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April 7, 1986 
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If this report is lacking in some way, please contact me at once. I'm looking forward to 
meeting you at Speech Tech '86. 
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Mark A. Clements 

MAC:sys 
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Progress Report Project R6078-0A0 

Automatic Recognition of Speech in Stressful Environments 

Principal Investigator: M. A. Clements 

During the quarter January 1, 1986 through April 1, 1986, we performed the following: 

1) Mr. John H. Hansen, Ph.D. candidate, is now working full-time on this project. 
He and I have written software for enhancement, recognition, and general speech 
analysis. 

2) Mr. Hansen and I have performed a detailed literature search and analysis 
thereof. One of the decisions we have made regards our usage of the word 
"stress" to mean any perturbation which renders the speech altered. Such would 
include emotional duress, shouting, rapid speech, and many others. We have 
commenced to classify different stresses and fully characterize the acoustic-
phonetics involved. 

3) We have performed a search for available data-bases world-wide; and although 
some would come close to meeting a subset of our needs, none of them are 
actually suitable. We have made arrangements with two psychiatrists at Emory 
University (Drs. Philip Ninan and Bernard Holland) to make tape recordings of 
patients who are known, periodically, to go through periods of fear and anger. 
Such a corpus would enable capture of these emotions in a non-simulated manner, 
along with a large amount of baseline data. 

4) The search for a second graduate assistant has begun. Although many are 
willing, we are exercising great care. We are, in fact, demanding the 
willingness to work on the project for one quarter for course credit rather 
than for support. One such individual, will be starting in this capacity spring 
quarter if he has passed his preliminary written doctoral qualifying exam 
(results will be available this week). 



INTRODUCTION 

Many factors contribute to the success or failure of speech enhancement algorithms. 

Several approaches have been taken, each attempting to capitalize on various characteristics or 

constraints of the speech and/or noise signals. A particular techniques' advantages or 

disadvantages are closely related to the underlying assumptions made in seeking a solution to 

the corrupted speech problem. One application for enhancement is in the speech recognition 

area. Thus far, approaches such as dynamic time warping or hidden Markov modeling have largely 

been applied in tranquil environments. Studies have shown that recognition accuracy is severely 

reduced when speech is uttered in a noisy, stressful environment. Therefore the necessity 

exists for development of robust enhancement preprocessors which produce speech less sensitive 

to varying factors such as stress or background noise. It has already been demonstrated that 

existing enhancement preprocessors are beneficial in improving intelligibility for bandwidth 

compression systems. So, it is encouraging that such preprocessors may also improve recognition 

accuracy for enhancement/recognition systems. Before such algorithms can be developed, it is 

necessary to understand how factors such as stress and noise effect speech parameters. Section 

1.0 therefore addresses the issues of objectively measuring stress and emotion in speech. 

Enhancement of speech for human listeners requires improvement in quality and/or 

intelligibility, (and possibly other factors as well). For the purposes of speech recognition 

by a system however, it is not entirely clear whether improvement in both areas is necessary. 

This may be dependent on the specific recognition requirements. Section 2.0 compares several 

enhancement techniques in terms of quality/intelligibility improvement. Direct comparison is 

sometimes difficult since each class of techniques vary with underlying assumptions in speech 

and noise characteristics. 
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1.0 STRESS and EMOTION in SPEECH  

I 	uh ... can't even talk to people. It's a, it's a ... I, a, I can't talk, ladies and 
gentlemen 	I, I can hardly breathe. I,I'm going to step inside where I cannot see it. I, I 
can't a ... Listen folks, I, I'm going to have to stop for a minute because I've lost my voice. 
This is the worst thing I've ever witnessed. 

(Radio announcer dmcribing the crash of the Hindenburg.) 

When a person is exposed to an emotion-producing situation, such as the radio announcer 

describing the approach of the Hindenburg zeppelin when it suddenly burst into flames, various 

changes in bodily state occur. These changes, which are a result of changes in the activity of 

the sympathetic and parasympathetic branches of the nervous system, can affect speech behavior, 

even against an individual's will. This section focuses on identifying objectively measurable 

quantities of stress and emotion in speech. To begin with, situations where stress evaluation 

is used will be summarized. Next, subjective observations of stress in speech will be examined, 

followed by a brief summary of how prosodic features in speech are conveyed. Finally, a summary 

of research findings concerning stress and emotion in speech is presented. 

There are many situations where it is desirable to evaluate or monitor the emotional state 

of a speaker. Three distinct areas where research has been undertaken include; (1) the area of 

crime countermeasures (e.g., lie detector systems, analysis of phone threats including suicides. 

assassination or bomb threats, etc. [6,7]), (2) safety and security (e.g., air traffic 

controllers and pilots in noisy, high stress environments [8,24], deep sea divers [2], 

astronauts [23], power system operators [25], etc.), (3) and psychology (e.g., emotional state 

of patient [3,4]). Note that levels of emotion or stress vary greatly in these examples. In 

addition, subjects may be uncooperative and attempt to hide their emotional state, (i.e. lie 

detector subjects). An area of speech processing where emotional content is important is speech 

recognition. For example, speech synthesis/recognition in an aircraft cockpit has been 

considered as a means of reducing task demands on pilots [11,16,17,18,24]. Here, the pilot is 

exposed to a high ambient noise environment while under a high level of stress requiring 

constant monitoring of instruments, terrain, and other aircraft. Malkin and Christ [11], placed 

speakers in a 107 dBA helicopter noise environment. Speakers were required to press response 

buttons corresponding to randomly displayed symbols while speaking into a recognition system. 
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Results showed a decrease of 23% from the ideal 99% recognition rate. In similar experiments, 

Simpson [24] considered an isolated-word, speaker dependent recognition system. Vocabulary size 

consisted of six words normally used in a cockpit, and pilot stress involved a computer 

simulated gunner/scout pursuit task. Final conclusions from these experiments strongly 

recommended against the use of present day speech recognition in this environment due to 

significant loss in recognition accuracy. It is quite obvious that the mental loading simulated 

in these experiments is far less taxing then that observed during a critical emergency 

situation. Therefore, more robust speech processing algorithms, insensitive to speaker stress, 

are needed if voice I/O is to be used in such environments. Before such algorithms can be 

developed, reliable objective indicators of stress in speech must first be established. 

1.1 Stress and Prosodic Features in Speech  

Stress is a psychological state that is a response to a perceived threat and is accompanied 

by specific emotions (e.g., fear,anxiety,anger). Verbal markers of stress range from highly 

visible to invisible markers as perceived by the listener. It is important to note that if a 

marker is visible to a listener, it is also visible to the speaker. Therefore, along with a 

continuum of visibility, there is a continuum of speaker control. If a speaker wishes to hide 

his emotional state, high visible markers would be the first to change, since they possess the 

greatest level of speaker control. If a speaker is not concerned with visibility of emotional 

state, then analysis of the most visible markers would possibly be a more reliable indicator of 

stress. Four classes of markers exist: visible, near-visible, less-visible, and invisible. 

Visible markers refer to verbal quantity and speaking rate. For example, when a speaker is 

experiencing fear, he wishes to transmit as much information as quickly as possible. Near-

visible markers include speech faults such as sentence change, stutter, tongue-slip, etc. 

Figure 1 summarizes the most common of these. Less-visible markers include filled and unfilled 

pauses. These represent periods between utterances, and function as a buffer period where the 

speaker organizes his thoughts. An unfilled pause represents a greater amount of speaker 

control for the class of less-visible markers. The filled pause is characteristic of the "uh" 

sound during sentence construction. The filled pause manifests itself 'when a speaker attempts 
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to plan the next verbal sequence too quickly. The speaker is usually unaware of this trait (low 

amount of speaker control). However, it may not always indicate stress, since some people say 

"uh" all the time. The last class of speech markers are the invisible, which possess the least 

amount of speaker control. Invisible markers refer to lexical leakage which is defined as the 

choice of words, influenced by unconscious and preconscious background factors. For example, a 

farmer applying for drought relief complains, "We're drowning in red tape." Here, the word 

"drowning" is inspired partly by the need for water. Examples of visible, near-visible, and 

less-visible markers can be seen in the Hindenburg announcer's message. Research in psychiatry 

conclude that verbal markers are not entirely successful or consistent in predicting/analyzing 

stress [4]. Many markers are continuously monitored both consciously and subconsciously by the 

speaker, and thus are prone to correction. Therefore, other objective variables must be 

considered in determining stress. At this point, it may be beneficial to consider physiological 

aspects of speech production, specifically prosodic features. Understanding how prosodic 

features convey linguistic information will be useful in the analysis of stress and emotion in 

speech. 

The rhythms and intonations of language are formed using prosodic rules. These features 

usually extend over more than one phoneme segment and are therefore called suprasegmental. 

Prosodic features which carry linguistic information include stress and intonation. Stress in 

this context refers to lexical stress where a given syllable in an utterance is further 

emphasized. (For example, compare the two phrases That's just in sight, and That's just 

insight. The stressed and unstressed syllables "in" and "sight" are reversed in each sentence 

giving an entirely different meaning.) Prosodic features are produced by changes in the glottal 

sound source and the timing of articulatory movements. The glottal source factors operate 

through actions of the speech breathing muscles and the vocal folds; the timing factors operate 

through the movements of the upper articulators. The two main factors in the glottal source 

variation for prosodic features include subglottal air pressure and tension of the vocal folds. 

These affect the fundamental frequency, the amplitude, and the source spectrum. Increasing 

force on the lungs causes an increase in subglottal air pressure; which results in an increased 
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I. Sentence change 
2. Repetition 
3. Stutter 
4. Omission 
5. Sentence incompletion 

6. Tongue slip 
7. Intruding incoherent sound 

Well she's ... already she's lonesome. 
Cause they ...they get along pretty well together. 
It sort of well 1 ... I ... leaves a memory. 
She mour ... was in mourning for about two years. 
Well I'm sorry I couldn't get here last week so I 
could ... ah I was getting a child ready for camp 
and finishing up swimming lessons. 
We spleat the bitches (for "spht the beaches"). 
I see a girl now I'd like to take out ... I just ... dh 
... ask her. 

Figure 1: Examples of Near-Visible Markers. (Goldberger and Breznitz [4]) 

10 	 15 	 20 
	

25 

SUBGLOTTAL PRESSURE, CM H20(980.6 dyne/cm') 

Figure 2: Relationship between fundamental frequency and subglottal air pressure. The group of 
points between 90 and 100 Hz are for the speaker's normal phonations, other points resulted 
from applied chest pressure. (Frequency plotted on log scale, Pickett [14]) 
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rate of airflow pulses emitted by the glottis. This increased rate corresponds to an increased 

fundamental frequency (f 0) and amplitude. The relationship between subglottal pressure and 

voice pitch for a vowel sound is shown in figure 2. Another problem concerns how various stress 

patterns are produced by changes in subglottal air pressure and muscle tension on the vocal 

folds. These patterns depend on location of lexical stress (first or second syllable in a 

word), and type of utterance (statement or question). Consider the variations in subglottal air 

pressure and fo 
with time in the four sentences of figure 3. The intonation contour for the 

statement generally shows a downward movement of pitch (f 0) from beginning to end, which may be 

correlated with a decrease in subglottal pressure toward the end of the statement. However, 

superimposed on this may be variations in the pitch due to syllable stress of the utterance. 

For the question, the pitch contour rises during the utterance because of increased vocal fold 

tension and, again the stressed syllable has a higher pitch than the other syllables. The 

stressed syllable generally corresponds to a peak in the subglottal pressure to raise the 

syllable pitch. The breath group theory of intonation, formulated by Lieberman [9], suggests 

how basic patterns of subglottal pressure and vocal fold tension are encoded to produce the 

effects of stress and intonation. The theory simply states that the intonation contour will 

naturally always fall toward the end of a breath group because of the lower subglottal pressure 

just before taking a new breath of air (see fig. 4). Therefore, a basic breath group contour 

can be marked as a question through an increase in vocal fold tension. This theory has received 

criticism due to its simplicity in assuming independence of vocal fold tension and subglottal 

pressure in determining pitch. Recent studies conclude that intonation contours are controlled 

primarily by vocal fold tension in the high-pitch parts of the contour and subglottal pressure 

in the lower pitched parts. Also, the vertical position of the larynx is believed to be the 

adjustment factor in determining which control factor dominates. 

Other glottal source factors related to stress and intonation are sound intensity and 

spectral balance between low and high regions of the glottal source spectrum. An increase in 

vocal effort increases subglottal pressure, and if vocal fold adjustments are maintained, the 

resulting glottal flow pulse will be steeper with sharper corners. This raises the high 
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Figure 3: Relations between fundamental frequency contours and subglottal air pressure for 
statements and questions with two different patterns of word stress. The stressed syllable is 
underlined and indicated by an arrow under the contour of subglottal pressure. The intonation 
contours are above the contours of subglottal pressure. It can be seen that the stressed 
syllables correspond to peaks in the pressure contours and that the intonation contours rise 
for the questions and tend to fall for the statements. (Pickett [14]) 

Figure 4: Acoustic and physiologic data for a speaker reading the sentence Joe ate his soup. A 
normal unmarked breath group was used. The fundamental frequency, subglottal air pressure, and 
the volume of air in the speaker's lungs are plotted as functions of time. A quantized sound 
spectrogram is also presented. (Lieberman [9]) 
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frequency portion of the source spectrum relative to the low frequency part. Increased vocal 

fold tension can also affect spectral balance by boosting the high frequency end of the glottal 

spectrum. Thus, stressed vowels are found to have higher amplitudes for all formants (except 

Fl) than unstressed vowels [9,14]. A final observation concerns durational variations that 

arise from prosodic conditions. Many rules have been formulated by phoneticians for 

synthesizing correct speech. One important rule is that syllable stress causes a lengthening of 

the vowel. Other rules deal with various vowel/consonant durational patterns. A summary of the 

major sound-source factors in prosodic features are: 

(1) f for vowels is higher in stressed syllables than in unstressed syllables, (due to 
subglottal pressure and vocal fold tension). Also, voice pitch shows a contour variation over 
syllables that corresponds to the grammatical function and structure of the phrase. 
(2) The intensity of vowels in stressed syllables is higher than in unstressed syllables. 
(3) Spectral balance of vowels is affected by the higher vocal effort on stressed syllables, 
resulting in relatively more intensity of F2 and higher formants. 

Analysis of prosodic features including intonation and lexical stress have been investi-

gated for isolated -word recognition by Aull and Zue [1], and also for the purposes of producing 

more natural sounding speech in synthesis systems by Nakatani and Aston [12]. It is believed 

that knowledge of prosodic features and how they effect fundamental frequency, energy, and 

duration, will help explain the processes inherent in how humans encode stress and emotion in 

speech. At this point, problems of objectively measuring stress in speech can now be addressed. 

1.2  Acoustic Correlates of Stress/Emotion in Speech  

Due to lack of research, characteristics of speech produced under stress remains sketchy at 

best. Thus far, research has been limited in scope, often using only one or two subjects and 

analyzing a single parameter (usually f 0). It is not unusual for researchers to report 

conflicting results, due to differences in experimental desigi, level of actual or simulated 

stress, or interpretation of results. For example, some studies concentrate on analysis of 

recordings from actual stressful situations [8,23,25,26]. There is usually little doubt as to 

the presence of stress in these recordings, however a quantitative analysis can only be carried 

out if recordings of the talker speaking the same utterances under stress-free conditions is 

available. In addition, some researchers argue that speakers in these situations may experience 
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several emotions simultaneously, (e.g., Hindenburg announcer most likely experienced fear, 

grief, and anxiety). Another group of studies have been performed using simulated stress or 

emotions [5,6,7,10,26]. This work offers the advantage of a controlled environment, where a 

single emotion can be examined with little background noise. In some cases, variable task 

levels of stress have been used. Other advantages include larger data sets with multiple 

speakers. This allows results to be based on general speaker characteristics instead of 

possibly particular characteristics of an individual speaker in conveying emotion. The 

disadvantages in these studies have been the reduced task level. There are obvious questions 

concerning the ethics of inducing tremendous stress levels upon subjects. In addition, studies 

using actors may produce exaggerated caricatures of emotions in speech. 

Analysis of prosodic features revealed varying f o  as a key factor in transmitting 

linguistic information such as lexical stress and intonation. Other factors included intensity, 

spectral balance, and durational effects. These parameters may represent possible carriers of 

emotion or situational stress. In previous work [3], Williams, Stevens, and Hecker found the 

acoustic properties that appeared to be the most sensitive indicators of emotion were 

attributes that specified the contour of f o  throughout an utterance. There are several reasons 

why changes in fo  with time provides information on emotional state. First, there is 

considerable latitude in variations of f o' since only certain aspects of the f o contour carry 

information with regard to linguistic content of a message. The principal linguistic functions 

of fo changes are to indicate lexical stress, and mark boundaries of breath groups. With only 

these constraints, a speaker is relatively free to use changes in f o  to convey nonlinguistic 

information such as emotion. Second, the preoccupation with f o  contours comes from the 

literature on physiological correlates of stress. For example, respiration is frequently a 

sensitive indicator in certain emotional situations: when an individual experiences a stressful 

situation, his respiration rate increases. This presumably will increase subglottal pressure 

during speech. As was seen in figure 2, increased subglottal pressure resulted in a 

corresponding increase in f o  during voiced sections. An increased respiration rate also leads 

to shorter durations of speech between breaths which would effect the temporal pattern 
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(articulation rate). The dryness of the mouth found during situations of excitement, fear, 

anger, etc., can also effect speech production (e.g., muscle activity of larynx and condition 

of vocal cords). Muscle activity of the larynx and vibrating, vocal cords directly effect the 

volume velocity of air through the glottis, which in turn affects f o. Other muscles (tongue, 

lips, jaw, etc) shape the resonant cavities for sound and therefore do not have a direct 

influence on fo. Any analysis of the speech signal that reflects vocal cord activity is more 

likely to be influenced by physiological changes brought about by the emotional state of the 

speaker. These physiological changes suggest, that as subglottal pressure increases, the 

resulting individual glottal pulses become narrower. Therefore, a change results in the 

spectrum of the pulses. Qualitative changes in glottal pulses can be obtained by observing 

wide-band spectrograms. 

Studies carried out by Williams and Stevens [26] reflect a significant contribution to the 

field. Two avenues for analysis were considered: first, a detailed analysis of "field" 

recordings in actual emotional environments, (recordings of the radio announcer during the 

Hindenburg disaster), and second, analysis of recordings of "method" actors simulating fear, 

anger, sorrow, and neutral emotions. A unique approach had the method actors simulate the same 

real-life situation. This was done to validate the use of actors in simulating emotions. For 

the simulated conditions, actors performed a play where selected phrases (control clusters) 

where spoken by the same actor in different emotional situations. Control clusters could 

therefore be carefully analyzed with emotion being the only distinguishing variable. Analysis 

of simulated and actual emotional situations from several research studies will be presented 

separately. 

1.21 Analysis UsAgl  Simulated Stress or Emotions 

Analysis of studies using simulated stress/emotion will be considered first. Williams and 

Stevens [26] used method actors to simulate emotions. They considered six areas for parametric 

analysis: fundamental frequency contours, f o  variability, characteristics of wide and narrow-

band spectrograms, mean rates of articulation, and finally, average spectral content. Hicks and 

Hollien [6,7] simulated stress by using mild electrical shock. Their results measured 
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fundamental frequency, speech intensity, and speech rate. Hecker et al. [5] simulated stress by 

having subjects perform a timed arithmetic task. Parameters included fundamental frequency, 

speech level, and spectrogram characteristics. Examination of each of the areas suggested by 

Williams and Stevens as well ascomparisons with Hicks and Hollien,and Hecker et al. follow. 

Fundamental frequency fo  contours were analyzed for neutral, anger, sorrow, and fear (see 

fig. 5). For the neutral condition, changes in fo  were relatively slow and the shape of the 

contour throughout the utterance was smooth and continuous. For anger, f o  was generally higher 

throughout the utterances with one or two syllables characterized by large peaks in f o. For 

fear, the fo  contour departed greatly from the neutral situation. Hicks and Hollien found 

similar increases in fo. However, Hecker et al. observed conflicting results. Some subjects 

increased, while others decreased f o. 

Variability of fo  was observed from narrow-band speech spectrograms (see fig. 6). Ranges 

for sorrow and neutral emotions were similar. Anger had the highest mean f o  and the widest fo 

 range on a linear scale. For fear, the variability range was skewed with some very high values 

of fo . Also, fear showed a wider and higher range of f o than neutral. Hicks and Hollien found 

similar results for stress (fear and anger). Hecker did not consider variability. 

Wide-Band spectrograms reflected changes in utterance duration and vocal-cord vibrations. 

The duration was the shortest for neutral, longer for both fear and anger, and the longest for 

sorrow. Increases were due in part to increased vowel duration, but primarily from lengthened 

intervals of closure/vocal tract constriction for the consonants. Hicks and Hollien supported 

these findings. Hecker et al. observed several effects from wide-band spectrograms but they 

varied considerably between subjects. One effect occurring in several subjects was a lengthened 

and irregular glottal period at the end of the breath group. Another observation was the amount 

of high frequency energy in the glottal pulses (see fig. 7). This caused the third and fourth 

formants to become generally weaker for the stressed versus neutral condition. 

Analysis of Narrow-Band spectrograms confirmed measurements of f o  (see fig. 8). For anger, 

the highest average 1 0  was observed which possessed the most rapid frequency changes. For fear, 

rapid fluctuation/tremor was observed in f o. Also, in some cases fo  would start high at the 
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Figure 7: Spectrograms of the test phrase Relative Velocity spoken in control condition (left) 
and under stress (right). Note the very long intervals between glottal pulses and some 
irregularities in the pulses near the end of the utterance produced under stress. Change in 
high-frequency energy in the glottal pulses (seen more in front vowels than back vowels due to 
more high frequency energy in front vowels) causes the third and fourth formants to become 
generally weaker for the stress condition than control. {Compare F3,F4 in 0.6-0.8 with 1.7-1.9} 

(Hecker et. al., [5]) 
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Voice A 
Voice B 
Voice C 

Neutral Anger 

	

4.03 	4.26 

	

4.89 	4.32 

	

4.02 	3.88 

Mean 	4.31 	4.15 

Fear Sorrow 

3.92 1.84 
3.90 2.03 
3.57 1.86 

3.80 1.91 

Figure 9: Mean rate of articulation (syllables per second) for each of the three Voice› 
;peaking in different situations. 	(Williams and Stevens 1261) 
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beginning of a syllable and then fall with an initial bump. Hecker et al. observed less 

fluctuations in fo under stressed conditions. 

The mean rate of articulation in syllables/second was found for each of the emotions (see 

fig. 9). The order from fastest to slowest were neutral, anger, fear, and sorrow. Hicks and 

Hollien observed similar results. 

The average spectral content was found for the three simulated emotions. Anger and fear 

both possessed low amounts of energy in the low frequency band. The variation was not 

consistent for sorrow or neutral conditions. For the high frequency bands, anger and fear 

possessed larger amounts of energy while sorrow always had the least. 

One parameter not considered by Williams and Stevens was speech intensity during voiced 

sections. Hicks and Hollien, Hecker et al. all measured intensity levels. Both found 

inconsistent results from one test phrase to the next. However, the simulated stress conditions 

in these experiments may not have been adequate for generalizations to other environments. 

Pisoni et al. [15] investigated acoustic-phonetic correlates of speech produced in noise. In 

this study, subjects spoke in quiet and in 90 dB SPL white masking noise environments. The 

masking noise was supplied through headphones causing only the speaker to experience the 

background noise with the recorded speech noise free. Results showed an increase in overall 

amplitude of vocalic sections, increased duration, increased average f 0 , and a spectral tilt 

where upper formants became more intense in the noise condition. Lieberman and Michaels [10] 

instructed subjects to simulate eight emotional states. Their creative approach was to select a 

parameter as an emotion relayer, extract that parameter from the speech, and observe whether 

the resulting sound could correctly be identified as the simulated emotion by listener groups. 

Figure 10 shows that fear (or stress) was highly identified using only amplitude information 

with constant pitch. Another body of work which may be relevant to speech intensity include 

studies on shouted speech. Rostolland [19,20] performed acoustic and phonetic studies and 

observed reduced intelligibility in shouted speech. This in part, was due to increased energy 

in the higher frequency regions resulting in altered spectral shape. Rostolland also observed 

increased f0 with reduced variability. This may account: for conflicting results in f
0 
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variability (i.e., speech shouted in some studies, while simply spoken under stress in others). 

It seems intuitive that an individual experiencing fear (e.g., panic such as a life threatening 

situation), would tend to raise his voice. 

1.22  Analysis Using  Actual Stress or Emotional Situations  

A comparison of results from actual stress situational recordings is somewhat difficult, 

due to varying parameters measured and levels of stress experienced. However, they are 

important since their analysis may help verify experimental procedures and results from 

simulated studies. 

Kuroda et al. [8] analyzed tape recordings of 14 pilots with varying mission experience in 

actual aircraft accidents, 8 of which were ultimately fatal. Their analysis consisted of 

finding the vibration space shift rate (VSSR) in speech spectrogams.* The VSSR was classified 

into nine bands corresponding to varying relative pitch periods. Figure 11 illustrates a 

typical case example of a pilots shift rate profile. The corresponding phrase used to find the 

VSSR is indicated for each phase of the mission. The ultimate conclusions were that as stress 

increased, so did fo . 

Simonov and Frolov [23] analyzed recorded communications of a cosmonaut at various flight 

stages. Analysis consisted of monitoring heart rate and the spectral centroid of the first 

vocal tract formant. Some correlation was found, but the conclusions were that further research 

was necessary. 

Streeter et al. [25] carried out a more complete analysis of a telephone conversation 

between a system operator (SO) and his superior chief (CSO) working at the Con. Edison power 

plant prior to the 1977 New York blackout. Analysis consisted of pitch statistics, and 

amplitude and timing measurements. An attractive feature of the data was the increased 

situational stress throughout the hour long conversation. Results were somewhat conflicting 

since it appeared SO was passing decision making authority over to CSO during the emergency. 

Streeter et al., discovered no reliable and valid acoustic indicators of psychological stress. 

It should be noted that results for CSO showed increased pitch and amplitude over time, which 

VSSR is related to differences in pitch period between normal and stress situations. 
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from the spin. The extreme tension (phrase #7 and 8) is 
denoted by the shouts recorded. After an adequate recovery, the 
VSSR gradually declined phrase #14) 

Figure 11: Typical shift rate profile for a pilot during an emergency situation. 
(Kuroda et. al., [8]) 
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agree with simulated stress studies. One conclusion Streeter et al. noted was that while 

speaker behavior appeared unpredictable, listener behavior was predictable. Results showed that 

listeners' referred to a vocal stereotype which they associate with stress which includes 

elevated pitch and amplitude, as well as increased variability in these parameters. 

Finally, Williams and Stevens [26] performed analysis of the recorded radio announcer 

during the Hindenburg disaster. In an effort to justify results from their simulated emotions, 

they had their "method" actors recreate the announcer's message. Narrow-l3and spectrograms (see 

fig. 12) were compared for the announcer and actor. Results were not entirely consistent, 

though increased average f o  along with tremor (irregular bumps in contour) were observed for 

both. Median to and fo range were also found for both (see fig. 13). Increased median f o and 

range of fo  was observed for announcer and actor, with larger variations for the actor. This 

would indicate that the actors' emotional expressions may have been over emphasized. 

1.3 Summary of Stress and Emotion Research in Speech  

The aspect of the speech signal that appears to provide the clearest indication of emotion 

or stress of a talker is the contour of f o versus time. Other parameters considered included f o 

variability, duration, rate of articulation, speech intensity, and characteristics of the vocal 

tract spectrum. There seems to be no singly reliable acoustic indicators of psychological 

stress or emotion. This is caused by the varying techniques speakers use to convey their 

emotional state. Some speakers tend to raise a given parameter, while others decrease it. If a 

speaker is attempting to hide their emotional state, highly visible markers/parameters are 

usually corrected first, leaving only subtle and unreliable markers/parameters left for 

analysis. It may not be possible to develop a quantitative automatic procedure for emotion 

evaluation, however general trends are known for median f o  and range of fo  (Af0). These can be 

summarized for the emotions considered: sorrow results in decreased fo' dfo' • anger and fear 

(situational stress) result in increased f o, Mo. These variations assume that the neutral fo , 

o are known. 
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Figure 12: Radio announcer (top) speaking during the crash of the Hindenburg and a "method" 
actors simulation of the announcement. 	(Williams and Stevens [26]) 

Fo Fo  Range 

Original Radio Description 
Before crash 166 124-196 
After crash 196 152-260 

Voice C's Simulated Description 
Before crash 138 117-168 
After crash 222 117-280 

Figure 13: Median fundamental frequency (f 0) and range of fundamental frequency for selected 
utterances obtained from the original radio description of the Hindenburg disaster and from a 
"method" actor's simulated announcement of the same event. 	(Williams and Stevens [26]) 
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In terms of future work, several researchers have taken steps in attempting to provide a 

more complete investigation to the problem. Russell and Moore [21] have developed an extensive 

database for research in this area. Peckham [13] has developed a hardware pitch tracking device 

which carries out some statistical analysis for determining speaker stress levels. And finally, 

Scherer and Ladd [22] have an approach which attempts to remove all speech characteristics, 

leaving only those parameters which convey emotion information. This approach is somewhat 

difficult since parameters tend to be interrelated, and results are based on listening groups. 

Further studies in developing objectively measurable parameters of emotional state could help 

in developing a more complete and natural sounding model for speech processing. 

2.0 SPEECH  ENHANCEMENT SYSTEMS: A Comparative Anal ysis  

The successfulness of an enhancement algorithm rests on the goals and assumptions used in 

deriving the approach. Depending on the specific application, a system may be directed at one 

or more objectives such as improving overall quality, increasing intelligibility, reducing 

listener fatigue, etc. Several issues and constraints should be noted before an evaluation is 

attempted. Three assumptions normally made include: i) noise distortion is additive, ii) only 

the degraded speech signal is available, iii) noise and speech signals are uncorrelated. 

Constraints placed on the speech model improve the potential for separating speech from back-

ground noise. However, such a system would also be more sensitive to "deviations" from these 

constraints. The same holds for noise assumptions. Confining the noise type, improves the 

chances of removing it, however, at the expense of dedicating the technique to a specific 

distortion, such as wide-band random, competing-speaker, or impulsive. Three classes of 

enhancement systems will be considered, although performance evaluation is difficult due to the 

fact that appropriate criteria are heavily dependent on specific applications, (e.g., relative 

importance of quality, intelligibility, listener fatigue, etc. vary between applications). 

Therefore, results from each class will be presented separately. Continuing from section 2, it 

would be desirable to compare perceived quality and subjective intelligibility for each class. 

Unfortunately, such studies have not been undertaken for each system. However, some comparative 
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results do exist and will be cited. An in depth derivation of each algorithm is out of the 

scope of this section, therefore an appendix is included which further describes these systems 

in detail. 

Spectral subtraction is one technique based on direct estimation of the short-time 

spectral magnitude. Noisy phase information is not an issue since the auditory system is 

relatively insensitive to phase [47]. In this approach, speech is modeled as a random process 

to which uncorrelated random noise is added. It is assumed that the noise is short-term 

stationary, with second-order statistics estimated during silent frames. The estimated noise 

spectrum is subtracted from the transformed noisy input signal. Questions concerning the sub-

traction procedure arise since results are not guaranteed positive. Different systems remedy 

this by either half-wave rectification, full-wave rectification, weighted difference, etc. Boll 

[29,30] pioneered much of the work in spectral subtraction. A particular investigation 

considered a modified approach which incorporated magnitude averaging of the noisy spectrum. 

The noise degradation came from a helicopter environment. Results were presented in terms of 

intelligibility (DRT scores) and quality (a course measure related to DAM profile) for two 

applications. Results from DRT and quality ratings for enhancement of helicopter speech (with 

and without magnitude averaging) indicate that spectral subtraction alone does not decrease 

intelligibility, - but does increase quality, especially in the areas of increased pleasantness 

and inconspicuousness of noise background (see fig. 14a,b). In addition, Boll considered the 

application of enhancement as a preprocessor for a bandwidth compression system. Results 

clearly indicate that spectral subtraction can be used to improve intelligibility and quality 

of speech processed through an LPC bandwidth compression system (see fig. 14c,d). One 

shortcoming of this system is the resulting "musical tones" after processing. Peaks and valleys 

exist in the short-term power spectrum of the noise, and their frequency locations and 

amplitudes vary from frame to frame. When the smoothed estimate of the noise spectrum is 

subtracted from the actual noise spectrum, all spectral peaks are shifted down while the 

valleys are set to zero. Thus, after subtraction, there remain peaks in the noise spectrum. The 

wider peaks are perceived as time varying broadband noise, the narrower peaks as time varying 
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a) 
DIAGNOSTIC RHYME TEST SCORES 

b) 
QUALITY RATINGS 

Original S (No Average) S (Three Average) Original S (No Average) S (Three Averages) 

Voicing 9S 92 91 Naturalness of 
Signal 

63 60 61 

Nasality 82 78 77 
Inconsoi 	 36 n 42 

Sustentiom 92 87 86 Of Background 

Sibilation 75 83 84 Intelligibility 30 32 33 

Graveness 68 70 66 Pleasantness 20 31 25 

Compactness 88 82 88 Overall 27 33 29 

Total 64 83 52 
ACceptability 

Composite 26 37 29 
Acceptability 

c) 
DIAGNOSTIC RHYME TEST SCORES 

d) 
QUALITY RATINGS 

LPC on 
Original S withOPuCt on 

LPC 
 i rite P: v e r; A clfl 

LITC on 
Original 

. 	LPC on 
S without rrrrr olno i i with% c"  r er'  a Bing 

Voicing 84 90 86 Naturalness 
of Signal 

53 49 58 

Nasality 56 63 52 
Inconspicuousness 34 36 39 

Sostention 49 52 56 of Background 

Sibilation 61 70 88 Intelligibility 28 30 28 

Graveness 61 62 59 Pleasantness 15 28 20 

Compactness 83 83 93 Overall 24 28 26 
Acceptability 

Total 66 70 72 
Composite 23 29 25 

Acceptability 

Figure 14: Spectral noise subtraction results from intelligibility tests (DRT) and quality 
tests (course measure somewhat related to DAM profile). a) and b) are results from speech 
enhancement in a helicopter noise environment. c) and d) are results from an LPC based 
enhancement/bandwidth compression system. Results are given with, and without magnitude 
averaging. (Boll [29,30]) 
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tones. Berouti et al. [28] proposed a method for reducing these tones by overestimating the 

noise spectrum, thereby subtracting off more of the noise energy. Unfortunately, a comparative 

analysis of quality/intelligibility was not performed. Peterson and Boll [44] extended the 

technique by applying spectral subtraction in separate frequency bands, tuned to the loudness 

components perceived by the auditory system Hanson and Wong [36] applied this technique to the 

competing speaker problem. There approach concluded an increase in intelligibility; heretofore 

never accomplished. Greatest improvement occurred for low SNR (-12dB) with smaller levels of 

improvement as SNR increased. However, exact pitch information was used for their evaluation, 

something very difficult to achieve at such a low SNR. 

Correlation subtraction techniques are sometimes referred to as spectral subtraction, 

since their basic premise is the same. Processing involves subtracting an estimated noise 

autocorrelation from the noisy speech autocorrelation function. One generalization of 

correlation subtraction formulated by Weiss et al. [49] involves raising the noisy magnitude 

spectrum to a power a, prior to subtraction. This system, termed INTEL was evaluated by Lim 

[37] for wide-band random noise under varying values of a. Figure 15 gives intelligibility 

scores based on tests involving nonsense sentences. Results show that intelligibility is not 

improved. By setting a=1, the resulting system is equivalent to Boll's spectral subtraction 

technique. These results appear to contradict each other (Boll concluded no decrease in 

intelligibility); yet this can be attributed to different noise degradations: helicopter noise 

for Boll and wide-band random noise for Lim. It was also observed that processed speech with 

a =1 or 0.5 sounded distinctly "less noisy" and of "higher quality" at relatively high SNR. 

Berouti et al. [28] considered a gain factor k along with the power factor a in the subtraction 

process. McAulay and Malpass [42] included a gain factor in the subtraction process based on 

the probability of only noise being present. Their argument was that further spectral reduction 

is desirable if the probability of only noise is high. Weiss and Aschkenasy [48] later refined 

their INTEL system to incorporate a second transform operation. This resulted in performing the 

subtraction process in the cepstral domain. Some improvement in intelligibility was observed, 

however no quantitative analysis was carried out. (See fig. 15 for various system diagrams.) 

Page 23 



IN
T

E
L

L
IG

II
II

L
IT

Y
 S

C
O

R
E

 I 
va

tt
e

n
t
 I SO 

20 

NOISY SPE EC 
r,t nl  

- F 

NOISY SPEECH 
Noo 

L—F  
r 

PHASE INFORMATION 

PROCESSED 
SPEECH 
1,1 n1 

surgAc ,, ot. OF 
NOLTE 

CEPSTRUM  

iii) NOISY SPEECH 
T.In) 

- F l e t--e ■-•-7IF • 	 

SUBTRACTION or 
L E[r - lio.t.,)1 0 1] 

PHASE INFORMATION 

PROCESSED 
SPEECH 

..--Thi 	 1 1 17  1 	 .1..--L_HL. 	 —, 

iv) 

a) it NO PROCESSING 

• — 	• 2.0 

0— • —• —0 • 1.0 

o

• 	

— —tt • • 0 5 

-0 • • 0.25 

	 • 
-5 	 0 	 5 	 10 

S/14 RATIO 10BI 

1, 111SE R./FORMAT ,  ON 

PROCESSED 
SPEECH 
S.I 

F 

NOISY SPEECH 
v.( f• 

SUBTRACTION OF SUBTRACTION    OF 
r—F*ASE INFORMATION  

E 	 ; 	 L_ 	 E[10.(.01 
PROCESSED 

SPEECH 
S^t n 1  

F ' 

ii) 

Figure 15: a) Intelligibility scores of a spectral subtraction technique for enhancement of spec ■:11 

degraded by wide-band random noise. 	 (Lim [37]) 

b) Various implementations of power spectral subtraction. 
i) Original Spectral Subtraction from Boll [30]. 
ii) Generalized Spectral Subtraction from Weiss et. al., [49]. 
iii) Generalized Correlation Subtraction. 
iv) Improved INTEL system from Weiss and Aschkenasy [48]. 
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Short-time Wiener filtering is a class of enhancement algorithms in which a frequency 

weighting for an "optimum" filter is first estimated from the noisy speech, y(n). The linear 

estimator of the undegraded speech s(n), which minimizes the mean-square error is obtained by 

filtering y(n) with a noncausal Wiener filter. This filter requires a priori knowledge of both 

speech and noise statistics; and must also adapt to changing characteristics. Since only a 

single channel exists, noise statistics must be obtained during silent frames. Also, noise-free 

speech is not available, therefore a priori statistics must be based upon y(n), which can 

result in an iterative scheme. Lim and Oppenheim [38] considered such an iterative approach for 

additive white Gaussian noise. Their results showed improvement in speech quality for 

enhancement at various SNR. In addition, improvement in all-pole parameter estimation (reduced 

mean square error) was also observed (see fig. 16). This lead to improved intelligibility for a 

combined bandwidth compression system. Clements and Hansen [34,35] considered such a scheme for 

colored noise. Various spectral estimation techniques (MLM, MEM, Burg, Bartlett, Periodogram, 

PHD) were considered over a wide range of SNR (-20 to + 20dB). Results using objective quality 

measures (Itakura-Saito, LAR, Klatt) showed improved speech quality with improved all-pole 

parameter estimation (see fig. 17). For the purposes of an enhancement preprocessor/recognition 

system, this approach would undeniably increase recognition accuracy. 

Adaptive Noise Canceling and comb filtering are based on the periodicity of voiced speech. 

Techniques based on Wiener filtering employ a MMSE estimate criteria, and suppress noise while 

leaving the desired signal relatively unchanged. However, the statistics of both signals must 

be known a priori. LMS adaptive noise cancellation requires no a priori knowledge of the noise 

signal. Classical adaptive filtering (Widrow et al. [50]) assumes the input is composed of a 

desired speech, and unwanted, uncorrelated noise signal, along with a second reference signal 

consisting of noise correlated with the input noise component. Since this discussion concerns 

only single channel systems, most implementations of this approach may be disregarded. However, 

since voiced speech is highly periodic, a signal reference may be extracted for use in the LMS 

adaptive algorithm. The criterion for the algorithm is to form the best least-squares estimate 

of the clean speech signal. The success of this approach depends on the availability of a 
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AVERAGE DISTORTION CLASSIFIED OVER SOUND TYPES 

	

Performed On: 	NOV 29, 1985 23: 01:46 

	

By: 
	

John H Hansen 	Georgia Tech. 

These Measures Are Averaged Over Sentences Sl, 62, 63, 64, 65, 66. 

61 P54C The pipe began to rust while new. 
62 E54C Thieves who robe friends deserve jail. 
63 T54C Add the sum to the product of these three. 
S4 N54C Open the crate but don't break the glass. 
S5 I54C Oak is strong and also gives shade. 
56 554C Cats and dogs each hate the other. 

Percentage 
Improvement 

in 
Objective 

Score 

Extention C = using EN.HANS_2.1C 
with two spectral estimates of background noise. 

# 4 
4. 347f  6.285 
1.806  8061  2. 006 
O. 801 0. 609 
2. 054 3. 252 

1. 646 1. 398 1. 164 10. 8321  1. 297 

4. 081 3. 529 2. 905 2. 252 1. 790] 
3. 037 2. 569 1. 979 1. 285  0.  641 
2. 422 2. 126 1. 851 1. 689  2. 007 
3. 539 3. 149 2.804 2. 686 3.611 

LOG AREA RATIO MEASURE: 

ITAKURA-SAI TO (LIKELIHOOD) MEASURE: 
Sound 	Number 	Original 	Iteration 
Type: 	Frames 	# 0 	# 1 	# 2 	#  3 
Silence.. 	927 	5. 402 4.854 4.392 
Vowel.... 	698 	2. 506 2. 238 1. 952 

	

100 	1. 647 1. 344 1. 057 
2. 402 2. 112 

Nasal.... 
Stop 	 293 11. 9261 
Fricative 260 
Glide.... 	31 
Liquid... 	143 
Affricate 	20 
V & UV... 1545 
Total.... 2472 

1.695 1.602 	 1.747 2.604 11.5701 

19.5 
27.9 
67.6 
19.8 
49.5 
7.4 

56.1 
78.9 
30.3 
24.1 OVERALL 

IMPROVEMENT 

Sound 	Number 
Type: 	Frames 
Silence.. 	927 
Vowel.... 	698 
Nasal.... 	100 
Stop 	 293 
Fricative 260 
GI i de. . . . 	31 
Liquid. . . 	143 
Affricate 	20 
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Figure 17: Performance evaluation of modified sequential MAP estimation technique (based on 
noncausal Wiener filtering), averaged over six Harvard based phonetically balanced sentences. 
Results indicate improvement over nine sound areas, along with total improvement. Noise 
degradation consisted of colored noise recorded from an aircraft cockpit.. Sound types were 
classified by hand, and the enhancement algorithm employed two Bartlett spectral estimates 
during each sentence. (Hansen and Clements [34,35]) 
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speech uncorrelated noise reference. Extracting a noise reference from the input has some 

disadvantages including: i) lack of stationarity for the noise, ii) not enough 	data to 

estimate 	the noise signal, iii) speech/silence decision is not error-free, iv) and the 

nonapplicable to some types of noise such as quantization noise. Sambur [66] considered an 

adaptive filtering technique which estimates the speech signal (using one or two pitch periods) 

and subtracts this from the noisy input. Variations between this approach and others rest in: 

i)the procedure for calculation of step size in the LMS algorithm which controls stability and 

rate of convergence, and ii) the filter length for the LMS algorithm. Sambur investigated the 

effectiveness of this approach for additive white noise and quantization noise. Results for 

additive noise concluded increased perceived quality for SNR of 0, 5, 10dB. Figure 18 

summarizes the improvement in SNR for varying filter lengths. It was observed that the more 

severe the noise, the more dramatic the improvement in quality. No tests were performed to 

ascertain intelligibility. Quantization noise from a variable rate delta modulation system was 

also evaluated. The LMS adaptive filter removed some of the "ganular" quality of the quantized 

speech. For this type of degradation, two types of noise are present, slope overload (step size 

too small), and granular noise (hunting due to a too large step size). Adaptive noise canceling 

removes the granular noise since it is signal independent and broadband but leaves slope 

overload noise unaffected, since it is signal dependent. Sambur also considered this scheme for 

an LPC analysis/synthesis system and found improved all-pole parameter estimation especially at 

low SNR. Boll [31] suggested a modification of this approach where the noise canceling is 

performed in the frequency domain. Results showed that convergence characteristics were 

equivalent to time domain methods and that higher quality output, free of echo resulted. 

Comb filtering/Adaptive Comb filtering is similar in its basic assumptions to the LMS 

adaptive noise canceling technique employing a single channel. Since voiced speech is quasi-

periodic, its magnitude spectrum consists of a harmonic structure. If the noise is non-

periodic, its energy will be distributed throughout the spectrum. A comb filter therefore seeks 

to pass the voiced harmonics, and reject the noise between. .A later formulation by Frazier et 

al. [33] showed that classical comb filtering distorts the speech somewhat. A new approach that 
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L = 6 6.5 8.3 
L = 10 6.9 8.5 
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Figure 18: Adaptive Noise Canceling: a) Improvement in SNR with an additive white Gaussian 
noise distortion. Subjective improvement in quality was also observed, (i.e. listeners 
concluded that speech was more pleasant to listen to and "appeared" to have more 
intelligibility). However, formal quality and intelligibility tests were not undertaken. 

(Sambur [45]) 

Adaptive 	Comb Filtering: 	Intelligibility scores of Frazier's et. 	al., 	[54] 	filtering 
technique for enhancement of speech degraded by: b) competing speaker (Perlmutter et. al.. 
[43]) and c) widle-band random noise (Lim et. al., [39]). 
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adapts itself both globally and locally to the time varying nature of speech was proposed. Lim 

et al. [39] using wide-band random noise, and Perlmutter et al. [43] using a competing speaker, 

evaluated this adaptive technique for varying filter length. Nonsense sentences were used in 

both evaluations for an intelligibility test. Figure 18 illustrates the intelligibility scores 

for both noise distortions. In both cases, pitch information was obtained from noise-free 

speech. For the competing speaker problem, results show a decrease in intelligibility. Again, 

with wide-band random noise, decreases in intelligibility were usually observed for various 

SNR's. In general, it is not realistic to assume accurate pitch information, so intelligibility 

scores should be lower. Even with decreases in intelligibility, both studies mention that 

processed speech sounded "less noisy" due to the systems' abilities to increase the SNR. No 

quality test were performed to verify this however. 

Thus far, we have considered individual evaluations of enhancement systems. Audisio and 

Pirani [27] compared spectral estimation, noncausal Wiener filtering, and adaptive noise 

canceling in a zero mean, additive noise environment. An objective measure (the Itakura measure 

which is correlated with subjective quality) and intelligibility scores (Consonant Recognition 

Test-CRT, Preuss 1969) were obtained to evaluate the systems. Figure 19 shows Itakura distance 

versus SNR for voiced and unvoiced sounds. In addition, increases in percentage of 

intelligibility for SNR= 2 dB are presented. Superior enhancement in terms of quality and 

intelligibility were found for spectral noise subtraction, especially in high levels of noise. 

Wiener filtering also resulted in improved quality and intelligibility. However, enhancement 

techniques (such as adaptive noise canceling or comb filtering) aimed at voiced segments had 

"marginal" use in increasing intelligibility. It was also observed that although unvoiced 

sounds (like fricatives /s/,/f/) are seriously damaged by noise disturbance, some are greatly 

helped by speech enhancement. Voiced sounds, such as liquids or nasals are more robust to 

noise, and therefore their overall contribution to intelligibility improvement has little 

importance. It should be noted that the particular implementations used by Audisio and Pirani 

may differ somewhat from others reported in the literature. Questions such as frame size, 

knowledge of pitch information, voiced/unvoiced decisions, choice of the algorithm analysis 
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Figure 19: Comparative analysis of spectral subtraction, Wiener filtering, and adaptive 
filtering. a) Itakura distance versus SNR for voiced speech. 

b) Itakura distance versus SNR for unvoiced sound. 
c) Percentage increase in intelligibility for a SNR of 2dB. 

Intelligibility scores based on the Consonant Recognition Test (CRT), which is 
similar to the Modified Rhyme Test (MRT). Computation of intelligibility percentage 
was given by this equation: 

100 	
- 	

E 
I — 	c  N-1 

where: T= total number of words heard 
C= number of correct answers 
E = T-C = number of errors 
N= number of possible choices of rhyme words offered to listener 

(N=5 for this test) 
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parameters, and the type of noise degradation all contribute to system performance. Therefore, 

a comparative analysis should emphasize relative results between systems. 

3.0 SUMMARY and DISCUSSION  

This document has addressed several important factors for effective speech enhancement. An 

analysis of objectively measurable characteristics of stress and emotion in speech was 

considered. Thus far, research studies have shown some conflicting results. However, the 

general consensus is that the contour of fundamental frequency versus time to be the aspect of 

the speech signal which appears to provide the clearest indication of emotion or stress of a 

talker. Other parameters may also contribute to how a speaker conveys emotional state. These 

include fo 
variability, vowel/consonant durational considerations, rate of articulation, speech 

intensity, speech intensity variability, and possibly characteristics of the vocal tract 

spectrum such as formant location or overall spectral balance. There appears to be no singly 

reliable acoustic indicators of psychological stress or emotion. This is due in part, to the 

varying approaches speakers use in conveying emotional state. Other problems exist when 

speakers attempt to hide their emotional state. Highly visible markers/parameters are usually 

corrected first, leaving only subtle and unreliable markers/parameters for analysis. Prevalent 

trends of median fo and fo 
variability exist for sorrow, and fear and anger (situational 

stress). These variations however assume that neutral, baseline characteristics are known. 

Analysis of speech enhancement algorithms was also considered. Many of these systems lead 

to improved quality, usually at the expense of reduced intelligibility. Those approaches that 

improve intelligibility, usually have devastating effects on the quality. This suggests that 

there remains considerable further work to be done and room for improvement. An important 

consideration is that evaluation of these systems is very much dependent on the context in 

which they are used. In some applications it is intelligibility that is of overriding impor-

tance and in others it is quality. It is intuitive, that improvement in quality is only 

necessary if the speech is highly intelligible to begin with. (Quality improvement of 
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unintelligible speech does not seem to be a fruitful research area.) Therefore, if the speech 

is already highly intelligible, a small decrease may be acceptable if large improvements in 

overall quality result. Additionally, a system may perhaps slightly reduce intelligibility but 

also reduce listener fatigue so that with an extended listening task intelligibility is 

eventually increased. Thus far, it appears that none of the systems discussed have been 

examined for their potential in reducing listener fatigue. Reducing listener fatigue in a two 

way communication system (aircraft cockpit environment) may also contribute to a reduced level 

of situational stress. 
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APPENDIX: Speech Enhancement Systems  

The problem of enhancing speech degraded by additive background noise has received much 

attention since the mid to late 1970's. Many approaches have been taken, each attempting to 

capitalize on various characteristics or constraints, all with varying degrees of success. One 

application for such systems is as a preprocessor for speech recognition or bandwidth 

compression. Assumptions concerning noise characteristics and assumed speech model effect the 

formulation of these algorithms. Three assumptions made for most systems are: i) distorting 

noise is additive, ii) noise and speech are uncorrelated, iii) the only input available is the 

distorted speech signal. Speech enhancement systems are classified into two broad classes: 

those based on the speech signal being a stochastic process, and those based on perceptual 

aspects of speech. Systems based on the signal being a stochastic process rely on a given 

mathematical criterion. Systems based on perceptual criteria attempt to improve aspects 

important in human perception. For example, one technique may concentrate on improving the 

quality of consonants, since consonants are known to be important for intelligibility though 

they represent only a small percentage of overall signal energy. This appendix will briefly 

review three classes of speech enhancement. The first class concentrates its analysis in the 

short-time spectral domain. These techniques suppress noise by subtracting an estimated noise 

bias (spectral or autocorrelation) found during non-speech actwity. Such systems include 

spectral subtraction, correlation subtraction, and the INTEL system (cepstral domain). The 

second class of systems is based on an all-pole modeling technique which incorporates noncausal 

Wiener filtering. This approach requires a priori knowledge of the noise and speech statistics 

and will eventually result in an iterative enhancement scheme. The last class of systems are 

based on the periodicity of voiced speech. These systems include adaptive noise canceling based 

on the LMS algorithm, and comb filtering/adaptive comb filtering. 



SPECTRAL  SUBTRACTION and CORRELATION SUBTRACTION  

The process of spectral subtraction involves suppressing noise from speech by subtracting 

a spectral noise bias found during non-speech activity. Specifically, this technique 

capitalizes on the short-time spectrum of speech. Since the human auditory system is relatively 

insensitive to phase distortion, this approach deals only with the magnitude of the short-time 

spectrum. Suppose for example, a stationary signal x(n) has been degraded by an additive, 

uncorrelated noise source d(n), with a known power spectrum. The power spectrum of the original 

signal can be estimated by the spectral subtraction process. The additive distorted time 

waveform can be represented as: 

	

y(n) = x(n) + g d(n) 	 (A.1) 

also, let the power spectra of each component be represented as P D(jw), PD(jw), and PD(jw). 

This results in equation (A.2). 

	

Py(i6)) = Px(jw) + g PD(jw) 
	

(A.2) 

Therefore, to estimate Px(j(0), the algorithm simply subtracts from P y(jw), an estimate of the 

noise spectrum PD(jw). For the general speech waveform case, the signal x(n) is not truly 

stationary. However, it is safe to assume a short-time stationary property, due to the 

limitations of the speech production system. This requires the spectral subtraction process to 

be represented using short-time power spectra. The windowing process results in the following 

relation in the magnitude spectral domain: 

lYwato)1 = ISwato)12 	IDwato)12  

+ Sw(jw) D:(jco) + S:(jw) D w (jw) 
	

(A.3) 

The term, ISw(ju.:1)12  is referred to as the short-time magnitude spectrum of speech. To carry out 

the spectral subtraction technique, equation (A.3) must be solved. Since the windowed noise 



data y„,(n) is directly available, 	IY,„(jw)12  can be formed directly. The terms on the right 

hand side, ID,„(ju))12 , S„,(jto) D:(jw), and S:(jw) D,„,(jw) cannot be expressed exactly. Therefore. 

spectral subtraction must employ their estimates, namely E[ID,„(ju,)[ 2], E[S,„(jcs)) D,„*(jw)], and 

EIS:(jw) D„,(jw)]. Note that E[ ] denotes the expectation operation. Since d(n) is assumed zero 

mean, and s(n) and d(n) uncorrelated, the latter two expectations are zero. Therefore, the 

resulting spectral subtraction relation is, 

= IY.(ito)12  - E[ID.,(iw)12] 	 (A.4) 

At this point, it is obvious why such an approach would be detrimental for an application such 

as echo canceling, due to the similar characteristics between speech and subsequent echoes 

(i.e. expectation between cross terms cannot be ignored). The expected noise power spectrum in 

(A.4) can be found either from measurements during non-speech activity, or a second input 

consisting of noise only data representing a sample function of the noise process. One point 

which can be observed from equation (A.4), is that lk,(jc0)1 2  is not guaranteed to be non-

negative. This is due to the possibility of the noise spectrum exceeding the noisy speech 

spectrum. Since a magnitude spectrum is always positive, negative results must be altered. This 

can be accomplished using half-wave rectification, full-wave rectification, or a weighted 

subtraction, etc. :Most techniques use half-wave rectification (set negative portions to zero). 

Once the spectral magnitude IS- ,„(ja.))1 is found, a variety of techniques are available for 

reconstructing the time waveform s,„(n). A system proposed by Boll 129,30] attempts to reduce 

spectral error by applying three processing steps once the spectral magnitude has been found. 

The spectral error can be defined as follows, 

E(Jw) = k(Jw) - Saw) 	 (A.5) 

The three steps which Boll formulates are magnitude averaging, half-wave rectification, and 

residual noise reduction. The process of magnitude averaging reduces spectral error by 



performing local averaging of the spectral magnitudes, (i.e. instead of IX,„(j(a)l, 	(jw)I is 

used). The magnitude averaged spectrum is found using the sample mean in equation (A.6). 

m- i 
IX(jw)I = 	E N(jw)i 	 (A.6) 

i=o 

Here, iX;(ju.))1 represents the ith time-window power spectrum of the waveform x(n). Therefore 

the resultant estimator , using the noisy phase O y(jw) from the original distorted speech with 

magnitude averaging, is of the form 

gmA(iw) = {lYw(jw)1 - FI IDw(jw)I ] ei ()Y(jw) 
	

(A.7) 

The magnitude averaging method works well if the time waveform is stationary. 

Unfortunately, the value of M in equation (A.6) is limited by the short-time stationarity 

assumption. Therefore, only a few frames of data can be used in averaging. Boll's second 

processing step is half-wave rectification which reduces the mean noise level by an amount 

E[Dw(j(0)]. With this, low variance coherent noise is approximately eliminated. The disadvantage 

with half-wave rectification is that it is possible for the speech plus noise spectrum to be 

less than E[Dw(ju.))] and consequently, speech information is removed. The last step in Boll's 

algorithm is residual noise reduction. After half-wave rectification, the spectral bands of 

speech plus noise above the threshold E[D w(j0.)1 remain, thereby preserving a residual noise 

component. The argument at this point is that residual noise can be reduced by replacing the 

present frame value with a minimum value from adjacent frames. The question which arises is why 

such a method should work? The answer is as follows. If $ w(j(0)1 is less than the maximum noise 

residual, and if it varies from frame-to-frame; then there is a high probability that the 

spectrum at that frequency is due to noise. Therefore, the noise can be suppressed by taking 

the minimum from adjacent frames. If Ig w(jw)1 is less than the maximum noise residual, but 

1§w(j(0)1 is approximately constant between adjacent frames; then a high probability exists for 

the spectrum at that frequency to be low energy speech. Therefore, taking the minimum will not 

affect the information content. Finally, if Ig w(jco)1 is greater than the maximum noise 

residual, then speech is present in the signal at that frequency; therefore subtracting off the 



noise bias is enough. Boll evaluated this algorithm for helicopter speech. Results showed that 

spectral subtraction alone does not decrease intelligibility, but does increase quality, 

especially in the areas of increased pleasantness and inconspicuousness of noise background. 

An interesting point to be made is that spectral subtraction can also be interpreted as 

estimating the short-time correlation function 4,(n) as follows, 

	

401) = ci) ),(n) - E[ 0:1)d(n)] 
	

(A.8) 

Where the windowed autocorrelation function for the estimated speech is defined as, 

cb,(n) = 	s,„(k) s,„(k-n) 	 (A.9) 

= 71 1 tsw(iw)12  

with 7 1 [ ] defined as the inverse Fourier transform operation. 'The relations for the original 

distorted speech correlation function O y(n), and the estimated noise correlation function 

E[4 d (n)] are defined similarly. For this reason, the spectral subtraction technique is 

sometimes referred to as the correlation subtraction technique. Both methods simply perform 

their noise reduction procedures in different domains. Figure 15 illustrates various 

implementations of spectral subtraction and correlation subtraction. 

INTEL SYSTEM 

Another area of speech enhancement which has received much attention is in the development 

of noise suppression prefilters. In this approach a spectral decomposition of a frame of noisy 

speech is performed and a particular spectral line is attenuated dlepending on how much the 

measured speech plus noise power exceeds an estimate of the background noise power. One 

approach in particular developed by Weiss and Aschkenasy [48,49], implements a real-time audio 

processor using the INTEL system and a tone component suppression filter. 



Weiss and Aschkenasy originally developed the INTEL [48] as a generalization of spectral 

subtraction. (Figure 15 illustrates the differences between the two.) This involved raising the 

noisy speech mapitude spectrum to a power a. Later work [49],resulted a real-time filter that 

removes interference from received or recorded data, termed Computerized Audio Processor. The 

system is made up of two processing sections; the first called Digital Spectral Shaping (DSS) 

detects and attenuates impulsive and tonal noise; the second is INTEL, which is used to 

attenuate additive wideband random noise. 

Digital Spectral Shaping is a relatively simple processing step which removes long tonal 

noises from the input signal. To be effective, three steps must be accomplished. First, the 

tone must be detected accurately. Next, the system must remove the maximum amount of tone 

energy once it has been detected while removing a minimum amount of speech energy. The last 

step requires that the regenerated speech be maximally free of discontinuities and distortion. 

The detection process rests on exploiting differences between speech and noise. Tone noise has 

a greater stability in both frequency and amplitude as opposed to the assumed quasi-stationary 

model for speech. Consider the amplitude spectrum of the tone noise. Spectral peaks at the 

frequency of the tone should observed. The speech spectrum instead, will be smooth over the 

entire frequency band with smooth peaks at the forrnant frequencies and finite nonzero 

bandwidths. To minimize the speech versus noise overlap in the frequency domain, tone energy 

should be concentrated into as narrow a spectrum as possible. Figure lA illustrates the process 

for this processing section. 
INPUT SPEECH 

SEGMENT 

DECIDE TONE/SPEECH SECTIONS 

SUBTRACT MAX. AMOUNT OF TONE ENERGY 

REFORM SPEECH 

Figure 1A: Tone removal for Computerized Audio Processor. 
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To accomplish a minimum between speech spectrum and tone peak overlap, an appropriate 

weighting function on the time series must be chosen. Choice of analysis frame length must also 

be considered in the segmentation portion. This particular system uses a frame length of 200 

msec, with a Bartlett window overlapped by 50%. This approach for tone removal works well when 

tone frequencies are different from the speech spectrum. The more profound the difference, the 

more successful the procedure becomes. This approach is relatively useless if the tone 

component is random, thus requiring the second processing section. 

The primarily use of INTEL is to attenuate additive wideband random noise. The input 

signal is transformed to a modified cepstrum domain. An estimate of the noise cepstrum is 

subtracted, and the resulting cepstral data is used to reform the enhanced speech. (The term 

modified cepstrum is used since the true cepstrum is the power spectrum of the log amplitude 

spectrum.) Figure 2A illustrates the INTEL procedure. (Note that the power term a has been set 

to 1/2 in this implementation.) 
INPUT SIGNAL 

SEGMENT 

4 
SPEECH 
	

NOISE 

FFT 

r 
COMBINE 

OUTPUT SPEECH 

Figure 2A: INTEL Procedure for removing additive wideband random noise. 



Figure 2A shows that the difference between INTEL and spectral subtraction is the added 

transform pair, thereby performing the subtraction operation in the modified cepstrum domain. 

Improvement over tone subtraction results due to differences in cepstrum characteristics 

between the speech and random noise. Above a quefrency of 0.5 msec, the noise energy falls off 

quickly while speech energy is still present at pitch period and its harmonics. Therefore, if a 

noise only cepstrum could be found, subtracting it from the speech plus noise cepstrum should 

greatly reduce the broadband random noise. How to compute the noise only cepstrum must 

therefore be addressed. To accomplish this, a 'lossy moving average' of the noise cepstrum is 

formed. The noise cepstrum is then able to follow changes in the noise distribution. The two 

weights for the present and update noise cepstra must be chosen during processing. Once the 

algorithm is able to track the noise cepstrum, the choice of scale factor for subtraction 

between noisy speech and noise only cepstra must be chosen. Weiss and Aschkenasy concluded that 

three scale factors were adequate for processing. The process being carried out as such: 

SPEECH PLUS NOISE CEPSTRUM 

- Ss  [ AVE. NOISE CEPSTRUM 

ESTIMATED SPEECH ONLY CEPSTRUM 

With the three scale factors S1  defined as follows; 

so  for 0.0 to 0.1 msec 

sI  for 0.1 to 0.5 msec 

s2  for 0.5 to co msec 

Results indicate that choice of {s 1} is dependent on SNR, but somewhat independent of 

particular noise distribution. Their system used two sets of scale factors; one for use above 

6dB, the second for below OdB. Between 0 and 6dB, either set produced similar results. 

Though this system is useful for removing wideband random noise, some disadvantages do 

exist. Since the average noise cepstrum is built up over time, any long sections of silence (1 



sec or more) would drive the average noise cepstrum to zero. When the signal should reappear, a 

loud noise burst results until the noise cepstrum can be built up. Choice of update weights for 

the noise cepstrum must also be selected. This choice depends on the speed with which the 

system tracts changes in the noise characteristics. Scale factors for subtraction of the 

cepstra must also be chosen in some optimal fashion. Although Weiss and Aschkenasy found these 

to be somewhat independent a particular noise distribution, this may not be true for all types 

of noise. Although no quantitative results were presented in this investigation, it was 

suggested that some improvement in intelligibility is possible. This is dependent on how 

accurately the noise cepstrum is able updated from silent frames. 

WIENER FILTERING/ALL-POLE  MODELING  

The estimation of speech parameters in an all-pole model for the additive white gaussian 

noise case was investigated by Lim and Oppenheim [38], and later for colored noise degradation 

by Hansen and Clements [34,35]. From these studies, it was shown that the estimation procedures 

which result in linear equations without background noise, become nonlinear when noise is 

introduced. However, by allowing a suboptimal procedure to be taken, an iterative algorithm 

results which possesses the property that the estimation procedure is linear at each iteration. 

Consider the statistical parameter estimation of speech in the absence of noise. In 

general, a speech waveform can be modeled by a linear short-time stationary system. The 

transfer function V(z) of this all-pole linear system is of the form: 

V(z) = 1 (A.10) P 

- 	ak Z
-k 

k=1 

Over a short-time basis, the speech can be represented as the following difference equation 

P 

s(n) = 	ak  s(n-k) + u(n) + e(n) 
	

(A.11) 
k = 1 

where the ak's are the predictor coefficients, u(n) is the input excitation and e(n) represents 

the residual error between the speech waveform and response from the all-pole model driven by 



the input excitation. An assumption which usually made is to lump the input excitation and 

error residual into a single noise excitation represented as g w(n). Here g represents a gain 

factor, w(n) represents a white gaussian noise signal with zero mean and unit variance. 

Assuming a random process as the excitation, the speech signal may be represented as 

s(n) = aT  s(n-1,n-p) + g w(n) 
	

(A.12) 

This indicates that there are 2p + 1 unknowns including; i) all-pole predictor coefficients 

aT = [a l  ,a2 , ,ap] , ii) initial conditions for the pth order predictor given by S I  = s(-1,-p), 

iii) and the gain factor g for the input excitation, which must be determined to recover s(n). 

Consider the case where all unknown parameters are random with a priori Gaussian probability 

density functions. The procedure used is a maximum a priori (MAP) estimator, which maximizes 

the probability density function of the parameters given the observations. Using the model of 

equation A.12, and the observation vector S o=s(1,N), the predictor coefficients a are to be 

estimated. Therefore, MAP estimation corresponds to maximizing p(a1S 0), which in general 

requires the solution of a set of nonlinear equations for the AWGN (additive white Gaussian 

Noise) case. 

Four basic approaches may be taken in attempting to estimate a, without solving a set of 

nonlinear equations. These approaches are discussed in greater detail in the references 

[55,59]. The first method involves the joint estimation all the parameters, assuming no a 

priori information on their statistics. This is equivalent to maximizing the probability 

density function p(a,g,S i lSo) with respect to a,g,S 1  assuming no prior knowledge of a,g,S 1 . 

This method leads to the same linear equations obtained by the covariance method of LPC. 

Unfortunately, this estimation approach degrades quickly in the presence of additive background 

noise. 

Another method, is to assume that S I 
is known, and jointly estimate a and g assuming no a 

priori information. This is the same as maximizing the probability density function 

p(a,g1S0 ,Si) with respect to a and g which also leads to a set of linear equations. Depending 



on how the initial condition vector S I 
is chosen, the approach reduces to either the 

correlation or covariance methods of LPC (equations A.13, A.14). 

N-1 

Covariance Method 	 [s(n) - aT s(n-1,n-p)] s(n-i) = 0 	 (A.13) 
D=P 

for i = 
N+1)-1 

Correlation Method 	 [s(n) - aT s(n-1,n-p)] s(n-i) = 0 	 (A.14) 
n-o 

The third approach is to assume the gain term g, is known and jointly estimate a and S i 

 assuming no a priori information. Again, this can be viewed as maximizing the probability 

density function p(a,S 1 1S0 ;g) with respect to a and Si  . 

The last method is to estimate a only. This appears to be the logical choice since it is 

the predictor coefficients a which are desired. This estimation procedure is performed by 

maximizing the probability density function p(aIS 0) with respect to a, which results in a set 

of nonlinear equations in a. However, in the special case where S i  and g are known, the 

equations become linear; hence the reason for including the first three estimation procedures. 

