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SUMMARY

Historically, aerospace development programs have frequently been marked by per-

formance shortfalls, cost growth, and schedule slippage. New technologies included

in systems are considered to be one of the major sources of this programmatic risk.

Decisions regarding the choice of technologies to include in a design are therefore

crucial for a successful development program. This problem of technology selection

is a challenging exercise in multi-objective decision making. The complexity of this

selection problem is compounded by the geometric growth of the combinatorial space

with the number of technologies being considered and the uncertainties inherent in

the knowledge of the technological attributes. These problems are not typically ad-

dressed in the selection methods employed in common practice. Consequently, a

method is desired to aid the selection of technologies for complex systems design with

consideration of the combinatorial complexity, multi-dimensionality, and the presence

of uncertainties.

Several categories of techniques are explored to address the shortcomings of cur-

rent approaches and to realize the goal of an efficient and effective combinatorial

technology space exploration method. For the multi-objective decision making, a pos-

teriori preference articulation is implemented. To realize this, a stochastic algorithm

for Pareto optimization is formulated based on the concepts of SPEA2. Techniques

to address the uncertain nature of technology impact on the system are also exam-

ined. Monte Carlo simulations using the surrogate models are used for uncertainty

quantification. The concepts of graph theory are used for modeling and analyzing
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compatibility constraints among technologies and assessing their impact on the tech-

nology combinatorial space. The overall decision making approach is enabled by the

application of an uncertainty quantification technique under the framework of an

efficient probabilistic Pareto optimization algorithm. As a result, multiple Pareto

hyper-surfaces are obtained in a multi-dimensional objective space. Each hyper-

surface represents a specified probability level, which in turn enables probabilistic

comparison of various options. Other more traditional technology selection and scan-

ning techniques such as the greedy algorithm, one-on one-off technique and designs of

experiments are also explored. An advisor to recommend the best selection technique

from amongst these options based on the complexity and scope of the problem is also

an important contribution of this research.

Various techniques used for creating the exploration and decision making method-

ology are experimented on a benchmark knapsack problem. These techniques are

used in a synergistic manner to formulate the Pareto Optimization and Selection of

Technologies (POST) methodology. POST is implemented on an example technology

exploration and selection problem for a 300 passenger commercial aircraft. This is

a large problem with 29 technologies, 11 objectives and 4 constraints. Initially, the

technologies and their system impacts are defined along with their uncertainties. The

computational complexity is evaluated and the problem dimensionality reduced using

a dominance structure preserving approach. Probabilistic Pareto optimization is im-

plemented with the reduced dimensionality and three Pareto layers each correspond-

ing to a predefined probability level are created. These Pareto layers are exported to

a visualization and analysis environment enabled by JMPr. The technology combi-

nations on these Pareto layers are explored using various visualization tools and one

combination is selected. The main outcome of this research is a method based on a

consistent analytical foundation to create a dynamic tradeoff environment in which

decision makers can interactively explore and select technology combinations.

xvi



CHAPTER I

INTRODUCTION

What is design? According to Merriam-Webster dictionary, it is to create, fashion,

execute or construct according to a plan. For engineering design, the final result of

a design exercise is a complete physical description of the system. When the system

is simple, like a bicycle, design process usually involves some historical data and

application of basic principles of physics. But as the system becomes more and more

complex, the design process also gets complex. It is no longer just regression based

on some historical data and basic physics. The complex system now has to be divided

into logical subsystems. A case in point is the design of a modern aircraft that is

divided into subsystems such as propulsion, aerodynamics, structures and controls.

The analysis of these subsystems has to be combined together and mathematical

algorithms used to determine the size and weight of the aircraft. This is an iterative

process.

Traditional aircraft design process is divided into three main phases namely: a)

conceptual design b) preliminary design and c) detailed design.[1] Traditionally, for

conceptual design, first order models are used to simulate the aircraft systems. In

this phase, the requirements are examined, basic trade-offs considered and decisions

regarding infusion of new technologies are made. The proposed concept is then passed

on for preliminary design where higher fidelity models are used to analyze various

subsystems. The basic configuration is frozen at this stage and only small design

changes can be performed. Finally, detailed design is carried out where actual parts

of the system are designed, decisions regarding fabrication and tooling are made and

actual cost numbers come to light.
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1.1 Motivation

With more emphasis on economics and product life-cycle given in recent years, con-

ceptual design has become a crucial stage in the design process. It is highly desirable

to come up with the right concept and access feasibility and viability of the system

with greater confidence in this initial design phase. This will help avoid costly design

changes and major modifications during the system life-cycle. This line of thinking

has led to a paradigm shift in the design process which is illustrated in the classic

chart of Figure 1 (adapted from [2]). It depicts notional changes that occur in cost

committed, design freedom and knowledge of a system throughout the design pro-

cess. The solid curves represent variation along traditional design process and dotted

curves represent changes along desired design strategy. It can be observed during

initial phase that large amount of life cycle cost is committed to the design when

there is little knowledge of the system. The design freedom rapidly decreases during

the first two design phases and making major changes to the design becomes very

expensive. This is where the basic design iterations occur and therefore, conceptual

and preliminary design phases present the only opportunity where the designer can

effectively and efficiently leverage cost and freedom.

1.1.1 Requirements and Resource Matching

Development of a system within time, cost and performance limits is the indicator

of a successful program. Before an organization commits to a new product, require-

ments of the users and resources available have to be matched. The user requirements

generally include some form of performance expected out of the system, while the re-

sources available include the technologies that the developer has access to, to achieve

the required performance, and the amount of time and money the customers are will-

ing to commit for that performance. According to a study of industry best practices

conducted by the U.S. Government Accountability Office (GAO), timely and accurate
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matching between these requirements and resources is the key differentiator between

successful and unsuccessful programs [3]. In successful programs, the principles of

systems engineering are used to identify areas where the customer wants exceed the

developer resources. Some of these discrepancies are resolved by new investments the

developer makes and others by investigating new technologies or alternate designs.

Remaining discrepancies are resolved by relaxing the time and cost constraints in-

volved and making required tradeoffs. This match is eventually achieved in every pro-

gram, but, for successful programs, the resources are invested and program launched

after this matching is achieved (Figure 2) and enough knowledge is generated about

the system to complete the conceptual and preliminary design. This timely matching

of requirements and resources helps delay the cost committed and relatively increase

the knowledge generated in the design process as depicted in Figure 1, which in turn

helps reduce overall programmatic risk.

The development programs of F/A-22 and F/A-18E/F illustrate the importance

of timely and accurate matching of requirements and resources. The US Air Force and

the US Navy started their respective fighter aircraft programs around the same time in

the 1980’s. The Air Force pursued the F/A-22 Raptor, a revolutionary aircraft with

stealth and supercruise, while the Navy developed the carrier-capable F/A-18E/F

Super Hornet, a new but relatively modest design based on F/A-18A/B/C/D multi-

role aircraft. As depicted in Figure 3, F-22 experienced significant schedule and cost

4



increases as compared to F-18E/F [4]. The F-22 exceeded its original schedule for

the Engineering and Manufacturing Development (EMD) phase between milestone

II and III by more than 52 months while the F-18E/F was virtually on time. The

cost growth for F-22 was around $7.6 billion in 1990 dollars in contrast with the

development of F-18E/F which was accomplished within initial estimates. The sig-

nificant cost growth experienced by the F-22 program has resulted in the reduction

of planed procurement from 648 to 183 aircrafts. A 72% decrease from the original

number and in contrast with Air Force’s current stated need of 381 F-22s.[5] This

gap, of 198 aircrafts, between the required number and the one considered affordable

by the Office of Sectery of Defense (OSD) irrefutably decreases the planned system

effectiveness considerably. One of the primary reasons that contributed towards the

cost and schedule growth in F-22 program, as cited by a RAND study [4] was the

overly optimistic estimates for new technologies involved in the Raptor. The con-

current development of the aircraft and the technologies involved created a greater

challenge for the F-22 program while the evolutionary approach adopted in F-18E/F

program reduced the technical risk considerably. Thus, making accurate predictions

about technology impact on the system and selecting the right mix of technologies,

that will satisfy the performance and economic requirements at an early design stage,

is of utmost importance for a successful program.

1.1.2 Knowledge Based Development and Acquisition

To avoid such cost and schedule growths and to deliver high quality products, lead-

ing organizations and commercial firms follow certain practices that help ensure the

success of their programs. A GAO review of the practices followed by such commer-

cial firms has shown that there are three critical points in a product development

cycle where sufficient knowledge must be available to make decisions regarding large

investments [6]. The first point occurs before the product development starts and a
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match has been made between the customer requirements and developer resources.

Second point occurs when the developer determines that the product design is sta-

ble and meets customer requirements. The third point is where the program must

demonstrate that the product can be manufactured within the cost, time and quality

constraints.

This practice of making important decisions after sufficient knowledge is achieved

is termed as the Knowledge-Based Approach [6]. This approach is illustrated in the

Figure 4 adapted from a GAO Best Practices report [7].
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• Knowledge Point 1: This point occurs when the customer requirements and de-

veloper resources in terms of technical knowledge, time and money are matched

and a sound business case is created for the product. Developers rely on histori-

cal data, systems engineering, and new technologies that are mature enough and

experienced manpower to determine available resources. Gaps between needs

and resources are identified and tradeoffs made at this point by communicating

extensively with the customers. Emphasis at this point is to decouple tech-

nology development and product development. The program is launched only

when all the technologies involved have attained sufficient maturity. Failure to

do so can result in a product that costs more, take more time to develop or may

not perform as expected.

• Knowledge Point 2: This point occurs when the developer determines that the

product design is stable and will satisfy customers needs in performance and

their constraints on cost and time. It generally occurs midway through the

development when almost 90% of engineering drawings are completed. In case

of aircrafts, the variation in design weight is a good indicator of design stability.

If design stability is not achieved through the middle of product development,

it may lead to expensive design changes further in the product life cycle.

• Knowledge Point 3: This point is reached when it is determined that the produc-

tion process is mature and the product can be developed within cost, schedule

and quality specification limits. Statistical process and product control tools

are usually employed to determine the maturity of manufacturing process. Ini-

tiating the production before the processes are under statistical control may call

for costly solutions by rework or scrap.
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Table 1: Technology Readiness Levels
TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic

proof-ofconcept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant en-

vironment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and flight qualified through test and demon-

stration (ground or space)
TRL 9 Actual system flight proven through successful mission operations

1.1.3 Immature Technologies and their Impact

The Knowledge Point 1 is where the decision makers have maximum leverage to af-

fect the outcome of the program. Accurate knowledge of technologies included in the

design is essential for the success of the program. For this knowledge, the technolo-

gies should be mature enough so that their impact on the system can be accurately

accessed. Technology Readiness Levels (TRLs) is a systematic measurement system

widely used to support assessments of technology maturity [8]. It ranks technologies

on a scale of 1 through 9 based on their maturity level. Table 1 illustrates the TRL

scale as described by Mankins [8] for aerospace applications. According to the GAO’s

best practices studies, a technology is considered mature and has low risk for starting

product development if it has demonstrated its capability in the intended operational

environment, i.e. it is at TRL 7 [9].

A 2006 GAO study of selected major weapons programs of the Department of

Defence (DOD) found that the level of technology maturity had considerable effect on

the cost growth of the program. As shown in Figure 5, the average growth in Research,

Development, Test and Evaluation (RDT&E) cost for programs that started with

some immature technologies (TRL < 7) was about 35% while the programs that

began with all mature technologies (TRL ≥ 7) experienced cost growth of only about
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5% [10]. This clearly illustrates the need for achieving technology maturity before

the program start.

It has been suggested that programs dealing with complex systems should move

ahead only with mature technologies in them and this policy has been adopted by

DoD for weapons system acquisition. However, as illustrated in Figure 6, the Knowl-

edge Based Approach is rarely implemented [10]. Among the 2006 DoD acquisition

portfolio of major weapons systems, only 10% of programs started with all mature

technologies. Even at Knowledge Point 2 and 3, there were only 43% and 67% pro-

grams respectively, that achieved complete technology maturity. That is, even at the

production decision stage there were about 33% of programs with immature tech-

nologies in them. It has been observed that decisions made on individual programs

sacrifice knowledge and executability in favor of revolutionary solutions [10].

There is no doubt that the program initiated with only mature technologies will

face minimum risk in terms of cost, schedule and performance. For this to occur,

the design has to be evolutionary, based on proven technologies, as in case of F/A-

18E/F. But given the long design cycle times of modern complex systems like a fighter

aircraft, and challenging requirements involved, it is not always feasible to initiate the

9
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program with only existing technologies. Because, by the time system is operational,

many of its components will become obsolete. For example, in the year 2000, F-22 had

almost 600 obsolete components while the aircraft was still under development [9].

Under these conditions, technology development and product development may

overlap to a certain extent as evident from Figure 6. This situation in today’s world of

system development arising due to challenging requirements posed by the customers

provides the main motivation for this research.

1.1.4 Selecting the Right Technologies

The development of technologies leading up to their transition to a specific product

is a gated process and the general flow is illustrated in the Figure 7. An important

precursor for successful technology transition is good strategic planning [11]. Strategic

planning can be defined as the process to identify technologies that can help achieve

company’s strategic goals and prioritize resources for their development. At this stage

most of the technologies are in their infancy and qualitative techniques are used to

select most promising of them for further development.
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Once technologies are selected during the strategic planning, their further devel-

opment is divided roughly between two different sections of the organization. The

exploration and development of core technologies is the responsibility of respective

research lab. The technologists develop the technologies through research and exper-

imentation, refine the solution and can also identify the product/products that can

incorporate these technologies.

When there is a requirement for a new product, in the form of a request for

proposal (RFP), a product design team is assembled in the organization. Its the

responsibility of this team to carry out the early conceptual designs and identify the

gaps between resources and requirements. When performance or economic require-

ments are not met by any of the existing technologies in the design, new technologies

are sought. Inputs from the technologists regarding available technologies and their

maturity level are of great value at this stage. These decisions regarding selecting new

technologies for a system are crucial for a successful program. Thus a decision making

environment is required that helps the designers select the right group of technologies

for designing a competitive system. The creation of this type of technology selection

environment is the basic aim of this research.
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1.2 The Technology Selection Problem

As described before, when a design does not meet the performance and economic

requirements of the customer, new technologies have to be infused into the system.

There are some important properties of the problem that have to be considered in

order to create a technology selection and decision making framework. Here, the

core problem is of combinatorial optimization. This has to be carried out in a multi-

objective and uncertain design space. These topics are discussed in details in the

following subsections.

1.2.1 Core Problem

At the heart, technology selection is a combinatorial optimization problem. Here,

the best combination of technologies is to be selected, from many available, that can

meet all constraints and satisfy various requirements. It is a challenging problem to

solve for several reasons, one of them being the size of the combinatorial decision

space. Ignoring the inter-technology constraints, like enabling and incompatibility

relations, the addition of each available technology option causes a geometric increase

in the size of the solution space, given by 2n, where n is the number of technologies

available. This increase is referred to as the curse of dimensionality. A rough idea

of the computational timescales involved here can be gauged from Table 2 (adapted

from [12]). As seen in the table, even if the time to evaluate all 1024 combinations of 10

technologies is a conservative 0.01 seconds, as the number of technologies goes beyond

30, the time required to evaluate the combinations becomes prohibitively large. This

estimate does not even consider the computational time required to compare the

combinations to find the best solutions. The number of comparisons needed can be

as high as:

2n

2
(2n − 1)× i
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Table 2: Time Complexity of Technology Combinatorial Space
Time Size n

Complexity 10 20 30 40 50 60
0.01 10 3 4 3.5 357

2n

second second hours months centuries millenia

where, i is the number of objectives to be tracked. As a result, an exhaustive combi-

natorial search becomes impractical when there is a large number of technologies.

1.2.2 Multi-Objective Design Space

The process of selecting technologies for any new complex system, such as an air-

craft, is a challenging exercise in multi-objective optimization and decision making.

The technologies have to be selected based on their impact on variety of objectives.

Performance objectives such as range, payload, empty weight, cruise speed, specific

fuel consumption (sfc), etc. have to be optimized. Apart from these performance

objectives, emissions and noise variables have to be optimized in order to have a com-

petitive aircraft. In many situations, especially during the early conceptual design

phase, economic and time constraints are not known. Thus, these variables have to

be considered as extra objectives to be minimized.

As the technologies are selected based on their impact on a variety of objectives

rather than a single objective, the final solution is always a compromise between

conflicting objectives. If optimizing the performance metrics like sfc, cruise speed,

weight, etc. tend to include more and latest technologies, cost and time considerations

tend to include fewer technologies that are significantly mature. Thus technology

selection has to be carried out under a multi-objective decision making framework.

1.2.3 Technological Uncertainties

At the early design stages when technology decisions have to be made, the technologies

themselves are not very mature as discussed previously. Thus their impact on the

system under consideration cannot be estimated with high confidence. There is always

13



some uncertainty associated with technology impacts at this level. Moreover, at this

early design stage, the system itself is not well defined and very little is known about

it. Thus, even if a technology is mature, with TRL 7 for example, its impact on the

system cannot be quantified with exact precision.

This uncertainty in technology impacts is propagated through the system re-

sponses in a complex manner. Thus while making technology decisions, it is impera-

tive to consider the impact of technological uncertainties on the system responses. A

probabilistic decision making process is required to accomplish this.

1.3 Research Objectives

Considering the problem stated above, the final product of this research is envisioned

to be a decision making process for selecting technologies for a specific system. They

are to be selected from a large pool of options that are in their early stages of devel-

opment or are mature and ready for infusion. This method should be able to handle

any number of technology options as long as relevant data regarding their impact

on the system is available. The process has to be flexible enough to allow the deci-

sion makers or designers to select and compare various technology portfolios in real

time without any significant computation involved, i.e. it should be very efficient

for the decision makers. It has to be comprehensive in its consideration of all the

objectives and constraints. It should be capable of accounting for uncertainties in-

volved and should provide decision makers the capability to compare various options

probabilistically. The process should involve decision makers at all critical junctures

and shall be transparent, repeatable and auditable, capable of supporting electronic

design reviews that are becoming a norm in the aerospace system design community.

As one can imagine, technology selection problems come in variety of forms; a few

technologies impacting on a single system response to the more complex ones dis-

cussed before. It is of interest to create a generic technology selection advisor with

14



techniques catering wide range of technology selection problems.

1.3.1 Research Questions

To structure this research and to facilitate the development of the aforementioned

process, the following high level research questions are posed. These questions will

be addressed throughout this thesis in varying details.

1. What is state of the art in technology selection process?

- This question will lead to the previous research done in the area and give

pointers for the basic framework of the solution. Important and relevant

pieces from previous techniques will be identified for their use in current

process. Ideas for technology selection advisor will also be obtained from

this study.

2. How to address the multi-objective nature of the problem?

- Search vs. Optimization? Are we interested in an optimized solution for

particular objectives or a generic solution over the entire range. Various

decision making methods towards this end will be discussed and the best

suited for the purpose will be selected.

3. How to account for technological uncertainties while selecting technology com-

binations?

- This is one of the most important question this research will try to answer.

It will help select solutions based on their impact on the overall system

uncertainty.

These questions will lead to many low level questions; they will be described and

addressed in relevant sections of this thesis.
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CHAPTER II

STATE OF ART IN TECHNOLOGY SELECTION

Before embarking on a research quest or trying to solve any problem, it is prudent

to investigate previous studies done in the area. Technologies being the underlying

theme of this research, major part of this chapter will review some of the past and cur-

rent methods adopted for technology assessment and selection for complex systems.

Traditionally, quantitative and qualitative methods are used for this purpose depend-

ing on the exact application and availability of information. For comprehensiveness,

both of these types are discussed here.

The focus of this chapter is more towards studying comprehensive methodologies

that deal with the process of designing a system with infusion of new technologies.

The strengths and shortcomings of various methods are discussed in the light of the

research goals and observations made regarding the absence, in the existing literature,

of specific qualities desirable for this research. Elements of existing methods that can

be used for the purpose of this research are highlighted.

2.1 Technology Identification Evaluation and Selection (TIES)

TIES is a comprehensive and structured method to allow for the design of complex

systems which result in high quality and competitive cost to meet future, aggressive

customer requirements. TIES brings in various techniques for technology evaluation

and selection in a unified methodology that is generic enough to apply for the design

of any complex system. The flow of this process is illustrated in Figure 8 and the basic

theory behind this methodology has been extensively explained by Kirby [13, 14] and

Mavris [15, 16].

The first step of problem definition involves mapping of customer requirements or
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voice of the customer to specific design metrics or voice of the engineer. The voice of

customers is in the form of some qualitative characteristics and this has to be trans-

lated into specific quantitative measures for the engineers and designers to work with.

This is achieved through the use of brainstorming techniques such as Quality Func-

tion Deployment (QFD) [17]. This step helps establish firm system level objectives,

constraints and evaluation criteria. The next step involves defining the concept space.

Brainstorming using Morphological Analysis is used to accomplish this task [18]. The

output of this step is a Morphological Matrix that defines the alternative design space

and the definition of a baseline with which to compare different alternatives. In step

three, a physics based modeling and simulation environment is created to facilitate

accurate evaluation of design alternatives. The investigation of the design space is

carried out in step four. For this purpose, the Response Surface Methodology (RSM)

is used to bring the knowledge of high fidelity simulation codes early in the design

process [19]. This step results in Cumulative Density Functions (CDFs) and Probabil-

ity Density Functions (PDFs) of the objectives and the system feasibility is evaluated

in step five using these CDFs and PDFs. Step five helps identify the concept show

stoppers and the improvement required for feasibility.

To improve upon the current concept, technologies have to be identified that can
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be included in the system. This is accomplished in step six and it is one of the most

important steps of TIES process. The system level impact of these technologies is

quantified in terms of changes in few key parameters known as technology metrics or

k -factors. These technology vectors are represented in a Technology Impact Matrix

(TIM). The technology under consideration may have some compatibility constraints

attached to them and these are represented by Technology Compatibility Matrix

(TCM). These two matrices are the primary output of this step. Once technologies are

defined using TIM and TCM, each technology combination is evaluated for the system

by means of Response Surface Equations (RSE). Monte Carlo simulation is used if

probabilistic results are required. After the information regarding each technology

combination is obtained, the best family of technology alternatives is selected using

any one of the Multi Attribute Decision Making (MADM), technology frontiers or

resource allocation techniques.

2.1.1 Advantages and Shortcomings

TIES is a comprehensive methodology that addresses system design problems right

from the problem definition stage through technology selection. The technology eval-

uation model is one of the most notable feature of TIES. Quantifying technology

impacts using TIM and technology incompatibilities using TCM make the evaluation

model transparent and the results traceable. For early design stages when the system

is not defined and technologies are immature, TIM may be the only way to capture

the information.

One of the primary shortcoming of TIES methodology is in its inability to handle

large number of technologies. This is because it has to evaluate each and every

combination in order to apply MADM technique. As seen in the previous chapter, this

number can quickly become intractable with increasing technology options. Moreover,

the multi-objective and probabilistic nature of the problem is not addressed by this
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method in sufficient detail.

2.2 Technology Metric Assessment and Tracking (TMAT)

The TMAT process is evolved from the combination of the High Speed Research

(HSR) metrics tracking process and the TIES methodology [20, 21]. This process

provides a means to optimally allocate resources to R&D tasks to meet organizations

strategic goals. It is executed via five major steps:

• Technology metric identification is accomplished by the Integrated Product

Team (IPT) using various brainstorming tools. The aim here is to identify

the top level goals and their relations to specific technology metrics.

• Technology audit scheme definition and information gathering is meant to ac-

quire a detailed and objective description of the technology development pro-

grams under consideration. A form of Delphi technique of self administering

questionnaire is used for this purpose.

• Technology metric assessment is focused towards quantifying the information

obtained via technology audits. This is done by defining the technology im-

pact matrix (TIM), technology compatibility matrix (TCM) and appropriate

distributions for technology uncertainty.

• Technology metric integration is about assessing the impact of various technolo-

gies on the organization’s strategic goals. Generally a computer based modeling

and simulation environment using response surface equations (RSE) is used for

this purpose. Probabilistic assessment of selected solutions is accomplished us-

ing Monte Carlo simulations.

• Technology metric sensitivity assessment is the examination of results obtained

in the previous step. The impact of each technology on the goals is visualized
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in a dynamic environment. Various charts such as radar diagram, technology

frontiers, etc. can be used to help decision makers arrive at an informed solution.

2.2.1 Advantages and Shortcomings

This process helps an organization track and monitor various technology development

programs and allocate resources based on the strategic goals. One of the identify-

ing feature of this process is the technique of intelligently assigning distributions to

technology impacts in order to capture the associated uncertainties.

The process lacks a formal optimization framework to identify best portfolio when

the number of technologies under consideration is large. Moreover, only a few solu-

tions are analyzed probabilistically using the Monte Carlo technique.

2.3 Strategic Prioritization Process (SP2)

Developed by Kirby et al. [22], SP2 provides a structured, traceable and transparent

process for planning and prioritization of various R&D programs at a strategic level

for the success of any organization. Kirby and others define strategic planning as :

“a structured process through which an organization translates a vision

and makes fundamental decisions that shape and guide what the organi-

zation is and what it does.”

The process is based on quality engineering methods such as QFD and Design for

Six Sigma. SP2 is a five step approach as depicted in Figure 9. At the heart of this

process is the link between customer requirements and technology options modeled

through different interlinked decision or planning matrices. The front end of this

method is a dynamic user interface that utilizes the linked matrices as its engine to

perform various trade studies and prioritize the R&D programs according to decision

maker’s preferences.
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Figure 9: Strategic Prioritization Process

This method streamlines the process of defining requirements, system attributes

and technologies through the participation of different levels of personnel from the

organization in a series of workshops and voting exercises. This technique enables

one to gather unbiased information and prevents undue influences of more powerful

or vocal people. The final outcome is a prioritized list of technologies or programs to

invest in for a given budget.

2.3.1 Advantages and Shortcomings

This is an excellent method tailored towards strategic planning where information

is usually qualitative and a quantitative physics based approach is neither available

nor preferred. The workings of the frontend of this method is fast. The customer

requirements can be changed and the resultant change in the technology ranking is

visualized immediately.

For the need for speed, a Greedy algorithm is used for ranking the technologies or

programs. This is an approximate algorithm and does not give an exact answer. It

cannot meaningfully handle more than one constraint. As it is designed for strategic
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Figure 10: The START Analytical Framework

planning, SP2 does not address elements such as multi-objectivity and uncertainty

that are part of the technology selection problem.

2.4 Strategic Assessment of Risk and Technologies (START)

The START approach has been developed at Jet Propulsion Laboratory (JPL) as a

part of the drive towards addressing the NASA goals for an overall integrated agency

wide approach towards systems analysis [23]. The approach provides a consistent

methodological foundation for selecting and monitoring R&D tasks to enhance various

NASA missions. The general procedure followed in the START process is illustrated

in Figure 10 adapted from Elfes et al. [24]. START is an evolving framework and an

in depth description of the current process is given by Elfes et al. [24]. Evaluation

and ranking of technologies is one of the primary focus of the START approach and

a few methods developed for this purpose are described below.
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2.4.1 Decision Tree Assessment

A decision tree formulation is used by Manvi et al. [25] to allocate R&D resources to

technology portfolio for a life detection mission to Europa. The decision tree is used to

formalize the execution sequence of mission and various technologies available for each

part of that mission. The figure of merit (FOM) (or probability of success) and related

R&D cost are assigned to each of the options and powerful decision analysis like Monte

Carlo simulations can be executed on the decision tree model. The FOM value for

technologies is calculated by considering the current and required performance metric,

the degree of difficulty of development and the technology readiness level of that

particular technology. Hence, it has both quantitative and qualitative flavor to it.

The metric for prioritization of a technology is the sensitivity of its FOM as regards

to its investment divided by the initial FOM. The FOM of the system is considered

to be the product of FOMs of all included technologies and the system cost is the

sum of R&D cost. For optimization of the portfolio, the objective function is derived

from the system FOM equation and the constraint is R&D budget available.

2.4.1.1 Advantages and Shortcomings

The primary advantage of this technique comes from the fact that it can use both

quantitative and qualitative data and can be implemented in the very early stages

of the design process when data regarding various system components is not readily

available. Being relatively simple and easy to implement, the method lacks the rigor

required while designing large scale systems. It does not address the multi-objective

nature of the problems that are generally encountered while designing complex sys-

tems. The use of FOM or probability of success in the formulation does not account

in detail, the uncertainty associated with technologies and their propagation on to

the system performance, to be useful for robust design purposes. This method can

be an excellent tool for strategic planning where the main aim is of prioritizing the
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R&D projects.

2.4.2 Inference Nets

Elfes et al. [26] have used inference nets to model the relationships that link investment

in technologies to mission risk and expected science return for a space mission design.

They address the problem of determining the optimal technology portfolio that min-

imizes risk and maximizes science return of a Mars roving mission. The inference net

is a graph based data flow model that allows the representation and computation of

both deterministic and stochastic information. The technology uncertainty is aggre-

gated into the mission risk by fashioning it according to the stress-strength evaluation

method. A Monte-Carlo simulation is used to generate PDFs and CDFs for mission

risks. This technique is extensively employed in structural analysis and is used to

find the probability that an uncertain variable X is greater than another uncertain

variable Y. An important component of this method is the technology development

cost model that is created using historical data and expert elicitation. This allows to

estimate sensitivity of mission performance with respect to R&D investment.

2.4.2.1 Advantages and Shortcomings

This method convincingly integrates the mission risk and R&D investment aspects of

the design to get a clear picture of how each technology behaves in this space. The

drawback of this technique is in the narrow scope of its application. The basic problem

has two objectives - landing and roving, their respective risks and two technologies,

one for each objective. For this problem, the stress-strength technique for accounting

uncertainty is satisfactory but it is not clear how effective it would be when there are

more than two objectives and technologies. The method does not address the problem

of optimizing technology portfolio when there are a large number of technologies

available.
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2.4.3 Post-optimality Analysis

Given the uncertainties involved with any input data, it is imperative for the decision

makers to know the robustness of the solution. To address this, probabilistic analysis

is carried out by Adumitroaie et al. [27] on an optimal portfolio identified for a given

investment budget. Two techniques were employed to investigate the robustness of

the solution. The first is a parametric screening method where the value of cost and

utility of each R&D task is changed incrementally and independently to determine

its impact on the optimum research portfolio. This approach shows the range of

cost and utility over which the portfolio remains constant. The next technique em-

ployed is a Monte Carlo simulation where the cost and utility of each task is varied

simultaneously and the portfolio is optimized each time. The simulation is carried

out for 1000 runs and the result is in form of the frequency of occurrence of each

task in the optimized portfolio of those runs. The results from these two techniques

are combined into a single chart on cost and utility axis where the individual R&D

tasks are designated as robustly selected, robustly rejected or trade candidates. The

authors also have performed k -best analysis on the optimum portfolio. This analysis

suggests k suboptimal portfolios that are closest to the optimal one for the given

budget level. This concept helps decision makers to take into account factors that

cannot be modeled quantitatively while selecting the portfolio.

2.4.3.1 Advantages and Shortcomings

The probabilistic analysis performed using two techniques gives good depth to the

results obtained after optimization. The technique is efficient for strategic planning

purposes where information regarding the system and R&D tasks is limited, hence

the use of only two dimensional space of utility and cost. The k -best analysis can

prove extremely useful while considering recourse actions or backup plans. The main

limitation of this technique is that it is carried out post-optimality. Thus all options
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are not compared probabilistically to reach the optimal solution. Moreover, much

information is lost because of collapsing the performance objectives into a single

utility factor. This may not be appropriate while designing complex systems such as

an aircraft.

2.5 Other Techniques for Technology Assessment and Port-
folio Planning

Apart from the aforementioned methods, there is a plethora of literature available on

technology assessment and portfolio planning; a few of them are briefly described in

the following sections.

2.5.1 Strategic Technology Assessment

Shishko et al. [28] examine the use of real options valuation for assessing technologies

in the context of prioritizing NASA technology portfolio for given investment. Here,

technology developments are treated as assets with uncertain payoffs that may result

in significant returns with limited losses. This technique enables NASA to decide

whether to invest or not in a mission that uses those technology options, and also

gives them flexibility of choosing when to invest or change the mission. R&D Project

Portfolio Matrix is used by Mikkola [29] as a tool for analyzing R&D portfolios by

linking competitive advantages of the organization to the customer benefits provided

by the projects. It is a graphical technique that facilitates the selection of projects

with the highest potential of success. Wyk [30] proposed the use of strategic tech-

nology scanning as a means to strengthen the link between technology and corporate

strategy. Wyk states a few requirements for the scanning activity such as: its results

should be directly useful for strategic planning process and it should contribute to

the technology foresight of the managers. Incidently, the aforementioned SP2 process

by Kirby et al. [22] fulfil these requirements and can be considered as a procedure
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for strategic technology scanning. A Cross-impact Hierarchy Process (CHP) is pro-

posed by Cho and Kwon [31] to assist in ranking of a large number of interdependent

technology alternatives. Here, an Analytic Hierarchy Process (AHP), which is used

extensively for R&D project selection, is linked with Cross-Impact Analysis which

models the interactions among various R&D projects.

There exist many techniques for analyzing technologies and their consequences;

all these methods fit into the field of study known as Technology Futures Analysis

(TFA). Porter et al. [32] have an excellent compilation of existing methods for TFA

and provide some valuable insights into this field. Even though TFA is focused

primarily towards strategic decision making, be it at a corporation level, national

level or global level, there are many techniques that can be adopted for the problem

at hand.

2.5.2 Portfolio Planning

Based on the TIES formulation, Utturwar et al. [33] devised a two step optimization

process for technology selection. In the first step, a gradient based optimizer is

used to obtain a vector (kopt) of optimal k -factors1 for the desired response. In the

second step, a combinatorial optimization is used in the discrete space to obtain

optimum technology combination that produces a k -vector closest to kopt. A Pareto

Ant Colony Optimization is introduced by Doerner et al. [34] as an approach for

research portfolio selection in a multi-objective space. Ant Colony Optimization is

also used by Villeneuve [35] for exploration and selection of concepts and technologies

for aerospace architectures. Sun and Ma [36] have used the packing-multiple-boxes

(or multi-knapsack) model to select and schedule candidate R&D projects. This

method attempts to maximize the total value of selected R&D tasks concurrently

trying to schedule the starting time of each task so that the total cost is within the

1k -factors as mentioned in the TIES section
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allocated budget of each year. A hybrid evolutionary approach has been implemented

by Subbu et al. [37] for financial portfolio optimization. The portfolio planning for

financial assets and R&D technologies is almost similar, only difference being the

evaluation of assets and technologies. This approach uses evolutionary computation

with linear programming to identify the efficient frontier in the risk vs. return space

and is currently used in the financial decision making industry.

2.6 Observations

Previous sections have described a few techniques that are relevant to this research.

These techniques and methods are applicable for decision making and management at

different stages of technology development life cycle as illustrated in Figure 11. This

pairing of methods with development stages is the author’s own opinion based on

the application examples in the respective literature. Though, it is understood that

some of them can be modified according to the requirements, for example, START is

primarily developed for strategic decision making but can be extended for selecting

technologies for a specific product.

