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discussions about hyperbolicity, Fréchet derivatives, and other minutiae. Thanks

also go to the School of Mathematics at Georgia Tech for supporting the author

financially with a teaching assistantship for two years, and to the National Science

Foundation (and hence the taxpayers of the U. S.) for supporting the author on a

research assistantship for the rest of his time here. Finally, the author thanks his

wife, Amanda.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION AND BACKGROUND . . . . . . . . . . . . . . 1

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Persistence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Previous Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 PDE Condition . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Graph Transform Techniques . . . . . . . . . . . . . . . . . . 7

1.4.3 Orthogonality Condition . . . . . . . . . . . . . . . . . . . . 11

1.5 Parameterization Issues . . . . . . . . . . . . . . . . . . . . . . . . . 14

II SMOOTH ANALYSIS OF ORTHOGONALITY CONDITION . 15

2.1 Equivalence of PDE and Orthogonality Conditions . . . . . . . . . . 16

2.2 Basic Results on the Coordinate System . . . . . . . . . . . . . . . . 17

2.3 Linearization around Planar Periodic Orbits . . . . . . . . . . . . . 20

III DISCRETIZATION OF ORTHOGONALITY CONDITION: SPE-
CIAL CASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Stability of Method for Periodic Orbits . . . . . . . . . . . . . . . . 24

3.2 Box Schemes in Two Special Cases . . . . . . . . . . . . . . . . . . . 31

3.2.1 Limit Cycle in the Plane . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Two-Torus in R
3 . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Stability of Method for Two-Torus in R
3 . . . . . . . . . . . . . . . 39

v



3.4 Alternate Discretizations . . . . . . . . . . . . . . . . . . . . . . . . 50

IV NUMERICAL RESULTS: SPECIAL CASES . . . . . . . . . . . . 53

4.1 Example: Limit Cycles in the Plane . . . . . . . . . . . . . . . . . . 53

4.1.1 Peanut Limit Cycle in the Plane . . . . . . . . . . . . . . . . 53

4.1.2 van der Pol Oscillator . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Failure of the Method in the Plane . . . . . . . . . . . . . . . 62

4.2 Example: Two-Tori in R
3 . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Two-Torus from Fluid Flow . . . . . . . . . . . . . . . . . . . 65

4.2.2 Two-Torus from Forced Oscillator . . . . . . . . . . . . . . . 77

4.2.3 Complications with Method for Two-Torus in R
3 . . . . . . . 91

V ORTHOGONALITY CONDITION: GENERAL CASE . . . . . . 97

5.1 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Numerical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 General Method Applied to Two-Torus in R
4 . . . . . . . . . . . . . 107

5.4 Example of a Three-Torus . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Numerical Resolution of the Three-Torus . . . . . . . . . . . . . . . 120

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



LIST OF TABLES

4.1 Newton Iteration: van der Pol Oscillator with Re-distribution . . . . 61

4.2 Newton Iteration: van der Pol Oscillator without Re-distribution . . . 62

4.3 Continuation Steps for Fluid-Flow Torus . . . . . . . . . . . . . . . . 69

4.4 Newton Iteration: Fluid-Flow Torus with Re-distribution . . . . . . . 76

4.5 Newton Iteration: Fluid-Flow Torus without Re-distribution . . . . . 77

4.6 Newton Iteration: Forced van der Pol Torus with ω =
√

0.84 . . . . . 86

4.7 Newton Iteration: Forced van der Pol Torus, ω =
√

0.78 . . . . . . . . 91

4.8 Condition Numbers for Example with Periodic Orbits . . . . . . . . . 96

5.1 Continuation Steps for Directly Coupled Oscillators . . . . . . . . . . 110

5.2 Newton Iteration: Directly Coupled Oscillators . . . . . . . . . . . . . 116

5.3 Newton Iteration: Three-Torus . . . . . . . . . . . . . . . . . . . . . 122

vii



LIST OF FIGURES

1.1 Two Approaches to the Graph Transform . . . . . . . . . . . . . . . . 10

3.1 Center-Difference Template . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Peanut Limit Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Continuation of Peanut Orbit with Re-distribution . . . . . . . . . . 56

4.3 Continuation of Peanut Orbit without Re-distribution . . . . . . . . . 57

4.4 van der Pol Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Continuation of van der Pol Oscillator with Re-distribution . . . . . . 59

4.6 Continuation of van der Pol Oscillator without Re-distribution . . . . 60

4.7 Heteroclinic Cycle in the Plane . . . . . . . . . . . . . . . . . . . . . 63

4.8 Solution of Heteroclinic Cycle in the Plane . . . . . . . . . . . . . . . 64

4.9 Progression of Reduced System . . . . . . . . . . . . . . . . . . . . . 67

4.10 Progression of Full System . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Fluid Flow Torus with Re-distribution; λ = 2.005 . . . . . . . . . . . 70

4.12 Fluid Flow Torus with Re-distribution; λ = 2.020 . . . . . . . . . . . 71

4.13 Fluid Flow Torus with Re-distribution; λ = 2.024 . . . . . . . . . . . 72

4.14 Fluid Flow Torus without Re-distribution; λ = 2.005 . . . . . . . . . 73

4.15 Fluid Flow Torus without Re-distribution; λ = 2.020 . . . . . . . . . 74

4.16 Fluid Flow Torus without Re-distribution; λ = 2.0248 . . . . . . . . . 75

4.17 Examples of Periodic Orbits in Forced van der Pol Equations . . . . . 78

4.18 Progression of Full van der Pol System, ω =
√

0.84 . . . . . . . . . . 80

4.19 Progression of Full van der Pol System, ω =
√

0.78 . . . . . . . . . . 81

4.20 Forced van der Pol Torus; λ = 0 . . . . . . . . . . . . . . . . . . . . . 83

4.21 Forced van der Pol Torus; ω =
√

0.84, λ = 0.325 . . . . . . . . . . . . 84

4.22 Forced van der Pol Torus; ω =
√

0.84, λ ≈ 0.342407 . . . . . . . . . . 85

4.23 Continuation Steps for Forced van der Pol Torus . . . . . . . . . . . . 86

4.24 Forced van der Pol Torus; ω =
√

0.84 . . . . . . . . . . . . . . . . . . 87

4.25 Forced van der Pol Torus; ω =
√

0.78, λ = 0.3445 . . . . . . . . . . . 88

viii



4.26 Forced van der Pol Torus; ω =
√

0.78, λ ≈ 0.3848 . . . . . . . . . . . 89

4.27 Forced van der Pol Torus; ω =
√

0.78, λ ≈ 0.38776 . . . . . . . . . . . 90

4.28 Forced van der Pol Torus; ω =
√

0.78 . . . . . . . . . . . . . . . . . . 92

4.29 Torus with Two Periodic Orbits, λ = 1 . . . . . . . . . . . . . . . . . 93

4.30 Continued Torus with Two Periodic Orbits, λ = 2.0 . . . . . . . . . . 95

5.1 Sparsity Plots of Jacobian . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Directly Coupled Oscillators; λ = 0.1 (top) and 0.2 . . . . . . . . . . 111

5.3 Directly Coupled Oscillators; λ = 0.25 (top) and 0.2605 . . . . . . . . 112

5.4 Oscillators with Planar Intersections; λ = 0.1 (top) and 0.2 . . . . . . 114

5.5 Oscillators with Planar Intersections; λ = 0.25 (top) and 0.2605 . . . 115

5.6 Representative Slices of the Three-Torus at λ = 0.44 . . . . . . . . . . 123

5.7 Continuation of One Slice of the Three-Torus . . . . . . . . . . . . . 124

5.8 Continuation of Coupling Medium in Three-Torus . . . . . . . . . . . 126

ix



LIST OF SYMBOLS

A, B, etc. Matrices, unless otherwise specified.

x, y, etc. Vectors, unless otherwise specified.

a, b, etc. Scalar parameters, unless otherwise specified.

A,x > a Component-wise > a.

A,x ≥ a Component-wise ≥ a.

A >p 0 Matrix A is positive definite.

A ≥p 0 Matrix A is positive semi-definite.

R
n n-dimensional real space.

Ck The space of k-continuously-differentiable functions.

Sn n-dimensional sphere.

T p p-dimensional torus (S1 × S1 × · · · × S1, p times).

T̃ p Discrete p-dimensional torus.

xi ith component of vector x, or ith element of list x.

(xi)j ith component of ith element of a list.

x(i) ith iteration of a discrete transformation.

xφi
Partial derivative of x with respect to φi
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SUMMARY

This thesis is concerned with numerical techniques for resolving and continu-

ing closed, compact invariant manifolds in parameter-dependent dynamical systems

with specific emphasis on invariant tori under flows. In the first part, we review

several numerical methods of continuing invariant tori and concentrate on one choice

called the “orthogonality condition”. We show that the orthogonality condition is

equivalent to another condition on the smooth level and show that they both descend

from the same geometrical relationship. Then we show that for hyperbolic, periodic

orbits in the plane, the linearization of the orthogonality condition yields a scalar

system whose characteristic multiplier is the same as the non-unity multiplier of the

orbit. In the second part, we demonstrate that one class of discretizations of the

orthogonality condition for periodic orbits represents a natural extension of colloca-

tion. Using this viewpoint, we give sufficient conditions for convergence of a periodic

orbit. The stability argument does not extend to higher-dimensional tori, however,

and we prove that the method is unconditionally unstable for some common types

of two-tori embedded in R
3 with even numbers of points in both angular directions.

In the third part, we develop several numerical examples and demonstrate that the

convergence properties of the method and discretization can be quite complicated. In

the fourth and final part, we extend the method to the general case of p-tori in R
n

in a different way from previous implementations and solve the continuation problem

for a three-torus embedded in R
8.
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CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Motivation and Scope

The invariant manifolds of a dynamical system impart a great deal of information

about the system as a whole. Often, when trying to piece together a general picture

of the effect of a flow or map, the first items to find are the location, classification, and

stability of invariant manifolds that the system admits. As computers have become

faster and more robust, a need has developed for new numerical algorithms that can

approximate invariant manifolds quickly and accurately.

Invariant tori in particular are one of the most commonly observed closed mani-

folds in dynamical systems. The appearance and breakdown of tori seems to be related

to the onset of chaos in some physical situations, making invariant tori interesting

objects for study.

Examples of flow-invariant tori abound in the literature. Just to name three,

Matsumoto et al. [25] demonstrate how chaos develops through torus breakdown in

an electrical circuit, Valkering et al [37] prove the existence of an invariant torus in two

capacitively coupled Josephson junctions, and Langford numerically approximates an

invariant torus in fluid-flow equations [22]. Langford also shows how an invariant torus

can form through an interaction between a Hopf bifurcation and a simple steady-state

bifurcation [23].

This thesis comprises three tasks related to the approximation of invariant tori:

First, examine some of the current methods for continuing and approximating in-

variant tori in dynamical systems in order to understand the fundamental geometric

conditions behind them. Second, modify one of the methods and examine some of its
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convergence properties. Third, use that technique to continue several tori, including

a 3-torus that arises in an indirectly coupled system of oscillators.

While invariant tori can appear in discrete dynamical systems (i.e., maps), the

focus of this thesis is on flows. Of course, numerical algorithms that work for discrete

maps can, in theory, work for flows as well, since the solution map of the flow for

a fixed time step is itself a diffeomorphism, but algorithms specifically designed for

flows are potentially more efficient because they avoid direct integration in time.

1.2 Problem Definition

This thesis considers the system of ordinary differential equations given by

ẋ = Φ(x, λ) ; x ∈ R
n , (1.1)

where λ is a scalar parameter and Φ is a C1 vector field. Let ϕt be the solution

operator of Equation (1.1). In other words, if x(t) is the solution of Equation (1.1)

with initial condition, x(0) = x0, then ϕt(x0, λ) = x(t). A closed, compact manifold

M is invariant under the flow defined by Equation (1.1) at a parameter value λ0 if

ϕt(M, λ0) = M for all t ∈ R.

When searching numerically for an invariant torus embedded in an ambient real

space, the first task is to guess a “nearby” (see below) C1 torus embedded in R
n

through the injective mapping x : T p → R
n, where T p is the abstract p-torus. The

word “torus” may appear in many contexts from now on – it may refer to an abstract

torus T p, to the image of an embedding T p → R
n, or to the embedding itself.

In practice, x is usually just a previously-calculated invariant torus at a preceding

parameter value λ0, while the new invariant torus corresponds to an updated param-

eter value λ = λ0 + ∆λ. The origin of x is irrelevant for computational purposes,

however, so any reasonable initial guess will work.

In addition to x itself, it is necessary to supply a C1, moving orthonormal system of

vectors,
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{n1(φ),n2(φ), . . . ,nq(φ)} that span the normal plane of the image of x at φ ∈ T p.

Let the n× q matrix Q hold the normal system in its columns,

Q(φ) =

(
n1(φ) n2(φ) · · · nq(φ)

)
. (1.2)

This gives rise to a local coordinate system. Every x near the image of x corre-

sponds to a unique pair, (φ, ρ), through the equation

x = x(φ) + Q(φ)ρ, (1.3)

where ρ ∈ R
q.

Let x̂ : T p → R
n denote the unknown invariant torus. In local coordinates the

torus has the form

x̂(φ) = x(φ) + Q(φ)r(φ), (1.4)

where r : T p → R
q.

Now it is possible to define an ambiguous term used above. Stating that x is

“near” x̂ – or simply that x is “nearby” – is exactly the same as stating that the

parameterization in Equation (1.4) is possible with unique r(φ).

1.3 Persistence of Solutions

The first question to ask before embarking on a numerical search for a branch of

tori is whether such a branch exists. Fortunately, theoretical results do guarantee

continuation under certain assumptions. The discussion below borrows notation from

Dieci and Lorenz [11], and it includes results for attracting tori. Similar results hold

for repelling tori or tori of mixed hyperbolicity [41]. The original result is due to

Fenichel [13].

Let M be a closed, compact, connected, Ck p-manifold that is invariant under the

flow of Equation (1.1) at some parameter value λ0. Let Tx and Nx denote the tangent

and normal spaces of M respectively at x ∈ M , and let ΠNx : R
n → R

n denote the

orthogonal projection operator onto Nx.
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At any given point, x ∈M , let ν(x) be a number,

ν(x) = lim sup
t→∞

∥∥ΠNx

(
Dxϕ

t
(
ϕ−t(x)

))∥∥1/t
, (1.5)

where ‖•‖ is the standard operator norm based on the Euclidian two-norm in R
n. If

ν(x) < 1, then there exists another number,

σ(x) = lim sup
t→∞

− ln ‖Dxϕ
−t(x)‖

ln ‖ΠNx (Dxϕt (ϕ−t(x)))‖ . (1.6)

The two quantities ν(x) and σ(x) are known as Lyapunov-type numbers, and they

determine if the manifold persists under small perturbations of λ.

Note that the operator in Equation (1.5) mapsNϕ−t(x) toNx and that the operator

in the numerator of Equation (1.6) maps Tx to Tϕ−t(x). Moreover, the former operator

describes forward time progression of normal vectors under the linearized flow, while

the latter describes the backward time progression of tangent vectors, again under

linearized flow.

The conclusion, therefore, is that σ(x) represents a ratio of attractivity toward x

from within M to attractivity toward x from outside M . This ratio should be small

to ensure persistence of the invariant manifold.

The global Lyapunov-type numbers are suprema. If ν(x) < 1 for all x ∈M , then

ν(M) = sup
x∈M

ν(x) (1.7)

σ(M) = sup
x∈M

σ(x) . (1.8)

As long as the global ratio of attractivities is relatively small it is possible to

continue M smoothly, as the following theorem states.

Theorem 1.1 (Fenichel) Let M be a closed, compact, connected, Ck p-manifold

that is invariant under the flow of Equation (1.1) at some parameter value λ0. If

ν(M) < 1 and σ(M) < 1/k, and if ∆λ is sufficiently small, then there is a unique,

Ck manifold that is invariant under the flow at λ0 + ∆λ and is diffeomorphic to M .
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The restrictions on ν and σ listed above are sometimes called the “gap condition”

[35].

The proof of this theorem is not included here. Essentially, the proof shows that

for the given conditions on ν and σ, the Hadamard graph transform is a contraction

mapping on the space of embeddings, and thus it converges to the new torus. (See

Section 1.4.2 for an explanation of the graph transform.) The full proof requires

a small perturbation of the original problem, which makes the details somewhat

abstruse.

Wiggins [41] provides a more accessible discussion than the original proof [13].

Wiggins’ book contains more illustrations and background information, as well as

other useful results about the continuation of invariant manifolds. Dieci and Lorenz

discuss how to track Lyapunov-type numbers numerically in some specific cases [11].

1.4 Previous Methods

A voluminous collection of numerical algorithms for continuing invariant manifolds

has accumulated in the literature since the 1960’s. This thesis concentrates on meth-

ods that have shown promise specifically for the continuation of invariant tori.

The methods examined here descend from one of three fundamental conditions:

the PDE condition, the graph transform convergence condition, and the orthogonal-

ity condition. By far, the most popular numerical techniques to date have relied on

either the PDE condition or the graph transform. As shown in [10], the graph trans-

form actually represents the method of characteristics applied to the PDE condition,

but implementation of the two techniques is fundamentally different, so this review

considers them separately.

The orthogonality condition is the less common of the three conditions in the

literature, but as results in Chapter 2 show, it is equivalent to the PDE condition in

a very straightforward way on the smooth level.
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Techniques based on the PDE and orthogonality conditions are examples of what

Moore calls “direct methods” [28], since the torus is a solution to a given system

of equations. Graph transform techniques are examples of “indirect methods,” since

they rely on attractivity properties of tori to generate an approximation.

1.4.1 PDE Condition

Dieci et al. propose in [12] that for a torus of the form of Equation (1.4) to be invariant,

it must satisfy a particular first-order, hyperbolic PDE. The development of the PDE

is straightforward.

Assume that the vector field in Equation (1.1) has a representation in the local

(φ, ρ) coordinate system, which is to say that Φ looks like the following system:

Φ (φ, ρ) =

 φ̇ (φ, ρ)

ρ̇ (φ, ρ)

 . (1.9)

The Implicit Function Theorem [18, 20] guarantees that such a partition always exists

locally, but it may be difficult to calculate, and φ̇ and ρ̇ may not have a closed-form

expansion.

The PDE condition is now a simple consequence of the fact that r(φ) in Equation

(1.4) is a pure function of φ, which is a function of time for a given initial condition.

Taking the total derivative of r with respect to time yields

(Dφr) φ̇ (φ, r(φ)) = ρ̇ (φ, r(φ)) . (1.10)

This is a first-order, hyperbolic system of PDE in φ, which is easy to see in

component form:

p∑
i=1

[
∂r

∂φi
(φ, r(φ))

]
φ̇i (φ, r(φ)) = ρ̇ (φ, r(φ)) . (1.11)

If the φ coordinates on T p are τ -periodic, then any r that satisfies the PDE

above with the periodic boundary condition r(0, 0, . . . , 0) = r(τ, τ, . . . , τ) represents

an invariant torus through Equation (1.4).
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Direct solution of the PDE has two immediate and obvious difficulties. First, it

requires a partition of the vector field as in Equation (1.9). While numerical schemes

can estimate φ̇ and ρ̇ (e.g., by multivariate cubic spline interpolation on x), such

schemes can be costly, so most examples of direct solution apply to cases where one

can obtain the partition explicitly.

Dieci et al. first use a modified leapfrog discretization [12] to solve the PDE and

continue an invariant torus in a system of coupled planar oscillators. Later, multi-grid

and upwind solutions [7, 8] become the focus of investigation of the same problem.

More recent approaches have used Fourier expansions for direct solution of Equa-

tion (1.10). The basic idea of these spectral techniques is to write r as a summed

series of periodic functions in φ and then solve for the coefficients. Fourier techniques

seem to work very well for both smooth and non-smooth tori, but again they require

a partition of the vector field. The best references for the spectral method applied to

invariant tori are [14], [26], and [36].

1.4.2 Graph Transform Techniques

As discussed above, the PDE condition is intrinsically related to graph transform

techniques through the method of characteristics [10], but practical implementation

of the two methods is completely different.

The greatest advantage of graph transform techniques is that, although they are

equivalent to solving the PDE, they do not require formulation of the PDE (along

with with its cryptic φ̇ and ρ̇ functions), so they can apply to a much wider class of

problems. They do, however, have their own limitations, notably a longer computa-

tion time, at least in the ways in which they have previously been implemented.

Graph transform methods follow Fenichel’s proof of the continuation of tori in [13].

Given that the Hadamard graph transform is a contraction on the space of Ck, torus-

embedding functions when the Lyapunov-type numbers satisfy the gap condition as
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in Section 1.3, one suspects that a numerical version of the transform might help to

identify invariant tori. Indeed, this is the case, but discrete implementation can be

complicated and costly.

Consider a dynamical system with solution operator ϕt. Assume that x̂(i) : T p →

R
n is Ck and near an invariant torus and that the gap condition holds. Then for a

fixed t > 0, the Hadamard graph transform Gt is an operator that maps x̂(i) to a

new Ck function, x̂(i+1), such that the image of x̂(i+1) is the image of x̂(i) integrated

forward under the flow for a fixed time. In other words, Gt satisfies

image
[
Gt(x̂(i))

]
= image

[
x̂(i+1)

]
= ϕt(image

[
x̂(i)
]
) . (1.12)

The gap condition ensures that Gt is a contraction mapping on the space of Ck

torus-embedding functions. In theory, then, all one has to do is to iterate Gt repeat-

edly, and the sequence
{
x̂(i)
}

will converge to a function that represents the invariant

torus.

