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SUMMARY 

Research on silicon thermoelectric coolers lies at the intersection of semiconductor 

physics, nanoscale heat transfer, industrial manufacturing, and device engineering. The 

electronic properties of doped silicon (σ≈50,000 S/m and S≈200 µV/K at 1020 cm-3) are 

highly desirable, but the intrinsic thermal conductivity is at least two orders of magnitude 

too high for thermoelectric applications. The phononic contributions to the thermal 

conductivity dominate in silicon and have mean free paths that span a wide range of length 

scales at room temperature. Conversely, electronic contributions to the thermal 

conductivity span a much narrower mean free path spectrum at smaller length scales. The 

thermoelectric potential of bulk silicon may be realized in nanoporous silicon (np-Si) that 

selectively impedes phonons. The task of minimizing thermal conduction, without 

significantly affecting the electronic transport, represents an opportunity to use recent 

scientific understanding of thermal transport in silicon for the important engineering 

application of cooling. Furthermore, the development of np-Si creates an opportunity for 

experimental measurements that may further the scientific understanding of nanoscale 

physics.  This dissertation includes (i) a scalable fabrication process used to produce np-Si 

from degenerately-doped silicon powders, (ii) experimental measurements of the 

thermoelectric properties of the np-Si samples, (iii) microstructural and compositional 

characterization of the np-Si samples, (iv) a numerical model that applies the 

characterization results to predict the effective thermoelectric properties of np-Si, and (v) 

an augmentation of frequency-domain thermoreflectance to measure the thermal 

conductivity of anisotropic samples. 
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CHAPTER 1. INTRODUCTION TO THERMOELECTRICS 

The vast majority of heating, ventilation, air conditioning, cooling, and 

refrigeration devices are based on vapor-compression technologies (VCT) that use 

refrigerants with high global warming potential.[1] Hydrofluorocarbons (HFCs) are the 

most prominent refrigerants in use today and global demand is growing at 10 to 15% per 

year. Under current growth models, the contribution of HFCs to global warming has been 

estimated at 0.5°C by the end of the century.[2] However, this trend could be mitigated due 

to the relatively short atmospheric lifetime of most HFCs (~15 years).[3] The replacement 

of VCT with a more environmentally-friendly technology has clear benefits, but rapid and 

widespread adoption may only be possible if the new technology is economically 

competitive with VCT. Therefore, any alternative to VCT must be capable of pumping heat 

with a coefficient of performance (COP) that is comparable to VCT, as this directly 

translates to the operating cost of the device.  

Thermoelectric coolers (TECs) pump heat via the Peltier effect, as shown in Figure 

1. TECs provide cooling with no global warming potential, operate reliably without 

moving parts, and can provide a high capacity for both heating and cooling in a scalable 

device.[4, 5] However, current TEC technology is not competitive with VCT on the basis 

of COP and the market penetration has been limited to niche applications. The COP of a 

TEC is a function of geometry, operating conditions, heat exchanger performance, and 

thermoelectric properties. The relevant materials properties can be lumped into a 

dimensionless material figure of merit 2 /zT S Tσ κ=  to provide a formulation for the 

maximum achievable COP for cooling 
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 1/2

max 1/2

(1 ) /
(1 ) 1

C H CT zT T TCOP
T zT
 + −

=  ∆ + + 
, (1) 

where S is the Seebeck coefficient (µV/K), σ is the electrical conductivity (S/m), κ is the 

thermal conductivity (W/m-K), and TH and TC are the hot and cold side temperatures (K), 

respectively. Bulk crystalline semiconductors, notably Bi2Te3, can be optimized via doping 

to zT ≈ 1, but further improvements can be achieved through the decoupling of S, κ, and σ 

via nanostructuring.[6, 7] 

 

Figure 1 - (a) Diagram of electrical current passing through a junction of dissimilar 
materials, resulting in the release of Peltier heat. (b) A TEC using traditional flat-

plate geometry. Alternating p-type and n-type legs are arranged electrically in series 
and thermally in parallel, resulting in a net heat pumping effect when electrical 

current is applied. 
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1.1 Silicon Thermoelectrics 

1.1.1 Silicon’s Potential for Thermoelectric Applications 

The potential of silicon (c-Si) as a thermoelectric material derives from its natural 

abundance, low cost, attractive thermoelectric properties (e.g., power factor, S2σ), and 

mature manufacturing processes.[8] However, the high thermal conductivity of bulk 

intrinsic (i.e. undoped) silicon (κ ≈ 149 W/m-K) results in a low zT. A comparison between 

bulk degenerate (~7x1019
 atoms/cm3) silicon[9] and nanostructured p-type 

Bi0.48Sb1.52Te3[10] is shown in Table 1. The thermal conductivity of silicon must be 

reduced by at least two orders of magnitude before it can become an economically 

competitive TE material. 

Table 1 - Comparison of approximate bulk thermoelectric properties between state-
of-the-art bismuth animoney telluride and bulk degenerate silicon at room 

temperature. 

Property 
Bi0.48Sb1.52Te3 

(p-type, n=3x1019 cm-3) 
Degenerate Silicon 

(p-type, n=7x1019 cm-3) 

Electrical Conductivity (σ) ~125 kS/m ~45 kS/m 

Seebeck Coefficient (S) ~205 μV/K ~205 μV/K 

Thermal Conductivity (κ) ~1.15 W/m-K ~87(a) W/m-K 

Power Factor (S2σ) ~5,250 μW/m-K
2
 ~1,900 μW/m-K

2
 

Figure-of-Merit (zT) ~1.5 ~0.007 
(a) Thermal conductivity of degenerate silicon (~87 W/m-K) is reduced below intrinsic silicon (~149 
W/m-K) due to impurity scattering. 

The study of nanostructured silicon for thermoelectric applications has been a 

subject of recent interest.[11-15] The tunable size effects in silicon nanostructures[13, 16] 
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can be used to exploit that electron transport in silicon occurs at nanoscale dimensions[17] 

whereas phononic size effects are observed in structures as large as 1 µm.[18, 19] Thus, a 

well fabricated structure may be able to sufficiently reduce silicon’s thermal conductivity 

while leaving the desirable electrical properties intact. [11, 15, 20, 21] 

1.1.2 Nanostructured Silicon Thermoelectrics 

The use of lower dimensional structures for the selective reduction of thermal 

conductivity was introduced over 25 years ago by Hicks and Dresselhaus, and subsequent 

advancements in the understanding of nanoscale transport properties has led to significant 

improvements in the thermoelectric properties of silicon.[22, 23] The most notable 

achievements include experimental measurements of silicon nanowires[24] (zT ≈ 0.6) and 

porous silicon membranes[11] (zT ≈ 0.4) at room temperature. Although these reports 

demonstrate the ability to enhance zT via nanostructuring, the commercialization of these 

materials is challenging because the reduced dimensionality of these materials makes it 

difficult to integrate them into existing device architectures.[23]Progress towards novel 

device architectures is one approach towards the commercialization of nanostructured 

thermoelectric materials.[25, 26] However, a more straightforward approach involves the 

fabrication of nanostructured materials that can be readily integrated into existing 

devices.[27, 28]  

Bulk nanostructured porous silicon (np-Si) is an alternative geometry that 

incorporates silicon nanoparticles into a porous heterostructure with outer dimensions on 

the scale of millimetres. Computational studies of superlattice structures have shown that 

the desirable reduction in the thermal conductivity of nanostructured materials does not 
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require exact geometries or perfect interfaces[29], but is primarily driven by the high 

density of interfaces.[30] Bulk nanostructures retain the high density of interfaces without 

the need for controlled geometries, and can therefore be manufactured using industrial 

techniques and integrated into existing devices. [8, 15, 20], [27, 31] Bux et al. fabricated n-

type np-Si using ball milling and hot pressing to achieve zT ≈ 0.7 at 1200 K (zT ≈ 0.04 at 

300 K).[27] Kessler et al. synthesized nanoparticles from a scalable gas phase  process with 

production rates approaching ~1 kg/h, and used a current-assisted sintering technique to 

achieve zT ≈ 0.45 at 1000 K (zT ≈ 0.1 at 300 K).[31] However, the fabrication of np-Si 

with competitive TE properties at room temperature remains an unsolved challenge. 

1.2 Experimental Measurement of Nanoscale Thermal Transport 

The principle of thermoelectric improvements via nanostructuring has been 

robustly demonstrated, but the optimization of these structures is contingent upon further 

developments in the understanding of nanoscale thermal transport.[14] Significant progress 

has been achieved through atomistic simulations and analytical models, but experimental 

validation of these results is an ongoing challenge.[14, 32-35] 

In recent years, a set of experimental techniques that rely on transient 

thermoreflectance (TTR) have shown potential to measure the accumulation of thermal 

conductivity as a function of phonon mean-free-path, Λ.[36] TTR techniques, most notably 

time-domain thermoreflectance (TDTR) and frequency-domain thermoreflectance 

(FDTR), apply a periodic heat source to a sample and observe the temperature-dependent 

variation in the sample’s reflectance.[37-40] The relationship between the heat source and 

surface reflectance is used to extract information about the thermal properties of the 
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sample, most often the thermal conductivity of bulk materials, thin films, and the thermal 

interface conductance between materials. These techniques are advantageous for studying 

nanoscale phonon transport because of their ability to control the length scale of the 

temperature gradient, Lc, by controlling either the heating laser’s spot size, w0, or the 

thermal penetration depth, Lp, which can be indirectly controlled due to the.[36] Both 

TDTR and FDTR have observed a reduction in the experimentally-observed thermal 

conductivity κexp when Lc is commensurate with the mean-free-path of phonons.[41-44] 

The initial interpretation of κexp vs. Lc involved the application of a step-wise suppression 

function where only phonons with Λ < Lc contributed to κexp.[43] Mathematically, this 

description takes the form 

 
exp

0
( ) ( )

pL

cL dκ κ= Λ Λ∫ , (2) 

where Λ is the phonon MFP and κ(Λ) is the thermal conductivity accumulation function. 

Koh and Cahill were the first to use Equation 2 to measure κ(Λ) in bulk semiconductor 

alloys by performing TDTR measurement at multiple heating frequencies.[42] Regner et 

al.[19, 45] and Freedman et al.[44] applied the same approach using FDTR and observed 

a similar relationship between κexp and Lp. Minnich et al. performed TDTR measurements 

using beam spot diameters of 15 µm, 30 µm, and 60 µm at temperatures ranging from 90 

K to 300 K. The measured thermal conductivity was independent of beam diameter at T = 

300 K, but at T = 90 K the 60 µm beam measured a thermal conductivity of 630 W/m-K 

whereas the 15 µm beam returned a measured value of 480 W/m-K. Both of these measured 

values were below the literature value of 1000 W/m-K.[46] Minnich et al. hypothesized 

that the heated region was at local equilibrium when the heater dimensions (i.e. beam 
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diameter) was larger than the phonon MFP, but ballistic transport affected the measurement 

when 2w0 < Λ. This hypothesis was strengthened by agreement between the measured 

values and the expected values obtained by setting Lc = 2w0 in Equation 2.[41] The resulting 

thermal conductivity accumulation functions, all measured on silicon at room temperature, 

are shown in Figure 2. Wilson and Cahill used TDTR with offset beams to measure κ as a 

function of beam diameter, heating frequencies, temperature, and impurity concentrations, 

but were unable to explain their results using the traditional diffusive model. Their analysis 

called for a more nuanced model of ballistic transport in TTR measurements, which will 

be discussed in the following section.[47] 

 

Figure 2 - Experimental measurements of the thermal conductivity accumulation 
function of silicon at room temperature. Measurements using TDTR include the use 

of both spot size (w0) and penetration depth (Lp) as the limiting conduction length 
scale (Lc). Measurements using FDTR only rely on controlling Lp. 
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The MFP accumulation functions shown in Figure 2 are generated by fitting TDTR 

and FDTR data to a diffusive model (i.e. based on Fourier theory), and the measured 

thermal conductivity value is based on agreement between the model and the experimental 

data. However, this approach assumes that thermal transport in the quasiballistic regime 

(i.e. the transitional regime between diffusive and ballistic transport) can be described by 

applying a reduced thermal conductivity to the traditional diffusive model. Wilson and 

Cahill investigated this assumption by performing a set of TDTR measurements to 

determine when and how Fourier theory will lose its ability to solve nanoscale heat transfer 

problems.[47] Measurements were performed on room-temperature silicon using offset 

pump and probe beams to allow for independent measurements of through-plane thermal 

conductivity, κ⊥, and in-plane thermal conductivity, κ∥.[48] Wilson and Cahill were able to 

reproduce the bulk literature value of 140 W/m-K for all beam offset distances using the 

10 µm beam. When the beam diameter was reduced to 1 µm and the beams were co-

aligned, they measured a reduced value of κexp = 105 W/m-K which was consistent with 

the findings of Minnich et al.[46] However, their measured value of 105 W/m-K failed to 

predict the experimental data for the case of offset beams. When independent values for κ⊥ 

and κ∥ were considered, the measured values of κ⊥ = 140 W/m-K and κ∥ = 80 W/m-K 

provided excellent agreement with experimental data across all beam-offset distances. 