Therefore, this special case suggests an overall procedure which combines two of these methods 

in order to reduce the nonlinear system of equations into a linear set. Consider a procedure, 

which incorporates the first method for estimating g and S i  ; followed by the fourth technique 

assuming the estimates of g and S i  are exact, and maximize p(alS 0z,S1) with respect to a. 

This procedure works well in the noisefree case, but degrades in the presence of noise. 

Nevertheless, this procedure does suggest a method for obtaining the LPC predictor coefficients 

a , even if they are corrupted versions of the noise free case. As a side note, if p(alS o ;g,Si ) 

is assumed gaussian, and symmetric about the conditional mean E[aS o ;g,Si], then MAP estimation 

of a is equivalent to a minimum mean squared error estimate (MMSE) of a. 

Thus far, MAP estimation of the LPC coefficients a have been considered in the absence of 

noise. These methods which require a solution of a set of linear equations, become nonlinear 

when noise is introduced. Therefore, a "suboptimal" approach was developed which results in 

linear at each iteration. Using the same speech model, a background noise term can now be 



included. With this modification, the observation vector becomes; 

Yo = y(N-1,0) = s(N-1,0) + d(N'-1,0) 
	

(A.15) 

where s(N-1,0) are N samples of the original speech, and d(N-1,0) represents the additive 

background noise. Two assumptions on d are considered; first, that d(n) and s(n) are 

uncorrelated; the second, that d(n) is white gaussian with zero mean and variance a 2d . By 

following a similar procedure from the noisefree case, choose a to maximize p(alY0). Note that 

the estimate is now conditioned on noisy observations Y o  , not: the original S0. Substituting 

the degraded speech into the assumed speech model gives the following equation for the 

observation vector; 

Yo  = aT 
y(n-1,n-p) + g w(n) + d(n) - aT d(n-1,n-p) 

	
(A.16) 

Using this expression, represent p(Y 0Ja,g,S 1) as a product of three terms, namely; 

N-1 

P(Yda'g' si) 
	

pty(11) ,g, Sry(n- 1,0)) 
n=1" 

P-1 
x 	p{y(n)la,g,S 1 ,y(n-1,0)} 

n=1 

x p{y(n)a,g,S i} 	 (A.17) 

If n>p, as in the first product term, the probability density function p(y(n)la,g,S,,y(n-1,0)) 

will be gaussian with mean and variance given by 

with, 

mean = aT 
y(n-1,n-p) - aT 

variance = g2  + cr: + aT  VAR[t] a 

EN = Eld(n-1,n-p)la,g,S1 ,y(n-1,0)] 

VAR[*] = VAR[d(n-1,n-p)la,g,S I ,y(n•1,0)] 

(A.18) 

As can be seen, E[*] and VAR[*] are the mean and variance of d(n-1,n-p) conditioned on 

a,g,S1 ,y(n-1,0). Since EN and VAR[*] are both functions of the predictor coefficients a, the 

resulting equations for maximizing p(alY0) are nonlinear; involving partial derivatives with 



respect to a. Similar results are found for the other three approaches, since the conditional 

probability density functions consist of products of several terms which include; 

N-1 
np{y(n) ,g,SI ,y(n-1,0)}, 
a- P 

where the dependence on a is evident. To alleviate this obstacle, Lim and Oppenheim considered 

a suboptimal solution based on the noise free case. It was previously observed that the 

estimation of a from So  assuming S/  and g resulted in a linear set of equations. This suggests 

a two step approach based on MAP estimation of S o  given Yo , followed by MAP estimation of a 

given S
0' 

 where S.
0 

 is the result of the first estimation. With this approach, the algorithm can 

be summarized as shown in figure 3A. 

i. Begin with an assumed set of predictor coefficients, a0 . 

ii. Estimate So  by maximizing p(Sola ,Yo ;g,S/ ). The output is: so i  

iii. Given ioi , re-estimate a. 	 The output is: 

iv. Continue until 	approaches A. . 

Figure 3A: A Two Step MAP Estimation Algorithm for Speech Enhancement 

Observations indicate that this algorithm converges to a local maximum of the joint density 

p(a,S0lY0 ;g,S1). In particular, if the probability density function is unimodal, and the 

initial estimate for a is such that the local maximum equals the global maximum, then the 

procedure is equivalent to the joint MAP estimate of a and S. The implementation of this 

approach still requires some simplification. The two MAP estimates which must be performed are; 

i. MAX 13(i.1$0,,YO'g'S1) 
	

Which gives 
	

(A.19) 

ii. MAX  P(Solivi(0 ;g'SI) 
	

Which gives so; 	 (A.20) 

The first estimate requires the solution of P linear equations to obtain aT  = [a1 ,...,ap]. The 

second requires the solution of N linear equations for S o  = [scosi ,s2,...,sN.1 ]. Since N may be 



of the order of several hundred samples, the second estimation becomes computationally 

intensive. To alleviate this, the equation can be rewritten in a simplified form. Using Baye's 

rule, the gaussian probability density function for p(Yola,,S0, ;g,Si) and noting that 

p(Yo la,,g,S 1 ) is not a function of So ; p(Sola,,Yo ;g.Si ) can be written as: 

where 

1  p(So1a,•Y0 ;g,Si ) = CONSTANT x 
[4 Tr2g20.5]N2 

exp[— 
2 
 AP] 

N-1 	 N-1 1 	 ..r AP = 	E fy(n)-s(n)}
2 

-0- 	E {s(n) - a, s(n-1,n-p)} 2 

ad n=0 	 g n=0 

(A.21) 

(A.22) 

Therefore, maximizing p(SO4,,Y0;01 ) requires minimizing AP, or 

aAP 
= 0, for all i=0,1,2,...,N-1. as(i) 

Unfortunately, this still requires a solution of N linear equations, which in general will be 

much larger than P (the order of the LPC predictor). Continuing, AP can be rewritten as such; 

where [r3,] -1  

N•1 N•1 
AP = E E pi;  [s(i)-m) is(1)-m) + CONSTANT 	 (A.23) 

i=o i=o 

is a covariance matrix. With this formulation for AP, MAP estimation of S o  , 

based on maximizing the probability density function p(S o la,,Y0) which is jointly gaussian in 

Y0 , is equivalent to a minimum mean squared error (MMSE) estimate of S o . Therefore, as the 

observation window increases (i.e. as N increases), the procedure for securing a MMSE estimate 

of s(n) approaches a noncausal Wiener filter. With this, the final implementation of the 

algorithm is presented in figure 4A. This approach can also be extended to the colored noise 

case as shown in figure 4A. The noise spectral density must be estimated during non-speech 

activity, as is the case for noise variance in AWGN. Evaluation of this algorithm for the white 

gaussian noise and colored noise resulted in improved all-pole parameter estimation for a wide 

range of SNR (Hansen and Clements135]). 



Step 1: Estimate ai  from soy . 

Use either: i. the first P values as the initial condition vector 

or: ii. always assume S1  = 

Step 2: i. Using ii, from above, form the estimated power spectrum of 
the speech under consideration as: 

2 

Ps(w) 
	 g 

I 1 - 	ak  e-i")  1 2  
k=1 

ii. Calculate the necessary gain term using Parseval's theorem. 

iii.a Estimate the degrading white noise variance as from a period of silence. 

iii.b Estimate the degrading colored noise spectrum P D(co) from a period of silence 
closest to the utterance. 

iv. Construct the noncausal Wiener filter; 

s(w  
a) H(w) = 

Ps(P) +) Qd  

Ps(w)  
b) H(co) — 

 
Ps(w) PD( w ) 

v. Pass the estimated speech i through the filter to produce 

vi. Repeat until some specified error criterion is satisfied, 

At <THRESHOLD. 

Figure 4A: All-pole modeling/Wiener filtering , approach. 
Suboptimal Speech Enhancement Algorithm assuming: 

a) a AWGN distortion b) a non-white distortion 

(Hansen and Cements [35]) 

ADAPTIVE NOISE CANCELING  

The classical approach to adaptive filtering, based on a least mean-squares (LMS) 

criteria, was first formulated by Widrow eta] [50]. This technique has the advantage of 

requiring no a priori knowledge of the noise signal. The basic principles of adaptive noise 

canceling is illustrated in figure 5A.a. The input to the adaptive filter is a noise signal 

w (n) that is highly correlated with the additive disturbance, w(n), but uncorrelated with the 

speech signal s(n). Normally, w 1 (n) can be considered as a reference signal from a second 



microphone. The reference is filtered to produce the output signal *(n) which is an estimate of 

the additive noise term w(n). Next, the estimate is subtracted from the noisy input x(n) to 

give the output z(n). This output is an estimate of s(n), and is also used to control the 

adaptive filter. If s(n) is uncorrelated with w t(n) and w(n); and if the adaptive filter is 

adjusted to give an output with the least possible energy, then z(n) is a best least-squares 

fit to the input speech signal s(n). The proof of this can be carried out by considering the 

energy in z(n), given by equation (A.24). 

E[(z2(n)] = E[ s2(n)+{w(n)-*(n)} 2  + 2s(n){vv(n)-*(n)}] 	 (A.24) 

It is assumed that the noise terms and signal component s(n) are uncorrelated, therefore the 

energy of z(n) becomes, 

E[(z2(n)] = E[s2(n)] + E[{w(n)-*(n)} 2]. 	 (A.25) 

Also, the signal energy is fixed for the specific speech frame under consideration, therefore 

minimizing the output energy results in, 

min E[(z2(n)] = E[s2(n)] + min ERw(n)-*(n)} 2]. 	 (A.26) 

So, when the noise canceling filter is adjusted so that E[(z 2(n)] is minimized, Et[w(n)-*(n)} 2] 

is also minimized. Therefore, *(n) is the best least-squares estimate of the primary noise 

source w(n). In addition, when E[{w(n)-*(n)} 2] is minimized, so is E[{z(n)-s(n)} 2] since, 

z(n) = §(n) 

{§(n)-s(n)) = {w(n)-w(n)} 	 (A.27) 

Therefore, z(n) is also the best least-squares estimate of the input speech signal s(n). 

In terms of noise canceling for speech inputs, the success of adaptive filtering is highly 

dependent on the external reference signal. Specifically, that the reference signal be 

uncorrelated with the speech signal s(n), and correlated with the additive noise. In the 

techniques considered thus far, only the distorted speech signal is available. It would appear 

that adaptive filtering is inappropriate, however it is possible to gain information of the 



noise characteristics during silent ;Taffies. Some disadvantages of such an approach are that, i) 

the noise is rarely stationary, ii) finite number of samples are not enough to estimate the 

noise signal, iii) the silent decision is not error free, iv) and such an approach may not be 

applicable for quantization noise. Though it may be difficult do generate a noise reference, it 

is quite easy to form a speech reference. Since voiced speech is quasi-periodic, a speech 

signal delayed by one or two pitch periods will be highly correlated with the true speech 

signal and uncorrelated with the noise. Figure 5A.b illustrates how the periodic nature of 

speech can be taken advantage of for effective noise removal. By minimizing the output energy 

in *(n), the resulting estimate s(n), will be the best least-squares fit to s(n). Sambur [45] 

investigated this approach for additive white noise and quantization noise. The adaptive filter 

in figure 5A.b represents a finite impulse type. The pitch period was estimated using an 

average magnitude difference function and nonlinear smoothing. For unvoiced sections, two 

procedures may be applied. One approach simply passes the noisy unvoiced speech through the 

system unprocessed, the other keeps the LMS filter response constant and processes the unvoiced 

speech anyway. The filter coefficients b i's are updated on a sample by sample basis using the 

LMS algorithm formulated by Widrow etal [50] . By letting the coefficient vector at time n be 

represented as B = (b0 ,b1 the coefficients used at time n+1 may be represented as 

Bn + 2 u *(n) Xn-T 
	 (A.28) 

where *(n) = x(n) - g(n) and X = {x(n),x(n-1),...,x(n-L)}, and u is a factor that controls 

stability and rate of convergence. Widrow etal [50] showed that starting with an arbitrary 

coefficient vector, this algorithm will converge in the mean and :remain stable as long as the 

following is satisfied, 

u > 0 

but also u < 	{LARGEST EIGENVALUE} 

where largest eigenvalue is taken from the matrix R = EIX . 	Sambur's implementation is 
 o 

shown in figure 5A.c Results for additive white noise indicate improved quality in the SNR 
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range of 0 to 10dB. Improvement in 'granular' quality was observed for quantization noise. 

Variations of this technique involve how the step size u is chosen, and the choice of filter 

length L. Another approach might include speech samples which are forward and backward in time. 

(i.e. this approach estimates s(n) using s(n-T); an approach might consider s(n-T) and s(n+T) 

to estimate s(n)). 
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Figure 5A: LMS Adaptive Noise Canceling based on the periodicity of speech. 
a) General noise canceling model (Widrow etal 150]). 
b) Adaptive filtering approach for removing noise from speech. 
c) LMS adaptive algorithm for removing noise from speech (Sarnbur 145] ). 



COMB FILTERING/ADAPTIVE COMB FILTERING  

The last speech enhancement technique to consider is the comb filtering approach. Later 

improvements have lead to the adaptive comb filtering technique. Comb filtering capitalizes on 

the observation that voiced segments are periodic, corresponding to the fundamental frequency. 

The basic process of comb filtering is to build a filter which passes the harmonics of speech, 

while rejecting frequency components between the harmonics. 

The technique is best explained by considering figure 6A. In figure 6A.a, a periodic time 

waveform is shown. The magnitude spectrum of this waveform is displayed in figure 6A.b. The 

magnitude spectrum indicates that the energy of the periodic signal is concentrated in small 

energy bands. It is evident that the magnitude response possesses enough energy to accurately 

represent the fundamental frequency component. With this, a filter can be implemented which 

passes the fundamental frequency plus harmonics, while rejecting frequency components between 

harmonics. Even though speech is only approximately periodic, comb filtering may still be 

useful in eliminating background noise. An adaptive comb filtering technique introduced by 

Frazier etal [33], formulates a filter which adjusts itself to both globally and locally to the 

time varying nature of speech. One disadvantage to comb filtering and adaptive comb filtering, 

is that it capitalizes on the periodicity of voiced speech. Since the technique is based on the 

periodicity of voiced speech, only these sections are possible for enhancement. Comb filtering 

techniques therefore perform poorly for unvoiced speech sections. It is generally known that 

consonants carry the bulk of linguistic information. Also, vowels (voiced speech) usually 

possess larger amounts of energy. Therefore, noise degradation tends to mask out unvoiced 

sections sooner than voiced, thus causing a decrease in intelligibility. Employing a technique 

which attempts to improve quality in voiced sections, may result in actually decreasing 

overall speech quality and/or intelligibility. 
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Figure 6A: (a) A periodic time waveform. (b) Magnitude spectrum of the time waveform in (a). 
(c) The frequency response of an ideal comb filter for the time sequence (a). 
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Research in Digital Speech Processing 

Progress Report 
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Four major components of the project to date have been: 

1) Investigation of improved enhancement techniques, 

2) Recognition of components of speech, 

3) Application of Hidden Markov Modeling, and 

4) Mixed source speech coding. 

I. Enhancement 

Existing methods for the enhancement of single channel speech in noise often fall 

short of attaining their goals, due either to incorrect assumptions or improper goals. 

The heart of the issue of separating two competing signals occupying roughly the same 

space in time/frequency lies in applying constraints to the signals. Spectral and 

correlation subtraction techniques constrain the spectrum of the noise to be constant in 

time so that on a frame-by-frame basis, the spectrum of the signal can be estimated. The 

MAP estimation technique discussed by Lim applies the constraint of white noise added to 

an all-pole speech spectrum, again on a frame-by-frame basis. We have conducted an 

investigation of both of these techniques and have evaluated them according to criteria 

other than intelligibility and first impressions. 	In specific, we have applied objective 

quality measures based on results obtained in earlier studies. 	By and large, spectral 

subtraction only led to negative objective data; i.e., the opposite of enhancement 

actually takes place. Estimates of the speech parameters using this enhancement were 

almost always further from correct than with using no enhancement. The only positive 

feature was the perception of less noise, but the resulting distortion unfortunately more 

than compensated for this. The MAP technique did demonstrate respectable improvements 

in objective quality and speech parameter estimation. We adapted the algorithm in a 



number of ways, all leading to further improvement. First, the algorithms was generalized 

to include colored noise. For test data, we used C-130 aircraft noise recorded from mid-

fuselage. Second, we enabled re-estimation of the noise spectrum between words. The 

combination of' relaxing the assumptions of whiteness and stationarity of the noise 

significantly improved both objective quality and speech parameter estimation. Even 

though the noise sounds fairly stationary, it apparently is not, and our new method helps 

compensate for this. 

II. Recognition of Speech Components 

We have started to approach the problem of speech modeling as a system identification 

problem. If we consider the vocal tract as a time varying linear system with a small 

number of actual configurations (roughly 64), then the problem can be considered that of 

estimating the likelihood of each configuration at each point in time given the waveform. 

The model we employ is a state-space model with observation noise. It has been shown that 

an efficient method for computing the likelihoods of the competing systems in this 

framework exists, and is based on Kalman filtering. 

We have currently succeeded in adapting this technique to continuous speech. A total 

of sixty-four competing models are tested in parallel, and the most likely model at each 

point is selected. This output can be considered similar to that of a vector quantizer, 

with a new codeword output for each sample. No arbitrary windows are imposed, however, on 

where the vocal tract configuration can change. Also, different competing models can have 

different forms, additive nose can be modeled, and efficient computation can be performed. 

When white noise is used to excite the time varying filters selected in this procedure, 

intelligible speech results, indicating sufficient modeling precision. 



III. Hidden Markov Modeling 

Work has continued along the lines indicated in the attached paper from ICASSP-86. 

The training and transmitter coding issues have basically been resolved. Only fairly 

simple receiver decoding has been implemented due to computational issues, however. 

Performance better than a six-bit vector quantizer is obtainable at roughly 2-6 bits per 

frame, however, using our method. Unfortunately, ten-bit VQ performance is desired. More 

sophisticated receiver decoding methods should improve things, however. 

IV. Coding 

Although on this contract no direct student work on mixed-source coding has been 

funded, we have collaborated on the "self-excited vocoder" work of Rose and Barnwell 

(attached). 



HIDDEN MARKOV MODELS APPLIED TO VERY LOW BIT RATE SPEECH CODING 

Eric P. Farges and Mark A.Clements 

Georgia Institute of Technology 
School of Electrical• Engineering 

Atlanta, Georgia 30332 
U.S.A. 

Abstract: A new type of very low bit rate speech coder based 
on a global Discrete Hidden Markov Model (DHMM) of contin-
uous speech for a single speaker is presented here. Several 
important issues of the training, coding, and decoding pro-
cedures are discussed for a 64-state, 1024-observation 
model. Such a framework is useful in reducing the redundancy 
in a 10-bit classical Vector Quantizer (VQ), and could lead 
to a DHMM coder with a bit rate comparable to that of a 
Segment Vocoder (SV) or a Matrix Quantizer (MQ). This is 
achieved not only by modelling the long term non-station-
arity and the inter-frame time dependencies of the speech, 
but also by efficiently representing a different kind of 
information such as vocal tract structure and linguistic 
patterns. 

I. INTRODUCTION 

1.1 A new compact and flexible speech model 

In recent years, the concept of Hidden Markov Modelling 
(HMM) of speech has gained considerable popularity due to 
its surv•vsful application in automatic speech recognition. 
In this paper, we present a new application of such model-
ling which may be useful to speech coding. In the new model, 
a 64-state, 1024-observation global Discrete Hidden Markov 
Model (DHMM) is employed and can be summarized as follows: 
the system which produces the continuous speech (let us say 
the human vocal tract) goes through different configurations 
(called states) as a function of (discrete) time n. A state 
at time n is a random variable X n  assuming values from a 
finite state alphabet S (1,2,...,$) (s=64). The transi-
tions (or jumps) between the states are probabilistically 
described by a first order stationary Mukov Chain. This in 
turn is defined by: 

an initial distribution of the states: 

Act  = (sq) i= 1,s ai = Prob(Xi= i) 	Es;  — 1 

a stochastic transition matrix: 

v n >1 A = (aij) i= 1,s 	aij = Prob(Xe• Xn-l'i) 
j= 1,s 

Ea.•  I. 1 
i-1 

The states (like vocal tract articulatory configurations 
or linguistic patterns) are not directly observable but are 
hidden. Nevertheless they manifest themselves through "ob-
servations" such as LPC spectra of speech segments. In the 
discrete 1` MM case the observations Y n  are assumed to be 
"drawn" from a finite alphabet 0 .s {1,2,...,M) (M=1024) made 
of codewords (indices) for a set of template LPC spectra 
(all pole models) of a classical VQ codebook C. The speech 
signal is characterized by a sequence of random variables 
Yil 

The production of an observation Yn  at time n is proba-
bilistically governed by the state the system is in at time 
n. The 'production rules are described by a stochastic sta-
tionary probability output matrix B: 

B (bik) 	v n > 0 bik Prob(Ynoak / Xn=i) 

	

k= 1 ,M 	s 
= 1 

k=1 

The sequence of random variables Y[1:1..] produced by the 
underlying state sequence X[1:1-] and characterized by the 
discrete probability mass functions (pmfs) {bi(Y n)} is 
called a Probabilistic Function of a Markov Chain. To sum-
marize, a DHMM is uniquely defined by M = (w o ,A,B). 

1.2 Variations to the basic model 

The previous model is referred to as an unconstrained 
model. A constrained model would force a specific structure 
on the matrix A. For example if v j>i, aij ma 0, the model is 
called left-to-right. 

A time duration constraint can also be applied to the 
states. With a DHMM, the probability of staying in state i 
for N units of time is exponentially decreasing: 

T(N) 	(1-aii)aiiN 
which might not be very realistic for speech. A Semi-HMM 
(SHMM) or jump process introduces a state duration pmf di(n) 
for each state i. Then 

T(N) di(N) 
where di(n) can be chosen to be some discrete probability 
mass function. The duration of the system in state i is 
governed by di(n), and the state next visited is governed 
by the transition matrix A. A SHMM is summarized by 
(wo ,d,A,B). 

A Continuous HMM (CHMM) uses continuously varying 
observations not limited to a finite discrete alphabet, but 
to a continuous support U. Continuous pdfs are used for B: 

B (bi(Y)) i=1,s for Y E U. 
This paper is only concerned with unconstrained DHMM's of 
speech. 

1 



I.3 Motivations for the model 

Physical and linguistic reasons: it seems reasonable to 
consider that the human vocal tract can be represented by a 
relatively small number of physical configurations (the 
states), with each configuration being more prone to produce 
given types of speech spectra (the observations). If one 
were to assume that speech is composed of a sequence of 
phonemes, a good description would need to take into account 
dependencies and relationships between phonemes. In a simi-
lar way, the HMM concept statistically identifies time 
structures and linguistic patterns of the speech and their 
inter-relationships. Although the underlying states would 
not represent phonemes they would exhibit many of the 
characteristics one would like to see in phonemes, and would 
enable us to describe speech by a new set of linguistic 
units. As a result, speech coding could approach bit rates 
comparable to those of phonemic vocoders, while obviating 
many of the difficulties. The ultimate bit rate achievable 
would highly depend on the amount of structure in the under-
lying model. 

Entropy, structure, and bit rate: the entropy of a HMM 
is defined by [8]: 	s 	s 

H = - I 
i=lj=1 

where 	i=1.s is the steady state distribution of the 
states which can be obtained from the transition matrix A by 
solving the linear system of equations: 

2, (ai;  - 	— 0 
i---1 

wi  
1-1 	(8ij = 1 if i= j, 0 otherwise). 

The entropy represents the average number of bits neces-
sary to encode the states, and is in some sense a measure of 
the degree of structure (order) of the system: 0< H < log 2s: 
- if rri = 1, an = 1 and v j # i aj = 0, aii = 0, then 

H 0: the minimum entropy corresponds to a completely or-
dered signal with a total a priori information and a known 
structure. 
- if v i,j rri a  1/s aij = 1/s then H Q  log2s (H=6 for 64 

states): the maximum entropy corresponds to a completely 
disordered signal with no a priori information and no under-
lying structure. Experimental results presented later show a 
strong underlying structure in the speech, as measured by 
entropy. 

IL THE SPEECH CODER 

The very low bit rate speech coder can be divided into 3 
distinct procedures (see fig. 1-3): 

- training in which the best DHMM, M = (rro ,A,B) is found 
given a training sequence of continuous speech. 

- coding in which the optimum state sequence X[1:L] given 
the model M and the observed speech Y[1:L] is found, produ-
cing a sequence of codewords. 
- decoding in which the optimum speech sequence Y[1:L] 

given the model M and the transmitted state sequence X[1:L] 
is found. 

Training and coding take place at the transmitter, deco-
ding at the receiver. An optimum bit representation of the 
states cm  would be transmitted to the receiver, with the 
number of bits required depending on the entropy of the 
model. The experimental work completed includes the follow- 

ing: A database of 15 minutes of continuous speech from a 
single male speaker was digitized at 8 kHz, and LPC models 
were generated for the 60000 15-ms frames of speech. A 10 
bit VC) codebook (1024 codewords) was generated with the 
binary-split K-means algorithm of Buzo et al. [2], and each 
speech frame was vector quantized. A 64-state, 1024-observa-
tion DHMM was trained through the forward-backward algorithm 
(FBA). The speech was coded with a trellis coding scheme and 
decoded with a trellis decoding procedure. 

IL' At the transmitter 

Training: to estimate the parameters of the model M a 
maximum likelihood approach can be used through an iterative 
procedure called the forward-backward algorithm (FBA). Other 
approaches such as maximum entropy method could probably be 
used too. The first proof of convergence of the FBA was 
introduced by Baum et al. [1], then generalized to multi-
variate continuous distributions by Liporace [4], and exten-
ded to the case of multivariate mixture densities by Juang 
[3]. A practical use of the algorithm was demonstrated for 
isolated word recognition by Rabiner et al. [5] for small 
HMM's (s= 5,M= 64,L= 4000). For HMM's as large as this study 
employed, (s— 64, M=1024, L=60000) significant modification 
of previously reported FBA implementations was required to 
alleviate numerical problems. The results of this training 
will be discussed in section III. 

Coding: given the model M and the observed sequence 
Y[1:14 the goal is to find the sequence of states X[1:1.4 
which is most likely to have produced Y[1:11. A maximum 
likelihood approach was used in which the sequence x[1:L] 
which maximizes: 

L 
Pc(Y[1:1-)/x[1:L].M) = Ea 	b (Yn) (a 'a ) rcox, x t n=lxn-lxn xn  

was selected. If we define the likelihood function: 

lc = -logroPc, i.e. ,  
L 
Ilcn  where Icn -logm(axn-lxn)" 108to[b  Cln)] xn  

n=1 
then maximizing Pc  is equivalent to minimizing lc . A dynamic 
programming procedure called trellis coding (or Viterbi 
algorithm) [6] iteratively minimizes the length" ..l c  of the 
overall state (node) path through a trellis constituted of 
successive time layers of 64 nodes. The length of a branch 
between 2 nodes respectively in layers n-1 and it is lcn . The 
shortest paths ending in each node at every layer n are 
called "survivors" (there are at most 64 of them). Iterative 
extensions of the survivors and backtracking lead to the 
overall best path X[1:L]. Some of the trellis coding issues 
are: 

- selection of the initial node (state): The first state 
can be picked at random, picked according to the steady 
state likelihood of the states, or picked to minimize the 
starting lengths. The influence of the starting node is 
transient, however, and vanishes after a few frames (i.e., 
survivors starting with different nodes are identical for 
n> 5). 

- time constraint: with no time constraint the algorithm 
could allow as many different states as there are frames per 
second. It is reasonable, however, to allow no more than 10 
(or possibly 20) different states per second. Such a con-
straint can easily be included in the trellis algorithm 
through a "sliding window." This feature also makes the 
coder more robust with respect to noise. 

- backward pruning: a full search through the trellis is 

j =- 1,5- 1 
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not necessary. The extensions at the layer n can be com-
puted from one of up to BP survivors. If no pruning occurs, 
BP= 64. If backward pruning is performed, BP<64 (for example, 
we could keep only the first 40 survivors). A pruning down 
to BP=20 generally does not affect the optimality of the 
resuts and speeds up the coding algorithm, although even 
with BP= 64, the computations are not burdensome. 

- weighting factor a: the likelihood .l c  weights transi-
tion and output probabilities equally. Given that the output 
(observation) sequence is known with certainty, it is rea-
sonable to weight B and A differently using the likelihood: 

L 	- 
= 	 = (a-l)log,o(a

xn-lxn
) - alog,o[bx  (Yn)] 

n= 
11.2 At the receiver 

Decoding: riven the model M and the state sequence 
X[1:L] we want to find the most likely sequence of observa-
tions YILL]. A similar approach to coding is taken. We 
define: 

L 
Pd(y[l :L] / X[1:L],M) z[bx 	(1-a) a 

(Yn)] 	P (Yn-1 /Yr) 
n=1 n  

where Xyn_i/yn) is the probability of producing observation 
yn  given that the previous one was y n_i. One alternative for 
LPC-based models is to use the Itakura-Saito distance 
measure D(yn_i/yn) for logiop(yn_i/yn), giving a likelihood 
function: 

L 
ld = Ildn  idn  = (c1-1 ) 10Sto[by (Yn)] - aD(Yn-1 Yn) 

n=1 
Here, D(yn_i / Yn) is the LPC log-likelihood ratio. 

The likelihood is a compromise between most probable 
observations in a given state (a =0) and maximum smoothness 
of the LPC spectrum (a= 1). D is referred to as the smooth-
ness function. It can be computed "on line" at the receiver 
or a distance matrix (stored at the receiver) can be com-
puted at the transmitter. Storage considerations and de-
coding computation time should indicate what option to use. 
If no smoothness function is used, decoding is equivalent 
to selecting the most probable observation in each state, 
making the coder look like a 64 level VQ (the codewords of 
the DHMM being more efficient because of increased struc-
ture). Some important issues of the trellis decoding algor-
ithm are: 

- initial node: the initial node (observation) is known at 
the transmitter and is transmitted to the receiver, then the 
decoding can proceed. However, the quality of the decoded 
speech decreases when time increases since the very long 
term (200 frames) predictability of the speech is limited. 

- observation pegging: to solve the above problem the 
actual VQ codeword was transmitted to the receiver every P 
frames (P is the pegging period as well as the trellis depth 
and decoding delay). A period P>20 has only a small influ-
ence on the overall bit rate. In the limiting case, P=1, the 
DHMM coder is equivalent to a 1024 level VQ. 

- backward pruning: same as coding with BP= 100. 
- forward pruning: to decrease the decoding time without 

affecting the optimality of the results, at time n the 
algorithm looks ahead and selects only the F? most probable 
observations in state X t.1 +1 for which extensions should be 
computed (need FP?_, ,BP, use FP=100). 

- weighting factor a: the initial implementation used a 
constant a. Results indicate that a should be variable: 

. in steady state speech regions the smoothness function 
should be weighted more (0.5<a<1). 

. in transient speech regions the output matrix B should 

be made adaptable with time a = a n  based on the evolution of 
the state sequence. 

III. PRELIMINARY EXPERIMENTAL RESULTS 

The training procedure was run until convergence was 
approached, with a likelihood value of 

log,0P 	- 3.352 x 105 . 
Although the model was still improving slightly, the main 
structures of the matrices were already there (see figures 
4-6): 

- the initial distribution of the states converged quickly 
to a„=1 and fori 19 ay.°. 

- the A matrix displayed, as expected, a strong diagonal 
structure (see figure 6). 

- 56.4% of the entries in A and 89.3% in B were less than 
10-3  (see figures 4,5). 

For a classical VQ, a (non hidden) Markov model was 
generated by defining the codewords as the states (i.e., 
states were observations) and a transition matrix was com-
puted by frequency counts on the 15 minutes of speech. The 
resulting entropy for a 6-bit codebook (64 codewords) was 
found to be H = 3.9. The transition matrix of the 64 state 
HMM computed on the same data had an entropy of 2.6, which 
suggests that an inherent underlying structure exists in 
speech which is not taken into account by the 6-bit VQ. Such 
techniques as Segment Vocoding and Matrix Quantization cap-
ture part of this structure but not all [7]. 

Preliminary experiments, using the simplest of the 
coding-decoding techniques described, produced speech supe-
rior in quality to that of a 6-bit vector quantizer, but 
inferior to that of a 10-bit VQ. The work, at this point in 
time, is very encouraging, considering the large number of 
unexplored possibilities available. 

Conclusion: 

A statistical derivation of a new type of speech model 
has been presented: a global 64 state, 1024 observation DHMM 
of continuous speech has been proven to be practical, com-
pact, and general, but flexible, automatically trainable, 
and bit rate efficient (as low as 2.6 bits / frame). 

A complex but important underlying structure has been 
brought to light. Although initially speaker dependent, this 
new speech model could become speaker independent when plau-
sible linguistic units represented by the states and derived 
from the strong structure of the model are identified. 

Refinements in the modelling and coding-decoding process 
should produce good speech quality for a very low bit rate 
coder. Among the many other applications of a DHMM of 
speech, the detected underlying state sequence could be used 
for continuous speech recognition. 
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THE SELF EXCITED VOCODER - AN ALTERNATE 

APPROACH TO TOLL QUALITY AT 4800 bps 

Richard C. Rose and Thomas P. Barnwell III 
Digital Signal Processing Laboratory 

Georgia Institute of Technology 
Atlanta, GA 30332, U.S.A. 

THE VOCODER MODEL 

ABSTRACT 

This paper presents a new speech coding technique for near toll-
quality performance at around 4800 bps. Currently, the most 
promising techniques at these bit rates emphasize the efficient 
coding of residual information in a Linear Predictive Coding 
context. The Multipulse Linear Predictive Coder (MPLPC) [1] and 
the Code Excited Linear Predictive Coder (CELPC) [2] are examples 
where considerable success has been achieved at medium bit rates. 
This paper introduces the Self Excited Vocoder (SEV), a new 
speech coding technique which belongs to the same class of coders 
as the MPLPC and the CELPC. 

INTRODUCTION 

There are many similarities between CELPC and MPLPC. In systems 
which use a long term predictor, and hence removes the pitch 
dependent structure from the residual signal, the two techniques 
differ only in the functions used in coding the source excita-
tions. In particular, MPLPC builds the coded source excitation 
as a sum of weighted impulse functions. CELPC generates the 
coded source excitation by searching through a codebook of 
precomputed sample sequences whose statistics are representative 
of the whitened residual signal. In both approaches, the optimum 
excitation is obtained by minimizing the same weighted error 
function. As will be illustrated in this paper, these are limply 
special cases of the same general technique. 

In terms of the system of Fig. 1, the Self Excited Vocoder may 
have more than one long term predictor, and has no excitation 
function, i.e. V.,ii(z)=0. Hence, in it purest form, the SEV, 
after initialization, applies no bits to coding the residual at 
all. At first glance, this may seem to be impossible, but a 
dose examination of the system shows that the SEV is actually 
deriving the source excitation from the past history of the coded 
excitation function itself using the second long term predictor. 
In obtaining the optimum sours excitation in this way, the SEV 
minimizes the same weighted error as does the MPLPC and CELPC 
Hence, the SEV is another special case of this general class of 
speech coders. A surprising result is that the SEV is often able 
to derive enough information from the redundancy of past speech 
so that no new input is needed to generate the coded source 
excitation. 

This paper has two goals. The first is to present a general 
formulation which illustrates the relationship between the MPLPC, 
the CELPC, and the SEV. The second goal is to discuss the 
operation of the SEV itself. 

In linear predictive coders, the spectra/ envelope and source 
excitation are modeled separately. The spectra] envelope is 
modeled using a variable predictor, and the prediction residual 
is modeled by some instantaneous or block quantization technique. 
This same approach is used here by dividing the model into 'a 
short term predictor to represent the spectral envelope and any 
of three block coding techniques to represent the residual or 
source. An important point is that any structure or redundancy 
in the signal that is not modeled by the short term predictor is 
considered to be part of the source. Hence, the long term 
predictors in the system of Fig. 1 is considered as part of the 
excitation function. 

Short Term Predictor 

The short term predictor model is shown in Fig. 2. The short 
term predictor A(z) is defined by its predictor coefficients and 
has predictor delays that are on the order of a few sample 
periods. In our experimental work, the speech is sampled at 
8KHz, preemphasized, and the 10th order predictor is determined 
over a windowed analysis frame of length 20 msec. The predictor 
coefficients themselves are computed by solving the standard set 
of normal equations obtained from the autocorrelation method of 
LPC analysis [3]. It is important that this analysis is per-
formed over several pitch periods so that a stationary estimate 
of the spectral envelope is obtained over successive analysis 
frames. Our spectral model is that of the form 

A(z) 	a(i)r i 
i=1 

The infinite impulse response of the recursive synthesis filter 
shown in Fig. 2 is denoted as h(n). The synthetic speech 1(n) 
is simply the model response to source input e(n) 

L 
1(n) - I h(i)e(n-i). 

i= 1 

Source 

Included in the source is any residual structure that is not 
represented by the spectra/ model. These are generally phenomena 
that must be narrowly resolved in time. They include pitch 
dependent or long term dependent structure that exhibits signifi-
cant correlation over delays much greater than the spectral model 
order. Also included is structure that is random in that it 
cannot be efficiently modeled by deterministic means. The general 
model for the coded source is given by 

M 
e(n) - Agn) 



where fi(n) is a generalized excitation function depending on the 
given technique and Si  is the gain associated with that function. 
Each function is defined over an interval from n 0...,N-1. For 
MPLPC, the excitation function is a delayed impulse 

	

fi(e) - 8(n-7i). 	- 

For CELPC, M g• 1 and the excitation function is a sample func-
tion from a Gaussian random codebook 

vyi(n). 

For the SEV, the function is a delayed version of the past 
excitation. Hence, it represents the response of a long term 
predictor 

fi(n) 	e(n-yi)• 

where in this case 7i  is the predictor delay in samples and is 
in the range 5-20 msec. This corresponds to the expected range 
of the pitch period in speech. 

The source can consist of any combination of the three techni-
ques. For example, the source excitation e(n) could be given by 

e(n) ar5(n-Y1) + 132v1 2(n) + la3e(n-73)• 

This is in general a recursive expression for e(n). However, if 
the analysis frame length used for computing source excitation 
is made short with respect to the long term predictor delay "#3, 
e(n-y5) will not depend on input during the present frame. It is 
for this reason that we use an analysis frame length of 5 milli-
seconds for computing source information. i(n) is then given by 

L 	 L 
fin) 	0112(n-71) + B2 I V72(13-i) 	P3 	h(i)e(n-i-13). 	(1) 

i-0 	 i-0 

The optimum Bi and 7 1.1  for each excitation function can then be 
found independently, with the system response due to each added 
to form the synthetic speech signal. In the next section, a 
unified formulation for finding all of the three excitation 
functions - is presented. 

Long Term Predictor 

In voiced speech, successive pitch periods show considerable 
similarity. This is reflected by a high degree of correlation in 
the coded source excitation signal at a correlation lag corres-
ponding to a pitch period. This similarity can be represented by 
a long term predictor whose predictor delay is on the order of a 
pitch period. Furthermore, we have found that there exists 
considerable redundancy in speech over time delays that are not 
directly attributable to pitch. The SEV does not attempt to make 
any decisions concerning voicing or actual pitch period. It 
simply searches through the coded source excitation in past 
analysis frames, looking for an excitation sequence that produces 
synthetic speech that is highly correlated with that of the 
original speech. Fig. 3 is an example of the system response to 
the long term predictor alone. The top waveform represents the 
original signal, while waveform b represents the weighted 
response to the source excitation occurring in the previous 
frames. This corresponds to the last term in Eq. 1, and shows 
that a significant amount of information can be obtained from the 
past history of the speech using the long term predictor. 

To illustrate the effects of a long term predictor, it is 
informative to look at the characteristics of a first order long 
term predictor of the form 

H(z) flz-"Y 

where the delay ./ is on the order of 5-20 msec. The impulse 
response of the system over infinite time is given by 

h(n) S(n) + fitS(n-/) + 13 26(n-2/) + 

with associated magnitude frequency response 

1 
IH(dw) F 	20cos--7-10-y 

The filter response is peaked at multiples of the frequency 
corresponding to the predictor delay. However, if the predictor 
is only allowed to remise one time as is the case here, the 
response is of the form 

Nt 	1 -2.02rocl.vy + 04  
IH(rj6) 1r I.  1 -243cosary fal 

The important point here is that these systems are dominated by 
the framed nature of the analysis process, and one must be very 
careful about applying time-invariant interpretations. 

The long term predictor is most effective for steady state sig-
nals where there is a high degree of interframe redundancy in the 
speech signal. It does not perform well for transient regions 
where assumptions of wide sense stationariry are not accurate. 
Waveform d in Fig. 3 shows the weighted signal to noise ratio 
computed for the long term predictor alone. Note the minimum 
signal to noise ratio occurs in the transient region. It is in 
these regions that pulse excitation provides a more effective 
means of coding the regular structure of speech. While pulse 
excitation also does very well at coding more random structure in 
speech, many additional pulses are needed to do so [4]. Due to 
the requirements for coding efficiency, codebook excitation is 
used to code that random structure that cannot be efficiently 
coded otherwise. 

Codebook Excitation 

The CELPC falls under the general heading of a stochastic quanti-
zer. Both the transmitter and receiver have identical copies of 
the same codebook whose entries are populated by precomputed 
sample sequences , each being 40 points in length. The identi-
fier associated with the codebook entry containing the optimum 
sample sequence is transmitted to the receiver. After removing 
the regular deterministic structure from the residual signal, the 
sample statistics of the residual have been found to approximate 
a Gaussian distribution [2]. In this case the random codebook can 
be populated by sample sequences of a Gaussian random process. 

While the transmission rate increases with the log of the 
codebook size, the computation required for the exhaustive search 
of the codebook increases linearly. Some researchers are pre-
sently working on reducing the computation required for an ex-
haustive codebook search by introducing algebraic structure in 
the codebook [5]. We have found that the size of the codebook 
becomes less critical as more structure is removed from the 
residual signal by way of the long term predictor and pulse 
excitation. This is essentially an alternative to imposing 
further structure in the codebook sequences themselves. One must 
then resolve the tradeoff between the computationally intense 
burden of an exhaustive codebook search, and the increased bit 
rate resulting from more accurate deterministic source coding. 



Error Weighting Filter 

In determining the coded excitation source at low bit rates, the 
magnitude of the error spectrum can be very large with respect to 
that of the spectral envelope of the speech signal. It has been 
found by Atal and Schroeder that weighting this error signal with 
a weighting filter W(z) will significantly improve the perfor-
mance of the source coder [2]. It is important that the filter 
as shown in Fig. 2 is dependent on the short time spectral en-
velope of the speech. Their weighting filter has the effect of 
concentrating noise energy in the formant regions of the spectral 
envelope. The filter is given by 

w(EI. LLe) 
1- A(z) 

where a is a constant between 0 and 1,and effects the amount of 
energy concentrated in the formant regions. Informal listening 
tests have shown the presence of some noise weighting filter to 
be very important in the source coding proems. 

DETERMINING THE SOURCE EXCITATION 

While each of the three source coding techniques best model 
different types of structure that may exist in the residual, the 
formulation for determining the optimum excitation function for 
each is the same. The only difference is the function space from 
which an optimal excitation function can be chosen. In CELPC, a 
sample space of random functions corresponding to the 40 point 
Gaussian random sequences contained in the codebook is searched. 

MPLPC, one searches in time over the present analysis frame 
through a set of delayed impulse functions. The SEV requires 
starching in time over the range of long term predictor delays 
through the past history of the source excitation function. For 
a given technique, the criterion for finding the optimum function 
is the same. We wish to find the optimum 7 and associated so 
that p(7)f(n) produces synthetic speech that mininthrs the energy 
in the weighted error W(z)l)(z) shown in Fig. 2. This is 
equivalent to coding the inverse weighted speech according to a 
uniform error criteria given by 

D(z) 	
1 [S(z).,- S(z)] . 

If 7 is held fixed, then it remains only to find 13(7) in the 
equivalent expression for D(z) given by 

D(z) " Y(z) - (2) I - A(az)  

Y(z) ea S(z)IW(z) is the z transform of the weighted speech, and 
F(z) is the z transform of the excitation function f(n). We can 
find 13(Y) by rninirni7inf the mean squared error 

N-1 	N-1 
E s 	d(n)2  as 	[y(n) - 13(7)M h(i)f(n -i)J2 

nu. 0 	 1'00 

where in this case, h(n) is the impulse response of the recursive 
filter in Eq. 2. The resulting expression for 13(7) is given by 

N-1 	 N-1 
13(7) m. 	y(n)w.y(n) 	w.y(n)2  

nal. 0 	 na• 0  

l`Rwv,(0) 

where w( n ) is 

L 
w.y (n) g• 	h(i)f(n-i) 

i■ 0 

or the weighted system response to the given excitation function. 
Hence, 13(7) is the normalized cross correlation between, the 
weighted speech and the weighted response to the given excita-
tion. This is the same expression obtained for the gain of an 
individual pulse in MPLPC where w.y (n) h(n-y). The associated 
minimum mean squared error is given by 

N- 
E 	y(n)2  - 13(7)Ryw(7)• 	(3) 

The minimum mean squared error is achieved when 13(7) is maxi-
mized. We can find the optimum excitation function f(n) simply 
by maximizing 13(7) over the allowable range of 7. 

The gain we give to a given excitation function depends on the 
degree to which the response to that excitation function is 
correlated with the weighted speech. As mentioned in the pre-
vious section, the source may be built from more than one excita-
tion function. Assuming for a moment that we restrict the pos-
sible functions to a single function space, there is a simple 
procedure for finding additional functions. Suppose we have 
determined an initial function which is given by •y i  with cor-
responding 13 1(7 1). This process involves removing the effects of 
the present excitation function and finding the optimum 7 2  and 
132(72) for the updated speech r(n) given by 

Y(n) a° Y(n) - gi(rt)w-y,(n) • 

The updated aosscorrelation function is given by 

12"yv(7) la  Rya(Y) - Bt(7t) Rww(1) 

and the expression for 13 2(72) is the same as that given above 
with the updated crosscorrelation function. Waveform c in Fig. 3 
shows the updated signal y'(n) after removing the effects of 

n) due to the long term predictor given in b, from  the oriel- 
titZw 

u(n) 
 given in a. 

It was also suggested in the previous section that each technique 
best models different types of structure in the residual. In 
order to take advantage of this, we must be able to measure the 
performance of each technique on a frame by frame basis. Al-
though it is extremely difficult in general to produce a 
meaningful measure of nubjective performance, we have as a 
result of our formulation, the noise weighted signal to noise 
ratio given by 

N-1 
SNR 	y(n)2  / E . 

maw 0 

E is the minimum mean squared error given in Eq. 3, and depends 
explicitly on the gain ON). In Fig. 3, waveform d shows the 
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noise weighted signal to noise ratio for the synthetic .speech 
produced by the long term predictor alone. As mentioned before, 
it performs poorly in the transition region which is clearly 
reflected by the SNR contour. This suggests the use of the SNR 
in determining when additional source excitation functions need 
be added in building the composite coded source excitation. An 
important point to note here is that an inaccurate estimation of 
the SNR threshold rest its in only a slight increase in transmis-
sion rate or slight decrease in SNR. 

" RESULTS 
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s(n) 

d(n) 

figure 3: a) Noise weighted original speech. b) Response to long 
term predictor alone. c) Updated speech (error signal). d) noise 
weighted signal to noise ratio (25 dB full scale). 

Clearly, the formulation above can be used to generate a very 
large family of vocoders which operate over a correspondingly 
large range of nit rates. The ones of most interest for this 
paper am am t,uic SEVb, which, after initialization, operate 
without any excitation, and which use either one or two long term 
predictors. Both of these vocoders make no "hard" decisions, 	figure 2: Block diagram illustrating procedure for finding 
such as a pitch period estimation or.a voiced/unvoiced decision. 	generalized excitation function. 
The parameters are always chosen simply to minimize the 
distortion criterion. The effect is that "wrong" decisions, i.e. 
decisions which disagree with intuition, have only a minor impact 
on perceived quality. 

For the SEV with only a single long term predictor, the excita-
tion bit rate was about 2000 bps. This vocoder resulted in a 
perceived quality very similar to a 2400 bps fixed-rate pitch-
excited vocoder. For the SEV with two predictors, the excitation 
bit rate was about 4000 bps. The perceived quality was 
comparable to that of a CEL.PC with a 1024 coding ensemble. 

GAIN 

figure 1: Vocoder Model 
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Research in Digital Speech Processing 

Progress Report 

June - September 1986 

Four major components of the project to date have been: 

1) Investigation of improved enhancement techniques, 

2) Recopition of components of speech, 

3) Application of Hidden Markov Modeling, and 

4) Mixed source speech coding. 

I. Enhancement 

We have continued to work with improved versions of the MAP estimator of speech in 

noise. Our focus recently has been the introduction of time constraints to the speech 

parameters through use of the spectral-line-pair representation of speech spectra. 

Although these constraints had originally been used for coding, their power seems to be a 

result of good speech modeling, which in turn leads to significant improvement for 

parameter estimation in colored, non-stationary noise. An abstract to ICASSP-87 has been 

submitted related to these early results. 

II. Recognition of Speech Components 

We have reformulated the hidden Markov model speech recognition procedure to operate 

on the Kalman filter outputs. Efficient training and recognition procedures have been 

formulated. An abstract to ICASSP-87 has been submitted and is attached. 

HI. Hidden Marlkov Modeling 

Work has continued along the lines proposed in the ICASSP-86 paper by Farges and 

Cements. Work has focussed on finding the time constraints most appropriate for the 

receiver decoding. Itakura-type distances for time constraint has not demonstrated 

adequate performance. Our current theories as to what will work require either storage of 

a 1024 x 1024 real matrix, or inordinate amounts of computation. Since the computer in 



the Digital Signal Processing Laboratory cannot handle arrays so large, the programs are 

being transferred and adapted to a larger computer on campus, a Cyber 990. 

IV. Coding 

We have continued to collaborate with Rose and Barnwell in the self-excited, mixed 

source vocoder. 



Iterative Speech Enhancement With Spectral Constraints 

by 
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Mark A. Clements 
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ABSTRACT 

A well known speech enhancement technique originally developed by Lim and Oppenheim 

[1] solves for the maximum likelihood estimate of a speech waveform in additive noise 

using the constraint that the signal is an all-pole process. Crucial to the success of 

this approach is the accuracy of the estimates of the all -pole speech parameters at each 

iteration. An additional disadvantage is that this approach is performed on a single frame 

basis. Although successful in a mathematical sense, this technique has recieved little 

application due to several factors. First, it is an iterative scheme with sizable 

computational requirements as opposed to a direct form such as spectral subtraction. 

Second, although the original sequential MAP estimation technique was shown to increase 

the joint likelihood of the speech waveform and all-pole parameters, heuristic convergence 

criteria had to be employed. In an earlier investigation [2], it was noted that as 

additional iterations are performed, individual formants of the speech decrease in 

bandwidth (see fig.1), resulting in unnatual sounding speech. Also, no explicit frame-to-

frame constraints are employed. In earlier work on very-low bit rate speech coding, 

Crosmer [3] was able to encode LPC parameters efficiently by applying the line spectral 

pair (LSP) transformation. The success of this scheme was a result of some particularly 

nice properties LSP's were observed to have for speech. First, it was noted that the 

parameters varied smoothly from frame to frame. Second, it was observed that certain 

perturbations could be made to the LSP's with little perceptual effect. Third, approximate 



formant bandwidths can be computed directly from the LSP's themselves, providing an easy 

mechanism for ensuring no poles are too close to the unit circle. These three properties 

allow an efficient method for imposing spectral constraints both within, and across 

frames, eliminating pole jitter and unpleasant resonances. Impositions of these rules has 

also been successfully applied to correction of LPC-parameter sequences with random bit 

errors, showing some of the power of the constraints. 

The contribution we have made relates to imposing similar constraints in the 

estimation of the all-pole parameters of speech in noise. The method basically employs the 

Lim - Oppenheim procedure with LSP constraints applied after each iteration. Also 

investigated were constraints applied directly to the pole radii and frequencies of the 

LPC model. In each case, convergence has been observed. 

The techniques were tested on speech degraded by additive white and colored Gaussian 

noise. Noticeable quality improvement could be observed, although no intelligibility 

testing has been performed. In addition, we computed various distance measures between the 

enhanced and original speech signals. LPC-based measures such as the Itakura distance or 

log-area-ratio distance, showed improvement over the Lim-Oppenheim procedure, suggesting 

that the new method does more then simply make the speech perceptually cleaner. 

Results will be presented comparing the effectiveness of this approach versus that of 

the unconstrained technique as well as that of spectral subtraction. 



(a) Distorted Original 	 (b) 2 Iterations 

(c) 4 Iterations 	 (d) 8 Iterations 

Figure :1: 	This figure illustrates changes in the vocal tract response caused by the 
unconstrained enhancement technique. Figures (a) through (e) show how the formant 
frequencies and associated bandwidths are effected as the iterations increase. 
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HIDDEN MARKOV MODEL SPEECH RECOGNITION 
BASED ON KALMAN FILTERING 
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Traditional hidden Markov model speech recognition is generally based on a set of 
parameters (often LPC related) which which are extracted at discrete intervals. Such an 
analysis necessitates use of a discrete-trial hidden Markov model in which the underlying 
states can only change at intervals related to the frame rate of the analysis. The exact 
locations of the analysis windows used can influence the front-end outputs and as a result 
can cause confusion between words differing in short-duration consonants. Our analysis 
uses a system identification approach which does not require segmentation into frames for 
front-end processing. 

The approach we have adopted is based on a linear model of speech which is time 
invariant over short intervals. This is the traditional model often used in speech recog-
nition and coding applications. However, we allow for natural, smooth changes occurring 
in the system as well as additive uncorrelated noise. Our linear model may have periodic 
excitation (voiced speech) and/or noise input (frication) as well as explicit modeling of 
time varying system parameters. 

Since many phonemes are characterized by a particular evolution in time rather than 
by steady-state or target spectra, this model is more powerful than more traditional ones. 
In particular our model is: 

x(k) = A(k)x(k-1) + B(k)u(k) + G(k)w(k) 
	

(la) 

y(k) 	C(k) x(k) + v(k) 
	

(lb) 

where the vector x(k) = [x(k), x(k - 1), ..., x(k - p + 1)] T, x(k) is the speech without 
noise, u(k) is the periodic input and B(k) its gain, w(k) the noise input and G(k) its 
gain, C(k)=[l, 0, 0, ...], v(k) is additive noise, and A(k) characterizes the time varying 
vocal-tract filter. 

Systems similar to this have been used to model many varied signals arising in sonar, 
heart monitoring, aircraft control, etc. Recursive linear least squares estimation based 
on such models falls within general area of Kalman filtering, which allows one to effi-
ciently compute the least squares estimate of x(k) from the least squares estimate of x(k-
1) and y(k). One crucial step in this technique is to predict as well as possible y(k) 
based on y(k-1), ..., y(0). The property we wish to exploit is that if we have modeled 
the system correctly, the prediction error, v(k), would be white. This idea can be applied 
to system identification by observing the signals v i(k) for different competing system 
models where i denotes the model. A likelihood measure, p i(k), can be computed for each 
model based on vi(k) in an efficient, recursive manner. In particular Lainiotis and Park 
(1) have shown 



pi(k+ 1) = 
N(v i(k), Vi(k))pi(k) 

(2) 
E N(v 

J 
 .(k) , V 

J
.(k))p 

J
.(k) 

where V.(k) is the expected variance of v i(k) if model i were correct, and N(a,b) repre- 
sents the baussian density of mean zero and variance b evaluated at a. (Computation of 
V.(k) can itself be done recursively and off-line). Although it has been applied with 
success to cardiac arrythmia detection (2) and stochastic aircraft control, (3) this 
technique has not been explicitly applied to speech recognition. 	In certain special 
cases, some current speech analysis techniques can be interpreted in this light. 	For 
example, the linear predictive model results if only one excitation source exists, system 
parameters remain constant over short intervals, only abrupt system changes are allowed, 
and no additive noise exists. Also, recognition based on linear prediction often uses 
the Itakura distance for segment comparison, which is in some ways similar to the probabi-
lity calculation in equation (2). It requires, however, that competing models be constant 
and have exactly the same structure, with only the A matrices varying. 

We have currently succeeded in adapting equation (2) to continuous speech. A total 
sixty-four competing models are tested in parallel, with the most likely model at each 
sample point selected. This output of this analysis can be considered similar to that of 
a vector quantizer, with a new codeword output for each sample. We are therefore not 
bound by arbitrarily placed windows as to where the vocal tract function can change. 
Also, the competing models can have different forms, additive noise can be modeled, and 
efficient competition via equation (2) can be performed. 

We have also adapted the above formalism to recognition using a hidden Markov model 
(HMM). The conventional HMM method segments speech into frames and performs vector quan-
tization prior to recognition. Implicit in this technique is the modeling of speech as a 
discrete-state, discrete-trial Markov process. Our new system would allow a discrete-
state, "continuous" trial Markov model. At first glance, one might assume that orders of 
magnitude more computation would be necessary. This is not the case, however, as have 
cast the continuous trial HMM recognition task into a series of matrix operations. Due to 
the fact that the output of the maximum likelihood selection procedure tends to be rela-
tively stable over significant periods, and since the matrices associated with the HMM's 
can be diagonalized, we have been able to implement efficient procedures both for training 
and recognition. 

Another variation we have examined relates to using equation (2) again for likelihood 
calculations, but never making a hard decision as to which model is active. We have shown 
(on paper) that it is possible to use these likelihoods directly in a HMM. Skipping the 
intermediate model classification can only improve results, but at a cost of increased 
computation. We are actively pursuing formulation of algorithms efficient enough to make 
the above a cost effective procedure. 

Our testing of the system on easily confusable (single speaker) words has led to 
consistent improvement in recognition performance. And we see no reason why improvements 
for other recognition tasks would not result. In summary, the new model is in many ways a 
more natural way of analyzing speech for phonetic or word recognition in isolated word 
environments or in continuous speech. 
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Research in Digital Speech Processing 

Progress Report 

October - December 1986 

Three major components of the project to date have been: 

1. Investigation of improved enhancement techniques 

2. Recognition of components of speech; and, 

3. application of Hidden Markov Modeling. 

1 Enhancement 

We have continued to work with improved versions for estimation of speech in noise. 

Work has continued on enhancement of speech in the presence of background noise 

for improved recognition. The particular method that is currently being explored 

involves iterative speech enhancement using spectral constraints. Basically, the 

method forces speech-like characteristics on the enhanced signal. The methods for 

performing this have been more completely explored now and can be summarizxed 

by two procedures. First, time constraints have been applied to the Line-Spectral-

Pair (LSP) vocal tract parameters, forcing time evolutions consistent with those ob-

served for natural speech. Second, constraints have been applied across iterations of 

the algorithm, leading to better behaved convergence characteristics. The descrip-

tion of the work and the major results are summarized in the attached preprint 

1 



of the ICASSP-87 paper by Hansen and Clements. We will point out some of the 

results referring to the figures in the paper. 

The theoretical limit of performance uses the true LPC spectrum of the speech 

for the Wiener filtering step. In a real-life situation, the true LPC spectrum is un-

known, since the speech is corrupted by noise. We are adding noise to uncorrupted 

speech, and hence have direct access to the LPC parameters enabling us to check 

our results. One measure of how good the enhancement procedure performs is the 

Itakura-Saito likelihood measure. It is also a fairly relevant measure since it is often 

used for speech recognition systems. Table 1 shows the results for white noise and 

5 dB SNR across a wide range of different speech segments. Original means appli-

cation of the Itakura-Saito measure comparing noisy and undegraded speech; Lim-

Oppenheim refers to the algorithm using no constraints; Hansen-Clements refers 

to the best of the algorithms currently studied; and True LPC refers to the afore-

mentioned theoretical limit. The numbers are in units of distance, with smaller 

being better and 0 meaning exace spectral match. As can be seen, the constraints 

considerably improved the enhancement. 

Figure 3 summarizes distance across a few of the test systems and SNR's. The 

clear winner (line e) used LSP constraints across frames (inter-frame) and auto-

correlation coefficient constraints across iterations (intra-frame). Figure 4 shows 

spectral subtraction, unconstrained, inter-frame-constrained, and inter-frame plus 

intra-frame-constrained across different SNR's. Again, the clear winner over all 

SNR's used the most constraints. 

A measure more relevant to speed quality is the Klatt measure, our weighted 

spectral-slope distance measure. It has shown consistently higher correlation with 

subjective quality data than have other more traditional measures (e.g., Itakura-

Saito). Data identical to that of figures 3 and 4 and table 1 were computed using this 

measure. Very similar results were obtained for the Klatt measure as the Itakura-

Saito measure. 

2 



Our continued work is how to apply the constraints to noise which is non- white 

and only short-term stationary. 

2 Recognition of Speech Components 

We have been developing and testing a new algorithm which is useful for better 

recognition of short-duration interior consonants. The technique is based on a pro-

cedure which approximates a discrete- state-continuous trial hidden Markov model 

and uses a bank of Kalman filters as a front-end. Please find the preprint for the 

ICASSP-87 paper attached. The important result is the reduction in error rate by 

a factor of six over more traditional models. 

3 Hidden Markov Modeling 

Computer work has continued on global Hidden Markov Modeling for speech anal-

ysis and coding. The computer code has been converted and transferred to a bigger 

and faster computer with less competition. In addition, a stronger theoretical basis 

for the work has been formulated. New methods for efficiency improvement (e.g., 

removing logarithms in many places) have been made possible as a result and have 

enabled substantial speeding up of the training procedure. 

3 
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With these assumptions, good enhancement took place in 2-3 
iterations. It is assumed that in a real-time environment how-
ever, noise spectral estimates could be gathered and updated 
during silent intervals. An important observation which could be 
made from this previous work was that as additional iterations 
were performed, individual formants of the speech decreased in 
bandwidth (see fig.1), resulting in unnatural sounding speech. 
Frame-to-frame pole jitter was also observed which contributed 
to unnatural sounding results. Also, the original technique 
employs no explicit frame-to-frame constraints. Since the origi-
nal algorithm already constrains the speech to be the response 
from an all-pole system, applying further constraints on the 
pole movements may improve the algorithms performance. One set 
of constraints were applied directly to the LPC poles. These 
results were quite encouraging, yet computationally intensive. A 
new approach for implementing the spectral constraints was 
formed by employing the line spectral pair (LSP) transformation 
as a method for representing the vocal tract spectrum. This 
method of specification allowed constraints to be efficiently 
applied to the speech model pole movements across time (inter-
frame) so that formants lay on smooth tracks. In addition, 
constraints could also be easily applied across iterations 
(intra-frame) on a frame-by-frame basis. 

Iterative Speech Enhancement 

Enhancement based on the estimation of all-pole speech 
parameters in additive white Gaussian noise was investigated by 
Lim and Oppenheim [1], and later for a colored noise degradation 
by Hansen and aements [2]. It was shown that the estimation 
procedures which result in linear eqUations without background 
noise, become nonlinear when noise is introduced. However by 
allowing a suboptimal procedure, an iterative algorithm results 
which possesses the property that the estimation procedure is 
linear at each iteration. 

Consider the statistical parameter estimation of speech in 
the presence of noise. Over a short-time basis, the speech 
signal can be represented as the following difference equation: 

s(n) = aT  s(n-1,n-p) + g w(n) 	 (1) 

where 	aT lai ,a2,...,ap] represents the all-pole predictor 
coefficients. Substituting the degraded speech into the speech 
model gives the following equation for the observation vector: 

yo  y(14-1,0) = 5(N-1,0) + d(N-1,0) 	(2) 
Yo  = a y(n-1,n-p) + g w(n) + d(n) - a d(n-1,n-p) 

where s(N-1,0) are N samples of original speech, and d(N-1,0) 
represents the additive background noise. The 2p + 1 unknowns 
include the predictor coefficients a, initial conditions for the 
predictor given by Si = 	and the gain factor g for the 
input excitation. 	Consider the case where all unknown 
parameters are random with a priori Gaussian probability density 
functions. The basic procedure used is a maximum a priori (MAP) 
estimator, which maximizes the probability density function of 

Abstract 

A new and Unproved iterative speech enhancement technique 
based on spectral constraints is presented in this paper. The 
iterative technique, originally formulated by Lim and Oppenheim, 
attempts to solve for the maximum likelihood estimate of a 
speech waveform in additive white noise. The new approach 
applies inter- and intra-frame spectral constraints to ensure 
convergence to reasonable values and hence improve speech 
quality. An extremely efficient technique for applying these 
constraints is in the use of line spectral pair (LSP) coeffi-
cients. The inter-frame constraints ensures more speech-like 
formant trajectories than those found in the unconstrained 
approach. Results from speech degraded by additive white 
Gaussian noise show noticeable quality improvement. 

Introduction 

The successfulness of an enhancement algorithm rests on the 
goals and assumptions used in deriving the approach. Depending 
on the application, a system may be directed at one or more 
objectives such as improving overall quality, increasing intel-
ligibility, reducing listener fatigue, etc. Three assumptions 
normally made include: i) that the noise distortion be additive, 
ii) that only the degraded speech signal is available, and iii) 
that the noise and speech signals are uncorrelated. In general, 
constraints placed on the speech model improve the potential for 
separating speech from background noise. However, such systems 
are also more sensitive to "deviations" from these constraints. 
The degradation considered is additive white Gaussian noise. The 
basis ,of the technique is an iterative enhancement approach 
based on noncausal Wiener filtering originally formulated by Lim 
and Oppenheim []]. This approach attempts to solve for the 
maximum likelihood estimate of a speech waveform in additive 
white noise using the constraint that the signal is an all-pole 
process. Crucial to the success of this approach is the accuracy 
of the estimates of the all-pole speech parameters at each 
iteration. One advantage of the Wiener filtering approach is 
that no "musical tone" artifacts are present after processing as 
can be observed in spectral subtraction techniques. In addition, 
under certain conditions, it can be shown that it is the optimal 
solution in the mean-squared sense for a white noise distortion. 
Although successful in a mathematical sense, this technique has 
received little application due to several factors. Fust, it is 
an iterative scheme with sizable computational requirements as 
opposed to a direct form such as spectral subtraction. Second, 
although the original sequential MAP estimation technique was 
shown to increase the joint likelihood of the speech waveform 
and all-pole parameters, heuristic convergence criteria had to 
be employed. After an extensive investigation [2], this approach 
was found to produce significant levels of enhancement for white 
Gaussian noise in 3-4 iterations. The technique was generalized 
to allow for colored aircraft noise. Various spectral estimation 
techniques where employed for securing estimates of the colored 
background noise and although the noise was not stationary, 
estimates were performed prior to application of the algorithm. 
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the parameters given the observations. Therefore, a,g,Sj are 
chosen to maximize the probability density function 
p(a,g,SilY0). The procedure requires that a be chosen to 
marirni7e p(alY0), noting that the estimate is conditioned on the 
noisy observations Yo . Using Bayes' rule, p(alY0) can be written 
as a product of terms involving p(Yola,g,S1). When the Gaussian 
density function p(Y ola,g,Si) is expanded, it can be shown that 
the mean and variance are functions of the predictor 
coefficients a. Therefore the resulting equations for maximizing 
p(alY0) are nonlinear, involving partial derivatives with 
respect to a. Lim and Oppenheim considered a suboptimal solution 
employing a two step approach based on MAP estimation of.  so  
given Yo, followed by MAP estimation of a given S o,where So  is 
the result of the first estimation. Observations indicate that 
this algorithm converges to a local maximum of the joint density 
p(a,SolY0;g,S1). In particular, if the probability density 
function is unimodal, and the initial estimate for a is such 
that the local maximum equals the global maximum, then the 
procedure is equivalent to the joint MAP estimate of a and S o. 
After some simplification, the MAP estimation of S o , based on 
maximizing the probability density function p(Solai ,Y0) which is 
jointly Gaussian in Yo, is equivalent to a minimum mean squared 
error (MMSE) estimate of So. Therefore as the observation window 
increases in length, the probedure for obtaining a MMSE estimate 
of s(n) approaches a noncausal Wiener filter. With this, the 
implementation of the algorithm is presented in Figure 2. This 
approach can also be extended to the colored noise case as 
shown. As indicated, the background noise spectral density must 
be estimated during non-speech activity. 