In practice, one must first convert the continuous graph transform into a discrete

operation that is representable in a computer. The discrete representation of a func-

tion, x̂(i) : T p → R
n is actually an ordered collection of R

n points, where each one

corresponds to a particular φ ∈ T p. It is generally useful to fix the discretization of

T p, so the points of x̂(i+1) will correspond to the same φ’s. Thus, x̂(i) and x̂(i+1) are

really functions,

x̂(i), x̂(i+1) : T̃ p → R
n , (1.13)

where T̃ p is a discrete torus, that is any collection of distinct points in T p, usually

ordered to simplify numerical calculations.

Now the problem is to find the “best” Euclidian distribution of points for x̂(i+1),

given that the image of x̂(i+1) must be the integrated image of x̂(i). There are many

possible definitions of “best”, but one reasonable way to proceed is to force x̂(i+1)(φ0)

to be in the normal space to the image of x̂(i) at x̂(i)(φ0) for any fixed φ0 ∈ T̃ p. That

8



is to say, (
x̂(i+1)(φ0)− x̂(i)(φ0)

)T [
Dφx̂(i)(φ0)

]
= 0 ∀φ0 ∈ T̃ p . (1.14)

The derivative in Equation (1.14) is really a numerical approximation, since the

functions are only defined on discrete points. Regardless of how one specifies the nor-

mal direction on the image of x̂(i), it is still necessary to choose an order of operation

of the graph transform to enforce Equation (1.14). The literature contains examples

of two possible choices.

In the boundary value problem (BVP) approach, one interpolates on the image of

x̂(i) and then solves, as the name implies, a boundary value problem. The process

works in two steps:

First, some sort of interpolation (e.g., cubic splines) generates a continuous version

of the discrete image of x̂(i). If this interpolated object is denoted M (i), then for fixed

t > 0, the BVP to solve at each φ0 ∈ T̃ p is

(
ϕt(c)− c

)T [
Dφx̂(i)(φ0)

]
= 0 where c ∈M (i) . (1.15)

Dieci and Lorenz first use this version of the graph transform to continue invariant

tori in [10]. It has the advantage of stability near torus breakdown, but it is very

slow.

In the initial value problem (IVP) approach, the process is reversed: First, inte-

grate each x̂(i)(φ0) forward under the flow by a fixed time t and then interpolate and

re-distribute the points in Euclidian space to satisfy Equation (1.14).

Reichelt uses an IVP approach in [35]. He also borrows an extra re-parameter-

ization algorithm from [29] to “beautify” the torus representation after a long contin-

uation process has skewed it. His results show that the IVP method is much faster

than the BVP method, but it is not as stable near breakdown. Figure 1.1 contrasts

the two approaches pictorially.

Regardless of their style of implementation, all graph transform methods suffer
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Boundary Value Approach

M (i)

M (i+1)

Initial Value Approach

M (i)

M (i+1)

Figure 1.1: Two Approaches to the Graph Transform
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from two drawbacks: 1) they are slow, since the graph transform converges only

linearly, and 2) they require a splitting of the stable and unstable sections of the

normal bundle.

The second drawback occurs because the graph transform relies on attractivity

of the torus in order to show convergence. Clearly, it is easy to adapt the algorithm

to tori of mixed hyperbolicity by running time backwards in some parts of the space

and forwards in other parts, but this requires foreknowledge of stable and unstable

sections of the normal bundle. A comprehensive discussion of graph transform meth-

ods, including their applicability to tori with both stable and unstable directions, is

available in [6] and [31].

1.4.3 Orthogonality Condition

In 1995 and 1996, Moore [29] proposed a different method for resolving invariant tori,

along with an extension of the method to connecting orbits [27]. The method seems

at first to avoid both of the obstacles inherent in the first two conditions, in that it

does not require an explicit form for φ̇ and ρ̇, nor does it rely on a linearly-convergent

graph transform technique.

The orthogonality condition relies on purely geometrical reasoning. It says that

for a manifold M to be invariant under the vector field, Φ, then the projection of Φ

onto the normal plane of M must be zero. Written symbolically,

ΠNxΦ(x) = 0, ∀x ∈M . (1.16)

If M has dimension p and is embedded in R
n, then the projection operator ΠNx

has a p-dimensional kernel. It is necessary to restrict the manifold further in order to

have a unique solution to Equation (1.16).

Let x̂ be a torus as defined in Section 1.2, and let {n1(φ),n2(φ), . . . ,nq(φ)} be a

moving, C1, orthonormal system that spans the normal space Nx̂(φ) at any φ ∈ T p.
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Define

Q(φ) =

(
n1(φ) n2(φ) . . . nq(φ)

)
. (1.17)

Equation (1.16) simplifies to q linearly independent equations,

Q(φ)TΦ (x̂(φ)) = 0, ∀φ ∈ T p . (1.18)

This is the orthogonality condition. If x̂ has the form of Equation (1.4), then q

equations at each φ provide enough information to solve for x̂.

Numerically, then, the most pressing question is how to calculate Q. All possibil-

ities rely on some estimate of a derivative, as the normal plane has the form,

Nx̂(φ) = span

{
∂x̂ (φ)

∂φ1
,
∂x̂ (φ)

∂φ2
, . . . ,

∂x̂ (φ)

∂φp

}⊥
, (1.19)

In fact, the original paper [29] only includes expansions for limit cycles and two-tori,

so p ≤ 2. The extension is natural, though.

As discussed in Section 3.2, many finite-difference templates for the partial deriva-

tives are available, but only a few of them work. Moreover, while there are canonical

representations for normal vectors to the derivatives in R
2 and R

3 (π/2 rotation and

cross product respectively), higher-dimensional examples are not so straightforward.

Chapter 3 describes how to calculate Q for two special cases, and Chapter 5 describes

how to calculate Q in general. The only type of discretization that seems to work

consistently is a class of discretizations called “box schemes.”

In the original paper [29], Moore does not calculate the normal space in Equation

(1.19) explicitly, preferring instead to use a quasi-Newton iteration to find the β’s in

the following equation, which is analogous to Equation (1.18):

Φ (x̂(φ)) = β1
∂x̂ (φ)

∂φ1

+ β2
∂x̂ (φ)

∂φ2

+ · · ·+ βp
∂x̂ (φ)

∂φp

, (1.20)

where again, p ≤ 2 in the original paper. This approach eliminates the need for an

explicit Jacobian in Newton’s method.
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Computing the Jacobian numerically is neither difficult nor computationally in-

tensive if programmed correctly, however, and moreover all methods must at some

point compute the original normal vectors, Q, so this thesis concentrates on a more

direct approach using a full linear expansion and direct development of the normal

vectors. The most difficult aspects of this are the above-mentioned calculation of Q,

and – in higher dimensions – the solution of the linear system in Newton’s method

as discussed in Chapter 5.

Two very important issues that Moore does not address in [29] are the consistency

and convergence of methods based on the orthogonality condition. Without such

results, it is possible that the discrete problem may not have a unique, isolated solution

or that the solutions do not converge to the smooth invariant torus as the spacing

between points shrinks. One of the main goals of this thesis is to provide some of

these results.

Chapter 2 demonstrates full consistency between the orthogonality condition and

PDE method on the smooth level. This thesis does contain some convergence results

for periodic orbits in Chapter 3, but unfortunately the convergence properties of

the orthogonality condition with box schemes are quite complicated, and consistent,

proven instability occurs in some very common cases. Therefore, while the orthogo-

nality condition appears clearly superior in terms of computation time and ease of

adaptability, it is subject to instability in some examples. A few illustrative examples

appear in Chapter 4.

Finally, note that the orthogonality condition is not specific to tori. It is possible

in theory to apply it to any closed manifold embedded in real or complex space,

as long as the points on the surface have a suitable ordering and a trivial, well-

understood normal bundle. Previous research has applied geometrical methods to

several different types of manifolds [24, 27, 28, 29, 30], in particular as an alternative

to standard methods (e.g., [5, 38]) of computing connecting orbits.
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1.5 Parameterization Issues

Moore does make one other important contribution to the theory of numerical con-

tinuation of tori in that he develops a parameterization technique for two-tori [29].

For a simple curve in R
n, arc length distribution will generally ensure that the

graph in Euclidian space is the best possible picture for the given number of points,

although some applications may call for other distributions, such as a weighted distri-

bution toward areas of higher curvature. With two-tori, however, there is no canon-

ical distribution of points. Moore addresses this problem in [29] and proposes an

algorithm for re-distributing points quasi-conformally, which is one possible natural

extension of arc length. Reichelt uses that re-parameterization as part of the graph

transform [35], and it seems to work well for two-tori, but no one has yet extended it

to higher-dimensional manifolds.

This thesis does not discuss the re-parameterization issue in detail, but rather uses

easier methods to distribute points when such methods are available. A robust and

inexpensive re-parameterization technique for general p-tori would be a significant

contribution to the field of computational geometry.
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CHAPTER II

SMOOTH ANALYSIS OF ORTHOGONALITY

CONDITION

This chapter demonstrates how the orthogonality condition given in Equation (1.18) is

related to the PDE condition, and how it preserves characteristic multipliers through

linearization around periodic orbits. It also contains some basic results that outline

properties of the local toroidal coordinate system used frequently.

It should come as no surprise that the PDE and orthogonality conditions are

equivalent on a basic level. In fact, one can make a general argument for equivalence

by considering the situation where only one, isolated invariant torus exists near some

fixed x. If the torus is invariant if and only if it satisfies both conditions, then the

conditions must be somehow equivalent. (The terms “near” and “nearby” are in the

sense of Section 1.2.)

Nevertheless, it is a useful exercise to step through the algebraic connections

that lead from one condition to another. This exercise, which has not appeared in

the literature before now, clarifies the relationship between the vector field and the

mysterious φ̇ and ρ̇ quantities in Equation (1.9).

Another useful exercise is to reduce the problem to the simplest possible type of

torus: a periodic orbit in the plane. The linearized orthogonality condition should

preserve certain hyperbolicity properties, as indeed some calculations in Section 2.3

indicate that it does.
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2.1 Equivalence of PDE and Orthogonality Con-

ditions

The fundamental equation that links the two conditions is

d

dt
x̂(φ) = Φ (x̂(φ)) . (2.1)

The left hand side of this equation is difficult to interpret. If φ is a function of

time up to some initial condition, then there exists a total derivative of x̂ with respect

to time, dx̂(φ)/dt = Dφx̂(φ)φ̇. The total derivative should at any given φ ∈ T p be

equal to the vector field evaluated at x̂(φ) if and only if x̂ defines an invariant torus.

That Equation (2.1) is an invariance condition is not immediately obvious, but it

does actually relate the PDE and orthogonality conditions, as the following proposi-

tion shows.

Proposition 2.1 Let x : T p → R
n be an injective, C1 mapping with Q, φ, and ρ

defined as in Equation (1.3). Let x̂ : T p → R
n be an injective, C1 mapping of the

form in Equation (1.4), and let Q : T p → R
n ×R

q be a C1 mapping such that at any

φ, Q(φ) is orthogonal and its columns span the normal space to the image of x̂ at φ.

Then x̂ satisfies Equation (1.10) if and only if it satisfies Equation (1.18).

Proof

Write the vector field and the left hand side of Equation (2.1) in terms of the local

toroidal coordinate system. The left hand side is

d

dt
x̂(φ) = (Dφx̂(φ)) φ̇

=
[
(Dφx(φ)) +

(
DφQ(φ)ρ

)
ρ=r(φ)

+ Q(φ) (Dφr(φ))
]
φ̇, (2.2)

and the vector field evaluated at a point x̂ (φ), is

Φ (x̂(φ)) =
[
(Dφx(φ)) φ̇ +

(
DφQ(φ)ρ

)
ρ=r(φ)

φ̇ + Q(φ)ρ̇
]

. (2.3)
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Equations (2.2) and (2.3) combine to form,

d

dt
x̂(φ) = Φ (x̂(φ)) + Q(φ)

(
(Dφr(φ)) φ̇− ρ̇

)
. (2.4)

Multiplying both sides by QT and noting that QT dx̂(φ)/dt = 0 gives.

QTΦ (x̂(φ)) + QT Q(φ)
(
(Dφr(φ)) φ̇− ρ̇

)
= 0 . (2.5)

Thus, if x̂ satisfies the PDE condition, then it satisfies the orthogonality condition.

Conversely, if x̂ satisfies the orthogonality condition, and if QT Q has full rank, then

x̂ satisfies the PDE condition. But the fact that x̂ is parameterizable in the local

toroidal coordinate system with a C1-smooth r(φ) implies that QT Q has full rank, so

the proof is done. �

One immediate consequence of the above proposition is the overall equivalence

condition that links everything to Equation (2.1).

Proposition 2.2 Let x, x̂, Q, and Q be as in Proposition 2.1 above. Then x̂ satisfies

the PDE and orthogonality conditions if and only if it satisfies Equation (2.1).

Proof

From Equation (2.4), it is obvious that if x̂ satisfies the PDE condition, then

it satisfies Equation (2.1). Conversely, one may obtain the PDE or orthogonality

conditions by multiplying both sides of Equation (2.1) by Q
T

or QT respectively. �

The two propositions above enforce the notion that there is really only one geo-

metrical condition available: Equation (2.1). If x̂ has a parameterization of the form

in Equation (1.4), then it is necessary to eliminate p equations from the n equations

represented in Equation (2.1), and the PDE and orthogonality conditions represent

two different ways of doing that.

2.2 Basic Results on the Coordinate System

This section contains two geometrical observations that improve the overall under-

standing of the local toroidal coordinate system used frequently in this thesis. The
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first observation elucidates the relationship between a section of the tangent bundle

of an arbitrary function and the time derivative of an angular coordinate.

Proposition 2.3 Let x̂, x, and Q be as in Proposition 2.1, and let the vector field

satisfy

Φ (x̂(φ)) = (Dφx̂(φ)) c(φ) , (2.6)

where c : T p → R
p is a C1 mapping. Then c(φ) = φ̇ (φ, r(φ)).

Proof

Expanding the definition of Dφx̂(φ) and substituting Equation (2.3) for the vector

field yields

(Dφx(φ)) φ̇ +
(
DφQρ

)
ρ=r(φ)

φ̇ + Qρ̇ =[
(Dφx(φ)) +

(
DφQρ

)
ρ=r(φ)

+ Q (Dφr(φ))
]
c(φ). (2.7)

This converts to a matrix equation.

( (
(Dφx(φ)) +

(
DφQρ

)
ρ=r(φ)

)
Q

) c− φ̇

(Dφr(φ))− ρ̇

 = 0. (2.8)

Note that (Dφx(φ))+
(
DφQρ

)
ρ=r(φ)

has full rank because x is nearby, so Equation

(2.8) proves the proposition and recovers the PDE condition as a bonus. �

The next proposition has to do with the term on the left-hand side of the funda-

mental condition, Equation (2.1).

Proposition 2.4 Let x̂ and Q be as in Proposition 2.1, and suppose that x̂ defines

a torus that is invariant under the flow given by the vector field Φ. Then

d

dt
x̂(φ) = ΠTx̂(φ)

Φ (x̂(φ)) ∀φ ∈ T p , (2.9)

where ΠTx̂(φ)
represents the projection onto the tangent space of the image of x̂ at

x̂(φ).
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Proof

This is geometrically clear, but one can make an algebraic argument by noting

that for any given φ ∈ T p, Φ (x̂(φ)) =
(
ΠTx̂(φ)

+ ΠNx̂(φ)

)
Φ (x̂(φ)), and that the

invariance of x̂ means that it satisfies Equations (1.16) and (2.1). �

The converse of Proposition 2.4 does not hold – just because a function x̂ satisfies

Equation (2.9) does not imply that it is an invariant torus. A simple counterexample

exists in the planar system of equations in polar coordinates,

ṙ = r(λ− r2)

θ̇ = 1 .

(2.10)

This system has an attracting limit cycle centered at the origin with a radius of
√

λ. (Multiplying the first line by −1 makes the limit cycle unstable.)

Let λ = 1 and x(θ) = (cos θ, sin θ) in Cartesian coordinates, and let x̂(θ) =

2 (cos θ, sin θ).

Obviously, x̂ is not an invariant torus, yet a calculation yields.

ΠTx̂(θ)
Φ (x̂(θ)) = 2

 − sin θ

cos θ

 = (Dθx̂(θ)) θ̇ =
d

dt
x̂(θ) . (2.11)

Given these results, it is reasonable to ask if Equation (2.9) is trivially satisfied

for any x̂. Another example shows that this is not the case and that the left hand

side of Equation (2.9) is not always easy to quantify.

Consider again the vector field in Equation (2.10) with the same x, but now let

x̂(θ) = (0.1 + sin θ) (cos θ, sin θ). Note that dx̂(θ)/dt = (dx̂(θ)/dθ) θ̇ = dx̂(θ)/dθ, and

calculate

d

dθ
x̂(θ) =

 0.1 cos2 θ − sin θ (1 + 0.1 sin θ)

0.1 cos θ sin θ + cos θ

 . (2.12)

The vector field expands out as

Φ (x̂(θ)) = (1 + 0.1 sin θ)

 cos θ − sin θ − (1 + 0.1 sin θ)2 cos θ

cos θ + sin θ − (1 + 0.1 sin θ)2 sin θ

 . (2.13)
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Rather than calculate the projection explicitly, just notice that

ΠTx̂(θ)
Φ (x̂(θ)) =

(
(dx̂(θ)/dθ)T Φ (x̂(θ))

(dx̂(θ)/dθ)T (dx̂(θ)/dθ)

)
d

dθ
x̂(θ) . (2.14)

The coefficient on the right-hand side of the above equation is not always one (for

example, at θ = 0), so Equation (2.9) does not hold for all θ.

In conclusion, note that the functions φ̇, ρ̇, and (dx̂(φ)/dt), while well-defined in

a theoretical sense, are not always easy to calculate – even in reduced and simplified

systems. Thus, numerical methods that calculate these quantities are generally not

as robust as those that do not.

2.3 Linearization around Planar Periodic Orbits

Equivalence between the orthogonality and PDE conditions indicates that methods

based on the orthogonality condition are at least as consistent as those based on the

PDE, which is an important result. Further exploration shows that the orthogonality

condition applied to periodic orbits in the plane preserves hyperbolicity properties of

the orbit.

Let x(t) be a periodic solution of Equation (1.1) of minimal period τ . Then there

is a linear variational equation associated with the solution:

ẏ = DΦ (x(t))y. (2.15)

This is a linear, periodically forced system, so for each fundamental matrix solution

Y (t), it admits a monodromy matrix through the relationship Y (t+τ) = Y (t)M . The

eigenvalues of all such monodromy matrices are identical, and for a hyperbolic orbit,

they are 1, µ1, µ2, . . ., µn−1, where each of the µi’s has modulus either strictly greater

than or less than 1 [18]. These are the “characteristic multipliers” of the orbit.

In the plane, there are obviously only two characteristic multipliers associated

with a periodic orbit: 1 and µ. The primary claim of this section is that linearization
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of the orthogonality condition about a hyperbolic periodic orbit in the plane preserves

the non-unity multiplier, µ.

The linearized orthogonality condition with small perturbation ρ has the form,

[
Drn(φ)TΦ (x(φ))

]
ρ = 0, (2.16)

where φ is an arbitrary angular coordinate that parameterizes the curve. Since x(φ) =

x(φ)+ r(φ)n(φ) and n(φ) = Rπ/2xφ/ ‖xφ‖, where Rπ/2 is a π/2 rotation, this reduces

to

n(φ)T Dφ (x(φ))n(φ)ρ+
Φ (x(φ))T

‖xφ‖
Rπ/2

dxφ

dr
−

(
(dxφ/dr)T xφ

)
xφ

xT
φxφ

 ρ = 0, (2.17)

which is to say,

n(φ)TDφ (x(φ))n(φ)ρ +
Φ (x(φ))T

‖xφ‖
Rπ/2n(φ)n(φ)T dxφ

dr
ρ = 0. (2.18)

If x̂(φ) is the exact periodic solution, then the vector field lies in the tangent plane

at every point, so Φ (x̂(φ))T Rπ/2n(φ) = ±‖Φ (x̂(φ))‖, where the sign is negative

if Φ (x̂(φ)) lies in the same direction as x̂φ(φ) and positive otherwise. The local

coordinate system indicates that x̂φ = xφ + rφn + rnφ, so (dxφ/dr) ρ = ρφn + ρnφ.

These two relationships added into Equation (2.18) give the linearized problem

about the exact solution,

ρφ =
nT

nTn

(
± ‖x̂φ(φ)‖
‖Φ (x̂(φ))‖DΦ (x̂(φ))n(φ)− nφ

)
ρ. (2.19)

If φ ranges from 0 to φ1, then the “characteristic multiplier” associated with this

equation is simply ρ(φ1), with the initial condition ρ(0) = 1. A standard result about

local coordinate systems ties the linearized problem to the characteristic multipliers

of the variational problem.

Proposition 2.5 Let x(t) be an isolated periodic solution of Equation (1.1), let Q(t)

be a moving orthonormal system in the graph of x, and let the characteristic multi-

pliers of the associated variational system in Equation (2.15) be 1, µ1, µ2, . . ., µn−1.
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Then the characteristic multipliers of the system,

zt = Q(t)T
[
−Qt(t) + DΦ (x(t))Q(t)

]
z, (2.20)

are µ1, µ2, . . ., µn−1.

A proof of this and similar results is available in standard texts [18], so it is not

included here.

One important fact to note is that in the plane, n(t)Tnt(t) = 0. Also, if x is the

exact solution, then ‖xφ(φ)‖ / ‖Φ(x(φ))‖ = ±dt/dφ.

Thus, Equation (2.19) taken with x̂ = x and n = n reduces to the form of Propo-

sition 2.5. It must be true that Equation (2.19) admits a characteristic multiplier ±µ

if x is the exact solution.

Given this result, two natural questions emerge:

� Does a similar result hold if the system is not planar?

