
PERFDB + PERFML: ENABLING BIG DATA-DRIVEN RESEARCH
ON FINE-GRAINED PERFORMANCE PHENOMENA

A Dissertation
Presented to

The Academic Faculty

by

Joshua M. Kimball

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
August 2021

COPYRIGHT © 2021 BY JOSHUA KIMBALL

PERFDB + PERFML: ENABLING BIG DATA-DRIVEN RESEARCH
ON FINE-GRAINED PERFORMANCE PHENOMENA

Approved by:

Professor Dr. Calton Pu, Advisor
School of Computer Science
Georgia Institute of Technology

 Professor Dr. Ling Liu
School of Computer Science
Georgia Institute of Technology

Professor Dr. Shamkant B. Navathe
School of Computer Science
Georgia Institute of Technology

 Professor Dr. Joy Arulraj
School of Computer Science
Georgia Institute of Technology

Professor Dr. Qingyang Wang
School of Electrical Engineering and
Computer Science
Louisiana State University

 Date Approved: 05/05/2021

To my wife, Dena, and daughters, Nadia and Nessa

iv

ACKNOWLEDGEMENTS

I am extremely grateful to my advisor, Dr. Calton Pu, who guided me tirelessly

throughout my PhD. I am fortunate to have worked with him. He taught me how to be a

better researcher. In doing so, he helped me diagnose my own “bugs” to become a more

productive and efficient person. He helped me become a better Josh.

I would also like to give special thanks to the members of my dissertation

committee—Dr. Ling Liu, Dr. Shamkant Navathe, Dr. Joy Arulraj, and Dr. Qingyang

Wang—for serving on my dissertation committee. I very much appreciate the time and

effort they took to supervise my dissertation work.

The work in this dissertation is the result of collaboration with my previous and

current colleagues in the Elba project: Rodrigo Alves Lima, Chien-An Lai, Tao Zhu,

Deepal Jayasinghe, and Aibek Musaev. They have supported me all along the way. It has

been a privilege to work with such amazing colleagues.

Lastly, I want to thank my wife, Dena, and daughters, Nadia and Nessa. They gave

me the energy and inspiration to endure and always helped me to remember the bigger

picture, to prioritize wisely and laugh along the way. Finally, I would like to thank my

parents, Phillip and Patricia, my sisters, Shana and Stephanie for their encouragement and

examples of bravery, and I would like to thank my in-laws, Diana and Arthur, for their

support and enthusiasm along this journey.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS AND ABBREVIATIONS xiii

SUMMARY xiv

CHAPTER 1. Introduction 1
1.1 Thesis Statement 4
1.2 Contributions 4

CHAPTER 2. Elba-Wise Measurement ToolKit 7
2.1 Motivation 7
2.2 Elba-WISE Measurement Toolkit Description 8
2.3 Studies of Individual Experiments 10

CHAPTER 3. Perftables 12
3.1 Introduction 12
3.2 Terminology and Problem Statement 17

3.2.1 Definition – Data Type Sequence 18
3.2.2 Definition – Layout Template 18
3.2.3 Definition – Layout 18
3.2.4 Definition – Log Data 20

3.3 Model 20
3.3.1 Visual Structural Cues and Layouts 21
3.3.2 Layout Templates 22
3.3.3 Assumptions 23

3.4 perftables Approach 24
3.4.1 Token Creation 25
3.4.2 Model 26
3.4.3 Extracting Relations 27

3.5 Evaluation 29
3.5.1 perftables performance 29
3.5.2 perftables Illustrative Scenarios 34

3.6 Conclusion 41

CHAPTER 4. PerfDB 43
4.1 Introduction 43
4.2 Problem Definition and Related Work 47

4.2.1 Long Tail Latency Requests 47

 vi

4.2.2 Millibottlenecks 48
4.3 PerfDB Approach 48

4.3.1 Overview 48
4.3.2 Millibottleneck Data Model 48
4.3.3 perftables 50
4.3.4 perfstore 51
4.3.5 Millibottleneck Analytics 54

4.4 Experimental Verification of VLRT and LLR 58
4.4.1 Frequency of Millibottleneck Occurrence 58
4.4.2 Millibottleneck with CTQO as Cause of VLRT 61
4.4.3 Disk and Memory Millibottleneck Subgroups 67

4.5 Future Work and Conclusion 70

CHAPTER 5. PerfML 72
5.1 Introduction 72
5.2 Problem Definition 75

5.2.1 Latency Long Tail Request 75
5.2.2 Millibottlenecks 76
5.2.3 Detection and Diagnosis Problem 77

5.3 Data Description and Challenges 78
5.3.1 Input Data 79
5.3.2 Imbalance Multi-Class Hierarchical Membership Data 80
5.3.3 Heterogeneous Feature Space 81

5.4 PerfML Approach 84
5.4.1 Overview 84
5.4.2 perftables and PerfDB 85
5.4.3 Segmenting Experimental Data 86
5.4.4 Feature Engineering 88
5.4.5 Creating Ensembles Ej 89
5.4.6 Classify New Samples 91
5.4.7 Obtain Diagnosis 92

5.5 PerfML Evaluation 93
5.5.1 PerfML Performance 95
5.5.2 PerfML Parameters 96
5.5.3 PerfML State-of-Art Comparison 99
5.5.4 PerfML Case Study 102

5.6 Future Work and Conclusion 103

CHAPTER 6. Related Work 105
6.1 Systems 106
6.2 Database 107
6.3 Machine Learning 109

CHAPTER 7. Conclusion and Future Work 112

REFERENCES 114

 vii

 viii

LIST OF TABLES

Table 1 – Template Definitions 22

Table 2 – Sample Characteristics for Random Github Sample 32

Table 3 – Sample Characteristics for Small, Curated Subset of Github Sample 33

Table 4 – PerfDB Experiment Catalog 51

Table 5 – Experimental Schema Characteristics 54

Table 6 – Millibottlenecks and VLRT Requests 57

Table 7 – Minimum Millibottleneck Workloads 60

Table 8 – PerfML Experiment Catalog 79

Table 9 – Data Set Metrics 93

Table 10 – Finding Known Millibottlenecks 103

 ix

LIST OF FIGURES

Figure 1 – PerfML system data flow. Event and Performance Monitoring
Logs are ingested and interpreted by perftables, which automatically
induces relations. This relational data is persisted in PerfDB, which
provides just-in-time data integration and materializes the
Millibottleneck schema. PerfML leverages PerfDB relations and
system model domain knowledge to train ensemble-based machine
learning models to (i) isolate millibottleneck periods (ii) diagnose the
type of millibottleneck respectively.

4

Figure 2 – Example of collectl output for multi-core CPU machine 13

Figure 3 – Example of collect output for single-core CPU machine 14

Figure 4 – perftables Usage. Left graph shows the amount of experiment data
extracted by perftables for each monitoring program. Graph on the
right shows the number of experiments by monitoring program
where perftables was used.

15

Figure 5 – Long variable length records. Intermediate rows, indicated by
braces, were removed for space considerations.

17

Figure 6 – Common Layouts 21

Figure 7 – perftables Approach 24

Figure 8 – Data volume and variety for three Elba performance monitors 29

Figure 9 – Variety and Size on Performance (Elba) 30

Figure 10 – Variety and Size on Accuracy (Elba) 31

Figure 11 – Performance logs randomly sampled from Github. Each graph
compares the coverage and size for files containing a Single Record
Type (left) and Multiple Record Types (right).

32

Figure 12 – Variety and Size on Accuracy for small, curated subset from
Github sample

33

Figure 13 – Tomcat JVM Millibottleneck. 34

Figure 14 – VLRT and Point-in-Time Distribution comparisons for periods
with Millibottlenecks and No Millibottlenecks detected.

35

 x

Figure 15 – VLRT and Point-in-Time comparison among predicted and ground
truth Millibottleneck and No Millibottleneck periods.

36

Figure 16 – Database IO as Millibottleneck. These provide visual evidence of
a millibottleneck indicated by the appearance of VLRT, queue
extension and temporary resource saturation.

38

Figure 17 – Dirty Page as Millibottleneck Example. These provide visual
evidence of a millibottleneck indicated by the appearance of VLRT,
queue extension and temporary resource saturation.

40

Figure 18 – Latency long tail of experimental periods in our data catalogue. We
see the appearance of VLRT and LLR with 99% periods completing
20 ms or less.

45

Figure 19 – PerfDB system data flow. Event and Performance Monitoring Logs
are ingested and interpreted by perftables, which automatically
induces relations. This relational data is transformed using features
from the catalogue that are necessary for detecting millibottlenecks.
System and component-millibottleneck models are used to (i) isolate
millibottleneck periods (ii) diagnose the type of millibottleneck
respectively.

4645

Figure 20 – collect 4.0.4 performance log Memory and Network attributes 52

Figure 21 – Distribution of CPU Millibottleneck Duration over machine
capacities and workload across experiment catalog

59

Figure 22 – Distribution of CPU Millibottleneck Duration for low capacity
machines, e.g. p3000

60

Figure 23 – Millibottlenecks found in our experiment collection stratified by
type that coincide with periods where long-tail latency requests are
observed.

61

Figure 24 – Latency long tail of CPU Millibottlenecks. We see the appearance
of LLRs. Most of the periods coincide with system response times <
50 ms.

62

Figure 25 – MySQL CPU Millibottlenecks, without CTQO as highlighted by
the red circle, overlap with LLRs depicted in the previous figure.

63

Figure 26 – Mysql CPU Millibottlenecks instances grouped by their associated
queue length growth. We observe periods without queue growth
have fewer requests and with lower latencies, i.e. 100ms and 250ms,
than the periods coinciding with queue growth, i.e. 500ms and
1000ms.

64

 xi

Figure 27 – Number of LLR requests counted at every 50ms time window.
These requests overlap with the increase in system response time.

64

Figure 28 – Queue peaks do not appear during the period of temporary resource
saturation. Any queueing that is present is minimal and precedes the
short, temporary saturation by at least 100ms.

65

Figure 29 – Transient CPU saturation co-occurs with the appearance of LLR
requests and increases in system latency without any queue peak
overlap.

65

Figure 30 – Apache CPU Millibottlenecks coinciding with VLRT requests and
Apache queue growth. No preceptible queue increase occurs during
the first four millibottlenecks.

66

Figure 31 – Tomcat CPU millibottlenecks coinciding with VLRT requests and
upstream Apache queue growth. Once again, we see a few instances
where no queue increase occurs.

67

Figure 32 – CJDBC CPU Millibottlenecks coinciding with VLRT requests and
Apache and Tomcat queue increases. All millibottlenecks co-occur
with queue increases.

68

Figure 33 – MySQL Disk millibottlenecks coinciding with VLRT requests and
queue growth. We see upstream queue growth overlapping with all
millibottlenecks, suggesting LLR are not present.

69

Figure 34 – Tomcat Memory (Dirty Page) millibottlenecks co-occurring with
VLRT requests, and Apache queue increases occur during each.

69

Figure 35 – Latency long tail of experimental periods in our data catalogue. We
see the appearance of VLRT and LLR with 99% periods completing
20 ms or less.

75

Figure 36 – Millibottlenecks found in our experiment collection stratified by
type that induce tail latency requests represent imbalanced classes in
our data.

80

Figure 37 – Incidence of Various Millibottlenecks stratified by the presence of
VLRT

8168

Figure 38 – Schema distribution for experiment samples X. The blue boxes
represent the number of experiments that share the give schema. The
orange line represents the cumulative distribution of schema
instances.

82

 xii

Figure 39 – System Stack Graph representing the systems topologies,
components and resources spanning experiment samples X.

84

Figure 40 – PerfML data flow. Event and Performance Monitoring Logs are
extracted into relations. Using the system stack graph, partitions of
the experimental space are created. We transform the data to support
training ensembles over each partition. We traverse the system stack
graph and retrieve appropriate models to (i) isolate millibottleneck
periods (ii) diagnose the type of millibottleneck respectively.

86

Figure 41 – Computing diagnostic paths for a new sample from a 3-tier system
topology. Ensembles for each vertex in the system stack graph are
retrieved for each matching vertex. Depth-first search continues as
long as the positive class probability exceeds the negative class
probability, and diagnostic paths are ordered according to their
length and confidence.

91

Figure 42 – PerfML Ensemble Precision, Recall and F1 Performance on Test
Set for CPU Millibottleneck Diagnosis across components.

95

Figure 47 – PerfML prediction probability threshold 99

Figure 43 – Precision, Recall and F1 Performance on Test Set for Apache CPU
Millibottleneck Diagnosis for different choices of base learners.

96

Figure 44 – PerfML Precision, Recall and F1 Performance on Test Set for
Tomcat CPU Millibottleneck Diagnosis for different choices of base
learners.

97

Figure 45 – PerfML Precision, Recall and F1 Performance on Test Set for
Mysql CPU Millibottleneck Diagnosis for different choices of base
learners.

97

Figure 46 – PerfML Precision, Recall and F1 Peformance on Test Set for
CJDBC CPU Millibottleneck Diagnosis for different choices of base
learners.

98

Figure 48 –Precision, Recall and F1 Performance on Test Set of PerfML versus
other state-of-art methods.

100

 xiii

LIST OF SYMBOLS AND ABBREVIATIONS

CTQO Cross-Tier Queue Overflow

DVFS Dynamic Voltage Frequency Scaling

JVM Java Virtual Machine

LLR Less Long Requests

PiT Point-in-Time Response Time

VLRT Very Long Response Time Requests

 xiv

SUMMARY

The long-tail latency problem is a well-known problem in large-scale system topologies

like cloud platforms. Long-tail latency can lead to less predictable system performance,

degraded quality of experience and potential economic loss. Previous research has focused

on coarse-grained, symptomatic treatments like redundant request executions to mitigate

tail latency and its effects. Instead, we propose studying these performance bugs

systematically and addressing their underlying root cause.

The millibottleneck theory of performance bugs provides a testable hypothesis for

explaining at least some requests comprising the latency long tail. The theory posits that

transient performance anomalies cause a non-negligible number of requests to complete in

seconds, called Very Long Response Time Requests (VLRT), instead of tens of

milliseconds like the vast majority of other requests.

In this dissertation, we enable the systematic evaluation of the millibottleneck theory across

a big data-scale experimental data collection. First, we present perftables, a performance

log parser, that extracts resource monitoring data across a wide variety of hardware and

software configurations. Secondly, we use our data management system, PerfDB, to load

and integrate fine-grained system performance data from approximately 400 experiments.

We conduct the first-generation population study of VLRT, and our data support

millibottlenecks inducing VLRT through CTQO (Cross-Tier Queue Overflow). We also

enable the study of a second latency class called Less Long Requests (LLRs). Finally, we

present our ensemble-based, supervised machine learning system, PerfML, that handles

data characterized by heterogenous feature space and hierarchical, imbalanced classes—

 xv

characteristics inherent to the data needed to study millibottlenecks and latency

performance bugs. The analytics results from PerfML demonstrate its ability to isolate

different kinds of millibottlenecks across a range of systems and configurations with high

recall and acceptable precision.

 1

CHAPTER 1. INTRODUCTION

Internet-scale, cloud-based platforms like ecommerce or social networking

platforms, which experience “bursty” workloads, confront a well-known performance

pathology termed the “long-tail latency problem” [1]. Dean et al. shows servers with 99th-

percentile latencies of 1s used in tandem, (i.e., 100 servers), to service user requests result

in 63% of user requests taking longer than 1s to complete. They also report “the slowest

5% of requests across Google’s services accounted for half of the total 99th-percentile

latency,” i.e. an additional 70ms of latency is added yielding 140ms in total [1].

Long-tail latency has also been reported to be bad for business. For example,

Amazon has reported [2] that a marginal increase of 100ms in page load time correlates

with approximately a 1% reduction in sales. Google found that 500ms of additional delay

returning search results could reduce revenue by up to 20% [3]. Given the size of their

respective customer bases, these platforms need to reduce their 95th, 99th and 99.9th

percentile latencies as close to zero as possible [1] [4].

The millibottleneck theory of performance bugs [5] provides a testable hypothesis

to explain some long-tail latency requests. The theory posits that transient performance

anomalies cause a non-negligible number of requests to complete in seconds, called Very

Long Response Time Requests (VLRT), instead of tens of milliseconds like most other

requests. This occurs despite low average resource utilization (e.g. less than 50%)—adding

to the puzzle of long-tail latency requests. Millisecond-scale delays due to transitory

resource bottlenecks, called millibottlenecks, can propagate through a system via intra-

system, synchronous communication mechanisms like Remote Procedure Calls (RPCs),

 2

ultimately leading to performance bugs like VLRTs [5]. We have isolated root causes of

millibottlenecks crossing the architectural stack, including CPU dynamic voltage

frequency scaling (DVFS) control [6], Java garbage collection (GC), “noisy neighbors”

due to virtual machine consolidation [7], dirty page flushing [8], memory thrashing due to

rapid succession of page faults [9] and writing log data to disks [10] [11].

To identify and study this diverse set of millibottlenecks, we have used our

experimental computer science infrastructure to execute hundreds of experiments at fine-

grained time scales across a variety of system configurations [12, 13, 14, 15, 16, 17]. Our

infrastructure with its fine-grained, precise event tracing and expansive resource

monitoring provides the monitoring data that is necessary for detecting millibottlenecks.

To isolate millibottleneck periods, this event and resource data needs to be integrated

across space and time.

Generally, web-facing applications running in a cloud have (potentially infinite)

scalability and heterogeneity requirements. Consequently, our monitoring data is very

complex to integrate due to this variety of n-tier system configurations. We categorize these

data heterogeneity challenges as follows:

• Performance Log Diversity. As we show later, performance monitoring logs can

vary across executions despite controlling for system topology due to orthogonal

considerations such as OS and other machine hardware-level characteristics. Said

differently, resource monitors’ performance logs can have different resource

schemas.

 3

• Experimental Schema Diversity. Secondly, we demonstrate later that our

infrastructure covers an enormous experimental configuration space resulting in

many experiments with different topologies, components and experimental

parameter ranges. In fact, we have found hundreds of different experimental

schemas across just a few hundred experiments. Consequently, to study

millibottlenecks across experiments, we must integrate these constituent

experiments diverse event and resource schemas—a non-trivial undertaking.

• Millibottleneck Diversity. Finally, we have identified a range of different

millibottlenecks, evidenced by the earlier list. Each type of millibottleneck has its

own set of data or signals that are used for diagnosis. Our prior studies unit of

analysis was at the individual period level, so they only included the data needed to

analyze each type of millibottleneck—a significant data analysis simplification.

Analyzing periods across an entire experimental collection requires evaluating all

relevant signals, since we do not know a priori which of these signals might apply

to a particular period. An effective analysis technique needs to be extensible to

support a large (and growing) set of signals (features). It also needs to be sensitive

enough to identify the same type of millibottleneck over a range of systems,

including those with different topologies, components, resources, workloads and

configurations.

 4

Figure 1 – PerfML system data flow. Event and Performance Monitoring Logs
are ingested and interpreted by perftables, which automatically induces relations.
This relational data is persisted in PerfDB, which provides just-in-time data
integration and materializes the Millibottleneck schema. PerfML leverages
PerfDB relations and system model domain knowledge to train ensemble-based
machine learning models to (i) isolate millibottleneck periods (ii) diagnose the type
of millibottleneck respectively.

The focus of this dissertation is on such an analytical system. As shown in Figure

1, PerfML features a pipeline-based design. We employ a lazy, flexible approach to reliably

extract data from a variety of performance monitor logs into experiment-specific relations.

We materialize a data store, including important experiment-specific metadata, and provide

a query façade over these experiment tables. Lastly, we use a one-versus-all (OvA),

ensemble-based machine learning approach to detect and diagnose known millibottlenecks

and their latency-related pathologies like VLRT.