	

a) Dinorted Original (b) 2 Iterations 	(e) 4 Iterations 	(d) 8 Iterations 

Figure 1: Variation in vocal tract response across iterations. 
• 

As indicated, the sequential MAP estimation technique 
increases the joint likelihood of the speech waveform and all-
pole parameters, yet a heuristic convergence criterion had to be 
employed. Also, as additional iterations were performed, 
individual formants of the speech decrease in bandwidth as 
indicated in figure 1. Frame-to-frame pole jitter was also 
observed. Both effects contributed to unnatural sounding speech. 
The goal, therefore is to impose constraints on the pole move-
ments across time (inter-frame) and iterations (intra-frame), An 
initial approach was to limit the poles from moving too close to 
the unit circle by performing an off-axis spectral evaluation 
where the z-transform is evaluated on a circle further away from 
the poles of the spectral model. Other approaches considered 
included applying constraints directly to the pole radii and/or 
angular displacements in the L.PC model. Performance of such 
inter and intra-frame constraints lead to encouraging results, 
but at the expense of a pth order root-solve and a pole ordering 
step per frame for each iteration. Since root solving is not 
alwayi numerically accurate and ordering can be inconsistent 
across frames, a more robust approach was sought to implement 
these constraints. Previous success of the line spectral pair 
(LSP) transformation in speech coding by Crosmer [3], fed to the 
use of LSP's for this purpose. 

Line Spectral Pair Representation of Spectral Characteristics 

The LSP transformation may be viewed as an alternative 
representation of the LPC spectrum. The LSP coefficients are 
obtained from the LPC prediction coefficients by combining the 
forward and backward predictor polynomials as follows: 

	

P(z) A(z) + B(z), 	Q(z) — A(z) - B(z). 	(3)  

The vocal tract transfer function is given by g/A(z), and M is 
the order of the L.PC speech model. The resulting polynomials 
P(z) and Q(z), are symmetric and antisymmetric, respectively, 
with a root of P(z) lit z= +1, and a root of Q(z) at -1. The 
remainder of the roots of P and Q all lie on the unit circle. 
Since the roots occur in conjugate pairs, the original 
polynomial can be represented by M real numbers. The angles of 
the roots, faii, are called the line spectrum pairs. 

The ISP's possess several important properties which make 
them attractive for use in applying spectral constraints. One 
important characteristic is that if the vocal tract polynomial 
A(z) has all its roots inside the unit circle (i.e., a stable 
filter), then the roots of P and Q will be interleaved around 
the unit circle [3]. If two adjacent LSP frequencies are identi-
cal, it indicates that a root of A(z) lies on the unit circle. 

In addition to their attractive representation of the .LPC 
spectrum, the LSP coefficients offer the possibility of a more 
direct representation of perceptually important information. 
Specifically, their Es a firm statistical relationship between 
the locations and bandwidths of the speech formants and the 
locations of the roots of P and Q respectively. Since roots of 
the P polynomial correspond approximately to locations of for-
mant center frequencies (when a formant is present), the P 
polynomials' LS? coefficients are termed position coefficients. 
It can be shown that the closer • two LSP coefficients are 
together, the narrower the bandwidth of the corresponding pole 
of the vocal tract filter. Therefore, formants are indicated 
when two LSP coeffi cients are close together. When LSP coeffi-
cients are far apart, they indicate poles which contribute only 
to the overall spectral shape. Because of their relationship to 
the presence or absence of a formant by their nearness to a 
position coefficient, the coefficients of Q are termed 
difference coefficients. Given the LSP Coefficients, the 
position coefficients are simply the odd index LSP coefficients, 
{pi-t)2 .1 , ii=1,2,...,Mt2}. The difference coefficients are given 
as follows: 

	

{I di I = MIN ( I 	I ), i 	1,2,...,W2} (4) 
j --1,1 

where the sign of di is positive if air  is closer to wail, and 
otherwise is negative. With this interpretation, a new enhance-
ment technique based on Wiener filtering is now possible by 
imposing constraints on the LSP coefficients. 

Step 1: Estimate a i  from 
Use either i. first P values asdip initial condition vector 

or: ii. always mune Si w 0 . 

Step 2: I. Using hi, estimate the speech spectrum: 

	

P1(w) 	ss  

1 1- 	sa  eilw  1 2  
e-t 

IL Calculate pin term using Panevars theorem. 
Estimate either ,the degrading 

a.) white noise variance 4. or b.) colored noise spectrum Paw) 
from a period of silence dosed to the utterance. 

iv. Construct the nominal Wiener filter; 

	

Ps(w)
4 	

Pai) 
a.) H(w) 	.7 	b')  Kw)  - 	+-Ivo 

v. Filter the estimated Ter  er,clfi 01 to produce 11141. 
vi. Repeat until some 	• ied error aitezion is -tided, 

at<TIMINHOLD. 

Figure 2: Enhaneenaust Algorithm based on Al-pole modeling/Wiener 
filtering. a) a AWGN distortion b) a non-white distortion 

Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in 
the presence of noise, where all unknown parameters are random 
with a priori Gaussian probability density functions. It can be 
shown that MAP estimation of a, g, and Si given the noisy 
observatioiss Yo, results in a set of nonlinear equations. There-
fore, instead of joint estimation of a and S o, a suboptimal 
solution is formulated employing a two step approach based on 



MAP estimation of So  giviriYo, followed byMAP estimation of a 
given 'So, where So  is the result of the first estimation. Since 
speech can be considered short-time stationary, frame-to-frame 
spectral constraints may aid in enhancement. The new approach 
imposes such constraints on the vocal tract spectrum between MAP 
estimation steps. The procedure for obtaining the MAP estimate 
of a from MAX p(45 0;g,S1) remains the same. The next step is to 
apply spectral constraints to i t  which will ensure that; i) the 
all-pole speech model is stable, it possess speech-like 
characteristics (i.e., poles are not too close to the unit 
circle causing narrow bandwidths), and iii) the vocal tract 
characteristics do not vary wildly from frame-to-frame when 
speech is present. Due to this constrained approach, an improved 
estimate it  results. Given this new estimate, the second MAP 
estimation of So  given ij can be carried out by maximizing 
p(Solfi,Y0;g,Si). Since p(S0ilii,Y0;g,Sj) is still jointly 
Gaussian in Yo , the resulting MAP estimate is equivalent to a 
MMSE estimate of S o. Again, in the limiting case, the procedure 
for obtaining the MMSE estimate of s(n) approaches a noncausal 
Wiener filter. Once this new estimate of S on  is formed, the 
iterative procedure continues by re-estimating iY i, applying 
constraints to ii , and then forming the noncausal filter using 
ty, to re-estimate S0.1. This continues until some convergence 
criterion is satisfied. The procedure for implementing these 
constraints will now be addressed. 

Two classes of spectral constraints are considered; inter-
frame (across time), and infra-frame (across iterations). Two 
approaches are considered: a fixed frame rate, and a variable 
frame rate approach. In the first of these, the LPC predictor 
coefficients, a, are first converted to LSP position and 
difference coefficients. Next, each frame's energy is observed, 
and if it is above some threshold, it is classified as voiced 
speech; if it is below, then it is either noise or unvoiced 
speech. A local running count Li, is kept for the number of 
consecutive frames which fall below the energy threshold. If 
reaches Lam, then all subsequent frames below the threshold are 
classified as noise. This allows for further smoothing for long 
periods of silence. The position coefficients for each frame are 
smoothed using a weighted triangular window with a variable base 
of support (1 to 5 frames). If a frame has been classified as 
noise, maximum smoothing is performed. In addition, the lower 
formant frequencies are smoothed over a narrower triangle width 
than for those position coefficients at higher frequencies. This 
preserves perceptually important speech characteristics found in 
the lower formants. No smoothing is performed on the difference 
coefficients since they are more closely related to formant 
bandwidth than formant location. However, it is possible that a 
difference coefficient falls within a "forbidden zone," (i.e., 
the region within d ime  of a position coefficient). When this 
occurs, the LPC analysis has most likely overestimated the Q of 
a particular pole. Since this causes unnatural sounding speech, 
(as in the unconstrained approach), the value of !d i' is set to 
dhow  Finally, the position and difference coefficients are 
combined to form the constrained LPC predictor coefficients 11,. 

The second inter-frame constraint approach considered is a 
variable frame rate technique which takes advantage of the 
interpolation properties of the LSP coefficients. The speech 
signal is first divided into segments, where segments are chosen 
such that they are long when the speech spectrum is 'varying 
slowly and short when the speech spectrum is varying quickly. 
The LSP coefficients are reconstructed with linear interpolation 
used to compute the coefficients for intermediate frames. 

The segmentation algorithm begins with a step to determine 
the onset/offset of speech. This is carried out by thresholding 
the LPC residual energy, which produces relatively long seg-
ments. Next, the long segments are subdivided based on the 
curvature of the position coefficients. This is performed by 
computing a gain-normalized Itakura-Saito measure of the spec-
tral distance between the frequency response of two adjacent 
frames. The procedure continues by computing the distortion of  

position coefficients for successively longer segments until the 
distortion exceeds .a threshold TD. At that point, a subscgmcnt 
boundary is set, with the intermediate position coefficients 
reconstructed via linear interpolation. During this step, the 
length of a subsegment is also limited to L1  to prevent 
excessively long segments which might contribute to muffled or 
unnatural sounding speech. The advantage of this approach is 
that it incorporates more information from adjacent frames when 
the spectrum indicates similar characteristics. Yet, it also 
reduces the effects of adjacent frames when the spectrum is 
significantly different as in the case of a transition from 
unvoiced passages to noise. This in effect, distorts the 
position coefficients as little as possible when associated 
difference coefficients indicate the presence of formants. 
Difference coefficients for each frame, (or an average set 
across a segment) are used to compute the predictor coefficients 

The difference coefficients are required to be at least d b,oN 
 or greater in distance from adjacent position coefficients to 

ensure that poles from the LPC filter do not move too dose to 
the unit circle. 

Inter-frame constraints are applied to a single frame 
across iterations, and as such require the frames' previous 
estimates to be available. The motivation for such constraints 
is that. under certain conditions, pole locations for the same 
frame vary significantly from their previous estimated values. 
Since the present estimate of affects the next estimate of 
§0.1, sections of Sot  will also vary significantly across itera-
tions. In addition, previous results based on objective speech 
quality 'measures indicated that the unconstrained approach 
produced minimum objective measures at different iterations for 
different classes of speech. For example maximum overall speech 
quality was observed for additive white Gaussian noise in three 
iterations. This was also true for vowels and fricatives. 
However, glides required two iterations, nasals, liquids, and 
affricates between five and six. It is therefore desirable to be 
able to affect the convergence rate so that the best objective 
measure of quality occurs at the same iteration across all 
classes of speech. Improved quality as measured by objective 
measures may also result in improved estimation of A. By 
constraining the vocal tract filter to be a function .of its 
previous estimates, it may be possible to accomplish this. Two 
approaches are considered, one applied to the autocorrelation 
lags, the other to the position coefficients. The first approach 
simply weights the present set of autocorrelation lags with the 
same frame from previous iterations'. This technique is very easy 
to perform, since the autocorrelation lags must be computed in 
order to estimate the predictor coefficients a. The second 
approach weights position coefficients with those from the same 
frame but previous iteration. If the corresponding difference 
coefficient indicates the adjacent position coefficient to 
represent a formant, this approach has the effect of 
constraining the formants to lie along smooth tracks across 
iterations. 

Results 

Speech degraded by additive white Gaussian noise was 
processed using various configurations of the new constrained 
enhancement algorithm. Energy thresholds for inter-frame 
constraints were obtained from frame energy histograms at each 
signal-to-noise ratio. Excellent -enhancement resulted for a wide 
range of threshold values. Intra-frame constraints were applied 
across two to three iterations. Informal listening tests 
indicated noticeable quality improvement, although no intelligi-
bility testing has been performed. However, there has been 
extensive work carried out in the area of objective speech 
quality measures [4]. Good correlation has been shown to exist 
between subjective quality and objective measures. Therefore, 
objective measures including: the Itakura-Saito likelihood 
ratio, log area ratio, and weighted spectral slope measure where 
used for evaluation. Figure 3 illustrates a comparison of 
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typical results for the various constraint approaches. Itakura-
Saito measure is plotted versus signal-to-noise ratio for a 
white noise distortion. Plot a represents the original distorted 
speech. Plots b through e represent combinations of inter-frame 
constraints (both fixed and variable rate), and intra-frame 
constraints (applied to position coefficients/autocorrelation 
lap). All configurations examined showed significant 
improvement in Itakura-Saito measures. Threshold settings for 
the variable frame rate inter-frame constraint were somewhat 
sensitive to varying noise levels. However, the fixed frame 
approach by itself, and with either autocorrelation or position 
intra-frame constraints gave impressive results with little 
sensitivity to varying levels of SNR. In order to determine a 
limit on the level of enhancement, the original undistorted 
predictor coefficients a were used in the unconstrained 
algorithm. In essence, the two step MAP estimation approach is 
now reduced to a single MAP estimate of S o , and therefore 
represents the theoretical limit for enhancement using Wiener 
filtering. Plot f indicates this limit. Although only Itakura-
Saito measures are shown, similar improvement was also observed 
for log area ratios and weighted spectral slope measures. Figure 
4 compares the new approach to existing techniques. Plot b shows 
results from spectral subtraction as formulated by Boll [5]. An 
evaluation was performed for both half and full-wave 
rectification, along with one to five frames of magnitude 
averaging; where these points represent the best results. Plot c 
is from the unconstrained Wiener filtering technique. Plots d 
and e are fypical values for the inter-frame constraint (fixed 
frame rate), and inter plus intro-frame constraints (fixed frame 
and autocorrelation lags). Again f indicates the limit for the 
Wiener filtering approaches. 

Sound 
npe 

limbers-Saito Likelihood Measure 
Original Lim-Oppenheim Hansen-Clements 71-ite LPC 

Silence 1.634 1.649 0.842 0.319 
Vowel 4.020 3.299 1.651 0.582 
Natal 19.814 17.656 3.968 0.324 
Stop 7.261 3.979 1.099 0.435 

Fricative 3.739 3.509 1.766 0.649 
Glide 	• 1.525 1.442 1.131 0.705 
Liquid 9.597 4.545 0.998 0.303 

Affricate 3.924 2.702 2.229 0.323 
Voiced + Unvoiced 5.838 4.293 1.761 0.519 

Total 4.022 3.151 1.364 0.433 
SNR=+5dB 

fable 1: Comparison of algorithms or aound types for white Gaussian noise. 

4.0 	0.0 	3.0 	10.0 
Signal-to-Noise Ratio 

Figure 3: Comparison of constraint algorithms over SNR. 
a.) Original Distorted Speech 
b.) Inter-Frame Constraint: Variable Frame 
c.) Inter-Frame Constraint: Fixed Frame 
d.) Inter & Infra-Frame Constraints: Fixed Frame, Politico 
e.) Inter & Intra-Frame Constraints Fixed Frame, Autocorrelation 
f.) Theoretical limit: using undistorted LPC coefficients, a. 

PerforMance evaluaiiOn over sound classes was accomplished 
by hand partitioning speech into segments. Entire sentences were 
processed, and objective measures from each class were computed. 
Table 1 summarizes this comparison between the unconstrained 
Lim-Oppenheim technique to that of the inter and intra-frame 
constraint approach. Measures for the theoretical limit using 
undistorted LPC predictor coefficients a are also indicated. 
Improvement is indicated for all types of speech. In addition, 
the constrained approach produced superior objective measures of 
quality across all speech classes at the same iteration. These 
results dearly indicate improvement over the unconstrained 
approach as well as spectral subtraction for additive white 
Gaussian noise. . 

Conclusions 

The application of spectral constraints to noncausal Wiener 
filtering results in improved speech enhancement. Informal 
listening tests along with objective measures such as Itakura-
Saito and log-area-ratio's show improvement over the 
unconstrained technique. By using the Line Spectral Pair 
transformation, a modest increase in computational requirements 
results in significant improvement in speech quality. This 
approach to pole movement constraints is quite robust over 
direct methods applied to pole radial/angular movements. 
Finally, this approach may be useful in enhancement for human 
listeners as well as a preprocessor for speech recognition. 
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Figure 4: Comparison of enhancement algorithms over SNR. 
a.) Original Distorted Speech 
b.) Boll: Spectral Subtraction, using magnitude averaging 
c.) Lim-Oppenheim: Unconstrained Wiener filtering 
d.) Hansen-Clements: employing Inter-Frame constraints 
e.) Hansen-Clements: employing Inter & burs-Frame constraints 
f.) Theoretical limit: using undistorted LPC coefficients, • 
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Abstract 

Traditional hidden Markov model speech recognition is 
generally based on a set of parameters (often LPC related) 
which are extracted at discrete intervals. Such an analysis 
necessitates use of a discrete-trial hidden Markov model in 
which the underlying states can only change at intervals re-
lated to the frame rate of the analysis. The exact locations of 
the analysis windows used can influence the front-end outputs 
and as a result can cause confusion between words differing in 
short-duration consonants. In the current study, an alternate 
method which does not require segmentation is proposed, and a 
simple version is implemented. The discrete trial hidden Markov 
model algorithms are adapted to this framework leading to 
significantly Unproved recognition performance. 

Introduction 

Over the past few years, the method of choice for many 
peech recognition applications has been based on hidden Markov 
nodding. Steady improvement has been reported in such areas as 
peaker independence, noise handling, training and response 
imes, as well as general performance. The first HMM based 
ystems modeled speech as a discrete state discrete trial 
/farkov process with discrete observations. Recently, new models 
thick allow a continuous distribution of observations have been 
resented. Although the methods for accomplishing this differ, 
ley all eliminate the vector quantization step and virtually 
11 report improved performance. Throughout all these models, 
owever, the assumption remains that sampling the parameteriza-
on of the speech (e.g., spectral or LPC based parameters) is 
nly necessary every 10 to 30 milliseconds. When words differ 
Lily by a short duration interior consonant, however, the exact 
lacement of the analysis windows can have an impact on perfor-
tanc.e. The current study is the result of an attempt to climi-
ite these windowing effects in an efficient manner. The front-
id is based on a Kalman filtering model which produces an 
itput for every sample point. The matching algorithm can be 
insidered an approximation to a discrete state continuous 
ansiiion hidden Markov modeling technique. 

ront•nd Analysis 

A general autoregressive representation of speech can be 
ised on a model of the form: 

2(k) A(k)A(k-l) +11(k)nfk) + .a(k)(k) 	(I a) 

y(k) '.thk)2(k) v(k) 	 (1 b) 

sere the vector i(k) 4. [x(k), x(k - I), 	x(k - p + 1)1T, 
k) is speech without noise, u(k) is a periodic input and B(k) 
gain, w(k) a noise input and 0(k) its gain, c(k)-(1, 0, 0, 

rying vocal-tract filter. The sequence y(k) is the digitized 
mch and is the same as x(k) with no observation noise. 

Systems similar to this have been used to model many 
varied signals arising in innumerable applications. In the 
linear prediction synthesis model A(k) remains constant over 10 
to 30 millisecond intervals, one of u(k) or w(k) is usually set 
to zero, and v(k) is Zero. In the LPC analysis model, u(k) and 
v(k) are generally assumed to be zero so that A(k) can be 
estimated every 10 to 30 milliseconds. Recursive linear least 
squares estimation based on the general model falls within the 
general area of Kalman filtering, which allows one to effi-
ciently compute the least squares estimate of x(k) from the 
least squares estimate of =(k-l) and y(k). The property we wish 
to exploit is that if we have modeled the system correctly, the 
prediction error, v(k), would be white. Even if the system 
model is correct, the prediction error signal v(k) will not be 
zero due to the noise terms. It should have a predictable ratio 
of its power to the unfiltered signal's power, however. If 
there are L possible models from which the observed signal was 
generated, this idea can be used for computing the relative 
likelihoods of each model given the observed signal. Denote 
v.(k) the prediction residual (innovations sequence) for system 
i lgiven observatons y(1), y(2),..., y(k), and pi(k) the proba-
bility of system i given y(1), y(2),..., y(k). It has been 
shown [1] that 

N(vi(k),Vi(k))pi(k) 

Kv (10, V4))Pi00 

where Vi(k) is the variance of vi(k) if model i is correct, and 
N(a,b) represents the Gaussian density of mean zero and var-
iance b evaluated at a. Computation of Vi(k) and vi(k) can be 
performed recursively using the Kalman filtering equations, 
with Vi(k) computed off-line. It should be noted that if v(k) 
and u(k) are set to zero, and A(k) and G(k) are allowed to 
change only at abrupt intervals, then vi(k) becomes and LPC 
residual for model i. 

Choosing the value of i which maximizes pi(k) is in many 
ways like implementing an LPC vector quantizer. Several inpor-
tant differences exist, however. First, different forms of the 
models can be used. This would, for example, allow different 
order models for different sounds. Second, periodic components 
could specifically be put into some models through u(k). Third, 
additive colored noise can be modeled explicitally. Fourth, 
A(k) can be a time varying transition matrix which could be 
used in a manner similar to matrix quantization in speech 
coding. And fifth, the probability calculations via equation 
(2) is not merely an Itakura distance. The above described 
procedure has been applied with success to cardiac arrhythmia 
detection [2] and stochastic aircraft control [3]. 

Despite the potential power of this technique, a number of 
difficulties remain. Most notable is the training procedure for 
the models appropriate to speech. Since this research was 
intended mainly to study the effects of eliminating the windows 

pi(k+ 1)  	 (2) 



from the speech analysis, a greatly simplified model was adop-
ted. The adoption of this simplified form of equations (1) 
should in no way be construed to mean that more elaborate 
models could not be trained, but merely that it was deemed more 
appropriate to use simple models in a first set of experiments. 
The models used were: 

.1(k) = A(k)a(k-1) + frE(k) 
	

(3a) 

y(k) C.T.1(k) 
	

(3b) 

where 3ET(k) [w(k), w(k-1),..., w(0)] and the sequence w(k) 
is white Gaussian noise of zero mean and variance q which is 
uncorrelated with all values of x(m), m<k. 

a(1) 	a(2) a(p) (4) 
1 	0 0 

A = 0 	1 0 

0 	0 	1  0 

LT - 	 [1, CI, 0, ...] (5) 

1 	0 	0 (6) 
0 	0 	0 

G 

0  

	 0 

The Kalman 

Q = 	  
o 	0 	0 	 (7) 

0 	 0 

filtering equations become 

v(k) = y(k) - fT1(kik-1) (8a) 

1(clic) =_Eklk-1) + M(k)v(k) 	 (8b) 

t(k+ ilk) = Al(k1k) (8c) 

V(k) = CT P(kilc-1).0 	 (8d) 

M(k) = P(kIk-1) gl V-1(k) 	 (80 

P(klk) = P(Icilc-1) - NI(k) LT  PT(klk-1) 	(8g) 

P(k+ 1k) I.  A P(klk) AT  + G Q GT 	 (8h) 

where „t(i/j) is the best estimate of .x(i) given y(0), y(1),..., 
y(j); and P(i/j) is the covariance matrix of A(i) given y(0), 
y(1),..., y(j). If white observation noise of variance Z were 
included, equation (8d) would merely have a Z added. The last 
four of these equations are computable off-line. The only 
training that needs to be done is for the A matrices, which are 
all of the same form. It was decided that the values a(1), 
a(2),..., a(p) for all L models could be computed by training a 
pth order LPC vector quantizer with L codewords. In this study, 
L was 64 and p was 10. The vector quantizer training was done 
on speech produced by one talker speaking roughly 40 seconds of 
continuous speech. Twenty millisecond Hamming windows were 
applied every 10 milliseconds. Vector quantizer training was 
accomplished using a binary split algorithm. It may seen at 
this point that the use of windows and frames in training is 

counter to the goals of the model. However, since so many 
frames were used in training (40,000), and since such a large 
number of different frame positions were sampled, a highly 
representative set of systems was undoubtedly compiled. 

The recursion of equations (8) were initialized using 

RO 

R1 

R9 

R1 

RO 

R8 

R2 

R1 

R7 

R9 

R8 

RO 

(9) 

where R. is the ith autocorrelation lag. 
Thel  variance in equation (2) is linear with respect to the 

signal power, and should be normalized. This was done using a 
second order window on the squared signal whose z-transform was 

1 	
(10) Trairrjr- 

The time constant was roughly 10 milliseconds. 
Another issue dealt with how the system should be con-

strained so that it would not "lock an" to a specific model and 
make it difficult to track a change of model. Following [2], we 
set limits on the maximum and minimum values p.(k) could 
achieve. A post-analysis of results, however, showell this step 
to be of little consequence in the current system. 

The system described above was implemented and used to 
analyze some continuously spoken sentences. The output of the 
analysis consisted of one 6-bit number for every speech sample 
analyzed (8,000/second). Several observations are worth point-
ing out at this time. First, long runs of the same codeword 
(greater than 10 milliseconds) were usually seen in fairly 
steady-state portions of the speech. However, in transition and 
many consonant regions, codeword runs could be very short (less 
than 2 milliseconds). Second, voiced sounds usually produced a 
string of codewords which were one value for most of of the 
pitch period, and another for the remainder orthe period. This 
behavior seems reasonable since periodic input was not put into 
any of the models. Third, speech could be synthesized from the 
strings of codewords by simply inputting noise into equations 
(3) and allowing the filter to change every sample. Although 
poor in quality, this speech was superior to that produced by a 
conventional 6-bit LPC vector quantizer updated every 10 milli-
seconds. 

Hidden Markov Modeling 

In some versions of the bidden Markov model speech recog-
nizers, a vector quantizer codeword every 10 to 30 milliseconds 
is all the recognizer or training procedure sees. The system of 
the current study can supply a recognizer with a codeword every 
speech sample and hopefully eliminate windowing artifacts . 

Unless a method could be formulated which would reduce the 
computational burden by at least an order of magnitude, how-
ever, such an expansion of data would be quite unmanageable . 

Such a method which exploits the fact that codewords often come 
in long bursts will be presented below. 

Notation 

Due to the use of certain symbols in the earlier part of 
this paper, it is necessary to use some non-standard notation 
to avoid confusion. For a discrete state discrete transition 
discrete observation hidden Markov model, we must define: 



(15) 

n = number of states 

Nv number of possible observations (vectors) = 64 

ni  =. probability the model starts in state i, and 

if - [n i , n2 ,.. , nn] 

T = transition probability matrix, where : 

Tii  = probability of transit from state i to state 
j in one trial; i=1,...,n; j=1,...,n. 

B observation probability matrix where 

b 	= probability of observing codeword k given 
state j 	bi(k). 

0(t) = codeword observed at time t. 

R(t) = observation matrix, consisting of: 

R(t) — diag[b1(O(t)), b2(0(t)),..., bn(0(t))] 

The transitions were constrained to be left-to-right making T 
upper triangular. 

For a given model M, and observations 0(1), 0(2),..., 
0(F), we define 

aT(t) 	[ni(t),..., an(t)] 

ai(t) — prob[0(1),0(2),...,0(t) / state i at t] 

ElT(t) = 	On(t)] 

BM) = prob[0(t+ 1) ,O(t+ 2),..., 0(F) / state i at t] 

Pr[0(1),0(2),...,0(F)] 	eti(t)13 i(t) 	 (11) 
i=1 

In matrix form 

Pr[0(1),0(2),...,0(F)] 	T R(2) ...T R(F)a(F) 

alr(t) = lirR(1) T B(2)...T R(t) 

laT(t) = T R(t+ 1) T R(t+2)...T R(F) a(F) 

In the left-to-right model 

IIT  = [1,0,...,0] and raT(F) - [0,0,...,1] 

Recognition Stage 

In the recognition stage, the goal is to find which Markov 
model is most likely given the sequence of observations: 0 = 
[0(1), 0(2), ...]T. The computation is reduced basically to 
finding prob[ONI] for each model. For this only the set of 
matrix multiplies in equation (12) need to be carried out. 

Throughout this probability calculation, the matrix T 
remains constant. Also, the matrices R(t) are the same for many 
consecutive values of t. Consider now equation (12) decomposed 
as follows: 

Pr[0] = MR(1) T R(2)...R(i) T]• 
	 (16) 

[R(i+] . ) T R(i+2) T...R(j) T]• 

[...][...]...[...T R(F) 	11(9i 

where the sets of matrices within the square brackets corres-
pond to times over which the observations remain constant. The 
products can be evaluated quite efficiently. Consider the par-
tial product 

	

[R(i+ 1) T R(i+2) T...R(j) T] 	(17) 

which is equal to 

(18) 

The matrix T is upper triangular and R(j) is diagonal. There-
fore R(j)T is upper triangular. If the diagonal elements of 
R(j)T are distinct, then it can be diagonalized such that: 

R(j)T PDP-1  where D is diagonal with its elements the 

same as the diagonal elements of R(l)T. Therefore: 

	

[R6)T11-1  PDHP-1 . 	• 	 (19) 

Stated in terms ,cif the partial forward probabilities: 

If 0(t+ 1) = 0(t+2)- — 0(t+m), then 

12(t+ m) = a(t)[T R(m)] nl  CIO+ nO Ci(t)Penrl  . (20) 

Since the matrix P is comprised of orthonormal eigenvectors, 
its inverse is merely its transpose. Also, since the eigenval-
ues are the diagonal entries in the upper triangular matrix, 
the eigenvectors are obtainable by an efficient recursion. 
Throughout this procedure, as in other hidden Markov mode] 
based systems, scaling must be done to ensure no underflow. 

Training Stage 

For training, we use a variant of the Baum-Welch reesti-
mation procedure. At each iteration, ; and b i(k) are 
estimated based on the previous estimates and the observa-
tions. In summary  

	

T. • — — 	 (21) 
0 	11 

a .(t)B .(t) 
tE0(t)=X 

6.(k) 
F 

.(t)0.(t) 
t-i 

1 F-1 

	

where 74  = F. 	ai(t)rippo+ imyt+ 1) 	(23) 
t-1 

and yi  = 	yij  
j=1 

Here "hi  is the expected number of transitions from state i to 
j, and yi  is the number of transitions out of state i. 

If these equations were used directly, a large computa-
tional burden would exist, since the sequence of observations 
is so long. However, all equations (21) through (24) denote 
are sample averages. We therefore do not need to compute the 
sums over all possible terms, but rather over only a sampling. 
Denote the modified terms by 

-1,../4 T..11  and 5nk) 

	

' 	l 	• 

(22) 

(24) 



1 (Flyr 
Y..= 	ai(r t) tii  

111 
t 

F 
I•ht  = . Yij j=1 

M 

1J = 	-y- 

6.((0(r1+ 1)) 13 .(rt + 1)) 

and 

(25) 

(26) 

(27) 

rithm, the computation time is still a few  times larger than 
with the standard procdure. 

On so small a data-base as we have been working, conclu-
sions are perhaps hard to draw. The reduction of the error rate 
by a factor of 6.5„ however, strongly suggests the new method 
is superior. Although cto direct tests were run using continuous 
density observation probabilities, reported improvements over 
discrete observation probabilitiy models are usually by a much 
smaller factor. 

References 

Please note thitt we are now sampling equation (23) every r 
units. Similarly, 

mkt) fl i rt) 
tE(0(tr+1))=k 

kEt.m( ) =  	(28) 

ai(rt) Opt) 
t=1 

In equation (20) we showed how to compute the values of eL(t+ m) 
from a(t) if 0(t+1) = 0(t+2) 	0(t+M). 
In a similar manner, 

Ei(t) -  [Pt+ 1 Dt-1-1
m P

t+1-1 5" m) 	(29) 

if 0(t+1) = 0(t+2) 	= 0(t+m). 

Therefore, the recursions for computing the forward and back-
ward partial probabilities can be performed efficiently. 

Experiments 

To evaluate the system, we used a set of isolated nonsense 
words differing only in an interior consonant. We chose this 
task due to the difficulty often encountered in identifying 
such utterances, and also because we felt our overall procedure 
was formulated to solve just such problems. The set of words 
were of the form /h/-C-/r/ where C represents a consonant, 
including: /b,d ,g,p,t ,k ,r,w,1 ,j ,s ,s ,f ,z ,z ,v ,-y ,ts,di,h,m ,n/. 
These 23 words were spoken twenty times each in two separate 
sessions (one for training, one for testing) by one male 
talker. The utterances were filtered and digitized with 12-bit 
precision at an 8KHz sampling rate. 

In parallel with the development system to be tested, a 
more standard HMM recognition system which accepted as input 6-
bit vector quantizer codewords every 10 milliseconds was 
trained and tested. (This latter system was a highly debugged 
piece of software developed for other purposes over the last 
two years.) In both systems, five state left-to-right models 
were used. 

In the standard system, 46 errors were recorded for 90% 
correct. Twenty-seven of these errors were fricatives being 
confused with other fricatives. In the new system, 7 errors 
were recorded for 98.5% correct over the same data. The errors 
were too few to see a clear trend. 

Discussion 

We have explored one possible method for approximating a 
continuous transition hidden Markov model for speech recogni-
tion. An important component of this method was to allow a 
virtually continuous stream of input to be input to the recog-
nizer. The Kalman filter approach is but one of many methods 
which could be used. We freely admit that we have not at this 
point explored very deeply into the many variations possible in 
the Kalman filter model, however. Although our various simpli-
fications led to increased efficiency in the recognition algo- 
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Three major components of the project to date have been: 

1. Investigation of improved enhancement techniques, 

2. Recognition of components of speech, and 

3. application of Hidden Markov Modeling. 

1 Enhancement 

Please find attached a comprehensive summary of our work to date on speech en-

hancement. (It is copied from a portion of J. Hansen's thesis proposal). In summary, 

we have been able to demonstrate a method which by all measures we have em-

ployed, yields superior results to other single microphone methods. In an earlier 

report, we stressed that the new technique, which employs spectral constraints, has 

better performance than spectral subtraction or the Oppenheim-Lim unconstrained 

methods. We have recently demonstrated that the optimum terminating iteration 

1 



is consistent across the new method, over a wide range of SNR's and speech char-

acteristics (see pages 104 and 105), making it a much more viable technique. In 

addition, we have demonstrated its effectiveness in a colored noise environment. 

2 Recognition of Components of Speech 

The continuous transition hidden Markov model has been expanded in several ways. 

First, front-ends other than Kalman filtering have beem implemented. Recursive 

least squares, recursive autocorrelation function estimation, and inverse filtering 

have all been used. Kalman filtering still appears to be the best method, especially 

in the presence of additive noise. A new HMM training method which is more 

efficient has been formulated and is being implemented. 

3 Application of Hidden Markov Modeling 

We have been successful in synthesizing intelligible speech using 1.8 bits per spec-

tral frame, or 180 bits/second, using a global HMM. More efficient computational 

methods are being implemented currently. 
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Summary 

A computerized speech processing system which would perform in a manner 

comparable to that of a human being would need to analyze the speech waveform 

not only as a signal but also as a highly complex encoding of structured knowledge. 

The great fuzziness of the acoustic waveform hides a deep structure hierarchically 

organized around linguistic constraints. 

This research project attempts to uncover the hidden speech structure from 

the observed speech waveform automatically, by defining acoustic units and iden-

tifying the rules governing the associations and interactions of these units. Due to 

the complexity of the problem, the very high number of "parameters" to identify 

and derive, and a linguistic science still in its infancy, a probabilistic and statisti-

cal approach was preferred over a deterministic approach. The speech waveform 

(known as the set of observations) and the acoustic units (known as the states) 

go through a double chaining process modelled by a first-order hidden stationary 

Markov chain. A stochastic model known as a hidden Markov model (HMM) is 

derived and applied to continuous speech. The following four fundamental prob-

lems of HMM's are addressed: estimation of the model parameters, determination 

of the state structure from the speech waveform, synthesis of intelligible speech 

from a state structure, and interpretation of the state representation. 

Many applications of such a global 64-state, 1024-observation HMM of speech 

are envisioned: automatic speech segmentation, speech analysis, noisy speech en-

hancement, and continuous speech recognition. However, only the application 

of this research to very-low-bit-rate speech coding is discussed in detail. The 

maximum likelihood estimate of the model is experimentally shown to be also a 

minimum entropy estimate. Intelligible speech was synthesized from the encoding 

of the spectral information requiring as little as 1.7 bits/frame. Specific states and 

state-structures were identified as a consistent description of specific sounds (like 

vowels) and modelled the actual duration of the sounds quite well. 



The code of speech resides in its sounds. Thus a deep under-

standing of speech communication depends on knowing the sound 

patterns of the speech code. J.M. Pickett 

Ainsi le langage est une simplification complexifiante qui permet 

d'utiliser une partie de Phyper-complexite cerebrale, de construi-

re/reconstruire une nouvelle complexite discursive, et ainsi de dia-

loguer avec la complexite du reel. E. Morin 

The key problem of scientific development is the problem of how 

the structure of human consciousness and language evolve ... 

V. Nalimov 

Ce qui est bien connu, justement parce que bien connu, n'est pas 

connu. Hegel 

Quel beau sujet de dispute sophistique to nous apportes 

Menon; c'est la theorie selon laquelle on ne peut chercher ni ce 

qu'on connait, ni ce qu'on ne connait pas: ,ce qu'on commit parce 

que, le connaissant, on n'a pas besoin de le chercher, ce qu'on ne 

connait pas parce qu'on ne sait meme pas ce qu'on doit chercher. 

Platon 



CHAPTER 1 

Introduction 

The idea of man-machine communication by speech has been on the minds of 

scientists and engineers for quite some time [2]. The naturalness and ease of such 

a communication means makes it attractive. Unfortunately the elusive simplicity 

of natural speech escapes us when it comes to designing artificial speech processing 

systems. As stated by Akmajian et al. [4, p.493]: 

"Speaking and understanding our native language is so spontaneous 

and apparently easy that we are completely unaware of the remarkably 

complicated tasks carried out by the human brain to make it possible 

for us to use language so freely and effortlessly." 

This remark points out several important facts about speech. Speech is a language, 

that is, a complex mechanism for encoding information. This encoding mechanism 

allows reduction, storage, and retrieval of information so that the brain can be 

provided with an internal representation of concepts describing part of the world 

human beings deal with. The communicative side of speech can be represented 

by the message model of human communication depicted in figure 1.1. A block 

diagram representation is given in figure 1.2. The message model of human com-

munication between a speaker (transmitter) and a listener (receiver) can help us 

identify basic properties of spoken languages. The brain possesses an abstract 

internal representation of the world. It has the ability to generate and use know-

ledge and concepts, being possibly triggered by the influence of external stimuli 

1 
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provided by the human senses. On the speaker side, the process of information 

coding occurs in the brain: the internal representations are converted in highly 

complex ways into neural electrical waves sent through the whole nervous system. 

The neural signals in turn continuously drive the speech production apparatus de-

scribed in figures 1.3 and 1.4. As a result an acoustic sound wave is produced and 

transmitted, possibly with corrupting noise, to the listener through the communi-

cation channel (for example, open air or a telephone line). The acoustic wave, in 

terms of signal processing, is represented by the speech waveform. The waveform 

is a noisy measure, as a function of time, of the acoustic pressure of the air at a 

given position in space; it is recognized as encoding most of the significant speech 

information. The speech signal is either the input or the output of classical digital 

speech processing systems. On the listener side, the process of human communica-

tion is reversed , converting the acoustic sound wave into internal representations 

as shown in figure 1.2.b. For the purpose of man-machine communication, either 

the speaker can be removed and replaced by a "speaking machine," or the listener 

can be removed and replaced by a "listening-understanding machine." Here the 

word "machine" stands for currently available digital computer or special purpose 

DSP hardware. 

A DSP implementation of the listener side of the message model of human 

communication is shown in figures 1.5, 1.6, and 1.7. The incoming speech signal is 

analyzed by an Acoustic Processor (AP) to generate acoustic patterns (or states) 

Xn . These patterns are encoded efficiently into acoustic codewords through the 

Bit Allocator (BA). The codewords are processed through a Linguistic Decoder 

(LD) to derive classical linguistic representations of speech (such as phonemes, 

words, etc). Finally a meaning is derived from the structure of the linguistic unit 

representations, and encoded using internal representations, to build or augment 

the internal knowledge database. In this research project, our emphasis will be on 

the design of the acoustic processor and the bit allocator. Some features pertinent 
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to the linguistic decoder might also be presented. Our approach will be to separate 

the acoustic processor into two independent systems: the acoustic pre-processor 

(APP) and the hidden Markov model processor (HMMP) — see figures 1.6 and 

1.7. The acoustic pre-processor — also referred to as the classical acoustic pro-

cessor — samples (and possibly quantizes) the continuous speech waveform at the 

Nyquist rate. The digitized waveform is analyzed by Linear Predictive Coding 

(LPC) [95,98,116]: the speech waveform is divided into frames' and a parametric 

model — such as a 10th order all-pole linear filter — is derived for each frame. In 

each frame the speech is assumed quasi-stationary. Independent successive models 

for consecutive frames are concatenated together to form the overall time-varying 

representation of speech. A vector quantizer (VQ) [30,96,151] selects from a finite 

codebook of parametric representations, the parametric representation closest to 

the actual representation. This classical acoustic processor, although it models 

speech as a signal quite efficiently, fails to model speech as a language. For one 

thing, it basically ignores the time dependencies between consecutive frames. In 

other words, the classical AP takes advantage of the acoustical (short term) struc-

ture of the speech waveform, but not its (long term) linguistiic structure. Although 

recently, speech coding schemes, such as matrix quantization [151] and segment 

vocoders [129,130,40], have tried to take advantage of the frame dependencies, 

they lack flexibility and generality. In this research we will try to emphasize the 

idea that the speech waveform is a representation of a language. A language will 

be seen as a set of units related to one another through a set of rules, dependen-

cies, and relationships. Part of the speech knowledge will be encoded into (the 

nature of) the units themselves, but most of the speech information will be en-

coded into the relationships between these units. As opposed to a local model of 

speech based on a single frame, the HMMP will build a global model based on 

the overall continuous speech structure. As will be seen later, the HMMP will en-

code the speech knowledge into a network of nodes and connections between these 

lUsually 15ms frames of 120 samples, for a sampling rate of 8klis. 
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nodes. To summarize, the HMMP defines and extracts acoustical units and the 

rules of their associations. The APP generates a representation of the acoustical 

units. Now, what kind of dependencies are we referring to? These are long term 

dependencies involving several speech frames. On the contrary, short term depen-

dencies refer to dependencies between samples of the speech waveform, in a single 

:frame, such as the ones modelled by LPC. Short term dependencies relate to the 

signal aspect of speech, long term dependencies to its language aspect. Not only 

should we consider the dependency of the present speech on its past, but also on 

its future. This is known as the "planning ahead" phenomenon. At a given instant 

in time, a speaker has a "picture in mind" of what he plans to say. Therefore a 

present sound pattern is influenced by past but also future sound patterns. One 

consequence of such interactions is coarticulation: one sound pattern is modified 

and adapted to fit the upcoming next sound, or the next sound is started before 

the previous one is finished. 

Speech structures and dependencies also emerge from linguistic constraints. 

Most linguistic theories [4,94,97,113,137] interpret speech as a language hierarchi-

cally structured around the following five sources of knowledge: 

• Phonology: the study of the structure of the sounds of a language based on 

a finite number of elementary sound patterns: the phonemes. 

• Morphology: the study of the structure of words based on a finite number 

of constitutive parts known as morphemes. 

• Syntax: the study of the proper ("grammatical") structure of sentences. 

• Semantics: the study of meaning in a language. 

• Pragmatics: the study of a language use as a means of communication. 

These various sources of knowledge interact in a complex way, as noticed by Ak-

majian et al. [4, p.466]: 
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"At every level — phonological, morphological, syntactic, semantic, 

and pragmatic — human language is an intricate system of abstract 

units, structures, and rules, used in an equally intricate system of com-

munication ." 

The use of the sources of knowledge, to derive meaning from speech, is neither 

sequential nor parallel, but hierarchical. Nalimov [106, p.161] stated: 

"One of the most important attributes of language symbol systems is 

the manifestation of hierarchical structure." 

Including part of this linguistic-like structures into the AP would facilitate the 

implementation of the LD greatly. A hierarchical block diagram of a LD is shown 

in figure 1.8. In the message model, when the listener decodes the speech signal, he 

uses not only the incoming speech waveform, but also his internal knowledge of the 

linguistics of the language. Similarly when the speaker generates a speech signal, 

he uses his knowledge of linguistics to constrain the output speech waveform. In 

other words the production of the speech waveform is partly driven by linguistic 

constraints. The speech waveform is an observed surface representation of an 

underlying, hidden, and complex linguistic structure. This research will attempt 

to identify the reflection of this structure on the acoustic waveform with a global 

hidden Markov model of continuous speech. As summarized by Levinson [87]: 

"...a linguistic theory of speech had emerged according to which all 

spoken language was viewed as a composition of a :relatively small 

number of primary symbols of which measurable acoustic events were 

correlates and which could be combined according to well-defined sets 

of rules. ...Models of this type [HMM's] are particularly appropriate 

for describing the speech signal since the actual sound pressure wave 

that we measure is merely an encoding of some underlying symbolic 

process occurring in the unobservable and completely mysterious re-

cesses of the brain. ...Thus the observable process will attempt to 
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account for the measured physical correlates of the underlying linguis-

tic structure which is to be explained by the hidden process." 

Another important characteristic of a written or spoken language is that it 

can be represented by a finite set of discrete symbols, the so-called fundamental 

units. A written language can be described in terms of the letters of the alphabet, 

in terms of morphemes, words, etc. The sounds of a language can be described 

in terms of phonemes, diphones, etc. However, the correspondence between these 

discrete phonemes and their continuous counterpart — their acoustical realization 

into the speech waveform — is difficult to establish. The concepts formed in the 

brain are inherently "discrete objects." The speech encoding mechanism tranduces 

them into "continuous objects." The neural signals which drive the speech produc-

tion apparatus, the acoustic speech wave, and the speech waveform are continuous 

in nature (at the macroscopic level). However, they represent discrete objects. The 

speech waveform segmentation — such as the detection of word boundaries, — and 

the automatic extraction of phonemes from the continuous waveform, is a difficult 

problem. When listening to a foreign language, for which one does not have a 

priori knowledge, speech appears as a continuous flow of sounds. Discrete acous-

tic units, at a deeper level of abstraction than phonemes, should be defined if a 

speech model is to perform the transduction continuous 4-0 discrete characteristic 

of a language. The classical sampling and frame division of the speech waveform 

does not provide the desired discretization of the speech into globally meaningful 

(i.e., related to language and linguistics) acoustic units, but merely provides a 

digitization meaningful in terms of a signal, which could be something other than 

speech. Finally these acoustic units should not be expected to be absolute units, 

like classical physical units; they should capture the variability of the acoustical 

realization of the underlying corresponding unit. 

To summarize, speech is a complex continuous acoustical encoding of the 

discrete units, rules, and hierarchical structures of language. An efficient model 
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of the speech waveform should be able to identify discrete acoustic units from 

the continuous speech signal. Moreover, these units and the rules governing their 

associations should be meaningful in terms of the linguistic constraints of the lan-

guage. This research project will investigate for that purpose a probabilistic model 

known as a hidden Markov model (HMM). An H7vIM sees the speech waveform as 

the surface realization of an underlying hidden language structure. The observed 

speech is described by proper representations of the signal called the observations. 

The hidden structure (the acoustic units) is described by the states of a Marko-

vian process. The rules of associations of the states are probabilistic and described 

by the transition probabilities of the Markov chain. The interaction of the hid-

den structure with the surface structure is described by a probabilistic function 

of the Markov chain characterized by output probabilities. The evolution of the 

state sequence should account for the non-stationarity of the speech, by allowing 

different observation distributions in each state. To achieve the characteristics 

described above, the model should be globally derived from a long training corpus 

of continuous speech. The level of abstraction of the states will be the level of the 

speech frame (15ms frames, i.e., 67 states per second; on the basis of 10 phonemes 

per second, it represents roughly 7 states per phoneme). Discrete HMM's (i.e., 

HMM's associated with the APP of figure 1.7) will be investigated with 64 states 

and 1024 observations. A state, outside from its meaning as an acoustic unit of the 

language, could also be seen as a characteristic "sample" over time of the possible 

configurations of the human vocal-tract (see figure 1.9). Our modelling approach 

is probabilistic and top-to-bottom. The probabilistic formulation can account for 

a large number of a priori unknown parameters of the language. It does not deny 

the deterministic aspect of speech, but provides selective choices arranged accord-

ing to their probabilities of occurrence. The approach is also top-to-bottom in the 

sense that it starts with the speech waveform at the top, and derives the significant 

elements of the hidden structures at the bottom. Some of the advantages of that 

type of modelling are: the automatic identification of the acoustic units and rules 
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of the language, and the automatic extraction of the acoustic units from the origi-

nal speech. A disadvantage might be seen in the level of abstraction of the acoustic 

units, in the sense that an interpretation of the units to a higher level is needed 

to relate them to the classical linguistic units. On the contrary, a deterministic 

bottom-to-top model would select and define units and rules (like phonemes) a 

priori. The advantage resides in the fact that no unit interpretation is necessary. 

However, the following significant disadvantages are encountered: linguistic units 

and rules are only partially known, there are many of them, and it is not known 

which ones are the most significant for a speech processing system; the automatic 

extraction of these units from the original speech is very difficult. Finally our 

global HMM approach departs from recent local word-based or phoneme-based 

HMM approaches, respectively used for isolated word recognition and connected 

word recognition [7,12,37,73,85,118,140]: 

• Our modelling is global and requires a large model (64 states, 1024 observa-

tions) directly applied to the whole waveform, as opposed to a small model 

(5 states., and 64 observations, or 10 states, and 200 observations) indirectly 

applied to parts of the segmented waveform. 

• The modelling is totally automatic and requires no segmentation or labelling 

of the speech waveform. 

• We would like to promote HMM's to the full rank of speech models, not only 

with analysis, but also synthesis capabilities. 

Some of the questions and problems addressed in this research will be the 

following: 

• Is it possible to formulate and derive such a large global HMM of conti-

nuous speech? This is already a difficult problem as noted by Miller and 

Chomsky [41, p.36] for n' order Markov models: 
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"A staggering amount of text would have to be scanned and tab-

ulated to make reliable estimates." 

• Can an automatic practical computerized estimation of the parameters of 

the model be performed? 

• Can the underlying structure be recovered automatically from the original 

speech? 

• Can intelligible speech be synthesized from a deep structure? 

• Can the model be applied to very-low-bit-rate speech coding? 

• Can the deep state structure be correlated with higher level classical linguis-

tic structures? 

Chapter 2 will formulate an HMM mathematically and derive some of its im- 

portant features. Chapter 3 will provide the solution of the maximum likelihood 

estimation problem for the parameters of the model. Chapter 4 will show how the 

state structure can be recovered from the speech, and inversely how speech can 

be synthesized from a state structure, through maximum likelihood trellis decod-

ing. Chapter 5 will show how the HMM can be applied to the specific problem of 

very-low-bit-rate speech coding. The results of experiments on actual continuous 

speech will be reported in chapter 6. 



Figure 1.1: The message model of human communication. 

(reproduced from [4, p.393]) 
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1.2.b: The listener (receiver) side tranduces a noisy sound wave into internal 
representations. 

Figure 1.2: A block diagram representation of the message model of human 
communication. 
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Figure 1.3: Major anatomical structures involved in the production of speech. 
(reproduced from [4, p.103]) 
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Figure 1.4: Cross section of the vocal tract. 
(reproduced from [4, p.109]) 
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Figure 1.5: Speech processing unit: the DSP implementation of the listener side 
of the message model of human communication. 
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Figure 1.6: The acoustic processor. 
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Figure 1.7: The acoustic pre-processor. 
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Figure 1.9: Vocal tract shapes for given English vowels. 
(reproduced from [4, p.114]) 



CHAPTER 2 

Description of hidden Markov models 

2.1 Stochastic modelling 

The stochastic modelling [126,24,66] point of view chooses to represent the ob- 

served evolution of a non-stationary system by multidimensional random variables 

Yt 's. A sequence of the form {Yi, Y2, • • - , 	, 	denoted by Y(1:L), is a set 

of samples of the random process {Yt}, taken at discrete time intervals. The 

variable Yt  might take values in a continuous or discrete set. In the case of the 

acoustical speech waveform, Yt  might be a continuous (non-quantized) parametric 

representation of the frame t (such as LPC vectors). It might also be discrete 

representations, such as LPC vectors drawn from a finite codebook. The set of in-

dices, identifying a vector in the codebook, is the Y-alphabet Al = {1, 2, , M}. 

The codebook is denoted by C = {01, , Om }. The surface behavior of the 

system is described by {Y}. It is the only information directly available, through 

observation. The sequence Y(1:L) is therefore called the sequence of observations. 

This observed sequence Y is not, however, the true internal state of the system. 

Yi is known to represent a distorted, noisy, fuzzy, uncertain, and encoded version 

of a more fundamental variable Xt: the underlying state of the system. The states 

Xt 's are also random variables. The possible values of the random variable X t  will 

be countable and finite: it is the X-alphabet Ax  = {1, 2, ... , s}. The production of 

the observed sequence Y(1:L) is governed (driven) by the non-observable (hidden) 

15 



16 

state sequence X(1:L). The true evolution — non-stationarity — of the system is 

described by the random process {Xt }. The surface world of the observations is 

related to the hidden world of the states, through joint and conditional probabili-

ties, Pr[X(1:L), Y(1:L)] and Pr[Y(1:L)/X(1:L)] respectively . These probabilities 

are needed to recover the deep structure X(1:L) from the observed patterns — the 

analysis phase — and vice versa to generate observations from a given state struc-

ture — the synthesis phase. The variables Xt  and Yt  are interdependent, and both 

of them depend on all their past and future values. X t  depends on X(1:t — 1) and 

X(t + 1:L); Y depends on Y(1:t — 1) and Y(t + 1:L). However, to be practical, 

limitations have to be imposed on the stochastic model: 

• Stationarity: the stochastic model will be said stationary if all the charac-

teristic probabilities are independent of time. 

• Markov assumption: the random process {Xt } is Markovian of order 

[1,22,23,26,43,58,60]. The state Xt  depends on its past only, the past b 

states, i.e., 

Pr[Xt /X(1:t — 1), X(t + 1 : L)] =Pr[X t lX(t — b:t — 1)]. 

• Probabilistic function of a Markov chain: the outcome of the sequence of 

random variables Y's depends directly and uniquely, in a probabilistic sense, 

on the states of the Markov chain {Xt }, i.e.: 

Pr[Yt /Y(1:t — 1), Y(t + 1:L),X(1:L)] = Pr[Yt /X(1:L)]. 

To be practical, especially computationally tractable, this general formulation 

must be simplified further: 

- the Markov chain will be limited to the first order (5 = 1). If one were to 

use a second order Markov chain, one would need to estimate the ss probabilities 

Pr[Xt/Xt_i , Xt_ 2 ]. In practice, for s = 64, roughly 11 hours of speech (on a basis 

of 15ms frames, and 10 occurrences per estimated parameter) would be needed for 
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the estimation. 

- the production of Yt  will be conditioned on the current state Xt  only'. This type 

of stochastic modelling is called a hidden Markov model. It is primarily based on 

the following two assumptions: 

Pr[Xt/X(1: t — 1), X(t + 1: L)] = Pr [Xt/Xt-i] 

Pr[Yt /Y(1:t —1),Y(t + 1:L),X(1:L)] = Pr[Y/Xg ]. 

In words, once the state Xt_ 1  has been reached, the next state Xt  depends only 

on the present state Xt _ 1 , not on the previous states. Similarly, once the state X t 

 has been reached, the observation Y depends only on the current state Xt , not 

on the previous states, nor on the previous observations. A hidden Markov model 

(HMM) will allow a very general and powerful description of the speech waveform. 

2.2 Basic description of a discrete HMM 

2.2.1 The model 

An HMM, as introduced above, is described by a stationary probabilistic function 

of a Markov chain, where the state process {X t } is a first order stationary Marko-

vian process, and the observation process is directly "linked." to the state process. 

An HMM is uniquely defined by the following three sets of parameters: 

• the initial state-distribution column vector: it defines the probability of start-

ing the Markov chain in a given state: 

xl  = 	 (2.1) 

Vi = 1,8 	= Pr(Xi  = 	 (2.2) 

Ea;  =1 	 (2.3) 
i=i 

1 For some small models, Y can also be conditioned on the transition between two states, i.e., 

on the states Xt_1 and Xt. 
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• the transition probability matrix: it defines the probability of jumping from 

one state, at any time n, to the next state, at time n + 1: 

	

A = (aii)j=1,. ; ;=1,, 	 (2.4) 

Vn Vi = 1, s Vj = 1, s aii = Pr(X•i-i " 	= 	(2.5) 
• 

Vi = 1,s 	=1 	 (2.6) 

• the output probability matrix: it defines the probability of producing a given 

observation, in a given state, at any time n: 

B 	 k=1,M 	 (2.7) 

Vn Vi= 1,s Vk = 1, M b ik  = Pr (Yn  = k I Xn  = i) 	(2.8) 
M 

 Vi = 1, s 	bik = 1 	 (2.9) 
k=1 

(bog  will also be denoted bi (k).) 

The HMM A is summarized by A = (r1 , A, B). The matrices 7r1 , A, and B, 

whose entries are in [0,1], and whose elements sum to 1 in each of their rows, 

are stochastic rnatrices. All the probabilities of characteristic sequences can be 

expressed in terms of the model parameters A. The probability of a state sequence 

x(1:L) is given by: 
L 

	

Pr[x(1:L)] = 11 ce.„...,:„ 	 (2.10) 
n=1 

where, by convention, at() Z 1 = az ,. The conditional probability of an observation 

sequence y(1 :L) is given by: 

 

  

L 

Pr[y(1: L) I x(1 : L)] = JJ b..(y„). 
n=i 

(2.11) 

The joint probability of the sequences x and y is given by: 

 

  

Pr(x,y) = Pr(y/x)Pr(x) 
L 

Pr(x, y) = 	azn_ iz.b..(yn ). 
n=1 

(2.12) 
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This joint probability is also called the likelihood function. The log-likelihood 

L L (x,y) = — logio [Pr(x,y)] will be used in chapter 4. We have: 

L 

LL (x, y) = — Ela.._,.. + 1..(Y.)1, 	 (2.13) 
n=1 

where the convention a = log10  a has been used. Another log-likelihood, £, based 

on all the possible state sequences, will be introduced in chapter 3. 

2.2.2 Graphical representations 

Two graphical representations of an HMM will be useful: 

- the Markov chain diagrams• one to visualize the configuration of the model, and 

one to visualize the evolution of the system over time (see figures 2.1 and 2.2). 

- the trellis structure: to formulate HMM problems as a search through a graph 

(see figure 2.3), 

In the case of the trellis structure, the nodes (the states of the trellis) might 

actually represent speech-states or speech-observations. The observed sequence of 

data, used on top of the trellis, will be called the sequence of observations (even 

though these "observations" might actually be speech-states). 

2.2.3 The steady-state distribution of the states 

Under the proper conditions, a Markov chain with a finite number of states can 

be shown to have a stationary distribution of the states. In other words, there is 

a distribution 7r = (7ri) i=i ,, such that: 

di == 1,8 lion Pr(Xn  = i) 
"-ow (2.14) 

The distribution 7r is also called the steady-state distribution of the states. Re-

gardless of the initial distribution of the states, the distribution of Xn  approaches 

7f as n oo. The conditions for the existence and uniqueness of the steady-state 

distribution are discussed in [66,5]. The steady-state distribution of the states of 
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0.2 0.1 0.7 

0.7 

Figure 2.1: State diagram of a 3-state Markov Chain. 

Y3  y4 

Figure 2.2: Evolution of a HMM system over time. 
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Nodes 
(states) 

1— 
Y1 Y2 Y3 Y4 Y6 Y6 

0 0 0 0 0 0 

Y7 • 

0 

observations 

   

     

2 — 0 0 0 0 0 0 0 

3 — 0 0 0 0 0 0 0 

4 — 0 0 0 0 0 0 0 

1 	 5 	 Time 

Figure 2.3: An HMM trellis. 

a finite Markov chain can be found by solving a set of s linear equations with 

unknowns. It is easily seen that: 

Vj = 1,s 	= 

Vj = 1,8 	0 =  

• E aii 
=i 
• 
E (4 11 Sj1)ir 
= 1 

(o, = 1 if i = j, 0 otherwise). 

— 1 of these equations, and the stochastic constraints on 71•, constitute the linear 

system of equations used to solve for 7r: 

EL  (aii — 51) 7r = 0 j = 1,8 — 1 	
(2.15) 

ELI Iri 
	= 1 

The distribution of the states, at any time n, can be approximated by the steady-

state distribution of the states, or computed recursively from the initial distribu-

tion of the states with: 

Pr(Xi = 	ai 
(2.16) 

Pr(Xn  = j) = ELI Pr Xn_i = 
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2.3 The adjoined HMM 

2.3.1 The model parameters 

In the (direct) HMM A = (7r i ,A,B), the observation 17n  is seen as directly de-

pendent on Xn , and the state Xn  is seen as directly dependent on Xn_ 1 . The 

dependency of Yn  on Y,_ 1  is then indirectly modelled through the state sequence. 

The process can now be "reversed" by considering Yn  as directly dependent on 

Yn-11 and Xn as directly dependent on Yn . Thus we define an adjoined (or dual) 2 

 HMM, A = (Fri :Ad3): 

= (ak)k=i,m 

A = (akt) k=1,13/44 

1=1,14d 

14 = (lkj)k=1,14 
i= 1 ,9  

	

Pr(Yi  = k) 	 (2.17) 

	

Vn akt = Pr(Yn  = 	= k) 	(2.18) 

	

Vn bki  = Pr(Xn  = 	= k). 	(2.19) 

A, and b are the dual stochastic matrices. fr i  is the initial distribution of the 

observations. A is the observation transition probability matrix. B is the state 

output probability matrix. The steady-state distribution of the observations is 

defined by2 : 

= (ik)k.IN 	Vn irk = Pr(Yn  = k). 	 (2.20) 

The probabilities Pr(Yi), Pr(Yn), Pr(Xn/Yn), and Pr(Yn/Yn _ i ) must be estimated. 

A direct practical estimation is usually difficult: 10M 2  frames of speech are nec-

essary to estimate Pr(Yn/Yn_i) (on a basis of 10 occurrences per parameter), i.e., 

roughly 44 hours of speech (15ms frames) for M = 1024. However, an indirect 

estimation of the adjoined model A, from the direct model A, is possible: 

• Pr(Y1 ) can be estimated from a training sequence Y(1:L), or this marginal 

2An inverse HMM A -1  will also be defined in chapter 4. 
sActually, xk = 	Pr(Yn = k) (when it exists) and Pr(Yn  = k) can be approximated by 



probability can be computed as the sum of joint probabilities: 

Pr(Yi) = EPr(X1 ,171 ) = E Pr(Xi) pi(Yax,) 
x1  

Pr(Yi = k) = E Pr(Xi = j) Pr(Y i  = k/X1 = j) 
j=1 

.b 'k• ak  = 	aj  

23 

(2.21) 
j=1 

Note that, naturally, the stochastic constraint is implicitly satisfied: 

M 	Af 	 At 

E ak = 	aibik] = (JAE bikl = 	= 1. 
k=1 	k=1 j=1 	 j=1 	k=1 	.1=1 

• Pr(Y„) can be computed similarly, from a training sequence, or from the 

steady-state distribution of the states: 

Pr(Y,,,) = E Pr(X„, Yn) = E Pr(X,,) Pr (Y,,/X„) 
x„ 	 xn  

Pr(Y,, = k) = EPr(X„ = j) Pr(Y, = k/Xn  = j) i.e., 
=i 

E _.; _ ik • = 	w b 
j= 1 

The stochastic constraint Et, Frk  =1 is similarly satisfied. 

(2.22) 

• Pr(X,./Yn) could be directly estimated from the training sequence Y(1:L), 

once the state sequence X(1:L) would have been decoded. These probabilities can 

be more easily derived with Bayes' rule: 

Pr(Xn/Yn) = 
Pr(X„)  

(Yn/X„) pr(yn)  Pr  

Pr(Xn = i /Yn= k) = 
Pr(Xn = j)  pr(yn  = klXn= j) i.e., 

 Pr(Yn  = k) 

(2.23) ilki  = 7,14bjk• 
74 

Note that Ea. I • — Es. w.b- —1 3 =1 	— ik  j=1 
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• Pr (Yn/Yn-i) could be directly estimated from the training sequence Y(1:L). 

Unfortunately it would require a training sequence prohibitively long. However, 

they can be derived as the sum of joint probabilities: 

Pr(YnlYn_i) = E EPr(Y.,x„,xn-dirn-i) 
x,s_, xn 

= E EPr(Xn-i/Yn-i) Pr(Yn, Xn/Yn-1, Xn-
x„_, xn  

The term Pr(Yn , Xn/ Yn-1, Xn-1) cannot be expanded as the product 

Pr (Yn/ Yn-1, Xi-1) Pr (Xtli Yn-1, Xn-1) because Xn  and Yn  are dependent random 

variables. However, Bayes' rule can be used: 

Pr(Yn , Xn/Yn_i, Xn-1) = Pr(Xn/Yn-1,Xn-1)Pr(Yn/Yn-I,Xn-1,Xn)• 

The assumptions behind an HM/v1, defined in section 2.1 on stochastic modelling, 

can now be used: 

Pr (Xn/Y„_ i , Xn_ 1) = Pr(Xn/Xn-i) 

Pr (Yn/ Yn_ i , Xn-1,  Xn) = Pr(Yn/Xn). 

Therefore Pr(Yn , Xn/Yn-i, Xn-1) = Pr(Xn/Xn-1) Pr (Yn/X,i) and: 

Pr(v,„/yn_ i) = E Epr(xn_ i /Yn_i)pr(xn/xn_ i ) Pr(Yn/Xn) or: 
xn  

Pr(Yn  = t/Yn ._ 1  = k) = 	[Pr(X_ i  = i/Yn_ i  = k)Pr(Xn  = j/Xn-i = 1) 
i=1;=.1 

Pr(Yn  = t/xn = j)] i.e .: 

Note that: 

8 8 

akt = EE 
1=1i=1 

M 	8 8 	 M 	8 	 8 

E akt = EE bfriaiy[Ebitj= 	 = 	ki = 1. 
1=1 	i=1 j=1 	1=1 	i=1 	j=1 	i=1 

(2.24) 
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The previous relations between A and A can be rewritten as matrix equations. 

Let us define two diagonal matrices: 

- an M x M matrix, D 1  = diag( it)e=1,A.r. 

= 

0 

0 

0 
k 

0 

-1 

 0 

• 
• 

0 

0 	.. . 

0 

•. 

0 	. 

0 

0 

0 

• 
• 

1 
. . 

(2.25) 

an s X 8 matrix, D2 = diag(71-1)5=1,9: 

0 	0 •.• 0 

O 7r2 0 

O 0 •• (2.26) 

0 	0 	0 	... 7r, 

The equations (2.21), (2.22), (2.23), and (2.24) can now be expressed by: 

*1 = 
1 

= rTB 

• = DiBTD2  

A = 13AB 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

I 

D2 = 



= Pr(x/y) Pr(y) 
L n 

n=1 

ly. (Xn) 

n=1 
L 

avn-illn 	( Xn) (2.31) 
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2.3.2 Likelihood and distance measure 

The likelihood previously defined in equation (2.12) can now be expressed in terms 

of the parameters A: 

Pr(x, y) 

Pr[y(1:L)] 

Pr[x(1:L)/y(1 :L)] 

Pr(x, y) 
n=1 

Pr(x, y) 	 b.. (yn) Pr(Yn/Yn-1). 	(2.32) 
n=1 Fr Yn 

The parameters of the adjoined model A can be directly used in equation (2.31). 

Each term in the product depends only on the present and previous observation, 

and on the current state. In theory, the likelihood defined by equation (2.31) is the 

same as the one defined by equation (2.12). In practice however, different estimates 

of Pr(yn /yn_i ) can be used in equation (2.32). For example, the probability derived 

from the LPC log-likelihood ratio, or the Itakura-Saito distance measure, could be 

used. Inversely, the probability Pr(yn /yn-i) derived from the adjoined model can 

be used to define a new distance measure D(Yn-t, yn), for example: 

D (y,i, yn) = exp [— Pr(yn_dyn)] 	i.e., 	(2.33) 

D(yn-t, yn) = eXp[—ilyn_ fion 	 (2.34) 

This distance measure is different from classical speech distance measures because 

the time dimension is included. The distance, not only gives a measure of how 

close two observations are, but also provides a measure of how closely the next 

observation should follow the current observation in the sequence. The measure of 

closeness is not based anymore on an absolute comparison between observations, 

but on a relative comparison between two observations, as a function of their 
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relative position in the sequence. Even though D(im_ i , y,,,) was initially defined 

for discrete observations, it could also be fitted to a multidimensional function of 

continuous observations. Another approach could be to map the multidimensional 

observations Y's (for example 10 dimensional LPC vectors), onto a 2 dimensional 

Euclidean space, using multidimensional scaling [84], with D(y n_ i , y,,} as a simi- 

_ .laxity measure. 

