYNERGIES 

 To better illustrate the biomechanical functions of each muscle synergy in the 

model, we also examined the force contributions of each muscle synergy, as well as 

subsets of muscle synergies, to the CoM control postural task. We calculated the fits to 

experimental ground reaction force data provided by each muscle synergy and compared 

them to each other as well as to the fit provided by optimal muscle control. 
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Figure 4.1. Coordinate frames for support-surface translation perturbations. A: 
Perturbations were delivered in 12 evenly-spaced directions in the horizontal (x-z) plane. 
B: Coordinate system used in the simulations. 
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Figure 4.2. Changes in active force responses with postural configuration. Data shown 
are taken from cat Ru. A-D: in each panel, force vectors are drawn for each limb 
(clockwise from top left: LF, left forelimb; RF, right forelimb; RH, right hindlimb; LH, 
left hindlimb) with their origins offset in the direction of platform motion towards 0°, 
30°, 60°, etc, as annotated in the self-selected postural configuration, B. 
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Figure 4.3. Approximation of net CoM kinetics and CoP excursion by the simulated 
tasks. A: left to right; time traces of platform position, CoM location with respect to the 
platform, and left-hindlimb ground reaction forces (GRF) for 20 perturbations towards 
60° for cat Bi in  the preferred postural configuration (27 cm). Gray bars: the active 
period of the force response, 120-200 ms after perturbation onset. B: Average net 
horizontal-plane forces and moments at the CoM for cat Bi, preferred stance distance, 
presented in polar coordinates. Upper: net CoM force direction and magnitude. Lower: 
net CoM moment direction and magnitude. Light gray dots represent experimental data; 
black dots represent average values. Dashed lines on direction plots designate the force 
and moment horizontal-plane directions used as task constraints in the model. Dashed 
lines on magnitude plots designate mean values. C: Average direction and magnitude of 
CoP displacements for Bi, preferred stance distance. Legend as in B. 
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Figure 4.4. Simulated kinematics of symmetrical quadrupedal musculoskeletal models. 
Data shown are for cat Bi. A-D: simulated kinematics for stance distances 34, 27, 20, and 
13 cm. LH: left hindlimb; LF: left forelimb; RF: right forelimb; RH: right hindlimb. 
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RESULTS 

EXPERIMENTAL DATA 

 Translation perturbations to standing balance induced a typical disturbance in the 

CoM location. In all perturbation directions, the CoM initially lagged behind the platform 

position, introducing errors that were not fully corrected until after the termination of the 

perturbation (Figure 4.3, middle panel) (Lockhart and Ting 2007; Welch and Ting 2009). 

After the corrective muscular response, weight was redistributed and the CoM was 

transferred to a different location.  

 Ground reaction forces displayed typical stereotypical patterns of variation 

associated with the force constraint strategy (Macpherson 1988a; b) (Figure 4.2). In the 

long and preferred postural configurations (Figure 4.2A,B), limb forces were 

approximately symmetrical among the four limbs and directed towards the CoM. 

 In the preferred postural configuration, the hindlimbs of all cats exhibited 

stereotypical ground reaction force directions corresponding to perturbation directions 

where they were loaded (0°-90° for the left hindlimb) or unloaded (150°-300° for the left 

hindlimb). Considering the left hindlimb of cat Ru in the preferred postural configuration 

(Figure 4.2B), similar CoM-directed forces ground reaction forces were observed during 

all perturbation directions where the hindlimb was loaded (0°-90°). During anterior-

rightwards perturbations towards 60°, the left hindlimb was nearly maximally loaded 

(sustaining a loading force of 10.6 N, vs. 6.9 N during quiet standing) and exhibited a 

shear ground reaction force (1.3 N) towards 70.9°, approximately along the perturbation 

direction and towards the CoM. In contrast, in posterior-leftwards perturbations where 

the hindlimb was unloaded, posterior-directed shear forces were observed. During 

perturbations towards 210°, the hindlimb almost completely unloaded, sustaining a 

loading force of only 1.8 N, and exhibited a shear ground reaction force that was directed 

almost entirely posterior (262.3°). 

 The forelimbs also exhibited two stereotypical ground reaction force directions 

corresponding to perturbation directions where they were loaded (270°-360° for the left 

forelimb) or unloaded (90°-180° for the left forelimb) in the preferred postural 

configuration. In particular, during posterior-rightwards perturbations towards 300°, the 
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left forelimb of cat Ru (Figure 4.2B) was nearly maximally loaded (sustaining a loading 

force of 11.8 N vs. 7.8 N during quiet standing) and exhibited a shear ground reaction 

force (0.8 N) approximately in the direction of the perturbation and the CoM (292.9°). In 

contrast, during anterior-leftwards perturbations towards 150°, the left forelimb almost 

entirely unloaded (loading force of 2.3 N) and exhibited a shear ground reaction force 

(0.9 N) that was directed approximately 40° away from the perturbation direction, 

approximately anterior (111.6°). 

 In postural configurations shorter than the preferred configuration of the animal, a 

wider range of force directions was observed in the both the forelimbs and the hindlimbs, 

and asymmetries appeared between the forces exhibited by the forelimbs and the 

hindlimbs (Figure 4.2C,D). Considering the same perturbation directions as above in the 

short postural configuration of cat Ru (Figure 4.2C), the left hindlimb exhibited responses 

similar to those observed in the preferred postural configuration. However, the force 

directions observed in the forelimb approached a linear dependence on the perturbation 

direction; between the preferred and short postural configurations, the average angle 

deviation between the forelimb force direction and the perturbation direction decreased 

from 27.5 ± 24.8° to 18.6 ± 13.0°. 

MUSCLE SYNERGY CONTROL OF THE COM PREDICTS POSTURAL FORCES IN 

THE SYMMETRICAL MODEL 

 In the symmetrical musculoskeletal model, muscle synergy control of the CoM 

predicted significantly higher R2 fits to experimental data than all other simulated control 

types in the preferred postural configuration (p<0.05, F(4,22) = 3.87, post-hoc tests). 

Simulated ground reaction forces for representative animal Ru are presented in Figure 

4.5. All simulated ground reaction forces were symmetrical because of the symmetry of 

the musculoskeletal model, Ground reaction force magnitudes were significantly larger 

(p<<1e-6, F(3,138)=44.7) in optimal muscle control than in muscle synergy control in 

both the CoM and the CoP tasks (post-hoc tests). Across animals and tasks, the average 

horizontal-plane force magnitude was 2.8 ± 1.4 N in optimal muscle control and 0.8 ± 0.4 

in muscle synergy control. Forces predicted by optimal muscle control tended to be 

directed near the anterior-posterior axis for all perturbation directions in both the CoM 
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and CoP tasks. Grand mean fit data for the symmetrical musculoskeletal model are 

summarized in Table 5.1. 

Anisotropic biomechanical capabilities predict large anterior-posterior forces in optimal 

muscle control 

 Because we were interested in how the properties of the musculoskeletal system 

might determine the particular force directions selected during the simulated tasks, we 

performed additional analyses in the isolated left hindlimb of cat Bi in the preferred 

postural configuration. We quantified the minimum cost – in ∑e2 or in ∑c2 – associated 

with generating a 1 N horizontal force directed along the unit circle in the horizontal 

plane in 5° increments (Figure 4.6). 

 Analysis of the cost curves demonstrated that the forces near the anterior-

posterior axis observed in optimal muscle control in the symmetrical model reflected 

force directions that were highly favorable given the force production capability of the 

hindlimb model. The optimal muscle control cost curve was characterized by two 

minima, near 90° and 270°, because of the prevalence of individual muscles with 

horizontal-plane force projections near those directions (cf. Bunderson et al., 2010, 

McKay et al., 2007). In contrast, the cost curve for muscle synergy control was relatively 

flat from approximately 210°-60°, corresponding to the region between the force 

directions of muscle synergy 1 and muscle synergy 2, the primary loading and unloading 

muscle synergies. This suggested that combinations of muscle synergies 1 and 2 could be 

obtained to generate a 1 N horizontal-plane force in a wide range of directions with a 

comparable relative cost, leading to the wider range of force directions predicted by 

muscle synergy control than by optimal muscle control. Peak values of cost curves were 

located near 180° in both optimal muscle control and optimal synergy control, 

corresponding to pure adduction forces.  
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Figure 4.5. Simulated ground reaction forces predicted by the optimal control of muscle 
synergies and individual muscles in the symmetrical quadrupedal model. All data 
correspond to the 29 cm (preferred) postural configuration of Ru (Figure 4.2B); Bi and Ni 
are similar. A1-2: CoM task. A1: muscle synergy control, ∑c2. A2: muscle control, ∑e2. 
B1-2: CoP task. B1: muscle synergy control, ∑c2. B2: muscle control, ∑e2. 
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Figure 4.6. Normalized costs of force production with individual muscles or muscle 
synergies in the isolated hindlimb. Data shown were correspond to the left hindlimb of 
cat Bi in the preferred postural configuration; other cats are similar. A-B: normalized 
minimum cost of a 1 N ground reaction force produced in any direction in the horizontal 
plane assuming control of individual muscles (A) or muscle synergies (B). Note that flat 
regions correspond to low costs relative to the maximum, not to cost values of zero. C: 
distribution of horizontal-plane directions of single muscle forces in the left hindlimb. 
Each vertical line depicts the force direction of an individual muscle; darker lines 
correspond to muscles with higher maximal force (FMAX) values. D: distribution of 
horizontal-plane directions of muscle synergy forces in the left hindlimb. Relative heights 
of labels W1-W5 correspond to the relative force magnitudes of each muscle synergy. 
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Table  4.1. Grand mean symmetrical model fits to preferred postural configuration 
ground reaction force data. Values are presented as mean (SD). 
   Task 

Metric Control Cost Function CoM CoP 

X-Z R2 Muscle ∑e2 0.46 (0.07) 0.47 (0.03) 

  ∑(m•e)2 0.41 (0.06) 0.47 (0.04) 

 Muscle synergy ∑e2 0.58 (0.06) 0.36 (0.31) 

  ∑(m•e)2 0.58 (0.12) 0.37 (0.32) 

  ∑c2 0.82 (0.05) 0.59 (0.06) 

X-Z uc-R2 Muscle ∑e2 0.45 (0.06) 0.47 (0.07) 

  ∑(m•e)2 0.47 (0.03) 0.47 (0.07) 

 Muscle synergy ∑e2 0.54 (0.12) 0.41 (0.16) 

  ∑(m•e)2 0.59 (0.05) 0.44 (0.15) 

  ∑c2 0.87 (0.04) 0.74 (0.07) 

XYZ R2 Muscle ∑e2 0.82 (0.06) 0.76 (0.05) 

  ∑(m•e)2 0.73 (0.05) 0.72 (0.05) 

 Muscle synergy ∑e2 0.93 (0.02) 0.89 (0.04) 

  ∑(m•e)2 0.93 (0.02) 0.91 (0.03) 

  ∑c2 0.96 (0.01) 0.95 (0.02) 
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OPTIMAL MUSCLE CONTROL AND MUSCLE SYNERGY CONTROL OF THE 

COM PREDICT LOADING FORCES IN THE ASYMMETRICAL MODEL 

 Simulated ground reaction forces predicted by optimal muscle control and muscle 

synergy control recreated the stereotypical loading forces observed in the force constraint 

strategy in the CoM task; however, optimal muscle control failed to predict active 

unloading forces observed in experimental data. Simulated ground reaction forces for cat 

Ni are presented in Figure 4.7. Overall, optimal muscle control and muscle synergy 

control predicted similar overall fits to data (Table 5.2), with the exception that in the 

shorter postures, optimal muscle control predicted forces during limb unloading (in the 

left hindlimb, corresponding to perturbation directions between 180°-270°) that were 

significantly larger in magnitude (1.9 ± 1.0 vs. 1.0 ± 0.4; p<2.4e-6, F(2,69)=15.7) than 

those predicted by muscle synergy control.  

Muscle tuning predicted by optimal muscle control and muscle synergy control 

 Similar overall muscle tuning was predicted by both optimal muscle control and 

muscle synergy control. Representative examples are shown in Figure 4.8. Muscle 

activation patterns in the left hindlimb predicted by optimal muscle control exhibited 

generally unimodal tuning, with maxima near medial-lateral perturbation directions: 0° or 

180°. Muscle tuning curves generally smoothly scaled across postural configurations, 

rather than shifting tuning direction, with the exception of three muscles in Ru: lateral 

gastrocnemius, plantaris, and soleus. In all cats, several strong muscles, including vastus 

lateralis (FMAX = 147 N), adductor femoris  (102 N), and flexor hallicus longus (105 N) 

were tuned approximately symmetrically with respect to their background level in 

optimal muscle control. These muscles tended to be maximally activated in rightwards 

perturbations where the left hindlimb was loaded and maximally inactivated in leftwards 

perturbations where the left hindlimb was unloaded. 

 Muscle activation patterns in the left hindlimb predicted by muscle synergy 

control exhibited bimodal tuning in several cases that likely resulted from limitations in 

the specific method used to parameterize the simulated muscle synergies. Although in 

some muscles bimodal tuning may be expected from experimental data (e.g., sartorius, 

see Torres-Oviedo et al., 2006, Figure 6), in general, this result is unphysiological. As an 
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example, the simulated activity of tibialis anterior in the model parameterized to cat Ru 

exhibited two tuning curve peaks of comparable magnitude at 30° and 210° in all postural 

configurations.  Because muscle synergy tuning curves were uniformly unimodal – with 

the exception of muscle synergy 2 in Ni, which exhibited a second tuning peak in the 

preferred postural configuration only, bimodal muscle tuning must result from the partial 

participation of individual muscles in multiple simulated muscle synergies with different 

functions. We therefore attribute this unphysiological result to limitations in the specific 

method used to identify the simulated muscle synergies used here. Closer examination of 

the tuning curves revealed that the peak near 180° resulted from the action of muscle 

synergy 2, consistent with the unloading function expected of the ankle flexor tibialis 

anterior, the 30° peak resulted from a small contribution from muscle synergy 3. Each 

simulated muscle synergy was used here was individually optimal in that each 

corresponded to the minimum muscle activation required to generate the experimentally-

observed synergy force vector associated with it. However, practical limitations 

prevented the identification of more globally-optimal sets of muscle synergies, which 

would presumably eliminate the problem of muscles participating in multiple muscle 

synergies with conflicting functions. More sophisticated methods for synergy 

parameterization are an active area of research (Kargo et al. 2010; Neptune et al. 2009). 