In order to qualitatively compare various methods, three main criteria are identi-

fied that are congruous with the research objectives. These are:
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Table 3: Method Comparison
No. of Tech Tradeoffs Uncertainty Assessment

TIES 3 2 2
START 1 3 2

SP2 2 3 3
TMAT 3 2 2

Table 4: Legend for Method Comparison
No. of Tech Tradeoffs Uncertainty Assessment

Best (1) Any Interactive Pre-optimality
Better (2) Large A Posteriori Post-optimality
Good (3) Limited A Priori None

• Number of technologies that can be efficiently handled by the method. More

technologies, more combinations to evaluate and greater computational time. It

is desirable to have a method that can work with large number of technologies.

• Effectiveness of tradeoffs in a multi-dimensional objective space. There are

various ways and stages in the process where tradeoffs can be made in the

multi-dimensional design space. Decision makers prefer making tradeoffs when

they are aware of the entire design space and all the options available.

• Uncertainty assessment technique employed by the method. It is preferable to

assess uncertainty involved in all the options available and then select the best

solution based on its probability level.

An objective comparison of the most relevant techniques based on the aforementioned

criteria is presented in Table 3 with legend in Table 4.

As evident from the table, only START can handle a large number of technolo-

gies at a time. It uses a Knapsack algorithm that can optimize from a large number

of available technology options. But, when coupled with risk assessment the com-

putational time can be significant. TIES and others compute all the combinations,

which can be very large for a large number of technologies and hence computationally
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infeasible.

Most of the methods use a form of utility function or overall evaluation crite-

ria (OEC) for making tradeoffs. While they simplify the optimization process sig-

nificantly, the decision makers have to make tradeoffs in the absence of complete

knowledge of the design space. An ideal approach would be to make tradeoffs as the

optimization goes on and steer the process towards the preferred section of design

space. This, in most cases is not advisable as the optimization process for a complex

system may take several hours or days and the approach becomes very inefficient for

the decision makers.

Current methods that employ uncertainty assessment execute it post-optimally,

i.e. they select a few good deterministic solutions, apply uncertainties to the inputs

and obtain cumulative distribution function (CDF) or probability density function

(PDF) of the objectives, and in almost all cases, using Monte Carlo simulations.

As mentioned before, it is preferable to compare different solutions and optimize

by considering uncertainty right from the beginning, i.e. a form of pre-optimality

uncertainty assessment.

2.6.1 Useful Techniques

Based on the above discussion, some important techniques addressing particular as-

pects of the problem come to light that can be used to satisfy the research goals of

this thesis. Most of these are based on the TIES methodology.

The TIES and TMAT methods provide an excellent technology evaluation frame-

work that can be used for the current research. This is notionally illustrated in

Figure 12. The fundamental premise of this approach is that system level impact

of most technologies can be quantified in terms of few key parameters known as

technology metrics or k-factors. The most important k-factors for the system are

identified and functionally related to the system responses through system models
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or surrogate models. The technologies are mapped to these k-factors by estimating

their impact on them. This mapping is formalized in a Technology Impact Matrix

(TIM). Thus, an accurate estimate of technology’s impact on the system is obtained.

TIES also provide a technique to formalize incompatibilities among technologies via

the Technology Compatibility Matrix (TCM). It is important to account for such

constraints among technologies as their existence changes the combinatorial design

space. TIES also implements the Response Surface Methodology (RSM) for fast and

accurate evaluation of system responses.

The above technology evaluation technique is used for the purpose of this thesis.

Response surface equations obtained via RSM will be used for mapping k-factors and

the system responses.

2.7 Summary

The review of existing literature on technology assessment and selection has shown

that there is no comprehensive method that can handle a large number of technology
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options and at the same time account for technological uncertainty right from the start

of the process. When a large number of combinations are evaluated, the tradeoffs are

attempted without the knowledge of the entire design space. Even though there is

no single method that can satisfy the research goals, a framework for technology

evaluation form the TIES methodology has been identified and this will be used as a

foundation on which a novel approach for technology selection will be built.

It was also observed from the literature that authors have used various types

of algorithms, from greedy to knapsack algorithm, for technology optimization. It

should be interesting to investigate these algorithms that can help create a technology

selection advisor as mentioned in the previous chapter.

From the literature review, there are four major themes that come to the forefront

of this research.

• Algorithms for Technology Selection to study various algorithms available for

combinatorial optimization. This will help create an advisor for solving wide

range of technology problems.

• Multi Objective Decision Making (MODM) looks into the question of search

vs. optimization with the aim of providing an efficient and effective tradeoff

environment to the decision makers and managers.

• Uncertainties and Probabilistic Evaluation is for ways to account for technologi-

cal uncertainties and make decisions based on probabilistic evaluation of various

options.

• Technology Compatibility Constraints is about modeling and analyzing the com-

patibility constraints with the aim of assessing their impact on the design space.

Each of these themes are addressed in varying details in the following chapters of this

thesis.
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CHAPTER III

ALGORITHMS FOR TECHNOLOGY SELECTION

As noted in the previous chapter, there are a few existing methodologies catered

towards technology selection. These methods use some fundamental algorithms and

techniques to actually select the best combination of technologies from the available

options. This chapter will explain the inner workings of these algorithms. Some

statistics based techniques to investigate the overall technology combinatorial space

are also described.

The technology selection problem being a combinatorial problem is similar in

structure to the Knapsack Problem (KP). This problem is introduced in the first

section and is chosen as a benchmark problem to demonstrate various algorithms and

techniques. The algorithms are categorized in two main families: approximate and

exact algorithms. Two examples for each families are discussed in detail. Other inves-

tigative techniques are also discussed. Finally, a framework for technology selection

advisor based on the algorithms and techniques discussed is provided.

3.1 Technology Selection and the Knapsack Problem

For the combinatorial optimization of technologies, there are requirements involved

and constraints to be satisfied. In other words, we have to fill a bag with technologies

such that the collection meets certain objectives and satisfies the constraints. Viewing

the problem with this perspective, it is analogous to the Knapsack Problem studied

in the field of theoretical computation and mathematics.

The Knapsack Problem (KP) is a well known combinatorial optimization problem.

Here, given a set of items with known values and weights, one has to pack the knapsack

with a subset of items, such that the sum of weights of the selected items does not
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exceed the capacity of the knapsack, and the sum of the values of the selected items

is maximal. When there is only a single unit of each item in the set that can either

be included in the bag or left out, the problem is known as 0-1 KP. This optimization

problem is formally defined as:

Given a set S of n items and a knapsack with,

vi = value of item i,

wi = weight of item i,

W = capacity of the knapsack,

select a subset of the items so as to

maximize V =
n∑

i=1

vixi (1)

subject to
n∑

i=1

wixi ≤ W (2)

where,

xi =

 1 if item i is selected;

0 otherwise.
i ∈ N = {1, 2, . . . , n}

The optimization problem shown above is NP-hard (Non-deterministic Polynomial

time) and when it is constructed as a decision problem, it is an NP-complete problem1.

The formal definition of the knapsack decision problem is as follows:

Instance: A set S of n items. Each item i has value vi and weight wi (vi and wi

may be scalar or vectors). A limit W for weight and V for value.

Question: Is there a subset K ⊆ S such that the sum of the weights of items in K

is at most W and the sum of values of items in K is at least V .

1An extensive overview of the theory of complexity and NP-completeness is beyond the scope of
this thesis; a comprehensive description of the theory, concepts and many NP-complete problems is
provided by Garey and Johnson.[12]
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There are many variations of the KP that are intensively studied such as Multiple-

Choice Knapsack Problem, Bounded and Unbounded Knapsack Problem, Subset-Sum

Problem, 0-1 Multiple Knapsack Problem, etc. Martello and Toth[38] and Pisinger[39]

provide excellent theoretical explanation of the KPs along with many exact and ap-

proximate algorithms used for solving them.

The set S of n items in the KP above can be compared to the set T of t technologies

of technology selection problem. This problem has many objectives in contrast to the

KP that only considers the value and the weight. The other significant difference

from KP is that technologies interact within themselves and with the system in a

very complex ways, all of which must be accounted for in the technology evaluation

model if the results are to be useful. Even though there are major differences between

two problems, the core is quite similar. The technology selection problem can be

considered as a generalization of the KP problem. In other words, it can be reduced

to KP and proved to be NP-hard. This means that the problem at hand is extremely

difficult and intractable.

The knowledge that the problem is NP-hard and similar to KP provide valuable

information regarding the direction of appropriate approach and types of algorithms

that can be used. It hints towards the fact that an exact algorithm may not be

feasible for large technology problems.

3.1.1 Benchmark Knapsack Problem

Most of the algorithms used for technology selection problems have been rigorously

studies to solve the Knapsack and other NP-hard problems. Considering the similarity

of technology selection problem with 0-1 Knapsack Problem (KP), a multi-objective

and multi-constraint KP is devised as a benchmark problem to demonstrate and

compare different algorithms. This KP has 16 items to choose from. Table 5 describes

the problem where each item has three values and two weights assigned to it. A
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Table 5: Example Knapsack Problem
Value Weight

Item No. V1 V2 V3 W1 W2

1 7 9 5 6 3
2 3 6 4 7 10
3 2 7 9 10 1
4 6 5 5 9 4
5 1 5 1 1 4
6 5 4 7 6 5
7 10 4 6 10 2
8 3 5 2 5 5
9 8 4 10 7 3
10 4 10 5 6 7
11 3 7 6 6 6
12 10 6 9 5 2
13 7 9 2 4 10
14 7 4 10 5 7
15 5 10 8 3 6
16 8 8 8 8 8

Constraint on weight 40 30

combination of items has to be selected that maximizes the overall value while being

within the weight constraint of 40 and 30 respectively.

3.2 Approximate Algorithms

As the technology selection problem is NP-hard, some instances of the problem may

not be optimally solved within the stipulated time period. In such situations, approx-

imate algorithms or heuristics are a viable option to search for near-optimal solutions.

Moreover, large scale technology selection problems seldom require exact optimal so-

lutions and good, feasible solutions are equally valuable. When an algorithm produces

results that are within a guaranteed range of the optimal value, it is called an approx-

imate algorithm. Heuristics, on the other hand are algorithms with no guarantee on

either the degree of approximation or the running time [40].

There is considerable amount of literature available on such algorithms for KP

and similar NP-hard problems with Martello and Toth [38], and Ibaraki [41] being
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some of the most comprehensive resources. Some of the approximate algorithms and

heuristics described by Ibaraki [41] are:

• Greedy methods

• Stingy methods

• Random search - Monte Carlo methods

• Relaxation methods

• Partitioning methods

• Partial enumeration or space reduction methods

• Iterative improvement methods - Tabu search, Evolutionary algorithms

• Simulated annealing methods

Theoretically, techniques based on partial enumeration are considered superior as they

tend to exploit the structural properties of the problem, as compared to random search

or simulated annealing. Any enumeration based exact algorithm such as branch-and-

bound or dynamic programming (described later in the chapter) can be converted

into an approximation scheme based on partial enumeration by considering a stopping

criterion. Ibaraki [41] suggests stopping criteria based on relative error and number

of nodes visited by the algorithm.

Greedy algorithm, a rather simple approximation scheme and Monte-Carlo or

random search methods, one of the earliest form of heuristics are described in the

following subsections.

3.2.1 Greedy Algorithms

A greedy strategy finds an optimal solution by making a series of decisions. These

decisions, made at each stage, are the best choice at that moment. The problems
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that can be solved by greedy strategy have two distinguishing characteristics: the

greedy choice property and optimal substructure [42]. A problem is said to possess

greedy choice property when a globally optimal solution can be reached by making

locally optimal choices. The decision made in greedy strategy depends on the choices

made in the previous stages, but not considering future choices. Moreover greedy

strategy does not recommend revisiting a decision, as opposed to other mathematical

programming techniques. This strategy usually works in top-down fashion, reducing

the problem iteratively by making greedy choice at each stage. A problem is said

to have an optimal substructure if the optimal solution to the problem consists of

optimal solutions to its subproblems.

The 0-1 KP does exhibit optimal substructure property but does not have the

greedy choice property. But, greedy algorithm exploits the greedy choice property of

the, closely related, Fractional or Continuous Knapsack Problem (CKP) to determine

an approximate solution to 0-1 KP. CKP is the linear programming relaxation of the

0-1 KP. It is the most natural, and historically the first relaxation of the 0-1 KP [38]

and obtained by removing the integrality constraint on the items xi:

maximize
n∑

i=1

vixi (3)

subject to
n∑

i=1

wixi ≤ W (4)

0 ≤ xi ≤ 1, i ∈ N = {1, 2, . . . , n} (5)

assuming for simplicity,

vi, wi, W ∈ Z+

n∑
i=1

wi > W

wi ≤ W, i ∈ N

A classical solution to this problem is demonstrated by Dantzig [43] in a graphical
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manner. In mathematical terms, it goes by sorting the items in the following order:

v1

w1

≥ v2

w2

≥ · · · ≥ vi

wi

(6)

Then, each item is consecutively added to the knapsack until the first item c is found

that does not fit. This is called the critical item. This approach leads to the optimal

solution to the CKP and is formally stated as:

xi =

 1 for i = 1, · · · , c− 1,

0 for i = c + 1, · · · , n,

xc =
W

wc

, where, W = W −
c−1∑
i=1

wi

and the value of optimal solution is,

V (CKP ) =
c−1∑
i=1

vi + W
vc

wc

(7)

Two notable facts emerge from this solution. First, the optimal solution x is

maximal, that is
∑n

i=1 wixi = W . The other fact is that all items are either included

(xi = 1) or not included (xi = 0) in the solution except only one item, item c,

which has a fractional value (0 ≤ xc ≤ 1). This second fact is exploited by the

greedy algorithm for approximately solving 0-1 KP. Setting xc as zero gives a feasible

solution to the 0-1 KP. The value of this solution is V ′ =
∑c−1

i=1 vi. It can be assumed

that for most problem instances, V ′ is quite close to the optimal value V , which is

bounded as V ′ ≤ V ≤ (V ′ + vc). However, the worst case performance ratio V ′/V

can be very bad as shown by the following example. Consider a problem instance

with n = 2, v1 = w1 = 1, v2 = w2 = k and W = k for which V ′ = 1 and V = k [38].

The performance ratios can be close to zero for k →∞. This performance ratio can

be improved by considering a feasible solution given by only the critical item. Hence,

V̂ = max(V ′, vc). This changes the bounds on V as V̂ ≤ V ≤ 2V̂ . Thus, the worst

case performance ratio, V̂ /V , for the new formulation is 1/2.

39



The most popular approach for greedy algorithm is to order the items based on

Equation 6 and add the items according to increasing indices till the knapsack is full.

Here, items 1 through c − 1 are always included and any item, thereafter, that can

fit in the remaining space is added to the knapsack. The worst case performance is

improved to 1/2 by also considering the solution with maximum value item alone.

Algorithm 1 describes a pseudocode for the greedy algorithm used to solve 0-1 KP.

The time complexity for initial sorting is O(n log n), adding O(n) for the complete

algorithm.

Algorithm 1 Greedy Algorithm

Require: Items Sorted according to Equation 6
1: procedure GreedyKP(n, v, w, W )
2: x ⇐ 0
3: W ⇐ W
4: V ⇐ 0
5: for i ⇐ 1, n do
6: if W ≥ wi then
7: xi ⇐ 1
8: W ⇐ W − wi
9: V ⇐ V + vi

10: end if
11: end for
12: [̂i, v̂] ⇐ maximum(v) . Here, î is the index of item with maximum value v̂
13: if v̂ ≥ V then
14: x ⇐ 0
15: xî ⇐ 1
16: V ⇐ v̂
17: end if
18: return x, V
19: end procedure

The KP in Table 5 is solved approximately using Algorithm 1. As this algorithm

is designed to consider only one value, V1, V2 and V3 are merged into a single utility

function given by Equation 8.

V = V1 + V2 + V3 (8)
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Figure 13: Greedy Solution for Knapsack Problem 5

For the weight constraint, only W1 is considered. The approximate solution is:

x = [1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0]

V = 49 + 57 + 50 = 156

Ŵ1 = 37

The solution is graphically illustrated in Figure 13 with the horizontal axis showing

the item number.

3.2.1.1 Advantages and Shortcomings

The main advantage of using greedy algorithm for technology selection problem is

that it is extremely fast when compared to other techniques, especially when dealing

with large number of options. This advantage is exploited by Kirby and others [22] in

the final step of SP2 process, where a greedy algorithm is used for resource constrained

program prioritization task in real time. The other advantage of this, and also other

approximate algorithms, is that the solution lies within a proven bound around the

optimal value. Thus, even though greedy is an approximate algorithm, there is some

degree of certainty to its solutions. Apart from these advantages, greedy algorithms

are very simple to implement.

One of the major drawbacks of greedy algorithms is that they are approximate

in nature. They cannot be used for for problems where exact solution is required.
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The only way one can account for multiple objectives is using some form of utility

function. This may not be an ideal approach for technology selection problems as

explained in the following chapters. Moreover, this algorithm can only handle one

constraint.

3.2.2 Monte-Carlo Methods

Monte-Carlo methods, also known as random search methods are some of the simplest

probabilistic search methods. It consists of uniformly sampling random points from

the combinatorial design space and retaining the best point that also satisfies the

constraints. Considering a simple technology selection or knapsack problem with n

items, the optima is from 2n combinations. Assuming that there is only one optimal

point in the combinatorial space, the probability of a randomly selected point being

optimal is 1/2n. The probability of optimum not being found after k trials is (1− 1
2n )k

and the probability of success is:

S = 1− (1− 1

2n
)k (9)

Solving for k,

k =
ln(1− S)

ln(1− 1
2n )

(10)

The Equation 10 defines the number of trials required for a given problem and desired

probability of success.

Considering the KP of Table 5, there are 16 items to consider. Thus probability

of any one combination being optimum is 1/65, 536. Now, solving for number of

trials required for 90% success rate, we get k = 150, 900 which is more than double

the total number of combinations in the design space. And, if one wants to be 99%

certain that they have reached the optimum, 301,800 trials are required. Moreover, if

only 65,536 random trials are performed, the probability of achieving optimum value is

only about 63%. From this perspective, Monte-Carlo methods are clearly undesirable.

But, lets consider a scenario where there are 10 points including the optimal, that
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are good enough and will suffice for our requirements. Now, the probability of any

one random combination being a satisfactory solution is 10/65, 536. For 90 and 99%

certainty, the number of trials required are about 15,000 and 30,000 respectively. This

number is significantly lower than the total number of combinations and this form

of interpretation is what gives Monte-Carlo methods its strength. A pseudocode for

Monte-Carlo search is illustrated in Algorithm 2.

Algorithm 2 Monte-Carlo Search

1: procedure MCKP(n, v, w, W, t)
2: V ⇐ 0
3: for i ⇐ 1, t do
4: x̄ ⇐ binary random array of size (1, n)
5: v̄ ⇐ value for x̄
6: w̄ ⇐ weight for x̄
7: if all w̄ ≤ W and v̄ > V then
8: V ⇐ v̄
9: x ⇐ x̄

10: end if
11: end for
12: return x, V
13: end procedure

Running a 15,000 trial Monte-Carlo search on the KP with objective of increasing

the sum of values and considering only W1 as constrain, we get the following solution:

x = [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1]

V = 49 + 61 + 48 = 158

Ŵ1 = 38

We can be 90% certain that this is one of the 10 best solutions. This solution is little

better than the greedy solution of the previous section. This technique can easily be

adopted for multiple constraints as shown in Algorithm 2. The following solution is
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obtained after 15,000 trials with W1 and W2 as constraints:

x = [1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0]

V = 45 + 48 + 44 = 137

Ŵ1 = 38

Ŵ2 = 27

Again, we can be 90% certain that this is one of the 10 best solutions when considering

both constraints.

3.2.2.1 Advantages and Shortcomings

The simplicity to implement is the main advantage of this technique. As demon-

strated, it is extremely easy to consider multiple constraints with this method. When

each trial is computationally cheap, as for the example KP here or some elementary

technology selection problem, the number of trials can be increased significantly to

increase the confidence in results.

The same property can be considered as a drawback when each trial is compu-

tationally expensive, as in many instances of technology selection problems, and one

has to find the best solution with minimum number of iterations. Though there are

non-domination based techniques2, the most straight forward way of considering mul-

tiple objectives is via merging them into a single objective. This may not be an ideal

solution for some applications. Moreover, as this method is based on randomness,

there is a possibility, albeit minuscule, that the solution offered is randomly bad.

3.3 Exact Algorithms

There are situations, when feasibility and viability of the design are at stake, that

an exact solution to the technology selection problem is required. Exact algorithms

2More on this in Chapter 4.
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for the 0-1 KP problems rely on enumeration. For most instances of these problems,

complete enumeration is seldom required and it is possible to exploit the underlying

structure of the problem to design an efficient enumerative algorithm. Problems

with moderate number of technology options can be solved in short time even if the

computational complexity for such algorithms is exponential.

Some of the prominent enumerative algorithms for solving KP are described by

Martello and Toth [38]. Balas and Zemel [44] describe an algorithm to solve 0-1 KP

based on the concept of the core problem. They documented via various experiments

that the solution to the linear relaxation of 0-1 KP is very close to the exact 0-1

KP solution. Only a few variables needed to be changed around the critical item in

order to obtain the integer solution for 0-1 KP. This problem is denoted as the core

problem associated with the 0-1 KP. Efficient exact algorithms based on this concept

are proposed by Pisinger [39].

Almost all of the exact algorithms are based on two primary enumerative tech-

niques: branch and bound and dynamic programming. These are explained in the

following subsections.

3.3.1 Branch and Bound Algorithms

Branch and bound algorithms are exponential in time for the worst case scenario

but can be intelligently designed to work efficiently for typical problem instances.

This method conducts the search on a tree of all feasible solutions and reaches the

optimum by solving the subproblems along the way. At each node of the search tree,

there has to be a basis for selecting or rejecting a partial solution. As there is no

exact way of determining the usefulness of these partial solutions before the end of

the algorithm, an upper bound on these solutions has to be evaluated. In most of

the branch and bound implementations, linear programming relaxation of 0-1 KP is

used to determine the upper bound at each node. With integrality constraint on xi
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and vi the upper bound derived from Equation 7 is given by Equation 11:

U1 = bV (CKP )c =
c−1∑
i=1

vi +

⌊
W

vc

wc

⌋
(11)

One of the earliest approach for the exact solution to KP using branch and bound

technique was presented by Kolesar [45]. In this algorithm, at each node the item i

is selected in the order given by Equation 6. Two branches are formed at each node

by fixing xi equal to 1 and 0. The feasible branch with maximum U1 value is selected

and the search continues. There are many approaches based on some variations of

Kolesar’s algorithm that are found to be much more efficient. For example, Horowitz

and Sahni’s [46] algorithm is based on depth first search. Here, the node variable

is selected in the same way as Kolesar’s algorithm but a greedy strategy is adopted

for branch selection. That is, a feasible branch with xi = 1 is selected and the

search continues. Martello-Toth [47] algorithm is another effective algorithm based

on Horowitz-Sahni strategy. This algorithm uses an improved bound U2 instead of U1

and a different dominance criterion to avoid nodes that do not advance the solution.

Greenberg and Hegerich [48] algorithm provides a different strategy for selecting

branching variable at each node. Here, the linear relaxation of the induced sub-

problem is solved and the critical item c̃ is selected as the branching variable. Two

branches are created with xc̃ = 0, and xc̃ = 1. The search continues from the node

with xc̃ = 0. When the induced CKP has integer solution, the search continues from

xc̃ = 1. A Matlab function, bintprog, is used to demonstrate the application of branch

and bound method for the example problem in Table 5. It is a linear programming

based branch and bound implementation to solve binary integer programming prob-

lems [49]. The basic framework roughly follows the Greenberg-Hegerich algorithm.

The algorithm searches for a feasible solution, updates the best solution as the search

progresses, and finally verifies that no better integer solution is possible by solving a

series of linearly relaxed knapsack subproblems.

As this method can only consider a single objective at a time, Equation 8 is used
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to merge three value numbers into a single objective to be maximized. Moreover, as

the function bintprog is designed for minimization problems, the value numbers of

items are prefixed by a negative sign. The exact solution to the problem with weight

constraint W1 is:

x = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1]

V = 53 + 55 + 53 = 161

Ŵ1 = 39

Thus, branch and bound algorithm provides a better solution (V = 161) as compared

to the greedy algorithm (V = 156). The solution weight Ŵ1 for the former technique

is also closer to the constraint than that using the approximate technique.3 The

solutions with exact and approximate techniques are graphically compared in Figure

14. The only difference in the greedy and exact solution is in item 10 and 16 where

their state is reversed. This follows the observations made by Balas and Zemel [44]

that the exact solution of 0-1 KP is very close to that of its CKP counterpart.

Branch and bound technique can also be used for problems with multiple con-

straints and this is demonstrated by applying bintprog on the current problem with

constraints W1 and W2. The exact solution is as follows:

x = [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1]

V = 49 + 46 + 47 = 142

Ŵ1 = 40

Ŵ2 = 28

There is a corresponding reduction in the value of the knapsack because of the addi-

tional constraint. It is interesting to note that constraint W1 is now active but the

value of the knapsack is less than the previous results.

3Though this closeness to the constraint does not necessarily mean that the solution is better.
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Figure 14: Approximate and Exact Solutions to the example KP
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3.3.1.1 Advantages and Shortcomings

The main advantage of branch and bound technique is that it provides exact solution

to the 0-1 KP. It is a well developed technique with various formulations available

to solve large variety of knapsack and similar problems; for example, Elfes, Wesbin

and others [24] have used the Martello-Toth [38] algorithm for optimizing technology

portfolios. Moreover, these algorithms can also handle multiple constraints.

The branch and bound algorithm can optimize only one objective at a time and

this is its main disadvantage for the technology selection problems. When the eval-

uation of technology combinations is expensive, this technique becomes inviable. It

has to traverse considerable number of nodes when there is a large number of tech-

nology options available. Moreover, technology selection problems have other inter-

technology constraints that can considerably complicate the problem structure on

which this technique is based.

3.3.2 Dynamic Programming Algorithms

Dynamic programming (DP) is another enumerative technique typically applied for

solving discrete optimization problems and can be used to obtain exact solution to

the 0-1 KP. It is a recursive method that combines the solutions to the subproblems

to solve the bigger problem. As in divide-and-conquer technique [40], this algorithm

also divides the problem into subproblems, solve each subproblem optimally, and then

combine their solutions to solve the original problem. The only difference between

the two being that DP can be applied to the problems whose subproblems are not

independent and they share common subsubproblems. The divide-and-conquer tech-

nique would repeatedly solve the common subsubproblems and hence work more than

required. In contrast, DP algorithm would solve every subsubproblem only once and

store the answer, to be used again when required by another subproblem. The 0-1

KP is composed to two main characteristics: optimal substructure, and overlapping
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subproblems, that make it amenable to DP implementation.

Optimal substructure property is the Bellman’s Principle of Optimality [50] that

he stated as:

“An optimal policy has the property that whatever the initial state and

initial decisions are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.”

This means that the optimal solution to the problem consist of optimal solutions to

the subproblems. In case of 0-1 KP, consider X to be the most valuable knapsack

composition with value V and maximum weight W . If we remove item i from this

knapsack, V −vi should be the most valuable knapsack composition weighing W −wi

from the n− 1 original items without item i.

The other property that the 0-1 KP has that makes it attractive for DP imple-

mentation is of overlapping subproblems. A problem is said to have overlapping

subproblems when the recursive algorithm, such as DP, revisits the same subproblem

over and over again. A DP algorithm is efficient as it solves each overlapping sub-

problem only once, storing the solution in a table where it can be looked up when

DP revisits the same subproblem. For the 0-1 KP, DP algorithm has to solve the

subproblems V (i, w) where, 0 ≤ i ≤ n and 0 ≤ w ≤ W . The algorithm consists of

populating a two dimensional table with n + 1 rows and W + 1 columns using the

following recursive equation:

V (i, w) =

 V (i− 1, w) if w < wi

max{V (i− 1, w − wi) + vi, V (i− 1, w)} if w ≥ wi

The first row and column are used for initialization and filled with zeros. A pseu-

docode of a simple DP algorithm for solving 0-1 KP is illustrated in Algorithm 3. A

binary array hold is used to keep track of items included in the subproblems. This

50



variable is used to construct the final solution. Kellerer et. al. [51] provide a detailed

explanation of this technique for constructing the optimal solution.

Algorithm 3 Dynamic Programming Algorithm

1: procedure DPKP(n, v, w, W )
2: V ([1 : n + 1], [1 : W + 1]) ⇐ 0
3: hold([1 : n], [1 : W ]) ⇐ 0
4: for i ⇐ 2, n + 1 do
5: for w ⇐ 2, W + 1 do
6: if wi−1 ≤ w and {V (i− 1, w − wi−1) + vi−1} > V (i− 1, w) then
7: V (i, w) ⇐ V (i− 1, w − wi−1) + vi−1

8: hold(i− 1, w − 1) ⇐ 1
9: else

10: V (i, w) ⇐ V (i− 1, w)
11: end if
12: end for
13: end for
14: temp ⇐ W
15: for i ⇐ n, 1 do
16: if hold(i, temp) = 1 then
17: xi ⇐ 0
18: temp ⇐ temp− wi

19: end if
20: end for
21: return x, V (n + 1, W + 1)
22: end procedure

This DP procedure is applied on the KP of Table 5. As in the previous sections,

values are merged and W1 is the constraint on the weight. Being an exact algorithm,

the solution obtained is same as from the branch and bound algorithm of the previous

section. One noteworthy feature of DP is that it does not require any specific sorting

of the items. However, its efficiency improves considerably if the items are ordered

according to the Equation 6. This property is illustrated in Figure 15, which shows

the sparsity of the hold array of Algorithm 3. This variable keeps a record of every

new item added to the subproblems, in other words, it keeps track of decisions made to

arrive at the optimal solution. Figure 15(a) shows that 392 new items are added in the

subproblems while arriving at the optimal solution when the items are not ordered.
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Figure 15: DP Efficiency With Ordering of Items

However, if the items are ordered, only 233 new items are added while arriving at

the optimal solution, as shown in Figure 15(b). Thus, the instances visited by the

algorithm are reduced by almost half when the items are ordered according to the

value by weight ratio.

3.3.2.1 Advantages and Shortcomings

As in branch and bound algorithm, DP also provides exact solutions to knapsack

and similar technology selection problems. But the main advantage of using DP is
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that in the process of solving single-capacity KP it also solves all-capacity KP. That

is, theoretically one can solve technology selection problem with cost constraint c

for all the cost numbers from 0 through c. This is useful when cost is not fixed for

a technology selection problem and the decision makers are interested in examining

different solutions with changing constraint.

DP is not as efficient as branch and bound method for many problem instances

mainly because of its large memory requirements. The run time and memory re-

quirements are dependent on the size of the constraint (in our case W ) which can

be significantly large when considering, for example, cost constraint for technology

selection problems. As a tradeoff, an approximate DP algorithm can be devised by

truncating last x decimal digits of the constraint values and thus reducing the total

number of subproblems considered by accepting some uncertainty in the result. Other

shortcoming of DP, as with many other techniques, is that it can only solve problems

with single objective and single constraint dimension.

3.4 Investigative Techniques

There are situations encountered during the development of a system when actual

technology selection is not required. Instead, the designers are more interested in

investigating the overall combinatorial design space made available by various tech-

nology options. These type of situations would normally occur during the early

conceptual design phase when the system itself is not fixed and the technologies are

evaluated with respect to a generic baseline design.

Two techniques that are applicable for investigating the technology combinatorial

space are demonstrated in the following subsections.

3.4.1 One-On One-Off

One-On One-Off is a preliminary technique that gives a basic idea of the technology

options available. It involves examining technology bar charts that are the results
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of One-On and One-Off evaluations. One-On evaluation allows designers to compare

the impact of each technology on the system level objectives. Here technologies are

evaluated with respect to a no-technology-in baseline, that is when no new technol-

ogy is added to the system. On the other hand, One-Off evaluation allows designers

to determine the effect on system metrics of removing individual technologies from

the system. In this case the technologies are evaluated from all-technologies-in base-

line. That is, for the baseline case all technologies are included in the system, then

each technology is removed one at a time and the impact of remaining technologies

evaluated. This helps designers understand the importance of a particular technology.

This technique is applied for the KP problem of Table 5 and the results illustrated

in Figure 16. The bar charts have item numbers on horizontal axis and values or

objectives on vertical axis.

A chart from One-On evaluation is shown in Figure 16(a) and is the most straight-

forward to interpret. Here, the item represented by the tallest bar has the most impact

on the knapsack values. Each section within a bar represents the value of one objec-

tive; for this KP we have three objectives, V1, V2, and V3, hence the three sections

in each bar. It can be seen that item 12 has the most overall impact followed by 16

and 15; items 5 and 8 have the least impact. The results from One-Off evaluation are

illustrated in Figure 16(b). Here, each bar represents the total knapsack value when

that particular item is absent and all others are included in the knapsack. Three

horizontal lines illustrate the maximum value possible with the bottom one showing

maximum V1 followed by V1 + V2 and V1 + V2 + V3 at the top. In this plot, the most

important items are those that show the most degradation or reduction in the values.

It can be seen from the figure that the bottom section of item 5 bar almost touches

the V1 line indicating that there is not much to loose in objective V1 if item 5 is not

included. The bars for items 2, 5, and 8 are nearest to the top horizontal line indi-

cating that they have the least overall impact on the knapsack value. While, bars for
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Figure 16: One-On One-Off Technique
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items 12 and 16 show the most reduction in overall value indicating the importance

of these items. From these charts it can be concluded that items 2, 5, and 8 are the

least important while items 12, 15, and 16 are the most important. This is verified

from the exact solution of Figure 14(b) which has items 12, 15, and 16 present while

items 2 and 8 are absent. Though item 5 has minimum overall value it is included in

the exact solution; this can be attributed to the presence of constraints that are not

considered in One-On One-Off analysis.

These charts can be modified to show a percentage change with respect to the

baseline values. The data can also be sorted to show the most effective items or

technologies and plotted to view in a Pareto plot.

3.4.1.1 Advantages and Shortcomings

As demonstrated above, One-On One-Off is the most straightforward technique to

implement and interpret. It requires minimum time to implement and should be

used as the starting step for any technology intensive system design project. This

technique can help to identify the best and worst technology options available. The

conclusions of this technique can also be used as a sanity check for the final optimized

solutions.

Though a single constraint can be included in this analysis by considering the

ratio, for example value/weight in case of KP, considering multiple constraints is not

straightforward. This technique cannot account for the complex constraints involved

in a technology selection problem. Moreover, this being a basic technique does not

provide any significant details of the technology combinatorial space.

3.4.2 Design of Experiments

Design of experiments (DoE) is a systematic way of conducting formal experimenta-

tion. This is widely employed in the fields of biology and social sciences and more

recently being used in engineering and economics. The purpose of DoE is to eliminate

56



correlations (confounding) that exist among the variables and avoid biases. In doing

so, it tries to maximizes the information gathering potential of each experimental

run. This is done by setting up rules and procedures governed by statistics to assign

parameter settings on the experimental units. Montgomery [52], among many others,

provides one of the most comprehensive discussion on the topic. The experimental

designs generated by DoE are characterized by the number of levels used for each

parameter. For example, the input parameters in case of technology selection or

knapsack problem are characterized by their presence (1) or absence (0), thus two

levels for each parameter. In case of full factorial design for these problems, there

would be 2n experiments, n representing the number of parameters (technologies or

items) under consideration and 2 is for two levels for each parameter. Thus, for

the example problem form Table 5, the number of full factorial experiments required

would be 216 = 65, 536. This number increases exponentially with increasing items or

technologies. Conducting these many experiments may not be feasible nor required

for many instances. In such cases, fractional factorial designs can be considered.