Wilson and Cahill concluded that reducing the beam diameter leads to a reduction in κ∥ 

with a negligible effect on κ⊥. More broadly, they concluded that a reduction in κ∥ would 

occur when w0 < Λ and a reduction in κ⊥ would occur when Lp < Λ and in-plane conduction 

was negligible (i.e. Lp << w0).  
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Wilson and Cahill demonstrated the importance of using an anisotropic model to 

observe and interpret reductions in the thermal conductivity measured by TDTR and FDTR 

experiments.[47] Other interpretations have incorporated more nuanced suppression 

functions derived from solutions to the Boltzmann transport equation (BTE) under the 

relaxation-time approximation.[49-52] Vermeersch et al. suggested that super-diffusive 

Lévy dynamics could be used to explain the reduction in κexp at small timescales and length 

scales.[53, 54] Currently, the interpretation of these measurements remains an open 

question and both experimental and theoretical are viable approaches. 

1.3 Scope of Present Work 

The aim of the present work is to advance the understanding of nanoscale thermal 

transport properties in np-Si. This will be accomplished through the investigation of three 

critical questions: 

To what degree can the thermal conductivity of np-Si be reduced to create a high-

performance thermoelectric material? 

The selective reduction of silicon’s thermal conductivity via nanostructuring has 

been robustly demonstrated.[11, 15, 20, 21] However, a reduction of at least two orders of 

magnitude is necessary for np-Si to be realized as a high-performance thermoelectric 

material. This work reports measurements of both the electrical and pressure-dependent 

thermal properties of np-Si samples. The experimental measurements demonstrate a strong 

selective reduction in the thermal conductivity of np-Si, but the improvements in the TE 

properties were not sufficient (ZT < 0.4 at room temperature) to demonstrate steady 

cooling.  
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To what degree is the reduction in thermal conductivity observed in np-Si consistent 

with current understanding of phonon transport in c-Si? 

This work presents an analysis on the applicability of relaxation-time phonon 

transport models to predict the effective thermal conductivity of np-Si. As a starting point, 

the Holland thermal conductivity model is used to generate a set of phonon MFP 

accumulation functions that incorporate boundary scattering, impurity scattering, phononic 

crystal effects, and, for the first time, Akhieser damping and dopant concentration. The 

MFP accumulation functions are applied to a simplified np-Si geometry and a finite-

element analysis (FEA) is used to predict the effective thermal conductivity of np-Si. The 

applicability of each accumulation function to np-Si is evaluated based on agreement 

between model predictions and experimental measurements of effective thermal 

conductivity. SEM images, electrical conductivity measurements, and the relationship 

between air pressure and effective conductivity is used to validate the use of a simplified 

geometry in the FEA.  

To what degree can frequency-domain thermoreflectance (FDTR) be used to make 

observations about thermal transport in np-Si? 

The use of FDTR has attracted considerable attention for its potential to directly 

measure phonon mean free path (MFP) accumulation in crystalline silicon (c-Si).[43, 45] 

However, the reproducibility of this work has not been studied. Furthermore, Wilson et al. 

have suggested that a failure to account for anisotropic thermal conductivities can 

contribute to erroneous interpretations of high frequency data.[47] The present work 

includes attempts to reproduce the FDTR measurements on silicon, and presents an 
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augmentation to traditional FDTR that enables simultaneous measurement of in-plane and 

through-plane thermal conductivity for anisotropic samples to evaluate the claims of 

anisotropic thermal conductivities.  
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CHAPTER 2. THERMOELECTRIC TRANSPORT IN SILICON  

2.1 Charge Transport in Crystalline Silicon 

The transport of charge carriers in c-Si is described by the band transport model 

derived from the Boltzmann transport equation (BTE).[35] In this model, the bulk electrical 

conductivity is formulated as: 

 2 2
2 ( )

3 3B
e f eg dE E dE

E
σ τν σ∂

= − = −
∂∫ ∫ , (3) 

where E is the electron energy, ν is the carrier velocity, e is the elementary charge, τ is the 

scattering time, g is the electronic density of states, ( )Eσ is the differential electrical 

conductivity, and f is the equilibrium Fermi-Dirac distribution: 
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−
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∂ ′= = −
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where Ef is the Fermi level and kb is the Boltzmann constant. The density of states scales 

as g∝E1/2 in the conduction/valence bands and, by definition, g = 0 in the band gap. The 

Fermi derivative ( )f E′  peaks at E = Ef and decays with an exponential decay length on the 

order of kbT << Eg. 
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The differential electrical conductivity is also found in the formulation for the 

Seebeck coefficient 

 
0

( )( )1 f
B

B

E E E dE
S

eT

σ

σ

∞
−

= − ∫ . (6) 

Mathematically, the Seebeck coefficient is related to the asymmetry in the differential 

electrical conductivity about the Fermi level. The Seebeck coefficient can be physically 

understood by examining the diffusion behavior of electrons in the presence of a 

temperature gradient. From Equation 4, an increase in temperature causes the promotion 

of electrons from the valence band to the conduction band, which results in an increased 

concentration of “hot” electrons (E > Ef) and a decrease in the concentration of “cold” 

electrons (E < Ef). Therefore, the temperature gradient creates a parallel concentration 

gradient of hot electrons and an antiparallel concentration gradient of cold electrons. The 

concentration gradients drive the diffusion of mobile charge carriers (electrons for n-type 

materials and holes for p-type materials) towards the cold side, resulting in the 

accumulation of an internal electric field that resists the charge diffusion. Equilibrium is 

reached when the diffusive current is nullified by the opposing drift current from the 

electric field, and the Seebeck voltage is the steady-state voltage accumulated under open-

circuit conditions. If the hot and cold electrons are equally conductive (i.e., the material is 

ambipolar and σ(E) is symmetric about Ef), the diffusive currents counteract each other and 

the temperature gradient does not generate a Seebeck voltage.  
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2.1.1 Effect of Dopant Atoms on Electrical Properties 

The introduction of impurity dopant atoms can shift the Fermi level, thereby 

affecting the electrical properties of silicon. The relationship between doping concentration 

and electrical conductivity can be understood by examining the ( ) ( )g E f E′  product in 

Equation 2. The mass action law and charge neutrality law can be applied to derive a 

relationship between the Fermi level and carrier concentration 

 
)

2
( c v

f b
i

E E nE kn Tln
n

 +
= ±  

 
, (7) 

where Ec and Ev are the energy levels for the conduction band edge and valence band edge, 

respectively, ni is the intrinsic carrier concentration, and n is the extrinsic carrier 

concentration. The second term of Equation 7 is positive when electrons are the majority 

carrier (n-type) and negative when holes are the majority carrier (p-type). For intrinsic 

silicon, n = ni and Ef falls in the center of the band gap. When dopant impurities are 

introduced, n is increased beyond ni and the Fermi level will shift towards the conduction 

band (n-type) or valence band (p-type), resulting in an increase in the density of free 

carriers and electrical conductivity. The relationship between Ef, g(E), and ( )f E′  is 

visualized for various doping levels in Figure 3. 
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Figure 3 - Relationship between Ef, g(E), fʹ(E) , and σ(E) for various doping 
concentrations. The Fermi level for intrinsic silicon is far from the conduction band 
edge (CB) and the density of states, g(E), shows very little overlap with fʹ(E). As the 
doping concentration is increased, the Fermi level approaches the conduction band 

edge and the conduction band becomes increasingly populated with electrons, 
resulting in an increased in σ(E). In the case of degenerate semiconductors, the high 

concentration of dopants causes a shift in the band edge and the Fermi level falls 
inside the conduction band, resulting in metallic conduction properties (i.e. high 

electrical conductivity). 

The competing trends between the diffusion current and drift current create a 

natural trade-off between σ and S in doped semiconductors. When dopant concentrations 

are increased, the Fermi level shifts from the center of the band gap towards a band edge. 

This results in a higher population of free electrons and an increase to σB. However, the 

shift in Fermi level makes σ(E) more symmetric about Ef, resulting in a lower Seebeck 

coefficient. This trade-off between electrical conductivity and Seebeck coefficient in 

semiconductors establishes an optimum thermoelectric doping concentration that can be 

determined through the maximization of the thermoelectric power factor, S2σ. For c-Si at 

300 K, the optimum doping concentration is on the order of 1020 atoms/cm3, resulting in 

an optimum power factor of ~2000 and ~5000 µW/m-K2 for p-type and n-type, 
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respectively.[55] These power factors are comparable to the ~5000 µW/m-K2 values that 

have been reported for zone-melted p-type Bi0.48Sb1.52Te3 and n-type Bi2Te2.3Se0.7.[10, 56]   

2.2 Thermal Transport in Crystalline Silicon 

The most prevalent models for phonon transport in c-Si rely on a numerical solution 

to the Boltzmann transport equation (BTE) using the relaxation time approximation 

(RTA).[14, 57-59] The well-known Callaway model[60] uses a formulation for thermal 

conductivity under RTA 

 2
2

2 ( ) 1 ( )
2 ph c

N

v C q q q dqβκ τ
π τ

 
= + 

 
∫ , (8) 

where κ is the lattice thermal conductivity, v is the phonon group velocity, τc is the 

combined relaxation time from all scattering mechanisms, τN is the relaxation time 

exclusively from normal processes, q is the phonon wavevector, and Cph is the phonon 

specific heat 
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The β term in Equation 8 is given by 
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and the combined relaxation time is defined using Mathiessen’s rule 

 1 4 2
1 2 3exp( ) //uc A A T A v LC Tτ ω ω− = + + , (11) 

where ω is the phonon frequency, L is the characteristic length scale between boundaries, 

4
1Aω  represents the scattering rate contribution from point impurities (e.g. dopant atoms), 

A2Tω2exp(Cu/T) represents the scattering rate contribution from phonon-phonon 

processes, and 3 /A v L  represents the scattering rate contribution from boundary 

scattering.[60] The variables A1, A2, and A3 are free parameters obtained by fitting Equation 

8 to the temperature-dependent thermal conductivity of silicon. Although the Callaway 

model can accurately reproduce the temperature-dependent thermal conductivity for 

silicon between 1 K and 300K, the data above 300K cannot be reproduced when using a 

single integral.[61] The best-fit Callaway model across a broad temperature range is shown 

in Figure 4(a). 

Holland et al.[61] augmented the Callaway model by splitting the thermal 

conductivity into the sum of three modal contributions: low-frequency transverse (TO), 

high-frequency transverse (TU), and longitudinal (L). The modal form of Equation 8 is 
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where ω is the phonon frequency and ω0,λ is the maximum phonon frequency for the mode 

λ. For each mode, the phonon spectrum and density-of-states (DOS) distribution for silicon 

are used to determine v(ω,λ) and the fitting procedure is split into three steps: (1) fit for κTU 

at T>1000K, (2) use κTU contribution and fit for κL at room temperature, and (3) use κTU 

and κL contributions to fit for κTO at low temperatures. Incorporating mode-dependent 

processes into Callaway’s model allows for higher fidelity across all temperature ranges 

and, more importantly for this work, improves the resolution of A3 which is critical for 

determining how thermal conductivity is affected by changing the value of L.[61] The 

improvement in temperature-dependent fitting and contributions from individual modes 

are shown in Figure 4(b). 

 

Figure 4 - (a) Comparison between experimentaWl values for temperature-
dependent thermal conductivity of silicon and best-fit Callaway model. Holland’s 
mode-dependent approach (Equation 12) is included to show improved fit at high 

temperature. (b) Comparison between experimental values for temperature-
dependent thermal conductivity of silicon and best-fit Holland model. Lattice 

thermal conductivity is the sum of the contributions from low-frequency transverse 
modes (κTO), high-frequency transverse modes (κTU), and longitudinal modes (κL). 
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The three terms on the right-hand side of Equation 11 represent the impurity 

scattering rate, Umklapp scattering rate, and boundary scattering rate, respectively. The 

size-dependence of Equation 12 can be found by varying the value of the limiting 

conduction length scale (L), and the effect of dopant atoms can be accounted for by 

establishing a relationship between doping concentration and the fitted value for A1. 