MUSCLE SYNERGIES 1-3 APPROXIMATE THE OPTIMAL MUSCLE CONTROL 

Muscle synergies 1 and 3 are responsible for active loading 

 Across animals, we found that the force contributions of muscle synergies 1-3 

were sufficient to recreate postural force data equivalently to optimal muscle control. The 

individual force contributions of muscle synergies 1 and 3, muscle synergy 2, and muscle 

synergies 4 and 5 during the CoM task for Ru are presented in Figure 4.9. The grand 

mean fits to experimental data predicted by combination of muscle synergies are 

presented in Figure 4.10. 

 The combined force contributions of muscle synergies 1 and 3 were generally 

sufficient to recreate the active loading response observed during the postural response 

throughout the workspace. The combined force contributions of muscle synergies 1 and 3 

in cat Ru are presented in Figure 4.9A. Muscle synergies 1 and 3 both produced anterior 
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ground reaction forces appropriate for the loading response of the limb in the preferred 

postural configuration. However, the force vectors associated with each of muscle 

synergies 1 and 3 generalized across the workspace in different ways. In all cats, the 

anterior component of the force vector corresponding to muscle synergy 1 rotated from 

the anterior to the posterior half plane between the preferred and short postural 

configurations. Sagittal-plane muscle synergy force directions are summarized in Table 

5.3. Although muscle synergy 1 was appropriate to produce loading vertical forces 

throughout the workspace, its posterior force vector projection made it inappropriate for 

the necessary anterior component of the loading force in the short and shortest postural 

configurations. Because of this rotation, the anterior ground reaction force component of 

the loading response was primarily supplied by muscle synergy 3 in the shorter postural 

configurations. 

Synergy 2 is responsible for active unloading 

 The force contributions of muscle synergy 2 were responsible for nearly the 

entirety of the active unloading response. The force contributions of muscle synergy 2 in 

cat Ru are presented in Figure 4.9B. Because optimal muscle control did not perform 

active unloading, across animals, the combined force contributions of muscle synergies 1 

and 3 without the contribution of muscle synergy 2 were sufficient to fit experimental 

data comparably to optimal muscle control (p>0.05 ANOVA, post-hoc tests). 

Synergies 4-5 exhibit small force magnitudes 

 Muscle synergies 4 and 5 together were characterized by small force magnitudes 

and appeared to function primarily to complement the primary action of muscle synergies 

1-3. The combined force contributions of muscle synergies 4 and 5 in cat Ru are 

presented in Figure 4.9C. 

Because of their smaller force magnitudes, it is also likely that muscle synergies 4 and 5 

may represent higher-order aspects of the postural task that are not captured in the static 

representation here; for example, limb stabilization during force production (Bunderson 

et al. 2008; van Antwerp et al. 2007) or cancelling interaction torques associated with the 

primary loading leg. 
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Muscle synergy control predicts higher energetic costs than optimal muscle control 

 Muscle synergy control in the CoM task predicted significantly higher RMS 

muscle activation than optimal muscle control (p<0.001, F(2,25)=11.7, post hoc tests). 

This contrast was preserved across animals (p<0.16, F(2,25)=1.98) and postural 

configurations (p<0.19, F(3,25)=1.70). Across animals and postural configurations, grand 

mean RMS muscle activation during the CoM task was 0.08 ± 0.03 for muscle synergy 

control, ∑c2, 0.06 ± 0.03 for muscle synergy control, ∑e2, and 0.04 ± 0.002 for optimal 

muscle control, ∑e2. The grand mean RMS muscle activation for the three control types 

is presented in Figure 4.11. 

Minimizing ∑(m•e)2 predicts similar forces and muscle tuning to minimizing ∑e2 but with 

unphysiological recruitment of small muscles 

 Minimizing ∑e2 and minimizing ∑(m•e)2 produced approximately similar force 

patterns, particularly if only the preferred postural configuration was considered (Figure 

4.12B,C). The two cost functions also predicted similar muscle tuning that differed 

primarily in magnitude, rather than direction. For example, across cats, the average 

activation of the relatively heavy muscle adductor femoris (29.2 g) was significantly 

lower in ∑(m•e)2 simulations than in  ∑e2 simulations, (0.01 ± 0.002 vs. 0.08 ± 0.003; 

p<0.01, t-test), although the peak tuning direction  (30°) was unchanged. Conversely, the 

average activation of the relatively light muscle flexor hallicus longus (2.0 g) was 

significantly higher in ∑(m•e)2 simulations than in  ∑e2 simulations (0.25 ± 0.07 vs. 0.04 

± 0.007; p<0.05, t-test), although its peak tuning direction in the preferred postural 

configuration (0°) was unchanged. 

 Overall, minimizing ∑(m•e)2 predicted unphysiological high levels of activation 

in the smallest muscles in the model, with peak values near maximal activation (1.0), 

suggesting that this cost function is not a good representation of the central coordination 

process used during the postural task.. Muscle activation values in the  ∑e2 and ∑(m•e)2 

simulations as functions of muscle mass and maximal muscle force are summarized in 

Figure 4.13. Despite the marked differences in activation levels of individual muscles 

predicted by the two cost functions, we attribute the overall similarity of the force 

patterns predicted by each to the fact that in the musculoskeletal model used here, the 

maximum force of each muscle is generally proportional to its mass (Figure 4.14). 
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Therefore, although the ∑(m•e)2 cost function preferentially recruits smaller muscles, 

these same muscles tend to be weaker, so that the larger muscles in the model still 

dominated the overall behavior. We expect that many other musculoskeletal models 

would exhibit a similar property. Additionally, many candidate cost functions related to 

∑e2 would likely predict similar solutions, which largely reflect the anisotropic properties 

of the musculoskeletal system, rather than the details of the specific cost function used 

(Crowninshield and Brand 1981; Herzog and Leonard 1991). 

Optimal muscle control of CoP predicts anterior ground reaction forces during both 

loading and unloading 

 Ground reaction forces predicted by optimal muscle control of the CoP were 

directed anteriorly for all perturbation directions, resulting significantly degraded fits to 

data (p<1e-6, F(1,40)=41.9) in CoP control vs. CoM control in all animals (p<0.70, 

F(2,40)=0.36). Predictions were very similar across cats and across ∑e2 and ∑(m•e)2 

simulations. In each postural configuration of each cat, only two horizontal-plane force 

directions were observed; one of which corresponded to the background force vector, 

observed when the limb was loaded, and the other of which was offset by approximately 

15°. This is expected because shear forces are unconstrained in the CoP task; therefore, 

the minimizations relied on the most biomechanically favorable muscles, the majority of 

which produced ground reaction forces near the anterior axis (Figure 4.6). In the 

preferred postural configuration of Bi, forces were directed towards 87.4° when the limb 

was loaded and 100.2° when the limb was unloaded in ∑e2 simulations, and towards 

87.4° (loaded) and 79.1° (unloaded) in ∑(m•e)2 simulations; other cats and postural 

configurations were similar. Across animals, postural configurations, and cost functions, 

mean R2 values were 0.08 ± 0.15 for CoP control vs. 0.56 ± 0.31 for CoM control. 

Uncompensated direction reversal of muscle synergy 1 predicts disrupted loading forces 

in optimal muscle synergy control of CoP 

 In the long and preferred postural configuration of each cat, ground reaction 

forces predicted by muscle synergy control of the CoP exhibited the bimodal distribution 

of force directions in loading and unloading typical of the force constraint strategy. 

Because they were not specified as a task constraint, hindlimb horizontal force 

magnitudes were significantly lower in CoP control than in CoM control (p<<1e-6, t-
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test). The grand mean hindlimb horizontal force magnitudes were 1.01 ± 0.77 N in CoP 

control vs. 1.80 ± 1.02 N in CoM control. However, in general, the distribution of force 

directions was very similar to observed data, resulting in relatively high R2 values 

(0.66 ± 0.11 in CoP control vs. 0.85 ± 0.05 in CoM control). 

 In the shorter postural configurations, muscle synergy CoP control predicted 

loading forces that were directed either laterally (cat Bi) or posterior (Ni and Ru), leading 

to significantly degraded overall fits to data (p<<1e-6, F(1,17)=36.65) that depended 

strongly on postural configuration (p<0.0001, F(1,17)=24.14) but not on animal (p<0.80, 

F(2,17)=0.23) (see Table 1.2). Comparison of the muscle synergy tuning curves from 

CoP control with those from CoM control revealed that these differences could be 

attributed to significantly attenuated recruitment of muscle synergies 3-5 (p<2.3e-5, 

F(4,10)=27.4, post hoc tests), which are recruited in the CoM task to compensate for the 

reversal of the anterior force component of muscle synergy 1 between the preferred and 

short postural configurations. Therefore, the posterior loading forces observed in the CoP 

task primarily result from the sign reversal of muscle synergy 1, that remains 

uncompensated by the action of muscle synergy 3 because the net shear force is 

unconstrained. Across animals, the mean ratios of the peak activation of each muscle 

synergy in the CoP task to that in the CoM task were 1.04 ± 0.27, 0.56 ± 0.21, 

0.03 ± 0.03, 0.02 ± 0.02 for muscle synergies 1-5, respectively.  
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Figure 4.7. Simulated ground reaction forces predicted by the asymmetrical quadrupedal 
model parameterized to cat Ni. A: average forces taken from experimental data. B: 
simulated ground reaction forces predicted by muscle synergy control, minimizing ∑c2. 
C: simulated ground reaction forces predicted by optimal muscle control, minimizing 
∑e2. 
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Figure 4.8. Simulated muscle and muscle synergy tuning curves predicted by optimal 
muscle control and muscle synergy control. Data are from the model parameterized to cat 
Ni. In all panels, solid, dashed, and dotted lines correspond to 29 cm (preferred), 24 cm, 
and 18 cm stance distance, respectively. A: muscle tuning curves predicted by optimal 
muscle control, ∑e2 muscle designators are summarized in Table 4.7. B: muscle tuning 
curves predicted by muscle synergy control, ∑c2. C: muscle synergy tuning curves 
predicted by muscle synergy control, ∑c2. W1-W5 correspond to muscle synergies 1-5. 
Note different scales for MG in A and B. 
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Figure 4.9. Decomposition of force contributions of muscle synergies in Ru 
(experimental data shown in Figure 4.2). In all panels, left to right corresponds to 42 cm, 
29 cm (preferred), 22 cm, and 18 cm stance distance. A: contribution of muscle synergies 
1 and 3. B: contribution of muscle synergy 2. C: contribution of muscle synergies 4 and 
5. 
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Figure 4.10. Approximation of optimal muscle control solution with muscle synergies. 
Black bars: R2 values between modeled forces and data predicted by increasing numbers 
of synergies included in the approximation. W1: contribution of muscle synergy 1; W1,2: 
contribution of muscle synergies 1 and 2, etc. Gray bar: R2 value between optimal muscle 
control forces and data. White bar: contribution of muscle synergies 1 and 3 only.  
*p<0.05, ANOVA, post-hoc tests. ns: p>0.05. 
 
 

 
Figure 4.11. Fits to ground reaction force data and energetic costs predicted by the 
asymmetrical model. A: Average model fits to horizontal-plane hindlimb forces from 
experimental data across animals in each postural configuration. L: long; P: preferred; S: 
short; SS: shortest. B: Average simulated RMS muscle activation across animals in each 
postural configuration. 
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Figure 4.12. Simulated ground reaction forces predicted by the asymmetrical quadrupedal 
model parameterized to cat Ru (experimental data shown in Figure 4.2). A: simulated 
ground reaction forces predicted by muscle synergy control, minimizing sum-squared 
muscle synergy activation. B: simulated ground reaction forces predicted by optimal 
muscle control, minimizing sum-squared muscle activation. C: simulated ground reaction 
forces predicted by optimal muscle control, minimizing sum-squared muscle activation 
weighted by muscle mass. 
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Figure 4.13. Distribution of muscle activation predicted by optimal muscle control in ∑e2 
and ∑(m•e)2 cost functions. A: scatterplots of predicted muscle activation values vs. 
muscle mass. Left: ∑e2. Right: ∑(m•e)2. B: scatterplots of predicted muscle activation 
values vs. maximal muscle force. Left: ∑e2. Right: ∑(m•e)2. 
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Figure 4.14. Approximately linear relationship between the mass and the maximal force 
FMAX of individual muscles in the model of the cat hindlimb. 
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Table  4.2. Grand mean asymmetrical model fits to ground reaction force data. Values are 
presented as mean (SD). 
   Task 

Metric Control Cost Function CoM CoP 

X-Z R2 Muscle ∑e2 0.67 (0.28) 0.08 (0.15) 

  ∑(m•e)2 0.45 (0.32) 0.08 (0.15) 

 Muscle synergy ∑e2 0.80 (0.11) 0.33 (0.30) 

  ∑(m•e)2 0.76 (0.18) 0.34 (0.30) 

  ∑c2 0.78 (0.13) 0.34 (0.33) 

X-Z uc-R2 Muscle ∑e2 0.51 (0.22) 0.24 (0.23) 

  ∑(m•e)2 0.34 (0.16) 0.24 (0.24) 

 Muscle synergy ∑e2 0.58 (0.21) 0.37 (0.27) 

  ∑(m•e)2 0.55 (0.22) 0.37 (0.28) 

  ∑c2 0.59 (0.18) 0.50 (0.30) 

XYZ R2 Muscle ∑e2 0.90 (0.08) 0.80 (0.05) 

  ∑(m•e)2 0.81 (0.08) 0.83 (0.04) 

 Muscle synergy ∑e2 0.93 (0.04) 0.87 (0.05) 

  ∑(m•e)2 0.92 (0.04) 0.88 (0.06) 

