
A Fast Randomized Method for Local

Density-based Outlier Detection in High

Dimensional Data

Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

College of Computing,
Georgia Institute of Technology,

Atlanta, GA 30332, USA
{quocminh,edwardo,leomark}@cc.gatech.edu

Abstract. Local density-based outlier (LOF) is a useful method to de-
tect outliers because of its model free and locally based property. How-
ever, the method is very slow for high dimensional datasets. In this paper,
we introduce a randomization method that can computer LOF very ef-
ficiently for high dimensional datasets. Based on a consistency property
of outliers, random points are selected to partition a data set to compute
outlier candidates locally. Since the probability of a point to be isolated
from its neighbors is small, we apply multiple iterations with random
partitions to prune false outliers. The experiments on a variety of real
and synthetic datasets show that the randomization is effective in com-
puting LOF. The experiments also show that our method can compute
LOF very efficiently with very high dimensional data.

1 Motivation

Recently, several different methods for outlier detection [6] have been presented.
We can roughly categorize the methods into parametric and nonparametric. The
nonparametric methods have a great advantage over the parametric methods is
that they do not require prior knowledge of the processes that produce the
events (e.g. data distribution). These methods can further be categorized into
globally based and locally based. The globally based methods [10] identify the
observations that are considered to be the top outliers with respect to distance
for the entire dataset. Breunig et al [5] introduced a local density-based method
(LOF) to detect local outliers with respect to its neighbor. The concept of local
outliers show to be very useful [6] [18] [15] [16] for two reasons. First, it is
because, in practice, an observation is an outlier due to its deviation from its
locally similar observations rather than the entire dataset. Second, it can detect
outlier without requiring any statistical model assumption.

However, the k-nearest neighbors need to be computed for the LOF method.
The time complexity is O(N2) for a data set of size N . This is expensive. In
very low dimensional data, one may use indexing methods to speedup the near-
est neighbor searches, namely R*-tree [3], X-tree [4], Kd-tree [11], etc. The main

2 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

idea of the indexes is to create a hierarchical tree of boundaries of the points in it.
The index trees scale well with n but the number of boundaries exponentially in-
creases with the number of dimensions. In fact, Bay and Schwabacher [2] showed
that the performance of index trees is worse than the brute force search for more
than 20 dimensions. Therefore, even though LOF is very useful method, it re-
mains a challenge to be used in practice for large and high dimensional datasets
[6] [18].

In this paper, we present a randomization method to compute LOF efficiently
for datasets with very high dimensionality. To the best of our knowledge, we are
the first who evaluate a method that can compute LOF very efficiently in very
high dimensions up to 500 dimensions.

The method is made possible by our observation of the outlier consistency
property of local outliers (which will be discussed in the formalism section). As
a result, we can employ a randomization method to compute LOF. From now
on, we will refer to the original version of LOF with full k-nearest neighbor
search as the nonrandomized version of LOF. In the following sections, we
will formally define the randomized method. In the experiment section, we will
evaluate the effectiveness and efficiency of the randomized version against the
nonrandomized version of LOF.

2 Related Work

Outliers have been studied extensively in the field of statistics [12] by comput-
ing the probability of an event against its underlying distribution. However, this
method requires prior knowledge about the process that produces the events,
which is usually unknown. Knorr et al [10] introduce a distance-based method
to identify the outliers. The outliers are those points whose distance to other
observations are the largest. Their method can detect global outliers. The ad-
vantage of this method is that no prior knowledge about the underlying distri-
bution is required. Breunig et al [5] introduce a local density based method for
outlier detection. An outlier is a point that deviates from its neighbors. The
outlier local factor is measured by the ratio of its distance to its neighbors and
the local density. Spiros et al [22] introduce the method to detect outliers by
using the multi-granularity deviation factor (MDEF). The authors then propose
an approximate version to speed up the method. The method is based on the
modification of an approximate nearest neighbor search algorithm (quad-tree)
in order to avoid the cost of computing the MDEF scores for all the points in the
dataset. Thus, the method depends on the performance of the index tree. Re-
cently, Kriegel et al [15] propose the angle-based method that computes outlier
scores based on the angles of the points with respect to other points. The method
aims to provide more accurate rankings of the outliers in high dimensions. How-
ever, the method can not detect outliers surrounded by other points. The naive
implementation of the algorithm runs in O(n3). Bay and Schwabacher [2] in-
troduce a randomize method to detect distance-based outlier. However, their
method can not be used for density-based outlier.