The relationship between doping concentration and A1 is established by fitting to 

the temperature-dependent and concentration-dependent thermal conductivity of bulk 

silicon.[55, 62] The Umklapp scattering rate is assumed to be independent of dopant 

concentration, so the temperature-dependent thermal conductivity of intrinsic (un-doped) 

silicon is used to determine the fixed value of A2 = 4.15e-19 s3∙K-1
 and Cu = 140 K. The 

concentration-dependent thermal conductivity[55] is then used to establish a relationship 

between doping concentration and A1. The results of the fitting procedure are shown in 

Figure 5. 

 

Figure 5 - (a) Setting A1 as a free fitting parameter allows for strong agreement 
between Equation 12 and literature values for concentration-dependent thermal 

conductivity. (b) Relationship between dopant concentration and best-fit value for 
A1. 
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The resulting relationship, which represents an original contribution, enables the 

use of Equation 12 to predict the size-dependent and concentration-dependent thermal 

conductivity of c-Si, shown in Figure 6. For conduction length scales less than 100nm, the 

thermal conductivity predicted by Equation 12 is consistently higher than the predictions 

from atomistic simulations. This difference is attributed to physical shortcomings of 

relaxation-time models and the use of approximate expressions for the scattering rates in 

Equation 11 as compared to atomistic simulations.[32, 63] However, the ability of the 

Equation 12 to evaluate the thermal conductivity of silicon as a function of doping 

concentration without significant computational resources make it useful for the present 

study.  

The gaseous pores may also contribute to the heat transfer behavior of np-Si. For 

microporous solids, the Rayleigh number is low (Ra<<1) and the effects of natural 

convection may be ignored. In this case, the thermal conductivity of the gas is formulated 

as  

 0

1 /air
g bC T Pd
κκ =

+
, (13) 

where κ0 is the thermal conductivity of air at standard temperature T and pressure P, C is a 

gas-dependent constant based on empirical correlations from experimental measurements, 

and db is the distance between two adjacent boundaries in the direction of the temperature 

gradient.[35] For air, the value of Cg is set to 7.6x10-5 m-K/N.[64] 

The size-dependent thermal conductivity predicted by the Holland model comes 

from the dependence of the boundary scattering term on L. In addition to their small length 
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scales, periodic nanostructures in np-Si may also impede thermal transport by acting as 

phononic crystals. Phononic crystals are the acoustic wave equivalent of photonic crystals, 

where a periodic array of scattering sites within a homogenous host material prevents 

certain acoustic frequencies from existing in the crystal.[65] The modified DOS can be 

calculated by solving for the eigenmodes of an infinite 2D crystal structure[66] and 

integrating the number of modes with respect to frequency for all directions in the first 2D 

Brillouin zone.[67] Once calculated, the modified DOS can be substituted into Equation 

12 to solve for thermal conductivity. Hopkins et al. demonstrated a plane-wave expansion 

(PWE) technique[66] that can be implemented within the Holland model to account for 

phononic crystal effects in periodically nanostructured silicon.[67]  

Phonon scattering is the primary mechanism for thermal conductivity reduction, 

but a growing body of research has suggested that ultrasonic attenuation (Akhieser 

damping) play a significant role in the attenuation of low-energy phonons.[68-74] Akhieser 

damping occurs when acoustic phonons disturb the occupational states of thermal phonons, 

whose frequencies depend on the strain in the lattice. The disturbed thermal phonons 

collide with one another, returning the system to equilibrium as energy is removed from 

the acoustic wave.[69] The attenuation coefficient is formulated as 
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+
 (14) 

where C is the volumetric heat capacity, ρ is the density, v is the acoustic phonon velocity, 

and γ is the Grüneisen parameter.[68, 75, 76] Although Akhieser damping is not strictly a 
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scattering process, it can be crudely approximated as such by adding an extra scattering 

rate to Equation 11 
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τ τ
τ ω
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 
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where τA is the relaxation time contribution due to Akhieser damping[69], τinf and τth are 

fitting parameters obtained by comparison to experimental data of phonon lifetime at low 

frequency (< 1 THz).[77, 78] For silicon at T = 300 K, the fitting procedure yields values 

of τinf = 5 ns and 28 ns for the longitudinal and transverse branches, respectively, and τinf = 

14 ps for both branches.[32] 

Solutions to the BTE under the relaxation time approximation have advanced 

understanding of phonon transport. However, this approach relies on using fitting 

parameters to match existing experimental data and could therefore limit predictive 

capability. Advances in computing have enabled a multitude of novel approaches based on 

atomic simulations.[33, 59, 79, 80] Broido et al.[81] estimated the temperature-dependent 

thermal conductivity of silicon using a first-principles theoretical approach that implements 

an exact solution to the BTE using only the interatomic force constants from density 

functional theory.[82] Esfarjani et al. used a similar approach and performed a modal 

decomposition of the thermal conductivity to obtain a MFP accumulation function for 

silicon at room temperature.[34] Henry et al. implemented a Green-Kubo approach to 

calculating thermal conductivity[83, 84] and performed a modal analysis to derive an 

expression for thermal conductivity with respect to phonon frequency and polarization.[32] 

A compilation of the various MFP accumulation functions obtained by these techniques is 
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shown in Figure 6. The MFP accumulation function generated from the Holland model 

deviates from that of the computation models, but the ability to incorporate impurity 

scattering, Akhieser damping, and phononic crystal effects without lengthy computational 

times makes it useful for this work. 

 

Figure 6 - (a) Silicon thermal conductivity accumulation functions, generated using 
Equation 12, for both intrinsic (un-doped) and degenerate (n=7x1019 cm-3) cases. 

Additional accumulation functions are used for qualitative comparison with existing 
literature values. 
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CHAPTER 3. DEVELOPMENT OF NANOSTRUCTURED 

POROUS SILICON FOR THERMOELECTRIC APPLICATIONS 

3.1 Fabrication Process 

The np-Si samples were prepared by Silniva Corporation, where the general 

procedures is categorized by three stages: (1) the production of micron-sized doped silicon 

powders from bulk crystalline silicon using high energy ball milling,[85, 86] (2) the 

formation of a green (non-sintered) pellet from the milled powder, and (3) the sintering and 

metallization of the compacted pellet to produce bulk-nanostructured porous silicon.  

3.1.1 Milling Bulk Powder to Control Particle Size 

Bulk powders (125 - 500 µm) of polycrystalline doped silicon were used as source 

materials and separate mills were used for the n-type and p-type powders to avoid cross-

contamination. The milling time was the primary process variable, and times between 20 

minutes and 945 minutes were used to obtain controlled particle sizes distributions (PSD). 

The batches were separated into “coarse” (3.5 µm), “fine” (1.05 µm), and “super-fine” 

particles (0.32 µm); detailed PSD measurement results are shown in Figure 7. The particle 

size of the milled powder was quantitatively characterized using a Microtrac X100 laser 

diffraction (LD) system. LD measurements use the theory of Fraunhofer diffraction, which 

states that the intensity of scattered light is directly proportional to the particle size, to 

calculate the PSD by approximating the particles as spheres.[87, 88] The true shape of 

milled silicon is irregular, but Naito et al., found the spherical approximation to yield 

results within 10% of the true PSD for micron-sized boron nitride powder exhibiting 
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similar geometries to the silicon powder used in this work.[89] Based on these 

observations, the approximation of the particles as spheres is not considered to be a 

significant source of uncertainty in the PSD measurement results. 

 

Figure 7 - Particle size distribution before sintering for (a) p-type powder and (b) n-
type powder. The reported diameters for each powder is given as the peak in the 
histogram for each distribution. The characteristic diameters are 3.5 µm (coarse), 

1.05 µm (medium), and 0.32 µm (fine) for both p-type and n-type powder. 

3.1.2 Formation of Green Pellets 

Once the powder is milled to a desirable particle size, a green compact is formed 

by mixing the powder into a binding matrix and pressing the mixture into a compact pellet. 

An ideal binding matrix should provide mechanical robustness and act as a lubricant 

between silicon particles during compaction, thereby enabling their reorientation into a 

close-packed structure.[90] A total of 119 combinations of binders and solvents were 

tested, and a slurry composed of acetone (technical grade) and polyvinyl butyral (Mowital 

B 60HH, 13.44 wt. %) was chosen based on a qualitative assessment of the mechanical 
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properties of the green pellets. The mixed slurry was dried in ambient conditions and 

compacted at 270 MPa in an overhead die press to form the green pellet. 

3.1.3 Sintering and Metallization  

The green pellet contains a percolated network of silicon particles with point 

contacts between adjacent particles. A sintering process is implemented to grow these point 

contacts into solid “necks” through the self-diffusion of silicon at elevated 

temperatures.[91]  The self-diffusion of silicon towards the contact points is driven by the 

reduction in free energy as solid-vapor interfaces are replaced with solid-solid 

interfaces.[92-94] The rate of neck growth and densification of the powder compact can be 

controlled via sintering time, temperature, particle geometry, and surrounding gaseous 

environment.[93] A well-designed sintering process would result in necks that are large 

enough to exhibit the electronic properties of bulk degenerate silicon, but small enough to 

inhibit phononic conduction between particles (see Figure 6).  

In a seminal paper on sintering kinetics, Ashby considered six distinct diffusion 

mechanisms that led to neck growth during sintering and identified three stages of 

sintering: (1) an initial growth stage where particles are distinguishable, (2) an intermediate 

densification stage where the porosity transitions from open to closed, and (3) a final 

densification stage where the porosity is eliminated and the bulk density is recovered.[92] 

Whereas previous efforts at bulk nanostructuring in silicon for TE applications have 

focused on sintering until the third and final stage,[27, 31] this work limited sintering to 

the initial stage and achieved neck sizes of ~20-50 nm.65, 66 Previous studies on c-Si, 

compiled in Figure 6, indicate that necks of this size should significantly reduce the 
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phononic contribution to the thermal conductivity but should have minimal impact on the 

electrical conductivity.[12, 32, 34, 46, 95]  

Lebrun et al. applied Ashby’s formulations to silicon powder and experimentally 

demonstrated that vapor transport of silicon monoxide from the particle surface to the neck 

is the dominant growth mechanism for micron-sized silicon particles covered by an oxide 

layer.[93] Under these conditions, the neck growth rate is given by[92] 
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where dx
dt

 is the neck radius growth rate, Pv is the vapor pressure of SiO, sγ  is the surface 

free energy, Ω is the atomic volume, and K is the curvature at the neck defined by[96] 

 
2

2( ) 1 2a xK
x x a
− = − + 

 
, (17) 

where a is the particle radius. Equation 16 can be numerically integrated to determine the 

relationship between sintering temperature, sintering time, and neck diameter. The results 

are plotted in Figure 8. 

The vapor transport model predicts that, when the pellet is suddenly brought to its 

sintering temperature, the neck will experience an initial period of rapid growth before 

stabilizing. The early growth is driven by the fact that 1K x−∝ , and substituting Equation 

17 into Equation 16 yields 1dx x
dt

−∝ . After the initial period of rapid neck growth, the neck 
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growth rates converge and the neck size stabilizes at a value determined primarily by the 

temperature-dependent vapor pressure  

 vap
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, (18) 

where Po is a pre-exponential factor from experimental data and Qvap is the heat of 

vaporization.  

 

Figure 8 - (a) Neck diameter as a function of time spent at final sintering 
temperature, according to Equation 16. Initial neck growth is nearly instantaneous, 
due to the high curvature of small necks, but stabilizes as the curvature of the neck 

decreases with size. (b) Transient neck growth at 1400°C for temperature ramp 
rates of 4°C min-1 and 16°C min-1. 

For practical purposes, a slow ramp rate from room temperature must be used to 

avoid the development of thermal stress that could potentially cause warping and breakage 

in the green pellet. Figure 8(b) shows the transient neck size during the ramping process. 