These are also known as screening designs that provide resolution of the main effects

of the parameters that are not confounded among themselves or with two-factor (or

two-parameter) interactions. They can also estimate two-factor interaction effects

that may or may not be confounded with other two-factor interactions. These de-

signs have to be custom created for a given problem and statistical packages such as

JMPr [53] simplify the task considerably.

To scan the combinatorial design space of the KP under consideration, a fractional

factorial design with 64 experiments is implemented in JMPr. The resultant 64 item

combinations are evaluated for the three value and two weight responses. A para-

metric model is generated using least square fitting of the resultant data with items

as parameters and total five responses of value and weight. The main output of this
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Figure 17: Prediction Profiler for the Knapsack Problem

exercise that is useful for investigating the combinatorial space is a tool called predic-

tion profiler. A section of this is shown in Figure 17. Here all the items are present

on the horizontal axis and the responses on the vertical axis. The user can set items

either on (1) or off (0) and check the resulting values attained by various responses.

The slop of line in each cell of the prediction profiler indicates the sensitivity of the

corresponding response to the presence or absence of that item in the combination.

This is an excellent scanning tool where the user can interactively select a technology

and check its impacts on the system. The example of KP is relatively simple than the

technology problem. Hence, the response values always increase with the presence

of an item. But, more complex interactions present in a technology problem can be

investigated by this approach.

A multivariate analysis of variance (MANOVA) can also be implemented on the

data generated from the DoE. Similar in concept to single variate analysis of variance

(ANOVA) where the samples are divided into groups based on the factors and it is
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of the interest to study effect of interactions of these factors on the response. In case

of technology problem, the factors are the technologies and they can have two levels,

on or off. It is of interest to understand what impacts do technologies have on the

responses by themselves or in combination with others. A comprehensive discussion

on multi-variate analysis methods is provided by Krzanowski [54] and Manly [55]

among others.

3.4.2.1 Advantages and Shortcomings

The DoE based techniques provide excellent tools to investigate overall combinatorial

space. Tools like prediction profiler can be created very efficiently by evaluating only

a few combinations form many available. It can be very useful to the designer as

they can get an approximate idea about the performance of each technology individ-

ually and in combination with others. A desirability function is available in JMPr

that can perform approximate optimization and provide a good item or technology

combination.

One of the main limitations of these techniques is that they cannot be used for

selecting a particular combination. As demonstrated with the knapsack example,

constraints can be accounted when they are considered as a response. They cannot

be defined as constraints as done in other optimization algorithms. Moreover, it

is difficult to define technology compatibility and enabling relationships within the

framework of statical DoE.

3.5 Advisor for Technology Selection Techniques

Technology problems come in a variety of types. For some problems, there are only a

few technology options available and the best combination is to be selected based on

its impact on the responses. These responses can be one or more than one. If there

are multiple objectives, they can be combined as a weighted sum to form a single

objective. There are problems where the aim is not to select the best combination
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Figure 18: Decision Chart for Technology Selection Methods

but investigate the overall combinatorial space and check what the technologies can

do individually and in combination with others. Then there are problems, where

there is a large number of available technology options and they impact multiple

system responses. The entire combinatorial space has to be investigated for such

problems and a best solution selected based on all the responses. Thus, this spectrum

is populated with problems having few technologies impacting a single response to

many technologies impacting multiple system responses in a complex manner. To

address this wide variety of technology problems and select a suitable technique or

algorithm for technology selection, an advisor is created. It is based on the algorithms

and techniques discussed above and is in the form of a decision chart as shown in

Figure 18.

Once a combinatorial technology problem is defined, a technique or an algorithm

is selected to solve it based on the problem characteristics and the main purpose.

For setting up the problem for quantitative analysis, it is suggested to use the tech-

nique based mapping technology impacts to technology metrics of the system model.

This framework is used in the Technology Identification, Evaluation and Selection
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(TIES) method described in the previous chapter. For qualitative analysis, the link

between customer requirements and technology options can be modeled using inter-

linked decision or planning matrices as used in the Strategic Prioritization Process

(SP2) described in the previous chapter.

If the main purpose of the qualitative or qualitative study is of preliminary scan-

ning of the technology options available, a one-on one-off approach can be imple-

mented. It is a simple analysis conducted to study the system level impacts of the

presence and absence of individual technologies. The technologies are analyzed in iso-

lation and compatible and enabling relations among them are ignored. If the scanning

to the combinatorial technology space is desired, DoE analysis can be implemented.

A DoE is created using one of the screening designs and the technology combinations

are evaluated qualitatively or quantitatively. A prediction profiler can be created as

explained previously and the system level technology behavior can be examined. Any

technology combination can be analyzed in real time with this technique.

If the main aim of technology problem is of optimization and an exact solution

is required, an exact algorithm has to be implemented. When the number of tech-

nologies under consideration is not too high,4 and only one constraint is considered,

dynamic programming can be used. Multiple objectives can be considered using a

weighted sum approach.5 If on the other hand, there are multiple constraints in the

problem, a branch and bound approach can be implemented. This can handle mul-

tiple constraints and is faster than the dynamic programming. Multiple objectives

can be considered using a weighted sum approach as in dynamic programming. For a

problem that requires an exact solution, dynamic programming should only be con-

sidered if one is interested in the solutions to the subproblems; that is, if the main

4In the range of 20-30 depending on the time it takes to evaluate a technology combination.
5More on this in Chapter 4.
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problem has constraint cost = C and one is also interested in solutions to the sub-

problems with cost = 0 through C, dynamic programming should be used. For all

other instances of exact optimization, branch and bound is a better choice.

If, on the other hand, the goal of the problem is technology optimization and

the number of technologies available is very large, arriving at the exact solution

may not be possible with available computational resources and time. Moreover, in

many instances of technology problems, exact solutions are seldom required. In such

situations approximate algorithms should be considered. If realtime performance is

required and the problem has single constraint, a greedy algorithm is the best option.

This is considerably fast for a large number of technologies. Multiple objectives

are considered using the weighted sum approach. Weights for the objectives can

be changed, new ranking assigned to the technologies based on these weights, and

the best combination selected based on the ranking, all within seconds on a desktop

computer for problems with 200-300 technologies. If the realtime performance is not

required, Monte Carlo method can be used for solving the problem approximately.

The benefit of using this techniques is that multiple system level constraints can be

considered. This is also the preferred approximate technique if compatibility and

enabling constraints among the technologies have to be considered.

The techniques and algorithms described above have a common limitation. They

can handle only one objective. When the technology problem has multiple objectives,

they all have to be lumped into a single objective using a weighted sum or related tech-

nique. Not all of them handle multiple system level constraints or inter-technology

constraints (compatibility and enabling constraints). Moreover, these algorithms can-

not consider uncertainty associated with the technology impacts. Thus a method to

address these limitations is required.
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3.6 Summary

Various algorithms and techniques that can be used for technology selection problems

have been discussed in this chapter. To demonstrate these techniques, a benchmark

problem was defined. This problem is a multi-objective multi-constrained knapsack

problem that is shown to be a simplification of the combinatorial technology selection

problem. Three classes of techniques have been explained: investigative technology

scanning techniques, exact algorithms, and approximate algorithms. Two examples

for each class are demonstrated. Based on these techniques, an advisor for choosing

an appropriate method for a technology problem is presented.

It is noted that the algorithms and techniques described in this chapter can han-

dle only one objective. If multiple objectives are present, they have to be combined

into a single one using a weighted sum or similar technique which have significant

limitations as will be described in the next chapter. These techniques cannot account

for technological uncertainties. Moreover, only a few can consider multiple system

constraints or inter-technology constraints. Thus a comprehensive method is required

that can address technology problems with large number of technology options, mul-

tiple objectives, multiple constraints, inter-technology constraints, and technological

uncertainties. The following chapters of this thesis will describe the quest for such a

method.
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CHAPTER IV

MULTI-OBJECTIVE DECISION MAKING

One of the main aspect of the problem at hand is about Multi-Objective Decision

Making (MODM). Given t number of technologies and n objectives, one has to decide

on the best combination of technologies that satisfies all the requirements. MODM,

in contrast to Multi-Attribute Decision Making (MADM), is associated with design

problems; here, it is required to design and select the best alternative that satisfies all

the constraints and meets all the requirements. Looking from this perspective, Multi-

Objective Optimization (MOO) is an intrinsic part of MODM techniques. MADM

on the other hand deals with only selection of the best alternative from an existing

set of options described by their attributes. Thus if there are only a handful of tech-

nology combinations that are being considered, a MADM approach can be adopted

for selecting the best alternative. On the other hand, if the scope of the problem is

too big, MODM techniques have to be explored.

This chapter investigates some of the classical and more recent MODM approaches.

Limitations with the classical techniques are explained and a family of non-domination

based techniques is described that can help eliminate these shortcomings. One of the

main challenge with this technique is regarding redundant dimensions in the problem

formulation. Two techniques to address this are compared using a benchmark knap-

sack problem. Other challenges with the non-domination based technique are also

discussed.

4.1 MODM Approaches

The final solution of a multi-objective problem is the result of both decision and

optimization processes [56]. Decisions in such problems are anchored around the
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preferences of decision makers (DMs). The compromises they make among various

objectives, in addition to the problem constraints, define a region of interest in the

multi dimensional solution space. The DMs express their preferences towards various

objectives, to an analyst or a computer program, at some specific point during the

MODM process. Hwang and Masud [57] classify various MODM methods based on

the preference information from decision maker (DM) known before, during or after

the optimization process. These are stated below:

1. No Articulation of Preference Information: Here DM is not required to define

any particular preference information after the problem is set up with con-

straints and objectives. But in doing this, the analyst or the optimization pro-

gram may have to make some assumptions about DM’s preferences. Moreover,

DM should be able to accept the solution offered by this process.

2. A Priori Articulation: Preference information is given by the DM to the analyst

before solving the problem. This information can be in the form of a weighting

or preference vector for the objectives. If correctly used, this can ensure the most

satisfactory solution to the DM. One of the main drawback of this technique is

that the preferences are articulated in information vacuum.

3. Progressive Articulation: This is the class of interactive methods. Here, the

DMs decide on their preferences based on the current solutions as the search

progresses. There is a feed back loop between the DMs and analyst/machine.

With these techniques DM is part of the solution and in the process learning

about the problem. Much more effort and time are required on the DMs part

as they are intimately involved in the process.

4. A Posteriori Articulation: In this class of methods, MODM is divided into two

distinct phases. In the first phase, a subset of non-dominated solutions in the

objective space is determined. Next, the DMs make implicit tradeoffs between
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objectives based on some criteria, which may be non-quantifiable, and choose

the most satisfactory solutions from the given subset. This technique does not

require the DMs to express their preferences beforehand in information vacuum,

on the other hand, it does generate a large number of non-dominated solutions.

The past implementation of optimization routines for technology selection as seen

in Chapter 2 and 3 belong to the A Priori preference articulation class of MODM

methods. The following discussion is to investigate this technique in detail and illus-

trates its limitations.

4.1.1 A Priori Preference Articulation

As stated before, technology selection is a multi-objective optimization problem.

There are various objectives, often conflicting, to optimize and some form of compro-

mise is essential. A simplified mathematical representation of this problem is defined

by Equation 12.

minimize F (x) = (f1(x), f2(x), . . . , fn(x))T (12)

subject to gi ≤ 0, i = {1, 2, . . . , m} (13)

Here, x is a binary vector of length t that states the presence (1) or absence (0) of

technologies. There are n objectives in this problem and the most straightforward

approach is to convert them into a single objective. This approach is known with a

variety of different names such as Utility Function, Aggregation, Scalerizing, Weighting

or Overall Evaluation Criteria (OEC) based method. For this, a weight vector w of

length n is considered with 0 ≤ wi ≤ 1 and
∑n

i=1 wi = 1. The values of wi are fixed

by DMs before the optimization process. This formulation transforms the problem

from minimization of n functions of Equation 12 to that of a single function as shown

in Equation 14.

minimize y = wT F (x) =
n∑

i=1

wifi(x) (14)
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For simplicity, the following discussion is based on a two dimensional problem;

it can be readily extended for multiple dimensions. Rewriting Equation 14 for two

dimensions:

y = w1f1(x) + w2f2(x)

and after rearranging, we have:

f2(x) = −w1

w2

f1(x) +
1

w2

y (15)

This is an equation for a line where −w1

w2
is the slope and y

w2
is the intercept on the

vertical axis.

Das and Dennis [58] provide an excellent trigonometric treatment of the two di-

mensional multi-objective problem. From this geometrical perspective, the minimum

value for Equation 14 is determined by moving the line given by Equation 15 in a

perpendicular direction to itself in the objective space. This is illustrated in Fig-

ure 19. The optimal point is where this line is tangential to a curve. This curve

is know as the Trade-Off Curve or the Pareto Frontier and is the locus of all the

Pareto-optimal points in the objective space. Thus the optimal point obtained by

this method is also a Pareto-optimal point. The Pareto-optimal solutions are also

known as non-dominated solutions, efficient solutions, or non-inferior solutions in the

literature [57, 59].

Definition: A point x is said to be Pareto-optimal if and only if there does not ex-

ist another point x in the design space such that for every i ∈ {1, . . . , n}, fi(x) ≤

fi(x) and for at least one i ∈ {1, . . . , n}, fi(x) < fi(x).

The Pareto frontier exists in the objective space because no single x can minimize

all the objectives at the same time. When the Pareto front is convex, the entire

curve can be generated using weighting method. For a two dimensional problem, the

weights for two objectives can be represented by a single quantity α. Let w1 = α ; this

67



a

2

1

w

w
slope −=

2w

y

2f

1f

A

Figure 19: Geometric Interpretation of Weighting Method

implies w2 = 1−α. Now, by changing α from zero to one, one can generate a series of

lines with varying slopes that result in different non-dominated points on the Pareto

front as illustrated in Figure 20. Here, each line A, B, C, and D is generated using

different values of α (αa, αb, αc, and αd respectively) and they provide corresponding

non-dominated points in the objective space.

4.1.1.1 Limitations of A Priori Preference Articulation

The previous discussion showed that one can obtain all the points lying on a convex

Pareto frontier using the weighted sum based methods. But what if this front is

non-convex? This situation is shown in Figure 21. In this figure, line A associated

with a certain αa value is tangent to two points, a and c, on the Pareto front. Hence,

there are two optimal points corresponding to that particular αa value. This is an

indication that the Pareto front has a non-convex section. Now, lets consider that a

point b, lying within the non-convex section ac of the curve is of interest to the DM.

The tangent to this point b is a line B with slope defined by αb. As seen in the figure,

the line B intersects the Pareto front at point p and is not tangent to the curve here.
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Thus, for the given weighting, the optimal point can be better than b. This can be

achieved by moving the line B down perpendicularly to itself. This is indicated by

line D in Figure 21 and d is the optimal point for the weights corresponding to αb.

This is the case with any point within the section ac; if the slope of line B is greater

than that of line A (considering the negative slope), the optimum lies beyond point

c and if slope of B is less than that of A, the optimum lies beyond point a. Hence, it

is impossible to obtain points within a non-convex section of the Pareto frontier with

any combination of weights using the weighting method.

Apart from not being able to find points in the non-convex section, the weighted

sum method is also unable to find evenly spaced points on the Pareto front given

evenly spaced weights. This is another significant drawback that is highlighted by

Das and Dennis [58] in their critical examination of the weighting method. Thus for

a two dimensional problem, an even spread of α may not result in an even spread of

non-dominated points on the Pareto front. The consequence of this property is that

depending on the shape of the Pareto front, an equal weighting on all objectives may
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not result in a point on the center of the front. This is illustrated in Figure 22. Here

the DM, by giving equal weighting to f1 and f2, expects a solution in the middle of

the Pareto front. But because of the skewed shape of the front the solution lies in

its upper region. It is impossible to guess the weights required to obtain results in

the region interest of the Pareto front without a prior knowledge of the shape of this

front. Hence, even if the Pareto front is convex, the weighting method is not very

effective as the DMs have to make tradeoffs among objectives and fix weights without

prior knowledge of the shape of the trade-off curve.

Discussion in the above paragraphs revolved around shortcomings with mathe-

matical aspect of the weighting method, mainly related to the shape of the Pareto

front. But there is another aspect that requires due attention and that forms the

basis of various utility function based methods— elicitation of weights. Here, weights

are elicited from the DMs prior to the optimization process. It is important to en-

sure independence or orthogonality of the objectives before assigning weights. These
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weights are based on the relative importance of each objective and are often deter-

mined via pair wise comparison of various objectives. This becomes very complicated

as the number of objectives increases. Hazelrigg [60] observes that for multi-attribute

design problems, weights can only be accurately articulated by comparing the end

products and not on the basis of comparing attributes, or for that matter objectives

alone. Moreover, there is considerable amount of uncertainty involved, both in tech-

nology impacts and the objectives themselves, during the early design phases that

it is difficult to pin down exact weights for the objectives. In other words, it would

be very difficult for the DMs to accurately assign relative weights to the objectives

at an early design phase, more so without looking at available design options in the

objective space.

Recapitulating above discussion, the drawbacks with a priori preference articula-

tion or utility function based methods are as follows:

• Impossible to capture non-convex part of the Pareto frontier.

• Impossible to predict weights that result in optimized points in the region of
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interest without prior knowledge of the front.

• Difficult for DMs to assign weights and make tradeoffs without knowing all the

options available.

It is clear from the above discussion that a priori preference articulation based meth-

ods are not suitable for the multi-objective technology selection problem.

4.1.2 Progressive Preference Articulation

The other option is the progressive articulation of preferences. Parmee et al. [61]

and Buonanno [62] have implemented evolutionary algorithm based interactive opti-

mization methods for conceptual aircraft design. In these methods, the designer is

involved in the optimization process and guides the search towards a region of interest

on the Pareto front by providing preferences at intermediate stages.

These methods do remedy some of the drawbacks of the weighted sum based

methods such as the difficulty of assigning weights. But, there is an associated penalty

in form of DMs effort and time. The DMs and designers have to be present in front

of the computer when the optimization is carried out and depending on the problem,

this process may take a long time. Hence, this too may not be an ideal solution for

the technology selection problem.

4.1.3 A Posteriori Preference Articulation

This brings us to the a posteriori preference articulation — the last class of MODM

techniques described by Hwang and Masud [57]. As mentioned before, these meth-

ods involve first identifying a subset of points that populate the Pareto front (or

hypersurface in multi-dimensional space) and then making tradeoffs between vari-

ous objectives and selecting the most suitable point. The DMs are only involved in

making the tradeoffs and the final selection. The search for non-dominated points is

carried out without requiring their presence. Various search techniques used within
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this method manage to overcome the drawbacks associated with a priori preference

articulation. Moreover, as the DMs are only involved in making tradeoffs and fi-

nal selection, these methods are much more efficient for them when compared with

progressive preference articulation.

The implementation of a posteriori preference articulation is a challenging task,

especially when the dimensionality of the problem is large. These challenges include

the requirement of significant computational resources, the existence of large number

of non-dominated points, and difficulty of making tradeoffs in more than three dimen-

sions. Though these are serious concerns, effective tools and techniques are available

to mitigate them. For example, the tremendous increase in computational power of a

desktop computer in the last decade and the development of evolutionary algorithms

to search for the Pareto frontier has considerably reduced the computational time re-

quired for the task [63, 56]. Deb and Saxena [64], and Brockhoff and Zitzler [65] have

successfully demonstrated techniques to reduce the dimensionality of the problem in

the context of Pareto optimization. Horn [59] and Zitzler [66] among others have ex-

plored techniques of niching and clustering respectively to obtain an even distribution

of points along the Pareto front. With such techniques, only a fraction of Pareto op-

timal points can accurately represent the tradeoff surface. Moreover, the availability

of commercial visualization and analysis tools such as JMPr [53] has made the task

of making implicit tradeoffs in multi-dimensional objective space relatively easy for

the DMs.

In the light of these observations and because of the limitations of the a priori and

progressive preference articulation frameworks, the following hypothesis is proposed

addressing the question: How to address the multi-objective nature of the technology

selection problem?

Hypothesis: A Posteriori preference articulation, a class of MODM methods, can

be used to address multiple objectives in the technology selection problem and

73



identify a satisfactory solutions.

This can be considered as a high level hypothesis that will pose further questions.

The following sections investigate the core of this method and corresponding research

questions in detail.

4.2 Pareto Optimality

By definition, multi-objective problems do not have a single answer. There is a

tradeoff involved among objectives and depending on different preferences, one can

have different answers. Thus, the concept of global optimization is not well defined

for such problems [56]. In this context, Pareto Optimization can be thought of as a

meaningful way of global optimization of the multi-objective problem.

Definition: Pareto Optimization is the process of searching for a subset of non-

dominated or Pareto optimal solutions in a multi-dimensional objective space.

It is important to note that the Pareto optimized solution set is a subset of the set of

all non-dominated solutions. We are generally interested in only a subset because the

cardinality of the set of all non-dominated solutions can be infinite for a continuous

problem. For the combinatorial problem addressed in this thesis, this cardinality, even

though finite, is extremely large. Thus, depending on the granularity or resolution

or density of the Pareto front, each tradeoff is represented in the Pareto optimized

solution set.

Pareto optimization is the first step for a posteriori preference articulation meth-

ods. For this, it is essential to have a clear understanding of the concept of non-

domination and Pareto optimality. According to the definition, within a Pareto

optimal solution set, no objective function can be improved without a simultane-

ous deterioration in at least one of the other objectives. This concept is eloquently

explained by Zitzler [67] and can be visualized for a hypothetical two dimensional
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minimization problem in Figure 23. The figure shows all possible solutions in a two

dimensional objective space. To evaluate the domination condition of point e for

example, the objective space is divided into four quadrants with e as the origin. The

points lying in the upper-right quadrant are considered as being dominated by e. The

points in the lower-left quadrant are said to dominate e; in other words they are not

dominated by e. The points in other two quadrants are neutral with respect to e;

they have no bearing on the domination condition of e. Evaluating all the points

in the objective space for their domination condition, points a, b, c and d are found

to be non-dominated with respect to all the points in the space. Thus they are the

Pareto optimal points and form the Pareto frontier. The same logic can be extended

to evaluate the domination condition and find Pareto optimal points in n dimensional

space.
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4.3 Challenges with A Posteriori Preference Articulation

As mentioned earlier, there are difficulties involved in implementing a posteriori pref-

erence articulation for large dimensional problems. Most of the difficulties arise be-

cause of the increasing dimensionality of multi-objective problems. If there are only

two or three objectives to optimize, the Pareto front is manageable and its very intu-

itive for the DMs to make tradeoffs. As the number of objectives increase, the scale

of Pareto front increases, the task of finding representative non-dominated points

becomes difficult, and making tradeoffs also becomes difficult.

For a two objective problem, the Pareto front is represented by a set of points

along a one dimensional curve. In general, for a problem with n objectives, the Pareto

front is a hypersurface with (n−1) dimensions. Thus as we move from dual to multiple

objectives, the dimensionality of the Pareto front increases, and the points required

to represent the front increase considerably. This is verified by a simple experiment

where 5000 random points are considered in a 15 dimensional space. Non-dominated

points are extracted for two through fifteen dimensions. A ratio of the number of

non-dominated points to the total points (5000) is plotted in Figure 24. As seen

from this plot, there is a rapid increase in the number of non-dominated points with

increase in the dimensions. With a fifteen dimensional objective space, almost all of

the 5000 points are Pareto optimal.1 This explosive increase of non-dominated points

in higher dimensions is the root cause of most of the problems faced in this method.

With this observation, three main questions arise that have to be addressed for

an effective implementation of the a posteriori framework. They are:

• How to reduce the dimensionality of a multi-objective problem in the context

of Pareto optimization?

1These results are with a random sampling, the proportions may differ for an actual technology
problem.
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Figure 24: Increase in Proportion of Non-Dominated Points with Dimensions

• How to reduce the total number of points required to represent a multi-dimensional

Pareto front?

• How to efficiently search for these non-dominated points in multiple dimensions?

The last two questions are generally intertwined. Almost all the well known

methods used for Pareto optimization attempt to generate a subset of Pareto optimal

points that has even distribution along the front; in the process reducing the total

number of points required to represent the front. The following subsections take a

closer look at the challenges posed by the above questions.

4.3.1 Reducing the Dimensionality of Pareto Frontier

One way of looking at this problem is to investigate if the dimensionality of the Pareto

front for an n dimensional problem is really (n − 1). As Veldhuizen [56] has shown,

the dimension of the Pareto front is at most (n − 1) — it can be lower than that.

Thus, if the Pareto front dimensionality is lower than (n − 1), a question arises —

Are all n objectives necessary? This is a fairly recent direction of research and there

are two basic approaches available for addressing the issue.
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Table 6: Example Multi-Objective Problem
Objectives

Items v1 v2 v3 v4 v5

1 7 -9 5 -6 3
2 3 -6 4 -7 10
3 2 -7 9 -10 1
4 6 -5 5 -9 4
5 1 -5 1 -1 4
6 5 -4 7 -6 5
7 10 -4 6 -10 2
8 3 -5 2 -5 5
9 8 -4 10 -7 3

10 4 -10 5 -6 7
11 3 -7 6 -6 6
12 10 -6 9 -5 2
13 7 -9 2 -4 10
14 7 -4 10 -5 7
15 5 -10 8 -3 6
16 8 -8 8 -8 8

4.3.1.1 Based on Principle Component Analysis

The first approach is by using the Principle Component Analysis (PCA) as proposed

by Deb and Saxena [64]. Their method aims at retaining the objectives that can

explain most of the variance in the data. PCA is one of the simplest multivariate

analysis technique and is explained in most of the textbooks on the subject [55, 54, 68].

PCA based dimensionality reduction for a multi-objective problem is best understood

with the help of an example. Lets consider a 16 item knapsack problem as studied in

Chapter 3. The problem considered is described in Table 6. Here each item has five

assigned objective values and no constraint is considered. The problem is to find a

combination of items to:

minimize Vi =
16∑

j=1

vijxj

where xj ∈ {0, 1}, i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, . . . , 16}

Let the number of observations or item combinations considered are n. For this
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Table 7: Correlation Matrix R
V1 V2 V3 V4 V5

V1 1.000 -0.842 0.901 -0.885 0.772
V2 -0.842 1.000 -0.847 0.865 -0.894
V3 0.901 -0.847 1.000 -0.905 0.750
V4 -0.885 0.865 -0.905 1.000 -0.784
V5 0.772 -0.894 0.750 -0.784 1.000

example, all 216 combinations are considered; PCA is carried out on 65, 536×5 matrix.

The first step of the process is to standardize the data. This is done by considering

each dependent variable separately (each column of the matrix), subtracting the mean

of this variate from each observation, and dividing the resultant value by the variate’s

variance. The standardization helps in making the data comparable in terms of value

and variance. With this data, correlation matrix R is computed; Table 7 lists this

matrix for the example problem. It can be observed from this matrix that the set of

V1, V3, and V5 are positively correlated with each other and also the set of V2, and

V4 are positively correlated. On the other hand, V1, and V2 are negatively correlated,

they are conflicting. In fact, each of the variable of one set is in conflict with each

of the variable of the other set. Thus, any one variable may be selected from each

sets to approximately represent the solution space. Now, questions such as — How

to choose a variable from each set? Are only two variables enough? — have to

be answered. To address these questions and to analyze more complex and higher

dimensional technology selection problems, this statistical analysis has to be extended

towards a PCA based approach as suggested by Deb and Saxena [64].

For PCA, the eigenvalues for the correlation matrix R are calculated and ranked

in the decreasing order of their magnitude. Figure 25 shows the ranked eigenvalues

along with a Pareto plot showing the percent contribution of each value to the sum

of all eigenvalues. The eigenvectors corresponding to these eigenvalues are listed in

Table 8; each column representing one eigenvector denoted by PCi. These eigenvec-

tors give the principle components of the new objective space. And, the percentage
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Figure 25: Eigenvalues for R

Table 8: Eigenvectors Corresponding the Eigenvalues
PC1 PC2 PC3 PC4 PC5

0.4497 0.3370 0.7570 -0.1953 -0.2703
-0.4541 0.3401 0.2373 -0.4424 0.6528
0.4501 0.4213 -0.1192 0.5738 0.5258
-0.4537 -0.2691 0.5680 0.6301 0.0451
0.4280 -0.7217 0.1839 -0.1996 0.4715

of eigenvalue shown in Figure 25 represents the proportion of total variance explained

by the corresponding eigenvector. For the current example, PC1 can explain about

88% of the total variance in the data set. Similarly, the first three principle compo-

nents can account for about 97% of the total variance. The elements of eigenvectors

are the coefficients used to form the linear combination of original variables, creating

the principle component variable. Thus, each element of the eigenvector represents

the relative contribution of the respective objective or dependent variable. In PC1,

the contribution of V1 is 0.4497, contribution of V2 is −0.4541, and so on. The ob-

jectives that contribute the most to the principle component variable are the ones

corresponding to the most positive and the most negative element of the eigenvector.

Thus, by analyzing higher ranked principle components in this manner, one can select

the most significant objectives.

When there are large number of objectives, Deb and Sexena [64] suggest using a

predefined threshold cut (TC). The top ranked principle components with cumula-

tive contribution greater than or equal to TC are selected for analysis. Significant
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objectives are then extracted from these selected principle components. For the cur-

rent example, a higher TC of 95% is chosen and from Figure 25 it can be observed

that PC1, PC2, and PC3 fall within this threshold. Analyzing the eigenvectors from

Table 8, objectives V2, and V3 are selected from PC1; V3, and V5 are selected from

PC2; and V1, and V3 are selected from PC3. Thus, a five dimensional objective space

is represented by the four most important dimensions. To investigate if further re-

duction is possible, the correlation matrix for only the selected variables is examined.

This matrix is same as R listed in Table 7 with the row and column for V4 removed.

As observed from this correlation matrix, V1, V3, and V5 are closely and positively

correlated. Thus, V1 can be considered redundant and de-selected as it was the last

objective to be selected from the third principle component. This leaves 2nd, 3rd, and

5th objective out of the total five. This is the same result as one would obtain if only

first two principle components were selected.

Deb and Saxena [64] have suggested an iterative procedure of using the PCA based

analysis in conjunction with a Pareto searching algorithm to reduce the dimensional-

ity. It can be safely assumed that one of the reasons behind the authors suggestion of

iterative implementation of the analysis is the possibility that the Pareto front may

have different statistical properties than a set of randomly selected points from the

objective space. This may lead to difference in identifying the important objectives

depending on where the sample points are chosen from — entire objective space or

the Pareto front. To verify this, a complete set of non-dominated solutions (4,005

points) is extracted from the entire combinatorial space of 65,536 points. Now, the

PCA based analysis is executed using these Pareto solutions as sample points. The

eigenvalues and eigenvectors for this analysis are shown in Figure 26 and Table 9

respectively.

Defining TC at 95% as before and conducting the same analysis, V1, V3, V4, and

V5 are selected as significant objectives. Trying to further reduce these dimensions
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Figure 26: Eigenvalues for Non-dominated Sample Points

Table 9: Eigenvectors for Non-dominated Sample Points
PC1 PC2 PC3 PC4 PC5

0.4520 0.3344 0.0020 0.8036 0.1950
-0.4536 0.3110 -0.6127 -0.0104 0.5675
0.4497 0.4108 0.3279 -0.5409 0.4784

-0.4542 -0.2671 0.6498 0.2463 0.4894
0.4258 -0.7425 -0.3080 -0.0302 0.4142

by observing the correlation matrix reveals that either V1 or V3 can be selected. V1

is retained as it was selected first through PC1. Thus V1, V4, and V5 are selected

by considering only the Pareto optimal points. This is in contrast to V2, V3, and V5

that were selected by considering all the points in the objective space. For making

tradeoffs in multi-dimensional objective space, the DM is interested in the Pareto

optimal solutions. For this, it is advantageous to reduce the dimensionality of the

Pareto front to its true dimensions. Hence, while using PCA based analysis for di-

mensionality reduction for multi-objective decision making, it is necessary to consider

non-dominated solutions as sample points rather than using random points from the

objective space. Depending on the problem and requirements, the PCA based anal-

ysis can be used without the iterative step if the sample points are selected form the

set of non-dominated solutions.

One of the main advantages of this technique is that it is based on the well known

and mathematically robust concepts of PCA. It can be also readily incorporated

within a Pareto optimality based MODM framework. The main drawback though is

that it does not offer any means of assessing and comparing non-dominated points
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obtained before and after the dimensionality reduction. This drawback is addressed

by the next technique discussed in the following section.

4.3.1.2 Based on Preserving the Dominance Structure

The PCA based technique does not address how the solution space changes in terms

of dominance structure by removing certain objectives. Brockhoff and Zitzler [65]

propose a dimensionality reduction technique based on the preservation of the dom-

inance structure. This technique also help address the questions left unanswered by

the PCA based technique.

This approach is described here in brief; a complete explanation of the theory

behind it is provided by Brockhoff and Zitzler [69, 70]. The authors start with the

assumption that the underlying dominance structure is given by the weak Pareto

dominance relation. It is defined as:

�F ′ := {(x, y) | x, y ∈ X ∧ ∀fi ∈ F ′ : fi(x) ≤ fi(y)}

where, F ′ ⊆ F := {f1, f2, . . . , fm} and X is the set of points in |F| dimensions.

If (x, y) ∈ �F ′ and x �F ′ y, it is called as x weakly dominates y with respect to

the objective set F ′. If neither solution weakly dominates the other, they are said

to be incomparable. Based on this concept of weak Pareto dominance, the authors

have defined a minimum objective subset (MOSS) problem. The problem is to find

a minimum cardinality subset F ′ ⊆ F such that x �F ′ y ⇔ x �F y ∀ x, y ∈ X.

Thus all F \ F ′ are considered redundant and can be ignored while preserving the

dominance structure of X. This is illustrated in the following example. A parallel

coordinate plot is shown in Figure 27 for three randomly selected points x1, x2, and

x3 from the Pareto front of the knapsack problem of Table 6. The horizontal axis

shows five objectives and the vertical axis shows the relative objective value for each

point. As observed from the figure, all three points are pairwise incomparable with

respect to all five objectives. It can be further observed that V1, and V3 and V2, and
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Figure 27: Parallel Coordinate Plot for Three Item Combinations

V4 indicate redundancy among objectives. The relation x3 �V1 x2 �V1 x1 is same

as x3 �V3 x2 �V3 x1. Similarly, the relations �V2 and �V4 are the same. Thus the

objectives V3 and V4 can be ignored while preserving the dominance structure of the

solutions. With respect to F ′ := {V1, V2, V5}, the three points are still pairwise

incomparable.

There are instances where this type of dimensionality reduction while preserving

the dominance structure is not be possible. Moreover, the DMs can be interested in

reducing the dimensionality even further while accepting some change in the dom-

inance structure. For this purpose, Brockhoff and Zitzler [70] introduce a measure

δ to quantify the change in dominance structure due to dimensionality reduction.