2.4 Entropy, bit rate, and structure 

2.4.1 The concept of entropy 

The concept of entropy has been used in several branches of science and engi- 

neering, such as physics, chemistry, and thermodynamics. We will present here 

an elementary discussion of the concept of entropy from the information theory 

point of view [5,57], for discrete memoryless sources'. A more general discus-

sion can be found in [57]. Consider a random variable Z which takes values 

from the source alphabet As = {1, 2, ... , N} with the respective probabilities 

{Pr(1), Pr(2), , Pr(N)}. This is also referred to as the source Z producing source 

letters from the alphabet A s . These source letters are encoded with fixed or vari-

able length codewords, built from code letters drawn from a code alphabet Ac of 

D symbols. For a binary code, D = 2, and the code letters are the bits 0 and 1. 

The entropy per letter of the source Z is given by: 
N 

H(Z) = — EPr(i)log2 Pr(i). 
i=1 

(2.35) 

The entropy is the expected value of the random variable k = - log2  Pr(Z). Ac- 

cording to the source coding theorem [57], the average number of code letters per 

source letter, n, necessary to perfectly encode blocks of K source letters satisfies: 

HZ) 
 < < 

H(Z)  1 
(2.36) l

(
og2  D 	log2  

4 Successive source letters are statistically independent. 
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In the case of a binary code (D = 2), we have: 

1 
.11(Z) < < 11(Z) + -K- , (2.37) 

therefore the entropy is the minimum number of bits per source letter, necessary 

to represent the source Z. When K is large, H(Z) is the average number of bits per 

source letter necessary to encode the source perfectly. Entropy coding schemes, 

such as Huffman coding [68], allow encoding of the source Z with a bit rate equal 

to the one predicted by the entropy H(Z). Since the number of bits of information 

necessary to encode a source reflects the structure of the source, the entropy is also 

a measure of the structure and amount of order that can be expected in a sequence 

Z(1:L). The lower the entropy, the more structure there is into the system, and 

the less number of bits of information are necessary to represent it. In that respect, 

the entropy is bounded as follows: 

0 < H(Z) < log2  N 	 (2.38) 

The lower bound of the entropy is reached for a totally ordered system, with no 

uncertainty and total predictability. We have total a priori information on the 

state of the system, and its structure is perfectly known. This is obtained if: 

3io E [1, Ni s.t. Pr(Z = io) = 1 and Vi # io  Pr(Z = i) = O. 

H(Z) = 0, and the system is "deterministically" known to be in state i o . The 

upper bound of the entropy is reached for a maximally disordered system, with 

total uncertainty and no predictability. There is no a priori information about the 

state of the system and no apparent structure. This is obtained if: 

1 
Vi E [1,N] Pr(Z s) -Nr . 

H(Z) = log 2  N, and the N source letters are equiprobable. 
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2.4.2 Entropies of an HMM 

The concept of entropy for discrete memoryless sources can be extended to discrete 

non-memoryless (dependent) sources, in particular to hidden Markov models'. 

Even though the state and observation random variables Xt  and Yt are dependent 

sources, they could be approximated by memoryless sources, and the entropy H(Z) 

(Where Z = X or Z = Y) could be computed. However, these entropies would not 

generally be very interesting because they would ignore the inherent dependencies 

and structures modelled by the HMM. Anyhow the entropy H(Z) can be computed 

for the steady-state distribution of the states r, and observations fr. For example: 

H(ir) = — E ri  logs  
4.1 

(2.39) 

Outside from these entropies, other entropies directly taking into account the struc-

ture of the HMM, should be defined: the state entropy H(X), and the observation 

entropy H(Y). Basically these entropies operate on an alphabet of letters made 

of pairs such as (X,,_ 1 , X„) and (X„, Y,,). First we define conditional entropies: 

• H(Xn /X„._,. = i) the entropy of the state source X„, conditioned on the value 

of the previous state X„_ 1  — i.e., an entropy defined on the pair (X„-1, X.) 

or the transition X„--1 

• H(Y„/X„ = j) the entropy of the observation source Y„ conditioned on the 

value of the present state X„ — i.e., an entropy defined on the pair (X„, Y„). 

Contrary to H(Z) which was a number, 1/(X,i/X, 1 ) and H(Y„/X,,) are random 

variables, whose outcomes depend on the outcomes of X n_j, and X„ respectively. 

These entropies are given by: 

H(X,/X„_ 1  = i) = — E aq  log2  

= j) = — E oak  log2  kk. 

(2.40) 

(2.41) 

 

k=1 

 

5Very similar to the concept of Markov sources in information theory. 
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The interpretation of these two entropies is similar to that of H(Z) for fixed 

Xn_ i  = i or X„ = j. These two random variables have expected values, the 

desired state and observation entropies H(X) and H(Y): 

H(X) = < H(X,,/ X n_i = 1) > 	 (2.42) 

H(Y) = < 11(Y./Xn = > 	i.e., 	 (2.43) 

H(X) = E 	= 1) 	 (2.44) 
i=i 

H(Y) = E 	= 	or, 	 (2.45) 
i=i 

H(X) 

▪  

— E E 71-j ai; log2  aq 	 (2.46) 
1=1 j=1 

• M 
H(Y) 

• 

- E E 	loge  bik • 	 (2.47) 
j=1 k=1 

The results concerning bit rate and system structure, presented above for H(Z), 

still hold for H(X) and H(Y). In particular the source coding theorem applies to 

the observation source Y. As a consequence, the following interpretations of the 

entropies of an HMM can be formulated: for the state source X, H(Xn / Xr1.-1 = 1) 

is the number of bits required to encode Xn , given X„._1 = i. There are roughly 

2H(x„/xn-1=0 plausible transitions from X„-1 = i to Xn  (i.e., 21/(x-ix —I') plau-

sible states Xn  following state Xn-1 = i). Then H(X„/X,,-, = i) is averaged over 

all possible previous states Xn_ l . The same reasoning holds for the observation 

source. Therefore, as a summary: 

• 2//(x) represents the average number of plausible transitions, at a given time, 

from a given state. This number would be 1 for a totally structured system, 

and .9 for a totally random system. 

• 2//(Y) represents the average number of plausible observations likely to be 

produced, at a given time, by a given state. This number would be 1 for a 

totally structured system, and M for a totally random system. 
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To encode the state and observation sources, 8 different Huffman codes (one re-

spectively associated with each X„_. 1  = i or = j) can be used. The previous 

state X,,_ 1  (resp. the current state X„) identifies which code to use to decode the 

current state X (resp. the current observation Yn). The entropies are bounded as 

follows: 

0 < H(X) < log 2  8 

0 < H(Y) < log 2  M. 

For an HMM with s = 64, and M = 1024 we have: 

0 < H(X) <6 and 0 < H(Y) <10. 

(2.48) 

(2.49) 

The lower bounds of the entropies are reached for diagonal matrices, independently 

of the value of the distribution r. The upper bounds are reached for "equiprobable" 

matrices (Vi,j, k aii = 1/8, bik = 1/M) independently of the value of the distri-

bution 7r. The state entropy H(X) will also be called the entropy of the transition 

matrix A, and sometimes denoted by HA. The observation entropy H(Y) will 

sometimes be called the entropy of the observation probability matrix B, and will 

also be denoted. by I/B . These entropies are two particular examples of the en-

tropy of a (rectangular) stochastic matrix. In figures 2.4 and 2.5, we computed the 

entropy (to be compared to 0 < H(X) < 2) of the transition matrix of respectively 

a loosely structured and a highly structured 4-state Markov chain. 

2.5 Fundamental issues of HMM's 

So far we described an HMM, together with the methods to derive its main char-

acteristics, when the model A is known. Now we should be concerned with the 

following important issues of a hidden Markov model: how to find it, how to use 

it, how to interpret it? 
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Figure 2.4: State entropy of a loosely structured 4-state Markov chain. 
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Figure 2.5: State entropy of a highly structured 4-state Markov chain. 
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An HMM is defined by the parameters A = (ri, A, B). How can these pa-

rameters be estimated? We would like them to be estimated automatically (by a 

computer program) from a finite observed sequence Y(1:L). The process of deriv-

ing (learning) the model probabilities automatically from a, finite speech corpus is 

called the training process. The problem will be addressed in chapter 3. 

Now that the model probabilities are known, how can they be used to pro-

cess an input signal? Two inverse processes need to be addressed: the analysis 

phase and the synthesis phase. In the analysis phase, the problem is to recover 

the hidden state structure of the speech from its observed waveform. Given a 

speech observation Y, what is the state which generated it? In these terms how-

ever, the problem is not correctly formulated, because speech is a global process 

with dependencies between its elements, as modelled by an HMM. Therefore the 

right question would be: given an observed speech sequence Y(1:L), what state 

sequence X(1:L) is more likely to have produced it? Solving this problem is also 

known as performing the state decoding. Similarly and inversely, in the synthesis 

phase, the problem is to synthesize intelligible speech from a known deep state 

structure. An answer to the following question should be provided: given a state 

sequence X(1:L), what is the most likely and intelligible speech sequence Y(1:L) 

it generates? Synthesizing speech from the states is known as performing the ob-

servation decoding. These two problems will be addressed in chapter 4. 

Finally we would like to correlate the abstract deep state structure of the 

speech with more intuitive and classical speech representations — for example, 

as given by linguistics: phonetic descriptions etc. This is known as the state in-

terpretation problem. Even though a state interpretation is not necessary for the 

training, analysis, and synthesis phases (a strength of the modelling!), it would 

provide more insight into the inner workings of the modelling, and make the syn-

thesis phase easier. It would also be necessary for the application of this model to 
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automatic speech recognition. 

2.6 Other types of HMM's 

2.6.1 Continuous hidden Markov models [78,91,122,123] 

"So far we described discrete hidden Markov models (DliM:M's) 6 . In this case the 

observations could take only a finite number of discrete values — the observations 

were drawn from a codebook of size M. It is also possible to define a continuous 

HMM (CHMM) for which observations can take an infinite number of values from 

a continuous support — like the real Euclidean space R". To describe CHMM's, 

the observation probabilities of a DHMM, bik , need to be replaced by probability 

density functions bi (Y). Some of the most common density functions used with 

CHMM's, for P dimensional vectors Y's, are described below 7 : 

• The Normal (or Gaussian) distribution: 

1 

IC11/2 	
1 

(Y, 	
(27r)P/ 2 

 C) = 	 expl--
2

(Y — /4)Tc-1(y 14)] (2.50) 

where A is the mean vector, and C the covariance matrix. The output density 

functions are: 

	

b1(Y) = N(Y81118Ci). 	 (2.51) 

• The Normal distribution with a diagonal covariance matrix C = diag(a) i=1, 3 : 

1 	 r  	1  
Nd 07, C) = 	  

(27r)P/ 2 (nr. i ano exPl 2 	
(Yi 

 2
pi)2 

1 	(2.52) 
u=1 

P  kW, µ, C) = 	(Yexpi 	= N(Y88i4i, ad, 
=i  v 27ra; 	2a? 

02 
 J.' 

(2.53) 

   

°It stands for discrete observation HMM's. 
?Actually, for DHMM's, lit represented the index of the observation in the codebook; now, 

for CHMM's, it represents the actual P dimensional observation vector, and will sometimes be 

denoted Ot  to avoid possible confusion (see chapter 3). 
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therefore 
P 

b; (Y) = II A Villijilaji)• 	 (2.54) 
i=1 

Even though unimodal probability density functions, like the multivariate Gaus-

sian, might be appropriate for some multi-dimensional observations Y's (like mel-

cepstrum coefficients), usually multimodal densities are needed to accurately de-

scribe most of the multi-dimensional speech observations (like prediction coeffi-

cients). A mixture of normal densities can approximate any probability density 

function with any desirable accuracy, as long as the number of mixtures G is al-

lowed to be as large as necessary. The output densities are given by: 

• The Gaussian mixture density: 

MY) = 	A.onx(Y4him,ca.) 
	

(2.55) 
m=1 

with: V j = 1,s E„,=1 ,A;„, = 1. 

2.6.2 Hidden semi-Markov models [66,87,88] 

For an HMM, the state duration distributions are exponentially decreasing with 

time, and reach their maximum for the shortest duration r = 1. The probability 

of staying n units of time in state i is: 

Pr(D = n/i) = (1 — 	 (2.56) 

Hidden semi-Markov models (HSMM's) 8  are used to allow other state duration 

distributions, that model the physical phenomenon under study more closely. An 

HSMM is represented by a transition matrix with zeros along its diagonal. Once a 

state i has been reached, the number of self-transitions i --+ i is determined by the 

state duration distribution. The transition to a different state i --+ j is governed by 

8 They are also called pure jump processes. 
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the transition matrix. An HSMM is uniquely defined by n := (ri, A, B, D) where: 

D = (di(n));= 1,, 	di(n) = Pr(Dj  = n/Xi  = i). 	(2.57) 

d;  (n) is simply the probability that the system will stay n units of time in state 

i, when i is reached for the first time. Usually parametric state duration distribu-

tions are used to limit the number of parameters to estimate. Common examples 

are [110, p.103[: 

• The Poisson distribution (A; > 0): 

di(n) = 	
n! 
	 (2.58) 

• The Gamma distribution (A 1  > 0, t, > 0): 

di (n) = 	 (2.59) 

= r(rii  + 1) • 
	 (2.60) 

°In this simple formulation, t represents every first time a new state is reached. Stationarity 

makes the duration probability independent of t. 
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CHAPTER 3 

Maximum likelihood estimation of the 

parameters of hidden Markov models 

3.1 Presentation of the problem 

A first order, stationary discrete hidden Markov model (DHMM), as described in 

chapter 2, is uniquely defined by the following 3 parameters: 

- the initial distribution of the states r i  = (ai) i = 1, s: 

ai= Pr(Xi = i) 
	

(3.1) 

- the transition probability matrix A = (a11) i = 1, s j = 1, s: 

Vn 	= Pr(Xn+i = i/Xn = 1) 	 (3.2) 

- the output probability matrix B = (bik ) i = 1, s k = 1, M: 

bik = Pr(Y„ = k/Xn  = 1) 	 (3.3) 

(bik will also be denoted bi (k)) 

Representing a physical system by a DHMM means estimating the model 

parameters A = (r i , A, B). The estimation process is also called the "training pro-

cess" in the sense that the above probabilities have to be "automatically learned" 
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by the system. As we have previously seen, only the observations Y n  are directly 

accessible to experiment. The underlying states Xn  are not directly accessible, 

but are hidden, The problem is then to estimate A from a finite length observed 

sequence Y(1:.L) = {Y1 , Y2 • • • , YL } known as the training sequence. If the nature 

of the states was identified, and if the state sequence X(1:L) corresponding to a 

given observation sequence Y(1:L) was known, then direct frequency counts could 

be used to estimate A. If Li  is the number of transitions from state i to state 

j in X(1:L) and fi the number of transitions out of state i in X(1:L), then the 

maximum likelihood estimate of aki  is given by: 

air = 	fi 
	

(3 .4) 

(note that: fi  = EL, fit). 

If hik is the number of times the observation k, in Y(1:L), is produced from state 

i, in X(1:L), and h, is the number of times state i occurs in X(1:L), (hi = fi  or 

hi  = f, + 1), then the maximum likelihood estimate of bik  is given by: 

bik = hik/hi 	 (3.5) 

(note that: hi  = En hit). 

If only one training sequence is available, starting with state io, then ir 1  is estimated 

by: 

1 
	

if i = io  
ai = 	 (3.6) 

0 	otherwise. 

If N training sequences are available, let n i  be the number of sequences starting 

with state i, then ir 1  is estimated by: 

Vi = 1, s ai = 	 (3.7) 
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Note that, if only one training sequence is available, ai can still be computed: the 

stationary assumption allows to assimilate ensemble and time averages, i.e., to 

estimate the initial distribution of the states by the steady state distribution of 

the states (which can be directly derived from the transition matrix, as seen in 

chapter 2). 

If the states were directly observable (i.e., if states and observations were the 

same) then the B matrix would be reduced to the identity matrix. Given that 

the states are unknown (in nature and as a sequence), a direct frequency count 

estimation is impossible. However one can consider all possible state sequences 

X(t) for a given observation sequence Y. There are sl such sequences; each one 

of them is identified by the superscript (t). The previous frequency counts can be 

(theoretically) computed for each of these sequences. Then the model parameters 

can be estimated. For example, the transition matrix is evaluated by: 

aii  = E p (x(4 " 	 (3.8) 
1=1 

where P(X( t)) is the probability of X(t)(1:L) and f 	if)  are the corresp -onding 

counts. This probability can be expressed by: 

L 

p(X)) = 11 a (1) (i), ( 3 . 9 ) 

where by convention a (0 (c) = a.m. Then from (3.8) we get a "reestimation :0 : 1 
relation" R of the form: 

L L 	 fc9 
sj 

= R E JJ a:(1)  ,:f!)  (1) ).  
f=1 n=1 

(3.10) 

Unfortunately, this approach does not solve the problem, at least for the fol-

lowing two reasons: 
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- the term aq appears in both the left and right-hand side of the equation, and 

there is no possible analytical solution. 

- the huge number of state sequences (s") prevents any practical computation, 

even with the fastest possible computer. 

However, the previous equation suggests an iterative procedure to estimate aq . 

The iteration process will depend on the general approach used. Mutual infor-

mation maximization [11] and discrimination information minimization [48] ap-

proaches, Lagrangian techniques [86], and optimization procedures [111] are pos-

sible. The maximum likelihood estimation (MLE) approach, theoretically well-

founded and practically efficient, will be the one described and used in this re-

search. 

The MLE can be formulated as follows: given a sequence Y of observations, 

estimate the parameters of the model to the ones which maximize the probability 

of producing the given Y. In other words A = (r i , A, B) is a solution to the 

constrained maximization. problem of the likelihood P: 

ap = 
as 0 

subject to aii = 	Ea;  = 1, I b. — 1 sk — 
i=1 	 1=1 	 k=1 

(3.11) 

Pt is meant to be all parameters of the model) 

where: 

P = 

P = 

P = 

Pr(Y/A) 
JL 

E P(Y, X (0 ) 
1=1 

E P (X (4)P(Y/X (1) ) 
1=1 

(3.12) 

(3.13) 

(3.14) 

with: 
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P(Y/X (1) ) = ll b2T (Yrs ) 
	

(3.15) 
n=1 

and P(X(e)) is given in (3.9). 

P, referred to as the likelihood, is the sum over all possible state sequences of the 

weighted probability of the training sequence given a state sequence (the weighting 

factor being the probability of this state sequence). P is globally expressed by: 

•L L 
P = E II  arm .mb.(t)(Yn). 	 (3.16) 

1=1 n=1 n-1 is 	n 

Because .P can be very small, the log-likelihood ,f 	— log 10  P will be of- 

ten used. A solution A0 of (3.11) is a critical point. The direct evaluation of 

P requires Lsz' multiplications and additions. Since this factor is exponential 

with the training sequence length L, direct practical maximization is prevented, 

even for small models (s = 2, M = 6, L = 100), obviously for simple models 

(s = 5, M = 64, L = 1000), and most of all for realistic continuous speech models 

(s = 64,M = 1024, L = 60000). Therefore the problem must be dealt with in a 

considerably more efficient manner. 

An iterative procedure, called the forward-backward. algorithm (FBA) or 

Baum's algorithm, was developed by Baum et al. [15,16,17,18] to solve just this 

maximization problem. 

3.2 The theory of the forward-backward algo-

rithm 

3.2.1 General results 

The FBA can be summarized in terms of three main results: 

• the maximum likelihood estimate of the model parameters A converges to the 
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true value of A as L --# oo. 

• there exists a growth transformation T which, applied to the model parameters A, 

is sure to increase the likelihood P, except at a critical point of P (or equivalently 

at a fixed point of T); i.e., if C is the set of critical points of P then: 

VA C P(TA) > P(A). 	 (3.17) 

Therefore the FBA starts with a random initial estimate A and iteratively applies 

T. Convergence to a local maximum of P is guaranteed. The local maximum 

reached depends on the initial estimate Ai  (if C is not a singleton). 

• the transformation T can be expressed analytically and evaluated recursively in 

terms of partial training sequences; the amount of computation required for P is 

linear in L (no longer exponential in L). 

3.2.2 Historical development of the algorithm 

• 1957: paper by Blackwell et al. [27]: 

Two different HMM's A l  and A2 can generate the same finite length observa-

tion sequence Y. Now, inversely, suppose an HMM is to be estimated from 

the sequence Y. Is the estimation possible? What model will be recovered 

(A1 or A2 or another one)? What conditions on the training sequence should 

be met to recover a specific HMM? What parameters of the HMM are iden-

tifiable, which ones are not? This is referred to as the identifiability problem 

for functions of finite Markov chains. The paper "almost solves" the problem 

in two special cases. 

• 1959: paper by Gilbert [59]: 

The same problem is addressed and a more general solution is provided. 

A parametric representation of the equivalence class of all s x s transition 

matrices which give rise to the same distribution of observations is given. 
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• 1966: paper by Baum et al. [15]: 

The proof that the MLE converges to the true value of A is given. A central 

limit theorem for the observation process Y is presented. 

• 1967: paper by Baum et al. [16]: 

A proof of an inequality of the form P [T (A)] > P (A) is given, where P is a 

polynomial and T a defined transformation. The special application to the 

case where P = P (likelihood) and T = T (FBA growth transformation) is 

presented. 

• 1970: paper by Baum et al. [17]: 

A recurrent maximization technique for the MLE is presented. The an-

alytical form of the growth transformation T is given. The proof of the 

convergence of the iterative procedure is based on the maximization of an 

auxiliary function Q with a unique global maximum. The algorithm applies 

to discrete probability mass functions bi(k), and strictly log-concave uni-

variate continuous probability density functions b; (Y) — in particular the 

normal, Poisson, binomial, gamma, but not Cauchy, densities. 

• 1972: paper by Baum [18]: 

This summary paper presents the reestimation formulas for an HMM (i.e., 

the transformation T for a probabilistic function of a Markov chain) in terms 

of recursive computations based on forward and backward probabilities for 

partial sequences of the training sequence. 

• 1982: paper by Liporace [91]: 

The strictly log-concave class of continuous monovariate density functions 

is replaced by the more general class of elliptically symmetric multivariate 

densities, therefore broadening the scope of the FBA. Recursive reestimation 

formulas are given. 

• 1983: paper by Levinson et al. [86]: 
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The FBA reestimation formulas are reviewed and practical implementation 

considerations for simple models and left-to-right models are presented. 

• 1985: paper by Juang [78]: 

The class of density functions studied by Liporace (see above) is extended 

to multivariate mixture densities, obviating the assumption of ellipsoidal 

symmetry. The general form of density functions now being allowed is a sum 

of strictly log-concave and/or elliptically symmetric densities. 

3.2.3 Formulation and interpretation of the growth trans-

formation 

3.2.3.1 Partial derivatives formulation [18,86] 

Although it neither constitutes a proof of the convergence to a local maximum 

of the FBA iterative procedure, nor provides a practically applicable solution, di-

rect maximization of the likelihood P through a Lagrangian technique leads to 

reestimation formulas equivalent to Baum's formulas (after processing the partial 

derivatives with forward and backward probabilities). The solution of the likeli-

hood equations (3.11) has the following form: 

asJ = 
aijaP/aaii  

EL I  aitaP/aait  
bikaP/abik  

ELI bitaP tabu 
ajaPlaai 

 ELiataPlaat' 

(3.18) 

(3.19) 

(3.20) 

From these expressions it follows that any 0 parameter will be reestimated to 0. 

Any matrix with only one non-zero element in each of its rows — this element 

necessarily being 1 to satisfy the constraints (3.11) — will be reevaluated to itself. 

This holds in particular for a diagonal matrix (the identity matrix). This feature 
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of the reestimation formulas also allows to constrain the model to a specific given 

structure by setting the desired entries to 0 in the initial estimates. As an example, 

left-to-right models 1  are generated using an upper triangular matrix (ail = 0 if j < 

1) for the initial estimate of the transition matrix A. 

3.2.3.2 Expected frequencies formulation [18,86] 

Let fij (1) (resp. hik  (L)) be the 	(resp. hik ) previously defined in section 3.1 for 

the state sequence XV). In other words: 

• f i (1) is the number of transitions from state i to j in XV). 

• h► k (t) is the number of times the observation k from Y is generated by state 

i from X(e). 

Let: 

bi (t) 
	1 if X(1) starts with state i 

0 otherwise. 
Let nii , mik , qi  be the respective expected values of f ia , hik and bi  based on model 

A, i.e., 

N.; = 

mik = 

= 

.L 
E P(x(`) , Y/A)iii(t) 
1=1 

E P(X11)  , Y/A)hik (1) 
1=1 

E p(X), y/A)4(t). 
1=1 

(3.21) 

(3.22) 

(3.23) 

Then the reestimation formulas can be expressed by: 

1 For a left-to-right model, the transition from state i to state j is allowed if and only if j > 

i.e., the system can jump only to higher order states, and a state which has been left cannot be 

reached again. 
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nil  
E3-1 nit 

Mik 

 

(3.24) 

(3.25) 

(3.26) ▪ = 
Ee.s  mit 

4.  

Ei=i qt 

In the case of a diagonal B matrix, only the state sequence X( 4) = Y is possible: 

V t 4 P(xv), Y/A) = 0, 

therefore the reestimation formulas can exactly be reduced to the frequency counts 

formulas presented in section 3.1. 

3.2.3.3 Bayesian a posteriori formulation 

This formulation, in terms of probability and likelihood, is the one used for the 

practical implementation of the FBA. Let us define the following probabilities: 

et (i,j) = Pr[Xt  = i, Xt+i = 	Al 
	

(3.27) 

(i) = Pr[Xt  = i/Y, A] . 	 (3.28) 

Then the reestimation formulas become: 

(3.29) 

where: 

• Effi It(i) 

• Effi et 

 

is the expected number of transitions out of state i. 

is the expected number of transitions from state i to state j. 

   



• EtL_ 1  8(Yt ,k)-y t (i) is the expected number of transitions out of state i, state i 

producing observation k. 

Defining the probabilities: 

Et  (=, .9) = Pr[Xt  = i, Xt+i = 9, Y/. 	 (3.30) 

Xt(i) = Pr[Xt  = i , Y/A], 	 (3.31) 

and using Bayles' rule: 

= et(i, i)Pr(Y/A) 
	

(3.32) 

Xt(i) = 	Pr(Y/A). 	 (3.33) 

The reestimation formulas become: 

Noting that: 

rl,i = Xi(i)/P 

aii  = Ettii Eg o ,  j) 1 Effii xg (i) 

Wik = E Le=i Xt(i) I Et -1 Xt(i) • Yt=k 

(3.34) 

	

(i) = E et i) 	 (3.35) 
1=-1 

xt (i) = 	Et  j), 	 (3.36) 
i= 1 

an alternate expression for the reestimation formulas is: 

47 
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= X 1(0 I P 

= Et 41  ft (i .0/ Effil  Xt(i) 	 (3.37) 

61k =rt=k E;.i et (i, i)/ ELI xt(i). 

:Expressions (3.34) and (3.37) will be the most appropriate ones for practical im-

plementation of the algorithm. Computations can be saved by expressing (3.37) 

in the following form: 

= Xi(i)/P 

Na(i, 2)1 D a(i) 

Na(i , j) = Eff-11  et (i,j) 

Da(i) 	= E:=1  Na(i, j) 

= 1Vb(i, k) Db(i) 

Nb (i , k) = E;=1Ef":1 1  (Yt k) ft(i,j) 	(17z, k) L (i) 

Db(i) 	= pa(i) + X L(i) 

(5(Yt , k) is the Kronecker symbol). 

(3.38) 

3.2.4 Recursive evaluation of the growth transformation 

The reestimation formulas (3.38) can be evaluated recursively in terms of the 

probability of partial sequences called the forward and backward probabilities. Let 

us define the joint probability a t (i) of the partial observation sequence Y(1:t) and 

state i, given the model A: 

at (i) = Pr[Y(11),Xt  = 	 (3.39) 
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and the conditional probability (i) of the partial observation sequence Y(t+1:L) 

given state i and the model A: 

fit (i) = Pr[Y(t + 1:L)/Xt = 1, A]. 	 (3.40) 

(Most of the time the reference to the given model A will be dropped for sim-

plicity.) It is easily seen that these two probabilities can be computed recursively 

through: 

• a forward recursion for a t (i) (i.e., at (i) is computed as a function of at-i(i) 

as t increases): 

Vj = 1,s Vt E [2, Li 
	

at(i) =ts  at-i(i)aiibi(Yt) 
	

(3.41) 

• a backward recursion for )3 t  (i) (i.e., Qt  (i) is computed as a function of A ÷1 (i) 

as t decreases): 

Vi = 1,s Vt E [L — 1,1] 	= E igt-Fiwai1bA+1) 
i=i 

Moreover, the probabilities need to be initialized: 

t = 1 	for at (i): 	a1 (i) 	= Pr [Y (1) , X1  = i] 

= Pr(Xi  = 1) Pr[Y(1)/Xi  

t = L 	for 13t(i): 	13L-1(1) = Pr[Y(L)/XL-1 = 

= E;=, aqbi (n). 

(3.42) 
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Therefore: 

Vi = 1,s al  (i) = rr i  (i)bi (Y1 ). 	 (3.43) 

The recursion (3.42) will hold for t = L — 1 if we initialize: 

Vj = 1 ,8 A (3) = 1. 	 (3.44) 

Now it is possible to evaluate the probabilities e t  (i, j) and xt (i) of (3.30) and (3.31) 

in terms of the forward and backward probabilities: 

Vi,j = 1,s Vt = 
	Et(i,j) = at(i) aiibi(1741)Qt+ 1 (i) 

	

(3.45) 

Xt(i) 	= at(i)A(i) 

(note that: X L (i) = eti(i)-) 

Finally the likelihood P can be computed from: 

Vt E [1,L] P = > at (i)flt (i), 	 (3.46) 
i=i 

in particular for t = L: 

• 
P = 	aL(i)• 
	 (3.47) 

i=1 
Combining (3.38), (3.45), and (3.47) we obtain the basic FBA of figure 3.1. 

3.2.5 Computational complexity of the basic FBA 

The computational complexity of the basic FBA is summarized in tables 3.1 and 

3.3 for the number of operations and the CPU time. The computer speeds of 

table 3.3 should be compared with some of those available in table 3.2. For the 

models with which we are concerned, the complexity of the basic algorithm is 



Vi,j = 1, s Vk = 1,M evaluate: 

ai (i) = aibi (K) 

t = 2, L 	at(i) = E:=1 at-1(0(4'11;0'0 

L(i) = 1 

t = L — 1,1 	= E;.-1 

P = Ef.-iaL(i) 

t = 1,L — 
1 	Et(i 	= at(O0.ibi( 1't+1)/t+I(j) 

= 	i ft(i,i) 

Da(i) = 	Na(i, j) 

Nb(i, k) = Efj E;.i (Yt k) et (i ,i) + 5(11, k)aL(i) 

Db(i) = Da(i) + a L(i) 

= a1(i)/31(1)/P 

aii  = Na(i, j) 1 D a(i) 

bik = Nb(i, k) 1 Db(i) 

Figure 3.1: Basic FBA (without any scaling). 
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roughly 3000 million floating point operations per iteration. For large models 

the number of operations per iteration is of the order 11s 2 L. The CPU times 

presented in table 3.3, however, are optimistic: in particular for large models, 

since the algorithm needs to access a large amount of data, and memory access 

time will slow down the algorithm quite significantly. As will be seen in the 

blowing sections, the basic FBA can be optimized (the number of operations can 

be decreased). To be practical, however, a scaling procedure must be performed 

on top of the algorithm, which in turn will increase the number of operations. Our 

effort will be to maintain this increase to a minimum. 



Table 3.1: Number of operations for the basic FBA. 

variable No. of additions No. of mult./div. total 

al  (i) 

at (i) 

0 

s(s — 1) (L — 1) 

s 

232  (L — 1) 

a 

3s2 (L — 1) — s (L — 1) 

13L (1) 0 0 0 

Pt (i) 8(8 — 1)(L — 1) 2.52 (L — 1) 3s2 (L — 1) — s (L — 1) 

P 8 — 1 0 8 — 1 

Et (i , i) 0 3s2 (L — 1) 3s 2 (L — 1) 

Na(i , j) 82  (L — 2) 0 82  (L — 2) 

D a (i) s(s — 1) 0 s(s — 1) 

Nb (i , k) s[1 + (a — 1) (L — 2)] 0 s2 (L — 2) + s(3 — L) 

Db(i) a 0 8 

ai 0 2s 2s 

aid  0 s2 82 

bik 0 sM sM 

total 282 (2L — 3) 82  (7 L — 6) 82 (11L — 12)+ 

-F3s(2 — L) — 1 + s(M + 3) s(M + 9 — 3L) — 1 

order oft 482L 7 .92  L 1182  L 
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Table 3.2: Some peak speeds of commercial computers. 

Computer Corporation Peak Speedt 

IBM-PC IBM Co. 0.1 

VAX-11/788 Digital Equipment Co. 1 

MV/10000 Data General Co. 3 

Cyber 855 Control Data Co. 12.5 

Cyber 990 Control Data Co. 32.3 

Cray 1 Cray Co. 160 

Cray XMP-4 Cray Co. 1000 

tin MFLOPS (Mega Floating Point Operations per Second) 

except for the Cybers in MIPS (Mega Instructions Per Seconds) 

54 



Table 3.3: CPU time per iteration of the basic FBA. 

model 

type 

Number of 

operations 0.1 MF 1 MF 

CPU time 

10 MF 100 MF 1000 MF$ 

small' 3781 0.038s 0.004s 0.378ms 38ms 3.8As 

simple2  260,064 2.601s 0.260s 0.026s 0.003s 0.260ms 

larger 2,691,856,959 7h28m39s 44m52s 4m29s 27s 2.7s 

1: s = 2, M = 6, L = 100 

2: s = 5, M = 64, L = 1000 

3: s = 64, M = 1024, L = 60000 

h: hours, m: minutes, s: seconds, ms: milli-seconds, its: micro-seconds 

$MF=MFLOPS=Mega Floating Point Operations per Second 
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3.3 Practical implementation of the FBA 

3.3.1 Introduction 

The basic algorithm described above is efficient because it reduces the amount of 

computations from a factor exponential in L (of the order of LsL) for a direct 

maximization technique, to a factor linear in L (of the order of s2 L) for the FBA. 

Unfortunately the algorithm is still not ready for practical implementation because: 

• some of the variables become very small (both as t or the number of iterations 

increases), resulting in underflow problems. 

• undesirable zero entries can be generated in the matrices r 1 , A, B in one of 

the following ways: 

- a zero entry in one of the initial estimates will be reestimated to 0 (as 

previously seen in section 3.2.3.1). 

- an entry not represented in the finite training data set will be estimated 

and reestimated to 0. 

These zero entries are undesirable because: 

- they accentuate the underflow problems, 

- they prevent the use of such functions as logarithm without checking 

the arguments, 

- they provide wrong estimations of small non-zero parameters not rep-

resented in the finite training data set. 

The underflow problem can be solved by introducing a scaling procedure on 

top of the FBA. The zero entries problem will be solved by constraining the model 

parameters A to be no less than a minimum non-zero lower bound 2 . 

2 An N x M stochastic matrix D satisfying the constraints (3.11) needs to be renormalised 

when its gsereentries, i.e., entries less than a minimum m, are set to this minimum m. The 
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3.3.2 Scaling the forward and backward probabilities 

Basically at (i) (resp. fit (0) is the probability of a sequence of length t (resp. L — t). 

This probability is the product of individual probabilities for each member in the 

sequence. Probabilities being less than 1, 0:4(0 0 as the sequence length t oo. 

Let us consider the "equiprobable case:" 

Vi, j == 1, s Vk = 1, M 	ai  = 1/8, chi  = 1/s, bik  = 1/M. 

Then from the a-recursion (3.41) or the definition (3.39), it is easily seen that: 

Vj = 1 ,8 Vt > 1 
1 

at(j) = ;Tit , 

which shows that at (j) exponentially tends to 0 as t oo, resulting in fast occur-

ring underflow problems. The case of A(1) is quite similar to that of a t  (1), with a 

time axis reversal. Therefore: 

Vi = 1,s 
at (i) --* 0 when t --► oo 

0 when t 1 and L co. 

The scaling procedure to be defined should constrain at  (i) and MO to be 

no less than a strictly positive, constant lower bound. From the recursions (3.41) 

and (3.42) it appears that one needs to constrain the model parameters to the 

following: 

0 < mi  < a <1 

Vi,j = 1,s Vk = 1,M 0 < ma  < aii < 1 

0 < mb < kb ;  < 1. 

(3.48) 

    

renormalization is not necessary if m c 1. If is the set of indices of the zero entries in row i, of 

cardinality 	, renormalise to: 

Vj E 	c14 = m 

vi 
	

d* = (1 — 	Et.; eta 
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From the a-recursion (3.41) it follows that: 

Vj = 1, s Vt > 1 
• • 

	

mame E 	at(.?) 5. E at_i (0 . 

	

i=1 	 i= 1 

To constrain at (j) to a fixed strictly positive range, we define the scaled variable: 

W = 1, s Vt > 1 	att(i) 	
at(i)  

, Ei.i  at-i(i) 

which leads to the desired range: 

Vj = 1, s Vt > 1 	0 < mime  < a:(j) < 1. 

The a-scaling procedure, combined with (3.43) and (3.41), is more precisely de-

fined below, in terms of the local scaling variable for at(i), et: 

• initialization: 

'Ii = 1, s 	c4(i) = aibi (Y1) 

Cl = EL' «1(0 
	

(3.49) 

Vi = 1, s 	asi(i) = ai (i) fe l  

• recursion: 

Vj = 1,s 	 E:=1 	i(i)aiibi 

Vt = 2, L 	 et = E:=1 at (i) 
	

(3.50) 

Vj = 1,s 	4410 
	

a; WI et 

is an auxiliary variable, not equal to at (i) except for t = 1. Noting that: 

E a't(i) = (E a; (j))/et 
i=1 	.1=1 

• 
Vt 1 	agt (j) = 1, 

j=1 
(3.51) 



with: 
t 

= 0 and Ut  = en . 
n=1 

The proof of (3.53) is easily derived by induction: 

- equation (3.54) is true for t = 1: U 1  = cl, a1  = c1 ai, a1  o;. 

(3.56) 
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the ranges of the a-variables are: 

0 < mono  < a7(j) _< 1 

0 < mono /a < a:(j) < 1 
	

(3.52) 

0 < scanzab C ct 	< 8, 

which solves the underflow problem for at(i). 

Now at (i), a;(i), and c4(i) can be directly related to one another through a 

global sealing variable U t : 

with: 

Ut  = ctUt-i 

Vt > 1 	at = Ut at 

a t  = Ut- tat.  

t 
U0  = 1 and Ut  = 11 cn . 

n=1 

(3.53) 

(3.54) 

Or in terms of log-variables (for any variable a we define a = log10  a): 

Vt > 1 

trt  == at + tit-1 

at  = (̂It + ts4 

= 	at 

(3.55) 

- let us assume (3.53) is true for t and let us prove it is true for t 1: 



Vj = 1,8 

therefore, 

at+1 (i) = ELI at (i)ati bi (Yt+1) 

= Ut  ELI  (i) (kJ I); (Yt+i) = uta;+i(j) 

u- 1.1c4+1(i) 	 a:+1 	, = 

Ut+1 	= 

at+1(j) = Ere-144(4W 

cre+i(j) = Uta4 1 (j) 	q.e.d 

(3.54) is derived from a straightforward induction of U0  = 1 and Ut  = ctUt-i. 

The '3-scaling procedure is similar, and respectively defines a local and global 
scaling variable st  and Vt . It is summarized below: 

• initialization: 

Vi = 1,8 	/31(0 = 1 

8L = EL-1 osl (i) = s 
	

(3.57) 

Vi = 1,8 "LW = /31(0/8 = 1/s 

• recursion: 

Vi = 1, 	il:(1) = E.;=1/341WaiMirt+1) 
Vt = L —1,1 	

st =E;.ifigi) 
	

(3.58) 

Vj =1,8 	= figiVst 

• the ranges of the 8-variables are: 
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0 < 

0 < 

0 < 

tronb 	< /3;*(i) < 1 

MaMb / 8 	 1 

8MatTie C  St 	< 8 

(3.59) 

global scaling: 

Vt = 8  t Vt + 

Vt = L,1 At = Vtg 

At = Vt+iN 

with: 
L 

VL_Fi = 1 and Vt = 11 8n. 
rs=t 

Or in terms of log-variables: 

(3.60) 

(3.61) 

Vt = at + 

(3.62) Vt = L,1 

with: 

A = + At 

pt = 	+ At 

L 

VL +1 = 0 and Vt 
 = n=t 

Note that: 

(3.63) 

8L = VL = 8, 	 (3.64) 

and that the likelihood can be expressed as follows: 

P = EL-1 aL(i) 

= UL E ar,(i) 
i=i 

(3.65) 
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P = UL, 	 (3.66) 

and from (3.45) and (3.53): 

XL (') = adi) 
	

(3.67) 

XL( 2 ) = UL dL (i)• 	 (3.68) 

3.3.3 Reestimation in terms of the scaled variables 

The reestimation formulas (3.38) are expressed in terms of Eg (i,j) evaluated in 

(3.45). Using only the scaled variables, we have: 

Vt 	L — 1 	= ugait(i)aiibi (YtAvt+II3410.)• 

Defining: 

Wt = UtVt1-1) 	 (3.69) 

we obtain: 

Et (1,i) = wta: (i)aiabi(Ye + i)/341(i). 
	 (3.70) 

Two algorithms based on two different scaled versions of cg(1,5) will be presented 

below. The first version will be referred to as the "FBA with partial scaling." It is 

a special case (sg  = cg ) of the second algorithm called the "FBA with full scaling" 

(sg  # et ). They operate a different compromise between algorithm accuracy and 

algorithm speed. The first algorithm should be used when greater speed is required 

at the expense of less accuracy (the full dynamic range of the computer is not used, 

however the accuracy of the algorithm will be sufficient for most practical speech 

applications). The second algorithm should be used when the maximum available 

accuracy is needed (the full dynamic range of the computer is used) and a slower 

algorithm is affordable (small models, a short training sequence, or a very fast 

computer). 
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3.3.3.1 A partial scaling procedure: st  = ct  

This scaling procedure for which a t  = ct  (ct  being defined in the preceding section 

by (3.49) and (3.50)) has the advantage of leaving the reestimation formulas in-

variant under the scaling transformation. If in the original unscaled reestimation 

formulas ft (i,j) is replaced by: 

f; 	= c4 (i)ataba (Yt + 	L.i(i), 
	 (3.71) 

then the reestimated parameters A remain unchanged. This is easily seen from the 

fact that for s t  = ct , Wt  is a constant independent of t: 

L 

Wt= H = 	ETL  = . 

n=1 

Therefore in both the numerators and denominators of the reestimation formulas, 

Wt  can be factored out of the sums and cancelled out. 

For the transition matrix A from (3.38): 

aij = 
E;=1 V-711  ft (i, j) 

Ei=li Wtae(i)aiik 0'40/641W 
E;.1 Ef'11' Matt (i)aiik (17t+1)g+1 (j) 

f;(i,j)  

E;,4 Etfil  f; (i,  j) • 

Similarly for the output probability matrix B, from (3.36) and (3.37): 

bie 
	Et- i  E;=1 5 (1:,k)ft(i,j)  

EL' E;=1 Et (i, i) 
Eh' E.1=1o(Yt,k)ft(i , j) + 45 (YL,k)xL  (i) 

Et=i E;= 1  ft j) + XL (s) 
Etfil  E;. 1  (1 ,k)W te; 	+ 	„WI L(i)  

Effil  E;=1 ME; 	+ ULar,(C 1  

Etfil et 
(t

7 ,  j) 

ai; 
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Et-1 E;=1 (Yt , 	(iIj)  
bijk 	

Et-1 E;=1 e; ( 1 0 j) 

For the distribution of the states ir 1 , from figure (3.1): 

a; = al (i)th (0/P 

&V (i)/P with U1 V1  = ciLrx. = 

ck = ciasi (i)4(i). 

Unfortunately this scaling procedure, valid for at (i), does not guarantee that MO 

will not underfiow. If the training sequence is symmetric from its middle point, 

then at (i) and Pt (i) are symmetrically related and a scaling st  = Kc L _t+i  would 

be appropriate. But in general scaling /3t(i)  by the same amount as at (i) would 

still lead to practical underfiow or overflow. As seen from (3.57) and (3.58) with 

st  = ct , for t L — 1, 1: 

s e'- 0410)  Ma Mb 1-  
et+1. 

Ea.., 0:+i (i) 
C.+, 

: Here, contrary to the a-scaling, E' -

c

iti-
13

1
+ifil  0 1. Given that #1(i) = 1 and from 

(3.52) stnam b  < ct+i  < s we obtain: 

Mal.% 	< 131_1 (1) 5_ 	MaMb 

(Ma Mb) t PL-t (0 < 1 / (m ambr • 

0 
1 

00 

The proof of the existence of constant (independent of t) non-zero bounds for ft; (i) 
based on s t  = ct  is not known to us; therefore special precautions need to be taken 

when implementing the algorithm. The FBA with partial scaling is summarized 

in figure 3.2. The largest permissible floating point number (computer range) is 

denoted 10R. 
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t= 1,L — 1 

Vi, j =1,s Vk =1,M 	evaluate: 

ait(i), et, 13:(i) 	for t = 1, Lt 

= 

2e(i,j) = 44(i) + 	k5(Yt+1) + 'Ot+1(j) 

Na(i , j) = E IT1 c; (i , j) 
ii:I<R 

Da(i) = E_, 1  Na(i, j) 

Db(i) = Da(i) + c2(i) 

Nb(i , k) = E L ;21 E;., 1  15 (Ye, k)ce(i, + 45(Y -L,k)al,(i) 
1`e 1 <R 

aii  = Na(i , j) 1 Da(i) 

bik  = 1Vb(i , k) 1 Db(i) 

= cicti(i) fii(i) 

tsee (3.49), (3.50), (3.57), (3.58) with st  = et 

Figure 3.2: FBA with partial scaling. 
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To optimize the algorithm further one might take advantage of the fact 

that the products aiibik  appear 3 times in the algorithm: for the evaluation of 

at (i), Qt  (i), and et (i,j). If the memory capacity permits it, these products can 

be computed only once and stored in an array. Similarly„ products of the form 

aiibi(Yt+i)gt+I(f) appear in the evaluation of both (i) and ft  (i, j). Such products 

can be computed only once if fi' t (i), Na(i, j), and Nb(i, k) are evaluated "simulta-

neously" over a backward loop for t = L — 1,1. For this purpose let us define: 

= 1, s Vt = L — 1, 	u(i, t) = k(Yt+i))571-1(i). 	(3.72) 

The algorithm is reformulated in figure 3.3. Note that the sums in g(i), Na(i, j), 

and .Nb(i, k) are meant over the significant terms, i.e., the terms whose magnitudes 

are less than the computer range 10R. 

If more storage is available this algorithm can still be improved by noticing 

that: 

M L-1 	 L-1 M 
EE gyt , k)att muu,t) 	> E o(ii,k)cxidouu, 
k=1 	 t=1 k=1 

L-1 M 

= > EE gYt , k)] 42:(Ou(i, t) 
t=1 k=1 

1 
L-1 

E (i)uu, 
t=1 

This version of the algorithm is shown in figure 3.4. 



Vi,  j = 1, s Vk = 1, M 	evaluate: 

	

c/t (i), c t 	for t = 1, Lt 

L = 	Et 

)31(0 = / cL c 

	

U(5 ,t) 	(Ye+i) + +1(3) 

	

153(i) 	E;=1 aiiuC 

Na(i, j) = aii Et="11  (i) u( j , t) 

Da(i) = E;=1  Na(i, j) 

Db(i) = Da(i) 

	

.Nb(i, k) = E; .1 a 	O(Irt, k)cr ig (i)u(i ,t) + (Y1, k) 

	

chi 	Na(i , 3)1 D a(i) 

bik  = 1Vb(i , k) I Db(i) 

ai = 

t L — 1,1 

t = L — 1,1 
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tsee (3.49), (3.50) 

Figure 3.3: Optimized FBA with partial scaling. 
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Vi, j = 1, s Vk = 1, M 	evaluate:: 

t = L — 1,1 

t = L — 1,1 
	

M(i) = 

Nb(i , j , k) = 

Na(i , j) = 

Da(i) = 

Db(i) = 

IVb(i, k) = 

= 

= 

for t = 1, Lt 

ELI et 

k(Yt+i) + "341(i) 

E;=i aiiu(j, t) 

VL11  a ll k)a st(i)u(i t) 

ail En M(i) j, k) 

Es
i=1 Nay, j) 

Da(i) + 

E.;.1 at; is/12(i, k) + O(Y k)a'L(i) 

Na(i , j) 1 Da(i) 

IVb(i, k) 1 Db(i) 

ai = Ci a (0)31 (1) 

tsee (3.49), (3.50) 

Figure 3.4: Further-optimized FBA with partial scaling. 
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At that stage one might be quite satisfied with the above optimized versions 

of the partially scaled FBA. However one feature of the algorithm is still of concern: 

the use of logarithms in some of the variables to prevent underflow. The problem 

with logarithms is that they are computationally very expensive (one logarithm 

is roughly equivalent to 20 multiplications). Can we implement a logarithm-free 

algorithm which would preserve the accuracy of the algorithms developed so far? 

It turns out that it will be possible to do so if we take advantage of the inequalities 

(3.48) and (3.52) derived in section 3.3.2. After the scaling, most of the remaining 

underflow problems come from evaluating c; (1, j) of (3.71) as a product of very 

small quantities. Hopefully the ranges of three of the variables have been bounded: 

ma < aij 
	< 1 

Mb < b1(17g+1) < 1 

mame/s < 	< 1. 

Similarly we will constrain the range of (341 (5) to: 

• (3.73) 

so that the overall range of c;(i,j) stays in the dynamic range of the computer. 

The 04, variables outside that range will be discarded, i.e., the sums of the form 

Et  E;(1,5) will be truncated only to the significant terms. What value of O R  would 

be appropriate? 

Let ma  = mb  = m = 10' (v > 0), then: 

10" < 

10-v < 

10 --2v /8 .< 

01110-41 	< 

c4(1) 	< 1 

4(1, 5) < 1. 
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How should the matrix entries be constrained, i.e., what Ir should one choose? 

The fl variables play a role analogous to that of the a variables. Therefore, since 

we would like their range to be constrained to the same range as the a's, i.e., 

= 10-2v/s, we have: 

10-6P/82  < E;(i,j). 

Choosing 10-'/s2  = 10-R  will solve the problem, i.e.: 

= 
6 
-
1

(R - 2i). 	 (3.74) 

In practice R = 74 (computer range 10R), and s = 64 lead to xi = 11 and igji = 2 x 

10-24 . This algorithm is faster than the previous algorithm (by a little more than a 

factor 20) and is quite accurate. As a matter of fact the only numerical differences 

come from the very small model entries around m = 10 - v which represent 0. 

3.3.3.2 The general scaling procedure: s t  # ct  

This scaling procedure guarantees that a=(i) and g(i) stay in the dynamic range 

of the computer (as seen above). However the reestimation formulas do not stay 

invariant under the general scaling procedure but can be expressed in terms of the 

scaled variables et (i, j) defined below and a global correcting multiplying factor 

(see expressions (3.83), (3.85), and (3.78) below). Naturally s t (i, j) in expression 

(3.70) is outside the dynamic range of the computer and Et  Et (i,j) cannot be 

evaluated directly. However we can keep track of the log-variables: 

= IV= + 	+aii + 11(Yt-F1)+ Tliti-1(j) 
	

(3.75) 

We = tit + 
	

(3.76) 

Another useful recursion for Wt  involves only one global scaling variable: 

Wt  = Tkt-Fi ts4 - th+1+ it-Fi• 
	 (3.77) 
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This is easily derived from (3.62) and (3.76): 

Vi/t = tYt + 

6+2 

git+1 = P; — t+1 • 	.+2. 

Let [-10R,10 Rj be the dynamic range of the computers, and S a security margin 

(0 < S < R). The general scaling procedure will be the following: find the largest 

term in the sum, "translate" all the terms in the sum by an amount such that the 

largest term become 10 5 , take the common scaling factor outside the sum, and 

perform the sum only on the significant scaled terms. 

• reestimation for ai : 

• reestimation for 

Let: 

= 
xi(i) 

 = cei(Oth(i)  
P 	P 

• •
1= 	%( i) f3  

j )  = t=91,--1. (i ' j).  

(3.78) 

(3.79) 

Translate e t (i, j) on the range [-10R,10 19 where S is a security factor such that 

Et  (i, j) do not exceed 10R (avoid overflow): 

L 
rnax[E et (i,j)] < 10R  i.e., 

t=i 

L 	 L 	 L 
max1E et (i,j)1 < E max et (i,j) < E los < L xl0 s  , 

t=1 	 t=1 

therefore choose S such that L x 105  = 10R  i.e., 

3  More precisely the range is of the form [-10 1 , —10 — R2  U {O} U [10— R2  , 10R 1 ]. If R1 0 R2 both 

can be incorporated into the algorithms where appropriate, or one can choose R = 	R2). 
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S = R — L. 	 (3.80) 

Define 4(1, j) = 108-Mii) Et (1, j): 

= S - Sf (i,j) + 
	

(3.81) 

Redefine the reestimation formulas (3.38) in terms of et (i, j) : 

= Na(i , j) I D a(i) 

L-1 	 L-1 

Na(i,j) = Elok(im-s > 
t=1 	 t=1 

Let Na' (i, j) = Effil  €:(i, , then: 

Na(i,j) = 10M 	SNa'(i,j) 

Da(i) ENgi,j) = E vaico4)-sNat(i,i). 
1 =1 	j=1 

Let: 

p(i) = max[10ft(`j )-s  Nat  (i , j)j, j=1,• 

and define a new security margin: 

= R — 	 (3.82) 

Define: 

Na" (i, j) = 	-4(i) [1074(ij )- s Na  (i , j)1 
• 

Da" (i) = E Na" (i, j). 
5=1 



Then: 

Da(i) = E 	 ;) = low-s'Daft(i). 
i=1 

Therefore: 

= 101(ij) -A(j)+v -sNa'(i, j)/Da"(i). 

It is of the form: 
I.. 	Nat (i, j)  

(4i K  `ne 3  D a" (i) 

• reestimation for bik : 

b ik  = 1Vb(i,k) I Db(i) 

1Vb(i, k) = 	1Vb(i, j, k) + ( YL , k) az, (,1) 
j=1 

with: 
L-1 

Nb(i, j, k) = E b(Yt , k)f t (i,j) 
t=i 

L-1 

1Vb(i, j, k) = 	> (Yt , k)et (i , j) 
t=i 

Define Nbi(i,j,k) = Ef'_71 1  (Yt  , k)E:(i, j), then: 

Nb(i , k) = 	1014(i s  1% 1  (i, j, k) + (Y1, , k)a z,(i). 
i=1 

Let: 

n (i, k) = max[1074(i"/Vbi (i, j, k)], 

Nb" (i, j,  k) = 	-04)  [10k(i  j" 	(i, j, k)] , 

Nb(i ,k) = 10 4(i 'k)- 	Nb"(i,j ,k) + (Yr, k)ULar,( 1)- 
1= 1 

Let: 

(i, k) = E Nbtt(i,j, k) + 10s1-4(4)  (YL, k)U1,c4(i), 
1=1 
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and: 

then: 

(3.83) 

(3.84) 



then: 

1Vb(i, k) = 104(i  .k)  '1Vb.  (i, k) 

Db(i) = Da(i) + a L(i) 

Db(i) 	E Nan (i,j) + La'L l(i) 
i=1 

Let: 
• 

Db" (i) = E Nan (i,j) + lO ss  

then: 

bik  = 104 Y 	(i, k) I Db" (i). 	 (3.85) 

It is of the form: 
Nb' (1, k) 

ik  = Kb (i , k)  Dbil (i)  

The FBA with full scaling is summarized in figure 3.5. 

(3.86) 

74 
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Vi, j = 1, s Vk = 1, M 	evaluate: 

alt 	fist (i), Ut, Vt, Wt 	for t = 1,Lt 

t = 1,L — 1 it(i,j) = Ike + &t(i)  + aiJ + b, (1't+1);:+i 
k(i,j) .= t=m1 ax  it(i, 

,L-1 

t = 1, L — 1 	j) = S — (i , j) + 	, j) 
L-1 

Na' (i, j) = > et  
.= 

L-1 
1Vb' (i, j, k) = Eo(Yt, k)e't (i , j) 

t= 1 

(i) = max[k(i,j) — S + Arci(i,j)1 
=1,8 

(i, k) = max[l C (i , j) — S + 1'0V, j, k)] 
:=1,. 

	

a" (i, j) = ICI (i , j) — 	+ s' — S + 

	

Arb"(i, j, k) = 	j) — 	k) + S' — S + I (i , j, k) 

E Nan  (I, j) 
=1 

." 1<R 
Dan (i) + 10s1-11(0 ULa ll,(i) 

• 
E 1Vb" (I, j ,k) + lO ss 	(Yi k)ET Lar,(i) 

aq 	j) — 	+ — S + SI (i, j) — Dan (i) 

	

= O (i , k) — 	+ kb' (i, k) — bb n  (i) 

	

= 	+ 1^71 ai(i) + (i) 

tree (3.49), (3.50), (3.57), (3.58), (3.55), (3.56), (3.62), (3.63), (3.69) 

Da" (i) = 

Db" (i) = 

(i, k) = 

Figure 3.5: FBA with full scaling. 
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3.4 Estimation of other types of HMM's 

3.4.1 Estimation of the parameters of CHMM's 

The FBA still applies to the estimation problem for CHMM's [17,18,91,781. The 

estimation formulas of this chapter are still valid for a, fi, 71- 1 , and A in the case 

of CHMM's. Only the reestimation formulas for the output probability densities 

need to be revised. In the case of Gaussian mixture densities (see section 2.6) the 

formulas are [78]: 

Ajm 

Aim 

E:=2  EL I.  a s — (i)aid 	i„,(0 e) fit (j)  
UM. CO 

EL?  
E t., EL, at-. coao1,..bp..(000. 

EfL., 	EL, at-, (1)aijAim 	(01)fit (i)(Oe —  Mina)(0e PINOT  

	

E:., e-- 	 bint (0  Os (1) 

 

(3.87) 

Cjm • 

 

In the case of the multivariate Gaussian density the formulas simply become: 

c, — 

EL_, (i)01  

E: -a(j) 

Et:.-te(i) 

(3.90) 

These formulas have a similar expected-value-like (or frequency-count-like) inter-

pretation as the one described earlier for DHMM's. 
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3.4.2 Estimation of the parameters of HSMM's 

Expressing the likelihood function becomes somewhat cumbersome in the case of 

HSMM's. However it can be shown that, in the case of left-to-right models, a 

modified version of the forward-backward algorithm still applies to the problem of 

estimating 17 == (r i , A, B, D). The reestimation formulas are given in [88]. 

3.5 Evaluation of the forward-backward algorithm 

3.5.1 Evaluation of the correctness of the algorithm 

If the output probability matrix B is diagonal, the FBA converges in one iteration 

to the frequency count results of section 3.1 for matrices A and ir1 , and B remains 

unchanged (identity matrix). If one is only interested in the correctness of the 

algorithm, one can just pick a random Y sequence, run the FBA, and check that 

the estimated A and Tr i  agree with the theoretical solution of formulas (3.4) and 

(3.6). If one is also interested in the accuracy of the estimation process, one can 

generate an observation sequence Y from an actual model with a diagonal B, using 

the Monte Carlo simulation described in the next section. An example of the first 

approach is shown below: 

• Training sequence: 

Y = 

• Initial estimate A 1 : 

0.6 1 0 0.6 

(

0.4 
A = B = 

0.8 0.2 0 1 0.4 



1 0.75 0.25 
A = 

1 5 0.167 0.833 6 13 

1 1 0 

0 1 

B= 7f1 =  
1 

0 

• Theoretical FBA solution: 
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• Practical FBA solution (after one iteration) A2: 

	

0.74999 0;25000 	 0.999 0.000 ) 	 0.9999 A= 	 B= 	 = 

	

0.16666 0.83333 	 0.000 1.000 	 0.0000 

To further check the correctness of the estimation (for B in particular), one can 
use the theoretical FBA results of section 3.2.3.2 for a very simple model, and 

compare them with the practical results of the FBA. Using the same notation as in 

section 3.2.3.2 we define: F(1)  = (k(V)), H(1) = (h,k (t)), and P(t) = P (X( 1) , 17/A). 
This notation is used in the following example: 

• Training sequence: Y = {1, 2, 1} 

• Initial estimate Al : 

	

0.8 	0.2 	 0.7 	0.2 
A= 	 B = 

	

0.4 	0.6 	 0.1 	0.3 

• Frequency counts: 

	

/ = 1 	X(1) = {1,1,1} 	P(1) = 0.0376 	F (1)  = 

	

= 2 	X(2)  = {1,1,2} 	P(2) = 0.0013 	F(2) = 

	

= 3 	IC (3)  = {1, 2,1} 	P(3)  = 0.0071 	F(3)  = 

0.1 

0.6 

2 0 

0 0 

1 	1 

o o 

0 	1 

1 	0 

7r 1  = 

ir(') = 

H(2)  = 

Er(S) = 

0.6 

0.4 

	

( 2 	1 	0 

	

0 	0 	0 

	

1 1 	1 	0 

	

1 	o 	o 

	

2 	0 	0 

	

0 	1 	0 
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/ = 4 	x(4)  = {2,1,1) 	P(4)  = 0.0018 	F(4) = 

/ = 5 	X(6) = {1,2,2) 	P(6) = 0.0015 	F(5) = 

/ = 6 	X(6)  = {2, 2,1) 	P(6)  = 0.0020 	
F(6)  , 

/ = 7 	X (7)  = {2, 1, 2) 	P(7) = 0.0001 	
F(7)  = 

I = 8 	X(8)  = {2, 2, 2) 	P(8) = 0.0004 	
F(8)  = 

• This leads to the following matrices: 

	

0.0783 	0.0100 	 0.0960 
(nii) = 

(m$k) = 

	

0.0110 	0.0043 	 0.0076 

• Theoretical FBA reestimates from section 3.2.3.2: 

	

1 	0  

	

1 	0 

	

0 	1 
 

	

0 	1 

1 j 

0 0 

	

1 	1 

( 

	

( 0 	1 

	

1 	0 

 0 0 

	

0 	2 

0.0408 

0.0110 

H(4) 

H(5)  

H(6) 

H(7) 

1/ (8 ) 

0 

0 

= 

= 

= 

= 

= 

	

1 	1 

	

1 	0 

	

1 	0 

	

1 	1 

	

1 	
0 

	

1 	1 

	

0 	1 

2 0 

0 

	

2 	1 

(% ) = 

0 

0 

0 
 

0 

0 

0 

0 

0 

0 

0 

0.0475 j 

0.0043 

A= 

• Practical FBA 

	

0.89 	0.11 
B =  

	

0.72 	0.28 

results (after one iteration) 

	

0.70 	0.30 

	

0.41 	0.59 

A2: 

0 

0 
•Pri = 

0.92 j 

0.08 

1i0.887118 0.112881 

0.713315 0.286684 
B= 1i0.701677 0.298322 0 

0.410025 0.589974 0 
r1  = 

0.916988 

0.083012 
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3.5.2 Evaluation of the modelling capabilities of the algo-

rithm 

Given an HMM A = (71-1 ,A, B) one can generate a sequence of states {Xt}, and the 

corresponding sequence of observations 117t 1 with a Monte Carlo simulation (see 

below). The sequence {17g } can then be used as a training sequence on which the 

FBA is applied. It is therefore possible to determine how good the FBA is at re-

covering the original model A (influences of the initial estimate, training sequence 

length ...can be studied). The Monte Carlo simulation can be simply described: 

let S be a source which can produce letters from the alphabet A = {1,2, ...,N} 

with probabilities {pi , p2 , ...,pN} such that Er i  p = 1. Our intention is to gener-

ate a sequence S = , si,} of letters from A that will simulate the behavior 

of the source S — in other words, the sequence S will look as if it had actually 

been generated by the source S. For this purpose, let Z be a random variable uni-

formly distributed in [0,1] (and simulated in our experiment, by a random number 

generator). A sequence {z 1 , z2 , ,zi,} of outcomes of Z can simply be mapped 

into a sequence {si, , AL } because of the following properties: 

V0<a< 1 V0<b< 1 a<6 a+b<1 Pr(a<Z.:(a+b) =b, (3.91) 

and if we recursively generate the following sequence of intervals I n : 

Ii = 

In  = 14„ rn] with L r , = n—ls rn = 	Pm 

i.e., a sequence of intervals of the form: 

.11 	1.2 	 Is 

0 	Pi 	 Pi -Fp2+ps ••• 	 1 

It follows from (3.91) that 

Pr(Z E In ) = 	 (3.92) 
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i.e., the event "Z falls in the interval 4," occurs with the same probability as the 

event "the letter n was drawn." Therefore the Monte Carlo simulation generates 

a random number Z, and the letter n, when Z is in In . This procedure can be 

applied to generate the first state i 1 , based on the probabilities 74, then the first 
. 	- 

observation k1, based on the probabilities bi i k, then the next state 2 2 , based on the 

probabilities 	then the observation k2 , based on the probabilities 6i2k , etc. An 

example of a Monte Carlo simulation is given below: 

• Original model A: 

0.2 0.7 0.2 0.1 0.6 

(

0.8 
A= B = 1 0.4 0.6 0.1 0.3 0.6 0.4 

From this model, a state sequence (starting in state 1), and an observation se-

quence, both of length 500, were generated. Then the FBA was run for 99 itera-

tions with the following random initial estimates: 

• Initial estimates A l : 

0.255 	0.745 0.177 	0.382 	0.441 0.396 
A= B= 

) 
7ri = 

0.092 	0.908 0.204 	0.442 	0.354 0.604 

• The estimated model A 100  was the following*: 

0.78 	0.22 0.70 	0.14 	0.16 
A= 

( 
B= = 

01  0.42 	0.58 0.11 	0.39 	0.50 

Even though the initial estimate is significantly different from the actual model, 

the estimated model is a good approximation of the actual model. The quality of 

the estimation is a function of not only the FBA, but also the value of the initial 

'Actually the FBA performed a state permutation: what the original model called state 1, the 

FBA called it state 2. For the results shown here, the states have been permuted back to their 

original index name. 
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estimate, the training sequence length, and the quality of the random number 

generator. 



CHAPTER 4 

Maximum likelihood trellis decoding 

4.1 Presentation of the problem 

Being given an HMM A = (r i , A, B) (estimated with the procedure described in 

chapter 3) one might want to perform two inverse operations on specific data. 

Most of the time these operations will be called coding and decoding (referring to 

the emitter/receiver communication model of chapter 1): 

• given an observation sequence Y(1:L) we would like to retrieve the under-

lying, but hidden, structure of Y by recovering the corresponding state se-

quence X(1:L). This process which might occur in a speech coder at the 

emitter is called the (state) coding. The terms (state) encoding and (state) 

decoding or emitter decoding might also be used since the goal is to decode 

the states from the fuzzy observed Y sequence. 

• inversely, given a state sequence X(1:L) we would like to regenerate the 

corresponding observation sequence Y(1:L) with minimum distortion. From 

the communication model point of view this will be called the (observation) 

decoding process. Another term is receiver decoding. 

Let us consider the state-decoding problem. Finding X., the state of the 

system at time n, is not straightforward because speech goes through a double 

chaining process: one for the states, and one for the observations. The state Xn 

83 
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depends on the past states X(1:n —1) and the future states .X (n + 1:L). The same 

is true for the observations. These dependencies have been modelled by 1" order 

Markov chains and are summarized in the model A. An optimum selection of Xr, 

cannot be made at time n only; a global optimum selection has to be made based 

on the sequences X and Y over a period of time. Consistent with the estimation 

-- method of chapter 3, a maximum likelihood decoding will be used. The optimum 

state sequence X is the one which maximizes the joint probability of X and Y. 

As seen in chapter 3 the joint probability of X( 1) and Y is: 

p (Xm , y) = P(X (1) )P(Y/X (t) ), 

where P(X(')) and P(Y/X(e)) are respectively given in formulas (3.9) and (3.15). 