The linearization above relies on the fact that n = Rπ/2xφ/ ‖xφ‖. Such a closed-

form description of Q is not available in general, so this question likely does not have

a straightforward answer.

� Does Equation (2.19) admit characteristic multiplier ±µ if x is not the exact

solution?

A limiting argument (as x → x̂ in the C1 sense) follows easily, but numerical

experiments indicate something stronger – that the multiplier does not change as long

as x is sufficiently close to the exact solution. This is reasonable, since the underlying

attractivity structure of the orbit should persist irrespective of the coordinate system.
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CHAPTER III

DISCRETIZATION OF ORTHOGONALITY

CONDITION: SPECIAL CASES

Because of the obfuscated nature of φ̇ and ρ̇, and because of the inherent limita-

tions in the graph transform method (most notably the need for integration of the

differential equation and the need to split the normal bundle into attracting and re-

pelling spaces), numerical methods based on the orthogonality condition show the

most promise for finding higher-dimensional invariant tori under flows. The ortho-

gonality condition does have its own difficulties, however, particularly in the choice

of normal vectors and the possibility of multiple solutions to the discrete equations.

Numerical experimentation shows that many natural discretizations will lead to in-

stability in the numerical solution, especially in higher dimensions.

This chapter gives sufficient conditions for convergence of the discrete orthogonal-

ity condition as applied to a hyperbolic, periodic orbit. The proof applies to several

possible discretizations, as long as the instantaneous normal vectors – irrespective

of computation method – are normal to the line segment between subsequent points

on the orbit. The proof relies on inherent interchangeability between mid-point col-

location and the orthogonality condition as applied to hyperbolic, periodic orbits,

which indicates that the orthogonality condition represents a natural extension of

collocation to higher-dimensional manifolds, plus a re-normalization rule.

This chapter also outlines two special cases in which the normal vectors have a

canonical representation: 1) A periodic orbit in the plane, where the normal vector

is a rotation of the tangent vector; and 2) a two-torus embedded in R
3, where the
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normal vector is a cross-product of the two tangent vectors. Finally, it contains a

proof of ill-conditioning for a class of examples of two-tori in R
3, which indicates that

the convergence properties of the orthogonality condition are complicated and are

not amenable to analysis. Chapter 5 proposes one technique for computing normal

vectors for general p-tori embedded in R
n.

3.1 Stability of Method for Periodic Orbits

Whether computing periodic orbits or higher-dimensional tori, the process always

starts with an initial guess, x, and the method leads to a solution that is referenced

to the initial guess via a local coordinate transformation.

Let T̃ = {φ1, φ2, . . . , φN} be an ordered set of distinct points in S1 (which is to say,

T 1). Let x(φ) : S1 → R
n be the nearby initial guess with requisite normal vectors,

Q(φ), as in Section 1.2, so the solution is an invariant, discrete “torus” of the form

x̂(φi) = x(φi) + Q(φi)r (φi) , i = 1, 2, . . . , N . (3.1)

The r (φi) give the invariant torus, where each r (φi) is in R
n−1.

To shorten the notation, let yi = y (φi), where y can be x, x̂, r, or Q, so Equation

(3.2) becomes

x̂i = xi + Qiri, i = 1, 2, . . . , N . (3.2)

Some definitions will help to formalize the language. The following definitions are

more general than necessary in the current section, but they will be useful later.

Definition 3.1 The pair
[
x, Q

]
is a reference p-torus if x : T p → R

n is C2 and

invertible with full-rank first derivative, and Q : T p → R
n×q, q = n − p, is a C1

mapping such that at every φ ∈ T p, Q(φ) is a matrix whose orthonormal columns

span the normal space to the image of x at x(φ).

In the special case of p = 1, the term “reference curve” replaces “reference 1-

torus”. The term “reference curve” may apply to the pair described above, to the
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mapping x, or to the image of that mapping in the plane. By convention, a ref-

erence curve x is said to be “close in the C1 sense” to a closed, C1-smooth, non-

self-intersecting curve y in R
n if y admits a parameterization of the form y(φ) =

x(φ) + Q(φ)r(φ), and the C1 norm of the difference, y − x, is small. This definition

extends naturally if y and x are tori instead of curves. The next two definitions

formalize the language of discrete points on the initial guess.

Definition 3.2 A skeleton on a reference p-torus is a set,
[
xi1,i2,...,ipQi1,i2,...,ip

]
, ik =

1, 2, . . . , Nk, k = 1, 2, . . . , p, such that the angles φi1,i2,...,ip =
(
φi1 , φi2, . . . , φip

)
repre-

sent a lexicographically ordered set of distinct points in T p, xi1,i2,...,ip = x
(
φi1,i2,...,ip

)
,

and Qi1,i2,...,ip = Q
(
φi1,i2,...,ip

)
. It is called a δ-skeleton for some δ > 0 if the minimum

arc-length distance along the surface of the graph of x between neighboring points is

less than δ everywhere.

Given a skeleton on the initial guess, the desired solution comes entirely from a

set of q-vectors, through Equation (3.2), and the solution x̂ should be close to the

skeleton in a discrete sense approximating C1. The next definition is an attempt to

extend the idea of C1 closeness to discrete solutions.

Definition 3.3 Let
[
xi1,i2,...,ip, Qi1,i2,...,ip

]
be a skeleton on a reference p-torus. An

α-update is a collection of real q-vectors,
{
ri1,i2,...,ip

}
, that satisfies two conditions:

1.
∥∥ri1,i2,...,ip

∥∥ < α, and

2.
∥∥ri1,i2,...,ip − ri′1,i′2,...,i′p

∥∥ < α∆s, where ∆s is the minimum arc length distance

between xi1,i2,...,ip and xi′1,i′2,...,i′p taken along the surface of the image of x, and

xi1,i2,...,ip and xi′1,i′2,...,i′p are neighbors in the lexicographic ordering.

By convention, the term “α-update” occasionally applies to the updated torus x̂,

rather than the r’s.
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Whereas Q varies smoothly and is available everywhere on the surface of the graph

of x, Equation (1.18) requires instantaneous, smoothly varying normal vectors. The

choice of discretizations essentially reduces to a choice about how to calculate those

vectors on the graph of x̂.

Normal vectors should always be orthogonal to the derivative, dx̂/dφ, so one obvi-

ous place to start is to consider the mid-points. To simplify the algebraic operations,

let x̂− = x̂i+1 − x̂i and x̂1/2 = (x̂i+1 + x̂i) /2. (Note that the notation suppresses the

assumed index, i.) The derivative dx̂/dφ should be roughly in the same direction as

x̂− at the half point. The results of this section apply to a class of discretizations

with instantaneous normal vectors according to box schemes. The term “box scheme”

has already appeared several times in this thesis, but the following is a more exact

definition in the case of a periodic orbit. The definition extends in later sections to

general p-tori in R
n.

Definition 3.4 Let
[
xi, Qi

]
be a skeleton on a reference curve. The skeleton is

equipped with a box scheme if there exists α > 0 such that for any α-update x̂ and

every i there is a rule for finding a unique n × q matrix, Q1/2, whose orthonormal

columns are orthogonal to x̂−. In addition, Q1/2 must vary smoothly with x̂−.

Given a reference curve with a box scheme, Equation (1.18) has the representation,

QT
1/2Φ

(
x̂1/2

)
= 0, (3.3)

Later sections show how to calculate Q1/2 in various circumstances, but the results in

this section apply to any discretization scheme where Q1/2 satisfies these properties.

The key to proving that the solutions of the discrete problem are isolated when

applied to hyperbolic, periodic orbits is to recognize that all discretizations of the

above form are equivalent to collocation using the “mid-point rule” with a particu-

lar choice of phase condition. Previous, well-established results then give closeness

estimates.
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Among other applications, collocation works on boundary-value problems of the

form,

ẋ = Φ (x)

g (x(0),x(τ)) = 0,

(3.4)

where g is the boundary condition, and τ might be the (unknown, minimal) period

of a periodic orbit.

The driving idea behind collocation is to ensure that the vector field is in the same

direction as the derivative ẋ at “ghost points” between the grid points of a particular

discretization [2]. The particular case of interest is the mid-point rule, where

x̂− − hiΦ
(
x̂1/2

)
= 0 for all i = 1, 2, . . . , N, (3.5)

where hi = ti+1 − ti. Immediately one sees that this is very close to the development

in Equation (3.3), except that collocation normalizes by time instead of arc length.

The translation of a time normalization into an arc-length normalization is the key to

relating collocation with a mid-point rule to the orthogonality condition with a box

scheme.

Collocation has a long history in numerical analysis, and its convergence prop-

erties are well-studied. Many of the proofs of convergence rely on a certain level of

differentiability, plus a global Lipschitz condition, as in the following definition.

Definition 3.5 The vector field Φ is Ck
Lip in a neighborhood if it is Ck in the neigh-

borhood, and if there exists L > 0 such that for all y, z in the neighborhood and

all non-negative collections of integers s1, s2, ..., sn such that
∑n

i=1 si = u ≤ k, the

following Lipschitz condition holds:∥∥∥∥ ∂uΦ (y)

∂xs1
1 ∂xs2

2 · · ·∂xsn
n

− ∂uΦ (z)

∂xs1
1 ∂xs2

2 · · ·∂xsn
n

∥∥∥∥ < L ‖y− z‖

A typical convergence result is the following theorem [2, 9].
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Theorem 3.1 Let Φ be C2
Lip, and let x∗ be a solution of the system in Equation (3.4)

such that x∗ is isolated in a tubular neighborhood of radius ρ0. Then there exists an

h0 > 0 and a ρ ≤ ρ0 such that for all mid-point collocation discretizations of Equation

(3.4) with maxi hi ≤ h0, there exists a unique discrete solution x̂ of the collocation

equations in a tubular neighborhood of x of radius ρ. Moreover,

‖x̂i − x∗ (ti)‖ = O
(
h2
)

for all i = 1, 2, . . . , N. (3.6)

No proof is included here. For a more general theorem with a proof, see [2].

The case under consideration is a hyperbolic, periodic orbit, which is to say an

orbit whose only multiplier on the unit circle is 1. Theorem 3.1 does not apply directly

to this situation because the period, τ , and hence the mesh, is unknown. The addition

of a trivial equation in the vector field and an extra boundary condition changes the

system into one to which classical collocation theory applies. Namely, Equation (3.4)

becomes

ẋ = τΦ (x)

τ̇ = 0

x(0)− x(1) = 0

σ (x) = 0,

(3.7)

where σ is a scalar condition known as the phase condition.

Many different types of phase conditions can make the problem well-posed. If

x is a reference curve with a skeleton, then one reasonable choice is to let σ (x) =

(x(0)− x1)
T x′

1, where the prime indicates differentiation with respect to φ, so x′
1

is a tangent vector to the graph of x at x1. This phase condition is valid as long

as it satisfies a transversality condition [9], Dσ(x∗)Φ(x∗) 6= 0, which reduces to

Φ (x∗(0))T x′
1 6= 0. Under such circumstances Theorem 3.1 applies to Equation (3.7).

All the machinery is in place now to draw the connection between collocation and

the orthogonality condition for hyperbolic, periodic orbits.
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Corollary 3.1 Let Φ be C2
Lip, and let x∗ be an isolated solution of the system in

Equation (3.7). Then for any reference curve,
[
x, Q

]
, sufficiently close to x∗ in the

C1 sense, there exists δ > 0 such that for any δ-skeleton on
[
x, Q

]
equipped with

a box scheme, there exists a unique discrete solution {x̂i}, i = 1, 2, . . . , N of the

orthogonality equations (Equation (3.3)). Moreover, there exist 0 = t1 < t2 < · · · <

tN < τ such that

‖x̂i − x∗ (ti)‖ = O
(
max

i
‖x̂−‖2

)
= O

(
δ2
)

for all i = 1, 2, . . . , N. (3.8)

Proof

Let
[
xi, Qi

]
, i = 1, 2, . . . , N , be a δ-skeleton with small δ on a reference curve. As

long as the reference curve is sufficiently close to the solution of Equation (3.7) in the

C1-sense, it is possible to expand Equation (3.7) into nN + N differential equations

with nN + N boundary conditions [2, 3]. The expansion is

ẋi = (ti+1 − ti) τΦ (xi) , i = 1, 2, . . . , N

τ̇ = 0

ṫi = 0, i = 2, 3, . . . , N

xi(1)− xi+1(0) = 0, i = 1, 2, . . . , N

(xi(0)− xi)
T x′

i = 0,

(3.9)

with the convention that t1 = 0, tN+1 = 1, and i + 1 = 1, when i = N . This system

admits a unique solution if and only if Equation (3.7) does, since the ti’s are the times

at which the periodic orbits intersect the subsequent normal spaces.

Consider the mid-point collocation discretization of Equation (3.9) where the mesh

is {0, 1}. The discrete version of Equation (3.9) is

x̂− − τ (ti+1 − ti)Φ
(
x̂1/2

)
= 0

(x̂i − xi)
T x′

i = 0.

(3.10)

Theorem 3.1 says that if δ is sufficiently small – and thus N is sufficiently large

– then there is a unique solution to Equation (3.10). That solution also satisfies

29



Equation (3.7), so Theorem 3.1 says that the solution is accurate to order h2, where

h = maxi (ti+1 − ti) /τ .

Of course, {x̂i} is a solution if and only if the vector field is in the same direction

as x̂− at each i (up to sign), which occurs if and only if the projection in Equation

(3.3) is zero, so {x̂i} is also a solution to the discrete equations of the orthogonality

condition. Conversely, any solution to the discrete equations of the orthogonality

condition is also a solution to Equation (3.10) with hi = ‖x̂−‖ /
(
τ
∥∥Φ (x̂1/2

)∥∥). The

solution to Equation (3.10) is therefore unique (with unique ti’s).

The order equivalency between ‖x̂−‖ and δ is simply a restatement of closeness

constraints. As long as the solution to the discrete orthogonality equations is an α-

update with sufficiently small α (guaranteed if the reference curve is close to the real

orbit in the C1 sense), then there exists a constant, C such that ‖x̂−‖ < C ‖x−‖, and

moreover C is independent of the skeleton for sufficiently small δ. This fact completes

the proof. �

The next obvious question to ask is if a similar line of reasoning ensures isolated

solutions near other types of “one-tori”, for example hetero- or homoclinic orbits.

Unfortunately, the presence of fixed points or other closed sub-manifolds can lead to

instability in the orthogonality equations. See Sections 4.1.3 and 4.2.3 for examples.

Yet another question is how the concept of a box scheme applies to general p-

dimensional tori. The following definition extends the definition of a box scheme to

two-tori.

Definition 3.6 Let
[
xi,jQi,j

]
, i = 1, 2, . . . , Ni, j = 1, 2, . . . , Nj be a skeleton on a

reference 2-torus. The skeleton is equipped with a box scheme if there exists α > 0

such that for any α-update x̂ and every {i, j} there is a rule for finding a unique n×

(n−2) matrix, Q1/2, whose orthonormal columns are orthogonal to the vectors, x̂
(1)
− =

(x̂i+1,j + x̂i+1,j+1 − x̂i,j+1 − x̂i,j) /2, and x̂
(2)
− = (x̂i+1,j+1 + x̂i,j+1 − x̂i+1,j − x̂i,j) /2.

In addition, Q1/2 must vary smoothly with x̂
(1)
− and x̂

(2)
− .
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Chapter 5 extends the notion of the box scheme to general p-tori, although the

reader can probably discern at this point what the tangent vectors must be if the torus

is p-dimensional. The primary difficulty is not in determining tangent directions, but

rather in specifying Q1/2, given those tangent directions.

Irrespective of the choice of rule for calculating Q1/2, all applications of the ortho-

gonality condition to skeletons with a box scheme result in the same basic sparsity

pattern in the Jacobian, as outlined in the following definition.

Definition 3.7 A matrix, J , is said to be periodic, block bi-diagonal if it has the

form,

J =



A1 B1 0 · · · 0 0

0 A2 B2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · AN−1 BN−1

BN 0 0 · · · 0 AN


, (3.11)

where all of the blocks are square and are of the same dimension. In the special case

that all the blocks are scalar, J is said to be periodic bi-diagonal.

If a periodic orbit is embedded in R
n, then a box scheme yields a periodic, block

bi-diagonal Jacobian whose blocks are full and have dimension (n− 1)× (n− 1).

3.2 Box Schemes in Two Special Cases

In two particular cases, there is a canonical representation for a normal vector given

a representative tangent vector, and hence there is only one natural way to build a

box scheme.

3.2.1 Limit Cycle in the Plane

If the limit cycle happens to be embedded in the plane, calculating Q and Q1/2 is as

simple as rotating the tangent by 90 degrees.
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Let
[
xi, Qi

]
, i = 1, 2, . . . , N be a skeleton on a reference curve. The canonical

instantaneous normal vector up to sign is,

n(φ) = Rπ/2
d

dφ
x̂(φ), (3.12)

where Rπ/2 is a π/2 rotation matrix:

Rπ/2 =

 0 1

−1 0

 . (3.13)

It may be worthwhile to normalize n if there is a compelling reason to use unit

vectors, but this may not be necessary in all circumstances. The natural choice of n

and the definitions of x̂1/2 and x̂− in previous sections transform Equation (3.3) into

Φ
(
x̂1/2

)T
Rπ/2x̂−/ ‖x̂−‖ = 0, i = 1, 2, . . . , N. (3.14)

This represents a valid box scheme, as in Definition 3.4. The definition x̂(φi) =

x(φi) + rin(φi) turns this into a system in {ri}:

Φ

(
xi+1 + xi + ri+1ni+1 + rini

2

)T

Rπ/2
xi+1 − xi + ri+1ni+1 − rini

‖xi+1 − xi + ri+1ni+1 − rini‖
= 0. (3.15)

(The collection {ri} represents an update.)

Solving this system with a root-finding routine such as Newton’s method gives the

ri and hence the invariant torus. In summary, the algorithm progresses as follows:

Algorithm 3.1 Solving for S1 in R
2.

1. Start with a given λ, an ordered sequence of points {φ1, φ2, . . . , φN} ∈ S1, and

a nearby torus given by x : S1 → R
2.

2. Calculate the normal directions, ni, i = 1, 2, . . . , N . For example, use the

equation

ni = Rπ/2
x(φi+1)− x(φi−1)

‖x(φi+1)− x(φi−1)‖
. (3.16)
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3. Use Newton’s method to solve the system given by applying the fundamental

equation (e.g., Equation (3.15)) at every i = 1, 2, . . . , N .

4. The unknowns are a list of numbers, {ri}. The calculated torus is x̂(φi) =

x(φi) + rin(φi).

5. If desired, re-distribute the points according to arc length to get a better par-

ameterization. This gives a new x̂.

6. Update λ = λ + ∆λ, set x = x̂ and ri = 0, ∀ i (or some other initial guess for

the Newton iterations), and go back to Step 2.

The Jacobian introduced through the above choice of box scheme comprises some

interesting properties. One is the relationship between the entries of the Jacobian

and the non-unity multiplier.

First, one should note that the Jacobian structure is periodic bi-diagonal and

looks like

J =



a1 b1 0 · · · 0 0

0 a2 b2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · aN−1 bN−1

bN 0 0 · · · 0 aN


, (3.17)

where N is the number of points on the skeleton. The a’s and b’s grow large as

δ → 0, but their product remains bounded and in fact approaches the characteristic

multiplier of the linearized orthogonality condition.

Proposition 3.1 Let [xi,ni], i = 1, 2, . . . , N , be a δ-skeleton on a reference curve

in the plane, and let x∗(φ) = x(φ) + r(φ)n(φ) be an isolated, hyperbolic, periodic

solution to Equation (1.1) where the vector field is C2
Lip. Let µ1 be the characteristic

multiplier of the system that results from linearizing the orthogonality condition about
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the periodic orbit (i.e., Equation (2.19) with x∗ in place of x̂). If the Jacobian, J , in

Equation (3.17) is calculated at convergence, then∣∣∣∣∣
N∏

i=1

b−1
i ai

∣∣∣∣∣ = |µ1|+O (δ) . (3.18)

Proof

Let {x̂i} be the solution to the discrete orthogonality condition equations. Corol-

lary 3.1 guarantees that there is a set of points on the graph of x∗, say {x∗
i }, such

that ‖x̂i − x∗
i ‖ = O (δ2). Let {n∗

i } be the corresponding normal directions.

Consider a center-difference approximation to the linearized orthogonality condi-

tion. The original condition is

ρφ =
n∗T

nTn∗

( ∥∥x∗
φ(φ)

∥∥
Φ (x∗(φ))Rπ/2n∗(φ)

DΦ (x∗(φ))n(φ)− nφ

)
ρ. (3.19)

With the usual subscript notation, center difference approximations are

ρ(φ) ≈ ρ1/2 = (ρi+1 + ρi) /2 ρφ(φ) ≈ ρ−/∆φ = (ρi+1 − ρi) /∆φ (3.20)

x∗(φ) ≈ x∗
1/2 =

(
x∗

i+1 + x∗
i

)
/2 x∗

φ(φ) ≈ x∗
−/∆φ =

(
x∗

i+1 − x∗
i

)
/∆φ (3.21)

n∗(φ) ≈ n∗
1/2 =

(
n∗

i+1 + n∗
i

)
/2 n∗

φ(φ) ≈ n∗
−/∆φ =

(
n∗

i+1 − n∗
i

)
/∆φ (3.22)

n(φ) ≈ n1/2 = (ni+1 + ni) /2 nφ(φ) ≈ n−/∆φ = (ni+1 − ni) /∆φ, (3.23)

which leads to a discrete approximation,

ρi+1 − ρi

∆φ
=

2n∗T
1/2

(ni+1 + ni)
T n∗

1/2 ∥∥x∗
−
∥∥ /∆φ

Φ
(
x∗

1/2

)
Rπ/2n∗

1/2

DΦ
(
x∗

1/2

)
n1/2 −

ni+1 − ni

∆φ

 ρi+1 + ρi

2
. (3.24)

Solving for ρi+1 gives

ρi+1 =

−
∥∥x∗

−
∥∥n∗T

1/2DΦ
(
x∗

1/2

)
n1/2 + 2n∗T

1/2niΦ
(
x∗

1/2

)T

Rπ/2n
∗
1/2

‖x∗
−‖n∗T

1/2DΦ
(
x∗

1/2

)
n1/2 + 2n∗T

1/2ni+1Φ
(
x∗

1/2

)T

Rπ/2n
∗
1/2

 ρi. (3.25)
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Because this is a center-difference approximation, the product
∏N

i=2 ρi+1/ρi is an

O (δ) approximation to the characteristic multiplier. It therefore suffices to compare

the coefficient in Equation (3.25) to the product of the a’s and b’s from the Jacobian.

