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LIST OF SYMBOLS OR ABBREVIATIONS

A25 Flow area at the entrance of the high pressure compressor.

A3 Flow area at the exit of the high pressure compressor.

A4 Flow area at the exit of the combustor.

A41 Flow area at the entrance of the high pressure turbine.

A43 Flow area at the exit of the high pressure turbine.

ADP Aerodynamic Design Point, the engine operating conditions at which
engine components are designed for maximum efficiency. Typically
defined at cruise conditions and engine maximum power.

AN2 Turbine loading parameter, usually measured in billions of in2 ·
rpm2.

ANN Artificial Neural Network.

BBN Bayesian Belief Network.

BPR Bypass Ratio, the ratio of the amount of airflow traveling through
the engine’s bypass duct to the amount of airflow entering the en-
gine’s core compression system.

CDF Cumulative Distribution Function.

CDS Cycle Design Space.

CFMI CFM International, a joint partnership of Snecma of France and
General Electric of the United States.

ChgHPT HPT Chargeable Cooling Flow, expressed as a fraction of total HPC
inflow.

ChgLPT LPT Chargeable Cooling Flow, expressed as a fraction of total HPC
inflow.

COMMENCE COMMon ENgine Core Evaluation.

CRZ Cruise conditions.

CVs Control Variables. Within the Enhanced Robust Design Simulation
process, the set of variables for which settings will be selected that
result in a technology scenario and robust design selection for the
particular technology scenario considered.

∆H Total enthalpy rise.

DoE Design of Experiments.

Ėfuel Rate of thermal energy addition by the combustor.

xxii



EPR Engine Pressure Ratio.

Ėpropulsive Rate of energy addition by the engine.

ER Extraction Ratio, the ratio of total pressure exiting the bypass noz-
zle to the total pressure exiting the core nozzle.

ERA Environmentally Responsible Aviation, a NASA project aiming to
simultaneously reduce vehicle fuel burn, noise, and NOx emissions
within the N+2 time frame.

ERDS Enhanced Robust Design Simulation.

ERV ar Extraction Ratio of the variant engine.

ESFC Effective Specific Fuel Consumption, usually measured in units of
lbm,fuel/(eshp · hr).

ηFan Fan efficiency achievable at aerodynamic design point.

ηHPC High pressure compressor efficiency achievable at aerodynamic de-
sign point.

ηHPT High pressure turbine efficiency achievable at aerodynamic design
point.

ηLPC Low pressure compressor efficiency achievable at aerodynamic de-
sign point.

ηLPT Low pressure turbine efficiency achievable at aerodynamic design
point.

ηO Overall efficiency.

ηP Propulsive efficiency.

ηT Thermal efficiency.

ηTr Transmission efficiency.

FADEC Full Authority Digital Electronics Control.

FN Net thrust produced by the engine, expressed in lbf .

FPT Free Power Turbine, responsible for providing the power required
by the turboshaft engine.

GE General Electric.

HPC High Pressure Compressor, the compressor stages that experience
the highest temperatures in the compression system. Powered by
the high pressure turbine.

HPT High Pressure Turbine, the turbine stages providing power to the
high pressure compressor stages.
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JPDM Joint Probabilistic Decision-Making Method.

K̇Ecore Total available kinetic energy addition rate of the engine core.

K̇Eengine Total available kinetic energy addition rate of the engine.

LHS Latin Hypercube Sampling.

LPC Low Pressure Compressor, the compressor stages spinning at the
same rotational speed as the fan and powered by the low pressure
turbine.

LPT Low Pressure Turbine, the turbine stages providing power to the
low pressure compression system.

MDP Multiple Design Point.

ṁf Fuel mass flow rate.

MFE Model Fit Error, the error present in a surrogate model when pre-
dicting the performance of data used in the training of the model.

MRE Model Representation Error, the error present in a surrogate model
when predicting the performance of data not used in the training
of the model.

N Physical rotational speed of turbomachinery, usually measured in
rpm.

NC Corrected rotational speed of the high speed turbomachinery shaft
powering the engine core, usually measured in rpm.

NChgHPT HPT NonChargeable Cooling Flow, expressed as a fraction of total
HPC inflow.

NChgLPT LPT NonChargeable Cooling Flow, supplied by HPC interstage
bleed and expressed as a fraction of total HPC inflow.

NChgLPT,V ar LPT NonChargeable Cooling Flow of the variant engine, supplied
by HPC interstage bleed and expressed as a fraction of total HPC
inflow.

NC,HPT,V ar Corrected map speed of the variant engine’s high pressure turbine.

NCI Non-Commonality Index.

NFPT Design mechanical speed of free power turbine.

NOx Nitrous Oxide, harmful emissions that engine designers try to min-
imize with advanced combustors.

NPSS Numerical Propulsion System Simulation, an aerothermodynamic
engine cycle simulation tool originally developed by NASA.

Ns,HPC Specific speed of high pressure centrifugal compressor.
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nStgHPC Number of rotor stages that make up the high pressure compressor.

nStgHPT Number of rotor stages that make up the high pressure turbine.

NVs Noise Variables. Within the Enhanced Robust Design Simulation
process, the set of variables with which variability due to uncer-
tainty is assumed present, represented by a distribution of likely
variable settings.

PDF Probability Density Function.

PDI Performance Deviation Index.

πFan Fan Pressure Ratio, the ratio of the total pressure exiting an engine
fan stage to the total pressure entering the fan.

πFan,V ar Fan Pressure Ratio of the variant engine.

πHPC High Pressure Compressor Pressure Ratio.

πOverall Overall Pressure Ratio, the ratio of the total pressure exiting an
engine’s high pressure compressor to the total pressure entering the
first compression element of the engine.

πOverall,V ar Overall Pressure Ratio of the variant engine.

PS,core Specific core power.

Q Volumetric flow rate.

R2 Coefficient of determination, a statistical measure of how well a
model explains the variation present in a metric response.

RDS Robust Design Simulation.

SFC Specific Fuel Consumption, general term used interchangeably with
either thrust-specific or power-specific fuel consumption.

sHP Design horsepower growth margin.

SLS Sea-level Static conditions.

SSADes,Det Surrogate Set A, the deterministic surrogate models trained to rep-
resent the core defining design engine of the design-variant physics
based modeling and simulation environment. This set of surrogate
models can also be used for the deterministic design exploration of
a single engine design problem.

SSBV ar,Det Surrogate Set B, the deterministic surrogate models trained to rep-
resent the common core variant engine of the design-variant physics
based modeling and simulation environment.
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SSCDes,Prob Surrogate Set C, the probabilistic surrogate models trained to rep-
resent the core defining design engine of the design-variant physics
based modeling and simulation environment. This set of surrogate
models can also be used for the probabilistic design exploration of
a single engine design problem.

SSDV ar,Prob Surrogate Set D, the probabilistic surrogate models trained to rep-
resent the common core variant engine of the design-variant physics
based modeling and simulation environment.

SVM Support Vector Machine, a kernel based classification model.

sW25R Variant design core flow scale factor, the factor by which the design
core airflow of the variant engine is increased with respect to the
design engine core flow.

T3,max Maximum allowable stagnation temperature at engine flow station
3, the exit of the high pressure compressor.

T4 Gas stagnation temperature at engine flow station 4, the exit of the
combustor.

T41 Gas stagnation temperature at engine flow station 41, the entrance
of the high pressure turbine. The gas at this flow station includes
both combustor exit gas and non-chargeable cooling gas.

T41,max Maximum allowable stagnation temperature of gas entering the high
pressure turbine.

T45 Stagnation temperature of gas entering the low pressure turbine.

T45,max Maximum allowable stagnation temperature of gas entering the low
pressure turbine.

T4,max Maximum allowable stagnation temperature of gas exiting the com-
bustor.

T4,V ar Gas stagnation temperature at engine flow station 4, the exit of the
variant engine combustor.

TIT Turbine Inlet Temperature, the temperature of the gas entering the
high pressure turbine after exiting the engine’s combustor.

TKO Takoeff conditions.

TOC Top of Climb conditions.

TOPSIS Technique for Order Preference by Similarity to Ideal Solution.

TSFC Thrust Specific Fuel Consumption, usually measured in units of
lbm,fuel/(lbf,thrust · hr).

VAATE Versatile Affordable Advanced Turbine Engines.
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W23R Corrected flow entering core, the corrected amount of air flow at
the entrance of the low pressure compressor (booster).

W25 Core airflow, the amount of air flow traveling through the entrance
of the high pressure compressor.

W25R Corrected core flow, the corrected amount of air flow at the entrance
of the high pressure compressor.

W3R HPC exit corrected flow. Used as a geometric similarity parameter
for comparison of gas turbine engine cores.

WATE Weight Analysis of Turbine Engines, a NASA tool developed for gas
turbine weight and disk life estimationan.
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SUMMARY

The initial development of a clean sheet gas turbine engine program is a multi-billion

dollar undertaking[80]. In order to distribute this immense development cost among as large

a number of products as possible, a family of engines should employ the resultant engine

core design across a variety of engine applications. However, initial common core design

selections made during a program’s initial development phase can limit both its utility for

future variant applications as well as the resultant application performance levels.

A method has been developed to simultaneously consider immediate and future common

core engine variant applications when exploring and evaluating candidate gas turbine en-

gine core designs, while minimizing the added computational burden on the designer. The

Common Engine Core Evaluation (COMMENCE) method serves to allow core designers to

consider any number of initial or future engine applications, each under unique uncertainty

scenarios, enabling simultaneous exploration of the multiple application common core de-

sign space. By estimating the implications of core design decisions on current and future

applications, the method aims to increase the likelihood of the designer identifying an en-

gine core definition and technology development strategy that offers feasible common core

variant solutions able to achieve competitive performance levels for the engine applications

considered.

This work assumes that for an engine core to be geometrically common, its core casing

geometry and flow path must remain fixed when utilized for a new engine application.

When necessary, upgrade options that increase core flow capacity are allowed to achieve

aggressive growth application requirements. Core component performance characteristics

are maintained across common core variant designs and projected advances in technologies

are taken advantage of through the infusion of improvements into the baseline common core

definition. This work establishes a set of common core variant design rules, which impose
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design restrictions representing geometrically common core applications with or without

increased core flow capacity. These rules enable relationships to be established between the

core definition and corresponding capabilities of various common core variant engine design

options.

In addition to the common core variant design rules, another key enabler of the COM-

MENCE method is the integration of the Enhanced Robust Design Simulation (ERDS)

method, which enables candidate designs to be evaluated under various uncertainty sce-

narios, allowing for the selection of robust candidate designs that achieve the highest likely

performance. The method produces probabilistic surrogate models that instantaneously and

accurately predict confidence interval performance levels of candidate designs throughout

a wide variety of uncertainty scenarios. The form of these performance prediction models,

when integrated into the COMMENCE method, enables the simultaneous robust design

exploration of the multi-application common core design space in a highly efficient manner.

The projected requirements of all variant applications can be mapped directly onto the

core design variables. This allows for rapid identification of feasible core design regions for

the set of engine applications considered, allowing for required core design margins to be

directly determined, preventing the selection of a core definition of excessive size.

In order to test the individual enabling developments of the larger COMMENCE method,

initial experimentation is performed. First the ERDS method is put to the test, compar-

ing candidate robust design selections to those selected using a traditional deterministic

approach. Next, the rules and environment used to simulate common core variant designs

is tested. Various variant upgrade options are explored to determine thrust growth levels

achievable at various levels of upgrade complexity. The third experiment tests the method’s

ability to simulate multiple common core applications simultaneously, imposing geometric

commonality and searching for system feasibility across applications. The final experiment

demonstrates the full range of capabilities enabled by the fully integrated COMMENCE

method. A large number of engine applications are considered simultaneously for a com-

mon core engine design problem, each having unique sets of technology and requirements

xxix



uncertainty distributions. Common core design considerations are made, and simultane-

ous exploration of the common core design space is performed. Geometric commonality is

implicitly enforced across all applications, eliminating the need for data filtering or design

matching of variant applications. A feasible region of the engine core design space is iden-

tified, and a core definition is established to provide a high likelihood of achieving feasible

variant applications for all sets of requirements considered.

While exploring the common core design space for a projected engine family with multi-

ple applications to be released over time, several projected technology limits were identified

to be limiting the required core size to higher flow capacity levels in order to meet all

application requirements, resulting in compromised performance levels. It was found that

through the accelerated maturation of technologies aiming to improve those component

limits, a more compact core definition was able to be applied across the applications. The

resultant common core variant selections maintained a high likelihood in meeting their re-

quirements while achieving improved performance levels. By simultaneously considering all

projected engine program applications, technology development options, and likely sources

of uncertainty when exploring a common core design space, the designer is able to identify

desirable design regions that avoid potential problems earlier in the development process,

while also ensuring that decisions are made that maximize engine family performance.

Through development, testing, integration, and implementation of the COMMENCE

method, the objective of this work was achieved. Interesting multi-application common

core robust design studies can now be performed, offering unique observations to be made

that previously had not been able to be observed. The COMMENCE method enables high

order, multiple application common core robust design studies to be performed with greatly

reduced computational burden compared to existing robust design methods. With minimal

additional effort required upfront in the process, highly useful confidence interval probabilis-

tic information is provided with minimal increases in the computational budget required

to perform such a study. These high combinatorial design explorations enabled by the

COMMENCE method provide significant returns in valuable program guiding information,

allowing for more informed initial common core design decisions to be made.
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CHAPTER I

INTRODUCTION

The days of trial and error design have long been over, but the stakes involved in the devel-

opment of aerospace systems have never been higher. The development of a clean sheet gas

turbine engine program can be a multi-billion dollar undertaking[80], where the decision to

take on such a program can place the company at great risk. Furthermore, airframers re-

quire more and more capabilities from candidate engines for new vehicles while concurrently

requiring high efficiency, competitive pricing, low maintenance costs, and reliable operation.

In order to spread capital risk among a large quantity of products, a gas turbine engine

core is typically utilized on many engine variants. These common core engine variant designs

are tailored to achieve various sets of customer requirements. These variants cannot simply

be technically feasible options for the various requirements imposed, but they must maintain

performance levels that make them the most competitive and economically viable options

available to possible customers. With such a significant capital risk involved, there must be

an equally proportional high level of confidence in the design decisions made in the initial

development of a new engine program. A common core design selection must provide a

wide variety of competitive current and future applications in order to remain successful

well into the future.

This thesis describes the formulation and implementation of a methodology which seeks

to identify and select a common core engine design based on the performance of likely

derivative engine applications. This aims to increase the useful competitive life and overall

versatility of a common core engine family. The core of a gas turbine engine contains the

most expensive engine components, including the high pressure compressor, the combustor,

and the high pressure turbine. A common core engine program aims to utilize the engine core

design for many engine variant applications throughout the program’s life. By designing

a common core to provide a wide range of performance capabilities over time instead of
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designing for a single set of requirements, the method aims to better account for future

applications of an engine family in the initial development phase. Projecting implications of

initial design selections on later common core engine applications will allow for the designer

to evaluate whether certain decisions will improve or compromise application feasibility

and/or performance levels of future engine applications.

1.1 Research Objective

This method, called the Common Engine Core Evaluation (COMMENCE) method aims

at the selection of a turbine engine core definition that allows for a robust ability to em-

ploy competitive variants with a high associated level of confidence. Design rules will be

established for the core development process, establishing a framework for an engine core

design that enables competitive derivative engines throughout a large range of performance

capabilities, while enforcing geometric similarity between the various common core variant

applications considered. Instead of making design decisions with a single engine design

in mind, a gas turbine engine core design cycle and corresponding size should be selected

that will, from a business perspective, offer a maximum return on investment of the initial

development program.

A turbine engine core design is typically utilized on many engine variants. This is

due primarily to the high cost of its initial development. In 1990, General Electric (GE)

estimated the development cost of the GE90 program to be on the order of $2 billion[80].

In order to distribute the massive initial investment, the design must be employed on as

many aircraft as possible. To accomplish this, variants of the engine are generated, creating

unique engines tailored to various sets of customer requirements. These variants cannot

simply be technically feasible options for the various requirements imposed, but they must

maintain performance levels that make them the most competitive and economically viable

options available. With the initial investment involved in gas turbine engine designs, the

amount of confidence in the design decisions made in the initial development of a new engine

program must be proportional to the capital risk involved.

Engines are designed to meet various requirements, and in terms of commercial turbofan
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engines requirements typically consist of thrust levels at various operating conditions, spe-

cific fuel consumption (SFC) limitations, and extractions of bleed air and horsepower for the

aircraft subsystems. Although the designer usually has a general idea of the range of thrust

capabilities that the engine program should aim to gain customers, it is still extremely

challenging to forecast future engine requirements. Projections of thrust requirements, ex-

tracted power demands, geometry, and regulatory requirements all must be made in the

initial development of a successful engine program. Also present is the need to account for

projected impacts that future technologies will have on the proposed engine applications.

Actual performance impacts of technologies under development are not fully known until

they are utilized and integrated into the engine system. In addition to these sources of

uncertainty, there lies another source in the actual design, the variation of performance

levels that will actually be achieved when the engine design under development is finally

built and tested.

Successfully accounting for future requirements and the major sources of uncertainty can

give the developer a strategic advantage in the commercial engine market. By taking these

factors into account as early as possible, a robust core design can be selected and employed

across the spectrum of engines needed in the aircraft fleet. This allows for the distribution

of the program development costs across a greater number of product applications, reducing

the acquisition cost of each unit offered to customers.

For commercial gas turbine engines, an engine’s architecture, cycle, and corresponding

size is typically selected to achieve required thrust levels while allowing for the best perfor-

mance in terms of TSFC, engine weight, design mission fuel burn, noise levels, and/or other

emission metrics such as NOx emissions. If someone is simply attempting to search for the

ideal solution for that particular aircraft, corresponding design mission, and a fixed set of

technology assumptions, a traditional deterministic design method is sufficient. However,

if one considers a commercial engine design from a practical standpoint, where recovery of

the capital investment is one of if not the primary metric against which the engine design

will be weighed, many more design considerations must be included. Analysis of the gas

turbine engine market must be performed, identifying current and future capabilities and
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engine family should be able to provide. Major sources of uncertainty present in the engine

applications considered must be accounted for to ensure a high likelihood of successfully

meeting the projected requirements of the various engine applications considered. The un-

certainty present in the design of a single engine application is not only present for every

other engine variant being considered for the program, variant applications being projected

for future production have even greater levels of uncertainty present in their requirements

and technology capabilities. Moving from the deterministic design of a single engine to the

robust design of a multiple application common core engine family greatly increases the

complexity and dimensionality of the design problem. This necessitates improvements to

be made to the design process for the modeling, simulation, evaluation, and selection of

candidate common core designs.

In the past, probabilistic design methods have been employed when attempting to

achieve a robust single engine design. A framework must be utilized that takes advan-

tage of the various methods that have been shown to be promising, and in addition must

achieve advancements that allow for the simultaneous exploration and design of an entire

family of engines without significant increases in the computational burden required. It is

important for the resultant design method to be repeatable, transparent, and methodical

in its approach, ensuring a academically sound approach to the challenges that must be

overcome in the present work.

The overall engine architecture is typically consistent throughout an engine family, so the

present work assumes a fixed overall engine architecture. Also, the high pressure system of

the engine, typically called the engine core, consists of the high pressure compressor (HPC),

the combustor, and the high pressure turbine (HPT). In order to minimize development,

testing, production, and maintenance costs of an engine family, it is desirable to have a

geometrically fixed core geometry throughout a family of applications, or at the very least,

geometrically similar throughout the life of an engine program. Aerodynamic and material

updates are made as technology level permits, but the overall casing and flowpath size

should remain as geometrically similar as possible. Therefore, when deciding the size of the

common core definition, the designer should take into account all of the future projected
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growth thrust and power demands likely to be desired from the engine family architecture.

Primary Research Question: How should core design selections be made for multi-

ple current and future common core applications, ensuring a high likelihood of achieving

feasible, competitive common core engine variant designs?

Exploration of various engine core designs must be performed, estimating their impacts

on the ability of projected variant applications to meet projected requirements, while also

estimating corresponding application performance levels. Within the scope of the current

work, common engine core designs will be simultaneously evaluated for multiple applications

that require a wide range of capabilities, while having various assumed technology limits.

Research Objective: Develop a gas turbine engine design and decision making pro-

cess that aims to increase the useful competitive life and overall versatility of a common

core engine family. The process should consider current and future competitive engine

family performance, utilizing current and eventual technology improvements without

the need for a core re-design.

The objective identifies the need of a design framework that incorporates the impacts of

major sources of uncertainty into the common core design process for multiple engine family

applications. The framework should enable studies to be performed that evaluate candidate

core definitions under variations in design requirements, current and future technology im-

pacts, and corresponding performance levels of all applications considered. The framework

should also be able to evaluate the common core engine program’s ability to achieve a wide

range of thrust and power levels with a high likelihood of success. The core design decisions

will be aided by the proposed framework, bringing knowledge of design implications on

possible future product applications earlier in the core design process. This will enable the

designer to determine how the core design decisions will impact the performance levels of

initial and future applications of the engine program.

1.2 Gas Turbine Engine Program Initial Development

Early in the design process of a gas turbine engine program, core design decisions are made

which begin to solidify the core definition and corresponding capabilities of the engine
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core. In order to make these design decisions, it is necessary to identify where the core

requirements are derived from. An engine core’s primary role is power generation, tasked to

do work on and add energy to the gas flowing through the engine. The core flow performs

work on the low pressure turbine in order to produce thrust and/or power. Typically,

there are additional horsepower extraction and bleed air requirements that tax the engine

in order to power aircraft subsystems. In the case of a high bypass ratio turbofan engine,

the energy added to the gas by the engine core is used primarily to power the engine’s

propulsor, or fan. The thermal energy exiting the high pressure turbine (HPT) is converted

into mechanical work by the low pressure turbine (LPT) which powers the engine’s fan and

when present, the low pressure compressor (LPC), referred to as the booster. A majority of

the thrust achieved by a high bypass ratio engine is produced by the bypass stream, which is

compressed by the fan and expanded by the bypass nozzle, increasing the flow velocity and

the momentum flux of the bypass stream. The engine core must be sized so that sufficient

energy can be supplied to the LPT which allows for the engine to achieve the thrust levels

desired, while staying within imposed temperature limits, throughout the design mission

under consideration.

The current or projected technology level determines the temperature limits allowed at

various locations within the engine. In order to provide a consistent standard for identify-

ing various locations within gas turbine engines, SAE provides the standard for gas turbine

engine flow station numbering[2][3]. The standard flow station numbers for the two-shaft

turbofan engine architecture considered in the present work can be found in Figure 1. Typ-

ically, there is a limit imposed at the exit of the HPC, referred to as the T3,max limit. There

are also limits most commonly applied to the inlet of the HPT and the LPT inlet, referred

to as a T41,max limit and T45,max limit, respectively. These limits are set based on the ther-

mal properties of the turbomachinery materials and various life cycle considerations. These

temperature limits impact the maximum cycle pressures and temperatures, and also impact

the amount of turbine cooling flows required. Knowing the core temperature limits and the

predicted thrust demand of the engine at various points of the design mission, the designer

can size a core that will supply the LPT with sufficient energy to produce required thrust
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Figure 1: Standard Turbofan Engine Flow Station Designations[2][3]

levels throughout the design mission without exceeding the technology limits imposed. The

HPC can be sized to provide a specified design pressure ratio, requiring a certain number

of compression stages to supply the pressure while remaining below stage loading limits.

Based on the amount of flow capacity of the core and the determination of power required

by the HPC, the HPT can then be sized.

All of the core sizing decisions made should not only be based on the single design

engine being sized, but should also consider engine variants that in the future will utilize

the current engine core definition currently in development. Table 1 contains a list of core

design parameters that values must be assigned for a common core engine program. For

example, the actual geometric size of the core may need to be increased not for the current

engine under development, but for a future variant that will require higher thrust levels

through increased core working fluid. Material and aerodynamic improvements will almost

certainly be made in the future, so the core design may benefit from higher design loadings.

The higher design loading would likely cost the initial engine design in component efficiency,

but would enable future derivative engines with aerodynamic improvements to utilize the

same number of stages and flow capacity of the initial core design, requiring minimal design

alterations for future variants while improving the overall engine family performance.

A question now arises that must be answered if the designer desires an engine core that
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Table 1: Gas Turbine Engine Core Design Parameters

Parameter Description

nStgHPC HPC Stage Count

nStgHPT HPT Stage Count

A25 HPC Entrance Area

A3 HPC Exit Area

A41 HPT Entrance Area

A43 HPT Exit Area

ChgHPT HPT Chargeable Cooling Fraction

NChgHPT HPT NonChargeable Cooling Fraction

ChgLPT LPT Chargeable Cooling Fraction

NChgLPT LPT NonChargeable Cooling Fraction

will offer the best overall performance for an entire family of engines. Should every pro-

jected variant carry the same weight when making design decisions, or should preference be

given to different regions of the requirements space in order to achieve the best performance

possible in those regions? If there is a high level of confidence that particular projected

engine variants will have more customers, then those variant designs should carry more

weight to ensure those variants perform well. In addition, the initial engine family members

must perform well against the current competition in order to ensure entry into the mar-

ket, preventing the engine program from premature failure. By adding preference to the

performance of certain regions of the engine program application space, the designer may

be able to improve the level of competitiveness of applications that aim to serve more pro-

jected customers, aiming at achieving the maximum possible fleet utilization. By increasing

the number of units sold by the engine program, the initial development cost is able to be

distributed among more engines and the individual unit cost will likely be reduced.

Competitive utilization of an engine core across a variety of applications usually re-

quires modifications of the engine. Methods utilized to create engine derivatives must be

considered. De-rating and throttling fixed engine designs is an inexpensive way to tailor

an engine to specific customer requirements, but have negative impacts on both the per-

formance and life of the engine. De-rating an engine decreases the operating temperatures

the engine components are exposed to, extending the product life. However, significant
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de-rating causes the components of the engine to no longer operate at near-peak efficiency

levels, inducing performance penalties. Throttling the engine and elevating the temperature

levels and operating speeds produces more core power, but reduces the life of the engine.

Resizing the low pressure system while having the engine core fixed is a more expensive

development, but may pay off in performance for future variants that require significantly

different thrust levels than an LP system was initially sized for. Also, geometric limitations

can require a modified LP system. The typical placement of the engine under the aircraft’s

wing usually imposes a fan diameter constraint that can become active, requiring a smaller

fan to be employed for a particular engine application. If the designer aims to develop

an engine core that achieves the best overall engine family performance, then projected

customer requirement variations and corresponding engine variants must be modeled and

evaluated simultaneously in order to predict the likely engine performance with the selected

common core design.

Research Question 2: For a given gas turbine engine core, how should a common

core engine variant design be simulated? What parameter(s) must be held to consistent

values in order to maintain geometric and aerothermodynamic commonality between

engine applications?

1.3 Design for Maximum Utilization

Maximum return on investment for engine design is achieved by satisfying two primary

goals. The first is to minimize the capital investment in the development of a product line.

The second is ensuring the product line provides a wide range of competitive solutions. In

other words, the program must offer products that achieve high performance at a low cost in

order to attract customers. The designer must make sure their product line performs well for

a variety of possible requirements, including the range of possible thrust levels, power and

bleed demands of the aircraft, and any geometric constraints imposed. With consideration of

the current aircraft fleet distribution as well as projected vehicle retirements, the designer

can accommodate projected customer needs in the initial development program of their

engine design. Accommodating the fleet would enable the designer to design an engine
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core according to estimates of the thrust range which will offer the maximum number of

possible customers, while also placing preference on certain thrust and/or power levels in

the requirements space where more demand is projected to exist.

Research Question 3: What design options should be considered for common core

engine variant applications in order to distribute development capital across the engine

program by taking advantage of commonality, while also offering more design freedom

when needed for more demanding applications?

With or without the consideration of current or projected fleet distributions, the engine

designer should make design decisions that maximize the competitive thrust spectrum of the

engine program. When designing the engine core, the range of thrust and power levels an

engine line can competitively achieve should be maximized. The designer must determine

what range of thrust levels the core will aim to provide competitive applications, as well

as the impact of technology maturation on the achievable engine program capabilities. At

a given technology level and corresponding temperature and efficiency limits, there is a

limit to how much energy can be added to a fixed amount of core flow. This limits the

amount of work the core flow can perform on the engine’s propulsor. Therefore, the engine

core size selected for an engine program is highly correlated with the maximum amount of

thrust achievable with fixed core flow levels. On the other hand, as the size of the engine

core increases, the ability to efficiently provide low thrust engine program applications is

diminished.

Research Question 4: What range of capabilities can various common core design

options achieve without significant compromises made in application performance?

Making core design selections requires evaluation of how well a specific decision achieves

the designer’s goals. Metrics must be used that will assist in determining whether an engine

family provides a wide variety of competitive capabilities at various technology levels. Proper

evaluation of engine designs under consideration is crucial in order to make well informed

design decisions. Otherwise, the engine family design performance could be compromised

by not considering the correct metrics for evaluating an engine family design.
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Research Question 5: How should a common core engine program consisting of

multiple variant design applications be evaluated?

How well an engine core provides a wide range of successful engine derivatives should

be determined within the context of performance and economic levels. Performance of

candidate commercial engines are traditionally determined by estimating TSFC and corre-

sponding mission fuel burn levels. However, if candidate engine performance was the only

aspect considered, then unique engine designs, including core designs, would be employed

for every new set of customer requirements, which would be extremely costly. Therefore,

consideration should also be made on economic aspects of design decisions made for the

engine family. Not necessarily to estimate the acquisition costs of engines, but to place

the engine core and its corresponding derivatives on a cost scale. The size of the engine

components as well as the temperature levels the engine operates at will provide physical

relationships to the relative cost of a particular engine. In order to achieve higher temper-

ature levels, engine material and cooling technologies must be developed and integrated,

requiring significant costs. A cost scale should consider temperature levels of the design

cycle, the number of component stages and corresponding loading levels, and the complex-

ity involved in achieving high performance variants throughout the thrust spectrum. By

placing an engine application on the cost scale, the designer will not estimate the dollar

amount required for an application, but will be able compare two proposed variants for a

particular application.

Utilization of a common core engine design requires performance compromises to be

made. The engine core size must be selected in order to provide ample power throughout

the range of possible requirements. Therefore, for the sectors of the requirements space

that would require lower power generation from the core, the common core design would

likely be over-sized for that particular application. An over-sized engine core is heavier

than necessary, and may operate at lower efficiency levels than a core sized specifically for

an application’s specific requirements. Evaluations of candidate common core designs and

possible engine family members for a commercial engine program should be carried out with

consideration of at least some the following characteristics of the engine design:
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� TSFC levels at various flight conditions

� Fuel burn levels when flown on board various aircraft throughout design missions

� Thermal, propulsive, transmission, and overall efficiency levels achieved by the resul-

tant engine design

� Core air flow levels at the upper and lower desired design thrust levels and associated

thermodynamic flow properties

� Complexity of engine derivative design modifications required to achieve high perfor-

mance throughout the thrust spectrum

� Number of unique low pressure systems required to achieve high performance through-

out the thrust spectrum

� Core turbomachinery stage counts and corresponding loadings at various technology

levels

� Engine core growth capabilities with increases in technology level and various degrees

of design freedom allowed

In order to evaluate a common core design, maintaining a common engine core, in terms

of core architecture and size, upon which different low pressure systems will be applied

to will be one challenge that must be overcome. The geometry of the core must remain

fixed in order to simulate a common core engine model with a geometrically fixed design

core. However, technology updates to the materials, aerodynamics of the turbomachinery,

and cooling network modification must be able to be applied to the common core variant

applications, enabling higher temperatures and power outputs of the engine core, while still

maintaining a geometrically fixed engine core. A set of engine core parameters that entirely

defines a geometrically fixed or similar engine core must be established and maintained

throughout any engine family design exploration exercise. Otherwise, the evaluation of the

common core engine family design would be invalid. Table 2 contains an entire list of engine

core design parameters, along with categorizations of which ones remain constant and which

ones can vary within a common core engine program.
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Table 2: Engine Core Design Parameter Categories

Parameter Description Category

W25R Design corrected core flow Application Specific
W3R HPC design exit corrected core flow Fixed for Program
πHPC Design HPC pressure ratio Application Specific
NC Design core shaft speed Application Specific

T3,max Design maximum HPC exit temperature Technology Limited
T41,max Design maximum HPT inlet temperature Technology Limited
T4,max Design burner exit temperature Technology Limited
nStgHPC HPC stage count Minor Modifications Allowed
nStgHPT HPT stage count Fixed for Program
A25 HPC entrance area Minor Modifications Allowed
A3 HPC exit area Fixed for Program
A4 Burner exit area Fixed for Program
A43 HPT exit area Fixed for Program

Employing the Common Engine Core Evaluation (COMMENCE) method, decision mak-

ers will be able to select an initial engine core design with better knowledge on how different

core design parameters will affect the future capabilities and limitations of the core design

under consideration. They will be better informed on how robust their engine program is to

the variation in possible customer requirements and projected technology impacts, ensuring

their initial design will provide competitive solutions for their customers now and in the

near and distant future with a high associated level of confidence. The major sources of

uncertainty affecting future applications, particularly the capabilities required of the engine

program and the technology limits achievable will be accounted for, allowing the designer

to bring the projected impacts of these up front in the design process. This will allow the

designer to select a common core design that will be robust to future requirements and con-

straints, creating the ability to build the proper growth potential into the engine program’s

core design.
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CHAPTER II

BACKGROUND

In order to understand and improve upon the traditional gas turbine engine design process

from a practical standpoint, it is important to have a historical perspective on existing

successful engine programs. One such program is the CFM56 family of engines. CFM

International (CFMI) has been able to successfully utilize their engine family since the 1970s,

offering a great example of a robust common core engine program. It is also important to

understand the traditional academic approach to turbine engine design, allowing for the

identification of regions of the process that must be refined for robust common core design.

Specifically, traditional approaches to the determination of the engine architecture and

design cycle should be understood, as well as the requirements and constraints considered

during this selection process.

This chapter provides historical lessons learned from the CFM56 product family. It then

provides traditional approaches to commercial engine design, exploring how requirements

and technology limits affect the engine cycle performance and the selected cycle of an engine

design. The latest approaches to accounting for major sources of uncertainty and ways of

optimizing the design will also be presented. The goal is to provide a clear basis for which

the proposed common core design methodology will enhance the designer’s ability to select

an engine core design that is robust to requirements and technology limits of current and

future applications.

2.1 The CFM56 Engine Family

CFM International (CFMI), a joint partnership of two aircraft engine manufacturers, Snecma

(SAFRAN Group) of France and General Electric (GE) of the United States formed in

September 1974 in order to compete with Pratt & Whitney’s JT3D and JT8D engines in

the “10 ton” thrust class. The resultant engine, the CFM56-2 first flew in February 1977

and was certified in November 1979. The CFM56-2 was selected to fly on the stretched
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Figure 2: CFM International’s CFM56-2 Engine[1]

DC-8-70’s and then on KC-135R tankers. Once confidence was gained in CFMI through

the introduction of the CFM56 to the fleet on the DC-8’s, the CFM56 shown in Figure 2,

became a popular and viable option for new aircraft. In 1981, Boeing’s 737-300 was first

launched, mounted with CFM56-3 engines on board. Then in 1984, Airbus selected the

CFM56-5A for their launch of the A320[12].

By making their way onto the 737-300 and A320 aircraft early in each of their respective

programs, CFMI ensured they would maintain relationships with both major commercial

airframers. Not only did this encourage the use of CFM56 engines on later 737 and A320

variants, but it also made CFMI an attractive company for the airframers to work with in

the development of their latest single aisle aircraft designs. The CFM56 engine family is

a model of how to gain entrance into a competitive market, and to nearly guarantee their

products’ use well into the future. Below is a quote from the CFMI website.

“CFM’s product line includes six engine models that are tailored to the aircraft

applications they power. From the initial CFM56-2 to today’s Tech Insertion

CFM56-5B and CFM56-7B, our engines are the most sought-after in the indus-

try. Spanning a thrust range of 18,500 to 34,000 pounds. CFM engines are the

power behind more than 8,000 commercial and military aircraft. CFM’s vast

field experience of nearly 500 million flight hours is built into every engine we
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make. Blending proven reliability with cost-effective technology, CFM engines

lead the industry in reliability, durability, performance retention, and time on

wing.” [1]

In order to gain insight into how the program became so successful, several questions

should be asked:

� How was the CFM56 engine architecture and corresponding cycle and size initially

determined?

� From an engine design perspective, how did CFMI ensure that their CFM56 design

would allow for as much growth as the program has seen?

� How were competitive variants of the CFM56 designed and selected?

� How did CFMI decide when to introduce technology updates to their engine program?

2.1.1 Initial Development - The CFM56-2

In order for CFMI to have a successful engine program, they needed to enter a competitive

market with an engine that performed exceptionally well while also providing growth ca-

pability for future customers. They knew higher bypass ratio engines than those currently

flying would offer the competitive edge in the market at the time. They also knew that

they needed to build significant growth potential into the engine program. Shortly after the

GE/Snecma partnership was officially formed, in a February 1975 issue of Aviation Week,

the following statement was made concerning the growth potential of the CFM56:

“The CFM56 has a built-in and planned growth potential to 24,000 lb. thrust

and then to 25,000 lb. with increased airflow and higher operating temperatures.

Also planned is a 27,500-lb.-thrust version that will require definite modifications

from the preceding member of the engine family.”[117]

In order to enter and gain the competitive edge in the single aisle market, CFMI fo-

cused primarily on achieving higher fuel efficiency, but also placed significant focus in the

reduction of maintenance costs. The design philosophy of the CFM56 began with the use
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of leading edge technology which enabled a compact core and advanced cycle. They also

considered room for improvement, enabling the infusion of new technology when it had

reached maturity. The CFM56 was deliberately designed and tested at maximum severity

conditions, then was de-rated when entering into service[12]. This allowed for the evolution

of the CFM56 over time as growth of the engine was demanded by the market.

The testing program of the CFM56 consisted of “extra-severity” testing. Core testing

was performed at ratings more severe than what was planned during commercial operation.

The testing was done at growth power levels of temperature, speed, and pressure. The

purpose was to find potential problems earlier and at a faster rate than the typical testing

program. This allowed significantly more time for corrective actions before commercial

service began[78].

For example, the CFM56-2 engine was regularly tested at thrust levels in excess of

26,000 pounds of thrust, and was certified at a lower level of 24,000 pounds. The DC-8’s on

which the -2 first operated on in 1982 however, required less than 22,000 pounds of thrust

with additional de-ratings around 19,000 pounds[32]. This not only guaranteed reliability by

designing and testing at temperatures and pressures well above what they would experience

during commercial operation, but it was also an ingenious way to build immediate growth

potential into the initial engine. Not only was CFMI able to achieve TSFC levels 10 to

20% better than the competing low bypass ratio engines[12], but they were able to lay a

foundation for which to launch major thrust growth variants in conjunction with regular

evolutionary technology updates to the product family.

2.1.2 Boeing Application - The CFM56-3

Due to the attractive performance of the CFM56 during it’s initial introduction to the fleet,

Boeing selected it to be on board its new 737-300, which entered service in 1984. The use of

the CFM56-2 showed that high bypass engines that were being used on the larger aircraft

could be applied to offer substantial performance improvements on the smaller single aisle

vehicles. CFMI developed the CFM56-3 engine for the 737-300. The CFM56-3 was smaller

than the -2, due to geometric constraints imposed on the engine diameter due to the low
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Table 3: Characteristics of the CFM56-2 and CFM56-3 Engines[32]

CFM56-2 CFM56-3

Thrust @ SLS 24,000 lbs 20,000 lbs

Fan Diameter 68.3 in. 60 in.

Bypass Ratio 6 5.1

Weight 4,612 lbs 4,278 lbs

Length 95.7 in. 93.0 in.

Certification Nov. 1979 Sept. 1983

wing of the 737. Some of the defining characteristics of both the -2 and -3 engines are

shown in Table 3 for comparison. It required less thrust and therefore had a smaller fan

diameter and bypass ratio than the -2. The smaller fan design also gave the engine proper

clearance when mounted under the 737-300 wing. This constraint also required the gearbox

and accessories, normally found underneath the engine for easy access, to be placed on

the side of the engine. The most attractive aspect of the CFM56-3 was that it offered

an uninstalled TSFC improvement of roughly 20% compared to the competing low bypass

ratio engines on similar single aisle aircraft at the time[32]. In addition, about 90% of the

parts were common with the CFM56-2, allowing for much of the testing and maintenance

experience to be applied to the -3 engine. Specifically, the entire core as well as the low

pressure turbine (LPT) of the -3 engine were the same as what was in the -2 engine, which

had already been significantly vetted through the extra severity testing program[32].

In the same manner that the CFM56-2 was tested at performance levels beyond its

certification levels, the CFM56-3 was tested to achieve thrust up to 23,000 lbs while it was

planned to be certified for 20,000 lbs of thrust and operated at even lower levels. In the

normal operation of the 737-300 at stage lengths of 500 miles or less, the takeoff thrust would

be de-rated between 10 and 15 percent below the engine’s certification level, with exhaust

gas temperature (EGT) levels on the order of 300◦F below it’s certification redline[32].

A majority of the differences between the CFM56-3 and its parent, the CFM56-2, were

contained within the low pressure compression system. In fact, the -3 engine employed the

same exact core and low pressure turbine as the CFM56-2[32]. The -3 engine was designed
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to operate at the same low pressure rotor speeds as the -2 engine. This offered the smaller

fan to have lower tip speeds than the larger fan design on the -2 engine. The fan for the

CFM56-3 was a scaled CF6-80 design, which offered high efficiencies at the operational tip

speeds. The smaller fan of the CFM56-3 provided an efficiency improvement of almost 5-1/2

percent over the tip shrouded -2 design, offering almost 3% of improvement in cruise TSFC.

The reduced loading of the fan also enabled a reduction in the number of struts from 12 to

8. In addition to allowing for a structural improvement, the aerodynamics of the new fan

required a redesign of the low pressure compressor (LPC) for the CFM56-3[32].

2.1.3 Airbus Application - The CFM56-5

The next member of the CFM56 family came with the launch of the Airbus A320. The

aircraft was designed to carry 150 passengers over ranges up to 3,000 nautical miles[47]. In

1984, the A320 launched with the CFM56-4, but an improved version was offered shortly

after in 1988: the CFM56-5A1, a 25,000 lb thrust class engine. In the design of this

advanced technology derivative, aerodynamic improvements were applied to virtually all of

the components, including the engine core components and the 68 inch diameter fan. Full

Authority Digital Electronics Control (FADEC) was a major addition to the new design

as well. The -5A1 not only emphasized high performance at the design point(s), but also

maintaining high performance during off-design operation. The engine reportedly provided

cruise TSFC improvements greater than 11% when compared to the CFM56-2[12].

Significant upgrades were made to the common engine core architecture of the -5A1.

Aerodynamic improvements were made along with FADEC stator schedules to improve the

HPC performance. Also, significant attention was paid to the interaction between the HPT

and LPT performance, requiring full scale rig testing. This, in addition to aerodynamic

improvements made to the LPT provided about 40% of the -5A1 performance improvement

with respect to the -2 engine[12].

The design of the -5A1 offered significant growth potential, which later became a key

factor in its selection for the long range Airbus A340. The CFM56-5C2, a high thrust

derivative of the -5A1, was designed to provide up to 36,000 lbs of thrust by utilizing a
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72 inch high flow fan, as well as improving the aerodynamic components of the -5A1. The

-5C2 entered service in 1993 providing 31,200 lbs of thrust for the A340. It utilized the

same core as the -5A1, with the addition of a fourth booster stage, a long duct mixed flow

nacelle and a fifth LPT stage to provide ample power to the new high flow fan[12].

In 1989, focus was then put on the design of a high thrust derivative for the stretched

A320: the CFM56-5B. Again, the common core of the -5A1 was utilized. The only mod-

ifications needed from the -5A1 was a four stage booster and new 68 inch high flow fan

in order to achieve 29,000 to 31,000 lbs of thrust with the -5B. Everything aft of the low

pressure compressor was consistent with the 1992 version of the -5A1 engine.

2.1.4 Boeing Next Generation - The CFM56-7 and Beyond

With the proven track record of the CFM56-3 on board the 737-300, -400 and -500, it was

an easy decision for Boeing to select CFMI for their Next-Generation 737. Development of

the CFM56-7B began in early 1994. The design took advantage of the latest technology of

the -5B, while also outfitting the engine with an advanced 61 inch fan. The engine is able

to achieve growth thrust up to the 27,300 lb thrust capability of the -7B27.

Figure 3 displays the various thrust levels achieved by members of the CFM56 engine

family and each member’s corresponding weight. This shows that a single common core

engine program was able to gain customers with competitive solutions producing max takeoff

thrust ratings ranging almost 15,000 lbs, offering more than a 50% increase in rated thrust

levels from the initial design over the life of the program. CFMI showed that building in

accommodations for new technology in their modular design approach enables rapid and

competitive design responses for future customer requirements. The modular, compact and

highly loaded core employed in the CFM56 allowed for continuous technology insertions as

the new materials and manufacturing improvements were made. Not only did this allow for

rapid development of new derivatives, but also allowed for advanced technology insertions

into their existing fleet. The growth potential built into each base variant by testing and

certification at higher thrust levels than initially required allowed for extensive thrust growth

with very minimal modifications. Figure 4 shows the evolution of the CFM56 engine family,

20



including the technology insertions made to earlier models employing the technological

developments of the later engine models.

2.2 Gas Turbine Engine Design

The gas turbine has been theoretically explored since the late 1700s, with the first related

patent by John Barber in 1791[8]. The general process for the design of the gas turbine

engine is well established, allowing for an acceptable process to which additions will be

added to improve upon the more practical process of selecting a common engine core design

for a family of gas turbine engines. Taking advantage of recent developments in engine

design will enable simultaneous consideration of a variety of requirements and constraints

when making decisions and down-selections that define the core design.

2.2.1 Traditional Design Process

The design and development of a new gas turbine engine begins with market research

accompanied with or resulting in customer requirements. If market research determines a

need for a new engine, whether there is a lack of available engines for a desired thrust class,

or the advancement of technology permits a new entry into the market, an engine company

may start exploring their options for the development of a new engine. Conversely, if a

customer, usually an airframer, needs a new engine developed, the engine company will

also perform some preliminary studies to offer the airframer with a proposed competitive

solution.

The requirements of the engine are what determine the engine’s architecture, resultant

cycle, and overall size. Typical engine capabilities account for mission requirements, such

as thrust requirements at various conditions as well as power extraction requirements for

aircraft subsystems. From an aircraft’s perspective, mission fuel burn and overall engine

weight must be minimized. There are also geometric requirements, typically due to fan

diameter constraints imposed by the typical engine placement under the wing of the aircraft.

Additionally, a key design requirement often overlooked from an academic perspective is

the minimization of the various system costs.
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The high temperatures that the turbomachinery components experience significantly af-

fect the amount of maintenance required over the engine’s life cycle. The overall parts count

also has an impact on maintenance costs. The various costs involved in the development,

testing, production, certification, operation, and maintenance is of the utmost importance

to possible engine customers. A candidate design that is not economically viable, regardless

of its likely performance levels, will not be attractive to possible customers.

The consequences of making incorrect design decisions can be very significant, par-

ticularly when poor initial down selections are made that limit the design freedom as a

development program matures. Expensive mitigation actions may be necessary to meet

missed requirements or improve an application performance characteristics. In addition to

the added costs involved, mitigation of a design based on a posteriori knowledge would likely

have accompanying compromises in achievable performance, compared to a more informed

initial design selection. Worse yet, if design decisions are made that greatly compromise

an engine family’s initial engine applications, the entire engine program may be at risk of

premature termination. The immense consequences of incorrect design decisions require

great care to be taken when simulating and evaluating, and selecting candidate designs.

Oates provides the traditional procedure for matching of an engine and airframe for

a projected aircraft mission[85]. This framework, displayed in Figure 5, aims to converge

upon an aircraft design that results in an engine that is sized to provide the needs of the

aircraft system. The objective of the process is a design selection that is very likely to

meet mission requirements with the best performance. Oates notes the advantage of using

a digital computer to quickly and efficiently assess a large number of candidate configura-

tions. However, he notes that the quality of the final design selection depends greatly on

the engineering judgment as well as the accuracy of the analytical methods used to simulate

and evaluate candidate designs. This highlights several aspects that must be present in a

gas turbine design and selection process. First, an engine must be able to meet all require-

ments while achieving competitive performance levels. Second, the design tool used much

accurately represent the real systems being simulated, allowing for accurate performance

estimates to be made for candidate designs. Finally, judgment of the engineer should not
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Figure 5: Oates engine/airframe matching process.[85]

be outside of the process. No matter what a design tool suggests, an designer must make

the final selection based on all the information available to him.

Relating Oates’ design process to the objective of the present work, his observations

highlight several requirements of a common core design tool. Evaluating a candidate design

based on its ability to provide assumed requirements is of primary concern. Second, the

method must maintain accuracy in performance estimates of candidate designs. Lastly,

the tool must provide the decision maker as much information about candidate designs as

possible. In terms of a multiple application common core design problem, this challenge of

maintaining model accuracy while providing substantially more useful information to the

engineer must be overcome. This is of chief concern in the present work which aims to

evaluate common core designs through the simulation of all projected applications under

various likely sources of uncertainty.

Once engine design requirements are specified or projected, preliminary studies are

performed. These studies help in the selection of the engine architecture, as well as the
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selection of the engine cycle that creates a competitive solution that meets or exceeds all

requirements. Engine cycle design space exploration assists in the determination of which

values of design cycle parameters allow for sufficient performance at various design points

of the engine[103]. If it is determined that a particular engine cycle satisfies all performance

requirements, it is considered a candidate engine cycle.

For each candidate engine cycle, the predicted flowpath is then generated. In other

words, dimensions are added to the otherwise dimensionless cycle analysis. This assists

in the estimation of the engine component dimensions, component stage counts necessary

under the assumed loading levels achievable, and the predicted weight build up of the

propulsion system.

Next an engine deck is generated, consisting of throttle hook data for flight conditions

throughout the possible flight envelope of a particular aircraft mission. A typical engine

deck contains engine performance characteristics throughout all possible flight altitude,

Mach number, and throttle levels the engine may experience during the design and alternate

missions.

Mission analysis is then performed, simulating the mission in order to determine how

well the vehicle performs. This analysis also determines if engine or vehicle re-sizing is

necessary or desired. If the vehicle is resized, then the new required thrust levels are fed

back to the cycle analysis process and the entire vehicle design loop is performed again,

until convergence is reached. This iterative process, from engine cycle analysis to mission

analysis, results in the overall vehicle performance of the candidate engine cycle under

consideration.

Mattingly[68] offers a process flow for gas turbine engine design, depicted in Figure 6.

The dashed regions of the engine design process represent the primary focus of the present

work. Take note that the consideration of uprated and modified versions of the engine design

occurs far downstream in the process, well after the engine design has entered the detailed

design phase.
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Figure 6: Mattingly’s Gas Turbine Engine Design Process[68]
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2.2.1.1 Preliminary Design

The primary goal of the preliminary design of a commercial turbofan engine is the estab-

lishment of a thermodynamic cycle and corresponding engine size which is optimized to

minimize block fuel burn for a specified airframe and design mission, while meeting a va-

riety of restrictions, or constraints[59]. Preliminary design of propulsion systems begins

with requirements, such as specified performance requirements as well as requirements es-

tablished through constraint and mission analysis[36]. Design parameter values converge,

resulting in an engine design that meets all of the requirements and satisfies all constraints

under consideration.

The engine cycle is analyzed at various design points under consideration and design

cycle parameters are selected to provide a technically feasible design that maximizes the

figures of merit used to compare different candidate engine cycles. Sizing of the engine

is performed, which determines the geometry of the engine that meets thrust and power

requirements specified by the customer. Aircraft performance can then be predicted, de-

termining whether resizing of the engine is required. Mattingly et al.[69] presents the

preliminary design sequence for propulsion systems, which is shown in Figure 7.

2.2.1.2 Requirements and Constraints

Requirements and constraints together determine the feasible design space of a propul-

sion system. Requirements of the propulsion system consist of performance targets and

performance limits. Performance targets, such as required thrust levels at various flight

conditions of a design mission or horsepower demands of the airframe must be matched.

These targets can be treated as equality constraints, shaping the engine cycle design space

(CDS)[102]. Performance limits usually consist of requirements that must be sustained at

minimum levels. These can be treated as inequality constraints, setting the boundaries of

the feasible CDS. Fowler[36] compiled a list of typical design requirements, consisting of

vehicle requirements affecting the propulsion system design. In addition to performance

limits, technology limits also constrain the engine CDS[102]. These constraints consist of

material temperature and component loading limits, as well as achievable turbomachinery
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Figure 7: Mattingly’s Preliminary Engine Design Process[69]
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Table 4: Typical Commercial Transport Engine Design Requirements and Constraints

Commercial Transport Engine Design

Requirements Constraints

- Range - Turbine Inlet Temperature Limit
- Payload - Cooling Flow Limits
- Balanced Field Length - Rotor Speed Limits
- Top of Climb Thrust - Shaft Torque Limits
- Takeoff Thrust - Mach Limits
- Engine Horsepower Extraction - Component Loading Limits
- Engine Out Climb Gradient - Maximum Component Pressure Ratios
- Noise and Emissions - Nozzle Area Limits
- Growth Capability - Fan Diameter Limits

component efficiency levels. Table 4 provides lists of requirements and constraints that are

typical when considering a commercial transport engine design.

2.2.1.3 Engine Cycle Analysis

The objective of turbine engine cycle analysis is to determine the performance of an engine

cycle[13]. This includes the process of obtaining estimates of the performance parameters

in terms of design limitations, flight conditions, and design choices[86]. The performance

parameters Oates[86] refers to are primarily thrust and specific fuel consumption. Design

limitations can be numerous, including maximum allowable temperatures due to the current

level of technology, or weight and geometry limits imposed by the customer. The design

choices consist of the engine architecture(s) under consideration, the size of the engine, and

the candidate engine cycle selection.

A candidate aerothermodynamic engine cycle needs to be both feasible and offer the

competitive performance for the vehicle application at hand. The measure of performance

can be the efficiency of an engine, whether it be the thermal, propulsive, or overall efficiency.

The thrust specific fuel consumption (TSFC) at a design operating point is a popular

measure of performance of the engine. However, in order to find the engine cycle that

allows for the vehicle to perform best, the estimated design mission fuel burn should be

minimized.
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At a given technology level, the turbofan engine designer typically has four thermody-

namic parameters of which he or she has the freedom to vary in order to determine the

best engine cycle for a particular application. The four engine design parameters are the

overall pressure ratio (πOverall), the turbine inlet temperature (TIT), the fan pressure ratio

(πFan), and the bypass ratio (BPR). The selection of values for these cycle parameters is

dependent on the aircraft mission and design[21]. For example, in the case of a long range

commercial airliner, the specific fuel consumption of the engine at cruise conditions is much

more important to minimize than that of an engine designed for a military interceptor.

This variation in the importance of performance metrics is one primary reason why many

different engine cycles are being utilized in today’s turbine engines.

Typically, engine performance is determined based on the achieved output (thrust or

shaft horsepower), efficiency (TSFC), and weight. The net thrust of a separate flow turbofan

is estimated using the following equation. For each flow stream of the turbofan, there are

two sources of thrust. The primary source is the momentum flux of the flow, while there

is also a secondary source due to pressure when the nozzle flow is not fully expanded to

ambient pressure.

Fn = ṁ19(v19 − v0) + ṁ9(v9 − v0) +A19(p19 − p0) +A9(p9 − p0) (1)

The TSFC of a gas turbine engine is defined as

TSFC =
ṁf

Fn
(2)

where ṁf is the fuel flow rate of the engine. The TSFC is an efficiency measure of an

engine, measuring how much fuel is required to achieve a given thrust, and permits the

comparison of engines[35]. Another useful parameter of an engine is the specific thrust, the

ratio of thrust achieved to the total mass flow entering the engine.

The bypass ratio (BPR) of an engine is the ratio between the mass flow bypassing the

engine core to the core mass flow. It is defined as

BPR =
ṁbyp

ṁcore
=
ṁ13

ṁ23
(3)
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Knowing that the total engine air flow is the summation of the two flows, each stream

mass flow term can be expressed in terms of the BPR and the total engine air flow.

ṁ0 = ṁ13 + ṁ23 (4)

ṁ13 =
BPR · ṁ0

BPR+ 1
(5)

ṁ23 =
ṁ0

BPR+ 1
(6)

Neglecting the mass flow contribution to the engine’s achieved thrust as well as any mass

flow lost, such as customer bleed requirements, the thrust equation can now be expressed

in terms of the BPR and total engine air flow.

Fn ≈
BPR · ṁ0

BPR+ 1
(v19 − v0) +

ṁ0

BPR+ 1
(v9 − v0) +A19(p19 − p0) +A9(p9 − p0) (7)

In order to show how the bypass ratio impacts the specific thrust of the engine, Figure 8

shows how the specific thrust of an engine changes with the bypass ratio. As the bypass

ratio increases, the specific thrust decreases. Instead of looking at the ratio of thrust to

the total engine air flow, Equation 6 can be rearranged to define an expression for the total

mass flow as a function of core flow and bypass ratio, and this expression can be placed in

Equation 7. An expression can then be roughly established, showing the impact the bypass

ratio has on the resultant thrust per unit of core air flow. Figure 9 shows this relationship.

The thrust per unit core flow increases until losses incurred by a large fan diameter start

to overwhelm the available thrust at higher bypass ratios. When considering selection of

an engine core design, this offers an interesting way to look at the relationship between

the net thrust achieved by an engine and the core air flow. It offers an incentive to search

for the engine cycle that maximizes the thrust per unit of core air flow. Particularly, if

a core definition is established, the designer should ask how to maximize the thrust for

the established core’s design airflow levels. Conversely, what range of thrust levels can be

achieved for a particular core airflow, and what kinds of performance compromises are made

for each of those thrust level applications compared to an engine core flow sized just for the

application under consideration? For a particular set of engine requirements, constraints,

and assumed technology capabilities, there exists an optimal cycle, and compromises will be

32



Figure 8: Impact of BPR on Specific Thrust

made when utilizing a common core definition for multiple sets of requirements, constraints,

and assumed technology capabilities. A common core application’s low pressure system

should be designed to minimize the performance compromises made when employing a

common core definition, while remaining within all limits imposed on the design. For a

given amount of air flow, Fowler indicates that a key driver in the achievable thrust levels

of an engine cycle is the turbine inlet temperature (TIT) rather than the cycle pressure

ratio. On the other hand, the TSFC is primarily driven by the BPR while being moderately

sensitive to the cycle pressure ratio and weakly dependent upon the TIT[36].

A turbofan engine can be defined in terms of its size, pressure ratio, bypass ratio and

specific thrust[24]. The size of the engine is typically thought of as the amount of airflow

capacity required, given the selected engine cycle, to produce the required thrust levels at

various design points. The pressure ratio, specifically the πOverall is determined based on

the technology level of the engine and the associated material temperature limits of the

compression system. The engine’s bypass ratio is selected that maximizes vehicle perfor-

mance by increasing the propulsive efficiency, while limiting the losses incurred by large fan

diameters. Ideally, the higher the bypass ratio, the higher the propulsive efficiency which
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Figure 9: Impact of BPR on the Thrust per unit Core Air Flow

in turn reduces the TSFC. However, an increase in bypass ratio while utilizing a fixed core

size causes an increase in fan diameter, which can cause increases in tip losses, ram drag,

and nacelle drag. The fan diameter is also usually limited by the placement of the engine

under the wing of an aircraft.

There are a wide range of pressure ratios utilized in engines that are in service today.

This is due to the many factors considered by designers when selecting their design pressure

ratios. These factors include the specific power output required by the engine, achievable

loading levels which determine the number of stages required to reach certain pressure

ratios and the corresponding number of turbine stages required to extract thermal energy

from the expansion flow, driving the compression system, propulsor(s), and/or power shaft.