From now on the superscript (1) identifying a specific state sequence will be 

dropped. The joint probability takes the form: 

L 
P(X,Y) = 	 (1C)• 	 (4.1) 

n=1 

Maximizing the probability P(X, Y) is equivalent to maximizing the a posteriori 

probability P(X/Y) since P(X,Y) = P(X/Y)P(Y) and Y is given. Therefore the 

ML decoding is a Maximum a Posteriori (MAP) method, which is also known to 

minimize the probability of error. 

The ML decoding problem is therefore to maximize a function 7 over the 

discrete set fzi]k where 7 has the following form: 

L  Y(X, 1") = II G(X11 -1 )  Xn)F(Xn, Yn), 	 (4.2) 
n=1 

and where the functions F and G are in [0,1] and Y is given. Even though 7 is 

a finite product of positive terms, the maximization of 7 is not straightforward 

because the term at time n depends on the term at time n —1 and therefore all the 

terms in the product are interdependent. The expression for 7 is quite general, 

and will apply to many types of decoding algorithms. In particular: the state 
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and the observation decoding problems, and the decoding for hidden semi-Markov 

models. 

Two interesting interpretations of the function I should be mentioned. They 

are better dealt with in their logarithmic form. Using the same convention as in 

chapter 3 (a = log10  a), we have: 

t(X, Y) = 	[6(x„_ 1 ,xn ) + fr(x„,Y,0]. 	 (4.3) 
n=1 

We define: 

LL (X, Y) = — 1(X, Y) 
	

(4.4) 

en = 	zn ) + fr(xn , 1),,)] • 
	

(4.5) 
L 

LL(X,Y) = 	in. 
	 (4.6) 

n=1 

L can be computed recursively: 

Ian  (X, /7) = Ln-1 (XI Y.) + tn. 	 (4.7) 

L(X, Y) is called the log-likelihood function and takes values in [0, +oo[. The 

log-likelihood over a single state sequence, L, is not to be confused with the log-

likelihood over all possible state sequences, .C, encountered in chapter 3. As a 

first interpretation, L(X, Y) is seen as a measure of the "distance" between the 

two sequences X and Y. The better the XY match, the shorter the distance 

L(X,Y). As a second interpretation, L(X,Y) represents the length (or weight) 

of a state-node path through the trellis of the BMM. The better the X sequence, 

the shorter (resp. the lighter) the path length (resp. the weight) L(X, Y). As a 

relative measure of the closeness of the two sequences X and Y, the log-likelihood 

L enables us to compare how two different state sequences X( 1) and x(2) relate to a 

given observation sequence Y. The ML decoding problem is equivalent to finding 

the most likely sequence X given Y (maximize the likelihood 7), or finding the X 

which minimizes the distance L(X,Y) (minimize the log-likelihood L), or finding 
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the shortest path X(1:L) (minimize the length LL (X, Y)). 

This interpretation leads us to the concept of a search through the HMM 

trellis to find the optimum (shortest) path X given Y. This formulation allows a 

recursive optimization using a dynamic programming technique [19,67]. Such an 

algorithm, known as the Viterbi algorithm, was initially introduced in the field of 

digital communications for the decoding of convolutional codes [20,56,102,145,146]. 

The X sequence was a sequence of binary digits transmitted from the emitter over 

a communication channel. A noisy observation of X, the sequence Y, was detected 

at the receiver. The sequences X and Y were of the same nature. The Hamming 

distance (mainly a count of the number of times the two sequences differed over 

a given finite period of time) was used as a measure of closeness. Recovering the 

X's from the noisy Y's was achieved by minimizing the Hamming distance in the 

network of all possible state paths. In the case of the speech waveform the state 

and observation sequences are not similar in nature and the measure of closeness 

is a probabilistic distance. However the same concept of search through a graph 

(or network) is applicable. 

4.2 The trellis decoding algorithm 

4.2.1 The algorithm 

The trellis decoding algorithm (TDA), or Viterbi algorithm, finds the optimum 

sequence X(1:L) as the shortest path through the trellis of the HMM. A recursive 

search through the trellis, based on a dynamic programming technique, finds the 

best path without performing an exhaustive search of all the possible paths. First 

of all, before describing the algorithm, let us introduce a small useful vocabulary 

applying to the concept of trellis search: 
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• node: the trellis is made of successive layers of N nodes; N is the node 

alphabet size; there is one layer for each time index n; the nodes might 

represent states (coding process) or observations (decoding process). See 

node {a} in figure 4.1. 

• branch: a line connecting 2 nodes in 2 consecutive layers; the length of the 

branch {x„.._ 1 , x„} is tn . See branch {ab} in figure 4.1. 

• path: a concatenation of consecutive branches; the length L n  (X,Y) of a path 

is the sum of the lengths of its branches. See path {abc' d' e} in figure 4.1. 

• depth: the number of layers in the path X(1:L), i.e., the sequence length L 

— not to be confused with the corresponding path length LL (X, Y). The 

depth of the path {abc' d' e} is 5. 

• extension: a branch connected to the last node of a path to increase its depth 

by 1. See extension {e f } in figure 4.1. 

• parent node: the node on the previous layer n — 1 to which a node in the 

present layer n is connected (also called a predecessor). A node X n  can have 

only one parent P (X n) . See {a} as the parent of { 6} in figure 4.1. 

• child node: a node which has another node for parent (also called a suc-

cessor). A node can have several children. See nodes {b, b', b", D} as the 

children of {a} in figure 4.1. 

• dead node: a node without any children. See node {D} in figure 4.1. 

• alive node: a node which is not dead. 

• survivors: the survivors of depth n are the N shortest paths of depth n, each 

one of them ending in a different node in layer n. If there are several paths 

of exactly the same length L n  ending in the same node in layer n, one path 

is selected at random. Each survivor will usually be identified, at a given 
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time, by an index which is also the node in which the survivor ends (survivor 

i ends in node i). 

• backtracking: starting from a node X n  in layer n and finding the sequence 

{P (X n) , P (P (X n)), , P . . . P (P (X n)) .) = P PC2n 

• G(x l ) = G(x0, xl) is the initial distribution of the nodes (same convention 

as in chapter 3 for the initial distribution of the states). 

• G(xn_ i ,xn ) is the probability of transition between the nodes x n_ i  and xn  

in the trellis. 

• F(xn,Y0 is the probability of observing the quantity I', while in node xn . 

Figure 4.1: Example of a trellis. 
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Let us now justify how the trellis decoding algorithm operates: 

• goal: find the shortest path of depth L, X(1:L). 

- such a path exists since there is a finite denumerable number (NL) of 

possible paths; one is the shortest; in case of ties one path is selected at 

random. 

- this path ends in the node XL, (see figure 4.2). It is, by definition, the 

shortest of the N survivors of depth L (see definition of survivors above). 

• sub-goal 1: find the N survivors of depth L. 

- the process is identical for each of the N survivors. Let us find the survivor 

of depth L ending in node Xi, =1 (see figure 4.3). 

- this survivor of depth L had to be extended from a path of depth L —1 

ending in node xL - 1 . This path of depth L — 1 ending in ZL _ 1  had to be 

the shortest of such paths (i.e. had to be the survivor of depth L-1 ending 

in xi,_ 1 ), otherwise a shorter path of depth L — 1 ending in xL _i , when 

extended, would have led to a "shorter survivor" of depth L ending in xL 

(which is not possible by definition of a survivor), since these two paths of 

depth L —I have the same length extension. Therefore one must find the 

survivor of depth L —1 ending in 

- however 	is not actually known, therefore one has to find all the N 

survivors of depth L —1 and compute the N extensions of these N survivors 

to the node 1 (see figure 4.4). The shortest extended path is selected: it is 

the desired survivor of depth L ending in node 1 (and is now known). 

• sub-goal 2: find the N survivors of depth L — 1, etc, 

- i.e., iterate sub-goal 1 from n = L to n = 2. 

Therefore the trellis decoding algorithm can be summarized as follows (see also 

figure 4.5): 
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• find the N survivors for every depth from n = 2 to n = L recursively (forward 

move). 

• find the best survivor of depth L by backtracking from the last node (back-

ward move). 

The corresponding algorithm in pseudo-code is shown in figure 4.6. The following 

notations have been used: 

t: 	time index of a layer 

a node in the current layer at time t 

1: 	a node in the previous layer at time t —1 

Pt(i) : 	the parent node, in layer t — 1, of the node j, in layer t 

Cur_L(j): length of the survivor of depth t ending in node j 

Pre_L(i): length of the survivor of depth t — 1 ending in node i 

L(i): 	pseudo-length of the path of depth t, extended, by the branch 	j 

(5 given), from the survivor of depth t —1 ending in node i. 

Imin: 	a function that returns the index where the minimum was reached: 

io  = 	(i)] 	Vi f (io) 	(1) 

"I" is the index operator acting on the function rain. 



O 0 0 0 

o o 
b 	c 	d 

0 0 0 0 

O 0 

0 

0 
b" 	c 	d" 

Figure 4.4: Selecting the best path extending to XL. 

XL, 
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Figure 4.2: The shortest path of depth 5. 

XL, = 1 

Figure 4.3: The shortest path is the extension of a survivor of depth 4. 

L{abcde} < L{abi c s  de} a L{abcd} < L{abi c'd} 

XL 
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initialize select best extension 

 

backtrack through the shortest survivor 

Figure 4.5: Summary of the TDA procedure (numbers are branch lengths). 

4.2.2 The issue of the initial node 

In the trellis algorithm of figure 4.6 we distinguished between the initial node be-

ing known and unknown. Such a distinction can be avoided in the algorithm. If 

the initial node is known, the N survivors of depth 2 and their lengths are known 

too. Then the algorithm starts solving for the survivors of depth 3. In this case, 

the term —6(X1 ) —P(xi ,Yi ), appearing in the algorithm of figure 4.6, is constant 

for the N survivors and does not affect the minimization of the overall lengths. It 

could be dropped, but is usually kept for consistency with the case of the unknown 

initial node. If the initial node is unknown the algorithm starts solving for the 

survivors of depth 2 by considering the N possible starting nodes, computes the 
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If X1  known then 	 ;initialization 
For j = 1,N 

P2(j)= X1  

Pre_L(j) = —G(Xi) — fr(X1,Y0 — d(Xi, i) -. 	Y2) 
End For j 
to  = 3 

Else 
For j = 1,N 

Pre-Ii(j) = — d(j) 	Yi) 
End For j 
to  = 2 

End if 
For t = t o , L 	 ;trellis depth loop 

For j = 1,N 
For = 1,N 

L(i) = Pre _L(i) + 6(i, j) 	;extend lengths 
End For i 
Pt  (i) = Imini [L(0] 	 ;find parent node 
Cur _L(j) = L[P t (j)] + F (j ,Yt ) 	;update lengths 

End For j 
For j = 1, N 

Pr e_L(j) = Cur _L(j) 
End For j 

End For t 
XL = Imini[Cur_L(i)] 
X = XL 

For t = L,2 	 ;backtracking 
Xt-i = Pg(X) 
X = 

End For t 

Figure 4.6: The basic ML trellis decoding algorithm. 
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lengths of the corresponding branches and selects the shortest branches. 

These two cases (initial node known and unknown) can be condensed into a 

single case controlled and parameterized by the initial distribution of the nodes 

G(X1). The fact that the initial node (say i0) is known is equivalent to having: 

G(i) = 0 bi # 10 	
(4.8) 

G(io) = 1. 

Running the algorithm as if the initial node were unknown, with the above initial 

distribution of the nodes, is equivalent to running the algorithm with the known 

starting node Rio . The branches not starting with i o  will have an infinite length; 

minimizing the lengths will be equivalent to choosing i o  as the starting node. In 

practice zero entries in F and G would lead to infinite values for P and a, there-

fore the entries in F(i,k) and G(i,j) are constrained to be greater than a strictly 

positive lower bound 10 -R (this automatically happens when F and G are the 

results of the training process described in chapter 3). For the initial distribution 

of the nodes G(i), zero entries or entries lower than a given lower bound (meaning 

they have to be considered 0) are allowed, to enable the selection of the initial 

node(s) through G(i). But then the corresponding logarithm -G(i) has to be set 

to 10R-T (the equivalent of +oo). T is a security margin such that, when several 

of these "infinite" lengths are added together, they do not exceed 10R (the com-

puter range; see chapter 3). A path with an "infinite" length will actually never 

be selected (there will always be a path with a shorter length) therefore we do not 

need to worry about having to add up such large lengths, and T can be (almost) 

0 1 . When it comes to adding up finite lengths it is very improbable that the total 

length will exceed the computer range (unless the computer range is very small, 

or the sequence length L is very large). This is because: 

'Only one extension to an 'infinite' length will be computed. We only need to ensure: 10 R  + 

R < 10R, i.e., T R — log io  [10R — R] ow 0. 
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— 	ELl[max( — &m) + max( —  frn)1 

< ELOR 

LL(X,Y) < 2RL. 

This is no problem as long as L < Yr: (this condition will be met in practice since 

R = 74 and L = 60,000). In the rare case where this condition is not met, the 

solution is to subtract a constant from all the lengths at a proper time n, to bring 

down the lengths to manageable size (this would not of course influence the relative 

comparison of lengths). The condensed algorithm driven by the initial distribution 

of the nodes for the choice of the starting node(s) is shown in figure 4.7. 

For speech processing applications is the initial node known? When con-

cerned with the state-decoding problem, the initial node is usually unknown. In 

that case, the algorithm should be started either by picking a starting state at 

random2 , or by initializing the initial distribution of the states with the steady-

state distribution of the states. However, there is one situation when the starting 

state is exactly known: this is when the state decoding has to be performed on the 

observation sequence with which the HMM was trained. The initial node X 1  is the 

only node z 1  for which the initial distribution of the states is not zero G(X 1 ) 0 0. 

There is another situation when the initial state is fairly well known: this is when 

the sequence to decode starts with silence/noise, not speech. As will be seen in 

chapter 6, the initial state can then be selected from a small number of possible 

silence/noise states. Moreover, the selection of the correct initial node is not crit-

ical for silence. 

When dealing with the observation-decoding process, the initial observation 

is always known (it is the first LPC vector of the speech waveform), but might not 

be available at the receiver (if it was not transmitted). Usually one would transmit 

2 One might also choose the state X 1  which maximises b 2 (Yj ) over x. 



D = 10; R = 74; T = 1 
For j = 1, N 	 ;initialize 

If G(j) < 10-D  then 
GI(j) = —10R-T  

Else 

G(j) =- 10giorG( .7)1 
End If 
L(j) = -&(j) - (i,Y1) 

End For j 
For t = 2, L 	 ;trellis depth loop 

For j = 1, N 
E„ = 1OR 
For i = 1,N 

	

E(i) = L(i) — 	j) 	;extend lengths 
If min(E(i), E„,) = E(i) then 

Pg(i) = i 	 ;find parent node 
Em  = E(i) 

End If 
End For i 

	

L(i) = Em — i, 1i) 
	

;update lengths 
End For j 
For j = 1, N 

L(j) = L (j) 
End For j 

End For t 
XL = Imini[L(i)] 
X = XL  
For t = L, 2 	 ;backtracking 

Pe(X) 
X = Xt -1  

End For t 

Figure 4.7: Optimum, unconstrained ML trellis decoding algorithm. 
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the first observation, otherwise a random selection would have to be made 3 . 

In any case the possibility of the indetermination of the initial node is easily 

overcome because the trellis algorithm behaves smoothly when it searches for a 

global optimum path. A wrong initial node will only possibly lead to short and 

transient wrong decisions over a few nodes at the beginning of the path, which will 

be rapidly smoothed out by the influence of the global decoding over the upcoming 

layers. In other words the trellis decoding algorithm resynchronizes itself quickly: 

it may start with a few unreliable estimates of the first nodes (generally silence 

and noise, not speech), but normal decoding will prevail thereafter. 

4.2.3 Algorithm complexity 

A direct minimization of the overall log-likelihood by examining all the possible 

paths is not feasible because there are NL such paths. This number is exponen-

tially growing with the observed sequence length L. The base of the exponential is 

the number of nodes N (whether 64 or 1024). The trellis decoding algorithm, even 

though it considers only a small subset of all the possible paths, is optimum in the 

sense that it finds the exact solution to the maximum likelihood decoding problem. 

A tremendous economy is achieved because the algorithm keeps only a con-

stant number of paths alive over time (the N survivors). The number of survivors 

is linear with the number of nodes N, and is independent of the trellis depth 

L. For each layer, and for each node in this layer, only N additions have to be 

performed to compute the lengths of the extending branches. An extra addition 

per node and per layer has to be carried out to update the N survivor lengths4 . 

Globally the number of additions required is N(N+1)L—N 2 . The computational 

3 One might also select the observation Y 1  which maximises bxi  (y) over y. 

4 The matrices F and G are stored in logarithmic form, no extra log-computations are required. 
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complexity is linear in L (no longer exponential in L), of the order N2L. Moreover 

the algorithm is very well suited for multi-processor parallel implementations. A 

single simple processor can be assigned to each one of the N nodes. Each processor 

only needs to compute N branch extension lengths (N additions), compare the 

extension lengths two by two, and generate the new survivor length (1 addition). 

However, the great computational efficiency of the trellis decoding algorithm is 

partly gained at the price of a large memory requirement. In every layer the par-

ent of each node needs to be stored, which requires N(L — 1) storage locations. 

About 16 megabytes for N = 64, L = 60000 on the basis of 4 bytes per entry. Two 

additional N dimensional arrays of storage are needed for the survivor lengths for 

a total memory storage of B N (L + 1) (B is the number of bytes per entry). 

Hopefully keeping track of the optimum path over 60000 layers is not what 

one really wants. Optimizing the operation of the decoder over a few milli-seconds 

or even a few seconds, instead of a few minutes, is more likely to be what we are 

looking for. Therefore the actual L will be much smaller and the required memory 

much more manageable. Tables 4.1 and 4.2 show the computation and memory 

costs of the state-decoding trellis algorithm (N = 64) as a function of the duration 

of the speech (on a basis of 15ms speech frames). The issue of the memory cost 

will be further examined in the next section about convergence nodes. 
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Table 4.1 . : Computational cost of the state-decoding trellis algorithm. 

Number of 

frames 

Speech 

duration 

Number of 

additions IBM-PC 

CPU time 

MV/10000 Cray 1 

10 150ms 37,504 0.38s 12.5ms 0.23ms 

15 225ms 58,304 0.58s 19.4ms 0.36ms 

20 300ms 79,104 0.79s 26.3ms 0.49ms 

30 450ms 120,704 1.21s 4002ms 0.75ms 

60 900ms 245,504 2.42s 81.4ms 1.50ms 

80 1.2s 328,704 3.29s 0.11s 2.05ms 

100 1.5s 411,904 4.12s 0.14s 2.57ms 

130 1.95s 536,704 5.37s 0..I.8s 3.35ms 

200 3.0s 827,904 8.24s 0.28s 5.14ms 

330 4.95s 1,368,704 13.69s 0.46s 8.55ms 

4,000 1mn 16,635,904 2m46s 5.55s 0.11s 

60,000 15mn 249,595,904 41m35s 1m23s 1.56s 
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Table 4.2: Memory cost of the state-decoding trellis algorithm 

Number of 

frames 

Speech 

duration 

memory 

(B=1) 

memory 

(B=4)t 

10 150ms 0.7kb 2.8kb 

15 225ms 1.0kb 4.1kb 

20 300ms 1.3kb 5.4kb 

30 450ms 2.0kb 7.9kb 

60 900ms 3.9kb • 15.6kb 

80 1.2s 5.2kb 20.7kb 

100 1.5s 6.5kb 25.8kb 

130 1.95s 8.4kb 33.5kb 

200 3.0s 12.9kb 51.5kb 

330 4.95s 21.2kb 84.7kb 

4,000 lmn 256.1kb 1.1Mb 

60,000 15mn 3.8Mb 16Mb 

tB is the number of bytes. Actually B = 1 (8 bits) can represent at most 256 

nodes; in practice no more than 10 bits (1024 nodes) will be needed. 
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4.3 The concept of convergence nodes 

Still it appears from the preceding section that the memory needed to decode only 

a few seconds of speech is quite significant. Would it be possible to achieve an 

optimum, or near-optimum, decoding of shorter segments of speech? Would it be 

possible to divide and group long speech sequences into blocks of K trellis layers 

(or frames)? Could we then perform the optimum decoding on the K layers and 

then concatenate the corresponding survivors of depth K to build the overall "opti-

mum" solution? As will be seen later this is somewhat loosely formulated. Is there 

a value of K, much less than L, that would allow optimum decoding? Could one 

keep K below, say 10, to achieve optimum decoding? This factor K will be given 

different names: the convergence length, the pegging period, or the decoder delay 

(in the sense that the decoder has to wait for K frames of speech before being able 

to generate the optimum decoded sequence). All these denominations are more 

or less equivalent. The convergence length is an important factor that will reflect 

the degree of predictability of the speech, as well as the long term inter-frame 

dependencies of the speech. The value(s) of K will determine the block length of 

speech segments which are totally independent of past and future segments. This 

concept will become clearer as we move on. One of the goals of the IBM is to 

capture the long term (several frames) predictability of speech, as opposed to the 

short term (several samples, one frame) and the very long term (several tens of 

frames) predictability of speech. The convergence length is therefore of theoretical 

and practical importance in the following three areas: 

- memory requirement for the trellis decoding algorithm, 

- speech predictability over time, 

- decoder delay. 

But how does the convergence length relate to the actual inner-workings of 

the trellis decoding algorithm (outside from a desirable feature over-imposed on 
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the algorithm itself)? The next paragraphs will provide the beginning of an answer 

and make clear why the names "convergence length" and "pegging period" have 

been chosen. 

As a matter of fact, the idea of grouping trellis layers into independent blocks 

is directly related to an interesting, usually spontaneous, feature of the trellis de-

coding algorithm. This feature can very often be observed when following the 

behavior of the algorithm over time on actual data. The N survivors are recur-

sively generated during a forward move. Their depth increases by 1 every time a 

new layer is reached. Their lengths steadily increase. An interesting image is to 

look at the survivors as moving forward, pointing their "heads" in the direction of 

increasing time indices. Some of the survivor lengths will increase much faster than 

others, and the discrepancy between some of the survivors will be quite significant. 

As time increases some of the survivor lengths will be so much larger than other 

survivor lengths, that the former survivors will have no hope of catching up and 

being selected as the shortest survivor over the upcoming layers, and finally they 

will die (end up in a dead node). It turns out that it usually happens that all the 

survivors, except one, die at a given time n. Or more precisely said, all the nodes 

in layer n die, except one — the convergence node. Node {e} in figure 4.8 is a 

convergence node. Two of the paths which were survivors in layer 5 are no longer 

survivors in layer 6: two survivors died in layer 5 and were replaced by two new 

survivors in layer 6 (see figure 4.8). The existence of the convergence node {e} at 

time n can only be detected at time n + 1, when all the nodes in layer n + 1 are 

found to have the same unique parent. More precisely, a convergence node at time 

n can only be detected at time n w (w > 1). The extra-delay w will be called the 

weight of the convergence node s . Considering the heads of the survivors at time 

n+ w and looking w layers backwards, it appears that the N survivors emerge from 

6 We might want to distinguish two basic types of convergence nodes: the convergence nodes of 

weight 1 (the simplest type), and the convergence nodes of weight greater than 1. 
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a single node, the convergence node. Said differently, the N survivors of depth 

n + w have a common tail, the optimum path over the time range [1,n] (see path 

{abcde} in figure 4.8). This phenomenon of the convergence node usually appears 

quasi-periodically. The quasi-period of convergence is K, the convergence length. 

It might be a function of time, Kn . In other words the convergence length is the 

number of layers in between two convergence nodes (the two boundary layers being 

included). In the example of figure 4.8, K = 5. The term "convergence length" is 

used when the phenomenon happens naturally during a free run of the algorithm. 

It might happen that natural convergence did not occur (or did not occur before 

a preset maximum allowable convergence length Km ). Then a non-spontaneous 

convergence can be forced on the algorithm. The N survivors are forced to go 

through a given node at a given time, and the decoded block is transmitted by the 

decoder. Forcing a (presumably known) node on the survivors is called pegging 

and K is then also referred to as the pegging period. 

We just described the concept of convergence node. The convergence was 

total, in the sense that all the survivors emerged from a single node. However, 

partial convergence might also occur: all the survivors might emerge from NA 

(alive) nodes (NA < N). NA is the order of the convergence. A (total) convergence 

is a convergence of order 1; a partial convergence is a convergence of order greater 

than 1. The order of convergence is a function of time, for a given layer: it depends 

on the layer from which the convergence is looked at. If, seen from layer t, the 

order of convergence is NA, it might appear as .N:4  < NA, from layer t 1. That 

is, the order of convergence is a decreasing function of time, for a given layer. In 

figure 4.9, the order of convergence of layer 3 is 2, seen from layer 4, and 1 seen 

from layer 7. Now, let us describe the algorithm that detects convergence nodes. 

It is done through iterative partial backtrackings in the trellis. The creation of a 

convergence node of weight 1, automatically changes all the nodes between this 

convergence node and the previous convergence node, into convergence nodes of 
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weight greater than 1. In fact, any node on the path between two convergence 

nodes (referred as the initial and final convergence nodes), becomes a convergence 

node itself, of weight greater than the weight of the final convergence node. This 

is depicted in figure 4.9: {B} is detected as a convergence node of weight 1, then 

nodes {a}, {6}, and {c} become convergence nodes of respective weights 4, 3, 

and 2. The solution path over this period of time is now known: it is necessarily 

{A, a, b, c, B}. Once {B} has been detected, the algorithm does not need to look for 

convergence nodes of weight greater than 1, prior to {B} . Now, will convergence 

nodes of weight greater than 1, ever be detected before convergence nodes of 

weight 1? The answer is yes. An example is shown in figure 4.10: node {C} is 

detected as a convergence node of weight 2, and no convergence node of weight 

1 was detected in the layer t = 4. Therefore the TDA should detect convergence 

nodes by iteratively backtracking, from the present time, down to the time layer 

where a new convergence node is found, or down to the layer at a time distance w 

from the layer of the previous convergence node (of weight w). In each layer, the 

algorithm looks for a convergence node of increasing weight, starting at w = 1. As 

a summary, the detection works like this: let us suppose that a convergence node 

of weight w was detected in layer t (t = 0 for convenience). The TDA reached 

layer w (from where the convergence node was detected by backtracking). The 

TDA keeps moving forward, one layer at a time, and looks for new convergence 

nodes. At layer t = w + 1 it looks for a convergence node of weight 1. If there is 

no such node, the TDA proceeds in layer t = w + 2, looks first for a convergence 

node of weight 1, then if unsucessful, of weight 2. Then the TDA moves forward to 

layer t = w + 3, etc ... The actual decoding delay D is the sum of the convergence 

length K and the weight w: D = K + w. After a given convergence node, D layers 

have to be processed to detect the new convergence node. Then, the solution path 

over the K layers can be "output" by the algorithm. 

The expression "optimum path" was used in the preceding paragraph to de-

scribe the common tail. Is it appropriate? Well, yes and no. It is appropriate 
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Figure 4.8: Emergence of the convergence node {e} . 

D 

0 	 D 

Figure 4.9: The solution path {A, a, b, c, B}. 

Figure 4.10: A convergence node of weight 2, the node {C}. 
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because it is the solution we are looking for, and it is the solution the trellis de-

coding algorithm will provide when operating on the overall speech sequence (the 

L layers). However the great motivation behind the concept of convergence node 

is to be able to process these "common tails" of depth K c L as independent 

blocks. Can the TDA decode these blocks "optimally"? This is possible if care-

fully done. The first method, as described just above, applies the (unconstrained) 

TDA on D = K + w layers and "outputs" the block of depth K, independently 

of other blocks. However the blocks are not really processed independently, since 

a given block of depth K needs the information present in the w layers after the 

block. The second method applies the (constrained) TDA on the block of depth 

K, independently of the other blocks, assuming an a priori knowledge of K and of 

the final (convergence) node of the block. The terms "unconstrained" and "con-

strained" will now be defined. First of all a block between two convergence nodes 

is really independent of past and future layers. Finding the overall best° survivor 

is equivalent to finding each survivor in each block starting and ending in the two 

convergence nodes of the block, and concatenating them. This is true because the 

common tail of the N survivors emerging from any single convergence node can be 

discarded: the common tail has a single length that does not influence the mini-

mization of the lengths over the upcoming layers (see figure 4.8). So now if we were 

to apply the trellis decoding algorithm on each of these individual, independent 

blocks, would the desired solution (the path {abode} in figure 4.8) be the "opti-

mum path"? No, it would not necessarily be. Therefore the term "optimum path" 

is inappropriate here. The "optimum path", i.e., the shortest survivor provided 

by the TDA (described so far) on the given block would not necessarily be the 

desired solution (like the path {abode} in figure 4.8). The solution path ending in 

the convergence node at time n, although being a survivor, would not necessarily 

be the shortest survivor at time n, but would only be the survivor ending in the 

convergence node. The existence of the convergence node was determined at time 

"best' might mean the shortest or the one starting and ending in the right nodes. 
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n + w and had no bearing on a fact such as ending the shortest survivor at time n. 

It just guaranteed that the N paths at time n + w, extended from the convergence 

node, would be the shortest. The decision essentially depended on the lengths 

of the extension branches (and, of course, on the lengths of the survivors from 

which they were extended). However, it would also generally be probable that the 

- shortest survivor at time n would also be the solution path (the one ending in 

the convergence node), since the extension lengths would usually not dramatically 

alter the ordering of the survivor lengths at time n + w, especially if the survivor 

lengths at time n were significantly different. 

As a summary, the true solution to the block-decoding problem is the opti-

mum path provided by the constrained TDA applied on a block of layers of depth 

the convergence length. The term "constrained" means that the path search is 

constrained on the knowledge of the initial and final convergence nodes of the 

block. The expression "optimum path" means the survivor of depth K starting 

and ending in the corresponding convergence nodes, not necessarily the shortest 

one. The solution provided by the unconstrained TDA on the same block, would 

not necessarily be the true solution. However, the unconstrained TDA also pro-

vides the true solution — a block of depth K — when operating on K + w layers 

— a block of depth K + tv. We are now left with two modes of operation of the 

TDA: 

• natural convergence and the unconstrained TDA: letting the unconstrained 

TDA run freely, one looks for spontaneous convergence nodes. Whenever a 

convergence node is found 7 , the block solution is known to be the "common 

tail" between the previous and the present convergence node. This decoded 

block can be "output", and the TDA can be restarted from the current 

convergence node. Here the decoder delay and memory requirements are 

TA maximum allowable convergence length can be used, at the risk of introducing errors. 
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kept to a minimum, and the optimality of the algorithm is preserved. 

• forced convergence and the constrained TDA: if no natural convergence ap-

pears (or would have appeared for a convergence length greater than the 

maximum allowable convergence length) the constrained TDA- should be 

used. Convergence nodes are forced on the survivors. This is also called 

"pegging" since nodes are pegged every K layers. 'The pegging period K 

might be constant or variable. Pegging might result in extraneous errors, 

unless the actual pegged nodes are known. Moreover, knowing that it takes 

a few layers for the TDA to stabilize, it is more robust to peg Q nodes at a 

time, instead of only one. However, pegging Q nodes at a time, instead of 

one, does not improve the degree of reliability of the TDA. It only improves 

the robustness (accuracy) of the decoded sequence (see figure 4.13). 

The constrained TDA is expected to perform better than the unconstrained 

TDA, when it operates on short segments or blocks of speech, and processes the 

whole block at a time, independently of other blocks. The former algorithm might 

introduce local errors due to an approximate knowledge of the pegged nodes, but it 

operates under the right concept of optimality. The latter algorithm, even though 

it finds an error-free solution based on its own concept of optimality, is less pre-

ferred because it works under a partially correct concept of optimality, with respect 

to the block — this is especially true for the speech observation decoding. The 

previous TDA of figure 4.7 can be easily modified to include the search of con-

vergence nodes (according to the partial backtracking algorithm described above) 

and the corresponding processing of blocks (this algorithm is the unconstrained 

TDA, with detection of convergence nodes). 

In the case of speech decoding both modes of operation will be used; the 

choice of the mode is dictated by the type of decoding, the number of nodes N, 

and the most reliable information available. For the state-decoding problem, the 
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true model A and the right expression for the likelihood are known, and the states 

cannot be observed. The number of nodes in each layer (N = 64) is reasonably 

small. Natural convergence will prevail. Therefore the unconstrained TDA should 

be used. For the observation-decoding problem, the true model A is known, but 

the likelihood is uncertain. However the pegged observations are exactly known. 

The number of nodes (N = 1024) is close to what is generally considered the max-

imum limit under which the TDA can be used efficiently. Here, the constrained 

TDA should 1be used. 

Let us finally introduce here a new concept: the global state/observation 

decoding. One of our main concerns has always been to use HMM's of speech to 

identify global structures. This was true in the way the model was formulated, 

in the way it was trained, and in the way the state decoding and the observa-

tion decoding were performed, independently. More globality can be reached, if 

the state and observation decoding are not considered as two independent prob-

lems, but as only one problem, with two interleaved processes, represented by 

the state and the observation sequences. A global decoding scheme should be 

seen as a "feedback decoding:" the optimum decoded state sequence should be 

the one which guarantees the optimum decoded observation sequence. In other 

words, the optimality of the state sequence is directly linked to the optimality of 

the observation sequence. Above, the notion of optimality was measured by the 

constrained or unconstrained log-likelihood. The notion directly emerged from the 

HMM itself. But how well does it fit the notion of optimality we are mainly con-

cerned with: speech intelligiblity? Outside from the log-likelihood, several other 

measures of intelligibility [13] could be used (the Itakura-Saito measure, to men-

tion only one), to describe the quality of the decoded observation sequence. The 

feedback state/observation decoding could operate in several ways. Contrary to 

what was said before, the constrained TDA could be used for the state decoding. 

The choice of the initial and final states would be constrained on the optimality 
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of the corresponding decoded observation sequence. This would be seen as a block 

feedback decoding. Alternatively, decoded observations could be continuously fed 

back to the state decoder; it would directly affect, not only the initial and final 

states, but also the states in between. This would be seen as a continuous feedback 

decoding. The observation decoding would still be performed by the constrained 

TDA. The optimality (intelligibility) of the decoded observation sequence would 

be measured; the degree of optimality would "drive" the state decoder. For the 

observations, the constrained TDA could also be replaced with other schemes, 

such as the minimization of the LPC log-likelihood distance between actual and 

decoded observations. 

4.4 Sub-optimum trellis decoding algorithms 

The TDA described in section 4.2 is optimum, i.e., it finds the exact solution to 

the ML decoding problem (as long as the memory requirements are met). In this 

section we consider sub-optimum algorithms in the sense that they might find only 

a near-optimum solution. The goal is still to obtain the exact solution but it will 

not necessarily be reached. The probability of missing the exact solution will be, 

however, kept to a minimum. The motivation behind sub-optimum algorithms is 

increasing the algorithm speed, but also decreasing the memory needs. Two types 

of sub-optimum algorithms will be presented: the first algorithm will keep track 

of only the Ns  best survivors instead of N (Ns < N); the second algorithm will 

include the features of the first algorithm, and also limit the number of possible 

survivor extensions to the NE best extensions instead of N (NE < N). 

The first algorithm will perform a backward pruning: when decoding layer n 

it will look backwards at layer n-1 and consider only the Ns shortest survivors for 

extension, where Ns = N — NB (NB > 0). NB is the backward pruning factor; the 

corresponding pruning rate RB will also be used: it is the percentage of survivors 
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discarded. Discarding a survivor ending in node x1_ 1  is equivalent (as far as the 

result is concerned) to temporarily setting G(xn_i,x.) = 0 at time n. The setting 

to 0 is conditioned on the survivor length compared to other survivor lengths. 

The second algorithm will add to the first one a forward pruning: when 

Considering the Ns survivors to be extended from layer n — 1 to layer n, the 

algorithm will look forward at layer n and retain only the NE most probable 

nodes z R , given Y., as possible children, where NE = N — NI? (0 < NF  < N13) 8  • 

NI? is the forward pruning factor; the corresponding pruning rate Rip will also be 

used: it is the percentage of nodes discarded in layer n. Discarding a node x 1  is 

equivalent (as far as the result is concerned) to having F(x., Y.) = 0. Only the 

NE most probable nodes x, , given Y., will be considered plausible. This is also 

called "setting, a rank constraint" on the matrix F. 

4.4.1 Backward pruning 

How can we implement the backward pruning process described in the preceding 

paragraph? In every layer n the algorithm should extend only the Ns  shortest sur-

vivors. These Ns  survivors have Ns  distinct final nodes. Let us denote this set of 

nodes by A = {1, 2, 3, ... ,Ns}. An easy way to comprehend the problem is to think 

of ;1 as a set of pseudo-nodes, constituting a pseudo-trellis (or a meta-trellis). The 

pseudo-nodes represent a subset of the actual nodes A = {1,2,3, , N}. More-

over, the set .4 is "variable" with time, in the sense that the constant set of indices 

;1 actually represents different "real" nodes, from A, for different time layers. To 

identify the relationship between A and A, a node mapping , function fit  should be 

defined: 

8 The right-hand inequality is necessary to be able to maintain the desired number of survivors 

Ns < NE. 
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qt 
A 

The node mapping function qt  is of course variable with time. The time index t 

Will very often be dropped. The function qt  maps a pseudo-node onto a real node: 

qt (i) is the final node of the Oh  shortest survivor in layer t. The function qt  is 

therefore defined according to the ordering of the survivors, by increasing lengths, 

at time t. If we define jmin as a function extracting the kith  smallest element in a 

list, and if "I" is the same index operator as before, then: 

qt (j) = Ijmin[L t (i)]. 	 (4.9) 

The backward pruning scheme can be directly implemented, just by writing the 

TDA for the pseudo-trellis, and relating the pseudo-nodes to the real nodes through 

the node mapping function. The corresponding pseudo-code is shown in fig-

ure 4.11. 

The new algorithm reduces the computational complexity to the order NNsL, 

instead of N2 L. The parent of only Ns pseudo-nodes per layer need to be stored, 

together with the index mapping function for each layer. It requires a number 

of storage locations of the order 2NsL, instead of NL. A memory saving will be 

achieved if Ns  < 1, i.e., if at least 50% of backward pruning is used. If Ns  > 

the memory requirements of the two algorithms are the same (when storing the 

parent of each real node in each layer). Further memory savings might be gained 

by using other data structures than arrays: link lists, to represent the survivors, 

would only use NsL storage locations. 

Now, how optimum is the TDA with backward pruning? This will depend 

on the "behavior" of the survivors, and on the pruning rate. If the lengths of two 

survivors are close to one another, discarding one survivor effectively is difficult. If 



D = 10; R = 74; T= 1 
For j = 1, N 	 ;initialize 

If G(j) < 10' then 
au)  = —10R-T  

Else 

G(j) = log iorGH 
End If 

L(j) = — a(i) — fr(i,Y1) 
End For j 
For t = 2, L 	 ;trellis depth loop 

For i = 1, Ns  
q(i) = Iimink  [L(k)] 	 ;backward node mapping 

End For i 
For j = 1,N 

E1,„ = 1OR  
Fori=1, N5  

E(i) = L[q(i)] — (q(i), j) 	;extend lengths 
If min(E(i),E„,,) = E(i) then 

Pt (i) = q(i) 	;find parent node 
Em  = E(i) 

End If 
End For i 

L(j) = Em. — :F(7 " 'Ye) 
End For j 
For j =1,N 

L(j) = L(j) 
End For j 

End For t 
XL  = Imini [L(1)] 
X = XL  
For t = L, 2 	 ;backtracking 

Xt-.1 = Pt (X) 
X = Xt - 1 

End For t 
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;update lengths 

Figure 4.11: Unconstrained ML trellis decoding algorithm with backward pruning. 
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the lengths of two survivors are very far apart, it is probably very safe to discard the 

longer survivor. The measure of closeness of survivor lengths can be statistically 

evaluated: by applying the optimum (no pruning) TDA. on relevant data, one 

can determine how much discrepancy between two survivor lengths is needed, on 

the average, for one of the survivors to be dropped over the upcoming layers. A 

-discrepancy threshold can be set. It would allow the TDA to set its own rate of 

pruning automatically, according to the lengths encountered. A variable pruning 

rate would usually be more efficient than a fixed pruning rate. As seen before, the 

decision of the TDA is more reliable as time increases. Usually the algorithm might 

start with small discrepancies between the survivor lengths (very small pruning 

rates should be used), and then proceed with increasing discrepancies (larger and 

larger pruning rates could be used). Note that setting •the backward pruning 

rate to the highest possible level (Ns  = 1) would be equivalent to building the 

solution, sequentially, as the concatenation of the shortest branches. It would not 

(necessarily) be the solution to the ML decoding problem, because, as explained 

before, it does not take into account the dependencies between the branch lengths. 

4.4.2 Forward pruning 

The forward pruning can be implemented in a way similar to the backward pruning. 

The algorithm is concerned with only the NE most plausible nodes in the upcoming 

layer. We define the set of the plausible nodes by .4 = {3 , 2, 3, ... , NE). These 

pseudo-nodes generate a pseudo-trellis. The relationship between the pseudo-

nodes and the actual nodes is represented by a forward mapping function: 

where: r t  (3) = jmini 	Yt+i )]. 
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rt (j) is the jih most plausible node in layer t + 1. These are the nodes in layer 

t +1, to which the survivors in layer t should be extended. We previously said that 

the forward pruning scheme was added on top of the backward pruning scheme. 

Actually two combinations are possible: 

- the forced backward pruning described in section 4.4.1 is augmented by the 

_forward pruning scheme with Ns  < NE. The algorithm of figure 4.11 is easily 

modified to act directly on the forward pseudo-trellis, through the forward map-

ping function, 

- If a forced backward pruning is not used, then the forward pruning will generate 

its own natural backward pruning with Ns  = NE. Here the Ns  survivors are not 

selected on the basis of their lengths, but on the basis of their final node. The back-

ward pruning function is easily modified accordingly, just by setting qt  (j) = r t (j). 

The pseudo-code for this algorithm is shown in figure 4.12. The notation con-

vention for L(i) has been changed: instead of being the length of the survivor 

ending in the actual node i, L(i) is now the length of the survivor ending in the 

pseudo-node i„ i.e., in the actual node r(i). This requires only NE array elements. 

The computational cost of the algorithm is of the order NE NSL. The memory 

cost is basically the same as the one of the algorithm with only backward pruning. 

One can choose to store the parent of each real node (some real nodes do not 

have a parent), or store the parent of each pseudo-node and the mapping function. 

In terms of optimality, the second algorithm (the one with forward and natural 

backward pruning) might be preferred, especially in the case of speech observation 

decoding. As mentioned earlier, the forward pruning is equivalent to setting a 

rank constraint on the matrix F(i, k). In other words the algorithm sets a maxi-

mum allowable rank r„„ by selecting a given forward pruning rate. The existence 

and value of an actual maximum rank r„, (less than the number of nodes), can be 

statistically determined, using the training and state decoding phases. Once an 

observation sequence Y has been decoded in terms of its state sequence X, the 
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D=10; R=74; T=1 
For j = 1,N 
	 ;initialize 

If G(j) < 10-D  then 

G(j) = —10R-T 

Else 

G (j) = logio[G(j)] 
End If 

r(j) = 
L(j) = -- a[r(i)] fr(r(5) , Y1) 

End For j 
For t= 2,L 
	

;trellis depth loop 
For i = 1, Ns 

q(i) = r(i) 
	

;backward node mapping 
End For i 
For j = 1, NE 

E,„, = 101? 
r( ► ) = jmin i [— P (i,Yt )] 

	
;forward node mapping 

For i = 1, Ns  
E(i) = L(i) — &[q(i),r(j)] 

	
;extend lengths 

If min(E(i), E„,) = E(i) then 
PtirWi = q(i) 
	

;find parent node 
Em  = E(i) 

End If 
End For i 

1(5) = 	fr MAYO 
	

;update lengths 
End For j 
For j = NE 

= L(j) 
End For j 

End For t 

XL = 	[gin) 
X = XL  
For t = L,2 	 ;backtracking 

Xt-i = Pt(X) 
X = Xt-1 

End For t 

Figure 4.12: Unconstrained ML trellis decoding algorithm with forward and nat-
ural backward pruning. 
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rank r„, of the least probable (plausible) observation per state can be determined. 

Then statistically, one would not expect an observation of rank greater than r,„, 

to be generated in any state (in other words, the observation has to be at least 

the rm" most probable observation in a state, to be generated by that state). Then 

setting a forward pruning to NE = r„, is sure to guarantee an optimum decoding 

(none of the actually plausible nodes will be discarded). 

In practice, for the speech observation decoding, the trellis is composed of 

N = 1024 nodes. If the 64 states were clustering the observations uniformly, then 

only 16 observations would be plausible in each state. Therefore the TDA could 

be operated on a reduced trellis of only 16 pseudo-nodes, which would save a great 

deal of computations. As will be seen later, such a clean cut at 16 observations per 

state does not exist, and the actual maximum rank will have to be set higher than 

the optimistic 16 nodes. Another interesting feature of the algorithm with forward 

and natural backward pruning, is the possible automatic inclusion of pegged nodes 

through the forward mapping function. 

The limiting case NE = 1 is equivalent to finding the most probable ob-

servation per node. When the number of paths searched becomes very small 

(Ns, NE -k 1), the TDA will make decoding errors. The TDA behaves then like 

a sequential decoding algorithm [35,20,64], except that only a forward move is al-

lowed. If sequential decoding was to be used, backward moves should be allowed. 

The algorithm would move backwards, and follow another path, when it detects 

that the path it is currently following is wrong. The decision would be made on 

the comparison of the actual path length with an expected path length (a statisti-

cally meaningful threshold). Moreover, a biased log-likelihood function would be 

used: the biased log-likelihood function would decrease when the algorithm follows 

9One could also define a maximum rank r„,, ;  for each state i, especially when the states do not 

behave uniformly. 
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the right path, and increase when it follows an incorrect path. It would also be 

normalized to be able to compare paths of different depths. Outside the informa-

tion contained in the nodes and the classical log-likelihood, extra-information in 

terms of heuristics would usually be necessary. This extra-information might or 

might not be included into the definition of the biased log-likelihood. Basically, a 

sequential decoding searches a tree, instead of a trellis, based on this information. 

The algorithm does not exactly minimize the log-likelihood, but extends a sin-

gle path, as long as the biased log-likelihood decreases. It backs up and explores 

a different path when the biased log-likelihood starts increasing. The algorithm 

stops when the final node is reached. A reduction of the computational complexity 

is generally achieved, but the amount of computations is no longer constant with 

time. Such algorithms have been developed: the Fano algorithm [49] and the stack 

algorithm [3,20,63,70]. They are usually applied to a trellis beyond 1024 nodes per 

layer. 

4.5 Constrained trellis decoding algorithm 

The notion and necessity of a constrained algorithm was introduced in section 4.3. 

As seen before, it relates to the concept of forced convergence, and to the mech-

anism of node pegging. It allows not only a more efficient algorithm in terms of 

memory requirement, but also a more reliable decoding in terms of finite, lim-

ited predictability of speech. The accuracy of the unconstrained TDA decreases 

with time, past a given number of trellis layers: this is because the degree of 

predictability of speech decreases over long periods of time. A very long-term pre-

diction, based on an initial state only, is difficult. The algorithm needs periodic 

or quasi-periodic information about the actual state of the system. Knowing the 

initial and final states of the system, the TDA can perform a more reliable estima-

tion of the states in between, based on the minimization of the log-likelihood. The 

unconstrained TDA minimizes the log-likelihood over all possible paths in the trel- 
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lis. The constrained TDA will minimize the log-likelihood over all possible paths, 

starting and ending respectively in the initial and final nodes. These two nodes 

are the nodes to be pegged. They are assumed to be known with certainty (or at 

least with a high degree of certainty). As already mentioned, the constrained TDA 

will be most helpful for the speech observation decoding. The pegged-nodes will 

be initial and final known observations. Given the state sequence, the initial and 

final observations — and therefore a preset pegging period — and an appropriate 

log-likelihood, the TDA will attempt to recover the observations in between the 

pegged observations. Outside from this information, additional heuristics (based 

on speech knowledge) might be necessary to synthesize intelligible speech. The 

initial and final nodes of the trellis will be respectively denoted by Xi  and Xf . 

A schematic representation of the constrained TDA is shown in figure 4.13. The 

straight horizontal lines are actually a convenient representation of the path of the 

pegged nodes in the trellis — not necessarily straight in reality. The straightness 

is just meant to say that the actual path over this period of time is known, and the 

TDA need not be applied there. The pegging period is K. The number of pegged 

nodes is Q (K = 6, Q = 3 in figure 4.13). A sequence segment (a block), like 

the one inside the dashed box of figure 4.13, can be processed by the constrained 

TDA independently of other segments. The pseudo-code of the constrained TDA 

is easily derived from the pseudo-code of the unconstrained TDA: instead of doing 

the backtracking over the shortest survivor, it should be done over the survivor 

ending in the pegged node. 

4.6 State and observation decoding for speech 

4.6.1 State decoding 

Given an observation sequence Y(1:L) (denoted Y here for simplicity), the opti- 

mum state sequence X(1:L) (denoted X) is the one which maximizes the likelihood. 
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Figure 4.13: Operation of the constrained TDA. 

The problem is to find X such that: 

P(X, Y ) = m:x P(x, Y) = nip( Pr (Y/x) Pr(x). 

As explained earlier, the solution to this problem is given by the unconstrained 

TDA acting on the state-space trellis of the direct IIMM A, with detection of 

convergence nodes through partial backtracking. The states (nodes) of the trellis 

are also the speech states, and the trellis observations are the speech observations. 

The likelihood function is expressed by equation (4.1). The algorithms of this 

chapter directly apply to the function 3 given in equation (4.2) with: 

F(x„, Y.) = b=., (1'n) 

x„) = az._,... 

4.6.2 Observation decoding 

Several observation decoding schemes with different levels of optimality and com-

plexity are possible. The intelligibility and quality of the synthesized speech is a 

function of the type of approach and algorithm used. 

4.6.2.1 The most probable observation decoding 

This scheme chooses the most probable observation in each of the states, i.e., given 

the known state sequence X(1:L) (denoted X), it selects the observation sequence 
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Y (11) (denoted Y) on the basis of: 

bin= 1,L 
	

bx.(Y.) = max bx. (Yn ) 

This is the simplest observation decoding scheme. It reduces the original codebook 

of M vectors to only a significant vectors (one in each state). The overall HMM 

coder/decoder can be thought of as a new vector quantizer with a reduced code-

book of s vectors. To encode the speech — i.e., select the "best" match from the 

reduced codebook — the state sequence is detected by the TDA (instead of min-

imizing the Itakura distance between the speech vector and the vectors from the 

reduced codebook). At first sight this hybrid HMM-VQ speech encoding scheme 

might seem better than the classical VQ scheme, because it takes into account 

the long term dependencies across frames (instead of only a local distance mini-

mization on a frame by frame basis). Unfortunately the 11MM synthesized speech 

should at best be equal in quality to the VQ speech, since the HMM is only capable 

of modelling the frame dependencies which were present in the training corpus, i.e., 

that were encoded by the initial VQ representation based on, the M-level codebook. 

This most probable observation decoding scheme does not take full advantage 

of the capabilities of HMM's. There is a loss in observation resolution since the 

codebook is reduced from a size M to 8. This decoding scheme does use some 

of the clustering information present in each of the states, as well as some of the 

language information encoded into the connections between states. Even though 

the decoding scheme uses only the local information of the current state X., this 

information was globally determined during the state decoding phase to satisfy the 

"connectionist" constraints of the state sequence based on the observed speech. 

However, it does not use all the connectivity properties of the HMM since obser-

vations are selected independently of one another based only on the value of the 

current state. A better decoding scheme would need to incorporate both state 

and observation dependencies by globally (and not locally) selecting an optimum 
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observation sequence Y based on the known state sequence X (in a way similar to 

the state decoding scheme). 

4.6.2.2 The expected observation decoding 

This decoding scheme is similar to the previous one, except that instead of using 

only one significant observation per state, it uses the M observations in the state, 

weighted according to their probabilities of occurrence. The decoded observation 

vector is given by: 
M 

V n = L 0„ = E bx„ (k)ok, 
k=1 

where Ok is the kth LPC vector in the codebook. Actually, instead of directly 

averaging the LPC vectors (like prediction coefficients), the decoder averages the 

autocorrelation sequences. Here too the original codebook of size M is reduced 

to a codebook of size s, but the vectors of the reduced codebook do not belong 

anymore to the original codebook. The new spectral information encoded into the 

new vectors is a smoothed version of the spectral information described by the 

original vectors. Still this approach does not use all the connectivity properties of 

HMM's. 

4.6.2.3 Maximum likelihood observation decoding 

In order to take advantage as much as possible of most of the capabilities of 

HMM's, it seems intuitively reasonable to perform a maximum likelihood obser-

vation decoding, i.e., maximize the joint probability of the state and observation 

sequences. In other words, given a sequence X(1:K) (denoted X), one would like 

to find the sequence Y(1:K) (denoted Y) such that: 

P(X,Y) = max P(X, y) = miax Pr(X/y) Pr(y). 
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Unfortunately, formulated as it is, this approach is nothing more than 'the most 

probable observation decoding scheme since: 

max P(X, y) = max Pr(y/X) Pr(X),, 

which is equivalent to finding: 

max Pr (y/X) = max II bx.(Yn) 2 

n=1 

i.e., finding: 

V n = 1, K 	bx.(Ye ) = max bx„ (yn). 

However, as explained earlier, a more proper approach is a maximum likelihood 

observation decoding constrained on the knowledge of the initial and final obser-

vations. Now the problem is to find: 

P(X, Y) = max P(X, y) = max Pr(X/y) Pr(y) with yl= yt) 11K = Yf. 

As shown earlier, the solution to this problem is given by the constrained TDA 

operating on the observation-space trellis of the adjoined HMM A. The states 

(nodes) of the trellis are speech observations. The trellis observations are speech 

states. The expression (4.1) of the likelihood is still valid, but should be expressed 

in the terms of equations (2.31) and (2.32), i.e., 

P(X,y) = 	Pr (xn /yn  ) Pr ( %Yrs, Yn-1)• 
n=1 

The algorithms of this chapter directly apply to the function 3 with: 

F (xn  , yn) = Pr (xn / yn ) = bY,. (xn) 

Glyn-i, Yn) 	 = avn-iNn 

where these probabilities are characteristic of the adjoined AM/A (see section 2.3). 

The pegging period K defined earlier (section 4.3) as the number of trellis layers 

between the initial (y i ) and final (yf) pegged observations, should be short enough: 

when K becomes large (roughly, greater than 12 layers), the constrained ML-TDA 
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becomes similar to the unconstrained TDA, i.e., to the most probable observation 

decoding scheme. As will be seen later, the constrained TDA for observation 

decoding will produce satisfactory speech intelligibility. However, even though this 

observation decoding scheme is better than the other schemes described previously, 

it is still not optimum 1°. 

4.6.2.4 The observation decoding as an inverse problem 

Ideally one would like the observation decoding process to be the inverse of the 

state decoding process. The state decoding performs a data compression. The 

observation decoding should perform an inverse data expansion. So far state and 

observation decoding were summarized as follows: 

• state decoding: 

Y given, find X s.t. P(X, Y) = max. P(x, Y) 

• observation decoding: 

X given, find Y s.t. P(X, Y) = maxi, P(X, y) with yi == yi , yt = yf. 

The likelihood .P(X, Y) can be thought of as a function of two variables (the 

sequences X and Y). Initially for a fixed original Y. the state decoding finds 

the optimum X. Now for the same X let us consider all the different possible 

sequences y's and compute P(X, y). The maximum of this function over y is 

reached at y = i.e., 

max P (X, y) = P(X,k). 

Obviously k is not necessarily equal to Y., that is, the ML observation decoding 

is not the inverse of the state decoding (and therefore is not optimum in terms of 

speech quality) 11 . To summarize, the operation of the ML state and observation 

10By using slightly different likelihood functions, and/or a sequential decoding algorithm (such 

as the stack algorithm) one could possibly improve the quality of the synthesised speech a little 

more. However, this would still rely on the same basic approach. 

ills general, however, k will be a 'good' approximation of Y.. 
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Figure 4.'14: Global operation of the state and observation decodings. 

To implement a better observation-decoding scheme one can choose between two 

strategies. One strategy would be to base the approach on the adjoined model A 

and use a better non-ML decoding algorithm Another strategy would keep a ML 

decoding algorithm but based on a different model ri with associated Pn (X,Y). 

We will adopt the latter formulation and define an inverse HMM A-1 . The defini-

tion, existence, and derivation of A -1  should be established through a criterion of 

optimality of the synthesized speech, according to the diagram of figure 4.15: 

Iro X TDA 

A 

TDA 

d(Y,Y0 ) 

Figure 4.15: Principle of the estimation of the inverse HMM A -1 . 

The inverse model A-1  should be estimated to minimize the distance between the 

decoded and original speech d(P,K). In the ML observation decoding approach 

the adjoined model A was actually used as an approximation of A -1 . Let us de-

note the respective likelihood functions of A and A -1  by Pi and PA-1. Note that 

previously we used the notation P(X,Y) to mean P(X,Y/A). Now the notation 

PA (X, Y) will be used to denote P(X,Y/A). This likelihood, as seen before, can 

be expressed in two different ways: PA = Pr(Y/X) Pr(X) is directly expressed 

in terms of the parameters of the model A, or PA = Pr(X/Y) Pr(Y) is directly 

• 
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expressed in terms of the parameters of the model X. The latter expression will 

also be denoted P. The model A is a convenient way of expressing the likelihood 

for the purpose of observation decoding. It is not a "new model" because it con-

tains the same information as the original model A, from which it was derived 

— P,, (X, Y) = Pi(X,Y). On the contrary, A -1  is a new model. PA-1(X, Y) is 

also directly expressed in the form Pr(X/Y) Pr(Y), as in the case of A, but now 

PA-1(X, Y) # PA(X,Y). The general behavior of the functions PA and P A-1 should 

be expected to look like the graphs of figure 4.16: 

Pi (X, y) 

 

PA-1(X, y) 

 

  

   

0 	d(Yo , ?) 
	

d(Yo ,y) 
	

0 = d(Yo , ?) 	d(Yo,y) 

Figure 4.16: Behavior of the ML observation decoding based on A and A -1 . 

The maximization of Pi(X,y) over y leads to a solution 17  which does not min-

imize d(?, Y.). On the contrary, the maximization of PA -IL (X, y) over y leads to 

a solution ? which minimizes d(?, Y.). One should ideally use the optimum ap-

proach based on A -1 . Section 4.6.3 will describe how A -1  can be estimated. 

Regarding , the choice of the distance measure d(?, Y.), one could start with 

a simple Hamming distance since F and Y. are drawn from the same alphabet. 

But merely counting the number of times and Y. differ would probably not be 

sufficient. Suppose y(') and y( 2) are two decoded sequences with d(Y( 1), Y.) = 1 



X H(A) 

d(F, Y.) 	ar 

//(A- ') • Y Yo  • 
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and d(Y(2), Y.) = 2. In other words, y( 1)  differs from Y. once, and y( 2) twice. But 

still y (2)  could be "closer" to Y. than Y( 1) is, in terms, for example, of spectral 

distance. Therefore the next step would be to select a more sophisticated distance 

measure, such as the Itakura distance between LPC vectors indexed by Y and Y o . 

Finally schemes other than the TDA could be used. A decoding diagram —

previously referred to as a global state/observation feedback decoding — with a 

decoding function H is shown in figure 4.17. This model could be used to estimate 

not only A-1  but also A. 

Figure 4.17: Global feedback estimation of A -1 , and possibly A. 

4.8.2.5 Exact reconstruction 

If the value of the likelihood is transmitted (or specified) together with the state 

sequence X, exact reconstruction of the observation sequence is possible most of 

the time: in theory one could go through all possible observation sequences and 

derive the corresponding state sequence for each of them. If this decoded state 

sequence is equal to the exact state sequence X, then the observation sequence un-

der consideration is a good candidate for the reconstructed observation sequence. 

Among all the good candidates, only the observation sequence with the correct 

likelihood would be retained as the correct reconstructed observation sequence. 

This scheme would almost always find the exact observation sequence, except pos- 
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sibly in the case of likelihood ties 12 . 

Unfortunately, this observation decoding scheme for which an exhaustive 

search of the observation space is performed, is not practical: there are too many 

possible observation sequences (M L  for sequences of depth L). However, it is easy 

to write a fairly efficient algorithm that would perform this decoding without going 

through an exhaustive search. For the sake of clarity, let us introduce the concepts 

of plausible and admissible observation sequences with respect to a given state se-

quence X(1:L). We say that an observation sequence Y(1:L) is plausible with 

respect to the state sequence X(1:L) if X(1:L) can generate Y(1:L). If the output 

probability matrix B does not have any zero entries, then there are ML plausible 

observation sequences with respect to the given state sequence. We say that an ob-

servation sequence Y(1:L) is admissible with respect to the state sequence X(1:L) 

if the maximum likelihood state decoding applied to Y(1:L) produces X(1:L) (Y 

was called a "good candidate" just above). Note that all plausible sequences Y's 

are not necessarily admissible. However, an admissible sequence has to be a plau-

sible sequence. Therefore the set of admissible sequences with respect to a given 

state sequence, SA, is a subset of the set of plausible sequences with respect to the 

same state sequence, Sp. 

It is possible to write a fairly efficient recursive algorithm to generate the set 

of admissible sequences SA. It is based on a few simple properties of admissible 

sequences. Note that the exact reconstructed observation sequence has to be 

admissible. If Y (1:n) is admissible with respect to X(1:n), then {Y(1:n —1),y„} is 

admissible with respect to X(1:n) for any fin (this is easily seen from the operation 

of the state decoding TDA). The same property is valid for {it i ,Y(2:n)} if the state 

12 TH the case of infinite precision arithmetic (or, as a good approximation, floating point arith-

metic), likelihood ties would be very highly improbable for our model A. However, if the likelihood 

was quantized, likelihood ties would occur. 
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decoding TDA operated with a fixed known initial state. Therefore the same result 

applies to the sequences {y 1 ,Y(2:n-1),Dn }. If Y(1:n-1) is admissible with respect 

to X(1:n —1) and if {Y (1:n — 1) ,P„} is not admissible with respect to X(1:n), then 

any sequence {Y(1:n — 1),Dn, Y(n 1:L)} will not be admissible with respect to 

X(1:L). Therefore all these sequences need not be searched for. If Y(1:n — 1) is 

admissible with respect to X(1:n — 1), then only one branch extension has to be 

computed in the state-space trellis at layer n to detect the non-admissible sequence 

{Y(1:n — 1),D„} with respect to X(1:n) (by checking that the parent of Xn  is not 

Xn_ 1  for this Dri). If {Y(1:n-1),Pn} is not admissible, then the algorithm checks the 

next possible twi n  in the same layer. If, in a given layer, all the possible observations 

have been exhausted, then the state decoding TDA moves one layer backward. If 

{Y(1:n — 1),Dri } is admissible, the state decoding TDA moves one layer forward. 

The algorithm stops when the TDA moves back to the last observation of the first 

layer. 

4.6.3 Estimation of the inverse HMM 

The principle of the estimation of ► -1  was described in section 4.6.2.4. The ba-

sic idea was to find the model ti which minimizes the distance d(Y„,R) between 

the original and reconstructed speech. Let us now denote the original observation 

sequence by Y (for Y(1:L)), and the corresponding state sequence by X. Let y 

be a possible decoded observation sequence. In this section, instead of dealing 

with a distance measure d, we will introduce a similarity measure S (y, Y) with 

the following properties: 

• the similarity measure should be additive: S(y,Y) = Eis.1 8 (Yn, Y„), or multi-

plicative: S(y,Y) = Hz.n= 1  8 (Yn, Irfa)• 

• V k =1,M V = 1,M 	0 < a(k,l) <1 

• V k =1,M 	Elf_ 1 8(k,1) =1 

• the "closer" the observations k and 1, the larger the measure s(k, t). 
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Therefore the similarity measure behaves very much like a probability, and one 

can define a stochastic similarity matrix: 

S = (skt)k=i,m ;g=ipmr with 8 ke = s(k,t). 

Two examples of similarity measures are given below: 

• the Kronecker (additive or multiplicative) similarity measure's: 

1 	if k = I 
8(k, t) = 6(k, t) = 	 (4.10) 

0 	if k 0 t 

- additive: S (y, Y) = number of times y and Y agree 

- multiplicative: S(y, Y) = 1 if y = Y, 0 otherwise. 

• the Itakura (multiplicative) similarity measure: 

ed(k,l) 

s(k,t) =  m 	 (4.11) Em.i  ed(k,m) 

where d(k,t) > 0 is the classical Itakura distance measure (or log-likelihood ratio). 

The estimation problem is now equivalent to maximizing, over the model 17 , 

the overall similarity measure between the original speech Y and all the possible 

decoded speech sequences y's_ If we denote the overall similarity measure by 

S„ (X, Y) then: 

Sn  (X, Y) = 	Pq  (X, y)S(y, Y) i.e., 	 (4.12) 

L 
S,I (X,Y) 	Es(y, Y) II Prn (y./Yn-i)Prr (X./y.). 	(4.13) 

V 	n=1 

The problem is to find A -1  such that: 

SA-1(X, Y) = max 	Y). 	 (4.14) 

"It could also be called the modified Hamming similarity measure. 
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Except for the common factor S(y, Y) present in equation (4.13), this problem is 

identical to the estimation problem for the parameters of a classical hidden Markov 

model. Does the FBA still apply to the likelihood function defined by (4.13)? If 

yes, what are the new reestimation formulas? Can they be evaluated recursively? 

If the FBA does not apply we will have to rely on classical numerical optimization 

techniques. 



Table 4.3: Analysis-Synthesis HMM's of Speech: summary. 

Sub-Optimum Maximum Likelihood Approach 

Phase Procedure 

training (estimate A) E. PA  (x, Y) = maxn  E. P,, (x, Y) 

state decoding (estimate X) PA (X, Y) = max. PA (x, Y) 

observation decoding 

(estimate Y) 

Pi (X, Y) = maxi, Pi (X, y) 

with 1..71  = Yi, YK  = 11  'I' 

Optimum Maximum Likelihood Approach 

Phase Procedure 

training (estimate A) E. PA (X, Y) = maxn  E. Pn (x,Y) 

state decoding (estimate X) PA (X, Y) = max. PA  (x, Y) 

training (estimate A') E, S(y,Y)PA-i (X, y) = maxn-i Ey  S (Y, Y)P,r'l (X, y) 

observation decoding 

(estimate Y) 

PA-1 (X, Y) = maxi, PA - i (X, y) 

(with or without Xi  = Y•, PK = Y1) 
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CHAPTER 5 

HMM's and speech coding 

HMM's can be used to reduce the amount of information necessary to encode the 

short term speech spectrum. The point of reference will be the classical 1024-

level vector quantizer, which can encode the speech spectral information with 

10 bits/frame. A speech coder trying to achieve a bit rate lower than this 10 

bits/frame will be called a very-low-bit-rate speech coder'. We will describe three 

types of very-low-bit-rate speech coders: a coder simply based on a (non-hidden) 

Markov chain of the VQ vectors called the Markov-VQ, and two coders based on 

the speech HMM called the partitioned HMM- VQ and the HMM- VQ. 

5.1 The Markov-VQ 

A simple Markov chain can be used to directly model the transitions in a sequence 

of LPC vectors drawn from a VQ codebook of size M = 2B. This is equivalent 

to building an HMM with M states and a diagonal output probability matrix B. 

States and observations are the same thing: vectors from the VQ codebook. The 

Markov chain parameters can be directly estimated by frequency counts from a 

speech training sequence of LPC vectors. The original bit rate of B bits/frame can 

be reduced2  to HA bits/frame, where HA is the entropy of the Markov chain (or 

'In this research we are not concerned with the encoding of the speech excitation source. 

2 For example, by using Huffman coding. 
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equivalently of the transition matrix). Table 6.3 in chapter 6 shows experimental 

entropies (and therefore bit rates) for vector quantizers with different codebook 

sizes. 

5.2 The partitioned HMM-VQ 

This coder, instead of transmitting only the sequence of observations {Y t }, trans-

mits both the state sequence {Xt} and the observation sequence {Yt ), and by doing 

so, allows a bit rate reductions. This coder partitions the original codebook of size 

M into s sub-codebooks (or classes) of size M, indexed by the states'. Given a 

class (i.e., a state, or a sub-codebook), it takes much less information to encode 

the observations in this class (simply because in each class a small number of ob-

servations will be very probable, and the rest of the observations will be highly 

improbable). This coder uses a bit rate of HA + HB bits/frame (this bit rate will 

be seen to be roughly 8 bits/frame — instead of 10 — in the next chapter). The 

coder transmits the exact observation sequence, therefore no error is made, and 

no reconstruction is necessary. A simple coding scheme is to generate s different 

Huffman codes (one code per class). In each class each observation is then given 

a Huffman codeword according to its probability of occurrence in that class. 