By definition,

ai =

[
d

dri
n1/2Φ

(
x̂1/2

)]
and bi =

[
d

dri+1
n1/2Φ

(
x̂1/2

)]
. (3.26)

Explicit differentiation gives

ai = −
nT

1/2ni

‖x̂−‖
Φ
(
x̂1/2

)T
Rπ/2n1/2 +

1

2
nT

1/2DΦ
(
x̂1/2

)
ni, and

bi =
nT

1/2ni+1

‖x̂−‖
Φ
(
x̂1/2

)T
Rπ/2n1/2 +

1

2
nT

1/2DΦ
(
x̂1/2

)
ni+1,

(3.27)

so

ai

bi

=
‖x̂−‖nT

1/2DΦ
(
x̂1/2

)
ni − 2nT

1/2niΦ
(
x̂1/2

)T
Rπ/2n1/2

‖x̂−‖nT
1/2DΦ

(
x̂1/2

)
ni+1 + 2nT

1/2ni+1Φ
(
x̂1/2

)T
Rπ/2n1/2

. (3.28)

The argument now reduces to a comparison of Equations (3.25) and (3.28).

The points {x∗
i } are chosen to satisfy

∥∥∥x̂1/2 − x∗
1/2

∥∥∥ = O (δ2) and
∥∥∥n1/2 − n∗

1/2

∥∥∥ =

O (δ2). These relationships, together with the fact that the vector field is C2
Lip, imply

that

nT
1/2niΦ

(
x̂1/2

)T
Rπ/2n1/2 = n∗T

1/2niΦ
(
x∗

1/2

)T
Rπ/2n

∗
1/2 +O

(
δ2
)
. (3.29)

Although n1/2 is only within order δ of ni and ni+1, the differences ‖x̂−‖ and∥∥x∗
−
∥∥ are both of order δ themselves, so

‖x̂−‖nT
1/2DΦ

(
x̂1/2

)
ni+1 =

∥∥x∗
−
∥∥nT

1/2DΦ
(
x∗

1/2

)
n1/2 +O

(
δ2
)
, and

‖x̂−‖nT
1/2DΦ

(
x̂1/2

)
ni =

∥∥x∗
−
∥∥nT

1/2DΦ
(
x∗

1/2

)
n1/2 +O

(
δ2
)
.

(3.30)

Equations (3.29) and (3.30) imply that ai/bi = −ρi+1/ρi + O (δ2). Because δ is

order 1/N , ∣∣∣∣∣
N∏

i=1

ai/bi

∣∣∣∣∣ =

∣∣∣∣∣
N∏

i=1

ρi+1/ρi

∣∣∣∣∣+O (δ) , (3.31)

which completes the proof. �
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This proposition indicates not only that the product
∣∣∣∏N

i=1 ai/bi

∣∣∣ is bounded well

away from ±1 – a sufficient condition for the Jacobian to be well-conditioned, as

Proposition 3.3 will show later – but also that the product is closely related to a

characteristic multiplier that indicates hyperbolicity. In other words, the convergence

properties of the method are directly related to hyperbolicity properties of the torus

itself in this particular case.

3.2.2 Two-Torus in R
3

The algorithm for a two-torus in R
3 also includes a canonical way to calculate the

normal directions, in this case via cross products.

Let φ = (φ1, φ2) be angular coordinates on T 2, and let φi,j = ((φ1)i , (φ2)j),

i = 1, 2, . . . , Ni, j = 1, 2, . . . , Nj, be the lexicographically bi-ordered set of distinct

points in T 2,

((φ1)1 , (φ2)1) , ((φ1)1 , (φ2)2) , . . . ,
(
(φ1)1 , (φ2)Nj

)
,

((φ1)2 , (φ2)1) , ((φ1)2 , (φ2)2) , . . . ,
(
(φ1)2 , (φ2)Nj

)
,

...(
(φ1)Ni

, (φ2)1

)
,
(
(φ1)Ni

, (φ2)2

)
, . . . ,

(
(φ1)Ni

, (φ2)Nj

)


.

Let x(φ) be a nearby torus with requisite normal vectors, n(φ), as in Section 1.2,

so the solution is an invariant, discrete torus of the form,

x̂(φi,j) = x(φi,j) + ri,jn(φi,j) (i, j) ∈ {1, 2, . . . , Ni} × {1, 2, . . . , Nj} . (3.33)

Notation is similar to the scalar case, where, if y represents x̂, x, φ, or n, then

yi,j = y(φi,j), (3.34)

y
(1)
− = yi+1,j+1 − yi,j, (3.35)

y
(2)
− = yi+1,j − yi,j+1, and (3.36)

y1/2 = (yi,j + yi+1,j + yi,j+1 + yi+1,j+1) /4. (3.37)

36



Because the ambient space is R
3, the cross product provides a normal vector up

to sign:

n(φ) =
x̂φ1(φ)× x̂φ2(φ)

‖x̂φ1(φ)× x̂φ2(φ)‖ . (3.38)

Substituting this into Equation (1.18) reduces it to

Φ (x̂(φ))T x̂φ1(φ)× x̂φ2(φ)

‖x̂φ1(φ)× x̂φ2(φ)‖ = 0 , (3.39)

which must apply at every φi,j.

It is now time to choose a discretization for the derivatives, which turns out to be

a delicate task, since the choice of discrete representation for the derivatives, x̂φ1(φ)

and x̂φ2(φ), affects the stability of the algorithm significantly.

The discretization investigated here is the natural generalization of the center-

difference discretization for the one-torus. The approximations apply at the mid-

points of boxes on the surface of the discrete torus.

x̂φ1(φ)× x̂φ2(φ)

‖x̂φ1(φ)× x̂φ2(φ)‖ ≈
x̂

(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥ . (3.40)

Again, the periodic conditions imply that i + 1 = 1 when i = Ni and j + 1 = 1

when j = Nj. Equation (3.40) leads to a geometrically clear expression for the

normal vector. Let n1/2 denote the updated normal vector at the center of the box

(i.e., n(φ1/2)), and

n1/2 =
x̂

(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥ . (3.41)

An easily verifiable identity shows that this is equivalent to an average of deriva-

tives along the sides of the box:(
x̂

(1)
− × x̂

(2)
−

)
/2 =

(x̂i+1,j+1 + x̂i,j+1 − x̂i+1,j − x̂i,j)

2
× (x̂i+1,j+1 + x̂i+1,j − x̂i,j+1 − x̂i,j)

2
. (3.42)

Thus, the discretization represents both an average between derivatives and a nor-

mal vector that comes from a cross product of diagonals on the box, and it therefore

represents a box scheme as in Definition 3.6.
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Equation (3.41), substituted into Equation (3.39), gives an expression in r that

generates NiNj equations.

Φ
(
x̂1/2

)T x̂
(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥ = 0 . (3.43)

This is the fundamental equation for a two-torus embedded in R
3. The solution

algorithm is similar to Algorithm 3.1.

Algorithm 3.2 Solving for T 2 in R
3.

1. Start with a given λ, a bi-ordered sequence of points as in Equation (3.32), and

a nearby torus given by x : T 2 → R
3. In reality, x is a collection of points in

R
3, not a smooth function.

2. Calculate the normal directions, ni,j , i = 1, 2, . . . , Ni, j = 1, 2, . . . , Nj. For

example, use the equation,

ni =
(xi+1,j+1 − xi−1,j−1)× (xi+1,j−1 − xi−1,j+1)

‖(xi+1,j+1 − xi−1,j−1)× (xi+1,j−1 − xi−1,j+1)‖
. (3.44)

3. Use Newton’s method to solve the system given by applying the fundamental

equation (e.g., Equation (3.43)) at every point (i, j).

4. The torus at the solution is x̂i,j = xi,j + ri,jni,j.

5. If desired, re-distribute the points to get a better parameterization. This gives

a new x̂.

6. Update λ = λ + ∆λ, set x = x̂ and ri,j = 0 ∀ i, j, and go back to Step 2.

The Jacobian for a two-torus in R
3 is clearly periodic block-bi-diagonal with peri-

odic bi-diagonal blocks, as in Definition 3.7. The next section contains a discussion of

the stability of the method with this discretization as compared to other possibilities.
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3.3 Stability of Method for Two-Torus in R
3

As in the planar case, the most pressing questions are whether the system of equations

given by Equation (3.43) is solvable, and if that solution is isolated. Unfortunately, the

question is very complicated in higher dimensions, so much so that there is no general

convergence proof for the orthogonalization technique with the box discretization.

For example, the method seems to be well-conditioned if the torus is hyperbolic,

has no invariant sub-manifolds (e.g., fixed points, periodic orbits), and the discretiza-

tion does not use an even number of points in the i and j directions. This means that

the orthogonality condition applied to a torus using a 39×39 discretization might be

stable, while the same method applied to the same torus with a 40×40 discretization

will be unconditionally unstable. Furthermore, if the torus contains a fixed point or a

periodic orbit, then the method may or may not be stable, even if the discretization

is not even-even.

Clearly, the convergence properties of the method are delicate and subtle. It is

possible, however, to prove ill-conditioning in the case of an even-even discretization.

Some of the concepts developed in the planar case carry over to higher-dimensional

tori, but now there is no canonical distribution similar to arc length, so the gen-

eral conditions for convergence do not have a simple definition of “reasonably well

distributed”.

In general, the Jacobian is poorly conditioned if the following are true:

1. The torus is C2-smooth.

2. The initial guess, x, is “good enough” in a discrete sense approximating the

C1-norm.

3. The discretization points are close in the sense that, given two successive points

in any direction, there exists a connecting path along the surface of the torus

whose arc length does not exceed a given global maximum.
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4. The discretization points are distributed in such a way that the boxes formed

by their vertices are not overly elongated in a certain direction (although they

may be skewed diagonally).

5. The discretization has an even number of points in both of the i and j directions.

These loosely worded conditions are nearly the same as in the proof of well -

conditioning for periodic orbits, except for the extra complexity involved in discretely

approximating a two-dimensional surface in R
3.

Recall the terms reference 2-torus, skeleton, and α-update in Definitions 3.1, 3.2,

and 3.3 respectively. The convention in this section is to refer to a “reference 2-torus”

embedded in R
3 simply as a “reference torus”, denoted [x,n]. Also, i and j replace

i1, and i2, so a skeleton has the form [{xi,j} , {ni,j}], i = 1, 2, . . . , Ni, j = 1, 2, . . . , Nj.

An α-update is a collection of scalars, since the codimension is one, so it has the form

{ri,j}.

Let s
(1)
− denote the minimum arc length distance between xi,j and xi+1,j+1 along

the surface of of the image of x. Let s
(2)
− denote the similar minimum arc length

distance between xi+1,j and xi,j+1. Note the suppression of the subscript in the

notation – the assumption is always that the point of reference is (i, j).

Definition 3.8 Let δ > 0 and 1 ≥ κ > 0 be fixed. The set, [{xi,j} , {ni,j}], i =

1, 2, . . . , Ni, j = 1, 2, . . . , Nj is a δ, κ-skeleton on the reference torus, [x,n], if it is a

skeleton that satisfies three properties:

1. maxi,j s
(1)
− < δ

2. maxi,j s
(2)
− < δ , and

3. maxi,j sin ζ < κ, where ζ is the angle between x
(1)
− and x

(2)
− .
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The last condition ensures that the boxes of the skeleton do not become overly

elongated. In particular,∥∥∥x(1)
− × x

(2)
−

∥∥∥ /
(∥∥∥x(1)

−

∥∥∥ ∥∥∥x(2)
−

∥∥∥) > κ. (3.45)

The sparsity structure of the Jacobian is somewhat richer than in the planar case,

and indeed the last property implying poor-conditioning – that an even number of

discretization point be used in both directions – must be the result of linear algebraic

considerations, not inherent properties of the torus.

The Jacobian for a two-torus in R
3 using the discretization scheme described in

the previous section is periodic, block bi-diagonal (as in Definition 3.7) with N = Ni.

Moreover, each of the blocks Ai and Bi is Nj ×Nj and is periodic bi-diagonal.

Let fi,j = Φ
(
x̂1/2

)T
x̂

(1)
− × x̂

(2)
− /

∥∥∥x̂(1)
− × x̂

(2)
−

∥∥∥ (so the goal of the Newton iteration

is to solve the system fi,j = 0 ∀i, j). The individual elements of Ai and Bi are as

follows:

(Ai)j,j =
∂fi,j

∂ri,j
= nT

1/2DΦ
(
x̂1/2

) ni,j

4
+ Φ

(
x̂1/2

)T ∂n1/2

∂ri,j

(Ai)j,j+1 =
∂fi,j

∂ri,j+1

= nT
1/2DΦ

(
x̂1/2

) ni,j+1

4
+ Φ

(
x̂1/2

)T ∂n1/2

∂ri,j+1

(Bi)j,j =
∂fi,j

∂ri+1,j

= nT
1/2DΦ

(
x̂1/2

) ni+1,j

4
+ Φ

(
x̂1/2

)T ∂n1/2

∂ri+1,j

(Bi)j,j+1 =
∂fi,j

∂ri+1,j+1
= nT

1/2DΦ
(
x̂1/2

) ni+1,j+1

4
+ Φ

(
x̂1/2

)T ∂n1/2

∂ri+1,j+1
,

(3.46)

where j = 1, 2, . . . , Nj, and j + 1 is taken to be Nj-periodic.

The conditioning of the sums and/or differences of the block rows, Ai±Bi, deter-

mine invertibility properties of the Jacobian, so relationships between these deriva-

tives are important in establishing a bound on the inverse norm of the whole matrix.

A technical proposition helps to analyze these relationships.

Proposition 3.2 Let [x,n] be a reference torus. Then for any ε > 0, there exist

α, δ > 0, 1 ≥ κ > 0 such that for any δ, κ-skeleton, [{xi,j} , {ni,j}], and for any
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α-update, {ri,j},∥∥∥∥ ∂n1/2

∂ri+1,j+1

+
∂n1/2

∂ri,j

∥∥∥∥ < ε, and∥∥∥∥ ∂n1/2

∂ri+1,j

+
∂n1/2

∂ri,j+1

∥∥∥∥ < ε, for all i = 1, 2, . . . , Ni, j = 1, 2, . . . , Nj .

Proof

It suffices to prove the first inequality because the proof of the second is essentially

identical.

The proof of this proposition requires a few technical inequalities in order to bound

terms in the expansion of the derivative. First, because x is C2-smooth, there is a

constant C > 0 such that for sufficiently small δ,
∥∥∥x(1,2)

−

∥∥∥ ≥ Cs
(1,2)
− .

The next bound is on the difference between subsequent normal vectors. Let γ

be a curve parameterized in arc length along the surface of the graph of x between

xi,j and xi+1,j+1 such that γ(0) = ni,j, γ(∆s) = ni+1,j+1. Then∥∥∥n(1)
−

∥∥∥ =

∥∥∥∥∫ ∆s

0

n′(s)ds

∥∥∥∥ , (3.47)

where n′ is the directional derivative with respect to arc length along the curve γ.

The fact that x is a C2 function implies that the norm of the directional derivative is

globally bounded by a constant, m, so∥∥∥n(1)
−

∥∥∥ ≤ ms
(1)
− and

∥∥∥n(2)
−

∥∥∥ ≤ ms
(2)
− . (3.48)

(Recall that s
(1)
− is the shortest arc length along the surface of the graph of x between

xi,j and xi+1,j+1, and s
(2)
− is the same between xi+1,j and xi,j+1.)

The next ratio to bound is
∥∥∥x(1)

−

∥∥∥ /
∥∥∥x̂(1)

−

∥∥∥. The largest possible value occurs when∥∥∥n(1)
−

∥∥∥ is at a maximum, and ri+1,j+1 = ri,j = ±α. In this case,∥∥∥x̂(1)
−

∥∥∥ =
∥∥∥x(1)

− ± αn
(1)
−

∥∥∥ ≥ ∥∥∥x(1)
−

∥∥∥− α
∥∥∥n(1)

−

∥∥∥ ≥ ∥∥∥x(1)
−

∥∥∥− αms
(1)
− . (3.49)

A similar argument for x
(2)
− applies, so∥∥∥x̂(1,2)

−

∥∥∥ /s
(1,2)
− ≥ C − αm and

∥∥∥x(1,2)
−

∥∥∥ /
∥∥∥x̂(1,2)

−

∥∥∥ ≤ αm/C. (3.50)
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Equations (3.48) and (3.50) together imply that

∥∥∥n(1,2)
−

∥∥∥ /
∥∥∥x̂(1,2)

−

∥∥∥ ≤ m/(C − αm). (3.51)

Another worst-case analysis bounds the reciprocal,
∥∥∥x̂(1)

−

∥∥∥ /
∥∥∥x(1)

−

∥∥∥. The bound is

∥∥∥x̂(1)
−

∥∥∥ /
∥∥∥x(1)

−

∥∥∥ ≤ (∥∥∥x(1)
−

∥∥∥+ ‖ri+1,j+1ni+1,j+1 − ri,jni,j‖
)

/
∥∥∥x(1)

−

∥∥∥
< 1 + αs

(1)
− /

∥∥∥x(1)
−

∥∥∥+ α
∥∥∥n(1)

−

∥∥∥ /
∥∥∥x(1)

−

∥∥∥ (3.52)

and, since a similar argument applies to n
(2)
− ,

∥∥∥x̂(1,2)
−

∥∥∥ /
∥∥∥x(1,2)

−

∥∥∥ ≤ 1 + αm/C + α/C. (3.53)

The final inequality constrains the normalization factors in the calculation of nor-

mal vectors. The ratio is∥∥∥x(1)
− × x

(2)
−

∥∥∥∥∥∥x̂(1)
− × x̂

(2)
−

∥∥∥ ≤
∥∥∥x(1)

− × x
(2)
−

∥∥∥

∥∥∥x(1)
− × x

(2)
−

∥∥∥− ∥∥∥x(1)
− × (ri+1,jni+1,j − ri,j+1ni,j+1)

∥∥∥−∥∥∥(ri+1,j+1ni+1,j+1 − ri,jni,j)× x
(2)
−

∥∥∥−
‖(ri+1,j+1ni+1,j+1 − ri,jni,j)× (ri+1,jni+1,j − ri,j+1ni,j+1)‖



≤

∥∥∥x(1)
−

∥∥∥ ∥∥∥x(2)
−

∥∥∥
κ
∥∥∥x(1)

−

∥∥∥ ∥∥∥x(2)
−

∥∥∥− ∥∥∥x(1)
−

∥∥∥(αs
(2)
− + α

∥∥∥n(2)
−

∥∥∥)−∥∥∥x(2)
−

∥∥∥(αs
(1)
− + α

∥∥∥n(1)
−

∥∥∥)−(
αs

(2)
− + α

∥∥∥n(2)
−

∥∥∥)(αs
(1)
− + α

∥∥∥n(1)
−

∥∥∥)



. (3.54)

The arc-length inequalities give

(
αs

(1,2)
− + α

∥∥∥n(1,2)
−

∥∥∥) /
∥∥∥x(1,2)

−

∥∥∥ ≤ (αm + α) /C, so (3.55)∥∥∥x(1)
− × x

(2)
−

∥∥∥∥∥∥x̂(1)
− × x̂

(2)
−

∥∥∥ ≤ 1

κ− 2 (αm + α) /C − (αm + α)2 /C2
. (3.56)
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These inequalities will help to minimize pieces of the expansion of the equations

of the proposition. Parsing the derivative yields

∂n1/2

∂ri+1,j+1
+

∂n1/2

∂ri,j
= Rπ/2

(
∂

∂ri,j
+

∂

∂ri+1,j+1

)
x̂

(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥
= Rπ/2

n
(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥ −
(
x̂

(1)
− × x̂

(2)
−

)(
x̂

(1)
− × x̂

(2)
−

)T

∥∥∥x̂(1)
− × x̂

(2)
−

∥∥∥3

(
n

(1)
− × x̂

(2)
−

)
,

which can be written,

∂n1/2

∂ri+1,j+1

+
∂n1/2

∂ri,j

= Rπ/2ΠT
n

(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥ , (3.57)

where ΠT is the projection onto the “tangent space at the half point,” i.e., the space

spanned by x̂
(1)
− and x̂

(2)
− . The strategy for minimizing this projection is 1) to show

that the item being projected is bounded in norm, then 2) to show that it approaches

the normal direction under the assumed constraints for the statement of the proposi-

tion.