  ∑c2 0.89 (0.05) 0.92 (0.03) 
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Table  4.3. Synergy force vector directions in the right hindlimb (sagittal-plane). 
SFV Cat Model    Data    
  L P S SS L P S SS 
1 Bi -113° -97.2° -89° -74.9° -103° -97.2° -91.1° -85.6°   
 Ru -112 -96.7 -80.1 -69.7 -108 -96.7 -90.2 -85.3 
 Ni   -97 -82.8 -75.7  -97 -91 -86.7             
2 Bi 64 79.7 74.2 82.9 74.3 79.7 85.8 91.3         
 Ru 69.1 80.3 84.5 85.6 68.7 80.3 86.9 91.7       
 Ni   78.7 83.2 85.9  78.7 84.7 89               
3 Bi -119 -106 -101 -86.6 -111 -106 -99.5 -94      
 Ru 167 173 179 -174 162 173 180 -176             
 Ni   -122 -113 -99.4  -122 -116 -111            
4 Bi -49.6 -7.5 4.63 17.5 -12.9 -7.5 -1.4 4.1      
 Ru 1.7 12.4 20.5 27 0.822 12.4 19 23.8          
 Ni   -7 8.7 11.4  -7 -1 3.3                     
5 Bi 75.2 90.9 88.7 96 85.5 90.9 97 102            
 Ru 86.1 98.3 105 106 86.7 98.3 105 110           
 Ni   -138 -132 -122  -138 -132 -128 
 

Table  4.4. Synergy force vector directions in the right hindlimb (dorsal-plane). 
SFV Cat Model    Data    
  L P S SS L P S SS 
1 Bi -87° -61.9° 16.4° 73.2° -73° -61.9° -16° 49°  
 Ru -85 -72.4 69.8 78.2 -83.3 -72.4 -4.38 65.6     
 Ni   -62.2 45.8 67.6  -62.2 -15.2 41.9           
2 Bi 93.9 106 86.9 87.1 101 106 126 -157            
 Ru 94.3 101 132 152 95.2 101 121 -138             
 Ni   88.1 103 95.1  88.1 86 69.4                 
3 Bi -79.8 -62.2 -51.2 18.4 -68.4 -62.2 -49.3 -26.3 
 Ru -63 -66.6 -69.3 -70.6 -65.6 -66.6 -66.7 -66.6  
 Ni   -54 -37.6 -21.1  -54 -48.7 -43.8            
4 Bi 37 45.2 49.7 53.4 44.7 45.2 45.4 45.3          
 Ru 77.4 78 80.7 84.3 78.3 78 77.7 77.3            
 Ni   50.3 53.8 57.9  50.3 50.5 50.5              
5 Bi 96.2 -165 83 -91.8 126 -165 -115 -105          
 Ru 110 -103 -108 -117 120 -103 -97.2 -95.5        
 Ni   -90 -89.4 -90.3  -90 -90 -90 
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Table 4.5. Synergy force vector magnitudes in the right hindlimb (sagittal-plane). 
SFV Cat Model    Data    
  L P S SS L P S SS 
1 Bi 2.74 N 2.26 N 1.74 N 1.67 N - 2.26 N - - 
 Ru 3.45 3.09 2.65 2.5 - 3.09 - - 
 Ni   4.37 3.65 3.87 - 4.37 - - 
2 Bi 1.29 1.41 1.3 1.4 - 1.41 - - 
 Ru 1.68 1.75 1.74 1.7 - 1.75 - - 
 Ni   1.33 1.33 1.36 - 1.33 - - 
3 Bi 1.19 0.989 0.764 0.696 - 0.989 - - 
 Ru 0.202 0.219 0.206 0.17 - 0.219 - - 
 Ni   0.51 0.397 0.4 - 0.51 - - 
4 Bi 0.162 0.152 0.198 0.213 - 0.152 - - 
 Ru 0.331 0.364 0.406 0.409 - 0.364 - - 
 Ni   0.119 0.138 0.142 - 0.119 - - 
5 Bi 0.247 0.269 0.241 0.259 - 0.269 - - 
 Ru 0.115 0.121 0.118 0.111 - 0.121 - - 
 Ni   0.121 0.109 0.104 - 0.121 - - 
The mark (-) designates that the synergy force vector magnitudes in these postural 
configurations were fixed to the preferred-configuration value by construction.  
 
Table 4.6. Synergy force vector magnitudes in the right hindlimb (dorsal-plane). 
SFV Cat Model    Data    
  L P S SS L P S SS 
1 Bi 1.06 N 0.32 N 0.108 N 0.453 

N 
0.515 N 0.32 N 0.157 

N 
0.23 N            

 Ru 1.3 0.379 0.486 0.886 0.978 0.379 0.115 0.277             
 Ni   0.601 0.641 1.04  0.601 0.29 0.376                     
2 Bi 0.569 0.263 0.353 0.173 0.389 0.263 0.127 0.0813          
 Ru 0.602 0.3 0.223 0.282 0.637 0.3 0.112 0.0775              
 Ni   0.261 0.16 0.0975  0.261 0.123 0.0243                  
3 Bi 0.59 0.301 0.193 0.132 0.381 0.301 0.216 0.157            
 Ru 0.221 0.237 0.22 0.18 0.228 0.237 0.239 0.238             
 Ni   0.332 0.253 0.182  0.332 0.295 0.27                    
4 Bi 0.175 0.213 0.259 0.253 0.211 0.213 0.214 0.213           
 Ru 0.34 0.364 0.386 0.366 0.372 0.364 0.353 0.342            
 Ni   0.153 0.168 0.164  0.153 0.154 0.154                   
5 Bi 0.0636 0.0158 0.00532 0.0269 0.0261 0.0158 0.036 0.06     
 Ru 0.00842 0.0179 0.0313 0.0342 0.00793 0.0179 0.0312 0.0409 
 Ni   0.0904 0.0726 0.0554  0.0904 0.0815 0.0746 
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Table 4.7. Muscles included in the musculoskeletal model. 

Designator Name Mass (g) FMAX (N) 
ADF Adductor femoris 29.2 102          
ADL Adductor lounges  1.48 11.3        
BFA Biceps femoris 

anterior 
4 47       

BFP Biceps femoris 
posterior 

30.3 170  

EDL Extensor digitorum 
longus 

3.4 21.5 

FDL Flexor digitorum 
longus 

1.99 20.3  

FHL Flexor hallucis 
longus 

7.93 105    

GMAX Gluteus maximus 4 6               
GMED Gluteus medius 4 60               
GMIN Gluteus minimus 4 4.21            
GRAC Gracilis 9.41 30.2                
LG Lateral gastrocnemius 12.4 103      
MG Medial 

gastrocnemius 
9.55 90.2      

PB Peroneus brevis 4 33.5              
PEC Pectineus 4 10.6                   
PL Peroneus longus 1.81 16.3           
PLAN Plantaris 6.94 76.8               
PSOAS Psoas minor 4 122                
PT Peroneus tertius 1.06 16            
PYR Pyriformis 4 26.1                  
QF Quadratus femoris 4 40.5            
RF Rectus femoris 11.1 122             
SART Sartorius 9.93 20.1               
SM Semimembranosus 18.9 77.3           
SOL Soleus 4.03 20.5                   
ST Semitendinosus 6.42 88.2            
TA Tibialis anterior 6.47 26.2         
TP Tibialis posterior 1.65 40.6        
VI Vastus intermedius 4.39 40.8        
VL Vastus lateralis 19.6 147           
VM Vastus medius 8.04 61.1 
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DISCUSSION 

We reproduced force patterns during postural tasks in cats by optimally 

controlling the quadrupedal musculoskeletal system to regulate the CoM. A low-

dimension controller based on muscle synergies derived from experimental data was also 

sufficient to approximate this optimal strategy across postural configurations, although it 

required higher energetic cost. Interestingly, muscle synergy control recreated the active 

unloading observed in experimental animals. This suggests that aspects of the force 

constraint strategy may satisfy additional criteria besides those explicitly modeled by our 

optimal control formulation. Our results support the hypothesis that the forces observed 

in the force constraint strategy reflect the optimal motor solution for controlling the CoM 

given the constraints of the musculoskeletal system. 

Muscle synergy control predicts similar forces but higher energetic costs compared to 

optimal muscle control 

 The simplification associated with low dimension control based on muscle 

synergies comes at an appreciable cost, in terms of simulated muscle activation, 

compared to that of optimal muscle control. In simulated reaching movements, it has 

been demonstrated that the control of muscle synergies constructed from optimality 

criteria can approximate the motor solutions predicted by the optimal control of 

individual muscles both in a detailed musculoskeletal model of the frog hindlimb 

(Berniker et al. 2009) as well as in an abstract model of reaching (Chhabra and Jacobs 

2006). However, because simulations of this type typically seek to verify the feasibility 

of the low-dimension control architecture provided by muscle synergies, they typically do 

not attempt to recreate experimental data. Conversely, simulations of muscle synergy 

control in the context of experimental data typically do not compare cost increases 

associated with muscle synergy control in the context of realistic movements (Kargo et 

al. 2010; Neptune et al. 2009). Although the simulated muscle synergies used here were 

identified to satisfy the constraints of the experimentally-observed muscle synergy force 

vectors with the lowest amounts of simulated muscle activation, simulations of muscle 

synergy control required significantly higher muscle activation than simulations of 

optimal muscle control in all cases. 
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Optimal muscle solutions may serve as the endpoint of ongoing adaptive processes 

 The minimizations presented here may be descriptive of the control process used 

by the nervous system without specifically considering its implementation.  We do not 

interpret these results to mean that the nervous system explicitly performs optimal 

control, in the sense that an engineering control system would. Implementations of the 

simple feedforward optimal control modeled here (Fagg et al. 2002; Shah et al. 2004), as 

well as more sophisticated optimal control architectures such as the Kalman filter 

(Denève et al. 2007) have been presented on more realistic neural substrates. 

 The control process used by the nervous system may be developed over time as a 

result of ongoing adaptative processes. These processes may be difficult to observe over 

experimental timescales, but can be revealed by examining the timecourse of 

compensation and recovery after deficit. For example, after cats experience a deficit that 

disrupts the balance of sensory feedback that is available for the temporal patterning of 

muscle activity, their temporal coordination patterns converge towards a novel optimal 

solution that is appropriate to the new constraints imposed by the deficit (Lockhart and 

Ting 2007). Although this adaptation can be observed over the course of days, it remains 

incomplete on practical timescales. 

 Similarly, deficits such as the pathological muscle synergies observed in 

hemiplegic stroke provide some of the most compelling evidence that a muscle synergy 

architecture may be the best representation for the way that muscles are controlled in the 

unaffected nervous system. Considering a locomotion task in hemiplegic subjects, Clark 

and colleagues (2010) demonstrated that muscle synergies in the unaffected leg were also 

expressed in the affected leg, but that they were co-recruited, so as to function as a single 

unit. Evidence suggests that disrupting this type of pathological coupling requires 

overcoming certain thresholds or constraints within the nervous system, because focused 

interventions can be designed to disrupt these types of pathological coupling through 

appropriate biofeedback (Ellis et al. 2005). We speculate that typical muscle patterns may 

result from multiple similar fragmentation processes over the course of learning and 

development. 
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Higher-order muscle synergies may allow the generalization of motor solutions to other 

conditions 

 The different patterns of generalization throughout the workspace of muscle 

synergies 1 and 3 suggest that higher-order muscle synergies may function in part to 

extend the range of conditions for which an existing motor solution is appropriate. Here, 

in the preferred postural configuration, the functions of muscle synergies 1 and 3 – as 

described by the force vectors they produce – are partially redundant. This is particularly 

true in cat Bi, for which they produce force vectors that are separated by only about 10° 

in the sagittal plane. However, by considering other postural configurations, it becomes 

evident why both are required: because muscle synergies 1 and 3 exhibit different 

patterns of generalization, muscle synergy 3 augments the function of muscle synergy 1 

so that it is appropriate in the other postural configurations. It seems likely that muscle 

synergy 5 may serve a similar role in generalization, as it is modulated to its highest 

levels in the shortest postural configuration in all cats. 

Penalizing contraction time may recreate active unloading in optimal muscle control 

 The primary differences between forces predicted by muscle synergy control and 

forces predicted by optimal muscle control occurred when the limb was unloaded. 

Because muscle synergy activations were constrained to be nonnegative with respect to 

the background level, additional muscle synergy activation was required in these 

perturbation directions to actively unload the limb, a function performed by muscle 

synergy 2 in all cats. This active unloading was not observed in optimal muscle control, 

as it requires the coactivation of flexors and extensors, and hence would result in greater 

than the minimum control cost. 

 It is possible that constraining the optimal muscle control model to actively 

unload would recreate the forces observed in these perturbation directions. This 

constraint could be justified by the fact that there is a strong pressure to generate the 

active postural response as fast as possible, and the dynamics of muscle activation are 

faster than the dynamics of muscle inactivation. 

 It is likely that there are significant evolutionary pressures associated with 

generating appropriate postural responses rapidly and robustly, so that the APR occurs as 

rapidly as computational constraints will allow. In support of this idea, deficits introduced 
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in lesion studies have the general effect of delaying, but never accelerating, postural 

responses (Stapley et al. 2002). Similarly, deficits in any one sensory modality are 

robustly compensated for through sensory reweighting (Peterka 2002). As a result, when 

there is explicit sensory loss in the visual, vestibular, or somatosensory systems, the 

spatial tuning characteristics of individual muscles are retained (Inglis et al. 1994; 

Stapley et al. 2002). 

Strut forelimbs may represent musculoskeletal and neural constraints 

 The constraints on forelimb force production applied in the asymmetrical 

quadrupedal model likely represent underlying, and possibly complementary, 

mechanisms of both the musculoskeletal and neural systems. The skeletal morphology of 

the elbow is likely able to support significantly higher compressive forces than that of the 

knee, so that in a purely mechanical sense, the forelimbs are likely more suited to use as 

struts than the hindlimbs (T.J. Burkholder, personal communication). In the preferred and 

long postural configurations, the forelimbs do generate horizontal-plane forces that are 

comparable in magnitude to those in the hindlimbs, suggesting that they may not be 

purely biomechanically constrained to only generate vertical forces. However, between 

the long and shortest postural configuration, the sagittal-plane angle of the forelimb 

varies over a range of roughly 20°, which may suffice to rotate forces directed along the 

limb axis to be exactly vertical (Fung and Macpherson 1995). Unfortunately, a detailed 

quantification of the musculoskeletal mechanics of the forelimb is not yet available. 