Other factors to consider are temperature levels allowed or desired at various locations in

the engine, reliability, initial cost, and operating costs[8]. Another key determiner in the

maximum pressure ratios attainable for compressors of various types and sizes are the losses

incurred due to size effects and/or speed effects.
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2.2.1.4 Design Point Analysis

From an academic perspective, the traditional way to size and evaluate an engine cycle is to

perform on-design cycle analysis at a single design point. This design point is usually at a

cruise or top of climb condition for commercial engine designs. After performing on-design

cycle analysis at the single design point, off-design cycle analyses are performed at various,

possibly constraining operational points of interest. These off-design points usually consist

of takeoff points, top of climb, various points during cruise, noise certification points, and

so on. The off-design analysis ensures that requirements and constraints are satisfied at

operational points other than the design point. If all the requirements and constraints are

satisfied, then the engine cycle can be considered a feasible candidate design. If all of the

requirements and constraints are not met, then a re-design at the design point must be

done.

Schutte[102] shows that an engine designed using a single design point requires many

assumptions to be made for other operational points, which rarely allows for the selection

of the best feasible engine design. Examples of typical assumptions made are engine cooling

flow sizes and component temperature levels at various operational points. Using a single

design point approach, these assumptions must be made due to the relationship between

how an engine designed at one point operates at another point in the operational space. By

making these assumptions, Schutte shows that a shift in the feasible cycle design surface,

which can be thought of as an unnecessary design margin, is required in order to achieve

a feasible design[102]. This shift and the corresponding changes in the shape of the cycle

design space can cause the designer to select a candidate engine cycle that may actually

perform worse than another candidate solution.

By utilizing a multiple design point (MDP) approach, the designer is able to exactly

meet requirements at various operational points, instead of requiring margins to be built

into the design resulting in an oversized engine that exceeds various requirements. The

MDP approach treats all operational conditions where requirements or constraints are im-

posed as design points, allowing for the analysis of the engine cycle design to be performed

with significantly less assumptions required. This prevents over-sizing of the engine design,
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which can result in compromised performance and the selection of an inferior cycle for the

application at hand.

The premise of Schutte’s MDP approach will be utilized in the present work, applying it

to the design of a common engine core. Instead of designing an engine for a single applica-

tion and then testing whether requirements are met for other engine applications, multiple

common core engine applications will be designed and evaluated simultaneously when ex-

ploring and selecting the candidate core design. Consideration of possible requirements and

constraints of various applications, analogous to the consideration of multiple design points

in Schutte’s work, allows the designer to arrive at a common engine core design requiring

less assumptions to be made in accounting for future engine applications.

2.2.1.5 Engine Cycle Sizing, Simulation, and Selection

The engine designer must visualize the cycle design space (CDS) in order to arrive at a

design engine cycle that will offer the best performance for the end user. This visualiza-

tion is referred to as cycle design space exploration. The predicted cycle performance is

plotted against various cycle design parameters. Typically, a performance metric such as

the predicted TSFC at a certain design condition is plotted against the design values of the

overall pressure ratio (πOverall) and fan pressure ratio (πFan) cycle parameters, allowing for

a three-dimensional representation of the CDS. The shape of the surface generated is based

on the performance requirements while the feasible boundaries are based on the technical

constraints applied to the otherwise unconstrained design space[103].

Construction of the CDS requires many evaluations of candidate engine cycle designs

over a range of cycle parameters. Each cycle evaluation is an iterative matching procedure[107]

that, when performing numerous cycle evaluations, can become very computationally ex-

pensive. NASA created an object-oriented program with a built-in Newton-Raphson solver

that assists in modeling the performance prediction of gas turbine engine cycles, called the

Numerical Propulsion System Simulation (NPSS)[25, 65, 66, 63, 64, 82, 81, 83, 49]. The

Newton-Raphson solver is a nonlinear root finding algorithm, the goal being to converge on a

specific set of conditions[98][120][5]. Input variables are intelligently varied using derivative
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data until convergence upon the root of the function being evaluated is achieved.

Parametric vehicle studies can be beneficial when performing engine cycle selection. The

size of a parametric vehicle is determined based on the mission analysis of the vehicle with

the selected engine cycle being “flown” on board. By allowing a vehicle to resize based

primarily on the predicted fuel burn required for the design mission, the required thrust

levels of the vehicle can be updated as well. In the design of an entire vehicle, this can allow

for additional fuel burn savings, due to the possibility of having a smaller airframe and in

turn a smaller engine than initially selected[37]. If this sort of design freedom is granted

to the engine designer, then parametric vehicle studies should be performed. As previously

mentioned, the engine requirements greatly determine the shape of the CDS. Therefore, if

engine resizing is allowed, then parametric studies must be performed in order to arrive at

the engine cycle definition that will perform best at the size required[52].

Proper visualization of a design space offers the designer the ability to relate design

parameter settings directly to corresponding performance levels. This task can be trivial

when exploring a design on very few input variable dimensions and when a single metric

is used in design evaluation. However, as the number of input dimensions are explored as

well as the number of metrics used in the evaluation of candidate designs, visualization of

a design space can be quite difficult. Three visualization techniques are used in the present

work to offer the designer the ability to quickly evaluate favorable regions of the design

space.

The first two techniques are sample-based visualization techniques, where plots are

constructed that show where discrete design samples lie in the input- and metric-space.

Multivariate scatterplots display pairwise scatterplots of variables on a single view in a

matrix format[112][48]. Each row and column represents one dimension of interest. The

sampled data points are placed in each pairwise view. The multivariate scatterplot is very

powerful, particularly when viewed within a software package that allows for the dynamic

selection of candidate design points allowing the designer to see where the design lies in all

input/output dimensions considered.
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Another sample-based visualization technique displays the same information as the mul-

tivariate scatterplot, but in an alternative fashion. Parallel coordinate charts consist of

various axes of interest, and line segments representing sampled designs are drawn across

these axes at its input or estimated metric values[44][45][79]. These plots are extremely

powerful when analyzing designs based on many input and output dimensions. Trends can

be easily identified across many dimensions, showing the designer favorable design regions

within a high-dimensional space.

Whether constructing the engine cycle design space for a fixed vehicle or performing

parametric vehicle studies, the designer gains understanding of the effects design require-

ments and constraints have on the engine cycle design and corresponding engine size re-

quired. Numerical optimization methods allow the designer to arrive a feasible engine cycle

optima within the highly nonlinear multidimensional design space that performs best for

of a given metric[58]. A multi-objective optimization can also be performed, allowing the

designer to identify pareto optimal designs for a given engine design problem[95, 76]. Op-

timization schemes can also be utilized in collaboration with an organization’s technology

development program in order for the engine designer to arrive at an engine cycle and corre-

sponding technology package which will allow for the best performance improvement while

minimizing risk[54, 94, 55].

For a common engine core design, the selection of the core definition must be made while

simultaneously considering a wide range of capabilities an engine program aims to provide

competitive solutions for. For each individual engine application, many requirements and

constraints will likely exist. These must each be accounted for in the design of a common

core. Otherwise, limiting requirements or constraints will not be identified, causing possible

required design mitigation after initial downselections have been made, costing the designer

both in the development capital required, and also in the performance levels achievable when

utilizing the common core across various engine applications. Additional consideration

of possible technology improvements over the life of a program, in addition to various

application requirements while exploring and evaluating candidate core designs will allow

for the selection of a more versatile engine core design that can take advantage of technology
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Figure 10: Engine Program Commonality Levels[15]

developments over time and provide more competitive engine applications over the life of

the engine program than otherwise would be able to be attained.

2.2.2 Development of Engine Variants

A successful commercial gas turbine engine program is one that offers a wide variety of

competitive products. By distributing their development costs among a range of engine

applications, the company can offer their products with competitive pricing. However, cus-

tomers will not buy a product that does not perform competitively. Therefore, in common

core engine family design, there is a tradeoff between the distribution of the development

cost among a variety of engines and the performance compromises made by employing a

common engine core across the family. Bradbrook[15] explains the advantages and disad-

vantages of the different levels of commonality in an engine program, which is depicted in

Figure 10

Similar lessons can be learned from other industries where families of products share

common parts or components in order to share capital risk, but at the expense of attainable
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performance levels. Simpson[104] established a product variety tradeoff chart, where designs

are placed on the chart based on two indices: the performance deviation index (PDI)

and the non-commonality index (NCI). The NCI assesses parametric variation within a

product family using a normalized measure of the variability of design variable settings

across members of a product family. The NCI is essentially a weighted sum of design

commonality across a family of products, as shown in Equation 8. The PDI provides a

measure of how well products making up a family meet their individual performance targets,

consisting of a weighted sum of all products’ performance with respect to more ideal designs

that are designed for each individual application, as shown in Equation 9. Minimal PDI

values are always desired for a product family, indicating their performance levels lie close

to ideal, individually optimized designs. Low NCI product family designs are also desired,

indicating a large amount of commonality exists between the products that make up the

family. The product variety tradeoff chart that Simpson presents has been recreated in

Figure 11.

NCI =

Napps∑
i=1

∣∣∣∣wi(xi∗ − xcommon)

xi∗

∣∣∣∣ (8)

PDI =

Napps∑
i=1

wi(yi∗ − yi) (9)

Efforts have been made to optimize a product family design. Fellini et al.[34] presents an

approach to making product family platform selections based on the performance deviations

of each product from its corresponding ideal independently optimal design. By minimizing

the overall weight sum of the performance deviations from each corresponding optimal

performance level, a product platform design selection can be optimized within a region a

feasible commonality in order to improve the overall product family performance. Figure 12

is a recreation of a chart the authors present defining the performance deviations of each

product family member from their corresponding ideal designs if no commonality were

present.

Combining Simpson’s efforts to measure commonality and the performance deviations

across a product family with Fellini’s efforts to measure performance deviations, Figure 13
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Figure 11: Product variety tradeoff chart[104]

Figure 12: Performance deviations due to commonality[34]
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Figure 13: Simpson’s NCI and PDI measurements visualized on Fellini’s chart of perfor-
mance variation across design settings for various design applications.[104][34]

displays Simpson’s measurements on Fellini’s plot of performance levels across various design

variable settings across products.

The various ways of measuring commonality as well as the measurement of performance

compromise made when accepting a certain level of commonality offer a way of pushing

common core designs away from unique engines for each unique set of requirements and

towards a more common engine between applications. The various approaches also show a

need for a design parameter whose setting should be selected to maximize the performance

of a product line while also maintaining a common parameter value across product appli-

cations. For a common gas turbine engine core, the question is: What engine parameter

should serve as the parameter that maintains its value across all common core engine vari-

ant applications in order to ensure commonality across applications? Lehmann[61] provides

the answer to this question. By maintaining a common value of the corrected compressor

exit flow (W3R) at some design operating condition, commonality can be ensured across

common core engine applications. Lehmann actually considers possible common core ap-

plications across different aerospace vehicle types where there is overlap in the compressor

exit corrected flow values that offer feasible solutions for different engine application types,

as shown in Figure 14.

It is well established that for a unique set of requirements, a completely unique engine

design would offer the best performance, under an assumed set of technology limits and
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Figure 14: Core size requirements for multiple types of engine applications[61]

capabilities. The design freedom of a new centerline engine offers the best ability to tailor

every component of the engine design to the specific set of requirements that the resultant

engine design must satisfy. However, completely unique engine designs are rarely utilized

due to the massive development cost required. The three factors that impact whether a new

engine is designed or a derivative engine is made for a new set of customer requirements

are timing, cost, and performance[29]. If time is of the essence, a simple derivative that can

meet the requirements with a rating change of a current engine may be the best solution,

although significant performance compromises would probably be made. If the customer

wishes to have the best performance possible and is willing to pay substantially for it, then

a completely unique design may be warranted. Although this is rarely the case in today’s

increasingly strained economy.

Derivative, or variant engines of an existing engine program often offer a convenient

compromise between the performance achievable and the associated cost of development. It

has been shown that with a minimal amount of modifications, an existing design can offer
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Figure 15: Common Core Flowpath Variety

increased capabilities in performance, such as was seen with the F100 program[56]. Per-

formance improvements can be applied to existing systems, taking advantage of the latest

aerodynamic and materials technology in an existing engine system[57]. In reality, engine

programs continuously improve upon their existing engine fleet. In most cases, an engine

program’s foundation is in the common engine core architecture and size. The engine core

flow areas and stage counts typically remain fixed throughout an engine program. Perfor-

mance improvement packages, otherwise referred to as technology infusions are applied to

the common core modules. These packages take advantage of material and aerodynamic

improvements that the latest technology allows for. The packages are restricted to the same

engine core size and architecture in most cases.

The low pressure system of the gas turbine engine is where significant design modifica-

tions can be made if necessary. Completely new fan designs can be utilized, in addition to

LPC and LPT design updates, while care is taken to ensure that the design updates will

match well with the common engine core. It must be verified that the core gas generator

will be able to supply ample power to any low pressure system being used with the common

engine core. Figure 15 shows notionally a variety of flowpaths achievable with a common

engine core. With the design freedom of the low pressure system, a range of thrust levels

can be achieved with a common core engine program. The question that arises is how

should the core size and architecture be selected in order to perform well for a wide variety

of engine program applications?

44



Figure 16: Engine Family Selection Process[46]

Jacquet and Seiwert[46] present a process for analyzing and selecting an engine family,

which is shown in Figure 16. This method will serve as a basis for the proposed methodology

because it evaluates the entire engine family when considering the selection of a common

core architecture.

2.2.3 Development Cost Considerations

While one of the primary goals of an engine program is to minimize the overall development

cost, it is one of the most difficult measurements of the engine program to predict, especially

without published figures on the actual costs of existing engine programs. However, there
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are obvious relationships between the cost of producing an engine and the engine’s associated

size and cycle. For example, if a gas turbine engine has an extremely high OPR, then it is

able to operate at higher temperature than engines with lower achievable OPRs, indicating

that significant investment was made on the core materials technologies in order to operating

at high sustained pressures and corresponding temperatures. At the very least, changes in

the design cycle parameters and size of an engine may be a good indicator of associated

changes in the development cost of an engine design. The goal is not to estimate the cost of

an engine to a dollar amount, but rather to place candidate engines on a cost scale, allowing

for a rough comparison to determine that one engine would be more expensive to develop

than another.

Collopy[22] developed a cost metric named surplus value, which aimed at predicting

the total profit of the airline, airframer, and engine manufacturer. He used this metric in

a competition model to characterize interactions between competitors in different market

types. Younghans et al.[119] describe various techniques for propulsion system cost model-

ing. Parametric techniques use statistical relationships from historical data, and have been

shown to be generally valid within a small range of technologies. Bottom-up techniques

build up the estimated cost of a system based on each development operation’s estimated

cost. Comparative techniques adjust cost based on component size, material, configuration,

and feature changes. Younghans et al. also applied a variation of Collopy’s surplus value

method to select an engine cycle for performance and economic factors[119]. Another way to

relate the performance and cost of an engine is to consider a capability-to-cost index, which

the Versatile Affordable Advanced Turbine Engines (VAATE) program aimed to improve

upon[108].

From an academic perspective, the drawback to most cost estimation techniques is just

that there does not exist enough public data in order to accurately estimate the cost of even

a current system, let alone a future one. However, simple comparisons between engine size,

capabilities, and operating temperatures and pressures will offer a way to place candidate

designs on a very simple cost scale. The primary goal of this current work though can be

achieved independently from this limitation. A common core engine program that offers a
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wide variety of current and future competitive capabilities will allow for the development

cost of the program to be distributed across a wide number of products. This on its own

will presumably reduce the cost of a single engine unit produced by a common core engine

program.

2.2.4 Probabilistic Design Methods

There are many sources of uncertainty in the initial development of any product. Proba-

bilistic design methods aim to account for different sources of uncertainty that affect the

final design. This aids the designer when faced with making a design decision. By identi-

fying sources of uncertainty, it not only helps the designer make sound decisions that will

avoid future problems, but it also allows him to select a robust design: one that achieves the

requirements while remaining insensitive to the various sources of uncertainty. Robust and

probabilistic design aims to improve overall performance by determining: required design

margins, impacts of design parameters on performance uncertainty, and means of reducing

the impacts of uncertainty[72].

Within the context of commercial engine design, Roth and Mavris[96] identify five

sources of uncertainty when developing a comprehensive engine uncertainty analysis en-

vironment. These sources and their associated impacts include:

� Impact of Mission Requirement Uncertainty on Engine Size

� Impact of Cycle Uncertainty on Vehicle Performance

� Impact of Aircraft Design Uncertainty on Engine Size

� Environmental and Regulatory Uncertainties

� Technology Uncertainty/Risk and Analysis Method

Traditionally, design margins would be built into systems in order to ensure that the

system could provide technically feasible solutions. Sands et al.[100] shows that the feasible

engine design space can disappear if optimistic assumptions on component performance are

made, while realized performance levels are lower than originally expected. A size margin

applied to an engine design allows for feasible options in the event that performance levels
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are not as high as originally estimated. However, without knowing how large of a margin

to build into an engine system, the designer may oversize a system and pay an unnecessary

performance and weight penalty. On the other hand, not allowing for a large enough

size margin could completely eliminate the ability to provide a feasible solution at any

performance level. There is a crucial need for enumerating the major sources of uncertainty

and accounting for these sources in the initial design phase of an engine program.

In order to account for the major sources of uncertainty, probability density functions

(PDF) must be constructed representing the variability in an impact, and the distribution

of impact values should be applied to each source’s associated input variables. The PDF,

shown notionally with a normal distribution in Figure 17, indicates the relative likelihood

for a variable to take on a given value. The required thrust an engine may need to achieve

can be treated as a probability distribution of thrust values that may be required. Instead of

designing and evaluating an engine at a specific thrust requirement, the engine design should

be evaluated based on a distribution of possible thrust requirements, and a corresponding

cumulative distribution function (CDF) should be constructed[97]. The CDF then allows

for the designer to determine the probability of achieving a requirement, in this case the

required thrust of the engine design. A CDF of the notional PDF previously constructed is

shown in Figure 18. The plot shows that there is roughly a 15% chance that the value of x

will take on a value less than or equal to 9.

A more robust design can be achieved by accounting for the various sources of uncer-

tainty and making design decisions with the use of probabilistic design methods. In order

to account for all the sources of uncertainty simultaneously in the design process, a Joint

Probabilistic Decision-Making Method (JPDM) can be employed[7][96]. JPDM techniques

evaluate designs based on the probability of satisfying all criteria at the same time.

Probabilistic design methods can assist the designer in selecting a robust design that

performs well and is insensitive to the uncertainties inherent in a new product line. By

evaluating a common engine core design over a wide range of possible requirements and

under the major assumed sources of uncertainty present in the multiple application design

problem, the designer can be confident that the design selections made will result in a
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Figure 17: Probability Density Function

Figure 18: Cumulative Distribution Function
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common core that performs well over the range of requirements. By evaluating a common

core design over a range of technology limits and corresponding distributions of their likely

impacts, the designer is also able to consider engine applications over time as technology

matures. Considering possible requirements and technology capabilities for near- and late-

term applications will enable the designer to select a common core design that best meets

all requirements imposed, resulting in competitive solutions throughout a wide range of

capabilities, both initially and well into the future.

2.2.5 Enhanced Robust Design Simulation for Gas Turbine Engine Design

The goal of any design is to incorporate performance and features that are desired by the

customer, while also ensuring a quality, cost-competitive product[28]. The robust design

process aims to maximize the likelihood of selecting a quality candidate design that satisfies

all performance requirements while minimizing risk due to uncertainty. In other words,

design parameter settings are selected that achieve mean values of estimated performance

levels within an acceptable region, while simultaneously minimizing the negative impacts

due to sources of uncertainty affecting the design’s performance. Sources of uncertainty

could include, but are not limited to, technology impacts, component performance, cost

levels, design requirements and risk[70],[110],[96].

The traditional robust design process is outlined by Mavris et al.[71]. The authors’ work

provides an outline for the determination of robust design solutions and the rationale for

quantifying and mitigating the effects of uncertainty early in the design process. Monte

Carlo analysis is used to evaluate candidate designs, estimating the probability of meeting

requirements. In this process design performance estimation is repeated many thousands

of times, allowing for the designer to observe how variation in noise parameter settings

affect the estimated performance of a candidate design. Likewise, variation in the design

parameters for a given set of noise parameters can be used to examine what design is robust

to design noise such as technology uncertainty[51]. Impacts of noise variable distributions

have also been represented through Monte Carlo sampling and extended to economic and

business metric variance estimation[62]. It should be noted that a robust design is different
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from a deterministic, optimal design. An optimal design performs the best for a given

set of metrics assuming a fixed level of technology benefit. A robust design may not have

the outright performance of the true optimum; however, the robust design should be more

insensitive to changes in noise variable settings. A robust design may be more desirable

from a cost perspective since it reduces the need for costly redesign and delays should the

design fail to meet required metric values.

In order for the designer to adequately explore the candidate design space and perform

the required Monte Carlo simulation of each candidate design to achieve meaningful results,

a substantial number of computer simulations perturbing design and noise parameters are

required. The amount of computational time required to perform the simulations using even

a conceptual level physics based model limits the amount of candidate designs that can be

explored and/or the number of Monte Carlo repetitions representing the uncertainty present

in the design[62]. A significant amount of work has been performed, aiming at overcoming

the computational challenge present in probabilistic design, or design under uncertainty.

Du and Chen[30] attempt to increase the efficiency of probabilistic design with the use of

a sequential optimization and reliability assessment method. With the goal of implementing

probabilistic design while overcoming the computational burden of uncertainty analysis, Du

and Chen break up the design process into two main steps. The first step is to perform a

deterministic optimization, making design selections which are then further explored. For

a deterministic design selection, they then perform reliability analysis, where impacts of

uncertainty on the reliability are estimated. The authors indicate that a majority of the

computations required are attributed to the reliability analysis. This essentially reduces

the number of design alternatives that can be explored, potentially causing the designer to

overlook the global optimal reliable solution.

Another method for overcoming the computational cost of accounting for uncertainty

through Monte Carlo sampling is the elimination of sampling altogether. Chen et al.[19]

present generalized analytical formulations that can assist with global sensitivity analysis

of a variety of popular metamodel types. By performing global sensitivity analysis, the

designer is able to screen out variables that provide negligible amounts of variability in
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the metamodel response. Their work considers the main effects and first order interac-

tion effects of the control and noise variables considered, eliminating variables from future

analyses that do not contribute significantly to the uncertainty in the metamodel response.

Only considering the main effects and first order interactions between variables may cause

the designer to overlook certain variables and corresponding regions of a design space when

aiming to make robust design selections, specifically within the regime of the highly nonlin-

ear behavior of the aerothermodynamic engine models employed in the present work. The

Enhanced Robust Design Simulation (ERDS) method, a key enabler of the larger method

presented in the next chapter aims at reducing the computational burden of design under

uncertainty without the need to reduce the dimensionality of the design problem consid-

ered. While Monte Carlo sampling of the surrogate model employed is still required of the

ERDS method, the probabilistic information gained from the Monte Carlo sampling is then

utilized to allow the designer to perform significantly more probabilistic studies without the

need for further Monte Carlo sampling.

It has been shown that surrogate model representations of the physics based model can

be constructed, greatly reducing the amount of time required for a single simulation from

seconds to milliseconds, without a significant reduction in the accuracy of the model[54].

Surrogate models taking the form of Artificial Neural Networks (ANN) have been shown

to accurately represent highly non-linear physics based models of gas turbine engines. This

model form was first explored in the 1940s aiming to represent biological processes, achieve

artificial intelligence, and allow for machine learning[73][39][33][90][93].

ANNs consist of nodes and arrows, resembling the interconnected network of neurons

found in the brain. These mathematical representations are very flexible in their overall form

and allow for a significant number of input variables to be explored. Training of an ANN

results in a closed-form equation to predict some output metric value based on the input

variable settings. No functional form is assumed, allowing various ANN architectures to be

explored for the given regression. These models can handle both discrete and continuous

input variables and can be used in the estimation of a continuous metric value or in the

classification of a set of input variable values. A generic graphical representation of an ANN
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Figure 19: Generic form of an Artificial Neural Network (ANN) surrogate model.

is shown in Figure 19. Each node has a corresponding activation function taking the form

of a step, linear, logistic, or hyperbolic tangent function. Each activation function contains

weighted sums of the connections present as well as an intercept term. When training

an ANN, the values of the weight factors and intercept terms present in the network are

converged upon that offer the best model fit quality. Due to the high nonlinear form of the

ANN model, when evaluating candidate ANN models great care must be taken to ensure

that the model achieves minimal levels of model fit and model representation error, assuring

accurate model prediction within the entire input space considered.

For problems where classification of input sets is desired, Support Vector Machine (SVM)

models can distinguish between various types of data[23][4]. Given a set of training data each

identified as belonging to one of two categories, a SVM model can be trained to classify

future data. The more recent kernel-based SVMs have the ability to perform nonlinear
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classification with great accuracy[89][14] The goal of SVM training is to identify training

points that are closest to the boundary between the two categories of data. These points

are referred to as support vector machines. An adaptive sampling approach can be used to

improve upon the quality of classification of an SVM model. Identification of training data

points that are close together but are contained in separate categories can be performed.

New training samples are generated that lie between these data pairs. With the increased

set of sample data, another training of the SVM model can be performed, usually resulting

in an improvement in the quality of the SVM model.

The training of surrogate models requires a batch of simulations to be performed, whose

input and output data is representative of the design space within the input variable regions

sampled. Typically, a limited number of simulations can be performed and evaluated with

the physics based model. Therefore, intelligent sampling of a multivariate design space can

be done with the use of a Design of Experiments (DoE). These strategies enable the most

information to be gained about the design space with a limited budget of design samples

allowed[116][77]. DoE strategies began in the agricultural community, aiding farmers in

determining which combinations of soil, seed types, fertilizers, etc. would offer the highest

yield. It would not be viable to explore every possible combination of variable settings. For

a given set of variables, DoEs offer an efficient sampling of any variable space. With the

limited set of input/output data can then be used to train and test the resultant fit quality

of a surrogate model[88].

Latin Hypercube Sampling (LHS) is a specific DoE sampling strategy, known as a space

filling design, aiming to gain as much information as possible from a limited set of model

training samples[74][31]. This DoE sampling technique lies within a group of techniques

referred to as space filling designs. For a given budget of sample points, the technique

locates each sample on its own axis-aligned hyperplane. LHS ensures that the input space

is sampled evenly and that the sample data is representative of the real variability present

in the system being sampled[43][42].
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The use of surrogate models enables a designer to perform significantly more design sim-

ulations within a given computational budget. Probabilistic assessments can now be per-

formed throughout the design space, where repetitions of design simulations are performed

under the assumed uncertainty present. The designer is now faced with an overwhelm-

ing amount of probabilistic data for each candidate design considered. This traditionally

requires a significant amount of post processing to draw any useful information from the

large set of probabilistic data. The designer is then able to arrive at probabilities of each

candidate design being able to meet its requirements under the assumed uncertainty distri-

butions of the noise variables. In the traditional Robust Design Simulation (RDS) approach,

as described in by Mavris et al.[71], the user must repeat the Monte Carlo analysis any time

the specific scenario of uncertainty distributions are even slightly changed. Once the Monte

Carlo analysis is repeated, the user must then create joint probability distributions of each

metric relative to the inputs in order to identify robust solutions. While this process can

be scripted and sped up using various computing methods, the problem remains that the

designer cannot easily see the probabilistic impacts of noise variables due to changes in

uncertainty assumptions. This method restricts probabilistic assessments to be performed

for a single fixed set of uncertainty assumptions.

Enhancements were made to the traditional RDS method, aiming to enhance the tradi-

tional filtered Monte Carlo robust design approach by regressing surrogate responses of joint

confidence intervals for metric responses of interest. The regression model associates a per-

formance estimate with a corresponding desired level of confidence by implicitly accounting

for the effects of the uncertainty distributions. This allows for efficient resampling of the

design space without the need for repetitions of the Monte Carlo simulation enabling more

informative exploration of the design space. Because the development of the ERDS method

was led by the present author and because the method plays a central role in allowing the

COMMENCE method to be carried out in a computationally efficient manner, details of

the ERDS method will be further discussed in the following chapter. The process will be

described in detail and will then be applied to a case study considering the robust design

of a two-spool axi-centrifugal turboshaft engine cycle[99].

55



2.2.6 Bayesian Belief Network for Engine Upgrade Option Selection

The present author also took effort in a design problem where consideration of various

turboshaft engine upgrade options was made in response to various sets of shaft power

growth and ESFC reduction requirements[50]. The ERDS method was applied in order to

estimate the achievable performance levels of discrete upgrade options and corresponding

continuous cycle explorations within each option’s allotted design freedom. Five upgrade

options were considered, from the option of a fixed engine that was allowed to be throttled

being the least costly option all the way up to the option of designing a new engine with

technology infusion being the most costly option. An approximate inference Bayesian Belief

Network (BBN) model representation of the design problem was constructed[18][17]. One

strength of the BBN is its ability to easily update and integrate probability distributions as

evidence is observed in a design problem. An updated distribution is referred to as posterior,

or marginal distribution. These distributions allow for input variable settings to be assigned

a value, or preference. These are particularly helpful in making design selections based on

less concrete preferences, such as cost, instead of evaluating candidate designs purely based

on their performance estimates. Within the gas turbine field, some of the first applications

of Bayesian networks were used for gas path and fault diagnostics[67][92][60].

For the engine upgrade option study performed by the present author with the use of

a BBN, prior distributions were utilized to place preference on lower cost upgrade options

as well as on lower design turbine inlet temperature (T41) level design selections. A fixed

technology package was considered for possible technology infusion. For each upgrade option

considered, the design T41 and design overall pressure ratio (πOverall) could be explored.

Sampling of the design variable settings were based on the prior belief distributions, meaning

that the less expensive upgrade options and lower design T41 designs were sample more often

than more expensive design options. After sampling the BBN model representation of the

design problem, three sets of surrogate models were used to predict the likely performance

of the five upgrade options:

� Prediction of fixed engine performance
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� Prediction of a fixed core / new LP system design performance (with and without

technology infusion)

� Prediction of new engine performance (with and without technology infusion)

The functional nodes of the BBN used conditional logic to execute the pertinent sur-

rogate model for each upgrade sample, and a large requirements space was considered. A

two-dimensional grid of requirements was constructed. One axis of the requirements grid

set the amount of ESFC reduction required of the engine upgrade with respect to the base-

line engine definition. The other axis of the requirements grid set the amount of shaft

horsepower growth required of the turboshaft engine upgrade. For each set of ESFC and

power growth requirements, the various design options were sampled using the prior belief

distributions, and the upgrade option was displayed that offered the highest likelihood of

meeting the requirements, given the prior distributions. In other words, the option that

had the greatest number of samples that met the imposed requirements was determined to

be the most viable option for that particular set of requirements.

This engine upgrade study demonstrated the advantages and capabilities of the ERDS

method that enabled this probabilistic study to be performed in an efficient manner with

minimal computational burden. It also showed how a Bayesian Belief Network model can

be used for robust design problems, offering similar sampling capabilities of Monte Carlo

analyses. The BBN model also allowed for the implementation of prior distributions to be

used in the sampling technique, integrating subjective cost-related factors into the otherwise

quantitative evaluations of various design option responses.

2.2.7 Multi-Objective Optimization of Engine Designs

For most gas turbine engine applications, the designer is interested in arriving at an en-

gine design that performs well for a variety of figures of merit. NASA’s Environmentally

Responsible Aviation (ERA) project, for example, aims at the simultaneous reduction in

vehicle fuel burn, noise, and NOx emissions in the N+2 time frame. Table 5 shows the

NASA subsonic transport system level goals for various time frames.

A method for measuring how well a candidate design performs with respect to multiple
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Table 5: NASA Subsonic Transport Vehicle Level Metric Goals[109]

Technology Generations
(Technology Readiness Level = 4 - 6)

Technology Benefits N+1 (2015) N+2 (2020) N+3 (2025)

Noise - 32 dB - 42 dB - 71 dB
(cum below Stage 4)

LTO NOx Emissions -60% -75% -80%
(below CAEP 6)

Cruise NOx Emissions -55% -70% -80%
(rel. to 2005 best in class)

Aircraft Fuel / Energy Consumption -33% -50% -60%
(rel. to 2005 best in class)

figures of merit is the Technique for Order Preference by Similarity to Ideal Solution (TOP-

SIS), first developed by Hwang and Yoon[41][118][40]. Evaluation of candidate designs are

performed by first establishing a positive ideal solution and negative ideal solution on all

metric levels considered when evaluating a design. The euclidean distance in the metric

space from each of the ideal solutions is then determined for each candidate design. The

non-dominated candidates that lie on the pareto front can all be considered to be opti-

mum designs, depending on the preference of one metric over another. Figure 20 shows a

notional pareto front of candidate designs and their measurements from the positive ideal

and negative ideal solutions. Note that the figure shows a pareto front where improvement

in both metrics is achieved by increasing the metric value. For example, two metrics typi-

cally considered in aircraft design are fuel burn reduction from a baseline and noise margin

below a cumulative noise limit. Equal preference can be placed for each figure of merit,

or weightings can be applied to each figure of merit based on the relative importance of

maximizing performance of certain metrics. The weighted separation of candidate design i

from the positive and negative ideal solution considering M metrics can be calculated using

the Equation 10 and Equation 11, respectively.

S+
i =

√√√√ M∑
m=1

[
1

wm

(
ym,i − I+

m

)]2

(10)
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Figure 20: Pareto Front and Corresponding TOPSIS Measurements

S−i =

√√√√ M∑
m=1

[
wm

(
ym,i − I−m

)]2
(11)

The relative closeness to the ideal solution, where 1 is the best and 0 is the worst, can

then be determined based on the separation from the positive and negative ideal solutions,

as shown in Equation 12.

Ci =
S−i

(S+
i + S−i )

(12)

There are many methods of numerical optimization that exist to improve upon designs.

All aim to provide a reduction in design time. The designer can explore many design vari-

ables and constraints without bias, while virtually always yielding at least some design

improvement[113]. However, there are limitations to numerical optimization. Computa-

tional time increases with the number of design variables considered. Also, the results of

an optimization can be misleading and there is rarely a guarantee of a resultant global

optimum design[113].
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Optimization methods have been applied to gas turbine designs in the past. Optimiza-

tion of an axial compressor gas path was done to maximize efficiency[87]. A gradient method

of optimization has been applied to the cycle selection of a derivative turbofan engine with

a given core[58]. Turbofan engine designs have been optimized based on multiple objectives

for a specific aircraft[11]. Engine core designs have even been optimized for a predefined en-

gine family aiming to provide solutions optimized on a technological and economic basis[46].

Multidisciplinary considerations have also been made when considering engine design deci-

sions, estimating the impacts of disciplinary uncertainty on design robustness in terms of

the changes in performance metric variance and a design’s probability of success[26].

Surrogate modeling is a helpful way of capturing the relationships between the metric

responses designers are interested in and the input variables the designer has the freedom

to change, allowing for the computational burden to be greatly reduced when performing

assessments that required many candidate designs to be evaluated. By performing a Design

of Experiments (DoE), a population of unique design simulations can be used to adequately

represent the design space the designer is interested in exploring. Intelligently selecting

the values of all required input variable settings for each member of the representative

population, limited simulations can be used to produce surrogate models in order to explore

and optimize a particular design for multiple objectives without the need to perform costly

simulations for every unique design considered. Artificial Neural Networks (ANN) have

been shown to be a promising type of surrogate model that can capture the highly nonlinear

nature of gas turbine engine performance[54] while also allowing for a significant number

of input variables to be explored. An optimization method can be utilized with surrogate

models of the figures of merit the designer is interested in, and the method can arrive at a

unique design that, at the very least, improves upon the overall system performance.
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CHAPTER III

TECHNICAL APPROACH

This chapter aims to establish the overall method and enabling capabilities developed for

integration into the Common Engine Core Evaluation (COMMENCE) design framework.

The method is intended to help the engine designer to make more informed initial core

design decision early in the design process. The method estimates performance implications

of core design selections initial and future engine family applications, while accounting for

any assumed sources of uncertainty present. The process, shown in Figure 21, contains

blocks which require exploration into specific research areas in order to establish techniques

required to enable such a design problem to be computationally feasible. The research

objective and corresponding research questions guiding the method development are listed

in Table 6.

The COMMENCE method displayed in Figure 21 begins with blocks that establish the

overall engine architecture to be employed across the product family, as well as a discrete

set of requirements for applications the common core family intends to provide competitive

applications. In order to successfully place the engine family in a desirable market sector,

significant market analyses must be performed. The common core engine family must

provide very successful initial applications, establishing the common core program as an

attractive product line. Additionally, accurate projections of future customers’ requirements

must be established. By establishing a representative set of discrete engine applications,

candidate common core designs can be evaluated based on the likely performance levels of

variant engine applications of the common core definition.

With the established sets of engine requirements for the engine applications considered,

candidate benchmark engine designs must be selected. Similar to how the core design and

variant applications will be selected, single-application robust design selections are made

using the ERDS method for each set of application requirements. These more idealized
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Figure 21: Common Engine Core Evaluation (COMMENCE) Method.
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Table 6: Overall Objective and Corresponding Research Questions to be Addressed

RESEARCH OBJECTIVE Develop a gas turbine engine design and de-
cision making process that aims to increase
the useful competitive life and overall versa-
tility of a common core engine family. The
process should consider current and future
competitive engine family performance, uti-
lizing current and eventual technology im-
provements without the need for a core re-
design.

Primary Research Question How should core design selections be made for mul-
tiple current and future common core applications,
ensuring a high likelihood of achieving feasible,
competitive common core engine variant designs?

Research Question 1 How should the gas turbine cycle design process
be modified to easily evaluate designs under vari-
ous uncertainty scenarios, in a manner similar to
traditional approaches, without the need for added
computational burden, repeated simulations, and
post-processing of statistical data?

Research Question 2 For a given gas turbine engine core, how should
a common core engine variant design be simu-
lated? What parameter(s) must be held to con-
sistent values in order to maintain geometric and
aerothermodynamic commonality between engine
applications?

Research Question 3 What design options should be considered for com-
mon core engine variant applications in order to dis-
tribute development capital across the engine pro-
gram by taking advantage of commonality, while
also offering more design freedom when needed for
more demanding applications?

Research Question 4 What range of capabilities can various common
core design options achieve without significant com-
promises made in application performance?

Research Question 5 How should a common core engine program con-
sisting of multiple variant design applications be
evaluated?
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clean sheet designs allow for the determination of the amount of performance compromise

made by employing a common core across the applications. Measurement of performance

deviation with respect to each benchmark design will be performed just as Simpson and

Fellini et al. suggest when evaluating product families[104][34].

After benchmarks designs for each engine application are established, the common core

design space can be explored. The physics based modeling and simulation environment used

should enforce geometric core commonality while also allowing for variant design freedom

where permitted. In addition to the variant design rules, the modeling and simulation envi-

ronment must be able to apply and evaluate impacts of unique technology infusion options

for the core defining and variant engines. A probabilistic surrogate modeling technique

will be developed and employed to provide efficient means of exploring the multiple ap-

plication common core design space. Rich sampling, evaluation and selection of candidate

common core variant designs and the overall engine family as a whole can then be carried

out. Figure 22 shows where key advancements must be made in order for the COMMENCE

method to be a viable option for engine family design.

In order to show where the COMMENCE method lies within the larger Integrated

Product and Process Development process, Figure 23 displays the IPPD process. The

COMMENCE method lies primarily within the shaded regions of the IPPD environment,

spanning across Quality Engineering, Systems Engineering, and the Design Decision Sup-

port regions of the IPPD process.

This chapter establishes and describes the overall structure and process of the Common

Engine Core Evaluation (COMMENCE) method. Detailed descriptions and demonstrations

of a key enabling processes will first be provided. The enabling capabilities of the Enhanced

Robust Design Simulation (ERDS) method will be provided, identifying it is an integral

part of the overall COMMENCE method. It enables efficient exploration and evaluation of

designs under various uncertainty scenarios. A case study will be provided to demonstrate

how the ERDS method was used for a single engine design.

The common core variant design rules used to enforce geometric commonality also be

established and discussed. As is discussed by Lehmann[61], consistent design HPC exit
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Figure 22: Identification of required advancements to be made and integrated into the
overall COMMENCE process.
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Figure 23: Integrated Product and Process Development decision-making process[101]

corrected flow across applications ensures uniform HPC blade heights and geometrically

common flow areas of the engine core components. This maps directly to commonality in the

core casing and flowpath geometry. In order to accurately enforce geometric commonality,

additional supporting rules are used to enforce a consistent design HPC map operating point

where HPC exit corrected flow is made consistent across all common core applications.

The resultant surrogate models trained with data samples of the physics based common

core modeling and simulation environment have geometric commonality implicitly enforced.

This prevents the need for the designer to filter exploration data or match a core defining

engine to a common core variant engine. This greatly improves the ability of the designer

to richly sample the common core design space. It will also be shown that by implicitly

enforcing commonality also allows for many variant designs to be explored, while all being

tied to the same core defining design engine. This key contribution enables a large number

of engine family designs to be explored simultaneously, with geometric core commonality
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ensured.

After the description of the ERDS method and the common core variant design rules, the

fully integrated COMMENCE method will be discussed. The specific steps of the process

will be provided, establishing the COMMENCE method as a repeatable, transparent, and

methodical approach to providing the designer valuable information when making common

core design decisions.

3.1 Enhanced Robust Design Simulation (ERDS)

� Research Question 1: How should the gas turbine cycle design process be modified

to easily evaluate designs under various uncertainty scenarios, in a manner similar

to traditional approaches, without the need for added computational burden, repeated

simulations, and post-processing of statistical data?

Hypothesis 1: Probabilistic performance levels of candidate cycle designs should be es-

timated with the use of surrogate models that predict likely performance under various

inputted uncertainty scenarios for any desired confidence interval.

The goal of robust design is to select candidate designs that maximize the likelihood of

achieving the design requirements while also satisfying any constraints imposed, all in the

presence of uncertainty. For the present work, the sources of uncertainty considered are

the technology impact uncertainty as well as the installation bleed and power extraction

requirements uncertainty. While the following process description primarily discusses sim-

ulation of technology uncertainty, the process can be easily extended to other noise sources

including operating conditions, cost factors, or anything else as appropriate that can be

simulated within a computational tool. In this context, examples of technology impacts

include component level weight reduction or component efficiency improvements. A full list

of assumed uncertainty distributions will be presented in the following chapter for each of

the experiments performed, but the generic method for generating the actual distributions

will be presented in this section.

Before estimating the impacts of technologies the designer may infuse into a new design,

a baseline model definition must be established. The baseline acts as the datum that all new
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candidate designs can be evaluated against, and usually represents a design at the current

technology level present in the market. The baseline engine model also acts as a technology

collector onto which technologies can be applied and the cycle advanced to represent a new

evolutionary design.

Once the baseline definition is established, technologies can be identified that aim to

provide specific benefits. For each technology considered, distributions must be defined that

represent the likelihood of the technology achieving its assumed impact(s). Beta distribu-

tions are easily constructed to represent the variation in technologies’ likely impacts. Beta

distributions are bounded and can be shaped based on four factors: the minimum and max-

imum possible impact, the location of the most likely impact within the range considered,

and the amount of confidence in achieving the most likely impact. Based on the domain of

the most likely value within the bounds and the level of confidence in attaining that most

likely value the beta shape parameters, α and β, can be determined using a table lookup

provided by Batson[9], which has been recreated in Table 7, and the distribution can be

defined.

Assumed technology impact distributions can be fixed as is the case with the traditional

RDS process and robust design selections can be made. However, in order to have the

ability to consider various uncertainty scenarios, as is necessary for the multi-application

common core design problem, the shape factors defining the distributions must be varied.

Modification of a prior assumed uncertainty distribution can be used to represent a Tech

Push, an initiative taken to improve the mean technology impact and/or reduce the variance

in the impact by maturing a particular technology, as depicted in Figure 24. The x-axis

would represent the level of technology benefit, such as component efficiency improvement,

and the y-axis represents the likelihood of achieving the specific impact within the range.

In order to simplify the demonstration of the process the technology uncertainty distri-

butions will be held constant for the sample problem demonstrated later. However, this is

not a limitation of the ERDS method. Various uncertainty distributions will be simulated

in the following chapter when considering initial and future common core applications with

different assumed technology levels. Robust design and technology selections can then be
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Table 7: Beta distribution shape parameter lookup table based on domain of normalized
modal value and confidence level of modal value[9].

Domain of Normalized Modal Value

Confidence
Level

0.00
to
0.15

0.15
to
0.25

0.25
to
0.35

0.35
to
0.45

0.45
to
0.55

0.55
to
0.65

0.65
to
0.75

0.75
to
0.85

0.85
to
1.00

Highest
α =
2

α =
3

α =
4

α =
6.5

α =
8

α =
8

α =
8

α =
8

α =
8

β =
8

β =
8

β =
8

β =
8

β =
8

β =
6.5

β =
4

β =
3

β =
2

Higher
α =
1.5

α =
2.25

α =
3

α =
4.25

α =
6

α =
6

α =
6

α =
6

α =
6

β =
6

β =
6

β =
6

β =
6

β =
6

β =
4.25

β =
3

β =
2.25

β =
1.5

High
α =
1.25

α =
1.75

α =
2.25

α =
3

α =
4

α =
4

α =
4

α =
4

α =
4

β =
4

β =
4

β =
4

β =
4

β =
4

β =
3

β =
2.25

β =
1.75

β =
1.25

Lower
N/A α =

1.5
α =
1.75

α =
2.25

α =
3

α =
3

α =
3

α =
3

N/A

N/A β =
3

β =
3

β =
3

β =
3

β =
2.25

β =
1.75

β =
1.5

N/A

Lowest
N/A α =

1.25
α =
1.5

α =
1.75

α =
2

α =
2

α =
2

α =
2

N/A

N/A β =
2

β =
2

β =
2

β =
2

β =
1.75

β =
1.5

β =
1.25

N/A
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Figure 24: Progression of probability density function for impact of technology being ma-
tured.

made, selecting designs that aim to maximize the likelihood to achieving high performance

while being less sensitive to assumed noise in the level of technology uncertainty impacting

the final performance metrics.

Once the baseline model definition is established, technology impacts and their corre-

sponding distributions have been identified, and the design variable ranges are established,

the RDS process can begin. The generic RDS methodology developed by Mavris et al.[71]

has been adapted for the present engine design studies and is depicted in Figure 25. The en-

hancements of the traditional process are contained within the shaded nodes of the process

flow chart.

The goal of the first portion of the RDS method is to generate a deterministic set of

surrogate models that accurately represent the physics based engine design and technology

space considered for the robust design study. This enables assumed input values or distri-

butions to be rapidly changed during the analysis process. For the variables and associated

ranges considered, a design of experiments (DoE) is constructed for the cycle design vari-

ables and the technology noise variables[116]. Each DoE case, a vector of design and noise
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Figure 25: Robust Design Simulation method modified for robust engine and technology
design.
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variable settings, represents a unique engine design and the corresponding performance is

estimated by the physics based engine model. The DoE is executed through the physics

based model and the results are used to train deterministic surrogate models of performance

metrics to evaluate a design’s ability to satisfy all requirements and constraints. The goal

is to accurately estimate an output metric value y as a function of a set of input variable

values consisting of design variables, X, and technology impact variables, K, as shown in

Equation 13. As was discussed in the previous chapter, Artificial Neural Networks (ANN)

have shown to accurately represent the nonlinear behavior of engine aerothermodynamic

cycle performance models with minimal losses in the accuracy of the model[54]. However, it

must be ensured that when employing the surrogate models to predict engine performance

that the input vector must contain variable values that are within the variable ranges orig-

inally considered in the DoE used to train the model.

y = f(X,K) (13)

At this point, if one were applying the traditional RDS process, the user selects distribu-

tions for the technology parameters, as described previously. Then Monte Carlo simulation

is performed by selecting a chosen set of fixed inputs for the design parameters and Beta

distributions, as defined in Table 7, for the technology variables. Using the traditional pro-

cess the user would then have to use the results of the Monte Carlo to generate cumulative

distribution functions (CDFs), as shown in Figure 26. The CDF shown indicates the likeli-

hood of a design meeting or exceeding (in this case exceeding refers to reducing the metric

value in the direction of improvement) a specific metric value. Often times joint probability

plots are also constructed to show the effects of multiple random variables on a response.

This demonstrates the fundamental limitation of the traditional RDS process. The

user must select assumed (fixed) technology parameter distributions and is then shown the

probability of meeting certain metrics for a single set of design parameter settings. If the

designer wants to estimate the confidence level for a different set of uncertainty distributions

he must rerun the Monte Carlo analysis and recreate the single or joint CDFs. This process

does not allow the designer to effectively visualize and understand the entire design space.
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Figure 26: Cumulative distribution function for likely performance of a candidate design.

The ERDS method augments the traditional RDS process to address the aforementioned

shortcoming. Once all of the surrogate models representing the physics based engine model

have been trained, the probabilistic assessment is performed. Again, a DoE is constructed,

but this time only of the control variables. The control variables traditionally contain only

the design variables. However, the uncertainty distribution shape parameters for technology

j (αj and βj), as well as the minimum and maximum technology impact values (kj,min and

kj,max) can also be included as control variables. A DoE case constructed for the proba-

bilistic assessment now consists of a unique vector of design variable settings and a unique

set of uncertainty distribution shape parameter settings. For each given set of design vari-

able settings and inputted uncertainty scenario, Monte Carlo simulations are performed,

accounting for the assumed uncertainty distributions present, resulting in confidence inter-

val performance levels for the candidate design considered under the inputted uncertainty

scenario. Figure 27 depicts the process for performing the Monte Carlo probabilistic as-

sessment that results in estimates of likely performance levels of candidate designs under

uncertainty.
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Figure 27: Monte Carlo probabilistic analysis process.

With the probabilistic data produced by the Monte Carlo probabilistic assessment, an-

other layer of surrogate models can be trained. The resultant probabilistic surrogate models

are able to instantaneously estimate variability in the likely behavior of candidate designs

consisting of a unique set of control variable settings. Originally, when developing this

new process, surrogate models were constructed to estimate the probability of meeting or

surpassing a particular performance target (Probability Pt of meeting performance target

yt, shown in Figure 26) based on the control variable settings, formalized in Equation 14.

However, if a substantial amount of Monte Carlo simulations used to train the surrogate

model either do not satisfy the target performance level and/or a large number of samples

easily meet the target with 100% likelihood, it becomes extremely difficult to train a sur-

rogate model that provides accurate prediction of this multi-modal behavior. Therefore,

instead of training models to estimate the probability of achieving a discrete target value,

surrogate models are trained to predict the metric performance level at desired (inputted)

confidence levels (Performance level yC at desired confidence level C, shown in Figure 26).

No matter where the likely performance of a design lies, there will always be a cumula-

tive distribution function (CDF) of likely performance levels. This eliminates the possibility

of having multi-modal data, having sparse data with which to train a surrogate model as is

often the case with the traditional approach. Also, this way of capturing probabilistic data
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now allows for candidate design comparison of performance levels to be done at consistent

confidence levels. For example, it allows for comparison of two designs’ 95% likely perfor-

mance levels, or any other confidence level of interest. Another added benefit of performing

probabilistic design evaluation in this form is that the data trends take the same shape

as when performing deterministic assessments, instead of data trends taking a new form

that resemble CDFs. This allows designers to continue with analysis of trends they are

comfortable with instead of forcing them to learn new probabilistic trends predicting the

probability of meeting some arbitrary performance target.

With the addition of control variables for the uncertainty distribution factors as well

as the added freedom in the desired confidence C the designer is interested in having cor-

responding performance estimates for, the probabilistic surrogate models take the form of

Equation 15. Vector X contains all design parameters. Vectors Kmin and Kmax contain

the minimum and maximum technology impact levels of each technology distribution con-

sidered. Vectors A and B contain the alpha and beta shape parameters for each technology

uncertainty distribution. Adding the significant number of control parameters required for

full control of the technology uncertainty distributions and training surrogate models as

functions of the additional variables requires additional scrutiny when accepting whether

a surrogate models accuracy is acceptable. The ANNs used to represent the probabilistic

behavior of the engine cycle and technology design space have shown to accurately repre-

sent the nonlinear behavior of gas turbine engine models, while also allowing the surrogate

models to be functions of a large number of independent variables, on the order of hundreds

of variables[54].

P (y ≤ yt) = f(X) (14)

yC = f(X,Kmin,Kmax,A,B, C) (15)

After training the probabilistic surrogate models that estimate performance at any de-

sired confidence levels, the designer is able to richly sample the candidate design and tech-

nology space and predict probabilistic behavior of the unique designs considered. Candidate

design cycle settings can be explored and robust selections can be made that offer the best
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performance at a desired confidence interval level. Additionally, identification of technol-

ogy subsets can be identified that offer the best cost-to-benefit ratios. Effects of reducing

certain technology impact variation due to uncertainty can offer insight into which tech-

nologies should be matured in order to allow for the highest likely performance gains, while

also showing how the reduction(s) in technology uncertainty affects the resultant robust

cycle selections. The models can be combined with economic models and integrated into

business decision making environments, such as Bayesian Belief Networks (BBNs), allow-

ing decisions makers to quickly and efficiently perform cost-benefit analyses and through

forwards and backwards inference, predict how their decisions will impact the likely design

performance[53],[50].

The above description of the ERDS process offered the rationale of using the method.

Alternatively, the following section offers a step-by-step procedure explicitly describing the

steps required to carry out the ERDS method.

3.1.1 ERDS: Step-by-Step Procedure

This section describes the specific steps to follow when carrying out the ERDS method

for a robust design problem. Description of each of the steps is intended to be generic

enough to apply to the robust design of any product of interest. More specific procedures

are provided for each of the experimental applications of the ERDS method found in the

following chapter. The primary steps of the ERDS method are as follows.

1. Physics based model preparation

2. Deterministic assessment and regression

3. Probabilistic assessment and regression

4. Robust design exploration and selection

3.1.1.1 Step 1: Physics based model preparation

The goal of this initial step is to establish a baseline definition within the physics based

model and to determine the variables for which explorations will be performed. The baseline
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should be tuned to represent either an existing design that currently exists or an agreed-

upon technology level design against which advanced designs will later be evaluated.

Once the baseline definition is established, a set of input variables should be identified

for exploration. These should first consist of design variables which settings will later be

selected to define an advanced design that offers the best performance under uncertainty.

Ranges of these design variables should be established so that ample exploration of the

design space can be performed. It is important to ensure that the input variables ranges

are large enough to encompass all design regions that may be of interest.

In addition to the set of design variables, a set of noise variables must be selected which

uncertainty distributions will later be applied during the probabilistic assessment. Similar to

the design variables, the noise variable ranges must be wide enough to envelop any possible

uncertainty distributions that the designer may want to account for when performing later

probabilistic assessments.

Once the superset of input variables to be explored has been established, the designer

must consider the computational budget allowed for the initial deterministic assessment.

Based on the computational cost of each unique simulation using the physics based model

and the overall computational budget, the designer may be limited in the number of simu-

lations allowed. If necessary, screening can be performed on the input variables, eliminating

input variables that have very little impact on the metric values of interest.

With the final set of input variables and corresponding ranges, a Design of Experiments

(DoE) is created, establishing a combined array of design and noise variable settings that

will be used to sample the physics based model for later regression. As mentioned in the

previous chapter, latin hypercube designs are space filling designs that aim to maximize the

amount of information about the sampled space with a limited number of cases allowed. A

space filling DoE containing a number of cases that is between 20 and 40 times the number

of input variables typically offers enough training data to produce accurate surrogate model

representations of the sampled model. In addition to these training cases, additional test

samples are necessary to ensure that resultant surrogate models not only accurately estimate

the data used to train the model, but also provide accurate estimates for cases that were
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not used to train the regression models. These testing samples can be randomly sampled

within the input variable ranges considered, and should contain between 15 and 20 percent

of the total number of samples.

3.1.1.2 Step 2: Deterministic assessment and regression

Before launching the DoE with the physics based model, a set of output metrics of interest

should be established. The model should be able to produce a file that compiles the input

and output data of interest into a single file for all cases to be simulated. Once the DoE is

created and the model prepared, execution of the DoE is performed.

After all simulations have been performed, the resultant input/output data can be then

be used in the regression and testing of deterministic surrogate models. A model will be

required for every single output metric of interest to the designer when making design de-

cisions. It is recommended that the samples making up the entire latin hypercube are used

in the training, and the remaining samples reserved for testing of the resultant surrogate

models for fit quality. Many software packages offer training algorithms for surrogate model

regression. When fitting Artificial Neural Network (ANN) surrogate models, it is recom-

mended to explore the model architecture, allowing for the number of hidden nodes of the

ANN to change. The ANN architecture and corresponding model coefficient values that

produces the best fit quality is then selected.

In order to ensure adequate model fit quality, the following surrogate model fit require-

ments should be met:

� Model Fit Error (MFE), the distribution of surrogate model error that is determined

through the comparison of predicted performance to the actual performance levels

used in the training of the surrogate model

– Shape of MFE distribution should resemble a normal distribution

– Mean value of MFE distribution should be close to zero

– MFE standard deviation (STD) should be less than one

� Model Representation Error (MRE), the distribution of surrogate model error that
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is determined through the comparison of predicted performance to the actual per-

formance levels of the reserve data not used in the training of the surrogate model.

MRE quality determined based on the same metrics used in the evaluation of the

MFE distribution.

� The quotient of MRE and MFE standard deviations should have a value less than

two.

� A high coefficient of determination (R2) must be achieved, having a value greater than

0.99. A value close to one indicates the model is able to explain the vast majority of

variation in the metric response of interest. The model’s R2 can be determined using

Equation 16.

� When visualizing the actual-by-predicted plot, the data should not contain tails where

actual-by-predicted values depart from the perfect fit line at low and high values of

response data.

� The residual error should be at least two orders of magnitude less than the actual

response levels.

A model’s coefficient of determination (R2) is determined by:

R2 = 1− SSerror
SStotal

(16a)

where

SS =
∑(

Y − Ȳ
)2

(16b)

and

Ȳ =

∑
Y

N
(16c)

If the above requirements are not met by the various surrogate models, then attempts

to improve surrogate model fit can be done with the existing DoE data, or additional

training samples may need to achieve adequate surrogate fit quality. Once the level of
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model fit quality is achieved, the resultant set of surrogate models can be used to provide

deterministic performance estimates for design and noise variable values within the ranges

explored for training.

3.1.1.3 Step 3: Probabilistic assessment and regression

Now that accurate mathematical representations of the physics based model has been

achieved, the design and uncertainty space contained within the ranges previously sam-

ples can now be more richly sampled. The range of uncertainty scenarios of interest are

used to determine the ranges of the uncertainty distributions shape parameter settings to

be sampled in the following assessment. Again, it must be insured that the distributions

to be simulated have noise variable impacts that fall within the ranges initially sampled to

produce the deterministic surrogate models.

The same set of design variables and corresponding ranges previously sampled are then

used to construct another DoE. This DoE should also contain the uncertainty distribution

shape parameters and corresponding ranges that envelop any scenarios of interest. An-

other latin hypercube training set and random surrogate testing set of ample size is then

constructed.

The probabilistic assessment can then be performed. For each DoE case containing

unique values for design variables and uncertainty distribution shape parameter settings,

Monte Carlo simulations are performed. When a significant number of uncertainty dis-

tributions is to be accounted for, many tens-of-thousands of Monte Carlo simulation are

necessary to adequately evaluate the design under uncertainty. For example, if 20 to 30 dis-

tributions are to be simulated, repetitions on the order of 50,000 simulations were shown to

provide the resolutions necessary to accurately represent the design under the uncertainty

scenarios considered. If 3,000 DoE cases are necessary, each requiring 50,000 Monte Carlo

simulations, 150 million function calls would be required for each output metric of interest.

Although this sounds computationally expensive, the deterministic surrogate models being

evaluated are closed form equations that can be evaluated almost instantaneously. For ex-

ample, a probabilistic assessment of this exact size was performed using a Matlab script on
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a single quad-core machine in less than 3 hours.

For each DoE case, the Monte Carlo simulation data should be sorted for each metric of

interest, allowing for the calculation of quantile metric values. For example, if it is desired to

have the ability to estimate any quantile value for the metrics of interest, as is the case for the

studies of this work, quantile metric values should be calculated across the entire cumulative

distribution function for each DoE case. A resultant file should be constructed, where each

row contains the design variable settings, the shape parameter settings, a quantile value,

and the corresponding quantile metric values for the design/scenario considered.