Equation (3.56) gives the inequality,∥∥∥∥∥∥ n
(1)
− × x̂

(2)
−∥∥∥x̂(1)

− × x̂
(2)
−

∥∥∥
∥∥∥∥∥∥ ≤ ∥∥∥n(1)

−

∥∥∥ ∥∥∥x̂(2)
−

∥∥∥
κ
∥∥∥x(1)

−

∥∥∥ ∥∥∥x(2)
−

∥∥∥ (κ− 2 (αm + α) /C − (αm + α)2 /C2
) . (3.58)

Application of Equation (3.53) refines the inequality and shows that a constant

majorizes
∥∥∥n(1)

− × x̂
(2)
− /

∥∥∥x̂(1)
− × x̂

(2)
−

∥∥∥∥∥∥.
Therefore, in order to show that the right-hand side of Equation (3.57) can be

made arbitrarily small – and in doing so, prove the proposition – it suffices to show

that the cross product n
(1)
− × x̂

(2)
− approaches the direction of n1/2 as α → 0 (for

sufficiently small δ and sufficiently large κ). One way to accomplish this is to minimize
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nT
1/2n

(1)
− /

∥∥∥x̂(1)
−

∥∥∥, which is implied by minimizing four different items:

∣∣∣nT
i,jx̂

(1)
−

∣∣∣ / ∥∥∥x̂(1)
−

∥∥∥ ,
∣∣∣nT

i,jx̂
(2)
−

∣∣∣ / ∥∥∥x̂(2)
−

∥∥∥ ,∣∣∣nT
i+1,j+1x̂

(1)
−

∣∣∣ / ∥∥∥x̂(1)
−

∥∥∥ , and
∣∣∣nT

i+1,j+1x̂
(2)
−

∣∣∣ / ∥∥∥x̂(2)
−

∥∥∥ .
(3.59)

The argument is similar for all four quantities, so the following discussion only

minimizes one of them. The top left term expands as∣∣∣nT
i,jx̂

(1)
−

∣∣∣∥∥∥x̂(1)
−

∥∥∥ =

∣∣∣nT
i,jx

(1)
− + (ri+1,j+1 − ri,j)nT

i,jn
T
i+1,j+1 + ri,jn

T
i,jn

(1)
−

∣∣∣∥∥∥x(1)
−

∥∥∥
∥∥∥x(1)

−

∥∥∥∥∥∥x̂(1)
−

∥∥∥
≤
(∣∣∣nT

i,jx
(1)
−

∣∣∣/∥∥∥x(1)
−

∥∥∥+ α/C + αm/C
) αm

C
. (3.60)

The key to minimizing the right-hand side is to recognize that the direction of

x
(1)
− /

∥∥∥x(1)
−

∥∥∥ approaches the tangent space at as
∥∥∥x(1)

−

∥∥∥ → 0. More precisely, for a

fixed point, xi,j , where the other vertices of the box (xi,j+1, xi+1,j , and xi+1,j+1) vary,

ni,j = lim∥∥∥x(1,2)
−

∥∥∥→0

x
(1)
− × x

(2)
−∥∥∥x(1)

− × x
(2)
−

∥∥∥ , (3.61)

where the limit is taken with the κ constraint of Equation (3.45).

Therefore, limδ→0

∣∣∣nT
i,jx

(1)
−

∣∣∣ / ∥∥∥x(1)
−

∥∥∥ = 0, which demonstrates that the right-hand

side of Equation (3.60) shrinks to zero by restricting δ and α. As mentioned above,

the rest of the items in Equation (3.59) have the same bound. This consequently

minimizes Equation (3.57) and completes the proof. �

It is now relatively easy to show how the Jacobian becomes ill-conditioned when

Ni and Nj are even numbers. Let [x,n] be a reference torus, and let [{xi,j} , {ni,j}] be

a δ, κ-skeleton, with δ sufficiently small and κ sufficiently large. Assume that there is

a tubular neighborhood of the graph of x̂ where the vector field is C1
Lip. Let J be the

Jacobian at some α-update, and let the individual blocks be labeled as in Definition

3.7.
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Equation (3.46) implies that for any i = 1, 2, . . . , Ni,

Ai − Bi =



ci,1 ci,1 0 · · · 0 0

0 ci,2 ci,2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ci,Nj−1 ci,Nj−1

ci,Nj
0 0 · · · 0 ci,Nj


+



εi,1 ε′i,1 0 · · · 0 0

0 εi,2 ε′i,2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · εi,Nj−1 ε′i,Nj−1

ε′i,Nj
0 0 · · · 0 εi,Nj


, (3.62)

where

ci,j = Φ
(
x̂1/2

)T (∂n1/2

∂ri,j

− ∂n1/2

∂ri+1,j

)
, (3.63)

εi,j = nT
1/2DΦ

(
x̂1/2

) ni,j − ni+1,j

4
, and (3.64)

ε′i,j = nT
1/2DΦ

(
x̂1/2

) ni,j+1 − ni+1,j+1

4
+

Φ
(
x̂1/2

)T ( ∂n1/2

∂ri,j+1
− ∂n1/2

∂ri+1,j+1
− ∂n1/2

∂ri,j
+

∂n1/2

∂ri+1,j

)
. (3.65)

If Nj is even, then the first matrix on the right-hand side of Equation (3.62)

has a null eigenvector (with Nj elements): v =

(
1 −1 1 · · · −1

)T

. Hence, if

εi,j, ε
′
i,j = 0 for all i, j, and if Ni and Nj are even, then the Jacobian is singular with

a null eigenvector (with Ni ·Nj elements):

(
vT −vT vT · · · −vT

)T

.

To show ill-conditioning, it therefore suffices to minimize all the εi,j and ε′i,j using

α, δ, and κ. The fact that the vector field is C1
Lip gives a universal bound on the

norm of Φ
(
x̂1/2

)
and DΦ

(
x̂1/2

)
for a sufficiently constrained update. Moreover,

‖ni,j − ni+1,j‖ and ‖ni,j+1 − ni+1,j+1‖ and are of the same order as the arc length
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between xi,j and xi+1,j and between xi,j+ and xi+1,j+1 respectively (as in Equation

(3.48)). The limit δ → 0 therefore implies that εi,j → 0 for all i, j.

Shrinking δ also causes the first term in the definition of ε′i,j to go to zero, and

hence Lemma 3.2 implies that J becomes progressively more poorly conditioned as

α, δ go to zero and κ remains near one.

The most obvious way to attempt to repair the ill-conditioning of the Jacobian is

to force Ni and/or Nj to be odd. Unfortunately, this will not guarantee stability for

many different types of tori.

Numerical experimentation has shown (in Chapter 4 for example) that if a torus

is hyperbolic and contains no closed, invariant, sub-manifolds, then the method gen-

erally works well if Ni and/or Nj is odd. If the torus contains a periodic orbit or

fixed point, however, then the method is not always stable. The variability between

examples indicates that proving a general set of stability conditions for the method

would be a very complicated task.

Thus, the only practical way to check stability at present is to monitor the condi-

tion number of the Jacobian directly on a case-by-case basis. For two-tori in R
3, this

is not too onerous, but the computation of condition numbers for higher-dimensional

tori can take too much time. It is useful to have a short cut for evaluating the Ja-

cobian that takes advantage of the structure of the matrix to minimize computation

time.

The following proposition outlines a linear algebraic property of the Jacobian that

helps to determine a bound on the inverse norm, but it does not appear to be tied

intrinsically to any property of the torus.

Proposition 3.3 Let J be a periodic, block bi-diagonal matrix as in Definition 3.7,

and let m and n be positive real numbers. Assume that J satisfies one of the following

conditions (where sums and differences are N-periodic, so N + 1 is taken to be 1):
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Condition I: The B blocks are invertible, and

a)
∥∥B−1

i AiB
−1
i−1Ai−1 · · ·B−1

k

∥∥ ≤ m ∀ i = 1, 2, . . . , N, k = i, i− 1, . . . , i + 1

b)
∥∥∥(I − (−1)NB−1

i AiB
−1
i−1Ai−1 · · ·B−1

i+1Ai+1

)−1
∥∥∥ ≤ n ∀ i = 1, 2, . . . , N.

Condition II: The A blocks are invertible, and

a)
∥∥A−1

i BiA
−1
i+1Bi+1 · · ·A−1

k

∥∥ ≤ m, i = 1, 2, . . . , N, k = i, i + 1, . . . , i− 1

b)
∥∥∥(I − (−1)NA−1

i BiA
−1
i+1Bi+1 · · ·A−1

i−1Bi−1

)−1
∥∥∥ ≤ n, i = 1, 2, . . . , N.

Then ‖J−1‖ ≤ mnN .

Proof

Let each block of the Jacobian be N ′ × N ′, and pick y ∈ R
NN ′

such that ‖y‖ =

1. Let y be block partitioned, y =

(
yT

1 yT
2 · · · yT

N

)T

, where each yi has N ′

elements in it. Let Jy = f =

(
fT
1 fT

2 · · · fT
N

)T

, where the block segments are

the same size as for y. If Condition I holds, then for all i = 1, 2, . . . , N ,

yi = B−1
i−1fi−1 − B−1

i−1Ai−1yi−1

= B−1
i−1fi−1 − B−1

i−1Ai−1B
−1
i−2fi−2 + B−1

i−1Ai−1B
−1
i−2Ai−2yi−2.

(3.66)

Following this expansion to its natural end results in the expression,

(
I − (−1)NB−1

i−1Ai−1B
−1
i−2Ai−2 · · ·B−1

i Ai

)
yi =

B−1
i−1fi−1 − B−1

i−1Ai−1B
−1
i−2fi−2 + . . .

+ (−1)NB−1
i−1Ai−1B

−1
i−2Ai−2 · · ·Ai+1B

−1
i fi. (3.67)

By Condition I (a), the norm of the left-hand side obeys the inequality,

∥∥(I − (−1)NB−1
i−1Ai−1B

−1
i−2Ai−2 · · ·B−1

i Ai

)
yi

∥∥ ≥ ‖yi‖ /n. (3.68)

48



By Condition I (b), the norm of the right-hand side obeys the inequality,∥∥∥∥∥∥∥
Bi−1fi−1 −B−1

i−1Ai−1B
−1
i−2fi−2 + . . .

+ (−1)NB−1
i−1Ai−1B

−1
i−2Ai−2 · · ·Ai+1B

−1
i fi

∥∥∥∥∥∥∥
≤ m

N∑
k=1

‖fi‖ ≤ m
√

N ‖f‖ . (3.69)

Thus, ‖f‖ ≥ ‖yi‖ /
(
nm
√

N
)

for all i = 1, 2, . . . , N . Since y is a unit vector,

there exists some i such that ‖yi‖ ≥ 1/
√

N , which implies that ‖f‖ ≥ 1/ (nmN) and

implies the desired inequality.

If J satisfies Condition II but not Condition I, then there is an expansion equivalent

to Equation (3.67), namely,

(
I − (−1)NA−1

i BiA
−1
i+1Bi+1 · · ·A−1

i−1Bi−1

)
yi =

A−1
i fi − A−1

i BiA
−1
i+1fi+1 + . . .

+ (−1)NA−1
i BiA

−1
i+1Bi+1 · · ·A−1

i−1Bi−1fi−1. (3.70)

The proof then proceeds in the same way as above. �

This proposition is useful because it provides a way to estimate the condition of

the Jacobian by concentrating on sub-blocks instead of the whole matrix. It does not

give a proof of non-singularity in terms of properties of the torus or discretization,

as in Section 3.1, because – as mentioned above – general convergence conditions for

the method are likely to be very complicated.

Proposition 3.3 explains in yet another way why even-even discretizations are un-

stable, while others may or may not be. For an even-even discretization, the operator

chain, B−1
Ni

ANi
· · ·B−1

1 A1, generally has an eigenvalue near one, which violates con-

dition I, b) in the statement of the proposition. Switching Nj to an odd number

removes that eigenvalue, whereas switching Ni to an odd number changes the sign

of (−1)Ni . Either way, switching to at least one odd number in the discretization
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might help to improve the condition number of the Jacobian and hence stabilize the

method, although it does not do so in all cases. See Section 4.2 for examples.

Finally, a reasonable question to ask is how – or even whether –the odd/even diffi-

culties encountered with a two-torus in R
3 persist into the general method. The peri-

odic block bi-diagonal structure of the Jacobian leads to one logical conjecture about

the number of points necessary to have stability: For a p-torus with N1, N1, . . . , Np

discretization points in each angular direction, at least p − 1 of the Ni’s should be

odd.

Such a choice allows all the top-level A and B (which are themselves periodic,

block bi-diagonal) to be invertible, and it also satisfies the proper sign in Proposition

3.3. Numerical experimentation has shown that the conjecture is probably correct

for the general method applied to two- and three-tori. See Chapter 5 for numerical

results.

3.4 Alternate Discretizations

Given that changing the odd/even character of Ni and Nj does not necessarily stabi-

lize the method for two-tori, the next logical step is to examine different discretiza-

tions. This thesis does not contain any analysis of the convergence properties of

discretizations other than the box template, but some numerical experiments have

shown that other discretizations are not necessarily better.

A center-difference discretization leads to Ni ·Nj equations of the form,

fi,j = Φ (x̂i,j)
T (x̂i+1,j − x̂i−1,j)× (x̂i,j+1 − x̂i,j−1)

‖(x̂i+1,j − x̂i−1,j)× (x̂i,j+1 − x̂i,j−1)‖
, (3.71)

and the method requires that fi,j = 0 for all i, j. The Jacobian for this discretization

is block, periodic, tri-diagonal (the obvious extension of Definition 3.7), where the

diagonal blocks are periodic tri-diagonal, and the off-diagonal blocks are diagonal.

Each row contains five nonzero entries.
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Figure 3.1: Center-Difference Template

Unfortunately, the method seems to be unconditionally unstable when applied

to the torus of Section 4.2.1. This result makes sense if the template is considered

as a discretization of the PDE in Equation (1.10). As mentioned in the discussion

of graph transform techniques, the characteristic curves of the PDE are flow lines

under the vector field. Then the center-difference discretization requires information

to propagate across characteristic curves, which induces instability. See Figure 3.1

for a graphical representation.

It should be noted that the planar analogy to the center-difference discretization

to Equation (3.71) is stable. That analogous discretization is

fi = Φ (x̂i)
T Rπ/2

x̂i+1 − x̂i−1

‖x̂i+1 − x̂i−1‖
, (3.72)

where Rπ/2 is the usual π/2 rotation. This discretization is useful in breaking up

cycles with equilibria into segments, as in Section 4.1.3.

Other variations of the discretization in Equation (3.71) include forward-forward,

forward-backward, center-forward, etc. Some of the variations are stable for a while,

when applied to the torus in Section 4.2.1, but none perform as well as the box
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scheme.

One way to stabilize the method in some circumstances is to do away with the

center point and use an average,

fi,j = Φ

(
x̂i+1,j + x̂i−1,j + x̂i,j+1 + x̂i,j−1

4

)T

(x̂i+1,j − x̂i−1,j)× (x̂i,j+1 − x̂i,j−1)

‖(x̂i+1,j − x̂i−1,j)× (x̂i,j+1 − x̂i,j−1)‖
, (3.73)

which leads to a Jacobian of the same form, except that now there are only four

nonzero entries in each row, since the diagonal is empty. This scheme is essentially

just a box scheme, though, with a larger (and hence less accurate) box.

One other possibility is to modify the box scheme by changing the definition of

the half-point. Previously, x̂1/2 = (x̂i,j + x̂i+1,j + x̂i,j+1 + x̂i+1,j+1) /4, but another

reasonable definition is

x̂1/2 = (xi,j + xi+1,j + xi,j+1 + xi+1,j+1) /4 +

(ri,j + ri,j+1 + ri+1,j + ri+1,j+1) (ni,j + ni,j+1 + ni+1,j + ni+1,j+1) /16. (3.74)

As expected, this does not seem to change change the stability properties of the

method significantly.

The final discretization explored here is the the use of triangularization to rep-

resent the two-dimensional surface in R
3. Triangles have a distinct, unambiguous

orientation and thus eliminate the need for averaging to obtain normal directions.

When the triangles have vertices {x̂i,j, x̂i+1,j , x̂i,j+1}, then the equations to be solved

are of the form,

fi,j = Φ

(
x̂i,j + x̂i+1,j + x̂i,j+1

3

)T
(x̂i+1,j − x̂i,j)× (x̂i,j+1 − x̂i,j)

‖(x̂i+1,j − x̂i,j)× (x̂i,j+1 − x̂i,j)‖
. (3.75)

Triangularization unfortunately seems to be less stable than the box scheme. In

numerical experiments, the condition number of the Jacobian is much higher than

with the box scheme, and the method only continues for a few λ-steps before breaking

down due to instabilities.
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CHAPTER IV

NUMERICAL RESULTS: SPECIAL CASES

This chapter contains some numerical results for Algorithms 3.1 and 3.2, specifically,

computations for three different planar oscillators and three different two-tori em-

bedded in R
3. The behavior of the method in these situations illustrates some of

the concepts developed in Chapter 3. It also indicates how complicated the general

convergence conditions of the method may be.

4.1 Example: Limit Cycles in the Plane

The simplest types of “tori” are closed orbits in the plane. They are useful as pre-

liminary tests of torus-approximation algorithms because they do not require much

computation time or memory storage.

This section contains three examples of the orthogonality condition and Algorithm

3.1 applied to limit cycles in the plane. The first limit cycle is a smooth modification

of a simple, attracting oscillator. The method performs well with or without arc

length re-distribution. The second limit cycle is the classic van der Pol oscillator,

which becomes pinched throughout the continuation process and thus demonstrates

how arc length continuation can be very useful in the algorithm. The third limit cycle

contains two fixed points. The method is unstable when applied to this example, but

a different discretization can correct it.

4.1.1 Peanut Limit Cycle in the Plane

One particularly straightforward (but ultimately too straightforward) example is the

vector field given in polar coordinates by Equation (2.10). That limit cycle does grow

with increasing λ, but because it does not change shape, it is not a good test case for
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Figure 4.1: Peanut Limit Cycle

numerical algorithms.

Fortunately, one can modify the system to obtain a one-torus that distorts and

becomes non-convex as it grows. Consider the system in polar coordinates,

ṙ = r(λ− r2) + 5λ cos2 θ

θ̇ = 1 .

(4.1)

The system in Cartesian coordinates is

ẋ1 = x1

(
λ− x2

1 − x2
2

)
+

5λx3
1

(x2
1 + x2

2)
3/2
− x2

ẋ2 = x2

(
λ− x2

1 − x2
2

)
+

5λx2
1x2

(x2
1 + x2

2)
3/2

+ x1 .

(4.2)

The addition of the second term in the ṙ equation causes the limit cycle to pinch

at the top and bottom as it grows. Eventually, the limit cycle begins to look like a

peanut. Figure 4.1 shows the evolution of this stable limit cycle for λ = 0.1, 0.5, 1.0,

and 2.0.

The following figures show the results of the algorithm applied to a 50-point grid

where the parameter grows from λ = 0.1 to λ = 2.0 with a step size of 0.1. To start
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the algorithm, the initial guess is

x (φi) = xi = 0.8

 cos(φi)

sin(φi)

 , (4.3)

where φi = 2πi/50, i = 1, 2, . . . , 50.

The Jacobian in Newton’s method comes from forward-differencing on r with a

step size of 10−9, and the cut off criterion for Newton’s method is that the two-norm

of the right-hand side of the correction be less than 0.001. In other words, if each

Newton iteration is the solution of Jy = f , and then the next f is evaluated at x+y,

then the cut off criterion is that ‖f‖ < 0.001.

Figures 4.2 and 4.3 show the continuation of the limit cycle with and without

re-distributing via arc length respectively. The curves in Figure 4.2 represent the

solution at convergence, but before re-distribution at that value of λ. The results in

the two figures are nearly identical, with the only difference being the location of the

points.

The estimated condition numbers of the Jacobian come from the one-norm es-

timation function “condest” in Matlab 6.0. The estimation procedure does use a

pseudo-random seed, so it is not fully repeatable [19].

When the algorithm includes re-distribution at convergence at each λ step, the

condition number (with respect to to the one-norm) of the (50× 50) Jacobian ranges

approximately from 3.7 to 23.8 and averages about 10. Without re-distribution, it

ranges approximately from 12.1 to 27.1 and averages about 20.

The algorithm seems to be extremely robust and stable, converging to a rea-

sonable approximation with no arc length re-distribution with as few as 20 points.

Computation time is minimal.
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Figure 4.2: Continuation of Peanut Orbit with Re-distribution
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Figure 4.3: Continuation of Peanut Orbit without Re-distribution
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Figure 4.4: van der Pol Oscillator

4.1.2 van der Pol Oscillator

Another example of an attracting limit cycle in the plane is the familiar van der Pol

oscillator,

ẍ + λẋ(x2 − 1) + x = 0, (4.4)

which reduces to the first-order system,

ẋ1 = x2

ẋ2 = −x1 + λx2

(
1− x2

1

)
.

(4.5)

This system has an attracting periodic orbit for λ > 0 [18], so again it is possible to

get a picture of the orbit from forward integration. Figure 4.4 shows the orbit for

λ = 0.1, 0.5, 1.0, and 2.0.

The van der Pol oscillator becomes pinched and forms sharp corners much more

than the orbit in the previous section. While this pinching may not indicate a loss of

smoothness on the theoretical level, it does require a little more work in the discretiza-

tion. As numerical results demonstrate, arc length re-distribution between steps can

prevent breakdown in the discrete representation of the orbit.
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Figure 4.5: Continuation of van der Pol Oscillator with Re-distribution

The following figures show the results of the algorithm applied to a 50-point grid

where the parameter grows from λ = 0.1 to λ = 2.0 with a step size of 0.05. To start

the algorithm, the initial guess is

x (φi) = xi = 2.0

 cos(φi)

sin(φi)

 , (4.6)

where φi = 2πi/50, i = 1, 2, . . . , 50.