 Evidence suggests that the overall neural control of the forelimbs is likely to be 

markedly different from that of the hindlimbs, perhaps complementing their different 

morphology. During postural tasks, the muscle activity in the forelimbs has been 

qualitatively described as exhibiting muscle coordination patterns wherein muscles 

throughout the limb are coactivated or co-inactivated. This is unique to the forelimbs, as 

muscle activity in the hindlimbs is characterized by reciprocal inhibition between 

muscles on opposite sides of the limb (Macpherson et al. 1989). Interestingly, during 

locomotion, there is evidence that forelimb muscle activity during locomotion is actually 

more complex than that of the hindlimb, exhibiting a greater number of unique bursts of 

temporal muscle activity over the gait cycle (Krouchev et al. 2006). In preliminary 

studies, we have also observed a higher number of muscle synergies in the forelimb than 
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in the hindlimb (unpublished observations), suggesting that the uniform co-activation or 

co-inactivation pattern may result from the orderly recruitment of a motor repertoire that 

is more sophisticated overall than that of the hindlimbs.  
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CHAPTER 5  

CONCLUSIONS 
 

 Here, I identified constraints within the nervous and musculoskeletal systems that 

determine the muscle activity and ground reaction forces observed during the APR in 

cats. I demonstrated that biomechanical constraints on force production in the isolated 

hindlimb do not uniquely determine the characteristic patterns of force activity observed 

during the APR, although in the presence of muscle synergy constraints they introduce 

characteristic features of postural forces. When I considered the coordination of four 

limbs, I demonstrated that the optimal feedforward control of the musculoskeletal system 

to stabilize the CoM recreated the muscle activity and ground reaction forces observed 

during the APR very well. The optimal control of five muscle synergies in each limb 

based on experimental data was also sufficient to appropriately stabilize the CoM across 

postural configurations, although it required a higher energetic cost than would be 

required if individual muscles were controlled. Overall, these results support the 

hypothesis that the force constraint strategy and related muscle activity represent the 

optimal motor solution for controlling the CoM given the constraints of the 

musculoskeletal system. 

 While a low dimension neural control structure based on muscle synergies is 

feasible to regulate the CoM, any decreases in the resulting costs of computation may 

require increases in the costs of execution. This tradeoff may reflect the fact that 

information representation in the nervous system may be limited by metabolic 

constraints, making some computational structures more favorable than others (Denève et 

al. 2007; Olshausen and Field 2004). Similarly, controlling muscle synergies may also 

speed motor learning. In a model of birdsong, Fiete and colleagues (2004) demonstrated 

that increasing the sparseness of the descending drive from premotor areas increased the 

rate of learning, because synaptic interference was reduced.  

NEUROANATOMICAL BASES OF THE APR 

 Identifying neuroanatomical bases for the APR is an area of ongoing research. It 

is known that cortical control is not necessary for the APR, as the decerebrate cat can 
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produce rudimentary postural responses, both in terms of muscle activation (Honeycutt et 

al. 2009) and force responses (Honeycutt and Nichols 2010). Cerebral cortex may instead 

play a role as a meta-modulator, primarily by adjusting central “set” before postural tasks 

in a long loop involving the basal ganglia, and adapting strategies across repetitions in a 

second long loop involving the cerebellum (Jacobs and Horak 2007). For example, APR 

muscular activity can be voluntarily suppressed when subjects intend to take a step in 

response to a perturbation with characteristics that are expected, but only the later phase 

of the response can be voluntarily suppressed when perturbation characteristics are 

randomized, suggesting some degree of involvement of cerebral cortex in the later 

portions of the timecourse (Burleigh and Horak 1996). The contributions of vestibular 

and visual information, which is incorporated in parallel with lower-level mechanisms, at 

longer latencies, may not be critical (Deliagina et al. 2008). Cats with vestibular lesion 

can generate generally appropriate, although hypermetric, responses to translation 

perturbations (Inglis and Macpherson 1995). The role of the cerebellum may be 

particularly important during motor learning; cerebellar lesions preclude proper scaling of 

postural responses to repeated perturbations of known magnitude (Horak and Diener 

1994). 

 The primary role of higher centers may be to provide tonic drive to spinal circuits 

via descending pathways in the ventral spinal cord (Deliagina et al. 2008). It is known 

that the APR requires supraspinal influences, because the ability of chronic spinal cats to 

balance is typically permanently disrupted, although they are typically able to recover 

weight support and some limited lateral stability (Pratt et al. 1994). However, in the 

presence of appropriate descending drive, postural responses may emerge largely from 

spinal mechanisms. Laterally-hemisected rabbits recover rudimentary postural responses 

relatively quickly (Lyalka et al. 2005). Even in the absence of appropriate descending 

drive, some rudimentary responses may also occur. Cats spinalized at the lumbrosacral 

level do exhibit incomplete extensor responses, but not flexor responses, although flexors 

are active in other behaviors like paw shake (Macpherson and Fung 1999). 

CLINICAL RELEVANCE 

 Here, I considered the mechanisms of standing balance in cats. Although these 

studies are of a scientific rather than a clinical nature, they may ultimately contribute to 
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an increased understanding of the mechanisms of standing balance in both healthy and 

impaired populations. Towards this, ongoing studies in our laboratory translate many of 

the ideas and techniques developed here to research in human subjects. Developing a 

better understanding of the mechanisms of standing balance would be beneficial, because 

it might lead to superior clinical interventions and strategies to avoid falls. Falls are a 

leading cause of morbidity and mortality among adults aged 65 and older (Stevens 2005). 

In 2006, approximately 5.8 million (almost 16%) of persons aged 65 and older reported 

falling at least once during the preceding three months, and 1.8 million (nearly 5% of all 

older adults) sustained some type of fall-related injury (Stevens et al. 2008). The most 

recent estimates for the direct medical costs associated with these type of fatal and 

nonfatal fall-related injuries – the year 2000 – was approximately $19 billion annually 

(Stevens 2005). 

FUTURE STUDIES 

 The models and analyses used here could be used to guide future investigations in 

the neural control of movement. The most obvious extension is to generalize the results 

in the context of a fully dynamic model of the cat hindlimb. The static cat hindlimb 

model was appropriate because of the quasi-static nature of the postural task. 

Additionally, the use of a static model enabled analytical techniques – as in the FFS 

analysis – that would be improbable or impossible to implement in a dynamic model. 

Encouragingly, the general results of the static model – that the force production 

capability of the hindlimb appears to be biased along the anterior-posterior axis – has 

been qualitatively confirmed in later studies using a fully dynamic version of the model 

(Bunderson et al. 2010), suggesting that these results can be generalized to more complex 

dynamic conditions. 

 One interesting question concerning the results of Chapters 2 and 3 is whether the 

rotation of synergy force vectors with the limb axis we observed depends critically on the 

particular synergy force vectors and intralimb geometry selected by the animals. Because 

the mechanical action of individual muscles can vary widely depending on the state of 

other muscles and joints (van Antwerp et al. 2007), it seems likely that details of 

intralimb geometry may significantly affect the pattern of synergy force vector rotation 

we observed. It is also known that the intralimb geometry itself is tightly regulated 
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according to energetic constraints in parallel with the regulation observed during the APR 

(Fung and Macpherson 1995), suggesting that these parallel postural circuits may hold 

exciting insights. Similarly, the particular synergy force vector, and balance of muscles 

included in each muscle synergy may influence the degree to which the rotation with the 

limb axis is observed. By considering the particular intralimb geometry and synergy force 

vectors selected by the animals in the context of the possibilities enabled by, for example, 

Monte Carlo simulation, it could be determined whether animals were tightly controlling 

these quantities to the benefit of the generalizability of muscle synergies. 

 The degree to which the use of other cost functions to identify simulated muscle 

synergies in the hindlimb model would produce different patterns of generalization across 

postural configurations is also unknown, and may be an interesting area for investigation. 

We used simulated muscle synergies, rather than using experimentally-observed muscle 

synergies directly, because of the difficulties associated with quantitatively incorporating 

experimentally-observed EMG data into musculoskeletal models. In the few 

neuromechanical simulations of muscle synergies that have been attempted, muscle 

synergies were either simulated based on experimental force data (Kargo et al. 2010), or 

derived from an optimization routine using incomplete experimental EMG data as an 

initial guess (Neptune et al. 2009). Therefore, to test the feasibility of the muscle 

synergy-synergy force vector relationship, we adopted an approach similar to that of the 

former study. We derived simulated muscle synergies from the synergy force vectors 

observed in the postural configuration of each cat with either of two different 

optimization criteria; one that penalized the activation of muscles in the simulated muscle 

synergy strongly, and one that did not penalize muscle activation at all. We demonstrated 

that simulated muscle synergies derived from both criteria produced force vectors that 

rotated in the sagittal plane as postural configuration was varied, in a manner that was 

very similar to that observed in experimental data (McKay and Ting 2008). We 

hypothesized that similar optimization criteria laying between these two extremes would 

result in a similar synergy force vector rotation; however, this was not tested rigorously. 

 It will be possible to fully account for asymmetries between the forelimbs and 

hindlimbs in the quadrupedal model of Chapter 4 once a detailed anatomical model of the 

cat forelimb becomes available. However, in order to do so, the muscle activity in the 
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forelimb will need to be characterized. The muscle synergy organization of the forelimb 

is likely highly different than that of the hindlimb – in both cats and humans standing 

quadrupedally, for example, qualitatively different patterns of muscle activation are 

observed between the forelimbs and hindlimbs during postural control (Macpherson et al. 

1989). In general, the forelimbs are used as “struts,” with muscles throughout the limb 

coactivating or co-inactivating in response to loading or unloading, whereas the 

hindlimbs are used as “levers,” leading to patterns of reciprocal inhibition. In preliminary 

investigations, I have found that a higher number of EMG principal components is 

observed in the forelimb than in the hindlimb. This is consistent with the results of 

Krouchev and colleagues, who identified 11 distinct patterns of muscle activity in the cat 

forelimb during locomotion, but only 7 in the hindlimb (Krouchev et al. 2006). However, 

due to the paucity of data, these results were not pursued further. 

 One of the most interesting extensions of Chapter 4 would be to use a more 

detailed muscle model that was better suited to estimating the energy used during the 

postural task. The relationship between fiber type composition and rates of instantaneous 

ATP hydrolysis during isometric force production in human skeletal muscle has been 

reported (Szentesi et al. 2001). By better delineating the muscles in the hindlimb model 

according to fiber type, a better proxy for energy usage could be obtained. 

 The quadrupedal model in Chapter 4 could also be extended to a feedback 

formulation once the dynamics of mediolateral balance are better characterized. Although 

the inverted pendulum formulation has been used to characterize the dynamics of 

anterior-posterior and diagonal perturbations, where the loaded hindlimb or limbs 

dominates the dynamics (Lockhart and Ting 2007; Welch and Ting 2009), the dynamics 

of mediolateral perturbations are still difficult to treat. 

 The results of Appendix A point to the conclusion that the dimension reduction 

associated with the APR takes place within the nervous system. Overall, many studies in 

our laboratory assume or hypothesize that the CoM is the variable that is regulated by the 

nervous system during postural control, and that this regulation occurs in a feedback 

manner (Lockhart and Ting 2007; Welch 2008). Considered in the context of feedback 

control, the results of Chapter 4 suggest that multiple patterns of sensory information – 

i.e., joint angles, are mapped within the nervous system to similar estimates of the CoM 
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kinematics, and that these kinematic estimates are mapped to motor responses. For 

simplicity, in Appendix A, we treated the entire nervous system as a “black box.” 

Specific linkages between somatosensory components and motor components were not 

examined. However, if the CoM kinematic estimate is encoded within the nervous 

system, a simple and testable prediction would be that disturbances in the CoM would 

map to unique motor patterns, whereas disturbances in local variables like joint angles 

would not. In the context of PCA, this could be tested by carefully examining the 

identified component bases for functional linkages between CoM kinematics and motor 

output patterns. Similarly, the kinematics of reduced proprioceptive frames, such as limb 

length and orientation, which have been demonstrated to be encoded in the dorsal spinal 

cerebellar tract (DSCT) (Bosco et al. 1996) could be performed. Extending the analysis 

of Appendix A to include more detailed elements of the hypothesized sensorimotor 

transformation – filling in the “black box” – would likely provide more insight than 

applying more sophisticated nonlinear dimension reduction methods than PCA, for 

example, Isomap and Locally-Linear Embedding (Roweis and Saul 2000; Tenenbaum et 

al. 2000). One of the principal observations we have made based on many studies is that 

quasi-linear relationships like low-dimensional dynamics may emerge from the 

interactions between many nonlinear neuromechanical elements (Ting and McKay 2007); 

therefore, identifying the linear relationships in the context of an overall framework for 

postural control may be more useful than characterizing the overall nonlinear 

transformation compactly without the hypothesized structure. 

CONCLUSION 

 I integrated techniques from musculoskeletal modeling, control systems 

engineering, and data analysis to identify neural and biomechanical constraints that 

determine the muscle activity and ground reaction forces during the automatic postural 

response (APR) in cats. I demonstrated that biomechanical constraints on force 

production in a single hindlimb do not uniquely determine the characteristic patterns of 

force activity observed during the APR; however, when I considered the coordination of 

four limbs, I demonstrated that the optimal feedforward control of individual muscles to 

stabilize the CoM recreated the muscle activity and ground reaction forces observed 

during the APR very well. These results support the hypothesis that the force constraint 
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strategy and related muscle activity represent the optimal motor solution for controlling 

the CoM given the constraints of the musculoskeletal system. 

 This work advances our understanding how the constraints and features of the 

nervous and musculoskeletal systems interact to produce motor behaviors. In the future, 

this understanding may inform improved clinical interventions, prosthetic applications, 

and the general design of distributed, hierarchal systems. 
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APPENDIX A 

THE NERVOUS SYSTEM REDUCES THE DIMENSION OF 

SENSORY INFLOW DURING PERTURBATION RESPONSES 

INTRODUCTION 

 During postural perturbations, the nervous system must use sensory signals from 

all segments of the body in order to rapidly and appropriately activate many muscles to 

maintain stability. We have hypothesized that in the final stage of this sensorimotor 

transformation, muscles are recruited in groups, called muscle synergies, rather than 

individually, reducing the number of degrees of freedom that must be controlled (Ting 

and McKay 2007). Previously, we subjected muscle activity in multiple muscles during 

postural perturbations in both cats and humans (Torres-Oviedo et al. 2006; Torres-Oviedo 

and Ting 2007) to a components analysis technique called nonnegative matrix 

factorization (NNMF, Lee and Seung 1999). We demonstrated that between 4 and 6 

muscle synergies were sufficient to reconstruct the activity in up to 16 individual muscles 

during the postural task, consistent with the hypothesis that the number of degrees of 

freedom that are controlled by the nervous system is fewer than the number of muscles 

(Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007). 