5.3 The HMM-VQ 

To lower the bit rate below HA + HB bits/frame, another coding scheme is neces- 

sary. The HMM-VQ coder transmits only the state sequence {Xt }, and, for some 

of the decoding schemes, the actual observation at every pegging period K. Since 

3A paradox, isn't it! 
4 1f improbable but plausible errors were allowed, the size of the sub-codebooks could be reduced, 

for example to 2HD  vectors — the 2Ha most probable vectors in the given class. Notice that it 

is not a partition in the mathematical sense of the term because the classes are not necessarily 

disjoined. 
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the observation sequence is not transmitted, it has to be reconstructed between 

two pegged observations. The various reconstruction schemes were described in 

chapter 4. The bit rate of the coder is 5 : 

(K  —1)11A+ 	HB  B(K) = 	 (5.1) 
K —1 

The minimum achievable bit rate is HA (the state entropy) reached for K very 

large. For K very small (actually K = 2) this coder is equivalent to the partitioned 

HMM-VQ with a bit rate HA HB. In chapter 6 we will give the experimental 

entropy results, and discuss the speech intelligibility as a function of the bit rate. 

Tables 6.4 and 6.5 in chapter 6 show the coder bit rate for different pegging pe-

riods K. Figure 5.1 shows the bit rate range (shaded area) as a function of the 

structuring capability of the HMM (the top curve is for an HMM showing no struc-

ture at all, the bottom curve is for our experimental HMM showing a significant 

structure). Numerical values for the bottom curve are shown in table 6.4. The 

intersection of the curve B(K) with a constant level H(H > HA ) occurs at: 

K,n  = 1 +  Ha  
H — HA •  (5.2) 

K m  is the smallest pegging period necessary to achieve a bit rate lower than H. 

5 

[1+ n(K -1)]KA + (1+ n)HB  = (K - 1)KA +  B(K)= .111.1 
1 -I- (K - 1)n 	 K — 1 

lim B(K) = HA+ HB 	11111 B(K) = HA  K 	 K 
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Figure 5.1: Range of the HMM-VQ bit rate as a function of the pegging period. 



CHAPTER 6 

Experimental results 

An HMM with 64 states and 1024 observations was trained on actual speech. 

A database of continuous speech from one male American speaker was gener-

ated. The speech was 15 minutes long, and read from a script s . The continuous 

speech was sampled at 8kHz, and quantized with 12 bits. It represented 60,000 

frames (15ms frames, 120 samples/frame). A pitch file was generated using a 

semi-automatic pitch detector. A classical 10 th  order LPC analysis was performed 

(autocorrelation method). A 1024-level VQ codebook was generated with the 

classical algorithm [90,30] (K-means algorithm, gain normalized Itakura-Saito dis-

tance measure). The 60,000 frames of speech were vector quantized. The synthetic 

speech produced by the pitch excited LPC-VQ vocoder was generated. A 64-state, 

1024-observation HMM was trained according to the method of chapter 3. State 

and observation decoding, based on this model, was carried out according to the 

methods of chapter 4. The following sections summarize the experimental results. 

'To estimate the 64 2  = 4096 parameters of A, one would need 40,960 frames, on a basis of 10 

occurrences of each parameter in the training data. To estimate the 64 x 100 = 6,400 significant 

parameters of B -- assuming that roughly 100 observations will be significant in each state, — one 

would need 64,000 frames, on a basis of 10 occurrences per parameter. Therefore 15mn of speech 

(60,000 frames) is a minimum requirement in terms of training data size. 
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6.1 Training 

Outside from the mathematical optimization described in chapter 3, there was also 

a need for optimizing the resources of the computer available to us 2 . In that case, 

optimization was always a compromise between accuracy, storage, and speed. The 

optimization process is summarized in table 6.1. The optimized FBA was capable 

of one iteration on the 15 minutes of speech in 1 hour and 42 minutes of CPU 

time. Performing the whole training (99 iterations of the FBA) took one week on 

a single-user Data General MV/10000, and more than two months on the same 

computer used as a multi-user systems. The initial estimate will be called the 

model Al , the estimate after one iteration of the FBA will be called the model A2, 

etc. 

In the FBA with partial scaling we used the values m a  = mb = 10-11  and 

AR = 2 x 10 -24 . The entries of the initial estimate A l  were selected by a random 

number generator, and normalized so that the entries in each row sum to 1 (see 

figures 6.3 and 6.7 for the initial estimates of 7r 1  and A respectively). Table 6.2 

shows the evolution of the log-likelihood and entropies of the model as a function 

of the iteration number. The corresponding graphs are shown in figures 6.1 and 

6.2. The first iteration of the FBA provided a significant improvement of the initial 

estimates, as shown by the sharp decrease in the log-likelihood L, and the output 

entropy HB after the first iteration, compared to the slowly decreasing plateau 

thereafter. Most of the model improvement was, however, achieved between iter-

ation 20 and 9:0. At iteration 100 the training process was certainly close to the 

2A Data General MV/10000 with up to 15 Mbytes of virtual memory, or a Cyber 990, faster in 

terms of computations, but on the whole, slower, because of limited virtual memory available — 2 

Mbytes at most. 

3 1n the latter case, the factor between real time and CPU time was usually greater than 10. 
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convergence values. The likelihood was greatly improved by a factor: 

P(x,Y Am)  
p(x,Y / A i ) 

The initial estimate A l  was random and fully connected, showing no sign of 

any significant structure. The corresponding entropies were HA(1) = 5.7, and 

HB  (1) = 9.7. The model A 100  displayed a great deal of structure, and lowered the 

entropies significantly to HA(100) = 1.8, and I B (10O) = 6.1. This means that, ac-

cording to the model A 100, roughly 4 transitions are plausible from any given state 

at any given time, and roughly 1 observation among 64 is likely to be produced 

from each state. Moreover, the graph of the entropies shows that a training based 

on a maximum likelihood approach (the FBA) leads also to a minimum entropy 

solution. The natural evolution of the model from •the fully connected initial es- 

timate Al  did not lead to a model A ioo  with a left-to-right structure 4 , as seen for 

example from figures 6.10 and 6.11. 

The evolution (as well as the rate of convergence) of the initial distribution 

of the states, as a function of the iteration number, is shown in figure 6.3. This 

distribution converges to the first state of the training sequence: state 23 in this 

case, a silence/noise state. Figure 6.4 shows the evolution of the steady-state dis-

tribution of the states 5 . Entries histograms for the transition matrix A and the 

output probability matrix B are shown in figures 6.5 and 6.6. It shows that the 

model performed a significant structuring and clustering by allowing only a small 

number of state transition probabilities, and a small number of observation prob-

abilities to have a significant value. The emergence and evolution of the structure 

of the transition matrix is shown in figures 6.7, 6.8, 6.9, and 6.10. The entries 

4 However, to be conclusive, we would have to show that no state permutation could rearrange 

the model Aim  into a left-to-right structure. 
5This distribution was directly derived from the model A with equations (2.15), and not from a 

frequency count on the decoded state sequence. 
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of the transition matrix of figure 6.10 greater than 0.1 are, shown in figure 6.11 6 . 

The strong diagonal structure, with a few extra significant transitions on the side, 

means a low entropy HA, and a strong structuring capability of the model. 

Table 6.1: The FBA: a long optimization process. 

Algorithm type CPU timet 

original maximization problem infeasible 

Forward Backward Algorithm 

(FBA) 

theoretically feasible 

practically infeasible 

scaled FBA CPU > 30 hours 

partially optimized, scaled FBA 20 h < CPU < 30 h 

optimized FBA with partial scaling CPU < 20 h 

optimized, log-less FBA with 

partial scaling 

CPU = 1 hour 42 minutes 

1For the algorithm operating on the 15min of speech on a Data General MV/10000. 

6Figure 6.11 is the horizontal section of figure 6.10 by a plane at height 0.1. 
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Table 6.2: Log-likelihood and entropies as a function of the iteration number. 

Model 

number 

State entropy 

HA 

Observation entropy 

Hit 

Log-likelihood 

L x 10 -5  

1 5.7218 9.7220 1.80388 

2 5.7216 9.5959 1.78224 

3 5.7212 9.5950 1.78222 

4 5.7207 9.5938 1.78218 

5 5.7200 9.5921 1.78215 

6 5.7191 9.5901 1.78209 

7 5.7179 9.5875 1.78202 

8 5.7165 9.5843 1.78195 

9 5.7147 9.5804 1.78188 

10 5.7126 9.5757 1.78180 

11 5.7099 9.5699 1.78170 

12 5.7066 9.5627 1.78159 

13 5.7024 9.5536 1.78141 

14 5.6967 9.5417 1.78118 

15 5.6888 9.5255 1.78084 

16 5.6765 9.5014 1.78027 

17 5.6523 9.4598 1.77897 

18 5.5834 9.3710 1.77530 

19 5.3794 9.1758 1.76215 

20 5.0478 8.8845 1.73229 

21 4.5506 8.4795 1.68971 

22 3.8080 7.9733 1.62502 

23 3.2449 7.5833 1.55898 

24 2.9500 7.3234 1.51792 

25 2.7823 7.1321 1.49297 
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Table 6.2: Log-likelihood and entropies as a function of the iteration number 
(continued). 

Model State entropy Observation entropy Log-likelihood 

number HA HB .0 x 10-5  

26 2.6681 6.9831 1.47532 

27 2.5825 6.8614 1.46124 

28 2.5141 6.7609 1.44999 

29 2.4547 6.6761 1.44038 

30 2.3978 6.6018 1.43189 

31 2.3429 6.5371 1.42439 

32 2.2895 6.4811 1.41772 

33 2.2381 6.4342 1.41183 

34 2.1909 6.3965 1.40650 

35 2.1501 6.3662 1.40207 

36 2.1158 6.3411 1.39837 

37 2.0863 6.3186 1.39512 

38 2.0610 6.2981 1.39209 

39 2.0387 6.2789 1.38942 

40 2.0190 6.2611 1.38705 

41 2.0014 6.2448 1.38500 

42 1.9856 6.2306 1.38313 

43 1.9719 6.2187 1.38154 

44 1.9598 6.2084 1.38012 

45 1.9495 6.1991 1.37888 

46 1.9411 6.1905 1.37773 

47 1.9340 6.1829 1.37675 

48 1.9278 6.1761 1.37590 

49 1.9226 6.1700 1.37501 

50 1.9181 6.1644 1.37437 
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Table 6.2: Log-likelihood and entropies as a function of the iteration number 
(continued). 

Model 

number 

State entropy 

HA 

Observation entropy 

HB 

Log-likelihood 

x 10-5  

5:1 1.9141 6.1591 1.37368 

52 1.9107 6.1539 1.37302 

5:3 1.9078 6.1489 1.37245 

54 1.9053 6.1441 1.37192 

55 1.9029 6.1398 1.37145 

56 1.9006 6.1357 1.37096 

57 1.8981 6.1319 1.37049 

58 1.8958 6.1284 1.37010 
59 1.8937 6.1250 1.36973 

60 1.8917 6.1218 1.36939 

6:1 1.8900 6.1188 1.36904 

62 1.8882 6.1161 1.36871 

6:3 1.8863 6.1138 1.36840 

1.8845 6.1115 1.36807 

65 1.8827 6.1094 1.36780 

66 1.8810 6.1074 1.36757 

67 1.8792 6.1055 1.36734 

68 1.8773 6.1035 1.36709 

69 1.8753 6.1015 1.36684 

70 1.8735 6.0996 1.36664 

71 1.8720 6.0980 1.36640 

72 1.8707 6.0965 1.36621 

.73 1.8695 6.0951 1.36604 

74 1.8681 6.0937 1.36592 
75 1.8667 6.0924 1.36579 
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Table 6.2: Log-likelihood and entropies as a function of the iteration number 
(continued). 

Model 

number 

State entropy 

HA 

Observation entropy 

HB 

Log-likelihood 

x 10-6  

76 1.8654 6.0912 1.36563 

77 1.8641 6.0900 1.36544 

78 1.8630 6.0888 1.36528 

79 1.8617 6.0877 1.36512 

80 1.8605 6.0867 1.36497 

81 1.8590 6.0860 1.36484 

82 1.8575 6.0853 1.36472 

83 1.8561 6.0848 1.36457 

84 1.8548 6.0841 1.36443 

85 1.8537 6.0834 1.36431 

86 1.8524 6.0826 1.36420 

87 1.8512 6.0817 1.36409 

88 1.8502 6.0808 1.36392 

89 1.8493 6.0800 1.36383 

90 1.8485 6.0792 1.36373 

91 1.8476 6.0784 1.36365 

92 1.8467 6.0777 1.36353 

93 1.8457 6.0771 1.36342 

94 1.8447 6.0764 1.36333 

95 1.8435 6.0758 1.36324 

96 1.8424 6.0751 1.36313 

97 1.8414 6 .0745 1.36305 

98 1.8406 6.0740 1.36297 

99 1.8396 6.0735 1.36292 

100 1.8386 6.0732 1.36284 
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Figure 6.1: Evolution of the log-likelihood. 
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Figure 6.7: Transition matrix of model 1. 

Figure 6.8: Transition matrix of model 20. 
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Figure 6.9: Transition matrix of model 40. 

Figure 6.10: Transition matrix of model 100. 
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Figure 6.11: The structure of the transition matrix A (Am). 

(dots are entries greater than 0.1.) 

6.2 State decoding 

The state decoding was carried out on the 15 minutes of speech. Convergence 

nodes emerged with the distributions shown in figure 6.12. The most probable 

convergence node weight is 2. The maximum convergence node weight ever en-

countered (with a very small probability) was 12. In practice one should not expect 

a weight greater than 8. The most probable convergence lengths are 3 and 4, the 

maximum convergence length encountered was 28 (very Improbable), no conver- 
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gence length greater than 12 should be expected in practice. The most probable 

decoder delay is 7 units of time (0.11 second), and generally the decoder delay will 

not exceed 16 units of time (0.24 second). 

The most probable log-magnitude spectrum in each of the 64 states is pre-

sented in figure 6.13. The expected state spectra are shown in figure 6.14. They 

introduced a smoothing of the most probable spectra (flattening the peaks). This 

will cause the reconstructed "expected speech" to be a little less clear than the 

"most probable speech," but will smooth out the quirky sound effects produced 

by the vector quantizer. 
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Figure 6.12: Distributions of the convergence node weight, convergence length, 

and decoder delay. 
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Figure 6.13: Most probable log-magnitude spectrum in each of the 64 states. 
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Figure 6.14: Expected log-magnitude spectrum in each of the 64 states.. 
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6.3 Speech coder bit rate 

The bit rate of the Markov-VQ coder is given in table 6.3. For every codebook size 

in the table, a VQ codebook was generated from the 15 minutes of speech. The 

speech was then vector quantized according to these different codebooks, provid-

ing the different speech "training" sequences of LPC vectors used to evaluate the 

bit rate (entropy HA) of the coder, as explained in section 5.1. The Markov-VQ 

shows a significant reduction of the coder bit-rate over the classical VQ (35-47% 

reduction). As will be seen later, an even larger bit rate reduction (for roughly the 

same distortion) is possible with the HMM-VQ coder. The speech intelligibility 

produced by the Markov-VQ is discussed in section 6.4. 

The bit rate of the partitioned HMM -VQ is directly derived from the entropies 

HA and HB. As described earlier, these entropies can be computed directly from 

the model A (see section 6.1 for the numerical values), or they can be estimated by 

frequency counts on the sequences X and Y, once the state sequence X has been 

decoded (given the model A). Table 6.6 shows the entropies HA and HB derived 

by these two methods. The entropies HA and HB directly derived from the se-

quences X and Y are more appropriate to describe the bite rate of the partitioned 

HMM-VQ, which is 7.68 bits/frame in that case. The partitioned HMM-VQ coder, 

even though it encodes the same exact information Y as the 1024-level VQ coder, 

achieves a lower bit rate than the 1024-level VQ (10 bits/frame), and a higher bit 

rate than the 1024-level Markov-VQ (5.3 bits/frame). Therefore if we are only 

concerned with designing a very-low-bit-rate speech coder, with a bit rate in the 

range 1513/L10h/ft, the Markov-VQ provides a simpler and more efficient design 

than the partitioned HMM-VQ. 

Now if we are concerned with designing a speech coder with a bit rate below 5 

bits/frame, we need to use the HMM-VQ coder with a pegging period K sufficiently 
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long. For example, to be more efficient than the 5.3 bits/frame Markov-VQ, the 

HMM-VQ needs to use a pegging period K > 3 (need K > 4 to do better than a 

64-level Markov-VQ) — see tables 6.3 and 6.4, and figure 5.1. The quality of the 

speech synthesized by the HMM-VQ coder will be compared to the quality of the 

Markov-VQ speech in section 6.4. 

Table 6.3: Markov-VQ bit rate. 

Codebook 

Size 

Bit rate 

VQ 

(bits/frame) 

Markov-VQ 

Bit rate 

reduction (%) 

1024 10 5.3 47 

64 6 3.9 35 

32 5 3.2 36 

16 4 2.4 40 

8 3 1.7 43 

4 2 1.0 50 

2 1 0.4 56 



160 

Table 6.4: Bit rate as a function of the pegging period K (HA = 1.68, HB = 5.99). 

K (frames) 2 3 4 5 6 7 8 

B(K) (bits/frame) 7.67 4.68 3.68 3.18 2.88 2.68 2.54 

K (frames) 9 10 11 12 13 14 15 

B(K) (bits/frame) 2.43 2.35 2.28 2.22 2.18 2.14 2.11 

Table 6.5: Bit rate as a function of the pegging period K (HA  = 1.84, HB = 6.07). 

K (frames) 2 3 4 5 6 7 8 

B(K) (bits/frame) 7.9 4.85 3.83 3.33 3.02 2.82 2.67 

K (frames) 9 10 11 12 13 14 15 

B(K) (bits/frame) 2.56 2.48 2.41 2.35 2.31 2.27 2.24 

Table 6.6: Entropies of the HMM-VQ coder from two methods of derivation. 

Method of Entropies 

derivation HA H5 

from model A 100  1.8386 6.0732 

from sequences X and Y 1.6783 5.9983 1 
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6.4 Speech intelligibility and observation decod-

ing 

The 1024-level vector quantizer will be used as a reference for speech intelligibility 

and quality comparisons between the different types of speech coders investigated. 

The bit rate needed by the 1024-level VQ to achieve this reference speech qual-

ity is 10 bits/frame. It can be reduced to 5.3 bits/frame with a Markov-VQ (see 

table 6.3). The bit rates achievable by VQ's and Markov-VQ's with smaller code-

books are given in table 6.3. Speech intelligibility evaluation is carried out on the 

following test sentence: 

"Before we undertake the wearisome task of analyzing british humor 

it would be well to define our terms." 

This sentence used for the testing was recorded by the same male American speaker 

who recorded the speech training database three years earlier. Even though the 

actual speech waveform of the test utterance was not in the training database, the 

"text" of this sentence was also included in the training database. The recording 

of the training database was performed under a more noisy environment than the 

one for the test sentence. Part of the test speech waveform is shown in figures 6.15, 

6.16, and 6.17. 

The pitch excited LPC-VQ introduces a noticeable speech distortion when 

compared to the non-quantized LPC speech, even for a 1024-level codebook. The 

smaller the codebook size, the greater the distortion. The most noticeable distor-

tion seems to be localized "quirky" sound effects, probably mostly due to the fact 

that the VQ does not ensure a frame to frame spectral continuity. The speech 

distortion introduced by the different codebook size VQ's is evaluated against the 

non-quantized LPC speech and the 1024-level vector quantized speech by means of 

the LPC log-likelihood distance in table 6.7. A subjective evaluation of the speech 
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quality was conducted by seven listeners. These results are shown in table 6.8. 

The speech produced by the partitioned HMM-VQ is identical to the speech 

produced by the 1024-level VQ and the 1024-level Markov-VQ (with the respective 

bit rates 7.68, 10, and 5.3 bits/frame). Therefore the speech quality evaluation of 

the preceding paragraph also applies to the partitioned HMM-VQ coder. 

The "most probable" HMM-VQ coder (see chapters 4 and 5) requires a bit 

rate of 1.68 bits/frame. To achieve a comparable low bit rate, a VQ would require 

a 4-level codebook, and a Markov-VQ an 8-level codebook. With so few vectors in 

the codebook the VQ speech is expected to be of very poor quality, if intelligible 

at all. However, it turns out that the speech generated by the "most probable" 

HMM-VQ is very much intelligible, and in any case of much better quality than 

the VQ speech at a comparable bit rate. This is certainly a very interesting result. 

The "expected" HMM-VQ coder, with the same bit rate as the "most probable" 

HMM-VQ, produces smoother speech spectra (see figures 6.13 and 6.14). As a 

result the speech is a little less clear, but better in terms of overall speech quality 

because the "quirky" sound effects, mainly produced by the vector quantization, 

are smoothed out. 

The speech intelligibility and quality of the "simpler" HMM-VQ (like "most 

probable" and "expected" HMM-VQ coders) can be improved by the "more so-

phisticated" HMM-VQ (with a reconstruction scheme based on the ML-TDA). 

The degree of improvement is a function of the pegging period: if the pegging 

period K is too small (the minimum being K = 2), the TDA does not have 

enough "context" to operate optimally; if the pegging period K is too large the 

long term capability of the TDA to predict (without any clue about the actual 

speech) becomes less reliable — and equivalent to the reconstruction capability 

of the "most probable" HMM-VQ coder. The optimum pegging period should be 
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expected to reflect the optimum state-decoding length of independent blocks, as 

described earlier by the convergence length, convergence node weight, and delay 

of the state-decoder — probably suggesting an optimum pegging period between 

3 and 12 frames. Examples of reconstructed spectra and speech waveforms are 

given in figures 6.18 and 6.19. 

The subjective speech quality was evaluated by seven untrained listeners with 

the Paired Acceptability Rating Method [147,150]. Two sessions were used to 

evaluate nine systems of coders. The same sentence coded by two different sys-

tems is played to the listener who is asked to give a score in the range [0,100] 

for each system. All the possible pairs (without taking into account a pair or-

dering) are played. The listener listens to two reference, systems played in pair 

twice prior to the beginning of the test: he is asked to base his scores on a high 

quality anchor rated 80 (pitch excited LPC) and a low quality anchor rated 20 

(4-level pitch excited LPC-VQ). Results are shown in table 6.8. The significance 

matrix show if systems in the left column are significantly different in terms of 

speech quality from better systems in the upper row. The "most probable" and 

"expected" speech (1.68 bits/frame) were rated much better than the 4- level VQ 

(2 bits/frame). The "expected" speech was preferred over the "most probable" 

speech because it smoothed out the "quirkiness" due to the VQ. The HMM coders 

with a reconstruction based on the TDA were better than the "most probable" 

and "expected" speech. The HMM speech coders with different pegging periods 

K (i.e., different bit rates) were not distinguishable in terms of speech quality and 

were also almost indistinguishable from the 1024-level VQ. 



Table 6.7: LPC log-likelihood distances for the test sentence. 

Coder type Distance to 

1024-level VQ 

Distance to 

unquantized LPC 

VQ 1024 0 88.2 

VQ 64 59.9 134.5 

VQ 32 64.1 144.8 

VQ 16 78.6 164.8 

VQ 8 104.3 198.9 

VQ 4 130.5 232.3 

VQ 2 186.4 292.6 

HMM K = 3 39.1 129.8 

HMM K = 4 54.6 145.7 

HMM K = 6 63.7 155.3 

HMM K = 8 67.9 159.6 

HMM exp. 64.3 169.5 

HMM most p. 84.3 181.6 
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Systems: Session 2 	0 
System Speech/Coder type 

r
i

N
M

V
I
*
0

  
M

M
M

M
M

M
  

pitch excited LPC 
1024-level VQ 
HMI{ K = 4 
kl:MM K = 6 
HMM K = 8 
4-level VQ  

Systems: Session 1 
System 

Al 
A2 
A3 
A4 
A5 
A6  

Speech/Coder type 
pitch excited LPC 

1024-level VQ 
HMM "most probable" 

HM:M "expected" 
LIMM K = 3 

4-level VQ 

Table 6.8: Results of the subjective quality testing. 
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11 	Statistics: Session 1 	11 
Rank System Average 

Score 
Standard 
Deviation 

1-I
N

M
V

h
O

W
  

1 	
I i 

:44=4"4
4:L

.1  

59.9 
47.5 
38.7 
34.8 
33.3 
21.1  

35 
28 
25 
23 
23 
15 

1 Significance matrix Session 1 [ 
j Systems 1 2 3 4 5 6 
j1 - - - - - - 

2 1 - - - - - 
3 2 0 - 0 0 - 
4 2 0 - - 0 - 
5 2 0 
6 

- - - - 
2 2 1 1 1 - 

Statistics: Session 2 	0 
Rank System Average Standard 

Score Deviation 
1 B1 58.4 34 
2 B2 45.2 28 
3 B3 38.0 24 
4 B4 37.8 24 
5 B5 36.3 23 
6 B6 18.1 12 

Significance matrix. Session 2 
Systems 1 2 3 4 5 

2 1 - - - - - 
1 	3 2 I) - - - - 

4 2 0 0 - - - 
5 2 1  0 0 0 - - 
6 2 2 2 2 2 - 

Significance Level 

 

Meaning  
no significant difference  

significant difference 
5% probability of errort  

more significant difference 
1% probability of errort 

0 

 

1 

 

2 

 

   

tError: to say that two coded sentences are significantly different when they are not. 
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Figure Figure 6.15: Speech waveform of the test utterance (frames 136-373: "Before we 

undertake the wearisome task of analyzing british..."). 
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Figure 6.16: More detailed view of the speech waveform (frames 115-233: 'Before 

we undertake the weax...*). 
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Figure 6.17: Frame by frzme view of the speech waveform (frames 120-223: 'Be-

fore we undertake the wea..."). 
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Figure 6.18: Log-spectra of the original and reconstructed speech (frames 

120-127). 

a) original 1024-level VQ speech 

b) "expected" reconstructed speech 

c) "most probable" reconstructed speech 

d) HMM (K = 3) reconstructed speech 

e) HMM (K = 4) reconstructed speech 

f) HMM (K = 6) reconstructed speech 

g) HMM (K = 8) reconstructed speech 

(dots • represent position of pegged observations) 
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■■•••%.",■■■•%, 

4",,,%""te 

-•-W■011" 

•••■,".••••••■/' 

0.1■mise■tolly1.1 

•11%"•%,"e% 

rec,"""Are 



171 

6.5 State interpretation 

The states of an FIMM are a statistical description of the properties and evolutions 

of the speech signal. They capture the relationships between the various speech 

events. No further interpretation is needed for the purpose of speech coding. How-

ever, for the purposes of speech analysis or speech recognition, a more intuitive 

interpretation is usually needed. For example, one might want to know how the 

speech states relate to classical speech sounds like vowels, consonants, phonemes, 

etc. Some of the typical state structures encountered in speech state sequences are 

shown in figure 6.20. Some of the speech information is encoded into the nature 

of the states themselves: states perform an observation clustering (see figure 6.20 

a). Typically each state clusters 2/113  64 observations. However, most of the 

speech information is not encoded into the nature of single states, but into the 

relationships (connections) between states. The simplest type of relationship is 

encoded into 2-state structures (see figure 6.20 b). This first order relationship 

can also appear between two blocks of states (see figure 6.20 c) where, in a given 

block, the states are more or less equivalent — this happens for example with an 

overspecified system with too many states. The transition between two different 

2-state structures will sometimes go through a transient exit state (see figure 6.20 

d). The typical structure shown in figure 6.20 e usually models vowels: an onset 

and an offset state structure surrounds a plateau state structure. The onset and 

offset depend respectively on the sounds preceding and following the vowel. The 

plateau corresponds to the steady-state structure of the vowel, and the number 

of self-transitions i i is directly related to the duration of the vowel. Actually 

the same state i was found to consistently model the same vowel throughout the 

speech database. For example, the following plateaux i = 2, i = 52, and i = 58 

were found (by segmenting the speech, listening to it, and correlating speech wave-

forms and state sequences) to systematically represent the vowels /o/ (as in "for"), 

/i/ (as in "bee'), and /m/ (as in "hat") respectively. The formant frequencies F1 
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and F3 were extracted from the VQ observations whenever state 2, 52, or 58 was 

encountered in the state sequence (for a test waveform of 2000 frames) The F it  —F2 

 plot in figure 6.21 shows a clustering of the formants that corresponds to the clas-

sical frequency range of the three vowels /o/, /i/, and /ae/. Consonants did not 

seem to exhibit a plateau structure (the vocal tract does not stay in a steady-state 

position), therefore their identification in terms of state relationships is harder to 

perceive. A systematic and thorough interpretation of the state structures and 

relationships in terms, for example, of phonemes would be needed, and would re-

quire a phonetically labelled database and computer time that were not available 

to us. 

Finally states can also be robustly classified in terms of the following two 

categories: speech and silence. This can be done by a direct correlation between 

the state sequence and the speech waveform. It can also be efficiently done by 

examining the state duration distributions (see figure 6.22). Silence, as compared 

to speech, is generally made of "long silence/noise" steady-state regions. Silence 

will be represented by a large number of self-transitions i i encompassing a 

wide range of state durations. Silence states are therefore identified by "flat" and 

"stretched" state duration distributions. The following states were identified as 

silence in different noise environments: 2, 8, 23, 33, and 49. Even though the 

silence/noise and some unvoiced speech waveforms might be very similar, the cor-

responding states are different. The HMM states are able to capture the difference 

between noise and unvoiced speech (like fricatives) because they operate a differ-

ent clustering for one thing, but mainly because they model two different contexts 

(speech and silence). As a consequence, a very robust application of this type of 

HMM is speech segmentation: the state sequence detects the onset and offset of 

speech very reliably (and therefore the speech and silence segments). 



a) State clustering. 

b) 2-state structure (possibly i = j), 

c) Sets of equivalent states. 

d) Exit state "E" between two state structures. 

    

    

       

onset 

   

plateau 

 

offset 

e) Vowel-like structure. 

Figure 6.20: Some typical state structures. 
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Figure 6.21: Formant clustering of the states 2, 52, and 68. 



Ihr 

halt ... 

11th_ 

tilt1 ...• 

di(n) 

vl 

d u — 

175 

111 1sarar..... 

Figure 6.22: State duration distributions. 



CHAPTER 7 

Conclusion 

In this research we stressed the importance of modelling the speech waveform not 

only as a signal, but also as an observed representation of a, hidden language struc-

ture. We identified the basic requirements of such an approach, and formulated 

the general framework of stochastic modelling based on the applicability of hid-

den Markov models. A consistent mathematical formulation was presented under 

the unifying approach of maximum likelihood concepts, which were used in the 

estimation, speech analysis, and speech synthesis phases. Practical algorithms 

were derived to implement the theoretical model. It was shown that the process 

of model parameter estimation was practically feasible, even with only a mod-

est computer'. The model was automatically trained by a computer algorithm 

operating on a long corpus of 15 minutes of continuous speech. The estimates con-

verged after 100 iterations of the algorithm. The experimental model exhibited a 

significant structure as modelled by the state and observation entropies. Speech 

analysis was carried out very efficiently in terms of state sequences. The maxi-

mum likelihood trellis decoding with detection of convergence nodes was optimally 

applied to blocks of speech not exceeding 0.24 second. For speech synthesis, sev-

eral sub-optimum reconstruction schemes were described and experimented with, 

operating at bit rates below 8 bits/frame for the encoding of the speech spec-

tral information. Intelligible speech was synthesized from as little information 

IA Data General MV/10000, which is modest compared to a Cray. 

176 



177 

as 1.7 bits/frame, using a ML-TDA based on the adjoined HMM. The subjec-

tive testing of the synthesized speech quality was provided and compared with 

(non-hidden) Markov modelling of the speech vectors. An optimum reconstruc-

tion procedure was described, but not experimented with: the ML-TDA based on 

the inverse HMM. Our analysis-synthesis hidden Markov model was shown to be 

applicable to the problems of speech segmentation, speech analysis, and very-low-

bit-rate speech coding/reconstruction. Moreover, a limited investigation of the 

state interpretation problem showed a good and consistent correlation between 

typical state sequences and typical speech sounds. For instance, vowels like /V, 

/m/, and /0/ could clearly be identified by their state sequences. The length of 

the plateau structure in the state sequence directly reflected the duration of the 

vowel. These preliminary results are promising for the application of our analysis-

synthesis HMM to the problems of speech enhancement and continuous speech 

recognition. 

Still, quite a number of topics related to HMM's need to be investigated fur-

ther through additional research: state interpretation/selection, optimum speech 

reconstruction, parameter estimation (training), speaker adaptation/independence, 

acoustical representations, applications, to mention only a few. Regarding the 

state interpretation problem, a thorough and detailed study is needed. One ap-

proach would be, for example, to correlate state sequences and phoneme sequences 

over the training database. If we were to depart from our approach of a global 

HMM, and use instead local HMM's of segmented speech units, the state interpre-

tation problem would be partly replaced by the unit selection problem (phonemes, 

diphones, morphemes, syllables, words?). Concerning the optimum speech recon-

struction scheme described in this thesis, practical algorithms would need to be 

developed, and the validity of the approach should be tested experimentally. In 

the framework of maximum likelihood parameter estimation, alternate algorithms 

to the FBA should be developed to improve performance in terms of computing 
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time and memory requirements. An algorithm which would enable us to update 

the estimates when new training data becomes available (or to perform adaptive 

estimation) would be very useful (see [149]). Algorithms not based on a ML ap-

proach should also be investigated. Also directly related to the training issues 

is the problem of speaker adaptation/independence. For example, how can two 

different HMM's, trained for two different speakers, be "averaged" to generate 

a speaker-independent HMM? How can a general "speaker-independent" HMM, 

trained on a large database, be "retrained" (perturbed) on a small database to fit 

a specific speaker? The HMM is also clearly tied to the initial acoustical repre-

sentation of the speech waveform. The better the representation, the better the 

HMM. The more information left out by the acoustical representation, the less 

reliable the HMM. At best the HMM will capture the structure encoded into the 

acoustical representation. The acoustical representation is usually given in terms 

of P-dimensional feature vectors. What feature vectors are appropriate? Energy 

in frequency bands, LPC-based vectors, mel-cepstrum vectors, etc? In this re-

search the LPC feature vectors were selected from a discrete finite set of possible 

vectors (the VQ codebook). Further progress in the implementation of VQ's will 

benefit HMM's. What about an infinite number of possible vectors selected from a 

continuous support? What continuous probability density functions are the most 

appropriate? Finally HMM's should be evaluated with respect to their capabili-

ties in a wide range of speech processing applications including speech analysis, 

coding, synthesis, enhancement, and recognition. 

It has been clear throughout this research that hidden Markov models go 

one step beyond the "previous classical" speech processing techniques. They do 

so by merging the two viewpoints of signal and language processing into a single 

conceptual framework. To simplify, HMM's encode the speech information and 

knowledge into a network of nodes (the states) and connections (the branches) 

building an HMM trellis. The strengths of the connections between the nodes 
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are characterized by the model probabilities. The power of this representation 

also meant an urging need for more computing power. However, the HMM ap-

proach has inherent limitations mainly due to the initial assumptions of the model: 

first-order dependencies and acoustical representation. The Markov chain is a first-

order chain. The current observation is directly dependent on the current state, 

but not on the surrounding observations. As better theoretical descriptions and 

computing power become available, higher order dependencies will be modelled, 

and acoustical representations based on the human auditory system will be de-

fined, leading to structures more complex than trellises, such as neural networks 

[92,131,99]. 
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Abstract 

Three major components of the project to date have been: 

1. Investigation of improved enhancement techniques, 

2. Recognition of components of speech, and 

3. Application of Hidden Markov Modeling. 

1 Enhancement 

The enhancement algorithms previously reported on were moved onto a different 

computer for better response time in the evaluation process. Experiments were 

begun on automatic recognition enhancement using hidden Markov Models. Please 

refer to the attached ICASSP abstract which was submitted and accepted. 

2 Recognition of Components of Speech 

Work is continuing on the noise modeling ability of Kalman filtering for recognition 

in a constant background. Currently, we have been unsuccessful in significantly im-

proving performance in SNR's worse than 30dB. Keep in mind, however, that since 

the vocabulary consists of words which are the same except for interior consonants, 

an overall level of 30dB SNR puts the portions by which the portions differ only at 

0 to 10dB SNR. New methods are being explored. 
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3 Application of Hidden Markov Modeling 

Please find attached a detailed summary of work done in global HMM's. It is 

excerpted from the Ph.D. proposal of Mr. Eric Farges. 

2 



September 1987 

Contract MDA 904-85-K-0005 

Budget Expended Balance 

Personal Services 51,010 38,383 12,628 

Fringe Benefits 3,519 4,312 (793) 

Materials and Supplies 2,500 1,055 1,445 

Travel 3,500 1,498 2,002 

Total Direct 60,529 45,248 15,281 

Overhead 38,435 28,400 10,035 

TOTAL 98,964 73,648 25,316 
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Constrained Iterative Speech Enhancement 

With Application To Automatic Recognition 

John H.L. Hansen and Mark A. Clements 

School of Electrical Engineering, 

Georgia Institute of Technology, 

Atlanta, GA 30332 

A well known speech enhancement technique originally developed by Lim and 

Oppenheim [1] solves for the maximum likelihood estimate of a speech waveform in 

additive noise using the constraint that the signal is an all-pole process. Crucial to 

the success of this approach is the accuracy of the estimates of the all-pole speech 

parameters at each iteration. Although the original sequential MAP estimation 

technique was shown to increase the joint likelihood of the speech waveform and 

all-pole parameters, heuristic convergence criteria had to be employed in practice. 

This restriction makes the approach difficult to apply in environments where auto-

matic enhancement is necessary. In an earlier investigation [2], it was noted that 

as additional iterations are performed, individual formants of the speech decrease 

in bandwidth„ resulting in unnatural sounding speech. Frame-to-frame pole jitter 

was also observed, since no explicit frame-to-frame constraints are employed. In 

ICASSP-87 we introduced a set of iterative speech enhancement algorithms which 

employed spectral constraints [3]. These algorithms basically employ the Lim-

Oppenheim procedure with inter-frame (across time) and/or intra-frame (across 

iterations) constraints applied after each iteration. These procedures were shown 

to significantly improve speech quality (as measured by objective speech quality 

measures including Itakura-Saito, log-area-ratios, weighted spectral slope) over the 
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unconstrained algorithm and spectral subtraction techniques for an additive white 

Gaussian noise distortion. In addition, it was also shown that the new constraint 

techniques improve the objective quality over all speech sound classes. 

This paper extends the previous investigation of our constrained enhancement 

algorithms Three contributions have been made in this follow-up study. First, 

the unconstrained Lim-Oppenheim approach required a heuristic convergence crite-

rion. Specifically, the optimum terminating iteration for Itakura-Saito measure was 

found to be dependent on sound class concentration (see Table 1), and somewhat 

dependent on SNR. It has been observed that the new constrained enhancement 

techniques possess a much more consistent terminating criterion over all speech 

sound classes (see Table 2), and varying SNR's. The best results (through com-

parison with the known undegraded speech) occur on the same iteration, giving a 

simple procedure for termination of the algorithm when the undegraded speech is 

not known (i.e., reality). Second, the constrained techniques have been extended to 

the colored noise case. Results show that they perform well on non-white, slowly 

varying aircraft mid-fuselage noise. A comparison with traditional approaches will 

also be included. 

Finally, the new enhancement algorithms are being evaluated as possible prepro-

cessors for automatic speech recognition. The performance of constrained enhance-

ment preprocessing for recognition will be reported over a wide range of SNR for 

an additive white Gaussian noise distortion. The effectiveness of these constrained 

approaches will be compared to that of enhancement preprocessing using the un-

constrained technique as well as that of spectral subtraction. Two variations are 

being tested. In the first, all recognition training is performed on the undegraded 

speech. This serves to model the case of training a recognizer in advance in quiet 

surroundings (off-line) and using it in a noisy environment. Second, the recognizer 

training is done using the enhanced speech, which would model training in the field. 

Early results show marked improvement for recognition performance in a hidden 

Markov model framework. Detailed results will be reported. 
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Sound 
Type 

hokum Saito Likelihood Measure (across iterationar- 
Original #1  #2  #5  #4 #5 	#6 	# 7  

Silence 1.634 1.615 41.608 1.649 1.933 3.756 20.360 49.884 
Vowel 4.020 3.721 3.445 43.299 3.720 8.319 121.82 - 
Nasal 19.814 19.154 18.416 17.656 17.009 16.593 415.192 15.697 
Stop 7.261 8.114 4.926 3.979 43.822 6.889 25.515 29.694 

Fricative 3.739 3.637 3.532 43.509 3.902 7.658 47.829 94.106 
Glide 1.525 1.414 41.333 1.442 2.231 4.300 8.391 15.561 

Liquid 9.597 8.241 6.546 4.545 2.606 41.676 6.381 30.001 
Affricate 3.924 3.609 3.213 2.702 2.091 41.552 2.911 2.975 

Voiced + Unvoiced 5.838 5.321 4.767 4.293 44.289 7.346 81.865 - 
Total 4.022 3.720 3.402 43.151 3.271 5.795 43.457 - 

Table 1: Lim-Oppenheim unconstrained speech enhancement for white Gaussian 

noise. Optimum terminating iteration for best Itakura-Saito distance for a partic- 

ular speech class (in terms of objective measures) is indicated by a 4. SNR=+5dB 

Sound 
Type 

hakura-Saito Likelihood Measure (a c ross iterations) 
Original #1  #2  #3  #4 #5  #6  # 7  #8  

Silence 1.634 1.551 1.351 1.155 1.036 0.979 0.929 40.884 0.901 
Vowel 4.020 3.319 2.865 2.394 1.863 1.677 1.571 41.565 1.828 
Nasal 19.814 16.490 12.397 10.523 8.682 6.840 4.929 43.789 5.548 
Stop 7.261 6.246 4.840 3.492 2.668 1.812 1.383 41.129 1.435 

Fricative 3.739 3.432 3.027 2.612 2.245 1.948 1.729 41.615 1.844 
Glide 1.525 1.389 1.275 1.232 1.219 1.189 1.161 41.153 1.217 

Liquid 9.597 6.481 3.382 2.243 1.612 1.209 0.943 40.926 1.211 
Affricate 3.924 3.722 3.447 3.117 2.806 2.598 2.472 42.368 3.966 

Voiced + Unvoiced 5.838 4.642 3.658 3.006 2.501 2.131 1.865 61.740 1.953 
Total 4.022 3.026 2.441 2.069 1.801 1.611 1.457 41.381 1.498 

Table 2: Hansen-Clements Inter & Intra-frame constrained speech enhancement 

for white Gaussian noise. Optimum terminating iteration for best Itakura-Saito 

distance for a particular speech class (in terms of objective measures) is indicated 

by a 6. SNR= +5dB 
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1 Introduction 

Several related research topics were covered in this program. The specific applications are 

wide-ranging, with the common theme that improved understanding of the basics of speech 
analysis impacts many areas. The specific areas touched on by this research include very-
low-bit-rate coding, phoneme recognition; large hidden Markov model interpretation and 

implementation; 'windowless analysis of speech for recognition of transients in noise and 
quiet; enhancement of speech in additive noise for synthesis and automatic recognition; 
exploration of alternative front-ends and distance measures for automatic recognition and 
vector quantization; and enhancement of speech using polyspectra. 

2 Research Results 

Many details of the research were included in the quarterly progress reports. In the sections 
below, we will summarize the results and refer to the papers containing more information. 

2.1 Large IIMM's for Analysis/Synthesis 

Please refer to appendices A.1 and A.2, and reference [3]. 

Continuous speech was examined in the context of constrained analysis/synthesis using 
large hidden Markov models. In summary, it was determined that an effective decompo-
sition which substantially reduced overall entropy was possible, and that the spectral 
information of speech could be coded in an intelligible manner down to 125 bits/sec to 
accomplish this with reasonable computing. Also, the underlying hidden Markov state 
assumptions were not inconsistent with observed results. All of this was accomplished 
using discrete observation HMM's where the observations were 10-bit vector quantized 
codewords. Several natural extensions are suggested from this work: state interpretation, 

automatic recognition, and generalization to continuous observation large hidden Markov 
modelling. 



2.2 Other Applications of Large HMM's 

In an attempt to improve and generalize results, a large l-IMM was formed using the 
TIMIT multispeaker data-base. This model had continuous distribution observations based 
on mel-cepstral and delta-mel-cepstral analysis, the Viterbi and Forward-Backward algo-
rithms. State decoding was performed using the Viterbi algorithm. As summarized in 
Appendix B.1, 51% speaker independent phoneme recognition was achieved using this 
method. 

2.3 Windowless Techniques for Automatic Recognition 

The origin of this work came from the observation that framing boundaries can alter the 
pattern of performance when an automatic recognizer attempts to distinguish words differ-
ing only by short-duration consonants. In this work, methods were developed for training 
and recognition where different observations as input for every sampling point. One of 
the front-end analyses involved Kalman filtering, but other methods are also possible. 
Performance improvement over minimally different words was dramatic; error rate reduc-
tions were roughly a factor of 6 (see Appendix C.1). Further work using Kalman filtering 
extended to noisy input has been performed also with good success (see Appendix C.2). 

2.4 Enhancement 

Enhancement of speech using iterative Wiener filtering with constraints was implemented 
and found to improve SNR, subjective quality, and automatic recognition performance. 
This method was also shown to have good numerical properties. Please see D.1 , D.2, and 
D.3 for details as well as reference [9]. 

2.5 Recognition of Noisy Speech 

Front-end analyses and distance measures have been formulated which are robust in the 
presence of noise. 

The specific one we have examined involved a projection measure of cepstral coefficients 
and mel-cepstral coefficients. In the context of a continuous-observation hidden Markov 
model recognizer. This amounts to using a distance of the form: 

- XT U obT  C lx 

bTC — lb 

where b is the vector of (mel) cepstral coefficients for the template, x is the vector of (mel) 
cepstral coefficients for the test vector, and C is the pooled covariance matrix for the (mel) 
cepstral coefficients of the training data. The following results have been obtained. 



Type of noisefree 30 dB 20 dB 10 dB 0 dB 

Coefficients norm 	proj norm 	proj norm 	proj norm 	proj norm 	proj 

cepstral 98.5 97.6 98.5 98.2 82.9 96.8 36.8 73.8 7.9 23.8 

melcepstral 98.8 98.2 92.9 98.5 65 86.8 22.9 45 15.6 3.8 

Normed-melcepstral 98.8 98.5 92.9 98.8 65 89.1 22.9 50 15.6 5 

norm = normal 
proj = projection 
units are in percentages correct 

As can be seen, this measure goes a long way in improving performance. 

2.6 Polyspectral Techniques for Enhancement 

Enhancement using all-pole Wiener filtering is based on speech being all-pole and the 
noise being something else. Constrained all-pole Wiener filtering improves upon this by 
incorporating other information concerning the behavior of speech. Use of the bispectrum 
would further improve matters by allowing separation of Gaussian noise from non-Gaussian 
speech [11]. The triple correlation of a stationary process is defined by: 

E(x(n)x(n — i)x(n — j)) = R(i , j). 

For an all-pole (aut regressive, AR) process, the least squares estimate of the AR param-
eters can be computed from: 

Ra = [3 

R = {rij} 	rij = R (j — j — 1) 

a is the vector of AR parameters: 

= [1, a, ... ,ap ] T  and f3 = [f3, 0, 0,0, ...[ T . 

R is Toeplitz but not symmetric. We have developed a recursion and a lattice filter for 
solving and representing the system. Although some problems with stability have occurred, 
the early results were encouraging and will warrant further exploration. 
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HIDDEN MARKOV MODELS APPLIED TO VERY LOW BIT RATE SPEECH CODING 

Eric P. Farges and Mark A.Clements 

Georgia Institute of Technology 
School of Electrical Engineering 

Atlanta, Georgia 30332 
U.S.A. 

Abstract: A new type of very low bit rate speech coder based 
on a global Discrete Hidden Markov Model (DHMM) of contin-
uous speech for a single speaker is presented here. Several 
important issues of the training, coding, and decoding pro-
cedures are discussed for a 64-state, 1024-observation 
model. Such a framework is useful in reducing the redundancy 
in a 10-bit classical Vector Quantizer (VQ), and could lead 
to a DHMM coder with a bit rate comparable to that of a 
Segment Vocoder (SV) or a Matrix Quantizer (MQ). This is 
achieved not only by modelling the long term non-station-
arity and the inter-frame time dependencies of the speech, 
but also by efficiently representing a different kind of 
information such as vocal tract structure and linguistic 
patterns. 

I. INTRODUCTION 

1.1 A new compact and flexible speeCh model 

In recent years, the concept of Hidden Markov Modelling 
(HMM) of speech has gained considerable popularity due to 
its successful application in automatic speech recognition. 
In this paper, we present a new application of such model-
ling which may be useful to speech coding. In the new model, 
a 64-state, 1024-observation global Discrete Hidden Markov 
Model (DHMM) is employed and can be summarized as follows: 
the system which produces the continuous speech (let us say 
the human vocal tract) goes through different configurations 
(called states) as a function of (discrete) time n. A state 
at time n is a random varialble Xn  assuming values from a 
finite state alphabet S = (1,2,...,$) (s=64). The transi-
tions (or jumps) between the states are probabilistically 
described by a first order stationary Markov Chain. This in 
turn is defined by: 

- an initial distribution of the states: 

wo (ai) 	ai Prob(X1— i) 
	

Ea; = 1 
i=1 

- a stochastic transition matrix: 

This research was supported by grants from the National 
Security Agency and the Jet Propulsion Laboratory. 

The states (like vocal tract articulatory configurations 
or linguistic patterns) are not directly observable but are 
hidden. Nevertheless they manifest themselves through "ob-
servations" such as LPC spectra of speech segments. In the 
discrete HMM case the observations Y n  are assumed to be 
"drawn" from a finite alphabet 0 = (Ma.1024) made 
of codewords (indices) for a set of template LPC spectra 
(all pole models) of a classical VQ codebook C. The speech 
signal is characterized by a sequence of random variables 
Y[1:1-] (Y1,Y2,... , Yu. 

The production of an observation Y n  at time n is proba-
bilistically governed by the state the system is in at time 
n. The production rules are described by a stochastic sta-
tionary probability output matrix B: 

B = (bac) i=1,s V n > 0 bac  = Prob(Yn=k 'Ceti) 

	

k= 1,M 	s 
Ebik = 1 

k=1 

The sequence of random variables Y[1:1..] produced by the 
underlying state sequence X[1:1..] and characterized by the 
discrete probability mass functions (prnf's) {bi(Y n)) is 
called a Probabilistic Function of a Markov Chain. To sum-
marize, a DHMM is uniquely defined by M = (Tro ,A,B). 

1.2 Variations to the basic model 

The previous model is referred to as an unconstrained 
model. A constrained model would force a specific structure 
on the matrix A. For example if V j>i, aij = 0, the model is 
called left-to-right. 

A time duration constraint can also be applied to the 
states. With a DI MM, the probability of staying in state i 
for N units of time is exponentially decreasing: 

T(N) 	(1-aii)adN , 
which might not be very realistic for speech. A Semi-HMM 
(SHMM) or jump process introduces a state duration pmf di(n) 
for each state i. Then 

T(N) di(N) 
where CO can be chosen to be some discrete probability 
mass function. The duration of the system in state i is 
governed by CO, and the state next visited is governed 
by the transition matrix A. A SHMM is summarized by 

A Continuous HMM (CHMM) uses continuously varying 
observations not limited to a finite discrete alphabet, but 
to a continuous support U. Continuous pit's are used for B: 

B (1:1(Y)) i=1,s for Y E U. 
This paper is only concerned with unconstrained DHMM's of 
speech. 
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I.3 Motivations for the model 

Physical and linguistic reasons: it seems reasonable to 
consider that the human vocal tract can be represented by a 
relatively small number of physical configurations (the 
states), with each configuration being more prone to produce 
given types of speech spectra (the observations). If one 
were to assume that speech is composed of a sequence of 
phonemes, a good description would need to take into account 
dependencies and relationships between phonemes. In a simi-
lar way, the HMM concept statistically identifies time 
structures and linguistic patterns of the speech and their 
inter-relationships. Although the underlying states would 
not represent phonemes, they would exhibit many of the 
characteristics one would like to see in phonemes, and would 
enable us to describe speech by a new set of linguistic 
units. As a result, speech coding could approach bit rates 
comparable to those of phonemic vocoders, while obviating 
many of the difficulties. The ultimate bit rate achievable 
would highly depend on the amount of structure in the under-
lying model. 

Entropy, structure, and bit rate: the entropy of a HMM 
is defined by [8]: 	S S 

H = - I I iriaiilog2aii 
i=lj=1 

where w .= (irk) i=1,s is the steady state distribution of the 
states which can be obtained from the transition matrix A by 
solving the linear system of equations: 

s 
I (aii - Sipwi = 0 j = 1,s-1 
i=1 

s 
2 ,ri  
t=1 

The entropy represents the average number of bits neces-
sary to encode the states, and is in some sense a measure of 
the degree of structure (order) of the system: 0< H < log 2s: 
- if iti = 1, au .= 1 and v j # i irj = 0, aii = 0, then 

H = 0: the minimum entropy corresponds to a completely or-
dered signal with a total a priori information and a known 
structure. 
- if V i,j ai ". 1/s aii 	1/s then H = log2s (H=6 for 64 

states): the maximum entropy corresponds to a completely 
disordered signal with no a priori information and no under-
lying structure. Experimental results presented later show a 
strong underlying structure in the speech, as measured by 
entropy. 

II. THE SPEECH CODER 

The very low bit rate speech coder can he divided into 3 
distinct procedures (see fig. 1-3): 

- training in which the best DHMM, M = (w o ,A,B) is found 
given a training sequence of continuous speech. 

- coding in which the 'optimum state sequence X[1:L] given 
the model M and the observed speech Y[1:L] is found, produ-
cing a sequence of codewords. 
- decoding in which the optimum speech sequence cr[1:L] 

Isgiven the model M and the transmitted state sequence X[1:L] 
found. 

Training and coding take place at the transmitter, deco- 
ding at the receiver. An optimum bit representation of the 
states cn  would be transmitted to the receiver, with the 
number of bits required depending on the entropy of the 
model. The experimental work completed includes the follow- 

ing: A database of 1 .5 minutes of continuous speech from a 
single male speaker was digitized at 8 kHz, and LPC models 
were generated for the 60000 15-ms frames of speech. A 10 
bit VQ codebook (1024 codewords) was generated with the 
binary-split K-means algorithm of Buzo et al. [2], and each 
speech frame was vector quantized. A 64-state, 1024-observa-
tion DHMM was trained through the forward-backward algorithm 
(FBA). The speech was coded with a trellis coding scheme and 
decoded with a trellis decoding procedure. 

11.1 At the transmitter 

Training: to estimate the parameters of the model M a 
maximum likelihood approach can be used through an iterative 
procedure called the forward-backward algorithm (FBA). Other 
approaches such as maximum entropy method could probably be 
used too. The first proof of convergence of the FBA was 
introduced by Baum et al. [1], then generalized to multi-
variate continuous distributions by Liporace [4], and exten-
ded to the case of multivariate mixture densities by Juang 
[3]. A practical use of the algorithm was demonstrated for 
isolated word recognition by Rabiner et al. [5] for small 
HMM's (s= 5,M= 64,1-# 4000). For HMM's as large as this study 
employed, (s— 64, M."1024, L= 60000) significant modification 
of previously reported FBA implementations was required to 
alleviate numerical problems. The results of this training 
will be discussed in section DI 

Coding: given the model M and the observed sequence 
Y[1:L] the goal is to find the sequence of states X[1:L] 
which is most likely to have produced Y[1:L]. A maximum 
likelihood approach was used in which the sequence x[1:1 -] 
which maximizes: 

Pc(Y [1 :1-]/x[l :1],1‘1)
n l

a
xn- lxn

b
xn

(Yn) 	(a 	= a
xt 

 ) 
;cox,  

was selected. If we define the likelihood function: 

= -log,0Pc, i.e., 
L 

lc  .= M
1
I% where 1en = -Iog,o(axn_ ixn)  - log,o[b

xn 
 (Yn)] 

n#  
then maximizing Pc  is equivalent to minimizing l c. A dynamic 
programming procedure called trellis coding (or Viterbi 
algorithm) [6] iteratively minimizes the length" l c  of the 
overall state (node.)'. path through a trellis constituted of 
successive time layers of 64 nodes. The length of a branch 
between 2 nodes respectively in layers n-1 and n is I. The 
shortest paths ending in each node at every layer n are 
called "survivors" (there are at most 64 of them). Iterative 
extensions of the survivors and backtracking lead to the 
ovcrnll best path X[1:T.1. Some of the trellis coding issues 
arc: 

- selection of the initial node (state): The first state 
can be picked at random, picked according to the steady 
state likelihood of the states, or picked to minimize the 
starting lengths. The influence of the starting node is 
transient, however,, and vanishes after a few frames (i.e., 
survivors starting with different nodes are identical for 
n>5). 

- time constraint: with no time constraint the algorithm 
could allow as many different states as there are frames per 
second. It is reasonable, however, to allow no more than 10 
(or possibly 20) different states per second. Such a con-
straint can easily be included in the trellis algorithm 
through a "sliding window." This feature also makes the 
coder more robust with respect to noise. 

- backward pruning: a full search through the trellis is 

 (Bij = 1 if i- j, 0 otherwise). 

9. 1. 2 
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at necessary. The extensions at the layer n can bc corn-
ned from one of up to BP survivors. If no pruning occurs, 
P= 64. If backward pruning is performed, BP<64 (for example, 
e could keep only the first 40 survivors). A pruning down 

BP-20 generally does not affect the optimality of the 
suts and speeds up the coding algorithm, although even 
ith BP= 64, the computations are not burdensome. 
- weighting factor a: the likelihood l c  weights transi-
an and output probabilities equally. Given that the output 
observation) sequence is known with certainty, it is rea-
cable to weight B and A differently using the likelihood: 

L 
= Eltn  : 	= (a-l)log,o(a

xn-lxn
) - alogio[b

xn 
 (Yn)] 

n= 
.2 At the receiver 

Decoding: given the model M and the state sequence 
[1:L] we want to find the most likely sequence of observa-
ons Y[l:L]. A similar approach to coding is taken. We 
efine: 

Pd(y[1:L] / X[1:L] ,M) 2,[b3{  (yn))(1a)pa  (yn-1 / yn) 
n=1 n  

'here P(yn-1/Yn)  is the probability of producing observation 
n  given that the previous one was y n-1. One alternative for 
PC-based models is to use the Itakura-Saito distance 

leasore D(Yn-liYn) for 108/0P(Yn-1/Yn) ,  giving a likelihood 
unction: 

L 
=^dn ldn  = 	 (yn)] aD(yn..i / yn) 

n=1 
sere, D(yn_i I  yn) is the LPC log- likelihood ratio. 

Thc likelihood is a compromise between most probable 
observations in a given state (0.=0) and maximum smoothness 
if the LPC spectrum (a =1). D is referred to as the smooth-
mss function. It can be computed "on line" at the receiver 
Pr a distance matrix (stored at the receiver) can be com-
puted at the transmitter. Storage considerations and de-
apding computation time should indicate what option to use. 
If no smoothness function is used, decoding is equivalent 
to selecting the most probable observation in each state, 
making the coder look like a 64 level VQ (the codewords of 
the DHMM being more efficient because of increased struc-
ture). Some important issues of the trellis decoding algor-
ithm are: 

- initial node: the initial node (observation) is known at 
the transmitter and is transmitted to the receiver, then the 
decoding can proceed. However, the quality of the decoded 
speech decreases when time increases since the very long 
term (200 frames) predictability of the speech is limited. 

- .observation pegging: to solve the above problem the 
actual VQ codeword was transmitted to the receiver every P 
frames (P is the pegging period as well as the trellis depth 
and decoding delay). A period P>20 has only a small influ-
ence on the overall bit rate. In the limiting case, P=1, the 
DHMM coder is equivalent to a 1024 level VQ. 

- backward pruning: same as coding with BP= 100. 
- forward pruning: to *decrease the decoding time without 

affecting the, optimality of the results, at time n the 
algorithm looks ahead and selects only the FP most probable 
observations in state Xn+1  for which extensions should be 
computed (need FFBP, use FP=100). 

- weighting factor a: the initial implementation used a 
constant a. Results indicate that a should be variable: 

. in steady state speech regions the smoothness function 
should be weighted more (0.5< a <1). 

. in transient speech regions the output matrix B should  

be made adaptable with time ei o n  based on the evolution of 

the state sequence. 

III. PRELIMINARY EXPERIMENTAL RESULTS 

The training procedure was run until convergence was 
approached, with a likelihood value of 

log,oP = - 3.352 x 105 . 
Although the model was still improving slightly, the main 
structures of the matrices were already there (see figures 
4-6): 

- the initial distribution of the states converged quickly 
to an  =1 and for i4 19 ai= 0. 

- the A matrix displayed, as expected, a strong diagonal 
structure (see figure 6). 

- 56.4% of the entries in A and 89.3% in B were less than 
10-3  (see figures 4,5). 

For a classical VQ, a (non hidden) Markov model was 
generated by defining the codewords as the states (i.e., 
states were observations) and a transition matrix was com-
puted by frequency counts on the 15 minutes of speech. The 
resulting entropy for a 6-bit codebook (64 codewords) was 
found to be H = 3.9. The transition matrix of the 64 state 
HMM computed on the same data had an entropy of 2.6, which 
suggests that an inherent underlying structure exists in 
speech which is not taken into account by the 6-bit VQ. Such 
techniques as Segment Vocoding and Matrix Quantization cap-
ture part of this structure but not all [7]. 

Preliminary experiments, using the simplest of the 
coding-decoding techniques described, produced speech supe-
rior in quality to that of a 6 -bit vector quantizer, but 
inferior to that of a 10-bit VQ. The work, at this point in 
time, is very encouraging, considering the large number of 
unexplored possibilities available. 

Conclusion: 

A statistical derivation of a new type of speech model 
has been presented: a global 64 state, 1024 observation DHMM 
of continuous speech has been proven to be practical, com-
pact, and general, but flexible, automatically trainable, 
and bit rate efficient (as low as 2.6 bits / frame). 

A complex but important underlying structure has been 
brought to light. Although initially speaker dependent, this 
new speech model could become speaker independent when plau-
sible linguistic units represented by the states and derived 
from the strong structure of the model are identified. 

Refinements in the modelling and coding-decoding process 
should produce good speech quality for a very low bit rate 
coder. Among the many other applications of a DHMM of 
speech, the detected underlying state sequence could be used 
for continuous speech recognition. 
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S8.5 
AN ANALYSIS-SYNTHESIS HIDDEN 

MARKOV MODEL OF SPEECH 
Eric P. Farges and Mark A. Clements 

Georgia Institute of Technology 
School of Electrical Engineering 

ATLANTA, GA 30332 

ABSTRACT 

Itinuous speech from one male American speaker is 
:ribed by a single large hidden Markov model (HMM). 
problems of model parameter estimation, speech-

e decoding, and speech-observation decoding are gre-
ed under a unified conceptual framework built around 
Laximum likelihood approach. The model has 64 
es and 1024 observations, and is assumed to be fully 
iected. This model possesses not only speech anal-
but also speech synthesis capabilities. Very low bit 
speech coding is made possible by the fact that very 

information is needed to encode speech state se-
ices. Intelligible speech, comparable in subjective 
ity to 10 bits/frame vector quantized speech, can 
xonstructed from the state sequences with bit rates 
w 5 Hts/frame (to encode the LPC spectral informa-
l• Intelligible speech was produced at 1.68 bits/frame, 
•eas a 2 bits/frame pitch excited LPC vector quan-
did not produce intelligible speech. 

1 Introduction 

; paper is a brief summary of the research we started 
983 at Georgia Tech in the DSP group of the School 
Aectrical Engineering. A detailed account of this 
arch can be found in Farges [3,2,1] and in Farges 
1. [4,5,6,7,8]. The objective was to develop a single 
ral HMM of continuous speech which would provide 
tch analysis capabilities in terms of state sequences 
speech synthesis (reconstruction) capabilities from 
e sequences, leading to such applications as very-
bit-rate speech coding and continuous speech recog-
ma. Our approach departs from "classical" HMM's 
'esentations because: 
•we use a single large HMM (64 states, 1024 observa-
s) directly applied to continuous speech as opposed 
everal small HMM's (5 to 10 states, 64 to 200 obser-
ons) applied to "segmented" parts of speech (such as 
ds, phonemes, etc.) and then concatenated together. 

This author is now with: 
idard Elektrik Lorenz AG 
sustruse 10 
) Stuttgart 40 
t Germany 

- We use a large database of continuous speech (15 
minutes or more) to perform a totally automatic and 
computerized model parameter estimation (no segmen-
tation in terms of basic "speech units" is needed). 

- We introduce and develop the concept of speech 
synthesis (reconstruction) from a state sequence to pro-
duce quality speech at very low bit rates. 

- We develop a unified conceptual framework, as well 
as practical efficient algorithms, to solve the class of 
problems related to large HMM's. 

- We introduce several new types of speech coders 
and describe the achievable bit rates with the evaluation 
of the associated subjective speech quality. 

- We describe some encouraging results about the 
"physical meaning" of the states and their "statistical 
interpretation" in terms of classical linguistic units. 
The bask implementation of such an HMM of speech is 
summarized in the block diagrams of figure 1. 

2 Model estimation 

The forward backward algorithm (FBA) was adapted 
and optimized to accommodate large training databases. 
An accurate and efficient scaling procedure was devel-
oped on top of the FBA to eliminate undertow prob-
lems [3,5]. The optimization process is summarized in 
table 1. The maximum 'likelihood (ML) estimation pro-
cess proved experimentally to be also a minimum entropy 
process (see figures 2 and 3). 

3 State decoding 

The state decoding was performed by an unconstrained 
trellis decoding algorithm (TDA) operating on the state-
space trellis of the HMM. The concept of convergence 
nodes was introduced. A recursive partial backtrack-
ing algorithm was developed to detect them. It allowed 
to optimally decode small "blocks" of speech indepen-
dently of past and future blocks — therefore decreasing 
the memory requirements of the algorithm. The distri-
bution of the state-decoder delay is shown in figure 4 (1 
time unit = 15ms). 

323 
C112561-9/88/0000-0323 $1.00 Q1) 1988 IEEE 



S(t) 

Speech 
wave form 

x. C„ U. AP BA LD CB 
Connote 

4 Observation decoding 

Several observation decoding schemes were defined and 
experimented with. An adjoined model A and an inverse 
model A' were defined. The observation decoding was 
performed by a constrained trellis decoding algorithm 
operating on the observation-space trellis of the adjoined 
N inverse HMM. The general unified ML framework of 
HMM's is smnrnsrized in table 5. 

5 Applications to very-low-bit-rate spech coding 

Several new types of speech coders were introduced: the 
partitioned HMM-VQ and the HMM-VQ including the 
"most probable" coder, the "expected" coder, and the 
constrained TDA coder. It was shown that HMM coders 
can achieve lower bit rates (for the same speech quality) 
than simple Markov-VQ's (see tables 2,3, and 4). Quite 
intelligible speech was synthesized with a 1.68 bits/frame 
bit rate — a little less than the 2 bits/frame bit rate of 
a 4-level VQ which did not produce intelligible speech 
with the same pitch excitation data. Speech synthesized 
from bit rates of 4.68, 3.68, 2.88, and 2.54 bits/frame 
were judged indistinguishable from the speech synthe-
sized by the classical 10 bits/frame vector quantizer (see 
subjective test results of table 4). 

13 Conclusion 

It has been demonstrated that it is feasible to generate a 
large and global HMM of speech. The model captures a 
significant part of the underlying language structure of 
the speech waveform. Therefore it enabled us to encode 
and synthesize speech efficiently at very low bit rates. 
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6) Speech proceul rig unit: the DSP implementation of the listener side 
of the message model of human communication. 

AP : Acoustic Processor 
BA : Bit Allocator 
LD : Linguistic Decoder 
on: Concept Builder 
	X. : Acoustk patterns 

U.: Linguistic units 
: Acoustic codewords 

APP X., HMMP 

b) The acoustic processor. 

ATP : 	Acoustic Frarrocamor 
12M:tv1P : Hidden Markov Model Processor 

S(s) A/D 
	

SQ 
	

LPC 
	

VQ k., 

c) The ar.oustk preprocessor. 