1.1 Thesis Statement

Experimental computer science big data spanning hundreds of diverse systems’

experimental schemas present significant challenges and opportunities to apply ensemble-

based supervised machine learning and lazy data extraction and integration techniques for

analyzing a variety of millibottlenecks and associated long-tail latency phenomena.

1.2 Contributions

To support this thesis statement, we make the following three contributions:

• Our first and most technical contribution and our first paper is the beginning of the

pipeline—perftables. While the contribution is narrow, it provides an important

building block for the rest of the pipeline. Our measurement toolkit’s measurement

 5

data outputs are the PerfML pipeline’s inputs, specifically inputs to perftables.

perftables can parse, extract, transform, and load a collection of fine-grain

(sampling at 50ms intervals) resource monitoring data (Figure 20) on a wide variety

of hardware and software configurations (Table 4).

• Our second and broadest contribution is PerfDB. PerfDB interprets and loads fine-

grained event (timestamped arrival and departure of every message at every server)

data in addition to the resource data extracted with perftables. We demonstrate that

our approach was able to clean, integrate and analyze approximately 2TB of

performance monitoring data spanning ~400 experiments into aggregated data sets,

enabling the confirmation of the association of VLRT and millibottlenecks causing

CTQO and the identification of a latency class called Less Long Latency Requests

(LLRs). We confirm the previously known association between transient VLRT

requests and millibottlenecks with a large-scale study. Furthermore, our data

support the explanation of CTQO (Cross-Tier Queue Overflow) [18] as cause of

transient VLRT requests in our experiments. We also employ a detailed statistical

analysis to identify LLRs that have duration between VLRT request and the average

latency. LLRs are typically associated with millibottlenecks of shorter duration

than those causing CTQO.

• Our final and most impactful, methodological contribution is PerfML. It consists

of an ensemble-based supervised machine learning approach designed to handle

data characterized by heterogenous feature space and hierarchical, imbalance

classes—data characteristics inherent to detecting and diagnosing millibottlenecks

and related performance anomalies like VLRTs and LLRs. We evaluate our

 6

ensemble-based supervised machine learning approach using a diverse set of

approximately 30K millibottlenecks found across ~400 experiments.

 7

CHAPTER 2. ELBA-WISE MEASUREMENT TOOLKIT

2.1 Motivation

In this chapter, we briefly outline the constituent parts of our toolkit. The diversity

of our measurement toolkit’s outputs serves as the principal motivation for our pipeline.

We begin by explaining the factors that explain the data heterogeneity our pipeline must

contemplate.

First, our measurement toolkit covers an enormous experimental configuration

space. Using a declarative approach, it can execute many different types of experiments

consisting of different topologies, components and experimental parameter ranges. In fact,

we have found hundreds of different experimental schemas spanning just a few hundred

experiments as we later show in sections 4.2 and 4.3.4.

Secondly, we have isolated millibottlenecks across a range of resources and for

each type of component software. Per the first point, our measurement toolkit needs to

cover an enormous experimental space to study each of these effectively. Different kinds

of millibottlenecks means that different signals (or variables) are required to isolate each

one. Consequently, we need different data to diagnose the various types of millibottlenecks.

Finally, the resource logs output by our toolkits’ resource monitors, which provide

a subset of the variables, have complicated formats or layouts. Orthogonal concerns can

affect the layout such as: system topology, types of components, monitoring program (the

type, version, and bootstrap parameters), hardware or computer architecture, operating

system and kernel version of the host, and experimental benchmark application-specific

 8

parameters. For example, running the same monitor holding all else constant except on

different machines can result in different layouts due to hardware-specific or architectural

characteristics like the number of block devices, CPU cores or number of caches. Examples

and a more detailed explanation of these orthogonal concerns appear later in sections 2.1

and 2.2.

2.2 Elba-WISE Measurement Toolkit Description

Our measurement toolkit provides the special monitoring instrumentation that has

enabled the fine-grained measurement of millibottlenecks in our experiments. Specifically,

its constituent parts fulfill three important requirements for studying millibottlenecks and

latency pathologies: low overhead instrumentation and monitoring, fine-grained (resource)

samples and capturing and important system events reconstruction. By meeting these

design goals, our measurement toolkit provides the necessary data for studying

millibottlenecks and the interesting events they induce like queue overflows and VLRTs.

Fine-grained and expansive resource monitoring. Studying millibottlenecks pose a

resource monitoring challenge due to their short life spans and variety. According to the

Sampling Theorem, multi-second sampling periods are insufficient to study transient

phenomena effectively. (For example, we can reliably detect millibottlenecks of 100ms or

longer with 50ms sampling intervals.) We also need to monitor as many performance

counters (resources) as possible using a diverse set of resource monitors.

Precise event tracing. Previous research has shown that millibottlenecks cannot be

detected using only hardware resource utilization [19]. To identify and confirm the root

cause of millibottlenecks, we need to study the significant system events that occur during

 9

them. We decorate the boundaries of systems’ components using specialized component

software to record interesting events during experimental workload execution, (i.e. request

arrivals and departures via remote procedure calls across nodes), in these components’

native event logs. This instrumentation also enables us to capture the queueing-related

propagation mechanisms associated with millibottlenecks and reconstruct the execution

paths of pathological requests like VLRTs across a distributed system.

Low overhead monitoring and logging. A measurement toolkit needs to limit the

monitoring overhead from obscuring the subject under study (i.e. the system processing a

given workload). Our careful implementation of open-source resource monitors enables us

to bypass any conflict among the previously described fine-grained monitoring

requirements and this low overhead requirement.

Benchmarks. In experimental computer science research, researchers typically use

(application) benchmarks to evaluate the performance of said benchmark under different

system configurations and workloads. Using benchmarks enables the systematic of

millibottlenecks by enabling us to formulate and validate hypotheses through the collection

of compelling evidence. Besides leveraging benchmarks, our measurement toolkit uses a

declarative framework like a workflow modeling language to facilitate the benchmark’s

deployment and ensuring its dependencies are fulfilled. Ensuring complex benchmarks can

be constructed, executed and reproduced is important to studying phenomena like

millibottlenecks where some kinds can be due to non-deterministic systems execution like

Java garbage collection. A declarative approach also enables us to efficiently extend the

benchmark’s configuration space to support: different public cloud infrastructures,

multiple operating systems and kernels, various component software and additional

 10

monitors. This declarative framework through an integrated workload generator and

benchmark-specific configuration files controls the “bursty workloads” our application

benchmark confronts. Bursty workloads, which are typical of web-facing applications,

have been shown to cause short resource saturations [18]. As such, an application

benchmark should have an integrated workload generator that offers fine-grained controls

over the workload size, its characteristics (e.g. request type and frequency) and the

burstiness (e.g. variation in the number of requests per second) to re-create these kinds of

millibottlenecks.

2.3 Studies of Individual Experiments

Our measurement toolkit has enabled us to study individual millibottleneck periods

effectively, evidenced by the previous studies cited in Chapter 1. To study these individual

instances, we have employed experiment-specific parsers to extract and integrate the

necessary event and resource data. Then, we used graphical and foundational statistical

techniques like correlation to “zoom into” these individual, anomalous periods.

However, the inherent complexities of the data have limited our ability to conduct

population studies. To study millibottlenecks as a group, we need techniques to process

and integrate the heterogenous performance data output by the measurement toolkit. As

such, the data outputs of the measrurement toolkit are the inputs to our PerfML pipeline.

Specifically, these outputs are the inputs to perftables—our flexible performance log data

extraction, parsing component. Perftables is the beginning of the performance data

pipeline. It induces relations for resource data. PerfDB ingests the induced resource data

relations and loads the event data using a defined event measurement schema. PerfML

 11

performs the analytics on data loaded in PerfDB. Once PerfML’s ensemble-based machine

learning models have been trained, we use them to identify millibottlenecks and

millibottleneck-induced latency pathologies in newly loaded datasets.

 12

CHAPTER 3. PERFTABLES

3.1 Introduction

Our experimental computer science infrastructure, elba, generates huge volumes of

data from large numbers of diverse experiments and systems topologies, which support our

empirical-based method for understanding computer systems’ more fundamental behavior.

As we show later, we have run over 20,000 experiments on elba over the last three years

generating over 100TB of data spread across 400K various log files. To isolate and

diagnose nuanced, fine-grained performance anomalies, we need to support a broad array

of experimental configurations, since these bugs can materialize under a range of

conditions. For example, experimental artifacts like logs can vary in number and layout

per experiment making data extraction and subsequent analysis challenging to perform at

scale. Recent approaches like DeepLog operate over arbitrary text and attempt to isolate

“macro-level” system events like crashes [20]. Our automated relation induction approach,

perftables, operates over the diverse performance monitoring outputs with the objective of

isolating much more precise (shorter and transient) events.

The layout diversity observed across these performance logs stems from our

infrastructure’s enormous experimental parameter space and its diversity of

instrumentation. Resource monitoring is one particularly good illustration. Elba

infrastructure currently features five resource monitors: iostat, systat (sar), collectl,

oprofile and lockmon. Each execution (of a given monitor) can have very different output

even though each of these programs accepts a fixed number of parameters. For example,

toggling a runtime parameter to change the resources being monitored alters the layout of

 13

the monitor’s log file. Assuming each resource monitoring decision is binary, there can be

as many as 2n possible layouts for a performance monitor capable of measuring up to n

resources. (From this point forward, layout and format are used interchangeably.) Given

this, the number of possible layouts is exponential in the number of resources being

monitored. This makes a naïve approach of writing a parser for each unique format simply

intractable. In our data set, we have found the number of distinct layouts to number in the

hundreds (under the most conservative accounting). Data variety and volume at our scale

impedes automated data extraction and subsequent data analysis, creating an enterprise

data-lake-scale data management challenge for our infrastructure [21]. The longer data

remains unprocessed, the more unwieldly its management becomes [22].

Figure 2 – Example of collectl output for multi-core CPU machine

Example 1.1. Most previous work assumes record boundaries have been

established beforehand or can be easily established using repeated patterns found in explicit

structures such as the HTML DOM tree. As Gao et al. explain, log files have no natural

record boundaries or explicit mechanisms like HTML tags for determining them [23]. In

addition, log files can have nested structures and variable length records, i.e. records which

span a variable number of rows. Log files also include noise such as formatting concerns

and various metadata as shown in Figure 2.

 14

Performance logs present some specific and unique challenges. First, performance

logs output formats are impacted by two implicit factors: the computer architecture of the

system components being monitored and the actual behavior of the system under study.

This latter characteristic suggests layout is at least partially runtime dependent, thus the

layout of a given performance log for a given execution is not known a priori.

Example 1.2. Figure 2 and Figure 3 shows the performance output from the same

performance monitor bootstrapped with the same monitoring parameters but running on

different systems. Figure 2 displays the output for the multicore system while Figure 3

depicts the single core system. Clearly, the output is significantly different holding all else

constant. The impact of these implicit factors on the layout of the output underscores the

need for an unsupervised approach.

Figure 3 – Example of collect output for single-core CPU machine

Secondly, performance logs often contain multiple, related record types. In

addition, record types can have degenerative sub-structures such as variable length

attributes. This characteristic only adds to the complexity of comparing records once they

are found. Prior work has assumed records are independent, so this work contains no

mechanism for evaluating the relationships among records. This step is critical to realizing

an end-to-end unsupervised approach. Information must be able to be extracted and directly

represented in relations.

 15

Example 2. Figure 5 shows a snippet of a log file containing process and context

switch data from two sampling periods. First, notice that each active process appears on a

separate line. Since each sampling period has a different number of active processes, each

sampling period spans a variable number of lines. Also, the sampling period is the record

in this case. Under a record type independence assumption, each region of data, i.e. the

regions containing data about context switches and processes respectively, would be

treated as their own record types. In this case, the two sampling periods not the data regions

constitute the two record structures, which also happen to span a variable number of rows,

i.e. variable length records.

Figure 4 – perftables Usage. Left graph shows the amount of experiment data
extracted by perftables for each monitoring program. Graph on the right shows the
number of experiments by monitoring program where perftables was used.

While assuming independent record types is suitable for simple extraction, it is

impractical at our scale. In our case, once the data has been extracted, it would still require

significant transformation to get it into the correct relational form. This last example also

demonstrates the need for an approach to identify record boundaries over a (potentially

large) variable number of rows due to the impact of runtime factors can have on the layout.

Approach Overview. In this paper, we present perftables—our unsupervised

algorithm for automatically inducing relations directly from performance monitoring log

 16

files. Our method goes beyond extraction as our unsupervised approach constructs tables

directly from the observed data.

To accomplish this objective, we have defined a small set of pattern-based

templates. We use a set of delimiters to first convert text into tokens. Then we transform

each token sequence into a sequence of data type labels by applying a series of data type

functions to each token. Next, we lazily match these sequences of data labels to one of our

templates based on similarity. Once data has been matched to a template, the template can

be used to extract the data and separate semantically meaningful metadata from “noise.”

To detect record boundaries, we induce a graph over the matching template instances.

Finally, we construct relations from the template-matched data according to the record

structure detected in the graph.

Generally, our method differs from previous work in its ability to handle logs with

runtime dependent layouts. Due to the impact of runtime behavior on log output, multiple

record types and variable length records are particularly prevalent in performance logs. For

example, we have observed over 100 distinct layouts generated from several distinct

runtime configurations across 3 monitoring programs. Specifically, perftables does not

depend on pre-defining record boundaries. Moreover, it does not assume record boundaries

appear over some constant, fixed number of lines. Its lazy approach obviates the need for

such a hyperparameter.

Secondly, our method goes beyond extraction and induces relations directly from

the log text data. Previous work has relegated schema definition and data transformation

to manual post-extraction tasks—a significant burden at our infrastructure’s scale. To

 17

analyze experimental data at our scale, we require an approach that can extract and

transform unstructured log data into structured (relational) data with as little human

supervision as possible. As Figure 4 shows, we have used perftables to successfully extract

with more than 98% accuracy over 250 GB of data from over 1 TB of log data.

In this paper, we demonstrate how our approach efficiently, accurately and

automatically identifies and extracts relations from performance log files. Specifically, we

have developed a small set of layout pattern-based templates, which support data extraction

and attribute identification. Secondly, we have developed a set of algorithms to

automatically identify record boundaries even in the presence of irregular and variable

length records. We also show how our templates support automatically defining relations

from matching data. Finally, we demonstrate the effectiveness (accuracy and efficiency)

of our templates inside our environment and provide coverage for performance log data

beyond our domain.

Figure 5 – Long variable length records. Intermediate rows, indicated by braces, were
removed for space considerations.

3.2 Terminology and Problem Statement

 18

In this section, we will formally define our problem of unsupervised table extraction

from performance log files.

3.2.1 Definition – Data Type Sequence

By applying one or more delimiters to a string, it can be transformed into a sequence

of tokens. This process is typically referred to as tokenization.

A best-fitting data type description can be estimated for each token by applying a

data type function to each one. For example, if a token consists of the characters “123”

then a data type description function might return “INT” to indicate integer as the best-

fitting data type for this character sequence. By applying a data type function to every token

in a sequence, a sequence of data type labels can be constructed. We refer to this sequence

of labels as a data type sequence for short.

3.2.2 Definition – Layout Template

A Layout Template is a regular expression for data type sequences. We say the data

type sequence matches a layout template iff the regular expression of a layout template

matches the string form of a data type sequence.

3.2.3 Definition – Layout

A Layout is a specific arrangement of data. Formats or layouts like those depicted

in the previous Figures use formatting characters like whitespace and other special

character delimiters like “#” or “:” and the order of metadata and data and their orientation

to accomplish two objectives: partition data from metadata and metadata from “noise” and

 19

express relationships among the data. For example, metadata which immediately precedes

data can be assumed to describe the data that follows it. In short, a layout is a sequence

such that order can be used to partition the sequence into data and metadata constituent

parts.

Formally, a layout, L, consists of text that can be divided into rows separated by

newline characters, i.e. “\n.” A layout consisting of n rows is <r1, r2, …, rn>. Applying

some tokenization function, f, to the ith row ri results in m tokens <ti1, ti2, … , tim>, and

applying some function g to one or more successive tij determines its membership in M or

D, the sets of metadata and data respectively.

Example 3. In the performance monitoring domain, layout explicitly encodes or aligns the

measurements to corresponding resources. It expresses relationships among data visually.

In Figure 5, each line expresses the relationship between time and a magnitude for each of

the resources being measured. Specifically, at 20:54:06.403, the CPU utilization is 19%,

i.e. 100% - Idle%. It also shows the components of this utilization: User and (Sys)tem.

Since the values appear on the same line, the layout is expressing a co-occurrence between

these components of utilization at time, 20:54:06.403. In the multi-core case in Figure 3,

we see each CPU core (and corresponding components of utilization) are represented as

separate columns. Once again, the layout expresses a co-occurrence among these cores’

measurements at time 12:58:56.657. In both Figures, the preceding labels describe the data,

and more specifically, that a label at a specific position corresponds to data at the same

position in a subsequent row. The presence of labels provides an additional important

signal. Specifically, knowing labels exist and their location in a file provides information

about the location of the data they describe. Moreover, labels immediately preceding values

 20

in a tabular-like orientation suggests order can be used to match values to labels—an

important signal that could be used during processing. In this respect, these files exhibit

some self-describing characteristics.

3.2.4 Definition – Log Data

Consider a file F with m layouts <l1, l2, … , lm>. Given our layout definition,

interpreting each of the file’s layouts can help us separate data from metadata and segregate

useful labels from other metadata. Our goal is to find a layout that most closely matches

the observed data, so it can be used to extract a Table T from this data. This is a subjective

goal as solutions will have a different number of tables, columns and records. We obviously

want to maximize the amount of information that can be reliably extracted. Instead, we

need to formulate the problem as an optimization task.

Problem. The task is to find the best fitting Layout Template or Templates given

the text. Once we have matched a template to an observed layout, we can use the template

to construct a table T containing some number of columns and a maximal number of rows

from the matching data. So, our refined problem is to extract a table T from the given log

data using the best fitting layout L so that the number of extracted tuples is maximized.

3.3 Model

In this section, we identify the layout patterns our model covers and its assumptions.

Our model reduces layout patterns into sequences of coarse-grained data type labels. By

casting each token to a best-fitting data type, we can begin to “see” the format patterns

more explicitly. Our model also includes a collection of Layout Templates that are

 21

expressed as regular expressions over the same alphabet as the one for data type labels.

Layout templates not only express data composition but also a specific ordering. These

model components combined with a few other reasonable assumptions enable us to

automatically extract relations from performance log data.

3.3.1 Visual Structural Cues and Layouts

Performance log files are often formatted to support human readability and

comprehension. As such, humans can use visual cues provided by a file layout to easily

separate data from metadata. Unfortunately, performance log text does not explicitly and

consistently identify the regular structures that are visually obvious.

We can view the problem of automatically extracting data from performance log

files as one of interpreting the file layout. Our task is to find a mechanism to convert the

visual cues provided by the layout into something more explicit to support automated

detection and extraction. As we will show, the arrangement or sequence of data types seems

to sufficiently approximate the layout’s visual cues.

Figure 6 – Common Layouts

We previously defined layout as a sequence of metadata and data in which order

can be used to differentiate data from metadata. Figure 5 depicts some of the most common

layout structures appearing in performance logs. Each “row” in the figure represents a line,

and each “cell’s” shading indicates whether it represents a data (grey) or metadata

(lavender) element. Gaps among the cells indicate breaks or irregularities, i.e. NULLs.