Training of probabilistic surrogate models can then be regressed, where the same model

fit quality requirements must be met as with the deterministic surrogate models. The resul-

tant set of probabilistic surrogate models now predict the likely performance at the inputted

confidence interval for an inputted set of design variable and uncertainty distributions shape

parameter settings. This again highlighted the powerful capabilities of the ERDS method.

Any confidence interval performance level can be instantaneously predicted with a single

function call for a unique design and uncertainty scenario within the range of designs and

scenarios sampled for surrogate training.

3.1.1.4 Step 4: Robust design exploration and selection

Now that probabilistic surrogate models are available, exploration of the robust design space

can be performed. There are various techniques of exploration. Visualization of the design

space is often desired, allowing the designer to identify performance trends with design

variables.

As was described in Chapter 2, multivariate scatterplots and parallel coordinate charts

are powerful sample-based visualization techniques, particularly when explorations are per-

formed on many input variable dimensions. These techniques require samples of a design

space and they display each sample’s placement in the input space and the resultant metric

space. The probabilistic surrogate models enable any millions of samples to be evaluated,

allowing for very rich sampling of the design space under consideration.
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Another visualization technique is enabled through the generation of probabilistic sur-

rogates. Contour profilers can be constructed, where a given design plane can be shown,

and contours of constant metric values can be displayed on the chart. The placement of the

contours in the design plane is set based on the settings of the two axes of the chart as well

as the remaining set of fixed input variable settings. These charts allow the designer visu-

alize the continuous design space, showing how variable changes impact the metric values

of interest.

In addition to visualization, filtering can be performed, eliminating either samples or

continuous design regions that violate constraints or do not meet imposed requirements

of the design. Optimization can also be performed within the design space of interest,

resulting in candidate designs that provide competitive performance and lie in a desirable

design region.

Regardless of the technique of design selection, more informed candidate design selec-

tions can be made with the ERDS process. Various uncertainty scenarios can be accounted

for, and candidate designs can be selected that have competitive performance estimates

at high confidence interval levels. Exploration of the effects of technology infusion or the

like can also be performed, showing how likely performance changes with the uncertainty

scenario and how the resultant design selection would change under different scenarios.

If ample considerations are made at the onset of the ERDS method when initial variables

and ranges are established, the resultant set of probabilistic surrogate models can be valid

for a wide variety of design problems and uncertainty scenarios. The increased upfront

computational requirements result in significant decreases in the later computational burden

when carrying out robust design probabilistic assessments. As will be shown in the next

chapter, this process was carried out only once, providing a series of deterministic and

probabilistic surrogate models that were utilized for all of the experiments contained in the

following chapter.

The next section presents the first publicized application of the ERDS method. The

current author carried out the above steps, applying the method to the robust design of a two

spool turboshaft engine for a heavy-lift helicopter application under significant technology
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Figure 28: Two spool axi-centrifugal turboshaft engine architecture.

uncertainty[99]. Comparison to a deterministic design method is included, showing both the

changes in the design selection and the performance estimates when employing the ERDS

method.

3.1.2 ERDS Case Study: Robust Design of Two-Spool Axi-Centrifugal Tur-
boshaft Engine

In order to demonstrate the enhanced robust design simulation process, it will be applied

to the design of a two-spool axi-centrifugal turboshaft architecture design. The notional

power turbine shaft horsepower requirements at various flight conditions are provided in

Table 8. The power requirements are based around those typical for a heavy lift rotorcraft

application. An example of the turboshaft architecture considered is shown in Figure 28.

The axial LPC and turbine stage powering the LPC are colored blue. The centrifugal HPC

and accompanying turbine stage are colored red. The power turbine stages are colored

green.
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Table 8: ERDS Case Study - Shaft horsepower requirements at various flight conditions.

Design Point Top of
Climb

Sea-Level
Static
Takeoff

High Hot
Takeoff

Cruise

Designation TOC SLSTKO HTKO CRZ

Altitude (ft) 6,000 0 5,400 6,000

Mach 0.11 0.00 0.00 0.17

dTs (◦F ) 57.4 51.0 55.3 0.0

Power (shp) 5,500 7,300 6,500 3,200

3.1.2.1 Modeling and Simulation Environment

An aerothermodynamic cycle performance model was constructed using the Numerical

Propulsion System Simulation (NPSS) software developed by NASA[49]. A correspond-

ing weight prediction model was constructed using NASA’s Weight Analysis of Turbine

Engines (WATE) software[111]. NPSS and WATE models together estimated the cycle per-

formance of the turboshaft engine, which in turn was used to calculate the required weights

of the engine components. Artificial neural network surrogate models were trained using

Matlab’s Neural Network Toolbox[10]. Matlab software was also used to construct a latin

hypercube space-filling DoE, the noise variable beta distributions, and subsequent Monte

Carlo probabilistic analyses of candidate engine designs.

3.1.2.2 Baseline Model Definition

In order to ensure that all horsepower requirements are met by the constant speed free power

turbine, a multi-design point (MDP) approach was used[103]. The MDP approach allows

for the designer to ensure that all requirements are exactly met by the aerothermodynamic

engine cycle while also satisfying all imposed constraints using the NPSS solver. The design

maximum turbine inlet temperature (T41,max) was treated as a constraint and effectively

sizes the engine at the high hot takeoff (HTKO) design point. It was assumed that the free

power turbine must provide a constant physical RPM at each of the four design points. A

constraint was also imposed that limited the engine pressure ratio (EPR) from being lower

than 1.05 at all design points.
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The two engine design points that determined a majority of the engine component per-

formance and size were the top of climb (TOC) design point and HTKO design point. The

TOC point was treated as the aerodynamic design point for the turbomachinery compo-

nents, where the assumed baseline polytropic efficiency was set and the turbomachinery

performance maps were scaled accordingly. The HTKO design point was the sizing point,

where the engine was sized to provide enough air flow to meet the power requirement while

also satisfying the input design T41,max. The cruise (CRZ) design point is merely an evalu-

ation point, used for the purpose of comparing candidate design performance levels.

3.1.2.3 Axi-Centrifugal Design Considerations

Since the results of this study are dependent on the design consideration of axi-centrifugal

machines, some of the relevant modeling details are explained here. Axial compressors have

the potential to be more efficient than centrifugal compressors. They can be easily staged

to gradually add pressure to the flow. However, as the engine size, typically represented by

the HPC exit corrected flow (W3R), becomes small, an axial compressor’s achievable poly-

tropic efficiency becomes greatly degraded due to secondary flow and clearance losses[84].

The manufacturability of the small axial compressor stages required for more compact en-

gines becomes challenging as well. Therefore, as the engine size becomes small enough,

centrifugal compressors become more feasible. While centrifugal compressors are relatively

insensitive to size effects compared to the axial compressors, they are sensitive to speed

effects[84]. Polytropic efficiency losses due to speed effects can be estimated as a func-

tion of the compressor’s specific speed Ns,HPC , a geometric similarity parameter defined in

Equation 17. The specific speed is a function of the centrifugal compressor physical speed

N , the volumetric flow rate Q, and the total enthalpy rise ∆H across the compressor. Spe-

cific speeds on the order of 0.75 are desirable. Lower specific speeds incur frictional losses

due to longer, lower aspect ratio passages while higher specific speed compressors induce

aerodynamic losses due to increased relative exit velocity levels[16].

Ns =
N
√
Q

∆H0.75
(17)

Centrifugal compressor material stress limitations also restrict the compressor efficiency
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Figure 29: Centrifugal compressor tip speed constraints due to material stress limits.

achievable. At high impeller exit temperatures (and corresponding higher pressure ratios),

the allowable exit tip speed is greatly reduced. Therefore, in order to achieve specific

speeds that minimize efficiency losses while also achieving high OPR values, the centrifugal

compressor and overall engine must remain small, limiting the amount of power an engine

with a centrifugal compressor can generate. This leads to the need for a axial-centrifugal

design. The axial compressor is used to efficiently compress the flow until a centrifugal

compressor is more efficient from a size effects perspective. Splitting the pressure rise

between the two components also allows the centrifugal compressor pressure ratio to remain

low, limiting design tip speed and diameter.

Figure 29 contains tip speed limits for various centrifugal compressor materials[84],[114].

Even with the most advanced centrifugal compressor materials found in the public domain,

the feasible specific speed levels are limited to values lower than desirable levels due to tip

speed restrictions imposed on the large diameter centrifugal compressors at the baseline

technology level. For higher OPR designs, the tip speed limits are even more stringent due

to elevated compressor exit temperatures.
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To demonstrate the design trades Figure 30 shows the variation in engine ESFC and

weight for a constant OPR baseline design with varying design specific speed and pressure

ratio split between the axial and centrifugal compressors. Each curve represents an axi-

centrif design with a fixed design specific speed centrifugal compressor. As the pressure

ratio split, or the portion of the overall pressure ratio assigned to the centrifugal compressor

(defined in Equation 18) decreases, the design becomes more competitive in both ESFC and

weight. This shows that the centrifugal compressor should provide a minimal pressure ratio

to replace the small, aft axial compressor stages that might induce efficiency losses due to

size effects. The baseline definition is representative of 1980s level technology, and acts as a

technology collector for applying advanced cycle and material technologies. At the baseline

technology OPR of 16.6 and without the addition of advanced centrif materials, the baseline

engine, depicted by the red circle in Figure 30, is able to achieve cruise ESFC levels on the

order of 0.59 lbm/(hr · eshp) with a corresponding bare weight of approximately 2,180 lbm.

As advanced cycle and material technologies are applied to the baseline technology collector,

ESFC and weight estimates will be able to be reduced, with the ultimate goal of the present

study to minimize cruise ESFC and weight estimates of candidate engine designs.

HPCPR = OPRPRsplit (18)

3.1.2.4 Technology Identification

Advanced technologies were identified that aim to enable a compact, highly efficient tur-

boshaft engine. Advanced cycles with high OPR and T41 levels were projected by work done

with the Large Civil Tilt-Rotor (LCTR) program[106]. Additional technologies identified

in the public domain and whose impacts are accounted for in this study include:

1. Inlet recovery and turbomachinery efficiency improvements through improved design

and manufacturing techniques[38]

2. Improved turbine cooling leakage and durability[38]

3. Titanium-Aluminide (TiAl) HPC and FPT[105][91]
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Figure 30: Axi-centrif engine performance limited by material stress limits.

4. Highly loaded axial compressor[27]

5. Advanced HPT material (Rene-N6)[115]

6. Highly loaded free power turbine[20]

7. Advanced Nickel centrifugal compressor[114]

Beta distributions were constructed for the identified technologies’ associated impacts.

Additional beta distributions were constructed to represent increases in assumed airframe

horsepower extraction and bleed requirements due to likely increases in airframe system

requirements[6][75]. The ranges of each impact variable and their associated beta distri-

bution shape factors were estimated. The various uncertainty distributions under which

robust designs were explored are contained in Table 9, Table 10, Table 11, and Table 12.

3.1.2.5 Surrogate Model Creation and Validation

The goal of the initial DoE is to provide adequate sampling of the physics based engine model

to allow for quality surrogate model fits that provide good representation of the pertinent
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Table 9: ERDS Case Study - Installation Uncertainty Distributions

Description kmin kmax Alpha Beta

Customer HP Extraction (shp) 35 70 1.5 3.0

Customer Bleed (lbm/s) 0.02 0.04 1.5 3.0

Accessory Weight (lbm) 50 68 3.0 2.25

Inlet Pressure Recovery 0.95 0.975 1.25 4.0

Table 10: ERDS Case Study - Component Efficiency Uncertainty Distributions

Description kmin kmax Alpha Beta

Base Poly Eff, Axial LPC 0.8875 0.9005 2.25 6.0

Base Poly Eff, Centrif 0.87 0.923 2.25 6.0

Base Poly Eff, HPT 0.83 0.92 4.25 6.0

Base Poly Eff, LPT 0.83 0.92 4.25 6.0

Base Poly Eff, FPT 0.85 0.91 2.25 6.0

Charge Cooling Factor, HPT and LPT 0.95 1.01 6.0 3.0

NonCharge Cooling Factor, HPT and LPT 1.9 2.0 6.0 2.25

Table 11: ERDS Case Study - Component Weight Uncertainty Distributions

Description kmin kmax Alpha Beta

Foreward Stage Wt Factor, LPC 0.9 1.0 1.75 3.0

Aft Stage Wt Factor, LPC 0.5 1.0 1.5 3.0

Wt Factor, HPC 0.9 1.0 1.75 3.0

Wt Factor, HPT 1.0 1.1 4.0 4.0

Wt Factor, LPT 1.0 1.1 4.0 4.0

Wt Factor, FPT 0.5 1.0 1.5 3.0

Table 12: ERDS Case Study - Miscellaneous Uncertainty Distributions

Description kmin kmax Alpha Beta

GE Loading, FPT 0.6 0.8 3.0 2.25

GE Loading, HPT 0.8 1.06 3.0 2.25

GE Loading, LPT 0.8 1.06 3.0 2.25

Intercomp Duct Pt Loss 0.0 0.025 4.0 3.0

Delta Centrif Tip Speed Limit -200 200 4.0 4.0
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metrics and constraints as functions of the design (control) and technology (noise) variables.

The initial DoE consists of a combined array of all control and noise variables, using a latin

hypercube space filling design sampling throughout the design and technology space. Along

with the ranges established for the technology impacts, ranges must be constructed for all

of the design variables considered. The design variables for which robust selections will be

made for this study are listed in Table 13 along with their corresponding ranges. The ranges

of the cycle design variables were selected based on current capabilities of similar engine

architectures as well as considerations of possible capabilities of future advanced technology

engines. A space filling DoE design of all control and noise variables was used to ensure

efficient sampling of the design and technology space considered. Due to the number of

model variables considered, a total of 4,000 DoE cases were generated, with 80% of those

being allocated for surrogate model training and the remaining 20% for verifying a good

model fit quality. After executing the initial DoE, surrogate models of the performance and

constraint metrics found in Table 14 were generated for use in the Monte Carlo probabilistic

analysis to follow. An example of the ANN fit quality is shown in Figure 31 for the ESFC

surrogate model regression, showing acceptable surrogate model error with respect to the

output data from the physics based engine model DoE cases. Mean values of the model fit

error (MFE) and model representation error (MRE) should lie close to zero, indicating that

the surrogate model error is not skewed in one direction or another when comparing model

estimates to both training and test data. In addition, the standard deviation of the model

fit and representation error should be minimized, with values of one being the threshold

of accepting a particular model. The actual-by-predicted and residual-by-predicted plots

in Figure 31 serve to visualize the model error throughout the range of estimated values.

The closer the training and test data points are to the perfect fit line in the actual-by-

predicted plot, the better the regression can be assumed to be. Additionally, the random

scattering of the data points around zero in the residual-by-predicted plot indicates the

assumed functional form of the response model sufficiently captures the nonlinearity of the

physics based model it represents.
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Table 13: Design variables and corresponding ranges considered for ERDS case study.

Parameter Description Min Value Max Value

OPR Overall pressure ratio at
TOC

16.6 30.0

HPCPR High pressure compres-
sor pressure ratio at
TOC

2.5 5.5

T41,max Maximum turbine inlet
temperature, ◦R

2,650 3,450

sHP Design horsepower
growth margin

1.0 1.5

Ns,HPC Centrifugal compressor
specific speed at TOC

0.4 0.8

NFPT Design speed of con-
stant speed FPT

9,600 16,000

Table 14: Engine model output metrics for which surrogate models were trained as functions
of control and noise variables.

Metric Units Type

ESFC at CRZ lbm/hr/eshp Evaluation

Maximum Nacelle Diameter lbm Evaluation

Engine Length inches Evaluation

Corrected HPC exit flow at SLS lbm/s Evaluation

Maximum HPC exit temperature ◦R Constraint

Maximum HPC tip speed ft/s Constraint

Maximum AN2 of HP, LP, and FP Turbines Billions of in2 · rpm2 Constraint
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Figure 31: Artificial Neural Network surrogate model fit quality - cruise ESFC.

3.1.2.6 Monte Carlo Probabilistic Analysis

Using the surrogate model representations of the physics based engine model, Monte Carlo

analysis of candidate engine designs in the presence of technology uncertainty can be per-

formed. A second Design of Experiments is constructed solely for the design variable settings

and technology uncertainty parameterization variables. Again, a space filling DoE is gen-

erated in order to explore the design space within the ranges of the six design variables

considered for the present study. For the exploration within the six dimensional design

space, 1,500 DoE cases were generated. As mentioned previously, if the designer is in-

terested in pursuing a possible technology push and identify which technologies should be

matured, the beta distribution shape factors should be included as control variables. Oth-

erwise, the assumed prior distributions are fixed and implicit in the subsequent surrogate

model training from the Monte Carlo analysis results.

Each case of the DoE represents a unique candidate engine design. In order to evaluate
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how each candidate engine performs in the presence of technology impact uncertainty, many

thousands of Monte Carlo simulations are performed and the pertinent surrogate models

are evaluated for each simulation, following the process shown in Figure 27. For the present

study, 10,000 Monte Carlo repetition simulations were performed for each of the 1,500 DoE

cases. The noise variable settings for the simulations are sampled to represent the prior

assumed uncertainty distributions, and the variability in the candidate engine’s performance

is then tracked. Quantile values of likely metric performance levels are calculated, allowing

the designer to construct the cumulative distribution function of performance likelihood of

each metric for every candidate design explored.

3.1.2.7 Probabilistic Data Regression

In order to allow the designer to richly sample the robust design space without the need

to replicate each candidate design simulation, subsequent surrogate model regressions are

generated. These probabilistic models are functions of the control and technology parame-

terization variables defining the uncertainty distributions under which robust setting selec-

tions are to be made. In order to account for the uncertainty implicit in the data collected

from the Monte Carlo probabilistic analysis, the surrogate models are formulated to predict

the likely metric values for a given vector of control variable settings and a corresponding

desired level of confidence in the probabilistic metric prediction. For the present case study,

no control is given to the shapes of the technology impact distributions, only design variable

settings are explored and evaluated in order to simplify the explanation of the process.

Just as with the training of the first set of surrogate models representing the physics

based engine model, a latin hypercube space filling design is used to sample the probabilistic

design and technology space. Each sampled set of control parameter values represents

a unique design, a set of technology impact distribution assumptions, and an inputted

confidence interval for which the metric evaluations are estimated. Instead of having to

evaluate each sample with the physics based engine model, the first set of surrogate models

are used, allowing for many more input parameter settings to be explored within a given

computational budget. This enables a richer sampling of the probabilistic design space,
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allowing for more accurate training of the probabilistic surrogate models. The present

study employed a latin hypercube design consisting of 19,500 samples throughout the control

variable ranges.

An example of the probabilistic ANN surrogate model fit quality is shown in Figure 32.

Again, the mean values of the MFE and MRE lie close to zero, indicating that the surrogate

model error is not skewed in one direction or another. The standard deviation of the model

fit and representation error is minimal. The actual-by-predicted plot indicates that the

training and test data points lie close to the perfect fit line, and the random scattering

of the data points around zero in the residual-by-predicted plot indicates the assumed

functional form of the response model represents the probabilistic response throughout the

design and technology space sampled. The surrogate models predicting engine length as

well as the engine weight had the worst fit quality among the models trained. This is due to

the models having to predict metric values that are affected by discrete engine changes, such

as compressor or turbine stage counts. However, these models had fit quality levels that

were acceptable as well. All probabilistic surrogate models generated were able to achieve

acceptable fit quality, with error levels well below the threshold of rejecting the models.

3.1.2.8 Discussion of Case Study Results

The total computational clock time necessary to carry out the steps of the study up until this

point was less than 5 total hours on a single quad-core machine. Simulations performed

within the physics-based engine model contributed most to this, requiring about 3 total

hours to carry out the necessary simulations for deterministic surrogate model training and

testing. The remainder of assessments and surrogate regressions were performed in less

than two hours. The ERDS process utilized for this study, while requiring additional steps

upfront compared to traditional methods, greatly reduces the total amount of time required

to produce the amount of probabilistic data as is shown, compared to competing methods.

The present case study sampled the candidate design space again using a space filling

design consisting of 50,000 samples in combination with the probabilistic surrogate mod-

els. Constraints were imposed and only the remaining samples were considered feasible
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Figure 32: Probabilistic surrogate model fit quality - likely cruise ESFC.

candidate designs. Any design that had turbine AN2 values above 50 (billion in2 · rpm2)

were filtered in order to maintain realistic turbine stress levels. This required regressions of

likely maximum AN2 levels of the high pressure, low pressure, and free power turbines. In

addition to the turbine constraints, centrifugal compressor exit tip speed constraints were

imposed to ensure that candidate designs satisfied the advanced Nickel material stress limi-

tations, shown in Figure 29. This enabled the highest centrifugal compressor tip speeds for

the high OPR designs. An uncertainty distribution was constructed around the assumed

Nickel centrifugal compressor tip speed limits. This allows for robust design selections to

be made accounting for the uncertainty in the actual tip speed limitations of the advanced

Nickel material.

The candidate two-spool axi-centrifugal turboshaft engine design samples that had a

95% probability of satisfying the imposed constraints were examined. The feasible design

space was identified within the full range of design variable settings. In Figures 33 - 36

design inputs are plotted against each other. For example, the intersection of Ns,HPC
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Figure 33: Feasible design centrifugal compressor pressure ratio settings for various max
turbine inlet temperatures.

(centrifugal specific speed) and HPCPR it indicates that high HPCPR is inversely related

to Ns,HPC specific speed. As HPCPR increases, the diameter of the disk must also increase.

As a result the rotational speed must be reduced in order to satisfy material constraints.

Apparent in Figures 33 - 36 are several obvious trends. First, higher values of HPCPR

require higher values of T41,max, as shown in Figure 33. As OPR increases, higher T41 is

needed to maintain a smaller core to keep impeller stress within limits. Also high values

of T41 enable higher speed, and therefore more compact and lighter, free power turbines.

As the design turbine inlet temperature increases, the hot gas path flow area will decrease.

Since the free power turbine speed is constrained by an AN2 limit, smaller areas allow for

higher speeds. Also worth noting is the correlation between HPCPR and sHP (scale factor

on baseline design horsepower). Larger power engines require larger mass flows. Examining

Equation 17, this trend means that centrifugal compressor speed, and therefore pressure

ratio, must be reduced to maintain a specified specific speed. As a result larger, more

powerful engines shift more of the compression work to the axial stages, resulting in more

efficient, lighter engines. The relationship between the amount of design power and feasible

HPCPR levels is shown in Figure 34, identifying the tendency of lower HPCPR designs
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Figure 34: Feasible centrifugal compressor design pressure ratio settings for various design
power levels.

Figure 35: Feasible centrifugal compressor specific speed settings for various design com-
pressor pressure ratios.
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Figure 36: Feasible centrifugal compressor specific speed settings for various design overall
pressure ratios.

offering more design feasibility and corresponding flexibility.

The major limitation in the design feasibility is in the attainable centrifugal compressor

specific speed (Ns,HPC), which depends primarily on the design centrifugal compressor

pressure ratio (HPCPR) and engine OPR, shown in Figure 35 and Figure 36. There is

also a strong interaction between HPCPR and OPR, indicated in Figure 37. High HPCPR

designs are only feasible with intermediate OPR designs. Selecting a high pressure ratio

centrifugal compressor would greatly limit the design flexibility of the overall engine design

due to the material limitations and corresponding achievable performance of the centrifugal

compressor. These trends can be further explained by examining the impacts of the design

centrifugal compressor pressure ratio on system performance, as shown in Figure 38 and

Figure 39.

Figure 38 and Figure 39 show the variation in the likely performance due to the design

choices made for the engine compression system. The plots show the 95% likely ESFC and

weight estimates for each candidate design. In other words, for the settings of the design

parameters indicated by HPCPR, OPR, and Ns,HPC , the plotted trends for ESFC and

weight have an associated 95% confidence level given the assumed technology uncertainty
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Figure 37: Feasible design overall pressure ratio settings for various design centrifugal
compressor pressure ratios.

Figure 38: 95% likely ESFC levels for various centrifugal compressor pressure ratio designs.
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Figure 39: 95% likely engine weight levels for various centrifugal compressor pressure ratio
designs.

distributions. There is strong correlation present between HPCPR and OPR, highlighted

again by Figure 37. High HPCPR and low OPR combinations indicate that more of the

compression is being done by the centrifugal system, leading to large diameter, heavier en-

gines. This can be seen by the correlation between HPCPR and weight, shown in Figure 39.

On the other end, high HPCPR, high OPR combinations drive up the exit temperature of

the impeller. As a result these designs violate the material constraints imposed on the cen-

trifugal compressor. The intersection of HPCPR and specific speed, depicted in Figure 35,

shows that reducing specific speed can alleviate the high OPR, high HPCPR issues resulting

from the high tip speeds; however, this leads to reduced compressor efficiency and engine

cycle ESFC, shown in Figure 38. As specific speed is reduced, the centrifugal compressor

moves away from its optimal size and efficiency suffers. Essentially there is a trade between

centrifugal compressor speed, performance and weight that must be evaluated.

The turbine loading (AN2) constraints also reduced feasible engine design space, al-

though to a lesser extent. The maximum physical speed of the constant speed free power

turbine is directly related to the FPT stress limit imposed. The HPT loading limit imposed

normally limit the specific speed levels and centrifugal pressure ratios attainable. However,
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Table 15: Case Study - Comparison of robust and deterministic candidate cycle ranges
(T41=3,450◦R).

Cycle Min Weight Compromise Min ESFC
Parameter Det. Prob. Det. Prob. Det. Prob.

HPCPR 2.5-3.0 2.5-2.6 2.5-3.0 2.5-2.7 2.5-3.0 2.5-2.7

sHP 1.0-1.1 1.0-1.1 1.1-1.3 1.1-1.3 1.3-1.5 1.3-1.5

Ns,HPC 0.48-0.56 0.58-0.60 0.48-0.56 0.58-0.60 0.50-0.56 0.56-0.60

RPMFPT
12,500-
14,500

12,500-
14,500

9,600-
13,000

10,800-
12,500

9,600-
12,000

9,600-
12,000

πOverall 28-34 26-29 28-34 26-29 28-34 26-29

the centrifugal tip speed limits caused a greater limitation in the feasible HPCPR / Ns,HPC

combinations than the turbine loading constraint.

3.1.2.9 Robust Cycle Selection

Further analysis can be conducted using the data presented in Figures 33 - 39 to assess

differences in using the RDS process and a more conventional, deterministic assessment.

Since most of the points in these figures are non-optimal, further analysis can be performed

to consider only the engine cycles that are near the pareto front in terms of weight and

ESFC while meeting the constraints listed in Table 14. The downselection of candidate

designs considered near the pareto front are assessed with deterministic evaluations of the

candidate robust designs assuming the most likely impacts are realized for every singe

uncertainty distribution considered. It is important to view the optimum cycles along this

front because the optimum solution may lie anywhere on the optimum weight vs. ESFC

space depending on specific vehicle requirements.

The remaining candidate designs under consideration lie in three regions of the ESFC

and weight metric space: ESFC optimal solutions, a balance between weight and ESFC,

and weight optimal solutions. In general, for both the probabilistic and deterministic anal-

yses, one-half percent of ESFC trades with approximately 400 lbm of engine weight. In

order to better understand the data, ranges of cycle parameters for these three regions are

summarized in Table 15.

Several interesting trends are noticeable when examining the cycle parameter ranges
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between the deterministic and probabilistic (ERDS) analyses. First, most of the ranges

for the cycle parameters on the pareto front are the same between the deterministic and

probabilistic runs, except for HPCPR and OPR. The robust selections tend to favor lower

OPRs and lower HPC pressure ratios. This trend is driven by uncertainty in the HPC

material constraints, presented in Figure 29. Should the designer choose to pick a higher,

albeit more efficient, OPR using the deterministic analysis, and the impeller material fails

to realize the stresses placed on it by the higher temperatures and speeds, the deterministic

case will end up worse off due to the mitigation actions necessary. Mitigation often manifests

itself as weight or performance detriments. The robust cycles also have higher minimum

HPC specific speeds. This also has the effect of minimizing impeller size and reducing

sensitivity to not meeting HPC technology impacts. It should also be noted that the

ranges on technology uncertainty will greatly affect how robust cycle ranges vary relative

to deterministic ones.

Note that several pareto cycles selected with the deterministic analysis exceeded the

maximum OPR of 30 originally sampled to produce surrogate representations of the physics

based engine model. As mentioned earlier, extrapolation should be performed with caution

when evaluating surrogate models. Therefore, it was ensured that the error imposed by

extrapolating outside the original range of OPRs considered did not exceed an acceptable

level. While ESFC prediction error was well within 1% of levels estimated by the physics

based model, the weight estimation model under-predicted the weight on the order of 5%

for engines with design OPR levels of 34, compared to what is estimated by the physics

based engine model.

While the impact of uncertainty on cycle selection can be quantified, the real proof of the

usefulness of the ERDS process must still be proven. If the RDS process does not select an

engine that performs better when technology fails to mature then it is not worth the extra

effort required to apply the process. In order to evaluate the robustness of cycles chosen

using the RDS, the cycle settings corresponding to the pareto fronts for the deterministic

(i.e., most likely) technology and probabilistic (i.e., 95% probability given technology dis-

tributions) impacts were then reassessed using the most likely technology and the worst
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case technology assumptions. Note that depending on the technology parameter the worst

case will either be the minimum or maximum value. For example, worst case efficiency

would be the minimum and worse case weight impacts would be the maximum. Figure 40

shows the results of this study. There are two groups of pareto fronts. The blue and red

cluster shows the deterministic and probabilistic cycles, respectively, when the worst case

technology assumptions are applied. The yellow and green points show the deterministic

and probabilistic pareto fronts when the most likely technology impact assumptions are

used. In the worst case scenario, where all technology fails to mature, the probabilistic

cycle space pareto front offers improved performance compared to the deterministic cycle

pareto front. Conversely, should all technology programs achieve their goals and hit their

likely targets, the deterministic cycle space will provide more performance and weight ben-

efit than if the designer had chosen to go with the robust cycle selections. This highlights a

fundamental choice between choosing a robust versus a deterministic optimum cycle. The

robust cycle is less sensitive to technology impact variation, but will not outperform the

deterministic cycles should all most likely technology impacts be realized in the resultant

design. Looking more closely at the most likely technology impact data in Figure 40, the

robust cycle offering the best ESFC performs an average of 0.3% worse, in terms of cruise

ESFC, compared to the corresponding deterministic design for a given weight. For the

worst case technology scenario, the robust cycle outperforms its corresponding determin-

istic counterpart by almost 0.8% for a fixed weight. Overall there is a 16% difference in

ESFC and 300 lbm weight difference between the two technology scenario pareto fronts.

Looking at it from this perspective, choosing the robust cycle allows the designer to gain

back 5% of the potential losses from failing to meet technology goals while only sacrificing

2% of potential performance if all goals are met.

In reality not all technologies would fail to meet their goals and the exact differences

in ESFC and weight depend on the vehicle application; however, following the ERDS can

provide mitigation of the levels of risk associated with developing multiple technologies for

a new engine platform.
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Figure 40: Evaluation of robust and deterministic candidate cycles against technology
realization.

3.1.2.10 Conclusions

This case study presents a demonstration of the Enhanced Robust Design Simulation

(ERDS) process. Two primary enhancements of the traditional method are presented.

The first improves the ability of the designer to create accurate regressions representing

probabilistic analysis data. Rather than train surrogate models to estimate the likelihood

of achieving or surpassing discrete performance targets, models were trained to estimate

performance levels as various desired levels of confidence. This offered a substantial im-

provement in the fit quality of models representing the probabilistic analysis data. The

second enhancement to the traditional RDS method provides design freedom in the factors

defining the otherwise fixed uncertainty distributions present in the RDS. Treating distri-

bution shape factors as control variables in the RDS allows the designer to explore possible

benefits of technology maturation to an engine program as well as the changes in resultant

robust design selections due to maturation.
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As applied to the turboshaft design problem, choosing a robust cycle using this process

allowed a 5% recovery in performance assuming technologies failed to meet their stated

goals and performance targets. Choosing a robust cycle means that it will tend to be more

conservative. As a result there will be performance and weight penalties if all technologies

meet their targets; however, this penalty is less than the performance recovered in the worst

case. In the end it comes down to the level of risk that the designer is willing to accept.

3.1.3 ERDS Summary

The previous sections established the Enhanced Robust Design Simulation method as a way

to efficiently explore and evaluate candidate designs under various sources of uncertainty.

The ERDS method enables the more complex, multi-application common core design studies

to be performed in the next chapter. The next section discusses the technique for enforcing

geometric core commonality across engine applications. This development is another key

contribution that also serves to enable the larger, fully integrated COMMENCE method.

3.2 Modeling of Geometrically Common Core Variant Designs

The COMMENCE method necessitates the enforcement of geometric commonality across

N variant applications. A crude technique for enforcing commonality may be achieved

through data filtering of simulation data. Such a technique would only be applicable when

considering a small family of common core variant applications, as the probability of in-

dependently sampled data having consistent design HPC exit corrected flow would decay

exponentially with the number of unique variant applications considered. This identifies

the need for a modeling and simulation environment that enforces core commonality and

allows for independent design exploration where permitted.

3.2.1 Modeling and Simulation of Common Core Application

In response to the identified needs, a modeling and simulation environment was created

as a two-engine NPSS model, consisting of a core defining design engine and a common

core variant engine. A representation of the environment is shown in Figure 41. For a

given simulation within this environment, a design engine cycle is first converged upon just
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Figure 41: Common Core Variant Engine - Modeling and Simulation Environment Repre-
sentation

as with any other gas turbine engine design. A set of desired input variable settings are

provided, consisting of cycle parameter settings, design thrust levels, technology impacts,

etc. With the set of input variable settings, the engine cycle solver attempts to converge

upon a cycle representative of the inputted variable settings. The entire engine is allowed to

scale in order to achieve the inputted thrust levels with the inputted cycle characteristics.

This initial engine cycle simulation is used purely to establish an engine core definition that

is to be applied to a variant engine design.

Once the core defining design engine is established, the core definition is frozen, no

longer allowing for scaling of the core components. The core definition, made up of the

HPC, the combustor, the HPT, and the ducting between these components, is now applied

to a subsequent engine simulation within the same modeling and simulation environment.

This variant engine again allows the components found outside of the core to be scaled. To

prevent the common core definition from operating at a different characteristic conditions

at the design point, several common core variant design rules are enforced. These allow not
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only for geometric commonality to be enforced, but they also enable the baseline core defini-

tion to be upgraded for the common core variant design, just as performance improvement

packages have been applied to common core designs in existence today.

3.2.2 Geometrically Common Core Applications: Variant Design Rules

By itself, the design-variant two-engine model would only allow for geometrically fixed

common core applications to be simulated. Consideration of core upgrade options require

a set of rules that allow for modification of the baseline core definition while concurrently

enforcing commonality between the design and variant engine simulations. Recall that

maintaining design HPC exit corrected flow across engine applications is an accepted way

to simulate geometric commonality, resulting in applications having consistent compressor

exit blade heights and performance characteristics. In addition, maintaining fixed design

HPC exit corrected flow enables similar performance characteristics and flow capacity levels

of the downstream core components: the combustor and the high pressure turbine.

If core upgrade options are of interest, whether they are advanced technology or upgrades

in core flow capacity, accompanying rules are necessary to accurately enforce geometric

commonality between the baseline core definition and upgraded common core variant. The

additional rules ensure advanced core variant applications are simulated at the same HPC

design map operating point as the baseline core definition.

A typical HPC map operating point is displayed in Figure 42. The design operating

point on the map is defined by the corrected speed line and the R-line, also referred to at the

Beta-line. At the design map operating point, the capabilities of the HPC are determined by

the corrected flow and pressure ratio at that point. When designing a clean sheet engine,

turbomachinery performance maps are scaled to represent the assumed technology level

and capabilities of the new engine being designed. When simulating fixed engines, map

scale factors are fixed, ensuring variation in map performance is due only to changes in the

operation of the turbomachinery.

Selecting a baseline core definition and applying it to a variant application with or

without upgrades requires a total of four variant design rules. Within the NPSS modeling
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Figure 42: Common Core Variant Engine - Design Map Operating Point and Defining
Parameters

and simulation environment used in the present work, NPSS solver pairs are used to enforce

these rules. Equation 19 is used to set the corrected core inflow, whether at the baseline

values or some increased core flow capacity when needed. When the HPC flow capacity is

allowed increase, the map flow scalar is increased such that the corrected flow at the design

operating point is achieved. Equation 20 enforces HPC exit design corrected flow across

applications, accounting for changes in design inflow when allowed. As shown in the rule

logic, maintaining consistent HPC exit corrected flow and a fixed HPC exit blade height

when corrected core inflow is increased requires a higher HPC design pressure ratio.

Vary :

HPC Map Flow Scalar︷ ︸︸ ︷
sWC,HPCmap,V ar (19a)

To Satisfy : W25R,V ar,ADP︸ ︷︷ ︸
New Core Inflow

= sW25R︸ ︷︷ ︸
DoE Input

×W25R,Des,ADP︸ ︷︷ ︸
Base Core Inflow

(19b)
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Vary :

HPC Map PR Scalar︷ ︸︸ ︷
sPRHPCmap,V ar (20a)

To Satisfy : W3R,V ar,ADP︸ ︷︷ ︸
New HPC Exit Flow

= W3R,Des,ADP︸ ︷︷ ︸
Base HPC Exit Flow

(20b)

The next rule ensures that commonality is enforced correctly by setting the variant

design map operating point to that of the baseline core design. On a fixed HPC performance

map, the map operating point can be fully defined by two parameter settings: the design

corrected speed and the design R- or beta-line. The design corrected speed can be directly

set, but in order to maintain the HPC design R-line, the HPT capacity is varied. Operating

on the HPT map flow scalar is representative of changing the HPT flow capacity with either

a vane-reset or a re-blading of the HPT. This rule to enforce the HPC design map operating

point is found in Equation 21.

Vary :

HPT Map Flow Scalar︷ ︸︸ ︷
sWC,HPTmap,V ar (21a)

To Satisfy : RlineHPCmap,V ar,ADP︸ ︷︷ ︸
New Core Map Point

= RlineHPCmap,Des,ADP︸ ︷︷ ︸
Base Core Map Point

(21b)

Now that the HPC design map operating point and flow capacity have been addressed,

the issue of maintaining or allowing for an upgrade in the HPC efficiency can be addressed.

Equation 22 is used to maintain the base HPC polytropic efficiency while also allowing for

infusion of core efficiency technology into the variant engine simulation. Since HPC design

pressure ratios are allowed to vary between common core variants, efficiency consistency is

enforced on the polytropic efficiency instead of the adiabatic efficiency. This ties all common

core applications to a consistent or upgraded technology level regardless of the applications’

pressure ratios.

Vary :

HPC Map Efficiency Scalar︷ ︸︸ ︷
sEFFHPCmap,V ar (22a)

To Satisfy : ηp,HPC,V ar,ADP︸ ︷︷ ︸
New Polytropic Efficiency

= ηp,HPC,Des,ADP︸ ︷︷ ︸
Base Polytropic Efficiency

+ ∆ηHPC︸ ︷︷ ︸
DoE Input Distribution

(22b)

By implementing these four solver pairs into the hybrid DESIGN/OFF-DESIGN variant

engine simulation, geometric commonality is enforced between the two engine simulations
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of the NPSS modeling and simulation environment. The NPSS code created to implement

these rules and simulate the common core variant design engine can be found in Appendix

A.

The effort involved in establishing a two-engine NPSS model where geometric common-

ality is enforced is a key enabler of the overall COMMENCE method. When performing

design space explorations of both the core defining design engine and the common core

variant design, commonality is now implicitly enforced. The relationships and common

characteristics between the design and variant engine cannot be violated when sampling

the two-engine NPSS model. Therefore, the resultant surrogate models produced from de-

sign samples of the physics based NPSS model will always have geometric commonality

implicitly enforced. This prevents the need of post processing or filtering of assessment

data in order to ensure commonality. Even for a single application design, if filtering was

necessary, much of the engine simulations would likely be performed for naught. Needless

to say, if commonality was not implicitly enforced and a very large number of common core

applications were being considered, the likelihood of having geometric commonality across

all applications would lie very close to zero.

The geometrically common core variant design modeling and simulation environment

developed provides the COMMENCE method with a great advantage. Integration of this

logic allows the integrated method to consider any number of common core applications,

which would produce great amounts of probabilistic variant engine data, all tied implicitly

to a single core defining design engine a the resultant common core definition.

3.3 Integrated Common Engine Core Evaluation (COMMENCE) Method

Now that the enabling capabilities have been established, they can be integrated into the

COMMENCE method. The ERDS method that enables the efficient explorations of de-

signs under uncertainty is used both in the selection of common core designs and is also

used in the exploration and establishment of the benchmark designs against which the com-

mon core applications are evaluated. This ensures a consistent technique for evaluating

the benchmarks and the common core applications, isolating the enforcement of geometric
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commonality as the sole contributor of performance deviation from the benchmark design.

The common core variant design modeling and simulation environment is obviously used

to explore the multi-application design space. Having relationships established between

the design and variant engine offers the COMMENCE method the ability to apply the

relationship to many common core applications that are all tied to a single core defining

design engine.

The following sections offer descriptions and discussion of the steps of the fully inte-

grated COMMENCE method. Explicit step-by-step procedures will be provided with the

experiments that utilize the COMMENCE method in the following chapter.

3.3.1 Establishing the Target Market

� Research Question 4: What range of capabilities can various common core design

options achieve without significant compromises made in application performance?

Hypothesis 4: A common core variant engine is able to provide a specific range of capa-

bilities while maintaining acceptable performance levels, based on the technology level

of the variant design, the core size, the overall engine architecture, and the amount of

design freedom permitted for the particular common core application considered.

For an undertaking as substantial as a new centerline engine program, significant re-

search must go into which segments of the gas turbine engine market products will be

offered. Whether the organization is trying to enter into a new market or maintain their

competitive edge in an existing segment, it must be ensured that the capital invested into

the new engine program will pay off both during the initial release of products as well as

throughout the life of the program. The first steps of the COMMENCE method, highlighted

in Figure 43 address where within the gas turbine engine market the engine program will

produce applications.

Establishing a strategy for the placement of an organization’s product line that results

in a successful and lasting program is crucial to the survival of an engine program and the

organization as a whole. In the context of a new gas turbine engine program, determining the

range of thrust and power levels for which engine applications will be developed contains this
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Figure 43: COMMENCE Method - Establishing Market Placement

crucial effort. Determination of these strategies is outside of the scope of the present work,

but it is acknowledged that this portion making up this initial step of the COMMENCE

method is of primary concern to any organization planning such an undertaking.

Another key factor in determining what the resultant family of engines will look like

is the selection of the propulsion system configuration, or the overall engine architecture

employed. The various engine companies typically adhere to their area of expertise as far

as engine architectures are concerned, due to there vast experience on which they can lean

on in the initial development of a new program. However, an advanced architecture may be

pursued if the benefits outweigh the development cost of designing, testing, and utilizing a

new overall engine architecture. Exploration of multiple engine architectures is also outside

the scope of the present work. All engine applications considered presently will be two

spool direct drive, separate flow turbofan architectures, and the method of evaluating and

selecting candidate designs within a single engine architecture will be employed. It is worth

noting that more complex engine architectures, containing additional engine shafts and/or

gearing of the propulsor would likely offer the designer more flexibility when employing a

common core across a variety of applications. The added complexity of the design, however,

comes with additional uncertainty, so the tradeoff between added design flexibility and the

accompanying uncertainty must be made.
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The last task in establishing a new common core engine program is the consideration

of unique sets of requirements for which applications will be designed. Consideration of

new and existing customers with interest in new engines would be made in addition to

consideration of the aging fleet of commercial and military engines. Entire departments

within organizations work to gain customers for which engine applications are designed and

employed. For the present work, arbitrary scenarios of unique sets of requirements will

be used in order to explore the proposed method of evaluating and selecting common core

designs.

The three initial steps of the COMMENCE method provide the method with sets of

requirements for which a common core engine program will be designed and selected. These

steps are necessary for the establishment of a successful strategy for a new common core

engine program, which is why they are present in the proposed framework. But as mentioned

above, options within these steps will not be presently explored.

3.3.2 Benchmark Engines for Applications Considered

After setting up the common core design problem and determining the unique sets of re-

quirements for which engine applications are to be designed, benchmark engine designs are

generated for each application considered, as shown in Figure 44. In order to determine

the amount of performance compromise being made by employing a common core engine

variant instead of a new centerline engine for a given application, a clean sheet design is

used as a reference. This allows the designer to answer, given the projected technology

level of the engine application time frame, What is the maximum performance attainable if

a new engine were designed specifically for this set of customer requirements?

The selections made for each application can be performed in any traditional manner.

However, the new centerline engine design explorations and selections in the present are

selected by following the Enhanced Robust Design Simulation (ERDS) method procedure.

This allows for consistent comparison between the common core applications and the bench-

mark engines. For each engine application considered, a candidate benchmark engine will

be selected that has the highest TOPSIS score of the feasible candidate designs considered
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Figure 44: COMMENCE Method - Benchmark Engine Generation for Each Application
Considered

for that application’s set of requirements. When common core engine variant designs are

considered for a given application, the performance levels attainable will be compared to

their corresponding benchmark engine under the same set of uncertainty assumptions.

Even though the benchmark designs are representative of clean sheet designs for each set

of customer requirements, the common core modeling and simulation environment and its

surrogate representations can still be used. The benchmark designs would just be simulated

using the core defining design engine simulation. This highlights the flexibility and range

of capabilities of the probabilistic surrogate models produced for this work. As long as the

engine architecture, any assumptions made, and the input variable ranges of interest for

various designs are enveloped within the surrogate training data, the resultant deterministic

and surrogate models representing the core defining design engine can be utilized for the

single application benchmark design explorations.

3.3.3 Engine Variant Design Options and Restrictions

� Research Question 2: For a given gas turbine engine core, how should a common core

engine variant design be simulated? What parameter(s) must be held to consistent

values in order to maintain geometric and aerothermodynamic commonality between

engine applications?

Hypothesis 2: In order to simulate a common core engine variant, design rules must
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be established and enforced that maintain the design level of corrected flow exiting the

high pressure compressor. Maintaining HPC exit corrected flow at design conditions

will ensure geometric similarity between common core applications. In order to provide

significance to maintaining design HPC exit corrected flow, the design rules must also

ensure that the compressor map design operating point is also fixed between common

core applications.

� Research Question 3: What design options should be considered for common core

engine variant applications in order to distribute development capital across the engine

program by taking advantage of commonality, while also offering more design freedom

when needed for more demanding applications?

Hypothesis 3: In order to provide a wide range of capabilities with common core appli-

cations, a range of design options should be available with differing levels of upgrade

cost and design freedom. Geometrically fixed core and modified common core options

should exist to allow for significant core power growth if needed. The common core

applications should have design freedom in the LP system in order to be sized for a

new set of customer requirements, and technology infusion should be considered for the

core and/or the LP engine components in order to provide feasible, competitive com-

mon core solutions while placing preference on less expensive upgrade options when at

all possible.

The primary advantage of utilizing a common core engine program is the ability to

distribute development costs of the most expensive region of the engine: the high pressure,

high temperature core. Maximization of the number of units sold would minimize the

development recovery liability of each unit. Increases in the number of units likely to be

sold can be achieved through the production of engine variant designs that aim to provide a

variety of capabilities to various customers. The accompanying challenge of a common core

program is being able to ensure that each unit’s performance is not compromised, which

would prevent the program from selling units for which development capital is invested to

design and certify. This portion of the COMMENCE method is highlighted in Figure 45.
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Figure 45: COMMENCE Method - Engine Variant Design Options

Table 16: Engine Variant Design Options - Matrix of Alternatives.

Category Option 1 Option 2

Core Design Geometrically Fixed Core Modified Common Core

LP System Design Fixed LP System New LP System

LP Tech Level Parent Tech Level Technology Infusion

Core Tech Level Parent Tech Level Technology Infusion

The present work allows for certain design modifications to be made in order to provide

a solution for a particular set of customer requirements and constraints. These design

options have been compiled in the matrix of alternatives found in Table 16. In reality,

variant engines will share similar sets of requirements and constraints while also having

similar technology level low pressure systems. Therefore, in industry, when at all possible,

off the shelf fan designs for example will be utilized if they meet the limitations imposed on

their geometry and also are able to produce the required thrust with the airflow available to

them. For all common core engine applications considered in this work, a new LP system

will be designed to meet a unique set of customer requirements.
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3.3.3.1 Common Core Variant Simulation

As was discussed in the section where the common core variant design rules were established,

the modeling and simulation environment simulates two engines. The core defining design

engine and the common core variant engine, utilize the same NPSS components making

up their architectures. The core components, the ones shaded in Figure 46, are designed

during the core defining design engine simulation, their characteristics are saved and then

applied to the variant engine simulation. This enforces geometric core commonality between

the design and variant engines. Table 17 contains the major NPSS components and their

DESIGN or OFF-DESIGN modes during the simulations of the design and common core

variant engine cycles. When in DESIGN mode, the components are allowed to be sized

to exactly meet requirements imposed at the design points considered. Turbomachinery

maps are scaled accordingly to provide the necessary flow and thrust levels at the various

design points. When in OFF-DESIGN mode, the components are not allowed to scale,

and they operate at speeds and corresponding efficiency levels that offer a steady state flow

solution at the inputted engine power setting. The turbomachinery components use the

same performance maps that were previously scaled during the core defining design engine

run. Its operation is allowed to vary during off-design simulations, but the map is not

allowed to scale. For the common core variant simulation, this is how the core components

operate, even at design point conditions.

3.3.3.2 Geometrically Fixed Core with New LP System

When additional core working fluid is not needed to meet the requirements and/or con-

straints imposed on the variant application under consideration, the core definition will

remain geometrically fixed, representing an off-the-shelf core application. Also, by remain-

ing as common as possible, the knowledge of the existing core design can be carried over

to the new engine application. Therefore, when simulating a geometrically fixed common

core in the modeling and simulation environment with the imposed variant design rules, the

term sW25R will remain at a value of one, maintaining the design core inlet flow at ADP.
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Figure 46: NPSS model components making up the physics based separate flow turbofan
engine model, highlighting the engine core which remains geometrically common between
design and variant engine applications.

Table 17: NPSS model components and their corresponding DESIGN or OFF-DESIGN
status during Design and Variant engine simulations.

Component Description Design Sim Mode Variant Sim Mode

InEng Inlet DESIGN DESIGN

CmpFan Fan DESIGN DESIGN

SpltFan Splitter DESIGN DESIGN

NozSec Bypass Nozzle DESIGN DESIGN

CmpL LPC DESIGN DESIGN

TrbL LPT DESIGN DESIGN

NozPri Core Nozzle DESIGN DESIGN

ShL LP Shaft DESIGN DESIGN

CmpH HPC DESIGN OFF-DESIGN

Brn Combustor DESIGN OFF-DESIGN

TrbH HPT DESIGN OFF-DESIGN

ShH HP Shaft DESIGN OFF-DESIGN
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3.3.3.3 Modified Common Core with New LP System

When more core power is desired, but with as much core commonality as possible, the

geometrically common core can be slightly modified to allow for more core working fluid.

In order to increase core power the designer can either increase the operating temperatures

of the core, increasing the thermal energy of the working fluid exiting the core components,

or the core inlet flow can be increased, requiring an increase in the core overall pressure

ratio at design. The goal of this design modification is to overcome the limitation of the

fixed geometry core and increase the attainable core power beyond the capabilities of the

previously sized definition. Modification of the power generator in order to increase the

max amount of power gives the ability to generate increased power levels without surpassing

imposed temperature limits.

Any modification to the core is an expensive design modification. Alteration of an

existing core would likely be less of an undertaking compared to a completely new or pho-

tographically scaled core design. Increasing the design core flow is assumed to be accom-

plished through flaring of the HPC and/or zero-staging of the HPC, adding an additional

rotor/stator compressor stage in front of the original core’s first compressor stage. Flaring

without the addition of a compressor stage is possible if the HPC was not originally sized

to operate at max loading. However, if the necessary increase in the design overall pressure

ratio in order to maintain the design level of HPC exit corrected flow at ADP cannot be

achieved within HPC stage loading limits, then an additional compressor stage would be

necessary. This is something to consider when making initial core design decisions. If fu-

ture growth engines are projected to require significant core flow scaling compared to initial

applications, the family of engines may benefit overall from a baseline core definition that

is sized larger, with built in capabilities for increased loading for growth applications.

High flow growth applications would likely require reblading of the HPC due to achieve

growth while being able to maintain high efficiency. Additionally, vane resets would likely

be required to allow for HPT flow capacity to increase for growth applications. These mod-

ifications, although expensive, would aim to maintain core casing and flowpath geometry,

requiring minimal modifications to be made to surrounding subsystems due to the fixed
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casing geometry.

3.3.3.4 Technology Infusion

Just as with new engine products, new technology can be applied to existing engines through

performance improvement packages. As targeted technologies become mature, they are

applied to the various engines in operating and are built into new applications. In order

to simulate such technology infusions, advanced technology impacts are applied to later

projected engine applications, accounting for the projected maturation of an engine family’s

technology portfolio. Although somewhat trivial in its application within the COMMENCE

method, the ability to account for future technological capabilities allows for more accurate

simulation of later engine applications. As a result, the built in core size margins for future

flow and power requirements can be minimized, allowing for technology development to fill

the gap and achieve growth core power requirements.

3.3.4 Common Core Variant Design Evaluation

� Research Question 5: How should a common core engine program consisting of mul-

tiple variant design applications be evaluated?

Hypothesis 5: A common core variant engine should be evaluated based on the per-

formance deviation from a benchmark, new centerline engine designed specifically for

the application it is being designed for. In order to determine the amount of per-

formance compromise made by utilizing a common core application, the benchmark

engine should be designed for an identical set of requirements while under the same

set of assumptions as were made for the common core variant design. A weighted sum

of variant performance levels should be used in the overall evaluation of the engine

program.

An engine’s thrust specific fuel consumption (TSFC) is the most popular engine perfor-

mance metric, relating the amount of fuel flow required per pound of net thrust achieved.

TSFC is defined in Equation 23, usually at cruise conditions for some intermediate throttle
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setting.

TSFC =
ṁf

Fn,core + Fn,bypass
(23)

A candidate engine’s overall efficiency (ηO) can be defined as a product of the engine’s

propulsive, thermal, and transmission efficiency at some condition, as shown in Equation 24.

A typical condition for evaluating an engine’s efficiency is at the aerodynamic design point

(ADP), usually at cruise conditions and at full throttle. This design point is where the

engine components are designed for maximum efficiency.

ηO = ηP ηT ηTr (24)

Kestner et al.[51] provide a convenient way of defining each of the engine efficiency

terms in terms of total available kinetic energy levels, expanding all flow velocities to am-

bient conditions. This essentially converts the internal energy, or enthalpy, at each flow

station into additional available kinetic energy. This approach is also convenient for studies

interested in engine core performance, because it maps core performance to overall engine

performance. The kinetic energy addition rate term (K̇Ecore is defined in Equation 25, and

the measurement for the overall engine K̇Eengine) is defined in Equation 26.

K̇Ecore =
1

2

[
ṁ43v

2
43 − ṁ25v

2
25

]
(25)

K̇Eengine =
1

2

[
ṁ7v

2
7 + ṁ17v

2
17 − ṁ2v

2
2

]
(26)

The thermal energy addition rate terms (Ėfuel, Ėpropulsive) required for efficiency cal-

culation are defined in Equation 27 and Equation 28.

Ėfuel = ṁfLHV (27)

Ėpropulsive =
[
Fn,core + Fn,bypass

]
v∞ (28)
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The propulsive efficiency (ηP ) of the engine is defined in Equation 29, relating the

propulsive energy addition by the engine to the kinetic energy added to the flow travel-

ling through the engine.

ηP =
Ėpropulsive

K̇Eengine
=

[
Fn,core + Fn,bypass

]
v∞

1
2

[
ṁ7v2

7 + ṁ17v2
17 − ṁ2v2

2

] (29)

The thermal efficiency (ηT ) of the engine is ratio of the resultant core energy addition

to the thermal energy added to the core flow, and is defined in Equation 30.

ηT =
K̇Ecore

Ėfuel
=

1
2

[
ṁ43v

2
43 − ṁ25v

2
25

]
ṁfLHV

(30)

The transmission efficiency (ηTr) term relates the energy addition to the core to the

achieved energy addition by the engine to the engine gas flow, and is defined in Equation 31.

ηTr =
K̇Eengine

K̇Ecore
=
ṁ7v

2
7 + ṁ17v

2
17 − ṁ2v

2
2

ṁ43v2
43 − ṁ25v2

25

(31)

A useful metric that will assist in estimating how much thrust growth is available with

an engine core is the specific power of the engine core, denoted as PS,core. By measuring the

specific power of the engine core while operating at the rated maximum temperature and

pressure, the designer can determine how much additional specific power can be produced

by the core when operating at the absolute maximum temperature and flow levels possible.

The specific power of the engine at maximum power, usually measured at takeoff, can be

defined using Equation 32. The available power produced by the core, equivalent to the

available kinetic energy of the core defined above, is normalized by the core air flow entering

the HPC. The normalized metric uses the HPC entrance mass flow because this contains

both the working flow that will travel through the combustor as well as the cooling flow

required for engine operation at the power level reached. This available specific power of the

core is evaluated with no customer bleed or horsepower extraction from the engine. This

will show the maximum specific power available at current operating conditions, of which

the customer can reduce if bleed and power extraction are necessary.

PS,core =
K̇Ecore
ṁ25

=

1
2

[
ṁ43v

2
43 − ṁ25v

2
25

]
ṁ25

(32)
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It is helpful to define ṁ43, the mass flow exiting the HPT in terms of ṁ25. Equation 33

does this by also accounting for the fuel flow rate and any LPT cooling flow required from

the HPC.

ṁ43 = ṁ25 + ṁf − ṁcool,LPT = ṁ25

[
1 +

ṁf

ṁ25
−
ṁcool,LPT

ṁ25

]
(33)

Now the maximum specific power available can be restated using Equation 34.

PS,core =
K̇Ecore
ṁ25

=
1

2

[(
1 +

ṁf

ṁ25
−
ṁcool,LPT

ṁ25

)
v2

43 − v2
25

]
(34)

For a candidate engine core design, the maximum specific core power achievable can

be found by calculating the specific core power when operating the core at the maximum

possible temperature and air flow levels. The maximum achievable specific power and the

corresponding excess specific core power can be found using Equation 35 and Equation 36.

(PS,core)max = PS,core

(
T3,max, T4,max, T41,max, ṁ25,max

)
(35)

(PS,core)excess = (PS,core)max − PS,core (36)

In a similar fashion to how the current specific power was related to the maximum

specific power achievable with a candidate engine core design, the growth potential can

be determined for a given engine core. Growth potential is primarily concerned with the

ability to achieve greater levels of thrust, both at the current technology level as well as

with the performance improvement packages later in the engine program life. The maximum

specific power of a fixed core design at the current technology level is determined based on

the core geometry, achievable turbomachinery component efficiencies, cooling capabilities,

and current temperature limits imposed on the design. However, the maximum specific

power of an engine core design will increase as technologies are developed that improve

component efficiencies, cooling capabilities, and temperature limits. Therefore, a current

growth potential as well as a projected future growth potential can be found, mapping the

maximum specific core power to the achievable thrust levels.

This mapping from maximum specific core power to achievable thrust growth can be

done using the predefined efficiency terms, all evaluated at the maximum power design
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point, usually the takeoff condition. The current maximum possible core kinetic energy

addition at takeoff is found using Equation 37

(K̇Ecore)max = (PS,core)maxṁ25,max (37)

With the values of transmission and propulsive efficiency evaluated when determining

the maximum achievable specific power, the maximum propulsive energy addition achievable

at the current technology level can now be found using Equation 38.

(Ėprop)max = ηP ηTr(K̇Ecore)max (38)

The resultant maximum achievable sustained thrust at takeoff can be found using

Equation 39.

(Fn)max =
(Ėprop)max

v∞
(39)

This maximum achievable takeoff thrust is the growth potential of the common core

engine. Whether the current of projected level is determined is based on the component

efficiencies, cooling capabilities, and temperature limits used for the calculation of this

growth potential.