They further extend the MOSS problem to δ-MOSS to find a subset of objectives

with minimum cardinality and maximum δ change in the dominance structure. To

understand this concept, lets us consider the previous example in Figure 27. The F ′

is further reduced and the new subset F ′′ := {V1, V5}. Now the dominance structure

changes and x3 �F ′′ x1 while x3 �F x1. For x3 �F x1 to hold, the objective values

of x3 have to be lower by δ = 55. This measure δ is used to evaluate the change

in the dominance structure induced by a subset of F . For the subset F ′ of current

example, there is no change in the structure with respect to F and hence δ = 0 for F ′.

Based on the concept of δ, Brockhoff and Zitzler [70] also introduce a related problem
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of minimum objective subset of size k with minimum error (k -EMOSS). Here, the

problem is to find a subset F ′ ⊆ F such that |F ′| ≤ k and F ′ has minimum δ with

respect to F .

The exact and greedy algorithms used for dimensionality reduction in this thesis

are from Brockhoff and Zitzler [69, 70]. It has been proved that MOSS and all

its generalizations are NP-hard; hence, the exact algorithm can take significantly

long time for solving large problems. For the example knapsack problem, a greedy

algorithm for δ-MOSS is executed with δ = 0 to determine if there are any redundant

objectives. The entire Pareto optimal set with 4,005 points is used for this analysis

and it is observed that no dimensionality reduction is possible without altering the

dominance structure. An exact algorithm for k-EMOSS formulation is implemented

on the same set of points to investigate the possibility of reducing dimensions by

accepting some error in the dominance structure. Here, k = 4 and the algorithm

searches for the subsets of objectives with cardinality less than 4 and δ minimum;

the result is listed in Table 10. The algorithm took just over two hours to run on a

Pentium 4 2 GHz machine. The second column of Table 10 lists the cardinality of the

corresponding subset, third column lists the objectives present in the subset and the

last column has the corresponding δ value. This table can used to select the objectives

of interest based on the error one is willing to accept. For example, if one is interested

in at most four objectives, then set number seventeen with F ′ := {V2, V3, V4, V5} has

the lowest δ value of all subsets with cardinality four. If one is willing to accept more

error, set number 8 or 15 can be used with only three objectives. Moreover, subsets

can be selected based on the preferences of objectives. For example, if one is more

comfortable making decisions based on objective V3 than V1, then set number 15

can be selected instead of 8 without any change in the dominance structure (because

δ = 41 for both).
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Table 10: k-EMOSS Results for k = 4
No. |F ′| F ′ δ

1 1 1 103
2 2 1, 2 46
3 3 1, 2, 3 44
4 3 1, 2, 5 42
5 4 1, 2, 4, 5 27
6 3 1, 3, 4 43
7 2 1, 4 46
8 3 1, 4, 5 41
9 1 2 97

10 2 2, 3 47
11 3 2, 3, 5 42
12 2 2, 5 54
13 1 3 103
14 2 3, 4 47
15 3 3, 4, 5 41
16 1 4 97
17 4 2, 3, 4, 5 21
18 2 4, 5 54
19 1 5 103

The advantage of using this technique lies in the fact that it attempts to pre-

serve the dominance structure of the solution space. The preservation of dominance

structure, that is δ = 0 for an objective subset, indicates that the dimensionality of

the Pareto front is preserved. This property is most useful to the DMs when they

are making tradeoffs along the Pareto frontier as there is no loss of information even

with reduced objectives. Moreover, the ability to measure the change in dominance

structure imparts flexibility to this technique. It eliminates the main drawback of the

PCA based technique. Now, the objectives can be reduced while being aware of the

extent of change in solution structure. The main drawback of this technique is that

it is computationally expensive and hence cannot be integrated within the Pareto

search algorithms.
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Table 11: Comparing PCA Based and Dominance Based Techniques
PCA based δ based δ

1, 4, 5 1, 4, 5 41
3, 4, 5 3, 4, 5 41

1, 3, 4, 5 N/A 41
N/A 2, 3, 4, 5 21

4.3.1.3 Comparing Two Techniques

It is interesting to compare the PCA and dominance based techniques for dimen-

sionality reduction. The comparison is based on the complete set of Pareto optimal

solutions with 4,005 points for the example knapsack problem. It can be recalled that

implementation of PCA based technique with TC of 95% on the Pareto set resulted

in the selection of three objectives F ′
1 := {V1, V4, V5}. As observed from Table 11,

the same set is optimal for k-EMOSS problem with k = 3 and the corresponding

error is δ = 41. All δ values in third column of the table are calculated with respect

to the set F of all objectives. If, in the final step of PCA based technique V3 was se-

lected in place of V1, the resultant objective subset F ′
2 := {V3, V4, V5} is still optimal

and the dominance structure is similar to F ′
1 (δ = 41 for both). Now, what would

be the advantage, if any, of retaining both V1 and V3 and selecting four objectives

F ′
3 := {V1, V3, V4, V5}? As it is observed from the table, this is not an optimal set for

k = 4 and there is no gain in having both V1 and V3 together in F ′
3. The dominance

structure is similar to F ′
1 and F ′

2 with δ = 41. Thus, one of the objective among

V1 and V3 is clearly redundant in F ′
3. This behavior is suggested by the PCA based

technique but proved by the dominance based technique. When one is interested in

just eliminating one objective from F , the dominance based technique gives the best

answer with F ′
4 := {V2, V3, V4, V5} and δ = 21. This set is not obtained using PCA

based technique.

From the above study and based on the assumption of similarity of knapsack and

technology selection problem, it can be stated that:
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Hypothesis: Dimensionality of the Pareto hyper-surface in a multi-objective tech-

nology selection problem will be smaller than the number of objectives.

Supporting Experimentation: Plausibility of this hypothesis will be checked us-

ing the dominance structure based dimensionality reduction technique imple-

mented on a subset of Pareto optimal solutions.

4.3.2 Search for Pareto Optimal Solutions

Searching for a representative subset of the Pareto optimal solution set is the most

significant challenge with a posteriori preference articulation framework. There are

many approaches available in the literature for Pareto optimization. The most com-

mon of the approaches is by using the weighted sum method as described in Sec-

tion 4.1.1 and illustrated in Figure 20. Here, the weights are parametrically varied

for each objective and the problem optimized for given weights vector. Any optimizer

can be used for this application, for example, Roth et al. [71] use genetic algorithm

as a point optimizer for iteratively varied weight vector. In addition to the significant

drawbacks described in Section 4.1.1.1, this technique can be computationally very

expensive for higher dimensional problems.

To eliminate some of the limitations of weighted sum based technique for Pareto

optimization, Das and Dennis [72] propose Normal Boundary Intersection (NBI) tech-

nique. The process is carried out by first defining a Convex Hull of Individual Minima

(CHIM). This is a line, surface, or hypersurface formed by connecting the extreme

points in two, three, or more objectives respectively. These extreme points are the

most optimal points for each objective when considered independently. For a two

dimensional problem illustrated in Figure 28, CHIM is represented by segment ab.

The Pareto optimal point is the intersection point of the normal coming from a point

on CHIM towards the origin (for minimization problems) and the boundary of the
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objective space. This is shown in Figure 28 with arc (acb) as the boundary of the so-

lution space, −→wc as normal emanating from point w on CHIM. The point w represents

a certain weight vector. By using different user defined weight vectors, Pareto opti-

mal points can be obtained along the front. This technique produces evenly spaced

Pareto points given evenly distributed set of weights, irrespective to the variation in

scales of different objectives. Though NBI can be extended for multiple objectives,

the computational efficiency reduces with increasing objectives because each point on

the front has to be individually optimized.

As an alternative to the weighted sum based techniques, ε-constraint technique can

be also used to identify the Pareto optimal points. This technique is implemented

by Cheng et al. [73] for optimization in two dimensions of profit and risk. In this

technique, one of the objective is selected to be optimized and others are converted

into constraints by setting bounds on them. All points on the Pareto frontier can

be generated by successively tightening the constraints. Another noteworthy method
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for finding Pareto optimal solutions is based on the homotopy curve tracking tech-

nique. Rakowska et al. [74] demonstrate this method on a two dimensional problem

of optimizing control and structural objectives simultaneously. They use a homotopy

algorithm developed by Chakraborty et al. [75] to trace the Pareto frontier in the ob-

jective space. Though these methods are appropriate for two dimensional problems,

they become computationally expensive as the dimensions increase.

Techniques based on Evolutionary Algorithms (EAs) are very promising for Pareto

optimization. They have been developed and matured in the recent years and work

well for large dimensional problems. These are population based techniques and

attempt to search for all the points of a representative Pareto set in parallel. They

require no gradient information and work exceptionally well for discontinuous and

combinatorial problems. Many of these algorithms are based on the concepts of non-

domination and niching described by Goldberg [76]. A good introduction to these

algorithms and techniques is provided by Coello [63, 77] and Veldhuizen [56, 78]

among many others.

Because of the importance of Pareto optimization for solving the technology prob-

lem and the intricacies involved with the EA approach, the next chapter is devoted

towards the discussion of EAs and their application for Pareto optimization.

4.4 Summary

The primary intent of this chapter has been to investigate various MODM techniques

and down-select the most appropriate one considering the goals of this thesis. Distinc-

tion has been made between the three main classes of MODM techniques: a priori,

progressive, and a posteriori preference articulation. There are serious limitations

with the a priori preference articulation methods. These include, but are not limited

to, their inability to find points in the non-convex part of the Pareto front and the

difficulty to predict weights that would result in optimized points in the region of
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interest. The progressive preference articulation techniques are considered very time

consuming and inefficient for the decision makers. Finally, a posteriori preference

articulation class of techniques is considered appropriate for the technology selection

problem. In this framework, a subset of technology combinations representing the

Pareto front in multi-dimensional objective space will be searched. This set will then

be presented to the decision makers to carry out tradeoffs among objectives and select

a satisficing technology combination.

There are challenges involved in implementing a posteriori preference articulation

framework for the complex and multi-dimensional technology selection problem. The

first is associated with redundant dimensions present in the problem. PCA based

and Dominance based techniques are shown to be useful to address this challenge.

It has been demonstrated with a benchmark knapsack problem that dimensionality

reduction is possible if one in willing to accept some error in the dominance structure.

It is hypothesized that the technology selection problem will also have some redundant

dimensions; the dominance based technique can be used to check this and also reduce

the dimensionality of the problem. Other significant challenge is to search for a

representative subset of Pareto optimal points. Classical weighted sum technique

and also the Normal Boundary Intersection technique are deemed inappropriate for

the task. Evolutionary algorithms seem to provide notable possibilities for Pareto

optimization. This is further explored in the next chapter.
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CHAPTER V

EVOLUTIONARY ALGORITHMS FOR PARETO

OPTIMIZATION

It is understood from the previous discussion that at the highest level, the technol-

ogy selection problem is a multi-objective decision making problem. Multi-objective

optimization is a crucial part of the process. In the previous chapter it was shown

that a posteriori preference articulation with Pareto optimization is appropriate for

the technology problem. The focus of this chapter is towards addressing the question:

How to efficiently search for non-dominated points in multiple dimensions?

This chapter will explore the use of Evolutionary Algorithms (EAs) for the purpose

of Pareto optimization. A brief introduction to EAs is provided in the initial section.

Main issues faced while applying EAs for Pareto optimization are discussed next,

followed by introduction to some of the most popular algorithms for the task. The

promising algorithms are compared using a benchmark knapsack problem and the

best one is selected for the technology selection problem. To investigate the efficacy

of the selected algorithm, its results are compared with results from a random search.

5.1 Evolutionary Computation

Evolutionary computation is the study of computational systems that use inspiration

from the natural process of evolution and adaptation. The main areas included in the

study of evolutionary computation are evolutionary programming, evolution strate-

gies, genetic algorithms and genetic programming. Evolutionary Algorithms (EAs) is

the general term used to include the first three areas. Spears et al. [79] and Yao [80]

give a comprehensive description of the similarities and subtle differences between

92



Parent 

Selection P(i)
Reproduce

Generate

Population P(i)

Repeat ?
Yes

No

i = 0

Evaluate
P(i)

i = i +1

Evaluate
P(i)

End

Figure 29: General Outline of EA

different types of EAs. Whitley [81] provides a good description of EAs and some of

the intricacies involved, such as schema theorem, representations, etc. An outline of

a typical evolutionary algorithm is illustrated in Figure 29.

The following subsection details some of the primary reasons behind the decision

to use an EA for the technology selection problem. Later, a brief introduction to No

Free Lunch theorems is provided and their implications are discussed.

5.1.1 Why Evolutionary Algorithms?

Technology selection has been shown to be an NP-hard problem. Evolutionary algo-

rithms are particularly well suited for such problems [66, 82]. The main reason for this

is the inherent parallelism of the techniques i.e. they process a set or a population of

solutions simultaneously. Apart from the empirical evidence about the suitability of

this approach for various theoretical [83, 84, 85] and practical [86, 87, 88] problems,

there are some particular characteristics (described below) of the technology problem

that make EAs a good choice.

Combinatorial: The concerned problem is a Boolean combinatorial problem. Here
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the technologies can either be selected (1) or not selected (0). Therefore each

bit on the binary chromosome string represents an actual technology and not

its encoding. The operations of EA such as crossover, mutation, etc. take place

in the actual technology space or phenotype space. Thus the information is

conserved and transferred in a true building block sense [76]. It has also been

argued by Radcliffe [89] that EAs are more efficient when the genetic operators

are defined in the phenotype space rather than genotype space1.

Multi-Dimensional: Lower dimensional problems can often be solved more effi-

ciently by traditional techniques of mathematical programming [90]. Chu and

Beasley [91] demonstrated that a heuristic based GA can be used efficiently

compared to other techniques to solve a multi-dimensional knapsack problem.

Our focus is towards a multi-dimensional problem and EAs can be effectively

used for this purpose. Moreover, EAs are known to be very efficient for gener-

ating a subset of Pareto optimal solutions.

Constrained: EAs are inherently unconstrained search methods. It is necessary

to devise different techniques to incorporate constraints in these algorithms.

Michalewicz [92] and Ceollo [93, 94] provide a comprehensive survey of wide

variety of constraint handling techniques used over the years. Constraints in

the technology selection problem arise from different types of relations among

the technologies as explained in previous chapters. The information about these

relations can be used to devise a heuristic based operator to maintain feasible

population.

Discontinuous: Genetic algorithms and other EA methods are fundamentally dis-

crete variable methods. These metaheuristics methods are also ideal for discon-

tinues objective spaces as they do not rely on the gradient information. Even

1encoding or representation space
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though gradient based methods quickly converge to optimal solution, they are

not efficient in non-differentiable or discontinues problems. For this case, the

parameters are discrete as well as the objective space can be discontinuous

depending on the type of system model used.

Epistatic: Epistasis is the degree of interaction among parameters (technologies in

this case) as manifested in an objective function. If there is no epistasis, then

the mapping of parameters on the objective is linearly independent. In such

cases the parameters can be optimized independently and a simple algorithms

like hill-climbing will outperform any advanced EA. On the other hand, if there

is unbounded epistasis, i.e. the contribution of all the parameters depends on

the values of all others, the problem is extremely difficult to handle by EA or

any other methods. It has been suggested that EAs and other metaheuristics

excel in searching problems with bounded epistasis [95].

5.1.2 No Free Lunch Theorems

No discussion about the applicability of EAs can be complete without the mention

of theoretical work attempted in the recent past demonstrating the limitations of

stochastic search algorithms. Some of the most important results of these studies

can be found in the seminal work of Wolpert and Mcready [96, 97] called No Free

Lunch (NFL) theorems for search and optimization. Radcliffe and Surry [95], and

English [98] expand some of the results of NFL and explore the ramifications of

these theorems on search and optimization. Culberson [99] gives a good informal

explanation about NFL theorems especially in the light of complexity theory and

investigates its implications on evolutionary computing.

The NFL theorems prove that all algorithms that search for an extremum of a

function perform exactly the same when averaged over all possible functions. It states

that if an algorithm A outperforms algorithm B on some objective functions, then
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B must outperform A on others. That is, all algorithms, even a random search, will

perform the same on average on all the search spaces. The immediate consequence of

this result is that it proves the futility of trying to devise a general purpose algorithm

that can efficiently search any objective space. A general purpose algorithm may be

devised but it will be akin to a Swiss army knife, as English [98] compares it, able to

do many jobs, but none particularly well.

5.1.2.1 Implications of NFL theorems on EAs

Instead of discouraging the evolutionary computation community, the NFL theorems

provide direction for the improvements in EAs and other metaheuristic search algo-

rithms. These algorithms are occasionally promoted as a cure for all optimization

problems but NFL theorems put some limitations on such claims. NFL theorem im-

plies that the best ways to devise an efficient search algorithm and to know that it will

be efficient, before trying it out, is to tailor it according to the the problem. That is,

to use some problem specific information or structure that is known and exploitable,

and reflect this in the algorithm selected; only then one can prefer one algorithm over

another. Otherwise there can be no basis for selection of the algorithm and no formal

assurance that it will be effective.

Representation schemes and operators have a prominent role in successful im-

plementation of EAs. These methods can be made more effective by incorporating

domain specific knowledge into representation and operators used [95]. One can thus

trade performance increase in the domain of interest with performance decrease in

the other domains.

5.2 Pareto Optimization Using EAs

The goal of Pareto optimization is to obtain a set of points that approximates the

Pareto surface in the objective space, and their corresponding parameter values. The

need for Pareto optimization for a high dimensional space is one of the main reason
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behind selecting evolutionary algorithms. As mentioned before, the advantage of

using EA’s for Pareto optimization is their ability to work with a large population of

points simultaneously. These population based algorithms exploit the knowledge of

the entire population to drive the search towards Pareto surface in all directions.

As Zitzler [67] states, approximating the Pareto surface is in itself multiobjective

task; first, one has to reduce the distance between the actual and approximate surface

and the second is to ensure even distribution of points on the surface. These tasks

lead to few questions that have to be answered while designing the algorithm. The

question of assigning a scaler fitness value to a point in multiple dimensions has to

be addressed to compare the individuals within the population to accomplish the

first task. For the second task, a mechanism has to be devised so that the final

set is distributed evenly over the Pareto surface. Three main issues that have to be

addressed by the Pareto optimization algorithms are fitness assignment, distribution

along the surface and elitism.

5.2.1 Fitness Assignment

This can be considered as the most important function of the algorithm. Fitness

assignments to the individuals in a population ensures the gradual movement of ap-

proximate surface towards the actual Pareto surface through the generations. There

are three main schemes for fitness assignments:

Criterion based fitness assignment considers single objective at a time. Schaf-

fer [100] in his seminal work on evolutionary multiobjective optimization called

vector evaluated genetic algorithm (VEGA) used this scheme for fitness assign-

ment. It uses the objectives in equal proportion to calculate fitness of individ-

uals in the population. That is, if there are n objectives and k individuals in

the population, then k/n portion of population will use one objective and the

same number of individuals will use another objective. Kursawe [101] suggested
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using a user defined vector that gives the probability of each objective to be

considered as the fitness criterion. This vector can also be allowed to change

over time.

Scalerizing the objectives using a parameterized function. This approach is based

on the traditional multi-objective optimization technique. The advantage of

this method is that once the objectives are parameterized in a single function

and this is used for fitness assignment, standard selection criteria can be used

without any modification. For most instances, the parameters or weights are

assigned randomly at each step. But, as described in the previous chapter, this

technique has serious limitations.

Non-dominance based strategy calculates the fitness of an individual based on

Pareto dominance. It was first introduced by Goldberg [76] in 1989 and many

derivatives have been developed since. This scheme gives highest fitness values

to non-dominated individuals and progressively lower fitness values to domi-

nated points. This is the most successful technique used for Pareto optimization

using EA; many algorithms such as Non-dominated Sorting GA, Niched Pareto

GA, Fonseca and Fleming GA, etc. use this technique; they will be explained

in detail in the later sections.

5.2.2 Distribution Along the Surface

Depending on the type of fitness assignment used, there can be two main types of

techniques to obtain diversity along the frontier. If the fitness assignment is criterion

based or a scalerized objective is used, the criterion or weight vector is changed over

time. Usually the GA or other EA is iteratively run with different weight vector, each

time optimizing a particular region of the Pareto surface as defined by the vector. The

change of criterion or weight vector can be random or in predefined steps. Though

simple to implement, this technique may not be able to find an evenly distributed
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population along the frontier. It also tends to be computationally intensive especially

for large number of objectives. The technique also does not take the advantages

offered by a population based search.

Niching is the other technique employed in Pareto based MOEAs. It is based on

natural mechanism of formation of distinct species exploiting different niches in the

ecosystem. In EAs, niching amounts to formation of different subpopulations, each

optimizing a specific region of the Pareto surface. Horn [59] gives a detailed explana-

tion of the philosophy behind niching as employed for Pareto optimization. Niching

is basically a density based technique where fitness sharing is employed depending

on the density of individuals within ones neighborhood. That is, if there are many

individuals in ones neighborhood, the chances of it getting selected decreases. There

are various techniques for density estimation and a brief introduction to these is pro-

vided by Zitzler [67]. Niching is one of the most well known techniques of diversity

preservation and is used in most of the Pareto based GA.

5.2.3 Elitism

Elitism, in terms of evolutionary computation refers to the strategy of retaining more

fit individuals of a population from one generation to the next. This allows them to

take part in the evolutionary operations more than once and prevents loss of good

solutions due to random effects of evolutionary process. There are various implemen-

tations of elitism, starting from retaining the best individual of a generation in basic

GA to more sophisticated techniques of maintaining an auxiliary population. While

maintaining an auxiliary population, or archiving, as its commonly known, most fit

individuals of population are copied at every generations. This archive can just be

used as a storage or can be integrated with the EA where some individuals of online

population are replaced by the individuals from the archive. As compared to single

objective optimization, the incorporation of elitism in multi-objective optimization
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is more complex and most MOEA use some combination of dominance and density

criteria to decide which individuals are to be included in the archive. Some of the well

known algorithms that use elitism are NSGA-II, SPEA, PAES, etc. Knowles [90] pro-

vides a detailed survey about the history of elitism used in evolutionary computation

and different techniques used in MOEAs.

With the basic knowledge of Pareto optimization using EAs, the following sec-

tions detail some of the algorithms and techniques used for this purpose. Many

surveys have been published by prominent researchers in the field of Evolutionary

Multi-Objective Optimization (EMOO) describing [102, 63] and comparing [103, 66]

various techniques. To make this document comprehensive, following sections discuss

three main methods that use non-domination and sharing techniques suggested by

Goldberg [76]. One of the recently developed methods that use elitism or archiving

is also discussed.

5.3 Fonseca and Fleming GA (FFGA)

FFGA as the name suggestes was proposed by Fonseca and Fleming [104] in 1993

and is called as Multi Objective GA (MOGA) by them. They suggest using a non-

dominated rank based fitness assignment. Here, when an individual i of generation t

is dominated by ρt
i individuals, its rank is given by:

rank(i, t) = 1 + ρt
i

As a result of this ranking scheme, not all ranks will necessarily be represented in

the population; as Figure 30 illustrates, rank 2 is absent. After the individuals are

ranked and sorted, the fitness is assigned to them by interpolating from the best (i.e.

ranked 1) to worst individuals, according to some linear or non-linear function. The

fitness of individuals with same rank is averaged so that all of them will be sampled

at the same rate.
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Figure 30: Rank Assignment in FFGA

Niche formation method for fitness sharing is employed in MOGA to prevent

genetic drift. The fitness sharing is implemented in the phenotypic space to obtain a

well distributed solution in the objective space. This introduces a parameter called

niche size σarea which needs to be set carefully and the authors provide a theory

for estimating it according to the properties of the problem. The parameter σshare

determines the distance between two individuals on the Pareto surface. The fitness

of individuals is reduced if the distance between them is less than σshare.

This method also includes a higher level DM in the optimization process. The aim

is to reduce the size of the solution set and zoom in a particular area of the Pareto

surface that is of more interest to the DM. The multi objective ranking method for

fitness assignment is modified to include the goal information provided by the DM.

This method falls under the category of progressive techniques for articulation of

DM’s preferences as mentioned in the previous chapters.

101



5.3.1 Advantages and Shortcomings

The simplicity of implementing this method is the main advantage it provides. The

other is the inclusion of DM in the loop who can influence the direction of search

towards more interesting areas.

The main weakness is the need for accurate setting of σshare which has large impact

on performance of the method. The inclusion of DM in optimization loop may not

be desired in some applications.

5.4 Non-dominated Sorting GA I & II (NSGA I & II)

Srinivas and Deb [105] proposed non-dominated sorting GA(NSGA) in 1994. In this

method is a ranking selection technique is used to select good points and a niching

method used to maintain a stable subpopulation of good points. The basic outline of

the method is illustrated in Figure 31.

NSGA is different from other methods in the way it implements the fitness as-

signment for selection. Initially, all the non-dominated points in the population are

identified and assigned a dummy fitness value. All these points have the same fitness

now. After this, sharing is implemented in this non-dominated set of points. For this,

dummy fitness of each point in this set is reduced by some value, obtained by dividing

the fitness by a quantity proportional to the number of neighbors of that particular

individual. For the next step, this set of non-dominated individuals is ignored and

the process repeated. The dummy fitness of the new set is kept below the minimum

shared fitness value of the previous non-dominated set. The process continues until

entire population is sorted into various fronts. The population is reproduced using

proportionate selection. The crossover and mutation operators are implemented as

usual and the process continued for required generations.

Because of the drawback of high computational complexity and the need to specify

sharing parameter, Deb et al. [106] proposed an improved version of NSGA called
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NSGA-II in 2000. This new algorithm uses a different and more structured technique

to compare and identify non-dominated fronts that reduces the overall complexity of

the method. Sharing is performed by comparing a quantity called crowding distance of

the individuals; this eliminates the need for specifying a sharing parameter. Crowding

distance is the average distance of two points on either side of the individual along

each axis. The main GA loop of NSGA-II also implements elitism by comparing

current population with previously found non-dominated set of points.

5.4.1 Advantages and Shortcomings

As mentioned before NSGA is computationally intensive compared to other methods

and the results are very sensitive to the sharing parameter. NSGA-II solves most of

drawbacks of NSGA. Deb et al. [106], using different benchmark problems, favorably

compare this method with two other methods that also use elitism.

The only drawback with NSGA-II approach is that one has to be careful while

coding the algorithm as the implementation is little complicated when compared to

other methods. Moreover, this algorithm looses its effectiveness when the problem

dimension is large.

5.5 Niched Pareto Genetic Algorithm (NPGA)

NPGA as proposed by Horn et al. [107] is designed along the natural analogy of evo-

lution of distinct species exploiting different niches or resources in the environment.

A canonical GA is purely competitive where the best individuals quickly takeover the

population. Whereas, when niching is included in the GA scheme, the populations

tend to cooperate and the final set converges to a population of diverse species that

are distributed along the Pareto frontier. The philosophy behind niching and NPGA

has been discussed in detail by Horn [59].

The basic implementation of NPGA concerns modifying the selection function of

GA. One of the most widely used selection technique is tournament selection. Here,
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a subset of the population is randomly chosen and the best candidate in this set

is selected. This implementation assumes that a single answer to the problem is

desired. For NPGA, the selection method is modified to have multiple answers to

the multi-objective problem. The selection method includes two main components:

Pareto-domination tournaments, and Sharing.

5.5.1 Pareto-Domination Tournaments

The tournament selection is altered to use multiple attributes for creating a Pareto

frontier. To increase the domination pressure in the tournament selection, two candi-

dates for selection and a comparison set of individuals is picked at random from the

population. A graphical illustration of this type of tournament is provided in Fig-

ure 32(a). The number of individuals in the comparison set can be adjusted according

to the requirements of the domination pressure. Each of the candidates is compared

against each of the individuals in the comparison set. If one candidate is completely

dominated by the comparison set and the other is not, then the latter is selected. If

both the candidates are dominated or non–dominated, then sharing is used to decide

the winner.
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5.5.2 Sharing

Sharing helps to choose candidates when there is a tie after the tournament. If one

of the candidates is randomly selected then, genetic drift will cause the population to

group around in a single section of the Pareto front. To prevent this, equivalence class

sharing in the objective space is implemented. Here, no preference is given to the two

individuals regarding their objective values as they are already in the same equivalence

class after the tournament. They are selected on the basis of density of population

points in the neighborhood of a particular candidate. This density is calculated in the

form of niche count, that is, the number of individuals present within the niche radius

σsh of a particular candidate. This is illustrated in Figure 32(b) where the radius of

circle represents σsh. The niche radius determines how far apart the individuals lie

on the final Pareto frontier. The value of σsh is under the control of the user and can

be changed according to the requirements of a given problem. In order to determine

σsh, Horn et al. [107] suggest dividing the total surface area of the Pareto frontier

with population size:

σsh ≈
Apareto

N

In this case, ideally, the population N will be equally distributed, with σsh units apart

from one another, across the Pareto front. As for Apareto, one may not know the exact

area of the front but it is possible to determine the ranges of objective functions and

with that, the range of Apareto. With M and m denoting the vector of maximum

and minimum magnitudes of objective functions respectively, for a two dimensional

problem, Apareto will be greater than the hypotenuse given by:

Apareto > Amin =
√

(M1 −m1)2 + (M2 −m2)2

The sum of the objective value ranges determines the upper bound for Apareto:

Apareto < Amax = (M1 −m1) + (M2 −m2)
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In general, Amax will be the sum of all the faces of a hyperparallelogram of edges

(M −m) determined by Equation 16 [104].

Apareto < Amax =
n∑

i=1

n∏
j=1
j 6=i

(Mj −mj) (16)

It has been noticed that large difference in the magnitudes of various objectives can

affect the distribution of population along the Pareto front [59]. This is due to the fact

that Euclidian distance is used to measure the separation of two points on the Pareto

frontier in n dimensional objective space. This metric does not differentiate between

the ranges and magnitudes of objective space. Hence one can have a skewed Pareto

front if the objective values are used in the raw form. One of the most straightforward

ways to avoid this kind of niching bias is to scale the objectives so that they are at

the same magnitude.

5.5.3 Advantages and Shortcomings

This method does not require the entire population to be ranked according to non-

domination. As a consequence it is faster than FFGA and NSGA [63]. The imple-

mentation of NPGA is considerably straightforward by changing the reproduction

operator of a canonical GA.

The main weakness include the requirement of scaling the objective values and

the presence of an extra parameter of tournament size. The results are considerably

dependent on the values of niche radius and tournament size. Moreover, there is a

good possibility of losing good solutions as the method does not use elitism.

5.6 Strength Pareto Evolutionary Algorithm I & II (SPEA
I & II)

SPEA developed by Zitzler and Thiele [66] combines some of the proven and new

techniques to find a subset of Pareto optimal solutions. The distinguishing factor

of this method is the existence of a secondary or external population that stores

107



all the non-dominated solutions so far. These external individuals also participate

in the selection process. Scalar fitness values are assigned according to the Pareto

dominance of individuals in relation to the non-dominated solutions stored in the

external population only; the fitness value is called strength of the individual. A

Pareto based niching technique is used to distribute the individuals equally along the

front; this technique does not require the sharing or niching parameter. When the

number of solutions in the external population increase above a specified limit, clus-

tering is employed. This reduces the size of external population without destroying

the characteristics of Pareto hypersurface.

Zitzle et al. [108, 109] have introduced an improved version of SPEA called SPEA2.

A flow chart for SPEA2 is shown in Figure 33. The new algorithm attempts to

eliminate the weaknesses of its predecessor by incorporating new knowledge gained

in the field of evolutionary multiobjective optimization (EMO). The main changes

in the new algorithm include improved fitness assignment, nearest neighbor density

estimation and a new archive truncation method. The strength of a certain individual

is assigned by the number of dominators in both the population and archive. For each

individual i in the population Pt and archive P t of generation t, the strength is given

by Equation 17.

Si =| {j|j ∈ Pt + P t ∧ i � j} | (17)

The raw fitness of the individual is calculated on the basis of the strength of

dominators in both populations and is given by Equation 18.

Ri =
∑

j∈Pt+P t,j�i

Sj (18)

An even distribution along the Pareto surface is achieved by including density infor-

mation in the final fitness value. An adaptation of kth nearest neighbor method is

used for estimating the density. The technique uses inverse of the distance to the kth

nearest neighbor as density estimate Di. The final fitness Fi, given by Equation 19, is
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obtained by adding the raw fitness and density estimate and is to be reduced through

the generations.

Fi = Ri + Di (19)

The external archive of SPEA2 is of fixed size N . All non-dominated individuals,

i.e. individuals with fitness less than 1, in Pt + P t are copied to P t+1. If this number

is less than N , dominated individuals with fitness values in the lower spectrum are

copied to the archive. In case the number of non-dominated individuals is more than

N , the archive is truncated by iteratively removing the individuals until | P t+1 |=

N . The kth nearest neighbor criteria is used for this purpose. The individual with

minimum distance to the kth neighbor is purged at every iteration.

5.6.1 Advantages and Shortcomings

SPEA and SPEA2 do not require any distance parameter or tournament size that

can have considerable effect on the quality of solution. SPEA combines some of

the well established strategies in EMO field. According to Zitzler et al. [66, 103]

SPEA compares favorably with other EMO methods. Given the presence of external

population and implementation of elitism, these method have good possibility of

obtaining a well distributed frontier.
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The main drawback of these algorithms, especially SPEA2, is that the compu-

tational complexity can be considerably higher if the size of population and archive

is high. Moreover, as the algorithm scans the entire population for non-dominance,

computational complexity can rapidly increase with increase in objective functions.

Care has to be taken while implementing the algorithm, distance measurement and

comparisons have to be done in systematic order so as not to increase the computa-

tional complexity.

From the above discussions, two algorithms look promising: NPGA – because of

its speed and simplicity, and SPEA2 – because of its accuracy. Moreover, Zitzler et

al. [109] have demonstrated the advantages of SPEA2 over other methods for higher

dimensional problems. Based on this discussion the following hypothesis is proposed

addressing the research question: How to efficiently search for non-dominated points

in multiple dimensions?

Hypothesis: Pareto optimization of the technology selection problem can be most

efficiently accomplished by the Strength Pareto Evolutionary Algorithm II.

Supporting Experimentation: Plausibility of this hypothesis is checked by com-

paring NPGA and SPEA2 on the benchmark knapsack problem. Efficacy is

checked by comparing the SPEA2 results with results from a random search.

The following sections attempt to check the plausibility of the above hypothesis

by comparing the two algorithms using a benchmark knapsack problem.

5.7 Comparing NPGA and SPEA II

The performance comparison of NPGA and SPEA2 is carried out using the benchmark

problem defined in Chapter 4 in Table 6. It is a 16 item, 5 objective knapsack

problem with the aim of minimizing all the objectives. The total number of possible
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solution combinations are 216 = 65, 536 out of which, 4, 005 are the non-dominated

combinations.