 22

Each example in the figure can be described by their orientations of data to metadata:

tabular, horizontal, vertical, or series of independent tabular structures. We use these

graphical models as a basis for defining our collection of Layout Templates, which relate

sequences of data types to data and metadata distinctions.

3.3.2 Layout Templates

To support our broader identification and segmentation tasks, we have defined a set

of data layout templates, or layout templates for short, to codify each of the layouts pictured

in Figure 6. Specifically, our templates are defined using regular expressions over the same

alphabet used for representing data type sequences (S, D, N). We name these patterns after

the basic data type sequences they describe.

Table 1 – Template Definitions

Type Pattern

Uniform (U) U = {S+ | (D | N)+}
Alternating (A) A = {D?(SN)+ | D?(NS)+}

Tag (G) G = {S(D | N)+}
Tabular (T) USi , UN+j where 0 <= i < j < n

Horizontal (H) A+i , A+ i+1 where 0 <= i < n
Vertical (V) G+i, G+i+1 where 0 <= i < n

Series (Ti | Hi | Vi)+ where 0 <= i < n

For example, Figure 3 could be expressed as a sequence of four matching patterns: US, US,

UN, UN. (A note on notation: an alphabetic subscript on a basic pattern refers to the specific

branch taken in the pattern definition.)

 23

Our templates express varying degrees of restrictiveness. This follows the intuition

that the more structure or regularity the data exhibits, the more specific the matching rules

can be. Accordingly, our templates can be applied using the best fit principle.

3.3.3 Assumptions

Our method makes several assumptions about files and their layouts, which enable

the application of our templates. While these assumptions might appear to be restrictive,

we demonstrate in our evaluation that all log files in our sample, including those collected

from the wild, respect these assumptions.

Layout Templates Coverage Assumption. This assumption makes explicit the set

of files our approach covers. Our approach begins by assuming files observe a left-to-right,

top-to-bottom orientation. Specifically, our method covers files that match our Series

layout template. Stated differently, our method can process log files that can be expressed

as an ordering of our Layout Templates.

For our method to achieve its ultimate objective to automatically recover relations,

the order of data in files of interest needs to matter; order must have semantic meaning.

This assumption originates from our definition of a Layout. Our coverage assumption not

only restricts the potential layouts our method covers, but it also bounds the search space

and limits the set of files from which we can automatically materialize relations.

Token Creation Assumption. This assumption concerns the process of applying

some regularly occurring delimiter to split a text of interest into tokens. Specifically, we

 24

assume each character in a text is either used for formatting or as part of a data value. Under

this assumption, a character used as a delimiter cannot also be part of a data value.

Said differently, characters used as delimiters should not split semantically

meaningful data. For example, using a colon “:” as a delimiter on text containing datetime

would split semantically meaningful tokens, since the corresponding date entity is now

represented as a series of independent tokens. Under this assumption, a colon character

needs to either be a delimiter or part of a value for a given text.

While this assumption seems to be restrictive, we add flexibility by limiting the

context under which the assumption must be true. Previous work has assumed delimiter

characters need to be pre-identified or apply uniformly to a file. This has typically been

referred to as tokenization or chunking. In our case, we assume the context for evaluation

is the text between two consecutive newline characters, i.e. a line of a file.

Figure 7 – perftables Approach

In our domain, whitespace is frequently used for formatting and layout purposes. From this

experience, we have found using whitespace characters as delimiters usually respects this

assumption.

3.4 perftables Approach

 25

Our approach consists of four steps: tokenizing the file, matching data type

sequences to layout templates, identifying candidate relations and records and finally

extracting relations. Our layout templates are projected onto a file after a file has been

transformed into sequences of data type labels. We create this tokenized representation by

applying user-provided (or a default set) of delimiters to the file. Next, we create sequences

of data type labels by inferring the best fitting coarse-grained data type for each token. We

match our Layout Templates to these data type label sequences using a backtracking

approach. Once data type sequences have been matched to templates, we use information

from the matched data to identify candidate relations and their constituent records. Finally,

we this information and the matchings to form relations.

3.4.1 Token Creation

First, a file is broken up into tokens using either a set of user-provided or default

delimiters. The default set consists of white space characters, pipe (|), comma and quotation

marks.

Specifically, each line can be converted into a “row of tokens” by applying one or

more of these delimiters to it. After the file has been tokenized, we now consider each line

of the file to be a row. Specifically, a row r with m tokens is expressed: r = <t0, t1, t2, …,

tm-1>.

The default delimiters are used to bootstrap or initialize our method. Users can

supply supplemental delimiters; however, we have found our default set to be reliable for

performance log data.

 26

Sequences of Data Type Labels. Each token in the row can be evaluated for fit

among three coarse-grained data types: DATETIME, NUMBER and STRING. We

represent each token in the row with a label corresponding to the best fitting coarse-grained

data type: S for STRING, D for DATETIME and N for NUMBER. At the end of this

encoding step, each row is represented by a sequence of S, D and N characters. We call

these sequences of data type labels sequences for short.

The next step in our method involves analyzing these patterns for the implicit

semantic clues expressed in the layout. For example, a row with the sequence S, N, S, N,

S, N describes a sequence of alternating STRING and NUMBER data. This layout suggests

data is located at the positions corresponding to the “N” labels, and its metadata is located

at the “S” label positions. (Note: the preceding sequence can be expressed by the regular

expression (SN)+ which also corresponds with our Alternating pattern definition.) The next

step in our approach involves evaluating these sequences by matching these data type labels

to our Layout Templates’ regular expressions.

3.4.2 Model

During this step, we interpret the sequences and match them to our templates to

identify candidate tables. The objective of this step is to identify those rows that “belong

together.”

Matching Sequences to Layout Templates. After tokenizing the file, we try to

match sequences of data type labels to the best fitting layout template. Not knowing a file’s

layout a priori motivates the need for a lazy, adaptive approach to matching. Accordingly,

these sequences are lazily evaluated according to their topological order.

 27

Backtracking. We match sequences to templates using a backtracking algorithm.

This approach optimizes the best-fitting template through a process of elimination. We

evaluate sequences according to their topological order. Each data type label sequence’s

string form is matched to each of the regular expressions accompanying each template

definition. Only matching templates are preserved until only one remains. The process

restarts once a sequence invalidates the remaining template, but not before the remaining

template and its span of matching rows is added to an array of template, row span tuples.

Once all rows’ sequences have been matched to templates, a table candidate can be induced

from the constituent rows corresponding to each matching template, row span tuple.

3.4.3 Extracting Relations

Besides helping to isolate common patterns, our Layout Templates provide another

important function. They provide some of a matching file’s missing semantic information.

Specifically, they use the location and position of matching data to impart relational model

semantics. For example, based on data type, composition and position, a piece of matching

text might be used as attribute labels. These mapping rules also support data alignment, i.e.

determining which labels (if they exist) correspond to which data. In this respect, our

templates provide a convenient abstraction for aligning matching data to the constructs of

the relational model.

Each template specifies how matching data can be separated into attributes and

attribute labels. For example, some of our definitions use sequence or a common token

index to align labels and corresponding attribute data.

 28

Candidate attribute labels. Each template includes rules for identifying the

location of label candidates. Each label candidate must be a string, but each string is not

necessarily a label candidate. The mapping rules accompanying each template make this

noise, label or data distinction. For example, in Figure 6, the rows with similar size, {Us,

6, 1} and {Un, 6, 3}, were paired, and the row matching a uniform string pattern can be

conveniently used as semantically appropriate attribute labels in defining a relation for the

data matching {Un, 6, 3}.

Given this mapping between our templates and relational model constructs, we can

automatically infer a schema (one or more relations) directly from this log data. For now,

we assume each instance of a template matching data is independent. We show next how

our approach accommodates situations when this is not true.

Boundary Identification. We induce a graph, termed Record Boundary Graph

(RBG), from the instances where log text matches a Layout Template. A vertex in the RBG

corresponds to a template matching some text, termed an “instance.” A directed edge is

induced for vertices j à k if the instance corresponding to vertex j appears in the file (from

top to bottom) before the instance corresponding to vertex k. After edges are induced, we

find all simple cycles (or elementary circuits) in the graph. We bound the time complexity

of this operation by limiting the number of visits a vertex can be visited to two. Next, we

sort the identified simple cycles in descending order according to their length. We use the

longest simple cycle identified in the RBG as the principal record boundary for defining

candidate relations.

 29

Figure 8 – Data volume and variety for three Elba performance monitors

3.5 Evaluation

We assess perftables along two broad dimensions. First, we assess its coverage of

data extraction tasks of performance logs. Later, we present three illustrative scenarios to

demonstrate perftables ability to provide the necessary data to diagnose millibottlenecks.

We explore our method’s extractive coverage and performance along two

dimensions: accuracy and processing time. We assess its performance across two different

datasets. The first data set originates from our substantial experimental systems

infrastructure. We use this infrastructure to conduct a broad array of systems experiments

to diagnose experimental systems performance. To support this work, we need to collect

an enormous amount of performance data.

3.5.1 perftables performance

3.5.1.1 Elba Dataset Characteristics

 30

As Figure 4 shows, we have used perftables to process tens of thousands of

experimental systems’ performance data on the order of hundreds of GBs. Our

experimental systems infrastructure primarily relies on three monitoring software

programs: collectl, sar (systat) and iostat. As we briefly discussed earlier, these monitors

can generate a large variety of layouts. Figure 8 shows the log diversity generated by these

three monitors in our environment.

Figure 9 – Variety and Size on Performance (Elba)

Gao et al. developed a convenient categorization for describing layout variety. We

adapt their categorization as follows: we differentiate interleaved and non-interleaved

records precisely. In the following graphs, non-interleaved record structures are

represented by “1,” and in the interleaved case, we enumerate the number of record

structures present in files to illustrate the variety of layouts more explicitly. We don’t

explicitly separate files with single lines from those with multiple lines in the interleaved

case.

Figure 9 shows perftables performance by varying size and variety. The sub-linear

trend highlights the effectiveness of our lazy approach. We consider variety in terms of the

 31

number of repeated record structures that appear in a file. Even files with multiple record

structures, perftables performs in sub-linear time.

Figure 10 – Variety and Size on Accuracy (Elba)

3.5.1.2 GitHub Data Characteristics

The second dataset comes from the “wild” via a popular public source code

repository, Github.

Github Sample. We evaluate perftables coverage of performance monitor data by

collecting a randomized dataset from the wild via a popular public source code repository,

Github. We retrieved this dataset by querying Github using keywords such as “log,”

“nagios,” and “top.” The latter two terms refer to two popular open-source resource

monitoring tools. Given their widespread use, we thought they should be included in our

sample. Table 2 details our Github sample’s characteristics.

We adopted Gao et al.’s record type categorization for describing log format or

layout variety [23] with one modification. For files with interleaved record structures, we

do not distinguish between those with single line and multiple line records. Instead, we use

 32

the number of interleaved record structures to explicitly illustrate their variety. Our sample

covers at least 7 unique monitors not currently deployed in our infrastructure, including:

top (profiling and processes), vmstat (vmware), oprofile, nagios, logstat (kvm) and a

bespoke CPU/network monitoring tool.

Table 2 – Sample Characteristics for Random Github Sample

Record Types # of Samples Avg. # of Lines

One (Single Line) 336 350
One (Multiple Lines) 434 120

Two or More 497 1559

Figure 11 show perftables ability of our method to extend beyond the monitors used

in our experimental computer science infrastructure. On average, we were able to correctly

extract over 70% of the data obtained from Gitub into relations. Instances where most of

the data could not be extracted were primarily due to our approach treating network

message labels as attribute labels instead of elements of an enumeration. Despite this result,

repairing this error can be accomplished with some simple post-processing.

Figure 11 – Performance logs randomly sampled from Github. Each graph compares
the coverage and size for files containing a Single Record Type (left) and Multiple
Record Types (right).

 33

Small Curated Set. Next, we eliminated those files from the sample that did not

originate from performance monitoring programs. Then, we selected a highly regular

sample from the original random data set for each of the previously listed 7 monitors. Table

3 details this small, curated subset from the original Github sample using the same

categorization as Table 2.

Table 3 – Sample Characteristics for Small, Curated Subset of Github Sample

Record Types # of Samples # of Lines

One (Single Line) 5 3500
One (Multiple Lines) 2 3000

Two or More 1 4000

As shown in Figure 12, for this smaller, more regular subset, we were able to on

average correctly extract over 90% of the data into relations. We were only able to extract

approximately 75% of the nagios log data. Fortunately, when perftables treats some data

as labels, we can employ some trivial post-processing to repair the error.

Figure 12 – Variety and Size on Accuracy for small, curated subset from Github
sample

 34

3.5.2 perftables Illustrative Scenarios

Next, we demonstrate perftables ability to extract the necessary data for detecting

millibottlenecks in experimental data generated by our experimental infrastructure.

Figure 13 – Tomcat JVM Millibottleneck.

3.5.2.1 Illustrative Scenario 1 – Tomcat JVM as Millibottleneck

Figure 13 is a representative set of graphs necessary for effectively isolating and

diagnosing millibottlenecks. In this case, these graphs correspond to a millibottleneck

induced by JVM garbage collection. Each graph corresponds to a specific diagnostic step.

The top graph shows the number of requests associated with very long response time,

defined as requests exceeding 1s to be processed, for each 50 ms interval. The middle graph

depicts the queue size of each component for each 50 ms window. We determine the size

of a queue using the number of requests waiting to be processed by the given component

during each interval. The bottom graph depicts the resources that are temporarily saturating

over the same interval. In this case, the Tomcat node’s CPU is saturated due to Java

Garbage Collection. This period of saturation coincides with the appearance of VLRT and

 35

the growth in queue size among dependent components. Given the correlation among these

three variables—number of VLRT, component queue size and resource utilization—we

can conclude the Tomcat CPU millibottleneck is induced by the Tomcat node’s JVM

Garbage Collection process. We have detailed this millibottleneck and its diagnostic

procedure, briefly explained here, in our prior work [24]. perftables automates the data

extraction process to support this graphically oriented, correlation-based diagnostic

method.

Figure 14 – VLRT and Point-in-Time Distribution comparisons for periods with
Millibottlenecks and No Millibottlenecks detected.

Reconstructing Distributions. The Tomcat JVM garbage collection illustrative

scenario and the ones that follow depend on two metrics that are important to diagnosing

tail latency: Point-in-Time Response Time and the number of VLRTs, i.e. requests needing

more than 1s to complete. To evaluate the association between these metrics and the

presence of millibottlenecks more broadly, we use perftables to extract the resource data

collected from thousands of system benchmark experiments to label periods with and

 36

without millibottlenecks. Then, we compare the distributions for VLRT and Point-in-Time

Response Time stratified by the presence of millibottlenecks.

Figure 14 compares the data distributions for Point-in-Time response time and the

number of VLRT requests split between millibottleneck and non-millibottleneck periods.

These graphs suggest some interesting results. First, the number of VLRT requests

provides better separability between the classes. For periods with no millibottlenecks, there

is less than 0.01% weight in the tail suggesting that when there are no VLRT,

millibottlenecks are not likely present. The Point-in-Time graphs suggest this metric does

not separate the classes as well. Approximately 70% of the weight of the distribution occurs

between 0 and 2000ms for the Millibottleneck case. In the No Millibottleneck case, over

90% of the weight of the distribution occurs between these same thresholds. This overlap

in the distributions suggests that using Point-in-Time alone could lead to millibottleneck

period misclassification.

Figure 15 – VLRT and Point-in-Time comparison among predicted and ground truth
Millibottleneck and No Millibottleneck periods.

 37

Figure 15 compares the Point-in-Time Response Time and VLRT distributions for

actual and predicted millibottleneck periods. The figure generally affirms the relationship

among longer Point-in-Time Response Times and non-zero VLRT during periods when

millibottlenecks are present. This figure highlights that using these signals together leads

to accurate millibottleneck predictions.

3.5.2.2 Illustrative Scenario 2 – Database IO as Millibottleneck

In Figure 16, we illustrate perftables ability to isolate a millibottleneck due to

Mysql’s temporary disk saturation. Specifically, we review the period where the number

of VLRT requests begins to grow and remains above 5. We can see the number of VLRT

requests begins to decline quickly eventually returning to 0 in less than 250ms.

 To understand what occurs during this interval, perftables begins by extracting

request traces generated by our specialized event tracing framework, milliScope, found in

component logs. This data captures execution flow dependencies. As the middle figure

shows, we observe obvious Cross-Tier Queue Overflow evidenced by the components’

queue lengths elongating over the period of interest. Perftables uses the extracted request

trace data to calculate a few metrics every 50ms: point-in-time response time, the number

of VLRT requests, i.e. those exceeding 1s, and component queue length.

 38

Figure 16 – Database IO as Millibottleneck. These provide visual evidence of a
millibottleneck indicated by the appearance of VLRT, queue extension and
temporary resource saturation.

 Perftables also extracts resource data from performance logs output by resource

monitors. This data provides a representation of system state. In our scenario, there was

one resource monitor, collectl¸ measuring CPU, Disk Memory and Network at 50ms

intervals. We see Mysql’s disk is temporarily saturated, i.e. utilization reaches 100%, but

returns to 0% after approximately 300ms from the first moment it saturates. Perftables

represents the extracted data for each resource category as a multivariate timeseries.

As mentioned earlier, perftables uses a data-driven approach to detect and analyze

millibottlenecks. In short, it learns state and event-specific patterns consistent with the

presence of millibottlenecks by relying on machine learning to systematically identify such

patterns. In our case, diagnosing this database IO millibottleneck requires finding patterns

where events such as the number of VLRT, the number of queued requests and the average

Point-in-Time response time are maximal at the same time as state indicators such as Mysql

disk resources are temporarily saturated.

 39

We transform the event-based metrics and system state data into salient numerical

features for detecting millibottlenecks. Specifically, we apply fixed-width windows to the

event-based metrics mentioned earlier like point-in-time response time, the number of

VLRT requests, i.e. those exceeding 1s, and component queue length to create feature

column vectors. These feature column vectors are concatenated into a matrix of row vectors

such that each row represents a sample. In this scenario, we would construct an event

feature column vector as follows: {PIT, VLRT, Apache_Queue, Tomcat_Queue,

Mysql_Queue}.

We construct system state column feature vectors from the extracted resource data

in a similar fashion. Each resource measurement every 50ms is a component of a fixed

width vector. In this case, each components’ CPU, Disk, Memory and Network utilization

are vector components. In our scenario, we would construct a state column vector as

follows: {Apache_CPU, Apache_Disk, Apache_Mem_Used, Apache_Net_Bandwth, …}.

Like the event vectors, these vectors are concatenated into a matrix of row vectors where

each row of the matrix is a sample.

We model the problem of determining the existence of a millibottleneck over some

interval of time as a multi-class classification problem. To identify millibottlenecks, we

use models trained over previously labeled data. Our labels indicate whether a

millibottleneck is present, and if one exists what kind it is. These models are used to predict

labels for each event and state matrix sample. In this case, the model indicates the presence

of a Mysql (database) IO millibottleneck indicated by the red “X’s” in the bottom figure.

 40

Figure 17 – Dirty Page as Millibottleneck Example. These provide visual evidence of
a millibottleneck indicated by the appearance of VLRT, queue extension and
temporary resource saturation.

3.5.2.3 Illustrative Scenario 3 – Memory Dirty Page as Millibottleneck

In Figure 17, we illustrate perftables ability to isolate a millibottleneck due to

memory dirty page being flushed to disk. Specifically, we review the period where the

number of VLRT requests begins to grow. We can see the number of VLRT requests begins

to decline quickly eventually returning to 0 in less than 250ms.