Randomized Method for Local Density-based Outlier Detection 3

3 Local Outlier Factor

We revisit the concept of local density-based outlier introduced by Breunig et
al [5]. The local density-based outlier is based on the k-nearest neighbor dis-
tance, the local reachability and local outlier factor which are formally defined
as follows:

Definition 1 (k-distance of an object p). For any positive integer k, the
k-distance of object p, denoted as k-distance(p), is defined as the distance d(p, o)
between p and an object o ∈ D such that:

– for at least k objects o′ ∈ D \ {p} it holds that d(p, o) ≤ d(p, o), and
– for at most k-1 objects o′ ∈ D \ {p} it holds that d(p, o) < d(p, o).

Definition 2 (k-distance neighborhood of an object p). Given the k-
distance of p, the k-distance neighborhood of p contains every object whose dis-
tance from p is not greater than the k-distance, i.e. Nk−distance(p)(p) = {q ∈
D \ {p}|d(p, q) ≤ kdistance(p)}.

Definition 3 (reachability distance of an object p w.r.t. object o). Let
k be a natural number. The reachability distance of object p with respect to object
o is defined as reach−distk(p, o) = max{k−distance(o), d(p, o)}. These objects
q are called the k-nearest neighbors of p.

Definition 4 (local reachability density of an object p). The local reach-
ability density of p is defined as

lrdMinPts(p) = 1/

∑
o∈NMinPts(p) reach − distMinPts(p, o)

|NMinPts(p)|

Definition 5 (local outlier factor of an object p). The (local) outlier factor
of p is defined as

LOFMinPts(p) =

∑
o∈NMinPts(p)

lrdMinPts(o)

lrdMinPts(p)

|MinPts(p)|

Intuitively, the local outlier factor (LOF) of p is the ratio between the average
local reachability of its neighbors and its local reachability. If p is in a deep
cluster, the local outlier factor is close to 1. If p is outside the clusters, it is
greater than 1. The local outlier factor measures the degree of local deviation of
p with respect to its neighbors.

4 Generalized Local Density-based Outlier

We observe that the main idea of local outlier factor is in fact similar to the
computation of the ratio between the distance from p to its nearest points with
the density of its local subspace in order to identify local outliers. Breunig et al

4 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

measure the local density by using the average k-distance of the nearest neighbors
of p. This metric, however, can be generalized to other local density function
without affecting the meaning of local density-based outlier. A reasonable choice
can be kernel density function. We say that S is approximately uniform if the
following two conditions hold. The variance of the k-nearest distances is less than
a small ǫ and there is no k-nearest distance is larger than the average k-nearest
distance with ǫ unit for some k. In this study and in the following theorems, we
measure the local density by the average closest distance between the points in
S (density(S)).

We also observe that if the distance of p to its nearest points is much greater
than the density of any subset in D (dist(d, S)) that is approximately uniform, p
is not in any cluster. Clearly, p is an outlier in D. On contrary, if there is a subset
S′ such that the difference is small, p is likely to be generated from the same
distribution of S′. We can not conclude that p is an outlier, so p is considered to
be normal. These two observations lead to the conclusion that the ratio between
the distance and the density must be high for all the subsets in the dataset for
a point to be an outlier. Thus, we can define a local density-based outlier as
follows:

Definition 6. Given a point p, a dataset D, and for any subset S of D such that

Si is approximately uniform, p is an outlier with respect to D iff dist(p,S)
density(S) ≫ 1.