5.7.1 Criteria for Performance Comparison

Performance metrics are required while quantitatively comparing two EAs for opti-

mization. These metrics are quite simple when optimizing a single objective. This

generally involves observing the convergence behavior of EAs and determining the

best solution achieved by each. On the other hand, the performance metrics are signif-

icantly complex for Pareto optimizing EAs. Here, one has to qualitatively determine

the spread and distribution of Pareto front obtained by the EA, and determine how

close is the obtained Pareto front to the actual Pareto front. Moreover, to observe

the convergence behavior of the EA, an appropriate convergence criteria has to be

defined. Zitzler et al. [103] provide one of the most comprehensive discussion in this

area of performance comparison of Pareto optimizing EAs.

For selecting the best algorithm, it is reasonable to first check if the algorithm

provides a front that accurately represents the actual Pareto front. Let Ω be the set

of all Pareto optimal solutions, that is, Ω is the actual Pareto front. The Ω for the

benchmark problem is already known and its cardinality is |Ω| = 4, 005. Now, let ωA

be the set of non-dominated solutions provided by algorithm A. If the algorithm is

working as expected, then ideally ωA ⊂ Ω. But in practice, this is not always the

case. ωA will have some dominated solutions with respect to Ω. These solutions are

not part of Ω. Considering this property, a function R is devised that can be used to

compare two algorithms. The common points between Ω and ωA are given by:

Ω ∩ ωA

Now, if the algorithm is ideal:

|Ω ∩ ωA| = |ωA|
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But in general,

|Ω ∩ ωA| ≤ |ωA|

and

|Ω ∩ ωA|
|ωA|

≤ 1

Thus, we can define the function RA for algorithm A as shown in Equation 20.

RA =
|Ω ∩ ωA|
|ωA|

(20)

For comparing two algorithms A and B, RA and RB are calculated. If RA > RB,

algorithm A is better than B and vice versa. If RA = RB, no conclusions can be

derived from this metric and other properties have to be considered.

The function R can also be used to track the convergence behavior of the algo-

rithm through the generations. For each generation (or generation interval) g of the

algorithm, Rg can be calculated. These values can be plotted against the generation

number to observe the convergence.

One important assumption behind the application of metric R is the availability

of the true Pareto set Ω. When Ω is not available other metric has to be used, such

as the C function proposed by Zitzler et al. [103].

5.7.2 Implementation of Algorithms

The implementation of SPEA2 is exactly based on the ideas explained by Zitzler et

al. [108] and as described previously in this chapters.

For NPGA implementation, general ideas described previously are followed ex-

cept few changes in the way sharing is implemented. Here, the maximum and min-

imum value of each objective function in a population set (for each generation) is

determined. From these values, the ranges for all the objectives for that particu-

lar generation are calculated. Now an n-dimensional hypercube is formed around

the two candidate points. The measure of each edge of this hypercube is equal to
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range/(PopulationSize) in that particular dimension. Now, sharing is executed by

counting the number of population points that are present within the hypercube

around each candidate points. The candidate with minimum number of neighbors

represents a sparse region on the Pareto surface and is selected for next generation.

This arrangement for sharing eliminates the need for specifying σsh and also to mea-

sure the Euclidian distance to perform sharing. As the hypercube constructed for

sharing has dimensions relative to the objective values, the need to scale the ob-

jectives is avoided. Another advantage of this approach is that the dimensions of

hypercube constructed are dynamic in nature and change from generation to gener-

ation; it is more representative of the nature of current population. Before sharing,

Pareto dominance tournament takes place and the size of comparison set is fixed at

15 for higher dominance pressure.

One of the main difference between two algorithms is that SPEA2 uses archiving

and NPGA does not. Even thought the function R is a normalized metric that is

independent of the cardinality of ω, it is decided to keep the size of ω generated by

both algorithms the same. Hence, in the interest of fair comparison, the population

size for NPGA is same as the archive size of SPEA2. The parameters adopted for

both algorithms are as follows:

Mutation Rate : 0.05

Crossover Rate : 0.8

Number of Generations : 100

Population Size (NPGA) : 300

Population Size (SPEA2) : 100

Archive Size (SPEA2) : 300
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5.7.3 Simulation Results

The functionR is evaluated for both the algorithms at the end of 100 generations. For

NPGA RNPGA = 0.143, and for SPEA2 RSPEA2 = 0.61. Thus, RSPEA2 > RNPGA

and hence SPEA2 gives the better results.

To check the convergence of both algorithms, RNPGA and RSPEA2 are calculated

at the interval of 10 generations. The results are listed in Table 12. The first column

under each algorithm lists the number of points that are common to Ω and ω, while the

second column shows the value of function R at the corresponding generation. The

results are visualized in Figure 34. It can be observed from this figure that NPGA

is not able to find Pareto optimal points. Throughout the generations, it behaves

more like a random algorithm rather than consistently finding better solutions as the

algorithm progresses. Moreover, the R value is considerably lower for NPGA than

that for SPEA2. On the other hand, the R value for SPEA2 rapidly increases for

initial 30 generations and than gradually converges to a value of around 0.6. This

stark contrast in the performance of the two algorithms can be attributed to the

fact that SPEA2 implements elitism via archiving while NPGA does not. Because of

this, good solutions discovered by SPEA2 over the generations are not lost and are

retained in the archive. Thus for SPEA2, genetics is not the only means of passing

on information.

It is also interesting to look at the relative position of solutions offered by each

algorithm in the objective space. For simplicity of visualization, two out of five

dimensions are selected. These are objective 1 and 2 selected from Table 10 on

the basis of the dominance based dimensionality reduction procedure described in

Chapter 4. Non-dominated solutions in these two dimensions from each algorithm

are plotted in Figure 35. Solutions from the true Pareto set are also superimposed

on the plot. There are 34 non-dominated solutions for these two dimensions from

the superset of 4,005 true Pareto solutions. There are 21 non-dominated solutions

114



Table 12: Convergence of NPGA and SPEA II
Generation NPGA SPEA2
Number |Ω ∩ ω| R |Ω ∩ ω| R

10 40 0.133 102 0.340
20 43 0.143 146 0.487
30 39 0.130 167 0.557
40 38 0.127 161 0.537
50 42 0.140 171 0.570
60 38 0.127 167 0.557
70 36 0.120 179 0.597
80 45 0.150 174 0.580
90 41 0.137 186 0.620
100 43 0.143 183 0.610
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Figure 34: Convergence of SPEA II and NPGA
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Figure 35: Comparing SPEA II and NPGA with True Pareto Solutions

in two dimensions from SPEA2 and 11 from NPGA results. As observed from the

plot, SPEA2 solutions more accurately represent the actual Pareto front. The NPGA

solutions are distant from the true frontier, especially in the central region. In terms

of the distribution along the frontier, both algorithms provide evenly spaced points.

The runtime on a 2 GHz Pentium 4 machine for NPGA was around 54 seconds

and for SPEA2 was about 184 seconds. This is because SPEA2 has more overheads

in terms of calculating fitness based on dominance characteristics of each point in the

population as well as in the archive. Moreover, for the knapsack problem, the time

required for function evaluation is very less. For more complex function evaluations,

the time advantage offered by NPGA would disappears as the total algorithm time

would be governed by function evaluations rather than by the algorithmic operators.

These results have demonstrated that SPEA2 is a better choice for knapsack type

problems. The following section describe further simulations carried out using SPEA2

to improve upon the previous results.
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5.8 Efficacy of SPEA II

Having selected SPEA2 for Pareto optimization, it is important to check the pa-

rameter settings for which SPEA2 provides the best results. The most important

parameters for this type of algorithms are the maximum number of generations, pop-

ulation size, and archive size. This section discusses the impact of varying these

parameters for the benchmark problem. As in the previous section, the function R is

used as a measure for comparison. The results from SPEA2 with the best parameter

settings are later compared with non-dominated results from a random search.

5.8.1 Effect of Changing Algorithmic Parameters

The following results are obtained by varying the parameters of SPEA2 algorithm.

To check the impact of number of generations and population size, it was decided

to fix the total number of function evaluations and the archive size. The function

evaluations are fixed at 15, 000 and the archive size at 500. For checking the impact

of archive size, the total function evaluations are fixed and only the maximum archive

size changed. Other parameters such as the crossover and mutation rates are fixed at

the previously mentioned values.

5.8.1.1 Maximum Generation

For this simulation, the population size considered is 100 and the algorithm is con-

tinued through 150 generations. Thus 100× 150 = 15, 000 function evaluations. The

archive at every 10th generation is retained and R is calculated for that archive. The

convergence for this simulation is illustrated in Figure 36. It is interesting to observe

from the figure that the R value increases steadily through generation 60. After that

it fluctuates a little through generation 100 where it achieves the maximum value of

0.71. The time required for this simulation was about 9 minutes.

After generation 100, the R value does not improve and settles at around 0.67.

Thus, even though more new item combinations are evaluated after generation 100,
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Figure 36: Convergence of SPEA II Through Maximum Generations

there is no improvement in the results. This observation is counterintuitive, especially

given the elitism implemented using the archive. The main function of the archive is

to retain the best solutions, yet there is a noticeable degradation in the results after

generation 100. This phenomenon can be attributed to the limit on the archive size.

Once this limit is reached during simulation, the algorithm selects new archive points

based not only on non-domination but also based on niching. Thus, in the interest of

even distribution of points along the frontier, some of the true non-dominated points

are lost.

5.8.1.2 Population Size

This simulation is carried out with 100 generations and 150 population size. For the

purpose of comparison, the convergence plot of this simulation is superimposed on

the one for the previous simulation and illustrated in Figure 37. The R value for

this simulation at the end of generation 100 is 0.66. This is considerably lower than

R = 0.71 obtained at the end of 100 generations for the previous simulation with

population size of 100. Moreover, the R value plot for the current simulation after

generation 30 is consistently below the one for the previous simulation.
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Figure 37: SPEA II Convergence for Different Population Size

The time required for this simulation was about 10.5 minutes, which is longer

than the time required for simulating with a population of 100 for 150 generations.

These results show that there is no advantage of increasing the population size inde-

pendently.

5.8.1.3 Archive Size

The archive size is one of the most important parameter for a Pareto optimizing

algorithm. To check the impact of this parameter on the results, three simulations are

carried out with archive size of 300, 500, and 750. The population size and maximum

generations remain fixed at 100 each. Thus, there are 10, 000 function evaluations

for each simulation. The convergence history of these simulations are illustrated in

Figure 38. It is observed from this plot that as we increase the archive size, the

quality of results improve. The main reason for this behavior is that with increasing

archive size, the algorithm can retain more and more non-dominated solutions and

does not need to prune the archive by performing niching operation. As a result more

and more non-dominated solutions that are part of the true Pareto front are retained

and hence higher R values are observed for larger archive size.
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Figure 38: Impact of Archive Size on SPEA II Results

Thus, if limited number of function calls are allowed due to time limitations or

other factors, the results can be improved by increasing the archive size. Moreover,

results cannot be improved just by increasing the number of function evaluations;

there has to be a corresponding increase in the archive size.

5.8.2 Comparing SPEA II with Random Search

When designing a Pareto optimization algorithm, it is important to compare its re-

sults with random search. For this purpose, an experiment is conducted by simulating

SPEA2 algorithm for 100 generations with 100 population and 1200 archive size. As

observed in the previous section, larger archive size helps retain good solutions with-

out increasing the number of function evaluations. The results from this simulation

are compared with results from a random search conducted with 10, 000 function eval-

uations. The number of function evaluations is same for SPEA2 and random search

in order to understand the efficacy of SPEA2. In case of SPEA2, 980 points from the

final archive are part of the true Pareto front of 4, 005 points. On the other hand,
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only 532 points from randomly selected 10, 000 points are part of the true Pareto

front.

To have a better idea of the difference in two approaches, a 2-dimensional case is

considered with objective 1 and 2. In these dimensions, there are 29 non-dominated

points from SPEA2 results and 23 from the random search. These points are plotted

in Figure 39 along with the 34 non-dominated points representing the true Pareto

front in two dimensions. When compared with the true Pareto front, there are 13

points from SPEA2 results that are part of the true frontier. While only one point

from the random search results is part of the true Pareto front. It is also observed

from the figure that SPEA2 results better represent the Pareto front. Thus, for a

given number of function evaluations, SPEA2 results are much more accurate that

the random search results.
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5.9 Summary

It was observed in the previous chapter that a posteriori preference articulation frame-

work is better suited for the multi-objective technology selection problem. One of the

most challenging task in implementation of this framework is the search for a repre-

sentative subset of the Pareto optimal solutions. Evolutionary algorithms are known

to be very efficient for this task of Pareto optimization. The concepts behind this and

various algorithms available for the task are studied in this chapter. It is hypothesized

that SPEA2 is the most appropriate algorithm for searching the Pareto optimal points

in a multi-dimensional combinatorial technology space. To check the plausibility of

this hypothesis, experiments are conducted using a benchmark knapsack problem.

Initially, results from SPEA2 are compared with another promising algorithm

called NPGA. A comparison metric is devised that provides a quantitative value

to how well the results from an algorithm represent the true Pareto frontier. The

results from SPEA2 are observed to be much better than the ones from NPGA. The

convergence behavior of SPEA2 with different parameter setting is checked using the

comparison metric. Archive size is observed to be the most important parameter and

it has considerable impact on the accuracy of the result. In the end, the results from

SPEA2 are compared with the results from a random search. It is observed that given

a fixed number of function evaluations, the results from a random search are not very

encouraging; on the other hand, the Pareto front from SPEA2 accurately represents

the true Pareto frontier.
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CHAPTER VI

PROBABILISTIC TECHNOLOGY SELECTION

The impact of a technology on the system is never deterministic. There are always

uncertainties involved, even when the technologies under consideration are mature.

These uncertainties demand due attention while selecting technologies to be included

in a system. This chapter investigates one of the primary research questions posed

earlier: How to account for technological uncertainties while selecting technology com-

binations? An attempt is made to address this question considering the implemen-

tation of a posteriori preference articulation framework for multi-objective decision

making.

The chapter starts with an overview of probabilistic design as related to tech-

nology selection. Description of the technological uncertainties under consideration

is provided. Technique to represent these uncertainties is explained. Techniques for

probabilistic analysis are reviewed and the most promising is selected. Based on this

technique and previously discussed a posteriori preference articulation framework, a

novel approach for probabilistic technology selection is proposed. The soundness of

this approach is verified using a benchmark knapsack problem.

6.1 Probabilistic Design

The field of engineering design that deals with uncertainties in the parameters and

their impact on the system responses is known uncertainty-based design. As described

in the NASA white paper [110] on the topic, the uncertainty-based design is used to

describe design problems that have non-deterministic problem formulation. In non-

deterministic problem formulations, some essential components of the problem are

treated as non-deterministic; that is, some form of variability is associated with these
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Figure 40: Facets of Uncertainty-Based Design

components. They can be, for example, noise variables such as tolerances in manu-

facturing processes, uncertain input parameters, simulation and experimental errors,

etc. The problem addressed in this thesis also has a non-deterministic formulation

because of the uncertainties associated with technology impacts on the system.

There are two main facets of uncertainty-based design – Robust design and Reliability-

based design. The difference between these two problems is illustrated in Figure 40

(adapted from Huyse [111]). Reliability-based design deals with extremely rare events

with catastrophic impact on the system. The design concepts in this category are

originated from the field of structural engineering where it is required to design a

component/system that has probability of failure less than some accepted (invariably

small) value. On the other hand, Robust design deals with problems where insensitiv-

ity to the variations in uncertain parameters is desired. Thus, reliability-based design

is more concerned with the extremes of the distribution while in case of robust design,

the designer is more interested in the central part of the distribution, as illustrated

in Figure 41 (adapted from Zang et al. [110]).
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For the technology selection problem, it is desired that the resultant system de-

signed with selected technology combination is insensitive to the variations in the

impacts of technologies included. By this interpretation, it is a robust design prob-

lem. At the same time, the system needs to satisfy certain performance and economic

targets; and the designers are interested in knowing the probability of achieving those

targets. If these targets are not achievable with a high level of confidence, the design

is considered infeasible or inviable. In this perspective, the problem is more than just

of robust design. To capture this characteristic, a more generic term of Probabilistic

Design is used to describe the technology selection problem. There are three main

ingredients involved in probabilistic design problems:

• Quantification of parameter or input uncertainties.

• Quantification of system level or output uncertainties using various probabilistic

analysis techniques.

• Design optimization over system level uncertainties.

These three steps as applicable for probabilistic technology selection are described in

the following sections.
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6.2 Technological Uncertainties

The impact of technologies on the system is quantified in terms of changes in key

parameters known as technology metrics or k -factors [13]. For this, the most impor-

tant k -factors for a given system are identified and functionally related to the overall

system performance through system models or surrogate models. These k -factors are

combined to form a Technology Impact Matrix (TIM) that map technologies to the

k-factor space, which in turn map the system performance through system models.

This mapping is illustrated in Figure 42. Thus in essence, technologies are mapped

to system performance in two steps. Now, all the technologies involved are at dif-

ferent Technology Readiness Level (TRL). The ones with lower TRLs generally have

more variability associated with them as they are not yet fully understood. While,

the ones with higher TRLs also have some variability associated with them; because,

even though they are more mature, their impact on the system may not be fully

understood. Thus, the impact of a technology on the k-factors is uncertain and this

uncertainty is propagated through the system responses. These uncertainties have to

be defined and adequately represented.

6.2.1 Epistemic Uncertainty

Uncertainties are divided into two main categories, first being epistemic uncertainty

and the other being aleatory uncertainty. Aleatory uncertainty arises because the

system under study may naturally behave in several different ways, i.e., uncertainty

due to random processes. Epistemic uncertainty, on the other hand, arises due to

insufficient knowledge [112]. Epistemic uncertainty is also called subjective, state of

knowledge, or reducible uncertainty and aleatory uncertainty is known as stochastic,

inherent or irreducible [113]. The technological uncertainties arise mainly because the

impact of technologies captured by the k -factors is generally based on the subjective

assessments of respective technology experts. This introduces a margin of error in
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the technology metric values which is propagated through the system performance.

There has been a resurgence in the study of epistemic uncertainty in the recent

years as evident by the Epistemic Uncertainty Project sponsored by the Sandia Na-

tional Laboratories. A set of challenge problems were designed under this project

to study various approaches for accounting epistemic uncertainty in system mod-

eling [114]. As compared to aleatory uncertainty which is generally described us-

ing probability distributions based on experimental or statistical data, mathematical

representation of epistemic uncertainty is a challenge. Apart from the traditional

probability theory, other approaches, grouped together into Generalized Information

Theory (GIT) [115] are available to address this issue. Helton et al. [116] explore

various approaches of GIT such as evidence theory, possibility theory, and evidence

analysis in addition to probability theory for uncertainty representation. Possibility

theory is used by Chae [117] for sizing a rotorcraft system in the absence of complete

information. O’Hagan and Oakley [118] argue that the best approach for representing
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and quantifying all forms of uncertainty is through the traditional probability theory.

This argument is strengthened by the fact that alternative theories face considerable

conceptual challenge for propagating the parameter uncertainty through the system

model, while this is mathematically well formulated for probability theory. Accord-

ing to them, the only thing that needs to be further studied for applying probability

theory for epistemic uncertainty is the practical and sufficiently accurate elicitation

of expert knowledge. This is further discussed in the following subsection.

6.2.2 Uncertainty Representation

As mentioned before, uncertainty is associated with each element of the TIM and this

section describes technique to represent that uncertainty. Uncertainty representation

starts with the data gathered from technology experts. Batson and Love [119] have

formulated a method of encoding subjective responses from technology experts into

beta distributions. This method has been successfully adopted by Kirby et al. [21]

for the TMAT process.

6.2.2.1 Beta Distribution

Beta distribution is defined over the interval [0, 1] and its most common application

is in modeling proportions [120]. The Probability Density Function (PDF) of beta

distribution is given by Equation 21.

f(x; α, β) =
xα−1(1− x)β−1

B(α, β)
for 0 ≤ x ≤ 1 ; α, β > 0 (21)

Here, B(α, β) is called the beta function with shape parameters α and β.

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

The general beta distribution is defined for the closed interval [a, b] and its PDF

given by Equation 22.

f(x; α, β) =
(x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1
for a ≤ x ≤ b ; α, β > 0 (22)
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When a = 0 and b = 1, the beta distribution is know as the standard beta distribution.

By using location a and scale parameters b− a, any general beta distribution can be

expressed in terms of standard beta distribution.

Depending on α and β values the distribution can take a variety of forms. This

property is illustrated in Figure 43. Because of this property, a single probability

formulation can be used to describe various shapes of probability distributions asso-

ciated with the technology impacts. Moreover, even thought originally defined for

the interval [0, 1], it can be extended to any finite interval using the generalized form.

This flexibility that beta distribution provides makes it the preferred distribution for

quantifying subjective probabilities [121].

6.2.2.2 Technological Uncertainty With Beta Distribution

Kirby et al. [21] have proposed a Technology Audit scheme to elicit information about

technological uncertainties from respective technology experts. The experts provide

the maximum (max), minimum (min) and most likely (ml) values for the technology

metrics (k -factors). These values can be the actual metric values or proportional
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values with respect to a fixed technology baseline. These three values are used to

define a beta distribution for each technology metric. A notional representation for

this process is illustrated in Figure 44. The authors suggest using an iterative pro-

cess, similar to the Delphi method [122], for Technology Audits to ensure that the

distribution created is a realistic representation of the expert opinion.

The Technology Audit is conducted every year and the distributions are updated

till the technology matures and the system is developed. Thus, these distributions

change through the years as technology matures and is better understood. This

change can be tracked to forecast the future progress of technology. Even though

this is an important phenomenon that the system designers have to be aware of; for

the purpose of this research, the distribution is assumed to be fixed. That is, one

distribution is used for to account for the uncertainty in the impact of a technology

on one k -factor.

Project Evaluation and Review Technique (PERT) [123] approximations help cal-

culate the mean and variance of the elicited values as given by Equations 23 and 24
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respectively.

mean =
min + 4ml + max

6
(23)

variance = σ2 =

(
max−min

6

)2

(24)

The first two moments, expected value and variance, of a general beta distribution

are defined by Equation 25 and 26 respectively.

E(x) = a +
α

α + β
× (b− a) (25)

V ar(x) =
αβ

(α + β)2(α + β + 1)
× (b− a)2 (26)

Equating the mean and variance from the PERT approximations with Equation 25

and 26 respectively, one can obtain the shape parameters of the beta distribution.

These are given by Equation 27 and 28.

α =

(
mean− a

b− a

)(
(mean− a)(b−mean)

σ2
− 1

)
(27)

β =

(
b−mean

mean− a

)
× α (28)

This technique, based on the PERT approximations and the moments of beta

distribution, provides a relatively straightforward approach of extracting probability

distribution out of subjective estimates on technology impact. Other approaches

for estimating mean and variance can also be used, as suggested by Perry[124] and

Keefer[125], while using the overarching framework of equating them to the moments

of preferred distribution.

6.3 Probabilistic Analysis

Once the uncertainties are defined for different product and program inputs, system

level uncertainties have to be quantified via probabilistic analysis. There are various

methods and techniques available for this task, many of them coming from the field of

structural reliability. Robinson [126] presents a comprehensive survey of probabilistic
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methods used for engineering design. This section describes some of the reliability

based techniques that can be used for system level probabilistic analysis. A more

preferred approach using Monte Carlo Simulations (MCS) is also explained. Finally,

probabilistic analysis frameworks using the analysis techniques are discussed.

6.3.1 Convolution

If X and Y are independent random variables with distribution α and β, then the

distribution of Z = X + Y is given by the convolution of α and β, and is denoted by

α ∗ β. In terms of characteristic function φ, the convolution is expressed as:

φα∗β(t) = φα(t)φβ(t)

where,

φω(t) =

∫
eitxdω

Moreover, if f(x) is the PDF for random variable X, the characteristic function is

defined as:

φ(t) =

∫ ∞

−∞
eitxf(x)dx

which is the Fourier transform of the PDF. The PDF of Z is computed as:

f(z) =
1

2π

∫ ∞

−∞
eitzφα∗β(t)dt

from which the CDF of Z can be computed.

This method provides a direct way of calculating the PDF for the sum (or linear

combination) of any number of independent random variables. One way of computing

φα∗β and f(z) is by using numerical integration, but this may be computationally

expensive. A more efficient approach is the use of discrete fast Fourier transform

(FFT) as suggested by Wu [127]. The basic procedure involves discretizing the PDFs

of independent variables. The discretized characteristic function of these variables

is obtained by applying FFT on these PDFs. The product of these characteristic
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functions results in the discretized characteristic function of Z. Finally the discretized

PDF of Z is evaluated by the inverse FFT (IFFT) of its characteristic function. The

method can be adapted for nonlinear systems with dependent random variables. For

example, Sakamoto[128] and Penmetsa[129] have applied the convolution theorem

with FFT to solve structural reliability problems with implicit limit state functions.

6.3.1.1 Advantages and Shortcomings

The method is theoretically sound and errors are introduced only while approximating

the state function when it is implicit or highly nonlinear and while discretizing the

PDFs. It can be applied for any number of variables with any type of distributions.

This method requires less function evaluations compared to methods such as MCS,

but computational time may increase significantly as the number of variables increase;

this is due to the discrete nature of FFT. Moreover, it is required to linearize the

response function.

6.3.2 Mean Value Methods

Mean value methods are probabilistic analysis methods based on the concept of limit

state function. Lets say Z(X) (Z-function) is a response or performance function of

Xi random variables. Now a g-function is a limit state function defined as:

g(X) = Z(X)− z0 = 0

where z0 is a specific value of Z, any value below this is not desirable. Thus the

g-function defines the boundary g(X) = 0 that divides the failure (g ≤ 0) and safe

(g > 0) region of the design space. By varying z0 a series of limit states can be formed

that can be used to create a complete CDF for Z function.

The basic mean value method assumes that the Z-function is smooth and Taylor’s
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series expansion given by Equation 29 exists at the mean values of variables.

Z(X) = a0 +
n∑

i=1

aiXi + H(X)

= ZMV (X) + H(X)

(29)

Approximate mean and standard deviation of Z are computed by using only the first-

order terms of the expansion ZMV and higher order terms H(X) are neglected. This

technique is called mean value first order (MVFO) or simply MV. For problems in-

volving highly nonlinear or implicit Z functions advance mean value (AMV) provides

a better solution. AMV method uses a simple correction procedure to compensate

for the truncation errors present in the MV method by replacing H(X) by a sim-

pler function H(ZMV ). This is accomplished by using the concept of Most Probable

Point (MPP). It is the design point defined in independent and normalized parameter

space; a detailed explanation of this concept is provided in the FPI manual [127]. The

number of function evaluations for AMV method to obtain a probability distribution

is n + m + 1 where n is the number of random variables and m is the number of

probability levels desired. Wu et al. [130] provide an in depth description of AMV

method along with some numerical examples pertaining to structural reliability.

6.3.2.1 Advantages and Shortcomings

The mean based methods are computationally much more efficient than MCS or

Convolution based methods. But, if a function is highly nonlinear, the number of

points required to define the CDF may be high. AMV faces some limitations when

the input parameters are highly correlated. Moreover, as Fox and Reh [131] have

warned, mean value based methods cannot be blindly used without verifying their

accuracy for a specific problem.
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6.3.3 Monte Carlo Simulation (MCS)

Monte Carlo Simulation is a class of methods used to simulate stochastic processes in

science, engineering, business, etc. and to numerically solve mathematical problems.

MCS iteratively generates a set of random numbers from the Probability Density

Functions (PDFs) of independent input parameters and computes corresponding sys-

tem responses. These response values are used to construct output Cumulative Dis-

tribution Functions (CDFs) and PDFs. Dienemann [132] provides one of the earliest

application of MCS in system design for estimating cost uncertainty. An outline of

the method is illustrated in Figure 45.

6.3.3.1 Number of Samples Required

One of the main questions with MCS is: How many samples are required for creat-

ing a sufficiently accurate CDF of the response function? Bandte [133] provides a

comprehensive answer to this question which is paraphrased here.

MCS do not provide an exact continuous distribution of a response function but

rather, simulates this in the form of a discrete binomial distribution. The binomial

distribution is obtained by a sequence of Bernoulli trials. The outcome of a Bernoulli

trial is either 0 or 1. Processes with only two possible outcomes are represented by

Bernoulli random variable, for example, a coin toss. Thus, n MCS runs are in effect

n Bernoulli trials with n input samples. Each input sample i results in a certain
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response value Ri. MCS tracks the number of trials that result in response values less

than a specific value r. Let ith Bernoulli trial is represented by xi, and if the result

of this trial is Ri < r, then xi = 1, and if its not then xi = 0. The true probability of

xi = 1 is denoted by p, i.e. p = P (R < r).

The random variable X =
∑n

i=1 xi is said to have a binomial distribution with

parameters n and p. This random variable takes the values from 0 through n and

records the number of trials with x = 1. The mean and variance for X is given by

µ = np and σ2 = np(1− p) respectively.

For reasonably large n and p not too close to 0 and 1, normal distribution provides

a good approximation for the binomial distribution [120]. Thus, N(np, np(1 − p))

represents the binomial distribution with corresponding mean and variance. As a

general rule, this approximation is reasonable when np ≥ 5 and n(1− p) ≥ 5. [120]

The normal random variable takes a value within two standard deviations of its

mean with a 95% probability. Thus, for Z ∼ N(0, 1) (following a standard normal

distribution),

P (−2σ ≤ Z ≤ 2σ) = 0.95

Now, X does not follow the standard normal distribution, hence it has to be trans-

formed by subtracting the mean and dividing the value by standard deviation. Thus,

P

(
−2σ − µ

σ
≤ X − µ

σ
≤ 2σ − µ

σ

)
= 0.95.

Substituting for µ and σ, and dividing by n,

P

(
−2

√
p(1− p)

n
≤ X

n
− p ≤ 2

√
p(1− p)

n

)
= 0.95. (30)

Now, to have an accurate representation of the response distribution, the sampled

probability value X/n needs to be close to the real probability p. The Equation 42

defines the error ε associated with this approximation.

ε =
X
n
− p

p
(31)
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From Equation 42 and 30, for a 95% confidence the maximum error is given by:

ε = 2

√
(1− p)

np

Solving the above equation for n,

n =
4

ε2

1− p

p
(32)

The required sample size for MCS for desired error and p values can be obtained

from Equation 32. The sample size values as obtained from this equation are plotted

against p values and illustrated in Figure 46. Each curve in the figure represents

different error values. The sample size is depicted on a logarithmic scale in the figure.

It can be observed from the figure that when very low probabilities (p < 0.05) are

desired, the sample size required increases considerably and is prohibitive for most

system analysis cases. On the other hand, when considering higher probabilities and

higher error values, the sample size is very less and the sampling cannot be considered

statistically significant [133].

6.3.3.2 Advantages and Shortcomings

The main advantage of this method is that it provides asymptotically exact solution

as the number of iterations approach infinity. The disadvantage being that the com-

putational cost may be too high, especially for complex response functions, to obtain

very accurate results. On the other hand, if the accuracy of very small probability

values is not required, this method can be very efficient. Moreover, it does not require

the extra steps to transform the response functions as is required in other methods.

6.3.4 Probabilistic Analysis for Complex Functions

Based on the above analysis techniques, there are three basic probabilistic formula-

tions as proposed by Fox [134] that can be used with complex analysis tools. These

are illustrated in Figure 47 (adapted from [135]). The first formulation in the figure
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Figure 46: Sample Size Requirement for Monte Carlo Simulation

directly links the most accurate but computationally intensive probabilistic analysis

technique, such as MCS, with the traditional system analysis tools used for technology

evaluation. Given sufficient number of MCS runs, this method is the most accurate

of all. But, it is also computationally very intensive and not preferred for the current

problem.

The third formulation from Figure 47 also uses the exact system analysis tools;

but in place of MCS, it uses a more efficient but approximate probabilistic analysis

tool such as AMV method. This approximation of the response distribution is based

on the notion that not all probability levels need to be identified in order to create a

CDF. This formulation is extensively used in the field of structural reliability analysis

as it is very efficient in analyzing the extremes of a response distribution [130, 136].

In the second formulation from Figure 47, the exact probabilistic analysis tech-

nique of MCS is used with approximations of the system models. These approxima-

tions are known as surrogate models and can be obtained using the Response Surface
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Figure 47: Probabilistic Analysis Methods

Methods [151] among other techniques. The surrogate models significantly reduce the

computational time. Depending on the accuracy of the surrogate models, this for-

mulation can be computationally efficient and yet provide very accurate CDFs. This

is a more common approach used for robust design at the conceptual and prelimi-

nary design phases. For example, Mavris et al. [137] have developed Robust Design

Simulation (RDS) using this approach for probabilistic design of an aircraft.

6.3.4.1 Probabilistic Analysis Framework for Technology Selection

The technology selection problem is computationally expensive to solve, primary rea-

son being the exponential increase in the number of combinations with increasing

number of available technologies. Thus, it was decided early on in this research that

surrogate models created from the physics based aircraft analysis codes would be

used to evaluate technologies. Given this availability of surrogate models, the second

formulation from Figure 47 is preferred for probabilistic analysis of technology combi-

nations. Moreover, as observed from Figure 46, a small sample size of less than 1000

points can be used to obtain a relatively accurate response CDF when the p-values

of interest are more than 50%.
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6.4 Probabilistic Optimization

As the uncertainty-based design domain has two main facets, the field of probabilistic

optimization is also catered towards these two facets – optimization for reliability and

robust optimization. The basic assumption behind optimization for reliability is that

the design space is divided in two regions – success and failure. The goal of optimiza-

tion is to find a design that is far away from the failure region, and the probability

of failure is extremely small [110]. Mathematical optimizers are widely employed for

the task as demonstrated by Eldred et al. [136]. On the other hand, the aim of ro-

bust optimization is to find a design that is insensitive to the parameter variations.

In other words, the optimization process tries to find a design with narrow response

PDFs. Generally, this is achieved by optimization routines trying to optimize mean

and variance of the response at the same time. An interesting approach towards this

is presented by Kumar et al. [138] using a 2-dimensional Pareto front; one dimension

for mean and other for variance of the response.

For the purpose of probabilistic technology selection, there are some fundamental

criteria based on which the designers and DMs would like to make decisions. These

are stated as follows:

• A design that is insensitive to the variabilities in technology impacts. That is,

a technology combination that results in the most narrow response PDFs.

• Knowing the probability of success with which a design with a certain technology

combination meets the performance and economic targets.

• Selecting technology combination based on the level of confidence, say 90%.

That is, response values corresponding to 90% probability level on the Cumu-

lative Distribution Function (CDF) are used to compare different technology

combinations and finally select one.
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There are a couple of techniques that can satisfy some of the above requirements

and be implemented within the a posteriori preference articulation framework. The

first one is by Kumar et al. [138] noted previously. For the implementation of this

technique, the already large dimensional problem space would double. This is because

for each objective being considered, there will have to be two dimensions, one for the

mean and the other for the variance. This will significantly increase the dimensionality

and will have adverse consequences for the search algorithm. The other technique is

of post-optimality probabilistic analysis as implemented by Adumitroaie et al. [27]

and discussed in Chapter 2. For this, some of the promising technology combinations

can be selected from the Pareto front and probability analysis carried out on them.

In this case though, the initial selection of combinations is based on deterministic

evaluation. Thus, all the available combinations in the design space are not compared

probabilistically. To address these limitations of the existing approaches, a novel

probabilistic technology selection framework is proposed.