 As in the prior situation, perftables begins by extracting request traces and

calculates the associated event metrics. As the middle figure shows, we observe obvious

Cross-Tier Queue Overflow evidenced by the components’ queue lengths elongating over

the period of interest. As before, perftables also extracts all resource data from the pertinent

performance logs, in this case, collectl. We see Mysql’s CPU temporarily saturates during

the period of interest.

 41

This situation highlights the need to create features to represent magnitudes like

counters, percentages or rations and derivatives like velocity and acceleration. In the prior

situation, we created features directly from data extracted from performance logs. In this

case, Mysql flushing dirty pages to disk is a phase change. Diagnosing this type of

millibottleneck requires features to account for a magnitude such as CPU utilization and a

velocity measure like the change in dirty pages. As such, derivative measures are also

components of the event and state feature matrices. In this illustration, the sudden change

in the number of dirty pages is the primary signal. During this period of interest, we see

this change corresponds to the other conditions present during this period: Mysql CPU

suddenly and temporarily saturating, queue lengths elongating and the number of VLRT

requests increasing.

This scenario also highlights the need to look for performance patterns across

multiple resources across multiple components simultaneously. To account for this

multiplicity, we employ a team-based classification approach to learning. Specifically, we

train millibottleneck-specific models meaning we train over data containing negative and

positive examples where the positive examples are of the same type. During prediction, we

feed the feature vectors corresponding to a period of interest into each model. The model

with the highest confidence is the final prediction for the given input. In this case, the model

trained on data consisting of memory dirty page examples returns with the highest

probability indicated by the red “X’s” in the bottom figure.

3.6 Conclusion

 42

In this paper, we introduced our approach, perftables, for automatically inducing

relations from the log data generated by commonly used performance monitoring tools.

The reasons for extracting this data into a relational form are many: facilitates integrating

event and resource data across space (which node / component) and time (when did the

event happen or when was the measurement made), supports automated analysis

techniques like machine learning and ultimately enables researchers to glean patterns

across a vast volume of experiments occurring over many years.

We demonstrated that we can successfully extract over 98% of our experimental

infrastructure’s performance data into relations despite the presence of variable length

records and multiple record types. Finally, we have shown that our approach extends

beyond the array of performance monitors present in our infrastructure by collecting a

sample of other performance monitoring logs from the wild. We also presented three case

studies showcasing perftables provides the data necessary for isolating millibottlenecks.

 43

CHAPTER 4. PERFDB

4.1 Introduction

The long tail latency problem is a well-known problem, particular in web-facing

applications. For example, Amazon has reported [2] that a marginal increase of 100ms in

page load time correlates with approximately a 1% reduction in sales. Google has reported

a similar revenue-latency relationship. It has found that 500ms of additional delay returning

search results could reduce revenue by up to 20% [3]. Given the size of their respective

customer bases, these platform companies need to reduce their 95th, 99th and 99.9th

percentile latencies as close to zero as possible [1] [4].

Dean et al identified long tail latency as a problem common to large scale system

topologies, and they prescribed several approaches for bypassing it, specifically fault

tolerance and resource redundancy techniques [1] [25]. While these strategies are effective

at reducing the impact of long tail latency problems, they come with significant cost. One

implication of their recommendations is lower overall datacenter utilization. According to

an NRDC report, from 2008 – 2012, average data center server utilization ranged from 12-

18% [26].

Our theory—the millibottleneck theory of performance bugs [5]—attempts to explain

performance anomalies that cause requests, which normally return in tens of milliseconds,

to complete on the order of hundreds or thousands of milliseconds. We call these Very

Long Response Time (VLRT) Requests, and they comprise part of systems’ response time

long tail. We have isolated root causes of millibottlenecks crossing the architectural stack,

 44

including CPU dynamic voltage frequency scaling (DVFS) control [6], Java garbage

collection (GC), “noisy neighbors” due to virtual machine consolidation [7], dirty page

flushing [8], memory thrashing due to rapid succession of page faults [9] and writing log

data to disks [10] [11].

Approaching latency issues by addressing root cause has three important benefits.

First, isolating and eliminating performance bugs (in the first place) reduces the system

redundancy costs and improves the overall datacenter return on investment.

Secondly, we believe systematically studying performance bugs can help us to

potentially develop new theories or models about system design and implementation. For

example, practitioners often treat each performance problem they encounter as a specific,

one-off instance. According to a recent report, NVIDIA estimates automating away only 5

minutes of the performance debugging process could yield $5M in engineering time

savings [27]. Developing a more robust understanding of performance anomalies and their

root causes could improve performance diagnosis and debugging efficiency.

Thirdly, long tail latency contributes to performance unpredictability, which

according to the most recent Berkeley View on Serverless Computing is an enormous

challenge to cloud-native architectures like serverless and microservices [28]. Specifically,

they report performance unpredictability as one of the three most cited reasons practitioners

do not migrate application workloads to serverless computing topologies. Understanding

latency and its root cause is critical to increasing the adoption of newer architectures like

serverless.

 45

Our previous millibottlenecks studies’ unit of analysis have been the individual

period or experiment level. Studying transient phenomena even at this level is challenging

due to their fleeting nature and the intricate system component interactions necessary for

reproducing them. Studying transient phenomena as a population or group introduce an

additional set of challenges, including controlling for variation across experiments such as

resource capacity, data management concerns like data quality, and developing new

visualizations to support hypotheses and conclusions.

Figure 18 – Latency long tail of experimental periods in our data catalogue. We see
the appearance of VLRT and LLR with 99% periods completing 20 ms or less.

This paper describes two contributions: the first one is phenomenological and the

second one methodological. The main phenomenological contribution is a large-scale

aggregate analysis of a diverse set of millibottlenecks found from ~500 experiments. By

studying the similarities and differences among the approximately 30K millibottlenecks,

we confirmed the previously known association between transient VLRT requests and

millibottlenecks. Furthermore, our data support the explanation of CTQO (Cross-Tier

Queue Overflow) [18] as cause of transient VLRT requests in our experiments. More

interestingly, we identified the class of Localized Latency Requests, (LLRs) that have

 46

duration between VLRT request and the average latency. LLRs are associated typically

with millibottlenecks of shorter duration than those causing CTQO.

Figure 19 – PerfDB system data flow. Event and Performance Monitoring Logs are
ingested and interpreted by perftables, which automatically induces relations. This
relational data is transformed using features from the catalogue that are necessary
for detecting millibottlenecks. System and component-millibottleneck models are
used to (i) isolate millibottleneck periods (ii) diagnose the type of millibottleneck
respectively.

The main methodological contribution of the paper consists of the PerfDB data

management system that produced the aggregated data sets, enabling the first identification

of LLRs and confirmation of the association of VLRT with millibottlenecks causing

CTQO. Using a combination of rule-based and machine learning techniques, PerfDB is

able to parse, extract, transform, and load a collection of fine-grain (sampling at 50ms

intervals) resource monitoring data (Figure 20) on a wide variety of hardware and software

configurations (Table 4). In addition, PerfDB also interprets and loads fine-grain event

monitoring data (timestamped arrival and departure of every message at every server).

From the ~500 experiments, PerfDB was able to clean and integrate approximately 2TB of

performance monitoring data into a data warehouse for detailed statistical analysis that

 47

enabled the first identification of LLRs and confirmation of strong association of VLRTs

with millibottlenecks and CTQO.

4.2 Problem Definition and Related Work

4.2.1 Long Tail Latency Requests

The response time long tail consists of requests that take more time to return than

the 99th (or 95th) percentile of system latency. Some of these requests take this long due to

request-specific characteristics, for example, a search query composed of rare terms. VLRT

requests, which arise due to queueing effects, are the other set of requests comprising the

latency long tail that complete in hundreds or thousands of milliseconds but complete in

tens of milliseconds when they are executed separately.

Our group’s previous work focused on the study of individual millibottlenecks,

extended to the millibottlenecks of the same class, (the same contended resource), that

caused VLRT requests [5] [6] [7] [29] [8] [9] [10] [11] [30]. In this work, we conduct a

series of population studies, and explore a phenomenon called Relatively Long Tail

Requests (LLR). Unlike VLRT, LLRs are not associated with queue growth, but as

depicted by the red dashed region in Figure 18 are still apart of the latency long tail. We

define LLR more formally later.

Long tail latency. To estimate system latency for each sampling period, we use an

aggregate measure called Point-in-Time Response Time (PIT). This measure of system

latency is defined by the wall clock time requests take to complete a system round trip. To

 48

calculate this metric, we average the round-trip time of all requests beginning within a

specified interval. In our case, we use fixed width 50ms intervals.

4.2.2 Millibottlenecks

Millibottlenecks are short resource saturations, i.e. order of tens of milliseconds.

Millibottlenecks arise due to competition for a shared system resource irrespective of the

type of resource. Moreover, their effects are propagated and amplified through system

dependencies.

4.3 PerfDB Approach

4.3.1 Overview

PerfDB pictured in Figure 19 has three parts: millibottleneck schema, perftables

and a data management platform we call perfstore. We begin by describing the schema

necessary for experimentally verifying millibottlenecks and their relationship to VLRTs

and LLRs.

4.3.2 Millibottleneck Data Model

We define a Millibottleneck Instance as a tuple: {Start Time, Duration, Contended

Resource, and Location} where each attribute is defined as follows:

• Contended Resource is a temporarily, highly utilized resource, e.g. at least 60%

utilization.

• Location marks the component with a Contented Resource.

 49

• Saturation period is the interval bounding the period of high resource utilization for

a specific component, i.e. the period framing the Contended Resource for a specific

Location. Start Time marks the beginning of a saturation period, and Duration

denotes its length.

Given this schema, (collection of attributes), we need to track precisely when

resources become contended, i.e. highly utilized, and saturated. As such, we use a

collection of standard, open source linux performance monitors such as top, perf, sar and

collectl to capture resource metrics at fine-grained timescales, i.e. in our case, 50ms.

Monitors like these cover the collection of performance metrics such as CPU Utilization,

Disk Utilization, Network Throughput, Cache Usage and Memory counters such as Dirty

Page and Page Faults. Metrics such as these constitute the attributes comprising our

resource measurement schema.

The second part of the millibottleneck theory concerns diagnosing millibottlenecks

that induce long-tail latency requests. This means we need to know the location of requests

at fine-grained timescales, so we can correlate requests’ latencies to the temporary (or,

fleeting) resource saturations. Our event schema provides the necessary data for doing so,

and it is as follows: {RequestID, Start Timestamp Upstream, Start Time Downstream, End

Timestamp Downstream, End Timestamp Upstream}. PerfDB ingests this data, so it can

calculate system-level metrics such as Point-in-Time Response Time and component-level

measurements like queue length to analyze potential queueing effects [11].

Labels. Some types of millibottlenecks, for example those caused by Java Garbage

Collection, can be labeled with deterministic rules assuming one knows beforehand that

 50

they exist in an experiment. We implemented a set of labeling functions to bootstrap our

learning models, and we applied them to an initial set of experiments where we knew a

priori millibottlenecks that can be described by these functions existed. Not all

millibottlenecks can be labeled in this manner. Some occur due to statistical circumstances

in the sense that very short resource contentions materialize due to the “right” sequence of

system events occurring, i.e. nondeterministic execution. This noisy process of labeling

millibottlenecks in part has motivated us to begin exploring machine learning techniques

for this purpose, an area of future work.

Features. PerfDB also includes a pre-defined set of features that are important to

isolating and detecting millibottlenecks. Features are data transformation functions, which

are applied to schema attributes. These data transformations include encoding and

standardizing data as well as aggregate functions, such as min, max and mean. We

bootstrapped PerfDB’s labeling using a combination of hand labeled data and labeling

functions that were applied to feature-transformed data.

4.3.3 perftables

We use perftables relation induction approach to automatically transform the

performance log data output by our infrastructure’s event and resource monitors into

relational structures [31]. PerfDB ingests these relations for each experiment. They provide

a convenient data abstraction for mapping to PerfDB’s data management platform.

 51

Table 4 – PerfDB Experiment Catalog

Measure Value

of Experiment Periods 1.2M+
of Millibottleneck Periods 30,000+
Performance Data Size (GB) 2000

Benchmark Rubbos
Benchmark Workload Range 100-20,000
Benchmark Runtime (Avg.) 3 mins

Hardware p3000, d430, d710
Topologies 111, 1111, 1112, 121, 441

Components Apache, Tomcat, CJDBC, Mysql

4.3.4 perfstore

PerfDB encompasses a large experimental systems space, as indicated by Table 4.

Our platform contains experiments executed on CloubLab using three primary machine

types. The p3000 machines are single core machines with 2GB of memory while the d710

and d430 machines contain 8-cores and 32-cores respectively with over 64 GB of memory

in both. To date, we have relied on the Rubbos monolithic, n-tier application benchmark.

The benchmark is a Reddit-style bulletin board system. We deployed this benchmark using

Apache web server, Tomcat JEE application server, CJDBC middleware and Mysql

database in various topology configurations. The numbers related to topology correspond

to the number of deployed Apache, Tomcat, CJDBC and Mysql components, in that order.

All experiments in our collection lasted for 3 minutes, but the workload intensity varied

from 100 to 20,000 concurrent client sessions or connections.

Spanning this experimental configuration space, PerfDB’s schema supports over

500 unique system experiments comprising 2TB of performance data and over 600

 52

different performance attributes across these systems. Within this data set, we have

identified over 30,000 millibottleneck periods—occupying about 2% of all experimental

time periods.

Figure 20 – collect 4.0.4 performance log Memory and Network attributes

We materialize four relations to realize the complex schemas outlined in the first

sub-section: one containing latency information, another containing components’ queue

lengths, another containing resource metrics and the last persisting Millibottleneck

instances.

Start Time, Duration, Location and Resource are attributes used to define a

Millibottleneck. We observe that each of the first three relations either aligns explicitly to

one of these attributes or provides the necessary information for relating millibottlenecks

to long-tail latency requests. For example, the latency and queue size tables are necessary

for identifying periods where VLRT requests and millibottlenecks overlap and assessing

whether queueing effects coincide with these periods.

 53

Each of the first three relations have the same primary key: the observation

timestamp and a globally unique identifier (guid) to represent the experimental execution.

Each row in each of these tables corresponds to 50ms intervals—the finest granularity our

resource and event monitors provide. To ensure millibottlenecks are unique instances, we

add duration to the Millibottleneck relation’s primary key. Consequently, each row

represents one instance of a millibottleneck.

Our latency relation in addition to Point-in-Time Response Time also contains

counts for the number of requests that complete in: 5ms, 10ms, 25ms, 50ms, 100ms,

250ms, 500ms, 1000ms, 3000ms, 5000ms. These thresholds are right-side bounded

intervals, i.e. requests less than or equal to the threshold are counted in the corresponding

“bin.” These counts are important to understanding the distribution of system latency.

Our queue length relation contains attributes for each system component apart of

our collection. In this case, we have an attribute representing the size of the Apache,

Tomcat, CJDBC and Mysql queues.

Our resources relation contains many resource metric-related attributes. Figure 20

shows a log snippet, which highlights the large number of resource attributes just for

Memory and Networking as indicated by the red box. Besides being large in number,

resource attributes are not necessarily consistent across experiments.

To illustrate this point, we present Table 5, which captures the number of resource

attributes for each machine type holding constant the monitor version, e.g. collect 4.0.4

shown in Figure 20, and monitoring parameters. Despite holding the resource monitor and

parameterization constant, the number of attributes vary due to architectural and kernel

 54

disparities across the machine types. To compound matters, we see ranges for some

machine types, especially for the d430 machine type, which appears in the last column of

the table. For example, we see 31 – 97 CPU attributes reported for this type of machine.

This range can be due to differences in how hardware and kernels report unused or

underused resources—suggesting the number of attributes can change per execution, i.e.

an experiment-specific resource schema. In fact, we found 347 different resource schemas

represented in PerfDB across our single largest experimental subset consisting of

approximately 380 experiments. Consequently, the resource attributes are not consistent

across the perfstore experimental data table space.

Despite these trans-experiment schema complexities, our millibottleneck data

model provides a convenient data abstraction for isolating, diagnosing, and studying

millibottlenecks and their association with the latency long-tail as we detail in the following

section.

Table 5 – Experimental Schema Characteristics

PerfDB Attributes

collectl 4.0.4, Fixed monitoring parameters

p3000
(2 core)

d710
 (8 core)

d430
(32 core)

CPU Attributes 4 27-62 31-97
Memory Attributes -- 8 7-22

Disk Attributes 2 6-8 6-32
Network Attributes -- 4 4-12

4.3.5 Millibottleneck Analytics

To isolate millibottlenecks and associated effects like VLRT requests and LLRs,

we need to integrate the latency, queue length and resource relations implemented in

 55

perfstore. (We refer to these collectively as the “measurement” relations). Integration

begins the tables associated with an individual experiment or execution. We join the

“measurement relations” using each relation’s timestamp key.

We employ a similar strategy to integrate data across experiments. We define

projections containing all attributes related to a specific component or topology found in

PerfDB. In our case, we have projections for Apache, Tomcat, CJDBC, Mysql components

in addition to three- and four-tier topologies. Specifically, we build component and

topology-specific materialized views, i.e. relations assembled in memory.

Example. A CPU millibottleneck in one experiment might correspond to the 1st

CPU core being saturated while another millibottleneck in the same experiment might refer

to the 8th CPU core, i.e. attributes like CPU_1_Utilization and CPU_8_Utilization. The

contended resource for each of these millibottlenecks would be the name of each of these

attributes. If left unchanged, the domain of the Contended Resource attribute (defined in

4.3.2) would be the union of all resource metric attributes across the perfstore table space—

an enormous space given Table 5. As such, we need a mechanism for relating similar

contended resources across individual millibottlenecks. In our example, the CPU

utilizations for the 1st and 8th cores respectively should both refer to the same contended

resource, e.g. CPU Utilization.

Resource Variables. We use a data abstraction, Resource Variables, to help us relate

similar or a category of attributes. A Resource Variable is defined with a label and regular

expression. Using our CPU Utilizaton example, we define a Resource Variable for it with

the following label and regular expression:

 56

CPU Utilization: .*CPU.*Util.*

Resource Variables regular expressions are matched against all resource attributes’

labels (across perfstore). The matching attributes are then used to assemble the component-

specific materialized views. In effect, this abstraction provides a dynamic UNION of

resource attributes. This abstraction and approach help us to manage the schema

complexity described in Table 5.

Millibottleneck Identification. Features are special attributes defined using

Resource Variables and a data transformation function(s) like aggregations or

standardization. They transform data to help isolate the signals important to isolating

millibottlenecks. Features are implemented in perfstore materialized views.

Our CPU Feature specifies the CPU Utilization Resource Variable and a maximum

aggregation function. Returning to our example, the CPU Resource Variable would return

the core-specific attributes, e.g. CPU_1_Utilization, CPU_2_Utilization,

CPU_3_Utilization, …, CPU_8_Utilization. This feature’s maximum function applied to

a row across these core-specific attributes would results in a maximal CPU utilization value

for the row. Applying the feature to an entire relation (across all rows) yields a CPU

Utilization attribute.

To determine millibottleneck periods, we employ a simple heuristic:

• Input: Topology or component-specific materialized view

• In Step 1, we select the rows from the view where millibottleneck-specific features

show saturation like 100% utilization or some other suitable threshold, i.e. 95th or

 57

99th percentile value. For example, in our CPU example, we would select rows

where the CPU feature produces values greater than 90%.

• In step 2, if two consecutive data points are saturated, we group them together into

a “saturation period”. We repeat step 2 and continue the grouping of saturated data

points until all the saturation periods have a beginning (a transition from non-

saturated point to a saturated point) and ending (a transition from saturated to non-

saturated).