At 16°C min-1, negligible neck growth is expected for the first 40 minutes and the neck 
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will not reach a diameter of 50 nm until after 58 minutes. By the time the pellet reaches 

1400°C, the neck will have grown to 600 nm at which point vapor transport is no longer 

the dominant sintering mechanism. At 4°C min-1, the onset of neck growth occurs after 3 

hours and reaches 50 nm after 4 hours. The discrepancy between the growths rates in Figure 

8(a) and (b) demonstrate that, for necks on the order of 20-50 nm, the required sintering 

time is driven by the temperature ramp rate rather than the final sintering temperature. Once 

the sintering process is carried out, the pellets were cooled at 4 °C min-1 to minimize 

thermal stresses. 

Upon completion of the sintering process, the pellets are metallized for property 

measurements. The metallization was performed using a Unisonik-MD ultrasonic solder 

gun and S-Bond® 220M solder. Alternative metallization techniques (e.g. silver paste, 

electroplating, gold leaf, etc.) were also tested, but ultrasonic soldering was chosen based 

on its superior bond with silicon and ease-of-use. 

3.2 Experimental Property Measurements 

The np-Si samples were characterized through experimental measurements of their 

effective thermoelectric properties: thermal conductivity (κeff), electrical conductivity (σeff), 

and Seebeck coefficient (Seff). The effective TE properties were measured on two p-type 

samples and two n-type samples. These pellets were randomly chosen from batches 

containing six samples each, and the remainder of each batch was used for destructive 

material characterization (e.g., atom probe tomography). The measurement results at 

standard atmospheric pressure are displayed in Table 2.  
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Table 2 - Effective electrical and thermal properties of np-Si samples at standard 
atmospheric pressure. 

Sample 
κeff 

(W/m-K) 

σeff 

(kS/m) 

Seff 

(µV/K) 
ε 

p-type, sample 1 1.1 ± 0.1 25.1 ± 2.6 +173 ± 19 0.36 

p-type, sample 2 1.1 ± 0.1 26.5 ± 2.6 +178 ± 19 0.35 

n-type, sample 1 1.0 ± 0.1 18.7 ± 1.5 -180 ± 20 0.36 

n-type, sample 2 1.0 ± 0.1 18.9 ± 1.5 -181 ± 20 0.35 

3.2.1 Electrical Property Measurements 

The measurements of σeff were performed according to the ASTM B193-16 

standard.[97] This standard involves independent measurement of the electrical resistance 

(R) and the dimensions of the pellet. These measurements are then used to calculate the 

effective electrical conductivity σeff = t/RAc where t is the thickness of the pellet and Ac is 

the cross-sectional area. The measurement of Seff was performed according to the direct 

method within ASTM E977-05.[98] In this standard, a known temperature difference (ΔT) 

is imposed on the sample and the output Seebeck voltage is compared to a calibrated 

reference sample to calculate the sample’s Seebeck coefficient. The temperature gradient 

was imposed in the same orientation as the measurement of σeff to eliminate errors due to 

anisotropy in the sample. The calibration measurement was performed on a constantan 

sample (S ≈ 35 µV/K)[99] and the contribution from the leads (Sleads ≈ 1.5 µV/K) was found 

to be negligible compared to the measured values of Seff for np-Si. All measurements were 

made with ΔT < 20 K and centered about T=300 K to minimize the impact of temperature-

dependence on measurements of Seff. 
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3.2.2 Thermal Property Measurements 

Measurements of κeff were made using a transient plane source (TPS) technique 

(commercial name: Hot Disk® TPS 2500 S). The TPS sensor, shown in Figure 9, consists 

of a nickel spiral pattern surrounded by polyamide for electrical insulation. During the 

measurement, direct electrical current is sourced through the sensor’s nickel spiral pattern 

and the generated Joule heat is conducted into the sample. The voltage drop across the 

sensor is measured simultaneously, and the transient resistance of the sensor is used to 

calculate the temperature response of the sensor during the measurement. The transient 

temperature response of the sensor is fit to an analytical solution to obtain the sample’s 

volumetric heat capacity and thermal conductivity from a single measurement.[100] 

 

Figure 9 - (a) Diagram of Hot Disk sensor. A nickel spiral pattern is encased in a 
thin layer of polyamide tape for electrical insulation. Electrical current is sourced 
from lead 1 to lead 2 and causes Joule heating in the spiral pattern. The voltage 
between lead 3 and lead 4 is simultaneously measured and used to calculate the 
temperature-dependent resistance of the nickel spiral. (b) A typical Hot Disk 

measurement places the sensor between two identical samples.  
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The analytical solution relies on two critical assumptions: (1) the thermal waves do 

not reach the sample boundaries (i.e. the sample can modeled as a semi-infinite solid), and 

(2) the temperature rise of the sensor is small (ΔT < 10 K) such that the relationship 

between temperature and resistance can be considered linear. The proper selection of 

measurement time, sensor radius, and heating power is critical towards ensuring the 

validity of these assumptions. The probing depth of the thermal wave is formulated as 

  2 *p mD t∆ = , (19) 

where D is the thermal diffusivity of the sample and tm is the measurement time. In order 

to satisfy the first assumption, the sensor radius and measurement time should be chosen 

such that Δp is smaller than the shortest distance from the sensor to the sample boundary. 

Furthermore, the measurement’s sensitivity to the thermal diffusivity of the sample is 

maximized at some characteristic time  

 
 

2

char
rt
D

= , (20) 

where tchar is the characteristic time and r is the sensor radius. When the measurement time 

and characteristic time are matched, the probing depth can be found by substituting 

Equation 20 into Equation 19 to obtain 

  , 2p char r∆ = . (21) 

Therefore, the sensor radius should be selected such that the minimum distance between 

the sensor and sample boundary is equal to the sensor diameter, and the appropriate 
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measurement time can be estimated by using an approximate diffusivity value in Equation 

20. The heating power is selected such that the sensor’s temperature rise is between 1 K 

and 10 K during the measurement. 

In porous samples, both the solid matrix and the gaseous pores contribute to the 

effective thermal conductivity. The ability to measure the thermal conductivity of porous 

samples at reduced pressures (~ 1 Pa) could provide insights on the relative magnitudes of 

these contributions and allow for the solid matrix to be independently characterized. 

However, the interface between the sensor and sample could become a dominant thermal 

resistance at low pressure and affect the measurement’s accuracy. A series of pressure-

dependent measurements were performed on calibrated samples to determine: (1) if the 

contact resistance between the sensor and sample could affect the accuracy of the 

measurement at low pressure, (2) if the effects of contact resistance could be mitigated by 

polishing the samples, and (3) if the use of thermal grease between the sensor and sample 

would adversely affect the accuracy of the measurement due to the relatively high thermal 

conductivity of the thermal grease (κ ≈ 8 W/m-K).  

The impact of an elevated contact resistance at low pressure was characterized by 

measuring a reference standard of stainless steel 304 (NPL 2S09, κ = 14.3±0.5 W/m-K) in 

ambient conditions and at a reduced pressure of ~1 Pa. The reference material is not porous, 

so any deviation at reduced the pressure indicates that the increase in contact resistance 

affects the accuracy of the low-pressure measurement. The transient temperature response 

and thermal conductivity measurement values are shown in Figure 10. 
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Figure 10 - Transient temperature response of stainless steel 304 at ambient 
conditions (red and blue) and reduced pressure (black). Heating power, 

measurement time, and sensor radius were kept constant across all measurements. 
The large temperature rise of the sensor at reduced pressure indicates that the 

elevated contact resistance prevents the flow of heat from the sensor into the sample. 
Measured values of thermal conductivity agree with reference values at ambient 

conditions but deviate by two orders of magnitude at reduced pressure, indicating 
that the elevated contact resistance affects measurement accuracy. 

The results in Figure 10 indicate that the large contact resistance at low pressure 

prevents the flow of heat from the sensor into the sample, and therefore causes an 

artificially reduction in the measured thermal conductivity. Mechanically polishing the 

sample could reduce the contact resistance and restore the accuracy of the measurement at 

low pressure. The sufficiency of this solution was tested by measuring a fused silica mirror 

substrate (Thorlabs PF10-03, κ = 1.4 W/m-K).[101] A surface quality of 40-20 scratch-dig 

and a surface flatness of λ/10 were specified by the manufacturer, therefore these substrates 
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were assumed to represent an upper limit on what could be achieved by mechanical 

polishing.[102] The measurement results are shown in Figure 11. As was the case with 

stainless steel, the temperature rise was significantly larger at reduced pressure despite the 

high surface quality of the fused silica sample. Therefore, it can be concluded that the 

reduction in contact resistance due to mechanical polishing would be insufficient to achieve 

accurate thermal conductivity measurements at low pressure. 

 

Figure 11 - Transient temperature response of fused silica at ambient conditions 
(red and blue) and reduced pressure (black). The measurements at ambient could 

reliably reproduce the literature value of thermal conductivity, but the low-pressure 
measurement showed similar characteristics to the measurement of stainless steel, 

indicating that mechanical polishing would be an insufficient solution to the issue of 
contact resistance.  

Thermal grease is another common solution for reducing contact resistance. 

However, the application of thermal grease between the sensor and sample may adversely 
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impact the accuracy of the measurements due to the relatively high thermal conductivity 

of the thermal grease (Arctic Alumina, κ ≈ 4 W/m-K). The impact of thermal grease on 

contact resistance and measurement accuracy was investigated by measuring fused silica: 

(1) without thermal grease at ambient pressure, (2) with thermal grease at ambient pressure, 

and (3) with thermal grease at reduced pressure. The transient temperature data for these 

measurements are shown in Figure 12. The agreement between the three measurements 

indicates that the use of thermal grease is effective in reducing the contact resistance at low 

pressure without otherwise influencing the measurement. 

 

Figure 12 - Transient temperature response of fused silica at ambient pressure 
without thermal grease (red), with thermal grease (blue), and with thermal grease at 

reduced pressure (black). The use of thermal grease has negligible impact on the 
measurement at ambient pressure. The measured thermal conductivity at reduced 

pressure was within the margin of error of the literature value (1.4 W/m-K).   
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The effective thermal conductivity of the np-Si samples was measured across a 

range of pressures (1 Pa – 100 kPa). The pressure-dependent thermal conductivity 

measurements are shown in Figure 13. 

 

Figure 13 - Pressure-dependent thermal conductivity of np-Si for both p-type and n-
type at room temperature. Evacuation of the gaseous pores resulted in a 30% 

decrease in effective conductivity of np-Si. 

3.3 Material Characterization Results 

One of the key questions in this work relates to the consistency between the 

effective TE property measurements of np-Si and the model of phonon transport in c-Si 

under the relaxation-time approximation. To address this question, it is critical to 

understand the microstructural and compositional properties of the np-Si samples. To that 

end, the composition and structure of the np-Si samples were characterized using PSD 
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measurements, atom probe tomography (APT), and SEM imaging. The characterization 

results were incorporated into a numerical model for comparison with the experimental TE 

property measurements. 

3.3.1 Atom Probe Tomography Measurements 

Atom probe tomography (APT) measurements were performed to examine the 

spatial concentration of dopant atoms after the sintering process. The results and analysis 

for the APT measurement, presented in Figure 14, show a non-uniform distribution of 

dopant atoms in both the p-type and n-type samples. Transmission electron backscatter 

diffraction was used to identify the regions of elevated dopant concentration as grain 

boundaries. The observed segregation of dopant atoms towards grain boundaries is 

consistent with previous literature and attributed to the rapid diffusion of impurities within 

grain boundaries.[103, 104] A second APT measurement was performed far from a grain 

boundary to establish a bulk dopant concentration of n = 1020 atoms·cm-3 for the n-type 

samples and n = 7x1019 atoms·cm-3 for the p-type samples. 
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Figure 14 - Atom probe tomography shows variation in the concentrations of dopant 
atoms near grain boundaries for both (a) n-type (purple) and (b) p-type (blue). The 
bulk dopant concentration was established by analyzing a region far from the grain 

boundary (bulk). (c) Dopant concentration profiles for both dopants are plotted 
with respect to distance from the grain boundary. 

3.3.2 Scanning Electron Microscopy 

The structure of the sintered np-Si samples was examined using a scanning electron 

microscope (SEM). The resulting images, shown in Figure 15, provide qualitative 

information about: (i) the PSD after sintering, (ii) the size of the necks between adjacent 

particles, and (iii) the degree of compaction between particles. The particles in Figure 15(a) 

can be distinguished from one  another, giving qualitative confirmation that the sintering 

process did not progress past the initial stage described by Ashby.[92] Adjacent particles 

appear to be connected through solid necks with limiting dimensions on the order of 10-

100 nm, which is desirable for the selective reduction of thermal conductivity in c-Si (see 

Figure 6). The magnification of the SEM image in Figure 15(b) is insufficient to provide 

information about the neck size, but the observed particles appear to be in qualitative 
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agreement with the PSD measurement of 3.5 µm. Furthermore, the arrangement of particles 

in both images gives qualitative confirmation of the densely-packed structure of the np-Si 

samples. 