6.5 Proposed Probabilistic Technology Selection Approach

The basic question now is: How to address, in a comprehensive manner, technological

uncertainties within the MODM framework of a posteriori preference articulation?

By the term comprehensive manner, it is expected that all technology combinations

are compared probabilistically in the objective space for creating a Pareto optimal

subset. This is different from probabilistically comparing the solutions after creating

a Pareto optimal subset. It can be safely assumed that with the former method,

the Pareto front would be different and more accurately represent the probabilistic

results, as compared to the later method. In fact, because of the uncertainties in the

technology impacts, each response of a technology combination behaves as a random

number. Thus, the dominance characteristics of points change with probabilistic re-

sults as compared to the deterministic results, hence the Pareto front itself changes.
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This is notionally illustrated in Figure 48. For this notional example, Pareto opti-

mization with deterministic values will result in only one point, point a. Point b is

dominated by point a as shown in Figure 48(a) and will not be part of the solution.

Now, lets consider that both points are evaluated probabilistically and 80% proba-

bility level (p-level) is considered the selection criteria. The notional CDFs for this

are shown in Figure 48(b). Because of this probabilistic analysis, the response values

changes for both points and now both are part of the Pareto set and hence part of

the solution. If post-optimality probabilistic analysis was implemented, only point a

would be the candidate and point b would not have been considered.

6.5.1 Joint and Marginal Probability Distributions

In the above example, two CDFs (one for each response) for each point are use to

fix the p-level value for that point. This leads to questions regarding the nature of

distribution on a point in the multi-dimensional objective space. Is this the right way

to represent uncertainties in the responses? As the technology decisions are based on

multiple objectives rather than just one, can the uncertainties in each objective be

considered individually?

Given the uncertainties in technology impacts and their propagation through the

responses, each point representing a technology combination is going to be jointly

distributed in the objective space.

Definition: The Joint Probability Distribution for two continuous random vari-

ables X and Y is specified by the joint probability density function f(x, y) and

the joint cumulative distribution function is given by:

F (x, y) = P (X ≤ x, Y ≤ y)

Now, even though two variables are jointly distributed, it is appropriate to focus on

only one variable at a time. The probability distribution of this random variable is

called the marginal distribution.
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Definition: The Marginal Distribution of a random variable X is obtained from

the joint probability distribution of X and Y by integrating over the values of

random variable Y .

The concept of joint and marginal probability distributions is illustrated in Figure 49

for a two dimensional case. It should be noted that the CDFs considered in the

previous section in Figure 48(b) are from the marginal distribution of respective

responses.

When the value of one random variable from a pair of jointly distributed random

variables is fixed, the distribution on other variable is called conditional distribution.

The conditional distribution is a distribution of one random variable conditional to

the other taking a particular value.
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Definition: For jointly distributed random variable X and Y , the PDF for Condi-

tional Distribution of X given Y = y is given by:

fX|Y =y(X) =
f(x, y)

fY (y)

where fY (y) is the marginal distribution of random variable Y .

In contrast to the conditional distribution, the marginal distribution of X is the

distribution on the random variable X when nothing is known about the random

variable Y [120].

This discussion leads to the concept of correlation and independence. Correlation

is a measure of linear dependence and defined by the covariance of two random

variables. When it is zero, two random variables are said to be uncorrelated. When

two variables are uncorrelated, they are not necessarily independent. Independence

is a stronger concept. Random variables X and Y are independent if any function

of X is uncorrelated with any function of Y . Thus if two variables are independent

they are definitely uncorrelated, but vice versa is not true.

Definition: Two random variables are independent of each other if their joint prob-

ability density function is the product of their marginal distributions.

f(x, y) = fX(x)fY (y)

As a consequence of independence of X and Y , their conditional distributions are

identical to their marginal distribution. As an extension of this concept, if the random

variables have a multi-variate normal distribution and are pairwise uncorrelated, then

the random variables are always independent [139]. It should be noted that this is

a special property of multi-variate normal distribution and is not true for any other

distribution.

From the above discussion, it is clear that accurate representation of uncertain-

ties in a multi-dimensional objective space can only be accomplished via the use of

145



joint probability distribution. Decisions should be made based on the conditional

probabilities of various responses. This idea has been successfully implemented by

Bandte [133] for making system design decisions and by Garvey [140] for analyzing

program cost and schedule uncertainties. One of the main limitations of using joint

probabilities for technology decision making is the scale of the problem. The problem

of calculating joint PDFs and conditional probabilities for a large number of technol-

ogy combinations in a large dimensional objective space is intractable. This cannot be

implemented for probabilistically comparing each technology combination for Pareto

optimization.

To overcome this limitation, marginal probabilities can be used and integrated

within the a posteriori preference articulation framework. The mathematical accu-

racy of this implementation is only guaranteed if the responses are uncorrelated and

their joint distribution is a multi-variate normal distribution. This way, the condi-

tional probability distribution of each response will be its marginal distribution. Thus

the main assumption here is that the responses are independent of each other. Even

if this is not true, the use of marginal distributions is still theoretically sound, only

drawback being that the results will not capture the nuances of conditional probabil-

ity.

6.5.2 Probabilistic Pareto Layers

Based on this observation, an approach for probabilistic technology selection is pro-

posed where the DM is presented with multiple layers of Pareto fronts. This is

illustrated in Figure 50 for a notional 2-dimensional case. Here each Pareto layer

consists of solutions corresponding to a specified probability level derived from the

marginal probability distribution as illustrated in Figure 49. For example, lets select

point a from the Pareto layer of 75% p-level in Figure 50. For this point, (aX , aY )

are the values corresponding to a 75% probability on the marginal CDFs of X and
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Y objectives respectively as illustrated in Figure 49.

On the basis of ideas discussed above and in the previous chapters, following

hypothesis is proposed addressing one of the primary research questions: How to

account for technological uncertainties while selecting technology combinations?

Hypothesis: An approach based on probabilistic Pareto layers is the most appro-

priate method of accounting for technological uncertainties within the MODM

framework of a posteriori preference articulation.

Supporting Experimentation: Soundness of this approach is checked with the

help of a benchmark knapsack problem that has variability associated with the

items. Results based on deterministic and probabilistic Pareto optimization are

evaluated.

There are two primary enablers required for the implementation of this approach.

One is the previously discussed probabilistic analysis framework using surrogate mod-

els and Monte Carlo simulations. This will be used to calculate the marginal CDFs

for each response for each technology combination. The other enabler is probabilistic

Pareto optimization. This is discussed in the following section.
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6.6 Probabilistic Pareto Optimization

The probabilistic Pareto optimization scheme is implemented using the RSM+MCS

framework in conjunction with SPEA2. The idea is to obtain desired p-level values

(via MCS) for each technology combination of the population of SPEA2 generation.

These values are then used to calculate the fitness of the population members. The

overall scheme of the algorithm remains same as discussed in Chapter 5. Only the

fitness calculating and archiving elements are changed to account for probabilistic

evaluations.

6.6.1 Fitness Calculation

Lets take an example where the DMs desire three Pareto layers each representing

50%, 75%, and 95% p-level. Now, for each member of population there will be an

r × 3 array or response values with r being the number of responses and 3 for three

p-levels. The fitness is calculated for the population in the standard fashion (as

discussed in Chapter 5) for each p-level. Thus, instead of having just one fitness

value, each population member will have 3 fitness values, one corresponding to each

p-level. For the purpose of reproduction operator, the fitness values for all p-levels of

a population member are added together; this sum is now used for tournament based

reproduction operator.

6.6.2 Archiving

Environmental selection or archiving is one of the most important operators of the

algorithm and is considerably modified for implementing the probabilistic approach.

There are two main parts of the original archiving operation: a) save all the non-

dominated points, and b) if the number of these points is more than the archive size,

implement niching. For the population with multiple p-levels, the modified archive

operator retains members with at least one non-dominating p-level value. If the

number of retained members is more than the archive size, an archive truncation
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procedure is activated that iteratively removes members according to their niching

property and distribution width. The distribution width of an individual for this

purpose is defined by the Euclidean distance between the largest and smallest p-

level values. This is illustrated for a notional two dimensional problem in Figure 49.

This quantity can be considered proportional to the width of each marginal PDF

normalized over all the responses. It is related to the robustness of the individual.

For the archive truncation procedure, two nearest points within any of the Pareto

layers are selected and the one with widest distribution is removed from the archive.

This way, clustering of the solutions in one region is avoided and less robust solutions

are discarded.

6.7 Validating the Approach on a Knapsack Problem

The approach stated in the hypothesis above about making decisions based on prob-

abilistic Pareto layers is validated using a benchmark knapsack problem. To investi-

gate its benefits, this approach is compared with results from the deterministic Pareto

based approach.

6.7.1 Probabilistic Knapsack Problem

The benchmark problem is the same as described in previous chapters, except this

time all the 16 items have uncertainties associated with them. Only first two dimen-

sions are considered to be minimized to facilitate better visualization and analysis.

The item options for the knapsack problem are listed in Table 13. Here each item has

an impact on two responses X and Y . For simplicity, the uncertainty in this impact

is assumed to be triangularly distributed with minimum, most likely, and maximum

possible value; these values for each response variable are listed in the Table 13 under

Min, ML, and Max columns respectively. As it can be observed, the distributions are

not always symmetric around the most likely values. This has been done to repre-

sent the actual distributions on the technology impacts which are rarely symmetric.
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Table 13: Probabilistic Knapsack Problem
X Y

Item No. Min ML Max Min ML Max
1 5 7 9 -15 -9 -8
2 1 3 4 -8 -6 0
3 1 2 4 -9 -7 -5
4 4 6 8 -7 -5 -3
5 -5 1 3 -6 -5 -3
6 3 5 7 -6 -4 -2
7 4 10 11 -6 -4 -2
8 1 3 10 -7 -5 1
9 6 8 10 -6 -4 -2
10 2 4 6 -11 -10 -8
11 1 3 5 -9 -7 -5
12 8 10 12 -8 -6 -4
13 5 7 9 -11 -9 -5
14 5 7 12 -6 -4 -2
15 3 5 7 -15 -10 -2
16 2 8 10 -10 -8 -6

Moreover, if all distributions are symmetric, the deterministic results may be similar

to the probabilistic results at 50% p-level.

As an example case, to select a solution, it is decided that value for response Y

should not be more than −60 and that for response X should not be more than 45.

Thus the, constraints are X ≤ 45 and Y ≤ −60; they cannot be violated. Moreover,

it is desired to have X value as minimum as possible.

6.7.2 Deterministic Results

The deterministic Pareto optimization is implemented using the most likely (ML)

values for X and Y from Table 13. The SPEA2 procedure described in Chapter 5 is

used for Pareto optimization in two dimensions. The parameter settings used for the

simulation are:

Mutation Rate : 0.05

Crossover Rate : 0.8
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Number of Generations : 100

Population Size : 100

Archive Size : 100

The run time for this simulation is about 12 seconds on a 2 Ghz P4 machine. The

Pareto optimal solutions obtained are plotted in Figure 51(a). These solutions are

transferred to JMPr [53] for further analysis. Based on the problem statement and

considering all the constraints, there are 14 feasible solutions on the Pareto front.

Out of these, one that has minimum X value, as required by the problem statement,

is selected. This point along with all feasible solutions is plotted in Figure 51(b). The

response values for this point are X = 32 and Y = −61. It is obtained by the item

combination [1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0]; this is a 16 bit string where 1 represents

the presence of the item and 0 its absence. Thus, 8 out of 16 available items are

included in this solution.

6.7.3 Probabilistic Results

The probabilistic Pareto optimization is implemented using the triangular distribu-

tions listed in Table 13. The SPEA2 procedure for finding three Pareto layers of

p-values 50%, 80%, and 90% is implemented as described in Section 6.6. The algo-

rithmic parameter settings used here are same as the ones used for the deterministic

analysis. The marginal PDFs for the responses of item combinations are calculated

using a 500 run Monte Carlo simulation. The time required for this simulation was

about 90 seconds.

The Pareto layers obtained as a result of probabilistic Pareto optimization are

plotted in Figure 52(a). Imposing constraints on these solutions, there are 20 feasible

points in the Pareto layer (PL) for 50% p-level, 14 in 80% PL, and 9 solutions in

90% PL. Out of these points, three points (one for each PL) are selected based on

the criteria from the problem statement. These points are plotted in Figure 52(b).
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Table 14: Solutions from Pareto Layers
p-level % Item Combination X Y

50 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 30.35 -60.42
80 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 1 36.97 -61.25
90 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 39.47 -60.32

The three selected points with their item combination are listed in Table 14. It is

interesting to note that all three points correspond to three different item combination.

This indicates that different item combinations provide the best points in different

PL. In other words, item combination selected on one PL layer with certain tradeoffs

may not correspond to the point on other PL, even if selected based on the same

tradeoff criteria.

6.7.4 Result Comparison

In order to demonstrate the value of the new approach using probabilistic Pareto

layers, its results are compared to the solution selected based on deterministic Pareto

optimization. As a first step in this direction, a probabilistic analysis is carried out on

the deterministic solution using a 1000 run Monte Carlo simulation. Marginal CDFs

for response X and Y are created from the Monte Carlo results and are plotted in

Figure 53. One of the main constraints on the solutions is that Y ≤ −60. It is clear

from the CDF plotted in Figure 53(b) that the probability of meeting this constraint

is only 30%. Thus the deterministic evaluation leads to a faulty solution.

To compare the three probabilistic solutions with the deterministic, 1000 run MCS

is also carried out for the probabilistic solutions. The CDFs for all four solutions are

plotted in Figure 54. When considering response variable X, it can be observed from

the Figure 54(a) that the deterministic solution would provide good results consis-

tently over all p-levels. It is within the constraint X ≤ 45 with 100% probability.

Only the item combination selected from 50% PL has better values than the deter-

ministic solution. Moreover, all four solutions lie comfortably within the X constraint
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as they are selected from a region very far from the constraint. Comparing the CDFs

for response variable Y in Figure 54(b) is more interesting as Y ≤ −60 can be con-

sidered as an active constraint. The points selected are nearest to this constraint in

the feasible design space. It can be observed from these CDFs that as one moves

up along the CDF, starting with the deterministic solution, the solution becomes

infeasible with increasing p-level. Thus, up till 30% p-level the deterministic solution

is good. At this point, its Y value increases beyond the constraint and it becomes

infeasible. Now, one has switch to the next CDF of the item combination from 50%

PL and this solution is feasible up till 60% p-level. The CDFs of the last two item

combinations from 80% and 90% PLs are very close to each other. The constraint

limit is crossed just before and just after the 90% mark for both solutions. Thus the

solution from 80% PL is not feasible for 90% p-level.

From the above example, it can be noted that if a deterministic analysis is con-

ducted, the solution may not be what one expected when the uncertainties are consid-

ered. It may even be infeasible. In such situations, the constraints have to be relaxed,

which may not be an option in many design problems, for example when emissions

and noise constraints corresponding to the government regulations are present. As

a result, another solution has to be selected and probabilistic analysis conducted till

one finds a feasible solution with required p-level. Now, on the other hand, if the

technology combination is selected from a Pareto layer of required p-level, it is guar-

anteed to satisfy all the requirements and post-optimality probabilistic analysis is not

required. Thus making technology decisions based on a posteriori preference articu-

lation framework with probabilistic Pareto optimization would eliminate the iterative

step mentioned before. Moreover, this approach can also provide technology com-

binations that are not Pareto optimal with deterministic evaluation but are better

solutions when uncertainties are considered.
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6.8 Summary

This chapter has focused on the technological uncertainties and how to account for

them while selecting technologies for a complex system. The field of probabilistic

design was investigated for this purpose. Three main ingredients involved in prob-

abilistic design are identified: uncertainty quantification, probabilistic analysis and

probabilistic optimization. The use of beta distributions created based on expert

opinion is advocated for representing epistemic uncertainties in technology impacts.

Various probabilistic analysis techniques are described and one based on response

surface equations and Monte Carlo simulations (MCS) is considered appropriate for

the purpose. Different probabilistic optimization techniques are discussed. None of

the existing techniques is found appropriate for the current application. Thus, a

probabilistic Pareto optimization technique is proposed. The idea here is to present

Pareto layers of different probability levels to the decision makers. The decision mak-

ers can make tradeoffs among various objectives and also probability levels to select a

satisficing technology combination. This idea leads towards some questions regarding

the nature of distributions in a multi-dimensional space. Joint probability distribu-

tion is investigated in this regards. The marginal distribution of each response in

a multi-dimensional space is considered appropriate for calculating the probability

values.

It is hypothesized that the new technique is better for probabilistic decision making

than just considering a deterministic Pareto front and then probabilistically analyzing

the selected solution. For implementing this technique, the evolutionary algorithm for

Pareto optimization is modified to be used in conjunction with MCS. MCS provides

the marginal distribution for each response. The fitness and archive functions of the

Pareto EA are modified to handle probabilistic values. The plausibility of the hypoth-

esis is checked with the help of a benchmark knapsack problem. The results obtained

from deterministic Pareto front and probabilistic Pareto layers are compared. It is
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observed that given the same problem statement and in the presence of uncertainties,

selected solutions from probabilistic Pareto layers will always be better and more re-

alistic in terms of satisfying constraints and other requirements, than the one selected

from a deterministic Pareto front. Thus the plausibility of the hypothesis on using

probabilistic Pareto layers for Pareto optimization is verified.
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CHAPTER VII

TECHNOLOGY CONSTRAINTS

Analysis of technology constraints is an important aspect of a technology selection

process for large scale complex systems. Technologies can interact with each other

in a variety of ways and are manifested in the form of their impact on the system.

It is important to ensure that there are no conflicting or incompatible technologies

present in the group of selected technologies. This is a combinatorial optimization

problem where the problem size geometrically increases with the increase in the num-

ber of technology options available. Technology interactions act as a constraint in

this combinatorial optimization and tend to reduce the total number of permissible

combinations and at the same time making the entire search space more complex.

This chapter will discuss some of the intricacies involved with technology con-

straints with primary focus on technology incompatibilities. Some techniques used to

account for them are discussed and a new approach to analyze technology constraints

based on the principles of Graph Theory is introduced. A new metric to quantify

the computational complexity of the technology combinatorial space is presented. As

a result of insights gained from this study, an approach to account for technology

constraints within the Pareto optimization framework is selected.

7.1 Types of Technology Interactions

Various types of interactions or relations exists among technologies. An initial at-

tempt to model technology interactions in the context of technology selection for pre-

liminary aircraft design is described by Kirby [13]. In this treatment of interactions,

physical compatibility/incompatibility rules between technologies are formalized in
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the form of a Technology Compatibility Matrix (TCM). Roth and Patel [141] catego-

rize various types of interactions that exist among technologies into two main groups:

Simple Interactions and Non-Simple Interactions.

7.1.1 Simple Interactions

Simple technology interactions are boolean relationships among technologies. The

basic types of boolean technology interactions are shown in Figure 55 (adapted

from [142]). The most likely relationship that exists among technologies is of inde-

pendence. That is a technology is completely independent of the rest and can be used

with any other technology. In other words, it is compatible with all the technologies

and does not interact with any other. The next is incompatibility, where a technology

is not compatible with another and the two cannot be used together. Hence, either

technology a OR b has to be used. Incompatibilities arise when two technologies are

competing for the same function or when one technology severely degrades the func-

tionality of another. For example, there can be two structural technologies such as

composites and integrally stiffened aluminium for construction of wings and only one

can be used. As this relationship is symmetric it can be accounted by using only the

super diagonal elements of a n × n (square) matrix as shown in Equation 33. Here,

for any i, j such that 1 ≤ i ≤ j ≤ n, if technology i and j are incompatible, then

ci,j = 1, otherwise 0.

C =



0 c1,2 . . . c1,n

... 0
. . .

...

0 0 0 cn−1,n

0 0 . . . 0


(33)

Another form of boolean interaction that can be present among technologies is an

Enabling relationship. Here, the presence of one technology is necessary for proper

functioning of the other, therefore, technologies a AND b have to be used together.
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Tech. 1 Tech. 2
Independent

One-way(Enabling)

Two-way inclusive
(Merge into “package”)

Two-way exclusive

(Compatibility constraint)

“Technology 1 must be present in
order to use technology 2”

“To use technology 1, tech. 2 must
already be present, and vice-versa”

“If technology 1 is used, tech. 2
can’t be, and vice-versa”

Example

1.

2.

3.

4.

Figure 55: Simple Technology Interactions

Enabling relationship is not symmetric and can act in two directions. Either a can

be an enabling technology for b i.e. a can work independently while b cannot work

without a, or vice versa. There can also be a much stronger relationship where neither

a nor b can work independently. In this case these two technologies can be merged

into a “package”. For enabling interactions, as the relationship is not symmetric,

both the sub and super diagonal elements of a n × n matrix are required to define

the interactions as shown in Equation 34. In this formulation, for any i, j such that

1 ≤ i, j ≤ n, if i is an enabling technology for j and i is independent of j then ei,j = 0

and ej,i = 1. 1 If both i and j are enabled by each other then ei,j = 1 and ej,i = 1.

E =



0 e1,2 . . . e1,n

e2,1 0
. . .

...

...
. . . 0 en−1,n

en,1 . . . en,n−1 0


(34)

Boolean relationships are the most common form of interactions that exist among

a pool of technology options for modern complex system.

1ei,j is read as i is enabled by j.
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Table 15: Technology Constraint Matrix
T1 T2 T3 T4 . . .

T1 0 1 0 -1
T2 0 0 -1 0
T3 0 0 0 0
T4 -1 0 0 0
...

. . .

7.1.1.1 Technology Constraint Matrix

While implementing simple technology interactions in the TIES methodology, the

compatibility relationship in form of Equation 33 and enabling relations in form of

Equation 34 are combined in a Technology Constraint Matrix. It is possible to combine

the two equations into one because the two relationships are mutually exclusive. That

is to say that when two technologies are incompatible, they cannot be enabling each

other at the same time and vice versa. Here, the enabling technology relationship

is denoted by “-1” instead of “1” as it conflicts with the notation of incompatibility

relationship. A notional technology constraint matrix is listed in Table 15.

7.1.2 Non-Simple Interactions

Simple technology interactions as described before are primarily boolean relationships.

Here, the impact of technology interactions on system level metrics is additive. That is

when two technologies enable each other and are considered together for a technology

combination, their combined impact on a system level metric is the sum of each

technology considered individually. When the technologies are incompatible, only

one technology can be considered at a time. This assumption is a vast simplification

and generally not valid when real cases are considered. It considerably limits the

technology combinatorial space. There can be various levels of interactions between

two technologies rather than just -1, 0 and 1 as denoted in TCM. These type of

interactions are called non-boolean interactions [141]. For example, if the impact of
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technology T1 on a certain metric is x and that of technology T2 on it is y; when these

two technologies are considered together, the total impact may not be x + y. It can

be some other function of x and y. These type of interactions have to be considered

on a case by case basis. For the technology problem under consideration, they are

accounted within the technology evaluation model.

Various types of more complex boolean interactions also arise among technologies.

A simple example is a three way interaction arising among three technologies. If the

technologies are independent, there are 8 permissible combinations. However, if all

are incompatible with each other, three technologies can only be used independently

or none is used, i.e. 4 permissible combinations. In general, it not easy to count the

exact amount of permissible technology combinations. Principles of Graph Theory can

help us enumerate permissible combinations and better understand the technology

combinatorial design space. Graph Theory is an area of discrete mathematics and

the relation of technology interactions with this field is explored in following section.

7.2 Graph Theory Connection

A graph is a triple consisting of a vertex set, V (G), an edge set, E(G) and a relation

that associates with each edge two vertices (not necessarily distinct) called its end-

points [143]. A graph can be used to represent a technology space, vertices represent

the technologies and edges represent the interaction between two distinct technolo-

gies. For now, we denote non-directional edges between technology vertices and these

edges represents incompatibility relations. A notional technology space with compat-

ibility constraints is shown in the form of a graph in Figure 56. Here, T3 and T8 do

not have any edges incident to them, hence they are totally independent technologies.

However, for example, T1 has two incident edges and therefore it is incompatible with

two technologies namely T7 and T4.

164



T1

T7

T4

T8

T6

T5

T2

T3

Figure 56: Technology Graph T

7.2.1 Counting Permissible Technology Combinations

Permissible technology combinations are sets of technologies that do not violate any

compatibility or enabling constraints. Even considering only the incompatibility con-

straints, it is difficult to quantify or enumerate the number of permissible technology

combinations. Graph theory can help tackle this problem. As mentioned before, the

technology space is seen as a graph with technologies as vertices and non-directional

edges as incompatibility constraints. The maximum number of edges a graph can

have is given by: (
n

2

)
=

n

2
(n− 1)

This is equivalent to the maximum number of incompatibilities a group of technolo-

gies can have among themselves, and in such a situation, each technology can be used

individually or none at all. Therefore, the maximum number of permissible combina-

tions here will be n + 1. When all the technologies are independent and there are no

edges between them, the maximum number of permissible combinations is 2n.

The number of permissible combinations to be counted in the above mentioned
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extreme cases is trivial, but it is a difficult problem when the number of incompati-

bilities is between 0 and
(

n
2

)
. In graph theoretic parallels, the problem is to find total

number of independent sets. A subset S of V (G) is called an independent set of G if

no two vertices of S are adjacent2 in G [144]. The number of independent sets in T

not only depends on the number of vertices and edges but also on the arrangement of

edges between the vertices. For example, different arrangements of 10 incompatibili-

ties among 10 technologies that give maximum and minimum number of independent

sets possible is shown in Figure 57. The maximum number of independent sets are

obtained when one technology is incompatible with all other technologies and the re-

maining are as independent among themselves as possible. In other words, one vertex

has maximum degree3, n− 1 in this case, and the remaining vertices have minimum

possible degrees. This arrangement is demonstrated in Figure 57(a) and the vertex

degrees are [9,2,2,1,1,1,1,1,1,1]. On the other hand, minimum number of independent

sets are obtained when the technologies form groups or components that are complete

graphs in themselves, i.e. all the technologies within a component are incompatible

with each other. This arrangement is represented in Figure 57(b) with 3 triangles

and the remaining vertex attached to one of the triangles. The above observations

are made using an integrated environment for graph theory called newGRAPH [145].

While analyzing real technologies, one finds majority of them are independent

and the remaining are not completely interconnected but form small components

of mutually interacting technologies. This fact can be exploited while calculating

the total number of permissible combinations as the problem of enumerating the

independent sets of a large connected graph is difficult and computationally intensive.

Let us consider a real example with 29 technologies, out of which, 17 are totally

independent and 12 technologies have 11 incompatibility constraints among them as

2Two vertices are adjacent if there is an edge between them.
3The degree of vertex is the number of incident edges
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(a) Maximum 384 (b) Minimum 111

Figure 57: Permissible Combinations with n = 10 and e = 10

depicted in Figure 58. This graph has four disconnected components. Here each

component has a maximum 4 vertices and it is easy to manually count the number of

independent sets for each component. Now, let a and b denote two components with

ia and ib number of independent sets (not counting the null set) respectively. With

basic combinatorics, when these two components are included in a single graph, i.e.

union of two components, the total number of independent sets of a + b is given by

Equation 35.

ia+b = ia × ib + ia + ib (35)

In general, for a graph G with w components, the number of independent sets is given

by Equation 36. In many examples, these components are complete graphs or cliques,

i.e., each technology is incompatible with every other technology in the component.

In such cases, the number of independent sets for the components is same as their

cardinality and Equation 36 becomes similar to the one described by Utturwar et

al. [33].

iG =
w∏

j=1

(ij + 1)− 1 (36)

Now, the number of independent sets along with the null set for a union T of graph
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Figure 58: 12 Interacting Technologies From Total of 29

G having iG independent sets and k independent vertices is given by Equation 37.

iT + 1 = 2k × (iG + 1) (37)

Applying Equation 36 for the four components of Figure 58, the number of inde-

pendent sets is 335. Considering the remaining 17 independent technologies and

applying Equation 37, the total number of permissible technology combinations are

44, 040, 192 (including the null set). This is out of 229 = 536, 870, 912 possible combi-

nations. Thus, over 90% of the total technology combinations become impermissible

by only about 2.7% of the total possible edges or incompatibilities.

7.2.2 Average Number of Independent Sets

Before investing the time and resources to precisely enumerate permissible combina-

tions, it is useful to know the average number of independent sets a technology graph

can have. Random graphs and associated probabilistic techniques are useful for this

type of analysis as illustrated by Wilf [146]. Let us consider a random graph Gp(n, p)

with n vertices and p is the probability with which each of the
(

n
2

)
edges occur inde-

pendently. If S ⊆ V (Gp), then the average number of independent sets is the sum of
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the probability that every S is independent, over all the vertex subsets S. If S has m

vertices, then the probability that S is independent is same as the probability that

there are no edges among m vertices of S. With (1−p) probability of absence of edge

between two vertices and m(m− 1)/2 edges possible in S, the expression for average

number of independent sets is given by Equation 38.

IGp =
n∑

m=0

(
n

m

)
(1− p)m(m−1)/2 (38)

For the notional example with 10 technologies and 10 incompatibilities or edges of

Figure 57, the fraction of edges present out of total possible 45 is 10/45 = 0.2222.

Applying Equation 38 with n = 10 and p = 0.2222 we get IGp = 174.88. This number

is closer to the lowest possible value of 111 than the maximum number of 384 because

there are more arrangements of edges on a random graph that result in the values

closer to the minimum than the ones that result in the values closer to the maximum.

For the example with 29 technologies and 11 edges, IT p = 5.2 × 107 and the actual

number of combinations as counted in the previous section is about 4.4× 107. Thus,

whenever the technologies interact within small groups and these groups are almost

complete graphs, the number of permissible combinations can be significantly lower

than the average number of independent sets of corresponding random graph.

7.3 Enumeration with Backtracking

Previous results show that the average number of independent sets can be consid-

erably smaller than 2t for certain types of technology graphs. This average number

give an upper bound for the number of permissible technology combinations. Hence,

if IT p is within the limits of available computation resources, it may be feasible to

analyze of all permissible combinations and extract the true Pareto optimal solution

set, instead of going with a stochastic optimization approach which is approximate in

nature. Now, to evaluate all permissible technology combinations, it is necessary to

enumerate them. A prevalent search technique called backtracking is described that
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can be used to enumerate the permissible combinations. This technique is generally

used to solve graph theoretic problems such as finding maximum independent set

or clique [147], graph coloring, etc. Backtracking essentially performs a depth first

search on the technology graph.

Consider a graph G with 6 vertices and 7 edges as shown in Figure 59. Starting

with the first vertex, the independent set is S := {T1}. Now, we attempt to enlarge

S and the next vertex we can add is T3 as T2 is connected to T1. The S now has

{T1, T3}. After T3 we can only add T6 and cannot go any further, S is {T1, T3, T6}.

Therefore, we backtrack one step at a time till we can find more options. In this

example, we have to go back to T1 (delete T3 and T6 from S) and search for the next

vertex that can be added, here it is T5. When all options are exhausted with T1, we

start the process again with the next vertex and S := {T2}. A list of independent

sets for the example as obtained by backtracking method is enumerated below.

{T1}, {T1, T3}, {T1, T3, T6}, {T1, T5}, {T1, T5, T6}, {T1, T6}

{T2}, {T2, T4}, {T2, T5}, {T2, T5, T6}, {T2, T6}

{T3}, {T3, T6}

{T4}

{T5}, {T5, T6}

{T6}

As observed before, the technology space for real problems is composed of small

disjoint components and other independent technologies. Independent sets in each

of these components can be enumerated using backtracking technique. In the tech-

nology evaluation environment of described in the previous chapters, a technology

combination is represented by a row vector of zeros and ones; for e.g., a combination

of T1, T3 and T6 in a graph with 6 technologies is represented as [1, 0, 1, 0, 0, 1]. A
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T1 T4 T6
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Figure 59: Graph G for backtracking

set of all permissible combinations in a component with n technologies is in the form

a i × n matrix, with each row representing an independent set. The matrix of per-

missible combinations for n independent technologies is basically a binary conversion

of a row of numbers from 0 to 2n− 1, with 2n rows and n columns. Now, with matri-

ces of permissible sets for all the components and independent technologies in place,

the independent sets of the entire technology graph are enumerated using the logic

behind Equation 36 and 37. Consider two components a and b with independent set

matrices of size ia × j and ib × k respectively. The independent sets for the union of

a and b are obtained by concatenating each row of the first matrix with each of the

other. This will result in a matrix of size (ia × ib)× (j + k). This process is repeated

till all the components and independent technologies are included.

7.4 Enabling Technologies

Observations made in previous sections consider only the incompatibilities in the

technology space. There may be some technologies in the space that enable others

and these can be visualized using graphs with directed edges known as digraphs as

shown in Figure 60. Here, the edges point towards the enabling technology, e.g., in

Figure 60, T1 is enabled by T3 and T3 in is enabled by T2. Hence, while T2 can

function independently, T1 needs T3 and T3 needs T2 to function. Depending on
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Figure 60: Digraph for Enabling Technologies

the relationships, the complexity of this digraph may be reduced by merging some

of the technologies. In Figure 60, T6, T8 and T7 form a unidirectional cycle where

one technology is enabled by the next. These can be merged into a single technology

as no one can function in absence of any other member of the cycle. This reduction

can be adopted for any number of technologies as long as they form a unidirectional

cycle and also for two mutually enabling technologies. Once the technology graph

is reduced, backtracking technique can be applied with appropriate modifications to

account for enabling relationships to enumerate the permissible combinations.

7.5 Technology Constraints with Evolutionary Algorithms

When the number of permissible technologies is too large for a complete evaluation

of the combinatorial space, an EA based approach is recommended for Pareto op-

timization. Two basic approaches have been developed in last decade to account

for interactions while using evolutionary algorithms (EAs) for technology selection

process.
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7.5.1 Soft Constraints

This approach is a type of penalty method where the technology incompatibilities are

treated as an objective function whose value is to be reduced through the generations

of EA. Here, the incompatible technology sets may also be evaluated. This technique

is employed by Roth and Patel [141] where incompatibility free final solution set

were obtained with high enough weighting on the incompatibility constraints. The

only information needed for this technique is the number of incompatibilities and

enabling constraints present in certain set of technologies and there is no need to

name the edges that cause those constraints. This number can be easily evaluated

using adjacency matrix of the technology graph. For this, two different matrices

are created, one for incompatibilities and one for enabling. The adjacency matrix

for technology graph with non-directional edges representing incompatibilities is a

symmetric matrix where the (j, k)th entry represent the presence or absence of edge

between vertices j and k. Matrix C of Equation 33 is the upper triangular portion

of the adjacency matrix. When the technology combination set is in the form of a

(1 × t) vector S as shown before, it can be easily proved by basic algebra that the

quantity S ×C ×ST gives the number of edges present in the technology set S.4 For

evaluating the number of enabling violations in S, adjacency matrix for the digraph is

considered and this is same as matrix E of Equation 34. In this case we are interested

in the absence of directed edges in S and the number of enabling violations is given

by the expression S ×C × S̄T ; here S̄ denotes the vector S with all the ones changed

to zeros and zeros to ones. If S is a (n × t) matrix for n technology combinations,

above expressions can be used and the result of the product is a n × n matrix. The

number of constraint violations for n combinations are found in n diagonal elements

of the resultant matrix.

4ST denotes transpose of S
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This technique for accounting interactions is very simple to implement with EAs.