We observe that at the end of Step 2, we have the requisite data needed to

materialize a Millibottleneck Instance as defined in 4.3.2. Specifically, the materialized

view used as input to the heuristic determines the Location. The saturation period provides

the Start Timestamp and Duration information. The Resource Variable’s label available

through the feature used in Step 1 provides the Contended Resource.

Joining Millibottlenecks to Measurements. We observe millibottlenecks span

multiple rows as described by Step 1 in our heuristic, i.e. they span multiple time periods

or observations. To join measurements to millibottleneck instances, we can apply a left

outer join with perfstore’s millibottleneck relation (assuming the measurement relations

are on the left-hand side). We have implemented millibottleneck-specific materialized

views using this approach to provide convenient access to the experimental data used to

identify millibottlenecks in the first place.

Table 6 – Millibottlenecks and VLRT Requests

Millibottleneck Type

Presence of VLRT Requests

VLRT Present VLRT Not Present

 58

Apache CPU 23 5600
Tomcat CPU 35 8015
CJDBC CPU 17 6892
MySQL CPU 129 9664

4.4 Experimental Verification of VLRT and LLR

The data schema described in Section 4.3 enabled an aggregated study of ~30K

millibottlenecks across ~500 experiments. Instead of analyzing each category of

millibottleneck separately, for the first time we are able to compare many millibottlenecks

both within a category and across categories, in terms of their similarities and differences.

In subsection 4.4.1, we describe the frequency of each millibottleneck category occurring

in the aggregate data set. In subsection 4.4.2, we describe the experimental confirmation

that VLRT requests in this data set are associated with millibottlenecks that cause CTQO.

This finding provides support for the observation that CTQO was an explanation for VLRT

requests. In subsection 4.4.3, we introduce a quantitative characterization and experimental

verification of Localized Latent Requests (LLRs), which have durations between system

average (low milliseconds) and VLRTs.

4.4.1 Frequency of Millibottleneck Occurrence

Our first step is a population study of all millibottlenecks in our experimental

collection. We start from a subset of particularly interesting (and less prevalent)

millibottlenecks that coincide with VLRT requests. Given Table 6, we see millibottlenecks

overlapping periods with VLRT requests represent less than 1% of all millibottleneck

instances, which is consistent with VLRTs being a latency long-tail phenomenon.

 59

Figure 21 – Distribution of CPU Millibottleneck Duration over machine capacities
and workload across experiment catalog

Figure 23 shows that the experimental data set contains a rich collection of these

kinds millibottlenecks. They include all node resources being monitored (CPU, memory,

disk), with CPU millibottlenecks appearing in every server (Apache, Tomcat, CJDBC, and

MySQL). The diversity and coverage of millibottlenecks suggest that the experiments are

well designed and tuned for the configurations that have been tested (see Table 4 with

representative performance and millibottlenecks found.

In a second step, we subdivide the CPU millibottlenecks (which comprise more

than 80% of the total) according to their duration in Figure 21. The log scale shows a

relatively complex long-tail distribution, with more than 95% of the millibottlenecks

lasting less than 100ms (only one observation point). The complex distribution of

millibottleneck duration (aggregated over all servers) suggests that CPU millibottlenecks

may have a variety of causes with statistical queuing effects.

 60

Figure 22 – Distribution of CPU Millibottleneck Duration for low capacity machines,
e.g. p3000

As an example of analytical refinement to understand the complex aggregated

distribution, we separated out the CPU millibottlenecks from experiments on p3000

machines, a specific (older) type of servers. The subplot of p3000 CPU bottlenecks is

shown in Figure 22, with short millibottlenecks (no longer than 200ms) only. This is a

surprising result, since the longer millibottlenecks (right side of Figure 21 occurred on

faster, more capable servers, contrary to our expectations. Early appearance of

millibottlenecks (second row of Table 6) also suggests potentially interesting causes.

Further analyses of millibottleneck characteristics according to hardware and software

configurations is a topic of ongoing research.

Table 7 – Minimum Millibottleneck Workloads

Presence of VLRT Requests

Machine Type Min. Workload Millibottlenecks @ Workload
2 GB, 1-core 1,000 1
64 GB, 8-core 100 9
16 GB, 4-core 15,000 47

 61

4.4.2 Millibottleneck with CTQO as Cause of VLRT

In our previous work [5] [6] [7] [29] [8] [9] [10] [11] [30], we have shown that a

variety of millibottlenecks can cause VLRT requests in the presence of Cross-Tier Queue

Overflow (CTQO [18]), which happens when a millibottleneck appears in an upstream

server (e.g., Tomcat), stopping services temporarily and causing a downstream server

(Apache in this case) to suffer queue overflow, dropped packets, and VLRT requests.

In Figure 23, we show occurrences of millibottlenecks that coincide with the VLRT

requests, called “VLRT Millibottlenecks.” Each bar represents the frequency of occurrence

for each type of millibottleneck marked on the X-axis. While CPU millibottlenecks are

more prevalent, all previously reported types of millibottlenecks are represented in our

catalogue.

Figure 23 – Millibottlenecks found in our experiment collection stratified by type that
coincide with periods where long-tail latency requests are observed.

In the third step of our analysis, we verify the presence of CTQO in each instance

of VLRT Millibottlenecks (Figure 23). The presence of CTQO is confirmed by correlated

queues in connected servers.

 62

In the fourth step of our analysis, we look at the LLR requests shown in Figure 24,

with duration from 100ms to about 500ms. The LLRs have not been studied previously,

since they are shorter than the threshold considered to be VLRT requests. Due to their

duration being shorter than TCP timeout period (currently default setting of 1sec), LLRs

are unrelated to CTQO.

Figure 24 – Latency long tail of CPU Millibottlenecks. We see the appearance of
LLRs. Most of the periods coincide with system response times < 50 ms.

LLR Requests. Figure 24 shows a representative example of Mysql CPU

millibottleneck in which LLR requests appear. The LLRs are considerably shorter than

VLRT, but they also appear more often.

Next, we explore the overlap between the Mysql CPU millibottleneck instances and

queue growth. Figure 25 shows the queue growth and Mysql CPU Utilization levels

corresponding to a subset of Mysql CPU millibottlenecks. Each instance appears along the

X-axis ordered by the total queue length (of Apache and Tomcat respectively) at the time

of the millibottleneck. All instances have high CPU utilization, a key component of the

millibottleneck theory. The queue growth for columns 6 – 14 are consistent with the CTQO

explanation. These instances are highlighted with the green circle. Figure 25 also shows

 63

several instances, which do not coincide with any queue growth, as highlighted by the red

circle and causing only LLRs.

Figure 25 – MySQL CPU Millibottlenecks, without CTQO as highlighted by the red
circle, overlap with LLRs depicted in the previous figure.

To assess the effects of LLRs on long-tail latency identified in Figure 24, we

aggregate these Mysql CPU millibottleneck instances into two groups: those that coincide

with queue growth and those that do not. We compare the distribution of request latencies

for each group in Figure 26. The plot shows clear differences between these two groups.

For the “queue-growth” group, we see more requests, with higher latencies present. The

“no-queue-growth” group has fewer long-tail latency requests, and the ones that are present

do not exceed 250ms. This distributional difference partly explains why “no-queue-

growth”-related requests have not been isolated until now. Requests with higher latencies

obfuscate the effects of the “no-queue-growth” requests.

In the fifth step of our analysis, we define LLR requests (Figure 24) as requests that

have latencies between 100ms and 500ms. We now increase the magnification to examine

a LLR request and associated millibottleneck. Beginning with Figure 27, the graphs show

a detailed event analysis [24] of one millibottleneck, one of the MySQL CPU

 64

millibottlenecks. This analysis is similar to our past studies of VLRT-millibottlenecks [5]

[6] [7] [29] [8] [9] [10] [11] [30].

Figure 26 – Mysql CPU Millibottlenecks instances grouped by their associated queue
length growth. We observe periods without queue growth have fewer requests and
with lower latencies, i.e. 100ms and 250ms, than the periods coinciding with queue
growth, i.e. 500ms and 1000ms.

Figure 27 – Figure 29 show a short interval (approximately 0.5s long) from one

experiment in our catalogue. The X-axis is consistent across all figures, and it is a timeline

delineated by 50ms time periods. The Mysql CPU millibottleneck period of interest, which

is 50ms in duration, is indicated by the red-shaded region on each graph, i.e. period 7.

Figure 27 – Number of LLR requests counted at every 50ms time window. These
requests overlap with the increase in system response time.

We begin by assessing the number of long-tail latency requests, specifically LLRs,

depicted in Figure 27. While not significant in number, e.g. 3 such requests, their

 65

emergence corresponds to the period of increased latency. The cluster of LLR requests

disappears once CPU utilization approaches 0%. We note that the response time graph,

(omitted to conserve space), looks the same as the graph in Figure 27, and the average

response time is approximately 5ms.

Figure 28 – Queue peaks do not appear during the period of temporary resource
saturation. Any queueing that is present is minimal and precedes the short,
temporary saturation by at least 100ms.

Figure 28 contains the queue lengths for the upstream Apache and Tomcat

components, indicated by the “red” and “blue” lines, respectively. The queue graph over

this experiment interval presents an interesting picture. We see some minimal queue

growth prior to the period of interest, but it disappears almost 150ms before the temporary

resource saturation begins. We also note Mysql CPU utilization never exceeds 40% during

that period. We also see during the millibottleneck no observable queue growth in either

upstream component despite Mysql being temporarily saturated as shown in Figure 29.

Figure 29 – Transient CPU saturation co-occurs with the appearance of LLR requests
and increases in system latency without any queue peak overlap.

 66

 We summarize our discussion of LLRs with the following observations. First, we

have shown empirical evidence documenting the existence of LLRs with a micro-event

analysis. Secondly, we demonstrated their membership in the latency long-tail, i.e. by

inducing requests with latencies of 100ms or greater. Finally, we provided a population

study to explain how the effects of higher threshold tail-latency requests can eclipse the

LLRs.

Figure 30 – Apache CPU Millibottlenecks coinciding with VLRT requests and
Apache queue growth. No preceptible queue increase occurs during the first four
millibottlenecks.

In the sixth step of our analysis, we look at the CPU millibottlenecks associated

with other servers. We begin by looking at Apache CPU millibottlenecks pictured in Figure

30. This graph is like Figure 25 in its construction. Each bar along the X-axis represents

each instance’s corresponding queue growth whereas the line graph indicates the Apache

CPU utilization during each millibottleneck. Once again, we see several instances do not

coincide with any observable queue increases. To conserve space, we do not zoom into

these instances. This result suggests LLR requests are not component-specific phenomena.

We use graphs similar to those employed for previous components’ CPU

millibottlenecks to examine the Tomcat and CJDBC CPU millibottlenecks in Figure 31

 67

and Figure 32, respectively. In Figure 31, we again see a few millibottlenecks that are not

associated with an observable increase in the Apache queue length notwithstanding higher

Tomcat CPU utilization.

Figure 31 – Tomcat CPU millibottlenecks coinciding with VLRT requests and
upstream Apache queue growth. Once again, we see a few instances where no queue
increase occurs.

CJDBC CPU millibottlenecks in Figure 32 all coincide with queue growth in

upstream Apache and Tomcat queues. This finding suggests LLRs are either being masked

by longer latency requests or not materializing—a potential for future work.

4.4.3 Disk and Memory Millibottleneck Subgroups

In the seventh step of our analysis, we perform similar subgroup analyses for Disk

and Memory millibottlenecks. We begin by examining the Mysql Disk millibottleneck that

induced VLRT requests. Like our previous CPU millibottleneck subgroup plots, we graph

the queue lengths for Apache and Tomcat components corresponding to each

millibottleneck instance along the X-axis in Figure 33. The line in the figure denotes the

Mysql Disk utilization during each millibottleneck. We observe each instance overlaps

with queue length growth and high disk utilization. For these millibottlenecks, CTQO

 68

explains the appearance of VLRT requests during these millibottleneck periods. Like the

CJDBC CPU figure, Figure 33 does not provide visual evidence of any LLR requests.

Again, this could be due to higher latency requests obscuring the LLRs.

Figure 32 – CJDBC CPU Millibottlenecks coinciding with VLRT requests and
Apache and Tomcat queue increases. All millibottlenecks co-occur with queue
increases.

We conclude our subgroup studies by examining the case of millibottlenecks due

to Dirty Page flushes on Tomcat illustrated in Figure 34. This graph is a different than the

previous. The Apache queue corresponding to each millibottleneck still appears on the X-

axis. However, it contains two lines representing the Tomcat CPU and the number of Dirty

Page, respectively. We use these pair of resources to show the temporary resource

saturation that happens at the time of the millibottleneck. As with the Mysql Disk case,

queue increases correlate with these instances. As such, CTQO seems to explain the

VLRTs associated with each of the millibottlenecks.

In summary, we have provided experimental evidence highlighting two classes of

millibottlenecks:

• Those that cause VLRTs because of CTQO

 69

• Those that cause Localized Latency Requests, which we found manifest at lower

latency thresholds without dropped packets in CTQO.

Figure 33 – MySQL Disk millibottlenecks coinciding with VLRT requests and queue
growth. We see upstream queue growth overlapping with all millibottlenecks,
suggesting LLR are not present.

Figure 34 – Tomcat Memory (Dirty Page) millibottlenecks co-occurring with VLRT
requests, and Apache queue increases occur during each.

 70

4.5 Future Work and Conclusion

Before concluding, we discuss several opportunities for future work. Our robust

measurement schema and flexible approach for handling the schema variety inherent to

performance logs enables us to extend PerfDB to support systems experimentation on

microservices and streaming systems. The data management infrastructure provided by

PerfDB requires little to no augmentation to support data from other benchmark application

systems.

PerfDB has two external system dependencies. First, it needs a supporting database

management instance, and it requires access to a file system. Currently, PerfDB

infrastructure uses sqlite and the local file system; however, these are user-specified

configuration parameters. The current implementation makes no assumptions about the

parsers or data pipeline used to process experiment benchmark monitoring data. However,

whatever tooling is used needs to produce outputs that comport to PerfDB’s well-defined,

explicit data retrieval interface.

PerfDB’s exposes a data retrieval API implemented in Python. To use the API, the

DBMS instance and a pointer to the storage location need to be specified either by the user

or through a configuration file. First, experiments retrieved through PerfDB need to be

registered in PerfDB’s experimental metadata relation. This schema includes attributes that

are independent of benchmark or topology. For example, it captures an experiment’s

beginning and ending times in addition to a file system pointer to an experiment’s artifacts.

Secondly, the interface specifies three measurement relations that must (at a minimum) be

materialized after processing experimental artifacts. A grammar for defining measurement

 71

schema attributes is also part of the interface. The data retrieval API uses this grammar to

retrieve Resource and Event measurement data from corresponding measurement relations

across heterogenous systems’ topologies. Finally, PerfDB specifies a millibottleneck

schema to persist instances of millibottlenecks. This schema can support materializing

millibottlenecks that are found in heterogenous systems’ topologies.

Besides extending PerfDB to support additional benchmark systems, we want to

explore the population of Localized Latency Requests and their frequency to understand

why they can be unaccounted. Lastly, we are currently working on a follow-up paper where

we apply machine learning techniques to isolate and diagnose millibottlenecks with

maximum recall and acceptable precision despite performance data noise.

To summarize, the two main contributions consists of the experimental verification

of Localized Latency Requests and the PerfDB platform that enabled a methodical study

of LLRs. First, we define the LLRs as those with latency between 100ms and 500ms.

Through a series of population studies and analyses of individual millibottlenecks, we

presented experimental evidence that confirm their association with Localized Latency

Requests for the first time. Second, we demonstrated how the PerfDB performance data

management system enabled those studies on LLRs and large-scale confirmation of

ongoing research on the association of millibottlenecks with VLRT requests through

CTQO.

 72

CHAPTER 5. PERFML

5.1 Introduction

Internet scale systems long tail latency challenges can negatively impact business.

For example, Amazon has reported [2] that a marginal increase of 100ms in page load time

correlates with approximately a 1% reduction in sales. Google has reported a similar

revenue-latency relationship. It has found that 500ms of additional delay returning search

results could reduce revenue by up to 20% [3]. Given the size of their respective customer

bases, these platform companies need to reduce their 95th, 99th and 99.9th percentile

latencies as close to zero as possible [1] [4].

To mitigate the effects of long tail latency problems, Dean et al prescribed several

coarse-grained solutions such as leverage fault tolerance and resource redundancy [1] [25].

While effective, these techniques come at significant cost. For example, NRDC reported

that average data center utilization was 12-18% from 2008 – 2012 [26].

The millibottleneck theory of performance bugs explains the latency long tail

phenomena as being due in part to requests, which under different resource contexts

complete in tens of milliseconds, instead complete on the order of hundreds or thousands

of milliseconds [5]. We call these requests that comprise part of systems’ response time

long tail, Very Long Response Time requests (VLRT). The transient resource saturations,

called millibottlenecks according to the theory, are responsible for the appearance of

VLRT. We have isolated the root cause of their appearance across the system’s stack,

including CPU dynamic voltage frequency scaling (DVFS) control [6], Java garbage

 73

collection (GC), “noisy neighbors” due to virtual machine consolidation [7], dirty page

flushing [8], memory thrashing due to rapid succession of page faults [9] and writing log

data to disks [10] [11].

Approaching latency issues by addressing root cause has three important benefits.

First, isolating and eliminating performance bugs (in the first place) reduces the system

redundancy costs and improves the overall datacenter return on investment.

According to the most recent Berkeley View on Serverless Computing, performance

unpredictability is an enormous barrier to adoption for cloud-native architectures like

serverless and microservices [28]. It is one of the three most cited reasons practitioners do

not migrate application workloads to serverless computing topologies. Mitigating tail

latency and identifying its underlying causal mechanisms is critical to achieving broader

adoption and better management of serverless and other cloud-native technologies.

Previous work on millibottlenecks have analyzed individual periods or

experiments. This unit of analysis is challenging due to these phenomena fleeting nature

and the intricate system instrumentation needed to isolate and reproduce them. However,

developing more robust explanations and models for these phenomena require studying

them as a population, i.e. exploring them across the system experiment configuration space.

This introduces another level of complexity related to data management and analytics. For

example, data originating from different experiments needs to be integrated across

common attributes, and visualizations need to account for many instances of the same type

of millibottleneck.

 74

Finally, we believe systematically studying performance bugs as a group can help

us to potentially develop new theories or models about system design and implementation.

Recently, AWS experienced a prolonged outage due to cascading service failures due to

intra- and inter-container dependencies. Fine-grained performance phenomena might be

valuable early indicators of larger system problems, i.e. the proverbial “canary in the coal

mine.” Studying fine-grained performance phenomena could help to identify the most

valuable and important early warning signals of system performance degradation.

This paper describes three contributions. First, we detail how our approach can

successfully navigate the challenges inherent to system experimental data. Our second

contribution is methodological, which is our ensemble-based classification system,

PerfML. We demonstrate how we use our domain knowledge to partition our sample space

to reduce the heterogeneity of the feature space. We also show how we convert a fine-

grained system performance anomaly detection problem into a traditional supervised multi-

class classification problem. Moreover, we explain how we transform this problem into

two separate decision problems that enable us to use a hierarchy of binary, one-versus-all

classifiers, which mitigate the impact of multiple, imbalanced classes in our sample space.

Our third and final contribution is an evaluation of PerfML across a number of

dimensions. First, we assess its ability to successfully detect and diagnose known types of

millibottlenecks. Secondly, we explore the effect of different choices of classification

learning algorithms for the base learners on overall ensemble classifier recall, precision

and F1. We also explore the effect of various decision thresholds on these metrics. We

conclude with a comparison of PerfML to other, current system performance analysis

 75

approaches, and we highlight PerfML’s utility with a demonstration on an unlabeled data

set.