 

 

Figure 15 - (a) SEM image of a sintered n-type sample and (b) SEM image of the n-
type sample used for APT analysis.  The large continuous regions were created 

during the sample preparation for APT measurement and are not present in typical 
np-Si samples. P-type and n-type samples appear identical. 

3.4 Numerical Modeling 

In an attempt to explain the experimentally observed low thermal conductivity, a 

numerical model was created to examine the consistency between the experimental 

measurements, material characterization results, and the thermal conductivity model from 

Equation 12. The model geometry was based on the sintered-sphere geometry described 

by Ashby et al., which is defined by two geometric parameters: the diameter of the 

spherical particles and the diameter of the neck at the interface between spheres.[92] Even 

though the silicon particles are not perfect spheres, this is a useful simplification that builds 
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upon the work of others. The sphere diameter is set to a characteristic particle size based 

on the histogram peak from the PSD measurements (see Figure 7). The diameter of the 

neck is left as a free parameter for fitting to experimental data. A characteristic neck size 

for each set of samples was determined by fitting the model results to the experimental 

measurements of κeff and σeff. All length scales in the np-Si samples are assumed to be large 

enough to avoid electronic size effects, so predictions of σeff only rely on the model’s 

geometry and the dopant concentration. Therefore, discrepancies between the 

characteristic neck sizes for κeff and σeff point towards an inability of the relaxation-time 

model from Equation 12 to predict the size-dependent thermal conductivity of c-Si 

accurately. 

3.4.1 Application of Material Characterization Results to Numerical Model 

The results from the APT analysis were used to model the spatial distribution of 

dopants. The surface area of the milled powder is assumed to have a dopant concentration 

identical to the elevated concentration observed in the grain boundaries of both the n-type 

and p-type np-Si. This assumption builds on the idea that intergranular fracture is the 

dominant fracture mechanism during the milling of silicon powder near room 

temperature.[105] Since the powder size is reduced by several orders of magnitude during 

the milling process, we assume that all free surfaces of the np-Si were once grain 

boundaries in the coarse powder. Therefore, the surface area of the milled powder is 

assumed to have a similar doping concentration to the grain boundary measured by APT 

analysis (see Figure 14), and this concentration profile is applied to the interfacial region 

between the particles. The dopant concentration in the rest of the sphere was set to the bulk 

dopant concentration obtained from APT analysis.  
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Once the model geometry and dopant concentration profiles are established, the 

spatially-dependent thermal conductivity of the silicon, κ(z), can be obtained using 

Equations 11 and 12. The scattering rates in Equation 11 are determined by setting L=d(z) 

and setting A1(z) using the fitting parameter described in Section 2.2. The thermal 

conductivity of the gaseous pores is calculated by setting d=Lair(r) in Equation 13. The 

generalized model geometry is shown in Figure 16 alongside an example of the spatially-

variant thermal conductivity from Equation 12 and Equation 13.  

 

Figure 16 - (a) Geometry and boundary conditions used in the numerical model. 
Temperature boundary conditions are imposed across the horizontal boundaries of 

the domain (red and blue lines) and the vertical boundaries (dotted lines) are 
considered adiabatic. (b) Spatially-dependent thermal conductivity after applying 
Equations 12 and 13 to the domain. (c) The interfacial region is magnified to show 

the sharp drop in thermal conductivity at the neck. 

The domain shown in Figure 16 represents a unit cell within a packed bed of 

(spherical) sintered particles. In order to directly compare the results of the numerical 

model with the experimental results, the np-Si particles are assumed to be packed in a 

close-random structure as described by Batchelor et al.[106] This assumption is made 

based on the agreement in porosity between the np-Si samples (~0.35) and the theoretical 
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porosity of a close-random structure (~0.37).[106] Furthermore, a qualitative assessment 

of the SEM images in Figure 15 indicates a relatively uniform porosity in the sample, which 

is characteristic of close-packed structures.[107] The analytical solution by Batchelor et al. 

for the effective conductivity of packed spheres introduces a scaling factor of 

 
, ,2κ κ=eff random eff domain , (22) 

where κeff,domain is the effective thermal conductivity of the domain shown in Figure 16 and 

κeff,random is the effective thermal conductivity of a packed bed in close-random 

arrangement. Batchelor et al. also considered simple cubic arrays (ε = 0.48) but found the 

scaling factors to be within 25% of the scaling factor for close-random arrays, despite the 

large differences in porosity.[106] Therefore, the model results are considered to be 

insensitive to errors from assuming a close-random packing structure. 

The gaseous pores contribute significantly to the experimentally-measured thermal 

conductivity (see Figure 13) but do not contribute to electrical conductivity, the fitting 

procedure for thermal conductivity was based on the measurement data at low pressures (1 

Pa) to provide a more direct comparison between electrical and thermal transport. The 

spatially-dependent electrical conductivity within the silicon particles was established by 

applying literature values for bulk electrical conductivity in silicon (σbulk) as a function of 

doping concentration to the dopant concentration established by APT analysis.[55] The use 

of σbulk was justified based on the assumption that boundary scattering of electrons is 

negligible in the np-Si samples due to the small (<8 nm) mean-free-path of electrons in 

degenerate silicon.[33] The results of the fitting procedure are shown in Figure 17. 
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3.4.2 Numerical Model Results 

The characteristic neck sizes obtained by fitting to thermal conductivity 

measurements at low pressure are significantly smaller than the neck sizes corresponding 

to the electrical conductivity measurements. This result suggests that the selective 

reduction in thermal conductivity is stronger than predicted by the thermal conductivity 

model used in this work, which is consistent with the discrepancy between the thermal 

conductivity accumulation functions shown in Figure 6, where the analytical model in 

Equation 12 over-predicts the thermal conductivity at small length scales compared to 

atomistic simulations. The inclusion of Akhieser damping in the thermal conductivity 

model (red line in Figure 17) did not make a significant difference in the predicted value 

of κeff. This result is expected because Akhieser damping primarily affects low-frequency 

phonons (< 100 GHz) but Hopkins et al. demonstrated that high-frequency phonons are the 

primary contributors to thermal conductivity in nanostructured c-Si.[12] 

While the model by Holland et al. has been successfully used for many applications, 

it is based on a simplified view of thermal transport that may become less applicable at the 

small length scales of np-Si.[108] More advanced methods have been developed for 

predicting lattice thermal conductivity at the nanoscale, but predictions for dopant-

dependent thermal conductivity in silicon are not yet available in literature.[32, 34, 71, 

109] The application of atomistic simulations to studying np-Si would be quite relevant for 

a future study. 
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Figure 17 - (a) Fitting numerical model to p-type experimental data at low pressure 
(blue triangles) yields characteristic neck sizes of 26 nm for thermal conductivity 

(solid black line). Fitting to electrical conductivity yields a neck size of 281 nm 
(dotted line). The inclusion of Akhieser damping was not found to make a 

significant difference in the prediction of κeff (solid red line). (b)  Fitting numerical 
model to the n-type experimental data at low pressure (magenta squares) yields 

characteristic neck sizes of 28 nm for thermal conductivity and 98 nm for electrical 
conductivity. The numerical model under predicts the contribution of air to κeff at 

high pressure for both p-type and n-type. 

Another explanation for the selective thermal conductivity reduction could be the 

existence of scattering mechanisms that are not accounted for in the numerical model. Bux 

et al. observed a reduction in the electron mobility of np-Si as milling intensity was 

increased and attributed it to the formation of nanocrystals and extended defects during the 

milling process.[27] The reduction in electron mobility was observed at every level of 

milling intensity, suggesting the formation of scattering sites with dimensions on the order 

of the electron MFP (~8 nm) could occur even at early stages in the milling process. These 

scattering sites are not accounted for in the numerical model and may explain the strong 

reduction in thermal conductivity.  
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In addition to the selective reduction of thermal conductivity, the numerical model 

predicts very little dependence on pressure whereas the experimental results show the 

gaseous pores accounting for over 30% of the effective thermal conductivity at standard 

atmospheric pressure. A potential explanation for the strong dependence on pressure is the 

roughness of the silicon particles, which is not accounted for in the numerical model. 

Experimental measurements by Buonanno et al.[110] and analytical modeling by Bahrami 

et al.[111] both observe a significant pressure-dependent decrease in the effective 

conductivity of packed beds of steel spheres with roughened surfaces. The rough surfaces 

of the spheres creates interstitial pockets of gas at the interface between adjacent particles, 

and the rarefaction of these gas pockets at low pressure causes significant reduction of the 

effective thermal conductivity, particularly as the particles conductivity increases.[111] 

3.4.3 Application of Phononic Crystal Effects 

Although the np-Si structure in this work was not ideally periodic, the use of 

phononic crystal patterning has been demonstrated as a potential avenue for thermal 

conductivity reduction in nanostructured c-Si.[67] The PWE methodology detailed by 

Kushwaha et al.[66] was implemented for the characteristic geometries used in Figure 17 

to investigate the effect of phononic crystal patterning in np-Si. The modified phononic 

DOS is shown in Figure 18. 
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Figure 18 - Reduction in phononic density of states due to phononic crystal effects 
(PnC). The reduction from the bulk mode density due to PnC can be incorporated 
into Equation 12 to predict the change in the thermal conductivity accumulation 

function due to the reduction in phonon mode density. 

The impact of phononic crystal patterning on the effective thermal conductivity of 

np-Si can be observed by incorporating the modified DOS from Figure 18 into Equation 

12 to obtain a suppressed thermal conductivity accumulation function, which is then 

plugged into the numerical model shown in Figure 16. The reduction in κeff, shown in 

Figure 19, is ~15% for both the p-type and n-type models. It is worth noting that this 

reduction is achieved without any optimization of the np-Si geometry to maximize the PnC 

effects. An optimization study on the geometry of np-Si would be useful towards 

understanding the full potential of np-Si as a thermoelectric material but is beyond the 

scope of the present work.  
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Figure 19 - The incorporation of phononic crystal effects into the numerical model 
(red line) results in a ~15% reduction in κeff for both the (a) p-type and (b) n-type 
models compared to the results obtained from using the bulk mode density (black 

line).  
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CHAPTER 4. THERMAL CONDUCTIVITY MEASUREMENTS 

USING FREQUENCY-DOMAIN THERMOREFLECTANCE 

4.1 Traditional FDTR Measurements 

4.1.1 Operating Principles of Traditional FDTR 

FDTR, which is well described in literature,[37, 39, 45] measures an unknown 

thermal property, most often thermal conductivity, using a pump-probe laser technique 

relying on a transducer’s temperature dependent thermoreflectance, -1R ×dR/dT .  FDTR 

operates by experimentally measuring the phase lag between a periodic heat source and its 

corresponding surface temperature response as a function of heating frequency.  The 

frequency-dependent phase lag data is fit to an analytical model[40, 112] where the thermal 

property of interest (most often thermal conductivity) is a free parameter in the analytical 

model. The value of the fitting parameter that minimizes the mean squared error between 

the experimental data and analytical model is taken as the measured value. 

To absorb the periodic heat source delivered by a laser, FDTR requires the 

deposition of a thin (~50-100 nm) thermoreflectance transducer atop the sample. An 

intensity-modulated pump laser (λpump = 488 nm) is absorbed by the transducer to create a 

periodic heat source. A probe laser (λprobe = 532 nm) monitors the temperature response of 

the transducer. Therefore, the transducer serves two purposes: it absorbs the pump beam, 

which enables isothermal surface heating[45], and it reflects the probe beam, which carries 

information about the temperature response of the surface to the periodic heat source 
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encoded by the thermoreflectance of the transducer.[113] Au is the best transducer for the 

laser wavelengths used in many FDTR setups because the reflectance of Au exhibits a 

relatively strong temperature dependence at the probe’s wavelength of 532 nm, 

( )-1 -4 -1R ×dR/dT~10 K  and it absorbs well at the pump’s wavelengths of 488 nm.[114] 

The pump laser’s intensity is modulated at a frequency f and creates a temperature 

oscillation on the sample surface at that same frequency f but with an additional phase-lag 

θ. The surface temperature oscillation induces a coherent oscillation in the reflectance of 

the gold transducer. The incoming probe beam is initially at a constant intensity but, upon 

reflection, becomes modulated at frequency f and picks up the phase-lag θ. The reflected 

pump and the probe beams take the same path to a photodiode, where their periodic 

intensities are converted into periodic voltage signals. The individual phases of the voltage 

signals from the pump and probe are measured as a function of heating frequency. Some 

small additional phase lag is acquired by the post-sample optics, however, since the 

reflected paths of the beams are identical, the only source of phase lag between the pump 

and probe signals arises from the thermal response of the sample and the associated 

temperature response. Therefore, the phase difference between the pump and probe voltage 

signals is θ. 