Figure 1 illustrates two outliers p1 and p2 based on the definition. In the figure,
p1 is not only a local outlier for the cluster containing S1, but p1 is also an outlier
with respect to S2, S3, and S4. Similarly, p2 is also an outlier with respect to S1.
By this definition, we observe that if we take a random hyperplane to partition

p1

p2

S1

S2

S3

S4

L1

L2

Fig. 1: Outliers with respect to their local subspaces.

a data set into two subset. In most of the cases, the local outlier factors will not
change dramatically. Then, we can recursively partition the subsets into smaller
subsets. We can partition the data set until the subsets are small enough for
us to compute the local outlier factors efficiently. As we see, we do not need
to perform the nearest neighbor computation for the entire dataset in order to
detect the local outliers.

Randomized Method for Local Density-based Outlier Detection 5

Figure 1 illustrates an example of the partition. L1 and L2 partition the
dataset. S1 . . . S4 are unchanged after the partitions. L2 cuts S3 into two sub-
spaces S′

3 and S′′

3 . We see that S′

3 and S′′

3 are still approximately uniform after
the partition. The points p1 and p2 remain to be outliers in the new subsets
partitioned by L1 and L2.

The procedure to detect the local outliers assumes that the partition does not
affect the density for the partitioned sets. There are two cases where it can go
wrong. The first case is when a point q is on a cluster boundary and the partition
isolates it from the cluster it belongs to. If the distance between local subspace
of q and the new cluster in the subset it belongs to is large, q is incorrectly
identified as an outlier with respect to the new clusters. The second case is when
there are many points like q that are separated from their clusters. It may make
an outlier p to be normal in the new subset contains only these points.

These problem in fact can be avoided if during the separation, the new subsets
contain enough neighbors of these points. Fortunately, it can be shown that the
probability of partitions that separate an normal point from all of their neighbors
is small. It is because that if a set C which contains q (on the cluster boundary)
is large, then the probability of drawing a hyperplane cutting C such that it only
contains q is small.

Theorem 1. Given a point p in a set of size N , the probability of selecting k
nearest neighbors of p or less is k/N .

Proof. The probability to choose a value k is 1/N . Thus, the probability to

choose up to k nearest neighbors is
∑k

i=1
1
N

= k
N

.

If p is not an outlier, it should belong to a cluster. It implies that k ≪ N . The
theorem shows that the probability of a point p on the boundary to be separated
its cluster is small. This is an important observation because we can detect
the local outliers effectively using randomization. If we partition the dataset
randomly multiple times, in most partitions, q will appear to be normal. Thus,
if a point appears to be normal in most partitions, we can flag it as normal with
high confidence.

We can illustrate this using figure 1. St will be rare for the small group of
points S1 to be always separated from its cluster using random partitioning.

The observations above are the principles of the randomized method for com-
puting outliers by randomly partitioning a dataset and running the algorithm
multiple times so that the false outliers can be ruled out.

The discussions above are based on the assumption that the local subsets are
approximately uniform. Practically, data sets do not usually contain uniform
subsets. However, this does not affect the randomization method. In the section
above, we discuss the definition based the density of the local set but there is
no requirement about the size of the set. The subsets do not have to be large
for the definition to be correct. In fact, S can be any size of at least two and
the definition is still applied. Therefore, we can consider any data set as a set of
approximately uniform subsets.