Depending on the performance metrics of interest, common core variant applications

can be evaluated. The amount of deviation in performance of each common core variant

application can be determined. The individual application performance evaluations can

then be combined to perform an overall common core engine family evaluation. This is

shown in the following section.

3.3.5 Overall Engine Program Exploration and Evaluation

� Primary Research Question: How should core design selections be made for multiple

current and future common core applications, ensuring a high likelihood of achieving

feasible, competitive common core engine variant designs?

Primary Hypothesis: Simultaneous simulation and evaluation of current and future

common core applications should be performed when exploring the common core design

space in order to quantitatively estimate the feasibility and likely performance levels of
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program applications due to changes in the common core definition. If this is possible

and implemented, the likelihood of achieving feasible, competitive common core variant

designs will be increased while minimizing the amount of mitigation actions required

later in the program.

Evaluation of how a common core definition performs throughout a range of variant

engines aiming at meeting various requirements while having possible different technology

limits will allow for a better selection of an engine program’s common core design. Using the

Performance Deviation Index (PDI) established by Simpson[104], the family of common core

engine applications can be evaluated against each corresponding benchmark application.

Evaluation of a single common core application is performed by taking the weighted sum

of the deviations of the performance metrics of interest. In other words, the most desirable

candidate designs are those that lie closest in performance to the corresponding benchmarks

established for each application. An example of this is shown in Equation 40, where TSFC

and engine weight are the two metrics of interest. Once each application is evaluated,

the entire product line can be evaluated by taking the weighted sum of all applications’

performance deviation levels, with increased weighting factors applied to the applications

less compromised performance is more desired. This overall evaluation of a product line of

common core evaluations is depicted in Equation 41.

yi =

(
TSFCi,CC − TSFCi∗

TSFCi∗

)
wTSFC +

(
Wti,CC −Wti∗

Wti∗

)
wWt (40)

YCC =

Napps∑
i=1

wiyi (41)

Relationships between the core definition and corresponding common core variant per-

formance levels can be established after various candidate designs have been considered. In

order to consider realistic core designs, an initial core defining design engine is explored.

This avoids the need to independently vary design parameters related to an engine core ge-

ometry. This latter type of design exploration would likely result in many candidate cores

considered being far from a realistic core definition.
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Table 18: Typical control variables and corresponding ranges for a clean sheet turbofan
engine design exploration.

Variable Units Min Max

πFan @ ADP - 1.3 1.7

πHPC @ ADP - 9.0 16.0

πOverall @ ADP - 30.0 55.0

T4 @ TKO ◦R 3,300 3,750

ER @ ADP - 0.90 1.25

NChgLPT % W25 0.00 0.06

FN @ TKO lbf 20,000 30,000

FN @ TOC lbf 5,900 8,850

Table 19: Control variables and corresponding ranges for variant engine exploration.

Variable Units Min Max

πFan,V ar @ ADP - 1.3 1.7

πOverall,V ar @ ADP - 30.0 55.0

T4,V ar @ TKO ◦R 3,300 3,750

ERV ar @ ADP - 0.90 1.25

NChgLPT,V ar % W25 0.00 0.06

sW25R @ ADP - 1.0 1.2

NC,HPT,V ar @ TKO % 100. 105.

Sampling of a design engine cycle is used to define the core design to be applied across

common core variant applications. Such design cycle explorations can be done within a

typical cycle design space as contained within the design ranges listed in Table 18. Then,

for each independent exploratory core definition, a unique variant cycle design sample is

considered within the design space contained in the variant cycle ranges listed in Table 19.

The resultant core definition and variant cycle application is then simulated.

In the evaluation of both the common core variant designs as well as the overall common

core program evaluation, the ERDS method is utilized, allowing for efficient exploration

and evaluation of candidate common core variant designs under the assumed uncertainty

scenario considered. Probabilistic performance predicting surrogate models are trained with

the physics based engine model, and extensive explorations are then able to be more richly

performed with the use of the surrogate models. Likely performance impacts of common core
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variant designs are estimated based on the core defining engine control variable settings and

uncertainty scenario shape parameter settings, the common core variant design variables

and uncertainty scenario shape parameter settings, and the inputted level of confidence

desired in the performance estimate(s).

The first priority when evaluating candidate common core program designs is the ability

to have feasible variant designs for all applications considered. Once a high likelihood of

achieving feasibility is achieved across all common core applications, TOPSIS evaluations

are then used to evaluate the remaining candidate designs, ranking them based on the

desired metrics and accompanying importance of each. The TOPSIS scores of candidate

designs will be based on how close in performance the common core applications are with

respect to their corresponding benchmark engines. The weighted sum of each common core

application’s TOPSIS performance measurement is then computed. The overall common

core engine family then receives a TOPSIS score and rank within the population of feasible

candidate common core families.

3.4 Summary of COMMENCE Method Development

The previous sections establish the COMMENCE method, the overall process, and the

enabling techniques making the COMMENCE method a viable option for exploring common

core engine family designs.

When considering a new common core engine family, the design-variant common core

modeling and simulation environment is first developed to represent the types of engines con-

sidered and the relationship between the baseline core definition and a variant application.

The physics based model is vetted, establishing a baseline collector onto which technology

advancements can be applied. Simulations are performed throughout the design-variant

design and technology space with the use of a DoE allowing for the most efficient use of the

simulation budget. With the resultant data, two sets of deterministic surrogate represen-

tations of the two-engine physics based model are produced: One set represents the core

defining design engine where each model takes the form in Equation 42, while the other set

of models take the form in Equation 43 to represent the geometrically common core variant
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engine.

YDes = f(CVDes,NVDes) (42)

YV ar = f(CVDes,NVDes,CVVar,NVVar) (43)

Probabilistic assessments are then performed, accounting for any uncertainty scenarios

that may be of interest. Another round of surrogate models are then regressed. These

probabilistic models estimate likely performance levels at inputted confidence intervals for

the design and common core variant engines under various uncertainty scenarios. The

two sets of probabilistic surrogate models are functions of design variables, uncertainty

distribution shape parameters, and the desired level of confidence associated with the metric

response. The design and variant engine representations take the forms in Equation 44 and

Equation 45.

YDes = f(C,CVDes,ADes,BDes,kminmax,Des) (44)

YV ar = f(C,CVDes,ADes,BDes,kminmax,Des,CVVar,AVar,BVar,kminmax,Var) (45)

Once the probabilistic surrogate models are produced, the designer can perform design

and technology space explorations. When integrated into the COMMENCE method, the

probabilistic models are used for the explorations and selections of benchmark engine de-

signs as well as for exploration of the multiple application common core engine design and

technology space.

By investing the additional time required upfront to produce the resultant sets of proba-

bilistic surrogate models, significant payoffs can be realized later in a development program.

As long as the designer accounts for all possible variables and ranges that may be considered

later, a valid set of probabilistic representations of the common core design and uncertainty

space can be applied to a wide variety of deterministic or robust design exercises. Single

application design problems, such as those to establish benchmark engines, can be consid-

ered with the use of the probabilistic representations of the core defining design engines.
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The true power of the fully integrated method and resulting probabilistic representations is

the enabled capability to explore the high dimensional, multiple-application common core

design space under various uncertainty scenarios.

The first three experiments found in the following chapter are formulated to test the

various developments made to enable the larger COMMENCE method. The first experiment

tests the ERDS method’s ability to select robust designs. The second experiment tests the

common core modeling and simulation environment’s ability to enforce commonality and

apply upgrades to common core applications. The third experiment considers the common

core design for a small set of engine applications, testing the COMMENCE method’s ability

to handle multiple sets of requirements all under the same uncertainty scenario.

The final experiment exercises the fully integrated COMMENCE method to perform

a multi-application, robust common core design study that previously would be compu-

tationally infeasible to carry out. A large number of engine applications are considered,

each having a unique uncertainty scenario. Geometric core commonality is implicitly en-

forced across all applications considered. The common core design space is explored with

the goal of finding a common core design region that offers feasible variant engines for all

applications considered. Demonstration of enabling capabilities will be presented as well,

highlighting the range of studies that are enabled by the development and full integration

of the COMMENCE method.

129



CHAPTER IV

EXPERIMENTAL IMPLEMENTATION AND RESULTS

The following experiments will be used to test the hypotheses established in the previous

chapters. This will allow for the primary research question to be answered and corre-

sponding hypothesis to be tested. The organization of the chapter serves as a stack-up of

capabilities. Each subsequent experiment builds upon the previous established capabilities

in order to reach the overarching goal of evaluating a common core design selection based

on the overall engine program’s performance.

Primary Research Question: How should core design selections be made for multi-

ple current and future common core applications, ensuring a high likelihood of achiev-

ing feasible, competitive common core engine variant designs?

Hypothesis: Simultaneous simulation and evaluation of current and future common

core applications should be performed when exploring the common core design space in

order to quantitatively estimate the feasibility and likely performance levels of program

applications due to changes in the common core definition. If this is possible and

implemented, the likelihood of achieving feasible, competitive common core variant

designs will be increased while minimizing the amount of mitigation actions required

later in the program.

In order to achieve the research objective, causality must be found that relates the engine

core design decisions made early in a common core gas turbine engine program to the ability

of the program to competitively offer solutions for current and future applications.

Research Objective: Develop a gas turbine engine design and decision making pro-

cess that aims to increase the useful competitive life and overall versatility of a common

core engine family. The process should consider current and future competitive engine
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family performance, utilizing current and eventual technology improvements without

the need for a core re-design.

The process framework, when used with virtual experimentation, offers the construction

of a relationship to be established between engine core architecture and size selections to the

resulting engine family performance across a range of capabilities and technology scenarios.

The first experiment serves to establish and test the capabilities of the ERDS method.

A single application engine design problem will be used. A more traditional, deterministic

design method will be used to explore and select a candidate design. Then, the ERDS

method will be applied to the same design. Comparison of the favorable designs and the

resulting likely performance levels of candidate selections made with each method will be

compared.

The second experiment tests the common core modeling and simulation environment.

Various common core upgrade options are explored with the goal of determining the maxi-

mum growth thrust achievable with the various options explored.

The third experiment is the first multiple application common core design problem

posed. Three engine applications, each having unique thrust requirements are considered,

all having the same technology level. Investigation into common core feasibility across

multiple applications is performed, and selection of the common core design that provides

the smallest total performance deviation with respect to benchmark engines established for

each set of requirements.

The final experiment tests the suite of capabilities enabled by the fully integrated COM-

MENCE method. Seven engine applications are considered, each having a unique uncer-

tainty scenario. Exploration of the common core design space will be performed, aiming

for a common core solution that provides feasible common core variants for all applications

considered.
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4.1 Training of Deterministic and Probabilistic Surrogate Models for
Experiments

One key advantage of the ERDS method and the fully integrated COMMENCE method is

the enabled flexibility of the probabilistic surrogate models produced. As was mentioned

in Chapter 3, great care should be taken when producing training data for surrogate model

regression. The number of input variables and their associated ranges should be selected

such that a wide variety of probabilistic assessments can be performed with a single set of

surrogate models.

The ERDS process contains the steps by which surrogate models should be trained

to enable a wide variety of robust design probabilistic assessments. The process is now

described in detail, providing the explicit steps that were carried out to produce the set of

surrogate models used for all of the experiments to follow. The steps are consistent with

the ones presented in the Chapter 3 discussion of the ERDS process, with added details

intended to provide transparency and allow for process repeatability.

4.1.1 Step 1: Physics based model preparation

The baseline engine cycle definition, onto which technologies are applied and from which

common core variant applications are simulated, is representative of a middle-of-market

high bypass turbofan engine such as the CFM56-7B27. The baseline definition listed in

Table 30 and visualized in Figure 51 serves as the baseline definition for all experiments

discussed and performed in this chapter.

As was discussed in Chapter 3, logic must be added to the NPSS modeling and simulation

environment to allow for the simulation of a core defining design engine and subsequent

simulation of a common core engine variant. The NPSS code created by this author to

enforce commonality and simulate a common core variant design can be found in Appendix

A. The steps that are carried out in the model are presented here in words.

Two sets of input variables are first established, identifying all variables that are to

be varied in all experiments to come. The first set of input variables apply to the core

defining design engine. The second set of input variables correspond to the common core
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Table 20: Core Defining Design Engine - Design Variable Ranges

Variable Description Lower
Limit

Upper
Limit

πFan at ADP Design Fan Pressure Ratio 1.3 1.7

πHPC at ADP Design HPC Pressure Ratio 9.0 16.0

πOverall at ADP Design Overall Pressure Ratio 30.0 55.0

T4,max (degR) Maximum Combustor Exit Temperature 3,300 3,750

ER at ADP Design Extraction Ratio 0.9 1.25

FN at TKO (lbf) Net Thrust at Takeoff 20,000 30,000

FN at TOC (lbf) Net Thrust at Top of Climb 5,900 8,850

engine variant engine. These sets of input variables first consist of design variables (also

referred to as control variables) whose values will be selected when making design decisions.

In addition to the inclusion of all possible design variables of interest, all possible technol-

ogy, installation, and other noise variables that are to be accounted for in the following

experiments should be included in the superset of input variables to explore.

For each of the input variables considered for all subsequent experiments, variable ranges

must be established that envelop all possible values that may be used to evaluate a design.

A total of 36 input variables corresponding to the core defining design engine are assigned

ranges. The seven design variables for the core defining engine are listed in Table 20 with

their corresponding desired ranges. To avoid extrapolation of the resultant surrogate models

when evaluating designs near the edges of the input variable space, all variable ranges are

extended on either side by one percent of the desired range. For example, the fan pressure

ratio (FPR) has a desired range from 1.3 to 1.7. The actual ranges used to sample the

physics based model for surrogate training vary from 1.296 to 1.704. This ensures that any

future surrogate evaluations will have input variable values within the input region where

the surrogate model accurately represents the physics based model.

In addition to the seven core defining engine design variables, ranges were applied to all

variables whose values are assumed to be uncertain in one or more experiments to follow.

Table 21, Table 22, and Table 23 contain the variables and corresponding ranges to account

for during surrogate training.
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Table 21: Core Defining Design Engine - Input Variables for Component Efficiency Impacts

Variable Description Lower
Limit

Upper
Limit

∆ηFan Delta Fan Efficiency 0.00 0.01

∆ηLPC Delta LPC Efficiency 0.00 0.01

∆ηHPC Delta HPC Efficiency 0.00 0.01

∆ηHPT Delta HPT Efficiency 0.00 0.01

∆ηLPT Delta LPT Efficiency 0.00 0.01

Table 22: Core Defining Design Engine - Input Variables for Component Weight Factors

Variable Description Lower
Limit

Upper
Limit

sWtFanBld Fan Blade Weight Factor 0.90 1.00

sWtFanSt Fan Stator Weight Factor 0.90 1.00

sWtLPCBld LPC Blade Weight Factor 0.90 1.00

sWtLPCSt LPC Stator Weight Factor 0.90 1.00

sWtHPTBld Fore HPC Blade Weight Factor 0.90 1.00

sWtHPCSt Fore HPC Stator Weight Factor 0.90 1.00

sWtHPCBld2 Aft HPC Blade Weight Factor 0.90 1.00

sWtHPCSt2 Aft HPC Stator Weight Factor 0.90 1.00

sWtHPTBld HPT Blade Weight Factor 0.90 1.00

sWtHPTSt HPT Stator Weight Factor 0.90 1.00

sWtLPTBld LPT Blade Weight Factor 0.90 1.00

sWtLPTSt LPT Stator Weight Factor 0.90 1.00

sWtNozPri Core Nozzle Weight Factor 0.90 1.00

sWtNozSec Bypass Nozzle Weight Factor 0.90 1.00

sWtShH HP Shaft Weight Factor 0.90 1.00

sWtShL LP Shaft Weight Factor 0.90 1.00
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Table 23: Core Defining Design Engine - Remaining Input Variables with Possible Uncer-
tainty

Variable Description Lower
Limit

Upper
Limit

T41,max (degR) Max HPT Inlet Temperature 3,186 3,300

NChgLPT (pct W25) Bleed Fraction for LPT Non-
chargeable Cooling

0.00 0.06

SCustBld Customer Bleed Factor 0.5 2.0

SHPX Customer HP Extraction Fac-
tor

0.5 2.0

CmpLPRmax Max First Stage PR, LPC 1.28 1.54

LoadHPT HPT GE Loading 0.34 0.41

LoadLPT LPT GE Loading 0.25 0.30

SeRam Inlet Recovery Factor 0.99 1.00

Table 24: Common Core Variant Engine - Design Variable Ranges

Variable Description Lower
Limit

Upper
Limit

πFan at ADP Design Fan Pressure Ratio 1.3 1.7

πOverall at ADP Design Overall Pressure Ratio 30.0 55.0

T4,max (degR) Maximum Combustor Exit
Temperature

3,300 3,750

ER at ADP Design Extraction Ratio 0.9 1.25

SWcHPC HPC Inlet Flow Scale Factor 1.0 1.2

NcPctHPT at TKO HPT Map Corrected Speed 100. 105.

Similar to the core defining design engine input variables, a total of 35 input variables

correspond to the common core variant design within the same physics based model. The

variables are also assigned ranges that encompass all possible values of interest for the

experiments to come, with an additional buffer of one percent of the desired range added

to the minimum and maximum values needed. The desired ranges, before adding buffers,

are found in Table 24 for the variant design variables. The noise variables and their desired

ranges are found in Table 25, Table 26, and Table 27.

Before moving on to the construction of the DoE that will be used to sample the input

variable design space, the designer should perform final checks that the input variables of
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Table 25: Common Core Variant Engine - Input Variables for Component Efficiency Im-
pacts

Variable Description Lower
Limit

Upper
Limit

∆ηFan Delta Fan Efficiency 0.00 0.01

∆ηLPC Delta LPC Efficiency 0.00 0.01

∆ηHPC Delta HPC Poly Efficiency 0.00 0.01

∆ηHPT Delta HPT Efficiency 0.00 0.01

∆ηLPT Delta LPT Efficiency 0.00 0.01

Table 26: Common Core Variant Engine - Input Variables for Component Weight Factors

Variable Description Lower
Limit

Upper
Limit

sWtFanBld Fan Blade Weight Factor 0.90 1.00

sWtFanSt Fan Stator Weight Factor 0.90 1.00

sWtLPCBld LPC Blade Weight Factor 0.90 1.00

sWtLPCSt LPC Stator Weight Factor 0.90 1.00

sWtHPCBld Fore HPC Blade Weight Factor 0.90 1.00

sWtHPCSt Fore HPC Stator Weight Factor 0.90 1.00

sWtHPCBld2 Aft HPC Blade Weight Factor 0.90 1.00

sWtHPCSt2 Aft HPC Stator Weight Factor 0.90 1.00

sWtHPTBld HPT Blade Weight Factor 0.90 1.00

sWtHPTSt HPT Stator Weight Factor 0.90 1.00

sWtLPTBld LPT Blade Weight Factor 0.90 1.00

sWtLPTSt LPT Stator Weight Factor 0.90 1.00

sWtNozPri Core Nozzle Weight Factor 0.90 1.00

sWtNozSec Bypass Nozzle Weight Factor 0.90 1.00

sWtShH HP Shaft Weight Factor 0.90 1.00

sWtShL LP Shaft Weight Factor 0.90 1.00
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Table 27: Common Core Variant Engine - Remaining Input Variables with Possible Un-
certainty

Variable Description Lower
Limit

Upper
Limit

T41,max (degR) Max HPT Inlet Temperature 3,186 3,300

NChgLPT (pct W25) Bleed Fraction for LPT Non-
chargeable Cooling

0.00 0.06

SCustBld Customer Bleed Factor 0.5 2.0

SHPX Customer HP Extraction Fac-
tor

0.5 2.0

CmpLPRmax Max First Stage PR, LPC 1.28 1.54

LoadHPT HPT GE Loading 0.34 0.41

LoadLPT LPT GE Loading 0.25 0.30

SeRam Inlet Recovery Factor 0.99 1.00

interest are included in the superset of variables, and that the assigned ranges are large

enough to account for all possible design exercises of interest. While the resultant surrogate

models will provide accurate metric value estimates for designs with input variable values

within the ranges used for training, significant error can be introduced when even a minor

extrapolation takes place.

4.1.2 Step 2: Deterministic assessment and regression

Once the designer is sure that the physics based model is prepared and the input variable

ranges to sample are adequate, the surrogate training DoE can be constructed. The design-

variant engine exploration requires sampling within a total of 71 input variable dimensions:

36 core defining design engine variables and 35 common core variant engine variables. Since

each simulation consisting of a design engine and subsequent common core variant simu-

lation has an average runtime of less than 5 seconds, a large training set was produced,

providing ample design samples for training and testing of the resultant surrogate models.

For surrogate model training, a 3,600 case latin hypercube design was constructed. An

additional 900 random cases were constructed for testing of the surrogate regressions.

Final checks were performed ensuring the physics based model provided the input and

resultant output metrics of interest, and the DoE simulations were launched. The 4,500
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case batch of simulations were carried out in less than 3 hours with four instances of the

simulation environment running on a quad-core machine. After the completion of all sim-

ulations, it was verified that less than 10% of the simulations failed, and that the failures

were randomly distributed within the sampled input variable space.

With the resultant input/output data of all the training simulations of the physics based

model, the resultant surrogate models can be regressed. For each output metric of interest,

an Artificial Neural Network (ANN) surrogate model was produced. For each model, the

ANN architectures were explored. Regressions were constructed using the Neural Network

Matlab toolbox, allowing ANN models to have between 5 and 15 hidden nodes. Each

network architecture was allowed 60 seconds to achieve the best possible fit quality. The

resultant network architecture with the best fit quality was selected for use to represent

that particular output metric.

Surrogate models trained to estimate the core defining design engine metrics are func-

tions of only the 36 input variables of the design engine. These surrogate models are of

the form shown in Equation 46, and from now on will be referred to as Surrogate Set A or

SSADes,Det.

SSADes,Det = f (CVDes,NVDes) (46)

Surrogate models trained to estimate the common core variant engine design are func-

tions of all 71 input variables, showing the variant design dependency on the core defining

engine whose resultant engine core definition is applied to the variant application. These

surrogate models trained to predict common core variant performance are of the form shown

in Equation 47, and from now on will be referred to as Surrogate Set B or SSBV ar,Det.

SSBVar,Det = f (CVDes,NVDes,CVVar,NVVar) (47)

4.1.2.1 Surrogate model evaluation metrics

As was discussed in Chapter 3, in order to ensure adequate model fit quality, the following

surrogate model fit requirements must be met:

� Model Fit Error (MFE), the distribution of surrogate model error that is determined
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through the comparison of predicted performance to the actual performance levels

used in the training of the surrogate model

– Shape of MFE distribution should resemble a normal distribution

– Mean value of MFE distribution should be close to zero

– MFE standard deviation (STD) should be less than one

� Model Representation Error (MRE), the distribution of surrogate model error that

is determined through the comparison of predicted performance to the actual per-

formance levels of the reserve data not used in the training of the surrogate model.

MRE quality determined based on the same metrics used in the evaluation of the

MFE distribution.

� The quotient of MRE and MFE standard deviations should have a value less than

two.

� A high coefficient of determination (R2) must be achieved, having a value greater than

0.99. A value close to one indicates the model is able to explain the vast majority of

variation in the metric response of interest. The model’s R2 can be determined by

referring back to Equation 16 provided in Chapter 3, which is repeated below.

� When visualizing the actual-by-predicted plot, the data should not contain tails where

actual-by-predicted values depart from the perfect fit line at low and high values of

response data.

� The residual error should be at least two orders of magnitude less than the actual

response levels.

R2 = 1− SSerror
SStotal

(16a Revisited)

SS =
∑(

Y − Ȳ
)2

(16b Revisited)

Ȳ =

∑
Y

N
(16c Revisited)

Examples of the surrogate model fit qualities achieved are shown in Figure 47 and

Figure 48 for the core defining design and common core variant engine, respectively. The
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Figure 47: Fit quality achieved for deterministic surrogate model predicting TSFC at ADP
for the core defining design engine.

remainder of surrogate fit quality statistics for the deterministic ANN surrogate models can

be found in Appendix C.

4.1.2.2 Kernel based support vector machine generation

The deterministic ANN surrogate models produced from the deterministic assessment data

proved to represent the training data and the test data very well. However, a small per-

centage of DoE design-variant samples failed to converge during the common core variant

simulation within the NPSS model. These samples failed due to the combination of design

and variant input variables having values whose initially sized core definition was not able to

provide the core power necessary to achieve a converged common core variant cycle having

the inputted characteristics.

This class of design-variant simulation failures necessitated the construction of a kernel

based support vector machine classification model. Without the classification model, non-

realistic common core variant performance estimates would unknowingly be made. The

deterministic surrogate models lacked training data within the multidimensional region of

the input variable space where common core power was not available for the variant design
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Figure 48: Fit quality achieved for deterministic surrogate model predicting minimum
cruise TSFC for the common core variant engine.

under consideration.

In order to produce the kernel based SVM model, the design-variant simulation data

was used, where each case was assigned a classification of whether or not the variant engine

was able to achieve inputted characteristics with the common core definition. A resultant

SVM model was trained within Matlab to achieve the resultant classification model.

An additional iteration of SVM model training was performed to ensure ample classi-

fication performance. Data points that were unable to achieve variant engine convergence

were identified, and their closest neighboring data samples that were able to achieve variant

convergence were also identified. Based on the input variable settings of the neighboring

pairs of data points on either side of the boundary separating the two classes, an additional

data point was produced to lie halfway in between the points within the input variable

space.

Once these additional points were generated and than simulated within the physics

based modeling and simulation environment, the training of the kernel based SVM model

was again performed. The resultant SVM model was assumed to offer ample classification
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accuracy, having the ability to accurately classify over 90% of the input-output data pro-

duced. If additional accuracy were desired, a similar technique could be used to more richly

sample the suspected region where the boundary between the two classes of data was likely

to exist. However, for the present work and corresponding probabilistic assessments favor

designs that lie away from the suspected boundary.

As will be shown in the following section, designs whose variability in the input space

due to uncertainty push portions of its probabilistic spread into this unfavorable region

where ample variant core power is likely not available have accompanying degradation in

its confidence interval performance levels. Such a design, when collecting confidence interval

metric levels, have the confidence levels for a given performance levels scaled by the fraction

of designs that were suspected to have ample variant core power. For example, if only 90%

of Monte Carlo simulations of a candidate design have ample variant core power, then all

confidence intervals of variable performance are scaled by 90%. The original 95% confidence

interval performance estimate becomes the 85.5% confidence interval performance level.

Since favorable high confidence interval performance levels are desired within the present

work, these designs whose variability in performance cross the boundary where the common

core variant application is likely to lack ample core power will be extremely unfavorable.

4.1.3 Step 3: Probabilistic assessment and regression

Now that two sets of deterministic surrogate models exist, representing both the core defin-

ing design engine and the common core variant engine, a probabilistic assessment can be

performed. The goal of this assessment is again to provide input/output representative

data, but this time to produce confidence interval metric estimates for designs under all

possible uncertainty scenarios of interest.

For this assessment, a DoE of only control variables is constructed. The set of control

variables consists of design variables and uncertainty distribution shape parameters for both

the core defining design and common core variant engine. For the present work, the set

of control variables consisted of eight core defining design variables, seven variant design

variables, and alpha and beta shape parameters of the beta distributions representing the
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uncertainty assumed present in the experiments to come. A total of 48 uncertainty shape

parameters where selected to vary, 24 being applied to both the core defining design and

common core variant engine. A latin hypercube DoE was constructed for the 63 input vari-

able space. Each of the control variable ranges were consistent with the originally sampled

ranges of the deterministic assessment. All alpha and beta uncertainty shape parameters

were assigned ranges between 1 and 10, providing great flexibility in the distribution shapes

that can be represented. The minimum and maximum uncertainty distribution impacts re-

mained fixed at the originally sampled ranges of the noise variables during the deterministic

assessment.

The resultant DoE of control variable settings was then launched. For each case of the

DoE, 50,000 Monte Carlo simulations were performed, having the noise variable settings

varied to represent the DoE case’s inputted uncertainty scenario’s distributions. Because

a large number of uncertainty distributions are assumed present and the cost of each in-

dividual Monte Carlo simulation is very cheap, the large number of simulations was used

to ensure accurate representation of all uncertainty distributions present. For each Monte

Carlo simulation, all deterministic surrogate models, including the SVM model, were eval-

uated. For each metric, the 50,000 metric estimates were then sorted, and 13 confidence

interval performance levels were calculated for the DoE case’s control variable settings. Af-

ter performing Monte Carlo analyses for each DoE case, the resultant data set was made

up of control variable settings and 13 confidence interval performance levels for each of the

metrics of interest. The quoted confidence levels were then scaled by the fraction of Monte

Carlo simulations that were classified by the SVM to have ample variant core power.

The resultant input/output data was then used in the regression of probabilistic surro-

gate models. For each output metric of interest, ANN architectures were again explored,

varying the number of hidden nodes between 5 and 15. The resultant probabilistic surro-

gate model architecture that achieved the best fit within the allotted training time was then

saved.

Probabilistic surrogate models trained to estimate the core defining design engine metrics

are functions of the 32 control variables corresponding to the core defining design engine
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and one additional input variable for the desired confidence of the performance estimate.

These surrogate models are of the form shown in Equation 48, and from now on will be

referred to as Surrogate Set C or SSCDes,Prob.

SSCDes,Prob = f (CI,CVDes,ADes,BDes) (48)

Probabilistic surrogate models trained to estimate the common core variant engine de-

sign are functions of all 63 control variables and one additional input variable for the desired

confidence level of metric estimate. This is again required because of the variant design de-

pendency on the core defining engine whose core definition is applied to the variant appli-

cation. These surrogate models trained to predict likely common core variant performance

are of the form shown in Equation 47, and from now on will be referred to as Surrogate Set

D or SSDV ar,Prob.

SSDVar,Prob = f (CI,CVDes,ADes,BDes,CVVar,AVar,BVar) (49)

Just as was the case when evaluating the deterministic surrogate models produced, the

same fit quality was required of the probabilistic surrogate models. Figure 49 and Figure 50

contain example probabilistic surrogate model fit statistics achieved for the core defining

design engine and common core variant engine metrics, respectively. The fit statistics of

the remainder of probabilistic models produced can be found in Appendix D.

4.1.4 Step 4: Robust design exploration and selection

At this point in the ERDS process, the designer is now able to perform many robust design

explorations in a highly efficient manner with the resultant sets of surrogate models he now

has at his disposal. After carrying out the above process, four sets of surrogate models have

been produced. A set of deterministic surrogates exist for both the core defining design

engine and the common core variant engine. Also, a set of probabilistic surrogate models

also exists for both the core defining design engine and common core variant engine.

The actual Matlab code produced to perform the above ERDS probabilistic assessment

can be found in Appendix B. By following the ERDS process, four sets of surrogate models

were produced with wide enough input variable ranges that their capabilities can be utilized
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Figure 49: Fit quality achieved for probabilistic surrogate model predicting HPC exit
corrected flow at ADP for the core defining design engine.

Figure 50: Fit quality achieved for probabilistic surrogate model predicting minimum cruise
TSFC for the common core variant engine.
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for all four of the experiments to follow. This again highlights the key contribution of ERDS

method development that enables the fully integrated COMMENCE method to have such

a powerful range of capabilities. If ample considerations are made at the onset of the

process, the resultant surrogate representations can be used to perform a wide range of

useful studies aiming to provide for more informed common core design decisions. This

range in capabilities will be demonstrated by the experiments to follow.
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4.2 Experiment 1: Enhanced Robust Design Simulation Method Ap-
plied to Single Application Turbofan Design Problem

� Research Question 1: How should the gas turbine cycle design process be modified

to easily evaluate designs under various uncertainty scenarios, in a manner similar

to traditional approaches, without the need for added computational burden, repeated

simulations, and post-processing of statistical data?

Hypothesis 1: Probabilistic performance levels of candidate cycle designs should

be estimated with the use of surrogate models that predict likely performance under

various inputted uncertainty scenarios for any desired confidence interval.

4.2.1 Overview

This experiment serves to determine the feasibility of the Enhanced Robust Design Simula-

tion (ERDS) method. It will show the advantages of the ERDS method when making design

selections when compared to a traditional deterministic approach. A single application tur-

bofan design and technology scenario will be considered when making design selections. A

set of likely requirements and technology impacts will be established, and designs will be

selected using two competing approaches.

The first design approach is the traditional deterministic approach. Deterministic sur-

rogate models developed in the previous section, specifically the ones representing the core

defining design engine, will be used to explore and evaluate candidate designs in the absence

of uncertainty. Design selections will be made that maximize performance under the fixed

set of design requirements and realized technology impacts.

The second design approach applies the ERDS method. Uncertainty distributions will

be applied to installation requirements and realized technology impacts. Candidate designs

will be evaluated under these assumed sources of uncertainty with the goal being to select

the candidate design that has a high probability of satisfying all requirements and achieving

competitive performance. Design selections will be made that maximize the likely confidence

interval performance under uncertainty.

This experiment will establish and detail the ERDS process, comparing it to a more
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Figure 51: High bypass, two shaft boosted turbofan engine architecture.

conventional deterministic method. The experiment will conclude by comparing design

selections made with the two competing methods. Various visualization techniques will be

demonstrated when performing design space explorations. As the complexity of the design

exploration increases, limitations of the initial visualization techniques will be identified.

Alternative techniques will be introduced to better aid the designer in understanding the

design space trends and corresponding trades being made for various design selections.

4.2.2 Requirements and Technology Scenario

This experiment aims to make parameter setting selections for the design of a high bypass

direct drive turbofan engine, depicted in Figure 51. There are three design points consid-

ered in the NPSS engine model when designing and sizing the engine under consideration.

The design points listed in Table 28 are uniformly used for all engine designs considered

in this chapter. For this experiment, the candidate engine should be selected to ensure

all requirements listed in Table 29 are satisfied. Additionally, pareto optimal performance

should be achieved, offering a non-dominated solution that compromises between the en-

gine pod weight and the achievable TSFC at Aerodynamic Design Point (ADP) operating

conditions.

The baseline definition for this study aims to represent a middle-of-market turbofan

engine such as the CFM56-7B27, sized for a large single aisle aircraft such as the 737-800.
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Table 28: Experiment 1 - Engine Design Points

Design Point Designation Altitude, ft Mach dTs, ◦F

Aerodynamic Design Point ADP 35,000 0.80 0.0

Top of Climb TOC 35,000 0.85 0.0

Hot Day Takeoff TKO 0 0.25 27.0

Table 29: Experiment 1 - Engine Design Requirements

Requirement Value Units

Net Thrust at TKO 22,780 lbf

Net Thrust at TOC 5,960 lbf

Constant Customer Bleed 2.35 lbm/s

Constant Horsepower Extraction 250. shp

TSFC at ADP minimize lbm/lbf/hr

Engine Pod Weight minimize lbm

The cycle parameter settings and corresponding performance of the baseline engine are

tabulated in Table 30. For the present scenario of requirements and technology impacts,

candidate design performance will be compared to the baseline. The designer is to make

design parameter setting selections that provide for the best possible performance improve-

ment. The design parameters allowed ranges can be found in Table 31. For this design

study, technology improvement with respect to the baseline engine definition is assumed

likely. The most likely turbomachinery efficiency and weight improvements are listed in

Table 32.

To prevent the selection of candidate cycles that would exceed realistic temperature

levels, three constraints are imposed. The maximum temperature limits listed in Table 33

are imposed on the HPC exit, the HPT inlet, and the LPT inlet temperature levels. The

maximum allowed HPC exit temperature (T3,max) corresponds to the HPC material limit,

allowing for an uncooled HPC. The LPT inlet temperature limit (T45,max) is imposed on

the first LPT stage after introduction of nonchargeable cooling flow, which is fixed at a

constant fraction of core inlet airflow (W25). These first two temperature constraints are

imposed after producing the design space exploration. Candidate designs will be filtered,
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Table 30: Experiment 1 - Baseline Cycle, Technology Level, and Corresponding Perfor-
mance

Category Variable Baseline Value

Cycle

πFan at ADP 1.685
πHPC at ADP 9.369
πOverall at ADP 30.094
T4,max (degR) 3,300 degR
ER at ADP 1.018

Tech Level

ηFan at ADP 0.895
ηLPC at ADP 0.924
ηHPC at ADP 0.871
ηHPT at ADP 0.889
ηLPT at ADP 0.900

Performance
TSFC at ADP 0.6640 lbm/lbf/hr
Pod Weight 5,652. lbm

Table 31: Experiment 1 - Design Variable Ranges

Variable Description Lower
Limit

Upper
Limit

πFan at ADP Design Fan Pressure Ratio 1.3 1.7

πHPC at ADP Design HPC Pressure Ratio 9.0 16.0

πOverall at ADP Design Overall Pressure Ratio 30.0 55.0

T4,max (degR) Maximum Combustor Exit Temperature 3,300 3,750

ER at ADP Design Extraction Ratio 0.9 1.25

eliminating designs that violate these temperature limits. Conversely, the maximum HPT

inlet temperature (T41,max) limit is used to size the HPT nonchargeable cooling flow during

the design simulation of the engine.

4.2.3 Experiment 1a: Deterministic Design Selection

This first sub-experiment will evaluate candidate designs with fixed technology impacts,

assuming 100% certainty in the values that will be realized in the engine design. This

traditional deterministic approach will be used first to understand the cycle design space

of the present design problem. The method will be used to select a candidate design that

meets requirements and performs best under the assumed technology impacts. The resultant
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Table 32: Experiment 1 - Most likely engine technology improvements with respect to
baseline engine.

Category Variable Likely Improvement

Turbomachinery Component
Efficiency Improvements

∆ηFan +0.25%
∆ηLPC +0.25%
∆ηHPC +0.25%
∆ηHPT +0.25%
∆ηLPT +0.25%

Turbomachinery Blade/Vane
Weight Reductions

sWtFan −5.00%
sWtLPC −5.00%
sWtHPC −5.00%
sWtHPT −5.00%
sWtLPT −5.00%

Table 33: Experiment 1 - Temperature limits imposed on candidate designs.

Variable Description Maximum Value

T3,max Maximum HPC Exit Temperature 1,700 degR

T45,max Maximum LPT Inlet Temperature 2,300 degR

T41,max Maximum HPT Inlet Temperature 3,186 degR

design selection will then be compared to robust design selections made using the ERDS

method.

4.2.3.1 Exploration of the Deterministic Engine Design Space

For a standalone design study, the ERDS process would be carried out to sample the physics

based model to produce deterministic representations of the single application design space.

Fortunately, the deterministic surrogate models of Surrogate Set A produced in Section

4.1.2 already offer accurate representations of the physics based model and design space

considered for this experiment. Therefore, existing surrogate models can be used and the

deterministic assessment can now be performed.

Using the deterministic representations of the physics based engine model, the engine

design space was explored. Ten thousand unique design samples were randomly placed

within the design space whose boundaries are defined by the variable ranges in Table 31.
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For each set of design and fixed noise variable settings, the closed form equations of Surrogate

Set A were evaluated, providing performance estimates for all 10,000 unique designs in a

matter of seconds.

Visualization techniques can now be used to construct charts to show the trends and

relationships present throughout the design space. The multivariate scatterplot matrix in

Figure 52 displays all ten thousand designs considered. Each point in a given scatterplot

represents one of the 10,000 unique design samples. The placement of each design in a given

scatterplot is determined by its input or estimated metric values of the plot axes. Designs

having temperature estimates that violate at least one of the imposed temperature limits

are filtered out. The gray points in Figure 52 are those designs that violated at least one of

the two temperature constraints. The black points represent the remaining feasible designs

after filtering. For example, all high OPR designs are gray, indicating that they violated

the T3,max limit at takeoff.

Each scatterplot shows a two-dimensional plane of the design space, allowing the designer

to visualize the relationship between any two dimensions. For example, the designer can see

in the bottom two rows of the multivariate plot the effects that the design variable settings

have on TSFC and pod weight. Based on the plots, the design fan pressure ratio (FPR)

is the key driver for both the TSFC and the pod weight. Low values of FPR allow for

desirable TSFC levels by driving the designs to higher bypass ratios. However, lower FPR

and high bypass ratio designs, drive the engine weight to higher levels due to the increased

fan and nacelle diameters of higher bypass ratio turbofan engines.

The second row of the multivariate plot shows that the key drivers in the HPC exit

and LPT inlet temperatures are the design values of the overall pressure ratio (OPR)

and the design pressure ratio of the HPC (HPCPR). High OPR designs have high HPC

exit temperatures accompanying the high pressure. Also shown in the second row of the

multivariate plot is a relationship between OPR and HPCPR that causes the LPT inlet

temperature at takeoff to go above the allowed level. This to due to the fact that low HPCPR

designs require less work by the HPT to drive the HPC, allowing for excess thermal energy

to leave the HPT and enter the LPT. This causes elevated levels of LPT inlet temperature,
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Figure 52: Experiment 1a - Constrained scatterplot of deterministic simulation data.
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violating the constraints imposed on the design.

The bottom right cell of the multivariate plot shows the relationship of the TSFC at

ADP to the engine pod weight, defining the pareto frontier on which candidate designs will

be selected. Figure 53 shows the same multivariate plot as shown in Figure 52, but each

feasible design is now colored based on to its corresponding TOPSIS score. The TOPSIS

scores were determined based on equal preference being given to low TSFC and low engine

weight. This allows for the designer to see where in each design parameter setting range

the top scores can be achieved. The plot shows that intermediate design FPR values are

desirable that allow for compromised levels of both TSFC and pod weight.

While multivariate scatterplot matrices display candidate designs within various design

planes of interest, parallel coordinate plots can help identify relationships on multiple design

dimensions. The parallel coordinates chart in Figure 54 contains threads for all 10,000

designs explored. Each thread of connected line segments represents a unique design. The

designs in black are both feasible and achieved a high score in the TOPSIS evaluation.

The gray designs were either screened out or scored low in the TOPSIS evaluation. By

plotting both sets of designs, the designer can again see where in the sampled space the

candidate designs are feasible and achieve the best desired performance levels. This chart

shows that low to intermediate FPR values within the sampled region score the highest

while remaining feasible. Also apparent is that low HPCPR and mid-OPR designs score

best while remaining feasible. Based on the deterministic assessment, the most desirable

cycle settings can be easily identified with this chart.

4.2.3.2 Candidate Design Selection from Deterministic Assessment

After richly sampling the deterministic engine cycle design space and evaluating each can-

didate design using the surrogate models previously trained, a candidate design may be

selected. At this point, further design considerations can be made. A typical additional

design consideration made is the fan diameter of the candidate design. For simplicity,

this consideration is not considered in the present deterministic design problem, only the

temperature constraints imposed have been considered.
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Figure 53: Experiment 1a - Constrained scatterplot of deterministic simulation data, col-
ored by TOPSIS score.
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Figure 54: Experiment 1a - Constrained parallel coordinate chart of deterministic assess-
ment with highest TOPSIS scores.

Of the feasible design candidates, the design with the highest TOPSIS score can be

selected. The top feasible design parameter settings and its corresponding performance

levels have been listed in Table 34. Note that both the T3,max and T45,max levels lie very

close to the constraint levels. The candidate selection performs significantly better in terms

of TSFC than the original baseline cycle (0.5978 compared to a baseline level of 0.6640), but

the pod weight is significantly higher (8,500 compared to a baseline level of 5,652 lbm) due

to the lack of any fan diameter constraint imposed on the design exploration. The candidate

design was driven to a higher bypass ratio in order to improve the TSFC achievable by

the cycle. Also, consideration into whether engine weight or engine efficiency (i.e. TSFC)

is the significant driver in the resultant engine fuel burn that the aircraft designer is really

concerned about.

The candidate cycle selected from the deterministic assessment will be used as a bench-

mark to compare designs selected in the following robust design assessment. Keep in mind

that the technology variable settings were assumed fixed in the present study, and no mar-

gin was introduced that pushed the temperature levels away from the constraints imposed.

By considering uncertainty present in this design problem, candidate selections will have a

high confidence associated with meeting the temperature constraints, giving the designer

confidence that the resultant design will not surpass the temperature limits of the materials
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Table 34: Experiment 1a - Candidate design selection with top TOPSIS score that main-
tained feasible temperature levels within imposed limits.

Parameter Candidate Setting

πFan 1.458

πHPC 9.004

πOverall 44.15

T4,max (◦R) 3,520.

ER 1.235

T3,max (◦R) 1,680.

T45,max (◦R) 2,290.

TSFC at ADP (lbm/lbf/hr) 0.5978

Pod Weight (lbm) 8,500.

used in the engine design.

4.2.4 Experiment 1b: Robust Design Probabilistic Assessment and Candidate
Design Selection

This experiment is the first to take advantage of the second portion of the ERDS process,

the probabilistic RDS block of logic originally discussed in Chapter 3, shown in Figure 25,

which has been displayed again for ease of access. The probabilistic models of Surrogate

Set C that were trained in Section 4.1.3 are used here to predict the likely performance at

some desired level of confidence with a set of assumed uncertainty distributions present in

the design. Design selections can then be made that maximize the likely performance while

ensuring high confidence that all imposed constraints are also met.

For the robust design exploration performed here, various sources of uncertainty are

assumed present in the design. Table 35 contains the assumed uncertainty distributions for

the turbomachinery component efficiency improvements. Note that the distributions have

most likely impacts that corresponds to the deterministic impacts listed in Table 32. Also

contained in Table 35 are the four parameter values defining the beta distributions shown:

the minimum and maximum possible impacts and the alpha and beta shape parameters

for the corresponding beta distributions. Similar to the efficiency improvement distribu-

tions, the distributions of likely component weight reductions considered in the present

probabilistic assessment can be found in Table 36.
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Figure 25 Revisited: Robust Design Simulation method modified for robust engine and
technology design.
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Table 35: Experiment 1 - Technology Impact Distributions - Component Efficiency

Impact Min, Max, Alpha, Beta PDF

∆ηFan 0.00, 0.01, 1.5, 3.0

∆ηLPC 0.00, 0.01, 1.5, 3.0

∆ηHPC 0.00, 0.01, 1.5, 3.0

∆ηHPT 0.00, 0.01, 1.5, 3.0

∆ηLPT 0.00, 0.01, 1.5, 3.0
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Table 36: Experiment 1 - Technology Impact Distributions - Component Weight

Impact Min, Max, Alpha, Beta PDF

sWtFan 0.90, 1.00, 3.00, 1.75

sWtLPC 0.90, 1.00, 3.00, 1.75

sWtHPC 0.90, 1.00, 3.00, 1.75

sWtHPT 0.90, 1.00, 3.00, 1.75

sWtLPT 0.90, 1.00, 3.00, 1.75

sWtNozPri 0.90, 1.00, 3.00, 1.75

sWtNozSec 0.90, 1.00, 3.00, 1.75

sWtShH 0.90, 1.00, 3.00, 1.75

sWtShL 0.90, 1.00, 3.00, 1.75
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Table 37: Experiment 1 - Technology Impact Distributions - Installations

Impact Min, Max, Alpha, Beta PDF

CustBld 1.175, 4.700, 3.00, 6.00

HPX 125, 500, 3.00, 6.00

s eRam 0.99, 1.00, 4.00, 1.25

For the deterministic assessment performed in Experiment 1a, many assumptions are

made regarding the assumed installation requirements, the turbomachinery loading lev-

els achievable, and engine cooling assumptions. In order to make robust selections in the

present experiment that are insensitive to these assumptions, uncertainty distributions are

also applied to these assumptions. The beta distribution parameter settings and corre-

sponding distributions representing the uncertainty present in the installations, component

loading, and engine cooling assumptions can be found in Table 37, Table 38, and Table 39,

respectively.

4.2.4.1 Probabilistic Exploration of the Engine Design Space

With the set of probabilistic models trained in Section 4.1.3, referred to as Surrogate Set C,

representing the probabilistic performance of a design engine under uncertainty, exploration

of the robust design space can now be performed. For the present experiment the technology

scenario is fixed, so the shape parameters of all uncertainty scenarios considered are fixed

at their listed values representing the present technology scenario.
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Table 38: Experiment 1 - Technology Impact Distributions - Component Loading

Impact Min, Max, Alpha, Beta PDF

LPCstg1PRMax 1.28, 1.54, 1.25, 4.00

LoadingHPT 0.339, 0.407, 1.25, 4.00

LoadingLPT 0.25, 0.30, 1.25, 4.00

Table 39: Experiment 1 - Technology Impact Distributions - Component Cooling

Impact Min, Max, Alpha, Beta PDF

T41,Max 3186.5, 3300.0, 1.5, 3.0

NChBldFracLPT 0.00, 0.06, 1.25, 2.00
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Just as with the deterministic assessment, exploration of the design space can be per-

formed. However, candidate designs are now evaluated by mapping their design cycle set-

tings to corresponding likely estimates of performance at various levels of confidence. The

designer can input his desired level of confidence in any performance estimates and the

surrogate evaluations instantaneously account for the uncertainty distributions implicit in

the surrogate models and provide an estimation at the desired confidence interval. There

is no need to further process any probabilistic data. The performance spread due to the

uncertainty present is implicit in the surrogate model representations of the probabilistic

design space. Repetitions of the design simulation are not necessary, allowing a computa-

tional budget to be better allocated to evaluate additional candidate designs, enabling the

designer to more richly sample the design space under consideration. This eliminates any

additional post-processing required to determine how the uncertainty distributions affect

the spread in performance of candidate designs being evaluated.

Similar to what was done during the deterministic assessment, constraints are imposed

on the designs explored. For the probabilistic assessment, the temperature constraints now

have variability in likely levels to be experienced by each candidate design due to the tech-

nology uncertainty. Therefore, constraints are imposed on particular confidence interval

level temperatures. For example, in the present exploration, the HPC exit temperature

constraint (T3,max) and the LPT inlet temperature constraint (T45,max) are imposed for

two confidence interval levels. Figure 55 shows the feasible probabilistic design space when

the temperature constraints are imposed on the 50% confidence interval temperature esti-

mates. This means that surrogate evaluations of the temperature estimates are made with

an inputted desired confidence of 50%. As before, the figure shows the boundaries of the

design space due to the temperature constraints imposed. The T3,max constraint obviously

limits the higher OPR designs while the T45,max constraint limits the lower HPC pressure

ratio designs. Since designs are filtered based on their 50% confidence interval temperature

estimates, this means that the remaining designs have a 50% probability in satisfying con-

straints under the current uncertainty scenario, which may not offer the designer enough

confidence in his decision.
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Figure 55: Experiment 1b - Constrained scatterplot of 50% likely performance data.
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When making design decisions, the designer would like to have as high confidence as

possible that mitigations, or redesigns, are not going to be required. These modifications

not only cost development time and capital, but also incur performance compromises due

to operating the design at conditions other than what was originally intended for the de-

sign. Therefore, constraints should be imposed based on high confidence level predictions.

Figure 56 shows the feasible design space when the two temperature constraints are im-

posed on the 95% likely temperature estimates. Note that although the designer now has a

high confidence in the temperature estimates for which constraints are imposed, the feasible

design space has been greatly reduced. The small population of feasible designs have been

highlighted with ellipses to better identify the very small feasible design region. A small

band of candidate designs with intermediate OPR designs and high pressure ratio HPCs

that provide feasibility with the high level of desired confidence. The designer now has a

couple of options. He can either live with the temperature limits that are assumed for the

HPC exit and LPT inlet and go with a design in the extremely narrow feasible design space,

or the designer can explore options to increase the temperature limits in order to grow the

feasible design space of the engine under consideration.

Figure 57 shows how the feasible design space can be increased in size by increasing the

HPC exit temperature constraint (T3,max) by 50 degrees Fahrenheit. Assuming that the

1,700 degree Rankine limit previously imposed was the current material limit, either new

materials would be needed for the HPC, or a cooling technology such as an intercooler may

need to be developed if this temperature limit push is desired.

Figure 58 shows the increase in the feasible design space for the engine design under con-

sideration with a LPT inlet temperature limit increase of 50 degrees Fahrenheit. Assuming

the LPT inlet temperature constraint (T45,max) corresponds to an uncooled LPT, in order

to allow for the increase in inlet temperature, either cooling flow would now be required for

the first LPT stages or advanced material technologies would need to be pursued.

Even though increasing the level of confidence in constraint values decreases the feasible

design space within which designs can be selected, it is still desirable to the designer.

Decisions that have accompanying high levels of confidence often carry more weight than
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Figure 56: Experiment 1b - Constrained scatterplot of 95% likely performance data.

166



Figure 57: Experiment 1b - Constrained scatterplot of 95% likely performance data, HPC
exit temperature limit increased by 50 degrees.

167



Figure 58: Experiment 1b - Constrained scatterplot of 95% likely performance data, LPT
inlet temperature limit increased by 50 degrees.
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decisions made that either have low confidence or no measure of likelihood associated.

Mitigations such as technology infusion or alternative design approaches can be identified

and explored earlier in the design process instead of after initial design selections have been

made. The uncertainty assumed present can be addressed and attempts can be made to

reduce the variability or improve the modal value.

4.2.4.2 TOPSIS Evaluation of Candidate Designs

After exploring the probabilistic design space considered and making any changes in the

assumptions made in the technological capabilities considered in the exploration, TOPSIS

evaluation and design selections can be made. For consistency with the deterministic as-

sessment, the temperature limits imposed, although limiting the feasible design space and

likely would be visited in reality, have been kept at the levels for which they were imposed

for the deterministic study. Figure 59 displays the feasible design region when imposing the

temperature limits on their corresponding 50% likely estimated levels, where each candi-

date design is colored based on its corresponding TOPSIS score. Again, the TOPSIS score

is determined purely based on the TSFC at ADP conditions and the bare engine weight

estimate, compromising between the two. The figure shows that the design fan pressure

ratio (πFan) is the key driver in determining a candidate’s TOPSIS score. An intermediate

FPR design provides a compromise between TSFC and engine weight. Low FPR designs,

although providing maximum thermal efficiency by resulting in high BPR designs, would

require significant weight increases due to the fan and nacelle diameter increases. On the

other hand, high FPR designs would allow for a more compact engine outer diameter, but

would suffer in its propulsive efficiency during operation.

A similar multivariate scatterplot constrained by 95% likely temperature levels as shown

in Figure 56 but colored by TOPSIS score is unnecessary due to the lack of feasible candidate

designs. However, if allowing for both the HPC exit and LPT inlet temperature limits

to increase by 50 degrees Fahrenheit each, a multivariate scatterplot can be constructed

with a significant number of feasible designs colored by their TOPSIS score. This plot is

shown in Figure 60. Comparison of the two multivariate scatterplots allows the designer
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Figure 59: Experiment 1b - Constrained scatterplot of 50% likely performance data, colored
by TOPSIS score.
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Figure 60: Experiment 1b - Constrained scatterplot of 95% likely performance data, colored
by TOPSIS score, HPC exit and LPT inlet limits both increased by 50 degrees.

to see the trade in confidence and the temperature limits imposed on the feasible design

space and the shift in peak TOPSIS scores in terms of design cycle settings. However, the

multivariate plots only allow the designer to visualize two dimensional slices of the design

space, preventing visualization of the combinatorial design space of all of the design variable

settings that maximize the TOPSIS score within the feasible design region.

Multivariate plots offer designers the ability to easily see the trends and tradeoffs be-

tween design parameter setting and corresponding performance on a given plane of two

design parameters. But when analyzing and selecting designs, parallel coordinate plots
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allow the designer to visualize complete sets of design parameter settings and those can-

didates’ corresponding performance. Looking back at Figures 59 and 60, the plots show

the change in the feasible design region and shifts in design parameter settings that offer

high TOPSIS scores, but they do not allow the designer to visualize complete design cycles

that maximize likely performance. Figures 61 and 62 are parallel coordinate plots showing

the same feasible designs that are shown in the multivariate scatterplots above. Figure 61

shows the top scoring designs after constraining the feasible design region using the origi-

nal temperature limits using their corresponding 50% likely estimates. Figure 62 similarly

shows top scoring designs that are feasible based on each design’s 95% likely temperature

limits that were relaxed by 50 degrees Fahrenheit each.

Interesting observations can be made when comparing the feasible design space shifts

when changing the confidence interval of temperature estimates on which constraints are

imposed, and the temperature limits themselves. The first coordinate plotted in each is

the design fan pressure ratio. The range of intermediate values does not change when the

method of imposing temperature limits is changed. However, there are significant shifts

in the remainder of the design variables. Increasing the temperature limits and the level

of confidence desired in the temperature levels shifts the mean levels of HPCPR, OPR,

and T4 at takeoff to higher levels for the top scoring (feasible) design candidates. The

impact of increasing the HPC exit and LPT inlet temperatures on the most optimal design

variable settings shows that pursuit of technologies that increase those limits may also

have accompanying need to mature material temperature limits in other regions of the

engine, such as the first stage of the HPT which experiences the hottest temperature levels

experienced in the entire engine.

Table 40 summarizes the favorable design regions based on the type of assessment per-

formed. For the deterministic assessment, the probabilistic assessment when 50% confidence

interval estimates were made, and the probabilistic assessment when 95% confidence inter-

val estimates were made and the two temperature limits were increased by 50 degrees, the

ranges of design variable settings are listed that offer top scoring feasible candidate designs.
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Figure 61: Experiment 1b - Constrained parallel coordinate chart of 50% likely performance
data with highest TOPSIS scores.

Figure 62: Experiment 1b - Constrained parallel coordinate chart of 95% likely performance
data with highest TOPSIS scores, HPC exit and LPT inlet limits both increased by 50
degrees.
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Table 40: Experiment 1 favorable design regions that provided top scoring engines for
the deterministic assessment, probabilistic assessment with 50% CI metric estimates, and
probabilistic assessment with 95% CI metric estimates.

Det Select Prob Select
50% CI

Prob Select
95% CI Tpush

Parameter min max min max min max

πFan 1.37 1.62 1.46 1.62 1.42 1.64

πHPC 8.97 16.07 12.00 16.09 11.29 16.07

πOverall 31.98 46.34 36.81 45.19 34.69 50.69

T4,max, degR 3,296 3,754 3,304 3,754 3,296 3,754

ER 0.92 1.25 1.04 1.25 0.99 1.25

95% CI TSFC at ADP,
lbm/lbf/hr

0.5961 0.6264 0.6075 0.6252 0.5989 0.6274

95% CI Wt, lbm 6,535 10,433 6,568 9,316 6,305 9,813

The shifts in the favorable design regions show design responses due to changes in the as-

sumed uncertainty and the desired confidence interval estimates that were used to evaluate

designs under uncertainty.

4.2.4.3 Comparison to Deterministic Design Selection

This experiment has allowed for comparison between the methods of design exploration and

selection and highlighted the ERDS method and its added capabilities when applied to a

single engine design problem with a fixed set of technology assumptions. The added steps

of the ERDS process allows for more information to be drawn for exploration of the design

space by accounting for uncertainty present in the design. A traditional deterministic

method of exploration and design selection was used to select a design in the previous

experiment. The ERDS probabilistic method was then used for to make design selections

with two levels of associated likelihood. The design selections made using the two methods

are shown in Table 41.

The design cycle settings of the deterministic selection were used to evaluate the proba-

bilistic surrogate models predicting the likely performance of the candidate design, which is

shown in the first column of data. Two candidate designs were selected that had the highest

TOPSIS scores of the feasible designs remaining after imposing temperature constraints.
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Table 41: Experiment 1b Candidate design selections from probabilistic assessment with
top 95% likely TOPSIS score that maintained a 95 % likelihood of having feasible tem-
perature levels within imposed limits, compared to Experiment 1a Deterministic Selection.
Prob Select 1 within original temperature limits, Prob Select 2 within relaxed temperature
limits.

Parameter Det Selection Prob Select 1 Prob Select 2

πFan 1.458 1.435 1.522

πHPC 9.004 15.90 14.39

πOverall 44.15 44.68 42.15

T4,max (◦R) 3,520 3,617. 3,309.

ER 1.235 1.188 1.245

95% likely T3,max (◦R) 1,680. 1,700. 1,679.

95% likely T45,max (◦R) 2,418 2,298. 2,328.

95% likely TSFC at ADP 0.6021 0.6048 0.6134

95% likely Pod Weight (lbm) 8,978 10,240 7,981.