 The primary objective of this study was to address critiques of our previous 

studies that the small number of postural muscle synergies may simply reflect either 

limitations in the complexity of the postural task, or artifacts of the subsequent analyses, 

rather than a muscle synergy organization within the nervous system. Because our 

multidirectional perturbation paradigm typically involves perturbations in various 

directions within the horizontal plane, the repertoire of muscle activity that is evoked 

might be expected to lie on a two-dimensional manifold, whether individual muscles or 

muscle synergies are recruited. Therefore, the first objective of this study was to examine 

the dimension of the perturbation effects in a complex, redundant, biomechanical system 

acting in the gravitational field. For generality, we used a general technique with no 

constraints on sign – principal components analysis, or PCA (Basilevsky 1994) – as the 

primary method of dimension estimation. 
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 The second objective of this study was to address the more nuanced critique that 

the small number of postural muscle synergies may simply reflect dependencies in the 

sensory information elicited by postural perturbations and used to pattern muscular 

responses, rather than dependencies in muscle activation enforced by a muscle synergy 

organization within the nervous system. Towards this, we systematically investigated the 

relationship between the dimension of applied perturbations, somatosensory information, 

muscle activity, and motor outputs during postural tasks. Somatosensory information 

from the joints and skin is critical to the timing of muscle activity during postural 

responses (Bolton and Misiaszek 2009; Inglis et al. 1994; Stapley et al. 2002). However, 

this somatosensory information does not reflect the dynamics of the perturbation itself, 

but rather, reflects the dynamics of the perturbation after mechanical filtering through the 

musculoskeletal system, which may limit its complexity. If postural perturbations fail to 

fully excite the dynamics of the musculoskeletal system, or excite the dynamics in a 

stereotyped, low-dimension fashion, later stages in the sensorimotor transformation 

would presumably have insufficient sensory inflow to generate complex muscle 

activation patterns, whether or not muscle synergy constraints are present. It is also likely 

that the natural sensory frames of the musculoskeletal system also filter somatosensory 

information. For example, the maximal lengthening directions of individual muscles 

within the isolated cat hindlimb lie preferentially near the parasagittal plane (Bunderson 

et al. 2010). The relative amount and accuracy of reflex feedback regarding the lengths of 

muscles in the hindlimb therefore depends on the degree to which postural perturbations 

excite these neuromechanical feedback pathways. 

 To determine whether muscle synergies identified during postural perturbations 

simply reflect limitations in the complexity of the postural task, we have previously 

altered the biomechanical context of the postural task in cats (Torres-Oviedo et al. 2006), 

with the intent that different biomechanical contexts might elicit novel muscle activation 

patterns. We required cats to perform two different postural perturbation tasks: translation 

perturbations, wherein the support surface was rapidly translated in any of several 

directions in the horizontal plane, and rotation perturbations, wherein the support surface 

was rapidly rotated in any of several combinations of pitch and roll. Because these two 

types of perturbations elicit apparently opposite changes in the angles of joints 
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throughout the body (Nashner 1976; Ting and Macpherson 2004), we reasoned that they 

would elicit different patterns of sensory information, and therefore would be likely to 

recruit novel muscle activation patterns. Despite this, we observed that muscle synergies 

from translation perturbations were sufficient to reconstruct muscle activity during 

rotation perturbations, suggesting that the same underlying neuronal networks were being 

recruited during both perturbation types. We also observed that each muscle synergy 

could be robustly correlated to a “functional motor output” – a unique reaction force 

vector at the ground. Further, when the cats were forced to perform the postural task in 

different postural configurations created by altering the distance between the fore- and 

hind-feet, the force vectors rotated with the limb axis in the sagittal plane. If the 

relationship between muscle synergy activation and force vector generation were causal, 

it would be consistent with the hypothesis that muscle synergies may be organized within 

and recruited by the nervous system in terms of the motor outputs that they produce. 

Later, in a musculoskeletal model of the cat hindlimb, we demonstrated that this 

hypothesized causal relationship was biomechanically feasible, as the force vectors 

produced by simulated muscle synergies exhibited a similar pattern of rotation with the 

limb axis as the hindlimb was moved throughout the workspace (McKay and Ting 2008). 

 A limitation of the previous study was that we did not quantitatively address the 

degree to which alterations in the biomechanical context of the postural task affected its 

sensory context. The patterning of the “initial burst” of muscle activity of the automatic 

postural response (APR), beginning about 40-60 ms after perturbation in onset, and the 

active changes in biomechanical variables, beginning about 60 later, relies heavily on 

somatosensory information from the joints and the skin encoding changes in kinematic 

and kinetic variables – joint angles, joint angular velocities, and reaction forces at the 

ground – within the first 30 ms after the onset of a postural perturbation (Ting and 

Macpherson 2004). Proprioceptive information regarding the angles and angular 

velocities of joints throughout the hindlimb is represented at the dorsal root level during 

locomotion in afferents from multiple sensory modalities including muscle spindles, 

Golgi tendon organs, and cutaneous and hair follicle receptors (Weber et al. 2007). 

Second, cutaneous information regarding loading forces at the ground is required for 

appropriate foot placement in spinal cats during locomotion (Rossignol et al. 2008) and 



 

 99 

provides the only unambiguous estimate of CoM excursion direction during postural 

disturbances (Ting and Macpherson 2004). 

 The sensory context of the postural task is not trivial to estimate because the 

somatosensory information used during postural tasks likely reflects the combined 

dynamics of the platform and the musculoskeletal system. The kinematic and kinetic 

variables represented in somatosensory information are likely to be highly correlated 

during postural perturbations because of purely biomechanical factors; for example, the 

angles of the hip, knee and ankle in anesthetized cats lie along a plane in three-

dimensional joint space in the absence of neural control (Bosco et al. 2000). Therefore, 

dimension reduction within the musculoskeletal system may be a possible source of 

constraint on the dimension of elicited muscle activity and functional motor outputs 

(Figure A.1). This is in contrast to reduced preparations where the influence of sensory 

information as a determinant of muscle activity dimension can be eliminated, for example 

by deafferentation (Cheung et al. 2005), explicitly modulated, for example by tendon 

vibration (Kargo and Giszter 2008), or presumably bypassed entirely, for example by 

spinal iontophoresis (Saltiel et al. 2001). It is also unlikely that despite the established 

roles of vestibular and visual information in postural control during continuous 

perturbations (Kuo 2005; Peterka 2002), these sensory modalities either cannot be or is 

not used to compensate for deficiencies or dependencies in somatosensory information in 

postural control during transient perturbations. Following vestibular lesion, cats exhibit 

hypermetric, but appropriately-patterned postural responses to support surface 

translations, even when standing in total darkness (Inglis and Macpherson 1995). In 

contrast, when somatosensory information is disrupted after peripheral neuropathy, the 

onset of muscle activity is delayed and its timecourse of activation is disrupted (Lockhart 

and Ting 2007; Stapley et al. 2002), similar to results in humans after peripheral 

neuropathy (Bloem et al. 2000; Bloem et al. 2002; Inglis et al. 1994). 

 Here, we were interested in three primary questions. First, do translation and 

rotation perturbations elicit high, or low-dimension somatosensory information? 

Although we considered translations in directions distributed throughout the horizontal 

plane, and rotations distributed throughout the pitch and roll axes, all of the conditions in 

each perturbation type can be summarized by only two parameters – either anterior and 
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lateral Cartesian coordinates in translation, or pitch and roll rotational coordinates in 

rotation. Dependencies between perturbation conditions may therefore fail to fully excite 

the dynamics of the musculoskeletal system, constraining the dimension of 

somatosensory information to that of the perturbation, 2. In this case, the dimension of 

muscle activity and motor outputs may be constrained by the dimension of the 

somatosensory information rather than dimension reduction within the nervous system 

(Figure A.2, A1).  

 Second, if the somatosensory information elicited by translation and rotation 

perturbations is greater than two-dimensional, is it mapped by the nervous system to 

lower-dimension muscle activity and motor outputs?  If the postural response was 

governed by the feedback of local variables like joint angles, in the absence of any central 

constraints on dimension, we would expect the dimension of the perturbations to be 

retained throughout the sensorimotor transformation (Figure A.2, A2). 

 Third, and finally, do translation and rotation perturbations elicit similar, or 

different patterns of somatosensory information and motor outputs (Figure A.2, B-C)? 

We hypothesize that different patterns of somatosensory information lead to the 

recruitment of identical muscle synergies in translation and rotation perturbations. 

However, if similar somatosensory information is elicited in both perturbation types due 

the dynamics of the musculoskeletal system, recruitment of identical muscle synergies 

would be expected without explicit dimension reduction within the nervous system. 

Similarly, considering motor outputs, we have previously proposed that the recruitment 

of identical muscle synergies during translation and rotation perturbations leads to a 

conserved pattern of force outputs. By extension, these forces would be expected to be 

used in the different overall biomechanical contexts associated with the two perturbation 

types. However, it was unknown whether such hypothesized multifunctionality could be 

quantified. 

 To address these questions, we estimated and compared the dimension of 

somatosensory information, muscle activity, and motor outputs during translation and 

rotation perturbations. Because of the long computational and neuromechanical latencies 

inherent to the automatic postural response in cats, somatosensory inputs and motor 

outputs can be observed in discrete epochs during balance tasks (Ting and Macpherson 
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2004). Therefore, we directly estimated and compared the dimension of somatosensory 

inputs, muscle activity, and functional motor outputs during standing balance in 

unrestrained cats.  

 We present three primary findings. First, we demonstrate that although both 

translation and rotation perturbation paradigms are by construction two-dimensional, both 

types give rise to somatosensory inflow that is significantly higher dimension. Second, by 

directly comparing the dimension of somatosensory inputs, muscle activity, and motor 

outputs, we demonstrate that that sensorimotor transformation during postural 

perturbations is not one-to-one, as would be expected if low dimension muscle activity 

and motor outputs solely reflected limitations in the available somatosensory information. 

Third, by quantifying the similarity of identified principal component bases of 

somatosensory information and motor outputs using shared subspace dimensionality 

(SSD, Cheung et al. 2005), we demonstrate that distinct patterns of somatosensory 

information and motor outputs are elicited across translation and rotation perturbations – 

suggesting that altering the biomechanical context of the postural task alters the sensory 

context – as well as across the somatosensory input and motor output epochs – suggesting 

that feedback of local variables is insufficient to explain the patterning of the postural 

task. Finally, we show that our results are generally robust to changes in dimension 

estimation methods, as well as demonstrating that the dimension estimates of muscle 

activity from our implementation of PCA were consistent with those using non-negative 

matrix factorization. 
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Figure A.1. Somatosensory information elicited during reactive postural tasks reflects the 
combined dynamics of postural perturbations and the musculoskeletal system. In this 
hypothesized organization for postural control (blue lines), postural perturbations are 
transformed through joints, muscles, and reflexes (musculoskeletal system, black box) to 
somatosensory inputs. Networks within the CNS (gray, enclosed by dark gray box)  
integrate these inputs to form an estimate of the relevant aspects of the body’s state which 
is used to centrally control the postural task via the activation of muscle synergies, and 
subsequent muscle activation (EMG) and motor outputs. In this study, we estimated and 
compared the dimensionality of somatosensory inputs, EMG outputs, and kinematic and 
kinetic outputs during postural perturbation tasks. Other studies of muscle synergies 
(light gray lines) progressively isolate motor pathways, including the muscle synergy 
block hypothesized to be the source of dimensionality reduction. Examples include 
nocifensive reflex stimulation (light gray solid line, Kargo and Giszter 2008; Tresch et al. 
1999), voluntary movements (light gray dashed line, d'Avella et al. 2006; Holdefer and 
Miller 2002), and spinal stimulation (light gray dotted line, Mushahwar et al. 2004; 
Saltiel et al. 2005). 
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Figure A.2. Hypotheses investigated in the study. A: Three possible relationships 
between dimension of somatosensory inputs, muscle activity, and kinematic and kinetic 
motor outputs during postural perturbation tasks. A1: Dependencies between perturbation 
conditions fail to fully excite the dynamics of the musculoskeletal system, and therefore 
constrain the dimension of elicited somatosensory information to the perturbation 
dimension (2). In this scheme, the dimension of EMG and functional motor outputs is 
constrained by the dimension of sensory information – a task constraint – rather than 
dimension reduction within the nervous system. A2: Perturbations elicit somatosensory 
information of higher dimension, but EMG and functional motor outputs result from 
feedback of local variables, without central dimension constraints. A3: Perturbations 
elicit high dimension somatosensory information which is mapped by the nervous system 
to low-dimension EMG and functional motor outputs. B: Two possible relationships 
between the somatosensory information elicited by translation and rotation perturbations. 
B1: Translation and rotation perturbations elicit unique somatosensory information that is 
conveyed by the nervous system to identical muscle activation patterns, reducing the 
dimension of the muscle activity. B2: Due to the dynamics of the musculoskeletal 
system, translation and rotation perturbations elicit identical somatosensory information. 
In this scheme, interdependencies in somatosensory information result in common 
muscle synergies without explicit dimension reduction within the nervous system. C: 
Two possible relationships between muscle activity patterns and functional motor 
outputs. C1: Common muscle activity patterns elicit different functional motor outputs 
depending on biomechanical context. C2: Deterministic relationship between muscle 
activity patterns and motor outputs. 
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METHODS 

SUMMARY 

 We considered previously collected data of seven cats during translation and 

rotation perturbations. To estimate somatosensory information and motor outputs, we 

calculated the mean changes in the angles and angular velocities of joints from across the 

body, as well the changes in reaction forces at the ground, during a somatosensory input 

time window immediately after perturbation onset and during a motor output time 

window after the onset of muscle activity. We assembled these mean values, as well as 

average muscle activity during the initial burst of the APR, into matrices and estimated 

their dimension using PCA based on the data correlation matrix. We performed three 

primary analyses. First, to determine whether the dimension of somatosensory 

information might be limited by the dimension of applied perturbations, we compared the 

dimension of kinematic and kinetic variables during the somatosensory input period to 

the nominal dimension of the perturbation and to the dimension of control data that was 

randomly shuffled. We considered data from both perturbation types separately, 

comparing their dimension to the nominal perturbation dimension 2, as well as data from 

both perturbation types together, comparing their dimension to the nominal perturbation 

dimension 3. Second, to determine whether muscle activity and motor outputs elicited 

during postural perturbations were of comparable or lower dimension than somatosensory 

inputs, we directly compared the dimension of somatosensory inputs, muscle activity, and 

motor outputs. Third, to determine whether translation and rotation perturbations elicited 

similar or different somatosensory information, muscle activity, and motor outputs, we 

quantified the similarity between principal component bases identified in each 

perturbation type using SSD. Additionally, to test whether the sensorimotor 

transformation could be well-characterized by local feedback of kinematic and kinetic 

variables, we quantified the similarity between principal component bases identified in 

the somatosensory input and the motor output periods using SSD. Finally, we compared 

our results with those of a different formulation of PCA (cov-PCA), as well as with those 

of NNMF. 
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EXPERIMENTAL PROCEDURES 

 Previously-collected data of seven healthy cats (An, Be, Kn, So, Sq, St, and Wo) 

were examined. The unrestrained cats withstood perturbations of the support surface 

either as translations in the horizontal plane (15 cm/s, 50 mm amplitude) or as rotations in 

combinations of pitch and roll (40 °/s, 6°  amplitude) (Macpherson et al. 1987; Ting and 

Macpherson 2004). Perturbations were delivered in either 12 or 16 directions depending 

on the animal (Table A.1). A minimum of five trials of each perturbation direction were 

collected. Two of the cats received additional translation perturbations in a short stance 

distance condition wherein the distance between the forelimbs and hindlimbs was 

reduced by approximately 30%.  