6 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

5 Algorithm

The randomized algorithm is described in Algorithm 1. In this algorithm, PAR-
TITION (Algorithm 2) takes a dataset D as an input. Then, it will call SPLIT
to split the dataset into two subsets S1 and S2 in the following way. SPLIT ran-
domly selects two points p1 and p2 in D. For every point in D, SPLIT computes
the distance from it to p1 and p2. D will be split into S1 and S2 where S1, S2 con-
tain all the points that are closer to p1, p2 respectively. This SPLIT is equivalent
to choosing a hyperplane P to partition the dataset. Then, for S ∈ {S1, S2}, if
the size of S is still greater than a threshold Mθ, PARTITION will be applied to
S. This recursive PARTITION will be performed until the size of the result sets
are smaller than a chosen size of Mθ. At this point, the LOF for all the points
in S will be computed with respect to S. Mθ should be greater the parameter
MinPts of LOF. Other than that, it can be any value that allows the outlier
detection can be computed efficiently. In the end, we will have all the outlier

Algorithm 1 COMPUTEOUTLIER(Set D, N ITER)

for all i ∈ [1, N ITER] do
Partition(D)

end for
for all i ∈ [1, N ITER] do

COMBINESCORES

end for

scores for D. As discussed in section 4, the result set of outliers may contain
false outliers due to isolated points. Therefore, we run PARTITION multiple
times to rule out the false outliers. The final LOF for each point will be its min-
imum score of all the iterations. We use the parameter Miter to set the number
of iterations of the algorithm. According to the experiments, the output tends
to be stable with Miter = 10. We can speed up the algorithm by filtering points
with low scores that are less than a threshold δout. The points with the scores
computed in the first few iteration less than δout will not be considered in the
next iterations.

It is expected that there will always be some small differences in the rankings
between the original method and the randomized method. In the original LOF
method, the ranking depends on MinPts. The choice of MinPts is subjective. A
small change in MinPts will lead to a change in the ranking by LOF. Therefore,
it is acceptable for the ranking to be slightly different. In the case, that a more
similar LOF ranking is desired, we can recompute the outlier scores for the top
N outliers by using the original nonrandomized version. It will give the exact
score for these points. The number of top outliers is small, thus the computation
time is fast. We call this version the recompute version of the randomized
method, while we call the earlier one the naive version.

Randomized Method for Local Density-based Outlier Detection 7

We can also run the multiple times with the new final score being the average
of all the runs. We call it the (merge version). We notice that even though
the recompute version can produce a ranking which is nearly the same as the
ranking of the nonrandomized version, it is limited to the top N outliers. On the
other hand, the output of the merge version is less similar for the top outliers,
but the similarity can be improved for all the points. Thus, we first produce the
average outlier scores using the merge version, then we recompute the score of
the top outliers (hybrid version). Finally, we have rankings similar to that of
the nonrandomized method for all the outliers.

Algorithm 2 PARTITION(Set D)

Split(D, S1, S2)
if |S1| > Mθ then

Partition(S1)
else

ComputeCandidates(S1)
end if
if |S2| > Mθ then

Partition(S2)
else

ComputeCandidates(S2)
end if

5.1 Query Time of New Point

The partition can actually be treated as the creation of a binary tree with two-
key nodes. Each key represents a new subset. The two keys are the selected
points (called split points) for the partition. Each key has a pointer to the child
node. The structure is then recursively created. A leaf node is a node which
represents a subset which will not be further partitioned. The leaf node contains
all points of the subset. The keys of the root node are the first two randomly
selected points. To traverse the tree, we start with the root node. We compare a
query point p to the keys of the parent node and choose the key which is closest
to p. Then, we traverse the tree to the child node referred by this key. We repeat
this process until we reach a leaf node where we will compute the outlier score
for p with respect to the leaf node.

As we discussed earlier, we will maintain multiple trees for ruling out false
outliers. The number of trees corresponds to the number of iterations. The score
of a point will be the minimum score computed from all the trees. The time
complexity of a query is O(h + f(Mθ)), where h is the height of the tree and
f(Mθ) is the time required to compute the outlier scores for the subset. If the
trees are balanced, the number of steps to reach the leaf nodes is O(logn).

8 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

5.2 Time Complexity Analysis

We use the tree structure discussed in section 5.1 to analyze the time complexity
of the algorithm. The algorithm consists of three main steps: partition, outlier
score computation for local sets, and merge.