An analytical solution to the heat diffusion equation, discussed later in this chapter, 

can be used to predict θ.[40, 112] The inputs to the model include the thermal conductivity, 

volumetric heat capacity, and thickness of each layer, the thermal interface conductance 

between layers, as well as the 1/e2 radius of the pump and probe beams.  In a typical 

isotropic sample, the thermal conductivity, κ, and the thermal interface conductance 
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between the transducer and the sample, G, are unknown. In the case of a multilayered 

sample, as shown in Figure 20(b-c), the unknown parameters may include: (i) the film 

conductivity, kfilm, (ii) the substrate conductivity, ksub, and (iii) the thermal interface 

conductances, G1 and G2. In many multilayer samples, the substrate conductivity is 

independently measured without the film and κsub can be treated as a known input 

parameter to the model.  The transducer thickness and thermal conductivity, as well as the 

volumetric heat capacity of the sample, should be independently measured to minimize the 

number of unknown variables when fitting. The remaining unknown properties are used as 

fitting parameters, and the measurement results are the set of fitted values that minimize 

the mean-squared error between the analytical model and experimental data. 

 

Figure 20 - (a) Schematic of an FDTR set-up.  (b) Sample configuration for 
traditional FDTR on a thin film sample.  The pump beam (blue) is concentrically 

aligned with the probe beam (green).  The interfacial thermal conductance between 
the transducer and film is labeled G1 and the conductance between the film and 

substrate is labeled G2. (c) Sample configuration for offset FDTR.  The probe beam 
is spatially offset from the pump beam using the Picomotor mirror, and the film or 
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substrate may have unique values for through-plane (k⊥) and in-plane (k||) thermal 
conductivity. 

4.1.2 Description of Experimental Set-up 

The setup used in this work, shown in Figure 20, passes both the pump (Coherent 

MX-488 SLM) and probe (Coherent Verdi G2) beams through optical isolators (ISO, 

Conoptics 711A and 711C-3) tuned to their specific wavelengths.  The isolators act as 

optical diodes to prevent light from re-entering and damaging the laser cavities.  The signal 

generator (Rigol DG5252) produces a sinusoidal voltage at a controllable frequency, which 

is amplified (Conoptics Model 200) to drive the electro-optic modulator (EOM, Model 

350-80-01 KD*P Series with reduced aperture). The frequency range of the modulation 

system is between 9 kHz and 200 MHz. However, we found that the experimental data is 

most reliable between 400 kHz and 5 MHz. The lower limit of 400 kHz was established to 

minimize uncertainty due to beam spot size errors and the upper limit was established to 

avoid high-frequency ambient noise.  The EOM is a polarization-dependent optics and 

must be rotated such that the incoming light is polarized at a 45° angle relative to the 

EOM’s crystal. To more easily achieve this, a half-wave plate (HWP, ThorLabs WPH10M-

488) rotates the polarization of the laser before it enters the EOM’s aperture and eliminates 

the need for the user to rotate the EOM thus simplifying the alignment process.  The pump 

and probe beams are co-aligned as they pass through the beam splitter (BS, ThorLabs 

BS025) and are then directed towards the sample using a polarizing beam splitter (PBS, 

ThorLabs CM1-PBS251). The beam polarizations are tuned through a quarter-wave plate 

(QWP, ThorLabs WPQ10M-488) and focused through an objective (OBJ, Nikon 

MUE31100) onto the sample. The reflected beams are sent to the photodiode (PD, 
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ThorLabs PDA36A) and their phase-lag relative to the voltage signal generated by the 

signal generator is measured using a lock-in amplifier (SRS SR844). The phase lag 

between the two signals, θ, is obtained by independently measuring the phase lag of the 

reflected beams relative to the signal generator and taking the difference. The individual 

measurement of the beams is enabled by bandpass filters for each laser respectively (BP, 

ThorLabs FL488-1 and ThorLabs FL532-10). 

4.1.3 Analytical Solution for Traditional FDTR 

The analytical solution for traditional FDTR, first presented by Cahill et al.[112], 

is derived from the frequency-domain solution for periodic point source heating of a semi-

infinite solid[115] 

 exp( 2 / )( )
2
i fr DT r

r
π
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−
= , (23) 

where κ is the thermal conductivity of the solid, D is the thermal diffusivity, and r is the 

radial coordinate. The solution for a Gaussian heat source is obtained by convoluting 

Equation 23 with the pump’s spatial heating profile  
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where w0 is the 1/e2 radius of the pump beam and AP is the heat absorbed by the transducer. 

In order to simplify the convolution, Hankel transforms are performed on Equations 23 and 

24 to obtain 
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The convolution then becomes the inverse Hankel transform of the product of Equations 

25 and 26, which yields the surface temperature 
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The reflected probe signal is the weighted average of the surface temperature distribution 

ψ(r) with the probe’s intensity profile acting as the weighting function  

 2 2
12 0

1

4 ( ) exp( 2 / )sT r r w rdr
w

ψ
∞

∆ = −∫ , (28) 

 

which can be rewritten in terms of a single integral over k that must be evaluated 

numerically  

 2 2 2 2
0 10

2 ( ) ( ( ) )s qT A G s exp s w w sdsπ π
∞

∆ = − +∫ . (29) 

The complex phase of Equation 29 represents the phase lag between the periodic heat 

source and the surface temperature response is used for comparison with experimental 

measurements of θ. 
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4.1.4 Analytical Solution for Multilayer Samples 

The solution in Equation 29 can be extended to multilayer geometries using an 

iterative algorithm first introduced by Feldman.[116] In this method, the layers are 

numbered sequentially, with n = 1 applied to the transducer, and the interfaces are treated 

as thin layers (~ 1 Å). The only change to Equation 29 is the replacement of Gq(s) with 
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, (30) 

and the introduction of an iterative relationship between adjacent layers 
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 1/22 2 24n nu s qπ 
 = + , (32) 
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π
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n n nuγ κ= . (34) 

Since the substrate is assumed to be infinitely thick (L >> Lp), the iterative boundary 

conditions B+ = 0 and B- = 1 are applied to the final layer. Equation 31 is then iteratively 

solved until 1B+  and 1B−  are obtained and used to solve Equation 30, which is then 

substituted into Equation 29 to obtain θ. 
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4.1.5 Penetration Depth and Sensitivity Analysis 

The periodic heating generates a thermal wave that decays exponentially as it 

propagates into the sample. The exponential decay length, or thermal penetration depth, is 

inversely proportional to the heating frequency and is expressed as  

 1
2

p
DL

fπ
 

=  
 

. (35) 

Since FDTR is based on the frequency-domain response of the sample, the 

measurement is most sensitive to regions where the amplitude of the thermal wave is large. 

As a result, the heating frequency can be used to control the measurement sensitivity of 

various parameters of interest. At low frequencies (~100 kHz), Lp is on the order of several 

microns and the measurement is most sensitive to the thermal properties of the substrate. 

At higher frequencies (~10 MHz), the penetration depth is commensurate with the 

thickness of the transducer and the measurement becomes much more sensitive to the 

properties of the transducer and the thermal interface between the transducer and the 

substrate. For the case of multilayered samples, the measurement will also show improved 

sensitivity to the thermal properties of the film.  

A quantitative sensitivity analysis can be used to determine the appropriate 

frequency regimes for the measurement of any sample parameter.  The sensitivity of some 

parameter β is defined as the logarithmic derivative of θ with respect to the system 

parameter of interest 
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 ln
ln

dS
dβ

θ
β

=  (36) 

The sensitivity Sβ is evaluated numerically by changing the value of β by 1% about 

the nominal value and observing the corresponding change in the phase of Equation 29. 

The results of a sensitivity analysis on c-Si are shown in Figure 21 with the nominal 

parameters listed in Table 3. 

 

Figure 21 - Sensitivity analysis results for c-Si sample. Higher heating frequencies 
lead to smaller penetration depths and improved sensitivity to the thermal interface. 

Lower heating frequencies allow the substrate to dominate the thermal response. 

The sensitivity analysis allows one to determine which parameters most heavily 

influence the measurement response across a range of frequencies.  The measurement 

should be more sensitive to the fitting parameters than the input parameters to prevent small 



 58 

uncertainties in the independent input measurements from propagating into the final result.  

This consideration is used to optimize the measurement accuracy by selecting a proper film 

thickness, transducer thickness, heating frequency range, and spot size. If any input 

parameter shows greater sensitivity than the fitting parameters, an emphasis is placed on 

the accuracy of the independent measurement of that input parameter.  Input parameters 

with low sensitivity (Sβ < 0.05) can exhibit relatively large uncertainty (Uβ ~ 25%) without 

significantly impacting the uncertainty of the final measurement so long as the sensitivity 

to the fitting parameters is relatively high (Sβ > 0.2)[117].  In some unavoidable cases, the 

sensitivity to multiple input parameters may be higher than the sensitivity to the fitting 

parameters and measurement uncertainty is very high (Uβ > 50%).  For these cases, a robust 

approach to uncertainty analysis plays a critical role in proper reporting of measurement 

results. 

Table 3 - Nominal parameters for sensitivity analysis shown in Figure 21. 

Property Nominal Value Uncertainty 
 Ctransducer 2.5 MJ/m3-K 5% 
 κtransducer 200 W/m-K 5% 
 Ltransducer 50 nm 3% 
 rprobe 5.0 µm 3% 
 rpump 5.0 µm 4% 
 Lsample 500 µm N/A 
 Csample 1.65 MJ/m3-K 5% 
 κ 149 W/m-K 19% 
 G[45] 200 MW/m2-K 20% 
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4.1.6 Uncertainty Estimation for FDTR Measurements 

A Monte Carlo computational approach, similar to the methods of other TTR 

measurements, is used to calculate measurement uncertainty in this work.[118-120] The 

method used in this work can be categorized into four steps: (1) estimate uncertainty in 

experimental data and input parameters, (2) generate a new set of input parameters and 

experimental data based on uncertainty estimations, (3) fit for parameter of interest using 

generated data and input parameters, and (4) repeat steps 2 and 3 until the set of fitted 

values converges to a normal distribution. This approach is advantageous because it does 

not assume a hierarchy of dominant uncertainty sources and incorporates the uncertainty 

propagations from both the input parameters and experimental noise. 

The uncertainty of each input parameter is estimated based on the measurement 

methodology. Layer thickness, including transducer thickness, was measured using a 

Tencor P15 profilometer with a spatial resolution of 0.7 Å and a minimum measurable 

thickness of 10 nm. The uncertainty of thickness measurements was set at 5% based on 

repeated measurements of a 100 nm transducer deposited using a CHA Modified Mark-40 

e-beam evaporator, which was used for all transducer depositions. Transducer thermal 

conductivity was calculated by measuring the in-plane electrical conductivity of the 

transducer using the van der Pauw method and applying the Wiedemann-Franz law. An 

uncertainty of 5% was assigned to transducer conductivity due to the use of the transducer 

thickness as an input to the van der Pauw method. Volumetric heat capacity was available 

in peer-reviewed literature for all the samples measured in this work. In most cases, the 

uncertainty was not reported alongside the literature values and a nominal uncertainty of 

5% was used. 



 60 

The uncertainty of the experimental phase data was calculated by taking five phase 

measurements at each heating frequency, and using the mean and standard deviation of the 

data set to define a normal probability distribution function (PDF) for each heating 

frequency. These PDFs can be used to generate new sets of data and the generated data is 

fit to the set of generated input parameters to obtain a simulated measurement of thermal 

conductivity. The process of generating data, generating input parameters, and fitting for 

thermal conductivity is repeated until the set of best-fit thermal conductivity values 

converges to a normal distribution (typically after ~2000 trials).  An example of the Monte 

Carlo histogram using this approach for the in-plane thermal conductivity of c-Si is shown 

in Figure 22.  