Figure 35 – Latency long tail of experimental periods in our data catalogue. We see
the appearance of VLRT and LLR with 99% periods completing 20 ms or less.

5.2 Problem Definition

5.2.1 Latency Long Tail Request

The response time long tail consists of requests that take more time to return than

the 99th (or 95th) percentile of system latency. Some of these requests take this long due

to request-specific characteristics, for example, a search query composed of rare terms.

VLRT requests, which arise due to queueing effects, are the other set of requests

comprising the latency long tail that complete in hundreds or thousands of milliseconds but

complete in tens of milliseconds when they are executed separately.

Our group’s previous work focused on the study of individual millibottlenecks,

extended to the millibottlenecks of the same class, (the same contended resource), that

caused VLRT requests [5] [6] [7] [29] [8] [9] [10] [11] [30]. In this work, we conduct a

 76

series of population studies, and explore a phenomenon called Relatively Long Tail

Requests (LLR). Unlike VLRT, LLRs are not associated with queue growth, but as

depicted by the red dashed region in Figure 35 are still apart of the latency long tail. We

define LLR more formally later.

Long tail latency. To estimate system latency for each sampling period, we use an

aggregate measure called Point-in-Time Response Time (PIT). This measure of system

latency is defined by the wall clock time requests take to complete a system round trip. To

calculate this metric, we average the round-trip time of all requests beginning within a

specified interval. In our case, we use fixed width 50ms intervals.

5.2.2 Millibottlenecks

We model short resource saturations, order of tens of milliseconds, through the

concept, Millibottlenecks. They materialize due to shared system resource competition.

Because of system dependencies, these short contentions can propagate and become

amplified by contributing to the long-tail latency of systems in the form of VLRT requests.

We define a Millibottleneck instance as a tuple: {Start Time, Duration, Contended

Resource, and Location} where each attribute is defined as follows:

• Contended Resource is a temporarily, highly utilized resource, e.g. at least 60%

utilization.

• Location marks the component experiencing resource contention.

 77

• Start Time marks the beginning of the resource contention, and Duration denotes

the amount of time the contention endures.

To determine the beginning and end of millibottleneck periods, we employ a simple

heuristic. If two consecutive data points exceed a saturation threshold, they are grouped

together. We continue the grouping process until a data point does not meet the provided

saturation threshold, i.e. the system has transitioned out of a saturated state.

5.2.3 Detection and Diagnosis Problem

Using system performance logs, we want to identify when and where fine-grained

performance anomalies like Millibottlenecks occur. Moreover, we want to isolate the root

cause, i.e. the component and resource experiencing transient resource contention.

Labels. We have found millibottlenecks can occur for a variety of reasons,

including CPU dynamic voltage frequency scaling (DVFS) control [6], Java garbage

collection (GC), “noisy neighbors” because of virtual machine consolidation [7], dirty page

flushing [8], memory thrashing due to rapid succession of page faults [9] and writing log

data to disks [10] [11]. Systems’ nondeterministic execution provide the statistical

circumstances for millibottlenecks to materialize, i.e. very short resource contentions

materialize due to the “right” sequence of system events occurring at “just the right time.”

The diversity of millibottlenecks and the noisy process surrounding their

appearance has motivated us to explore machine learning techniques. As such, we pose the

problem of diagnosing millibottlenecks across diverse experimental systems’ topologies as

 78

a single-label, multi-class classification problem. Each type of millibottleneck corresponds

to its own label.

In traditional supervised machine learning problems, we would train one

monolithic model capable of multi-class classification for this detection and diagnosis

problem.

However, we choose to separate our decision problem into two sequential

classification problems—detection then diagnosis. This approach imposes a hierarchy on

the resultant classes. Knowing that a millibottleneck occurs can be used to trigger

diagnosis. This approach enables us to use sets of features that are well suited for each sub-

problem. For example, topology-specific features can provide strong signals for knowing

some type of millibottleneck is occurring. Conversely, component-specific features, which

are different across components, are important for diagnosing the specific type of

millibottleneck. Splitting the problem into two enables us to construct specialized models

for diagnosing millibottlenecks specific to a component. Another, important byproduct of

this partitioning is it mitigates the heterogenous input data problem mentioned earlier.

Without this separation, a single model would need to either remove features, which could

be important to diagnosis, or provide a method for interpolating missing values, potentially

leading to decreased accuracy.

5.3 Data Description and Challenges

We conduct experimental systems research using benchmark application systems.

We have executed tens of thousands of experiments, and Table 8 describes some of the key

dimensions of this large experimental systems catalogue. It consists of experiments from

 79

executions of a Reddit-style bulletin board system named RUBBoS, which is a monolithic,

n-tier application benchmark. It relies on Apache, Tomcat, CJDBC and MySQL

components. We deployed our benchmark application in various topological

configurations, which are depicted under the “Topology” heading. The numbers listed in

table correspond to the number of deployed Apache, Tomcat, CJDBC and Mysql

components, in that order. These experiments were executed for 3 minutes, and they

featured workloads ranging from 100 to 20,000 concurrent client sessions

Table 8 – PerfML Experiment Catalog

Measure Value

of Experiment Periods 1.2M+
of Millibottleneck Periods 30,000+
Performance Data Size (GB) 2000

Benchmark Rubbos
Benchmark Workload Range 100-20,000
Benchmark Runtime (Avg.) 3 mins

Hardware p3000, d430, d710
Topologies 111, 1111, 1112, 121, 441

Components Apache, Tomcat, CJDBC, Mysql

Note: This table is an augmented version of Table 4.

5.3.1 Input Data

As detailed in 2.2, we decorate the experimental systems benchmark application

referenced in Table 8 using a collection of event and resource monitors, i.e. sensors. These

software monitors record system events and state in logs at fine-grained time scales for

each benchmark execution. Then, we transform these log data into temporal relations such

that each observation at time, t, is a m-dimensional vector where each dimension

 80

corresponds to a measurement from a particular monitor, for example, the CPU utilization

for one core for one physical host at time t. When one of several types of millibottlenecks

occur at time t, we represent each one with its own label, 𝑐!, from a set of 𝐶 class labels.

We include in this set a special label to accommodate periods when the system does not

experience millibottlenecks.

Stated formally, each observation, 𝑥"$$$⃗ , at time, t, is denoted (𝑥"$$$⃗ , 	𝑦") where 𝑥"$$$⃗ is an

element of an 𝑀-dimensional feature space and 𝑦"	represents the target class label, 𝑐!.

Concatenating individual experimental data sets together results in a series of finite,

multivariate timeseries. We denote this collection as X.

Figure 36 – Millibottlenecks found in our experiment collection stratified by type that
induce tail latency requests represent imbalanced classes in our data.

5.3.2 Imbalance Multi-Class Hierarchical Membership Data

Our millibottlenecks are not uniformly distributed in our experimental data. As

shown in Figure 36, some millibottlenecks appear substantially more often than others. In

addition, we need the ability to detect millibottlenecks that induce latency requests like

 81

VLRT and LLR and those that lead to no perceptible impact on latency. Figure 37

differentiates Millibottlenecks stratified by their co-occurrence with VLRT. Once again,

we see a significant difference in the frequencies between these two situations.

Consequently, a robust millibottleneck detection approach cannot solely rely on the latency

of requests as a signal for millibottlenecks. In addition, knowing that a millibottleneck

occurs (over some interval) is an important prior to diagnosing its root cause. For the

purposes of classification, this means the positive class representing the presence of

millibottlenecks is the parent to each class representing each type of millibottleneck.

Figure 37 – Incidence of Various Millibottlenecks stratified by the presence of VLRT

5.3.3 Heterogeneous Feature Space

PerfML encompasses a large experimental systems data space as indicated by Table

8. This large configuration space leads to experimental schema diversity across the

collection. Figure 38 shows the distribution of experimental schema in our sample space,

X. We see 347 different experimental schemas are represented across 380 experiments.

 82

Only one schema has significant density with 42 experiments sharing the same schema.

This variability is due to a variety of reasons.

First, the number of resource-related attributes might change from machine to

machine due to architectural and kernel disparities across machine types despite using the

same monitor, version and bootstrap parameterization. Secondly, drift may occur due to

experiment-specific utilization. For example, some monitors might omit metrics for

underutilized resources. In the context of single machine learning models, schema diversity

leads to the missing features problem.

Figure 38 – Schema distribution for experiment samples X. The blue boxes represent
the number of experiments that share the give schema. The orange line represents the
cumulative distribution of schema instances.

Missing Features Example. To highlight this issue, we consider one experiment

might use machines with 2 CPU cores while another one might use machines with 8 CPU

cores. The experimental space spanning both experiments would include “NA” values for

CPU cores 3 thru 8 for the first experiment. Prior to using one machine learning model to

train over the data in this space, these values would need to be imputed or the attributes

 83

removed. Removing the attributes might impair the model’s ability to detect CPU

millibottlenecks related to contention experienced by cores 3 thru 8. Imputing values could

lead to erroneous predictions related to experiments with 2-core machines.

Besides the heterogeneity due to differences in resource monitoring, the systems

topologies can be a factor. As highlighted by the table, experiments can range in the number

and kinds of nodes deployed. In addition to this topological range, systems can have

entirely different architectural patterns. For example, microservice-based applications rely

on the composition of many, fine-grained services to answer client requests or complete

transactions. Even though the systems currently contained in the catalogue have different

numbers of nodes and components leading to differences among experimental schema,

they all adhere to a monolithic architectural pattern.

We capture our domain knowledge about experimental system composition as a

Directed Acyclic Graph (DAG). We term this graph the “System Stack Graph,” and it is

meant to capture the layered design of cloud-based systems as shown in Figure 39. As we

discussed, systems experiment samples originate from a variety of components arranged

in a particular sequence based on the function they provide. They can have different

numbers and types of nodes depending on application needs. The graph captures the

relationships among system-specific topologies, their component composition and their

monitored resources.

We use the concept of a “level” to describe a group of nodes that are equidistant

from the root. The first layer in the figure differentiates systems based on their topology,

 84

i.e., the quantity of tiers and nodes and the dependencies among them. For example, a three-

tier topology features a web server, an application server and a database server in that order.

The next level differentiates topologies according to their constituent components.

For example, Apache is a web server, and it can be used for this function in three-tier, four-

tier or even microservice-based topologies. Since components can be used in multiple

different topologies, we use a graph-based representation instead of a tree to capture the

topology-to-component relationship accurately.

Figure 39 – System Stack Graph representing the systems topologies, components and
resources spanning experiment samples X.

The last level describes the potential resources that can be monitored in our systems

experiments, for example, CPU and Disk utilization, Memory consumption and network

usage to name just a few. Since components have different execution models and use

resources differently (not to mention different monitoring choices by component) result in

components have their own monitored resources “neighbors.”

5.4 PerfML Approach

5.4.1 Overview

 85

PerfML pictured in Figure 40 has three parts: millibottleneck schema, perftables

and a data management platform we call perfstore. We begin by describing the schema

necessary for experimentally verifying millibottlenecks and their relationship to VLRTs

and LLRs.

5.4.2 perftables and PerfDB

We use perftables relation induction approach to automatically transform the

performance log data output by our infrastructure’s event and resource monitors into

relational structures [31].

PerfDB ingests these relations for each experiment. PerfDB provides a data

management interface that supports over 400 unique system experiments comprising 2TB

of performance data and over 600 different performance attributes across these systems.

Within this data set, we have identified over 30,000 millibottleneck periods—occupying

about 2% of all experimental time periods.

Despite these cross-experiment schema complexities, PerfDB’s millibottleneck

data model provides a convenient data abstraction for isolating, diagnosing, and studying

millibottlenecks and their association with the latency long-tail as we detail in the following

section. PerfDB has a metadata schema to store pointers to four experiment-level schemas:

one containing latency information, another containing components’ queue lengths,

another containing resource metrics and the final one stores identified millibottleneck

instances. We observe the first three relations provide the necessary attributes (time,

duration, component and contended resource) for materializing tuples in the

millibottleneck table. Moreover, they provide latency-related information to study the

 86

relationship between millibottlenecks and latency long-tail phenomena like VLRT. Finally,

this common set of relations for each experiment’s data provides a convenient set of

abstractions for querying and returning partitions of the entire experimental sample space

to PerfML.

Figure 40 – PerfML data flow. Event and Performance Monitoring Logs are extracted
into relations. Using the system stack graph, partitions of the experimental space are
created. We transform the data to support training ensembles over each partition.
We traverse the system stack graph and retrieve appropriate models to (i) isolate
millibottleneck periods (ii) diagnose the type of millibottleneck respectively.

5.4.3 Segmenting Experimental Data

The traditional approach in machine learning to train a classifier, M, is to use the

entire data set represented by the root node in our graph. Instead, we propose sub-dividing

the sample space by vertically partitioning it using the attributes described by each of the

vertices in the System Stack Graph (SSG).

We use the System Stack Graph to guide the partitioning of the sample set X into

multiple subsets. We note that this graph describes systems currently within our

experimental catalog; however, it can be extended to include new topologies, components

and resources.

 87

For the topology level, we generate subsets Xij for each topology where j indexes

the vertex that represents a set of attributes on level i. We use the notation Xj when it is

obvious from context which vertex j to which we are referring. By vertically partitioning

the sample space, we are able to reduce the heterogeneity of the resource and event

observations.

This first partitioning can be thought of happening across the experimental topology

dimension of X. Experiments with topologies that match the topology-level vertex are

selected first. For example, by considering the three-tier topology on its own, the samples

in the relevant subset Xj will have data for Apache, Mysql and Tomcat. However, Xj would

not contain data for CJDBC, since no middleware component comprises a three-tier

topology. Moreover, each subset Xj no longer contains classes that are irrelevant to the

system type, i.e. no CJDBC CPU, Disk or Memory millibottlenecks in the three-tier sample

space. In the original space X, three-tier topology samples would have “NA” for the

dimensions in the feature space related to the middleware component, e.g. CJDBC. As

such, we observe that the heterogeneity of the feature space for this Xj is less than in the

original X.

To partition the sample space X using the System Stack Graph, we traverse the

graph using Depth First Search. As such, the next partition happens across the deployed

component dimension of X. This involves vertically segmenting the experiment space into

component-specific subsets. Experiments with the component matching the component-

level vertex are then selected. Returning to the example, experiments, regardless of

topology, using the Apache web server would be included in Xij. We generate a sample

subset Xij for each node on each “level” in the graph.

 88

The final partition is another vertical segmentation. This time the partition occurs

across the monitored resource dimension of X. Experiments with monitored resources

matching the component-specific resource vertex are then selected. In the running example,

experiments where Apache CPU resources were monitored would be included in this

partition of X.

A partition may contain only 1 experiment and within that experiment it many only

have a few periods when a certain millibottleneck occurs. Conditions for training the

classifier includes there must be at least 2 experiments and at least a minimum number of

samples are millibottlenecks. We use a threshold, s, to indicate this minimum percentage

of samples that contain the millibottleneck of interest. Only sub-spaces that meet this

minimum threshold are retained. We handle the case of a sample subspace, Xj, not being

retained for vertex, j, during ensemble training.

5.4.4 Feature Engineering

Prior to training a classifier, PerfML performs additional pre-processing on each Xj

in the form of expert feature engineering. Features are M-dimensional vectors resulting

from the application of transformation functions to experimental schema attributes. These

expert features fulfill three requirements.

First, they fulfill specific technical requirements for machine learning classification

algorithms. For example, we remove sparse, no variance and linearly dependent features,

and we apply standard scaling procedures like minmax scaling. Secondly, these features

provide important signals for isolating and detecting millibottlenecks. Finally, our features

reduce the feature space heterogeneity.

 89

To reduce the feature space heterogeneity, we apply aggregate functions, such as

min, max and mean, to semantically similar attributes. For example, a sample from a 2-

core and 8-core node would have a CPU Utilization measurement for each of its cores. We

can combine these samples by only using the maximum core utilization level from each

sample. Applying an aggregation function to each set of semantically similar attributes like

CPU Utilization enables us to train models using samples from nodes hosting the same

component.

Time Windows. The last step in the pre-processing involves creating time windows

over the time series, i.e. upsampling the time series or reducing its frequency. We transform

𝑥"$$$⃗ by applying an aggregate function to a sequence L for the ith feature, [xi,t-L+1, …, xi,t-1,

xi,t]. We up-sample each of our features to 100ms.

5.4.5 Creating Ensembles Ej

We train a classifier, Mj, for each experimental sample subspace, Xj. While we

could leverage any supervised classification algorithm, Random Forests have some

attractive properties for our problem domain.

First, they are robust to features with different ranges, which enable them to be

trained on unscaled data. They can emit probabilistic outputs. Probabilities are a reflection

of the classifier confidence in its class label prediction. Tree-based methods provide

comprehensibility and transparency into their predictions. This makes them a good choice

where predictions need to be able to be interpreted by analysts. Ultimately, we want to

understand why a millibottleneck occurs, so having an understanding into the classifier’s

decision or prediction could facilitate root cause analysis. We see from the frequency of

 90

millibottlenecks in Figure 36 that there are relatively few memory-related millibottleneck

samples. Random Forests integrated sampling techniques reduce the chance of overfitting

in this case despite the small number of positive examples.

To train a model, Mj, for each subset Xj, we once again traverse the SSG using DFS.

This time we retrieve the sample subset for each vertex. We train one base learner, Lj, for

Xj. For instance, we train one base learner for Apache CPU for data from experiments in

which Apache CPU millibottlenecks occurred. We note each subspace only contains two

classes.

Sibling Labeling Policy. Prior to training, we re-label all periods using a sibling

labeling policy. Under this policy, a vertex and its neighbors are considered to be members

in one class while vertices at the same level (and their neighbors) are considered members

of another class. Using the sample space for Apache, Xj, as an example, a sibling policy

results in all periods with Apache millibottlenecks to be labeled with the positive class, and

periods with either no millibottleneck or another type of millibottleneck to be labeled with

the negative class [CITE Silla]. As such, we have converted our multi-class supervised

classification problem into a series of one-versus-all binary classification problems.

A model, Mj, is trained and retained if and only if a partition exists for Xj. We store

the trained ensemble Ej in our model database. We store the index j for the associated jth

vertex along with the model, so that it is associated with the appropriate system stack

abstraction layer. We also retain the label of the system stack abstraction layer in addition

to the constituent vertex’s label.

 91

Figure 41 – Computing diagnostic paths for a new sample from a 3-tier system
topology. Ensembles for each vertex in the system stack graph are retrieved for each
matching vertex. Depth-first search continues as long as the positive class probability
exceeds the negative class probability, and diagnostic paths are ordered according to
their length and confidence.

5.4.6 Classify New Samples

Given a new observation, we begin by traversing the System Stack Graph in a

depth-first fashion to determine the appropriate system stack abstraction j to which the

observation belongs. The sample belongs to a particular system stack abstraction j if the

features for sample, xt, match all of the attributes described by vertex, vj. For example, a

sample from a 3-tier topology would match all of the attributes associated with the 3-tier

vertex. Samples that do not match any vertex are disregarded. Next, we retrieve the

ensemble, Ej, from our model database. When scoring a new sample, we need to consider

two possible scenarios: an ensemble, Ej, exists and an ensemble does not exist for a given

vertex.

In the first situation, we pass the sample, xt, to the base learner(s) of the retrieved

ensemble, Ej, and it returns the probability the sample belongs to the positive class. If the

positive class probability is greater than the probability for the negative class, the depth

 92

first search continues. The traversal enables us to capture the base learners’ predictions.