The partition step is fastest when the tree is perfectly balanced. Multiple
partitions are required until the subsets are less than Mθ. For each level h, there
are 2h subsets, the size of each set is n

2h , thus the partition cost at this level

is O(2h × n
2h) = O(n). The total time for all levels is O(H × n), where H is

the height of the tree. If the tree is balanced, H ≈ logn. The total time will be
O(nlogn). In the outlier score computation step, we consider it a constant O(c)
because the sizes of the subsets are very small. The maximum number of subsets
is n, the worst time complexity to compute the scores is O(n). In the worst case,
the merging process for different runs and iterations can be done in O(n).

In total, the upper bound for the balanced tree is 0(nlogn). In practice, we
may not have a balanced tree, however, if we assume that most of the time
the ratio of the sizes of subsets after a split is a reasonable value, the time
complexity can be roughly approximated as in the balanced tree. It is possible
that a partition may result in two completely unbalanced subsets where one set
contains most of the points. Therefore, the key is to ensure that the probability
of completely unbalanced subsets is rare. If a tree is completely unbalanced, the
data set is always divided into two groups such that one of them contains most
of the data. However, theorem 1 shows that the probability of isolating a point
from its neighbors is small. Therefore, the probability of always isolating a point
from its neighbors is small. In other words, the probability for the algorithm
to approach O(n2) is small. The speed is guaranteed under this assumption;
however, in practice, it is showed that the algorithm can yield fast performance
consistently.

6 Experiments

6.1 2D Example

We use a two dimensional dataset to show that the randomized method can
detect local outliers correctly. We generate two Gaussians with different means
and standard deviations. We then generate two local outliers p1 and p2 for clus-
ters C1 and C2. The dataset is illustrated in figure 2. First, we compute the
outlier scores using the nonrandomized version. The LOF method detects two
outliers p2 (2.75) and p1 (2.4) as two top outliers. In addition, it returns two
other outliers q2 (2.2) and q1 (2.1). These outliers are synthetically generated
by the Gaussian. Then, we compute the scores using the merge version. We set
Mθ = 100 and Nrun = 6. The points p2 and p1 are consistently detected as the
top two outliers for all the different runs. Their final scores are 2.65 and 2.35
respectively, which are very close to the original scores. In contrast with p1 and
p2, the rankings for q2 and q1 are not consistent. However, when using merge
version, they were also ranked correctly. The scores are 2.1 and 1.9 respectively.

Randomized Method for Local Density-based Outlier Detection 9

p1

p2

q1

q2

C1
C2

Fig. 2: 2D test data for local outlier

Table 1: Dataset description.

Dataset D N

Magic 10 19K

Physics 69 50K

KDD Cup ’99 34 80K

The experiment shows that the randomized method is as good as the original
method using full nearest neighbor computation. In some cases, some outliers
may be ranked differently but on the average the output of the randomized
method converges to the original method.

6.2 Real Datasets

Dataset Description We will evaluate the performance of our method against
the original LOF method with three different datasets: MAGIC Gamma Tele-
scope [20], Physics [7], and KDD Cup ’99 Network Intrusion [20]. The detail
of the data sets after normalization and removing nonnumerical attributes are
shown in Table 1. We will refer the outliers computed by the nonrandomized
LOF as nonrandomized outliers.