A/D : Analog to Digital converter 
SQ : Scalar Quantization 
LPC: Linear Predictive Coding 
VQ : Vector Quantization 

Figure 1: Bask speech processing unit. 

Table 1: The FBA: a long optimization process. 

Algorithm type CPU timid 

original maximization problem Infeasible 

Forward Backward Algorithm 

(FBA) 

theoretically Walla 

practically infeasible 

scaled FBA CPU > 30 hours 

partially optimized, scaled FDA 20 li < CPU < 30 h 

optimised FBA with partial scaling CPU < 20 Is 

optimized. log-low FBA with 

partial scaling 

CPU es 1 hour 43 minutes 

}For the algorithm operating On the Ibmin of speech on a Data General MV/10000. 

S(t)  

324 



Results of the subjective quality testing. Table 4: 

System 	 Standard Average 
Score 

Statistics: Session  

Deviation 

X (frames) 2 3 4 6 6 7 8 

B(K) (bite/frame) 7.67 4.68 3.68 3.18 2.88 2.68 2.54 

X (frames) 9 10 11 12 13 14 15 

B(K) (bits/frame) 2.43 2.35 2.28 2.22 2.18 2.14 2.11 

Statistic: Session 2 

Rank System Average Standard 
Score Deviation 

1 B1 68.4 34 
3 B2 45.2 28 
3 B3 28.0 24 
4 B4 24 

B5 36.3 23 
B5 16.1 12 

Significance matrix. 

1=11111M31 
11101•1111211 

Session 1 

4  1111:1 
EINE 

=MIMI= 
MIEMILKIII 
--©o11 
IMM■ IEK1111 
0©©D 

DEM 
0  EINE 

OEM 
IMEI 
UM 

Significance matrix Session 2 

IMMIEllE1111310113 
M•111111111211151. 
IMB■1111:111311:1C11 ■2 
IMINE11311311:1121111 
=1:111111:11:11211111EIBE 
MIMEILIGICILIIM 
11111131111EIEIMIEUE 

Log_likellhood 

20 	 40 	 60 	 60 	 100 

I teration number. 

Figure 2: Evolution of the log-likelihood. 

____ 
Systems: Session 1 

ezazi 	Speech Coder type <
 .4

 .4  .4  .4 .4  I  

pitch excited LPC 
1024-level VQ 

MEM 'moot probable 
EMM '4orpectee 

RMIM K se 3 
4-level VQ 

1 Al 59.9 35 
2 A2 474 28 
3 AS 38.7 23 
4 A4 34.8 23 

A3 33.3 23 
6 AS 21.1 15 

Rank 

Significance Level 

1 

2 

Meaning  
no significant difference  

significant difference 
5% probability of effort  

more significant difference 
1% probability of snort 

Systems: Session 2 

Speech/Coder type 
pitch excited LPC 

1024-level VQ 
HMEM K =4 
EIMM K - 6 
EDAM IC 8 
4-level VQ 

System  
B1 
B2 
B3 
B4 
B5 
B6 

Table 5: Analysis-Synthesis fEMM's of Speech: summary. 

Sub-Optimum Maximum Likelihood Approach 

Phase Procedure 

training (estimate A) E. PA(z. Y) .. Tau, E. P.( 2 .Y) 

state decoding (estimate X) P0(X,Y) - max, P, (2 , Y) 

observation decoding 

(estimate Y) 

Ps,(X,k) - max, Pi(X, p) 

with I>, .. z, tit .. Yr 

I 	
Optimum Maximum Likelihood Approach 

1 

Phase Procedure 

training (estimate A) E. Pa(z. Y) - =LT.. E. P.(x, Y) 

elate decoding (estimate X) 

training ((intimate A-1) 

115 (X.Y)= max, PA(LY) 

E, S(y, Y)Px-1 ( X, y) - max.-1 Erg S(V ,  1') Pe . ( X, 11) 

observation decoding 

(estimate Y) 

PA. (X.?) - max, PA. (X, y) 

(with et without Pi ss Yi, Pr = Yi) 

En trap 1 es 

H, 

H. 

20 	 40 	 60 
	

100 
I terat ion rarenbor- 

Figure 3: Evolution of the entropies. 

Table 2: MArkov-VQ bit rate. 	 Table 3: Bit rate as a function of the pegging period K (HA = 1.68, Hp se 5.99). 

l'Error: to say that two coded sentences are significantly different when they are not. 
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	, 	 

• 

Figure 6: Examples of reconstructed waveforms. 

a) original 1024-level VQ speech 

b) •expected" reconstructed speech 

c) 'most probable" reconstructed speech 

d) HMM (K = 3) reconstructed speech 

a) 13 MM (K m 4) reconstructed speech 

t) HMM (K = 6) reconstructed speech 

g) ENEM (K = 8) reconstructed speech 
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Large Hidden Markov Model State Interpretation 
As Applied To 

Automatic Phonetic Segmentation And Labeling 

David J. Pepper and Mark A. Clements 

Hidden Mark ov models with a large number of states (approximately 64) can be 
used to model spoken language. These models have proven themselves to be quite 
useful in low bit rate speech coding applications as well as in automatic phonetic 
recognition. Due to the statistical nature of the training algorithms (the Forward-
Backward and Viterbi algorithms), it is very difficult to determine what the individ-
ual model states actually represent. This paper presents one possible interpretation 
of the model states in terms of the phonetic structures contained within the hidden 
Markov model. It will be shown that these phonetic structures possess a number 
of common features which lead to an understanding of how the statistical training 
algorithms arrange the states of a hidden Markov model. These common features 
include entry states, plateau states, and exit states; i.e., the initial, central, and 
transition states of the phoneme, respectively. This paper will also show how these 
phonetic structures can be used to segment and label the phonemes in an input sen-
tence automatically using only the state sequence produced by the Viterbi decoding 
algorithm. 

These large hidden Markov models are best termed language models, since the 
resulting systems, which are trained on entire sentences of speech, represent all of 
the possible acoustic transitions contained within naturally occurring fluent speech. 
Thus, the resulting systems model between-word coarticulation effects as well as 
phonetic transitions within each word. These global and local coarticulation effects 
are thereby accounted for in the phonetic models described above, producing very 
accurate systems of phonetic models. This work has not yet been extended to 
include higher level language or word models, but such models can be easily included 
in these systems to significantly improve the recognition results quoted below. 

The large hidden Markov models used in this study were trained on the multi-
speaker TIMIT Acoustic-Phonetic database using a continuous observation density 
Forward-Backward training algorithm with a two stage model initialization. On 
a 104 speaker subset of the TIMIT database, the phonetic recognizer was able to 
achieve a 51% recognition rate with 11% insertions for a constrained recognition 
experiment and a 49% recognition rate with 12% insertions for the unconstrained 
case. These recognition rates compare very favorably with previous studies of this 
database, and thus verify the accuracy of the phonetic models developed in this 
work. 



HIDDEN MARKOV MODEL SPEECH RECOGNITION 
BASED ON KALMAN FILTERING 
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Abstract 

Traditional hidden Markov model speech recognition is 
generally based on a set of parameters (often LPC related) 
which are extracted at discrete intervals. Such an analysis 
necessitates use of a discrete-trial hidden Markov model in 
which the underlying states can only change at intervals re-
lated to the frame rate of the analysis. The exact locations of 
the analysis windows used can influence the front-end outputs 
and as a result can cause confusion between words differing in 
short-duration consonants. In the current study, an alternate 
method which does not require segmentation is proposed, and a 
simple version is implemented. The discrete trial hidden Markov 
model algorithms are adapted to this framework leading to 
significantly improved recognition performance. 

Introduction 

Over the past few years, the method of choice for many 
speech recognition applications has been based on hidden Markov 
modeling. Steady improvement has been reported in such areas as 
speaker independence, noise handling, training and response 
times, as well as general performance. The first HMM based 
systems modeled speech as a discrete state discrete trial 
Markov process with discrete observations. Recently, new models 
which allow a continuous distribution of observations have been 
presented. Although the methods for accomplishing this differ, 
they all eliminate the vector quantization step and virtually 
all report improved performance. Throughout all these models, 
however, the assumption remains that sampling the parameteriza-
tion of the speech (e.g., spectral or LPC based parameters) is 
only nece,Aary every 10 to 30 milliseconds. When words differ 
only by a short duration interior consonant, however, the exact 
placement of the analysis windows can have an impact on perfor-
mance. The current study is the result of an attempt to elimi-
nate these windowing effects in an efficient manner. The front-
end is based on a Kalman filtering model which produces an 
output for every sample point. The matching algorithm can be 
considered an approximation to a discrete state continuous 
transition hidden Markov modeling technique. 

Front-End Analysis 

A general autoregressive representation of speech can be 
based on a model of the form: 

2(k) = A(k)x(k-l) + B(c)a(k) + a(k)(k) 	(la) 

y(k) C.T(k)/(k) + v(k) 	 (lb) 

where the vector 2(k) 	[x(k), x(k - 1), ..., x(k - p + 1)1 1., 
x(k) is speech without noise, u(k) is a periodic input and B(k) 
its gain, w(k) a noise input and G(k) its gain, C(k)=[l, 0, 0, 
varying vocal-tract filter. The sequence y(k) is the digitized 
speech and is the same as x(k) with no observation noise. 

Systems similar to this have been used to model many 
varied signals arising in innumerable applications. In the 
linear prediction synthesis model A(k) remains constant over 10 
to 30 millisecond intervals, one of u(k) or w(k) is usually set 
to zero, and v(k) is zero. In the LPC analysis model, u(k) and 
v(k) are generally assumed to be zero so that A(k) can be 
estimated every 10 to 30 milliseconds. Recursive linear least 
squares estimation based on the general model falls within the 
general area of Kalman filtering, which allows one to effi-
ciently compute the least squares estimate of _x(k) from the 
least squares estimate of 2(k-1) and y(k). The property we wish 
to exploit is that if we have modeled the system correctly, the 
prediction error, v(k), would be white. Even if the system 
model is correct, the prediction error signal v(k) will not be 
zero due to the noise terms. It should have a predictable ratio 
of its power to the unfiltered signal's power, however. If 
there are L possible models from which the observed signal was 
generated, this idea can be used for computing the relative 
likelihoods of each model given the observed signal. Denote 
v.(k) the prediction residual (innovations sequence) for system 
. 'given i  observatons y(1), y(2),..., y(k), and pi(k) the proba-
bility of system i given y(1), y(2),..., y(k). It has been 
shown [1] that 

N(vi(k), Vi(k))pi(k) 

N(v.(k), V.(k))p.(k) 
j  

where Vi(k) is the variance of vi(k) if model i is correct, and 
N(a,b) represents the Gaussian density of mean zero and var-
iance b evaluated at a. Computation of V1(k) and vi(k) can be 
performed recursively using the Kalman filtering equations, 
with Vi(k) computed off-line. It should be noted that if v(k) 
and u(k) are set to zero, and A(k) and G(k) are allowed to 
change only at abrupt intervals, then v i(k) becomes and LPC 
residual for model i. 

Choosing the value of i which maximizes p i(k) is in many 
ways like implementing an LPC vector quantizer. Several impor-
tant differences exist, however. First, different forms of the 
models can be used. This would, for example, allow different 
order models for different sounds. Second, periodic components 
could specifically be put into some models through u(k). Third, 
additive colored noise can be modeled explicitally. Fourth, 
A(k) can be a time varying transition matrix which could be 
used in a manner similar to matrix quantization in speech 
coding. And fifth, the probability calculations via equation 
(2) is not merely an Itakura distance. The above described 
procedure has been applied with success to cardiac arrhythmia 
detection [2] and stochastic aircraft control [3]. 

Despite the potential power of this technique, a number of 
difficulties remain. Most notable is the training procedure for 
the models appropriate to speech. Since this research was 
intended mainly to study the effects of eliminating the windows 

pi(k+ 1) = 	 (2) 
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a(1) 	a(2) 
1 	0 

A= 
	

0 	1 

o 

= [1, 0, 0, ...] 

1 0 	0 
0 0 	0 

G =  

0 	 0 

Q = 
 [ q 0 ... 

o 	

 0 0 

a(p) (4) 
0 
0 

(5) 

(6) 

(7)  

m the speech analysis, a greatly simplified model was adop- 
I. The adoption of this simplified form of equations (1) 
ruld in no way be construed to mean that more elaborate 
xiels could not be trained, but merely that it was deemed more 
propriate to use simple models in a first set of experiments. 
e models used were: 

.1i(k) = A(k)x(k-1) CI31(k) 	 (3a) 

y(k) L.T3(k) 	 (3b) 

iere 	(k) 	[w(k), w(k-1),..., w(0)] and the sequence w(k) 
white Gaussian noise of zero mean and variance q which is 

correlated with all values of x(m), m<k. 

ie Kalman filtering equations btx:ome 

v(k) = y(k) - f_T k1k-1) (8a) 

"(k k) = /((k 1k-1) + M(k)v(k) (8b) 

4(k+ 1k) = Al(k1k) (8c) 

V(k) = T̂ P(Cik-1) (8d) 

M(k) = P(kik-1) 	V-1(k) (8f) 

P(klk) = P(klk-1) - M(k) f_T  PT(klk-1) (8g) 

P(k+ ilk) .v A P(klk) A r  + G Q GT  (8h) 

here 1(i/j) is the best estimate of .2((i) given y(0), y(1),..., 
j); and P(ilj) is the covariance matrix of a(i) given y(0), 
(1),..., y(j). If white observation noise of variance Z were 
'eluded, equation (8d) would merely have a Z added. The last 
rur of these equations are computable off-line. The only 
•airing that needs to be done is for the A matrices, which are 
11 of the same form. It was decided that the values a(1), 
(2),..., a(p) for all L models could be computed by training a 
,th order LPC vector quantizer with L codewords. In this study, 
. was 64 and p was 10. The vector quantizer training was done 

speech produced by one talker speaking roughly 40 seconds of 
ontinuous speech. Twenty millisecond Hamming windows were 
pplied every 10 milliseconds. Vector quantizer training was 
ccomplished using a binary split algorithm. It may seen at 
his point that the use of windows and frames in training is  

counter to the goals of the model. However, since so many 
frames were used in training (40,000), and since such a large 
number of different frame positions were sampled, a highly 
representative set of systems was undoubtedly compiled. 

The recursion of equations (8) were initialized using 

RO 

RI 

R9 

R1 

RO 

R8 

R2 

R1 

R7 

R9 

R8 

RO 

(9) 

where Ri  is the ith autocorrelation lag. 
The variance in equation (2) is linear with respect to the 

signal power, and should be normalized. This was done using a 
second order window on the squared signal whose z-transform was 

1  
(1-0.96107 

The time constant was roughly 10 milliseconds. 
Another issue dealt with how the system should be con-

strained so that it would not "lock on" to a specific model and 
make it difficult to track a change of model. Following [2], we 
set limits on the maximum and minimum values p.(k) could 
achieve. A post-analysis of results, however, showe5 this step 
to be of little consequence in the current system. 

The system described above was implemented and used to 
analyze some continuously spoken sentences. The output of the 
analysis consisted of one 6-bit number for every speech sample 
analyzed (8,000/second). Several observations are worth point-
ing out at this time. First, long runs of the same codeword 
(greater than 10 milliseconds) were usually seen in fairly 
steady-state portions of the speech. However, in transition and 
many consonant regions, codeword runs could be very short (less 
than 2 milliseconds). Second, voiced sounds usually produced a 
string of codewords which were one value for most of of the 
pitch period, and another for the remainder of the period. This 
behavior seems reasonable since periodic input was not put into 
any of the models. Third, speech could be synthesized from the 
strings of codewords by simply inputting noise into equations 
(3) and allowing the filter to change every sample. Although 
poor in quality, this speech was superior to that produced by a 
conventional 6-bit LPC vector quantizer updated every 10 milli-
seconds. 

Hidden Markov Modeling 

In some versions of the hidden Markov model speech recog-
nizers, a vector quantizer codeword every 10 to 30 milliseconds 
is all the recognizer or training procedure sees. The system of 
the current study can supply a recognizer with a codeword every 
speech sample and hopefully eliminate windowing artifacts. 
Unless a method could be formulated which would reduce the 
computational burden by at least an order of magnitude, how-
ever, such an expansion of data would be quite unmanageable. 
Such a method which exploits the fact that codewords often come 
in long bursts will be presented below. 

Notation 

Due to the use at certain symbols in the earlier part of 
this paper, it is necessary to use some non-standard notation 
to avoid confusion. For a discrete state discrete transition 
discrete observation hidden Markov model, we must define: 

(10) 
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= number of states 

Nv = number of possible observations (vectors) = 64 

n 	probability = 	bability the model starts in state i, and 

a2,..., rin]  

T = transition probability matrix, where : 

T.. = probability of transit from state i to state 
j in one trial; i=1,...,n; j=1,...,n. 

B = observation probability matrix where 

boc  = probability of observing codeword k given 
state j 	b.(k). 

0(t) = codeword observed at time t. 

R(t) = observation matrix, consisting of: 

R(t) 	diag[bi(0(t)), b2(0(t)),..., bn(0(t))] 

The transitions were constrained to be left-to-right making T 
upper triangular. 

For a given model M, and observations 0(1), 0(2),..., 
0(F), we define 

= [a 	an(t)] 

ai(t) 	prob[0(1),(X2),...,0(t) / state i at t] 

DT(t) 	[Bi(t),..., 13,1(t)] 

13 i(t) = prob[0(t+1),0(t+2),..., 0(F) / state i at t] 

Pr[0(1),0(2),...,0(F)] = E ai(t)B i(t) 	 (11) 
i=1 

In matrix form 

Pr[0(1),0(2),...,0(F)] = LITR(1) T R(2) ...T R(F)D(F) (12) 

I J(t) EN(1) T B(2)...T R(t) 
	

(13) 

ST(t) = T R(t+ 1) T R(t+ 2)...T R(F) a(F) 	(14) 

In the left-to-right model 

IIT  = [1,0,...,0] and ST(F) = [0,0,...,1] 
	

(15) 

Recognition Stage 

In the recognition stage, the goal is to find which Markov 
model is most likely given the sequence of observations: 0 8= 
[0(1), 0(2), ...Jr. The computation is reduced basically to 
finding prob[0/M] for each model. For this only the set of 
matrix multiplies in equation (12) need to be carried out. 

Throughout this probability calculation, the matrix T 
remains constant. Also, the matrices R(t) are the same for many 
consecutive values of t. Consider now equation (12) decomposed 
as follows: 

Pr[0] El[R(1) T R(2)...R(i) T]. 
	 (16) 

[R(i+ 1) T R(i+2) T...R(j) T]• 

[...][...]...[...T R(F) OM] 

where the sets of matrices within the square brackets corres-
pond to times over which the observations remain constant. The 
products can be evaluated quite efficiently. Consider the par-
tial product 

[R(i + 1) T R(i+ 2) T...R(j) T] 	(17) 

which is equal to 

(18) 

The matrix T is upper triangular and R(j) is diagonal. There-
fore R(j)T is upper triangular. If the diagonal elements of 
R(j)T are distinct, then it can be diagonalized such that: 

ROT = PDP-1  where D is diagonal with its elements the 

same as the diagonal elements of ROT. Therefore: 

	

[ROT]i-i 	 (19) 

Stated in terms of the partial forward probabilities: 

If 0(t+1) = 0(t+2)= = 0(t+m), then 

Ex(t+ m) = ei(t)[T R(m)] m  = n(t+ m) = a (t)PDmP-1 . (20) 

Since the matrix P is comprised of orthonormal eigenvectors, 
its inverse is merely its transpose. Also, since the eigenval-
ues are the diagonal entries in the upper triangular matrix, 
the eigenvectors are obtainable by an efficient recursion. 
Throughout this procedure, as in other hidden Markov model 
based systems, waling must be done to ensure no underflow. 

Training Stage 

For training, we use a variant of the Baum-Welch reesti-
mation procedure. At each iteration, Tij  and bi(k) are 
estimated based on the previous estimates and the observa- 
tions. In summary 

Yii 
T.• 	

yi 
	 (21) 

M 	a.(t)P .(t)  
tE0(t)=k 

5j(k) =  
	

(22) 
F 
I a .(t)13 (t) 
t=1 	J  

1 F-1 
where 7. 	— E a .(t)T..5.((00+ 1))13 0+ 1) 	(23) 

	

i=1 	1 

and yi 
=' 	

(24) 
j=1 

Here IQ  is the expected number of transitions from state i to 
j, and Yi  is the number of transitions out of state i. 

If these equations were used directly, a large computa-
tional burden would exist, since the sequence of observations 
is so long. However, all equations (21) through (24) denote 
are sample averages. We therefore do not need to compute tilt. 
sums over all possible terms, but rather over only a sampling. 
Denote the modified terms by: 

m  and b.m(k) 
J 	• 
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[3] 

( 14 	1 E.111.  
= 	 is.(rt) T.. 5.((0(rt+1)) krt+ 1)) 	(25) 1,1 j 

t=1 

"pm. 	 and 	 (26) 
I 	j=1 " 

"fir 
T..- 	 (27) 

Please note that we are now sampling equation (23) every 
units. Similarly, 

apt) ftirt) 
n, 	t E (0(tr+ 1))=k 

k"( ) =  	(28) 
Fir 

I ak-t) Pi") 
t - 1 

In equation (20) we showed how to compute the values of n(t+ in) 
from cs(t) if 0(t+ 1) = 0(t+2) 	= 0(t+ M). 
In a similar manner, 

[Pt+ 1 Dt+ 1
in 	1 

Pt+ 1 5" ni) 	(29) 

if 0(t+ 1) = 0(t+2) = = 0(t+ m). 

Therefore, the recursions for computing the forward and back-
ward partial probabilities can be performed efficiently. 

ritlun, the computation time is still a few times larger than 
with the standard procdure. 

On so small a data-base as we have been working, conclu-
sions are perhaps hard to draw. The reduction of the error rate 
by a factor of 6.5, however, strongly suggests the new method 
is superior. Although no direct tests were run using continuous 
density observation probabilities, reported improvements over 
discrete observation probabilitiy models are usually by a much 
smaller factor. 
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Experiments 

To evaluate the system, we used a set of isolated nonsense 
words differing only in an interior consonant. We chose this 
task due to the difficulty often encountered in identifying 
such utterances, and also because we felt our overall procedure 
was formulated to solve just such problems. The set of words 
were of the form /a/-C-ill where C represents a consonant, 
including 
These 23 words were spoken twenty times each in two separate 
sessions (one for training, one for testing) by one male 
talker. The utterances were filtered and digitized with 12-bit 
precision at an 8KHz sampling rate. 

In parallel with the development system to be tested, a 
more standard HMM recognition system which accepted as input 6-
bit vector quantizer codewords every 10 milliseconds was 
trained and tested. (This latter system was a highly debugged 
piece of software developed for other purposes over the last 
two years.) In both systems, five state left-to-right models 
were used. 

In the standard system, 46 errors were recorded for 90% 
correct. Twenty-seven of these errors were fricatives being 
confused with other fricatives. In the new system, 7 errors 
were recorded for 98.5% correct over the same data. The errors 
were too few to see a clear trend. 

Discussion 

We have explored one possible method for approximating a 
continuous transition hidden Markov model for speech recogni-
tion. An important component of this method was to allow a 
virtually continuous stream of input to be input to the recog-
nizes. The Kalman filter approach is but one of many methods 
which could be used. We freely admit that we have not at this 
point explored very deeply into the many variations possible in 
the Kalman filter model, however. Although our various simpli-
fications led to increased efficiency in the recognition algo- 
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Abstract 

Traditional hidden Markov model speech recognition is generally based upon a set of 

parameters which are extracted at discrete intevals. Such an analysis necessitates use of a 

discrete-transition hidden Markov model in which the underlying states can change only 

at intervals related to the frame rate of the analysis. The exact locations of the analysis 

windows can influence the front-end outputs. As a result, inconsistent performance 

can often be observed in discriminating words which differ only in short duration cues. 

In the current study, methods are explored which circumvent this framing effect by 

allowing state trasitions to occur at each sample. Efficient methods for implementing 

this strategy are derived, and testing of a variety of procedures using a set of highly 

confusable utterances is reported. Significantly superior performance was demonstrated 

both for quiet and noisy conditions. 

1 



1 Introduction 

Over the past few years, the method of choice for many speech recogni-

tion applications has been on hidden Markov modelling. Steady improvement 

has been reported in such areas as speaker independence, noise handling, 

training and response times, as well as general performance. The first HMM 

based systems modeled speech as a discrete state discrete trial Markov process 

with discrete observations. More recently, models which allow a continuous 

distribution of observations have been presented. Throughout all these mod-

els, however, the assumption remains that sampling the parameterization of 

the speech (e.g., spectral or LPC based parameters) is only necessary every 

10 to 30 milliseconds. When words differ only by a short duration interior 

consonant, however, the exact placement of the analysis windows can have an 

impact on performance. 

The motivation for the current study came from our observations that 

although general performance of a recognizer may not depend highly on the 

exact placement of frames, the detailed error patterns often would. The meth-

ods explored are attempts at eliminating the apparent framing artifacts by, in 

essence, extracting a set of parameters for every sample of the digital speech. 

The recognition algorithm can then be considered a close approximation to 

a continuous transition hidden Markov model. This approach would not be 

feasible were it not for efficient algorithms we have been formulated for this 

specific problem. 

In this paper, we will first discuss the aspects of hidden Markov models 

which are conducive to this strategy and discuss the issues involved in training, 

and recognition. Second we will describe three parameter extraction methods, 

one of which relies on a novel utilization of Kalman filtering, with others two 

involving more classical procedures. Third, we will examine experimental 

results and discuss the conclusion which can be drawn. 
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2 The Hidden Markov Model 

A. Definitions : 

Consider a discrete state discrete transition hidden Markov model for each 

pattern to be recognized. Assume the observations are drawn from a finite 

alphabet of size M , and a new observation is made for every sample of the 

digital speech. This would imply some form of vector quantizer continuously 

outputting a codeword sequence. Although the form and implementation of 

this process will be described in detail in section 3, for all systems considered, 

enough memory existed in the analysis to produce long sequences of the same 

codeword in a segment of an utterance. The importance of this result will 

become apparent below. 

Denote the number of states in a model by n . 

7ri 	= probability the model starts in state i, 

1r2, • • • , irn1 

transition probability matrix, where : 

probability of transition from state i to state j 

in one trial; i, j = 1,2,...,n. 

observation probability matrix where 

bJk = probability of observing codeword k 

given state j. 

codeword observed at time t, 1 < t < F 

observation matrix, consisting of : 

R(t) = diag[bi(0 (t)), • • ,bn(0 (0)] 

For a given model M, and observations 0 (1), 0 (2), . . . , O (F), we define 

aT 
(t) 

ai (t) 
fiT (t)  

pi (t) 

= [al (t), 	, an  (t)] 

= prob[0 (1), 	, 0 ; state i at ti 

= 1131(t) ,  • • • , fln (t) 
= probE0 + 1), 	0 (F); state i at t] 

Then the probability that we observe the sequence from the model is 

PrE0 (1), , 0 (F)] = E ai (t)/3i  (t) 
i=i 

HT = 
A = 
aii  = 

B = 

0(t) = 

R(t) = 

(1) 
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We can rewrite a(t), 13(0, and Eq.(1) in matrix form such that 

Pr [0 (1), , O (F)] = IITR(1)AR (2)A • • • AR (F)f(F) 	(2) 

oiT  (t) = ITTR (1)AR (2) • • • AR (t) 	 (3) 

PT  (t) = AR (t + 1)AR (t + 2) • • •AR (F)/3 (f) 	(4) 

If the model is constrained to the left-to-right, A will be upper triangular. 

If the model demands the system to start in state 1 and end in state n, then 

IIT 	= [1, 0,... ,0] 
(5) #1.  (F) = [0,...,0, 1] 

B. Recognition : 

For a given model, one needs to compute the probability of the observations. 

This can be accomplished, of course, through evaluation of Eq.(2). In our 

system, F is normally such a large number that dirrect evaluation of Eq.(2) 

would require tremendous amount of computation. In order to reduce this 

computational burden, we make use of the fact that usually a long run of 

the same codewords are observed, which makes Eq.(2) several long runs of the 

same matrix multiplications, and the constraint that the model be left-to-right 

which makes A upper-triangular. Let's assume that the codewords at time 

t + 1 through t + m are same. Then the partial product of Eq.(2) for the 

period of time, 

[AR(t + 1)AR (t + 2) • • • AR(t + m)], 

is equal to 

[AR(t + m)]"n 

Since the matrix A is upper-triangular and R(t + m) is diagonal, the prod-

uct, [AR(t+m)]ni is an upper-triangular matrix. The upper-triangular matrix 

has a nice property that it can be diagonalized if the diagonal elements are 

distinct. In our case, if we assume that the diagonal elements of AR(t + m) 

are distinct, it can be diagonalized in such a form that 

AR(t + m) = PDP -1 	 (6) 
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where D is diagonal with its elements same as the diagonal elements of 

AR(t + m), P is a upper-triangular matrix with its diagonal elements equal 

to 1. Therefore, 

[AR(t m)]"` = PD"IP -1 
	

(7) 

And 2(t m) can be computed directly from a(t) without computing in-

termediate La's at t + 1,t + 2, ... , and t + m — 1 , that is, 

z(t + m) = a(t)[AR(t + m)1'n 

= a(t)PD'nP -1 
	 (8) 

It seems that obtaining the matrices, P and P -1 , require time-consuming 

computation, especially when the dimension of the matrix is large. This, how-

ever, is not so in our case. In fact, there exist very efficient ways using the 

property that [AR(t rn)] is upper -triangular. The efficient methods to com- 

pute P and P -1  are shown in Appendix A. 

C. Training Algorithms : 

In the previous section, we have shown an efficient way of computing a' s with-

out computing the intermediate ones when a long run of the same codewords 

are observed. Q's can also be computed in the same way. In this section, two 

different training methods are introduced in which we make use of the same 

method to efficiently carry out the restimation. The first one, denoted as " 

Algorithm 1 ", is strictly based on the Baum-Welch reestimation algorithm, 

while the second one,denoted as " Algorithm 2", is slightly varied version and 

yet performs better. 

1). Algorithm 1 : 

The Baum-Welch reestimation algorithm states that the estimates of and 

b, (v), denoted as and k(v) respectively, are updated at each iteration based 

on the previous estimates as follows : 

(9) 
'Ii 
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ti (v) — 	Er_1 %(t)A; (t) 
EtE0(0=k ai(t)Pi(t) 
	

(10) 

where 
F-1 

=  Iii 	— E cli (t)aii k(o(t +1)))3i (t + 1) 	(11) 
P g=i 

= 	'NJ 	 (12) 
j=1 

Let's consider the computation of 	If O(k + 1) = O(k + 2) = • • • 

O(k + m), then bi  (0(k + 1)) = b i  (0(k + 2)) = • • • = I);  (0(k + m)). Thus the 

partial summation of Eq.(11) for k < t < k+m —1, denoted as "Ai  (k, k+m —1), 

can be written as 
-1 

= —
1

[aii bi  (0(k + 1))] E ai(t)fii(t + 1) 	 (13) 
P 	 t=k 

Computation of Eq. (13) in a straight forward way requires ai(t) and f3i(t+1) to 

be computed at t = k, k+1, ,k+m-1, With a different manipulation, which 

will be shown in the following, this can be avoided and a lot of computation 

can also be saved,especially when m is large. First let's express a(t) and 

/3(t + 1) for k <t<k+m-1 in terms of a(k) and $(k + m) as follows ; 

	

ar (t) = cAT (k)1AR(k + 1)1" 	 (14) 

/3(t + 1) = [AR(k +1)]m -t +k-1 )5(k + 	 (15) 

Then 

	

cei(t),li (t + 1) = Et.-7-1 ig(t),89t + 1)]q 	 (16) 
= Etr1  MAR)" 712(k),O T  (k + m)((AR)m -t+k -1 )T]ii 

where [*]ii denotes i-j component of matrix H and R = R(k+1) for simplicity. 

As shown in the previous section, AR can be decomposed such that AR = 

PDP-1 . Then Eq.(16) can be rewritten as follows; 

Mr-1  ai(t)fij (t + 1) 
= rp-r-l[p-Tpt-hpT sx (k)fiT 

	
(17) 

= [P-T (atrl Dt-kpT ft(k)fiT 	m)P-TDm-t+k-1)PT I..  
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If we let 

_4(k) = P T  a(k) 

(k m) = 	(k m)13-  

then Eq.(17) can be written more neatly such that 

k+m-1 
E ai (t)p i (t + 1) = [13-T  MP T 	 (20) 
t=k 

where 

M = Eti_r_ipt_kpTa(k)oT (k  top-TDm-t+k-i 
. 

= E71-1 Dt-kA(k)(3
T 
 (k + m)Dm - t+k -1  

Now let's consider the computation of M. The i — j th  component of M, Mii , 

can be expressed as 

= Enn-1 drk«,(k) )3; (k + m)dr -t+k-1 

= (k(k)ii i (k + m)) Etn-kt+k-1 dt-kdrit-t+k-1 

Since it was assumed that di  0 di if i j,the summation can be reduced such 

that 

k+m-1 	 cri-dqt 

E  dirk dtrt+ k-1 	d;-d; for i j 

t=k 	 m(di) m-1  for i = j 

Thus 
Id, -dr. 

=ia;  + m) for i 0 j 
Mii = 11 : . 

mdr -1 •54(k)Pi(k + m) for i = j 

In summary, 

m — 1) =1-p[p-TmpT]ii(ai i bi (0(k + 1))) 	(25) 

It is worth to be noted that only the upper triangular portions of M are 

necessary to be computed, since we only need •yii(k„k m —1), for i < j and 

the matrices, P -T and PT, are lower triangular. 

Secondly, let's consider the numerator of Eq.(10) for the reestimation of 

b; (v). Under the same assumption that O(k + 1) = O(k + 2) = • • • = O(k + 

(21) 

(22)  

(23) 

(24) 
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m) = v,the partial summation of the numerator, Ete0(t)=0«i(t)f3i(t), for k + 

1 < t < k + m can be expressed in terms of a(k) and 16(k + m), 

Etqn+i (t)oi (t) — Etm, [2 (t) fiT  (OW 
= [p-T Et.ta i  (Dt-kpT a  (k) f3T (k 

▪ 

 m)p-Trp+m-emTl ii  

Eq.(26) is very similar to Eq.(17), and can be evaluated similarly. In fact, if 

we denote the term in the summation of Eq.(26) as 14, i.e., 
k+m 

Ni E  Dt-kpT g(k)fiT (k 

▪ 

 m)p-Tpk+m-t 

k+1 

It can be observed that M is the product of D and M,i.e., 

= DM 	 (28) 

Hence, once M is obtained to compute ryii (k,k + m — 1), Eq.(22) can be 

computed with only a few more computation as follows; 
k+trs 

E aa(t)/3:7(t) = EP-TDmpTi ji 	 (29) 
t=k+1 

As mentioned earlier, in the partial summations involved for the restima-

tions of aii and bi(v), a's and P's are not required to be computed at ev-

ery time unit. For example, if we consider the assumption given above that 

0(t + 1) = 0(t + 2) = • • • = 0(t + m), only a(k) and p (k + m) are required in 

the partial summations, that is, all the intermediate .a's and IT s do not have 

to be computed, which contributes to the great saving of computation. 

2). Algorithm 2 : 

The algorithm presented here can be considered as the sampling version of 

Baum-Welch restimation algorithm. Unlike the Baum-Welch algorithm, which 

is formulated by Eq.(9) and Eq.(10), in the new algorithm only the samples 

of are used. Eq.(11) can be rewritten as follows; 

P  "Ai = t' (t) 	 (30) 
t= 1 

where 
1 

= —ai(t)diiEsi(0(t +1))131(t + 1) (31) 

(26) 

(27) 
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The restimation equations (9) and (10) can also be written in terms of iii (t) . 

= 	 (32) 
E7.1(Er.--ii (t)) 

bi(v) = EtE0 (E 17i j (t  1)) 	 (33) 
ELI (E7.1 7'i; (t — 1)) 

In the new algorithm, we sample -yii (t) at every kth time unit, and assume 

that it stays same during the sampling interval. In other words, if iii(t) is 

sampled at t = 1, k + 1,2k + 1, ..., then we assume that 

iv (1) 	= 	(2) 	= • • • = 

ryii(k +1) 	= ryij (k + 2) 	= • • • = -ii(2k) 

•-yii (2k + 1) = -yii (2k + 2) 	• • • = 	(3k) 
(34) 

• 

Under this assumption and the assumption that F mk for some integer m, 
Eq.(32) becomes as follows, 

+ 1)  
Qij = 	 (35) 

Ein.1 	(rk + 1) 

which can be seen as the sampled version. This algorithm is not proven 

mathematically to converge, but it has shown experimentally that it not only 

converges but also gives better results than the conventional Baum-Welch al-

gorithm. It•seems that this algorithm has a smoothing property which enables 

the algorithm to find a better local maximum point. 

3 Front-End Analysis 

The approach we are adopting is based on a linear model of speech which is 

time-invariant over short intervals. This is the traditional model often used 

in speech recognition and coding applications. However, we allow for natural 

smooth changes occuring in the system as well as additive uncorrelated noise. 

Our linear model may also have explicit modeling of time-varying system 

parameters. Since many phonemes are characterized by a particular evolution 

in time rather than by steady-state or target spectra, this model is more 

9 



powerful than more traditional ones. In particular our model is : 

1 X(k) = 4(k)X(k — 1) + r(k)w(k) 
(36) 

s(k) = HTX(k) + v(k) 

where the vector X(k) = [x(k)x(k — 1)- • • x(k — p + 1)1T, x(k) is the speech 

without noise, tv(k) the noise input and Ilk) its gain, HT = [1,0, 0, .. • ,0], 

v(k) the additive noise, and 4.(k) characterizes the time-varying vocal-tract 

filter. 

Systems similar to this have been used to model many varied signals aris-

ing in sonar, heart monitoring, aircraft control,etc.. In the linear prediction 

synthesis model 4.(k) remains constant over 10 to 30 millisecond intervals, 

and v(k) is zero. In the LPC analysis model, v(k) is generally assumed to 

be zero so that (I)(k) can be estimated every 10 to 30 milliseconds. Recursive 

linear least square estimation based on our model falls within the general area 

of Kalman filtering, which allows one to efficiently compute the least squares 

estimate of X(k) from the least squares estimate of X(k — 1) and 8(k). The 

property we wish to exploit is that if we have modeled the system correctly, 

the prediction error, c(k), would be white, and it should have a predictable 

ratio of its power to the unfiltered signal's power. If there are L possible 

models from which the observed signals was generated, this idea can be used 

for computing the relative likelihood of each model given the observed signal. 

In the following our front-end process is explained in detail on the Kalman 

filtering process followed by decision making process. 

3.1 Kalman Filtering 

In the Kalman filtering process, we have L distinct competing models, each 

of which has the form, 

X(k) = (I0X(k — 1) + t(k)w(k) 

s(k) = HX(k)+ v(k) 
(37) 
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where 

= 

a(1) 

1 

0 

0 

a(2) 

0 

1 
• • 
• 

0 

— • 

• • • 

•• • 

• • 

a(p) 

0 

0 

0 

H = [100 • • • 0] 

Ev(k) = 0 Ev(k)v(1) = cr:(k)5ki 

Ew(k) = [0, 0, • - • , OJ T  

1 0•• 0 

0 0 •• 0 
Ew (k)w (1) = 

• • Ski 
• 
• 

• 
• 

0 0 — • 0 

g(k) 0 •• • 0 

0 0 •• • 0 
: ' • . : 

0 0 •• • 0 

and a(1), a(2), 	, a(p) are linear prediction coefficients which characterize the 

model. 'This model results in the following time-recursive formula which gives 

the linear least squares estimate of X(k) given s(k -- 1), s(k — 2), , s(0). 

	

c(k) 	(k) — 	— 1) 	 (38) 

	

oRk) 	HP(kik — 1)HT 	(k) 	 (39) 
1 

	

M(k) 	P(klk — 1)11T 	 (40) 
a 

	

t(kik) 	t(kik — 1) + M(k)e(k) 	 (41) 

X(k 1Ik) = 41(14) 	 (42) 

P(kik) = P (kik — 1) — M(k)M T  (k)a: 	(43) 

P (k + 11k) = IP (kik)(1) T  + (k)rT (k) 	 (44) 

where ((k) is the innovations sequence, al(k) the variance of the innovations, 

M(k) the Kalman gain, and P(k1r) the covariance of the estimate error X(k)— 

r(k) 
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SC.(1c1r). The initial condition is given as follows; 

)ACT (010) = [8(0)4(-1) • • - s(—p + 1)] 
(45) 

P(010) = cr2 (0)I 

With the innovations sequence obtained from each model, a likelihood test 

is performed in a recursive manner. If we denote ei (k) the innovation produced 

by model i at time k and pi(k) the probability that model i generate s(k) , 

then 

N(Ei(k),al(k))p i (k  — 1) 
pi  (k) =  L 	 (46) 

N(ci (k),crli (k))pi (k -- 1) 

where arE (k) is the variance of ei(k) when model is correct, and N(a, b) 

represents the Gaussian density of zero mean with the variance b evaluated at 

a. We then choose the model with the largest p. 

4 Experiments 

Several recognition experiments were performed with clean speech, noisy speech 

of SN.R = 26dB, and of SNR = 20dB. The isolated words used in the ex-

periments are 'break', 'change', 'degree', 'eight', 'eighty', 'enter', 'fifty', 'fix', 

'six', 'go'. Each word has 12 utterances, 6 of which were used for the training 

of HMM's. Each utterance was passsed through Kalman-filtering process with 

3 different level of white Gaussian noises as stated above, which produced 3 

different sets of codewords, one for clean speech, one for the noisy speech of 

SNR = 26dB, and one for the noisy speech of SNR = 20dB. In the Kalman-

filtering process, the variances of the generating noise and the additive noise 

were updated at every 80 samples, and the initail conditions were reset ac-

cordingly at the same time. The filter order was 14 for each of the 64 different 

filters. 

A. With Clean Speech : 2 errors out of 120 = 1.7 1 error from the set used 

for training : 'six' recognized as 'fix' 

1 error from the set not used for training : 'eight' recoginzed as 'eighty' 

B. With Noisy Speech of SNR = 26dB : 8 errors out of 120 = 6.7 0 error 
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from the set used for training 

8 errors from the set not used for trianing : 'eight' recoginized as 

'eighty' (4), 'fix' recognized as 'six' (1), 'six' recognized as 'fix' (3). 

C. With Noisy Speech of SNR = 26dB and Clean Speech : 

i). the recognition of noisy speech : 6 errors out of 120 = 5 0 error from the 

set used for training 

6 errors from the set not used for training : 'eight' recognized as 'eighty' (3), 

'fix' recognized as 'six' (1), 'six' recognized as 'fix' (2) 

ii). the recognition of clean speech : 7 errors out of 120 = 5.8 2 errors from 

the set used for training : 'eight' recognized as 'eighty', and 'six' recognized 

as 'fix' 

5 errors from the set not used for training : 'eight' recognized as 'eighty' (5) 

It is interesting to note that the models trained with both clean and noisy 

speech give higher recognition rate for noisy speech ( compare the results of 

B and C O.) than the ones trained with only noisy speech, while giving 

lower recognition rate for clean speech ( compare the results of A and C 

ii).) than the ones trained with only clean speech. It may be interpreted 

as clean speech giving positive information for the trtaining of noisy speech 

models, and noisy speech giving negative information for the training clean 

speech models. This behavior has been observed in several occasions. More 

comprehensive experiments are to be done with larger vocavulary and various 

SNR's. 
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With these assumptions, good enhancement took place in 2-3 
iterations. It is assumed that in a real-time environment how-
ever, noise spectral estimates could be gathered and updated 
during silent intervals. An important observation which could be 
made from this previous work was that as additional iterations 
were performed, individual formants of the speech decreased in 
bandwidth (see fig.1), resulting in unnatural sounding speech. 
Frame-to-frame pole jitter was also observed which contributed 
to unnatural sounding results. Also, the original technique 
employs no explicit frame-to-frame constraints. Since the origi-
nal algorithm already constrains the speech to be the response 
from an all-pole system, applying further constraints on the 
pole movements may improve the algorithms performance. One set 
of constraints were applied directly to the LPC poles. These 
results were quite encouraging, yet computationally intensive. A 
new approach for implementing the spectral constraints was 
formed by employing the line spectral pair (LSP) transformation 
as a method for representing the vocal tract spectrum. This 
method of specification allowed constraints to be efficiently 
applied to the speech model pole movements across time (inter-
frame) so that formants lay on smooth tracks. In addition, 
constraints could also be easily applied across iterations 
(intra-frame) on a frame-by-frame basis. 

Iterative Speech Enhancement 

Enhancement based on the estimation of all-pole speech 
parameters in additive white Gaussian noise was investigated by 
Lim and Oppenheim [1], and later for a colored noise degradation 
by Hansen and Clements [2]. It was shown that the estimation 
procedures which result in linear equations without background 
noise, become nonlinear when noise is introduced. However by 
allowing a suboptimal procedure, an iterative algorithm results 
which possesses the property that the estimation procedure is 
linear at each iteration. 

Consider the statistical parameter estimation of speech in 
the presence of noise. Over a short-time basis, the speech 
signal can be represented as the following difference equation: 

s(n) = a s(n-1,n-p) + g w(n) 	 (1) 

where 	aT=[a„a2,...,ap] represents the all-pole predictor 
coefficients. Substituting the degraded speech into the speech 
model gives the following equation for the observation vector: 

y(N-1,0) = s(N -1,0) + d(1.-1,0) 	(2) 
Yo  = a y(n-1,n-p) + g w(n) + d(n) - a d(n-1,n-p) 

where s(N-1,0) are N samples of original speech, and d(N-1,0) 
represents the additive background noise. The 2p + 1 unknowns 
indude the predictor coefficients a, initial conditions for the 
predictor given by Si = s(-1,-p), and the gain factor g for the 
input excitation. Consider the case where all unknown 
parameters are random with a priori Gaussian probability density 
functions. The basic procedure used is a maximum a priori (MAP) 
estimator, which maximizes the probability density function of 

A new and improved iterative speech enhancement technique 
based on spectral constraints is presented in this paper. The 
iterative technique, originally formulated by Lim and Oppenheim, 
attempts to solve . for the maximum likelihood estimate of a 
speech waveform in additive white noise. The new approach 
applies inter- and intro frame spectral constraints to ensure 
convergence to reasonable values and hence improve speech 
quality. An extremely efficient technique for applying these 
constraints is in the use of line spectral pair (LSP) coeffi-
cients. The inter-frame constraints ensures more speech-like 
formant trajectories than those found in the unconstrained 
approach. Results from speech degraded by additive white 
Gaussian noise show noticeable quality improvement. 

Introduction 

The successfulness of an enhancement algorithm rests on the 
goals and assumptions used in deriving the approach. Depending 
on the application, a system may be directed at one or more 
objectives such as improving overall quality, increasing intel-
ligibility, reducing listener fatigue, etc. Three assumptions 
normally made include: i) that the noise distortion be additive, 
ii) that only the degraded speech signal is available, and 
that the noise and speech signals are uncorrelated. In general, 
constraints placed on the speech model improve the potential for 
separating speech from background noise. However, such systems 
are also more sensitive to "deviations" from these constraints. 
The degradation considered is additive white Gaussian noise. The 
basis of the technique is an iterative enhancement approach 
based on noncausal Wiener filtering originally formulated by Lim 
and Oppenheim [1]. This approach attempts to solve for the 
maximum likelihood estimate of a speech waveform in additive 
white noise using the constraint that the signal is an all-pole 
process. Crucial to the success of this approach is the accuracy 
of the estimates of the all-pole speech parameters at each 
iteration. One advantage of the Wiener filtering approach is 
that no "musical tone" artifacts are present after processing as 
can be observed in spectral subtraction techniques. In addition, 
under certain conditions, it can be shown that it is the optimal 
solution in the mean-squared sense for a white noise distortion. 
Although successful in a mathematical sense, this technique has 
received little application due to several factors. First, it is 
an iterative scheme with sizable computational requirements as 
opposed to a direct form such as spectral subtraction. Second, 
although the original sequential MAP estimation technique was 
shown to increase the joint likelihood of the speech waveform 
and all-pole parameters, heuristic convergence criteria had to 
be employed. After an extensive investigation [2], this approach 
was found to produce significant levels of enhancement for white 
Gaussian noise in 3-4 iterations. The technique was generalized 
to allow for colored aircraft noise. Various spectral estimation 
techniques where employed for securing estimates of the colored 
background noise and although the noise was not stationary, 
estimates were performed prior to application of the algorithm. 

6.7.1 
CH2396-0/87/0000-0189 $1.00 0 1987 IEEE 

	
189 



the parameters given the observations. Therefore, a,g,Si are 
chosen to maximize the probability density function 
p(a,g,SilY0). The procedure requires that a be chosen to 
maximize P(alYo), noting that the estimate is conditioned on the 
noisy observations Yo. Using Bayes' rule, p(alY0) can be written 
as a product of terms involving p(Yola,g,S1). When the Gaussian 
density function p(Yola,g,Si) is expanded, it can be shown that 
the mean and variance are functions of the predictor 
coefficients a. Therefore the resulting equations for maximizing 
p(alY0) are nonlinear, involving partial derivatives with 
respect to a. Lim and Oppenheim considered a suboptimal solution 
employing a two step approach based on MAP estimation of S o 

 given Yo , followed by MAP estimation of a given A o,where So  is 
the result of the first estimation. Observations indicate that 
this algorithm converges to a local maximum of the joint density 
p(a,SalYoZ,Si). In particular, if the probability density 
function is unimodal, and the initial estimate for a is such 
that the local maximum equals the global maximum, then the 
procedure is equivalent to the joint MAP estimate of a and S o. 
After some simplification, the MAP estimation of S o, based on 
maximizing the probability density function p(Sola,,Y0) which is 
jointly Gaussian in Y o, is equivalent to a minimum mean squared 
error (MMSE) estimate of S o. Therefore as the observation window 
increases in length, the procedure for obtaining a MMSE estimate 
of s(n) approaches a noncausal Wiener filter. With this, the 
implementation of the algorithm is presented in Figure 2. This 
approach can also be extended to the colored noise case as 
shown. As indicated, the background noise spectral density must 
be estimated during non-speech activity. 

	

a) Distorted Original (b) 2 Iterations 	(c) 4 Iterations 	(d) 8 Iterations 

Figure 1: Variation in vocal tract response across iterations. 

As indicated, the sequential MAP estimation technique 
increases the joint likelihood of the speech waveform and all-
pole parameters, yet a heuristic convergence criterion had to be 
employed. Also, as additional iterations were performed, 
individual formants of the speech decrease in bandwidth as 
indicated in figure 1. Frame-to-frame pole jitter was also 
observed. Both effects contributed to unnatural sounding speech. 
The goal, therefore is to impose constraints on the pole move-
ments across time (inter-frame) and iterations (intra-frame). An 
initial approach was to limit the poles from moving too close to 
the unit circle by performing an off-axis spectral evaluation 
where the z-transform is evaluated on a circle further away from 
the poles of the spectral model. Other approaches considered 
included applying constraints directly to the pole radii and/or 
angular displacements in the LPC model. Performance of such 
inter and intra-frame constraints lead to encouraging results, 
but at the expense of a pth order root-solve and a pole ordering 
step per frame for each iteration. Since root solving is not 
always numerically accurate and ordering can be inconsistent 
across frames, a more robust approach was sought to implement 
these constraints. Previous success of the line spectral pair 
(ISP) transformation in speech coding by Crosmer [3], led to the 
use of LSP's for this purpose. 

Line Spectral Pair Representation of Spectral Characteristics 

The LSP transformation may be viewed as an alternative 
representation of the LPC spectrum. The LSP coefficients are 
obtained from the LPC prediction coefficients by combining the 
forward and backward predictor polynomials as follows: 

	

P(z) A(z) + B(z), 	Q(z) A(z) - B(z). 	(3)  

The vocal tract transfer function is given by g/A(z), and M is 
the order of the LPC speech model. The resulting polynomials 
P(z) and 0(z), are symmetric and antisymmetric, respectively, 
with a root of P(z) at z= +1, and a root of Q(z) at z=-1. The 
remainder of the roots of P and Q all lie on the unit circle. 
Since the roots occur in conjugate pairs, the original 
polynomial can be represented by M real numbers. The angles of 
the roots, {eh, are called the line spectrum pairs. 

The LSP's possess several important properties which make 
them attractive for use in applying spectral constraints. One 
important characteristic is that if the vocal tract polynomial 
A(z) has all its roots inside the unit circle (i.e., a stable 
filter), then the roots of P and Q will be interleaved around 
the unit circle [3]. If two adjacent LSP frequencies are identi-
cal, it indicates that a root of A(z) lies on the unit circle. 

In addition to their attractive representation of the LPC 
spectrum, the LSP coefficients offer the possibility of a more 
direct representation of perceptually important information. 
Specifically, their is a firm statistical relationship between 
the locations and bandwidths of the speech formants and the 
locations of the roots of P and Q respectively. Since roots of 
the P polynomial correspond approximately to locations of for-
mant center frequencies (when a formant is present), the P 
polynomials' LSP coefficients are termed position coefficients. 
It can be shown that the closer two LSP coefficients are 
together, the narrower the bandwidth of the corresponding pole 
of the vocal tract filter. Therefore, formants are indicated 
when two LSP coefficients are close together. When LSP coeffi-
cients are far apart, they indicate poles which contribute only 
to the overall spectral shape. Because of their relationship to 
the presence or absence of a formant by their nearness to a 
position coefficient, the coefficients of Q are termed 
difference coefficients. Given the LSP coefficients, the 
position coefficients are simply the odd index ISP coefficients, 
{pi= The difference coefficients are given 
as follows: 

{I di I 	MEN ( I ula+i - com I ), 	1,2,...,m14 (4) 
j --1,1 

where the sign of di is positive if (u m  is closer to 	and 
otherwise is negative. With this interpretation, a new enhance-
ment technique based on Wiener filtering is now possible by 
imposing constraints on the LSP coefficients. 

Step 1: Estimate at  from S. 
the either: i. first P values as tif initial condition vector 

or: u. always assume Si w 0 . 

Step 2: I. Using iy, estimate the speech spectrum: 
2 

Ps(w) -1- 

Il - 1 at  e36)  1 2  
1,1 

U. Calculate gain term using Patsevat's theorem. 
W. Estimate either the degrading 

a.) white noise variance al or b.) colored noise spectrum PD(w) 
from a period of silence closest to the utterance. 

iv. Construct the noncausal Wiener filter; 
Ps(w) 	 Ps(w) 

a.) H(w) 	 b.) H(w) 	PAO + Pike) 
v. Filter the estimated speech f, to produce h i". 
vi. Repeat until some specified error criterion is satisfied. 

se<vintratoup. 

Figure 2: Enhancement Algorithm based on All-pole modeling/Wiener 
filtering. a) a AWGN distortion b) a non-white distortion 

Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in 
the presence of noise, where all unknown parameters are random 
with a priori Gaussian probability density functions. It can be 
shown that MAP estimation of a, g, and Si given the noisy 
observations Yo, results in a set of nonlinear equations. There-
fore, instead of joint estimation of a and S o, a suboptimal 
solution is formulated employing a two step approach based on 
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MAP estimation of So  given Yo , followed by MAP estimation of • 
given So, where So  is the result of the first estimation. Since 
speech can be considered short-time stationary, frame-to-frame 
spectral constraints may aid in enhancement. The new approach 
imposes such constraints on the vocal tract spectrum between MAP 
estimation steps. The procedure for obtaining the MAP estimate 
of a from MAX p(alSo;g,Sii) remains the same. The next step is to 
apply spectral constraints to 	which will ensure that; i) the 
all-pole speech model is stable, 	it possess speech-like 
characteristics (i.e., poles are not too close to the unit 
circle causing narrow bandwidths), and the vocal tract 
characteristics do not vary wildly from frame-to-frame when 
speech is present. Due to this constrained approach, an improved 
estimate di  results. Given this new estimate, the second MAP 
estimation of So  given y can be carried out by maximizing 
p(Soli„Yo;g,Sj)• Since p(Solai ,Y0;g,S0 is still jointly 
Gaussian in Yo, the resulting MAP estimate is equivalent to a 
MMSE estimate of So. Again, in the limiting case, the procedure 
for obtaining the MMSE estimate of s(n) approaches a noncausal 
Wiener filter. Once this new estimate of Sou is formed, the 
iterative procedure continues by re-estimating applying 
constraints to 1,, and then forming the noncausal filter using 
k to re-estimate So  •. This continues until some convergence 
criterion is satisfied. The procedure for implementing these 
constraints will now be addressed. 

Two classes of spectral constraints are considered; inter-
frame (across time), and intra-frame (across iterations). Two 
approaches are considered: a fixed frame rate, and a variable 
frame rate approach. In the first of these, the LPC predictor 
coefficients, a, are first converted to LSP position and 
difference coefficients. Next, each frame's energy is observed, 
and if it is above some threshold, it is classified as voiced 
speech; if it is below, then it is either noise or unvoiced 
speech. A local running count Li, is kept for the number of 
consecutive frames which fall below the energy threshold. If L I 

 reaches Lax, then all subsequent frames below the threshold are 
classified as noise. This allows for further smoothing for long 
periods of silence. The position coefficients for each frame are 
smoothed using a weighted triangular window with a variable base 
of support (1 to 5 frames). If a frame has been classified as 
noise, maximum smoothing is performed. In addition, the lower 
Torment frequencies are smoothed over a narrower triangle width 
than for those position coefficients at higher frequencies. This 
preserves perceptually important speech characteristics found in 
the lower torments. No smoothing is performed on the difference 
coefficients since they are more closely related to torment 
bandwidth than formant location. However, it is possible that a 
difference coefficient falls within a "forbidden zone," (i.e., 
the region within d i,mr  of a position coefficient). When this 
occurs, the LPC analysis has most likely overestimated the Q of 
a particular pole. Since this causes unnatural sounding speech, 
(as in the unconstrained approach), the value of ky is set to 
dam. Finally, the position and difference coefficients are 
combined to form the constrained LPC predictor coefficients 

The second inter-frame constraint approach considered is a 
variable frame rate technique which takes advantage of the 
interpolation properties of the LSP coefficients. The speech 
signal is first divided into segments, where segments are chosen 
such that they are long when the speech spectrum is varying 
slowly and short when the speech spectrum is varying quickly. 
The LSP coefficients are reconstructed with linear interpolation 
used to compute the coefficients for intermediate frames. 

The segmentation algorithm begins with a step to determine 
the onset/offset of speech. This is carried out by thresholding 
the LPC residual energy, which produces relatively long seg-
ments. Next, the long segments are subdivided based on the 
curvature of the position coefficients. This is performed by 
computing a gain-normalized Itakura-Saito measure of the spec-
tral distance between the frequency response of two adjacent 
frames. The procedure continues by computing the distortion of  

position coefficients for successively longer segments until the 
distortion exceeds a threshold TD. At that point, a subsegment 
boundary is set, with the intermediate position coefficients 
reconstructed via linear interpolation. During this step, the 
length of a subsegment is also limited to LmAx  to prevent 
excessively long segments which might contribute to muffled or 
unnatural sounding speech. The advantage of this approach is 
that it incorporates more information from adjacent frames when 
the spectrum indicates similar characteristics. Yet, it also 
reduces the effects of adjacent frames when the spectrum is 
significantly different as in the case of a transition from 
unvoiced passages to noise. This in effect, distorts the 
position coefficients as little as possible when associated 
difference coefficients indicate the presence of formants. 
Difference coefficients for each frame, (or an average set 
across a segment) are used to compute the predictor coefficients 
11 . The difference coefficients are required to be at least d ko,, 
or greater in distance from adjacent position coefficients to 
ensure that poles from the LPC filter do not move too close to 
the unit circle. 

Inter-frame constraints are applied to a single frame 
across iterations, and as such require the frames' previous 
estimates to be available. The motivation for such constraints 
is that under certain conditions, pole locations for the same 
frame vary significantly from their previous estimated values. 
Since the present estimate of affects the next estimate of 
So j , sections of Si,. will also vary significantly across itera-
tions. In addition, ' previous results based on objective speech 
quality measures indicated that the unconstrained approach 
produced minimum objective measures at different iterations for 
different classes of speech. For example, maximum overall speech 
quality was observed for additive white Gaussian noise in three 
iterations. This was also true for vowels and fricatives. 
However, glides required two iterations, nasals, liquids, and 
affricates between five and six. It is therefore desirable to be 
able to affect the convergence rate so that the best objective 
measure of quality occurs at the same iteration across all 
classes of speech. Improved quality as measured by objective 
measures may also result in improved estimation of B r. By 
constraining the vocal tract filter to be a function of its 
previous estimates, it may be possible to accomplish this. Two 
approaches are considered, one applied to the autocorrelation 
lags, the other to the position coefficients. The first approach 
simply weights the present set of autocorrelation lags with the 
same frame from previous iterations. This technique is very easy 
to perform, since the autocorrelation lags must be computed in 
order to estimate the predictor coefficients a. The second 
approach weights position coefficients with those from the same 
frame but previous iteration. If the corresponding difference 
coefficient indicates the adjacent position coefficient to 
represent a foment, this approach has the effect of 
constraining the Iformants to lie along smooth tracks across 
iterations. 

Results 

Speech degraded by additive white Gaussian noise was 
processed using various configurations of the new constrained 
enhancement algorithm. Energy thresholds for inter-frame 
constraints were obtained from frame energy histograms at each 
signal-to-noise ratio. Excellent enhancement resulted for a wide 
range of threshold values. Intra-frame constraints were applied 
across two to three iterations. Informal listening tests 
indicated noticeable quality improvement, although no intelligi-
bility testing has been performed. However, there has been 
extensive work carried out in the area of objective speech 
quality measures [4]. Good correlation has. been shown to exist 
between subjective quality and objective measures. Therefore, 
objective measures including: the Itakura-Saito likelihood 
ratio, log area ratio, and weighted spectral slope measure where 
used for evaluation. Figure 3 illustrates a comparison of 
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-5 

-4 

• -1 

typical results for the various constraint approaches. Itakura-
Saito measure is plotted versus signal-to-noise ratio for a 
white noise distortion. Plot a represents the original distorted 
speech. Plots b through e represent combinations of inter-frame 
constraints (both fixed and variable rate), and intra-frame 
constraints (applied to position coefficients/autocorrelation 
lags). All configurations examined showed significant 
improvement in Itakura-Saito measures. Threshold settings for 
the variable frame rate inter-frame constraint were somewhat 
sensitive to varying noise levels. However, the fixed frame 
approach by itself, and with either autocorrelation or position 
intra-frame constraints gave impressive results with little 
sensitivity to varying levels of SNR. In order to determine a 
limit on the level of enhancement, the original undistorted 
predictor coefficients a were used in the unconstrained 
algorithm. In essence, the two step MAP estimation approach is 
now reduced to a single MAP estimate of S o, and therefore 
represents the theoretical limit for enhancement using Wiener 
filtering. Plot f indicates this limit. Although only Itakura-
Saito measures are shown, similar improvement was also observed 
for log area ratios and weighted spectral slope measures. Figure 
4 compares the new approach to existing techniques. Plot b shows 
results from spectral subtraction as formulated by Boll [5]. An 
evaluation was performed for both half and full-wave 
rectification, along with one to five frames of magnitude 
averaging; where these points represent the best results. Plot c 
is from the unconstrained Wiener filtering technique. Plots d 
and e are typical values for the inter-frame constraint (fixed 
frame rate), and inter plus intra-frame constraints (fixed frame 
and autocorrelation lags). Again I  indicates the limit for the 
Wiener filtering approaches. 

Squad 

Type 
Itakura-Saito Likelihood Measure 

Original I Lim-Oppenheim Hansen-Clements True LPC 
Silence 1.634 1.649 0.842 0.319 
Vowel 4.020 3.299 1.651 0.582 
Nasal 19.814 17.656 3.968 0.324 
Stop 7.261 3.979 1.099 0.435 

Fricative 3.739 3.509 1.766 0.649 
Glide 1.525 1.442 1.131 0.705 
Liquid 9.597 4.545 0.998 0.303 

Affricate 3.924 2.702 2.229 0.323 
Voiced + Unvoiced 5.838 4.293 1.761 0.519 

Total 4.022 3.151 1.364 0.433 
SNR=+5.18 

Table 1: Comparison of algorithms over sound types for white Gaussian noise. 

Itakura-Saito Likelihood Measure 

I 	 I 
0 	 

-5.0 	0.0 	5.0 	10.0 
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Figure 3: Comparison of constraint algorithms over SNR. 
a.) Original Distorted Speech 
b.) Inter-Frame Constraint: Variable Frame 
c.) Inter-Frame Constraint: Fixed Frame 
d.) Inter & Infra-Frame Constraints: Fixed Frame, Position 
e.) Inter & 1=3-Frame Constraints: Fixed Frame, Autocorrelation 
1.) Theoretical limit: using undistorted LPC coefficients, a. 

Performance evaluation over sound classes was accomplished 
by hand partitioning speech into segments. Entire sentences were 
processed, and objective measures from each class were computed. 
Table 1 summarizes this comparison between the unconstrained 
Lim-Oppenheim technique to that of the inter and intra-frame 
constraint approach. Measures for the theoretical limit using 
undistorted LPC predictor coefficients a are also indicated. 
Improvement is indicated for all types of speech. In addition, 
the constrained approach produced superior objective measures of 
quality across all speech classes at the same iteration. These 
results dearly indicate improvement over the unconstrained 
approach as well as spectral subtraction for additive white 
Gaussian noise. 

Conclusions 

The application of spectral constraints to noncausal Wiener 
filtering results in improved speech enhancement. Informal 
listening tests along with objective measures such as Itakura-
Saito and log-area-ratio's show improvement over the 
unconstrained technique. By using the Line Spectral Pair 
transformation, a modest increase in computational requirements 
results in significant improvement in speech quality. This 
approach to pole movement constraints is quite robust over 
direct methods applied to pole radial/angular movements. 
Finally, this approach may be useful in enhancement for human 
listeners as well as a preprocessor for speech recognition. 
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Figure 4: Comparison of enhancement algorithms over SNR. 
a.) Original Distorted Speech 
b.) Boll: Spectral Subtraction, using magnitude averaging 
c.) Lim-Oppenheim: Unconstrained Wiener filtering 
d.) Hansen-Clements: employing Inter-Frame constraints 
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1 Abstract 

A set of iterative speech enhancement techniques employing spec-
tral constraints is extended and evaluated in this paper. The orig-
inal unconstrained technique attempts to solve for the maximum 
likelihood estimate of a speech waveform in additive noise. The new 
approaches (presented in ICASSP-87 [3]), apply inter- and intra-
frame spectral constraints to ensure optimum speech quality across 
all classes of speech. Constraints are applied based on the presence 
of perceptually important speech characteristics found during the 
enhancement procedure. Previous results show improvement over 
past techniques for additive white noise distortions. Three points 

are addressed in the present study. First, a convenient and con-
sistent terminating point for the iterative technique is presented 
which was previously unavailable. Second, the techniques have 
been generalized to allow for slowly varying, colored noise. And 
finally, a comparative evaluation was performed to determine their 
usefulness as preprocessors for recognition in extremely noisy en-
vironments in the vicinity of 0 dB SNR. 

2 Introduction 

The general problem of automatic speech recognition is one which 
requires several alternatives to be specified prior to formulation of 
a solution. The type of speech, restrictions on speakers, vocabulary 
size, and environment all ultimately affect recognition performance. 
The specific problem of limited vocabulary, speaker dependent, iso-
lated word recognition has to varying degrees been solved. In the 
past, approaches such as dynamic time warping or hidden Markov 
modeling have largely been applied in tranquil environments. Stud-
ies have shown that recognition accuracy is severely reduced when 
speech is uttered in noisy, stressful environments. One alternative 
is to reformulate previous approaches to the recognition problem 
assuming a noisy environment. Unfortunately, many systems are 
LPC based which, from research in speech erillionrewn.rit  and cod-
ing are known to deteriorate rapidly in noise. Another alternative, 
which would be beneficial for recognition as well as speech trans-
mission systems is to develop robust enhancement preprocessors. 
Such preprocessors would produce speech or recognition features 
which are less sensitive to background noise so that existing recog-
nition systems may be employed. 

The set of speech enhancement algorithms under consideration 
were previously developed for improving both speech quality and 
all-pole speech parameter estimation [3,4]. The basis of these al-
gorithms is to form a maximum likelihood estimate of the speech 
waveform in additive noise with the constraint that the signal be 
an all-pole process. In section 3, a review of the constrained tech-
niques is presented. A comparative evaluation is presented in sec- 

tion 4 which include; additive white Gaussian noise, and slowly 
varying colored aircraft interior noise. Finally, the enhancement 
algorithms are evaluated to determine their ability as preproces-
sors for automatic recognition in extremely noisy environments. 