The design labeled Prob Select 1 was selected after imposing the original temperature con-

straints consistent with the limits used to constrain the deterministic design space. The

design labeled Prob Select 2 is the top scoring feasible design after relaxing the two tempera-

ture limits by 50 degrees Fahrenheit. The major difference between the deterministic design

selection and the probabilistic design selection as far as the cycle settings are concerned is

in the design pressure ratio of the HPC. In order to satisfy the LPT inlet temperature

constraint (T45,max), the core of the engine must by loaded up in order to increase the

required expansion of the HPT, reducing the remaining thermal energy, and corresponding

temperature, of the flow entering the LPT.

In terms of likely performance, the deterministic candidate is significantly better in terms

of both TSFC and engine weight when compared to the probabilistic candidate with the

same temperature limits imposed. However, the deterministic candidate violates the LPT

inlet constraint by more than 100 degrees. By ensuring that the temperature levels likely

will not violate the limits imposed, a compromise in performance is made. This highlights

a key tradeoff in the present design. Either mitigate the candidate design selection made

by the deterministic method by somehow allowing for the elevated LPT inlet temperature

or live with the performance compromise for the current LPT inlet temperature limit.
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However, if mitigation is an option, then the probabilistic ERDS method should be used to

account for the increase in temperature limits so that the designer can take full advantage

of the temperature limit increase and a wise selection of a new candidate can be made.

Comparing candidates labeled Prob Select 1 and Prob Select 2, by allowing for the imposed

temperature limits to be relaxed by 50 degrees, the top score cycle shifts to a slightly lower

pressure ratio HPC. Recall that the HPCPR was limited by the LPT inlet temperature

limit, so by relaxing the limit, the core can be unloaded, allowing for the LP system to

perform more work to achieve the design OPR. This in turn takes a small performance hit

on TSFC but significant reduction in engine weight is achieved by moving to a lower bypass

ratio design.

4.2.4.4 Capabilities Enabled and Presently Displayed by the ERDS Process

The ERDS method enables many capabilities when compared to a deterministic method for

design evaluation and selection. Primarily, it enables the designer to have more confidence

in his design decisions by accounting for the variability in design performance due to sources

of uncertainty present in the design. Exploration of the design space can be performed just

as during deterministic assessments, but now performance estimates have accompanying

desired levels of confidence associated with those estimate. This experiment also highlights

the iterative process of evaluating designs and considering further technology developments.

The present experiment showed that possible increases in temperature limit constraints can

enable better performance designs. However, the present design did not explore the possi-

bility of advancing the technology impacts assumed in the technology scenario considered.

A subsequent experiment found in Appendix E shows another enabling capability of the

ERDS process: the ability to account for changes in the technology scenario on design se-

lections and performance estimates. By having the ability to simulate various uncertainty

scenarios, the designer can consider many development strategies to reduce uncertainty or

push modal values of distributions to more desirable levels. Competing strategies can then

be evaluated based on the implications on the design and resultant performance levels. This

flexibility of the COMMENCE method is also highlighted in Experiment 4 where the fully
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integrated method is applied to a multi-application, multi-tech level common core design

problem.

4.2.5 Conclusions

This experiment serves to show the capabilities and advantages of the Enhanced Robust

Design Simulation (ERDS) method when considering design decisions under uncertainty.

Significant sources of technology and requirements uncertainty were accounted for in the

cycle design of a high bypass direct drive turbofan engine. A deterministic assessment

was performed under the technology scenario where all the most likely technology impacts

are assumed to be realized, and a resulting candidate cycle selection was made that met

the imposed temperature constraints while also offering a top performance score through

TOPSIS evaluation. Considering the same technology scenario, but accounting for the

sources of uncertainty assumed present, a probabilistic assessment was performed using

the ERDS method and a candidate design was selected that offered a high likelihood of

satisfying the imposed temperature constraints, while also providing the best likely cycle

performance.

The cycle selections were compared in terms of their design cycle settings, and it was

shown that the robust selection preferred cycle settings that ensured a high probability of

not violating the imposed constraints. As an example, the design πHPC of the deterministic

design selection favored a low value, loading up the LPC in order to achieve the desired high

πOverall, allowing for higher design thermal efficiency. However, the robust design selection

favored a high πHPC design, loading up the HP shaft and requiring significant work to be

performed by the HPT. This high HPT work reduced the HPT exit temperature, in turn

lowering the LPT inlet temperature well below the imposed limit, giving the robust design

a high probability of remaining below the LPT inlet temperature constraint, minimizing

the likelihood of needing a costly design modification later in the engine development.

Comparison of the likely performance levels of each of the design selections were also

performed, showing how the robust design selection traded likely performance assurance

that the design will remain under the imposed temperature constraints. The deterministic
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cycle selection, when evaluated using the probabilistic surrogate models, showed that it

would likely violate the LPT inlet temperature constraint (T45,max) under the assumed

uncertainty distributions present in the scenario. This shows the value of using the ERDS

method, allowing the designer to have a high level of confidence that candidate design

selections will simultaneously meet the requirements and satisfy all constraints imposed on

the design.

When integrated into the COMMENCE process, the ERDS method is used to perform

two specific tasks. First, the ERDS method is employed to explore and evaluate clean sheet

benchmark designs, which common core variant engine performance levels are evaluated

against. This allows for quantification of likely performance penalties ensued by employing

a common core design instead of producing a completely new design in response to a set

of customer requirements. The ERDS method is also utilized in the COMMENCE method

for the simultaneous design exploration of the common core defining cycle and all common

core variant applications considered. The benefits of the ERDS method are taken advantage

of, enabling rapid probabilistic performance estimation of many common core applications

under various uncertainty scenarios to be performed. This allows the designer to account

for and make selections for any number of common core variant applications projected to

be introduced throughout the life of an engine program.
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4.3 Experiment 2: Engine Variant Upgrade Option Exploration

� Research Question 2: For a given gas turbine engine core, how should a common

core engine variant design be simulated? What parameter(s) must be held to consistent

values in order to maintain geometric and aerothermodynamic commonality between

engine applications?

Hypothesis 2: In order to simulate a common core engine variant, design rules must

be established and enforced that maintain the design level of corrected flow exiting the

high pressure compressor. Maintaining HPC exit corrected flow at design conditions

will ensure geometric similarity between common core applications. In order to provide

significance to maintaining design HPC exit corrected flow, the design rules must also

ensure that the compressor map design operating point is also fixed between common

core applications.

� Research Question 3: What design options should be considered for common core

engine variant applications in order to distribute development capital across the engine

program by taking advantage of commonality, while also offering more design freedom

when needed for more demanding applications?

Hypothesis 3: In order to provide a wide range of capabilities with common core

applications, a range of design options should be available with differing levels of up-

grade cost and design freedom. Geometrically fixed core and modified common core

options should exist to allow for significant core power growth if needed. The common

core applications should have design freedom in the LP system in order to be sized

for a new set of customer requirements, and technology infusion should be considered

for the core and/or the LP engine components in order to provide feasible, competi-

tive common core solutions while placing preference on less expensive upgrade options

when at all possible.

� Research Question 4: What range of capabilities can various common core design

options achieve without significant compromises made in application performance?

Hypothesis 4: A common core variant engine is able to provide a specific range
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of capabilities while maintaining acceptable performance levels, based on the technol-

ogy level of the variant design, the core size, the overall engine architecture, and the

amount of design freedom permitted for the particular common core application con-

sidered.

� Research Question 5: How should a common core engine program consisting of

multiple variant design applications be evaluated?

Hypothesis 5: A common core variant engine should be evaluated based on the per-

formance deviation from a benchmark, new centerline engine designed specifically for

the application it is being designed for. In order to determine the amount of per-

formance compromise made by utilizing a common core application, the benchmark

engine should be designed for an identical set of requirements while under the same

set of assumptions as were made for the common core variant design. A weighted sum

of variant performance levels should be used in the overall evaluation of the engine

program.

4.3.1 Overview

This experiment serves to explore the various common core design options when faced with

a new set of customer requirements. Each common core upgrade option allows for a different

amount of design freedom when aiming to achieve a competitive common core solution for

the new engine application. Exploring varying levels of design freedom will identify the

tradeoff between the attainable variant engine performance and the savings due to having

product commonality. This feasibility study also serves to test the logic used to model and

simulate geometrically common engine core variant engines, a central requirement of the

COMMENCE method. Deterministic design explorations will be performed for five discrete

common core upgrade scenarios, which are listed in Table 42. It is assumed that the engine

core which is to be utilized for a new application was designed and previously selected for a

past application, and no design freedom is granted in the baseline core definition. The five

scenarios grant the designer various levels of design freedom aiming to achieve thrust growth

for the new engine application. The goal for each scenario is to attain as much thrust growth
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as possible with minimal compromise made in cruise specific fuel consumption (TSFC).

It will be shown that the amount of thrust growth achievable by the variant engine

application is limited by the amount of design restriction imposed on the new design. Sce-

narios 2.1 - 2.3 require a geometrically fixed core to be used, while Scenarios 2.4 and 2.5

allow the core to be modified while still remaining geometrically common. The impacts of

technology infusion into various regions of the engine will be examined as well. The three

fixed geometry core scenarios assume various levels of technology infusion, from Scenario 2.1

where no technology advancement is allowed in the new application, to Scenario 2.3 where

component efficiency and weight improvements are applied to both the low pressure and

high pressure engine components. Similarly, Scenarios 2.4 and 2.5 allow for the comparison

of common core responses with and without technology infusion of the engine variant.

While the first three scenarios considered have fixed geometry core components, Sce-

narios 2.4 and 2.5 allow for modification of the common core to be performed, enabling

increases in the core flow capacity. This is expected to achieve significant thrust growth

with less compromise in TSFC performance. Although modifications are allowed for these

two upgrade scenarios, limitations will be imposed on the core design in order to enforce the

core to remain geometrically common between the baseline core definition and the variant

engine’s core. The term common core in this context refers to the HPC, combustor, and

HPT being geometrically similar. Flow areas and component stage counts remain consistent

Table 42: Experiment 2 - Variant engine upgrade scenarios.

Scenario Design Change(s) Technology Level

2.1 LP System Redesign Parent Tech Level

2.2 LP System Redesign
LP System

Tech Infusion

2.3 LP System Redesign
LP and HP System

Tech Infusion

2.4
LP System Redesign

Parent Tech Level
and Flared HPC

2.5
LP System Redesign LP and HP System

and Flared HPC Tech Infusion
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between common core applications, with slight modifications when permitted. The turbo-

machinery maps of the baseline core’s HPC and HPT are also used for the common core

variant cycle, with alterations made when allowed, while operating within the rules imposed

by the COMMENCE method to maintain and ensure commonality between common core

engine applications.

4.3.2 Scenarios Considered

As shown in Table 42, there are five scenarios which are considered in the present exper-

iment. They are ordered by the level of upgrade complexity of the engine variant design

upgrade. The first scenario applies a fixed engine core to a new low pressure system and

the variant engine is kept at its parent technology level. This represents a realistic scenario

where design responses are to be provided for two unique sets of customer requirements

within the same time frame. In reality, knowing the engine core is to be immediately

applied to two engine applications, the designer would likely make considerations when se-

lecting a baseline engine core in order to offer the best compromise for the two applications.

However, another realistic decision would be to make a design selection that all but guar-

antees one application will successfully make it to market, while secondary considerations

are made for the less likely application. The present experiment more closely follows the

latter program decision, assuming that the core definition has been previously established

by the baseline engine, whose characteristics are listed in Table 43.

The second scenario considered is very similar to the first, but allows for technology

advancement of the low pressure system. The engine core remains fixed between the design

and the variant engines, but the low pressure system is designed for the new application and

has a more advanced technology level than the baseline engine for which the core was sized

and selected. This scenario represents the case when an off-the-shelf engine core is applied

without modification to a new application, while taking advantage of the latest technology

development by utilizing advanced low pressure components in the new engine application.

The third scenario allows for technological advancement of both the low pressure and

high pressure components, but the engine core geometry remains fixed. This is an example
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Table 43: Experiment 2 - Baseline cycle used to size the common engine core.

Category Variable Baseline Value

Cycle

πFan at ADP 1.685
πHPC at ADP 9.369
πOverall at ADP 30.094
T4,max (degR) 3,300 degR
ER at ADP 1.018

Tech Level

ηFan at ADP 0.895
ηLPC at ADP 0.924
ηHPC at ADP 0.871
ηHPT at ADP 0.889
ηLPT at ADP 0.900

Attributes

W25R at ADP 49.6 lbm/s
W3R at ADP 6.68 lbm/s
BPR at ADP 5.11
Fan Diameter 62.1 in
Takeoff Thrust 22,783 lbf
Top of Climb Thrust 5,962 lbf

Performance
TSFC at ADP 0.6640 lbm/lbf/hr
Pod Weight 5,652. lbm

of a fixed core that has been re-bladed with more advanced materials or a better 3D design

of the blades to improve the core thermal efficiency. This is a common scenario that is

seen in industry: the company would like to make small changes to an existing design with

which they have much experience. However, the company has advanced their state-of-the-

art since designing the original core. Therefore, in order to take advantage of their latest

developments, they infuse their latest technologies within the fixed geometry core design,

gaining efficiency and pushing the amount of power they can achieve with the fixed geometry

core design. These technology infusions can be applied to both new engine applications as

well as existing off-the-shelf engines.

The fourth and fifth scenarios are common core applications, but with significant core

design modifications aiming for more extensive power growth of the core. A flared or zero-

staged HPC is allowed, offering the core more working fluid with which it can add thermal

energy to the flow in order to do more work on the LPT, producing more propulsive power.

Flaring or zero-staging the HPC requires significant modification to the core components.
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While the only flow area changing is that of the HPC inlet, this option would require re-

blading of both the HPC and HPT components, requiring significant development costs.

Although, it is assumed that this modification would still be significantly less expensive

than the development of an all-new core design. The fourth scenario allows for a flared

HPC, while remaining at the parent technology level of the design engine from which the

original core is sized. The fifth scenario allows for a modified core, a redesigned LP system,

and additional technology advancement of both the LP and HP systems.

For each scenario, any technological advancements allowed will be applied to the variant

engine design, and design space explorations will be performed within each corresponding set

of rules, aiming to achieve the most thrust growth possible with the smallest compromise

in SFC performance. The following section describes how the modeling and simulation

environment is setup to allow for common core engine variant design simulations to be

performed while ensuring the new application’s engine core is geometrically common with

the baseline core definition.

4.3.3 Common Core Engine Variant Design - Modeling and Simulation Envi-
ronment

This experiment is the first to utilize the design-variant two engine model simulation within

a single modeling environment. The two engines, the core defining design engine and the

common core variant engine, utilize the same NPSS components making up their architec-

tures. The core components, the ones shaded in Figure 63, are designed during the core

defining design engine simulation and then applied to the variant engine simulation. This

enforces a common core between the design and variant engine simulations. Table 44 con-

tains the major NPSS components and their DESIGN or OFF-DESIGN modes during the

simulations of the design and variant engine cycles. When in DESIGN mode, the compo-

nents are allowed to be sized to exactly meet requirements imposed at the design points

considered. Turbomachinery maps are scaled accordingly to provide the necessary flow

levels at peak efficiency to meet the requirements, such as desired thrust levels. When in

OFF-DESIGN mode, the components are not allowed to scale, and they operate at speeds

and corresponding efficiency levels that offer a steady state flow solution at the inputted
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Figure 63: NPSS model components making up the physics based separate flow turbofan
engine model. Gray components make up the engine core which remains geometrically
common between design and variant engine applications.

engine power setting. The turbomachinery components use the same performance maps

that were previously scaled during a design run. Its operation is allowed to vary during

off-design simulations, but the map is not allowed to scale. For the common core variant

simulation, this is how the core components operate, even at design point conditions.

Figure 64 represents the flow of information during the engine simulations within the

modeling environment. First, the design engine is simulated. In the case of the present

experiment, the design engine is fixed to the baseline definition in Table 43. Once the

design engine is sized and evaluated, the core definition is set, in some cases modified by

technology infusion and/or HPC flaring, and is then used for the variant engine simulation.

In addition to having the core geometry fixed during the simulation of the common core

variant design, the four design rules presented in Chapter 3 are used to enforce commonality

in the variant performance characteristics. These rules are described below.

� At the ADP design point, the HPC inlet corrected flow must be consistent between

the design and variant run. When employing a flared HPC, the inlet corrected flow

is scaled by a desired amount.

� At the ADP design point, the HPC exit corrected flow must be consistent between
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Table 44: Experiment 2 - Major NPSS model components and their DESIGN or OFF-
DESIGN status during Design and Variant engine simulations.

Component Description Design Sim Mode Variant Sim Mode

InEng Inlet DESIGN DESIGN

CmpFan Fan DESIGN DESIGN

SpltFan Splitter DESIGN DESIGN

NozSec Bypass Nozzle DESIGN DESIGN

CmpL LPC DESIGN DESIGN

TrbL LPT DESIGN DESIGN

NozPri Core Nozzle DESIGN DESIGN

ShL LP Shaft DESIGN DESIGN

CmpH HPC DESIGN OFF-DESIGN

Brn Combustor DESIGN OFF-DESIGN

TrbH HPT DESIGN OFF-DESIGN

ShH HP Shaft DESIGN OFF-DESIGN

Figure 64: Experiment 2 - Common core modeling and simulation environment represen-
tation.
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the design and variant run at max design power.

� The design map operating point of the HPC must remain consistent between the

design and variant run.

� At ADP, the design HPC polytropic efficiency is held consistent between the design

and variant run. When technology infusion is allowed on the core, the polytropic

efficiency is increased by the permitted amount.

The NPSS code used to prepare the common core variant simulation and enforce geo-

metric commonality of the engine core between the design and variant simulations can be

found in Appendix A.

4.3.4 Common Core Technology Infusion

For the present experiment, there are two particular technology infusion sets which are to

be applied during the design of the common core variant engine. The first is infusion of

advanced technology into the low pressure system of the engine. This technology package

impacts are listed in Table 45. For each of the turbomachinery components, the efficiency

is increased by a quarter of a point with respect to the design engine efficiency at the

ADP design point. In addition to efficiency improvements, each of the components of

the LP system have weight reductions of 5 percent each, representing either material or

manufacturing improvements. Again, these improvements are applied during the design

of the common core variant engine, not after sizing of the LP system components. For

the scenarios that include LP system technology infusion, the technology improvements are

applied and the LP system design is selected.

In addition to the LP system technology package, two of the five scenarios considered in

the present experiment allow for HP system technology infusion. Similar to the LP system

technology package, each of the high pressure system components, making up the core, have

efficiency improvements of a quarter of a point and the component weight reductions of five

percent. Again, these efficiency improvements are applied to the engine components before

exploring the design space and making selections. Also of note, the efficiency improvement
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Table 45: Experiment 2 - Low pressure system technology infusion - scenario impacts on
variant design.

Variable Units Impact

∆ηFan,V ar - +0.0025

∆ηLPC,V ar - +0.0025

∆ηLPT,V ar - +0.0025

sWtFan,V ar - ×0.95

sWtLPC,V ar - ×0.95

sWtLPT,V ar - ×0.95

sWtShL,V ar - ×0.95

sWtNozPri,V ar - ×0.95

sWtNozSec,V ar - ×0.95

of the HPC is applied as a polytropic efficiency improvement. Due to the possibility of the

HPC having increased flow capacity, as enforced by the variant design rules previously es-

tablished, consistent technology level efficiency across common core applications is enforced

using the polytropic efficiency. This allows for efficiency levels of baseline or advanced vari-

ant HPC designs to be held consistent across applications, regardless of whether variant

engines employ HPC designs with increased flow capacity and accompanying pressure ratio

increases. The HPC efficiency impacts are the exception, with all other component efficiency

improvements realized on the design adiabatic efficiency of the components. For the single

fixed core upgrade scenario that contains core technology improvements, Scenario 2.3, the

core design is only allowed efficiency improvements and weight reductions. No geometry or

design characteristics are allowed to the core for Scenario 2.3. However, Scenario 2.5 allows

both technology improvements and the HPC flow capacity is allowed to grow in order to

increase design core air flow.

4.3.5 Utilization of Existing Surrogate Models

Just as with the previous experiment, the surrogate models produced at the beginning of

this chapter are utilized for this experiment. By considering this study before sampling the

physics based modeling and simulation environment for surrogate training, it was ensured

that the input variable ranges sampled encompassed the input values for the fixed core
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Table 46: Experiment 2 - High pressure system technology infusion - scenario impacts on
variant design.

Variable Units Impact

∆ηHPC,V ar - +0.0025

∆ηHPT,V ar - +0.0025

sWtHPC,V ar - ×0.95

sWtHPT,V ar - ×0.95

sWtShH,V ar - ×0.95

defining design engine used in this study. Also, the variant design and noise variable ranges

were selected for trained such that all possible values considered in this study fall within

the originally sampled ranges for surrogate training.

Whenever utilizing surrogate models, it is important that when making design selections

that the surrogate models are accurately predicting the performance characteristics of the

candidate design. This experiment serves as a good application for testing surrogate model

fit quality for design selections. For all candidate designs selected in this experiment, it was

ensured that all surrogate models accurately predicted the metric responses of interested

within one percent of the physics based model value. This provides added confidence that

the deterministic and probabilistic surrogates used throughout this chapter provide accurate

responses.

For this deterministic experiment, the deterministic surrogate models produced to repre-

sent the common core variant engine, Surrogate Set B, are utilized. Recall from Equation 47

that these surrogate models are functions of all control and noise variables for both the core

defining design engine and the common core variant engine.

SSBVar,Det = f (CVDes,NVDes,CVVar,NVVar) (47 Revisited)

4.3.6 Variant Engine Design Space Exploration

For each of the five scenarios considered in this experiment, the variant engine design space

is explored. As was discussed in Chapter 3, a typical set of control variables explored for a

new centerline engine design is contained in Table 18, which has been repeated for clarity.

Design cycle parameter settings are explored as well as thrust levels, sizing the engine to
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Table 18 Revisited: Typical control variables and corresponding ranges for a clean sheet
turbofan engine design exploration.

Variable Units Min Max

πFan @ ADP - 1.3 1.7

πHPC @ ADP - 9.0 16.0

πOverall @ ADP - 30.0 55.0

T4 @ TKO ◦R 3,300 3,750

ER @ ADP - 0.90 1.25

NChgLPT % W25 0.00 0.06

FN @ TKO lbf 20,000 30,000

FN @ TOC lbf 5,900 8,850

meet the customer requirements. The common core variant control variables presented in

Chapter 3 are again listed in Table 19, along with the ranges to be explored. In contrast to

how the engine design space was explored in the previous single application design problem

in Experiment 1, common core variant design explorations use variables that control the

off-design operation of the core rather than variables than engine sizing variables. This is

directly related to the fact that the variant engine design is not a clean sheet design. Its

capabilities are limited by the lack of engine core design freedom. So instead of inputting

performance levels like thrust that a common core variant engine may not be able to achieve,

a power setting parameter such as the core corrected speed or combustor exit temperature is

used, and the resulting variant capabilities (i.e. the achievable thrust levels) are determined.

Notice also that the design pressure ratio of the HPC is no longer a control variable for

the variant cycle. The variant design HPC pressure ratio at its aerodynamic design point

(ADP) is determined based on how much core pressure build up is necessary to reach the

same design HPC exit corrected flow as the core defining engine (also at its ADP design

point) while having increased the HPC inlet corrected flow based on the inputted amount

of core flow scaling (sW25R).

The surrogate models referred to as Surrogate Set B were trained to provide determinis-

tic performance estimates of a common core variant design. By taking the time to consider

the ranges of design and noise variable settings of interest before running simulations for

surrogate training, it was ensured that the resultant surrogate models would be valid for
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Table 19 Revisited: Control variables and corresponding ranges explored for the present
common core variant engine design explorations.

Variable Units Min Max

πFan,V ar @ ADP - 1.3 1.7

πOverall,V ar @ ADP - 30.0 55.0

T4,V ar @ TKO ◦R 3,300 3,750

ERV ar @ ADP - 0.90 1.25

NChgLPT,V ar % W25 0.00 0.06

sW25R @ ADP - 1.0 1.2

NC,HPT,V ar @ TKO % 100. 105.

the present experiment. With these surrogate models, efficient exploration of the variant

design spaces for each upgrade option can be performed. Many tens of thousands of can-

didate designs can be evaluated with function calls of the surrogate models within a few

seconds.

For each upgrade option considered, 10,000 candidate designs were explored within the

scope of the upgrade option and within the variant design variable ranges considered. The

resultant design data is then filtered to ensure design feasibility and the feasible design that

achieves maximum growth takeoff thrust for each upgrade option is selected.

4.3.7 Geometrically Fixed Core - Design Space Explorations for Various Tech-
nology Scenarios

The least complex common core variant design scenarios do not allow any scaling of the de-

sign HPC inlet corrected flow. This represents a geometrically fixed engine core. The design

restriction will likely also restrict the amount of thrust growth achievable by the variant de-

sign selections within this category of scenarios. Three specific scenarios will be considered,

each with increased amounts of technology infusion. The first scenario, Scenario 2.1, does

not have any technology infusion beyond the core defining engine’s technology level. Sce-

nario 2.2 has technology infused into the LP engine components, improving the component

efficiency and weight levels by the factors listed in Table 45. Scenario 2.3 considers the LP

component technology infusion of Scenario 2.2 as well as core component advancements,

which are listed in Table 46.
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Figures 65 through 67 contain multivariate scatterplots showing the feasible design can-

didates considered in the design space explorations performed for each of these three geo-

metrically fixed core scenarios. All of the scatterplots shown henceforth have the following

constraints imposed, allowing for consistent comparison of the feasible design spaces for

each:

� T3,max <1,700 ◦R

� T45,max <2,350 ◦R

� Fan Diameter <100 in

� Pod Weight <10,000 lbm

Comparison of the feasible design regions of common core variant design scenarios 2.1,

2.2, and 2.3, it can be seen that the infusion of technology does not visually change the

feasible design space of the engine variant design significantly. This shows that the major

contributor in the definition of the feasible space is the core design being restricted to its

baseline definition. For each of the geometrically fixed core scenarios, candidate design

selections were made that maximize the takeoff thrust, while simultaneously meeting the

HPC exit temperature and LPT inlet temperature limits, and also having fan diameters

less than 70 inches. This fan diameter limit was chosen to align with the fan sizes allowed

in the following two experiments, and limits the fan to reasonable sizes typically allowed

for this thrust class of engine.

Table 47 lists the feasible design samples for each scenario that achieve the maximum

amount of takeoff thrust growth within a population of 10,000 random variant design sam-

ples. With no additional technology infusion, the Scenario 2.1 engine variant with a new LP

system design selected to produce the maximum takeoff thrust within the temperature and

fan diameter limits imposed is able to achieve 22.95% growth in takeoff thrust. The most

thrust growth achievable after infusing LP system technology for Scenario 2.2 is 24.28%

takeoff thrust growth. By bumping up the LP component efficiency levels, more work is

able to be performed by a given core flow capacity.
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Figure 65: Scenario 2.1 multivariate scatterplot of feasible candidate variant engine designs.
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Figure 66: Scenario 2.2 multivariate scatterplot of feasible candidate variant engine designs.
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Figure 67: Scenario 2.3 multivariate scatterplot of feasible candidate variant engine designs.
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Table 47: Experiment 2 - Geometrically Fixed Core Scenarios - Feasible design selections
achieving maximum takeoff thrust growth.

Parameter
Technology Scenario

2.1 2.2 2.3

πFan,V ar at ADP 1.68 1.70 1.66

πOverall,V ar at ADP 38.87 39.11 38.35

T4,V ar at TKO, ◦R 3,318. 3,640. 3,396.

ERV ar at ADP 0.90 0.98 0.94

sW25R at ADP 1.00 1.00 1.00

NC,HPT,V ar at TKO, % 104.1 104.7 105.0

Fan Diam, in 69.8 69.4 69.7

T3,max, ◦R 1,647. 1,678. 1,680.

T45,max, ◦R 2,382. 2,395. 2,394.

BPR at ADP 5.31 5.29 5.37

W25R at ADP, lbm/s 49.6 49.6 49.6

W3R at ADP, lbm/s 6.68 6.68 6.68

TKO Core Power Growth, % 25.52% 34.20% 35.32%

TKO FN Growth, % 22.95% 24.28% 25.36%

TOC FN Growth, % 29.89% 27.74% 23.86%

TSFC at CRZ, lbm/(lbf · hr) 0.6384 0.6358 0.6344

Pod Weight, lbm 6,513. 5,986.. 6,226.

Similar to what was shown with LP technology infusion, the infusion of both LP and HP

technology to improve component efficiency and component weight for Scenario 2.3 offers

25.36% growth in takeoff thrust. Again, increases in component efficiency levels allow for

more energy to be added to the core flow on the compression side, and similarly more energy

is able to be extracted from the core flow on the expansion side. This results in additional

power and thrust available for a fixed geometry core and corresponding flow capacity.

For the fixed geometry core engine variant scenarios, infusion of technology offers minor

additions to the amount of thrust growth achievable. The redesign of the LP system allows

for most of the thrust growth, but more efficient components are able to provide further

increases in capabilities. The additional design freedom of the next upgrade scenarios will

offer further increases in common core variant capabilities, but with accompanying increases

in upgrade complexity and development cost.
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4.3.8 Modified Common Core - Design Space Explorations for Various Tech-
nology Scenarios

When employing a fixed geometry core definition to a new LP system design in response

to a new set of thrust and/or power requirements, the range of growth capabilities can

be limited, as was shown in the previous section. This section considers a modification

to the otherwise fixed engine core, allowing for the core inlet flow, or HPC inlet corrected

flow (W25R), to be increased by up to 20% when considering a new common core variant

application. Core flow scaling can be accomplished through zero staging and/or flaring of

the HPC inlet. The following two scenarios allow for core flow scaling up to 20% beyond

the baseline engine design flow capacity. The common core variant design rules developed

in Chapter 3 are used to impose the core design restrictions on the off-design core definition

while allowing the core inlet flow to scale by the desired amount during exploration of

the variant cycle design space. Scenario 2.4 attempts to achieve significant thrust growth

while remaining at a consistent technology level with the baseline engine, while Scenario

2.5 provides the engine with advanced LP and HP components that improve their design

efficiency while having weight reductions as well.

Figure 68 and Figure 69 show the feasible variant design regions for Scenarios 2.4 and

2.5. The scatterplots again have the following constraints imposed, allowing for consistent

comparison of the feasible design spaces:

� T3,max <1,700 ◦R

� T45,max <2,350 ◦R

� Fan Diameter <100 in

� Pod Weight <10,000 lbm

Just as with the fixed geometry common core variant scenarios, it is hard to distinguish

between the feasible design regions with and without technology infusion. Nevertheless,

candidate selections were made for each scenario that were within the imposed limits, in-

cluding having a fan diameter less than or equal to 70 in, and was the remaining feasible
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Figure 68: Scenario 2.4 multivariate scatterplot of feasible candidate variant engine designs.
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Figure 69: Scenario 2.5 multivariate scatterplot of feasible candidate variant engine designs.
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Table 48: Experiment 2 - Modified Core Scenarios - Feasible design selections achieving
maximum takeoff thrust growth.

Parameter
Technology Scenario
2.4 2.5

πFan,V ar at ADP 1.66 1.69

πOverall,V ar at ADP 39.28 39.58

T4,V ar at TKO, ◦R 3,640. 3,655.

ERV ar at ADP 0.91 0.97

sW25R at ADP 1.16 1.13

NC,HPT,V ar at TKO, % 102.2 103.0

Fan Diam, in 69.1 69.6

T3,max, ◦R 1,680. 1,682.

T45,max, ◦R 2,350. 2,355.

BPR at ADP 5.22 5.25

W25R at ADP, lbm/s 57.7 55.9

W3R at ADP, lbm/s 6.68 6.68

TKO Core Power Growth, % 42.70% 41.64%

TKO FN Growth, % 22.91% 24.10%

TOC FN Growth, % 24.91% 27.41%

TSFC at CRZ, lbm/(lbf · hr) 0.6460 0.6371

Pod Weight, lbm 6,556. 6,287.

candidate sample that achieved the maximum takeoff thrust. These common core vari-

ant cycle selections can be found in Table 48 along with their corresponding performance

characteristics.

Allowing the core inlet flow to scale provides more available core power growth than was

attainable with a completely fixed geometry core design. However, limiting the maximum

fan diameter to 70 inches and increasing the core flow capacity results in lower bypass ratio

engine applications with lower thrust growth than the fixed geometry options. Scenario 2.4,

without having additional technology infusion, was able to achieve 22.91% takeoff thrust

growth while maintaining competitive cruise TSFC levels. This growth in thrust required

the core inlet corrected flow to be increased by 16%, while also taking advantage of the

freedom to over-speed the HPT at takeoff if necessary, over-speeding the core by 2.2% to

achieve maximum thrust, while remaining within the imposed design limits. The maximum

top of climb thrust grew by a similar amount. The takeoff core power necessary to produce
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this 23% increase in takeoff thrust was almost 43% greater than the core power generated by

the baseline engine definition at takeoff. The technology infused feasible candidate common

core variant design considered in Scenario 2.5 that allowed for maximum takeoff thrust

growth was able to reach 24.10% more thrust than the baseline engine. Through efficiency

improvements of all turbomachinery components, increasing the core flow by 13%, and

over-speeding the HPT at takeoff by 3%, the advanced technology common core design was

able to generate slightly more core power while staying within the allotted fan diameter and

temperature limits.

When applying a previously designed engine core definition to a new engine application

and allowing the core flow to be scaled, the resultant engine design was able to produce up to

8% more power than was possible when utilizing the geometrically fixed core. Comparing the

feasible common core variant design spaces with and without restricting the core inlet flow

to its baseline design level, Figure 70 shows the feasible design region of the geometrically

fixed, technology infused common core application in Scenario 2.3, and Figure 71 shows the

feasible variant design region when allowing core flow increases in addition to technology

infusion as was considered in Scenario 2.5. The main difference between the two highlights

the impact of allowing increases in the core working fluid. Figure 70 shows that without

core flow scaling, the HPT must operate at levels at or above 102% corrected speed, while

Figure 71 shows that with core flow increases of at least 5% allow the HPT to operating at

design takeoff speed of 100%. The figure also shows that significant flow scaling in addition

to over-speeding of the core at takeoff prevents variant designs from meeting the limits

imposed. Consideration of core flow scaling allows for the trade to be made between core

flow increases and HPT over-speeding to achieve power and thrust growth.

The multivariate scatterplots offer the cycle designer a way to see certain slices of the

feasible design space, showing performance trends with variant cycle changes. Parallel

coordinate plots are often more helpful in visualizing feasible and high performance regions

of a design space made up by several design dimensions, enabling the designer to see all

cycle input settings of particularly high performing design candidates all at once. Figure 72

and Figure 73 display the same feasible variant design candidates as are shown in the
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Figure 70: Scenario 2.3 multivariate scatterplot of feasible candidate variant engine designs.
High technology variant engine design space with fixed geometry core.
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Figure 71: Scenario 2.5 multivariate scatterplot of feasible candidate variant engine designs.
High technology variant engine design space with flared HPC core.
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Figure 72: Scenario 2.3 parallel coordinate plot of feasible candidate variant engine designs.
High technology variant engine design space with fixed geometry core.

multivariate scatterplots, but have them displayed in parallel coordinate plots.

After removing the 70 in fan diameter constraint, and filtering out the variant designs

with compromised performance levels and only showing the best performing candidates of

the Scenario 2.3 variant designs that produced at least 31,000 lbf of takeoff thrust (at least

36% growth when allowing fans larger than 70 in) while also achieving cruise TSFC levels

below 0.61 lbm/(lbf · hr), Figure 74 shows that significant over-speeding of the HPT at

takeoff is necessary to provide significant growth in takeoff thrust to a point while also

providing the best cruise TSFC levels. Figure 75 displays the common core variant design

candidates for Scenario 2.5 that had the best performance levels, applying the same filters

as were used in Figure 74 for Scenario 2.3. There are many more variant design possibilities

that offer feasible, high performing solutions when allowing the core flow be to increased,

providing more takeoff thrust with less increases in takeoff core power necessary to produce

the increase levels of thrust.

Now also considering the remainder of the common core variant cycle design parame-

ters, Figure 76 shows the high performing candidate cycle settings for Scenario 2.3, while

Figure 77 displays the best performing cycle settings for Scenario 2.5. Both scenario explo-

rations show that high fan pressure ratio variant designs are desirable, allowing for as much

energy addition to the high bypass flow as possible. Medium to high OPR designs are also
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Figure 73: Scenario 2.5 parallel coordinate plot of feasible candidate variant engine designs.
High technology variant engine design space with flared HPC core.

Figure 74: Scenario 2.3 parallel coordinate plot of best candidate variant engine designs.
High technology variant engine design space with fixed geometry core.
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Figure 75: Scenario 2.5 parallel coordinate plot of best candidate variant engine designs.
High technology variant engine design space with flared HPC core.

favorable, while the highest OPR designs start to violate the imposed T3,max constraint.

High thrust growth can be achieved pretty much anywhere within the sampled ranges of

takeoff T4,V ar and variant design extraction ratio (ERV ar). As noted earlier, the key shift in

favorable variant designs with and without core flow scaling is that by scaling the core flow,

significant over-speeding of the HPT is no longer necessary to produce large growth levels

of takeoff thrust. However, zero-staging the HPC and/or flaring the HPC inlet as well as

all the necessary design changes that accompany the upgrade (such as possible re-blading

of the HPC and/or HPT, HPT vane reset, new variable guide vane schedules, etc.) would

likely require significantly more resources to develop and bring to market.

4.3.9 Conclusions

For the common core variant design scenarios where the core geometry was not allowed to be

modified at all, significant thrust growth was achievable, with further increases achievable

through the infusion of technology improving component efficiency. This highlights a key

consideration that must be addressed when attempting to employ common core engine

applications. Once a core definition is established and is to be applied to a new application,

the designer has two choices. The core design can remain completely fixed, but will have a

high likelihood of having significant performance compromises due to the fixed core being
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Figure 76: Scenario 2.3 parallel coordinate plot of best candidate variant engine cycles.
High technology variant engine design space with fixed geometry core.

Figure 77: Scenario 2.5 parallel coordinate plot of best candidate variant engine cycles.
High technology variant engine design space with flared HPC core.
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a mismatch for the new set of customer requirements. Alternatively, the designer can

make core design modifications, incurring significant development costs, but allowing for

a more flexible range of capabilities. However, if there are a significant number of engine

applications being considered, and many unique core design modifications are necessary to

apply the available core definition across the program, development costs could potentially

go through the roof.

This provides the rationale behind the development and use of the COMMENCE method.

Consideration of possible common core applications are made upfront, early in the core de-

velopment program. This allows for implications of various sets of requirements on the

required core definition to be drawn before making core design down selections. Also,

limitations of candidate core designs can be quantified early in the process, allowing for de-

cision makers to decide whether the limitations are acceptable, or if actions must be taken

to extend the engine program capabilities. In addition to the simultaneous consideration

of possible applications, impacts of uncertainty present in the initial and projected applica-

tions can be accounted for upfront, allowing for required design margins to be determined

quantitatively instead of subjectively in order to improve the likelihood of success through-

out the family of engine applications. By allowing the designer to make more informed core

design decisions, the likelihood of engine family success can be increased.

The following experiment integrates both the ERDS method demonstrated in Exper-

iment 1 and the common core variant design logic established and demonstrated in this

experiment into the overall COMMENCE method, and the first simultaneous multiple appli-

cation common core design space exploration will be performed. Consideration of multiple

sets of customer requirements will be made while accounting for significant technology and

installation requirements uncertainty, leading to the exploration and selection of a common

core definition and corresponding common core variant engine designs that achieve a high

likelihood of meeting all their requirements and constraints while also achieving competitive

performance levels.
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4.4 Experiment 3: Common Engine Core Design for Multiple Applica-
tions

� Primary Research Question: How should core design selections be made for multi-

ple current and future common core applications, ensuring a high likelihood of achiev-

ing feasible, competitive common core engine variant designs?

Hypothesis: Simultaneous simulation and evaluation of current and future common

core applications should be performed when exploring the common core design space in

order to quantitatively estimate the feasibility and likely performance levels of program

applications due to changes in the common core definition. If this is possible and

implemented, the likelihood of achieving feasible, competitive common core variant

designs will be increased while minimizing the amount of mitigation actions required

later in the program.

� Research Question 1: How should the gas turbine cycle design process be modified

to easily evaluate designs under various uncertainty scenarios, in a manner similar

to traditional approaches, without the need for added computational burden, repeated

simulations, and post-processing of statistical data?

Hypothesis 1: Probabilistic performance levels of candidate cycle designs should

be estimated with the use of surrogate models that predict likely performance under

various inputted uncertainty scenarios for any desired confidence interval.

The previous experiment explored the amount of thrust growth achievable through common

core engine applications of increasing upgrade complexity. Different sets of engine variant

design restrictions and technology infusion were considered, and the corresponding core

power and thrust levels achievable with minimum SFC compromise were determined. The

experiment demonstrated the capabilities enabled through the modeling and simulation

environment constructed to explore common engine core design problems.

The present experiment takes the next step in exploring gas turbine engine family de-

signs. The rules established to tie the design engine, the core definition, and the common

core engine variant application together are now duplicated to simultaneously consider
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multiple engine applications of the same common engine core design. These relationships

are implicitly contained within the surrogate models representing the deterministic and

probabilistic common core variant design space. When simultaneously considering multi-

ple common core variant designs, the same common core representative surrogate models

(SSBV ar,Det and SSDV ar,Prob) are utilized for all variant designs. For each application,

the same core defining design engine variable settings are used while unique variant design

variable values are used to evaluate multiple applications of the same geometrically common

core family of engines. The goal of this study is to test the capabilities of the COMMENCE

method when applied to a multiple application exploration and common core family design

selection. For multiple sets of application requirements, the method will be used to search

for a feasible core design region that offers feasible solutions for all engine applications con-

sidered. If a feasible core design region is identified, selection of a family of designs will

be made that offers competitive performance with respect to benchmark engine designs

established for each application.

4.4.1 Utilization of Existing Surrogate Models

The probabilistic surrogate model sets trained at the beginning of this chapter will again

be utilized in the present experiment, both for the design engine which establishes the com-

mon engine core definition (SSCDes,Prob), as well as for the variant engine performance

(SSDV ar,Prob) which applies the common engine core definition to a new low pressure sys-

tem. When exploring and making single engine design selections to establish benchmark

engines for each set of requirements, SSCDes,Prob will be utilized to perform the single

application robust design explorations and resultant benchmark selections. No additional

training of surrogate models is needed for the following experiments. Furthermore, no

additional repetitions of design simulations are needed, only single model evaluations are

necessary to predict confidence interval performance under a given uncertainty scenario.

All variability due to the ranges of uncertainty distributions considered is already implicitly

accounted for in the probabilistic surrogate models. This unique capability of the proba-

bilistic surrogate models produced by the ERDS method enables robust design explorations
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of the benchmark engines and common core applications to be performed similarly to how

typical engine cycle explorations are performed. Once the surrogate representations are

produced, probabilistic explorations now offer the designer the ability to account for and

design under uncertainty without any additional computational effort.

4.4.2 Multi-Application Common Core Design - Problem Setup

Three discrete sets of engine requirements are established for each engine application con-

sidered in the present common core design study. For the present study, a single technology

scenario is assumed for all applications. A single technology scenario applied to all engine

applications is representative of a common core family of engine applications that are all

designed to enter the market within the same time frame.

To establish the performance compromises made by employing a common core definition

across applications, new centerline benchmark engine designs will be explored and selections

will be made for each application using the ERDS process exactly as it was applied in

Experiment 1. Exploration of the common core design space will then be performed and

a common core design region offering maximum application feasibility will be identified.

Finally, simultaneous exploration of the engine core and each engine variant design will

be performed to arrive at common core applications that achieve minimal performance

deviations from each corresponding benchmark design.

This experiment aims to demonstrate the ease of using the COMMENCE method to

consider any number of common core engine applications when making common core design

selections. The unique formulation of the probabilistic surrogate models produced by the

ERDS process when integrated into the COMMENCE method enables design explorations

to be performed in a similar fashion to how engine cycle designers currently perform de-

terministic single design explorations. Familiar cycle trends result from the enabled robust

design explorations, but performance estimates now account for the assumed uncertainty

present in the designs considered. Multiple engine applications can now be considered simul-

taneously, and robust design selections can be made knowing the implications the selections

have on the resultant common core variant application designs. For the design problem
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Table 49: Experiment 3 - Engine Requirements and cycle temperature limits for each of
the three applications considered in the present common core engine design problem.

Engine Requirement App 3.A App 3.B App 3.C

Takeoff Thrust, lbf 23,000 27,000 30,000

Top of Climb Thrust, lbf 6,000 6,000 8,000

Horsepower Extraction, shp 250 250 250

Customer Bleed, lbm/s 2.35 2.35 2.35

Maximum HPC Exit Temperature, ◦R 1,700 1,700 1,700

Maximum LPT Inlet Temperature, ◦R 2,300 2,300 2,300

Cruise TSFC, lbm/lbf/hr minimize minimize minimize

Pod Weight, lbm minimize minimize minimize

considered in this experiment, examination of the resultant common core selection will be

performed, comparing the core definition to the core designs independently selected for each

individual application considered.

4.4.2.1 Requirement Sets for Multiple Applications Considered

A common engine core and corresponding variant designs will be selected for three sets of

requirements, listed in Table 49. Among the applications, there are three unique levels of

takeoff thrust required. The low and medium takeoff thrust applications require the same

thrust at top-of-climb conditions. The highest takeoff thrust application requires 33% more

thrust at top-of-climb conditions. All three applications have the same constant horsepower

and air bleed extraction installation requirements and associated uncertainty in the actual

amounts required. The uncertainty distributions of these installation requirements are found

in Table 50.

The three engine applications considered represent what would be required from similar

aircraft variants, each of which having unique requirements for various specific design mis-

sions. Between the lowest and highest takeoff thrust levels required, the family of common

core applications requires more than 30% growth in achievable thrust.
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Table 50: Experiment 3 - Power and air extraction requirements uncertainty distributions
assumed for the present multiple application experiment.

Impact Min, Max, Alpha, Beta PDF

HPX, shp 125, 500, 3.0, 6.0

CustBld, lbm/s 1.18, 4.70, 3.0, 6.0

4.4.2.2 Technology Scenario

This multiple application design problem assumes that all three engine applications are to

enter the market within the same time frame. Therefore the technology scenario, containing

the uncertain impacts of technology improvements is assumed to be the same for all three

common core engine applications. The technology impact distributions of the assumed

scenario are all contained in Table 51. For each category of technology, the minimum

and maximum impacts, and the alpha and beta shape parameters of the assumed beta

distributions are listed. This scenario is similar to the one assumed in Experiment 1.

4.4.3 Common Core Engine Design for Multiple Applications

This experiment is the first to carry out the entire COMMENCE process, originally shown

in Figure 21 and redisplayed for ease of access. The sets of requirements for the discrete

variant applications have been established. Robust design selections of benchmark (new

centerline) engines will be established using the ERDS process under the same uncertainty

scenario. This allows for determination of performance deviations purely due to the use of

a geometrically common core design for all applications.

Next, the multiple application common core design space will be explored in order to

identify any feasible regions of the common core design space. Simultaneous exploration

of the core design definition as well as each of the three engine variant designs will be
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Figure 21 Revisited: Common Engine Core Evaluation (COMMENCE) Method.
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Table 51: Experiment 3 - Technology impact uncertainty distributions assumed for the
present technology scenario.

Impact Min, Max, Alpha, Beta PDF

∆η 0.00, 0.01, 1.5, 3.0

sWt 0.90, 1.00, 3.0, 1.5

sLoad 1.00, 1.20, 1.25, 4.00

T41,max, degR 3,186, 3,300, 1.5, 3.0

performed in order to maintain feasibility while also improving variant performance as much

as possible. Final evaluation of the candidate common core engine family design will be

performed, comparing each common core application’s performance to their corresponding

benchmark engines. If the performance levels are deemed acceptable, then the design core

definition is selected for multiple engine applications.

4.4.3.1 Benchmark Engine Selections for Each Application

Before performing any common core design space explorations, single application robust de-

sign selections are made for each of the sets of requirements established for this experiment.

The ERDS method is used identically to how it was used in Experiment 1, utilizing the

surrogate set SSCDes,Prob to perform design explorations and make selections. The same

sources and distributions of uncertainty assumed for the common core design problem are

assumed in the simulation and selection of each single application benchmark design. Explo-

ration throughout the ranges of design variable settings listed in Table 18 is performed for
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Table 18 Revisited: Clean sheet engine control variables and corresponding ranges explored
during benchmark design space explorations. For consistency, identical ranges are used to
explore the core defining engine design space.

Variable Units Min Max

πFan @ ADP - 1.3 1.7

πHPC @ ADP - 9.0 16.0

πOverall @ ADP - 30.0 55.0

T4 @ TKO ◦R 3,300 3,750

ER @ ADP - 0.90 1.25

NChgLPT % W25 0.00 0.06

FN @ TKO lbf 20,000 30,000

FN @ TOC lbf 5,900 8,850

each application’s benchmark engine design, and selections are made that meet all require-

ments and constraints imposed (based on 95% confidence interval performance estimates)

while achieving competitive performance in terms of cruise TSFC and estimated engine pod

weight.

Each new centerline engine selection offers the designer valuable information for the

present design problem. The benchmarks established the performance levels achievable at

the current technology level if design selections were made independently for each set of

requirements. These benchmark engines represent designs located on the TSFC-Weight

pareto frontier for each engine application. By comparing common core variant designs

against these benchmark engines, quantification of the performance compromises incurred

by employing common core variants can be determined, allowing the designer to decide

whether each application is worth pursuing with the common core program.

The benchmark engine cycle selections made for each of the three applications consid-

ered in this experiment are found in Table 52 along with their corresponding performance

estimates. For this and for all future design explorations and selections, 95% confidence

interval performance estimates will be used in the evaluation of designs. This requires all

designs considered to meet all requirements and achieve competitive performance levels with

a an associated 95% probability of doing so. For performance levels whose direction of im-

provement is a reduction in the value, such as temperature levels, TSFC levels, and weight
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Table 52: Experiment 3 - New Centerline Benchmark Engine Cycle Selections and cor-
responding 95% confidence interval performance levels for each of the three applications
considered.

Design Cycle Parameter Bench 3.A Bench 3.B Bench 3.C

πFan at ADP 1.57 1.47 1.67

πHPC at ADP 15.57 15.87 14.16

πOverall at ADP 37.49 32.17 33.56

T4 at TKO, ◦R 3,319. 3,321. 3,334.

ER at ADP 0.90 1.00 0.90

NChgLPT , %W25 0.12% 0.00% 4.69%

95% CI Metric Value Bench 3.A Bench 3.B Bench 3.C

FN at TKO, lbf 23,220 26,970 30,230

FN at TOC, lbf 6,021 6,042 7,940

T3,max, ◦R 1,691. 1,682. 1,687.

T45,max, ◦R 2,300. 2,300. 2,300.

W3R at ADP, lbm/s 5.91 7.09 8.74

TSFC at CRZ, lbm/lbf/hr 0.6525 0.6440 0.6525

Pod Weight, lbm 3,685 3,633 6,458

Fan Diameter, in 67.0 73.8 70.5

estimates, the 95% confidence interval estimate will have an associated 95% probability of

achieving the value listed or at a lower, more favorable level. For performance estimates

whose direction of improvement is an increase in the value, such as thrust capabilities, the

95% confidence interval estimate will have a 95% probability of being at the listed value or

at a higher, more favorable level.

The existing probabilistic surrogate models of Surrogate Set C (SSCDes,Prob) and Sur-

rogate Set D (SSDV ar,Prob) are utilized in this and the following multiple application exper-

iment. For these surrogate models, the desired confidence interval of performance estimates

is a user input, allowing the designer to predict and provide estimates anywhere on the

cumulative distribution function of likely performance levels for a particular design if he or

she desires to do so. For simplicity and for consistent comparison between designs in this

experiment and the next, only 95% confidence interval estimates will be provided, provid-

ing the high likelihood of feasibility and performance typically desired when making robust

design selections.

The characteristics shown in Table 52 indicate that all three benchmark engine designs

217



favor relatively low pressure levels, shown by the design πOverall levels selected. Addition-

ally, all benchmark selections favor design πHPC levels close to the maximum value allowed.

These design pressure ratio selections allow for minimal levels of nonchargeable LPT cooling

(as shown by the low levels of NChgLPT ) while allowing the cycles to remain under the

LPT inlet temperature limit (T45,max) of 2,300◦R. By having relatively low OPR levels,

the cooling air available is at relatively low temperature, increasing the cooling effectiveness

and reducing the secondary flow required to bring the LPT inlet temperature to within the

imposed limit. The relatively high HPCPR levels favor the HP system in the pressure ratio

split, the difference in the fraction of the overall pressurization required of the low pressure

and high pressure compression systems. Having the HPC provide most of the pressuriza-

tion requires significant mechanical work to be supplied by the HPT, requiring more flow

expansion through the HPT. This reduces the temperature of the gas exiting the HPT, re-

ducing the amount of cooling flow required to bring the LPT inlet flow temperature within

the imposed material limit. Also accompanying the low πOverall levels of the selections are

relatively low design values of takeoff combustor exit temperature (T4 at TKO). Just as

with the LPT cooling, these low T4 designs require less HPT nonchargeable cooling flow to

bring the HPT inlet temperature (T41) within the allowed levels present in the uncertainty

distribution defined in Table 51.

These low temperature cycles make the benchmark designs less sensitive to the uncer-

tainty present in the allowed T41,max and the variation in LPT inlet temperature due to

other sources of uncertainty assumed present. By remaining insensitive to these sources of

uncertainty and corresponding variability in design performance, the resultant engine de-

signs can remain relatively small by minimizing secondary flows required to operate within

temperature limits while also being able to provide the thrust levels required.

In order to compare the engine core definitions of each of the benchmark engine designs

selected to each other and ultimately to the resultant common engine core selection made

for all three applications, the HPC exit corrected flow is also listed in Table 52. As is done

throughout the gas turbine industry, the HPC exit corrected flow (W3R) is a geometric sim-

ilarity parameter used for comparison between different engine core sizes[61]. Maintaining
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consistent flow areas and HPC exit corrected flow at consistent map operating conditions

ensures consistent component blade heights. As explained in Chapter 3, this approach is

used to enforce geometric commonality. Core flow areas are held to design levels by not al-

lowing core components to be resized during the variant engine simulation. As was verified

in the previous experiment, the design HPC exit corrected flow (W3R at ADP) is maintained

between the core defining design engine and all common core variant cycles. As is expected,

as the required thrust levels increase from Application A to Application C, the design levels

of HPC exit flow also increase. This highlights the relationship between thrust requirements

and core power requirements. The engine core definition grows as more thrust is required,

increasing the available core thermal energy by increasing core flow. When considering a

common engine core, it will be shown where the common core design HPC exit corrected

flow level lies with respect to the benchmark design levels. Implications of using a common

core size for multiple applications will also be identified, comparing desirable variant cycles

and corresponding performance to the benchmark design selections.

With the establishment of benchmark new centerline engines designs for each unique set

of application requirements, the designer can now consider the feasibility and performance

implications of a common engine core design for the set of applications considered. The fol-

lowing section will set the uncertainty distribution shape parameters to reflect the assumed

uncertainty scenario, and exploration of the common core design space will be performed

for the multiple application design problem.

4.4.3.2 Multiple Application Common Core Design Space Exploration

With benchmark engines cycles established for each of the three applications considered in

this experiment, the designer can now explore the common core design space. Figure 78

shows the functional dependencies present and accounted for in the probabilistic surrogate

models representing the common core variant design (SSDV ar,Prob), when extended to the

current consideration of three variant applications. As shown in the figure in the upper left

hand corner, the design engine is first simulated and its corresponding probabilistic surrogate

models are evaluated based on the set of design engine control variable (CV) and noise
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Figure 78: Representation of multiple application common core design problem considered
in Experiment 3. Each engine variant performance estimate is dependent upon that vari-
ant’s input variable settings as well as the design engine input settings which establish the
common engine core definition.

variable (NV) settings. The core definition is defined from the design engine simulation and

is applied to each of the common core engine variants applications considered. This explains

the functional relationships shown between the design engine input variables and engine

variant performance metrics. This causes the probabilistic surrogate models predicting

variant performance to be functions of the variant input variables as well as of the design

engine input variables.

A simplified view of the functional relationships between the core defining design engine

and each of the common core variant designs considered in this experiment is shown in
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Figure 79: Simplified representation of multiple application common core design problem
considered in Experiment 3.

Figure 79. For the core defining design engine and each of the three common core variants

considered, the figure also contains cartoon representations of each engine’s flowpath, show-

ing the blue common core being present in each of the variant applications. These cartoon

representations will also be displayed above each application’s corresponding performance

levels when all applications’ performance are simultaneously displayed. This highlights the

technique developed to ensure commonality across all common core applications considered

as one of the major contributions of this work.

For each of the three common core applications, engine core design restrictions are

applied, tying the variant core definitions to the same design engine core. Scaling of the

design HPC inlet corrected flow (sW25R at ADP) and over-speeding the HPT at takeoff

(NC,HPT,V ar at TKO) are allowed in addition to any technology infusion of the engine

components. This experiment assumes that the technology level of all three variants are

equivalent and equal to the design engine technology level, so no additional technology
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infusion is allowed.

The four-engine probabilistic design space (one design engine defining the core and

three variants) can now be explored simultaneously. Ranges are applied to all of the control

variables and samples of the design space are simulated. The control variable ranges sampled

for the core defining design engine are identical to those sampled during the benchmark

design explorations, which are listed in Table 18. The control variable ranges sampled for

each of the three variant applications are listed in Table 19. A given sample contains a

unique set of input variable settings for all four engine designs. These samples allow the

designer to determine the feasibility of a common core definition offering feasible solutions

for all of the applications considered.

It should be noted that as the number of engine applications considered increases, the

probability of a sample (input variable settings for all designs considered) offering feasi-

ble common core designs for all applications considered decays exponentially. Therefore, a

large number of samples are necessary in order to arrive at a significant number of feasible

samples. Even more samples would be necessary to arrive at a multi-application design

achieving competitive performance across all engine applications. For sample-based robust

design techniques, a technique would need to be developed to overcome this challenge. Oth-

erwise, the method would not be able to efficiently arrive at a good multiple application

common core family design. This curse of dimensions would be compounded if repeated sim-

ulations of candidate designs were still necessary to account for the uncertainty present in

the designs. The developments made by the author in the formulation of probabilistic surro-

gate models produced by the ERDS method overcome this curse of high dimensionality. By

employing the continuous probabilistic surrogate models previously trained (SSCDes,Prob

and SSDV ar,Prob) to provide confidence interval performance estimates with a single func-

tion call, the computational budget can be better used to more richly explore the common

core design space.

After sampling the multiple application common core design space, limits are imposed,

eliminating samples that do not meet the requirements or constraints present in the design

problem. Figure 80 displays where feasible samples lie within the core design space. The
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Table 19 Revisited: Control variables and corresponding ranges explored for the present
common core variant engine design explorations.

Variable Units Min Max

πFan,V ar @ ADP - 1.3 1.7

πOverall,V ar @ ADP - 30.0 55.0

T4,V ar @ TKO ◦R 3,300 3,750

ERV ar @ ADP - 0.90 1.25

NChgLPT,V ar % W25 0.00 0.06

sW25R @ ADP - 1.0 1.2

NC,HPT,V ar @ TKO % 100. 105.

feasible samples, represented by the black lines in the parallel coordinate chart, meet all

temperature limits imposed on all three applications, and meet the thrust levels required of

each of the three applications. By analyzing the feasible design placement within the core

defining design space in the left block of the chart, the designer is able to quickly identify

favorable core design regions. For example, the common core applications obviously favor

high design HPC pressure ratio core designs. Additionally, low design OPR cores are

also favored. A high HPCPR, low OPR core definitions have high flow capacity offering

significant growth potential while also having to ability to generate high core power. This is

similar to what was shown during the benchmark engine design explorations. Low pressure

and corresponding low temperature designs are favored, minimizing the required secondary

cooling flows required to keep the engine operating within the imposed temperature limits,

particularly when significant uncertainty is assumed present. The high HPCPR designs load

up the design core, increasing the power generating capabilities when the core is applied to

later variant applications. Also of note, the design engine thrust levels that provide feasible

variants are similar to the thrust levels required of the common core applications. Design

engines that offer feasible common core applications have design takeoff thrust levels above

26,000 lbf and design top-of-climb thrust levels above 6,700 lbf .