Evaluation Metrics Before proceeding with the experiments, we will discuss
about the metrics for evaluating the effectiveness of the randomized method.
The LOF gives two results which are the local outlier factor (which we called
score in our method) and the ranking of the points according to the local outlier
factor. We observe that the LOF is sensitive to the parameter MinPts. With
the same LOF method, a small in change in MinPts can lead to changes in
the ranking and the scores. Except for very strong outliers where the scores are
distinct, the ranking is sensitive to the scores. It is even more sensitive for points
with low outlier scores. For an example, there is no much difference between
the rankings of 200 and 203 for the outliers with the scores of 1.90 and 1.85
due to the statistical variation. Therefore, the objective is not to have the exact
same scores and rankings between the original and randomized versions. Instead,

10 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

(N,detection rate)

naive
recompute

merge
hybrid

(a) Magic Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

(N,detection rate)

naive
recompute

merge
hybrid

(b) Physics Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

(N,detection rate)

naive
recompute

merge
hybrid

(c) KDD CUP ’99 Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

(N,detection rate)

d=100
d=200
d=500

(d) Affect of dimensionality

Fig. 3: Similarity in ranking for randomized outlier detection

the first objective is to have the similar scores with some acceptable statistical
variation. Since we are interested in the top outliers, we will try to preserve the
ranking for these outliers. This preservation is important if there are strong and
distinct outliers in the dataset. Therefore, we will evaluate the method using the
following metrics:

We will use the ”detection rate”
N−Nlof

N
to evaluate the top outliers, where

Nlof are the number of outliers in the top N outliers in our method that also
appear in the top N nonrandomized outliers. According to the experiments, the
scores drop quickly when the points are outside the top 100 outliers (which makes
the ranking sensitive to small changes of the scores). Thus, we will vary N up
to 200 outliers. For the weak outliers, we compute mean and standard deviation
of the ratios of the absolute differences between the methods for every point. If
they are small, the two methods produce similar scores.

Effectiveness of the Randomized Method We will then evaluate the effec-
tiveness of the randomized method as follows:

First, we run the nonrandomized LOF on the datasets to compute the outlier
scores (minpts = 20). Then, we run the randomized method on the datasets
(Mθ = 500, Niter = 20, and Nrun = 6). The results are shown in Figure 3a, 3b,
and 3c. In all the figures, the naive version performs worst in comparison with

Randomized Method for Local Density-based Outlier Detection 11

the others. Nonetheless, in all the experiments, it still guarantees the detection
rate of 40% for N = 25. It means that at least the top ten outliers are detected.
The method performs best for the KDD dataset where the top 20 outliers are
identified. The merge version produces slightly better results for the Magic and
KDD datasets. At least 50% of the top 50 outliers are detected. The performance
of the merge version is more stable compared with the naive versions when N
increases. As expected, the recompute version boosts the performance for all
the datasets. In the figures, all the top five outliers are correctly detected. At
least 80% of the top 50 outliers are detected in the Magic and KDD datasets.
However, the differences in the rankings start to increase when N increases. By
using the hybrid approach, the performance of the randomized version becomes
stable with high accuracy. As we can see, this approach is the best in all the
experiments.

By manually examining the results, we found that the KDD dataset contained
many strong outliers. The outlier scores for the KDD dataset are high while
those in the Magic and Physics datasets are low. It can be explained by the fact
that the KDD dataset contains many intrusion attack connections. This makes
the distinction between the outlier scores in the KDD dataset more obvious.
Therefore, the results in the KDD dataset are more stable than those in the
other two datasets.

For the weak outliers, we compute the mean and standard deviation as men-
tioned earlier. We found that the top 180, 167, and 151 outliers had the ex-
act same scores with the outliers computed by the original LOF in the Magic,
Physics, and KDD datasets respectively. The statistics imply that our method
and the original LOF method produce similar results .

6.3 Dimensionality

We want to answer the question whether the effectiveness of the randomized
method will also be affected by the ”curse of dimensionality” as index trees.
We generate synthetic datasets with the dimensionality up to 500. We run the
experiments with d = 100, 200, and 500. The datasets consist of the Gaussians
with randomly generated means and standard deviations. We also inject ten
randomly generated outliers into the datasets. According to figure 3d, the ten
injected outliers are correctly identified and the top 20 outliers are correctly
identified in all the experiments. We notice that there is a slight decrease in the
detection rate when d increases. When we examine the outliers manually, we
find that it is because the scores of the outliers become closer when d increases
which makes the ranking fluctuate. This experiment shows that the randomized
method is still viable in very high dimensions.