 Chronic indwelling EMG from 16 left hindlimb muscles and 3D ground reaction 

forces at each paw were collected at 1,000 Hz. The muscles sampled in each cat are 

summarized in Table A.2. Raw EMG signals were high-pass filtered at 35 Hz, demeaned, 

rectified, and low-pass filtered at 100 Hz. EMG signals were normalized to the maximum 

EMG observed in each muscle over all conditions for each cat. Ground reaction forces 

were low-pass filtered at 100 Hz. In rotation trials, ground reaction forces were rotated 

into Earth-based coordinates based on the measured pitch and roll of the platform. 

Positions of kinematic markers located on the platform and the left (An, Be, Kn, Wo) or 

both (So, Sq, St) sides of the body were collected at 100 Hz and used to estimate sagittal- 

and frontal-plane joint angles and joint angular velocities. Locations of joint centers were 

estimated from marker positions by subtracting off joint radii, skin widths, and marker 

widths. Sagittal- and frontal-plane joint angles were computed from the positions of joint 

centers. Joint angular velocity time traces were numerically derived from joint angle time 

traces and low-pass filtered at 5 Hz. 

SOMATOSENSORY INPUT , MOTOR OUTPUT, AND EMG QUANTIFICATION 

 We treated measured kinematic and kinetic variables as proxies for 

somatosensory information and functional motor outputs. We determined changes in 

muscle activity, kinematic, and kinetic variables during translation and rotation 

perturbations by examining changes in mean levels during specific time periods as 

reported in previous studies (Figure A.3) (Ting and Macpherson 2004). To estimate 

somatosensory information, during each trial ensembles of joint angles, joint angular 
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velocities, and ground reaction forces were sampled during a somatosensory input time 

window occurring 0-30 ms after perturbation onset. Baseline levels during a background 

window 250-100 ms before perturbation onset were removed. Ensembles of 

electromyograms (EMG) were sampled during background, and during the initial burst of 

the APR, 60-120 ms after perturbation onset. Only EMG samples during the APR were 

included in the later dimension analyses. To estimate functional motor outputs, 

ensembles of joint angles, joint angular velocities, and ground reaction forces were 

sampled during a motor output time window occurring 120-200 ms after perturbation 

onset during each trial, allowing an appropriate electromechanical delay for muscle 

activation to dissipate to the periphery. We were interested in changes in kinematic and 

kinetic variables, which correspond to the disturbances introduced by postural 

perturbations and the subsequent corrections of the active response, rather than their 

absolute levels, which may depend on the initial state of the animal (kinematic 

configuration, phase of postural sway, etc.). Therefore, the mean values for each trial 

were expressed as changes from one period to the next to highlight changes in slope. 

 To determine whether the magnitudes of changes in kinematic and kinetic 

variables during the somatosensory input and motor output periods were comparable 

across perturbation types, the mean values for each period of each trial were subjected to 

two-way ANOVA (factors: data type (joint angle, joint angular velocity, or ground 

reaction force)  × perturbation type (translation vs. rotation)). Results were evaluated at a 

significance level of α = 0.05. Additionally, to determine whether the magnitudes of 

changes were comparable across time periods, mean values from both perturbation types 

were pooled and subjected to a second two-way ANOVA (data type × time period) 

evaluated at a significance level of α = 0.05.  

 To determine whether muscles tended to activate, rather than deactivate, during 

the APR, the percentage of trials and muscles in which the APR level was positive with 

respect to the background level was calculated for each cat. These percentages were 

subjected to one-way ANOVA on perturbation type (α = 0.05), as well as to t-tests 

against the value corresponding to no bias (50%). Results were evaluated at a 
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significance level of α = 0.05, adjusted with a Bonferroni correction for multiple 

comparisons (α = 0.025; n = 2). 

DIMENSION ESTIMATION WITH PCA 

 The dimension of ensembles of joint angles, joint angular velocities, forces, and 

EMG data for each cat was estimated with PCA. Each experimental variable for each cat 

was first normalized to have unit variance over all available samples of each perturbation 

type, to ensure that each variable was expressed on a consistent scale during different 

time periods and that each variable was counted equally in the subsequent analyses. We 

primarily considered data from translation and rotation perturbations separately; however, 

in some cases data from both perturbation types were pooled before dimension 

estimation. 

 The data were then assembled into matrices grouped by variable type and by time 

period. Principal components (PCs) were then calculated as the eigenvectors of the 

correlation matrix of each data matrix. In this formulation of PCA, the amount of 

variance contributed by each PC (also referred to as the latent variance) is described 

directly by the associated eigenvalue. PCs corresponding to eigenvalues ≥ 1.0 explain 

more variance than any given variable of the original dataset and are typically retained; 

others are typically discarded (Basilevsky 1994; Widmer et al. 2003). We therefore 

defined dimension to be the number of PCs corresponding to eigenvalues ≥ 1.0. As a 

control condition, the dimension of each data matrix was typically determined before and 

after the elements of the matrix were randomly shuffled to remove correlation structure 

(Gentner and Classen 2006). 

IDENTIFICATION OF SHARED COMPONENTS WITH SSD 

 We quantified the similarity between identified sets if PCs with their shared 

subspace dimensionality, or SSD (Cheung et al. 2005; Gentner and Classen 2006). SSD is 

a scalar that quantifies the number of principal angles between two subspaces that are 

smaller than a threshold value.  To illustrate the idea of principal angles, consider two 

intersecting planes embedded in 3D space. The vector corresponding to their intersection 

is common to both planes, and the first principal angle between the subspaces is therefore 

angle between the intersection vector within the first plane and the intersection vector in 
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the second plane: 0°. The second principal angle is then the angle that one would 

commonly imagine between the two planes. 

 Given a pair of PC matrices, with each column corresponding to a basis vector 

and each row corresponding to a variable, the SSD analysis proceeds as follows. The 

principal angles between the subspaces are first calculated numerically (subspacea.m, 

Knyazev and Argentati 2002). After the principal angles are calculated, the SSD is 

defined to be the number of principal angles with cosines ≥ 0.90; equivalent to the 

number of principal angles in the interval (-25°,25°). In the case of fully overlapping 

subspaces, the SSD will be equal to the number of columns in the narrower of the two 

matrices. For this reason, we performed statistical comparisons on SSD values 

normalized to this maximum. SSD values normalized in this way describe whether two 

vector subspaces are mutually perpendicular (SSD=0), completely coplanar (SSD=1), or 

partially coplanar (0≤SSD≤1). 

COMPARISON OF SOMATOSENSORY INPUT DIMENSION TO PERTURBATION 

DIMENSION AND TO SHUFFLED DATA 

 To determine whether somatosensory information is limited by the dimension of 

applied postural perturbations, we directly compared the dimension of kinematic and 

kinetic variables during  the somatosensory input period to the dimension of the applied 

perturbations. We subjected the dimension estimates of somatosensory input variables 

across cats to a two-way ANOVA (data type × perturbation type). Data were pooled 

across factors that failed initial F-tests and subjected to one-tailed t-tests against the 

perturbation dimension (2). Results were evaluated at a significance level of α = 0.05, 

adjusted with a Bonferroni correction for multiple comparisons (α = 0.0167; n = 3). 

Additionally, we performed similar tests on the dimension of kinematic and kinetic data 

pooled from both translation and rotation perturbations. We subjected these data to a one-

way ANOVA (data type). Data were pooled across factors that failed initial F-tests and 

subjected to one-tailed t-tests against the dimension of combined translation and rotation 

perturbations (3). Results were evaluated at a significance level of α = 0.05, adjusted with 

a Bonferroni correction for multiple comparisons (α = 0.0167; n = 3). 
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 Next, to determine whether the correlation structure of somatosensory information 

reflected the dynamics of the musculoskeletal system as excited by the postural 

perturbations rather than random noise, we compared the dimension of somatosensory 

information before and after shuffling the data to disrupt the correlation structure. We 

performed a three-way ANOVA on the pooled somatosensory information dimension and 

shuffled data dimension (structure (data vs. shuffled data) × data type × perturbation 

type) evaluated at significance level of α = 0.05. All averaged data are presented as 

means ± SD. 

COMPARISON OF MOTOR OUTPUT DIMENSION AND SENSORY INPUT 

DIMENSION 

 To determine whether the nervous system reduces the dimension of 

somatosensory information in patterning muscle activity and motor outputs, we directly 

compared the dimension of somatosensory input and motor output variables. Dimension 

values were pooled across cats and subjected to three-way ANOVA (time window 

(somatosensory input vs. motor output or APR) × data type × perturbation type) at a 

significance level of α = 0.05. 

 Additionally, to determine whether the correlation structure exhibited by motor 

outputs was significant, we compared the dimension of motor outputs before and after 

shuffling the data. The pooled motor output dimension and shuffled data dimension were 

subjected to a three-way ANOVA (structure × data type × perturbation type) evaluated at 

significance level of α = 0.05. 

COMPARISON OF PRINCIPAL COMPONENTS ACROSS TRANSLATION AND 

ROTATION PERTURBATIONS AND POSTURAL CONFIGURATIONS 

 To determine whether translation and rotation perturbations elicited identical or 

different somatosensory information and motor responses, we quantified the normalized 

SSD between sets of PCs identified in translation and rotation perturbations during both 

the sensory input and motor output periods. We subjected the normalized SSD values to a 

two-way ANOVA (data type × time window). Data were pooled across factors that failed 

initial F-tests and subjected to one-tailed t-tests against the value corresponding to 
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complete similarity (1). Results were evaluated at a significance level of α = 0.05, 

adjusted with a Bonferroni correction for multiple comparisons (α = 0.0071; n = 7). 

Additionally, to determine the degree to which EMG PCs were shared across postural 

configurations, we also quantified the SSD between sets of EMG PCs identified during 

translation perturbations in the preferred and short postural configurations. Because only 

two animals (Be and Sq) received perturbations in the short postural configuration, these 

results are presented without detailed statistical analysis.  

COMPARISON OF PRINCIPAL COMPONENTS ACROSS THE SOMATOSENSORY 

INPUT AND MOTOR OUTPUT PERIODS 

 To determine whether changes in kinematic and kinetic variables were similar 

during the somatosensory input and motor output periods, as would be expected in a 

mechanical system dominated by mechanical feedback, we computed the SSD between 

sets of PCs identified during the somatosensory input and motor output periods. We 

subjected the normalized SSD values to a two-way ANOVA (data type × perturbation 

type). Data were pooled across factors that failed initial F-tests and subjected to t-tests 

against the value corresponding to complete similarity (1). Results were evaluated at a 

significance level of α = 0.05, adjusted with a Bonferroni correction for multiple 

comparisons (α = 0.025; n = 2).  

COMPARISON WITH COVARIANCE-PCA AND NNMF 

 To verify the robustness of our dimension estimates, we compared the results of 

the primary, correlation-matrix based PCA with those of two alternative methods of 

dimension estimation. We first subjected kinematic and kinetic data to an alternative 

formulation of PCA based on the eigenvectors and eigenvalues of the data covariance 

matrix (covariance-PCA). In this formulation, dimension was defined as the number of 

covariance-PCs required for cumulative data reconstruction R2 ≥ 0.90. Dimension 

estimates of kinematic and kinetic variables from covariance-PCA and correlation-PCA 

were pooled and subjected to a three-way ANOVA (method (correlation-PCA vs. 

covariance-PCA) × time window × perturbation type) at a significance level of α = 0.05. 

Second, the dimension of EMG data was estimated with both covariance-PCA and 
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nonnegative matrix factorization (NNMF) (Torres-Oviedo et al. 2006; Tresch et al. 

1999). In this formulation, dimension was defined as the number of identified muscle 

synergies required for cumulative data VAF ≥ 0.90 (Torres-Oviedo et al. 2006). 

Dimension estimates of EMG were pooled from NNMF, covariance PCA, and 

correlation-PCA and subjected to a two-way ANOVA (method (correlation-PCA vs. 

covariance-PCA vs. NNMF) × perturbation type) at a significance level of α = 0.05. 