In addition to looking purely at the thrust capabilities of the common core engine vari-

ants, Figure 81 shows the cruise TSFC levels achievable by each of the feasible common core

design samples. It is shown in the plot that competitive cruise TSFC levels are achievable,
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Figure 80: Experiment 3 - Common core design candidates that meet thrust requirements
of all three applications while also satisfying all temperature constraints.

lying between 0.5 and 0.7 for a majority of the feasible designs for all three applications.

Also, Figure 82 shows the predicted engine pod weights for all applications of each of the

feasible candidate designs. The spread in the weight is quite significant, and only samples

that provide variant applications that have minimum engine weights remain in the group of

feasible candidate designs considered. The coordinate axis present on the far right hand side

of both Figure 81 and Figure 82 is the design HPC exit corrected flow of the engine core.

The benchmark engine selection made earlier had design HPC exit corrected flow levels of

5.91, 7.09, and 8.74 for Applications A, B, and C, respectively. The parallel coordinate

charts of the feasible common core applications show design HPC exit corrected flow levels

offering feasible solutions lie between 5.7 and 8.3. The range of corrected flows being in

the interior of the benchmark levels is a product of allowing variant applications to have

elevated HPT speeds to achieve high takeoff thrust. This effectively represents a HPT vane

reset intended to squeeze more working fluid through the core to increase the maximum
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Figure 81: Experiment 3 - Feasible common core design candidates and corresponding
cruise TSFC levels for each engine variant application..

achievable thrust at takeoff, while allowing the design flow levels at ADP and 100% speed

to remain lower than would otherwise be required if the maximum HPT corrected speed

was held at 100% during takeoff.

After considering the regions of engine core feasibility, secondary considerations can be

made to further improve common core variant performance levels. Figure 83 contains a

parallel coordinate plot of the variant control variables for Application A along with the

performance metrics of interest for the application. Again, all infeasible samples that did not

meet either the temperature limits or the thrust requirements of the application have been

filtered, leaving the black lines representing feasible common core samples. This filtering

leaves a very small population of feasible samples to analyze the feasible variant cycle space

of Application A. This small population prevents the cycle designer from having a clear

view of the definite feasible regions of the variant design space. There are obvious variable

values, such as low design FPR and very high design OPR variant designs that cannot

satisfy all requirements. The small population of feasible samples prevents the designer to
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Figure 82: Experiment 3 - Feasible common core design candidates which achieve high
performance among the samples collected within the common core application design spaces.

identifying a clear variant design region of interest.

Figure 84 displays the feasible common core design candidates for Application B, along

with their corresponding variant cycle settings and 95% likely performance levels. Again,

no clear correlations exist to help identify region(s) of interest in improving variant engine

performance for Application B. Figure 85 has clearer regions that should be avoided for the

variant cycle design for the highest thrust Application C. This high thrust application is a

key driver in the overall common core feasibility since it demands the most engine power,

both at takeoff and top-of-climb conditions. It is quite clear that low variant FPR, low

variant OPR designs do not offer common core applications that meet the required amount

of thrust for Application C while satisfying all imposed temperature limits. But again,

there is no clear set of input variable settings that guarantees a high performance common

core variant design for Application C.

The sparsity of the feasible design space when considering multiple engine applications

simultaneously can be problematic when using a traditional sample-based robust design

226



Figure 83: Experiment 3, Application A - Feasible common core variant engine cycle
candidates among the sample population.

Figure 84: Experiment 3, Application B - Feasible common core variant engine cycle
candidates among the sample population.
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Figure 85: Experiment 3, Application C - Feasible common core variant engine cycle
candidates among the sample population.

approach. Since a given computational budget must be reserved for repetitions of design

simulations to account for the uncertainty assumed present, even fewer exploratory samples

can be used to search for a feasible region that simultaneously meets all requirements and

constraints of all applications considered. Traditional methods that depend on sampling to

arrive at a high performing design candidate have an extremely low probability of arriving

at a multiple application design that meets all requirements, let alone achieving competitive

performance levels for all applications considered. Fortunately, the COMMENCE method

offers the designer the ability to take advantage of continuous surrogate models that implic-

itly account for the uncertainty present in the designs while also instantaneously estimating

the effects of various core design decisions on all variant applications considered. Con-

straint analyses can be performed using the continuous surrogate response space. Contours

of constant constraint values can be displayed directly on the common core design space

of interest. This greatly assists the designer in identifying any feasible regions in a high

dimensional design space such as this, and also assists the designer in adjusting the design

in order to move in the direction of performance improvement within the feasible region.
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Figure 86 contains contours of all the thrust and temperature limits of the three en-

gine applications plotted on two core design dimensions, the takeoff thrust and the design

HPCPR of the design engine which defines the common engine core utilized across appli-

cations. The contour locations for each variant application are dependent upon all of the

core design input variable settings as well as the variant cycle input variable settings for

the applications considered. Extensive exploration within the various core design input

space was necessary to identify a core design region offering feasible common core variant

designs for all three applications considered. All contour plots shown for this experiment

are representative of the multiple application common core design selection made and later

tabulated. If any input variable settings were to change, the placement and shapes of the

contours displayed would likely change.

The feasible region displayed in Figure 86 shows that the lower level of feasible design

engine takeoff thrust is not surprisingly limited by the takeoff thrust requirements of each

of the three applications. The upper limit of feasible design engine takeoff thrust levels is

limited by the HPC exit temperature limits. The diagonal constraints present are the LPT

inlet temperature limits that limit the lower takeoff thrust level for a given HPCPR level.

Similarly, Figure 87 shows the feasible core design regions of design engine top-of-climb

thrust levels for various HPCPR designs. Again, the thrust requirements limit the lower

feasible level of design engine top-of-climb thrust that offers feasible common core appli-

cations while the LPT inlet temperature constraints limit the high end of design engine

top-of-climb thrust for various HPCPR designs. The is again expected due to the fact that

increasing the desired top-of-climb thrust would require more thermal energy to exit the

core and in turn do work on the LPT, increasing the temperature of the flow for a given

core size.

The last contour chart shown for the feasible core design space is shown in Figure 88,

showing the feasible range of design engine OPR at the high HPCPR designs. This feasible

region is very small compared to the design space initially considered, showing a range of

feasible OPR levels between 43.0 and 43.5 at ADP conditions for the core defining design

engine. Keep in mind though that the placement and size of this feasible region is based on
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Figure 86: Experiment 3 - Common core design exploration for three variant applications:
Constraints defining the feasible region of design engine takeoff thrust and HPC design
pressure ratio after simultaneous exploration of core and variant engines.

Figure 87: Experiment 3 - Common core design exploration for three variant applications:
Constraints defining the feasible region of design engine top-of-climb thrust and HPC design
pressure ratio after simultaneous exploration of core and variant engines.
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Figure 88: Experiment 3 - Common core design exploration for three variant applications:
Constraints defining the feasible region of design engine OPR and HPC design pressure
ratio after simultaneous exploration of core and variant engines.

all the other input variable settings not shown in the chart. By adjusting the input variable

settings, the size of the feasible region can be increased. However, the settings have been

adjusted to be in the region of performance improvement. By improving on performance,

more compact cores are considered and more efficient compact engine variants are preferred

as well. This shrinks the feasible design region in turn for improved performance. Normally

when one considers robust design selections, one would want as large a feasible design

region as possible in order to remain robust to changing requirements and constraints.

However, since all the performance estimates, requirements and constraint evaluations and

all corresponding contours are 95% confidence interval values (meaning that the design is

95% likely in meeting or improving upon the contour value), a design selection within a small

feasible region can still be considered robust since the region is essentially representing where

there is more than a 95% likelihood of meeting all requirements and constraints considered.

In order to visualize all three core design planes simultaneously, Figure 89 displays all three

contour profilers side-by-side.
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Figure 89: Experiment 3 - Side-by-side comparison of contour profilers representing several
core design planes.

A major advantage of using contour profilers when searching for feasible and favorable

design regions that cannot be shown on paper is their dynamic nature. The designer has the

ability to adjust design settings on-the-fly and see the resultant effects on the constraints

and performance instantaneously. What-if games can be played, making adjustments to

assumptions, constraint values, or technology scenarios and the dynamic contour profiler

updates to reflect those adjustments. The dynamic nature of these visualizations are very

beneficial to decision makers when weighing the various options for the design of interest.

Once exploring and setting the core design region of interest has been performed, each

design space corresponding to the engine variant applications can be explored using the

probabilistic surrogate models predicting common core engine variant performance. Re-

quired thrust levels and any constraints imposed on each of the engine applications can

be displayed in contour profile charts, helping aid the designer in determining the feasible

design region for the core design selection.

Figure 90 displays the feasible common core variant design space for Application A in

the design planes of variant HPT takeoff corrected speed, the core corrected flow scale

factor, and the variant FPR. For the current set of input variable settings, the LPT inlet

temperature constraint and the required thrust at top-of-climb are the limits constraining

the feasible design space. As the amount of core flow scaling is reduced and the amount

of HPT design overspeed at takeoff is reduced, the amount of work performed by the

engine core is reduced, causing the amount of excess thermal energy exiting the core to be
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Figure 90: Experiment 3 - Common core variant exploration for Application A: Constraints
determining the amount of TKO over-speed, core flow scaling, and FPR necessary for
Variant A feasibility.

increased, corresponding to an increase in the LPT inlet temperature for a given amount of

LPT nonchargeable cooling. This causes the LPT inlet temperature constraint to become

active at lower level combinations of sW25R and NC,HPT,V ar. Conversely, at these two

variant cycle parameter values increase, the fraction of flow traveling through the engine

core with respect to the amount of flow bypassing the core is increased for a given design

FPR and extraction ratio and engine. This causes the achievable thrust at top-of-climb

to be reduced due to less propulsor flow traveling through the bypass stream, reducing

the net thrust. Also present in the contour chart are contours of how cruise TSFC and

fan diameter change as the design settings vary within the plane of design values. As the

flow scaling and takeoff high spool speed are reduced, the cruise TSFC is improved and

the fan diameter grows due to a higher variant design bypass ratio. The core flow scaling

and takeoff HPT corrected speed settings selected for Application A provide the best cruise

TSFC while remaining in the feasible variant design region.

Considering the other variant cycle design plane displayed in Figure 90, the LPT inlet

temperature limit and top-of-climb thrust requirements are constraining most of the space.

Additionally, the requirement of Application A limits the high levels of design FPR due to
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a lack of core power available to drive the higher FPR fan with the common core definition.

The TSFC contours expectedly show that as design FPR and takeoff corrected speed are

reduced, the cruise TSFC is reduced due to a bypass ratio increase and accompanying

increase in propulsive efficiency. However, these designs have larger fan diameters and

accompanying extensive weight increases. Therefore, the design FPR and takeoff high spool

speed is selected that compromises between the cruise TSFC achievable and fan diameter

reduction to minimize weight.

Similar to the contour profile charts shown for the common core variant design space

addressing Application A requirements, Figure 91 displays the feasible common core variant

design region able to satisfy the Application B requirements. For the core design selection

considered, the feasible variant design space is much smaller for this application, requiring

almost 20% more takeoff thrust than Application A. As shown in the figure, the LPT inlet

temperature limit (T45,max) and the HPC exit temperature limit (T3,max) define the feasible

variant design space along with the increased takeoff thrust requirement. The takeoff thrust

requirement holds the design high spool corrected speed to higher levels for the common

core application, showing that increased takeoff core power is necessary to produce the

thrust required than what the core defining design engine produced at takeoff. The LPT

inlet temperature limit causes the amount of core flow scaling to be increased from the

design level in order to provide more core working fluid to perform propulsive work while

remaining within the temperature limit imposed.

Figure 91 shows the active constraints limiting the high spool design speed and variant

design FPR levels for the selected common core design. The trends are similar to those

constraining the Application A common core variant design. An intermediate variant design

FPR level was selected that minimized the fan diameter necessary to provide the takeoff

thrust required of the variant designed for Application B.

Moving onto the highest thrust common core engine variant application considered,

Application C, it is shown in Figure 92 that there is a very small region of feasibility when

using the common core definition being considered. Significant core flow scaling is necessary

along with high takeoff over-speeding in order to meet all the application requirements and
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Figure 91: Experiment 3 - Common core variant exploration for Application B: Constraints
determining the amount of TKO over-speed, core flow scaling, and FPR necessary for
Variant B feasibility.

constraints. The feasible region is constrained by the LPT inlet and HPC exit temperature

limits as well as the takeoff thrust requirement just as with the previous common core

application. Looking at second chart in the figure, the feasible design region could be

increased by reducing the variant design FPR, but at the cost of greatly increasing the fan

diameter, which would cause the engine weight to increase as well. Although the feasible

region is small, a candidate variant design contained within this region, just as with the

other common core applications, carry with it a 95% likelihood of achieving or surpassing

all the requirements and constraints imposed on the common core application.

4.4.3.3 Multiple Application Common Core Design Selection

By simultaneously exploring the common core design space, analyzing the core defining

engine design space and each of the common core variant design spaces, a design region was

identified that offered a common core design and corresponding variant applications that

met all requirements and constraints imposed on the multiple application engine design

problem. Table 53 contains the design selections of the core defining engine as well as

the settings selected for each of the common core variant designs. Note that the variable

235



Figure 92: Experiment 3 - Common core variant exploration for Application C: Constraints
determining the amount of TKO over-speed, core flow scaling, and FPR necessary for
Variant C feasibility.

selections were made through visualization and manual exploration of the multi-application

common core design space. Therefore, further improvement of the common core family

performance may be achievable with the use of an optimizer.

In order to determine the performance compromises made by applying a common core

across multiple applications, Table 54 contains the common core evaluation metrics intro-

duced in Chapter 3. Each common core variant is evaluated based on the performance

deviation from its corresponding benchmark design, with equal preference in cruise TSFC

and pod weight performance metrics. Referring back to Chapter 3, Equation 40 is used to

evaluate a common core variant design. The common core engine family as a whole is then

evaluated based the individual variant performance levels, as shown in Equation 41, with

equal preference given to each of the three engine applications.

yi =

(
TSFCi,CC − TSFCi∗

TSFCi∗

)
wTSFC +

(
Wti,CC −Wti∗

Wti∗

)
wWt (40 Revisited)

YCC =

Napps∑
i=1

wiyi (41 Revisited)

The core defining engine cycle selection provides a core definition with enough flow
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Table 53: Experiment 3 - Common Core Variant Engine Cycle Selections and corresponding
95% confidence interval performance levels for each of the three applications considered.

Design Engine Cycle Parameter Core Defining Cycle Value

πFan at ADP 1.70

πHPC at ADP 16.00

πOverall at ADP 43.27

T4 at TKO, ◦R 3,309.

ER at ADP 0.90

NChgLPT , %W25 0.00%

FN at TKO, lbf 27,175.

FN at TOC, lbf 8,755.

Application Requirement App 3.A App 3.B App 3.C

Takeoff Thrust, lbf 23,000 27,000 30,000

Top of Climb Thrust, lbf 6,000 6,000 8,000

Variant Design Cycle Parameter Variant 3.A Variant 3.B Variant 3.C

πFan at ADP 1.50 1.50 1.54

πOverall at ADP 30.66 36.38 43.66

T4 at TKO, ◦R 3,301. 3,344. 3,329.

ER at ADP 1.16 1.18 1.21

NChgLPT , %W25 5.84% 1.56% 1.61%

sW25R at ADP 1.074 1.046 1.096

NC,HPT,V ar at TKO 100.0 104.2 103.3

95% CI Metric Value Variant 3.A Variant 3.B Variant 3.C

FN at TKO, lbf 23,481 27,112 29,519

FN at TOC, lbf 6,284 6,371 8,283

T3,max, ◦R 1,565. 1,700. 1,700.

T45,max, ◦R 2,300. 2,300. 2,300.

W3R at ADP, lbm/s 6.34 6.34 6.34

TSFC at CRZ, lbm/lbf/hr 0.6101 0.6120 0.5893

Pod Weight, lbm 4,489 4,625 7,259

Fan Diameter, in 77.4 77.7 87.0
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Table 54: Experiment 3 - Common core variant and overall program evaluation based on
comparisons to new centerline benchmark cycles independently designed for each application
considered.

95% CI Metric Estimate Bench 3.A Bench 3.B Bench 3.C

TSFC at CRZ (lbm/lbf/hr) 0.6526 0.6440 0.6525

Pod Weight (lbm) 3,685 3,633 6,458

95% CI Metric Estimate Variant 3.A Variant 3.B Variant 3.C

TSFC at CRZ (lbm/lbf/hr) 0.6101 0.6120 0.5893

Pod Weight (lbm) 4,489 4,625 7,259

Preference Levels App A App B App C

TSFC Preference: wTSFC 0.5 0.5 0.5

Weight Preference: wWt 0.5 0.5 0.5

App Preference: wApp 0.33 0.33 0.33

Performance Deviation, yi 7.66% 11.17% 1.36%

Total Common Core Perfor-
mance Deviation, YCC

6.72%

capacity and available power to offer engine variants for each of the three sets of requirements

considered, all at the same assumed technology level. Scaling of the core inlet corrected

flow was allowed to provide increased core working fluid when needed in order to achieve

significant power growth while remaining under the imposed temperature limits. The high

pressure shaft was also allowed to operate at elevated corrected speeds at takeoff in order

to attempt to reach the takeoff thrust requirements of each application. Although these

core modifications have an accompanying reduction in the variant cycle thermal efficiency

levels, the modifications offer increased engine core capabilities when utilized for multiple

sets of application requirements.

The scaling of core inlet corrected flow and increase in takeoff high spool corrected speed

have allowed for a compact engine core to be utilized for applications that would otherwise

require increased core corrected flow. The corrected HPC exit flow of the common core

definition is at a design level of 6.34 lbm/s, as opposed to benchmark engine values of

5.91, 7.09, and 8.74 lbm/s for Applications A, B, and C, respectively. The common core

design value is on the lower side of the spectrum desired by the benchmark engines. The

more compact common core definition allows for each of the common core engine variants
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to achieve lower levels of cruise TSFC. However, all common core variant designs weigh

more than each of the benchmark engine selections. This is the key compromise made when

employing common core engine applications. The common core size is large enough to

provide power, but provides the necessary power at off-design operational levels away from

the design values at which the core was originally designed. This is a necessary compromise

if the thrust levels for which common core designs are selected are considered, requiring

the designer to rationalize whether the added engine size of the common core application is

worth any development costs saved by utilizing a common core.

4.4.4 Conclusions

This experiment demonstrates how the Common Engine Core Evaluation (COMMENCE)

method can be used to consider multiple applications when exploring and selecting design

within a common engine core design space. It shows how probabilistic surrogate models

can be utilized to successfully account for assumed sources of uncertainty present without

the need to repeat simulations of each candidate design being evaluated under uncertainty.

Variability in engine performance is implicitly accounted for in the probabilistic surrogate

models, allowing the designer to estimate any confidence interval performance level desired.

Another advantage of the method is the fact that it offers the designer the ability to perform

engine cycle design space explorations in a manner similar to how he or she traditionally car-

ries out such an exploration. However, instead of only predicting deterministic performance

levels for a single engine application when performing cycle explorations, the COMMENCE

method allows for design implications to be made on multiple engine applications when mak-

ing engine core design decisions. The Enhanced Robust Design Simulation (ERDS) method

that is integrated into the COMMENCE process allows for robust common core designs

to be selected that are likely to perform well and meet all requirements and constraints

while being subject to various sources of uncertainty assumed present. Applications that

constrain and compromise the common core design performance can be identified, offering

the designer the ability to consider whether the constraining application is worth having in

the common core program. The method provides quantitative measures of variant design
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implications when exploring and making core design decisions. This offers decision mak-

ers the ability of considering more engine program trade-offs across a portfolio of products

earlier in the design process. Robust core design decisions can now be made that will offer

more of an ability to select and employ an engine core across multiple sets of requirements

for which it is being designed, while also having a high level of accompanying confidence in

the core design successfully providing feasible variant engines.

This experiment also highlights the dynamic capabilities that the COMMENCE method

enables. Various exploration, visualization, and optimization techniques can be used dur-

ing the consideration and selection of common core designs. The probabilistic surrogate

models in SSCDes,Prob and SSDV ar,Prob are continuous, closed form equations allowing for

instantaneous evaluation of a candidate design. Additionally, the models enable the use

of optimization techniques to be employed to search for the most desirable design settings

across all control variable dimensions.

While this experiment has extended the common core design rules presented in Experi-

ment 2 to multiple applications, it also assumed that all engine applications considered were

at the same technology level and under the same set of uncertainty distributions. The next

experiment considers more engine applications at different technology levels, representing

designs that would be projected to be introduced at different times throughout the life of

the engine program. More applications will be considered and the common core design

space of the more complex multiple application problem will be explored with the goal of

reaching a feasible engine core definition to allows for variant designs to be offered for all

applications considered throughout the projected program of engine applications.
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4.5 Experiment 4: Common Core Design for Multiple Applications In-
troduced Over Time

� Primary Research Question: How should core design selections be made for multi-

ple current and future common core applications, ensuring a high likelihood of achiev-

ing feasible, competitive common core engine variant designs?

Hypothesis: Simultaneous simulation and evaluation of current and future common

core applications should be performed when exploring the common core design space in

order to quantitatively estimate the feasibility and likely performance levels of program

applications due to changes in the common core definition. If this is possible and

implemented, the likelihood of achieving feasible, competitive common core variant

designs will be increased while minimizing the amount of mitigation actions required

later in the program.

� Research Question 1: How should the gas turbine cycle design process be modified

to easily evaluate designs under various uncertainty scenarios, in a manner similar

to traditional approaches, without the need for added computational burden, repeated

simulations, and post-processing of statistical data?

Hypothesis 1: Probabilistic performance levels of candidate cycle designs should

be estimated with the use of surrogate models that predict likely performance under

various inputted uncertainty scenarios for any desired confidence interval.

This experiment is a demonstration of the full set of capabilities enabled by the fully

integrated Common Engine Core Evaluation (COMMENCE) method. The previous exper-

iment tested the method’s ability to consider multiple common core applications, all at the

same assumed technology level. This experiment explores the common core design space

for a larger set of applications, each under a unique uncertainty scenario. The probabilistic

surrogate models of Surrogate Set C (SSCDes,Prob) will be used to evaluate the core defining

design engine. The probabilistic surrogate models of Surrogate Set D (SSDV ar,Prob) will be

used to evaluate all common core variant designs considered. This highlights the enabled

flexibility of a single set of surrogate models produced by the ERDS method being able to
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accurately provide any desired confidence interval performance level for a design under a

wide range of uncertainty scenarios. This allows the designer to account for the advance-

ment of technology of an engine program when making common core design decisions early

in the development time-line. By simulating later term engine variants with increased tech-

nology level impacts as well as increased uncertainty in those impacts due to being longer

term projections, designers can account for the program later taking advantage of advanced

technology in later term common core engine applications. This also is advantageous in

allowing the designer to select which technology impact categories to pursue in order to

achieve the best common core variant or overall engine program performance improvement

by giving him freedom in controlling the uncertainty distributions when exploring the robust

common core design space.

Just as in Experiment 3, feasible regions of the common core design space will be

identified and explored. Seven sets of requirements will be considered for common core

engine variant applications. Robust benchmark engines will be selected for each application

and its corresponding technology and requirements uncertainty assumed, establishing the

achievable engine performance of a new centerline engine. Then the common core design

space will be explored to see if and where any feasible common core design regions exist.

Candidate common core designs will be considered, and corresponding common core variant

design spaces will be further explored and robust candidates selected.

This experiment also considers options for further advancement of the technology capa-

bilities of certain engine variant applications past initially assumed levels in order to improve

the overall program performance. Limiting factors are identified that when mitigated enable

a more compact common core definition to be used. Additionally, consideration of relax-

ing a constraining application’s takeoff thrust requirement is made in order to achieve the

same goal, to improve the overall engine program performance by shifting the core design

selection to a more favorable region that would otherwise be infeasible.

This final experiment demonstrates the full suite of capabilities enabled by the fully

integrated COMMENCE method. The key contributions of this work will be utilized to

perform a multiple application common core design study that would otherwise require
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Table 55: Experiment 4 - Engine Applications considered for the present multiple applica-
tion common core design problem.

App Tech
Level

Takeoff
Thrust

Top of
Climb
Thrust

Most
Likely
HPX

Most
Likely
Air
Bleed

Max Fan
Diameter

4.A Low 22,000 lbf 5,400 lbf 200 shp 2.00 lbm/s 70 in

4.B Low 24,000 lbf 5,800 lbf 200 shp 2.00 lbm/s 70 in

4.C Mid 27,000 lbf 6,400 lbf 250 shp 2.35 lbm/s 64 in

4.D Mid 30,000 lbf 6,400 lbf 250 shp 2.50 lbm/s 70 in

4.E High 27,500 lbf 6,000 lbf 250 shp 2.35 lbm/s 64 in

4.F High 24,000 lbf 6,000 lbf 300 shp 3.00 lbm/s 61 in

4.G High 30,000 lbf 8,000 lbf 300 shp 3.00 lbm/s 70 in

an immensely greater computational budget and much more data processing. Multiple

applications under multiple uncertainty scenarios will be simultaneously considered when

making common core design considerations. Additional activities enabled by the method

will be performed, demonstrating the great flexibility, dynamic capabilities, and ease of use

of the COMMENCE method.

4.5.1 Sets of Requirements for Multiple Applications

Seven applications are considered in the present experiment. The requirements of each appli-

cation are listed in Table 55, which contains the thrust requirements, most likely horsepower

and customer bleed requirements, and the maximum fan diameter allowed for each engine.

Also shown is the assumed technology level of each application. Applications A and B are

assumed to be the engine program’s near-term applications, with the lowest level of assumed

technology. Applications C and D are assumed to be mid-term engine program applications

and have an accompanying mid-level assumed technology level. Applications E, F, and G

are long-term engine program applications, having the highest technology level considered.

These technology levels will be described in further detail in the following section.

Figure 93 contains graphical representations of the engine program applications consid-

ered. Each image represents a common core variant engine. The purple components show

the imposed geometric core commonality between applications. Each representation’s fan
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Figure 93: Experiment 4 - Common Core Variant Representations, Thrust Requirements
and Maximum Fan Diameter Limits, each application colored by its corresponding technol-
ogy level assumed.

size depicts the maximum fan diameter allowed. Each application’s color is based on the

technology level assumed for the application. The engine representations are placed on the

chart based on their top-of-climb and takeoff thrust requirements. This shows that the

initial low technology Applications A and B are low thrust engines with large fan diameters

allowed. The mid-level technology Applications C and D have increased thrust requirements

while Application C also has a reduction in its allowed fan diameter. The high technology

level Applications E, F, and G aim to replace earlier applications of similar thrust levels,

with Application G aiming to achieve significant top of climb thrust growth. Application F

has a further restriction in the allowed fan diameter, requiring the smallest engine capture

area of the applications considered.

Looking at the overall engine program considered, later term applications are aimed to

achieve more than 36% growth in takeoff thrust capabilities with respect to the near term

Application A while also aiming to provide more than 48% growth in top-of-climb thrust

capabilities. A significant range of propulsive power is desired from the common engine
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core definition which is to be applied across the engine program.

Note that the horsepower and bleed extraction requirements in Table 55 are listed as

most likely requirements. Uncertainty distributions have been constructed for each ap-

plication’s installation requirements, each of which is displayed in Table 56. The peak

probability of each distribution of installation requirements is located at the most likely in-

stallation value. The assumed confidence in the most likely value being realized is reduced

for later engine applications due to the installation projections being for longer-term engine

applications that will enter the market later in the life of the engine program. Therefore,

Applications A and B have the highest associated confidence in the realized installation

estimates, Applications C and D have less associated confidence, and the later-term Appli-

cations E, F, and G have the least amount of confidence in the most likely installation values

being realized. When simulating common core designs, both the core defining engine and all

variant designs, the variability of these requirements will be accounted for when estimating

candidate design performance levels. The installation requirements, both of which are core

extractions, play a role in determining the required size of the common core definition in

order to provide these uncertain requirements while also meeting the thrust requirements

with a high level of associated confidence, all while meeting any constraints imposed on the

engine applications.

4.5.2 Technology Scenarios for Multiple Time Periods

As mentioned above, there are three assumed levels of technology that are considered in

the present multiple application common core design problem. The four categories of tech-

nology impacts and their varying uncertainty distributions for the three technology levels

are listed in Table 57. The low level technology impact uncertainty distributions have the

lowest modal value of improvement, but also have the lowest amount of variability around

the modal value. As the technology level increases, the modal improvement value is im-

proved, but with accompanying increases in the variability around the modal value due to

increased uncertainty of farther out impact projections. Changes in the technology uncer-

tainty distributions can be made by simply changing the beta distribution shape parameter
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Table 56: Experiment 4 - Application Installation Requirements Uncertainty Distributions
assumed for each of the seven Common Core Variant Applications considered in the present
experiment.

Application HPX Require-
ment Uncertainty

Customer Bleed
Requirement
Uncertainty

App 4.A

App 4.B

App 4.C

App 4.D

App 4.E

App 4.F

App 4.G
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Table 57: Experiment 4 - Technology Impact Uncertainty Distributions assumed for the
three technology levels considered in the present multiple application experiment.

Tech Category Low Level Mid Level High Level

Component Effi-
ciency Improvement

Component Weight
Reduction

Component Loading
Improvement

HPT Inlet Tempera-
ture Allowed

values that the probabilistic surrogate models of likely engine performance were trained as

functions of.

In addition to the four technology impact improvement categories considered, the tem-

perature limits imposed on the HPC exit temperature (T3,max) and the LPT inlet temper-

ature (T45,max) are assumed to increase as the engine program advances over time. The

assumed temperature limits are listed in Table 58 for each common core application con-

sidered.

Just as with the uncertainty in the installation requirements, these sources of technology

uncertainty are accounted for and implicit in the probabilistic surrogate models employed

during the following design space explorations performed. The shape parameter values cor-

responding to each uncertainty distribution listed above are used when simulating engine

performance of each common core application, and various confidence interval performance

estimates can be estimated based on all the relevant design variable settings as well as
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Table 58: Experiment 4 - HPC exit temperature and LPT inlet temperature limits imposed
on each of the seven engine applications considered.

Application
HPC exit tem-
perature limit
(T3,max)

LPT inlet tem-
perature limit
(T45,max)

4.A 1,700 ◦R 2,300 ◦R

4.B 1,700 ◦R 2,300 ◦R

4.C 1,750 ◦R 2,350 ◦R

4.D 1,750 ◦R 2,350 ◦R

4.E 1,800 ◦R 2,400 ◦R

4.F 1,800 ◦R 2,400 ◦R

4.G 1,800 ◦R 2,400 ◦R

the uncertainty distribution shape parameter settings, allowing the designer to make selec-

tions that provide a high level of confidence in satisfying all requirements and constraints

considered.

4.5.3 Common Core Engine Design for Multiple Applications at Various Time
Periods

4.5.3.1 Benchmark Design Explorations and Selections

Referring back to the COMMENCE method shown in Figure 21, after establishing the

engine applications for which common core variants are to be designed, benchmark engines

are selected for each set of customer requirements. For each application, the ERDS method

is used to explore and select a benchmark engine design that has a high likelihood of meeting

all requirements and satisfying all constraints imposed. Exploration of the design space

contained within the control variable ranges listed in Table 18 is performed for each set

of requirements. For each application’s set of requirements and corresponding uncertainty

scenario, the exact process used in Experiment 1b is used to explore and ultimately select

a candidate benchmark design that meets all requirements and achieves the highest scoring

performance among the feasible designs considered. For each benchmark design problem,

10,000 random designs are uniformly sampled throughout the single application design

space. The probabilistic surrogates of Surrogate Set C (SSCDes,Prob) were used to evaluate

all 70,000 unique designs sampled to explore the seven applications. The designs that are
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Table 18 Revisited: Clean sheet engine control variables and corresponding ranges explored
during benchmark design space explorations. For consistency, identical ranges are used to
explore the core defining engine design space.

Variable Units Min Max

πFan @ ADP - 1.3 1.7

πHPC @ ADP - 9.0 16.0

πOverall @ ADP - 30.0 55.0

T4 @ TKO ◦R 3,300 3,750

ER @ ADP - 0.90 1.25

NChgLPT % W25 0.00 0.06

FN @ TKO lbf 20,000 30,000

FN @ TOC lbf 5,900 8,850

unable to satisfy all requirements and constraints are filtered out of the population. Of

the remaining candidate designs, a robust design selection is made in the presence of the

application-specific assumed uncertainty distributions.

Tables 59, 60, and 61 list the design cycle settings and corresponding performance

characteristics of the top scoring feasible benchmark designs for the low, mid, and high

technology level single engine applications, respectively.

Before moving onto the common core design exploration for these seven applications,

there are some interesting observations that can be drawn from the benchmark engine

cycle selections. The first is the amount of LPT nonchargeable cooling flow selected for

each benchmark application. Most benchmark engines use the maximum amount of LPT

cooling flow, 6% of the core inlet flow, in order to bring the LPT inlet temperature below

each application’s imposed T45,max limit. This allows for the maximum amount of thermal

energy to enter the LPT, providing maximum power to the propulsor to produce thrust.

This indicates that there is ample core power available to both drive the LP system as well as

pressurize the additional cooling flow used to bring the LPT inlet flow within its temperature

limit. Additionally, the maximum allowed design extraction ratio (ER at ADP, defined in

Equation 50) was selected for Applications A and B. This shows that an engine with a 70 in

fan diameter can easily provide the relatively low thrust requirements of those applications

without the need for significant thrust to be produced by the core nozzle. However, for the
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Table 59: Experiment 4 - New Centerline Benchmark Engine Cycle Selections and corre-
sponding 95% confidence interval performance levels for the low technology level designs:
Applications A and B.

Design Cycle Parameter Bench 4.A Bench 4.B

πFan at ADP 1.70 1.70

πHPC at ADP 14.72 14.69

πOverall at ADP 31.08 31.16

T4 at TKO, ◦R 3,485. 3,485.

ER at ADP 1.25 1.24

NChgLPT , %W25 6.00% 6.00%

95% CI Metric Value Bench 4.A Bench 4.B

FN at TKO, lbf 23,864 23,905

FN at TOC, lbf 6,680 6,683

HP Shaft Power at TKO, shp 40,600 40,735

W3R at ADP, lbm/s 7.14 7.13

BPR at ADP 6.66 6.63

Fan Diameter, in 70.1 70.1

T3,max, ◦R 1,600. 1,602.

T45,max, ◦R 2,300. 2,300.

TSFC at CRZ, lbm/lbf/hr 0.6331 0.6332

Pod Weight, lbm 7,101 7,086

Table 60: Experiment 4 - New Centerline Benchmark Engine Cycle Selections and corre-
sponding 95% confidence interval performance levels for the mid technology level designs:
Applications C and D.

Design Cycle Parameter Bench 4.C Bench 4.D

πFan at ADP 1.70 1.70

πHPC at ADP 16.00 16.00

πOverall at ADP 32.86 33.42

T4 at TKO, ◦R 3,739. 3,342.

ER at ADP 0.90 1.06

NChgLPT , %W25 6.00% 0.00%

95% CI Metric Value Bench 4.C Bench 4.D

FN at TKO, lbf 28,901 29,797

FN at TOC, lbf 7,164 7,047

HP Shaft Power at TKO, shp 69,211 63,966

W3R at ADP, lbm/s 8.63 8.32

BPR at ADP 3.97 5.06

Fan Diameter, in 64.2 68.1

T3,max, ◦R 1,750. 1,750.

T45,max, ◦R 2,232. 2,321.

TSFC at CRZ, lbm/lbf/hr 0.6887 0.6602

Pod Weight, lbm 6,558 5,998
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Table 61: Experiment 4 - New Centerline Benchmark Engine Cycle Selections and corre-
sponding 95% confidence interval performance levels for the high technology level designs:
Applications E, F, and G.

Design Cycle Parameter Bench 4.E Bench 4.F Bench 4.G

πFan at ADP 1.70 1.70 1.63

πHPC at ADP 16.00 16.00 15.10

πOverall at ADP 35.64 30.01 30.37

T4 at TKO, ◦R 3,455. 3,653. 3,318.

ER at ADP 0.90 0.90 0.90

NChgLPT , %W25 6.00% 0.00% 0.00%

95% CI Metric Value Bench 4.E Bench 4.F Bench 4.G

FN at TKO, lbf 28,528 29,953 30,327

FN at TOC, lbf 7,214 7,623 8,083

HP Shaft Power at TKO, shp 73,716 75,992 61,066

W3R at ADP, lbm/s 8.18 9.41 9.09

BPR at ADP 3.69 3.52 5.42

Fan Diameter, in 64.2 61.3 70.0

T3,max, ◦R 1,800. 1,797. 1,692.

T45,max, ◦R 2,213. 2,292. 2,367.

TSFC at CRZ, lbm/lbf/hr 0.6869 0.7211 0.6687

Pod Weight, lbm 5,883 5,686 4,052

remainder of applications, the fan diameter constraints necessitate significant core nozzle

thrust in addition to propulsor thrust in order to meet the requirements. This is shown by

the low design Extraction Ratio selections that reserve core thermal energy for core nozzle

thrust production. The relationship between the available amount of engine airflow set

by the fan diameter constraint and the required amount of thrust significantly limited the

bypass ratios attainable for Applications C - G, increasing the accompanying cruise TSFC

levels. Significantly more core power was required of these applications, which required

significantly more core flow, indicated by the HPC exit corrected flow levels (W3R) listed in

Table 60 and Table 61. In fact, comparing Applications B and F, whose thrust requirements

are almost identical, Application F required 32% more core corrected flow in order to meet

its required thrust levels with a 61 inch fan where Application B was able to use a 70 inch

fan diameter. Even though Application F had the highest technology level projected for its

later entry into the market, its fan diameter constraint caused it to have the largest core
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size of all the benchmark engines.

ER =
Pt,19

Pt,9
=

Pt,BypNozzExit
Pt,CoreNozzExit

(50)

Strict fan diameter constraints imposed on engines that require large amounts of thrust

have heavy implications on the engine core power and corresponding flow requirements.

This can cause significant concern when considering multiple applications of a single engine

core definition. Granted, the present experiment allows for core inlet flow scaling and HPT

overspeed at takeoff in order to increase the available power when needed for a particular

application. However, the overall common core size, indicated by the design HPC exit

corrected flow (W3R), which is held constant across common core applications, will be driven

by the engine application with the largest core power required to meet thrust requirements

within the constraints imposed.

Identification of the limiting common core variant applications that cause the core def-

inition to be necessarily oversized to meet its requirements is an essential capability when

making common core design decisions. Otherwise, design margins such as core corrected

flow margins may blindly be built into the core design in order to increase the likelihood

of achieving later application power demands. Without accounting for and simulating pro-

jected applications when making the initial core design decisions, size margins may either not

be enough or may be too large, causing unnecessary performance degradations throughout

the entire engine program. Early identification of limiting variant applications also allows

the designer to pose mitigation strategies to limit the amount of performance compromise

made due to the limiting common core applications. For example, additional technology

may be identified for advancement, aiming to reduce the uncertainty in its impacts and/or

to improve its most likely impact levels. This would potentially allow for a more com-

pact core design with less built-in design margins necessary to account for variability in

the application’s likely performance. Requirements may be selected to be relaxed in or-

der to reduce the maximum power demands of the limiting applications. Identification

of program-limiting applications may also convince decision makers to drop a proposed
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common core application altogether in order to improve the overall performance of the re-

maining program applications, making them more competitive and possibly increasing their

market demand. This type of mitigation exercise will be performed later in this experiment,

demonstrating the enabled capabilities of the COMMENCE method and highlighting the

features that designers can take advantage of when making initial engine program design

trade-offs, down-selections, and core design decisions.

4.5.3.2 Utilization of Existing Surrogate Models

Just as with all of the previous experiments in this chapter, the surrogate models trained at

the beginning of this chapter are again utilized for this final experiment. Surrogate Set C

(SSCDes,Prob) is again used to provide probabilistic estimates for the core defining designs

engine under the low technology level uncertainty scenario. Each common core variant

engine application is evaluated using Surrogate Set D (SSDV ar,Prob). These probabilistic

surrogate models are functions of the design variables corresponding to both the core defin-

ing design engine and the common core variant. Also, the probabilistic models are functions

of the beta distribution shape parameters for both the design and variant engines.

For each common core application, the uncertainty distribution shape parameter settings

corresponding to the application’s assumed uncertainty scenario are inputted and remain

fixed throughout the initial design exploration of the common core application. For each

common core variant application, Surrogate Set D is evaluated under the various uncertainty

scenarios, exploring various design-variant design variable settings throughout the multiple

application design space.

4.5.3.3 Core Defining Design Cycle Exploration

With the benchmark new centerline engine cycles established for each of the seven appli-

cations, exploration of the common core design space can now be performed, utilizing the

Surrogate Set D probabilistic surrogate models that provide the desired confidence interval

performance under each application’s corresponding uncertainty scenario. Figure 94 con-

tains a representation of the multiple application, multiple technology level common core

design problem. As shown in the figure, dependencies exist between the core defining design
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engine which establishes the common core definition. The resultant baseline core definition

is applied to each of the seven variant engine applications. Also shown are the various

technology level distributions being applied to different common core engine variant appli-

cations. This is enabled by the probabilistic surrogate models of variant performance being

functions of the uncertainty distributions assumed present in the design problem. The de-

pendencies allow variant design performance implications to be drawn relating design engine

control variable settings to variant performance levels in terms of whether the common core

applications meet all constraints imposed and whether the performance estimates compare

well to each corresponding benchmark engine’s likely performance levels.

Just as in the previous experiment, a search can be performed to find a feasible com-

mon core design space offering feasible common core design options for all applications.

When considering a large set of applications or a wide range of capabilities, common core

feasibility may not be attainable. If this is the case, identification of limiting requirements

can be identified and mitigated. This mitigation process will be demonstrated after the

initial core design is selected. Assuming that a feasible common core design region does

exist, core defining engine design parameter settings can be explored. Whether through

manual exploration of the continuous design and metric space as was done for the present

experiment, rich sampling, or through optimization, a common core design region sought

and identified that offers feasible solutions. Figure 95 contains a similar contour profile

chart as was shown in the previous common core design problem, this time considering the

seven engine applications presently considered. The design plane shown is that of the core

defining design engine. Enabled by Surrogate Set D, all constraints imposed on all seven

engine applications can be displayed on the core defining design plane of the design takeoff

thrust and design HPC pressure ratio of the core defining design engine cycle. The first

observation that can be made is that a feasible common core design space for all seven

applications is present, however the region is very small. There is very little variation al-

lowed in the core defining design engine cycle’s control variable settings that allow for seven

feasible engine variants. However, just as in the previous experiment all the constraints

imposed are applied to 95% confidence interval performance estimates. This means that
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Figure 94: Experiment 4 - Representation of the multiple application, multiple technology
level common core design problem, and the dependencies present in the problem.
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Figure 95: Experiment 4 - Common core design exploration: Constraints defining the feasi-
ble region of design engine takeoff thrust and HPC design pressure ratio during simultaneous
exploration of core and variant engines.

the designer is still able to have 95% confidence in meeting all the constraints considered,

even though the feasible design region for designs that have that accompanying high level

of likelihood is very small.

The contour chart displayed in Figure 95 shows that for the particular set of fixed

design parameter settings not shown in the chart, the limiting application constraints are

the LPT inlet temperature constraint of Application A, and the takeoff thrust requirements

of Applications C and D. The takeoff thrust requirements limit the core defining engine’s

takeoff thrust to remain near the maximum value considered, ensuring that ample core

power is available to achieve the relatively high takeoff thrust required of the mid level

technology applications. The LPT inlet temperature constraint of Application A is shown

by the diagonal contour limiting the core defining cycle to a high HPC pressure ratio.

Otherwise, a lower pressure ratio HPC would reduce the amount of extraction in the HPT

of Application A, causing the LPT inlet pressure ratio constraint to be surpassed for the

particular LPT cooling fraction of the application.
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Another key core sizing parameter of the core defining design engine is the top of climb

thrust for which the core defining engine is sized. The contour chart in Figure 96 displays

the variant application constraints of the design plane of top of climb thrust and the HPC

pressure ratio of the core defining engine cycle design. Again, a very small region of feasi-

bility exists that has an accompanying 95% level of confidence in achieving feasibility across

all seven common core variant applications. The small band of feasible top of climb thrust

levels of the design engine is, at the current set of control variable settings across applica-

tions, restricted on the lower end by the takeoff thrust requirements of several applications,

particularly Applications C, D, and E. The upper limit of feasible design engine top of climb

thrust is limited by several application fan diameter constraints. Top of climb thrust is a

key driver in the airflow available to the engine to produce thrust. Larger levels of top of

climb thrust, apparent in the contour plot by the fan constraints becoming active, require a

larger fan diameter for a given cycle. Conversely, decreased top of climb thrust for a given

cycle decreases the sized airflow and the thrust achievable at other operational points while

being able to hold the cycle at the inputted design settings. As shown in the previous chart,

the LPT inlet temperature limit is holding the core design HPC pressure ratio to the higher

end of the range considered.

One last constraint plot shown for the feasible common core design problem displays

the core design OPR and core design HPC pressure ratio plane, and the various application

constraints are again displayed on the design plane in Figure 97. An extremely small range

of OPR designs permit a 95% likelihood of achieving feasible variant designs across the range

of applications considered. Higher OPR designs would require more work to be performed

on the core working fluid, decreasing the bypass ratio of the variant engines and having

takeoff thrust constraints become active for several variant applications. Lower core design

OPR levels would not maintain the core power necessary to aid in the production of thrust

by the core nozzle, which would require variant engines to have larger fan diameters in order

to meet thrust. These larger fans, however, would surpass the limits imposed for several

applications.

In order to simultaneously view the three core defining engine design planes that most
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Figure 96: Experiment 4 - Common core design exploration: Constraints defining the
feasible region of design engine top-of-climb thrust and HPC design pressure ratio during
simultaneous exploration of core and variant engines.

Figure 97: Experiment 4 - Common core design exploration: Constraints defining the
feasible region of design engine OPR and HPC design pressure ratio during simultaneous
exploration of core and variant engines.
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Figure 98: Experiment 4 - Common core design exploration: Side-by-Side contour profilers
identifying the feasible common core design space across the key contributing design planes
of the core defining design engine.

impact common core variant feasibility across applications, Figure 98 displays all three

previously displayed contour profilers side-by-side.

For the seven common core applications considered, each having a unique set of require-

ments and constraints, a feasible common core design was identified. The core definition

established with the core defining design engine, when applied to each of the variant engine

applications, had at least a 95% likelihood of meeting all of the requirements and constraints

for all applications. The selected cycle parameter values of the core defining engine cycle are

listed in Table 62 along with some engine core characteristics of interest. As was shown in

the constraint diagrams above, in order to ensure feasibility, the core has a HPC with a de-

sign pressure ratio on the high end of the range considered, ensuring that the common core

applications are able to generate enough power for all applications. Keep in mind that the

variant designs will be able to further increase the HPC design pressure ratios when scaling

the core working fluid by flaring or zero-staging the HPC. As the design flow increased for

a variant application, the design pressure ratio is increased in order to maintain consistent

HPC exit corrected flow across all applications. Again, maintaining HPC exit corrected

flow at the engine’s aerodynamic design point (ADP) ensures a geometrically common core

design when simulating variant designs, even when allowing for core flow increases when

needed.

Another observation of the core defining engine cycle selection is that the nonchargeable
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Table 62: Experiment 4 - Core Defining Engine Cycle Selection.

Core Defining Cycle Parameter Selected Value

πFan at ADP 1.70

πHPC at ADP 13.92

πOverall at ADP 36.24

T4 at TKO, ◦R 3,342.

ER at ADP 1.05

NChgLPT , %W25 6.00%

FN at TKO, lbf 29,450.

FN at TOC, lbf 8,177.

HP Shaft Power at ADP, shp 16,143

HP Shaft Power at TKO, shp 48,092

W3R at ADP, lbm/s 7.49

LPT cooling fraction (NChgLPT in the table) is at its maximum value allowed, bleeding 6%

of the core flow at the HPC interstage bleed port. This allows for the maximum amount of

thermal energy to exit the HPT and have the high energy flow cooled as much as possible

before entering the LPT. The relatively low overall pressure ratio selected for the design core

not only remains insensitive to any HPC exit temperature limits by remaining far away from

the constraints imposed, but this also indicates that a relatively high core size is desired.

The higher the OPR, the more compact the core and the lower the HPC exit corrected

flow. The lower the OPR, the less amount of total compression is performed, requiring

larger flow areas throughout the core components. This combined with a high pressure ratio

HPC enables common core applications to have significant amounts of power growth. The

core definition established by the current design selection produces over 48,000 horsepower

at 100% corrected speed during takeoff, and over 16,000 horsepower at its aerodynamic

design point when at full speed. The core size parameter, the HPC exit corrected flow

(W3R at ADP) has a design value of 7.49 lbm/s. Compared to the benchmark engine cycle

selections for the seven applications considered, this value as well as the HP shaft power

(or core power) is on the lower end of values found for the seven benchmark engine cycles

selected. This suggests that significant core power growth is desired for the common core

variant selections, whether through scaling of the core working fluid by flaring the HPC
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or through overspeeding of the HP shaft during takeoff. This will be confirmed during the

discussion of the variant design space explorations and selections made for the common core

applications.

At this point, a feasible core design region has been identified and a promising candi-

date core definition has been selected. The designer could move on to applying the core

definition to the common core applications and exploring the common core variant design

spaces. However, in order to demonstrate the capabilities of the COMMENCE method

in providing the designer with the ability to easily change the assumptions implicit in the

probabilistic estimates of common core performance, additional considerations will now be

made during further exploration of the feasible common core design. Consideration of ad-

ditional technology as well as relaxation of a particular limiting thrust requirement will be

made in order to improve the overall common core engine program by allowing the core

definition to be improved while still having a high confidence in achieving feasible variant

solutions for all applications considered.

4.5.3.4 Technology Push and Requirement Relaxation to Improve Feasible Core Defi-
nition

When performing the initial common core design space exploration, it was shown that the

feasible region of the design space was constrained by several applications. The constraint

diagram shown in Figure 99 displays the core definition’s OPR / HPCPR design plane. The

cross-hairs are located at the feasible core defining cycle selection settings previously listed

in Table 62. Also present in the plot are contours of constant HPC exit corrected flow,

indicating that increases in design OPR and reduction in the HPC pressure ratio cause the

core corrected flow to decrease. As mentioned before, a smaller value of HPC exit corrected

flow corresponds to a smaller, more compact engine core. Therefore, the desired region

within the context of the core size is in this region of decreased core flow. However, there

are several common core applications whose constraints limit how far the core definition

can move in this desirable direction.

The COMMENCE method, by enabling simultaneous consideration of initial and future

engine applications of interest and their corresponding scenario assumptions, has allowed the
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Figure 99: Experiment 4 - Common core design exploration: Constraints defining the
feasible region of design engine OPR and HPC design pressure ratio during simultaneous
exploration of core and variant engines, labeled to identify contours of constant HPC exit
corrected flow and the favorable design region that would allow for a more compact common
core definition.
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Table 63: Experiment 4 - Core Performance Mitigation - Adjustments made to imposed
limits of core design limiting applications in order to improve overall engine program per-
formance.

Engine
App

Limit Description of Limit
Old Limit
Value

New
Limit
Value

4.A T45,max
Maximum LPT inlet
temperature

2,300 ◦R 2,350 ◦R

4.B T45,max
Maximum LPT inlet
temperature

2,300 ◦R 2,350 ◦R

4.E FN at TKO
Takeoff thrust require-
ment

27,500 lbf 27,000 lbf

designer to identify the application constraints which are holding the common core definition

from further program performance improvement. In an attempt to allow for a smaller core

definition, two temperature limits and one thrust requirement were modified. The LPT inlet

temperature constraints of Applications A and B were increased by 50 degrees Fahrenheit,

increasing the limiting value to 2,350 ◦R which is equivalent to the mid-technology level

value applied to Applications C and D. This represents a technology push on the LPT,

which may be accomplished by either a material improvement or a film cooling effectiveness

improvement. Although this technology push would require additional development, the

capability was assumed to be achieved for the mid-technology level engine applications

nevertheless. This tech push for the initial applications would require the development

schedule to be expedited. Another limit adjustment that has been made to enable a more

compact common core definition is the relaxation of the takeoff thrust requirement of variant

Application E, reducing its required level by 500 lbf . These modifications have been listed

in Table 63.

Before performing subsequent common core design space explorations with the modified

limits imposed, benchmark engines needed to be re-established for Applications A and B

with the new LPT inlet temperature limits. Again, the procedure of Experiment 1b was

exactly following, and Surrogate Set C was again used to evaluate candidate benchmark

designs. The new benchmark selections can be found in Table 64. Compared to the original
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Table 64: Experiment 4 - New Centerline Benchmark Engine Cycle Selections and corre-
sponding 95% confidence interval performance levels for Applications A and B after Core
Performance Mitigation.

Design Cycle Parameter Benchmark 4.Aadv Benchmark 4.Badv

πFan at ADP 1.70 1.69

πHPC at ADP 11.46 10.64

πOverall at ADP 31.77 31.77

T4 at TKO, ◦R 3,439. 3,326.

ER at ADP 1.25 1.25

NChgLPT , %W25 6.00% 6.00%

95% CI Metric Value Benchmark 4.Aadv Benchmark 4.Badv

FN at TKO, lbf 23,389 25,029

FN at TOC, lbf 6,666 6,633

HP Shaft Power at TKO, shp 36,145 41,145

W3R at ADP, lbm/s 6.87 7.36

BPR at ADP 6.75 6.31

Fan Diameter, in 70.0 70.0

T3,max, ◦R 1,594. 1,632.

T45,max, ◦R 2,350. 2,349.

TSFC at CRZ, lbm/lbf/hr 0.6296 0.6332

Pod Weight, lbm 7,083 6,994

benchmark cycles for these applications, the increase in the LPT inlet temperature limit

allowed for the cruise TSFC and pod weight of both applications to be slightly improved.

This was accomplished by unloading the core and slightly increasing the design OPR of

the engines. The compression work to achieve the overall pressure ratio was allowed to

be performed more by the LP components compared to the previous benchmark designs.

The increase in the allowed LPT inlet temperature permitted less expansion to be done in

the HPT, allowing for more compact, higher thermal energy (higher temperature) flow to

enter the LPT. This warranted the more efficient LP compression components, namely the

booster, to have more of the burden of pressurizing the core flow, which both improved the

TSFC of the engines and also had the advantage of reducing the engine weight by allowing

for a higher OPR design.

Now that the benchmark engines have been updated to reflect the technology limit push

for the two initial engine program applications, exploration of the common core design space
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can be performed again. In reality, the modifications made did not require any additional

simulations. The limits imposed on the continuous design space were dynamically updated

to reflect the modifications made. Since this exploration is done by taking advantage of the

continuous probabilistic surrogate models, the updates can be instantaneously made on the

charts previously shown, and the impacts of the changes on the feasible design space can

again be identified. Figure 100 shows the core OPR / HPCPR design plane and the feasible

region before and after making the limit modifications. Note that the single constraint in

the AFTER contour chart that is being violated is the original takeoff thrust requirement of

Application E before being relaxed. This shows how the thrust requirement was preventing

the common core definition from having a lower core size with corresponding design levels

of HPC exit corrected flow. After making the imposed limit modifications and finding the

feasible common core design region, the comparison of contour charts shows the shift in

the feasible region to lower core design OPR levels. Although this seems to mean that the

core size would be larger since the direction of core flow reduction is in the direction of

higher OPR levels, the new core definition is actually slightly smaller than the definition

previously selected.

Table 65 contains the core defining cycles selected before and after making the imposed

limit modifications. Both design cycle selections are very similar. The notable differences in

the design cycle selections are in the HPC pressure ratio, the design OPR, and the extraction

ratio of the core defining engine cycle. The updated core defining engine cycle was able to

have slightly lower values of its design OPR and HPC pressure ratio while still being able

to offer feasible engine variant applications for all seven common core variants considered.

The major cycle difference is present in the higher extraction ratio that the core defining

cycle was able to have after modifying the imposed limits. As mentioned earlier, the higher

extraction ratio is an indicator that the design engine and its common core variants are less

constrained by the fan diameter limits while still being able to achieve its takeoff thrust

requirements. This shows that the common core variant designs will be able to reach their

takeoff thrust levels primarily with their propulsors and bypass nozzles, without the need

for significant core nozzle thrust, making the variant cycles more efficient. This is a good
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Figure 100: Experiment 4 - Common core design exploration: Constraint contours and
design core selection settings before and after Core Performance Mitigation.

indication that the new core definition will be less constrained when being utilized for the

various engine applications considered.

Comparing the engine core characteristics before and after modifying the core limiting

constraints, Table 65 shows that the new core definition has a slightly smaller design core

corrected flow (W3R), a reduction of about 0.5%. A more significant difference between

the core definition selections is the reduction in maximum required core takeoff power. By

making the early application LPT technology push and relaxing the takeoff thrust require-

ment of Application E, the core definition was able to reduce its design takeoff power by

3.5%, which is a significant reduction in the maximum power margin necessary to provide

viable common core variant engines for all applications considered. The core design power

at ADP was also reduced by 2.1%, allowing for a smaller core to be employed across the

engine program. A quantitative measure can now to attributed to the LPT technology push

and relaxation of takeoff thrust for Application E. The designer can state with a high level

of confidence: By advancing our early LPT technology level so that the maximum LPT inlet
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Table 65: Experiment 4 - Common Core Design Cycle Selections before and after Core
Performance Mitigation.

Core Defining Cycle Parameter Before After

πFan at ADP 1.70 1.70

πHPC at ADP 13.92 13.78

πOverall at ADP 36.24 35.87

T4 at TKO, ◦R 3,342. 3,342.

ER at ADP 1.05 1.20

NChgLPT , %W25 6.00% 6.00%

FN at TKO, lbf 29,450. 29,450.

FN at TOC, lbf 8,177. 8,177.

HP Shaft Power at ADP, shp 16,143 15,810

HP Shaft Power at TKO, shp 48,092 46,409

W3R at ADP, lbm/s 7.49 7.46

temperature can be increased by 50 ◦F and also by relaxing the thrust requirement of Appli-

cation E, we are able to reduce the maximum takeoff power of the common core definition by

3.5% while still having a 95% likelihood of meeting all requirements and constraints imposed

on the seven applications considered in our engine program.

This exercise of identifying regions for technology development and also considering the

relaxation of particular assumed requirements shows a key advantage of the COMMENCE

method. It’s ability to simultaneously simulate any number of applications, each having

their own requirements sets and unique uncertainty assumptions, allows the designer to

determine quantitatively the implications of initial core design decisions that are made. It

allows the decision makers to make down selections while having a high level of confidence

that the selection will be able to provide viable design solutions to all engine applications

considered. As shown in this exercise, it also enables the designer to consider alternative

means of improving the core selection, whether it be through additional technology infusion

that initially was not identified as being needed, or by considering whether a certain assumed

requirement is really necessary to be exactly met.

A key advantage of the method is that the explorations performed for the core design

have been done in a manner very similar to what a cycle design engineer would be familiar

267



with, while providing the designer with vastly more information when doing so. More up-

front work is of course necessary in order to account for the assumed sources of uncertainty,

and the probabilistic surrogate models are needed to implicitly account for the uncertainty

distributions. Once this minimal amount upfront work has been done, the designer is able

to apply any number of scenarios to any number of proposed engine applications. Highly

efficient explorations of the robust design space of a possible common core engine program

can be easily performed. More informed decisions can then be made, having a high level of

associated confidence that the decisions will result in designs with the intended capabilities.