6.4 Speed Comparison

We evaluate the running time of the randomized method against the nonran-
domized version of LOF using the Magic, Physics, and Kdd Cup ’99 datasets.
In these datasets, Magic is the smallest (19K points) while Kdd is the largest

12 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

 0

 500

 1000

 1500

 2000

Magic Physic Kdd

R
u

n
n

in
g

 T
im

e
(s

ec
o

n
d

)
Nonrandomized LOF
Randomized Method

(a) Speed Comparison

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300 350 400

t
(s

ec
)

N (x1000)

d=50
d=100
d=200

(b) Running Time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16 18

(#Iteration, Change rate)

magic
physic

kdd

(c) Convergence rate

Fig. 4: Performance

Table 2: Running Time.

Dataset Nonrandomized Randomized
LOF (second) LOF (second)

Magic 89 8

Physics 909 30

Kdd Cup ’99 1681 37

Synthetic 4848 106

(80K points). In Figure 4a, the running time of the nonrandomized version grows
quickly when the size of the datasets increase from 19K to 80K. In the mean
while, the speed of the randomized method grows slower. In addition to Magic,
Physics, and KDD Cup ’99 datasets, we use a synthetic dataset with 200 dimen-
sions and 100K points. The synthetic dataset contains five randomly generated
Gaussians and ten random outliers. According to the experiment, the random-
ized method is consistently faster than the original LOF method. The running
time of the methods in seconds are shown in Table 2.

6.5 Performance

We randomly generate the Gaussian clusters with different means and standard
deviations for the sizes from 50K to 400K. We randomly injects top 10 outliers
in the datasets. We generate the datasets for d = 50, 100, and 200. According
to the results, all the generated outliers are detected as the top outliers. Figure
4b shows the running time for different datasets. The vertical axis shows the
running time in seconds. In the figure, the running time is linear with the size of
the dataset for different dimensions. The experiments show that the algorithm
can scale well with high dimensionality.

Randomized Method for Local Density-based Outlier Detection 13

6.6 Convergence Rate

The method relies on multiple iterations in order to rule out false outliers. We
will evaluate how the iterations affect the effectiveness of the method. We observe
that in the first few iterations there will be many false outliers. However, when
the number of iterations (Niter) increases, these outliers will be ruled out in the
next iterations. The quality of detected outliers will be stable at some iterations.
We will evaluate it based on the changes in the scores. This experiment aims to
identify a good value of Niter in practice.

Figure 4c shows the rate of change in the size of outliers for the Magic,
Physics, and KDD dataset (after filtering out the low score outliers). As ex-
pected, the figure shows that the number of outliers changes rapidly in the first
few iterations and the rate of change becomes stable when Niter approaches 10.
The rate of change is insignificant when Niter > 10. We also evaluated with the
datasets in multiple runs and we found that in general, Niter = 10 is a reasonable
choice for the randomized algorithm.

Parameter Mθ The parameter Mθ is the stop condition for the partition step.
The partition will stop if there is less than Mθ points in the partition. As dis-
cussed earlier, the Mθ should not affect the quality of the algorithm as long as
it is large enough. In our experiments, the scores are not affected when we try
to increase Mθ.

7 Conclusion

We have shown that it is unnecessary to perform the KNN computation for the
entire dataset in order to identify local density-based outliers. We introduced
a randomized method to compute the local outlier scores very fast with high
probability without finding KNN for all data points by exploiting the outlier
consistency property of local outliers. We also introduced a hybrid version for
the randomized method by recomputing the scores and combining the scores
using multiple runs of the algorithm to improve its accuracy and stability. The
parameters can be selected intuitively. We have evaluated the performance of
our method on a variety of real and synthetic datasets. The experiments have
shown that the scores computed by the randomized method and the original
LOF are similar. The experiments also confirm that the randomized method is
fast and scalable for very high dimensional data. To the best of our knowledge,
our method is the first that can compute LOF very efficiently with high accuracy
in high dimensional data. In our experiment, we have evaluated the method up
to 500 dimensions.