 
 
 
 
Table  A.1. Summary of experimental conditions across cats. 
 Pert Type Stance An Be Kn So Sq St Wo 

# trials translation preferred 250 158 259 64 143 221 184 
  short  181   169   

 rotation preferred 225 233 220 166 164 185  

# directions translation  16 12 16 12 12 16 16 

 rotation  16 12 16 12 12 12  

kinematics   L L+R L L+R L+R L+R L 

Abbreviations: L and R, left and right side kinematics. 
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Table  A.2. Inclusive list of muscles recorded across cats. 
Label Muscle Name An Be Kn So Sq St Wo 

ADFM adductor femoris  •  • •   
BFMA biceps femoris anterior  •  • •   

BFMM biceps femoris medialis • • • • •  • 
BFMP biceps femoris posterior • •   •   

EDL extensor digitorum longus • •  • •   
FDL flexor digitorum longus  •  • •   

FHL flexor hallicus longus  •  • •   
GLUT gluteus •  •   •* • 

GRAC gracilis  •   •   
ILPS Iliopsoas   •     

LGAS lateral gastrocnemius •   •  • • 
MGAS medial gastrocnemius • •   •   

PERB peroneus brevis  •  • •   
PLAN plantaris •   • •   

PSMA psoas major •       
REFM rectus femoris • • • • •  • 

SEMA semitendinosus anterior  • • •    
SEMP semitendinosus posterior • • • • •  • 

SOL soleus •  •   •  
SRTA sartorius anterior • • • • •  • 

STEN semitendinosus • • • •   • 
TERM teres major   •   • • 

TFL tensor fascia latae •       
TIBA tibialis anterior •  • • •  • 

VLAT vastus lateralis   •     
VMED vastus medialis • •  • • •  

The designator * indicates that the muscle was recorded in the right hindlimb; other 
muscles were recorded in the left hindlimb. 
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Figure A.3. Time windows used to estimate somatosensory input and motor output 
variables and muscle activation. A: changes in experimental variables from the left 
hindlimb during a translation perturbation towards 60°, diagonally forward and to the 
right. Sagittal-plane joint angles and joint angular velocities are shown. Shaded areas 
below EMG traces represent the background period and the initial burst of the APR. 
Other shaded areas the somatosensory input and motor output time periods. Note that the 
motor output period is earlier for electromyographic (EMG) than for biomechanical 
variables to account for neuromechanical delay. B: the same variables during a 
translation perturbation towards 0°. Background muscle activity depended on the state of 
the animal at the beginning of each trial: SEMP is inactivated during the motor output 
period in A but is activated during the motor output period in B, while REFM is activated 
in both. The level of background postural tone depends the state of the animal. 
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Figure A.4. Direction-dependent differences in joint kinematics during support-surface 
translations. A-C: Examples of joint motions induced by translation perturbations 
towards: A, 0°, rightward, B, 90°, forward, C, 60°, diagonally rightwards and forward. 
Large joint motions are induced by 0° perturbations, the direction in which the animal is 
the most biomechanically compliant. Smaller joint motions with different patterns of 
covariation are induced by 90° and 60° perturbations. D: Weighted sum of A and B for 
illustration of biomechanical nonlinearities. Although C and D are similar in general, the 
effects of 60° perturbations are not a simple sum of those of 0° and 90°. Note the 
additional motions at the knee and hip in the weighted sum that are suppressed in the 60° 
perturbation, the direction in which the animal is the most biomechanically stiff. Note 
that in all cases the animal does not return to a fully upright position until after the end of 
platform motion (> 300 ms). 
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perturbations, subsequent SSD analyses revealed that the components themselves were 

only partially shared across translation and rotation perturbations. Coordinated EMG 

activity during the initial burst of the APR in muscles throughout the hindlimb was also 

characterized by more than two significant principal components, but fewer than the 

number identified in somatosensory input variables. The number of significant EMG 

principal components was equivalent to the number of nonnegative muscle synergies 

identified through NNMF. Subsequent analyses revealed that EMG principal components 

were only partially shared across translation and rotation perturbations, but were 

completely shared between preferred- and short-stance distance conditions in both 

animals for which short-stance distance trials were available. After the onset of EMG 

activity, changes in the angles and angular velocities of joints throughout the body, as 

well as ground reaction forces at the feet during the motor output period were 

characterized by significant principal components that were fewer in number than those 

identified during the somatosensory input period. 

TIMECOURSE OF RESPONSES TO POSTURAL PERTURBATIONS 

 Perturbations caused small, immediate changes in the angles and angular 

velocities of joints throughout the body and ground reaction forces at the feet during the 

sensory input period (Figure A.4). The magnitudes of these disturbances varied between 

translation and rotation perturbations (p≤0.03; F(1,33)=5.1). Rotation perturbations 

elicited larger initial disturbances in joint angles and joint angular velocities in 

comparison to translation perturbations, but smaller initial disturbances in ground 

reaction forces. This  effect was quantified as a significant interaction between 

perturbation type and data type (p < 0.01; F(2,33) = 4.9). Across animals, the grand mean 

absolute change in joint angles during the sensory input period increased from 0.4 ± 0.1° 

in translation to 0.7 ± 0.2° in rotation. Similarly, the grand mean absolute change in joint 

angular velocities during the sensory input period increased from 8.5 ± 2.5°/sec in 

translation to 22.7 ± 16.8°/sec in rotation. In contrast, the grand mean absolute change in 

ground reaction forces during the sensory input period decreased from 0.2 ± 0.05 N in 

translation to 0.08 ± 0.01 N in rotation. 

 Animals exhibited coordinated muscle activity in response to the kinematic and 

kinetic disturbance introduced by the perturbations during the motor output period. 
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Muscles primarily activated, rather than deactivated, with respect to the level during the 

background period (p < 0.025; t-test, Bonferroni correction), although this bias was more 

pronounced in translation than rotation perturbations (p << 0.001; F(1,11) = 65.4). Across 

cats and sampled muscles, activation with respect to the background level was observed 

in 74 ± 3% of muscles and trials in translation and in 57 ± 5% of muscles and trials in 

rotation. 

 Kinematic and kinetic variables exhibited changes during the motor output period 

that were significantly larger than the changes observed during the sensory input period 

(p < 0.021; F(1,74) = 10.2). Across animals and perturbation types, the grand mean 

absolute change in joint angles increased from 0.6 ± 0.1° during the sensory input period 

to 4.8 ± 1.8° during the motor output period. The grand mean absolute change in joint 

angular velocities increased from 14.3 ± 8.6°/sec during the sensory input period to 

28.8 ± 8.6°/sec  during the motor output period, and the grand mean absolute change in 

ground reaction forces increased from 0.1 ± 0.03 N during the sensory input period to 

1.1 ± 0.3 N during the motor output period. Horizontal plane forces exhibited the 

characteristic isotropic pattern during the sensory input period and center-of-mass 

directed anisotropic pattern during the motor output period first described by Macpherson 

as the force constraint strategy (Macpherson 1988a; Ting and Macpherson 2004). The 

magnitudes of changes in kinetic and kinematic variables during the motor output period 

exhibited a similar dependence on perturbation type as during the sensory input period. 

There was a strong main effect of perturbation type (p << 0.001; F(1,33) = 67.8) as well 

as a strong interaction effect, as changes to joint angles and joint angular velocities 

increased, whereas changes to force magnitude decreased, in rotation perturbations vs. 

translation perturbations (p << 0.001; F(2,33) = 43.2). Across animals, the grand mean 

absolute change in joint angles during the motor output period increased from 2.1 ± 0.6° 

in translation to 8.6 ± 1.6° in rotation. The grand mean absolute change in joint angular 

velocities during the motor output period increased from 15.9 ± 3.4°/sec in translation to 

46.4 ± 10.9°/sec in rotation, and the grand mean absolute change ground reaction forces 

during the motor output period decreased from 1.7 ± 0.6 N in translation to 0.5 ± 0.07 N 

in rotation. 
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COMPARISON OF SOMATOSENSORY INPUT DIMENSION AND 

PERTURBATION DIMENSION 

 Across animals and perturbation types, kinematic and kinetic variables during the 

somatosensory input period were significantly higher-dimension than 2 (p ≤ 0.0167), 

although perturbations were dimension 2 by construction. Across animals and 

perturbation types, the grand mean dimension of changes in kinematic and kinetic 

variables during the sensory input period was 8.7 ± 2.3 for joint angles, 8.2 ± 2.0 for joint 

angular velocities, and 3.5 ± 0.5 for forces. Tukey-Kramer tests applied post-hoc revealed 

that forces were significantly lower dimension than joint angles and joint angular 

velocities (p<0.0001). Inspection of the plots of the latent variances of the principal 

components suggested that significant correlation structure existed in the somatosensory 

information (Figure A.5). The first several components contributed variance greater than 

the 1.0 threshold, giving the plots characteristic steep curves. The number of components 

greater than the threshold was unchanged across translation and rotation perturbations 

(p ≤ 0.20; F(1,35) = 5.3) but did depend on the data type (p<<0.01; F(2,35) = 34.7).  

Similar results were obtained when we examined data that was pooled from translation 

and rotation perturbations before dimension estimation. There was a highly significant 

effect of data type (p<<0.01; F(2,17) = 20.57). Across animals, the grand mean 

dimension was 8.8 ± 1.9 for joint angles, 7.8 ± 1.7 for joint angular velocities, and 

3.5 ± 0.5 for forces; also similarly, forces were significantly lower dimension than joint 

angles and joint angular velocities (p<0.001). The only primary difference was observed 

in the t-test results against the combined perturbation dimension. Although the joint angle 

and joint angular velocity data were significantly higher dimension than the combined 

perturbation dimension 3, the force data was not significantly greater after Bonferroni 

correction (p<0.038). 

 Kinematic and kinetic variables during the somatosensory input period were 

significantly lower-dimension than structureless data (p≤0.0001; F(1,73)=29.9) in both 

translation and rotation perturbations (p≤0.18; F(1,73)=1.8). Across animals, perturbation 

types, and data types, the grand mean effect of shuffling the data was to raise the 

dimension from 6.8±2.9 to 9.9±4.3. Comparison of the plots of the latent variances of the 

principal components of the original and shuffled data suggested that the plots of shuffled 
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data were less steep in general, with additional eigenvalues greater than the 1.0 threshold 

(Figure A.3). Structureless data did retain the dimension dependence on data type from 

original data (p≤0.0001; F(2,73)=43.99). Across animals and perturbation types, the 

grand mean dimension of changes in shuffled kinematic and kinetic variables during the 

sensory input period was 12.0±3.7 for joint angles, 12.1±3.9 for joint angular velocities, 

and 5.6±0.8 for forces.  

COMPARISON OF SOMATOSENSORY INPUT DIMENSION AND MOTOR 

OUTPUT DIMENSION 

 EMG, kinematic and kinetic variables during the motor output period were 

significantly lower-dimension than kinematic and kinetic variables during the 

somatosensory input period (p<<0.0001, F(1,85)=34.6) (Figure A.4). Across animals, 

data types, and perturbation types, somatosensory variables of were higher dimension 

than motor output variables and EMG (grand mean 6.8 ± 2.9 vs. 4.4 ± 2.2). Dimension 

values were unchanged across translation and rotation perturbations (p≤0.39; 

F(1,85) = 0.7) but depended strongly on the data type (p<<0.0001; F(3,85) = 59.6). 

Across animals and perturbation types, the grand mean dimension of changes in 

kinematic and kinetic variables during the motor output period, as well as EMG during 

the APR, was 6.2±1.1 for joint angles, 6.2±1.6 for joint angular velocities, 2.1±0.3 for 

forces, and 3.2±1.2 for EMG. Tukey-Kramer tests applied post-hoc revealed that 

contrasts between all data types except for that between joint angles and joint angular 

velocities were significant (p≤0.05). The grand mean dimension of changes in kinematic 

and kinetic variables during the motor output period, excluding EMG, was 4.8 ± 2.2. 

 The dimension of changes in kinematic and kinetic variables during the motor 

output period, as well as EMG during the APR, was significantly lower than that of 

structureless data (p≤0.0001; F(1,98)=107.0) in both translation and rotation 

perturbations (p≤0.39; F(1,98)=0.74), similar to the case of somatosensory information. 

Across animals, perturbation types, and data types, the grand mean effect of shuffling the 

motor output and EMG data was to increase the dimension from 4.4 ± 2.2 to 8.8±3.9. 

Structureless data retained the dimension dependence on data type from original data 

(p≤0.0001; F(3,98)=41.5). Across animals and perturbation types, the grand mean 

dimension of changes in shuffled kinematic and kinetic variables during the motor output 



 

 119 

period, as well as EMG during the APR, was 11.7±3.8 for joint angles, 11.6±3.5 for joint 

angular velocities, 5.7±0.5 for forces, and 6.1±1.6 for EMG. An additional F-test applied 

post-hoc revealed that there was no significant difference in shuffled kinematic and 

kinetic data dimension between the sensory input and motor output periods (p≤0.81; 

F(1,76)=0.06).  

COMPARISON OF PRINCIPAL COMPONENTS ACROSS TRANSLATION AND 

ROTATION PERTURBATIONS AND POSTURAL CONFIGURATIONS 

 SSD analysis suggested that somatosensory input PCs were more common across 

translation and rotation perturbations than motor output and EMG components (p≤0.016; 

F(1,41)=6.4), although the grand mean difference in normalized SSD magnitude was 

small: 0.39±0.17 for somatosensory inputs vs. 0.33±0.25 for motor outputs and EMG. 

Normalized SSD values depended strongly on data type (p≤0.001; F(3,37)=9.2). The 

grand mean values of normalized SSD across translation and rotation perturbations were: 

joint angles: 0.39±0.08, somatosensory, 0.23±0.10, motor; joint angular velocities: 

0.33±0.08, somatosensory, 0.11±0.09, motor; forces: 0.47±0.27, somatosensory, 

0.42±0.20, motor; EMG: 0.58±0.25, APR. All grand mean normalized SSD values were 

significantly less than 1.0, the number that would be expected if translation and rotation 

perturbations elicited identical somatosensory information or motor responses (p ≤ 

0.00714, t-tests with Bonferroni correction, n=7). Significant contrasts between EMG and 

joint angles (p ≤ 0.05, Tukey-Kramer tests applied post-hoc) motivated an additional 

post-hoc F-test that revealed that pooled force and EMG components were significantly 

more common across translation and rotation perturbations than joint angle and joint 

angular velocity components (0.44±0.21 vs. 0.29±0.20; p<0.03; F(1,40)=4.96). 

Unnormalized grand mean values of SSD across translation and rotation perturbations 

were: joint angles: 3.5±1.4, somatosensory, 1.3±0.5, motor; joint angular velocities: 

2.5±1.0, somatosensory, 0.7±0.5, motor; forces: 1.5±08, somatosensory, 0.8±0.4, motor; 

EMG: 1.5±0.6, APR. In both animals that received perturbations in the short stance 

conditions, the EMG principal component bases were completely shared, resulting in 

SSD values of 1.0. 
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COMPARISON OF KINEMATIC AND KINETIC PRINCIPAL COMPONENTS 

ACROSS THE SOMATOSENSORY INPUT AND MOTOR OUTPUT PERIODS 

 Normalized SSD values suggested that joint angle, joint angular velocity, and 

force PCs were more shared across the somatosensory input and motor output periods in 

rotation than in translation perturbations (p≤0.0035; F(1,35)=9.8). Grand mean 

normalized SSD across the somatosensory and motor periods increased from 0.31±0.26 

in translation to 0.55±0.18 in rotation. This effect was equivalent across data types 

(p≤0.73; F(2,35)=0.32).  