4.5.3.5 Design Explorations of Common Core Variant Applications

For each common core engine application, exploration of the variant design space is per-

formed in order to search for a feasible region and make a selection that meets all of the

application requirements while also performing well compared to the associated benchmark

cycle design. In reality, these variant design space explorations are performed simulta-

neously while exploring the core defining cycle design. In order to determine whether a

candidate core definition is able to offer feasible variant applications, the variant designs

must be concurrently explored. This requirement of the multi-application design problem

is due to the fact that all engine applications utilize the same core definition, whether

modifications are made to it or not.

This again highlights a challenge when considering a large number of variant applica-

tions. For the present seven application common core design problem, the odds of a random

sample of the multi-application design space having feasible solutions for all applications

is nearly zero. Particularly for such a design problem where the core definition is applied

to a new engine application with new requirements, the likelihood is a single common core

application being feasible is very low, as previously shown in the constraint plots with very

small feasible regions. Figure 101 shows the exponential decay of the probability of a mul-

tiple application data sample being feasible as the number of design applications increases.

The axis labeled PApp indicates the probability of a single application data sample being

feasible. Needless to say, with the current seven application common core design problem,
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Figure 101: Surface plot showing the exponential decay of the likelihood of a multiple
application sample being feasible as the number of applications considered increases for
various levels of the probability of a single application being feasible.

which has very small regions of design feasibility, the likelihood of a random sample being

feasible for all seven applications is essentially zero.

Traditional robust design methods that depend on discrete sampling of a continuous

design space would not be able to perform such a study without an extremely high com-

putational budget. The COMMENCE method does not depend on discrete samples for

candidate design identification. The continuous probabilistic surrogate models of likely

variant performance offer the designer the ability to search throughout the continuous multi-

application design space for a feasible design region. This allows any computational budget

to be allocated to the construction of the probabilistic surrogate models of likely common

core variant performance levels in addition to the deterministic metamodels representing

the physics based engine model.

For each engine variant design space exploration, the control variables and corresponding

ranges considered are found in Figure 19. Constraints are imposed on each common core

application’s design space, eliminating regions where the constraints are violated or the

requirements cannot be met. As described in the previous experiment, the power setting
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Table 19 Revisited: Control variables and corresponding ranges explored for the present
common core variant engine design explorations.

Variable Units Min Max

πFan,V ar @ ADP - 1.3 1.7

πOverall,V ar @ ADP - 30.0 55.0

T4,V ar @ TKO ◦R 3,300 3,750

ERV ar @ ADP - 0.90 1.25

NChgLPT,V ar % W25 0.00 0.06

sW25R @ ADP - 1.0 1.2

NC,HPT,V ar @ TKO % 100. 105.

control variable for the engine variant design was selected to increase the likelihood of

NPSS model convergence. For example, instead of inputting a desired takeoff thrust level

and having the thermodynamic engine model run to a thrust that may not be achievable,

the amount of HPT over-speed (NC,HPT,V ar) is used as a control variable. The cycle model

can most likely run to a HPT corrected speed, requiring a possible vane reset in order to do

so if the flow becomes choked at a lower speed. Additionally, to provide the otherwise fixed

engine core the ability to have an increase in core working fluid, the HPC inlet corrected

flow is allowed to scale by an inputted amount (sW25R). For each application, the feasible

common core variant design space is identified, and the limiting constraints are shown that

limit the application from improving its performance beyond the levels achieved by the cycle

currently selected.

For each common core application considered, four constraint plots are shown. Two plots

are shown representing the design space before the technology push of Applications A and

B LPT inlet temperature and relaxation of the takeoff thrust requirement of Application E,

and the same two design plane constraint plots are shown after making this modification. All

variant constraint plots to be shown will display contours of constant cruise TSFC, allowing

the reader to see which regions of the design space allow for TSFC improvement. The first

variant design variable plane shown for each application displays the HPT corrected speed

at takeoff and the variant design fan pressure ratio. The second variant design plane shows

the impacts of the HPT corrected speed at takeoff as the inputted amount of HPC inlet
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flow changes.

Figure 102 displays the feasible variant design region of Application A before and after

the LPT technology push and relaxation of the Application E takeoff thrust requirement.

The contours show that the most desirable TSFC levels are achieved with designs having

low variant design fan pressure ratios (πFan,V ar), minimal amounts of HPT over-speeding

(NC,HPT,V ar), and minimal HPC inlet flow scaling (sW25R). For Application A, the LPT

inlet temperature limit requires an amount of HPT over-speed. By over-speeding the core at

takeoff, which could be achieved with a vane reset of the HPT, more core work is performed.

Remember that when analyzing constraint diagrams that the control variables not shown

are all fixed, only the two control variables shown on the axes of the diagram can be varied.

Therefore, when more core work is performed when over-speeding the HPT at takeoff, the

combustor exit temperature (T4) is fixed. This increase in core work for a fixed T4 reduces

the LPT inlet temperature (T45), showing why the constraint becomes active at lower levels

of HPT corrected speed at takeoff. The other constraint limiting Application A common

core variant design is the fan diameter constraint, which limits the variant to higher design

FPR levels. The constraint diagrams on the bottom row of plots in Figure 102 show that

the Application A common core variant is able to meet all requirements and constraints

without the need to scale the ADP design core flow, meaning that minimal core design

modifications would be required for this variant application.

The feasible variant design space for common core Application B, shown in Figure 103,

is very similar to the feasible space shown for Application A. Again, the fan diameter

constraint and LPT inlet temperature limit restricts the variant design to high FPR levels

and requires the takeoff HPT corrected speed to be greater than 100%. No HPC flow

scaling is necessary either. Comparing the constraint diagrams labeled Before and After,

both Applications A and B have notable feasible design improvements through the LPT

technology push and Application E thrust requirement relaxation. By pushing the allowed

LPT inlet temperature by 50 ◦F , less over-speeding of the HPT at takeoff is necessary,

allowing the sizing of the LP system and HPT vane reset to be more favorable in terms of

the cycle efficiency when operating at cruise conditions.
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Figure 102: Experiment 4 - Common Core, Variant A Design Exploration: Constraint con-
tours and Variant A design selection settings before and after Core Performance Mitigation.
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Figure 103: Experiment 4 - Common Core, Variant B Design Exploration: Constraint con-
tours and Variant B design selection settings before and after Core Performance Mitigation.
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The common core variant design cycle selections for the initial program applications,

both with the low technology level assumptions applied, are listed in Table 66 along with

their 95% likely performance estimates. These selections correspond to the core design selec-

tion made before modifying the LPT inlet temperature limits and takeoff thrust relaxation,

whose selected settings accompany the selected variant application input values in the ta-

ble. Comparing the variant cycle input selections to their corresponding benchmark engine

cycles found in Table 59, the cycles are very comparable to each other. However, the core

corrected flow at ADP (W3R is referred to as core corrected flow) and the HP shaft power at

takeoff are significantly greater for the common core variant engines. This shows that the

common core definition is over-sized for these initial program applications, reserving flow

and power capabilities for later engine variants. This extra built-in flow and power margin

of the core causes degradations in the cruise TSFC levels of the variant designs, degrading

them 0.57% and 0.77% for Applications A and B, respectively. These variant engines do

however have improvements in the pod weight compared to the benchmark designs.

It must be noted that optimization of the benchmark engines and the multiple appli-

cation common core designs were not performed. Therefore, it is likely that the achievable

performance levels of feasible benchmark and common core designs can be improved. Dur-

ing the explorations performed in the present work, feasibility was the first goal, with

additional input setting adjustment made manually to improve the likely performance as

much as possible while also remaining in the feasible regions of the spaces explored. Having

the common core variant designs in the regime of performance levels that the benchmark

designs lie is a good indicator that the common core applications would be viable candidates

that would likely have unit sales. Particularly since the development of the core definition

can be distributed across the remainder of the common core applications, the slight perfor-

mance degradations when going from a new centerline engine to a common core application

would be likely be outweighed by the per unit cost savings.

Moving on to the mid term common core program applications, the constraint diagrams

for variant Application C are displayed in Figure 104. From the design space exploration

for this application, and as will be shown to be similar to the remainder of applications, the
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Table 66: Experiment 4 - Common Core Variant Cycle Selections and corresponding 95%
confidence interval performance levels for Applications A and B.

Design Engine Cycle Parameter Core Defining Cycle Value

πFan at ADP 1.70

πHPC at ADP 13.92

πOverall at ADP 36.24

T4 at TKO, ◦R 3,342.

ER at ADP 1.05

NChgLPT , %W25 6.00%

FN at TKO, lbf 29,450.

FN at TOC, lbf 8,177.

Application Requirement App A App B

Takeoff Thrust, lbf 22,000 24,000

Top of Climb Thrust, lbf 5,400 5,800

Max Fan Diam, in 70 70

Variant Design Cycle Parameter Variant 4.A Variant 4.B

πFan at ADP 1.68 1.68

πOverall at ADP 30.78 31.76

T4 at TKO, ◦R 3,749. 3,326.

ER at ADP 1.19 1.17

NChgLPT , %W25 6.00% 6.00%

sW25R at ADP 1.002 1.003

NC,HPT,V ar at TKO 101.8 102.4

95% CI Metric Value Variant 4.A Variant 4.B

FN at TKO, lbf 26,419 26,955

FN at TOC, lbf 6,696 6,779

HP Shaft Power at TKO, shp 44,620 46,853

W3R at ADP, lbm/s 7.49 7.49

BPR at ADP 6.01 5.85

Fan Diameter, in 70.0 70.0

T3,max, ◦R 1,614. 1,633.

T45,max, ◦R 2,300. 2,293.

TSFC at CRZ, lbm/lbf/hr 0.6367 0.6381

Pod Weight, lbm 6,690 6,253
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feasible design space is very small. A small feasible region for Application C, with its 64 inch

fan diameter requirement, is found with a maximum FPR fan design with significant take-

off corrected speed increases necessary to meet the takeoff thrust requirement while staying

below the fan diameter constraint. Also keep in mind that installation requirements uncer-

tainty are also being accounted for and designed for. Both the horsepower extraction and

customer air bleed requirements have been increased for these mid level entry applications,

and the variability in the requirements have been increased due to the larger uncertainty in

the requirements of the mid term common core applications. Therefore, in order to ensure

a 95% likelihood of meeting its thrust requirements and the constraints imposed, built-in

margins account for the chance of the installations varying from the expected amount. Also

worth noting for Application C is that the core selection made in response to the technol-

ogy push and requirement relaxation made and reflected in the constraint plots on the right

hand side of the figure show a trade in core flow scaling for more over-speeding of the HPT

at takeoff.

The other mid-term common core program application, Application D, requires the

maximum amount of takeoff thrust required of the program along with its later family

member, Application G. The constraint diagrams found in Figure 105 shows a minute fea-

sible space almost identical to what was shown for Application C. Again, the feasible space

is highly restricted by the fan diameter constraint and takeoff thrust requirement, requiring

a maximum FPR fan and HPT over-speeding at takeoff in order to achieve the required

thrust with a 70 inch fan. Again, the core is pushed to its speed limit allowed and fan to

its maximum compression in order to ensure a 95% likelihood of meeting its requirements

and constraints while under the assumed technology uncertainty and more significantly the

uncertainty of the increased power and bleed extraction requirements.

Table 67 contains the common core variant design selections and corresponding likely

performance estimates for the mid term program releases, Applications C and D. Com-

paring the common core variant designs to their corresponding benchmark engines found

in Table 60, it is easy to tell that the core definition is hard pressed to meet the require-

ments of these mid term applications. Significant core nozzle thrust was necessary for these
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Figure 104: Experiment 4 - Common Core, Variant C Design Exploration: Constraint con-
tours and Variant C design selection settings before and after Core Performance Mitigation.
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Figure 105: Experiment 4 - Common Core, Variant D Design Exploration: Constraint con-
tours and Variant D design selection settings before and after Core Performance Mitigation.
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applications, indicated by the reduced extraction ratio selections. Also, the variant OPR

levels are significantly greater than the benchmark designs while no bleed flow is allotted for

LPT cooling. The variant designs selections are aiming at producing as much core power

as possible with minimum amounts of core flow scaling. Scaling of the core flow would

take bypass flow away from the propulsor, in turn reducing the bypass nozzle thrust which

is at a premium due to the relatively large takeoff thrust demands under the fan diame-

ter constraints. These common core variants are still able to perform comparably to their

benchmark designs, but these mid term, mid technology level common core applications are

definitely some of the most limited of the applications in terms of the small regions of the

design space that offer highly likely feasible solutions.

Now the high technology, far out engine program application designs will be explored.

The remaining three common core applications offer a wide range of thrust capabilities

possibly aiming to replace their earlier term engine family members. They also have a wide

range of fan diameter constraints imposed. Application E, which has thrust requirements in

the middle of the range of the program with a 64 inch fan diameter limit, has feasible design

regions displayed in Figure 106. The feasible design space resembles those of the mid term

Applications C and D, very limited in terms of feasibility and restricted to max FPR de-

signs with substantial over-speeding necessary while having minimal core flow scaling. This

application was the one identified for relaxation of the takeoff thrust requirement in order

to improve the overall program performance by allowing for a lower power core definition

to be used across the applications. These constraint plots show that story, requiring the

maximum allowed HPT corrected speed in order to produce the thrust required with the

64 inch fan. The constraint diagrams on the right-hand side show how the LPT technology

push for Applications A and B and the relaxing of the takeoff thrust requirement of the

present application slightly opens up the feasible design region.

Figure 107 contains the constraint diagrams for the common core variant design space

of Application F, the engine with lower thrust requirements but with the most restrictive

fan diameter constraint of the program. Although the thrust requirements are relatively

low, the application accompanies Application G as the engine with the greatest shaft power
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Table 67: Experiment 4 - Common Core Variant Cycle Selections and corresponding 95%
confidence interval performance levels for Applications C and D.

Design Engine Cycle Parameter Core Defining Cycle Value

πFan at ADP 1.70

πHPC at ADP 13.92

πOverall at ADP 36.24

T4 at TKO, ◦R 3,342.

ER at ADP 1.05

NChgLPT , %W25 6.00%

FN at TKO, lbf 29,450.

FN at TOC, lbf 8,177.

Application Requirement App C App D

Takeoff Thrust, lbf 27,000 30,000

Top of Climb Thrust, lbf 6,400 6,400

Max Fan Diam, in 64 70

Variant Design Cycle Parameter Variant 4.C Variant 4.D

πFan at ADP 1.70 1.70

πOverall at ADP 34.83 38.54

T4 at TKO, ◦R 3,350. 3,319.

ER at ADP 0.95 1.02

NChgLPT , %W25 0.00% 0.00%

sW25R at ADP 1.021 1.001

NC,HPT,V ar at TKO 103.8 104.8

95% CI Metric Value Variant 4.C Variant 4.D

FN at TKO, lbf 26,930 29,957

FN at TOC, lbf 6,639 7,444

HP Shaft Power at TKO, shp 55,167 58,793

W3R at ADP, lbm/s 7.49 7.49

BPR at ADP 4.58 5.13

Fan Diameter, in 64.0 70.0

T3,max, ◦R 1,720. 1,742.

T45,max, ◦R 2,338. 2,339.

TSFC at CRZ, lbm/lbf/hr 0.6711 0.6475

Pod Weight, lbm 5,717 6,308
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Figure 106: Experiment 4 - Common Core, Variant E Design Exploration: Constraint con-
tours and Variant E design selection settings before and after Core Performance Mitigation.
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and bleed extraction requirements of the program. The long term engine projections have

greater assumed extraction requirements in order to provide the increases in subsystem

power demands that are likely in the more electric aircraft of the future. These increases in

installation extractions and the large variability due to uncertainty of the far out projection

require significant margins to be present in the variant design selection to maintain the

high desired likelihood of achieving requirements and meeting constraints. The constraint

diagram expectedly shows that the stringent fan diameter constraint greatly limits the

feasible design space, restricting the application to high FPR designs. However, the takeoff

thrust requirement is not active for this application. It is the top of climb thrust requirement

that further limits the feasible design region, putting a ceiling on the allowed over-speed

levels of the HPT at takeoff as well as imposing an upper limit on the amount of core flow

scaling. This shows that meeting the required thrust at top of climb while also providing

the constant power and bleed extractions is a challenge for this common core application.

The last common core engine variant design considered, Application G whose constraint

diagrams can be found in Figure 108, is the high technology variant that requires the max-

imum levels of takeoff thrust, top of climb thrust, and bleed and power extraction require-

ments of the entire engine program. It is allowed a larger 70 inch fan to provide the thrust

levels required. The feasible design region resembles those of Applications C, D, and E,

the other relatively high thrust applications that pushed the common core definition to its

power limits. Again this is the case, with the engine requiring the maximum FPR along with

HPT over-speeding at takeoff near the maximum amount allowed. Before the technology

push exercise, the thrust requirement that was most restrictive was the top of climb thrust

requirement. However, after the technology push exercise that reduced the common core

design power, the takeoff thrust requirement became active along with the fan diameter

constraint, and the HPT needed to have an even higher amount of over-speed at takeoff.

The candidate selections of the high technology, longer term common core variant de-

signs can be found in Table 68, along with their 95% likely performance estimates. Com-

paring the cycle selections to their corresponding benchmark engines in Table 61, the design

OPR levels of the variant designs are higher than the benchmark engines, with the most

282



Figure 107: Experiment 4 - Common Core, Variant F Design Exploration: Constraint con-
tours and Variant F design selection settings before and after Core Performance Mitigation.
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Figure 108: Experiment 4 - Common Core, Variant G Design Exploration: Constraint con-
tours and Variant G design selection settings before and after Core Performance Mitigation.
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significant OPR increase present for variant Application G. All three common core variant

selections have zero HPC interstage bleed flow for LPT cooling, where the Application E

benchmark design had all 6% of the allotted bleed used. This again shows that the power

limitation of common core selection requires all the available power to be utilized for thrust

production, loading up the core and having significant core nozzle thrust in addition to the

bypass nozzle thrust production for the engine with relatively small fan. The most sig-

nificant differences in the core characteristics can be found in these common core variants

when compared to their benchmark new centerline engine designs. The differences in HP

shaft power at takeoff as well as the design core corrected flow, comparing the common core

engines and their corresponding benchmarks, are very significant. Common core variant

Application F had the greatest reduction in core power and corrected flow when compared

to its benchmark design, with a core shaft power having 35% less power than the benchmark

with 20% less design core corrected flow.

Now that candidate cycles have been explored and selected for all seven common core

variant applications, a final comparison is performed. The goal of this examination is

to draw observations about how the common core definition selection has impacted the

program applications. For each engine application, a table has been constructed that places

characteristics of the common core definition, the common core engine variant, and the

corresponding benchmark engine cycle next to each other. These charts aim to show that

based on the size of the common core definition with respect to the benchmark engine, how

the resultant variant design characteristics generally compare to the benchmark designed

purely for one particular set of requirements.

Keep in mind that the method of design exploration and feasible design selection em-

ployed for this experiment consisted of visualization and manual search throughout the

multiple application design space. Therefore, there is not guarantee that global optimal

designs were selected for any of the designs considered. This is true for the benchmark en-

gine selections made as well as the common core engine family design selections made. The

COMMENCE method enables a wide variety of techniques to be used in the exploration

and selection of candidate designs. Since the probabilistic surrogate models are continuous
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Table 68: Experiment 4 - Common Core Variant Cycle Selections and corresponding 95%
confidence interval performance levels for Applications E, F, and G.

Design Engine Cycle Parameter Core Defining Cycle Value

πFan at ADP 1.70

πHPC at ADP 13.92

πOverall at ADP 36.24

T4 at TKO, ◦R 3,342.

ER at ADP 1.05

NChgLPT , %W25 6.00%

FN at TKO, lbf 29,450.

FN at TOC, lbf 8,177.

Application Requirement App E App F App G

Takeoff Thrust, lbf 27,500 24,000 30,000

Top of Climb Thrust, lbf 6,000 6,000 8,000

Max Fan Diam, in 64 61 70

Variant Design Cycle Parameter Variant 4.E Variant 4.F Variant 4.G

πFan at ADP 1.70 1.70 1.70

πOverall at ADP 36.81 30.35 39.72

T4 at TKO, ◦R 3,385. 3,354. 3,330.

ER at ADP 0.93 1.00 0.90

NChgLPT , %W25 0.00% 0.00% 0.00%

sW25R at ADP 1.028 1.008 1.001

NC,HPT,V ar at TKO 104.7 102.6 104.5

95% CI Metric Value Variant 4.E Variant 4.F Variant 4.G

FN at TKO, lbf 27,468 25,182 30,298

FN at TOC, lbf 6,888 5,993 7,993

HP Shaft Power at TKO, shp 58,850 49,383 58,420

W3R at ADP, lbm/s 7.49 7.49 7.49

BPR at ADP 4.35 4.66 4.97

Fan Diameter, in 64.0 61.0 70.0

T3,max, ◦R 1,754. 1,680. 1,736.

T45,max, ◦R 2,324. 2,360. 2,353.

TSFC at CRZ, lbm/lbf/hr 0.6755 0.6809 0.6559

Pod Weight, lbm 5,543 5,110 6,188
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and closed-form, an optimizer could easily be integrated into the design exploration in order

to make benchmark and common core design selections. This would likely improve perfor-

mance levels of both sets of designs. The fact that an optimizer was not used explains some

unexpected performance trends where the common core variant design selection is able to

perform better in terms of both cruise TSFC and pod weight. This unexpected observa-

tion is the result of comparing a non-optimal common core variant design to a non-optimal

benchmark design.

Table 69 contains characteristic comparisons of the engine program’s initial products,

Applications A and B. The common core selection made for the program lies the closest to

these two applications’ benchmark cycles, in terms of the design HPC exit flow (W3R) and

takeoff core power. The common core definition is over-sized for these applications in order

to provide the power required of the program’s later applications. Both the takeoff core

power and the design LPC inlet corrected flow (W23R) of the common core variant cycle is

reduced from the core’s original design levels in response to the less stringent application

requirements than the core is sized for. The over-sized core causes the variant design bypass

ratio (the BPR at ADP) to be lower than the benchmark design, causing a compromise in

the cruise TSFC achievable.

Table 70 contains characteristics of the mid-term common core program releases, Ap-

plications C and D, comparing them to their respective benchmark attributes. For these

applications, the design flow and takeoff power of the common core definition is lower than

the benchmark cycle values, requiring the over-speeding of the high spool at takeoff in or-

der to produce the thrust required of each application. Having under-sized cores compared

to their benchmark engines, the common core variants with HPT vane resets to increase

takeoff power have higher corresponding design bypass ratios, improving the TSFC levels

at cruise, while having comparable pod weights. These common core variants are able to

achieve competitive performance compared to new centerline engines designed particularly

for each single set of requirements. However, the core design modifications would require

additional development capital along with possible maintenance cost increases due to oper-

ating the core at elevated levels during the most demanding conditions experienced by the
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Table 69: Experiment 4 - Initial-term common core variant design responses compared to
each corresponding benchmark engine cycle selection.

App Characteristic
Common
Core Def

Common
Core Var

Benchmark
Engine

Var - Ben
(% Diff)

W23R at ADP,
lbm/s

113.2 101.0 96.1 +5.10%

W3R at ADP,
lbm/s

7.49 7.49 7.14 +4.91%

4.A
W23R at TKO,
lbm/s

105.8 106.5 99.5 +7.04%

Core Pwr at
TKO, shp

48,092 44,620 46,798 -4.65%

BPR at ADP N/A 6.01 6.66 -9.66%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6367 0.6331 +0.57%

Pod Weight, lbm N/A 6,690 7,101 -5.80%

W23R at ADP,
lbm/s

113.2 103.7 96.2 +7.81%

W3R at ADP,
lbm/s

7.49 7.49 7.13 +4.98%

4.B
W23R at TKO,
lbm/s

105.8 109.6 99.7 +9.89%

Core Pwr at
TKO, shp

48,092 46,853 46,928 -0.16%

BPR at ADP N/A 5.85 6.63 -11.69%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6381 0.6332 +0.78%

Pod Weight, lbm N/A 6,253 7,086 -11.75%
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Table 70: Experiment 4 - Mid-term common core variant design responses compared to
each corresponding benchmark engine cycle selection.

App Characteristic
Common
Core Def

Common
Core Var

Benchmark
Engine

Var - Ben
(% Diff)

W23R at ADP,
lbm/s

113.2 104.6 133.7 -21.72%

W3R at ADP,
lbm/s

7.49 7.49 8.63 -13.16%

4.C
W23R at TKO,
lbm/s

105.8 110.6 145.3 -23.89%

Core Pwr at
TKO, shp

48,092 55,167 75,993 -27.41%

BPR at ADP N/A 4.58 3.97 +15.29%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6711 0.6887 -2.55%

Pod Weight, lbm N/A 5,717 6,558 -12.83%

W23R at ADP,
lbm/s

113.2 114.1 118.6 -3.77%

W3R at ADP,
lbm/s

7.49 7.49 8.32 -9.96%

4.D
W23R at TKO,
lbm/s

105.8 120.1 130.0 -7.65%

Core Pwr at
TKO, shp

48,092 58,793 69,771 -15.73%

BPR at ADP N/A 5.13 5.06 +1.30%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6475 0.6602 -1.93%

Pod Weight, lbm N/A 6,308 5,998 +5.17%

engine, at the full power takeoff conditions.

Just as with the initial and mid-term program applications, characteristics of the com-

mon core program’s later-term engine variants are compared to their corresponding bench-

mark designs in Table 71. Having a range of performance requirements, there is a spread in

the trends found for the three late-term designs. All three applications’ benchmark cycles

are sized larger than the common core selection. The benchmark cycle for Application G

being the closest to the common core definition in terms of max takeoff power, while the

benchmark cycle for Application E lies closest to the common core definition in terms of

design HPC exit corrected flow. Applications E and F require significant power growth
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from the core in order to meet their takeoff thrust requirements with their stringent fan

diameter constraints. However, for these constrained designs, again having the smaller core

compared to the new centerline designs and allowing it to operate at elevated speeds at

takeoff provides an advantage when at cruise, again permitting higher design bypass ratios

and correspondingly improve TSFC performance. These two applications were not limited

by their top of climb thrust requirements, being able to operate well above the required top

of climb thrust levels, and resultantly were able to have minimal design power growth while

still meeting all requirements and operating within constraints.

Application G on the other hand, being the engine with the highest thrust and extraction

requirement levels but with a less stringent fan diameter constraint needed significant power

growth from the common core variant in order to meet its requirements. The absolute

takeoff common core power growth was the second greatest of the common core applications,

requiring the core power to come closest to the benchmark engine’s takeoff core power,

coming almost within 10% of its benchmark engine’s max power. It also was the only late

term common core application to have growth in design core inlet flow (W23R at ADP) in

order to produce the highest amount of top of climb thrust required of the common core

program. Because of the high top of climb thrust requirement, the under-sized common

core application actually has a degraded design bypass ratio compared to its benchmark

engine, causing a compromise in cruise TSFC.

4.5.3.6 Common Core Evaluation

Although comparisons have already been done between common core variant designs and

their corresponding benchmark engines, the established method for evaluation of the indi-

vidual designs and overall family needs to be performed. Table 72 contains the evaluation

metrics for the resultant common core engine family. Equal preference is given to each

application, with cruise TSFC reduction being the primary goal. Table 72 shows that the

common core engine family is able to achieve comparable performance levels with respect to

the benchmark designs for each application considered. In some cases, better cruise TSFC

and engine weights were achieved with the variant designs. This again highlights the fact
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Table 71: Experiment 4 - Late-term common core variant design responses compared to
each corresponding benchmark engine cycle selection.

App Characteristic
Common
Core Def

Common
Core Var

Benchmark
Engine

Var - Ben
(% Diff)

W23R at ADP,
lbm/s

113.2 109.6 139.9 -21.70%

W3R at ADP,
lbm/s

7.49 7.49 8.18 -8.48%

4.E
W23R at TKO,
lbm/s

105.8 115.2 152.5 -24.46%

Core Pwr at
TKO, shp

48,092 58,850 79,968 -26.41%

BPR at ADP N/A 4.35 3.69 +17.98%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6755 0.6869 -1.65%

Pod Weight, lbm N/A 5,543 5,883 -5.78%

W23R at ADP,
lbm/s

113.2 94.5 141.3 -33.07%

W3R at ADP,
lbm/s

7.49 7.49 9.41 -20.36%

4.F
W23R at TKO,
lbm/s

105.8 99.8 152.6 -34.60%

Core Pwr at
TKO, shp

48,092 49,383 82,045 -39.81%

BPR at ADP N/A 4.66 3.52 +32.28%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6809 0.7211 -5.57%

Pod Weight, lbm N/A 5,110 5,686 -10.14%

W23R at ADP,
lbm/s

113.2 117.3 125.6 -6.59%

W3R at ADP,
lbm/s

7.49 7.49 9.09 -17.59%

4.G
W23R at TKO,
lbm/s

105.8 122.5 138.4 -11.49%

Core Pwr at
TKO, shp

48,092 58,420 65,941 -11.41%

BPR at ADP N/A 4.97 5.42 -8.41%
TSFC at CRZ,
lbm/(lbf · hr) N/A 0.6559 0.6687 -1.92%

Pod Weight, lbm N/A 6,188 4,052 +52.71%
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that non-optimal benchmark designs are being compared to non-optimal common core vari-

ant designs. Use of an optimizer in the various design selections would likely improve the

benchmark design performance, increasing the amount of performance compromises made

by employing common core designs for the applications considered.

This exercise estimates the likely performance levels when employing a common core

family across the engine applications considered. It also identifies common core design

regions offering feasibility across all applications. Whether considering additional applica-

tions or possible modifications of the common core definition to improve the performance of

certain program applications, having benchmark designs established offers valuable infor-

mation to decision makers. Direct quantification of compromises made by using a common

core definition can be made. This exercise has shown, based on the assumptions made and

the common core variant design rules established in this work, that a common core definition

should be sized on the lower end of the power and corrected flow spectrum of applications

considered. The compact core design is likely to provide viable variant solutions for low

power applications, while having power growth potential through various upgrade options

when responding to more demanding engine applications.

4.5.4 Conclusions

This final experiment has demonstrated the full suite of capabilities enabled by the COM-

MENCE method. A large number of engine applications were considered simultaneously

for a common core engine program, each having unique sets of technology and requirements

uncertainty distributions. Common core design considerations were made for these appli-

cations and simultaneous exploration of the common core design space was performed. A

feasible region of the design space was identified, and a core definition was established that

offered a high likelihood of achieving feasible variant applications for all sets of require-

ments considered. It was also found that the likely performance levels achievable by the

resultant common core engine applications were relatively close to the levels achieved with

new centerline engine designs selected specifically for each set of requirements.
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Table 72: Experiment 4 - Common core variant and overall program evaluation based on
comparisons to new centerline benchmark cycles independently designed for each application
considered.

95% CI Metric Estimate Bench 3.A Bench 3.B -

TSFC at CRZ (lbm/lbf/hr) 0.6331 0.6332 -

Pod Weight (lbm) 7,101 7,086 -

95% CI Metric Estimate Variant 3.A Variant 3.B -

TSFC at CRZ (lbm/lbf/hr) 0.6367 0.6381 -

Pod Weight (lbm) 6,690 6,253 -

Preference Levels App A App B -

TSFC Preference: wTSFC 0.9 0.9 -

Weight Preference: wWt 0.1 0.1 -

App Preference: wApp 0.143 0.143 -

Performance Deviation, yi -0.07% -0.48% -

95% CI Metric Estimate Bench 3.C Bench 3.D -

TSFC at CRZ (lbm/lbf/hr) 0.6887 0.6602 -

Pod Weight (lbm) 6,558 5,998 -

95% CI Metric Estimate Variant 3.C Variant 3.D -

TSFC at CRZ (lbm/lbf/hr) 0.6711 0.6475 -

Pod Weight (lbm) 5,717 6,308 -

Preference Levels App C App D -

TSFC Preference: wTSFC 0.9 0.9 -

Weight Preference: wWt 0.1 0.1 -

App Preference: wApp 0.143 0.143 -

Performance Deviation, yi -3.58% -1.21% -

95% CI Metric Estimate Bench 3.E Bench 3.F Bench 3.G

TSFC at CRZ (lbm/lbf/hr) 0.6869 0.7211 0.6687

Pod Weight (lbm) 5,883 5,686 4,052

95% CI Metric Estimate Variant 3.E Variant 3.F Variant 3.G

TSFC at CRZ (lbm/lbf/hr) 0.6755 0.6809 0.6559

Pod Weight (lbm) 5,543 5,110 6,188

Preference Levels App E App F App G

TSFC Preference: wTSFC 0.9 0.9 0.9

Weight Preference: wWt 0.1 0.1 0.1

App Preference: wApp 0.143 0.143 0.143

Performance Deviation, yi -2.07% -6.03% +3.55%

Total Common Core Perfor-
mance Deviation, YCC

-1.41%
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Using the ERDS method, surrogate models were generated and employed, offering con-

fidence interval performance estimates for any confidence interval of interest for a design

under a wide range of possible uncertainty scenarios. The method allows for the designer

to change uncertainty assumptions on the fly during the design space explorations without

the need for additional Monte Carlo analyses or repetitions of design simulations. This

enables consideration of technology advancements to be made concurrently with design

space explorations in order to arrive at the best path to achieving improved overall engine

program performance through common core cycle and technology design. Constraints of

various common core applications were mapped directly to the core design space, allow-

ing for rapid identification of program limiting factors requiring the common core to have

excess size. Mitigation actions were identified and simulated through technology advance-

ment and relaxation requirements. The common core design space was instantaneously

updated to reflect the updated assumptions, and the resultant likely program benefits were

instantaneously estimated.

Integration of the ERDS process into the COMMENCE method enables common core

design studies to account for and simulate any number of possible program applications.

Another major development that enabled the efficient use of the COMMENCE method was

the establishment of a design-variant multi-engine modeling and simulation environment.

Common core variant design rules were implemented to accurately and implicitly enforce

geometric commonality for all physics based simulations. The design-variant relationships

were captured in the resultant surrogate models, enabling the designer to simulate any

number of common core variant applications and having geometric core commonality au-

tomatically enforced across all applications. High combinatorial, high dimensional design

problems can now be explored with reasonable accuracy, offering high confidence perfor-

mance estimates for a large common core engine program, all while having a relatively small

computational burden. The enabled capabilities of the COMMENCE method allow decision

makers to consider many different strategies and scenarios, determine the resultant effects

of competing options almost instantaneous, and rapidly draw quantitative conclusions from

the valuable knowledge gained from each consideration.
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CHAPTER V

CONCLUSIONS

The research objective of the current work is to develop a gas turbine engine design and de-

cision making process that aims to increase the useful competitive life and overall versatility

of a common core engine family. The process should consider current and future competitive

engine family performance, utilizing current and eventual technology improvements without

the need for a core re-design. Through model development, testing, and full integration of

a series of enabling contributions, the objective was achieved. Multiple application com-

mon core engine program design studies can now be performed with minimal computational

burden, offering unique observations to be drawn that previously had not been able to be

observed.

The present work develops a method to simultaneously consider initial and future com-

mon core engine variant applications when exploring a geometrically common core design

space and evaluating candidate designs. The Common Engine Core Evaluation (COM-

MENCE) method serves to allow core designers to consider any number of initial and/or

future engine application, simulate a wide variety of unique uncertainty scenarios, and ex-

plore the common core design space with the primary goal being to identify a feasible

multiple application common core engine family. The resultant design selections increase

the likelihood of providing feasible common core engine variant designs for all applications

considered while also being able to maintain competitive likely performance levels.

A key enabler in the COMMENCE method is the integration of the Enhanced Robust

Design Simulation (ERDS) method, which accounts for and allows for the selection of robust

candidate designs that achieve the best performance for any confidence interval performance

level desired. The method enables the generation of probabilistic surrogate models that

predict confidence interval performance levels of candidate designs over a wide variety of

uncertainty scenarios considered. The form of these probabilistic performance estimation
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models, when integrated into the COMMENCE method, enables the simultaneous robust

design exploration of the common core defining engine design space and n resultant common

core variant design applications. Requirements and constraints of particular applications

are mapped directly onto the core design space, allowing for rapid identification of feasible

core design regions and program limitations.

Another enabler of the common core design space explorations performed in the present

work is the developments made in modeling and simulating geometrically common core en-

gine variant designs. Common core variant design rules were established and integrated into

a design-variant multiple engine model, enforcing design restrictions to properly simulate a

geometrically common core variant design. The relationships established between the core

design and corresponding common core variant characteristics allow for commonality to be

implicitly enforced across all applications considered during a multiple application design

exploration.

The integration of these two major developments into the COMMENCE method results

in a highly flexible design environment with a wide range of resultant capabilities. The

process requires a small set of initial steps to be taken. The minimal computational burden

of these added steps enables robust design explorations of single or multiple common core

engine applications to be performed for a wide range of uncertainty scenarios in a highly

efficient manner.

5.1 Research Questions and Hypotheses

� Primary Research Question: How should core design selections be made for multi-

ple current and future common core applications, ensuring a high likelihood of achiev-

ing feasible, competitive common core engine variant designs?

Primary Hypothesis: Simultaneous simulation and evaluation of current and future

common core applications should be performed when exploring the common core design

space in order to quantitatively estimate the feasibility and likely performance levels of

program applications due to changes in the common core definition. If this is possible

and implemented, the likelihood of achieving feasible, competitive common core variant
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designs will be increased while minimizing the amount of mitigation actions required

later in the program.

This hypothesis was confirmed. A seven application common core design space was con-

sidered, with various projected technology levels considered. The probability of randomly

sampling the seven application common core design space and achieving a highly likely

feasible design for all seven applications is almost zero, not even mentioning the chance

of landing on a candidate seven application common core program design that performed

well throughout the applications considered. Utilizing the COMMENCE method, a feasible

seven application common core program was achieved with a high associated level of con-

fidence in meeting all imposed requirements and constraints. The common core program

selection also performed well in terms of cruise TSFC and engine weight levels compared

to each application’s benchmark engine selection. The integration of an optimizer into the

process for making design decisions would allow for more optimal designs to be identified

both for benchmark designs and for common core engine family designs.

� Research Question 1: How should the gas turbine cycle design process be modified

to easily evaluate designs under various uncertainty scenarios, in a manner similar

to traditional approaches, without the need for added computational burden, repeated

simulations, and post-processing of statistical data?

Hypothesis 1: Probabilistic performance levels of candidate cycle designs should

be estimated with the use of surrogate models that predict likely performance under

various inputted uncertainty scenarios for any desired confidence interval.

Through the development of the ERDS method, this hypothesis was confirmed, offering

the designer the ability to perform design space explorations in a similar manner to what

cycle designers are familiar with, but with a large amount of added benefits. Candidate

design selections were able to be selected that had a high level of confidence in meeting

its requirements while satisfying all constraints under the assumed sources of uncertainty

present.
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The next few research questions were posed directly at the modeling and evaluation of

common core engine variant designs.

� Research Question 2: For a given gas turbine engine core, how should a common

core engine variant design be simulated? What parameter(s) must be held to consistent

values in order to maintain geometric and aerothermodynamic commonality between

engine applications?

Hypothesis 2: In order to simulate a common core engine variant, design rules must

be established and enforced that maintain the design level of corrected flow exiting the

high pressure compressor. Maintaining HPC exit corrected flow at design conditions

will ensure geometric similarity between common core applications. In order to provide

significance to maintaining design HPC exit corrected flow, the design rules must also

ensure that the compressor map design operating point is also fixed between common

core applications.

While exploring common core design considerations that have been made in the past during

the literature review, it was observed that the HPC design exit corrected flow is the param-

eter that must remain fixed throughout a common core in order to impose a geometrically

fixed common core design across multiple applications. By itself, maintaining the HPC exit

corrected flow at an engine’s design point does not fully ensure geometric core commonal-

ity. The additional rules established in the current work were also necessary to not only

simulate a fixed common core, but also allowed for simulation of a geometrically similar

common work with the ability to have its core working fluid increased if needed while still

maintaining the HPC design exit corrected flow at a specific design map operating point.

� Research Question 3: What design options should be considered for common core

engine variant applications in order to distribute development capital across the engine

program by taking advantage of commonality, while also offering more design freedom

when needed for more demanding applications?

Hypothesis 3: In order to provide a wide range of capabilities with common core
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applications, a range of design options should be available with differing levels of up-

grade cost and design freedom. Geometrically fixed core and modified common core

options should exist to allow for significant core power growth if needed. The common

core applications should have design freedom in the LP system in order to be sized

for a new set of customer requirements, and technology infusion should be considered

for the core and/or the LP engine components in order to provide feasible, competi-

tive common core solutions while placing preference on less expensive upgrade options

when at all possible.

This hypothesis was confirmed, allowing the common core engine variants to meet their

application requirements with very little change required of the common core definition,

while also offering significant core flow scaling with HPT over-speeding for those applications

that stood apart from the rest of the program in terms of the core power required to meet

their requirements.

� Research Question 4: What range of capabilities can various common core design

options achieve without significant compromises made in application performance?

Hypothesis 4: A common core variant engine is able to provide a specific range

of capabilities while maintaining acceptable performance levels, based on the technol-

ogy level of the variant design, the core size, the overall engine architecture, and the

amount of design freedom permitted for the particular common core application con-

sidered.

Experiment 2 aimed at specifically addressing this research question. This hypothesis was

confirmed. As the amount of technology infusion into the common core variant design

increases, the growth capabilities also increase. When allowing for core flow scaling, the

amount of core power growth is significantly increased, but the resultant thrust growth is

dependent upon the remaining limitations of the variant engine. If a fan diameter limit

is imposed, increases in core flow reduces the engine bypass ratio, which may reduce the

resultant thrust growth achievable.
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� Research Question 5: How should a common core engine program consisting of

multiple variant design applications be evaluated?

Hypothesis 5: A common core variant engine should be evaluated based on the per-

formance deviation from a benchmark, new centerline engine designed specifically for

the application it is being designed for. In order to determine the amount of per-

formance compromise made by utilizing a common core application, the benchmark

engine should be designed for an identical set of requirements while under the same

set of assumptions as were made for the common core variant design. A weighted sum

of variant performance levels should be used in the overall evaluation of the engine

program.

Observations from the literature survey from various industries considering product family

design and the performance compromises that accompany product lines with increased

commonality identified that benchmark designs selected purely for the set of requirements

of the single application should be used to quantify the amount of performance compromise

made through the utilization of a common core application. The hypothesis confirmed

through the literature review.

5.2 Summary of Contributions Made

The principal contributions of this thesis are:

� The development of a method to simultaneously consider current and future common

core engine variant applications when exploring the common core design space and

evaluating candidate designs. The Common Engine Core Evaluation (COMMENCE)

method serves to allow core designers to consider any number of initial and projected

engine applications, each having an assigned uncertainty scenario, enabling simulta-

neous exploration of the multiple application common core design space. The method

yields an increased likelihood of the identification of a common core definition that

offers feasible variant engines that also achieve competitive performance levels for all

applications considered. The method is enabled by the following contributions listed.
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� Developments were made making the Robust Design Simulation (RDS) method de-

veloped by Mavris et al.[71] much more flexible. The resultant process enables the

COMMENCE method and is referred to as the Enhanced Robust Design Simulation

(ERDS) method. Three primary enhancements distinguish the ERDS method from

the original RDS method. The first is the parameterization of the uncertainty distri-

butions present. Control of the distribution shape parameters is given to the designer,

allowing for an infinite number of uncertainty scenarios to be simulated within the

ranges of shape parameter settings sampled during the Monte Carlo analysis. The

second modification made is in the tracking of probabilistic performance data during

Monte Carlo analyses. An entire sweep of confidence interval performance estimates is

provided for each DoE case due to the performance variability present due to the un-

certainty sources present. The first two modifications allow for the third enhancement

to be made, which enables the COMMENCE method to rapidly simulate a common

core variant application with a unique scenario of uncertainty distributions. The form

of the probabilistic surrogate models was modified, now having the desired confidence

interval as well as the uncertainty distribution shape parameter settings as surrogate

inputs in addition to the typical design variables. This enables accurate estimates

of any confidence interval performance estimate to be provided for a wide variety of

uncertainty scenarios.

� The development of a common core modeling and simulation environment that ensures

geometric core commonality. A core defining design engine cycle is first simulated,

defining the engine core. Then the core characteristics are saved, the core component

geometry is fixed, and a geometrically common core variant cycle is then simulated.

Variant design rules were established, ensuring commonality between the design and

variant cycle simulations while allowing for technology infusion and core upgrades

when desired.
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5.2.1 Possible Use Cases

The flexibility and wide range of capabilities of the fully integrated COMMENCE method

makes it applicable across a wide variety of applications.

� The unique functional form of the probabilistic surrogate models produced by the

ERDS method as part of the larger COMMENCE method provides for easy integration

of an optimizer into the design method. It was shown in the final experiment that

visual design exploration and design selections can be made that achieve feasibility

across a large number of engine applications. However, in order to make more optimal

robust design selections, the minimal effort required to integrate an optimizer into the

COMMENCE method would likely offer improved design selections.

� While optimizers are beneficial when searching for optimal solutions, option selections

made through visual exploration offer designers the ability to be in-the-loop when

making design considerations and selections. The COMMENCE method has been

shown to be able to rapidly simulate various strategic or mitigation options and the

design implications are rapidly updated. Rapid visualization of these responses using

the COMMENCE method offers decision makers a powerful tool. When collaborating

with other decision makers design selection through visualization may be the preferred

method of design selection.

� The COMMENCE method aims to reduce the capital risk through the utilization of

a common core definition across a wide range of engine applications. Integration of

the COMMENCE method into a larger decision making environment for value based

design would greatly enhance the environment’s capabilities. Considerations made

for cost savings can be made and the COMMENCE method would then be able to

quantify the likely performance implications across the engine family. Informed with

both cost and performance estimates for various options to be considered, the decision

maker would be able to make more informed decisions with the added knowledge of

likely implications decisions would have in terms of performance and cost.

302



� The integration of the COMMENCE method into a Bayesian Belief Network based de-

cision making environment may allow for further enhancements of the fully integrated

method. Performing common core design space explorations with prior distributions

applied to input variable settings may result in the selection of more economically

viable options. When carrying out the experiments of this work, no penalty was

incurred when scaling the core flow of a variant design. A BBN decision making

environment would complement the COMMENCE method by pushing the design se-

lections towards engine families that are more preferable in terms of more economic

factors.

5.2.2 Recommendation for Future Method Enhancement

The next logical addition to the COMMENCE method is the integration of an optimizer in

the benchmark engine robust design selection, common core design selection, and simulta-

neous common core variant design selection steps of the COMMENCE method. Although

minimal performance improvements are expected for the multiple application design prob-

lems addressed in the present work due to the minuscule feasible design regions, significant

performance improvements will likely be attainable for the single application benchmark

designs against which common core variant design performance levels are evaluated. Also,

for common core design problems where either very few variant applications are considered

or where there is very little variation in the variant engine capabilities, more significant can-

didate performance levels may be attainable with the use of an optimizer in the common

core program design selections.

5.2.3 Regarding Various Overall Engine Architectures

The present work considers design explorations and selections of cycles corresponding to

two shaft, separate flow turbofan engines, with the assumption that common core variant

applications are required to be geometrically similar across the family of engines. The

COMMENCE method, however, takes a generic form that is independent of the overall

engine architecture, the range of capabilities considered, and the design rules imposed. The

method can be easily adapted to the common core design exploration of any overall gas
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turbine engine architecture with any set of design rules imposed on the designs considered.

The results and trends shown in the present work correspond only to the overall engine

architecture and single set of design rules imposed on the engine models simulated. Com-

parison of how the overall versatility of common core engine programs employing various

overall engine architectures would allow for an added layer of relationships to be established.

This would enable the designer to evaluate candidate engine architectures based on their

flexibility and added range of capabilities under common core variant design restrictions.
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APPENDIX A

MODELING AND SIMULATION OF A GEOMETRICALLY

COMMON CORE VARIANT ENGINE - NPSS CODE

A.1 Overview of Physics-Based Model Used to Simulate a Common
Core Engine Variant Design

This appendix contains the NPSS code used to simulate a geometrically common core engine

variant design. The goal of the code shown is the enforcement of geometric commonality be-

tween a core defining design engine and a variant application of the baseline core definition.

The first code displayed contains the setup of the model for the variant design simula-

tion, and the subsequent execution of the common core variant engine simulation. The

second code displayed contains the NPSS solver variables established to impose geometric

commonality between the core defining engine and the common core variant engine.

NPSS solver variables are used to provide the NPSS solver with goals which the eventual

converged solution must achieve. For example: if the designer desires a particular extraction

ratio, then the desired value is inputted as a solver dependent variable’s right hand side, or

rhs. The left hand side of the dependent variable, or the lhs is the actual extraction ratio of

the engine. Convergence occurs when all solver dependent variables’ right hand sides and

left hand sides contain equivalent values. Solver independent variables are used as knobs

for the solver to reach convergence of the dependent variables. For example, in order for the

NPSS solver to converge upon a desired extraction ratio, an independent variable is created

telling the solver to use the design bypass ratio of the engine as an independent variable

which to vary until convergence is achieved on the desired extraction ratio.

The code found in this appendix would be used after converging upon a core defining

design engine cycle whose core will be applied to a variant design cycle. The variant design

rules established in this work are contained within the code and are labeled with their

corresponding variant design rules.
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A.2 Procedure for Simulation of Common Core Variant Cycle

The following procedure was used in the simulation of a geometrically common core variant

design within the NPSS physics based modeling and simulation environment. The NPSS

code that will be shown follows the following steps of the procedure for enforcing common-

ality and simulating a common core variant engine.

1. Whether manually or using a design space sampling approach, input two sets of input

variable values.

(a) One set of input variable settings for the core defining design engine

(b) One set of input variable settings for the geometrically common core variant

engine

2. For the input variable settings that correspond to the candidate core defining design

engine, allow the NPSS solver to converge upon a steady state solution and corre-

sponding design definition.

3. Save the complete set of variable values that fully define the core defining design

engine.

4. Populate output file with characteristics of the core defining design engine at various

operational points of interest.

5. Switch all engine components of the NPSS model assembly to OFFDESIGN mode.

6. Switch the components with variant design freedom back to DESIGN mode. For the

present work, all engine components outside of the core definition were assumed to

have design freedom. The core definition was assumed to contain all engine com-

ponents between the high pressure compressor inlet and the high pressure turbine

exit.

7. Add variant engine solver variable pairs to the NPSS solver, including the solver pairs

corresponding to variant design rules being enforced.
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8. Execute the model, allowing the NPSS solver to converge upon a common core variant

engine definition.

9. Populate output file with characteristics of the common core variant engine at various

operational points of interest.

The following section contains the NPSS code that carries out the above procedure used

in the setup and simulation of a geometrically common core engine variant design.

307



A.3 NPSS Code for Common Core Variant Design Run

A.3.1 Simulation of Variant Engine - NPSS Code

/* ******************************************************

* File Name: NPSS vardesign.run *

* Description: NPSS engine variant design and sizing *

******************************************************* */

setThermoPackage("GasTbl");

real preFlare HPC WcIn;

real preFlare HPC WcOut;

real preFlare HPC Rline;

real preFlare HPC s WcDes;

real preFlare HPC polyEff;

real preFlare HPT s WcDes;

real preFlare HPC s PRdes;

real preFlare HPC s effDes;

real s CmpH Wc Flare;

real base HPT s eff;

real base HPT effDes;

real base HPT parmMap;

real base HPT effMap;

real HPT s eff Var;

real preFlare HPC NcMap;

//-----------------------------------------------------------

// User-Defined Elements

//-----------------------------------------------------------

#include <print macros.fnc>

#include <CompressorMap mod.int>;

#include <TurbineNeppMap mod.int>;

#include <solver macrosMAX.fnc>

#include <solver macros.fnc>
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#include <cycle.fnc>

#include <Emission.int>

#include <save2.int>

//-----------------------------------------------------------

// Model Definition

//-----------------------------------------------------------

cout << "\nMDP Solver Setup - Variant Engine Design\n";

// Save design HPC speed for core defining engine

ADP2 HPC NcMap.eq rhs = "preFlare HPC NcMap";

// Variant Engine Aerodynamic design point

Element Assembly ADP2 {

#include <150pax.mdl>

Brn.Emissions.altName = "";

// ASSEMBLY DATAVIEWER

OutFileStream point21Stream { filename = "ADP2.viewOut"; }

DataViewer PageViewer point21 {

#include <npss.point.view>

outStreamHandle = "point21Stream";}

void preexecute() {

// Load design engine core definition

#include <save AtoB.int>

TrbH.S map.s eff = HPT s eff Var;

}

}

Element Assembly TOC2 {

#include <150pax.mdl>

Brn.Emissions.altName = "";

// ASSEMBLY DATAVIEWER

OutFileStream point22Stream { filename = "TOC2.viewOut"; }
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DataViewer PageViewer point22 {

#include <npss.point.view>

outStreamHandle = "point22Stream";}

// PASS REFERENCE POINT SCALARS TO THIS ASSEMBLY

void preexecute() {

#include <des scl2.int>

}

}

Element Assembly TKO2 {

#include <150pax.mdl>

Brn.Emissions.altName = "";

// ASSEMBLY DATAVIEWER

OutFileStream point23Stream { filename = "TKO2.viewOut"; }

DataViewer PageViewer point23 {

#include <npss.point.view>

outStreamHandle = "point23Stream";}

// PASS REFERENCE POINT SCALARS TO THIS ASSEMBLY

void preexecute() {

#include <des scl2.int>

}

}

//-----------------------------------------------------------

// Changes to Baseline Engine

//-----------------------------------------------------------

// Load core defining engine's relevant

// design variable settings

#include <varsB.list>

#include <independent initial AforB.int>
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real PC;

cout << "-------> preVar HPC WcIn = "

<<preFlare HPC WcIn<<endl;

cout << "-------> preVar HPC WcOut = "

<<preFlare HPC WcOut<<endl;

cout << "-------> preVar HPC Rline = "

<<preFlare HPC Rline<<endl;

cout << "-------> preVar HPC s WcDes = "

<<preFlare HPC s WcDes<<endl;

cout << "-------> preVar HPC s PRdes = "

<<preFlare HPC s PRdes<<endl;

cout << "-------> preVar HPC s effDes = "

<<preFlare HPC s effDes<<endl;

cout << "-------> preVar HPT s WcDes = "

<<preFlare HPT s WcDes<<endl;

cout << "-------> preVar HPC polyEff = "

<<preFlare HPC polyEff<<endl;

cout << "-------> ADP2.CmpH.delta eff = "

<<ADP2.CmpH.delta eff<<endl;

cout << "-------> s CmpH Wc Flare = "

<<s CmpH Wc Flare<<endl;

cout << "-------> base HPT s eff = "

<<base HPT s eff<<endl;

cout << "-------> base HPT effDes = "

<<base HPT effDes<<endl;

cout << "-------> base HPT effMap = "

<<base HPT effMap<<endl;

cout << "-------> ADP2.TrbH.delta eff = "

<<ADP2.TrbH.delta eff<<endl;

// Adjust variant HPT efficiency based on base core definition

// and technology infusion

HPT s eff Var = (base HPT effDes+ADP2.TrbH.delta eff)

/base HPT effDes*base HPT s eff;
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cout << "-------> HPT s eff Var = "

<<HPT s eff Var<<endl;

cout <<" "<< endl;

//-----------------------------------------------------------

// RUN DESIGN POINT(s)

//-----------------------------------------------------------

// Variant Engine Aerodynamic Design Point

ADP2 {

// Set variant engine components to

// DESIGN or OFFDESIGN modes

setOption( "switchDes", "OFFDESIGN" );

Amb.setOption( "switchDes", "DESIGN" );

InEng.setOption( "switchDes", "DESIGN" );

CmpFan.setOption( "switchDes", "DESIGN" );

SpltFan.setOption( "switchDes", "DESIGN" );

D22.setOption( "switchDes", "DESIGN" );

CmpL.setOption( "switchDes", "DESIGN" );

B24.setOption( "switchDes", "DESIGN" );

D241.setOption( "switchDes", "DESIGN" );

D45.setOption( "switchDes", "DESIGN" );

B46.setOption( "switchDes", "DESIGN" );

TrbL.setOption( "switchDes", "DESIGN" );

D5.setOption( "switchDes", "DESIGN" );

NozPri.setOption( "switchDes", "DESIGN" );

B13.setOption( "switchDes", "DESIGN" );

D15.setOption( "switchDes", "DESIGN" );

NozSec.setOption( "switchDes", "DESIGN" );

ShL.setOption( "switchDes", "DESIGN" );

}

// Variant Engine Top of Climb Design Point

TOC2 {

setOption( "switchDes", "OFFDESIGN" );
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}

// Variant Engine Takeoff Design Point

TKO2 {

setOption( "switchDes", "OFFDESIGN" );

}

// Input solver limit parameter settings

solver.defaultTolerance = 0.000000000005;

solver.defaultToleranceType = "FRACTIONAL";

solver.maxJacobians = 200;

solver.maxIterations = 5000;

solver.defaultDxLimit = 0.05;

// Prepare NPSS solver for Variant Engine Design run

autoSolverSetup();

solver.addIndependent ( "ADP2 W" );

solver.addDependent ( "TKO2 HPT NcMap" );

solver.addIndependent ( "TOC2 FAR" );

solver.addDependent ( "ADP2 HPC NcMap" );

solver.addIndependent ( "ADP2 BPR" );

solver.addDependent ( "ADP2 Ext Rat" );

solver.addIndependent ( "ADP2 FAR" );

solver.addDependent ( "TOC2 WcRatio" );

solver.addIndependent ( "TKO2 FAR" );

solver.addDependent ( "TKO2 T4" );

solver.addIndependent ( "ADP2 TrbH Cool1" );

solver.addDependent ( "TKO2 T41" );
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solver.addIndependent ( "ADP2 CmpLPR" );

solver.addDependent ( "ADP2 OPR" );

solver.addIndependent ( "ADP2 CmpLeff" );

solver.addDependent ( "ADP2 CmpLeff error" );

solver.addIndependent ( "ADP2 ShLNmech" );

solver.addDependent ( "ADP2 ShLNmech error" );

solver.addIndependent ( "ADP2 SpltFan O2 MN" );

solver.addDependent ( "ADP2 SpltFan O2Area" );

solver.addIndependent ( "ADP2 CmpFan Inlet MN" );

solver.addDependent ( "TOC2 CmpFan Inlet MN" );

solver.addIndependent ( "ADP2 CmpFan Outlet MN" );

solver.addDependent ( "TOC2 CmpFan Outlet MN" );

solver.addIndependent ( "ADP2 SpltFan O1 MN" );

solver.addDependent ( "TOC2 SpltFan O1 MN" );

solver.addIndependent ( "ADP2 CmpL Outlet MN" );

solver.addDependent ( "TOC2 CmpL Outlet MN" );

solver.addIndependent ( "ADP2 CmpH Inlet MN" );

solver.addDependent ( "TOC2 CmpH Inlet MN" );

solver.addIndependent ( "ADP2 TrbL Inlet MN" );

solver.addDependent ( "TOC2 TrbL Inlet MN" );

solver.addIndependent ( "ADP2 TrbL Outlet MN" );

solver.addDependent ( "TOC2 TrbL Outlet MN" );

solver.addIndependent ( "ADP2 NozPri Inlet MN" );

solver.addDependent ( "TOC2 NozPri Inlet MN" );
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solver.addIndependent ( "ADP2 D22 Outlet MN" );

solver.addDependent ( "ADP2 D22 Area error" );

solver.addIndependent ( "ADP2 B24 Outlet MN" );

solver.addDependent ( "ADP2 B24 Area error" );

solver.addIndependent ( "ADP2 B13 Outlet MN" );

solver.addDependent ( "ADP2 B13 Area error" );

solver.addIndependent ( "ADP2 D15 Outlet MN" );

solver.addDependent ( "ADP2 D15 Area error" );

// Add Ambient Conditions To Solver

solver.addIndependent ( "ADP2 Amb MN" );

solver.addDependent ( "ADP2 AmbCond MN" );

solver.addIndependent ( "ADP2 Amb alt" );

solver.addDependent ( "ADP2 AmbCond alt" );

solver.addIndependent ( "ADP2 Amb dTs" );

solver.addDependent ( "ADP2 AmbCond dTs" );

solver.addIndependent ( "TKO2 Amb MN" );

solver.addDependent ( "TKO2 AmbCond MN" );

solver.addIndependent ( "TKO2 Amb alt" );

solver.addDependent ( "TKO2 AmbCond alt" );

solver.addIndependent ( "TKO2 Amb dTs" );

solver.addDependent ( "TKO2 AmbCond dTs" );

solver.addIndependent ( "TOC2 Amb MN" );

solver.addDependent ( "TOC2 AmbCond MN" );
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solver.addIndependent ( "TOC2 Amb alt" );

solver.addDependent ( "TOC2 AmbCond alt" );

solver.addIndependent ( "TOC2 Amb dTs" );

solver.addDependent ( "TOC2 AmbCond dTs" );