 

Figure 22 - Uncertainty distribution for thermal conductivity of c-Si based on the 
parameter values and uncertainties in Table III.  95% of the outcomes fall between 

122.8 W/m-K and 179.9 W/m-K, yielding a measured thermal conductivity of 
151±28.5 W/m-K. 
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Once the outcome distribution is obtained, a 95% confidence interval is used to 

quantify the uncertainty in the fitting parameter.  This approach is more conservative than 

reporting the uncertainty at one standard deviation, albeit at a perceived higher uncertainty. 

4.1.7 Direct Measurement of the Thermal Conductivity Accumulation Function 

Heating frequency is a useful mechanism for adjusting sensitivity, but it also may 

have implications for measurement of nanoscale phenomena.  One current hypothesis is 

phonons with mean free path longer than the penetration depth are governed by ballistic 

transport and therefore have reduced contributions to the observed thermal 

conductivity.[43, 45] However, reaching such high heating frequencies (> 30 MHz for c-

Si) is not a trivial task for two reasons: (1) the magnitude of the FDTR signal, formulated 

in Equation 32, reduces exponentially as heating frequency increases, (2) the capacitive 

coupling from the high voltage cables (most notably the cable from the amplifier to the 

EOM) to the low signal cable leaving the PD increases with frequency, and (3) the 

magnitude of ambient noise is generally higher in the MHz range because 30-300 MHz is 

the frequency band used for the vast majority of terrestrial applications (e.g., TV & radio).  

The result is that the signal-to-noise ratio decreases dramatically as frequency increases, 

and for most traditional FDTR set-ups the signal magnitude becomes comparable to the 

noise at around 20 MHz.[37, 45] The trend of signal and noise amplitude versus frequency 

is plotted in Figure 23. It should be noted that the data presented in Figure 23 was taken 

directly from the FDTR set-up used for this work and the noise levels may be different for 

set-ups used elsewhere. 
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Figure 23 - (a) Magnitude of FDTR signal and ambient noise versus frequency. 
Ambient noise is negligible at low heating frequencies (f < 1 MHz) but exceeds the 
threshold for allowable noise around 2 MHz. The threshold for allowable noise is 
based on a heuristic signal-to-noise ratio of 100. The minimum ambient noise is 

found at 200 kHz.  

Broadband FDTR (BB-FDTR) is an augmentation of traditional FDTR that 

eliminates coherent noise sources by heterodyning the reflected pump and probe signals. 

BB-FDTR, described in detail by Regner et al.[45], requires an additional EOM to be 

placed after the sample. The second EOM is operated at a modulation frequency f2, where 

f2 is the modulation frequency of the first EOM offset by the frequency for which ambient 

noise is minimized. In the case of Figure 23, where the minimum ambient noise is found 

at 200 kHz, the second EOM would operate at f2=f+200 kHz. The reflected pump and probe 

beams, both modulated at heating frequency f, pass through the second EOM and the 

exiting beams contain frequency components at the sum and difference of the frequencies 
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of the two EOMs, f2+f and f2-f. It is important make two points: (1) the second EOM 

preserves the phase difference between the pump and the probe, and (2) the low-frequency 

component of the mixed signal will always coincide with the point of minimum ambient 

noise. Therefore, the f2+f component can be discarded using a low-pass filter and the phase 

information contained in the low frequency component can be obtained with minimal 

interference from outside sources. 

Efforts to reproduce the frequency-dependent thermal conductivity reported by 

Regner et al. for c-Si[45] were ultimately unsuccessful. The experimental setup described 

in this work was used to measure a sample of c-Si.  This sample was then taken to Carnegie 

Melon University and measured in the exact setup reported by Regner et al. The difference 

between the two measurements exceeded the uncertainty bounds when the penetration 

depth exceeded 2 µm. A comparison between the two measurements is shown in Figure 

24. The difference between the two measurements of the same sample suggests the 

existence of another (uncontrolled) parameter (potentially spot size) that can affect the 

frequency-dependent thermal conductivity in either (or both) of the experimental setups. 

Experimental measurements by Wilson et al.[47] suggest that the frequency-

dependent reduction in thermal conductivity is also related to the anisotropy of the 

transducer-sample assembly (i.e., heat conducts in-plane through the Au transducer at a 

different rate than through-plan through the sample), primarily occurring in the through-

plane direction while the in-plane thermal conductivity remains unaffected due to the beam 

spot size being much larger than the phonon mean free paths in c-Si. Therefore, an 

important step towards improving the reliability of frequency-dependent thermal 
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conductivity measurements using FDTR is to augment the ability of FDTR to measure 

anisotropic thermal conductivities accurately. 

 

Figure 24 - Thermal conductivity of c-Si as a function of thermal penetration depth. 
The same sample showed different trends when measured by two different setups, 

suggesting that the reduction in thermal conductivity may be dependent on the 
experimental setups. 

4.2 Beam-Offset FDTR for Measurement of Anisotropic Samples 

High-frequency FDTR measurements may be able to provide insights into the failure 

of Fourier theory at small length scales.[36, 43, 45] However, Wilson and Cahill suggest 

that the independent length scales in an FDTR experiment (spot size and penetration depth) 

can cause an anisotropic reduction in thermal conductivity which can only be interpreted 

if both the in-plane and through-plane thermal conductivities are measured 

simultaneously.[47] The ability of FDTR to measure the through-plane thermal 
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conductivity of thin-films has been robustly demonstrated[38, 39, 121], but in-plane 

measurements have proven more difficult due to the high thermal conductivity of the metal 

transducer.[48] Beam offset has been shown to improve the sensitivity of time-domain 

thermoreflectance (TDTR) to in-plane thermal conductivity and recent advancements in 

TDTR methodologies by Feser et al. have demonstrated the ability to resolve the full 

thermal conductivity tensors.[48, 122] In-plane thermal conductivity measurements using 

FDTR with co-aligned beams have been demonstrated on anisotropic Mo/Si 

multilayers[123], but the uncertainty of this approach can be prohibitive (>100%) in the 

case of thin films and small spot sizes.[120] The inability to use a small spot size for these 

measurements is particularly problematic because in-plane heat spreading is negligible 

when the spot size is large, resulting in minimal measurement sensitivity to in-plane 

thermal conductivity.[46] Moving forward, the ability of FDTR to simultaneously measure 

in-plane and through-plane thermal conductivity with low uncertainty and with a small spot 

size (~ 3 µm) is a crucial step towards experimental efforts to directly observe phonon 

transport at the nanoscale. 

In this section, we present a peer-reviewed method for the simultaneous 

measurement of k⊥ and k∥ using beam-offset frequency domain thermoreflectance (FDTR) 

with robust uncertainty estimation.  The conventional diffusive heat transfer solution is 

analyzed to show that offset and heating frequency can independently control the 

sensitivity to directional thermal conductivity and extract values for κ∥ and κ⊥.  Numerical 

uncertainty analyses demonstrate that sweeping both heating frequency and beam offset 

results in a reduction of measurement uncertainty. This modified measurement technique 
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is demonstrated on crystalline alumina (c-Al2O3), amorphous alumina (a-Al2O3), quartz, 

fused silica, and highly-oriented pyrolytic graphite (HOPG). 

4.2.1 Analytical Solution for Beam-Offset FDTR 

The analytical solution for beam-offset FDTR, first demonstrated by Feser et 

al.[48], builds on the Hankel transform framework from Equation 29. The spatial intensity 

profile of the offset probe beam is given by 
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where As is the total power of the probe beam and 0x  is probe offset distance. For the case 

of isotropic in-plane properties (i.e. transport can be described entirely by radial and 

through-plane thermal conductivities), the intensity profile from Equation 37 can be 

transformed to the equivalent profile 
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which can be integrated directly to obtain 
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The Hankel transform of the intensity profile in Equation 39 yields 
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where the polynomial ℓn is defined recursively by 
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where the first term of the polynomial is given by ℓ0 = π. The multilayer heat transfer 

solution presented in Section 4.1.4. can be applied to samples with anisotropic thermal 

conductivity by modifying the term in Equation 32 to 

 1/22 2 24 ηπ 
 = +n nu s q , (42) 

where /η κ κ⊥=


 is termed the anisotropy ratio. 

4.2.2 Sensitivity Analysis for Beam-Offset FDTR 

The potential for beam-offset FDTR to measure anisotropic samples can be 

quantified using a sensitivity analysis (see Section 4.1.5.). To ensure unique results when 

fitting to multiple parameters simultaneously, the measurement domain should include 

separate regions of high and low sensitivity. Sensitivity thresholds of Sβ > 0.2 for “high” 

sensitivity and Sβ < 0.05 for “low” sensitivity are defined relative to the noise fluctuations. 

If a 5% change in a given parameter will cause a change in the signal that is detectable 

above ambient noise (see Figure 23) then it is considered to have high sensitivity. If a 
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parameter can change by 20% before creating a detectable change in the signal, then it is 

considered to have low sensitivity. The results of an exemplary sensitivity analysis on 

single-crystal quartz are shown in Figure 25 with the sample parameters listed in Table 4. 

 

Figure 25 - Sensitivity analysis results for single-crystal quartz with input 
parameters listed in Table III. (a) Sensitivity to in-plane thermal conductivity as a 
function of beam offset and heating frequency. Regions of high (white), moderate 

(gray), and low (black) sensitivity are all found within the domain. (b) Sensitivity to 
through-plane thermal conductivity. (c) Sensitivity to thermal interface conductance 
demonstrates low sensitivity to G across the entire domain. (d) Combined sensitivity 
shows regions where measurement is sensitive to both in-plane and through-plane 

thermal conductivity (white), only to through-plane conductivity (gray), and 
insensitivity to both (black). 

The sensitivity to the thermal interface conductance between the transducer and 

sample is low across the entire domain (see Figure 25(c)). Therefore, inaccuracies in the 

measured value of G are unlikely to propagate into the measurement uncertainty of κ⊥ and 
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κ∥. The combined sensitivity plot in Figure 25(d) shows how using both heating frequency 

and beam offset creates regions in the measurement domain that are sensitive to both κ⊥ 

and κ∥ (white), as well as regions that are only sensitive to κ⊥ (gray). This result for single-

crystal quartz cannot be achieved without sweeping through different values of beam 

offset, thereby demonstrating the expanded capabilities of beam-offset FDTR as compared 

to traditional FDTR. However, in situ measurements of beam offset are challenging and 

practical measurements must rely on precise instrumentation to reliably control the beam 

offset distance. 

Table 4 - Nominal parameters for quartz used in the sensitivity analysis shown in 
Figure 25. 

Property Nominal Value Uncertainty 
Ctransducer 2.5 MJ/m3-K 5% 
ktransducer 220 W/m-K 5% 
Ltransducer 110 nm 3% 

wprobe 2.0 µm 3% 
wpump 3.2 µm 4% 
Lsample 500 µm N/A 
Csample 1.65 MJ/m3-K 5% 

κ⊥ 6.5 W/m-K 10% 
κ∥ 9.8 W/m-K 19% 
G 51 MW/m2-K 22% 

4.2.3 Offset Instrumentation 

To precisely offset the probe beam, a Picomotor mirror mount (Newport Model 

8807) with an open-loop driver (Newport Model 8742) is used.  The mirror is controlled 

using high-precision piezo-actuators with each actuator “step” corresponding to a change 

in angle of 0.7 µrad.  The probe beam passes through several optical elements between the 
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Picomotor mirror and the sample, so it is necessary to calibrate changes in mirror angle to 

changes in spatial positioning of the probe beam on the sample.  These calibrations were 

performed using a scanning slit beam profiler (DataRay Beam’R2) with a spatial resolution 

of 100 nm, which allows for the full resolution of the focused laser spots. The calibration 

results are shown in Figure 26. 

 

Figure 26 - Picomotor calibration shows consistent linear relationship between 
actuator steps and offset distance. The five data sets were taken at 1-day intervals 

and show a day-to-day variation of 4%. 

The results from Figure 26 demonstrate that, although the probe’s positioning is 

consistently linear with respect to Picomotor steps, the slope of this relationship would 

vary each day by as much as 4%. Therefore, we calibrate the Picomotor before and after 

each measurement to get an accurate estimate of the beam offset distances and to ensure 

that the calibration does not drift over the course of the measurement. 
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4.2.4 Measurement Results for Offset-Beam FDTR 

Figure 27 compares the measured values of both κ∥ and κ⊥ to their respective 

literature values. Overall, the through-plane measurement results show good agreement 

with nominal literature values across the range of conductivities (~1-25 W/m-K).  