The Jacobian in Newton’s method comes from forward-differencing on r with a

step size of 10−9, and the cut off criterion for Newton’s method is the same as for the

peanut cycle: that the two-norm of the right-hand side (i.e., ‖f‖ in the tables below)

be less than 0.001.
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Figure 4.6: Continuation of van der Pol Oscillator without Re-distribution
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Table 4.1: Newton Iteration: van der Pol Oscillator with Re-distribution

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
– 0.1 1 0.70 190 0.28

2 0.0016 190 0.0028
1.2× 10−7

0.95 1.0 1 0.36 90 0.15
2 0.0012 92 0.0011

2.0× 10−6

1.95 2.0 1 0.55 160 0.15
2 0.025 160 0.0026

1.8× 10−5

Figures 4.5 and 4.6 show the continuation of the limit cycle with and without

re-distributing via arc length respectively. The curves in Figure 4.5 represent the

solution at convergence, but before re-distribution at that value of λ. As before, the

condition number estimator is “condest” in Matlab 6.0.

Arc length re-distribution clearly helps the algorithm in this case more so than

with the peanut orbit. Its influence is probably due to the higher curvature observed

here as opposed to the relatively mild bending in the peanut cycle. When the algo-

rithm includes re-distribution at convergence at each λ step, the condition number

(with respect to to the one-norm) of the (50×50) Jacobian ranges approximately from

80 to 190 and averages about 100. Without re-distribution, it ranges approximately

from 65 to 120 and averages about 80. The initial Jacobian has a condition number

of about 190, since the initial guess is not as good as it could be.

Tables 4.1 and 4.2 show some sample Newton iterations with and without re-

distribution. The vector y is the correction at each Newton iteration. The first

Newton iteration is of course identical in both cases, since no re-distribution has

occurred yet.
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Table 4.2: Newton Iteration: van der Pol Oscillator without Re-distribution

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
0.95 1.0 1 0.31 71 0.12

2 0.0054 72 7.8× 10−4

9.9× 10−7

1.95 2.0 1 0.23 113 0.076
2 0.0028 115 5.1× 10−4

3.0× 10−7

4.1.3 Failure of the Method in the Plane

This section contains an example where the orthogonality condition does not work

directly. The example is the planar vector field given in polar coordinates by

ṙ = r
(
λ− r2

)
θ̇ = sin θ,

(4.7)

or in Cartesian coordinates by

ẋ1 = x1 (λ− x1 − x2)−
x2

2√
x2

1 + x2
2

ẋ2 = x2 (λ− x1 − x2) +
x1x2√
x2

1 + x2
2

.

(4.8)

Linearization shows that the above system admits an attracting heteroclinic orbit

of constant radius
√

λ between a saddle at (
√

λ, 0) and a sink at (−
√

λ, 0). Figure

4.7 is a picture.

Numerical experimentation has shown that the orthogonality condition combined

with the usual discretization scheme described in Section 3.2 does not work well on

the system in Equation (4.7). The Jacobian is extremely ill-conditioned for a wide

variety of distributions, and no amount of adjustment seems to help. Moreover, both

the ai’s and the bi’s switch sign around the fixed points, which seems to offer no hope

in evaluating stability.

Just because one discretization is ill-suited to heteroclinic cycles, however, does not

mean that the orthogonality condition does not apply. There are in fact many ways
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Figure 4.7: Heteroclinic Cycle in the Plane

to repair the discretization so that Equation (1.18) does not induce an ill-conditioned

Jacobian.

For example, one might consider the cycle as two heteroclinic orbits, and construct

them one at a time. Using a straight center-difference template, as in Equation (3.71),

let N be the number of points on the orbit, and let {xi}, i = 1, 2, . . . , N as the initial

guess with x1 = (−
√

λ, 0), xN = (
√

λ, 0), and all others chosen to approximate the

upper or lower orbit.

The normal vectors are rotations of the tangents,

ni = Rπ/2
xi+1 − xi−1

‖xi+1 − xi−1‖
, i = 2, 3, . . . , N − 1. (4.9)

Let x̂i = xi + rini and the system of equations in r is

r1 = rN = 0

Φ (xi)
T Rπ/2

x̂i+1 − x̂i−1

‖x̂i+1 − x̂i−1‖
= 0 , i = 2, 3, . . . , N − 1.

(4.10)

The Jacobian in a Newton’s method solution to Equation (4.10) is tri-diagonal.

Figure 4.8 shows the results for λ = 1.0 to λ = 3.0 in steps of ∆λ = 0.1. The
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Figure 4.8: Solution of Heteroclinic Cycle in the Plane

curve contains 15 points on each of the upper and lower orbits, plus the fixed points.

Computation time is minimal, and the condition number for the (17× 17) Jacobian

is about 12-13.

The above method is not the only way to apply the orthogonality condition to a

heteroclinic orbit, and the reader probably can conceive of several more schemes with

a few minutes’ consideration.

The literature additionally contains many different methods for computing homo-

and heteroclinic curves, with most using a boundary-value problem approach [5, 38].

One definite advantage to using the orthogonality condition is that it obviates the the

conversion to an infinite-time boundary value problem. While it is not straightforward

to apply the orthogonality condition to non-hyperbolic curve – as will often be the

case for homoclinic orbits – some adaptations have been successful [24, 27, 28, 29, 30].
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4.2 Example: Two-Tori in R
3

This section contains three examples of the discretization developed in Section 3.2

applied to two-tori in R
3. The first two examples demonstrate successful application

of the method, while the third demonstrates how the method can fail when the torus

contains closed, invariant sub-manifolds (in this case, two periodic orbits).

4.2.1 Two-Torus from Fluid Flow

Langford [22] proposes the following system of ODE as a simplification of equations

describing fluid flow:

ẋ1 = (λ− 3)x1 − (1/4)x2 + x1

[
x3 + (1/5)

(
1− x2

3

)]
ẋ2 = (1/4)x1 + (λ− 3)x2 + x2

[
x3 + (1/5)

(
1− x2

3

)]
ẋ3 = λx3 −

(
x2

1 + x2
2 + x2

3

)
.

(4.11)

This vector field has a cylindrical symmetry that reveals how it gives rise to an

invariant torus. The symmetry actually converts the field into a planar problem.

Using cylindrical coordinates with x1 = r cos(θ), x2 = r sin(θ), and z = x3.

Equation (4.11) becomes

ṙ = r
(
−z2/5 + z + λ− 14/5

)
ż = z (λ− z)− r2,

(4.12)

with θ̇ = 1/4. Thus, it suffices to analyze the system in the right half-(r, z)-plane.

A sequence of bifurcations occurs in the planar system as λ grows:

� For λ < 5 −
√

11, the equilibria in (r, z) coordinates are (0, 0) and (0, λ). The

origin is a saddle, and (0, λ) is a stable node. There is a heteroclinic orbit along

the z axis that connects the two points.

� At λ = 5 −
√

11, a stable equilibrium breaks off of the (0, λ) branch. The

location of this new equilibrium is (
√

a(λ− a), a), where a = (5−
√

20λ− 31)/2.
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Note that this equilibrium corresponds to a periodic orbit in the full, three-

dimensional system. Also, the equilibrium at (0, λ) changes to a saddle and the

heteroclinic connection persists.

� At λ = 2, the new branch undergoes a Hopf bifurcation. The planar system

admits a new, stable periodic orbit, which corresponds to a stable invariant

torus in the full system. The branch of equilibria at (
√

a(λ− a), a) is now

unstable, as is the corresponding periodic orbit in the full system.

� At λ ≈ 2.02482, the stable manifold of (0, 0) intersects the unstable manifold of

(0, λ) and forms a heteroclinic cycle. The heteroclinic cycle absorbs the periodic

orbit and destroys the torus.

� At λ = 14/5, the branch at (0, 0) absorbs the branch at (
√

a(λ− a), a).

The destruction of the torus at λ ≈ 2.02482 (which corresponds to the creation

and immediate destruction of a heteroclinic cycle in the plane) is a global bifurcation,

so an exact value of λ would be difficult to calculate. Figure 4.9 shows the progression

of the reduced planar system.

Because the torus is attracting, one can produce a reasonable picture of it by

choosing an initial condition and integrating forward, and indeed this is how the

bifurcation value of λ ≈ 2.02482 is approximated. Figure 4.10 shows the progression

of the full system. For a more complete description of the torus, see [22].

The following figures show the results of Algorithm 3.2 applied to a 45× 45 torus

from λ = 2.005 to breakdown. To start the algorithm, the initial guess is

x((φ1)i , (φ2)j) = xi,j =


(0.95 + 0.35 cos (φ2)j) cos (φ1)i

−(0.95 + 0.2 cos (φ2)j) sin (φ1)i

0.35 sin (φ2)j + 1

 , (4.13)

where (φ1)i = (φ2)i = 2π(i − 1)/45. This guess then undergoes an arc length re-

distribution along each meridian before the continuation process begins, if arc length
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Figure 4.9: Progression of Reduced System

67



λ=2.02

-1
0

1
-1

0

1
0

1

2

-1
0

1

λ=2.0248

-1
0

1
-1

0

1
0

1

2

-1
0

1

λ=2.005

-1
0

1 -1

0

1
0

1

2

-1
0

1

λ=2.01

-1
0

1
-1

0

1
0

1

2

-1
0

1

Figure 4.10: Progression of Full System

68



Table 4.3: Continuation Steps for Fluid-Flow Torus

λ Range ∆λ
2.005–2.02 0.005
2.021–2.024 0.001

2.0241–breakdown 0.0001

re-distribution is desired.

The Jacobian in Newton’s method comes from forward-differencing on r with a

step size of 10−8, and the cut off criterion for Newton’s method is that the two-norm

of the right-hand side (‖f‖) be less than 10−6. The step size for the continuation

process varies as shown in Table 4.3.

Because the torus is cylindrically symmetric about the x3-axis, it is possible to

re-distribute the points by arc length along each meridian to obtain a better spatial

picture of the torus. The algorithm seems to be robust, however, and it seems to work

with or without re-distribution. In fact, the algorithm is overly robust without re-

distribution, since it will converge for parameter values up to about λ = 2.025, which

is past the breakdown of the physical torus. This is probably a consequence of poor

distribution of points that allows for extra solutions of the fundamental equations.

Figures 4.11 - 4.13 show the continuation process with arc length re-distribution

along each meridian, and Figures 4.14 - 4.16 show it without re-distribution. As in the

scalar case, the pictures in Figures 4.11 - 4.13 represent the solution at convergence

but before re-distribution at each value of λ. The center lines in the exploded views

represent arithmetical averages among all the points in a given meridian.

Again, the estimated condition number with respect to the one-norm comes from

the algorithm in Matlab 6.0 [19]. When the algorithm includes re-distribution at

convergence at each λ step, the condition number of the 2025×2025 Jacobian ranges

approximately from 1500 to 25000 and averages about 4000. Without re-distribution,

it ranges approximately from 2300 to 33000 and also averages about 5000.
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Figure 4.11: Fluid Flow Torus with Re-distribution; λ = 2.005
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Figure 4.12: Fluid Flow Torus with Re-distribution; λ = 2.020
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Figure 4.13: Fluid Flow Torus with Re-distribution; λ = 2.024
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Figure 4.14: Fluid Flow Torus without Re-distribution; λ = 2.005
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Figure 4.15: Fluid Flow Torus without Re-distribution; λ = 2.020
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Figure 4.16: Fluid Flow Torus without Re-distribution; λ = 2.0248
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Table 4.4: Newton Iteration: Fluid-Flow Torus with Re-distribution

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
– 2.005 1 1.1 7200 0.72

2 0.059 3000 0.20
3 8.9× 10−4 3100 4.6× 10−4

3.3× 10−8

0.2015 2.020 1 0.39 4500 5.5
2 1.1 6600 0.75
3 0.031 5500 0.029
4 1.3× 10−4 5600 2.8× 10−4

3.4× 10−9

2.0247 2.0248 1 0.071 1.0× 104 0.75
2 0.0083 1.2× 104 0.18
3 7.9× 10−4 1.5× 104 0.016
4 2.7× 10−5 1.5× 104 1.3× 10−4

1.6× 10−9

See Tables 4.4 and 4.5 for condition numbers and corrections for some sample

continuation steps. In these two tables, the naming convention is the same as in

Section 4.1, so the right-hand side is f , the vector containing the left hand side of

Equation 3.43 at each (i, j). The vector y represents the correction at each Newton

iteration, y = −J−1f .

Computation time for the algorithm applied to a two-torus in R
3 is still minimal.

The largest computational expense is in generating the Jacobian, not solving the

system, probably because the algorithm is implemented in Matlab 6.0, and there is

no easy way to vectorize the generation of the Jacobian, which is intrinsically a local

operation.

Regardless of the inefficiencies incurred by writing the code in a higher-level lan-

guage, the Jacobian for a 45× 45 torus still takes less than 15 seconds to generate on

a modern computer. Writing the Jacobian-generation code in a lower-level language

does significantly improve the performance of the algorithm for higher-dimensional

tori – as shown later in Section 5.5 – but it is not necessary here.
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Table 4.5: Newton Iteration: Fluid-Flow Torus without Re-distribution

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
– 2.005 1 1.05 3700 0.72

2 0.062 3400 0.21
3 0.0011 3500 4.4× 10−4

2.7× 10−8

0.2015 2.020 1 0.23 3400 5.2
2 0.64 4500 0.52
3 0.021 5800 0.088
4 1.6× 10−4 6200 1.4× 10−4

1.3× 10−9

2.0247 2.0248 1 0.0048 1.2× 104 0.10
2 2.5× 10−4 1.7× 104 2.2× 10−4

5.0× 10−9

4.2.2 Two-Torus from Forced Oscillator

Another example of a two-torus embedded in R
3 arises from the forced van der Pol

oscillator,

ẍ + αẋ(x2 − 1) + x = λ cos(ωθ), (4.14)

which reduces to the first-order system [10, 17, 35]

ẋ = y + αx
(
1− x2/3

)
ẏ = −x + λ cos(ωθ),

(4.15)

where α > 0, ω > 0, and λ cos(ωθ) is the forcing term. In Equation (4.5), α is the

continuation parameter, but now α is fixed and, in keeping with previous notation, λ

is the continuation parameter.

The forced van der Pol oscillator admits an attracting periodic orbit for several

values of the forcing term [18, 35]. Figure 4.17 shows examples of the periodic orbits

when α = 0.4 and λ cos(ωθ) ranges from -0.8 to 0.8.

The system generates an invariant torus through the addition a trivial third an-

gular dimension, θ̇ = 1. It is also necessary to shift the system by a certain fixed

value, say x← x − 5, to prevent the torus from overlapping itself when the periodic
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orbit spins around the vertical axis. The new system is

ẋ = y − 5 + αx
(
1− x2/3

)
ẏ = −x + λ cos(ωθ)

θ̇ = 1.

(4.16)

A simple coordinate transformation takes advantage of the periodicity of θ and

compacts the system into a torus. With x1 = y cos(ωθ), x2 = y sin(ωθ), and x3 = x,

the system becomes

ẋ1 =
λx2

1

x2
1 + x2

2

− x1x3√
x2

1 + x2
2

− ωx2

ẋ2 =
λx1x2

x2
1 + x2

2

− x2x3√
x2

1 + x2
2

+ ωx1

ẋ3 =
√

x2
1 + x2

2 − 5 + αx3

(
1− x2

3/3
)
.

(4.17)

This system is substantially different from the last example because it is not

rotationally symmetric. Also, it is a standard example, so it provides a way to check

the orthogonality condition with the current discretization against previous work

[10, 12, 21, 29, 35, 36]. Because the torus is attracting, a simple forward integration

exhibits a rough view of the torus, just as in Figure 4.10. Figures 4.18 and 4.19 show

the progression of the torus in λ for α = 0.4 and for ω =
√

0.84 and ω =
√

0.78

respectively. These are standard parameter values in the literature [10, 29, 38].

The torus actually persists for larger values of λ in both cases, but it becomes

increasingly difficult to get an image of the torus from simple integration.

The following figures show the results of Algorithm 3.2 applied to the van der Pol

torus, first with ω =
√

0.84 and then with ω =
√

0.78. In both cases, the initial guess

at λ = 0 is

x((φ1)i , (φ2)j) = xi,j =


(5 + 2 cos (φ2)j) cos (φ1)i

−(5 + 2 cos (φ2)j) sin (φ1)i

2 sin (φ2)j

 , (4.18)
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where (φ1)i = 2π(i−1)/Ni and (φ1)j = 2π(j−1)/Nj. If desired, this initial guess then

undergoes an arc length re-distribution along each meridian before the continuation

process begins.

The Jacobian in Newton’s method comes from forward-differencing on r with a

step size of 10−8, and the cut off criterion for Newton’s method is that the two-norm

of the right-hand side (‖f‖) be less than 10−6.

As in the previous torus, arc-length re-distribution along each meridian does im-

prove the discretization. Unlike the previous torus, however, the deformation of the

torus actually requires some sort of re-distribution, at least for part of the contin-

uation process for one particular value of ω. Practical experience shows that for

ω =
√

0.84, a good strategy is to re-distribute at convergence up until some set λ

value, then finish the continuation without re-distribution.

Figures 4.20–4.22 show the continuation process from λ = 0.0 through λ ≈

0.342407 when ω =
√

0.84 with a grid of Ni = Nj = 45. The points are re-distributed

along each meridian between steps for λ ≤ 0.30. Above that value, the torus does

not undergo re-distribution between steps. Figure 4.20 is the result at convergence,

but before re-distribution.

The step size for the continuation process is dynamic, starting at 0.1 and halving

every time the Newton process does not converge within a specified number of iter-

ations – with some extra correction to allow for larger steps in the beginning. This

causes the step size to shrink quickly near breakdown, as shown in Figure 4.23.

Condition numbers for the Jacobian calculated using the one-norm condition es-

timator [19] vary greatly, from about 600 near λ = 0, to about 106 for λ > 0.325.

Table 4.6 contains some examples.

Note that this method extends the torus farther than some graph transform meth-

ods [12], probably because it does not rely so heavily on attractivity properties. It

may be possible to extend the torus even further by experimenting with different
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Figure 4.20: Forced van der Pol Torus; λ = 0
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Table 4.6: Newton Iteration: Forced van der Pol Torus with ω =
√

0.84

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
– 0.0 1 5.9 620 2.7

2 0.11 680 0.13
3 1.9× 10−4 680 2.9× 10−4

8.3× 10−10

0.30 0.325 1 0.65 8.9× 105 2.9
2 0.11 2.7× 105 0.98
3 0.012 3.0× 105 0.082
4 9.6× 10−5 3.0× 105 3.9× 10−4

2.4× 10−9

0.342383 0.342407 1 5.2× 10−4 3.1× 106 0.17
2 0.0019 4.3× 106 0.051
3 8.1× 10−5 5.3× 106 0.0072
4 2.8× 10−6 5.5× 106 1.6× 10−4

1.1× 10−9
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Figure 4.24: Forced van der Pol Torus; ω =
√

0.84

choices of Ni and Nj and different cut-off thresholds for re-distribution, but the torus

appears to be very near breakdown above λ ≈ 0.3424.

Figure 4.24 shows one section of the torus at φ1 = 0 (θ = 0) and approximate λ

values of 0, 0.1, 0.2, 0.3, 0.325, 0.3375, 0.3406, 0.3414, 0.3418, 0.3420, and the final

0.3424. ( cf. [10]).

Figures 4.25 – 4.27 show the continuation process through λ ≈ 0.3845 when

ω =
√

0.78 with Ni = 401 and Nj = 101. (The result at λ = 0 is of course identical

to the result for ω =
√

0.84 in Figure 4.20.) The torus does not undergo any re-

distribution between λ steps. The figures contains only a few representative points,

since a full 401×101 grid would be too dense. The condition numbers of the Jacobian

are comparable to the case of ω =
√

0.84.

The reason for the drastic increase in the number of points at ω =
√

0.78 is

that the technique is much less stable, probably due to a difference in breakdown

mechanism between ω =
√

0.84 and ω =
√

0.78. In the latter case, a fixed point is

developing on the torus near breakdown [1, 12], and the method is unstable when a

grid point is near an equilibrium. See the next section for a discussion of the effect
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Figure 4.25: Forced van der Pol Torus; ω =
√

0.78, λ = 0.3445
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Figure 4.26: Forced van der Pol Torus; ω =
√

0.78, λ ≈ 0.3848
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Table 4.7: Newton Iteration: Forced van der Pol Torus, ω =
√

0.78

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
– 0.0 1 27 9200 11

2 0.47 6400 0.56
3 7.9× 10−4 6500 0.0013

3.6× 10−9

0.30 0.3445 1 4.5 1.1× 104 20
2 1.0 1.3× 104 6.5
3 0.12 1.6× 104 0.49
4 8.0× 10−4 1.7× 104 0.0017

1.3× 10−8

0.38774 0.387761 1 0.0020 1.1× 106 1.6
2 0.18 2.3× 106 0.28
3 0.062 1.5× 106 0.24
4 0.032 1.7× 106 0.080
5 0.0032 1.7× 106 0.0040
6 2.4× 10−5 1.7× 106 4.2× 10−5

* 1.8× 10−9

of invariant sub-manifolds on the stability of the method.

Even disregarding the existence of a fixed point, the obvious pinching of the torus

indicates that it is losing smoothness. Increased resolution, particularly in the di-

rection of time (θ), seems to stabilize it somewhat, as it permits tighter calculations

near the pinched ares. Other methods have reported difficulty when ω =
√

0.78 as

well [10].

Figure 4.28 shows one section of the torus at φ1 = 0 (θ = 0) and approximate λ

values of 0, 0.1, 0.2, 0.3, 0.3445, 0.3668, 0.3779, 0.3834, 0.3848, 0.3862, 0.3869, 0.3873,

0.3876, and the final 0.3878 ( cf. [10, 38]).