During the traversal, the paths of vertices where the positive class probability exceeds the

negative class probability are recorded.

Descent continues until the negative class probability exceeds the positive class

probability. When a negative class probability exceeds a positive class probability, none of

the vertices’ neighbors are added to the traversal stack, and the neighbors are marked as

having been visited. The traversal concludes once all vertices have been visited.

The other scenario is when no ensemble, Ej, has been trained for a vertex, vj, to

which the sample belongs. In this situation, the descent halts and all neighbors are marked

as having been visited.

5.4.7 Obtain Diagnosis

PerfML has two output modes. It can diagnose the most likely prediction or

millibottleneck, and it can return the top k predictions. In the previous step, a depth-first

traversal is used to identify paths where the ensembles associated with vertices yielded

positive class probabilities that exceeded those of the negative class. We refer to this

collection of paths as “diagnostic paths.”

To diagnose a millibottleneck among the possible diagnostic paths, we order the

diagnostic paths in descending order according to their length and each path’s terminal

vertex probability. For the purposes of our evaluation, the most likely millibottleneck

diagnosis corresponds to the terminal vertex for the top ranked diagnostic path. In this

 93

respect, the terminal vertex corresponding to the highest probability prediction is the most

confident prediction, controlling for path length.

No Millibottleneck diagnoses (or predictions) have a path only containing the root

vertex. In this case, the probability associated with the terminal vertex of this special path

is the negative class probability returned by the sample’s matching topological ensemble.

Besides the top ranked path, PerfML can return the top k paths along with the

probabilities of the paths’ intermediate vertices. All of the predictions and paths are

persisted in the PerfML’s millibottleneck schema. The top ranked prediction is

materialized as a millibottleneck instance.

Table 9 – Data Set Metrics

Data Set

Evaluation Data Set Description
of

Experiments
of

Observations
True Positives

(Millibottlenecks)
Wise-rubbos-beta 300 1,100,000 ~30K

Elba-rubbos 3 10,800 ~400
WedMake 90 324,000 --

5.5 PerfML Evaluation

We use three different data sets to evaluate the effectiveness of PerfML. These data

sets are described in Table 9. The “Wise-rubbos-beta” data set is unique, because labels

were able to be determined using a combination of expert (and deterministic) rules and

manual inspection. We implemented a set of labeling functions to bootstrap our learning

models, and we applied them to this data set where we knew a priori that millibottlenecks,

 94

which could be identified with these functions, existed. Not all millibottlenecks can be

labeled in this manner and require manual investigation.

The “Elba-rubbos” data set contains a small number of systems’ experiments.

Consequently, we were able to hand label all the millibottleneck periods. The final data

set, “WebMake” contains a modest number of systems’ experiments. These experiments

were similar in topology to those in the first data set, but unlike those, these lacked the

sufficient metadata like JVM version to apply our labeling functions accurately. Given the

volume of observations, hand-labeling could not be accomplished efficiently.

We assessed classifier performance using standard classifier evaluation metrics:

Precision, Recall and F-measure (F1), which is the harmonic mean of Precision and Recall.

False Negatives (FN) for Millibottleneck detection occur if a millibottleneck was NOT

predicted to occur and it actually occurred during a given time period. False Positives (FP)

for Millibottleneck detection occur if a millibottleneck was predicted to occur and it did

NOT actually occur. True Positives (TP) occur when the prediction and actual ground truth

indicate millibottlenecks occurred.

Precision = #$
#$%&$

Recall = #$
#$%&'

F-measure = (∗$*+,!-!./∗0+,122
$*+,!-!./%0+,122

In the context of our decision problem, missing a millibottleneck when it occurs

(False Negative) is more costly than a False Positive. The only cost of a False Positive is

 95

analysis time; however, analyzing millibottlenecks with PerfML is at least an order of

magnitude faster than our prior graphical and basic statistical methods.

Figure 42 – PerfML Ensemble Precision, Recall and F1 Performance on Test Set for
CPU Millibottleneck Diagnosis across components.

5.5.1 PerfML Performance

Our first evaluation involves assessing the performance of PerfML in diagnosing

known millibottlenecks. For this evaluation, we use the “Wise-rubbos-beta” data set, which

is described earlier. Since our experiments are finite, multivariate time series data sets, we

must preserve its temporal ordering when splitting our sample space for training and

testing. As such, we randomly split the data set at the experiment level into 80% for training

and 20% for testing and validation. Then, we use the training set to train PerfML and its

constituent learners. Next, we tabulate the Precision, Recall and F1 metrics using PerfML’s

predictions on the test set. Finally, we repeat this process for 10 trials and calculate the

average Precision, Recall and F1.

Figure 42 shows PerfML’s average test set across all 10 trials. PerfML achieves

high recall for diagnosing different types of millibottlenecks while maintaining reasonable

 96

precision. In all cases, its recall exceeds 88% and precision is never less than 84%. From

this, we can reasonably conclude PerfML can diagnose millibottlenecks with high recall.

5.5.2 PerfML Parameters

Next, we assess how the choice of learning algorithm impacts PerfML’s aggregate

performance. For this evaluation, we used the same data set, Wise-rubbos-beta, and

training and testing procedure as the first evaluation. The following describes the

hyperparameters for each type of supervised learning algorithm we tried.

Figure 43 – Precision, Recall and F1 Performance on Test Set for Apache CPU
Millibottleneck Diagnosis for different choices of base learners.

Logistic Regression. We used a linear search to set an optimal l, the penalty

parameter for an L2-regularized model. We report the results for the value that provided

the best results.

 Support Vector Machines. We tried multiple kernels, including linear and RBF, and

the RBF kernel provided the best results for our evaluation.

 97

Figure 44 – PerfML Precision, Recall and F1 Performance on Test Set for Tomcat
CPU Millibottleneck Diagnosis for different choices of base learners.

 Random Forests. The number of trees, the minimum samples per leaf, and the

number of variables randomly sampled for building a tree are three important

hyperparameters. We used the Akaike Information Criterion (AIC) to search for optimal

parameters, and we found 500 trees and a minimum of two samples per leaf provided the

best results. We used the square root of the feature space size, a commonly used heuristic,

for the number of sampled features.

Figure 45 – PerfML Precision, Recall and F1 Performance on Test Set for Mysql CPU
Millibottleneck Diagnosis for different choices of base learners.

Figure 43, Figure 44, Figure 45 and Figure 46 shows PerfML’s average test set

performance for each of the described learning algorithm choices for Apache CPU, Tomcat

 98

CPU, MySQL CPU and CJDBC CPU millibottlenecks respectively. As these figures

illustrate, the choice of supervised learning algorithm used to train PerfML’s constituent

learners does not demonstrably impact PerfML’s aggregate performance on diagnosing

each type of CPU millibottleneck. However, Random Forests and Support Vector

Machines perform consistently better than Logistic Regression with Random Forests

performing only marginally better overall. It has about a 1% higher average F1 score than

the SVM model.

Figure 46 – PerfML Precision, Recall and F1 Peformance on Test Set for CJDBC
CPU Millibottleneck Diagnosis for different choices of base learners.

We also evaluated the final probability decision threshold PerfML uses to make its

final diagnosis. This amounts to assessing the probability associated with the kth class

where argmaxk Pr(y=k). For this evaluation, we use the test set from the trial associated

with the best performing model from the first evaluation. The X-axis in the Figure 47 is

the probability associated with kth class for each prediction. The Y-axis is the cumulative

density of test set predictions. The graph illustrates that over 80% of the final diagnostic

predictions on this test set had a probability exceeding 0.8. In other words, the maximum

probability that corresponds to the kth millibottleneck class exceeded 0.8 in over 80% of

the test set predictions. This suggests most of PerfML’s predictions have significant

 99

support among the data used for training its constituent models. Therefore, changing the

default probability threshold from 0.5 would only marginally impact overall classifier

performance, i.e. little to not impact on PerfML predictions until the threshold exceeded

0.8.

Figure 47 – PerfML prediction probability threshold

5.5.3 PerfML State-of-Art Comparison

In this portion of the evaluation, we compared PerfML’s performance to two other

system performance anomaly detection systems. The LSTM model is like the one featured

in DeepLog [32], and the PCA method is like the one used in a 2009 SOSP paper [33].

Long-Short Term Memory (LSTM) deep learning networks are a type of Recurrent

Neural Network (RNN) that retain some “memory” over long sequences by improving

upon how weights are modeled which enable them to mitigate the disappearing gradients

problem. These models have been applied to many sequence-based domains including

Natural Language, Computer Vision and Temporal Forecasting.

 100

Figure 48 –Precision, Recall and F1 Performance on Test Set of PerfML versus other
state-of-art methods.

DeepLog is a two-layer LSTM model. Each layer had 100 LSTM cells. The primary

difference between our implementation and the paper’s was our input space. The paper

used key-value pair sequences extracted from console logs. We fed sequences of resource

metrics and queue sizes derived from monitoring logs. We used the same hyperparameters

as detailed in the paper: input sequence length of 2 (100ms time windows in our case), a

mini-batch size equal to 2 and 50 epochs.

Our DeepLog-like implementation uses 2 layers and 64 memory units per layer just

like Deep Log. They used a window size of length 10; however, in our implementation, we

used a shorter window size since the performance improved when we used a window of

size 2. We used a mini-batch of size 2 and 50 epochs. DeepLog did not specify the number

of epochs, and it appears they tried a batch size of 1. We also tried a batch size of 1, but

our LSTM did not perform as well.

 The other approach by Xu et al. leverages unsupervised dimensionality reduction,

Principal Components Analysis, and q-statistic from the statistical process control

community to identify systems anomalies from console logs. An observation is deemed

 101

abnormal if the squared length of the projection of the vector onto the anomaly subspace

is greater than qa. qa is the threshold statistic that guarantees the false positive probability

is no more than a–assuming the data is multivariate Gaussian. However, this statistic has

been shown to be robust even when the data does not conform to this Gaussian assumption.

We used the same q-statistic threshold-based approach for identifying millibottlenecks. We

used our resource-related features as an analog to their state matrix. We formed a state

matrix by stacking resource-related feature vectors from multiple experiments for each type

of millibottleneck. We used SVD to determine k principal components that accounted for

95% of the variance in the data. Like Xu et al., we found the abnormal subspace by

retaining the remaining n-k dimensions. Finally, we used the same a threshold of 0.01 and

we computed the squared prediction error residual function to compute qa as specified in

Xu et al [33]. Each observation in the test set is projected onto the abnormal space and we

used the same decision criteria as in the related paper [33].

We trained all three systems using the entire Wise-rubbos-beta data set. Then, we

used the entire Elba-rubbos set to evaluate the performance of each system.

Figure 48 compares the Precision, Recall and F1 for PerfML, our DeepLog-like 2-

layer LSTM implementation and the PCA-based method of Xu et al. We see that PerfML

performs better than the PCA-base approach and is comparable to the DeepLog-like 2-

Layer LSTM approach. One advantage our method has over the deep learning approach is

models are trained over subsapces. Therefore, adding support for new topologies,

components and millibottlenecks amounts to train base learners for the respective

ensembles. Monolithic models require re-training over the entire sample space.

 102

5.5.4 PerfML Case Study

Our final evaluation involves a demonstration of identifying millibottlenecks in an

unlabeled data set, namely “WedMake.” Experiments in this set originated from the same

benchmark as the training data, but there were a few differences. First, component queue

size measurements originated from TCP instead of HTTP-level monitors like the

experiments in the other data sets. As such, feature like component queue length and Point-

in-Time Response Time were calculated using finer-grained data. This is only a

comparative issue, i.e. trying to compare unscaled queue sizes from these experiments to

those in the other data sets. Secondly, experiments in this set had soft resource ranges with

higher, upper bounds than in previous experiments. For example, the number of Apache

and Mysql sockets ranged from 128 to 512, and the number of connection pool threads was

one value from this set: {250, 330, 450, 650, 1050}. Experiments from the other data sets

had socket and connection pool thread settings from the lower end of these ranges. Finally,

applying our labeling functions would have yielding noisier labels, since these experiments

lacked the necessary metadata like each experiment’s JVM version to apply these functions

reliably. Given the volume of experiments, hand labeling was infeasible.

As we see in Table 10, PerfML detected millibottlenecks in approximately 7.5% of

the observations. We note the most frequently detected millibottleneck was a MySQL CPU

millibottleneck with an average duration of 400ms. The other two types were Tomcat and

Apache CPU millibottlenecks with similar magnitude average durations. The prevalence

of millibottlenecks in this set was slightly more than in either of the other sets. However,

the types and average durations were consistent with the millibottlenecks identified in the

other data sets. Regardless, we have demonstrated PerfML’s ability to identify

 103

millibottleneck periods in data generated in different experimental settings and

configuration.

Table 10 – Finding Known Millibottlenecks

Type

Evaluation Data Set Description
Number Frequency Avg. Duration (ms)

MySQL CPU 8284 6.5% 400
Tomcat CPU 1425 1.1% 350
Apache CPU 43 0.03% 109

5.6 Future Work and Conclusion

We intend to improve PerfML’s coverage by adding support for data generated by

microservices and streaming benchmarks. Unlike PerfDB, PerfML requires more

adaptation to support new benchmarks. The System State Graph is the primary data

structure we use to partition the heterogenous feature space that spans our experimental

data. Currently, PerfML’s implementation assumes one, static SSG instance. There is not

mechanism to mutate this structure programmatically. Moreover, various control flow

blocks reference specific literals in this SSG. These references would need to be replaced

with calls to an SSG object. PerfML’s analytical layer also needs to be extended or

refactored. It also contains specific references to literals representing different components

in the static SSG. These would also need to be replaced with proper references to an SSG

object. Finally, the analytical layer only supports identifying and diagnosing

millibottlenecks in monolithic (n-tier), cloud-based systems. The current set of features and

models might apply to different execution contexts, but this needs to be studied and

evaluated.

 104

Our work on PerfML consisted of three contributions. First, we demonstrated how

our approach addresses the heterogenous feature space and hierarchical imbalanced classes

inherent to diverse systems’ performance data. Secondly, we showed PerfML’s high recall

and acceptable precision for detecting and diagnosing millibottlenecks. We concluded with

a case study using new, i.e. previously unobserved, experimental data to demonstrate

PerfML’s ability to detect known millibottlenecks and the latency pathologies they induce.

 105

CHAPTER 6. RELATED WORK

Long-tail latency problem. Dean et al. identified long tail latency as a problem

common to large scale system topologies. The authors mention variability as root cause,

and they argue, “We expect such uncorrelated phenomena [the phenomena that causes

variability] are rather common in large-scale systems.” However, they stop short of

providing more specific evidence of their root cause [1].

Symptomatic Treatments. Dean et al. prescribed several approaches for bypassing

tail latency, specifically employing fault tolerance [1] and resource redundancy techniques

[25]. While these strategies are effective at reducing the impact of long tail latency

problems, they come with significant cost, for example, lower overall datacenter

utilization. According to an NRDC report, from 2008 – 2012, average data center server

utilization ranged from 12-18% [26].

Statistical Methods. More recently, Qiu et al provided robust statistical analysis of

fine-grained performance anomalies [34]. Instead of reconstructing point-in-time latency

or other fine grained latency metrics, the authors use cumulative measures of latency to

differentiate the behavior of microservices. Moreover, they use correlation to pinpoint the

most likely microservice responsible for a spike in end-to-end latency. They do not show

the microservices’ queue lengths in relationship to one other over time. Finally, they

monitor a very small set of resources to identify a small number of performance anomalies.

Stated differently, they consider a small set of concrete hypotheses to explain specific

phenomena. Our population studies go beyond their closed world assumption, since our

testable hypothesis includes the closed world of transient resource saturations.

 106

Perhaps, the reason why Dean et al. and others have not sought to diagnose long-

tail latency root cause is due to the data management challenges that we have illustrated

through our work building PerfML. The data management problems that underlie

diagnosing millibottlenecks and latency pathologies like Very Long Response Time

Requests and Less Long Requests transcend the system performance domain. As such,

there is related work relevant to our data pipeline found across several relevant

communities, namely the Systems, Database and Machine Learning communities.

6.1 Systems

In the systems community, there are two relevant fields to performance analysis

and debugging.

System Tracing. The first area leverages end-to-end tracing techniques. Google

introduced Dapper about 10 years ago, which leveraged sampling to reduce the overhead

associated with diagnosing fine-grained performance bugs [35]. X-ray instruments

systems’ binaries and captures block-level information to estimate the likelihood it

executed due to a performance anomaly [36]. Aguilera et al. use statistical methods to

correlate observed delays to request traces among systems’ modules in distributed systems

[37]. Pip and X-trace use end-to-end request flow tracing for performance anomaly

diagnosis [38] [39] [40]. Chow et al. rely on a minimal measurement schema injected into

software component logs to analyze the end-to-end performance of large-scale Internet

services [41]. Sambasivan et. al produced a robust reference of end-to-end request flow

tracing techniques [42]. More recently, Canopy uses both performance and execution traces

to help isolate coarse-grained performance phenomena [43].

 107

Log Analysis. The second area leverages systems’ artifacts like logs to infer

relationships between system behavior and performance and reconstructed causal relations.

Generally, these approaches learn a model either online or offline from execution logs with

performance bugs labeled accordingly. Xu et al. used console logs to identify anomalous

executions across the Google infrastructure. They applied statistical control methods

combined with Principal Component Analysis (PCA) to detect periods of anomalous

system performance [33]. Cohen et al. use Bayesian models to study performance

anomalies [44]. Several approaches employ machine learning to detect specific types of

performance anomalies from log files [45] [46] [32]. More recently, Gan et al. use as

combination of console logs, microbenchmarks, and multi-layered deep neural networks

to identify performance anomalies in large, microservice-based topologies [47]. DeepLog

mines console logs to construct workflow models and identify anomalous execution

patterns using deep neural nets and outlier thresholds based on statistical models [20]. One

recent approach does not employ machine learning but instead relies on reconstructing

programmers’ event logging to profile system behavior [48].

6.2 Database

Work related to data and information extraction from the database community is

particularly relevant to perftables.

Log Data Extraction. Approaches from previous work in automated information

extraction has generally fallen into one of two categories: wrapper induction and

supervised learning techniques [49] [50]. Wrapper induction techniques have been applied

to web data extraction using structural regularities among HTML tags to separate data from

 108

its presentation [50] [51] [52] [53]. For example, groups of specific HTML tags signal

more regular sub-structures like tables and lists. In this respect, the layout-based patterns

perform a similar function to groups of HTML tags in the web data domain [50]. Work on

extracting relations from web lists also shares some parallels with work on information

extraction [54]. Work informed by programming language technique feature similar work

on log data extraction. Some work has relied on source code interposition techniques to

decorate logging statements corresponding to specific strings inserted into the output [55].

Others have synthesized transformations to automatically generate a transformation

program from user provided transformation actions. RecordBreaker is one such example

of such an approach [56]. Lastly, Datamaran uses parse trees to generate regular

expressions, which are used to isolate log data structures [23]. Instead of “learning”

structure (bottom-up) like Datamaran, we project structure onto the text (top-down) using

a collection of pattern templates. Our templates correspond to frequently occurring layouts,

which are similar to the HTML-based inductive styles without the benefit of structure of

web-based data.

Supervised techniques have also been applied to log data extraction domain. This

previous work usually formulates the machine learning problem as uncovering some

unobserved “template” (structure) from the observed text (data) [57] [58]. There are two

general limitations with such approaches. First, they are dependent on the availability of

data, so in this sense, these methods are biased based on the composition of the corpus [54]

[59]. Secondly, using supervised machine learning methods usually means manually

curating labels for a training data set, and this data set should contain enough variety to

account for potential bias. Unfortunately, to the best of our knowledge no such data set for

 109

performance monitoring data is publicly available, and given the enormous parameter

space, it is not likely to be sufficiently varied if one did exist.