However, the uncertainty for the in-plane thermal conductivity for low thermal 

conductivity materials is large, particularly in fused silica, amorphous alumina, and HOPG.  

The surface roughness of HOPG created uncertainty in the transducer thickness which 

propagated into the final measurement uncertainty.  For amorphous alumina and fused 

silica, we attribute the high uncertainty to large in-plane heat spreading in the Au 

transducer; the majority of in-plane heat spreading occurs in the transducer (not the 

sample), and the penetration depth is much smaller than the spot size due to the low thermal 

conductivity of the sample. The mismatch in length scales results in very little in-plane 

heat transfer, which causes the measurement to be less sensitive to the in-plane thermal 

conductivity of the sample.[48] 
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Figure 27 - (a) Comparison between measured and nominal values for κ∥.  Vertical 
error bars indicate measurement uncertainty and horizontal bars indicate 

uncertainty in nominal value.  (b) Comparison between measured and nominal 
values for κ⊥.  The bottom half of the error bars are omitted for a-Al2O3 and fused 

silica. 

4.3 Feasibility of Beam-Offset FDTR for Measurements on np-Si 

Using FDTR to measure the phonon MFP contributions in np-Si could provide 

valuable insight into the mechanisms of thermal conductivity reduction. However, the 

conclusion from this work is that the current state of offset FDTR would not be capable of 

making a reliable measurement of np-Si. This conclusion is based on two insights presented 

in this work: (i) beam-offset FDTR has a limited capability to measure anisotropic samples 

with low thermal conductivity and (ii) beam-offset FDTR has a limited ability to obtain 

unique values for κ∥ and κ⊥ at frequencies beyond 2 MHz. The first conclusion is evident 

from the high uncertainties for a-Al2O3 and fused silica seen in Figure 27(b). Experimental 

work by Liu et al. suggests the high thermal conductivity of the transducer (κAu ≈ 314 W/m-

K) combined with the low thermal conductivity of the substrate causes most of the heat to 

spread within the transducer, and results in low measurement sensitivity to the in-plane 
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thermal conductivity of the sample .[124] Evidence for the second conclusion can be seen 

in Figure 25(d) where the gray region, which represents the measurement region that is 

sensitive only to through-plane conductivity, disappears at higher frequencies. Since the 

values of κ∥ and κ⊥ should be frequency-dependent, it is critical that the fitting procedure 

yields unique conductivity values at all frequencies. However, since a high frequency 

measurement will either be sensitive to both parameters simultaneously or neither 

parameter, the fitting procedure will be unable to yield unique values for κ∥ and κ⊥. 
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CHAPTER 5. CONCLUSION 

The replacement of VCT with a low-GWP cooling technology would make an 

immediate and meaningful reduction in the severity of global warming. TECs represent a 

promising alternative to VCT but have limited commercial applications due to their high 

cost, which is in part driven by the high cost of traditional thermoelectric materials such as 

bismuth telluride. Silicon is a promising alternative to traditional thermoelectric materials 

due to its natural abundance, low cost, and the wealth of industrial knowledge associated 

with silicon production and manufacturing. Both n-type and p-type silicon have desirable 

electrical properties at degenerate doping levels (n ~ 1020), but the high lattice thermal 

conductivity of bulk silicon limits its potential for thermoelectric applications.  

The purpose of this work is to investigate the potential for silicon’s lattice thermal 

conductivity to be reduced via nanostructuring and develop fabrication and synthesis 

methods to produce silicon thermoelectric materials. The first chapter presents peer-

reviewed literature, including experimental and theoretical studies, to highlight the 

difference in the length scales associated with phonon and electron transport, and examines 

a variety of nanostructuring techniques (e.g. nanowires, porous membranes, np-Si) that 

have exploited this mismatch to achieve selective reductions in the lattice thermal 

conductivity of silicon. The first chapter also includes a review of experimental 

investigations into the MFP accumulation of phonons in silicon, which could be used to 

validate theoretical studies and inform the fabrication of nanostructured silicon to achieve 

further reductions in lattice thermal conductivity.  
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The second chapter reviews the fundamentals of charge transport and phonon 

transport in semiconductors. Formulations for electrical conductivity and the Seebeck 

coefficient are presented using the band theory model, and the temperature-dependence of 

the Fermi level is used to explain the physical origins of the Seebeck coefficient. The 

relationship between doping concentration and the Fermi level is used to establish an 

optimum doping concentration for thermoelectric applications, which occurs at around 

~1020 atoms/cm3 for silicon at room temperature. The transport of phonons in silicon is 

formulated through an augmentation of the Holland model. The augmented model, which 

is an original contribution of this work, uses an empirical fitting procedure to predict the 

size-dependent thermal conductivity of silicon as a function of doping concentration. This 

contribution is particularly relevant to the study of np-Si due to the large variation in length 

scales and doping concentrations.  

The third chapter includes a description of the np-Si fabrication process and the 

rationale behind each step, experimental measurements of the effective thermoelectric 

properties for both n-type and p-type samples, characterization results on the 

microstructure and atomic composition of the np-Si samples, and a numerical model that 

incorporates the material characterization results into the augmented Holland model to 

predict the effective thermoelectric properties for comparison with the experimental 

measurement results. The numerical model was fit to the experimental measurements of 

κeff and σeff to establish characteristic neck sizes rκ and rσ. The values for rσ were 

significantly higher than the values for rκ, suggesting that the experimentally-observed 

reductions in lattice thermal conductivity were stronger than those predicted by the 

numerical model. This discrepancy was attributed to shortcomings of the Holland model 
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at small length scales and assumptions about the spherical nature of the particles in the 

numerical model. Furthermore, the model underpredicted the contribution of the gaseous 

pores to κeff. However, these results are consistent with experimental measurements by 

Buonanno et al.[110] and analytical modeling by Bahrami et al.[111], who attribute the 

pressure-dependent thermal conductivity of porous packed-bed materials to interstitial gas 

pockets that form at the interface between particles.  

The fourth chapter focuses on the use of frequency-domain thermoreflectance to 

develop experimental insights into the size-dependent thermal conductivity of silicon. 

Efforts to reproduce the frequency-dependent thermal conductivity reported by Regner et 

al. for c-Si[45] were ultimately unsuccessful, and the disagreement between the 

measurements could be attributed to the existence of an uncontrolled length scale. Wilson 

and Cahill suggested that FDTR and TDTR measurements are governed by two relevant 

length scales, spot size and penetration depth, and these length scales cause independent 

reductions in the measured thermal conductivity for the in-plane and through-plane 

directions, respectively.[47] Traditional FDTR measurements lack sensitivity to in-plane 

thermal conductivity, so an augmentation of frequency-domain thermoreflectance using 

offset beams was developed to improve in-plane sensitivity. However, the ability of beam-

offset FDTR to measure np-Si was limited due to low measurement sensitivity for 

thermally-insulating materials (κ ~ 1 W/m-K) and at heating frequencies beyond ~ 2 MHz.   

The conclusions and intellectual contributions of this work can be presented by 

answering three key questions:  
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To what degree can the thermal conductivity of np-Si be reduced to create a high-

performance thermoelectric material? 

Experimental measurements of the TE properties of np-Si at room temperature 

showed a strongly selective reduction in the effective thermal conductivity for both p-type 

and n-type samples. An effective thermal conductivity of 1.1±0.1 W m-1 K-1 at standard 

atmospheric pressure (101 kPa) and 0.67±0.07 W m-1 K-1 at reduced pressure (~ 1 Pa) was 

observed for both p-type and n-type samples, whereas the power factor is only reduced by 

a factor of 2.3x and 8.3x for the p-type and n-type samples, respectively. The effective 

electrical conductivities of the p-type samples were measured at 25.1±2.6 kS/m and 

26.5±2.6 kS/m with Seebeck coefficients of 173±19 µV/K and 178±19 µV/K, respectively. 

The effective electrical conductivities of the n-type samples were measured at 18.7±1.5 

kS/m and 18.9±1.5 kS/m with Seebeck coefficients of -180±20 µV/K and -181±20 µV/K, 

respectively.  

The electronic contribution to thermal conductivity, according to the Wiedemann-

Franz law, comprises between 20-25% of the total thermal conductivity in the np-Si 

samples at reduced pressure, whereas the electronic contribution to thermal conductivity 

in bulk silicon is ~0.2% at similar doping concentrations. Further reductions in lattice 

thermal conductivity, on the order of ~15%, were estimated based on the modification to 

the phononic density-of-states that would occur if the structure were perfectly periodic. 

However, there is no clear path to achieve a phononic crystal using the fabrication methods 

from this work. 
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To what degree is the reduction in thermal conductivity observed in np-Si consistent 

with current understanding of phonon transport in c-Si? 

An augmentation of the Holland model was developed to model the phonon 

transport in c-Si. The augmented model, which was an original contribution of this work, 

used an empirical fitting procedure to predict the thermal conductivity of silicon as a 

function of size and doping concentration. This was particularly important for the study of 

np-Si due to the large variations in length scales as well as the segregation of dopant atoms 

observed during APT analysis. The augmented model was incorporated into a numerical 

model, based on the sintered-sphere geometry described by Ashby, to examine the 

relationship between the neck size, material composition, and effective thermal 

conductivity of np-Si. However, the magnitude of the selective reduction in thermal 

conductivity could not be explained by the numerical model.  

The characteristic neck sizes that yield agreement between the numerical model 

and experimental thermal conductivity measurements are 26 nm and 28 nm for the p-type 

and n-type samples, respectively. However, the characteristic neck sizes for electrical 

conductivity are 281 nm and 98 nm for the p-type and n-type samples, respectively. The 

discrepancy between the characteristic neck sizes for electrical conductivity and thermal 

conductivity suggest that the selective reduction in thermal conductivity is stronger than 

predicted by the augmented Holland model developed for this work. Plausible explanations 

for this discrepancy include: (1) the diminished accuracy of the Holland model at small 

length scales due to its simplistic view of phonon transport[108], and (2) the introduction 

of defects during the milling process, which are not accounted for in the numerical model. 

[27] The application of atomistic simulations to predict the spatially-dependent thermal 
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conductivity of np-Si could provide insight into whether the discrepancy between the neck 

sizes is primarily driven by inaccuracies of the Holland model or the simplifying 

assumptions used in the model geometry. 

The numerical model also under predicts the pressure-dependence of the effective 

thermal conductivity. Experimental measurements indicate that the gaseous pores 

contribute roughly ~30% of the effective thermal conductivity at ambient pressure, but the 

numerical model predicts a contribution of only ~13%. However, this discrepancy is 

consistent with studies on the effective thermal conductivity of porous packed-bed 

materials, where the strongly pressure-dependent thermal conductivity is attributed to gas 

pockets that form due to surface roughness at the interface between adjacent particles.[110, 

111] This explanation would also be consistent with the suggestion by Bux et al. that 

defects are formed around the surface of the silicon particles during the milling process. 

[27] 

To what degree can frequency-domain thermoreflectance (FDTR) be used to make 

observations about thermal transport in np-Si? 

The present work failed to reproduce the frequency-dependent thermal conductivity 

observed by Regner et al.[43], suggesting that an uncontrolled length scale (potentially spot 

size) may affect the relationship between frequency and measured thermal conductivity. 

The spot radius for measurements by Regner et al. was 3.2 µm whereas the spot radius in 

this work was 2 µm. This observation is consistent with observations made by Wilson et 

al. that the reduction in measured thermal conductivity can be anisotropic, with spot size 
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controlling the reduction in in-plane thermal conductivity and penetration depth controlling 

the reduction in through-plane thermal conductivity.[47]  

This work presented a novel, peer-reviewed method for making anisotropic thermal 

conductivity measurements[117], which was successfully applied to measure the 

anisotropic thermal conductivity of sapphire, highly-oriented pyrolytic graphite, and 

quartz. However, the technique was unable to measure the in-plane thermal conductivity 

of thermally-insulating samples (κ ~ 1 W/m-K) such as amorphous alumina and fused 

silica. For these samples, the penetration depth (~300 nm) was much smaller than the beam 

diameter (4 µm). The mismatch in the length scales causes minimal in-plane heat transfer, 

and therefore minimal sensitivity to the in-plane thermal conductivity of the sample. This 

is particularly true for higher measurement frequencies which would result in a further 

reduction of the penetration depth. Based on its inability to resolve the in-plane thermal 

conductivity of insulating materials, particularly at high frequencies, it was ultimately 

concluded that this method has a limited ability to study the MFP contributions of np-Si 

using high-frequency measurements.   
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