Its main drawback is that there is some probability that the final solution set has

incompatible combinations. In case of Pareto optimization, the algorithm has to

keep track of extra responses which will have a degrading effect on its performance.

Moreover, as observed before, almost 90% of total combinations are impermissible in

a technology problem. Given this high proportion of incompatible combinations, the

populations for initial generations in SPEA2 will have a very small number of useful

combinations. This would severely hamper the performance of the algorithm.

7.5.2 Hard Constraints

In this approach, the technology combinations that violate the incompatibility and

enabling constraints are never included in the population pool of the EA. Raczyn-

ski et al. [148] proposed a gene correction technique that allows only the compatible

technology combinations to be evaluated by the optimizer. This algorithm detects

incompatibilities in a technology set and removes certain technologies randomly from

the set so that the resulting combination has all compatible technologies. This al-

gorithm can be extended to search and repair for enabling technology combinations.

It is included in the EA loop just before the fitness evaluation operator so that no

incompatible combination is evaluated. This technique has been shown to result in

early convergence of function values as compared to the penalty method. It is flexible

enough to be implemented for any type of technology graph. This technique can be

easily implemented within SPEA2 for Pareto optimization.

The next technique that implements the hard constraint approach is the reduced

bit system employed by Raczynski et al. [149]. When a certain group of n technologies

form a clique or complete graph among themselves, instead of 2n combinations only

n+1 can be used. Thus rather than using n columns or bits to represent n technolo-

gies, only d(ln(n + 1)/ln(2))e bits may be used. Thus each combination of reduced
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bit system corresponds only to a compatible technology combination. When imple-

mented for all the components of technology graph, reduced bit system eliminates

the risk of creation of invalid combinations by the mutation and crossover operators

of EA. This is an interesting technique with limited applicability. It can only be

implemented where the technology space is divided into cliques.

7.6 Summary

It has been observed from this study that technology compatibility constraints have

significant effect on the technology combinatorial space. In one of the examples illus-

trated, 90% of the total combinations become impermissible because of less than 3%

of incompatibilities. The principles of graph theory were shown to be very useful for

analyzing incompatibilities and resultant technology combinatorial space. Technolo-

gies and constraints among them are analogous to the vertices and edges of graphs

which are good visualizing tool for technology space. Random graphs provide an

important result that gives an upper bound on the number of permissible technology

combinations present in the technology space. Based on this number, it can be de-

termined if its prudent to go ahead with evaluating all permissible combinations to

find the true Pareto front in the combinatorial design space. If complete evaluation is

to be carried out, backtracking technique can be used to enumerate all the permissi-

ble combinations. A technique for accounting compatibility and enabling constraints

within Pareto optimization framework was also described.
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CHAPTER VIII

PARETO OPTIMIZATION AND SELECTION OF

TECHNOLOGIES

The limitations of methods and algorithms employed in common practice for technol-

ogy selection were realized after Chapters 2 and 3. These approaches do not address

the requirements stated in the research goals of this thesis. Thus, based on the

discussions in previous chapters, a method is devised to explore the combinatorial

technology space and make informed decisions on selecting technologies for complex

systems. This method is called Pareto Optimization and Selection of Technologies or

POST for short. This chapter explains the flow of the POST method.

8.1 Proposed Method

In the previous chapters, the multi-objective technology selection problem has been

decomposed into two basic themes – decision making in multi-dimensional combina-

torial technology space and making these decisions in the presence of technological

uncertainties. A posteriori preference articulation approach has been suggested to

address the basic requirement of multi-objective decision making. A subset of Pareto

optimal solutions is required to implement this approach. A stochastic algorithm

known as SPEA2 was demonstrated to be most effective for Pareto optimization.

Uncertainties are quantified for individual responses in a multi-dimensional space in

the form of their marginal probabilities. Techniques for evaluating computational

complexity of the problem and reducing the dimensionality are also suggested. All

these elements come together in Pareto Optimization and Selection of Technologies
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or POST. This is a method to systematically explore various technology combina-

tions available for designing a new system and make informed decisions based on the

objectives and uncertainties involved. The flow of this method is illustrated in Fig-

ure 61. To be precise, this method can be called Probabilistic Pareto Optimization

and Selection of Technologies or P-POST; but, in the interest of brevity, POST refers

to the probabilistic approach unless stated otherwise.

The process is designed for efficiency and efficacy of decision making. An attempt

is made to reduce the time required on part of the decision makers (DMs) to explore

and select technologies, and at the same time, make those decisions based on accurate

information. To satisfy these conditions, the process is divided into three distinct

phases depending on the personnel involved:

Problem Definition: This is the phase where system designers and technology ex-

perts participate. Here, a reference system is defined and decisions regarding

the use of high fidelity system models or fast executing surrogate models is

made depending on the available information, computational resources, and

time. The technologies are also identified at this stage. These are the ones the

technologists are currently working on or are available to them, or some Com-

mercial Off-The-Shelf (COTS) technologies that the experts deem appropriate

for the system. The technology metrics or k-factors are defined at this stage

and the impact of different technologies on them is mapped using a technology

impact matrix (TIM). The uncertainty distributions on technology impacts are

defined where necessary. The compatibility and enabling constraints among the

available technologies are also defined. This phase, though very important, is

not the primary focus of this thesis and more on this has been explained by

Kirby [13] and Mavris [15] among others.

Pareto Optimization: Technology and system analysts are to be involved in this
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Figure 61: Pareto Optimization and Selection of Technologies
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phase along with system designers. The main goal here is of Pareto optimiza-

tion, probabilistic if uncertainties are present and deterministic if not. Based

on the data from the previous phase, this phase generates multi-dimensional

Pareto front or probabilistic Pareto layers for the desired probability levels and

objectives of interest. This phase is the main focus of this thesis and each of its

elements is explained in detail in the following sections.

Decision Making: Once the Pareto front or layers are created, the data is trans-

ferred to a selection and tradeoff environment. System designers and other

high level decision makers (DMs) are the principle participants in this exer-

cise. In this environment, the DMs have the entire efficient solution space in

front of them. They can make implicit tradeoffs among various objectives,

compare different solutions deterministically or probabilistically and select the

most appropriate technology combination. This multi-dimensional visualization

and analysis environment is facilitated by a software from SAS Institute called

JMPr [53].

There are many steps involved in these phases, especially for optimization. The

following sections discuss these steps that form the backbone of the POST method.

8.2 Problem Formulation

While developing a new system, traditional designs may not be able to satisfy the

requirements or meet the constraints. To remedy such a situation, as Kirby [13]

points out, there are a few options available with the designers. One is to increase

the range of design variables and potentially capture a feasible and viable solution;

though this may not be possible if the design space was accurately defined initially.

The other option is to relax the constraints that are being violated. But, this may

not be possible either when the constraints under consideration are non-negotiable

constraints, such as government regulations regarding emissions and noise. Now,
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with the assumption that the system concept is fixed, the most promising option to

design a feasible and viable system is to infuse new and advanced technologies into

the system. Thus, the problem of technology exploration and selection is created.

At this stage, the system responses based on which the technology decisions are to

be based have already been fixed by the designers. These responses are generally

some performance, environmental, and economic parameters pertinent to the design.

For example, in the case of aircraft design, these responses may include specific fuel

consumption, range, weight, takeoff noise, nitrous oxide emissions, acquisition cost,

operating cost, etc.

The technologies are evaluated and compared on a baseline system. Thus, selec-

tion of this baseline system is also an important part of the problem formulation.

Generally, a state of the art system configuration is preferred as a baseline for eval-

uating the technologies. This is because the simulation models for such systems are

powerful enough to account for advance technologies. The design space addressed by

older system models may not be large enough to encompass the capabilities of newer

technologies.

After deciding on a baseline, various computational models have to be identified

for simulating the system. As the response parameters considered for this type of

technology exploration exercises are multi-disciplinary in nature, multiple models are

usually required to represent the system. For the example set of response parameters,

there would generally be at least three types of computer models involved, one each

for performance, environmental, and economic responses. These models have to be

integrated together to form a multi-disciplinary analysis framework. It is also essential

for these models to be physics based so as to capture the impact of technologies at their

lowest level. Once the baseline is fixed and physics based system models selected, the

system level design variables or technology k-factors are identified. These k-factors

are usually a subset of the input parameters to the system models. They are selected
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based on their impact on the system responses. A detailed description of the k-

factor selection process is provided by Kirby [13]. Various technology combinations

will be evaluated on the baseline by considering their impacts of the k-factors and

comparisons made using the responses under consideration.

It is often the case that the multi-disciplinary analysis framework for complex

systems are computationally very expensive. In such situations it becomes infeasible

to evaluate large number of technology combinations in reasonable amount of time.

To remedy such situations, surrogate models can be employed to speed up the eval-

uation process. Surrogate models are a mathematical representation of the physics

based system models. Though they are an approximation of the real models, the

speed gains far outweigh the loss in accuracy. There are various types of surrogate

models that can be used for a given application. Some of the example techniques for

surrogate modeling are Response Surface Equations (RSEs), Artificial Neural Net-

works (ANNs), Kriging, Polynomial Chaos, Support Vector Machines (SVM), and

Gaussian Process (GP). The process for generating surrogate models usually starts

with sampling the design space with the help of statistical Design of Experiments

(DoE) or some other technique. It is important to verify that the design space con-

sidered for this exercise is large enough so as to encompass all the technologies at the

same time. These design points are then evaluated using the physics based system

model. Finally, a surrogate model based on one of the above mentioned techniques

is fitted on these points. It is generally a good idea to check the predictivity of these

surrogate models on randomly sampled design points and ascertain that it is within

acceptable limits. Each surrogate model thus created would take k-factors as its in-

puts and the output would be one of the response parameters, also known as the

dependent variable.
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8.3 Collecting Technology Data

This step is part of the first phase of the POST process. The technologies are identified

and defined in this step. An illustration of this step with its main outputs is shown

in Figure 62. The technology impacts on the k-factors are fixed through a technology

impact matrix (TIM). As shown in the figure, TIM is a matrix with rows representing

technologies and columns for the impact a technology has on the k-factors. This

impact is estimated with respect to the baseline system. The TIM is populated

by collecting information from technology and system experts via an audit scheme.

For this, a questionnaire is prepared, to gather information regarding technologies

and their impact on various k-factors, which is filled in by the experts. Additional

information can be gathered from interviews with the technologists and published

literature.

If the technology impacts are uncertain in nature, three pages of TIM are created

to define the minimum (a), most likely, and maximum values (b) of the impact. Based

on these three values, four parameters of a generalized beta distribution are calculated

for each cell of TIM. These four parameters are location a, scale (b − a), α, and β
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and are calculated based on the formulation described in Chapter 6.

The compatibility and enabling constraints are also defined here and the tech-

nology graph is created. This is a graph with nodes representing technologies and

edges representing the constraints. Thus there are two main outputs from this step –

technology graph and technology impacts; a single TIM if impacts are deterministic

and a beta distributed TIM represented by four pages for uncertain impacts.

8.4 Estimating Computational Complexity

This is the step where the computational complexity of the combinatorial technology

selection space is estimated. The main input to this step, as illustrated in Figure 63,

is the technology graph created in the previous step. The average number of inde-

pendent sets or permissible technology combinations is computed for the technology

graph from Equation 39 (described in Chapter 7). Based on this average number, the

type of analysis to be performed is decided.

IGp =
t∑

m=0

(
t

m

)
(1− p)m(m−1)/2 (39)

When the average number or permissible combinations is low enough and man-

ageable by the computational resources available, a complete evaluation is carried out

to find the true Pareto front or layers. For an average desktop with about 2 GHz dual

core processor and a 32 bit operating system, if the complexity is within one million
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permissible combinations, a complete evaluation can be attempted; given fast surro-

gate models are available and technology impact is deterministic. If, on the other

hand, the average number is high, Pareto optimization via a stochastic algorithm has

to be carried out.

8.5 Search for True Pareto Front or Layers

Once it is decided in the previous step that enough computational resources are

available, the following steps are carried out for the search of the true Pareto front

or layers. Each of the following subsection describes a step under this branch of the

POST process.

8.5.1 Enumerate Permissible Combinations

The basic requirement for a complete evaluation and searching for true Pareto layers

is the enumeration or identification of all permissible combinations. As described in

the previous chapter, the number of permissible combinations is only a small frac-

tion of the total number of combinations. Thus, by enumerating and evaluating

only the permissible combinations, considerable amount of computational memory

and processor resources can be saved. This enumeration is carried out based on

the technology graph previously created. It is implemented using the backtrack-

ing and matrix concatenation technique described in Chapter 7. The result of this

step is an n × t matrix, where n = total number of permissible combinations and

t = number of technologies. Each row of this matrix is a permissible combination of

technologies. For each row, columns with ones represent the presence of correspond-

ing technologies and with zeros represent their absence. The input and output for

this step are illustrated in Figure 64.
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8.5.2 Evaluate Deterministically or Probabilistically

The permissible technology combinations enumerated in the previous step are evalu-

ated in this step. If deterministic evaluation is required, physics based system models

or surrogate models identified in the problem definition phase are used. For this,

the (n × t) matrix of permissible technology combinations and TIM of size (t × k)

(k being the number of k-factors considered) are first multiplied. This results in an

(n × k) matrix with n vectors of k-factor values for each technology combination.

These vectors are then used to evaluate the deterministic impact of each technology

combination on the system.

On the other hand, for probabilistic evaluation, the technique using RSM and

Monte Carlo simulations (MCS) as described in Chapter 6 is implemented. This is il-

lustrated in Figure 65. For this, each permissible technology combination is subjected

to a fixed number of MCS iterations. The beta distributions on technology impacts

obtained from the Technology Data step are used to generate random samples for

MCS. If the number of MC iterations is 500, then 500 random TIM are generated

based on the assigned distributions for each TIM element. These TIM are then evalu-

ated in the same manner as done for deterministic analysis. Here, it should be noticed

that the computational complexity of the problem significantly increases because of

the probabilistic analysis. If there were 100,000 permissible combinations, then for a
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Figure 65: Evaluating all Technology Combinations

500 sampled MCS the total function calls are 50,000,000. That is, 500 times more

function calls are required as compared to deterministic analysis.

After the MCS is completed, the response values at predefined probability levels

are calculated. These are obtained from the marginal CDFs of each response for

each technology combination. Two or more probability levels are considered for this

purpose. For probabilistic technology exploration, the decision makers are usually

interested in higher probability levels rather than the lower ones. Hence, the prob-

ability levels of 50%, 75%, and 95% are well suited for the purpose. The output is

in the form of a three dimensional array with rows for each permissible combination,

column representing responses or objectives and page for each probability level. If it

was a deterministic evaluation, the output would be a two dimensional matrix with

rows for technology combinations and columns for responses.

8.5.3 Extract True Pareto Front or Layers

In this step, the solutions that are part of the true Pareto front or layers are ex-

tracted from the data available from the previous step. Here, the Pareto solutions

are identified based on the concept of non-domination described in Chapter 4 and 5.
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A non-dominated sorting algorithm based on fitness calculations in SPEA2 is used

for this purpose. Here, only raw fitness is required and the points with zero raw

fitness are the Pareto optimal points. These points are retained and others discarded.

In case of probabilistic results, all technology combinations having a non-dominated

point in at least one of the Pareto layers are retained. This step is depicted in Fig-

ure 66 where three Pareto layers are extracted in a notional two dimensional objective

space. In this figure, a technology combination is represented by three points, each

corresponding to a 50%, 75%, and 90% probability level. The non-dominated sorting

algorithm extracts the Pareto front in each probability level. And the final result of

this step is a union of the technology combinations of all the Pareto layers.

8.5.4 Reduce Dimensionality?

At this stage, the decision on reducing the dimensionality of the objective space is

required. The number of objective responses considered in such problems can be large.

This set may contain responses that are in fact design constraints but are considered

to be objectives because the constraint limits are not well defined. In such situations,

the possibility of dimensionality reduction has to be considered. Whenever there

are five or more objectives to be optimized, dimensionality reduction step should be
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implemented. This is because with increasing dimensions of the objective space, the

number of Pareto optimal solutions increase and it becomes difficult for the decision

maker to visualize and select appropriate solutions. Moreover, there is a higher chance

of two or more objectives being dependent on each other with increasing number of

objectives. Thus, the dimensionality of the Pareto hyper-surface may be smaller than

that of the objective space. In such a situation, it is advantageous to reduce the

dimensionality of the objective space and concentrate on finding the Pareto hyper-

surface in its actual dimensions.

When it is decided that the dimensionality reduction step is not necessary, the

Pareto optimal solutions extracted in the previous step are transferred to the visual-

ization and decision making environment. If, on the other hand, the dimensionality

of the objective space has to be reduced, the following step is implemented.

8.5.5 Reduce Dimensions with k-EMOSS Approach

The main aim of this step is to select a subset of objectives to be considered while

making technology decisions. As described in Chapter 4, there are two primary tech-

niques of implementing this in the context of Pareto search. One is based on Principle

Component Analysis (PCA) as suggested by Deb and Saxena [64]. This method aims

at retaining the objectives that can explain most of the variance in the data. The

main drawback of this technique is that it does not offer any means of assessing and

comparing non-dominated points obtained before and after the dimensionality reduc-

tion. Moreover, it selects objectives based on the linear correlations and other types

of relations between objectives are not captured. The other technique is based on

preserving the dominance structure of the Pareto front as proposed by Brockhoff and

Zitzler [65]. The advantage of this technique is that it reduces the dimensions while

maintaining the dominance structure of the Pareto points. Thus maximum number
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of points are retained in the subset of the Pareto front. The inventors of this tech-

nique have devised a measure δ that quantifies the change in dominance structure

due to reduced dimensions. Based on this concept of δ, they introduce a problem of

minimum objective subset of size k with minimum error (k -EMOSS).

This technique is implemented in the POST methodology using a greedy algorithm

for solving the k -EMOSS problem. The algorithm takes the n-dimensional Pareto

optimal data set, and a value k ≤ n as input and provides the objective subset of size

k with minimum error δ, n being the number of objectives. In case of probabilistic

Pareto layers, the analysis on only one Pareto layer is sufficient for the purpose. This

is because they are globally almost parallel to each other. The k -EMOSS algorithm

is implemented iteratively for the objective subset of size k = 2ton. k and the

corresponding δ values from the greedy algorithm are plotted and the corresponding

objective subsets are noted. Decisions regarding which subset to use are made from

this plot and will be discussed in detail in the next chapter.

This is a purely mathematical approach and does not account for any engineer-

ing considerations. The designer has to use his or her engineering judgement while

accepting its results. It may happen that the technique would deem an objective

unimportant, while, from the engineering standpoint, it might be indispensable for

the decision making process. The designer would have to include such objectives in

the subset even though they were not selected by the algorithm.

8.5.6 Extract Pareto Front or Layers for Selected Objectives

This step is implemented to extract the true Pareto front or layers for the objective

subset selected in the previous step. Here, non-dominated sorting algorithm is imple-

mented with the true Pareto set (P ) for all objectives as input. The output is a true

Pareto set (P ′) for the selected objectives. This new Pareto set is always going to be a

subset of the true Pareto set for all objectives (P ′ ⊆ P ). P ′ can be equal to P if there
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is no change in the dominance relationship of the Pareto set due to dimensionality

reduction. That is, P ′ = P if and only if the dropped objectives are truly redundant

and their absence does not change the Pareto front. In case of probabilistic Pareto

layers, same approach is implemented as in Section 8.5.3. The Pareto points thus

extracted are exported to a visualization environment for combinatorial technology

exploration and selection .

8.6 Pareto Optimization

If, in Section 8.4 it is estimated that the problem complexity is high and all the

permissible combinations cannot be evaluated and true Pareto layers determined with

available computational resources, Pareto optimization using a stochastic algorithm

is implemented. The following subsections describe various steps required for this

purpose.

8.6.1 Reduce Dimensions?

The designers decide if the dimensions of the objective space are to be reduced.

Whenever there are five or more objectives to be optimized, dimensionality reduction

should be investigated. There are a couple of benefits of reducing the number of

dimensions when they are more than five. First, it becomes easier to visualize and

explore the objective space when it has three or four dimensions. When this number

increases, the visualization becomes tougher. Secondly, the stochastic algorithms used

for Pareto optimization are more efficient in lower dimensional objective space than

they are in the higher dimensional space. Moreover, the Pareto surface in a lower

dimensional space can be approximated with fewer points. As observed in one of

the previous chapters, for more than 15 dimensional objective space, almost all the

solution points would belong to the Pareto hyper-surface.
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8.6.2 Deterministic Pareto-Optimization

This step is executed when it is required to reduce the dimensionality of the objective

space. For this purpose, an approximate Pareto surface in all the dimensions is

required. Here, only one layer of Pareto surface is required in case of probabilistic

technology impacts. Hence, to reduce the computational cost, deterministic Pareto

optimization is implemented using the mean values of technology impacts. The Pareto

surface approximation is obtained using the modified Strength Pareto Evolutionary

Algorithm II as described in Chapter 5 and its outline is also illustrated in Figure 67.

The initial population of technology combinations is generated randomly. In the

next step of Fitness assignment, each combination is evaluated by the system model

(or surrogate model) and the fitness value is assigned to each combination based on

its non-domination characteristic in the objective space. The spacing between points

is considered for fitness assignment so as to obtain an even distribution of points on

the Pareto front. The constraints are also considered in this step; the technology

combinations violating any of the constraints are assigned very high fitness values.

The next step is of environmental selection where the best points with lowest fitness

values are archived for the next generation. If the stoping criteria of maximum num-

ber of generations is not reached, next iteration starts with a Reproduction operator.

Here, the technology combinations constituting the population for next generation
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are selected via a binary tournament on the archived points. Then the new popula-

tion is generated via Variation operators (crossover and mutation), followed by the

fitness assignment for this new population. When the algorithm iterates through the

maximum number of generations, the archive population at that stage is presented

as the final results. This is an approximation of the Pareto front.

8.6.3 Reduce Dimensions with k-EMOSS Approach

With an approximate Pareto front available from the last step, the procedure for

dimensionality reduction is the same as described in Section 8.5.5. The only difference

is in the data set. In the previous section the true Pareto front was available. While

in this step, the dimensionality reduction algorithm uses the approximate Pareto

front points to calculate the objective subset. Moreover, there can be some error in

selecting the objective subset because of the approximate nature of the Pareto front,

but this can be negligible for a large Pareto set.

8.6.4 Deterministic or Probabilistic Pareto-Optimization

After reducing the dimensions of the objective space, deterministic or probabilistic

Pareto optimization is carried out on the selected objectives. In case of determinis-

tic technology impacts, Pareto optimization is executed in the manner described in

Section 8.6.2. The only difference being the number of objectives considered.

On the other hand, if the technology impacts are uncertain, a probabilistic Pareto

optimization is executed using an evolutionary algorithm that accounts for the marginal

distribution of technology combinations in objective space. The overall algorithm re-

mains the same as illustrated in Figure 67. The only difference is in the way the

fitness is calculated for each population member (each technology combination). For

this purpose, the objective vector at different probability levels of interest (for eg.

50%, 75% and 90%) is evaluated using Monte Carlo Simulation (MCS). Thus each

combination has a representative point in each Pareto layer. The fitness for points in
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each layer is evaluated independently, thus each population member will have mul-

tiple fitness values (equal to the number of Pareto layers). The constraints are also

accounted for at the Pareto layer level in the same way as described in Section 8.6.2.

For the purpose of environmental selection and reproduction operators, the sum of

fitness values in all Pareto layers for a population member represents its true fitness

in the probabilistic objective space. This way, if a technology combination A has

response values that are all non-dominated in their respective Pareto layers, and an-

other combination B with non-dominated objective values in only one Pareto layer;

the combination A will have lower overall fitness value relative to B.

The final output of this step are the Pareto layers for each specified probability

level. These are basically the objective vectors for each Pareto layer corresponding

to a technology combination.

8.7 Exploring and Selecting the Technologies

Once the true or approximate Pareto layers for the multi-dimensional space of selected

objectives are available via complete evaluation or Pareto optimization respectively,

the data is transferred to a visualization and exploration environment. This envi-

ronment is facilitated by JMPr [53] as previously stated. The data flow for this

step is illustrated in Figure 68 with a screen shot of JMPr. Here, the Pareto layers

are visualized in a variety of plots and graphs. The DMs can navigate the PLs by

setting ranges on the objectives and placing constraints. Each layer can be visual-

ized individually by turning others off. It can be overwhelming for DMs when the

dimensionality is large. To overcome this to a certain extent, ideas suggested by Das

and Dennis [72] can be implemented. They suggest setting up a hierarchical order of

preference among objectives in blocks of two or three. For example, {R1, R4} may be

the most important for some DMs and then {R3, R5, R6}. Now, the Pareto optimal

points could be visualized for each block, starting with the most important, and most
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Figure 68: Tradeoffs and Decision Making

appropriate points selected from the block. The DMs can narrow down their selec-

tions down the blocks and choose one or more preferred technology combinations.

More on this section will be discussed in the following chapter with the help of an

example.

The final output of this step and that of POST is a set of promising technology

combinations that satisfy the design constraints and DMs preferences. But more

than the selected combination, POST provides the DMs and designers the knowledge

and understanding of the limits of the design envelope expanded by the technologies

available.

8.8 Summary

The purpose of this chapter has been to formulate a technology combinatorial space

exploration method that addresses the multi-dimensional nature of the problem and

accounts for uncertainties involved with technologies. A method called Pareto Op-

timization and Selection of Technologies (POST) was formulated by synergistically

combining various techniques and methods studied in the previous chapters. Various

steps involved in the POST methodology were explained. Once the problem is de-

fined and technologies identified, the complexity of technology combinatorial space is

evaluated. If this complexity is low enough for the available computational resources,
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a complete enumeration and evaluation of the technology combinations can be exe-

cuted to search for the true Pareto layers. If, on the other hand, the complexity is

very high, a stochastic algorithm is suggested to search for an approximation of the

Pareto layers. For this purpose, an evolutionary algorithm was designed to search

for Pareto front or layers in case of deterministic or probabilistic technology impacts

respectively. A dominance based dimensionality reduction procedure was suggested

when the dimensionality of the objective space is larger than five. This procedure tries

to maintain the relative structure of the Pareto front while trying to identify the re-

dundant objective. Once the Pareto front or layers are identified, they are transferred

to a JMPr based visualization environment. Here, the technology combinations that

are part the Pareto layers are explored for a better understanding of the technology

combinatorial space. The limits of new technologies are also identified and finally,

the most promising technology combinations can be selected for further study.

195



CHAPTER IX

EXPLORING TECHNOLOGIES FOR A COMMERCIAL

AIRCRAFT

A method called Pareto Optimization and Selection of Technologies (POST) was

formulated in the previous chapter to address the primary goal of this research of

efficiently exploring technologies for complex systems. This chapter describes the

implementation of POST for exploring the technology combinatorial space for a com-

mercial aircraft design problem. Various steps of POST for problem definition and

probabilistic Pareto optimization are described in detail. In the later part of this

chapter, the discussion is focused towards the systematic exploration of the com-

binatorial technology space. Different multi-dimensional analysis and visualization

techniques are used for this purpose.

9.1 Aircraft Technology Problem Formulation

A predefined technology exploration and selection problem for a large commercial

jet aircraft is considered for the implementation of POST method. The original

study was undertaken as a part of the NASA GRC research contract [150] at Georgia

Tech. The problem was defined under the Vehicle Integration, Strategy and Tech-

nology Assessment (VISTA) initiative undertaken at NASA. It involved assessment

of 29 technology programs available for a 300-passenger commercial aircraft. Most

promising technology combinations are to be identified considering various system

level responses.

There are fifteen aircraft responses considered and are listed in Table 16. Out of

these responses, the noise (SL, TO, and Ap noise) and emissions (NOx) responses

196



Table 16: Responses Considered
Responses

R1 L/D max M0.85 40, 000ft (design) L/D
R2 Empty Weight of Aircraft Without Engines Empty Wt.
R3 Sideline Noise SL Noise
R4 Takeoff Noise TO Noise
R5 Approach Noise Ap Noise
R6 Cruise Thrust Specific Fuel Consumption TSFC
R7 Thrust to Weight of Engine Engine T/W
R8 NOx (Emissions) NOx
R9 Block Fuel Consumption BFC
R10 Take-off Gross Weight TOGW
R11 Direct Operating Cost + Interest DOC+I
R12 Landing Field Length LFL
R13 Take-off Field Length TOFL
R14 Approach Velocity Ap Velocity
R15 Acquisition Cost Acq. Cost

are considered as constraints for the purpose of the POST implementation. The

remaining eleven responses have to be optimized simultaneously. All the objectives,

except L/D and Engine T/W, have to be minimized.

9.1.1 Baseline

A state-of-the-art baseline concept is preferred for the assessment of technologies for

a given system. Boeing-777 is considered as the state-of-the-art for a 300-passenger

long range commercial aircraft segment. Thus, the baseline for the VISTA study

was a 777-like aircraft on which various technologies are evaluated. The response

values for the baseline are calculated (with all technologies inactive) and listed in

Table 17. This table also defines the four inequality constraints used for the current

implementation. The constraints are defined by fixing more than 2% reduction in the

baseline noise values and around 15% reduction in the NOx values. These constraints

and the corresponding reduction in the objective space represent the combinatorial

technology space that would be of interest to the designers and decision makers.

The researchers from Georgia Tech and VISTA team identified sixty system level
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Table 17: Responses and Constraint Values for Baseline Aricraft
Response Baseline Constraint
L/Dmax M.85 40,000 ft (design) 19.22
Empty Weight of Aircraft without Engines, lbs 234840
Sideline Noise, EPNdB 94.93 ≤ 93
Take-off Noise, EPNdB 91.98 ≤ 90
Approach Noise, EPNdB 98.32 ≤ 96
Cruise TSFC, lb/lbf.h 0.56
Thrust to Weight of Engine 3.91
NOx (Emissions), kg/LTO 52.01 ≤ 44.2
Block Fuel Consumption, lbs 85294
Take-off Gross Weight, lbs 659020
Direct Operating Cost + Interest, cents/ASM 4.35
Landing Field Length, ft 5828.40
Take-off Field Length, ft 9532
Approach Velocity, kts 122.70
Acquisition Cost, million $ 119.72

design variables or technology k-factors for this problem [150]. The simulation models

created for technology evaluation are based on these k-factors; that is, they are the

inputs to the simulation models. The values of these variables are fixed for the baseline

aircraft and the new technologies are assessed by estimating their relative impact, with

respect to the baseline, on various k-factors. The technologies are then evaluated for

the aircraft with these models by accounting their impacts on the k-factors.

9.1.2 Modeling and Simulation

To evaluate technologies for the VISTA study, various physics based numerical analy-

sis tools were integrated. These included NASA’s Numerical Propulsion System Sim-

ulation (NPSS) for engine responses, Weight Analysis of Turbine Engines (WATE) for

weights, Flight Optimization System (FLOPS) for aircraft responses, Aircraft Noise

Prediction Program (ANOPP) for noise, and Aircraft Life Cycle Cost Analysis (AL-

CCA) for economic responses [150]. The complexities with this integrated simulation

environment result in long execution time and it becomes prohibitive to evaluate

large number of technology combinations in a reasonable time. To address this issue,
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surrogate models were created.

These surrogate models, created for each aircraft response by the researchers at

Georgia Tech, are used for evaluating different technologies. These surrogate models

are in the form of Response Surface Equations (RSEs) that were created using the

Response Surface Methodology (RSM) as described by Myers and Montgomery [151],

and Box and Draper [152] among others. RSEs are typically second order polynomial

equations as given by Equation 40.

R = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑
i=1

k∑
j=i+1

βijxixj + ε (40)

where,

R = response of interest

β0 = intercept term

βi = coefficient for first order terms

βii = coefficient for second order terms

βij = coefficient for cross-product terms

xi = main effect of independent variables

xii = quadratic effect of independent variables

xij = second order interaction effects of independent variables

ε = associated error

The coefficients of this equation are usually determined by least square analysis

of the experimental data. For the required experimental data, Design of Experiments

(DoE) is used to create statistically important experiments. Each experimental unit is

then evaluated using the complex numerical simulation environment and the required

response data is generated. The RSEs thus created are a function of sixty technology

metrics or k-factors for the current problem.
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9.2 Technology Data

The 29 technologies identified for this problem are denoted as T1, T2,. . ., T29 and

listed in Table 18. The impact of these technologies on the aircraft were elicited

from the technology and system experts using the Technology Metrics Assessment

and Tracking (TMAT) process [21]. This process was enabled by the Technology

Audit Sheets for each technology which were filled out by the respective technology

experts. Additional information was gathered from interviews with technologists and

other data provided by them. This helped in identification of the k-factors and also

in quantifying the technological uncertainty. For the current problem, the impact of

these technologies on the k-factors is not deterministic and three values, pessimistic,

optimistic, and most likely have been defined that indicate the uncertainty in each

impact. Based on these three values, a generalized beta distribution is defined by

calculating the location a, scale (b − a), α, and β parameters for each technology

impact.

There are some compatibility constraints among 29 technologies. These are rep-

resented by the technology graph shown in Figure 69. Most of these constraints are

present because the corresponding technologies are competing with each other. The

incompatibility between T1 and T2 is present because the slotted wing in T1 would

effect the design of the bump in T2. Technologies T1 and T16 are incompatible

because not much is known about their combined effects. The interactions among

T8, T12, T13, and T14 are more complicated. From this set of four technologies,

any combination of one, two, or three can be implemented, all four cannot be in-

cluded simultaneously. Moreover, they have special implementation scheme based

on the number of technologies considered; this is take into account while evaluating

the RSEs. The remaining technologies are independent of one another and can be

implemented in any combination.
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Table 18: Technologies Considered
Tech. No. Technology Description

T1 High Speed Slotted Wing
T2 Transonic Adaptive Bump
T3 Sensory Materials and Damage Science
T4 ST Manufacturable Large Structures
T5 Slat-Cover Filler
T6 Landing-Gear Noise Reduction
T7 Core Cowl Acoustic Liner
T8 Installation Improved Chevron Nozzles
T9 Flap Trailing Edge Treatment for Jet Interaction
T10 Soft Vanes (Stators)
T11 Fan Duct Acoustic Splitter
T12 Offset Stream Technologies
T13 Chevron Vortex Stabilization
T14 Fluidic Chevrons
T15 Inlet Blowing/Liner Integration
T16 Herschel-Quincke (HQ) Tube/Liner Integration
T17 Low Nox Combustor Development Type A
T18 Low Nox Combustor Development Type B
T19 3000F Ceramic Matrix Composite (CMC) combustor materials
T20 3000F metallic combustor materials
T21 2 Stage Proof of Concept Compressor
T22 Highly loaded High Pressure Turbine (HPT)
T23 Highly loaded Low Pressure Turbine (LPT) with aggressive duct
T24 Fan Containment
T25 Nickel Disks
T26 Lightweight Single Crystal Blade Alloy
T27 Low Conductivity Thermal Barrier Coating (TBC)
T28 2700 deg Ceramic Matrix Composite (CMC) Liner
T29 2700 deg Ceramic Matrix Composite (CMC) Vane
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Figure 69: Technology Graph

9.3 Complexity of Technology Graph

Based on the technology graph from Figure 69, the average complexity of the problem

is calculated in this step using Equation 41. Here, t = 29 and the value for probability

of edge is obtained by dividing the total number of edges present in the graph by the

total number of possible edges. As observed from the technology graph, there are 9

edges among 11 distinct technologies. In case of the set with four technologies, at

the most any three can be included simultaneously. To account for this relationship,

one virtual edge can be considered among them. Thus, for the purpose of calculating

the average number of independent sets, there are 10 edges in the graph. Based

on 10 edges and 29 technologies, p = 10

(29
2 )

= 0.0246. Thus, from Equation 41, the

average number of permissible combinations is IGp = 62, 571, 000. This is out of

the total combinations 229 = 536, 870, 912. Even thought the number of permissible

combinations is considerably less than that of all combinations, it is still significantly

large. Available computational resources (software and hardware) in the form of

MATLAB operating on a Windows based desktop computer cannot handle about 62

million combinations to filter out the true Pareto frontier. Moreover, probabilistic
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evaluation of these many combinations is not possible in a reasonable amount of time.