References

1. C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In
SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international conference on

Management of data, pages 37–46, New York, NY, USA, 2001. ACM.

14 Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark

2. S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In KDD ’03: Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 29–38, New York, NY, USA, 2003. ACM.
3. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: an efficient

and robust access method for points and rectangles. SIGMOD Rec., 19(2):322–331,
1990.

4. S. Berchtold, D. A. Keim, and H.-P. Kriegel. The x-tree: An index structure
for high-dimensional data. In VLDB ’96: Proceedings of the 22th International

Conference on Very Large Data Bases, pages 28–39, San Francisco, CA, USA,
1996. Morgan Kaufmann Publishers Inc.

5. M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-
based local outliers. SIGMOD Rec., 29(2):93–104, 2000.

6. V. Chandola, A. Banerjee, and V. Kumar. Outlier detection: A survey. ACM

Computing Surveys, pages 1–72, Sept. 2009.
7. Charles Young et al. KDD Cup 2004: Quantum physics dataset, 2004.
8. N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost: Im-

proving prediction of the minority class in boosting, volume 2838/2003 of Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, Germany, 2004.
9. K. Das and J. Schneider. Detecting anomalous records in categorical datasets.

In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 220–229, New York, NY, USA, 2007.
ACM.

10. Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based
outliers in large datasets. In VLDB ’98: Proceedings of the 24rd International

Conference on Very Large Data Bases, pages 392–403, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

11. J. H. Freidman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226,
1977.

12. D. Hawkins. Identification of outliers. Chapman and Hall, London, 1980.
13. R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on

shared near neighbors. IEEE Transactions on Computers, C-22(11):1025– 1034,
1973.

14. F. Korn, B.-U. Pagel, and C. Faloutsos. On the ’dimensionality curse’ and the
’self-similarity blessing’. IEEE Transactions on Knowledge and Data Engineering,
13(1):96–111, 2001.

15. H.-P. Kriegel, M. S. hubert, and A. Zimek. Angle-based outlier detection in high-
dimensional data. In KDD ’08: Proceeding of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 444–452, New York,
NY, USA, 2008. ACM.

16. A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In KDD ’05:

Proceeding of the eleventh ACM SIGKDD international conference on Knowledge

discovery in data mining, pages 157–166, New York, NY, USA, 2005. ACM.
17. H. Mannila, D. Pavlov, and P. Smyth. Prediction with local patterns using cross-

entropy. In KDD ’99: Proceedings of the fifth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 357–361, New York, NY,
USA, 1999. ACM.

18. Micheline Kamber and Jiawei Han. Data Mining: Concepts and Techniques. Mor-
gan Kaufmann Publishers, 2 edition, Mar. 2006.

Randomized Method for Local Density-based Outlier Detection 15

19. Minh Quoc Nguyen, Edward Omiecinski, and Leo Mark. A Fast Feature-based
Method to Detect Unusual Patterns in Multidimensional Data. In 11th Interna-

tional Conference on Data Warehousing and Knowledge Discovery, Aug. 2009.
20. C. B. D. Newman and C. Merz. UCI repository of machine learning databases,

1998.
21. U. Shaft and R. Ramakrishnan. Theory of nearest neighbors indexability. ACM

Trans. Database Syst., 31(3):814–838, 2006.
22. Spiros Papadimitriou, Hiroyuki Kitagawa, Philip B. Gibbons, and Christos Falout-

sos. LOCI: Fast outlier detection using the local correlation integral. In Proceedings

of the 19th International Conference on Data Engineering: 2003, pages 315– 326.
IEEE Computer Society Press, Mar. 2003.

23. I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly
detection. J. Mach. Learn. Res., 6:211–232, 2005.