6.3 Machine Learning

Our model for detecting and diagnosing fine-grained performance anomalies falls

under the broad family of ensemble methods. In the machine learning community, work in

ensemble methods features work related to multi-class classification and mitigating

challenges such as: class imbalance, concept drift and curse of dimensionality including

heterogenous data [60].

Ensemble Methods. Ensemble methods can be organized by how their constituent

learners are trained and/or how predictions are made [60]. Output manipulation refers to

the techniques used by base learners to combine their decisions into one decision for the

ensemble. In the literature, this is typically referred to as ensemble fusion, and a special

case is ensemble selection, i.e. using the decision of one base learner as the ensemble’s

overall decision [61]. Input manipulation and partitioning refers to training separate base

learners with different training data subsets. Learning algorithm manipulation denotes

changing models’ hyperparameters to enhance learner diversity. Hybridization refers to the

situation when two or more of these other techniques are used to construct an ensemble

[60]. We explored relevant work along two of these dimensions: output manipulation and

input partitioning.

Output Manipulation. Mixture of Experts is a special type of ensemble method for

integrating the outputs of base models into a single output. The approach grew out of the

Neural Network community. It was originally posed to decompose the input space such

 110

that each expert examines a different portion of the input space. Using error and gating

functions, the most suitable base model is determined for each portion of the input space.

Each base model is responsible for providing a prediction for its respective space even

though some subspaces may overlap [62]. One specific technique involved using clustering

to assign experts to particular portions of the input space [63]. Next, we looked at

classification systems with multiple feature extractors and multiple classifiers. These

approaches relied on either randomization techniques [64] or diversity metrics like mutual

information [65] to create vertical and horizontal subspaces to train learners on these

specific portions of the input space. The final Mixture of Experts approach that seemed to

relate to our classification problem used an associative switching mechanism. This special

gating function ensures only one expert makes a prediction for the entire ensemble. The

switch opens and closes gates attached to each of the experts. For a given x, only one gate

is opened—that of the most likely prediction. In our case, this mechanism where one expert

provides its prediction based on a winner-take-all approach [66] could be used to select a

millibottleneck-specific expert.

Input Partitioning. Work in ensembles involving training base learners in specific

partitions or portions of the input space seem particularly relevant given the diversity of

our millibottlenecks and their corresponding signals. Most ensemble methods refer to some

approach for selecting subsets of samples to train members. Generally, input partitioning

occurs by either selecting subsets of tuples or rows (horizontal) or subsets of attributes or

features (vertical). Some ensemble methods like Random Forests use randomness to select

subsets [60]. Some work in the data mining domain [67] use ranges of values to partition

a heterogenous feature space. Several of these works are manufacturing domain focused;

 111

however, the problems and methods are relevant to ours [67]. Instead of randomly selecting

samples or features, we have domain knowledge that can help to sub-divide the input space.

For example, this kind of knowledge could be exploited via vertical partitioning, which

could be used to pin specific team members to particular portions of the feature space

One such recent work uses the manufacturing domain as motivation for a set of

problems quite similar to ours [68]. Their approach is most similar to ours despite the

domain difference. They represent domain knowledge in a tree-based structure, and they

use it to partition the data input space. Each partition can have significant class imbalance.

While their data exhibits more imbalance, the labels do not have the same hierarchical

dependencies ours do. Secondly, we have temporal dependencies we need to respect.

Lastly, our data is 1000x times larger, so methods to partition the data set without multiple,

full scans of the data set are important.

 112

CHAPTER 7. CONCLUSION AND FUTURE WORK

We began by highlighting an important performance pathology, the long-tail

latency problem. We provided our millibottleneck theory to explain at least a portion of

the requests that comprise the latency long tail in systems. Next, we motivated our

contributions by discussing our measurement toolkit, which provides the data for studying

millibottlenecks (detail in Chapter 2). We explained that the data management complexities

inherent to this data go beyond studying system performance anomalies themselves. We

proceeded by discussing the two significant contributions we made to studying and

diagnosing millibottlenecks in experimental computer science big data.

Our first principal contribution, PerfDB, provided the necessary data management

and integration infrastructure for us to efficiently integrate data across hundreds of

experiments spanning hundreds of experimental schemas (detail in Chapter 4). PerfDB’s

data pipeline includes a flexible performance log parser, perftables, which provides a

narrow but important building block for studying millibottlenecks across different

experiments (detail in Chapter 3). We showed this parser covered over 98% of the resource

monitoring data generated by our measurement toolkit. We evaluated our contribution by

using the integrated experimental data to conduct two phenomenological studies. First, we

completed a large population study to confirm millibottlenecks cause VLRT vis-à-vis

CTQO (queue amplification). Then, we enabled a study of the association between

millibottlenecks and Millidelayed requests.

PerfML, our ensemble-based, supervised machine learning system, was our second

and more impactful methodological contribution. It handles data characterized by

 113

heterogenous feature space and hierarchical, imbalanced classes—characteristics of our

experimental data (detail in Chapter 5). We trained PerfML using data collected from

hundreds of experiments, and each experiment had its own unique schema. To support

training PerfML, we used a combination of manual, semi-automated and automated

labeling methods to assemble a high quality, labeled experimental data set. We

demonstrated that PerfML could isolate different types of millibottlenecks with high recall

and acceptable precision, i.e. over 85% and 80% respectively. We also showed that PerfML

performs as well as state-of-the-art methods including deep learning with the added benefit

of improved extensibility.

We have begun extending PerfDB and PerfML to support microservice and

streaming benchmark applications. In sections 4.5 and 5.6, we detailed how our

infrastructure can cover these other benchmark applications despite having different

execution models. As such, our infrastructure supports studying the connection between

latency phenomena like VLRT and Millidelayed requests and millibottlenecks across a

range of systems’ semantics and dependencies. Moreover, PerfDB and PerfML provide the

data management and analytical infrastructure to construct empirical-based performance

profiles for commonly deployed components like nginx or Apache. With this type of

information, systems’ designers and implementers would be able to pursue a more

evidence-based, scientific approach toward their work.

 114

REFERENCES

[1] J. Dean and L. A. Barroso, "The tail at scale," Communications of the ACM, vol. 56,

pp. 74-80, 2013.

[2] R. Kohavi and R. Longbotham, "Online experiments: Lessons learned," Computer,

vol. 40, pp. 103-105, 2007.

[3] R. Kohavi, R. M. Henne and D. Sommerfield, "Practical guide to controlled

experiments on the web: listen to your customers not to the hippo," in Proceedings

of the 13th ACM SIGKDD international conference on Knowledge discovery and

data mining, 2007.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall and W. Vogels, "Dynamo: amazon's highly available

key-value store," ACM SIGOPS operating systems review, vol. 41, pp. 205-220,

2007.

[5] C. Pu, J. Kimball, C.-A. Lai, T. Zhu, J. Li, J. Park, Q. Wang, D. Jayasinghe, P. Xiong,

S. Malkowski and others, "The millibottleneck theory of performance bugs, and its

 115

experimental verification," in 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), 2017.

[6] Q. Wang, Y. Kanemasa, J. Li, C. A. Lai, M. Matsubara and C. Pu, "Impact of DVFS

on n-tier application performance," in Proceedings of the First ACM SIGOPS

Conference on Timely Results in Operating Systems, 2013.

[7] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara, M. Kawaba

and C. Pu, "An experimental study of rapidly alternating bottlenecks in n-tier

applications," in 2013 IEEE Sixth International Conference on Cloud Computing,

2013.

[8] T. Zhu, J. Li, J. Kimball, J. Park, C.-A. Lai, C. Pu and Q. Wang, "Limitations of load

balancing mechanisms for n-tier systems in the presence of millibottlenecks," in 2017

IEEE 37th International Conference on Distributed Computing Systems (ICDCS),

2017.

[9] J. Park, Q. Wang, J. Li, C.-A. Lai, T. Zhu and C. Pu, "Performance interference of

memory thrashing in virtualized cloud environments: A study of consolidated n-tier

applications," in 2016 IEEE 9th International Conference on Cloud Computing

(CLOUD), 2016.

 116

[10] C. A. Lai, Q. Wang, J. Kimball, J. Li, J. Park and C. Pu, "Io performance interference

among consolidated n-tier applications: Sharing is better than isolation for disks," in

2014 IEEE 7th International Conference on Cloud Computing, 2014.

[11] C.-A. Lai, J. Kimball, T. Zhu, Q. Wang and C. Pu, "milliScope: A fine-grained

monitoring framework for performance debugging of n-tier Web services," in 2017

IEEE 37th International Conference on Distributed Computing Systems (ICDCS),

2017.

[12] D. Jayasinghe, J. Kimball, S. Choudhary, T. Zhu and C. Pu, "An automated approach

to create, store, and analyze large-scale experimental data in clouds," in 2013 IEEE

14th International Conference on Information Reuse & Integration (IRI), 2013.

[13] D. Jayasinghe, J. Kimball, T. Zhu, S. Choudhary and P. Calton, "An infrastructure

for automating large-scale performance studies and data processing," in 2013 IEEE

International Conference on Big Data, 2013.

[14] D. Jayasinghe, S. Malkowski, J. Li, Q. Wang, Z. Wang and C. Pu, "Variations in

performance and scalability: An experimental study in iaas clouds using multi-tier

workloads," IEEE Transactions on Services Computing, vol. 7, no. 2, pp. 293-306,

2013.

 117

[15] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park and C. Pu, "Expertus:

A generator approach to automate performance testing in iaas clouds," in 2012 IEEE

Fifth International Conference on Cloud Computing, 2012.

[16] R. A. Lima, J. Kimball, J. E. Ferreira and C. Pu, "Systematic construction, execution,

and reproduction of complex performance benchmarks," in International Conference

on Cloud Computing, 2019.

[17] R. A. Lima, J. Kimball, J. E. Ferreira and C. Pu, "Wise Toolkit: Enabling

Microservice-Based System Performance Experiments," in International Conference

on Cloud Computing, 2020.

[18] Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang and C. Pu, "A study of long-tail latency

in n-tier systems: Rpc vs. asynchronous invocations," in 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS), 2017.

[19] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong, C. Pu, M. Kawaba

and L. Harada, "The impact of soft resource allocation on n-tier application

scalability," in 2011 IEEE International Parallel \& Distributed Processing

Symposium, 2011.

 118

[20] M. Du, F. Li, G. Zheng and V. Srikumar, "Deeplog: Anomaly detection and diagnosis

from system logs through deep learning," in Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, 2017.

[21] J. Rivera and R. Meulen, "Gartner says beware of the data lake fallacy," Gartner

http://www. gartner. com/newsroom/id/2809117, 2014.

[22] B. Stein and A. Morrison, "The enterprise data lake: Better integration and deeper

analytics," PwC Technology Forecast: Rethinking integration, vol. 1, p. 18, 2014.

[23] Y. Gao, S. Huang and A. G. Parameswaran, "Navigating the Data Lake with

DATAMARAN - Automatically Extracting Structure from Log Datasets.," SIGMOD

Conference, 2018.

[24] Q. Wang, Y. Kanemasa, J. Li, C.-A. Lai, C.-A. Cho, Y. Nomura and C. Pu,

"Lightning in the cloud: A study of transient bottlenecks on n-tier web application

performance," in 2014 Conference on Timely Results in Operating Systems ({TRIOS}

14), 2014.

[25] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica and others, "A view of cloud computing,"

Communications of the ACM, vol. 53, pp. 50-58, 2010.

 119

[26] J. Whitney and P. Delforge, "Data center efficiency assessment," Issue paper on

NRDC (The Natural Resource Defense Council), 2014.

[27] J. Ashley, "Using AI to Reveal Insights in Enterprise Log File Data," 2020.

[28] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V.

Shankar, J. Carreira, K. Krauth, N. Yadwadkar and others, "Cloud programming

simplified: A berkeley view on serverless computing," arXiv preprint

arXiv:1902.03383, 2019.

[29] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara, M. Kawaba

and C. Pu, "Detecting transient bottlenecks in n-tier applications through fine-grained

analysis," in 2013 IEEE 33rd International Conference on Distributed Computing

Systems, 2013.

[30] J. Li, Q. Wang, C. A. Lai, J. Park, D. Yokoyama and C. Pu, "The impact of software

resource allocation on consolidated n-tier applications," in 2014 IEEE 7th

International Conference on Cloud Computing, 2014.

[31] J. Kimball and C. Pu, "A Method and Tool for Automated Induction of Relations

from Quantitative Performance Logs," in International Conference on Cloud

Computing, 2019.

 120

[32] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis and H. Zhang, "Automated IT

system failure prediction: A deep learning approach," in 2016 IEEE International

Conference on Big Data (Big Data), 2016.

[33] W. Xu, L. Huang, A. Fox, D. Patterson and M. I. Jordan, "Detecting large-scale

system problems by mining console logs," in Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles, 2009.

[34] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk and R. K. Iyer, "FIRM: An Intelligent

Fine-grained Resource Management Framework for SLO-Oriented Microservices,"

in 14th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), Virtual, 2020.

[35] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S.

Jaspan and C. Shanbhag, "Dapper, a large-scale distributed systems tracing

infrastructure," 2010.

[36] M. Attariyan, M. Chow and J. Flinn, "X-ray: Automating root-cause diagnosis of

performance anomalies in production software," in Presented as part of the 10th

USENIX Symposium on Operating Systems Design and Implementation ({OSDI} 12),

2012.

 121

[37] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds and A. Muthitacharoen,

"Performance debugging for distributed systems of black boxes," ACM SIGOPS

Operating Systems Review, vol. 37, pp. 74-89, 2003.

[38] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah and A. Vahdat,

"Pip: Detecting the Unexpected in Distributed Systems.," in NSDI, 2006.

[39] R. Fonseca, M. J. Freedman and G. Porter, "Experiences with Tracing Causality in

Networked Services.," INM/WREN, vol. 10, 2010.

[40] D. Novaković, N. Vasić, S. Novaković, D. Kostić and R. Bianchini, "Deepdive:

Transparently identifying and managing performance interference in virtualized

environments," in 2013 USENIX Annual Technical Conference ({USENIX ATC} 13),

2013.

[41] M. Chow, D. Meisner, J. Flinn, D. Peek and T. F. Wenisch, "The mystery machine:

End-to-end performance analysis of large-scale internet services," in 11th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 14), 2014.

[42] R. R. Sambasivan, R. Fonseca, I. Shafer and G. R. Ganger, "So, you want to trace

your distributed system? Key design insights from years of practical experience,"

Parallel Data Lab., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-

PDL-14, 2014.

 122

[43] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O'Neill, K. W. Ong, B.

Schaller, P. Shan, B. Viscomi and others, "Canopy: An end-to-end performance

tracing and analysis system," in Proceedings of the 26th Symposium on Operating

Systems Principles, 2017.

[44] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly and J. Symons, "Correlating

Instrumentation Data to System States: A Building Block for Automated Diagnosis

and Control.," in OSDI, 2004.

[45] K. Nagaraj, C. Killian and J. Neville, "Structured comparative analysis of systems

logs to diagnose performance problems," in Presented as part of the 9th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 12), 2012.

[46] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang and G. Jiang, "Cloudseer: Workflow

monitoring of cloud infrastructures via interleaved logs," ACM SIGARCH Computer

Architecture News, vol. 44, pp. 489-502, 2016.

[47] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi and C. Delimitrou, "Seer:

Leveraging big data to navigate the complexity of performance debugging in cloud

microservices," in Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, 2019.

 123

[48] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan and M. Stumm, "Non-intrusive performance

profiling for entire software stacks based on the flow reconstruction principle," in

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI

16), 2016.

[49] E. Agichtein and L. Gravano, "Snowball: Extracting relations from large plain-text

collections," in Proceedings of the fifth ACM conference on Digital libraries, 2000.

[50] A. Arasu and H. Garcia-Molina, "Extracting Structured Data from Web Pages.,"

SIGMOD Conference, 2003.

[51] L. Liu, C. Pu and W. Han, "XWRAP: An XML-enabled wrapper construction system

for web information sources," in Proceedings of 16th International Conference on

Data Engineering (Cat. No. 00CB37073), 2000.

[52] W. Han, D. Buttler and C. Pu, "Wrapping web data into XML," ACM SIGMOD

Record, vol. 30, pp. 33-38, 2001.

[53] P. Senellart, A. Mittal, D. Muschick, R. Gilleron and M. Tommasi, "Automatic

wrapper induction from hidden-web sources with domain knowledge," in

Proceedings of the 10th ACM workshop on Web information and data management,

2008.

 124

[54] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu and Y. Zhang, "Webtables: exploring

the power of tables on the web," Proceedings of the VLDB Endowment, vol. 1, pp.

538-549, 2008.

[55] P. He, J. Zhu, Z. Zheng and M. R. Lyu, "Drain: An Online Log Parsing Approach

with Fixed Depth Tree," in 2017 IEEE International Conference on Web Services

(ICWS).

[56] K. Fisher, D. Walker, K. Q. Zhu and P. White, "From dirt to shovels - fully automatic

tool generation from ad hoc data.," POPL, 2008.

[57] X. Chu, Y. He, K. Chakrabarti and K. Ganjam, "TEGRA," in Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data, New York, New

York, USA, 2015.

[58] E. Cortez, D. Oliveira, A. S. Silva, E. S. Moura and A. H. F. Laender, "Joint

unsupervised structure discovery and information extraction.," SIGMOD

Conference, 2011.

[59] H. Elmeleegy, J. Madhavan and A. Y. Halevy, "Harvesting Relational Tables from

Lists on the Web.," PVLDB, 2009.

 125

[60] O. Sagi and L. Rokach, "Ensemble learning: A survey," Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, 2018.

[61] L. Rokach, Ensemble learning: Pattern classification using ensemble methods, vol.

85, World Scientific, 2019.

[62] S. E. Yuksel, J. N. Wilson and P. D. Gader, "Twenty years of mixture of experts,"

IEEE transactions on neural networks and learning systems, vol. 23, no. 8, pp. 1177-

1193, 2012.

[63] B. Tang, M. I. Heywood and M. Shepherd, "Input partitioning to mixture of experts,"

in Proceedings of the 2002 International Joint Conference on Neural Networks

(IJCNN'02), 2002.

[64] S. R. Kheradpisheh, F. Sharifizadeh, A. Nowzari-Dalini, M. Ganjtabesh and R.

Ebrahimpour, "Mixture of feature specified experts," Information Fusion, vol. 20,

pp. 242-251, 2014.

[65] K. Kim, H. Lin, J. Y. Choi and K. Choi, "A design framework for hierarchical

ensemble of multiple feature extractors and multiple classifiers," Pattern

Recognition, vol. 52, pp. 1-16, 2016.

 126

[66] K. Chen, L. Wang and H. Chi, "Methods of combining multiple classifiers with

different features and their applications to text-independent speaker identification,"

International Journal of Pattern Recognition and Artificial Intelligence, vol. 11, no.

3, pp. 417-445, 1997.

[67] A. Kusiak, "Decomposition in data mining: An industrial case study," IEEE

transactions on electronics packaging manufacturing, vol. 23, no. 4, pp. 345-353,

2000.

[68] V. Hirsch, P. Reimann and B. Mitschang, "Exploiting domain knowledge to address

multi-class imbalance and a heterogeneous feature space in classification tasks for

manufacturing data," Proceedings of the VLDB Endowment, vol. 13, no. 12, pp.

3258-3271, 2020.