Thus Pareto optimization route is adopted for this problem.

IGp =
t∑

m=0

(
t

m

)
(1− p)m(m−1)/2 (41)

9.4 Reduce Dimensionality?

This step is to decide if dimensionality reduction is desired for the problem. Out

of fifteen responses, there are eleven objectives to be minimized. The possibility

of dimensionality reduction has to be considered whenever there are five or more

objectives to be optimized. The current example has eleven objectives, out of which

there are a few that may be dependent on one another. For example, Empty Wt. and

TOGW are correlated; same can be said about TSFC and Block fuel consumption.

Considering the presence of such correlations among the objectives, it is prudent to

reduce the number of objectives considered for optimization. Moreover, the presence

of redundant objectives tend to reduce the efficiency of Pareto optimization algorithm.

Thus, it is decided to implement the dimensionality reduction procedure.

9.5 Deterministic Pareto Optimization

A representative Pareto set in all eleven dimensions and bounded by the four con-

straints is required for investigating the dominance structure for dimensionality re-

duction. In this step, a Pareto hyper-surface is obtained with Pareto optimization

considering deterministic impacts of the technologies. Towards this end, SPEA2 with

constraints listed in Table 17 is implemented on 29 technologies starting with a ran-

dom population of 100 technology combinations. The most likely values of technology

k-factors are used for evaluating technology impacts on the aircraft. The simulation is

run through 300 generations with an archive size of 1500 points. Total time required

for this simulation is around two hours. The technology-presence on the resultant

203



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

250

500

750

1000

1250

1500

Technologies

F
re

qu
en

cy
 o

f O
cc

ur
an

ce
 o

n 
P

ar
et

o 
F

ro
nt

Figure 70: Technologies Present on 11 Dimensional Pareto Front

Pareto front can be observed from Figure 70. This figure shows the frequency of oc-

currence for each technology on the deterministic Pareto front in eleven dimensional

objective space. It can be observed that technology T9, T16, and T17 are present on

most of the points on Pareto front; on the other hand, T11, T15, and T24 are absent

throughout the entire Pareto front.

The Pareto front is in the form of a data matrix of 1500 rows and 11 columns;

each row represents a point on the 11 dimensional Pareto hyper-surface. This data is

used in the next step of dimensionality reduction.

9.6 Dimensionality Reduction

In this step, dimensionality reduction procedure is implemented on the Pareto front

data obtained from the previous step. A k-EMOSS analysis, as proposed by Brockhoff

and Zitzler [70] and explained in Section 4.3.1.2 of Chapter 4, is implemented on 1500

archive points to investigate the prospects of dimensionality reduction. One important

aspect that should not be overlooked for this analysis is the scale of various objectives.

The measure for empty weight (Empty Wt.) and take off gross weight (TOGW) is

in a hundred thousands range and that for thrust specific fuel consumption (TSFC)
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is less than one. The k-EMOSS algorithm searches for an objective subset of size k

which has minimum dominance error δ. This error is calculated in absolute terms and

not relative to the scale of the objectives; thus, the results will be skewed when some

of the objectives have large measures than others. To address this problem, all the

objective values for 1500 points are normalized between 0 and 1. Now, all objectives

have same measure while their relative position on the Pareto front is preserved.

A greedy algorithm by Brockhoff [153] for k-EMOSS analysis on the the normal-

ized data is implemented with k values ranging from 10 through 2. Here, the algorithm

is executed repeatedly for each value of k and the resultant objective subset of cardi-

nality k and having minimum dominance error δ is recorded. The results obtained are

listed in Table 19. This data is also plotted in Figure 71 with cardinality of objective

subset k on the horizontal axis with corresponding δ values on the vertical. It can

be observed from the figure that when k = 11, that is all objectives are considered,

the dominance error is naturally zero. Now, moving left on the horizontal axis, the

dominance error increases with each reduction in the k value. From k = 10 through

k = 8, there is only minor increase in δ and the dominance structure is almost similar

to the Pareto front of 11 dimensions. There is some increase in δ value going from

k = 8 to k = 7 but the biggest jump in dominance error occurs from k = 7 to k = 6.

This jump in δ indicates the importance of having the objective Cruise TSFC (R6)

that is present in the subset with k = 7 and absent in the one with k = 6. The subset

with cardinality 7 is of interest for Pareto optimization. This objective set includes

{ L/D, Empty Wt., TSFC, Engine T/W, DOC+I, LFL, TOFL }. One important

objective which is an important part of the tradeoff exercise, and absent from the

current subset, is the Acquisition Cost (R15). This is also considered for Pareto op-

timization; and now the final objective set for Pareto optimization is: { L/D, Empty

Wt., TSFC, Engine T/W, DOC+I, LFL, TOFL, Acq. Cost }.

This reduced set of objectives is obtained with the help of mathematical analysis.
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Table 19: Dimensionality Reduction With k-EMOSS
k Objective Subset Error
11 1,2,6,7,9,10,11,12,13,14,15 0.000
10 1,2,6,7,9,10,11,12,13,14 0.003
9 1,2,6,7,10,11,12,13,14 0.006
8 1,2,6,7,11,12,13,14 0.017
7 1,2,6,7,11,12,13 0.152
6 1,2,7,11,12,13 0.536
5 1,7,11,12,13 0.726
4 1,7,11,12 0.849
3 1,7,12 0.968
2 1,7 0.996
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Figure 71: k-EMOSS Analysis for 11 Objectives
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In most instances, this will correspond to engineering judgement. For example, Cruise

TSFC and Block Fuel Consumption are usually correlated and TSFC is the preferred

metric among the two for engineering decision making. With current dimensionality

reduction procedure, TSFC is selected and BFC is left out; this corresponds to the

engineering judgement. On the other hand, Empty Wt. and TOGW are also corre-

lated and if given a choice, TOGW would be preferred over Empty Wt. But, with the

current dimensionality reduction procedure Empty Wt. is chosen over TOGW. This is

because the dimensionality reduction technique is based on preserving the dominance

structure, that is it tries to maintain the structure of the Pareto front while reducing

the dimensions. If the Empty Wt. is replaced by TOGW in the objective subset with

cardinality k = 7, the corresponding dominance error δ = 0.692. This is significantly

higher than δ = 0.152 for the original subset. Thus, even though including TOGW

in place of Empty Wt. would be considered a sound engineering judgement, it would

degrade the overall tradeoff potential of the Pareto solutions objective space.

9.7 Probabilistic Pareto Optimization

Because of the uncertainties present in the technology impacts, probabilistic analysis

using Monte Carlo Simulations (MCS) on the surrogate system model represented

by the RSEs is implemented. Three probability levels, 50%, 75%, and 95%, for each

objective value are calculated for the technology combinations using the empirical

marginal CDFs obtained via MCS. The random samples of the k-factor values for

MCS are created from the generalized beta distributions defined earlier. The sample

size is fixed at 500. According to Equation 42 as discussed in Chapter 6, this sam-

ple size corresponds to an error of 8.9%, 5.1%, and 2.0% for p-levels of 50%, 75%,

and 95% respectively. The p-level values calculated in this step are used for Pareto

optimization.

ε = 2

√
(1− p)

np
(42)
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The probabilistic Pareto optimization is implemented with eight objectives se-

lected in Section 9.6. The evolutionary algorithm is continued through 300 generations

with a population of 100 technology combinations and an archive size of 1500. The

mutation and crossover probabilities are fixed at 5% and 80% respectively. The gene

correction algorithm as described previously is implemented, to address incompati-

bilities and other technological constraints, just before the evaluation of population

members. The algorithm is designed for objective minimization, hence negative val-

ues of Lift/Drag Max (R1) and Thrust to Weight Ratio of Engine (R7) as they are to

be maximized. Responses at three probability levels are evaluated for each members

as explained in the previous section. Fitness for each member is calculated based on

these three values. The constraints for noise and emission responses are implemented

by means of a penalty function. Whenever the response constraints are violated at any

probability level, the fitness of that technology combination is increased proportional

to the constraint violation. This is represented by Equation 43.

fi = fi + ci × fmax (43)

Here, fi is the fitness of ith individual in the population and fmax is the maximum

fitness value in that generation. ci is the number of constraints violated by the ith

technology combination. That is, if a combination violates all four constraints, ci = 4

and if it violates only one of the four constraints, then ci = 1. If no constraint is

violated by the technology combination, then ci = 0, and the penalty function is not

imposed.

After the fitness values are calculated, environmental selection or archiving is

implemented. Reproduction, crossover, and mutation operators follow next and a new

population for the following generation is created. At the end of 300 generations, the

archive with its rows of technology combinations and corresponding response values

for all three p-levels is obtained. These 1500 archive points form the Pareto layers in

an 8-dimensional objective space. Time required for this simulation was around 36
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Figure 72: Technologies on 8 Dimensional Probabilistic Pareto Layers

hr 30 min on a 4 processor 2 Ghz Xeon dual core machine with 8 GB of RAM.

A rough estimate of the importance of various technologies can be gained at this

stage by a technology bar graph as seen in Figure 72. This chart shows the presence

of each technology on the probabilistic Pareto layers. It can be observed that almost

all technologies, except T11, T15, and T24 have considerable presence on the Pareto

layers. Some significant technologies can also be identified. For example, T16, T23,

T27, T9, and T26 are present in more than 800 combinations out of 1500. Moreover,

T16 is present in all 1500 archive points (technology combinations) and cannot be

ignored in the final solution. These can be considered as very active on the Pareto

layers and require due attention in the next step of technology selection.

The result of this step is a set of archive points. This represents the three prob-

abilistic Pareto layers in 8-dimensions. Moreover, in this application, there are four

environmental constraints considered. Thus, the Pareto layers obtained are composed

of only the points that meet the noise and emission constraints.
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9.8 Exploring and Selecting the Technologies

The 1500 technology combinations, each with three p-level values each for eight objec-

tives and four constraints are exported to the visualization and analysis environment

enabled by JMPr [53]. This is illustrated in a screen-shot of JMPr in Figure 73. As

shown in the figure, each row of the data matrix represents a technology combination.

The technology columns denote the presence or absence of a particular technology in

the combination by a binary value of 1 or 0 respectively. Adjacent to the technology

columns are the columns for objective and constraint responses. The constraint re-

sponses are also included in this data set to provide the flexibility for tightening the

constraints and selecting a technology combination based on that.

As there are three probability levels considered, there are three Pareto layers.

Thus, each technology combination results in a set of three response values. To

accommodate this three dimensional data structure in JMP, each technology combi-

nation is represented in three rows, one each for a different p-level responses. Thus,

whereas the number of technology combinations in the archive of probabilistic Pareto

optimization is 1500, the number of rows required for this data is archive size ×

number of Pareto layers = 1500× 3 = 4500. To differentiate each Pareto layer, three

columns of Pareto layer indicator are added to the data. Here, the column has value

1 if the row belongs to that particular Pareto layer. This is illustrated in Figure 74.

The last five columns are indicator columns for lower dimensional Pareto surfaces.

When the objective space is of high dimensionality, it is desired to investigate the lower

dimensional Pareto fronts that are the subsets of the higher dimensional surfaces. For

this purpose, four 2-D and one 3-D Pareto layers are extracted from the 8-D Pareto

layers. The points lying on the sub-dimensional Pareto fronts are indicated by 1 in

the respective column.

Once the data is configured in this manner, rows can be selected and data filtered

based on the Pareto layer of interest (objectives and p-level).
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Figure 74: Identifying Pareto Layers and Sub-dimensional Pareto Fronts
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9.8.1 Scatter Plots

The first plot through which the multi-dimensional Pareto layers should be visualized

is the scatter plot matrix also known as the draftsman’s plot. This plot for the 8-

dimensional Pareto layers is illustrated in Figure 75. This plot enables one to see

the entire 8-dimensional objective space in a single glance. The limits of technologies

are clearly visible in this plot. For example, given the environmental constraints,

the minimum acquisition cost that can be achieved with given technologies is around

$ 96 million at 50% probability level. If even lower acquisition cost is the aim, more

cost-reducing technologies or other avenues have to be investigated. The trends in

the objective space are noticed in this plot. For example, the plot of Acq. Cost

and Empty Wt. is almost a diagonal line indicating that these two objectives are

correlated. This is true for commercial aircrafts and cost–weight relationships are

a well known tool used by designers to estimate cost of an aircraft. Thus scatter

plot matrix can help validate to a certain extent the models and assumptions used in

evaluating the technologies. This plot also helps identify the objectives that have the

maximum potential of making tradeoffs. It can be seen that objective pairs like Eng.

T/W–TSFC, Acq. Cost–L/D, etc. have high potential for tradeoffs. On the other

hand not much tradeoff is involved in selecting technology combinations for Empty

Wt.-Acq. cost.

After investigating the scatter plot matrix, it is of general interest to focus on

specific sets of two or three objectives where the possibility of tradeoff is high. This

is also aligned to the ideas suggested by Das and Dennis [72] of visualizing multi-

dimensional Pareto fronts in blocks of two or three dimensions. The sub-dimensional

Pareto front indicators are very useful for this purpose. As an example, Figure 76

illustrates the filtering of Eng. T/W–TSFC Pareto layers from the 8-D Pareto data

set. The symbols and colors used for the points are the same as in Figure 75. JMPr

provides a data filter tool shown in the figure where a range of column values can
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be fixed and the software selects and shows the rows that are within those bounds.

For the current application, the indicator column for TSFC–Eng. T/W is set to 1.

This selects the technology combinations that are on the Pareto layers of these two

objectives. There are 79 rows out of 4500 that are selected. It should be noted that

the cardinality of each Pareto layer may not be the same in this example. A particular

technology combination may be present on the Pareto layer of 95% p-level but not

on 50% Pareto layer. This happens because the point corresponding to 50% p-level

may not be Pareto optimal in the given dimensions.

It is also of interest to study the drift or movement of technology combinations

between the Pareto layers with different p-levels. Working with the previous example

of TSFC–Eng. T/W Pareto layers, Figure 77 illustrates the movement of a technology

combination between three Pareto layers in two dimensions. This can also be visu-

alized in multiple dimensions with the help of the scatter plot matrix. The selected

technology combination is present on all three 2-D Pareto layers which may not be

the case for every combinations as explained earlier. It can be observed that the three

points on three different layers need not be connected by a straight line. This can

be attributed to the fact that the marginal distributions on different objectives for a

given technology combinations may not be similar in their shape. That is to say, the

joint probability distribution of a technology combination is not always symmetric

over all the axis.

The three dimensional Pareto layers can be visualized using a dynamic 3-D scat-

ter plot. Such a plot for three objectives of L/D–TSFC–Acq. cost is illustrated in

Figure 78. The points are selected using the data filter on the indicator column for

these Pareto layers. The plot can be rotated and spined to view the layers from any

angle. The points of interest can be selected in this plot and can be also seen in

multi-dimensional scatter plot matrix. It is interesting to note that there are 1419

points in these 3-D Pareto layers as compared to only 79 in the previous 2-D example.
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Figure 76: Visualizing Sub-Dimensional Pareto Layers
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This illustrates the considerable increase in the size of Pareto fronts with increasing

dimensions. For a two dimensional Pareto front, it is only an edge, while in a 3-D

case the front is a surface and hence more points.

9.8.2 Clustering

It can be observed from the scatter plot matrix in Figure 75 that most of the solutions

tend to group or cluster together in the objective space. This happens because of the

combinatorial nature of the technology selection space. When certain technologies are

present in combinations, they tend to cluster together; but when they are switched off

or certain other technologies are added to the combinations, there is a noticeable shift

in their positions in the objective space. To study this behavior, clustering analysis

is employed in JMPr.

Clustering is a multi-variate analysis technique of grouping together data with

similar values. Thus points from one cluster are more similar to each other than
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Figure 78: Three Dimensional Pareto Layers

the points from different clusters. This technique helps compartmentalize the multi-

dimensional objective space so that one can focus their search in a smaller section

of the objective space. The technique used for clustering in this application is called

Hierarchial clustering. [53] This is an iterative process starting with each point as

its own cluster. At each step the algorithm calculates the distance between each

cluster and combine the closest one. This process is depicted in a dendrogram. To

illustrate the cluster analysis, an example case with an 8-D Pareto layer of 75% is

considered. Clustering is implemented in two dimensions of Empty Wt. and LFL.

The dendrogram for this analysis is illustrated in Figure 79. Once the analysis is

completed and a dendrogram created, the data can be divided into any number of

clusters between the number of data points considered to 1. As shown in Figure 80,

there are 16 distinct clusters visible in two dimensions. These clusters are sorted

accurately by the hierarchial cluster analysis when the number of cluster is fixed to

16.
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Figure 79: Dendrogram for Cluster Analysis in Two Dimensions
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Figure 80: Clusters in Two Dimensions

A two dimensional example is used here for the ease of understanding but this

process can be used for any number of dimensions. Any of the clusters can be selected

from the dendrogram and studied for prominent technologies. For example, cluster

number 16, which is at the lower left corner of Figure 80 has 165 technology combi-

nations. In this group, T3, T4, and T16 are present in every 165 combinations. On

the other hand, T1, T5, T11, T15, and T24 are completely absent. Thus, affinities of

technologies for a particular region of objective space can be explored.

9.8.3 Strategies for Visual Exploration and Decision Making

The visualization and investigation tools are most effective when the data matrix and

plots are viewed simultaneously as illustrated in Figure 81. Thus any technology com-

bination selected on a data matrix can be viewed immediately in a multi dimensional

scatter plot. Or, if a point of interest is selected on one of the plots, the correspond-

ing technology combination can be viewed in data matrix. Such a visualization and

exploration exercise requires the data to be viewed on a large scale. For example,

facilities such as Collaborative Visualization Environment (CoVE) as described by
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Figure 81: Screen Shot of JMPr

Mavris [154] and Osburg [155] and are ideal for this purpose.

Even when the visualization environment is created, decision making is still not

an easy task. Specific strategies for visual exploration and decision making have to

be implemented in order to select the most appropriate technology combination. As

a first step, it is suggested to select a few blocks of two or three objectives that offer

the most possibilities of tradeoffs, and are important to the designers and decision

makers. Then extract the Pareto fronts in these sub-dimensions. For the current

problem, four two-dimensional and one three-dimensional objective subspaces are

identified as important from decision making perspective. These are {Eng. T/W,

TSFC }, {Avg. Cost, L/D}, {L/D, TSFC}, {Avg. Cost, TSFC} and {Avg. Cost,

L/D, TSFC}. Pareto optimal points for each of the Pareto layers in these subspaces

221



are identified. The indexes of these points are marked in the indicator columns of

JMPr data table. These points can be switched on or off as per requirement using the

data filter tool on indicator columns. For example, Figure 76 plots the cross section

of design space for Thrust/Weight and TSFC showing only the Pareto optimal points

in these two dimensions. All other points are turned off. Lets consider that tradeoff

in this dimension is most important. Points of interest are manually selected from

this plot. The position of these points with respect to other axis is checked in the

adjacent scatter plot matrix. The process is repeated for other subspaces mentioned.

In a large-dimensional objective space as here, it is highly unlikely to find points

that exist simultaneously in more than one two-dimensional slice of the Pareto front.

Hence one has to be careful should not to select only a few points from the first 2 or

3-D Pareto front.

Another strategy for exploring the combinatorial space is by selecting a particular

Pareto layer. If one is interested in high level of confidence, the Pareto layer with

95% confidence can be turned on and data visualized for this layer. With the help of

Pareto layers, the tradeoffs can not only be made among the objectives but also in

the level of risk the designer is willing to take to achieve performance gains. It can

be observed in the previous figures that the Pareto layer with 50% probability level

corresponds to a better objective values that the ones with higher probability levels.

Thus if the designers and decision makers are interested in better performance and

economic values, the decisions can be made based on Pareto layers corresponding to

50% or 75% probability values.

Setting artificial constraints on the objectives is also a good strategy of down se-

lecting the technology combinations. The space of interest can be defined by selecting

limits (usually upper limits) on various objectives. This will reduce the combinatorial

space considerably facilitating the ease of decision making. Placing some upper limits

on objectives for Acq. cost, L/D, and TSFC, the combinatorial space is reduced. For
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the purpose of this exercise, 75% Pareto layer is considered. The limits placed on the

objectives are Acq. Cost ≤ 115 $Mil, L/D ≥ 19, and TSFC ≤ 0.55 lb/lbf.h. After

placing these limits, there are 206 points remaining on the ten-dimensional Pareto

layer from a total of 1500 points. A three dimensional scatter plot matrix for this

example is illustrated in Figure 82.

Now, lets consider that the decision makers are interested in a solution that is

Pareto optimal on the Eng. T/W–TSFC cross section. For this, the point on the

Pareto layer of Eng. T/W–TSFC are selected using the data filter tool. Out of

204, there are only five points that satisfy this criteria. These points are plotted

in Figurer̃eff:selPts2D. Out of these five points, two technology combinations with

maximum engine thrust to weight ratio are selected as shown in the figure.

These two selected technology combinations are now plotted on a scatter plot
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matrix for all eight dimensions and all three Pareto layers. As observed in Figure 84,

one technology combination has considerably more uncertainty associated with itself

than the other; especially, in terms of objectives such as DOC+I, Empty Wt., and

Acq. cost. This can be noted based on the distance between the three p-level points

for a given technology combination. More the distance between 50% and 95% points,

higher the uncertainty associated with that combination.

Similar observation can also be made from the parallel co-ordinate plot illustrated

in Figure 85. Here all three p-level values for each of the selected technology combi-

nations are plotted simultaneously on a parallel co-ordinate plot. This plot shows the

relative difference between two solutions in all objective dimensions. It can be notices

here that combination A has lower uncertainties than combination B in almost all

objective dimensions. Based on this observation, the technology combination with

lower uncertainty should be selected.

This solution was arrived at after making certain implicit tradeoffs and deciding

on preferences. A different set of technology combination may have been selected
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with these strategies but with different tradeoffs and preferences. But for any final

solution, its relative position in the design space is immediately known.

9.9 Summary

The purpose of this chapter was to illustrate via an example the application of Pareto

Optimization and Selection (POST) method developed in the previous chapter. Var-

ious steps involved in POST are applied on a technology exploration problem for a

300 passenger commercial aircraft. When the number of technology options is high,

as in case of the example problem with 29 technologies, complete evaluation of the

permissible combinations is not an option. To address this a stochastic algorithm for

finding Pareto optimal solutions was implemented. The dimensionality of the objec-

tive space was also large with 11 objectives to minimize and 4 constraints to satisfy.

It was decided to reduce this dimensionality using a dominance based dimension-

ality reduction. This method tries to maintain the relative structure of the Pareto

frontier while identifying redundant objectives. After this procedure, eight most im-

portant objectives were selected. Moreover, there were uncertainties associated with

the technology impacts. To address this, probabilistic Pareto optimization algorithm
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was implemented. The result of this procedure was a set of 1500 Pareto optimal

technology combinations in an eight dimensional objective space. Each combination

had three values associated with a response. These three values correspond to three

probability levels considered. Thus three Pareto layers were formed representing 50%,

75%, and 95% probability levels. These points were transferred to JMPr for visual

exploration of combinatorial space. It was shown that visual exploration and de-

cision making is not an easy task and some strategies were adopted for systematic

exploration. The availability of different Pareto layers opened up the possibility of

making tradeoffs in yet another dimension of uncertainty. It was demonstrated that

apart from facilitating decision making with confidence, POST method also allows

for systematic exploration of the entire combinatorial technology space; first using

Pareto optimizing stochastic algorithm and in the final step via visual exploration.
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CHAPTER X

CONCLUSIONS

Technology selection for a complex system is a challenging exercise in multi-objective

combinatorial optimization. There are constraints to satisfy and many objectives

to meet, in addition to the complexity of the problem that increases exponentially

with increasing technologies. It has been observed in this document that these chal-

lenges can be successfully addressed by implementing proper tools and techniques. A

systematic process can help identify efficient technology combinations out of many.

Designers and decision makers can then explore these efficient or Pareto optimal

combinations and select the most appropriate one. This chapter lists some of the key

contributions made to the field of technology selection while developing this process.

Some recommendations are made based on the lessons learned and ideas for extending

this work are presented.

10.1 Summary of Contributions

Some of the key characteristics required for a technology selection process were iden-

tified at the beginning of this thesis. The concentration was on multi-objectivity of

the problem and the presence of uncertainties. A technology selection advisor was

also desired to advise on methods and algorithms to be used for a wide array of tech-

nology selection problems. Throughout the thesis a number of questions were posed

and hypotheses proposed structuring the research.

10.1.1 Technology Selection Advisor

The first question asked: What is the state of the art in technology selection pro-

cess? Chapter 2 and 3 were focused towards addressing this question. A review of
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current literature showed that most of the methods focused on optimizing technol-

ogy combinations based on a single objective. If multiple objectives were present,

they were combined in the form of a utility function and this function was later op-

timized. Various approximate and exact algorithms for optimization were reviewed

and demonstrated on a knapsack problem. Some exploratory techniques were also

demonstrated. Based on this study of different algorithms and techniques for tech-

nology selection, framework for a technology selection advisor was presented. Some

of the limitations in these techniques were identified and further research focused on

addressing them.

10.1.2 Multi-Objective Technology Decisions

One of the most significant limitations of current methods was their handling of

multiple objectives. Thus, the second research question was: How to address multi-

objective nature of the problem? Discussion in Chapter 4 and 5 was focused towards

answering this question. To investigate the multi-objective aspect and various op-

tions available for addressing it a detailed study of multi-objective decision making

approaches was conducted. Specific reasons for the unsuitability of weighted sum or

utility function approach were discussed. In light of these observations, a high level

hypothesis was proposed:

Hypothesis A: A Posteriori preference articulation, a class of MODM meth-

ods, can be used to address multiple objectives in the technology selection

problem and identify a satisfactory solutions.

A posteriori preference articulation includes within its scope the concept of Pareto

optimality. Here, a set of Pareto optimal solutions is presented to the decision makers.

They then decide on the best solution based on their preferences and by making

implicit and explicit tradeoffs. Various aspects of Pareto optimality were discussed

for the purpose and challenges identified. One of the main challenges involved was
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with the dimensionality of the problem. The focus now was on reducing the problem

dimensionality in the context of Pareto optimization and identifying an algorithm for

Pareto optimization. It was hypothesized that:

Hypothesis B : Dimensionality of the Pareto hyper-surface in a multi-objective

technology selection problem will be smaller than the number of objectives.

The plausibility of this hypothesis was checked on the technology problem with

the help of dominance based dimensionality reduction technique. It was shown that

the initial set of 11 objectives can be reduced to a set of eight objectives by accepting

some error in the dominance structure. For this example, no objective was completely

redundant in terms of dominance structure. Though, if all the 15 responses were

considered as objectives to be minimized and dimensionality reduction applied to

this space, two objectives were found to be redundant and their absence would not

change the structure of the Pareto front.

For the purpose of Pareto optimization, various stochastic evolutionary algorithms

were reviewed and a hypothesis was proposed:

Hypothesis C : Pareto optimization of the technology selection problem can be

most efficiently accomplished by the Strength Pareto Evolutionary Algorithm.

The plausibility of this was checked using the benchmark knapsack problem.

SPEA2 was demonstrated to be very effective in finding non-dominated solutions

when compared to Niched Pareto genetic algorithm or a random search. The qual-

ity of results from SPEA2 was largely dependent on the archive size. Large archive

populations helped achieve better results.

10.1.3 Probabilistic Pareto Optimization

The next research question asked: How to account for technological uncertainties

while selecting technology combinations? Chapter 6 explored ideas towards answer-

ing this question. Different facets of uncertainty-based design were looked into and
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probabilistic techniques explored for analysis. Uncertainty representation for technol-

ogy impacts was implemented by converting expert opinion into a generalized beta

distribution using PERT approximations. A framework based on response surface

methodology and Monte Carlo simulations was selected for probabilistic analysis.

The number of samples required by MCS to create a sufficiently accurate empiri-

cal CDF was calculated. Joint probability distribution was studied and the use of

marginal distributions to account for uncertainties in each response was preferred. It

was illustrated that post-optimization probabilistic analysis was not sufficient and the

results would be different if the optimization was carried out based on probabilistic

analysis. To address this concern within the framework of a posteriori preference

articulation a hypothesis was proposed:

Hypothesis D: An approach based on probabilistic Pareto layers is the most

appropriate method of accounting for technological uncertainties within the

MODM framework of a posteriori preference articulation.

A novel probabilistic Pareto optimization algorithm based on SPEA2 was formu-

lated to take into account the probabilistic values of the responses. This algorithm is

designed to simultaneously search for non-dominated points on different Pareto layers

and do this while taking into consideration the distribution widths of various points.

To check this method and the plausibility of the previous hypothesis, the results

of deterministic and probabilistic Pareto optimization of a knapsack problem were

compared. It was demonstrated that probabilistic Pareto optimizer indeed provided

better results than the deterministic optimizer.

10.1.4 Technology Incompatibilities

When there is a large number of technology options, there may be compatibility or

enabling interactions among them. That is, one technology may not work in the

presence of the other, or one will require the presence of the other technology. The
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analysis of technology incompatibilities was implemented using the concepts of graph

theory in Chapter 7. It was shown that this type of constraints significantly reduce the

technology combinatorial space. An equation was derived for the average complexity

of this space based on the number of technologies and constraints present. Based on

this number, it can be decided if the complete evaluation of technology combinations

is feasible or not. Given the fact that the average technology problem would have

only about 10% permissible combinations, a hard constraint formulation based on

gene correction is used in the Pareto optimizer.

10.1.5 Combinatorial Technology Space Exploration

Based on the ideas discussed above, a method called Pareto Optimization and Se-

lection of Technologies (POST) was formulated. At the core, this method is about

searching the combinatorial technology space to determine the probabilistic Pareto

layers; and then, visually exploring those Pareto layers. The designers and decision

makers would be able to know the limits of the objective space opened up by the

technology options and also find the most suitable technology combination. Implicit

tradeoffs can be made not only among various objectives but also with uncertainties.

Once the Pareto layers and exploration environment are created for a problem, the

decisions can be revisited if the preferences or constraints change over time without

having to run time consuming analysis again.

The POST method and the codes developed are modular in nature. Various

components can be replaced if something better comes along the way. For example,

if a better probabilistic analysis technique is available, it can be easily used in place

of MCS given its output is in the same format. If sufficient computational resources

are available, complex system codes can easily replace the response surface equations

used in the current example. Similarly, a custom built visualization environment can

also be used in place of JMPr. The unique feature of this method that cannot be
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replaced is the probabilistic Pareto optimization algorithm. This has been specifically

developed to create probabilistic Pareto layers in the objective space in a single run.

10.2 Recommendations and Future Work

The concepts and techniques discussed above were applied to two example problems.

In Chapter 1, the similarity of technology problem with the knapsack problem was

explored. Based on this, a 5-dimensional 16 item knapsack problem was created as

a benchmark problem to experiment various techniques studied. This proved to be

invaluable in exploring various algorithms that can be used for technology selection.

As the problem was small enough, a complete enumeration of all item combinations

was possible and a true Pareto front was extracted. This proved to be very useful in

comparing different Pareto optimization algorithms.

The knapsack problem can be considered a simplified version of the technology

selection problem. The scale of a practical technology problem is much larger than

the benchmark problem considered. Moreover, there are many intricacies involved in

the technology problem because of their complex interactions with the system. Thus,

an approach resulting from the experiments on the knapsack problem had to be

implemented on a larger and practical technology exploration and selection problem.

This problem was of technology exploration for a 300 passenger commercial aircraft.

The procedure for dimensionality reduction was applied on this problem. The

main reason for applying this was for improving the efficiency of Pareto optimization

algorithm and for the ease of visual exploration and decision making. Because of

this, some objectives were not available to make tradeoffs. Even though these di-

mensions had minimum impact on the Pareto front, their absence can be construed

as a drawback in certain cases. The availability of probabilistic Pareto layers adds

significant capability to the combinatorial exploration process. Each Pareto layer

can be explored individually based on the risk avoidance preferences of the decision
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makers. The technology combinations can be down-selected based on the distance

between their corresponding points in different Pareto layers. It was observed toward

the end of the process that even though POST is a good tool for visual exploration,

the decision making is still a daunting task. This is especially true for a very large

dimensional problem without many constraints. Integrating a multi-attribute deci-

sion making (MADM) technique within this visual environment can prove useful for

the purpose.

10.2.1 Ideas for Further Research

The concepts and framework developed in this research lead to some exciting new

ideas for technology exploration and selection. For example, the technologies con-

sidered in this research had a point impact on the system. That is, there was only

one value, though uncertain, that represented the impact of certain technology on

a few technology metrics or k-factors. In many practical situations, this may not

be true and the technology impact is more like a curve on a 2-dimensional k-factors

plot. There is an initial tradeoff involved in deciding the impact of technology on two

k-factors. For example, consider a case of thermal barrier coating technology under

consideration for an aircraft engine turbine blades. By applying this technology, the

turbine inlet temperature can be increased and at the same time cooling flow for the

turbine blades can also be decreased. The impact on these two k-factors is interde-

pendent. It would be of value to bring in this type of information when evaluating

and selecting technology combinations. One way of implementing this within the

Pareto optimization framework is via discretizing the technology curve. Thus each

technology is represented by n points, each with different values for k-factors. For a

smaller problem with only a few technologies, a gradient based optimizer can be used

to fix the values of k-factors within a branch and bound algorithm for optimizing

technology combinations.
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This research addressed the probabilistic nature of technology impacts. But, the

distributions on these impacts change with time as more information is available

about the technology and the system. From this perspective, they are stochastic in

nature. One idea that may address this is by mapping the changing distributions

over time to the generations of probabilistic Pareto optimization algorithm. In this

way, the first generation will use the initial distribution on the technology impact and

the last generation would use the final predicted distribution. Implementing this idea

would require extensive research in verifying the concept of mapping generations to

the distributions.

10.3 In Closing

The main objective of this research was to formulate a method which helps designers

and decision makers efficiently explore the technology combinatorial space and select

the most appropriate combination. The multi-dimensional and uncertain nature of

the problem was to be considered. Achieving this objective required formulating a

novel probabilistic Pareto optimization algorithm that would result in probabilistic

Pareto layers of technology combinations in the objective space. Using various tech-

niques, a method is developed that brings in the results from a consistent analytical

foundation in a dynamic tradeoff environment where the decision makers can make

implicit tradeoffs and select technologies while being aware of all the options available

and the risk involved.
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