COMPARISON WITH COVARIANCE-PCA AND NNMF 

 Dimension estimates of kinematic and kinetic variables were significantly higher 

with covariance-PCA than with correlation-PCA (p<<0.0001; F(1,150)=265.2). Across 

animals, perturbation types, data types, and time windows, the grand mean dimension 

estimate of changes in kinematic and kinetic variables with covariance-PCA was 

14.5±6.1, significantly higher than the estimate with correlation-PCA, 5.8±2.8. This 

contrast was observed in both translation and rotation perturbations (p≤0.18; 

F(1,150)=1.8) and in both the sensory input and motor output epochs (p>0.05; 

F(1,150)=3.9). Inspection of the plots of cumulative reconstruction R2 revealed curves 

that were markedly less steep than the latent variance plots considered in the correlation-

PCA, suggesting that the covariance-PCA was compressing less variance in total into the 

first few components than correlation-PCA (Figure A.7). 

 EMG dimension estimates were significantly higher with covariance-PCA than 

with correlation-PCA (p<<0.0001; F(2,35)=66.0, Tukey-Kramer post-hoc tests), but not 

significantly different with NNMF (p≤0.70). These contrasts were observed in both 

translation and rotation perturbations (p≤0.52; F(1,35)=0.42). Inspection of the plots of 

cumulative reconstruction VAF revealed characteristic curves with a sharp bend around 

the number of identified synergies, typically 3 or 4. Across animals and perturbation 

types, the grand mean EMG dimension estimates were 3.2±1.2 for correlation-PCA, 

2.3±1.0 for NNMF, and 11.1±3.3 for covariance-PCA.  
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Figure A.5. Comparison of somatosensory information dimension to perturbation 
dimension and to shuffled data. A: Latent variance of PCs of kinematic and kinetic 
variables during the somatosensory period in translation perturbations in cat Be; rotation 
perturbations were similar. Left to right: joint angles, joint angular velocities, ground 
reaction forces. Higher-order principal components contribute less variance and can be 
neglected. Dashed vertical lines (black: data; gray: shuffled data) designate dimension, 
the number of PCs over the 1.0 threshold (dashed horizontal line). Variability in sensory 
variables (black) is compressed into fewer principal components than shuffled data 
(gray), such that the curve is more sharply concave upward with fewer singular values 
above the threshold. B: Comparison of somatosensory information dimension to 
perturbation dimension. Dashed line: dimension of applied perturbations, 2.0. Significant 
contrasts: ‡, p≤0.0167, t-test for mean = 2; ***p<0.0001, ANOVA, Tukey-Kramer post-
hoc tests. C: Comparison of somatosensory information dimension to shuffled data 
dimension. ***p<0.0001, ANOVA. 
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Figure A.6. Comparison of motor output dimension to somatosensory input dimension. 
A: Latent variance of PCs of kinematic, kinetic, and EMG variables during the motor 
output period in translation perturbations in cat Be; rotation perturbations were similar. 
Left to right: joint angles, joint angular velocities, ground reaction forces, EMG. 
Annotations as in Figure 4. B: Grand mean dimension of motor output variables across 
animals and perturbation types. Contrasts except for that marked ns are significant 
(p≤0.05, ANOVA, Tukey-Kramer post-hoc tests). C: Comparison of motor output 
dimension to somatosensory information dimension across animals, perturbation types, 
and data types. ***p≤0.0001, ANOVA. 
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Figure A.7. Comparison of PCs across translation and rotation perturbations. Normalized 
SSD values less than 1.0 (dashed line) describe component bases that are partially 
orthogonal in translation and rotation perturbations. Black bars: somatosensory inputs. 
Gray bar: EMG. White bars: motor outputs. ‡, p<0.00714, t-test for mean = 1; *p≤0.05, 
ANOVA. 
 

 

 

 
Figure A.8. Comparison of PCs across somatosensory input and motor output periods. 
Black bar: translation perturbations. White bar: Rotation perturbations. ‡, p<0.025, t-test 
for mean = 1; **p<0.01, ANOVA. 
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Figure A.9. Comparison of dimension estimates from correlation-PCA, covariance-PCA, 
and NNMF. A1: Representative plots of cumulative reconstruction R2 for covariance-
PCA of joint angle data during translation perturbations in cat Be; rotation perturbations, 
joint angles, and force data were similar. Left: somatosensory input period. Right: motor 
output period. Annotations as in Figure 4. B1: Plots of cumulative EMG reconstruction 
R2 for covariance-PCA, and cumulative reconstruction VAF for NNMF, translation 
perturbations in Be. Left: covariance-PCA. Right: NNMF. A2: Comparison of grand 
mean dimension estimates of joint angles, joint angles, and forces with correlation-PCA 
and covariance-PCA. ***p<0.0001, ANOVA. B2: Comparison of grand mean EMG 
dimension estimates with correlation-PCA, NNMF, and covariance-PCA. ***p<0.0001; 
ns: p<0.70, ANOVA, post-hoc tests. 
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DISCUSSION 
 We demonstrated that two different types of planar postural perturbations caused 

disturbances to joint angles, joint angular velocities, and ground reaction forces that were 

greater than two-dimensional, and that exhibited more structure than would be expected 

by simple chance. We conclude that the identified components reflect the dynamics of the 

musculoskeletal system, as excited by the postural perturbations, and that somatosensory 

estimates derived directly from those variables will be greater than two-dimensional as 

well. Subsequent corrections in kinematic and kinetic variables due to the APR were 

lower-dimension than the original disturbances.  We conclude that rather than the one-to-

one mapping from disturbances to responses that would be expected with direct local 

feedback, the sensorimotor transformation from somatosensory information to motor 

responses must reduce the dimension of somatosensory information. 

 The somewhat counterintuitive idea that nominally planar postural perturbations 

can elicit changes in biomechanical variables of a higher dimension highlights a 

difference between unrestrained balance tasks and other motor paradigms. Here, with the 

intention of identifying lower bounds on the estimates of dimension of somatosensory 

variables, we performed a dimension analysis (correlation-PCA) that we regarded as 

conservative. The substantially increased dimension estimates we observed with 

covariance-PCA corroborate this interpretation. But even considering the lower bound 

dimension estimates obtained with correlation-PCA, we must conclude that in the 

unrestrained task presented here, planar perturbations are made more complex in the 

redundant kinematic chain due to the effects of gravity, and their effects vary depending 

on the animal’s state, e.g., the phase of postural sway, and the level of background 

muscle tone. In other studies, even factors such as emotional state have been implicated 

as modulators of postural responses (Adkin et al. 2002). In contrast, in reaching tasks 

using a planar exoskeleton (e.g., Kurtzer et al. 2006), the mechanical dimensionality of 

the exoskeleton (two) may uniquely determine the dimensionality of the required joint 

torques (two) and the dimensionality of the required muscle activity patterns (two). Here, 

we conclude that the dimension of biomechanical variables reflect the dynamics of the 

musculoskeletal system, as excited by the postural perturbations, whereas in the 

exoskeleton case, the dimension reflects the dynamics of the experimental apparatus. 
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 These data suggest that the CNS conveys higher-dimension somatosensory 

information to lower-dimension EMG and motor outputs. This finding, although 

relatively straightforward, is important because in most motor tasks, it is difficult to 

differentiate observed dimension constraints between neural or biomechanical sources 

(Macpherson 1991). During motor tasks, kinematic variables typically co-vary to some 

degree. It has been proposed that these patterns of co-variation may reflect specific 

control policies within the nervous system that couple kinematic variables into controlled 

degrees of freedom (Blickhan 1989; Ivanenko et al. 2008) while projecting irreducible 

motor noise into redundant, uncontrolled degrees of freedom (Scholz and Schöner 1999). 

But because neural outputs are transformed through biomechanical structures such as 

tendon networks, measured kinematic outputs can also reflect dimensional reduction in 

the biomechanical system (Gentner and Classen 2006; Schieber and Santello 2004). In 

some cases, such as the planar covariation of joint angles during locomotion, some 

dimensionality reduction is guaranteed by biomechanics alone (Bosco et al. 2000). 

Despite these examples, in many studies, biomechanical constraints on dimension are 

often ignored, simply because they are so difficult to quantify.  

 Because this study considered primarily the input-output relationships of the CNS 

during postural control, rather than specific underlying mechanisms (Figure 1), these 

results must be considered within a broader context in order to form hypotheses regarding 

the neural bases of this dimension reduction. The neural substrates that form and modify 

muscle activity for standing balance control are likely distributed throughout the spinal 

cord, with higher centers possibly contributing descending drive (Deliagina et al. 2008) 

and modulatory effects at long latencies (Jacobs and Horak 2007). Decerebrate cats can 

exhibit appropriate muscle tuning curves (Honeycutt et al. 2009), while spinalized cats 

exhibit disrupted responses to perturbation (Macpherson and Fung 1999). Because this 

organization is so diffuse, it could implement many candidate sensorimotor 

transformations. 

 One interpretation of these data is that the CNS may select and respond to only 

certain aspects, or even entire modalities, of the sensory inflow, so that multiple patterns 

of sensory information may elicit the same motor responses. Here, we noted that EMG 

and force data were lower dimension and were significantly more shared across 
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translation and rotation perturbations than kinematic data. These results could be taken to 

suggest that these elements are encoded within the nervous system and therefore 

conserved across conditions, whereas kinematic variables are not. Consistent with this 

hypothesis, the changes in the angles of ground reaction forces were previously 

implicated as the only variables that could consistently predict the direction of CoM 

acceleration, and therefore the antecedent muscle activity (Ting and Macpherson 2004). 

The primary difficulty with this interpretation is that  proprioceptive information 

regarding angles and angular velocities of joints throughout the hindlimb is known to be 

represented at the dorsal root level during locomotion in afferents from multiple sensory 

modalities (Weber et al. 2007). Similarly, more abstract kinematic estimates of the length 

and orientation of the hindlimb is represented in the dorsal spino-cerebellar tract (Bosco 

et al. 2000). In contrast, although force has been implicated as an encoded variable in 

motor cortex (Georgopoulos et al. 1992), neurophysiological evidence regarding the 

nervous system encoding of ground reaction force is sparse. Finally, the fact that subjects 

are able to compensate for disrupted proprioceptive information including disrupted 

ground reaction force feedback (Peterka 2002) suggests that this simple explanation may 

be too limited. 

 These data are also consistent with the hypothesis that the dimension reduction 

comes at the final, output level of the CNS, due to muscle synergy constraints on the 

activation of muscles. In this interpretation, many sensory states elicit the recruitment of 

identical muscle synergies, reducing the dimension of the overall motor response. 

Although we did not examine muscle synergies explicitly, here, we carefully verified that 

the number of muscle synergies identified with NNMF agreed closely with the number of 

EMG PCs. Because we have previously observed a strong correspondence between 

muscle synergy recruitment and endpoint force, this interpretation also explains the 

similarity in dimension between the EMG and force data observed here. 

 One intuitive concept of motor learning is that the nervous system may explore 

the dynamics of the sensorimotor space, so changes in motor states associated with 

consistent changes in sensory states are reinforced. Sanger has used the postulate “good 

sensory coordinate systems are good motor coordinate systems” to describe this idea 

(1994). In the case of postural control in the cat, the force vectors associated with muscle 
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synergies are fixed with the limb axis as the postural configuration varies, similar to the 

polar coordinate frame used for proprioception of limb orientation identified in the dorso-

spinal-cerebellar tract (Bosco et al. 2000), suggesting that the polar coordinate frame may 

be useful as both a sensory and a motor frame, and that the mapping between the two 

frames may be reinforced during development. This interpretation can also explain the 

dimension difference between the EMG and force data and the kinematic level. In the 

context of a single-joint movement, it has been proposed (Gottlieb 1996) that “no general 

relationship” exists between EMG and kinematic variables, and that any identified 

relationships are secondary to the EMG-muscle force relationship. It is probably more 

accurate to claim that relationships between EMG and kinematic variables are complex, 

nonlinear functions that must be assessed with the aid of musculoskeletal models. For 

example, we demonstrated that the endpoint force and acceleration associated with the 

activation of proximal muscles in a detailed, dynamic musculoskeletal model of the cat 

hindlimb depends strongly on the activation of muscles at the ankle (van Antwerp et al. 

2007). The fact that different dynamic states can occur in the context of, or produce, 

identical kinematics, suggests that refining internal mappings between EMG and 

kinematics would be difficult, and that the conserved relationship between EMG and 

force may reflect mechanisms of development and learning, rather than hard rules. 

 Finally, we note that the fact that EMG PCs identified in translation and rotation 

perturbations were not completely similar – as quantified by normalized SSD – is not 

inconsistent with previous results suggesting that common muscle synergies are recruited 

in both perturbation types. There were no significant differences between the EMG 

dimension estimates obtained in translation and rotation perturbations or between PCA 

and NNMF, consistent with our previous results that identical synergies were recruited 

during both perturbation types. However, when we compared the EMG PCs identified in 

both perturbation types, we noted that the resulting normalized SSD values (0.58±0.25) 

were significantly lower than 1.0, the number corresponding to complete overlap between 

PC sets. Similarly, in an earlier study in which the SSD formulation was introduced, 

Cheung and colleagues reached a conclusion similar to that of our previous study – that 

muscle synergies that were generally common across experimental conditions resulted in 

similar low SSD values (table 1, Cheung et al. 2005). The reason for this disparity is 
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probably that the SSD metric does not account for the fact that muscles may be inactive 

without necessarily violating muscle synergy constraints. Here, the comparison of muscle 

activity between translation and rotation perturbations must be done carefully. Although 

the active force response observed during rotation perturbations is very similar to that 

observed in translation perturbations, some flexors remain silent during rotation 

perturbations, their role in flexing the limb having been largely assumed by the rotation 

of the platform (Ting and Macpherson 2004). To accommodate this, we have previously 

used muscle synergies identified in translation perturbations to reconstruct the muscle 

activity in rotation perturbations (Torres-Oviedo et al. 2006). 
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