3 Iterative Speech Enhancement 

The success of a speech enhancement algorithm is dependent on 
the objectives made in deriving an approach. Assumptions made 
in this environment include: i) the noise distortion is additive, 
ii) only the degraded speech signal is available, and iii) the noise 
and speech signals are uncorrelated. The basis of the original un-
constrained iterative enhancement approach is noncausal Wiener 
filtering [5]. This approach attempts to solve for the maximum like-
lihood estimate of a speech waveform in additive white Gaussian 
noise with the requirement that the signal be the response from 
an all-pole process. Crucial to the success of this approach is the 
accuracy of the estimates of the all-pole parameters at each itera-
tion. The algorithm is formulated by considering the case where all 
unknowns (all-pole speech parameters d, noise free speech S0) are 
random with a priori Gaussian probability density functions. The 
basic procedure used is a maximum a posteriori (MAP) estimator, 
which maximizes the probability density function of the unknown 
parameters given the noisy observations. After some simplification, 
it can be shown that the resulting equations for the joint MAP es-
timate of 11 and So become nonlinear, involving partial derivatives 
with respect to 5. Lim and Oppenheim considered a suboptimal 
solution employing a sequential two step approach based on MAP 
estimation of So followed by MAP estimation of a. given So,;, 

where a 0,1 is the result of the first estimation. This sequential es-
timation procedure is linear at each iteration, and continues until 
some convergence criterion is satisfied. After further simplifying 
assumptions, it can be shown that the MAP estimation of So is 
equivalent to a minimum mean squared error (MMSE) estimate. 
In addition, as the observation window increases, the procedure for 
obtaining a MMSE estimate approaches a noncausal Wiener filter. 

Although successful in a mathematical sense, this technique has 
received little application due to several factors. First, the scheme 
is iterative with sizable computational requirements. Second and 
most important, is that although the original sequential MAP esti-
mation technique was shown to increase the joint likelihood of the 
speech waveform and all-pole parameters, a heuristic convergence 
criterion had to be employed. This is a serious drawback if the ap-
proach is to be used in environments requiring automatic speech en-
hancement. After an extensive investigation [1], this approach was 
found to produce significant levels of enhancement for white Gaus-
sian noise in 3-4 iterations. Some interesting anomalies were noted 
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which helped motivate development of the constrained approaches. 
First, as additional iterations were performed, individual formants 
of the speech decreased in bandwidth and shifted in location. Sec-
ond, frame to frame pole jitter was observed across time. Both 
effects contributed to unnatural sounding speech. The goal there-
fore was to formulate a new set of enhancement algorithms which 
impose constraints on pole locations across time (inter-frame) and 
iterations (intra-frame). Spectral constraints are applied to the all-
pole parameters I; which ensure that; i) the all-pole speech model 
is stable, it possess speech-like characteristics (e.g., poles are 
not too close to the unit circle causing narrow bandwidths), and 
iii) the vocal tract characteristics do not vary wildly from frame 
to frame when speech is present. Due to the constraints imposed, 
improved estimates of result. Given this new estimate, the sec-
ond MAP estimation of So can be carried out. In order to increase 
numerical accuracy, reduce computational requirements, and elimi-
nate inconsistencies in pole ordering across frames, the line spectral 
pair (LSP) transformation was used to implement most of the con-
straint requirements. Figure 1 illustrates the framework for the 
constrained enhancement algorithms. 

Figure 1: Framework for the constrained iterative enhance-
ment algorithms. 

4 Evaluation 

Speech degraded by additive noise was processed using various 
configurations of the constrained algorithms. Enhancement al-
gorithms evaluated include: algorithms incorporating inter-frame 
constraints applied on a fixed-frame (FF-LSP:T) or variable-frame 
(VF-LSP:T) basis to the LSP coefficients, algorithms incorporat-
ing intra-frame constraints applied to autocorrelation coefficients 
(Auto:I) or LSP coefficients (LSP:I), along with combinations (FF-
LSP:T,Auto:I), (FF-LSP:T,LSP:I), (VF-LSP:T,LSP:I). In the eval-
uation, global estimates of SNR were employed since the assump-
tion of accurate local estimates is normally unrealistic in actual en-
hancement environments. Also, energy thresholds for inter-frame 
constraints were obtained from frame energy histograms at each 
SNR. In this study, the primary tool for quantitative enhancement 

evaluation has been objective quality measures. This is based on 
extensive work carried out in the formulation of objective speech 
quality measures [6], and the application of these measures to en-
hancement [2]. Fair to good correlation has been shown to exist 
between subjective and objective quality measures. 
Evaluation Using Additive White Gaussian Noise 

As previously reported, the constrained enhancement algorithms 
have been shown to significantly improve speech quality over such 
past techniques as the unconstrained Lim-Oppenheim technique 
as well as spectral subtraction with magnitude averaging [3]). Al-
though significant improvement was noted, it was possible the algo- 
rithms were improving one or two particular speech classes which 
had high concentrations over the speech considered. Therefore, a 
comparative evaluation over speech sound classes was performed. 
Improvement over all classes of speech was reported. 

As mentioned, the iterative enhancement algorithms must be 
suspended at some iteration. In order to determine a terminat-
ing iteration, a criterion must be selected to evaluate levels of im-
provement as the iterative scheme progresses. The criterion chosen 
is based on objective speech quality measures. Such measures are 
formed by a weighted comparison of actual and resulting estimated 
LPC predictor coefficients found during enhancement. The obvi-
ous problem with such a criterion is that, outside of simulation, 
the actual speech is unknown during the procedure. If, however, 
simulations were to show a consistent value for the beat iteration 

in terms of this criterion, a convenient stopping condition would 
exist. Previous results based on objective quality measures indi-
cate the unconstrained approach to produce maximum objective 
quality at different iterations for different classes of speech. Ta-
ble 1 illustrates this behavior over the indicated sound classes. As 

this table shows, maximum overall speech quality is obtained at 
the third iteration, with considerable variation across sound types. 
For example, glides required two iterations, with nasals, liquids, 
and affricates requiring between five and six. Therefore, depend-
ing on sound class concentration, the optimal iteration (in terms of 
minimum distance) would vary considerably. This result indicates 
the inability to determine in advance a terminating iteration for 
the unconstrained approach since it is highly dependent on sound 
class and to a lesser degree on SNR. 

The new constrained enhancement algorithms appear to solve 
this problem of sound class dependency. Table 2 presents results 
from an equivalent evaluation for one of the constrained enhance-
ment algorithms (FF-LSP:T,Auto:I). A comparison between ta-
bles 1 and 2 show that the constrained approach produces superior 
quality measures across all speech classes at the same iteration. 
This improvement surpasses even combined individual maximum 
quality measures found across the unconstrained approach. Thus, 
the constrained enhancement algorithm does more than simply 
impose a constraint to adjust the rate of improvement: the con-
strained approaches consistently result in superior objective speech 
quality at the same iteration over all sound classes, independent of 
SNR. Table 3 summarizes optimum terminating points in terms 
of objective quality for the enhancement algorithms. Techniques 
employing only inter-frame constraints consistently resulted (93% 
occurrence) in maximum quality at the third iteration. Techniques 
employing inter- and intra-frame constraints had a 97% occurrence 
of maximum quality at the seventh iteration. In addition, adjacent 
iterations differ only slightly in objective quality for the constrained 
techniques. This is in sharp contrast to the large variations in ad- 
jacent iterations for the unconstrained technique. Therefore, Lithe 
iterative scheme were allowed to continue or halted one iteration 
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Figure 2: Comparison of inter & intra-frame constrained en- 
hancement algorithms for colored aircraft noise over SNR. 

a.) Original Distorted Speech 

b.) Lim-Oppenheim: Unconstrained Wiener filtering 

e.) Hansen-Clements: employing Inter-Frame constraints 

d.) Hansen-Clements: employing Inter & Intra4rame constraints 

e.) Theoretical limit: using undistorted LPC coefficients a. 

0 
riTt 

to 

Irior to optimal, only minor differences in speech quality would 
esult. The results consistently suggested that the constrained en-
iancement algorithms reach a maximum level of speech quality at 
he same iteration, independent of SNR and sound class concen-
rations. 

Bound 
nffe 

Bokura-Saito like ikood Mennen (arose ttershone) 

ICI=IFIL 03 I 	#3  I #4 	#5 	#6  # 7  
Silence 1.63 1.82 41.61 1.65 1.93 3.76 20.36 49.88 

Veen' 4.02 3.72 3.45 43.30 3.72 8.33 1213 - 

Nasal 19.81 19.15 18.42 17.06 17.01 16.59 415.19 15.70 

Stop 7.36 6.11 4.93 3.98 43.82 6.89 35.52 29.69 

Fricative 3.74 3.64 3.53 43.51 3.90 7.66 47.83 94.11 

Glide 1.6S 1.41 41.31 1.44 2.33 4.30 8.39 15.56 

Liquid 9.60 8.24 6.55 4.55 2.61 41.68 6.38 30.00 

Affricate 3.92 3.61 3.21 2.70 2.09 41.55 3.91 3.98 

Yoked + Unvoiced 5.84 5.32 4.77 4.29 44.29 7.35 61.87 - 

Total 4.02 3.72 3.40 46335 3.27 5.80 43.48 - 

Cable 1: Lim-Oppenheim unconstrained speech enhance-
neat for AWGN, SNR=+5dB. Optimum perceived quality 
Dr a particular speech class is indicated by a 6. 

Sound 
Type 

itearre•Seito Likelava Mauna (across sten:awns) 
Original #1 #8 #3 #4 #5 #6 #7 #8 

Silence 1.63 1.55 135 1.18 1.03 0.08 0.93 40.88 0.90 

Vowel 4.02 3.32 2.87 2.39 1.86 1.68 1.57 41.56 1.83 

Naeal 19.81 16.49 12.40 10.52 8.68 6.84 4.93 43.79 5.55 

Stop 7.26 6.25 4.84 3.49 3.67 1.81 1.38 41.13 1.43 
Fricative 3.74 3.43 3.03 3.61 3.34 1.95 1.73 41.61 1.84 

Glide 1.53 1.59 1.38 1.23 1.31 1.19 1.16 41.15 1.23 

Liquid 9.60 6.48 3.38 2.24 1.61 1.21 0.94 60.92 1.31 

Affricate 3.92 3.72 3.45 3.12 2.80 2.60 2.47 42.37 3.96 

Voiced + Unvoiced 5.84 4.64 3.66 3.01 2.50 2.13 1.86 41.74 1.95 

Total 4.02 3.03 2.44 2.07 1.80 1.61 1.46 41.38 1.49 

number of spectral estimates across the utterance should improve 
enhancement performance. An analysis was performed for an inter-
frame (FF-LSP:T), and a combined inter and intra-frame (FF-
LSP:T,Auto:I) approach. Informal listening tests indicated notice-
able quality improvement. Figure 2 illustrates results from this 
study. All configurations examined showed significant improve-
ment in Itakura-Saito measures. Plot a shows Itakura-Saito mea-
sures for the original distorted speech. Plot b is from the uncon-
strained Wiener filtering technique. Plots e and d are typical values 
for the inter-frame constraint (FF-LSP:T), and inter- plus intra-
frame constraint (FF-LSP:T, Auto:I) approaches. In order to de-
termine limits on the level of enhancement, the original undistorted 
predictor coefficients were used in the unconstrained algorithm. In 
essence, the two step MAP estimation approach is now reduced to a 
single MAP estimate of So, and therefore represents the theoretical 
limit for enhancement using Wiener filtering. Plot e indicates this 
limit. Although only Itakura-Saito measures are shown, similar 
improvement was observed for log area ratio and weighted spectral 
slope distance measures. As this figure indicates, significant levels 
of enhancement result for the constrained enhancement algorithms. 

These results show that the constraint algorithms outperform 
the unconstrained approach for a colored distortion. However, it is 
possible that the constrained techniques are improving only partic-
ular speech classes which may have high concentrations in the test 
utterances. Therefore, a performance evaluation over sound classes 
was performed by hand partitioning speech into segments, pro - 

'able 2: Hansen-Clements Inter & Intra-frame constrained 
peech enhancement for AWGN, SNR=+5dB. Optimum per-
eived quality for a particular speech class is indicated by a ♦ . 

Conetrained 
&Armament 

Algorithm 

Aida.. Mate Ottumwa Nome SNR 

OVERALL 
-5 dB -0 1 	+5 +10 

Optimal /gentian neap Itakura-Saito Like 'hood Maas 
ker. 	Freq. her. 	Freq. her. Freq. lie.. 	Freq. her. Freq. 

FI•SP:T 	3 	100% 3 
4 

87% 

13% 
3 
4 

87% 
13% 

3 100% 3 
4 

91% 
9% 

• 	 S 	90% 
4 	10% 

3 
4 

85% 
15% 

3 
4 

94% 
6% 

3 100% 3 
4 

93% 
7% 

.F-LSP:T,Auto: 	7 	100% 7 100% 7 100% 7 
6 

so 
12% 

7 
6 

97% 
3% 

1'F.LSP:T,L5PLI IIEMIMI 
VF LSP•T,LSP:1 111=3:01 

4 
4 

100% 4 100% 4 100% 4 100% 
100% 4 100% 4 100% 4 100% 

Table 3: Summary of optimal terminating iteration across SNR for AWGN. 

idditive Non-White, Non-Stationary Noise 

The unconstrained Wiener filtering/all-pole modeling approach 
vas previously generalized for colored aircraft noise [1]. In that 
Ludy, an extensive investigation was performed using various spec-
ral estimation techniques (MEM, MLM, Burg, Bartlett, Pisarenko, 
'eriodogram) for securing estimates of colored background noise, 
Jong with varying SNR (-20dB to +20dB). Results indicated that 
3artlett's method produced spectral estimates which resulted in 
tighest quality improvement for this particular distortion. 

Noise recorded from a Lockheed C130 aircraft interior was used 
°degrade noise free utterances. For these simulations, two Bartlett 
rpectral estimates found from the original noise waveform (to avoid 
umplications in silence detection) were used across each sentence. 
fhe noise was both colored and non-stationary, so increasing the 

563 



ing entire sentences, and computing objective measures from each 
class. Table 4 summarizes this comparison between the uncon-
strained technique to that of the inter- and intra-frame constraint 
approach (FF-LSP:T,Autol). Measures for the theoretical limit 
using undistorted LPC coefficients are also indicated. It should be 
noted that voiced plus unvoiced measures give a better indication 
of quality improvement due to the time varying nature of the inter-
fering background noise. Improvement is indicated for all types of 
speech. This shows that the constrained techniques are enhancing 
all aspect. of the speech signal. 

Sound 

TYPe 

Basra-Saito Lskeishood Aleanri 
Orirmai Vm.Oppenkeirn Hansen-Clemente Tess LPC 

Silence 6.63 6.33 4.32 2.03 

Vowel 3.23 2.54 1.44 0.53 

Naomi 4.03 3.26 2.13 0.45 

Stop 1.58 1.29 0.66 0.61 
Fricative 1.37 1.09 0.85 0.65 

Glide 1.14 1.04 0.52 0.51 
Liquid 1.32 0.55 0.22 0.18 

Affricate 0.90 0.51 0.33 0.16 
Voiced + Unvoiced 2.27 1.78 1.08 0.52 

Total 4.15 3.86 2.74 1.17 

Table 4: Comparison of unconstrained (Lim-Oppenheim) 
and inter- and intra-frame constrained (Hansen-Clements) 
algorithms over sound types for slowly varying colored noise. 
SNR = +5 dB 

Recognition Evaluation 
A fairly standard, isolated-word, discrete-observation hidden 

Markov model recognition system was used for evaluation. This 
system was LPC based and had no embellishments. In all experi-
ments, a five state, left-to-right model was used. System dictionary 
consisted of twenty highly confusable words used by Texas Instru-
ments and Lincoln Labs to evaluate recognition systems. Subsets 
include (go,oh,rio,hello} and {six,fix}. Twelve examples of each 
word were used, six for training, six for recognition (i.e., all tests 
fully open). A vector quantizer was used to generate a 64 state 
codebook using two minutes of noise free training data. The twenty 
models employed by the HMM recognizer were trained using the 
forward-backward algorithm. Table 5 presents results from five sce-
narios using a noise free codebook and noise free trained system. 
Spectral subtraction preprocessing employed three frames of mag-
nitude averaging. The unconstrained Lim-Oppenheim approach 
was terminated at the third iteration. The constrained Hansen-
Clemente (FF-LSP:T,Auto:I) was terminated at the seventh. As 
these results indicate, recognition was reduced to chance for noisy, 
spectral subtraction, and Lim-Oppenheim (-5,0,5 dB) speech. The 
constrained approach resulted in improved recognition across all 
SNR considered, which is quite remarkably in light of the severe 
levels of noise, and difficulty of dictionary employed. However, re-
liable recognition in such a hostile environment may require more 
than merely extending existing techniques. As a final compari-
son, three tests were performed using noisy and enhanced speech 
(SNR=4-10dB). For the noisy case, speech was coded using a noisy 
codebook, and recognition performed using a noisy trained HMM 
recognizer. Similar tests were performed for two enhancement tech-
niques, (i.e., enhanced words coded using enhanced codebook, and 
tested using enhanced speech trained HMM recognizer). 40% of 
the errors in recognition were caused by misclassification of lead-
ing consonants (especially fricatives). 

Condition 
RECOGNITION RESULTS 

S'gnal-to-Noise Ratio 
(noise free training) Original .5dB °dB 1-5dB 4-10dB 

Noise free 88% 
Noisy 5% 5% 6.7% 5% 

Spectral Subtraction 5.8% 7.1% 5% 5.4% 
Lim- Oppenheim 5.4% 5.8% 7.5% 12.5% 

Hansen-Clements 15% 14% 19.5% 34.5% 
Train 6/ Recognise In Same Environment 

Noise free Noisy t Hansen-Clements t Lom-Oppenheim 
88% 90% 77% 23% 

Table 5: Recognition performance using enhancement preprocessing in AWGN. 
t SNR = +10dB 

5 Conclusions 

The constrained speech enhancement algorithms have been shown 
to improve speech quality across all classes of speech for both ad-
ditive white Gaussian and slowly varying, non-white degradations. 
In addition, a consistent terminating procedure has been identified 
which is independent of sound class concentration and relatively in-
sensitive to varying SNR. Finally, the constrained algorithms have 
shown improvement as a preprocessor for speech recognition, al-
though their ability to bring performance up to an acceptable level 
in SNR's low as those considered is questionable. Though the en-
hancement procedures improved LPC parameter estimation sub-
stantially, LPC-based strategies may simply be inappropriate for 
SNR's of roughly OdB. Further work in this SNR range will require 
as a minimum, different front end processing. 

This work sponsored in , part by U.S. Army Human Engineering Labe. 
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Abstract 

In this paper, an improved form of iterative speech enhancement for single channel inputs 

is formulated. The basis of the procedure is sequential maximum a posteriori estimation 

of the speech waveform and its all-pole parameters as originally formulated by Lim and 

Oppenheim, followed by imposition of constraints upon the sequence of speech spectra. 

The new approaches impose intra- and inter-frame constraints on the input speech signal 

to ensure more speech-like formant trajectories, reduce frame-to-frame pole jitter and 

effectively introduce a relaxation parameter to the iterative scheme. Recently discovered 

properties of the line spectral pair representation of speech allow for an efficient and 

direct procedure for application of many of the constraint requirements. Substantial 

improvement over the unconstrained method has been observed in a variety of domains. 

First, informed listener quality evaluation tests and objective speech quality measures 

demonstrate the technique's effectiveness for additive white Gaussian noise. A consistent 

terminating point for the iterative technique is also shown. Second, the algorithms have 

been generalized and successfully tested for noise which is non-white and slowly varying in 

characteristics. The current systems result in substantially improved speech quality and 

LPC parameter estimation in this context with only a minor increase in computational 

requirements. Third, the algorithms were evaluated with respect to improving automatic 

recognition of speech in the presence of additive noise, and shown to outperform other 

enhancement methods in this application. 



1 Introduction 

The presence of background noise can seriously degrade the performance of many speech 

processing systems, since most digital voice communication and recognition systems have 

traditionally been formulated in noise-free, tranquil environments. There are, however, 

many instances where such systems must perform reliably in noisy environments. As an 

example, consider the use of speech recognition in a noisy aircraft cockpit. It has been 

shown that recognition performance is severely reduced in such an environment due to 

background noise and pilot task requirements [8, 13, 18]. Since commonly used front-

ends do not usually take noise into account explicitly, recognition deteriorates rapidly. 

One alternative, which would benefit recognition as well as speech coding systems is to 

develop enhancement preprocessors that produce speech or recognition features less sen-

sitive to background noise, so that existing recognition/communication systems may be 

employed. Such preprocessing systems would also benefit human listeners by improving 

speech characteristics in voice communications systems. 

The problem of enhancing speech degraded by additive background noise covers a 

broad spectrum of applications and issues [12]. A system may be directed at one or 

more objectives such as improving overall quality, increasing intelligibility, or reducing 

listener fatigue. Assumptions made in this investigation include: i) the background 

noise distortion is additive, ii) only the degraded speech signal is available (i.e., single 

microphone environment), and iii) the noise and speech signals are uncorrelated. 

This paper presents an improved method for iterative speech enhancement based on a 

set of vocal tract spectral constraints. The framework of this approach was adopted from 

all-pole modeling/noncausal Wiener filtering as formulated by Lim and Oppenheim [11]. 

The original iterative technique attempts to solve for the maximum a posteriori (MAP) 

estimate of a speech waveform in additive white noise. The improved techniques are for-

mulated using inter- and intra-frame constraints to ensure speech-like characteristics. An 

efficient technique for applying the spectral constraints is based on the line spectral pair 

(LSP) transformation of the LPC parameters. The paper is arranged, as follows. First, 

the iterative unconstrained technique is discussed. Several anomalies are cited which 

1 



motivate formulation of constrained enhancement techniques using the LSP transforma-

tion. Next, algorithm evaluation is performed for additive white Gaussian noise, and a 

slowly varying non-white distortion. Finally, a comparative evaluation is also performed 

to determine their usefulness as preprocessors for recognition in noisy environments. 

2 Iterative Speech Enhancement 

Enhancement based on the estimation of all-pole speech parameters in additive white 

Gaussian noise was investigated by Lim and Oppenheim [1:1], and later for a colored 

noise degradation by Hansen and Clements [3, 4, 6]. This approach attempts to solve for 

the maximum a posteriori estimate of a speech waveform in additive white Gaussian noise 

with the requirement that the signal be the response from an all-pole process. Crucial to 

the success of this approach is the accuracy of the estimates of the all-pole parameters 

at each iteration. After some simplification, it can be shown that the resulting equations 

for the joint MAP estimate of the all-pole speech parameters ci, gain g, and noise free 

speech §0 become nonlinear. Lim and Oppenheim considered a suboptimal solution 

employing sequential MAP estimation of ,§0  followed by MAP estimation of 5, g given 

So,i, where so ,;  is the result of the ith estimation. The sequential estimation procedure is 

linear at each iteration, and must continue until some criterion is satisfied. With further 

simplifying assumptions, it can be shown that MAP estimation of §0 is equivalent to 

noncausal Wiener filtering of the noisy speech 11. Lim and Oppenheim showed this 

technique, under certain conditions, increases the joint likelihood of a and S' 0  with each 

iteration. It can also be shown to be the optimal solution in the mean-squared sense for 

a white noise distortion. 

Although successful in a mathematical sense, this technique has received little appli-

cation due to several factors. First, the scheme is iterative with sizable computational 

requirements. Second and most important, is that although the original sequential MAP 

estimation technique was shown to increase the joint likelihood of the speech waveform 

and all-pole parameters, a heuristic convergence criterion had to be employed. This 

represents a serious drawback if the approach is to be used in environments requiring 
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automatic speech enhancement. Hansen and Clements performed an extensive investiga-

tion of this technique for additive white Gaussian (AWGN), and a generalized version for 

additive non-white, non-stationary aircraft interior noise [3, 4]. Objective speech quality 

measures, which have been shown to be correlated with subjective quality [17], were used 

in the evaluation. This approach was found to produce significant levels of enhancement 

for white Gaussian noise in 3-4 iterations. Improved all-pole parameter estimation was 

also observed in terms of reduced mean squared error. Only if the probability density 

function is unimodal, and the initial estimate fora is such that the local maximum 

equals the global maximum, is the procedure equivalent to the joint MAP estimate of a., 
g and 4). Some interesting anomalies were noted which helped motivate development 

of the constrained approaches. First, as additional iterations were performed, individual 

formants of the speech consistently decreased in bandwidth and shifted in location as 

indicated in Figure 1. Second, frame-to-frame pole jitter was observed across time. Both 

effects contributed to unnatural sounding speech. Third, although the sequential MAP 

estimation technique was shown to increase the joint likelihood of the speech waveform 

and all-pole parameters, a heuristic convergence criterion had to be employed. Lim and 

Oppenheim recognized these limitations and an improved method was formulated by 

Musicus and Lim [15] which addresses some of them. Even with their improvements, 

however, no explicit frame-to-frame constraints are employed. Since the original algo-

rithm already constrains the speech to be the response from an all-pole system, applying 

further constraints on the pole movements imposes no new assumptions on the speech 

or noise, and may improve the algorithm's performance. The imposition of some rela-

tively simple constraints turns out to improve speech quality results, even when directly 

attached to the original Lim-Oppenheim method. 

Enhancement with Spectral Constraints 

Consider the statistical parameter estimation of speech in the presence of noise as 

formulated by Lim and Oppenheim where all unknown parameters over a short interval 

(all-pole speech parameters 5, gain g, and noise free speech §0 ) are random with a priori 

Gaussian probability density functions. It was shown that MAP estimation of a , g, and 

3 



So given noisy observations fo , results in a set of nonlinear equations. Therefore, instead 

of joint estimation of a. and go , a suboptimal solution was formulated employing a two- 

step approach based on MAP estimation of go  given co , followed by MAP estimation of 
. 

, g given So,i, where So,i is the result of the ith estimation. In the currently reported 

work, constraints Ware imposed on the vocal tract spectrum between MAP estimation 

steps. The procedure for obtaining the MAP estimates of a. and g remain the same, as 

that of Lim and Oppenheim. In the current system, constraints are applied to at to ensure 

that, 0 the all-pole speech model is stable, ii) it possesses speech-like characteristics (e.g., 

poles are in reasonable places with respect to each other and the unit circle), and iii) the 

vocal tract characteristics do not vary by more than a prescribed amount from frame to 

frame when speech is present. Given the new estimate ki. 4. 1 , the second MAP estimation 

of go  is performed by maximizing its conditional probability density function given iti+1 

and the observed noisy sequence 31. Since this probability density function is jointly 

Gaussian, the resulting MAP estimate is equivalent to a MMSE estimate of go. With 

further simplifying assumptions, it can be shown that MAP estimation of go  reduces 

to a minimum mean squared error (MMSE) estimate, and as the observation window 

increases, the procedure becomes a noncausal Wiener filter. Once the new estimate of So,i 
is formed, the iterative procedure continues by re-estimating at , applying constraints to ri,j, 

and forming the noncausal filter using to re-estimate go,i. The procedure continues 

until some convergence criterion is satisfied. Due to the flexibility of the enhancement 

framework, a variety of constraint options are possible between MAP estimation steps. 

Figure 2 presents an overview of two classes of constraints which include inter-frame 

(across time) and/or intra-frame (across iterations). Each technique differs in the type 

of constraint and computational requirements. The present evaluation focuses on two 

representative inter-frame (FF-LSP:T) and combined inter-frame plus intra-frame (FF-

LSP:T,Auto:I) based techniques. Further discussion of all techniques are found in [5, 

6, 7]. For historical purposes, several comments concerning the other approaches are 

summarized. 

Since observations indicate that poles of the LPC filter often move unrealistically 

close to the unit circle when the unconstrained iterative technique is allowed to continue, 
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initial techniques limited pole movement by applying constraints directly to radial and/or 

angular movements of the LPC poles across iterations and time. For these techniques, 

LPC predictor coefficients were obtained, a Pth-order root-solve was performed and a 

pole ordering step applied. If pole movement fell within a movement constraint window, 

a constraint was applied, otherwise, no constraint was applied based on the assump-

tion that either movement was allowable, or that the pole was mischaracterized due to 

the ordering step. Results showed substantial improvement in objective speech quality 

(as measured by Itakura-Saito, log-area-ratio, and weighted spectral slope (Klatt) mea-

sures [17]). Informal listening tests also revealed improvement, especially during vowels 

and vowel transitions toward nasals. Larger levels of quality improvement were observed 

using inter-frame versus intra-frame constraints, thus suggesting that temporal variation 

in pole locations have a greater effect on overall quality. 

Although successful in improving speech quality, constrained techniques based on di-

rect pole location were computationally expensive. A Pth-order root-solve and a pole 

ordering step per frame for each iteration was required. Since root solving is not al-

ways numerically accurate and ordering can be inconsistent across frames, a more robust 

approach was sought to implement these constraints. 

An alternative approach for implementing the spectral constraints was formed by 

employing the line spectral pair (LSP) transformation as a method for representing the 

vocal tract spectrum. Previous success of the LSP transformation in low-bit-rate speech 

coding by Crosmer [2] led to the use of LSP's for this purpose. 

The Line Spectral Pair (LSP) [9, 19] transformation comes from modifying the LPC 

polynomial, A(z), in two ways: P(z) and Q(z) are obtained by augmenting A(z)'s PAR-

COR sequence with a +1 and —1 respectively. This results in two polynomials of order 

p + 1 which have all roots on the unit circle. 
M-1 

P(z) 	(1 — z -1 ) 1-1 (1 — 2 cos wiz-1  + z-2) 	 (1) 
i=1,3,5,... 

M-1 
Q(z) = (1 -I- z -1 ) H (1- 2 cos wiz-1  + z-2) 	 (2) 

i=2,4,6,... 

The angles of the roots, { w i , i = 1, 2, ... , M}, are called the line spectrum pairs. In 

general, A(z) will represent a stable LPC filter if and only if the roots of P(z) and Q(z) 
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interleave. The angles of the roots of P(z), correspond roughly to the angles of the roots 

of A(z) (formant frequencies), and the separation of a particular root of P(z) from the 

closest root of Q(z) indicates in some sense the bandwidth of that resonance. The angle 

of the roots of P(z) between 0 and it are termed the position parameters (i.e., the odd 

indexed LSP parameters, {p, = 1412i-1, i = 1, 2, ... , M/2} ), and the separations mentioned 

above are the difference parameters, di. 

Ildi I = min a wzi+i — 	= I, 2, ... , M/2) 
j=-1,1 ( 3  ) 

The sign of di  is positive if w2; is closer to CO2;+1, and otherwise is negative. The useful 

properties of the LSP's include an easy check for stability, excellent interpolation proper-

ties, ease of computation (compared to roots of A(z)), some well understood trajectories 

for speech, and the relative insensitivity of the auditory system under quantization of the 

difference parameters. 

Enhancement Using the LSP Transformation 

In these techniques, constraints are imposed on the LSP parameters directly. In 

the first technique (MS-LSP:T), a five frame median smoothing constraint was placed 

on the position parameters across time, with difference parameters restricted to be at 

least dM IN in magnitude, ensuring the LPC poles of reasonable bandwidth. Good im-

provement resulted without the expense of root solving or pole ordering. Plots of LSP 

parameters versus time confirmed a reduction in frame-to-frame pole jitter with only a 

slight increase in computational requirements. Since vocal-tract characteristics and rela-

tive strength of background noise vary across time, the imposition of spectral constraints 

should be dependent on speech characteristics obtained during the enhancement proce-

dure. Therefore, the remaining constraints are applied based on particular characteristics 

found in the speech waveform during enhancement. 

Two inter-frame approaches are considered: a fixed frame rate (FF-LSP:T), and a 

variable frame rate approach (VF-LSP:T). In the first of these, the LPC predictor coef-

ficients, a, are first converted to LSP parameters. Next, each frame's energy is observed, 

and classified as voiced or unvoiced speech according to some threshold Eviuv. A local 
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running count Li  is kept for the number of consecutive frames which fall below the energy 

threshold. If L, reaches LMAX,  all subsequent frames below the threshold are classified 

as noise. This allows for a tighter pole movement constraint during long periods of si-

lence. The position parameters for each frame are smoothed using a weighted triangular 

window with a variable base of support (1 to 5 frames). If a frame has been classified as 

noise, maximum smoothing (or tightest movement constraint) is performed. The lower 

formant frequencies are smoothed over a narrower triangle width than for those posi-

tion parameters at higher frequencies in order to preserve perceptually important speech 

characteristics found in the lower formants. No smoothing is performed on the difference 

parameters since they are more closely related to formant bandwidth than formant loca-

tion. However, it is possible that a difference parameter falls within a "forbidden zone." 

When this occurs, the LPC analysis has most likely underestimated a particular pole's 

bandwidth. Since this causes unnatural sounding speech, (as found in the unconstrained 

approach), the value of Idil is set to dmm. Finally, the position and difference parameters 

are combined to form the constrained LPC predictor coefficients ai+i . 
The (F'F-LSP:T) technique applies constraints across time on a frame-by-frame basis. 

Since phonetic transitions do not normally coincide with frame boundaries, an inter-frame 

approach (VF-LSP:T) based on constraints applied over speech segments was formulated. 

The technique is identical in theory to (FF-LSP:T), except for the front-end segmentation 

algorithm which divides the signal into speech segments. Segments are chosen to be long 

when the speech spectrum is slowly varying and short when the speech spectrum is 

varying quickly. The LSP parameters are reconstructed with linear interpolation used to 

compute the parameters for intermediate frames. 

The segmentation algorithm begins by determining the onset/offset of speech by 

thresholding the LPC residual energy, which produces relatively long segments. Long 

segments are subdivided based on the curvature of the position parameters. This is per-

formed by computing a gain-normalized Itakura-Saito measure of the spectral distance 

between the frequency response of two adjacent frames. The procedure continues by com-

puting spectral distortion of position parameters for successively longer segments until 

the spectral distortion exceeds a threshold TD. At that point, a subsegment boundary 
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is set, with the intermediate position parameters reconstructed via linear interpolation. 

During this step, the length of a subsegment is also limited to Liu 'ix to prevent exces-

sively long segments which might contribute to muffled or unnatural sounding speech. 

The advantage of this approach is to incorporate more information from adjacent frames 

when the spectrum indicates similar characteristics. This in effect, distorts the position 

parameters as little as possible when associated difference parameters indicate the pres-

ence of formants. Difference parameters for each frame are used to compute the predictor 

coefficients The difference parameters are required to be at least dm/N  or greater. 

The convergence problems inherent in the unconstrained Wiener filtering approach 

which have been pointed out [5, 7, 15], are at least partially caused by bias in the 

MAP estimation. Although spectral constraints were originally constructed to be used 

across frames, it has been observed that if they are used across iterations, convergence 

to reasonable values occurs with much greater frequency and consistency. In particu-

lar, previous results based on objective speech quality measures show the unconstrained 

Wiener filtering approach to produce minimum objective measures at different iterations 

for different classes of speech [5, 7] (see Table 3). By constraining the vocal tract filter 

to be a function of its values obtained from previous iterations, a much improved consis-

tency in quality across speech classes and LPC parameter ai  estimation resulted. Two 

approaches were considered, one applied to the autocorrelation lags (Auto:I), the other 

to the position parameters (LSP:I). The first approach simply weighted the present set 

of autocorrelation lags with the same frame from previous iterations. Such a technique is 

easy to perform, since the autocorrelation lags must be computed in order to estimate the 

predictor coefficients 5. The second approach weighted position parameters with those 

from the same frame but previous iteration. If the corresponding difference parameter 

indicated the adjacent position parameter to represent a formant, this approach had the 

effect of constraining the formants to lie along smooth tracks across iterations. Such a 

procedure is generally refered to as introducing relaxation into the iterations [16]. If the 

iteration is producing results for which weighted averaging makes sense (e.g., LSP's but 

not ei ) , improved convergence results. Results from inter-, intra-, and combined inter-

plus intra-frame constraint approaches will be presented in the next section. Figure 3 
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illustrates the framework for the new set of constrained enhancement techniques. 

3 Evaluation 

We now evaluate the performance of the proposed algorithms for speech enhancement 

alone, and as a preprocessor for word recognition in noisy environments. Speech was de-

graded by additive white or colored noise and processed. Enhancement algorithms eval-

uated include: techniques incorporating inter-frame constraints applied on a fixed-frame 

(FF-LSP:T) or variable-frame (VF-LSP:T) basis to the LSP parameters, and algorithms 

incorporating combinations of inter- plus intra-frame constraints (FF-LSP:T,Auto:I), 

(FF-LSP:T,LSP:I). Global estimates of SNR' were used in the evaluation, since the 

assumption of accurate local estimates is normally unrealistic in actual noisy environ-

ments. Further improvement is therefore possible if a continuous local SNR estimate is 

available. The Intra-frame constraints were applied across two to three iterations. 

Several parameters must be addressed to ensure proper application of spectral con-

straints. These include the voiced/unvoiced energy threshold Eviriv , silence frame count 

threshold LmAx, LSP difference parameter thresholds dMIN)dmAx,  and the accumulated 

frame-to-frame Itakura-Saito distance threshold TD. 

The energy threshold Evxv  is used to distinguish voiced from unvoiced or silent 

speech frames for use in applying inter-frame constraints. Values were obtained from 

frame energy histograms at each signal-to-noise ratio. Similar enhancement levels resulted 

for Eviuv in the range between average, and one standard deviation below average speech 

frame energy (e.g., Average frame energy for sentence S6 was 7719. Ev1uv  set between 

8000 and 5000 resulted in Itakura-Saito measures which ranged from 1.96 to 2.02). 

The silence frame count threshold LmAx, is used in conjunction with Ev1uv. If LMAX 

consecutive frames fall below Eviu v , that segment is classified as silence (or noise) so 

that tighter spectral constraints can be enforced. If Ev1uv is set as above, similar speech 

s2 (n

n

)

)  (

) 1  

'The signal-to-noise ratio is defined as 101og 
(. 

d 	
where the summation is over the entire 

length of the sentence. This definition was chosen in keeping with the format used in previous studies 

on noncausal Wiener filtering. [11] 
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quality measures resulted with LMAX  set between two and five frames. Reduced quality 

measures resulted with LMAX  in the eight to twelve frame range, thereby suggesting 

increased residual noise levels during silent portions. 

The difference thresholds dMIN, dMAX, constrains the LSP difference parameters to 

ensure poles of reasonable bandwidths (e.g., the all-pole speech model is stable and that 

it possesses speech-like characteristics). Values in the range .015 < dMIN < .031 radians, 

.055 < dMAX < .077 radians, resulted in good quality improvement. 

The value of TD (accumulated frame-to-frame Itakura- Saito distance threshold) greatly 

effects speech segment length. If set to high, small duration phonemes can be lost (e.g., an 

initial stop and final vowel joined to form one speech segment as in be). A value of 1.2 was 

found to produce segments of reasonable length and quality at higher SNR (> +5dB). 

At lower SNR, frame-to-frame distance values were too large to reliably segment speech, 

resulting in decreased performance. 

Generally speaking, substantial enhancement resulted for a wide range of Eviuv, 

LMAX, dMIN, and  dMAX  threshold settings, indicating the algorithms robust performance 

over estimated threshold values. Only TD, the accumulated frame-to-frame Itakura-

Saito distance threshold, proved to be sensitive, especially across varying SNR. Greater 

enhancement was observed when TD was allowed to vary across iterations. 

In this study, the primary tool for quantitative enhancement evaluation has been 

objective quality measures. This is based on extensive work carried out in the formulation 

of objective speech quality measures for speech coding [17], and the application of these 

measures to enhancement [4]. Fair to good correlation has been shown to exist between 

subjective and objective quality measures, such as: the Itakura-Saito likelihood ratio, log 

area ratio, and weighted spectral slope measure. These measures have been shown to be a 

viable tool for use in evaluating speech enhancement algorithms for white and non-white 

additive noise [4]. In addition, the Itakura-Saito likelihood ratio is also a commonly used 

distance measure for speech recognition as well as for coding methods employing vector 

quantization. Therefore, improvement in Itakura-Saito distance might also suggest the 

possibility of improvement in automatic recognition. The speech data for enhancement 

evaluation is described in the Appendix. 
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3.1 Evaluation Using Additive White Gaussian Noise 

Various configurations of the new constrained enhancement algorithms were evaluated in 

an additive white Gaussian noise environment. Informal listening tests indicated notice-

able quality improvement, although no intelligibility testing was performed. A variety 

of objective speech quality measures were used in the evaluation procedure. Figure 4 

illustrates a comparison of typical results for the various constraint approaches. The 

Itakura-Saito measure is plotted versus signal-to-noise ratio for a white noise distortion. 

Plot a represents the original distorted speech. Plots b through e represent combinations 

of inter-frame constraints (both fixed and variable rate), and intra-frame constraints (ap-

plied to position parameters/autocorrelation lags). All configurations examined showed 

significant improvement in Itakura-Saito measures. Threshold settings for the variable 

frame rate inter-frame constraint were somewhat sensitive to varying noise levels. This 

indicates that although applying inter-frame constraints across speech segments is the-

oretically attractive and should aid in enhancement, in reality the speech segmentation 

step proves to be too sensitive to varying background noise levels. However, the fixed 

frame approach by itself, and with either autocorrelation or position intra-frame con-

straints gave impressive results with little sensitivity to varying levels of SNR. In order 

to determine a limit on the level of enhancement, the original undistorted predictor co-

efficients a were used in the unconstrained algorithm. In essence, the two step MAP 

estimation approach is now reduced to a single MAP estimate of SI G., and therefore rep-

resents the theoretical limit for enhancement using Wiener filtering. Plot f indicates this 

limit. 

One advantage of the general class of Wiener filtering approaches is that no "mu-

sical tone" artifacts are present after processing as observed in spectral subtraction 

techniques[1, 3, 12]. To determine performance versus spectral subtraction, a series 

of enhancement evaluations under identical conditions (same distorted utterances, same 

global SNR, estimates) were performed. Evaluation was performed for both half and full-

wave rectification over a SNR range of —20 to +20 dB, and employed one to five frames 

of magnitude averaging (as defined by Boll [1]). See Hansen [7] for details. Full-wave 

rectification resulted in improvement over a wider range of SNR, however half-wave recti- 
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fication had greater improvement over the restricted SNR band of 5 to 10 dB. Magnitude 

averaging lead to improved enhancement for both rectification approaches. 

Next, the constraint approaches were compared to spectral subtraction and uncon-

strained noncausal Wiener filtering. All systems performed enhancement on the same 

speech, with the same global estimates of SNR. Figure 5 compares quality improvement 

for each technique. Although only Itakura-Saito measures are shown, similar improve-

ment was observed for log area ratios and weighted spectral slope measures (Klatt). 

Itakura-Saito measures are presented since they are widely accepted as a spectral dis-

tance measure and have been used extensively for speech recognition applications. A 

comparison of the three speech quality measures is shown in Table 2. The average cor-

relation between each objective quality measure and subjective quali ;y as measured by 

the DAM (diagnostic acceptability test) is shown [17]. 

Quality'Improvement Over Speech Classes 

To determine individual quality improvement, an evaluation over sound classes was 

performed by hand partitioning speech into segments ;  processing entire sentences, and 

computing objective measures from each class. Table 1 summarizes the comparison 

between the unconstrained technique, and an inter- plus intra-frame constrained approach 

(FF-LSP:T,Autod). Measures for the theoretical limit using undistorted LPC predictor 

coefficients a.  are also indicated. Improvement is indicated for all classes of speech. These 

results show that the constraint techniques are enhancing all aspects of the speech signal. 

Termination Criterion 

As mentioned, the iterative enhancement algorithms must be suspended at some it-

eration. In order to determine a terminating iteration, a criterion must be selected to 

evaluate levels of improvement as the iterative scheme progresses. The criterion chosen 

is based on objective speech quality measures. Such measures are formed by a weighted 

comparison of actual and resulting estimated LPC predictor coefficients found during 

enhancement. The obvious problem with such a criterion is that, outside of simulation, 
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the actual speech is unknown during the procedure. If, however, simulations were to 

show a consistent value for the best iteration in terms of this criterion, a convenient 

stopping condition would exist. Previous results based on objective quality measures 

indicate the unconstrained approach to produce maximum objective quality at different 

iterations for different classes of speech. Table 3 illustrates this behavior over the indi-

cated sound classes. As shown, maximum overall speech quality is obtained at the third 

iteration, with considerable variation across sound types. Glides required two iterations 

for maximum quality, with nasals, liquids, and affricates requiring between five and six. 

Therefore, depending on sound class concentration, the optimal iteration (in terms of 

minimum distance) would vary considerably. Observations from a previous investigation 

indicate that the optimal iteration varies between the second and sixth and that it is also 

somewhat 'dependent on SNR [3]. 

The new constrained enhancement algorithms have less sensitivity to sound class. 

Table 4 presents results from an equivalent evaluation for one of the constrained enhance-

ment algorithms (FF-LSP:T,Auto:I). A comparison between tables 3 and 4 show that the 

constrained approach produces superior quality measures across all speech classes at the 

same iteration. The improvement surpasses even combined individual maximum quality 

measures found across the unconstrained approach. Thus, the constrained enhancement 

algorithm does more than simply impose a constraint to adjust the rate of improvement: 

the constrained approaches consistently result in superior objective speech quality at the 

same iteration over all sound classes, independent of SNR. 

Termination Consistency Versus SNR 

Further evaluations were performed to determine the consistency of the terminat-

ing iteration versus SNR. Table 5 summarizes optimum terminating points in terms of 

objective quality for some of the enhancement algorithms. Techniques employing only 

inter-frame constraints consistently resulted (94% occurrence) in maximum quality at the 

third iteration. Techniques employing inter- and intra-frame constraints had a 97% oc-

currence of maximum quality at the seventh iteration. In addition, dide to the relaxation 

of the iterative scheme as imposed by intra-frame constraints, adjacent iterations differ 
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only slightly in objective quality for the constrained techniques. Therefore, only minor 

differences in speech quality would result if the iterative scheme were halted one iteration 

prior to optimum. The results consistently suggest that the constrained enhancement al-

gorithms reach a maximum level of speech quality at the same iteration, independent of 

SNR and sound class concentrations. Thus, a convenient terminating criterion may be 

determined under simulated conditions and employed in actual noisy environments. 

Vocal Tract Estimation 

In addition to the problem of a terminating point dependent on speech class concen-

tration and SNR, the unconstrained approach also suffered from undesirable movements 

of the LPC poles. Specifically, it was observed that as additional iterations were per-

formed, individual formants of the speech consistently decreased in bandwidth and shifted 

in location as shown in Figure 1. Figure 6 illustrates results from a single frame of speech 

for the unconstrained and constrained approaches. The original and distorted original 

spectra are the same for both approaches. Results from .4 iterations and 8 iterations are 

presented for both approaches. For the unconstrained approach, the terminating point 

is the fourth iteration. For this example the unconstrained approach was somewhat suc-

cessful in improving overall spectral shape, especially in the region of the second formant. 

However, as additional iterations were performed, spectral distortions result, especially 

with respect to bandwidth information. The constraint approach (FF-LSP:T,Auto:I) is 

able to eliminate these undesirable effects. The terminating point for this approach was 

the seventh iteration. The change in spectral shape between the seventh and eighth it-

erations were minor, based on visual observation and objective speech quality measures. 

As this figure indicates, fine characteristics of the speech spectrum result only in the later 

iterations. 

Computational Issues 

Discussion of algorithm performance should also address computational issues as well 

as algorithm complexity. Naturally, there exists a trade-off between resulting speech 
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quality and each algorithm's computational complexity. It is clear that iterative tech-

niques require greater computer resources than non-iterative approaches such as spectral 

subtraction and correlation subtraction. However, improvement in speech quality for the 

constraint approaches may be substantial enough to justify the additional computer re-

quirements. In Table 6, a comparison of enhancement algorithms are made with respect 

to speech quality, relative computer resources and memory requirements, and algorithm 

complexity. By applying constraints to the LSP parameters, a modest increase in com-

puter resources results in a marked increase in speech quality. For example, median 

smoothing of the LSP parameters (MS-LSP:T) increases speech quality with only slight 

increases in computation and complexity. If greater resources are available, more sophis-

ticated constraint approaches may be chosen. If memory and computational resources 

are available, use of the constrained approaches appears justifiable. 

Time Versus Frequency Plots 

Isometric plots of time versus frequency magnitude spectra were constructed. In 

Figure 7, each line represents a 128-point frequency analysis. The top two graphs are the 

original and distorted cases. The lower left graph is the time versus frequency response for 

the unconstrained approach, terminated at the third iteration. The lower right graph is 

the frequency response after six iterations of an inter- plus intra-frame constrained (FF-

LSP:T,Auto:I) approach. These figures indicate that the considerable noise rejection 

achieved in the single frame noted in Figure 6, is generally true over time. 

3.2 Evaluation Using Additive Non-White, Non-Stationary 

Noise 

The enhancement techniques described for the white additive noise case were also tested 

using non-stationary, colored noise recorded from the interior of a Lockheed C130 aircraft. 

Estimates for the noise spectrum were made using Bartlett's method [10, 14] over long 
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intervals2 . Energy thresholds for the inter-frame constraints were obtained from frame en-

ergy histograms at each signal-to-noise ratio. Intra-frame constraints were applied across 

two to three iterations. Figure 8 and Table 7 list the results of the analysis, presented 

in a manner consistent with the white noise descriptions. Although only Itakura-Saito 

measures are shown, similar improvement was observed for log-area-ratio and weighted 

spectral slope distance measures [7]. As seen, consistent improvement over all SNR's and 

speech sounds resulted, although the improvement was not as much as the white noise 

case. 

3.3 Recognition Evaluation 

One application for speech enhancement is a preprocessor for an automatic recognition 

system. For evaluation of the enhancement algorithms in this application, a set of recog-

nition experiments were performed, including: 1) the no noise condition (in order to set 

an upper limit of recognition performance), 2) distorted condition with no preprocessing 

(in order to set an assumed lower limit of recognition), 3) the best performing spec-

tral subtraction preprocessing (i.e., the configuration employing either half or full-wave 

rectification and 1 to 5 frames of magnitude averaging which gave the highest quality im-

provement for the given vocabulary), 4) unconstrained Lim-Oppenheim preprocessing, 

5) and constrained preprocessing. The evaluation was performed at six levels of SNR 

(-5,0,-1-5,-1-10,+20,+30 dB) for the additive white Gaussian noise degradation. 

A fairly standard, isolated-word, discrete-observation hidden Markov model recog-

nition system was used for evaluation. This system was LPC based with no embel-

lishments. In all experiments, a five state, left-to-right model was used. The system 

dictionary consisted of twenty highly confusable words from a speech data base formu-

lated for recognition evaluation in diverse environments [7]. These words are also used 

2 Previous enhancement investigations employing colored aircraft background noise, indicated that of 

the spectral estimation techniques considered (maximum entropy method, maximum likelihood method, 

Burg's method, Bartlett's method, Pisarenko harmonic decomposition, and the Periodogram method [10, 

14]), Bartlett's method produced estimates resulting in highest quality improvement for this particular 

distortion [3, 6]. 
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by Texas Instruments and Lincoln Labs to evaluate recognition systems. Subsets include 

/go-oh-no-hello/, /six-fix/, /wide-white/, and /degree-freeze-three/. Twelve examples of 

each word were used, six for training, six for recognition (i.e., all tests fully open). A 

vector quantizer was used to generate a 64 state codebook using two minutes of noise-free 

training data. The twenty models employed by the HMM recognizer were trained us-

ing the forward-backward algorithm. Figure 9 presents results from five scenarios using 

a noise-free codebook and noise-free trained system. The 88% recognition rate clearly 

indicates the difficulty (confusability) of the chosen vocabulary 3 . Spectral subtrac-

tion preprocessing employed three frames of magnitude averaging. The unconstrained 

Lim-Oppenheim approach was terminated at the third iteration. The constrained (FF-

LSP:T,Auto:I) approach was terminated at the seventh iteration. Results show that 

recognition was reduced to chance for noisy, spectral subtraction, and Lim-Oppenheim 

preprocessed speech in the SNR range of (-5,0,5 dB). The constrained approach resulted 

in improved recognition across all SNR's considered, which is quite encouraging in light 

of the severe levels of noise, and difficulty of dictionary employed. An increased number 

of training tokens as well as a less confusable vocabulary would at the very least be 

required if recognition in such hostile environments is to be feasible with enhancement 

preprocessing. In this first set of tests, all recognition training was performed on un-

degraded speech. This serves to model the case of training a recognizer in advance in 

quiet surroundings (off-line) and using it in a noisy environment. As a final comparison, 

recognizer training was carried out using enhanced speech, which models training in the 

field. Three tests were performed using noisy and enhanced speech at a SNR of +10dB. 

For the noisy case, speech was coded using a noisy codebook, and recognition performed 

using a noisy trained HMM recognizer. Similar tests were performed for two enhancement 

techniques., (i.e., enhanced words coded using enhanced codebook, and tested using en-

hanced speech trained HMM recognizer). The results indicate that the new constrained 

enhancement algorithms improve recognition performance over the unconstrained Lim-

Oppenheim approach. Although the scenario of training in noise, and recognizing in 

noise shows improvement, the recognition system is now dedicated to a specific SNR. 

3 0n isolated digit tasks in quiet, the recognizer consistently scored 100% [7]. 
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If noise characteristics or SNR should change over time, recognition performance would 

seriously degrade. The constraint approaches have been shown to be robust over varying 

SNR, and therefore should result in higher recognition rates with changing levels of SNR. 

It is worth noting that although performance is poor for apparently high SNR's, the 

SNR computation was performed over entire words. For low energy consonantal portions, 

the SNR's may well be 20 dB lower; and for highly confusable word pairs (e.g., /six-fix/, 

/go-oh-no/), errors are understandable. A detailed analysis of the error patterns bears 

out this hypothesis since almost all confusions were between such pairs. For example, 

in one noisy speech recognition test, 43 of 61 recognition errors (70%) were caused by 

misclassification of distinguishing consonants, many of which were leading consonants 

(especially fricatives). Constrained enhancement significantly reduces these errors (e.g., 

one test using (FF-LSP:T,Auto:I) resulted in 16 of 21 recognition errors (with 120 test 

tokens) caused by misclassification of distinguishing consonants). The noise-free case 

itself, gave 12% errors due to the difficulty of the test set, and the small number of 

tokens (6) per word used for training. These results show that the new constrained 

techniques are valuable for recognition, especially at SNR's in the +10 to +30dB range. 

4 Conclusions 

The problem of enhancing speech degraded by additive white and slowly varying colored 

background noise was addressed. In addition, algorithm performance as a preprocessor 

for speech recognition was also considered. The set of enhancement algorithms presented 

impose inter- and intra-frame constraints on the input speech signal and were shown to 

be useful in enhancing speech for human listeners, and somewhat useful as preprocessing 

for recognition in noisy environments. Inter-frame constraints ensure more speech-like 

formant trajectories than those found in the unconstrained approach and thus reduce 

pole jitter on a frame-to-frame basis. Intra-frame constraints ensure relaxation of the 

iterative scheme so that overall maximum speech quality is obtained across all classes 

of speech. In order to increase numerical accuracy, reduce computational requirements, 

and eliminate inconsistencies in pole ordering across frames, the line spectral pair (LSP) 
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transformation of the LPC coefficients was used to implement many of the constraint 

requirements. The new set of constrained algorithms were shown to be effective in several 

domains. First, improvement in objective speech quality measures was shown. Improved 

LPC parameter estimation was also observed. Second, the algorithms were extended 

and shown to be effective on non-stationary colored noise. Third, the algorithms were 

shown to improve all segments of speech for both white and non-white noise. Fourth, 

the current algorithms have been shown to possess a consistent terminating criterion. 

Specifically, the optimum terminating iteration was shown to be consistent over all speech 

sound classes, and virtually all tested SNR's. Finally, the constrained algorithms have 

shown improvement as a preprocessor for speech recognition. Their ability to bring 

performance up to an acceptable level in SNR's between —5 and +5dB is questionable. 

This may be due in part to the difficulty of the highly confusable test set, the small 

number of tokens per word used for training, and the observation that SNR's in low 

energy consonantal portions which discriminate confusable pairs may well be 20 dB lower. 

Recognition improvement in SNR's between +10 and +30dB may be large enough to 

warrant enhancement preprocessing for recognition. 
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APPENDIX 

All sentences were sampled at 8000 samples/sec. 

SPEECH DATA 

Si: The pipe began to rust while new. Female Speaker 

S2: Thieves who rob friends deserve jail. Male Speaker 

S3: Add the sum to the product of these three. Female Speaker 

S4: Open the crate but don't break the glass. Male Speaker 

S5: Oak is strong and also gives shade. Male Speaker 

S6: Cats and dogs each hate the other. Male Speaker 
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(a) Original 
	

(b) Distorted Original (c) 4 Iterations 	(d) 8 Iterations 

Figure 1: Variation in vocal tract response across iterations. 

Sound 
Type 

Itakura-Saito Likelihood Measure 
Original Lim-Oppenheim Hansen-Clements True LPC 

Silence 1.634 1.649 0.842 0.319 
Vowel 4.020  3.299 1.651 0.582 
Nasal 19.814 17.656 3.968 0.324 
Stop 7.261 3.979 1.099 0.435 

Fricative 3.739 3.509 1.766 0.649 

Glide 1.525 1.442 1.131 0.705 

Liquid 9.597 4.545 0.998 0.303 
Affricate 3.924 2.702 2.229 0.323 

Voiced -I- Unvoiced 5.838 4.293 1.761 0.519 
Total 4.022 3.151 1.364 0.433 

Table 1: Comparison of unconstrained (Lim-Oppenheim) and inter- and in-
tra-frame constrained (Hansen-Clements) algorithms over sound types for white 
Gaussian noise. SNR = +5 dB 

OBJECTIVE  QUALITY  MEASURE  
Itakura-Saito log-area-ratio Blatt 

Iol 	 .59 	 .62 	.74 

Noisy Original 4.02 15,27 2.39 
(Lim- Oppenheim) 3.15 8.78 2.19 
(Hansen-Clements) 1.38 5.56 1.62 

Table 2: A comparison of objective speech quality measures for noisy and en-
hanced speech employing the unconstrained (Lim-Oppenheim) and constrained 
FF-LSP: T,Auto:I (Hansen-Clements) algorithms for white Gaussian noise. SNR = 
+5 dB, 1A1 is the average correlation coefficient between objective and subjective 
speech quality[17]. 



ACROSS TIME 	ACROSS ITERATIONS 
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FF-LSP:T): Fixed-frame smoothing 
constraint on LSP parameters. 

      

(Auto:I): Autocorrelation coeff. 
movement constraint 

 

                   

                   

                   

                   

                   

 

(VF-LSP:T): Variable-frame smoothing 
constraint on LSP parameters. 

           

            

       

(LSP:I): LSP Parameter 
movement constraint. 

 

               

               

	*I (VF-LSP.FF-LSP:1): Variable followed 
\  by Fixed -frame smoothing constraints. 

           

           

           

                   

 

(FF-LSP,VF-LSP:I): Fixed followed by 
Variable-frame smoothing constraints. 

           

                   

   

I  (FF-LSP:T, Auto:I): Fixed-frame LSP Parameter constraint (time) 
Autocorrelation coeff. constraint (iteration) 

   

      

(FF-LSP:T, LSP:I): Fixed-frame LSP Parameter constraint (time) 
LSP Position Parameter constraint (iteration) 

(VF-LSP:T, LSP:I): Variable-frame LSP Parameter constraint (time) 
LSP Position Parameter constraint (iteration) 

Figure 21 An overview of spectral constraints considered for the class of constrained 
speech enhancement algorithms. 
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Figure 3: Framework for the new set of constrained enhancement algorithms. 
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Figure 4: Comparison of constraint algorithms over SNR. 

a.) Original Distorted Speech 

b.) Inter-Frame Constraint: Variable Frame (VF-LSP:T) 

c.) Intra-Frame Constraint: Fixed Frame (FF-LSP:T) 

d.) Inter & Intra-Frame Constraints: Fixed Frame, Position (FF-LSP:T,LSP:I) 

e.) Inter & Intra-Frame Constraints: Fixed Frame, Autocorrelation (FF-LSP:T,Auto:I) 

f.) Theoretical limit: using undistorted LPC coefficients E. 
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Figure 5: Comparison of enhancement algorithms over SNR. 

a.) Original Distorted Speech 

b.) Boll: Spectral Subtraction, using magnitude averaging 

c.) Lim-Oppenheirn: Unconstrained Wiener filtering 

d.) Hansen-Clements: employing Inter-Frame constraints (FF-LSP:T) 

e.) Hansen-Clements: employing Inter & Intra-Frame constraints (FF-LSP:T,Auto:I) 

f.) Theoretical limit: using undistorted LPC coefficients Ir. 



Sound 
Type 

Itakura-Saito Likelihood Measure 	across iterationsL_ 
#5 	ilel Original #1 #2 	#3 	#4 #7 

Silence 1.634 1.615 •1.608 1.649 1.933 3.756 20.360 49.884 
Vowel 4.020 3.721 3.445 43.299 3.720 8.319 121.82 - 
Nasal 19.814 19.154 18.416 17.656 17.009 16.593 415.192 15.697 
Stop 7.261 6.114 4.926 3.979 43.822 6.889 25.515 29.694 

Fricative 3.739 3.637 3.532 43.509 3.902 7.658 47.829 94.106 
Glide 1.525 1.414 41.333 1.442 2.231 4.300 8.391 15.561 

Liquid 9.597 8.241 6.546 4.545 2.606 41.676 6.381 30.001 
Affricate 3.924 3.609 3.213 2.702 2.091 41.552 2.911 2.975 

Voiced -I- Unvoiced 5.838 5.321 4.767 4.293 44.289 7.346 61.865 - 
Total 4.022 3.720 3.402 43.151 3.271 5.795 43.457 - 

Table 3: Lim-Oppenheim unconstrained speech enhancement for white Gaussian 
noise. Optimum perceived quality for a particular speech class in terms of objective 
measures is indicated by a 4. SNR=-1-5dB 

Sound 
Type 

Itakura-Saito Likelihood Measure (across iterations 
Original #1 #2 #3 #4 #5 #6 #7  #8  

Silence 1.634 1.551 1.351 1.155 1.036 0.979 0.929 40.884 0.901 
Vowel 4.020 3.319 2.865 2.394 1.863 1.677 1.571 41.565 1.828 
Nasal 19.814 16.490 12.397 10.523 8.682 6.840 4.929 43.789 5.548 

Stop 7.261 6.246 4.840 3.492 2.668 1.812 1.383 41.129 1.435 
Fricative 3.739 3.432 3.027 2.612 2.245 1.948 1.729 41.615 1.844 

Glide 1.525 1.389 1.275 1.232 1.219 1.189 1.161 41.153 1.217 
Liquid 9.597 6.481 3.382 2.243 1.612 1.209 0.943 40.926 1.211 

Affricate 3.924 3.722 3.447 3.117 2.806 2.598 2.472 42.368 3.966 
Voiced + Unvoiced 5.838 4.642 3.658 3.006 2.501 2.131 1.865 41.740 1.953 

Total 4.022 3.026 2.441 2.069 1.801 1.611 1.457 41.381 1.498 

Table 4: Hansen-Clements Inter & Intra-frame constrained speech enhancement 
for white Gaussian noise. Convergence for a particular speech class in terms of 
objective quality is indicated by a 4. SNR=---1-5dB 



Constrained 
Enhancement 

Algorithm 

Additive White Gaussian Noise SNR 
+10 dB 

OVERALL 
-5 dB 	I 	-0 dB 	I 	+5 dB 	1 

Optimal Iteration using Itakura-Saito Likelihood Measure 
Iter. 	Freq. Iter. 	Freq. lien 	Freq. 	Iter. 	Freq. Iter. 	Freq. 

FF-LSP:T 3 	100% 3 	87% 
4 	13% 

3 	87% 
4 	13% 

3 	100% 3 	93% 
4 	7% 

VF-LSP:T 3 	90% 
4 	10% 

3 	85% 
4 	15% 

3 	94% 
4 	6% 

3 	100% 3 	94% 
4 	6% 

FF-LSP:T,Auto:I 7 	100% 7 	100% 7 	100% 7 	88% 
6 	12% 

7 	97% 

6 	3% 

FF-LSP:T,LSP:1 4 	100% 4 	100% 4 	100% 4 	100% 4 	100% 

VF-LSP:T,LSP:I 4 	100% 4 	100% 4 	100% 4 	100% 4 	100% 

Table 5: Summary of optimal terminating iteration across SNR for AWGN. 

Lim - Oppenheim: Unconstrained Enhancement 

       

      

      

(la) Original (1b) Distorted Original (1c) 4 Iterations 	(1d) 8 Iterations 

 

Hansen - Clements: Constrained Enhancement (FF-LSP:T,Auto:I) 

(2a) Original 
	

(2b) Distorted Original (2c) 4 Iterations 
	

(2d) 8 Iterations 

Figure 6: Variation in vocal tract response across iterations for 1a-d) unconstrained, 
and 2a - d) constrained enhancement algorithms. 



Itakura-Saito 
Measure 

Relative 
Complexity 

(1-10) 

Relative 
Computation 

(1-10) 
Terminating 

Iteration 

Noisy Original 4.02 
Spectral Subtraction 3.36 2 1.5 

Lim-Oppenheim 3.15 5 3 3 
iMS-LPS:T) 2.68 6 4 4 

JIFF-LPS:T) 1.96 7 6 3 
IF-LPS:T,Autod) 1.36 9 10 7 

Table 6: Comparison of enhancement algorithms in terms of quality, relative com-
plexity, and relative computational resources. SNR = +5 dB, Additive white Gaus-
sian noise distortion. 

Sound 
Type 

Itakura-Saito Likelihood Measure 
Original Lirn-Oppenheim Hansen-Clements True LPC 

Silence 6.63 6.33 4.32 2.03 
Vowel 3.23 2.54 1.44 0.53 
Nasal 4.03 3.26 2.13 0.45 
Stop 1.58 1.29 0.66 0.61 

Fricative 1.37 1.09 0.85 0.65 
Glide 1.14 1.04 0.52 0.51 

Liquid 1.22 0.55 0.22 0.18 
Affricate 0.90 0.51 0.33 0.16 

Voiced + Unvoiced 2.27 1.76 1.08 0.52 
Total 4.15 3.86 2.74 1.17 

Table 7: Comparison of generalized unconstrained (Lim-Oppenheim) and inter-
and intra-frame constrained (Hansen-Clements) algorithms over sound types for 
slowly varying colored noise. SNR = +5 dB 



NOISE FREE ORIGINAL 
	

DISTORTED ORIGINAL 

0  
FREQUENCY (kHz) 4 

UNCONSTRAINED 
	

CONSTRAINED 

Figure 7: Time versus frequency plots of the sentence Cats and dogs each hate the other. 
The original and distorted original (additive white Gaussian noise, SNR = +5dB) 
are shown above. The lower left-hand plot is the response after three iterations 
of the unconstrained noncausal Wiener filtering approach. The lower right-hand 
plot is the frequency response after six iterations of an inter- plus intra-frame 
constrained (FF-LSP:T,Auto:I) approach. 
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Figure 8: Comparison of inter & intra-frame constrained enhancement algorithms 
for colored aircraft noise over SNR. 

a.) Original Distorted Speech 

b.) Generalized unconstrained Wiener filtering 

c.) Hansen-Clements: employing Inter-Frame constraints (FF-LSP:T) 

d.) Hansen-Clements: employing Inter & Intra-Frame constraints (FF-LSP:T,Auto:I) 

e.) Theoretical limit: using undistorted LPC coefficients E. 
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Signal-to-Noise Ratio 
(noise-free training) Original -5dB 0dB +5dB +10dB +20dB +30dB 

Noise-free 88% 
Noisy 5% 5% 6.7% 5% 8% 49% 

Spectral Subtraction 5.8% 7.1% 5% 5.4% 20% 55% 
Lim - Opp enheim 5.4% 5.8% 7.5% 12.5% 41% 64% 

Hansen- Clements 15% 14% 19.5% 34.5% 59% 83% 

Train & Recognize In Same Environment 
Noise-free Noisy 1 Hansen-Clements t Lim-Oppenheim t 

88% 90% 77% 23% 

Figure 9: Recognition performance using enhancement preprocessing in additive 
white Gaussian noise. TSNR = +10dB 
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