4.2.3 Complications with Method for Two-Torus in R
3

In the analysis of Section 3.3, one of the concerns was the existence of closed, invariant

sub-manifolds such as periodic orbits, the idea being that such manifolds are the

natural extension of fixed points that create problems for one-tori in the plane. This
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Figure 4.28: Forced van der Pol Torus; ω =
√

0.78

section contains an example of an invariant two-torus in R
3 with two periodic orbits,

for which the method seems to be unconditionally unstable if the discretization aligns

with one or more of the orbits.

The construction of the torus proceeds along the same lines as in Section 4.1.3.

It starts with the usual attracting oscillator in Equation (2.10), which in Cartesian

coordinates is

ẋ = λx− y − x
(
x2 + y2

)
ẏ = x + λy − y

(
x2 + y2

)
.

(4.19)

To create a torus from a simple oscillator about the origin, it is necessary to shift

the periodic orbit to the right by a fixed factor, say 3, and then add a rotational

dimension, θ̇ = sin θ. The new system is

ẋ = λ(x− 3)− y − (x− 3)
(
(x− 3)2 + y2

)
ẏ = (x− 3) + λy − y

(
(x− 3)2 + y2

)
(4.20)

θ̇ = sin θ.

The standard cylindrical coordinate transformations of x1 = x cos θ, x2 = x sin θ,
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and x3 = y convert Equation (4.20) to

ẋ1 =
x1

(√
x2

1 + x2
2 − 3

)
√

x2
1 + x2

2

(
λ−−

(√
x2

1 + x2
2 − 3

)2

+ x2
3

)
− x2

2 + x1x3√
x2

1 + x2
2

ẋ2 =
x2

(√
x2

1 + x2
2 − 3

)
√

x2
1 + x2

2

(
λ−−

(√
x2

1 + x2
2 − 3

)2

+ x2
3

)
+

x1x2 − x2x3√
x2

1 + x2
2

ẋ3 =

(√
x2

1 + x2
2 − 3

)
+ λx3 − x3

((√
x2

1 + x2
2 − 3

)2

+ x2
3

)
.

(4.21)

This vector field admits a two-torus with two periodic orbits. Both periodic orbits

lie in the x1-x3 plane. The unstable one is centered at (3, 0, 0), and the stable one is

centered at (−3, 0, 0). The torus itself is globally attracting, so forward integration

gives a rough picture of it. Figure 4.29 shows the two periodic orbits with eight

connecting orbits.

As mentioned, this section show the results of two different types of initial guesses.
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The first one is a modification of the ones used in previous sections:

x((φ1)i , (φ2)j) = xi,j =


(3 + 2 cos (φ2)j) cos (φ1)i

−(3 + 2 cos (φ2)j) sin (φ1)i

2 sin (φ2)j + 1

 , (4.22)

where (φ1)i = 2π(i− 1)/Ni and (φ2)j = 2π(j − 1)/Nj.

This choice of x has the property that at least one φ1-section (i.e., a collection

of points where φ1 is constant) lines up exactly along one of the periodic orbits.

Specifically, all the points x1,j lie on the repelling periodic orbit, and, if Ni is even,

then the points xNi/2+1,j lie on the attracting orbit.

If Ni is even, then the condition number of the Jacobian is markedly higher than

if Nj is odd, although the method is poorly conditioned in general regardless of Ni.

The condition number algorithm [19] estimates a condition number for the Jacobian

on the order of 1012 for the Jacobian of a 46×45 torus and 1013 for a 100×101 torus.

In neither case does the Newton iteration converge at λ = 1.

The same algorithm estimates a condition number on the order of 109 for a 45×45

torus and 1010 for a 101×101 torus. The method will in fact continue the torus from

λ = 1.0 up to λ = 1.8 for a 45× 45 torus in steps of ∆λ = 0.1, but it is unclear how

reliable these results are, due to the high condition numbers.

Given that the discretization seems to have difficulty when a section lines up with

a periodic orbit, the next obvious initial guess to try is the same as in Equation (4.22),

but with a diagonally slanted meridian. Changing the definitions of φ1 and φ2 is the

simplest way to induce a slant into the initial guess.

Let (φ2)j = 2π(j− 1)/Nj as before. Shifting the definition of one of the angles by

a set factor of the other is the simplest way to produce a slanted picture, so now let

(φ1)i = 2π(i−1)/Ni +sin (φ2)j /5. The extra term generates a torus whose meridians

no longer lie in the vertical plane. See Figure 4.30.

This new initial guess does improve the performance marginally, but not so much
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Figure 4.30: Continued Torus with Two Periodic Orbits, λ = 2.0

that the method is completely reliable. The condition number of the Jacobian for a

45 × 45 torus is about 1.5 × 106 at λ = 1.0, but it climbs above 109 near λ = 2.0

when using increments of ∆λ = 0.1. Figure 4.30 shows the result of the continuation

process for a 45× 45 torus at λ = 2.0. No re-distribution is necessary here, since the

torus grows symmetrically.

As expected, the oddness/evenness of Ni does not matter so much with a slanted

torus. Table 4.8 shows the estimated condition numbers for this torus for a variety

of numerical experiments. All condition number estimates come from the standard

algorithm computed for the first Newton iteration before convergence at the λ value.

A “–” in the table indicates where the method could not continue. The slanted, larger

tori could not continue past λ = 1.7 with ∆λ = 0.1.
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Table 4.8: Condition Numbers for Example with Periodic Orbits

κ(J)
Initial Guess Ni ×Nj λ = 1.0 λ = 2.0

Vertical 45× 45 2.8× 108 –
46× 45 3.3× 1012 –
45× 46 2.9× 108 –

101× 101 8.1× 1010 –
102× 101 8.3× 1013 –
101× 102 8.3× 1010 –

Slanted 45× 45 1.6× 106 6.6× 108

46× 45 4.3× 106 4.6× 108

45× 46 1.9× 106 5.1× 108

101× 101 6.2× 107 –
102× 101 8.0× 107 –
101× 102 1.2× 108 –
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CHAPTER V

ORTHOGONALITY CONDITION: GENERAL

CASE

The special cases described and implemented in Chapters 3 and 4 rely on special

properties of R
2 or R

3. This chapter extends the orthogonality condition to general

p-tori in R
n in a way that is similar, though not identical, to the technique proposed

by Moore [29]. It also contains an analysis of some of the numerical issues involved,

notably answering questions about the structure of the Jacobian in the Newton iter-

ations and the best methods for solving the sparse system in higher dimensions.

Finally, this chapter introduces a physical example of a three-torus embedded in

R
8 that arises from a system of indirectly coupled oscillators. Numerical results show

the continuation of the torus to a parameter value near breakdown.

5.1 General Algorithm

When trying to implement Equation (1.16) for a general p-torus embedded in R
n,

the first challenge is to construct a new, smooth set of traveling normal vectors on

the surface of each torus. Local tangent vectors are relatively easy to approximate

through natural extensions of the box discretizations described in earlier chapters,

but given a set of p independent tangent vectors in R
p+q, there is no obvious method

for constructing an orthonormal set of q normal vectors, at least not smoothly along

the entire torus. In lower dimensions, natural rotations and cross-products provide

updated normal vectors based on tangent directions, but in higher dimensions the

algorithm becomes more complicated.

As usual, the search is for a p-torus in R
n with q = n − p. Let x (φ) be a
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guess for the torus with φ = (φ1, φ2, . . . , φp) being p periodic coordinates, and let

Q(φ) be a smooth, moving set of normal vectors on the graph of x. Then the

sought-after torus in local coordinates is x̂ (φ) = x (φ) + Q(φ)r (φ), where r(φ) =

(r1(φ), r2(φ), . . . , rq(φ)).

Now let the initial guess and normal vectors be discrete with Nk points along each

φk direction, k = 1, 2, . . . , p. References for x, x̂, r, and Q are xi1,i2,...,ip, x̂i1,i2,...,ip,

and Qi1,i2,...,ip respectively by convention. Periodicity indicates that arithmetic in

the indexing is modulo Nk in the kth position, meaning that Nk + 1 = 1 for all

k = 1, 2, . . . , p.

Tangent vectors come from the box scheme, and the natural extension works as

follows. For a limit cycle, each box is a line segment with two vertices: x̂i and x̂i+1,

and the tangent vector is the difference between the vertices.

For a two-torus, each box is a square with four vertices: x̂i,j, x̂i+1,j , x̂i,j+1, and

x̂i+1,j+1, and the two tangent vectors are averages. That is to say, the first tangent

direction is x̂
(1)
− = (x̂i+1,j − x̂i,j + x̂i+1,j+1 − x̂i,j+1) /2, the second tangent direction is

x̂
(2)
− = (x̂i,j+1 − x̂i,j + x̂i+1,j+1 − x̂i+1,j) /2, and the normal vector is x̂

(1)
− × x̂

(2)
− , nor-

malized. (As mentioned in Section 3.2, this average gives the same normal direction

as the previous definitions of x̂
(1)
− and x̂

(2)
− .)

In general, then, a single box in a p-torus has 2p vertices, and the p tangent

directions are averages. Let V be the vertices of a box,

V =
{
x̂j1,j2,...,jp

}
, (5.1)

where each jk ranges from ik to ik + 1, forming the 2p vertices.

This box defines q numbers in the function that should be set to zero in the

orthogonality condition. In other words, the orthogonality condition with a box

scheme in any dimension gives a set of equations of the form of Equation (3.3), where

x̂1/2 and Q1/2 represent the position and set of normal vectors respectively at the

center of the box.
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Calculating the position at the center of the box is a straightforward averaging of

all the vertices and evaluation of the vector field at that point. The normal vectors

are trickier.

Let yk and zk be the sums of all vertices with ik +1 and ik respectively in the kth

position, that is

yk =
∑
{x ∈ V | x = x̂•,•,...,ik+1,...,•}, (5.2)

zk =
∑
{x ∈ V | x = x̂•,•,...,ik,...,•}, (5.3)

where the ik + 1 or ik occur in the kth position. Then a set of approximate tangent

directions at the center of the box lies in the columns of W , where

W =

(
y1 − z1 y2 − z2 · · · yp − zp

)
. (5.4)

Now the task is to use W to extract normal vectors in such a way that the

resulting set of normal vectors move smoothly over all possible W ’s. One possible

way to achieve this is to use information from the original normal vectors, Q.

Moore actually opts for a quasi-Newton iteration on a tangency condition [29], so

his method does not require an explicit computation of the Q’s during the convergence

process. Any method based on the orthogonality condition must nevertheless generate

a new set of Q’s after convergence, so Moore proposes a method for generating a

smooth, moving basis for the normal space based on the “orthogonal Procrustes

problem.”

Essentially, this method requires a rotation from the baseline normal vectors,

Q, into the updated normal vectors, Q, by means of orthogonal matrices, subject

to norm-minimization constraints. The constraint at each point, i1, i2, . . . , ip, is to

minimize

p∑
k=1

∥∥∥Qi1,i2,...,ipQi1,i2,...,ip −Qi1−1,i2,...,ik−1,...,ip

∥∥∥2

·

∥∥∥Qi1,i2,...,ipQi1,i2,...,ip −Qi1,i2,...,ik+1,...,ip

∥∥∥2

, (5.5)
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where Qi1,i2,...,ip is an orthogonal matrix, and all the Q’s have columns that span the

orthogonal complement of their respective normal spaces. Gauss-Seidel iteration on

this constraint converges to a smooth, moving system of normal vectors. See [15] for

an explanation of the general orthogonal Procustes problem.

This method would be capable of generating the Q’s, but the following approach

seems more natural and may require less computation.

Let Q be the sum of all the Q’s associated with the vertices in V,

Q1/2 =
∑

x̂j1,j2,...,jp∈V
Qj1,j2,...,jp

. (5.6)

As long as none of the columns of Q1/2 lie in the image of W , then the operator(
W Q

)
is non-singular.

Orthonormalizing the columns of the operator therefore gives a splitting into the

tangent and normal spaces. A standard QR decomposition yields,(
W Q1/2

)
= UR =

(
T Q1/2

)
R, (5.7)

where W is as in Equation (5.4), Q1/2 is as in Equation (5.6), R is upper-triangular

with positive diagonal entries, U is unitary (orthogonal in the real case), and the first

p columns of U (i.e., T ) span the tangent space, while the last q columns (i.e., Q1/2)

span the normal space.

Note that this calculation of Q1/2 yields a smooth moving set over the whole torus,

subject to closeness constraints. A multi-step process implements Equation (3.3) in

each box:

Algorithm 5.1 Applying orthogonality condition

1. Calculate the average x̂1/2 at the center of the box by averaging all the vertices

of the box.

2. Calculate Φ
(
x̂1/2, λ

)
.
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3. Calculate the tangent vectors using Equation (5.4), and calculate the average

normal vectors using Equation (5.6).

4. Perform a QR decomposition as in Equation (5.7) to get Q, the normal vectors

at the center of the box.

5. The projection Φ (x̂, λ)T Q1/2 = 0 gives q equations at each box.

The “biased” QR decomposition used to calculate Q may also provide an updated

Q for a new λ value after convergence. For example, consider the point xi1,i2,...,ip with

normal vectors Qi1,i2,...,ip, and let x̂ be the updated torus that satisfies the orthogo-

nality condition. To get the new normal vectors, it is necessary to construct new

tangent vectors at xi1,i2,...,ip using – among other possibilities – center differences:

W =

( (
x̂i1+1,i2,...,ip − x̂i1−1,i2,...,ip

)
· · ·

(
x̂i1,i2,...,ip+1 − x̂i1,i2,...,ip−1

) )
, (5.8)

then the updated normals come from a QR decomposition just as in Equation (5.7),(
W Qi1,i2,...,ip

)
=

(
T Qi1,i2,...,ip

)
R

Qi1,i2,...,ip ← Qi1,i2,...,ip.

(5.9)

It is now possible to write down the algorithm for a general p-torus in R
n.

Algorithm 5.2 Continuing T p in R
n.

1. Start with a given λ, and a discrete x and Q as above.

2. Obtain q ·N1 ·N2 · · ·Np equations using Algorithm 5.1.

3. Solve the equations using Newton’s method with a numerically approximated

Jacobian. The unknowns are the individual components of the r’s

4. Upon convergence, if this is the final value of λ, stop the algorithm.

5. Otherwise, update λ = λ + ∆λ, and set x = x̂ (or some other guess)
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6. If desired, re-distribute the points in x.

7. Re-compute the Q’s using the QR decomposition technique in Equations (5.8)

and (5.9). If the points have been re-distributed, then make sure that the old

normal vectors, Q, are close enough that the QR decomposition technique is

still valid.

8. Return to Step 1

5.2 Numerical Issues

In Algorithms 3.1 and 3.2, the most time-consuming task is generating the Jacobian

for use in Newton’s method iterations. This is true for Algorithm 5.2 as well in the

case of two-tori embedded in lower-dimensional real spaces.

For higher-dimensional tori and tori with very large codimensions, however, the

actual solution of the linear system takes more time than the generation of the Jaco-

bian. In addition, the system grows to a size that makes it impractical to fill in large

portions of the Jacobian during the course of the solution. It is therefore necessary

to use creative solution techniques that sacrifice computational efficiency in order to

save memory.

Consider, for example, the equations and Jacobian matrices involved in the con-

tinuation of a p-torus in R
n, with points N1, N2, . . . , Np in each respective direction.

Let f be a vector containing the quantities to be set to zero, and let the points of the

torus be ordered lexicographically according ip, ip−1, . . . , i1. (See the definition of f

below.) If one arbitrarily associates the box with vertices V in Equation (5.1) with
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the numbering i1, i2, . . . , ip, just to have some ordering on f , then f looks like

f =



(
Φ (x̂, λ)T Q

)
(1, 1, . . . , 1, 1)(

Φ (x̂, λ)T Q
)

(1, 1, . . . , 1, 2)

...(
Φ (x̂, λ)T Q

)
(1, 1, . . . , 2, 1)(

Φ (x̂, λ)T Q
)

(1, 1, . . . , 2, 2)

...(
Φ (x̂, λ)T Q

)
(N1, N2, . . . , Np)



, (5.10)

where the index in parentheses sets the box, x̂ is the average of the vertices of the

box, and Q comes from Equation (5.7) applied to the box.

Each line constitutes q equations, for a total of q ·N1 ·N2 · · ·Np. The corresponding

unknowns are the radial coordinates, ri1,i2,...,ip. For future reference, let

r =

(
(r1,1,...,1)

T (r1,1,...,2)
T · · ·

(
rN1,N2,...,Np

)T )T

. (5.11)

If J is the Jacobian,

J =

(
∂f/∂(r1)1,1,...,1 ∂f/∂(r2)1,1,...,2 · · · ∂f/∂(rq)N1,N2,...,Np

)
, (5.12)

then the system of equations to be solved at each Newton iteration is Jy = −f . A

simple forward-difference in each r component gives a reasonable numerical approxi-

mation of the Jacobian.

Each box of the torus depends on 2p different vertices, each of which can move in

q directions. Thus, each row or column of the Jacobian contains at most q ·2p nonzero

entries, and the whole Jacobian contains at most q2 ·2p ·N1 ·N2 · · ·Np nonzero entries.

Moreover, the nonzero entries are well-organized. The overall structure of the

Jacobian is periodic block bi-diagonal as in Definition 3.7, where now each block is

itself periodic block bi-diagonal, and so on to p nested levels of the structure. The

lowest block structure comprises full square components that are q elements on a side.
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Figure 5.1: Sparsity Plots of Jacobian

Figure 5.1 shows the sparsity structure of a 5× 5× 5 three-torus in R
8. The box in

each picture indicates the zoom region for the next picture.

As mentioned in previous sections, it is not at all easy to tell whether the Jacobian

is well-conditioned in higher-dimensional cases. The conditioning may depend on

several factors, including the number of points used and whether the torus has any

invariant sub-manifolds.

Even if the Jacobian has a well-understood sparsity pattern and is well-condi-

tioned, it is still not obvious how to solve Jy = −f . The main constraint on direct
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solution methods is not computation time, but rather memory.

Consider, for example, a solution technique that operates on the highest level

blocks (the A’s and B’s). The periodic, block bi-diagonal sparsity pattern of the Ja-

cobian indicates that some sort of block Gaussian elimination would be the fastest way

to solve the system. Algorithm 5.3 shows how to accomplish this without pivoting.

Algorithm 5.3 Solving the system Jy = f .

� Simultaneously form two items in a loop:

C = I − (−1)N1B−1
N1

AN1B
−1
N1−1AN1−1 · · ·B−1

1 A1, and (5.13)

f̃ = B−1
N1

fN1 −B−1
N1

AN1B
−1
N1−1fN1−1 + . . .

+ (−1)N1B−1
N1

AN1B
−1
N1−1 · · ·A2B

−1
1 f1. (5.14)

� Solve Cy1 = f̃ . Condition I of Proposition 3.3 guarantees that this is numeri-

cally well-scaled and well-conditioned.

� Substitute forward. For i = 1, 2, . . . , N1 − 1, calculate yi+1 = B−1
i Aiyi.

(This algorithm can form the long products in Equations (5.13) and (5.14) recur-

sively, if desired.)

Unfortunately, each one of the blocks Ai and Bi has a full inverse. The total num-

ber of elements in any given block is (q ·N2 ·N3 · · ·Np)
2, a number that is potentially

much larger than the number of nonzero elements in the whole Jacobian. Thus, any

viable solution technique cannot fill too many blocks, lest the computer run out of

memory. Pivoting, either block or scalar, is therefore impossible, and Algorithm 5.3

represents the only known direct solution technique that satisfies memory constraints

for reasonably large three-tori because in practice it only requires two full blocks.

Scaling presents an even more imposing barrier for direct solution techniques. If,

for i = 1, 2, . . . , Np,
∥∥A−1

i Bi

∥∥� 1,
∥∥B−1

i Ai

∥∥� 1, and Np is large then the Gaussian
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elimination produces poorly-scaled chains of operators. Poor scaling also diminishes

the estimate of the inverse norm given in Proposition 3.3.

Iterative methods therefore promise to be superior to direct methods when they

are available. Numerical experimentation has shown that the Generalized Minimum

Residual algorithm (GMRES) works well for this particular system, if it receives

a good pre-conditioner. (In this thesis, the term “residual” refers to the quantity,

‖Jy − f‖.)

Recall that a pre-conditioner is a matrix, M , that modifies the system to make it

more amenable to the particular iterative technique used to solve it. In particular, if

the original system is Jy = f , then the pre-conditioned system is M−1Jy = M−1f .

The pre-conditioner should be chosen in such a way that solving systems with M

is relatively easy and M−1J is “close” to the identity. Unfortunately, what con-

stitutes closeness is not always clear. The field of iterative solution techniques is

well-developed, and multiple references [4, 15, 16] discuss the GMRES algorithm and

pre-conditioners.

The choice of pre-conditioner is not obvious. If Condition I of Proposition 3.3

holds, and if the bounds m and n in the proposition are not too large, then a reason-

able pre-conditioner is

M =



0 B1 0 · · · 0

0 0 B2 · · · 0

...
...

. . .
...

...

0 0 · · · 0 BN1−1

BN1 0 · · · 0 0


. (5.15)

As the continuation process moves along, the operators B−1
i Ai typically grow larger

in norm, the pre-conditioner loses its effectiveness and GMRES ceases to converge.

When that happens, a direct solution technique such as the one in Algorithm 5.3

is necessary. Section 5.5 contains an example of where standard decompositions
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fail and it becomes necessary to use both GMRES and Algorithm 5.3. Numerical

experimentation shows that GMRES with the pre-conditioner in Equation (5.15)

works well for a while, but it breaks down before Algorithm 5.3, which necessitates

using the direct solution technique after a certain parameter value.

Other iterative techniques do not seem to work as well as GMRES. Some of

the iterations tried during the course of numerical experiments include Gauss-Seidel,

Jacobi, Successive Over-Relaxation, Bi-Conjugate Gradient, and Stabilized Bi-Con-

jugate Gradient [16] – all in straight or block form, and with many different pre-

conditioners.

One should note finally that the pre-conditioner in Equation (5.15) and the method

of Algorithm 5.3 apply best when the Jacobian satisfies Condition I of Proposition

3.3. If the Jacobian satisfies Condition II, then there is an analogous pre-conditioner

and direct substitution algorithm.

5.3 General Method Applied to Two-Torus in R
4

One very common example in the literature of a two-torus embedded in R
4 is a system

of two strongly coupled oscillators [7, 10, 29, 35],

ẋ1 = αx2 + x1

(
1− x2

1 − x2
2

)
− λ (x1 + x2 − x3 − x4)

ẋ2 = −αx1 + x2

(
1− x2

1 − x2
2

)
− λ (x1 + x2 − x3 − x4)

ẋ3 = αx4 + x3

(
1− x2

3 − x2
4

)
+ λ (x1 + x2 − x3 − x4)

ẋ4 = −αx3 + x4

(
1− x2

3 − x2
4

)
+ λ (x1 + x2 − x3 − x4) ,

(5.16)

where α > 0 is fixed. For comparison to previous studies, let α = 0.55.

At λ = 0, the system consists of two uncoupled, planar oscillators that trivially

form a torus. Each oscillator comprises an attracting periodic orbit of unit radius and

period 2π/α. As λ increases, the torus is still globally attracting, but two independent

periodic orbits appear on its surface: one attracting, the other repelling. This is easy

to observe by breaking down the coupling in Equation (5.16).
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If x1 = x3, and x2 = x4, then the coupling terms are zero, and there is a single

periodic orbit that descends from

ẋ1 = αx2 + x1

(
1− x2

1 − x2
2

)
ẋ2 = −αx1 + x2

(
1− x2

1 − x2
2

)
.

(5.17)

Thus, the plane defined by x1 = x3 and x2 = x4 contains an attracting periodic orbit

of unit radius. Similarly, if x1 = −x3, and x2 = −x4, then the coupling terms reduce

to 2λ (x1 + x2), and there is a single, repelling periodic orbit that descends from

ẋ1 = αx2 + x1

(
1− x2

1 − x2
2

)
− 2λ (x1 + x2)

ẋ2 = −αx1 + x2

(
1− x2

1 − x2
2

)
− 2λ (x1 + x2) .

(5.18)

Thus, the plane defined by x1 = −x3 and x2 = −x4 contains a repelling periodic orbit

of unit radius, and – given the difficulties of Section 4.2.3 – it pays to be cautious

about the discretization.

The second periodic orbit develops fixed points at λ = α/2, but the torus actually

breaks down before that when it loses its attractivity at λ ≈ 0.2605 [11, 35]. See [1]

for a full analysis of this problem for various values of α.

Algorithm 5.2 applies directly to this continuation problem. The initial x at λ = 0

is the obvious

x
(
(φ1)i , (φ2)j

)
= xi,j =

(
cos (φ1)i sin (φ1)i cos (φ2)j sin (φ2)j

)T

, (5.19)

and the initial normal vectors are

Qi,j =

cos (φ1)i sin (φ1)i 0 0

0 0 cos (φ2)j sin (φ2)j


T

, (5.20)

where, as usual, (φ1)i = 2π(i− 1)/Ni and (φ2)j = 2π(j − 1)/Nj.

At first glance, it seems that the method might not work well for this torus because

it is entirely composed of periodic orbits at λ = 0, and the method in the two special
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cases analyzed in Chapter 4 does not seem to adapt well to tori with closed sub-

invariants. Fortunately, the method is well-conditioned initially, and the only problem

comes about when the discretization lines up at positive λ values with at least one

of the two planar periodic orbits described above. The stable behavior at λ = 0 is

probably due to the non-genericity of most of the periodic orbits, since all but two of

them disappear for λ > 0.

The method is sensitive to the choice of number of discretization points according

to the following observations:

1. If Ni and Nj are both even, then the Jacobian is generally ill-conditioned at

λ = 0.

2. If Ni = Nj and both are odd, then the Jacobian is well-conditioned at first, but

then grows to a very large number for the first iteration at λ > 0 (order 1011

for a 45× 45 torus).

3. if Ni = Nj±1, then the Jacobian is generally well-conditioned, and the method

has no problem continuing the torus to bifurcation.

The first observation is probably related to the already observed ill-conditioning

in the method for an even-even two-torus in R
3. Proving that even numbers induce

multiple solutions in the general algorithm would be extremely complicated, since the

cross product and all its elegant derivative properties are no longer available, but the

general idea should be the same.

The second observation is probably related to the difficulties encountered in the

example of Section 4.2.3. If Ni = Nj , then the grid lines up exactly along at least

one of the two periodic orbits described in Equations (5.17) and (5.18). One simple

way to prevent this is to choose Ni to be slightly different from Nj, which explains

the third observation.
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Table 5.1: Continuation Steps for Directly Coupled Oscillators

λ Range ∆λ
0.0–0.25 0.05

0.251–0.255 0.001
0.2555–breakdown 0.0005

The Jacobian during the Newton iterations is periodic block bi-diagonal. Each

sub-block is periodic block bi-diagonal with full 2 × 2 blocks. Thus, the Jacobian

is 2NiNj × 2NiNj with 16NiNj possible nonzero entries, and each high-level block

contains 4N2
j entries when full. This memory requirement is well within the reach of

standard direct solution techniques and condition number estimators for the required

Ni’s and Nj ’s, so there is no need to resort to the more complicated techniques

outlined in Section 5.2.

As with the two-tori in R
3, computation time is minimal. The largest expense

is the generation of the Jacobian, and much of this is probably due to the use of

Matlab instead of a lower-level language to perform all of the local (and hence looped)

derivative approximations.

Practice has shown that for a 45 × 46 torus, a good correction strategy is to

re-distribute according to arc length along each longitude (i.e., sections of the form

xi,t, where t is constant), and then independently re-distribute along each meridian.

The strategy is best applied after convergence, up through λ = 0.25, with no re-

distribution before the iterations at λ = 0. After λ = 0.25, the torus does not

undergo any further re-distribution. Table 5.1 shows how ∆λ decreases as the torus

approaches breakdown.

Figures 5.2 and 5.3 show the continuation process from λ = 0.0 to λ = 0.2605.

In each figure, the vertical axis is artificial and represents a sweep in either φ1 or φ2.

Figures for λ ≤ 0.25 show the result at convergence, but before re-distribution.

Figures 5.4 and 5.5 show essentially the same information with the intersections of
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Figure 5.2: Directly Coupled Oscillators; λ = 0.1 (top) and 0.2
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Figure 5.3: Directly Coupled Oscillators; λ = 0.25 (top) and 0.2605
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two hyperplanes highlighted. The solid line corresponds to the x1 = x3 and x2 = x4

plane, so it should indicate the stable periodic orbit outlined in Equation (5.17).

Similarly, the dashed line corresponds to the x1 = −x3 and x2 = −x4 plane, so it

should indicate the unstable periodic orbit outlined in Equation (5.18).

Calculating the planar intersections is not itself a simple task. The strategy used

to generate the lines on Figures 5.4 and 5.5 is three-fold:

� Find grid lines where the desired plane intersects the torus.

� Calculate two linear interpolation coefficients, one based on x̂1 ± x̂3, and the

other based on x̂2 ± x̂4 (where the sign depends on the plane).

� Use the average of those two coefficients to place a point on the plot.

For example, let x̂i,j and x̂i+1,j be two points such that (x̂1)i,j − (x̂3)i,j and

(x̂1)i+1,j − (x̂3)i+1,j are of opposite sign, and (x̂1)i,j − (x̂3)i,j and (x̂1)i+1,j − (x̂3)i+1,j

are of opposite sign as well. Then the assumption is that there is a point in the

x1,3 = x2,4 plane on the grid line connecting the two points.

The two coefficients are

s1 =
(
(x̂1)i,j − (x̂3)i,j

)
/
[(

(x̂1)i,j − (x̂3)i,j

)
−
(
(x̂1)i+1,j − (x̂3)i+1,j

)]
, and (5.21)

s2 =
(
(x̂2)i,j − (x̂4)i,j

)
/
[(

(x̂2)i,j − (x̂4)i,j

)
−
(
(x̂2)i+1,j − (x̂4)i+1,j

)]
. (5.22)

The average, s = (s1 + s2) /2, is the actual coefficient used, so the point to be plotted

is (1− s) x̂i,j + sx̂i+1,j.

Unfortunately, the intersection between the x1,3 = −x2,4 plane and the torus seems

to become non-transverse at breakdown, so only a few points satisfy the first condition

of the interpolation procedure above. The bottom pictures in Figure 5.5 therefore

show the discrete points for which the difference between components changes sign.

Table 5.2 shows the entire Newton process for three different parameter values.

Even with relatively large step sizes, it is clear that the method is stable.
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Figure 5.4: Oscillators with Planar Intersections; λ = 0.1 (top) and 0.2
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Figure 5.5: Oscillators with Planar Intersections; λ = 0.25 (top) and 0.2605
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Table 5.2: Newton Iteration: Directly Coupled Oscillators

From λ To λ Iteration ‖f‖ κ(J) ‖y‖
0.05 0.1 1 4.8 490 2.6

2 0.51 510 0.36
3 0.011 530 0.0072
4 5.0× 10−6 520 2.9× 10−6

9.9× 10−13

0.2 0.25 1 3.7 1800 4.1
2 0.90 6600 2.5
3 0.61 2.0× 105 1.2
4 0.19 2.6× 105 0.15
5 0.0037 2.6× 105 0.0014
6 1.3× 10−6 2.6× 105 9.3× 10−7

2.9× 10−13

0.26 0.2605 1 0.029 3.5× 105 1.2
2 0.14 5.6× 105 0.29
3 0.014 5.8× 105 0.045
4 5.0× 10−4 5.8× 105 0.0019

8.6× 10−7

5.4 Example of a Three-Torus

In order to test a numerical technique properly, it is necessary to develop an example

that is comprehensible and direct without being trivial. The example should also be

related to a physical application, so that it does not seem contrived and irrelevant.

Fortunately, planar oscillators abound in nature, and it is possible to construct a large

variety of flow-invariant tori by coupling them together either directly or indirectly.

This section describes an instance of the latter case – where planar oscillators influence

each other indirectly through a medium that can store potential energy. (The previous

section describes an example of direct coupling.)

Such indirect coupling can occur in many applications, with one of the most obvi-

ous being multiple systems of mechanical devices coupled through a spring-resistance

medium, or RLC circuits coupled through an RC medium. Other applications of this

type of system include time-dependent chemical reactions [33] and suspensions of cells
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in passive media [32, 33].

Typically, the strength of coupling depends on a parameter, λ, where λ = 0

indicates a completely uncoupled problem. At λ = 0, each oscillator exists without

any outside effects, and there is an obvious torus. The question of persistence of the

torus as the coupling increases is mostly answered in some simple cases [39].

Consider a system of p oscillators, each embedded in dimension m. Let ẋi =

Φi (xi), i = 1, 2, . . . , p be p autonomous systems, each with a periodic solution, yi (t)

with minimal period, τi. Let the systems be coupled indirectly through another m-

dimensional system, ẋ0 = Φ0 (x0). Specifically, let the coupling be

ẋi = Φi (xi) + λP (x0 − xi) , i = 1, 2, . . . , p,

ẋ0 = α0P

(
1

p

p∑
i=1

xi − x0

)
,

(5.23)

where α0 is a number greater than zero, and P is an m×m matrix.

At λ = 0, the oscillators are uncoupled, and the system has an invariant p-torus

of the form,

xi = yi (φi) i = 1, 2, . . . , p,

x0 =
α0

p

p∑
i=1

{(
I − e−α0τiP

)−1
∫ τi

0

eα0(s−τi)Pyi (φi + s) ds

}
,

(5.24)

where φ = (φ1, φ2, . . . , φp) is any set of periodic coordinates parameterizing the p-

torus. See [39] for a derivation of Equation (5.24).

The following analysis assumes three conditions about the system in Equation

(5.23):

� The vector fields, Φi, are at least three times continuously differentiable,

� The eigenvalues of P have positive real parts, and

� Each system ẋi = DΦ (yi)xi has 1 as a simple multiplier, with the remaining

multipliers having modulus less than 1.
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Under these conditions, Watanabe and Othmer [39] have proven that the invariant

torus persists for sufficiently small λ > 0. Actually, their proof is more general, as

this is just a special case in a class of persistent flow-invariant tori [34, 39, 40].

Now the task is to construct a three-torus embedded in R
8 using the information

above. Let P be the identity and α0 = 1. Three simple oscillators in the form of

Equation (4.19) will do. That equation, with slightly different notation, is given by

Equation (5.17).

If φ is a standard angular coordinate, then the periodic solutions of Equation

(5.17) are x(φ) =
√

α (cos φ, sinφ). The following eight-equation vector field therefore

admits an invariant three-torus at λ = 0:

ẋ1 = x1 − x2 − x1

(
x2

1 + x2
2

)
+ λ (x7 − x1)

ẋ2 = x1 + x2 − x2

(
x2

1 + x2
2

)
+ λ (x8 − x2)

ẋ3 = x3 − x4 − x3

(
x2

3 + x2
4

)
+ λ (x7 − x3)

ẋ4 = x3 + x4 − x4

(
x2

3 + x2
4

)
+ λ (x8 − x4)

ẋ5 = x5 − x6 − x5

(
x2

5 + x2
6

)
+ λ (x7 − x5)

ẋ6 = x5 + x6 − x6

(
x2

5 + x2
6

)
+ λ (x8 − x6)

ẋ7 = (x1 + x3 + x5) /3− x7

ẋ8 = (x2 + x4 + x6) /3− x8.

(5.25)

Equation (5.24) gives the exact solution of the torus (in component form), at

λ = 0 in standard angular coordinates φ = (φ1, φ2, φ3) as

x(φ) =
(

cos φ1 , sin φ1 , cos φ2 , sin φ2 , cos φ3 , sin φ3 ,

1

6

3∑
i=1

(cos φi + sin φi) ,
1

6

3∑
i=1

(− cos φi + sin φi)
)
. (5.26)

The system of Equation (5.25) satisfies the three conditions mentioned above, so the

torus persists for sufficiently small λ > 0.
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Now that the existence and form of the torus is established, the next task is to

compute a smooth, moving, orthonormalized system of normal vectors at λ = 0.

Three vectors are obvious. They are

n1(φ) =

(
cos φ1 sin φ1 0 0 0 0 0 0

)T

,

n2(φ) =

(
0 0 cos φ2 sin φ2 0 0 0 0

)T

, and

n3(φ) =

(
0 0 0 0 cos φ3 sin φ3 0 0

)T

.

(5.27)

The next two normal vectors are more difficult to find. One way to calculate them

is to stack the three normal vectors above, together with the derivatives of Equation

(5.26) in a matrix, then do Gaussian elimination. This process gives

n4(φ) =



sin φ1µ1

− cos φ1µ1

sin φ2µ2

− cos φ2µ2

sin φ3µ3

− cos φ3µ3

1

0



and n5(φ) =



(ν1 − µ1ξ) sin φ1

(−ν1 + µ1ξ) cos φ1

(ν2 − µ2ξ) sin φ2

(−ν2 + µ2ξ) cos φ2

(ν3 − µ3ξ) sin φ3

(−ν3 + µ3ξ) cos φ3

−ξ

1



, (5.28)

where the constants represent collections,

µi = (cos φi − sin φi) /6, (5.29)

νi = (cos φi + sin φi) /6, and (5.30)

ξ =
3∑

i=1

µiνi/

(
1 +

3∑
i=1

µ2
i

)
. (5.31)

The vectors n1-n5 in Equations (5.27) and (5.28) form a smooth, orthogonal set

of moving vectors that is normal to the graph of the original, uncoupled torus. In

practice, one should normalize the last two vectors, n4 and n5, so the set will be
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orthonormal. It is now possible to apply Algorithm 5.2 to the three torus. Results

follow in the next section.

5.5 Numerical Resolution of the Three-Torus

Due to memory constraints, the resolution of the numerical results is not as fine as it

is for one- and two-tori in Chapter 4. The following results and analysis come from

calculations on a 27 × 28 × 29 torus. Experimentation shows that at least two of

the choices of number of discretization points must be odd for the method to have

any chance at stability, a result that agrees with the previous conjecture in Section

3.3 that says that least p − 1 of the angular directions should have odd numbers of

discretization points.

Because the codimension is 5, the number of equation to solve is 1.1 × 105, and

the total number of possible nonzero entries in the Jacobian is 4.4 × 106. More

importantly, however, each high-level block (Ai or Bi) contains 1.6 × 107 entries,

which causes Algorithm 5.3 to run slowly and consume memory.

Therefore, GMRES is the preferred solution algorithm when available. Numerical

experiments have shown that the following GMRES options are reasonable when

solving for the three-torus of the previous section. See [16] for an explanation of the

different options used in implementing GMRES.

� Maximum iterations: 30

� Maximum restarts: 5 (so 150 total iterations maximum)

� Pre-conditioner: Equation (5.15)

� Cut-off tolerance: Either 1×10−3 or the minimum of
√

N1N2N3×10−5/
(√

5 ‖f‖
)

and 1/2, whichever is larger.

The program always tries GMRES at least once at each Newton iteration, then

defers to Algorithm 5.3 if GMRES does not converge successfully.

120



The Newton iterations stop successfully if either ‖y‖ or ‖f‖ are smaller than
√

N1N2N3 × 10−5. They stop unsuccessfully if Algorithm 5.3 fails or if the iterations

do not stop successfully within ten steps.

In the particular continuation computation show below, a constant step size suf-

fices to continue the torus to near breakdown. In other computations on the same

torus, however, it has been useful to employ a correction strategy, where after an

unsuccessful Newton attempt, λ reverts to the previous λ plus half the previous step

increment, and the iterations start anew. In other words, if the Newton iterations do

not converge for λ = λ0 +∆λ, then the program tries again for λ = λ0 +∆λ/x, where

x is some number greater than 1 (typically x = 2). This is similar to the strategy

used for the forced van der Pol torus in Section 4.2.2.

The following figures and tables illustrate the continuation process for the 27 ×

28 × 29 three-torus from λ = 0 to λ = 0.46 in constant steps of ∆λ = 0.02. It

is not known if the torus persists for significantly larger λ values, since there is no

bifurcation analysis available as in previous examples.

Table 5.3 is similar to previous tables in that it shows some sample Newton itera-

tions at chosen λ’s, but it contains more information because the solution process is

more complicated.

In the heading of table, “#” refers to the iteration number, and ‖f‖ and ‖y‖

are the same as before. If GMRES is successful, then the next two columns show

the outer iteration (i.e., the number of restarts plus 1), and the inner iteration (i.e.,

the iteration, after restart) at convergence. The next column shows the residual:

‖Jy − f‖.

Memory requirements prohibit condition number estimates for the entire Jacobian,

but, if GMRES is unsuccessful – and hence Algorithm 5.3 is the method of choice in

solving the equation – then the last column (κ (•)) shows the condition number of

the long operator chain in Equation (5.13).
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Table 5.3: Newton Iteration: Three-Torus

From λ To λ # ‖f‖ ‖y‖ Out In Residual κ (•)
– 0.02 1 3.2 1.7 1 4 0.0020 –

2 0.031 0.016 1 4 2.9× 10−4 –
2.9× 10−4

0.38 0.40 1 3.6 3.1 1 22 0.0032 –
2 0.11 0.15 3 15 6.6× 10−4 –

8.2× 10−4

0.42 0.44 1 3.4 3.4 3 21 0.0032 –
2 0.14 0.55 – – – 1.1× 104

0.0019
0.44 0.46 1 3.4 3.9 – – – 1.6× 104

2 0.17 2.1 – – – 3.4× 104

3 0.0068 0.027 5 7 6.6× 10−4 –
6.6× 10−4

Visualizing a three-dimensional torus in R
8 is not easy. The following figures

are an attempt to convey the increasing curvature of the torus as λ increases, but

they do not, and cannot, show all the points of the torus in a reasonable number of

steps. They are similar to Figures 5.2 and 5.3, in that they show two coordinates in

the plane, while the vertical dimension is artificial and represents a change in fixed-

angular-coordinate sections as one of the coordinates increases. The difference now is

that there are many such graphs available due to the additional angular coordinate.

For example, consider a graph with x1 and x2 in the horizontal plane and φ2 on

the vertical. Each horizontal slice represents a section as φ1 increases with fixed φ1

and φ3. Therefore, for each different λ, there are N3 different graphs available: one

for each possible φ3.

Figure 5.6 illustrates the concept. It shows the x1,x2 coordinates extended along

φ2 at λ = 0.44 for four different values of φ3.

Figure 5.7 illustrates the continuation process along one slice. It shows the x1,x2

coordinates extended along φ3 at λ = 0.2, 0.3, 0.42,and 0.46 at constant φ2 = 0.

Figure 5.8 is similar, except that x7 and x8 are the horizontal coordinates extended
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along φ1, with φ2 constant at zero. The scale in the horizontal direction is smaller.

This figure shows that the torus is becoming pinched, and hence loses smoothness,

which is a potential breakdown mechanism.

As discussed previously, it is unknown whether the torus persists far beyond the

observed breakdown point of λ = 0.46. Non-smooth surfaces are clearly developing in

the solution at λ = 0.46, but this may be due to a breakdown in the solution method

rather than a breakdown in the torus. Nevertheless, the orthogonality technique

seems to provide a reasonable picture of the continuation process for a significant

increase in λ, which is an improvement over other techniques that require too much

computation time to examine a three-torus, even one as coarsely represented as the

current example.
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