//---------------------------------------------

// FLARED COMPRESSOR LOGIC

// Equivalent to the Variant Design Rules

// Established within the body of this work

//---------------------------------------------

cout << "<<<<<<< FLARED HPC OFF-DESIGN RUN >>>>>>>"<<endl;

// Enforces Variant Design Rule #1

solver.addIndependent ( "Ind s CmpH WcIn Flared" );

solver.addDependent ( "Dep s CmpH WcIn Flared" );

// Enforces Variant Design Rule #2

solver.addIndependent ( "Ind s CmpH WcOut Flared" );

solver.addDependent ( "Dep s CmpH WcOut Flared" );

// Enforces Variant Design Rule #3

solver.addIndependent ( "Ind CmpH RlineMap Flared" );

solver.addDependent ( "Dep CmpH RlineMap Flared" );

// Enforces Variant Design Rule #4

solver.addIndependent ( "Ind CmpH polyEff Flared" );

solver.addDependent ( "Dep CmpH polyEff Flared" );

verify();

cout << "\nRunning MDP Solver\n\n";

run();
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cout<<"ADP FLARED Off-Design Solver Converged: "

<<solver.converged<<endl;

cout << " " << endl;

// Ensure core characteristics are as expected

// during model development

cout << "-------> postFlare HPC WcIn = "

<<ADP2.CmpH.Fl I.Wc<<endl;

cout << "-------> postFlare HPC WcOut = "

<<ADP2.CmpH.Fl O.Wc<<endl;

cout << "-------> postFlare HPC Rline = "

<<ADP2.CmpH.S map.RlineMap<<endl;

cout << "-------> postFlare HPC s WcDes = "

<<ADP2.CmpH.S map.s WcDes<<endl;

cout << "-------> postFlare HPC s PRdes = "

<<ADP2.CmpH.S map.s PRdes<<endl;

cout << "-------> postFlare HPC s effDes = "

<<ADP2.CmpH.S map.s effDes<<endl;

cout << "-------> postFlare HPT s WcDes = "

<<ADP2.TrbH.S map.s Wp<<endl;

cout << "-------> postFlare HPC polyEff = "

<<ADP2.CmpH.effPoly<<endl;

cout << "-------> postFlare HPC Wc Scale = "

<<ADP2.CmpH.Fl I.Wc/preFlare HPC WcIn<<endl;

cout <<" "<< endl;

//-----------------------------------------------------------

// Ensure core characteristics are as expected

// during model development

//-----------------------------------------------------------

cout << " " <<endl;

cout << " | "<<endl;

cout << " | Post/Pre Flare Compare"<<endl;
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cout << " | "<<endl;

cout << "|>>> FLARE FACTOR: "<< s CmpH Wc Flare <<endl;

cout << " | "<<endl;

cout << "|>>> WcIn Post/Pre = "<< ADP2.CmpH.Fl I.Wc

/preFlare HPC WcIn<<endl;

cout << "|>>> WcOut Post/Pre = "<< ADP2.CmpH.Fl O.Wc

/preFlare HPC WcOut<<endl;

cout << "|>>> Rline Post/Pre = "<< ADP2.CmpH.S map.RlineMap

/preFlare HPC Rline<<endl;

cout << "|>>> polyEff Post/Pre = "<< ADP2.CmpH.effPoly

/preFlare HPC polyEff<<endl;

cout << " | "<<endl;

cout << "|>>> s WcDes Post/Pre = "<< ADP2.CmpH.S map.s WcDes

/preFlare HPC s WcDes<<endl;

cout << "|>>> s PRdes Post/Pre = "<< ADP2.CmpH.S map.s PRdes

/preFlare HPC s PRdes<<endl;

cout << "|>>> s effDes Post/Pre = "<< ADP2.CmpH.S map.s effDes

/preFlare HPC s effDes<<endl;

cout << "|>>> HPT s Wp Post/Pre = "<< ADP2.TrbH.S map.s Wp

/preFlare HPT s WcDes<<endl;

cout << "|>>> HPC NcMap Post/Pre = "<< ADP2.CmpH.S map.NcMap

/preFlare HPC NcMap<<endl;

cout << " " <<endl;

cout << " "<<endl;

cout << "ADP2.CmpH.a effDes size = "<< ADP2.CmpH.a effDes size<< endl;

cout << "ADP2.CmpH.S map.effDes = "<< ADP2.CmpH.S map.effDes << endl;

cout << "TOC2.CmpH.S map.effDes = "<< TOC2.CmpH.S map.effDes << endl;

cout << "TKO2.CmpH.S map.effDes = "<< TKO2.CmpH.S map.effDes << endl;

cout << "ADP2.CmpH.Cool1.fracBldW = "<< ADP2.CmpH.Cool1.fracBldW << endl;

cout << "TOC2.CmpH.Cool1.fracBldW = "<< TOC2.CmpH.Cool1.fracBldW << endl;

cout << "TKO2.CmpH.Cool1.fracBldW = "<< TKO2.CmpH.Cool1.fracBldW << endl;

cout << "ADP2.CmpH.ADP CmpH effDes = "<<
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ADP2.CmpH.ADP CmpH effDes<<endl;

cout << "ADP2.CmpH.ADP CmpH effDesBase = "<<

ADP2.CmpH.ADP CmpH effDesBase<<endl;

cout << "ADP2.CmpH.ADP CmpH a effDes size = "<<

ADP2.CmpH.ADP CmpH a effDes size<<endl;

cout << "ADP2.CmpH.delta eff = "<<ADP2.CmpH.delta eff<<endl;

cout << "ADP2.TrbH.eff = "<< ADP2.TrbH.eff << endl;

cout << "ADP2.TrbH.S map.s eff = "<< ADP2.TrbH.S map.s eff << endl;

cout << "TOC2.TrbH.S map.s eff = "<< ADP2.TrbH.S map.s eff << endl;

cout << "TKO2.TrbH.S map.s eff = "<< ADP2.TrbH.S map.s eff << endl;

printPride();

cout << "Print to Point Viewer\n\n";

ADP2.point21.display();

TOC2.point22.display();

TKO2.point23.display();

cout << "NcPct = "<<ADP2.CmpH.NcPct<<endl;

cout << "ADP2.CmpH.CmpHBld.Wbld = "<<ADP2.CmpH.CmpHBld.Wbld<<endl;

cout << "TOC2.CmpH.CmpHBld.Wbld = "<<TOC2.CmpH.CmpHBld.Wbld<<endl;

cout << "TKO2.CmpH.CmpHBld.Wbld = "<<TKO2.CmpH.CmpHBld.Wbld<<endl;

cout << "Saving Cycle and Final Independents\n\n";

//Saves engine data for off-design simulations

save engine cycleB();

// Saves final values of solver independent variables

save final independentsB();
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A.3.2 Common Core Variant Engine - NPSS Solver Variables

/* ******************************************************

* File Name: solver vars.fnc *

* Description: NPSS and WATE++ solver variable *

* declaration for Variant Engine Design *

******************************************************* */

//============================================================

// Flared HPC NPSS Solver Variables

// Enforces the Variant Design Rules

// Established within the body of this work

//============================================================

Independent Ind s CmpH WcIn Flared {

varName = "ADP2.CmpH.S map.s WcDes";

xRef = 1.0160;

}

Dependent Dep s CmpH WcIn Flared {

eq lhs = "ADP2.CmpH.Fl I.Wc";

eq rhs = "s CmpH Wc Flare*preFlare HPC WcIn";

}

Independent Ind s CmpH WcOut Flared {

varName = "ADP2.CmpH.S map.s PRdes";

xRef = 0.9994;

}

Dependent Dep s CmpH WcOut Flared {

eq lhs = "ADP2.CmpH.Fl O.Wc";

eq rhs = "preFlare HPC WcOut";

}

Independent Ind CmpH RlineMap Flared {
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varName = "ADP2.TrbH.S map.s Wp";

xRef = 0.9270;

}

Dependent Dep CmpH RlineMap Flared {

eq lhs = "ADP2.CmpH.S map.RlineMap";

eq rhs = "preFlare HPC Rline";

}

Independent Ind CmpH polyEff Flared {

varName = "ADP2.CmpH.S map.s effDes";

xRef = 1.00;

}

Dependent Dep CmpH polyEff Flared {

eq lhs = "ADP2.CmpH.effPoly";

eq rhs = "preFlare HPC polyEff+ADP2.CmpH.delta eff";

}

//============================================================

// B NPSS - Remainder of Variant Engine Independents

//============================================================

Independent ADP2 W {

varName = "ADP2.Amb.W";}

Independent ADP2 FAR {

varName = "ADP2.Brn.FAR"; }

Independent TOC2 FAR {

varName = "TOC2.Brn.FAR"; }

Independent TKO2 FAR {

varName = "TKO2.Brn.FAR"; }
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Independent ADP2 BPR {

varName = "ADP2.SpltFan.BPR"; }

Independent ADP2 CmpLeff {

varName = "ADP2.CmpL.S map.effDes"; }

Independent ADP2 CmpLPR {

varName = "ADP2.CmpL.S map.PRdes";

dxLimit = 0.05;

dxLimitType = "ABSOLUTE";}

Independent ADP2 TrbH Cool1 {

varName = "ADP2.B3.Cool1.fracW";

dxLimit = 0.01;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 TrbL Cool1 {

varName = "ADP2.CmpH.Cool1.fracBldW";

dxLimit = 0.01;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 ShLNmech {

varName = "ADP2.ShL.Nmech";}

Independent ADP2 ShHNmech {

varName = "ADP2.ShH.Nmech";}

Independent ADP2 CmpFanNpctDes {

varName = "ADP2.CmpFan.NpctDes"; }

Independent ADP2 SpltFan O2 MN {

varName = "ADP2.SpltFan.Fl 02.MN"; }

Independent ADP2 CmpFan Inlet MN {

varName = "ADP2.InEng.Fl O.MN";
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dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 CmpFan Outlet MN {

varName = "ADP2.CmpFan.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 SpltFan O1 MN {

varName = "ADP2.SpltFan.Fl 01.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 CmpL Outlet MN {

varName = "ADP2.CmpL.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 CmpH Inlet MN {

varName = "ADP2.D241.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 CmpH Outlet MN {

varName = "ADP2.CmpH.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 Brn Inlet MN {

varName = "ADP2.D35.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 TrbH Inlet MN {

varName = "ADP2.B41.Fl O.MN";
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dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 TrbH Outlet MN {

varName = "ADP2.TrbH.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 TrbL Inlet MN {

varName = "ADP2.D45.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 TrbL Outlet MN {

varName = "ADP2.TrbL.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 NozPri Inlet MN {

varName = "ADP2.D5.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 D22 Outlet MN {

varName = "ADP2.D22.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 B24 Outlet MN {

varName = "ADP2.B24.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 B3 Outlet MN {

varName = "ADP2.B3.Fl O.MN";
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dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 Brn Outlet MN {

varName = "ADP2.Brn.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 B13 Outlet MN {

varName = "ADP2.B13.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

Independent ADP2 D15 Outlet MN {

varName = "ADP2.D15.Fl O.MN";

dxLimit = 0.02;

dxLimitType = "ABSOLUTE"; }

//============================================================

// B NPSS - Remainder of Variant Engine NPSS Dependents

//============================================================

Dependent TKO2 Thrust {

eq lhs = "TKO2.PERF.myFn";

eq rhs = "20000.0"; }

Dependent TOC2 Thrust {

eq lhs = "TOC2.PERF.myFn";

eq rhs = "5000.0"; }

Dependent TKO2 HPC NcMap {

eq lhs = "TKO2.CmpH.S map.NcMap";

eq rhs = "1.0"; }

Dependent TOC2 HPC NcMap {

eq lhs = "TOC2.CmpH.S map.NcMap";
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eq rhs = "1.05"; }

Dependent ADP2 Ext Rat {

eq lhs = "ADP2.NozSec.Fl O.Pt/ADP2.NozPri.Fl O.Pt";

eq rhs = "1.0184"; }

Dependent TKO2 HPT NcMap {

eq lhs = "TKO2.TrbH.S map.NpMap";

eq rhs = "100."; }

Dependent TOC2 HPT NcMap {

eq lhs = "TOC2.TrbH.S map.NpMap";

eq rhs = "105."; }

Dependent ADP2 HPT NcMap {

eq lhs = "ADP2.TrbH.S map.NpMap";

eq rhs = "100."; }

Dependent ADP2 HPC NcMap {

eq lhs = "ADP2.CmpH.S map.NcMap";

eq rhs = "0.976"; }

Dependent TOC2 T41 {

eq lhs = "TOC2.B41.Fl O.Tt";

eq rhs = "2800.0"; }

Dependent TKO2 T41 {

eq lhs = "TKO2.B41.Fl O.Tt";

eq rhs = "2800.0"; }

Dependent TKO2 T45 {

eq lhs = "TKO2.B46.Fl O.Tt";

eq rhs = "2307.0"; }

Dependent TKO2 T4 {
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eq lhs = "TKO2.Brn.TtCombOut";

eq rhs = "3200.0"; }

Dependent TOC2 WcRatio {

eq lhs = "TOC2.CmpFan.Fl I.Wc/ADP2.CmpFan.Fl I.Wc";

eq rhs = "1.03"; }

Dependent ADP2 OPR {

eq lhs = "ADP2.CmpH.Fl O.Pt/ADP2.CmpFan.Fl I.Pt";

eq rhs = "40"; }

Dependent ADP2 CmpLeff error {

eq lhs = "ADP2.CmpL.S map.effDes";

eq rhs = "0.89"; }

Dependent ADP2 ShLNmech error {

eq lhs = "ADP2.ShL.Nmech";

eq rhs = "4800"; }

Dependent ADP2 ShHNmech error {

eq lhs = "ADP2.ShH.Nmech";

eq rhs = "10000"; }

Dependent ADP2 SpltFan O2Area {

eq lhs = "ADP2.SpltFan.Fl 02.Aphy";

eq rhs = "ADP2.CmpFan.Fl O.Aphy-ADP2.SpltFan.Fl 01.Aphy"; }

Dependent TOC2 CmpFan Inlet MN {

eq lhs = "TOC2.InEng.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 CmpFan Outlet MN {

eq lhs = "TOC2.CmpFan.Fl O.MN";

eq rhs = "0.5"; }
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Dependent TOC2 SpltFan O1 MN {

eq lhs = "TOC2.SpltFan.Fl 01.MN";

eq rhs = "0.5"; }

Dependent TOC2 CmpL Outlet MN {

eq lhs = "TOC2.CmpL.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 CmpH Inlet MN {

eq lhs = "TOC2.D241.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 CmpH Outlet MN {

eq lhs = "TOC2.CmpH.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 Brn Inlet MN {

eq lhs = "TOC2.D35.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 TrbH Inlet MN {

eq lhs = "TOC2.B41.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 TrbH Outlet MN {

eq lhs = "TOC2.TrbH.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 TrbL Inlet MN {

eq lhs = "TOC2.D45.Fl O.MN";

eq rhs = "0.5"; }

Dependent TOC2 TrbL Outlet MN {

eq lhs = "TOC2.TrbL.Fl O.MN";

eq rhs = "0.5"; }
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Dependent TOC2 NozPri Inlet MN {

eq lhs = "TOC2.D5.Fl O.MN";

eq rhs = "0.5"; }

Dependent ADP2 D22 Area error {

eq lhs = "ADP2.D22.Fl O.Aphy/ADP2.SpltFan.Fl 01.Aphy";

eq rhs = "1"; }

Dependent ADP2 B24 Area error {

eq lhs = "ADP2.B24.Fl O.Aphy/ADP2.CmpL.Fl O.Aphy";

eq rhs = "1"; }

Dependent ADP2 B3 Area error {

eq lhs = "ADP2.B3.Fl O.Aphy/ADP2.D35.Fl O.Aphy";

eq rhs = "1"; }

Dependent ADP2 Brn Area error {

eq lhs = "ADP2.Brn.Fl O.Aphy/ADP2.B41.Fl O.Aphy";

eq rhs = "1"; }

Dependent ADP2 B13 Area error {

eq lhs = "ADP2.B13.Fl O.Aphy/ADP2.SpltFan.Fl 02.Aphy";

eq rhs = "1"; }

Dependent ADP2 D15 Area error {

eq lhs = "ADP2.D15.Fl O.Aphy/ADP2.SpltFan.Fl 02.Aphy";

eq rhs = "1"; }
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APPENDIX B

MONTE CARLO ANALYSIS FOR PROBABILISTIC SURROGATE

MODEL TRAINING DATA GENERATION

B.1 Overview of the Probabilistic Sampling and Simulation Strategy

This appendix contains the Matlab script used to perform Monte Carlo probabilistic anal-

yses performed to generate the data necessary to train probabilistic surrogate models. The

goal of the script is to provide input/output data that sufficiently samples the probabilistic,

common core design space in order to train the probabilistic surrogate models used in all

the single and multiple application design problems posed in the present work.

A latin hypercube DoE is first constructed for the control variables (CVs) considered,

whose set is made up of design variables and uncertainty distribution shape parameters for

both the core defining design engine and the corresponding common core variant engine

design. For each unique set of control variable settings, referred to as a DoE case, tens

of thousands of design simulations are repeated in order to account for the uncertainty

assumed present in the design problem. Noise variable (NVs) distributions are constructed

for each DoE case based on the case’s unique set of distribution shape parameter settings.

For each repetition of each DoE case, making up a unique input vector of variable set-

tings that would result in a unique set of engine model performance levels, the previously

trained deterministic surrogate models are evaluated. The variability in the DoE case’s esti-

mated performance due to the inputted uncertainty distributions is then compiled. Quantile

performance estimates are determined for each engine performance metric of interest. The

quantile performance estimates are then compiled for each DoE case of control variable

settings. This resultant data table of DoE input values and corresponding quantile perfor-

mance estimates are then used to construct the probabilistic surrogate models used in the

probabilistic design problems considered in the experiments of the present work.
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B.2 Procedure for Robust Design Simulation of an Engine Design Un-
der Consideration

The code that is contained within the following section follows this step by step procedure

aiming to assess candidate designs under a wide variety of uncertainty scenarios.

1. Establish the set of control variables whose values will be explored. This set of vari-

ables should contain:

(a) Design variables for which value selections will be made after exploration of the

design space

(b) Uncertainty distribution shape parameters whose values will be explored allow-

ing for various uncertainty scenarios to be simulated within the range of values

considered

2. Establish ranges for all control variables, defining the boundaries of the design and

uncertainty space being explored during the probabilistic assessment.

3. Establish the set of noise variables to which uncertainty distributions will be applied

4. Establish ranges of noise variable values to be considered. Ensure that all uncertainty

distributions considered will be contained within the established noise variable ranges.

5. Generate a Design of Experiments (DoE), whose number of dimensions is determined

based on the number of control variables considered in the assessment to be performed.

A normalized DoE can first be generated, then later resized to explore the entire design

and uncertainty space considered.

6. For each DoE case, which is made up of a unique set of control variable settings, gen-

erate uncertainty distributions whose shapes are determined by the shape parameter

settings for the current DoE case.

7. For each DoE case, perform a Monte-Carlo probabilistic assessment for the design

under consideration and the corresponding uncertainty distributions considered in

the current DoE case. The number of design repetitions to perform depends on the
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number of uncertainty distributions considered and desired resolution of the confidence

interval response data to be generated for each DoE case.

8. Using the deterministic surrogate models previously trained that estimate engine per-

formance characteristics of the design and technology space presently considered, eval-

uate each Monte-Carlo repetition of the current DoE case’s design variable settings.

9. For each performance estimate of interest, order the response data from the Monte-

Carlo analysis from least to greatest.

10. Determine the entire range of confidence interval performance levels for the current

design and uncertainty distributions under consideration.

After carrying out the above procedure, probabilistic surrogate models of performance

metrics of interest can be trained based only on the set of control variable settings con-

sidered. This allows the designer to instantaneously predict the desired confidence interval

performance for a particular design and corresponding uncertainty scenario considered. Ef-

fects of the uncertainty distributions of noise variable settings are implicitly accounted for

in the set of probabilistic surrogate models, eliminating the need for any further design

repetitions in the estimation of the variation in design performance under uncertainty.

The following section contains the actual Matlab code used to generate confidence inter-

val data for probabilistic surrogate model training. For the present work, 3,000 unique DoE

designs were evaluated using the previously trained deterministic surrogate models. 50,000

design repetitions were evaluated under the unique uncertainty scenario considered for each

DoE case. For the present work, the probabilistic assessment requiring 150 million design

evaluations was carried out on a single quad-core machine. The entire assessment required

less than two hours to carry out. The resultant set of probabilistic surrogate models are

able to instantaneously predict confidence interval performance with a single function call

for each performance metric of interest, greatly reducing the amount of time required for

such a design evaluation.
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B.3 Matlab Code

% Preload the kernel based support vector machine that classifies a set of

% input variable settings as expected-feasible or expected-infeasible

load SVMSTRUCT

%% DECLARE VARIABLES AND CORRESPONDING MIN AND MAX VALUES TO EXPLORE

% Remaining NPSS Inputs - Not Used when evaluating surrogates, just here

% in order to include entire NPSS model input vector components

CmpFan HtoT = 0.325 ;

CmpH HtoT = 0.7 ;

CmpFan dUtip = 99.1978 ;

CmpH dUtip = -13.2367 ;

a eRam = 0 ;

CmpFan HtoT B = 0.325 ;

CmpH HtoT B = 0.7 ;

CmpFan dUtip B = 99.1978 ;

CmpH dUtip B = -13.2367 ;

a eRam B = 0 ;

% Control Variables - Minimum and Maximum Values to Explore

FPR min = 1.3 ;

FPR max = 1.7 ;

HPCPR min = 9 ;

HPCPR max = 16 ;

OPR min = 30 ;

OPR max = 55 ;

TKO T4 min = 3300 ;

TKO T4 max = 3750 ;

Ext Ratio min = 0.9 ;

Ext Ratio max = 1.25 ;
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LPT NChFracBldW min = 0 ;

LPT NChFracBldW max = 0.06 ;

TKO Thrust min = 20000 ;

TKO Thrust max = 30000 ;

TOC Thrust min = 5900 ;

TOC Thrust max = 8850 ;

s CmpH Wc Flare min = 1 ;

s CmpH Wc Flare max = 1.2 ;

FPR B min = 1.3 ;

FPR B max = 1.7 ;

OPR B min = 30 ;

OPR B max = 55 ;

TKO T4 B min = 3300 ;

TKO T4 B max = 3750 ;

Ext Ratio B min = 0.9 ;

Ext Ratio B max = 1.25 ;

LPT NChFracBldW B min = 0 ;

LPT NChFracBldW B max = 0.06 ;

TKO HPT NcMap B min = 100 ;

TKO HPT NcMap B max = 105 ;

ALPHA CmpFan deff min = 1 ;

ALPHA CmpFan deff max = 10 ;

ALPHA CmpL deff min = 1 ;

ALPHA CmpL deff max = 10 ;

ALPHA CmpH deff min = 1 ;

ALPHA CmpH deff max = 10 ;

ALPHA TrbH deff min = 1 ;

ALPHA TrbH deff max = 10 ;

ALPHA TrbL deff min = 1 ;

ALPHA TrbL deff max = 10 ;

ALPHA CmpFan deff B min = 1 ;

ALPHA CmpFan deff B max = 10 ;

ALPHA CmpL deff B min = 1 ;

ALPHA CmpL deff B max = 10 ;

ALPHA CmpH dPeff B min = 1 ;
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ALPHA CmpH dPeff B max = 10 ;

ALPHA TrbH deff B min = 1 ;

ALPHA TrbH deff B max = 10 ;

ALPHA TrbL deff B min = 1 ;

ALPHA TrbL deff B max = 10 ;

BETA CmpFan deff min = 1 ;

BETA CmpFan deff max = 10 ;

BETA CmpL deff min = 1 ;

BETA CmpL deff max = 10 ;

BETA CmpH deff min = 1 ;

BETA CmpH deff max = 10 ;

BETA TrbH deff min = 1 ;

BETA TrbH deff max = 10 ;

BETA TrbL deff min = 1 ;

BETA TrbL deff max = 10 ;

BETA CmpFan deff B min = 1 ;

BETA CmpFan deff B max = 10 ;

BETA CmpL deff B min = 1 ;

BETA CmpL deff B max = 10 ;

BETA CmpH dPeff B min = 1 ;

BETA CmpH dPeff B max = 10 ;

BETA TrbH deff B min = 1 ;

BETA TrbH deff B max = 10 ;

BETA TrbL deff B min = 1 ;

BETA TrbL deff B max = 10 ;

ALPHA s Wt Des min = 1 ;

ALPHA s Wt Des max = 10 ;

ALPHA s Wt Var min = 1 ;

ALPHA s Wt Var max = 10 ;

BETA s Wt Des min = 1 ;

BETA s Wt Des max = 10 ;

BETA s Wt Var min = 1 ;

BETA s Wt Var max = 10 ;

ALPHA s CmpHCustBld min = 1 ;

ALPHA s CmpHCustBld max = 10 ;
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ALPHA s ShHHPX min = 1 ;

ALPHA s ShHHPX max = 10 ;

BETA s CmpHCustBld min = 1 ;

BETA s CmpHCustBld max = 10 ;

BETA s ShHHPX min = 1 ;

BETA s ShHHPX max = 10 ;

ALPHA s CmpHCustBld B min = 1 ;

ALPHA s CmpHCustBld B max = 10 ;

ALPHA s ShHHPX B min = 1 ;

ALPHA s ShHHPX B max = 10 ;

BETA s CmpHCustBld B min = 1 ;

BETA s CmpHCustBld B max = 10 ;

BETA s ShHHPX B min = 1 ;

BETA s ShHHPX B max = 10 ;

ALPHA CmpLstg1MaxPR min = 1 ;

ALPHA CmpLstg1MaxPR max = 10 ;

ALPHA TrbH Loading min = 1 ;

ALPHA TrbH Loading max = 10 ;

ALPHA TrbL Loading min = 1 ;

ALPHA TrbL Loading max = 10 ;

BETA CmpLstg1MaxPR min = 1 ;

BETA CmpLstg1MaxPR max = 10 ;

BETA TrbH Loading min = 1 ;

BETA TrbH Loading max = 10 ;

BETA TrbL Loading min = 1 ;

BETA TrbL Loading max = 10 ;

ALPHA CmpLstg1MaxPR B min = 1 ;

ALPHA CmpLstg1MaxPR B max = 10 ;

ALPHA TrbH Loading B min = 1 ;

ALPHA TrbH Loading B max = 10 ;

ALPHA TrbL Loading B min = 1 ;

ALPHA TrbL Loading B max = 10 ;

BETA CmpLstg1MaxPR B min = 1 ;

BETA CmpLstg1MaxPR B max = 10 ;

BETA TrbH Loading B min = 1 ;
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BETA TrbH Loading B max = 10 ;

BETA TrbL Loading B min = 1 ;

BETA TrbL Loading B max = 10 ;

ALPHA T41 Max min = 1 ;

ALPHA T41 Max max = 10 ;

BETA T41 Max min = 1 ;

BETA T41 Max max = 10 ;

ALPHA T41 Max B min = 1 ;

ALPHA T41 Max B max = 10 ;

BETA T41 Max B min = 1 ;

BETA T41 Max B max = 10 ;

% Noise Variables - Minimum and Maximum Values that Bound the Uncertainty

% Distributions

T41 Max min = 3186.5;

T41 Max max = 3300 ;

s CmpHCustBld min = 0.5;

s CmpHCustBld max = 2 ;

s ShHHPX min = 0.5;

s ShHHPX max = 2 ;

CmpLstg1MaxPR min = 1.28;

CmpLstg1MaxPR max = 1.536 ;

TrbH Loading min = 0.339;

TrbH Loading max = 0.4068 ;

TrbL Loading min = 0.25;

TrbL Loading max = 0.3 ;

CmpFan deff min = 0.03195;

CmpFan deff max = 0.04195 ;

CmpL deff min = 0.02899;

CmpL deff max = 0.03899 ;

CmpH deff min = 0.001097;

CmpH deff max = 0.011097 ;

TrbH deff min = 0.00255;

TrbH deff max = 0.01255 ;
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TrbL deff min = -0.0504;

TrbL deff max = -0.0404 ;

s eRam min = 0.99;

s eRam max = 1 ;

s Fan Blade rho min = 0.9;

s Fan Blade rho max = 1 ;

s Fan Stator rho min = 0.9;

s Fan Stator rho max = 1 ;

s CmpL Blade rho min = 0.9;

s CmpL Blade rho max = 1 ;

s CmpL Stator rho min = 0.9;

s CmpL Stator rho max = 1 ;

s CmpH Blade rho min = 0.9;

s CmpH Blade rho max = 1 ;

s CmpH Stator rho min = 0.9;

s CmpH Stator rho max = 1 ;

s CmpH Blade2 rho min = 0.9;

s CmpH Blade2 rho max = 1 ;

s CmpH Stator2 rho min = 0.9;

s CmpH Stator2 rho max = 1 ;

s TrbH Blade rho min = 0.9;

s TrbH Blade rho max = 1 ;

s TrbH Stator rho min = 0.9;

s TrbH Stator rho max = 1 ;

s TrbL Blade rho min = 0.9;

s TrbL Blade rho max = 1 ;

s TrbL Stator rho min = 0.9;

s TrbL Stator rho max = 1 ;

s NozPri Wt min = 0.9;

s NozPri Wt max = 1 ;

s NozSec Wt min = 0.9;

s NozSec Wt max = 1 ;

s ShL Wt min = 0.9;

s ShL Wt max = 1 ;

s ShH Wt min = 0.9;
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s ShH Wt max = 1 ;

T41 Max B min = 3186.5;

T41 Max B max = 3300 ;

s CmpHCustBld B min = 0.5;

s CmpHCustBld B max = 2 ;

s ShHHPX B min = 0.5;

s ShHHPX B max = 2 ;

CmpLstg1MaxPR B min = 1.28;

CmpLstg1MaxPR B max = 1.536 ;

TrbH Loading B min = 0.339;

TrbH Loading B max = 0.4068 ;

TrbL Loading B min = 0.25;

TrbL Loading B max = 0.3 ;

CmpFan deff B min = 0.03195;

CmpFan deff B max = 0.04195 ;

CmpL deff B min = 0.02899;

CmpL deff B max = 0.03899 ;

CmpH dPeff B min = 0;

CmpH dPeff B max = 0.01 ;

TrbH deff B min = 0;

TrbH deff B max = 0.01 ;

TrbL deff B min = -0.0504;

TrbL deff B max = -0.0404 ;

s eRam B min = 0.99;

s eRam B max = 1 ;

s Fan Blade rho B min = 0.9;

s Fan Blade rho B max = 1 ;

s Fan Stator rho B min = 0.9;

s Fan Stator rho B max = 1 ;

s CmpL Blade rho B min = 0.9;

s CmpL Blade rho B max = 1 ;

s CmpL Stator rho B min = 0.9;

s CmpL Stator rho B max = 1 ;

s CmpH Blade rho B min = 0.9;

s CmpH Blade rho B max = 1 ;
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s CmpH Stator rho B min = 0.9;

s CmpH Stator rho B max = 1 ;

s CmpH Blade2 rho B min = 0.9;

s CmpH Blade2 rho B max = 1 ;

s CmpH Stator2 rho B min = 0.9;

s CmpH Stator2 rho B max = 1 ;

s TrbH Blade rho B min = 0.9;

s TrbH Blade rho B max = 1 ;

s TrbH Stator rho B min = 0.9;

s TrbH Stator rho B max = 1 ;

s TrbL Blade rho B min = 0.9;

s TrbL Blade rho B max = 1 ;

s TrbL Stator rho B min = 0.9;

s TrbL Stator rho B max = 1 ;

s NozPri Wt B min = 0.9;

s NozPri Wt B max = 1 ;

s NozSec Wt B min = 0.9;

s NozSec Wt B max = 1 ;

s ShL Wt B min = 0.9;

s ShL Wt B max = 1 ;

s ShH Wt B min = 0.9;

s ShH Wt B max = 1 ;

%% SETUP THE EXPLORATION TO BE PERFORMED

%Normalized lhs:

nLhs total=3000; % Number of Unique Explorative Samples

nLhs = 50; % Number of samples considered at a time, prevents memory issues

num batches = nLhs total/nLhs;

nCVs = 63; % Number of CVs to explore

nSURRs = 103; % Number of surrogate models being evaluated

% Generate latin hypercube doe

disp('Starting Latin Hypercube Generation!');
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lhsNonDim = lhsdesign(nLhs,nCVs,'iterations',10000);

disp('Finished Latin Hypercube Generation!');

% Set Minimum and Maximum Values to Control Variables

indep mins=[FPR min HPCPR min OPR min TKO T4 min ...

indep maxs=[FPR max HPCPR max OPR max TKO T4 max ...

%Convert normalized latin hypercube settings to actual CV values:

lhsDim=bsxfun(@times,lhsNonDim,indep maxs-indep mins);

lhsDim=bsxfun(@plus,lhsDim,indep mins);

OutMat = zeros(nLhs total,91);%104);

%% Set Control Variable Values for each

%DoE Case in order to Evaluate Surrogaates

for k = 1:num batches

start case = 1+(k-1)*nLhs;

end case = k*nLhs;

%i=1:nLhs;

i=start case:end case;

disp(['<<-- Initializing Batch ' num2str(k) ' out of ' ...

num2str(num batches) ', cases ' num2str(start case) ' through ' ...

num2str(end case) '. -->>']);

%Variables:

ii = 1;

disp('Setting Control Variable Values for all DoE Cases!');

% CONTROL VARIABLES - Apply lhs dimensionalize values to CVs

FPR = lhsDim(i,ii); ii = ii+1;

HPCPR = lhsDim(i,ii); ii = ii+1;
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OPR = lhsDim(i,ii); ii = ii+1;

TKO T4 = lhsDim(i,ii); ii = ii+1;

ALPHA CmpFan deff = lhsDim(i,ii); ii = ii+1;

BETA CmpFan deff = lhsDim(i,ii); ii = ii+1;

% ! Remainder of CVs not included for brevity of Appendix

%%

%--------------------------------------------

%Perform Monte-Carlo Probabilistic Analysis

%--------------------------------------------

% Number of times each LHS design is repeated

% to account for uncertainty distributions

numMonteCarlo = 50000;

% Expand CVs out to vectors of all repetitions of all designs:

disp('Expanding CVs for all Monte Carlo Points for Each DoE Case!');

% CONTROL VARIABLES

FPR = repmat(FPR',numMonteCarlo,1);

HPCPR = repmat(HPCPR',numMonteCarlo,1);

OPR = repmat(OPR',numMonteCarlo,1);

TKO T4 = repmat(TKO T4',numMonteCarlo,1);

ALPHA CmpFan deff = repmat(ALPHA CmpFan deff',numMonteCarlo,1);

BETA CmpFan deff = repmat(BETA CmpFan deff',numMonteCarlo,1);

% ! Remainder of CVs not included for brevity of Appendix

disp('Transforming CV Arrays in Preparation of Simulations!');

% TRANSPOSE CONTROL VARIABLE VECTORS

FPR = FPR(:);

HPCPR = HPCPR(:);
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OPR = OPR(:);

TKO T4 = TKO T4(:);

ALPHA CmpFan deff = ALPHA CmpFan deff(:);

BETA CmpFan deff = BETA CmpFan deff(:);

% ! Remainder of CVs not included for brevity of Appendix

%% Set Noise Variable Values for Each DoE Case

disp('Setting Noise Variable Shape Parameters!');

% Alpha and Beta Shape Parameter Values - Some Fixed and Some are CVs

alp T41 Max = ALPHA T41 Max ;

bet T41 Max = BETA T41 Max ;

alp s CmpHCustBld = ALPHA s CmpHCustBld ;

bet s CmpHCustBld = BETA s CmpHCustBld ;

alp s ShHHPX = ALPHA s ShHHPX ;

bet s ShHHPX = BETA s ShHHPX ;

alp CmpLstg1MaxPR = ALPHA CmpLstg1MaxPR ;

bet CmpLstg1MaxPR = BETA CmpLstg1MaxPR ;

% ! Remainder of NVs not included for brevity of Appendix

disp(['Constructing Noise Variable Distributions for All DoE Cases'];

% Set Noise Variable Values for every Repetition of Every Design

T41 Max = T41 Max min +( T41 Max max - T41 Max min ) ...

*betarnd( alp T41 Max , bet T41 Max );

s CmpHCustBld = s CmpHCustBld min +( s CmpHCustBld max - ...

s CmpHCustBld min )*betarnd( alp s CmpHCustBld , bet s CmpHCustBld );

s ShHHPX = s ShHHPX min +( s ShHHPX max - s ShHHPX min )...

*betarnd( alp s ShHHPX , bet s ShHHPX );

CmpLstg1MaxPR = CmpLstg1MaxPR min +( CmpLstg1MaxPR max - ...

CmpLstg1MaxPR min )*betarnd( alp CmpLstg1MaxPR , bet CmpLstg1MaxPR );

TrbH Loading = TrbH Loading min +( TrbH Loading max - ...

TrbH Loading min )*betarnd( alp TrbH Loading , bet TrbH Loading );
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TrbL Loading = TrbL Loading min +( TrbL Loading max - ...

TrbL Loading min )*betarnd( alp TrbL Loading , bet TrbL Loading );

% ! Remainder of NVs not included for brevity of Appendix

%% Fixed NV Distributions

s eRam = s eRam min +( s eRam max - s eRam min )*betarnd( alp s eRam ...

, bet s eRam ,numMonteCarlo,1);

s eRam B = s eRam B min +( s eRam B max - s eRam B min )*...

betarnd( alp s eRam B , bet s eRam B ,numMonteCarlo,1);

% Duplicate Fixed NV Distributions for Every DoE Case

s eRam = repmat(s eRam',1,nLhs);

s eRam B = repmat(s eRam B',1,nLhs);

% Transpose Fixed NV Distribution Vectors

s eRam = s eRam(:);

s eRam B = s eRam B(:);

%% Reshape Every Input Variable, CVs and NVs

disp('Reshaping all Input Variables to Prepare for DoE Simulation Loop!');

% Control Variables

FPR =reshape( FPR ,numMonteCarlo,nLhs);

HPCPR =reshape( HPCPR ,numMonteCarlo,nLhs);

OPR =reshape( OPR ,numMonteCarlo,nLhs);

TKO T4 =reshape( TKO T4 ,numMonteCarlo,nLhs);

ALPHA CmpFan deff =reshape( ALPHA CmpFan deff,numMonteCarlo,nLhs);

BETA CmpFan deff =reshape( BETA CmpFan deff,numMonteCarlo,nLhs);

% ! Remainder of CVs not included for brevity of Appendix

% Noise Variables

T41 Max =reshape( T41 Max ,numMonteCarlo,nLhs);

s CmpHCustBld =reshape( s CmpHCustBld ,numMonteCarlo,nLhs);
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s ShHHPX =reshape( s ShHHPX ,numMonteCarlo,nLhs);

CmpLstg1MaxPR =reshape( CmpLstg1MaxPR ,numMonteCarlo,nLhs);

TrbH Loading =reshape( TrbH Loading ,numMonteCarlo,nLhs);

TrbL Loading =reshape( TrbL Loading ,numMonteCarlo,nLhs);

CmpFan deff =reshape( CmpFan deff ,numMonteCarlo,nLhs);

% ! Remainder of NVs not included for brevity of Appendix

%% SWEEP THROUGH THE DOE DESIGNS AND EVALUATE DETERMINISTIC SURROGATES FOR

% EVERY REPETITION, ELIMINATING REPS THAT ARE INFEASIBLE ACCORDING TO SVMSTRUCT

disp(['Performing Monte Carlo Simulations for Batch ' num2str(k) ' of ' ...

num2str(num batches)]);

for j = 1:nLhs

caseNum = start case+j-1;

disp(['-- Starting Design ' num2str(caseNum) ' Analysis! --']);

SVMtestInputArray(:,1) = FPR(:,j);

SVMtestInputArray(:,2) = HPCPR(:,j);

SVMtestInputArray(:,3) = OPR(:,j);

SVMtestInputArray(:,4) = TKO T4(:,j);

SVMtestInputArray(:,5) = Ext Ratio(:,j);

SVMtestInputArray(:,6) = T41 Max(:,j);

SVMtestInputArray(:,7) = LPT NChFracBldW(:,j);

SVMtestInputArray(:,8) = TKO Thrust(:,j);

SVMtestInputArray(:,9) = TOC Thrust(:,j);

SVMtestInputArray(:,10) = s CmpHCustBld(:,j);

SVMtestInputArray(:,11) = s ShHHPX(:,j);

SVMtestInputArray(:,12) = TrbH Loading(:,j);

SVMtestInputArray(:,13) = TrbL Loading(:,j);

SVMtestInputArray(:,14) = CmpFan deff(:,j);

SVMtestInputArray(:,15) = CmpL deff(:,j);

SVMtestInputArray(:,16) = CmpH deff(:,j);

SVMtestInputArray(:,17) = TrbH deff(:,j);
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SVMtestInputArray(:,18) = TrbL deff(:,j);

SVMtestInputArray(:,19) = s eRam(:,j);

SVMtestInputArray(:,20) = s CmpH Wc Flare(:,j);

SVMtestInputArray(:,21) = FPR B(:,j);

SVMtestInputArray(:,22) = OPR B(:,j);

SVMtestInputArray(:,23) = TKO T4 B(:,j);

SVMtestInputArray(:,24) = Ext Ratio B(:,j);

SVMtestInputArray(:,25) = T41 Max B(:,j);

SVMtestInputArray(:,26) = LPT NChFracBldW B(:,j);

SVMtestInputArray(:,27) = TKO HPT NcMap B(:,j);

SVMtestInputArray(:,28) = s CmpHCustBld B(:,j);

SVMtestInputArray(:,29) = s ShHHPX B(:,j);

SVMtestInputArray(:,30) = TrbH Loading B(:,j);

SVMtestInputArray(:,31) = TrbL Loading B(:,j);

SVMtestInputArray(:,32) = CmpFan deff B(:,j);

SVMtestInputArray(:,33) = CmpL deff B(:,j);

SVMtestInputArray(:,34) = CmpH dPeff B(:,j);

SVMtestInputArray(:,35) = TrbH deff B(:,j);

SVMtestInputArray(:,36) = TrbL deff B(:,j);

SVMtestInputArray(:,37) = s eRam B(:,j);

% Determine number of design repetitions expected to be infeasible

% according to SVM model

GROUP = svmclassify(SVMSTRUCT, SVMtestInputArray);

GROUP = reshape(GROUP,numMonteCarlo,[]);

GROUP = logical(GROUP);

passcount = sum(GROUP);

% Used to scale confidence intervals for which probabilistic

% performance estimates will be provided

ScaleFactor = passcount/numel(GROUP);

disp(['Design ' num2str(caseNum) ' had ' num2str(passcount) ...

' passes out of ' num2str(numMonteCarlo) ' repetitions. ' ...

num2str(passcount/numMonteCarlo*100) '% Success rate.']);
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% Eliminate all repetitions that are not feasible according to

% SVMSTRUCT

FPR col = FPR(GROUP,j);

HPCPR col = HPCPR(GROUP,j);

OPR col = OPR(GROUP,j);

TKO T4 col = TKO T4(GROUP,j);

ALPHA CmpFan deff col = ALPHA CmpFan deff(GROUP,j);

ALPHA CmpFan deff B col = ALPHA CmpFan deff B(GROUP,j);

BETA CmpFan deff col = BETA CmpFan deff(GROUP,j);

BETA CmpFan deff B col = BETA CmpFan deff B(GROUP,j);

T41 Max col = T41 Max(GROUP,j);

s CmpHCustBld col = s CmpHCustBld(GROUP,j);

s ShHHPX col = s ShHHPX(GROUP,j);

CmpLstg1MaxPR col = CmpLstg1MaxPR(GROUP,j);

T41 Max B col = T41 Max B(GROUP,j);

s CmpHCustBld B col = s CmpHCustBld B(GROUP,j);

s ShHHPX B col = s ShHHPX B(GROUP,j);

CmpLstg1MaxPR B col = CmpLstg1MaxPR B(GROUP,j);

% ! Remainder of input variables not included for brevity of Appendix

disp('Beginning Surrogate Evaluation!');

quants=[0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99];

% Inputted variables for each deterministic surrogate evaluation

% The variable 'INP ARRAY' was not used in the actual script, it is

% just declared here to shorten the code provided in this appendix

INP ARRAY=(FPR col,HPCPR col,OPR col,TKO T4 col,Ext Ratio col,...

T41 Max col,LPT NChFracBldW col,TKO Thrust col,TOC Thrust col,...

s CmpHCustBld col,s ShHHPX col,CmpLstg1MaxPR col,...

TrbH Loading col,TrbL Loading col,CmpFan deff col,CmpL deff col,...

CmpH deff col,TrbH deff col,TrbL deff col,s eRam col,...
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s Fan Blade rho col,s Fan Stator rho col,s CmpL Blade rho col,...

s CmpL Stator rho col,s CmpH Blade rho col,...

s CmpH Stator rho col,s CmpH Blade2 rho col,...

s CmpH Stator2 rho col,s TrbH Blade rho col,...

s TrbH Stator rho col,s TrbL Blade rho col,...

s TrbL Stator rho col,s NozPri Wt col,s NozSec Wt col,...

s ShL Wt col,s ShH Wt col,s CmpH Wc Flare col,FPR B col,...

OPR B col,TKO T4 B col,Ext Ratio B col,T41 Max B col,...

LPT NChFracBldW B col,TKO HPT NcMap B col,s CmpHCustBld B col,...

s ShHHPX B col,CmpLstg1MaxPR B col,TrbH Loading B col,...

TrbL Loading B col,CmpFan deff B col,CmpL deff B col,...

CmpH dPeff B col,TrbH deff B col,TrbL deff B col,s eRam B col,...

s Fan Blade rho B col,s Fan Stator rho B col,...

s CmpL Blade rho B col,s CmpL Stator rho B col,...

s CmpH Blade rho B col,s CmpH Stator rho B col,...

s CmpH Blade2 rho B col,s CmpH Stator2 rho B col,...

s TrbH Blade rho B col,s TrbH Stator rho B col,...

s TrbL Blade rho B col,s TrbL Stator rho B col,...

s NozPri Wt B col,s NozSec Wt B col,s ShL Wt B col,s ShH Wt B col);

% Evaluate Deterministic surrogate models predicting core defining

% design engine performance

A TKO HPC Nc = A TKO HPC Nc(INP ARRAY) ;

qA TKO HPC Nc =quantile( A TKO HPC Nc ,quants);

clear A TKO HPC Nc

A TKO HPT Nc = A TKO HPT Nc(INP ARRAY) ;

qA TKO HPT Nc =quantile( A TKO HPT Nc ,quants);

clear A TKO HPT Nc

A TKO ShH Nmech = A TKO ShH Nmech(INP ARRAY) ;

qA TKO ShH Nmech =quantile( A TKO ShH Nmech ,quants);

clear A TKO ShH Nmech

A TKO ShH Pwr = A TKO ShH Pwr(INP ARRAY) ;
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qA TKO ShH Pwr =quantile( A TKO ShH Pwr ,quants);

clear A TKO ShH Pwr

A TKO ShL Nmech = A TKO ShL Nmech(INP ARRAY) ;

qA TKO ShL Nmech =quantile( A TKO ShL Nmech ,quants);

clear A TKO ShL Nmech

A TKO ShL Pwr = A TKO ShL Pwr(INP ARRAY) ;

qA TKO ShL Pwr =quantile( A TKO ShL Pwr ,quants);

clear A TKO ShL Pwr

A TSFC ADP = A TSFC ADP(INP ARRAY) ;

qA TSFC ADP =quantile( A TSFC ADP ,quants);

clear A TSFC ADP

A Pod Wt = A Pod Wt(INP ARRAY) ;

qA Pod Wt =quantile( A Pod Wt ,quants);

clear A Pod Wt

A Fan Diam = A Fan Diam(INP ARRAY) ;

qA Fan Diam =quantile( A Fan Diam ,quants);

clear A Fan Diam

A ADP Wc3 = A ADP Wc3(INP ARRAY) ;

qA ADP Wc3 =quantile( A ADP Wc3 ,quants);

clear A ADP Wc3

% ! Remainder of Core Defining Design Engine Surrogate Evaluations

% Removed for Appendix Brevity

% Evaluate Deterministic surrogate models predicting common core

% variant engine performance

B BPR ADP = B BPR ADP(INP ARRAY) ;

qB BPR ADP =quantile( B BPR ADP ,quants);
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clear B BPR ADP

B Fn ADP = B Fn ADP(INP ARRAY) ;

qB Fn ADP =quantile( B Fn ADP ,quants);

clear B Fn ADP

B Fn TKO = B Fn TKO(INP ARRAY) ;

qB Fn TKO =quantile( B Fn TKO ,quants);

clear B Fn TKO

B Fn TOC = B Fn TOC(INP ARRAY) ;

qB Fn TOC =quantile( B Fn TOC ,quants);

clear B Fn TOC

B Min hook NcMap = B Min hook NcMap(INP ARRAY) ;

qB Min hook NcMap =quantile( B Min hook NcMap ,quants);

clear B Min hook NcMap

B Min hook TSFC = B Min hook TSFC(INP ARRAY) ;

qB Min hook TSFC =quantile( B Min hook TSFC ,quants);

clear B Min hook TSFC

B T3 TKO = B T3 TKO(INP ARRAY) ;

qB T3 TKO =quantile( B T3 TKO ,quants);

clear B T3 TKO

B T4 TKO = B T4 TKO(INP ARRAY) ;

qB T4 TKO =quantile( B T4 TKO ,quants);

clear B T4 TKO

B T41 TKO = B T41 TKO(INP ARRAY) ;

qB T41 TKO =quantile( B T41 TKO ,quants);

clear B T41 TKO

B T45 TKO = B T45 TKO(INP ARRAY) ;
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qB T45 TKO =quantile( B T45 TKO ,quants);

clear B T45 TKO

B TKO HPC Nc = B TKO HPC Nc(INP ARRAY) ;

qB TKO HPC Nc =quantile( B TKO HPC Nc ,quants);

clear B TKO HPC Nc

B TKO HPT Nc = B TKO HPT Nc(INP ARRAY) ;

qB TKO HPT Nc =quantile( B TKO HPT Nc ,quants);

clear B TKO HPT Nc

B TKO ShH Nmech = B TKO ShH Nmech(INP ARRAY) ;

qB TKO ShH Nmech =quantile( B TKO ShH Nmech ,quants);

clear B TKO ShH Nmech

B TKO ShH Pwr = B TKO ShH Pwr(INP ARRAY) ;

qB TKO ShH Pwr =quantile( B TKO ShH Pwr ,quants);

clear B TKO ShH Pwr

B TKO ShL Nmech = B TKO ShL Nmech(INP ARRAY) ;

qB TKO ShL Nmech =quantile( B TKO ShL Nmech ,quants);

clear B TKO ShL Nmech

B TKO ShL Pwr = B TKO ShL Pwr(INP ARRAY) ;

qB TKO ShL Pwr =quantile( B TKO ShL Pwr ,quants);

clear B TKO ShL Pwr

B TSFC ADP = B TSFC ADP(INP ARRAY) ;

qB TSFC ADP =quantile( B TSFC ADP ,quants);

clear B TSFC ADP

B TSFC TKO = B TSFC TKO(INP ARRAY) ;

qB TSFC TKO =quantile( B TSFC TKO ,quants);

clear B TSFC TKO
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B TSFC TOC = B TSFC TOC(INP ARRAY) ;

qB TSFC TOC =quantile( B TSFC TOC ,quants);

clear B TSFC TOC

B Pod Wt = B Pod Wt(INP ARRAY) ;

qB Pod Wt =quantile( B Pod Wt ,quants);

clear B Pod Wt

B Fan Diam = B Fan Diam(INP ARRAY) ;

qB Fan Diam =quantile( B Fan Diam ,quants);

clear B Fan Diam

% ! Remainder of Common Core Variant Engine Surrogate Evaluations

% Removed for Appendix Brevity

disp('pause');

%Scale Confidence Intervals for each design according to percentage of

%repetitions that are expected to be feasible

quants = quants*ScaleFactor;

%Save I/O data for design samples

OutMat(caseNum,:) = [caseNum FPR col(1) HPCPR col(1) OPR col(1) ...

TKO T4 col(1) Ext Ratio col(1) LPT NChFracBldW col(1) ...

TKO Thrust col(1) TOC Thrust col(1) s CmpH Wc Flare col(1) ...

FPR B col(1) OPR B col(1) TKO T4 B col(1) Ext Ratio B col(1) ...

LPT NChFracBldW B col(1) TKO HPT NcMap B col(1) ...

ALPHA CmpFan deff col(1) ALPHA CmpL deff col(1) ...

ALPHA CmpH deff col(1) ALPHA TrbH deff col(1) ...

ALPHA TrbL deff col(1) ALPHA CmpFan deff B col(1) ...

ALPHA CmpL deff B col(1) ALPHA CmpH dPeff B col(1) ...

ALPHA TrbH deff B col(1) ALPHA TrbL deff B col(1) ...

BETA CmpFan deff col(1) BETA CmpL deff col(1) ...

BETA CmpH deff col(1) BETA TrbH deff col(1) ...

BETA TrbL deff col(1) BETA CmpFan deff B col(1) ...
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BETA CmpL deff B col(1) BETA CmpH dPeff B col(1) ...

BETA TrbH deff B col(1) BETA TrbL deff B col(1) ...

ALPHA s Wt Des col(1) ALPHA s Wt Var col(1) BETA s Wt Des col(1) ...

BETA s Wt Var col(1) ALPHA s CmpHCustBld col(1) ...

ALPHA s ShHHPX col(1) BETA s CmpHCustBld col(1) ...

BETA s ShHHPX col(1) ALPHA s CmpHCustBld B col(1) ...

ALPHA s ShHHPX B col(1) BETA s CmpHCustBld B col(1) ...

BETA s ShHHPX B col(1) ALPHA CmpLstg1MaxPR col(1) ...

ALPHA TrbH Loading col(1) ALPHA TrbL Loading col(1) ...

BETA CmpLstg1MaxPR col(1) BETA TrbH Loading col(1) ...

BETA TrbL Loading col(1) ALPHA CmpLstg1MaxPR B col(1) ...

ALPHA TrbH Loading B col(1) ALPHA TrbL Loading B col(1) ...

BETA CmpLstg1MaxPR B col(1) BETA TrbH Loading B col(1) ...

BETA TrbL Loading B col(1) ALPHA T41 Max col(1) ...

BETA T41 Max col(1) ALPHA T41 Max B col(1) ...

BETA T41 Max B col(1) ScaleFactor quants qA ADP Wc3];

end

end

disp('Monte Carlo Simulations Complete!! Writing data to excel sheet.');

filename = 'Prob Surr Training Data.xlsx';

namez={'caseNum', 'FPR', 'HPCPR', 'OPR', 'TKO T4', 'Ext Ratio', ...

'LPT NChFracBldW', 'TKO Thrust', 'TOC Thrust', ...

's CmpH Wc Flare', 'FPR B', 'OPR B', 'TKO T4 B', ...

'Ext Ratio B', 'LPT NChFracBldW B', 'TKO HPT NcMap B', ...

'ALPHA CmpFan deff', 'ALPHA CmpL deff', 'ALPHA CmpH deff', ...

'ALPHA TrbH deff', 'ALPHA TrbL deff', 'ALPHA CmpFan deff B', ...

'ALPHA CmpL deff B', 'ALPHA CmpH dPeff B', 'ALPHA TrbH deff B', ...

'ALPHA TrbL deff B', 'BETA CmpFan deff', 'BETA CmpL deff', ...

'BETA CmpH deff', 'BETA TrbH deff', 'BETA TrbL deff', ...

'BETA CmpFan deff B', 'BETA CmpL deff B', 'BETA CmpH dPeff B', ...

'BETA TrbH deff B', 'BETA TrbL deff B', 'ALPHA s Wt Des', ...

'ALPHA s Wt Var', 'BETA s Wt Des', 'BETA s Wt Var', ...
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'ALPHA s CmpHCustBld', 'ALPHA s ShHHPX', 'BETA s CmpHCustBld', ...

'BETA s ShHHPX', 'ALPHA s CmpHCustBld B', 'ALPHA s ShHHPX B', ...

'BETA s CmpHCustBld B', 'BETA s ShHHPX B', ...

'ALPHA CmpLstg1MaxPR', 'ALPHA TrbH Loading', ...

'ALPHA TrbL Loading', 'BETA CmpLstg1MaxPR', 'BETA TrbH Loading', ...

'BETA TrbL Loading', 'ALPHA CmpLstg1MaxPR B', ...

'ALPHA TrbH Loading B', 'ALPHA TrbL Loading B', ...

'BETA CmpLstg1MaxPR B', 'BETA TrbH Loading B', ...

'BETA TrbL Loading B', 'ALPHA T41 Max', 'BETA T41 Max', ...

'ALPHA T41 Max B', 'BETA T41 Max B', 'ScaleFactor', 'quants', ...

'quants', 'quants', 'quants', 'quants', 'quants', 'quants', ...

'quants', 'quants', 'quants', 'quants', 'quants', 'quants', ...

'qA ADP Wc3', 'qA ADP Wc3', 'qA ADP Wc3','qA ADP Wc3', ...

'qA ADP Wc3', 'qA ADP Wc3','qA ADP Wc3', 'qA ADP Wc3', ...

'qA ADP Wc3','qA ADP Wc3', 'qA ADP Wc3', 'qA ADP Wc3', ...

'qA ADP Wc3'};

xlswrite(filename, namez,1,'A1');

xlswrite(filename, OutMat,1,'A2');
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APPENDIX C

DETERMINISTIC SURROGATE MODEL FIT STATISTICS

C.1 Overview

Mathematical representations of the physics based common core engine model were created.

These deterministic surrogate models are in the form of Artificial Neural Network (ANN)

models, and are functions of the control and noise variables. The ANN architectures were

explored in order to find the number of hidden nodes that offered the best model fit quality

within the imposed training time limits. The training of these surrogate models enable

extensive exploration of the common core design and technology space without the need

for additional simulations to be performed within the confines of the physics based engine

model, greatly reducing the computational burden of subsequent simulations. The models

constructed are used to evaluate the 150 million Monte Carlo simulations (3,000 DoE cases

each with 50,000 simulation repetitions) performed by the script found in Appendix B.

For a given Artificial Neural Network (ANN) model being trained, the model architecture

was explored. The number of hidden nodes of the ANN model form were explored, and the

architecture with the best model fit quality achieved within the time limit considered was

selected. A surrogate model’s quality of fit is evaluated base on the following metrics. This

is true for the deterministic surrogate models trained and shown in this appendix. These

quality characteristics are also required of the probabilistic surrogate models trained, whose

plots of fit quality are displayed in Appendix D.

� Model Fit Error (MFE), the distribution of surrogate model error that is determined

through the comparison of predicted performance to the actual performance levels

used in the training of the surrogate model

– Shape of MFE distribution should resemble a normal distribution

– Mean value of MFE distribution should be close to zero
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– MFE standard deviation (STD) should be less than one

� Model Representation Error (MRE), the distribution of surrogate model error that

is determined through the comparison of predicted performance to the actual per-

formance levels of the reserve data not used in the training of the surrogate model.

MRE quality determined based on the same metrics used in the evaluation of the

MFE distribution.

� The quotient of MRE and MFE standard deviations should have a value less than

two.

� A high coefficient of determination (R2) must be achieved, having a value greater than

0.99. A value close to one indicates the model is able to explain the vast majority of

variation in the metric response of interest. The model’s R2 can be determined by

referring back to Equation 16 provided in Chapter 3, which is repeated below.

� When visualizing the actual-by-predicted plot, the data should not contain tails where

actual-by-predicted values depart from the perfect fit line at low and high values of

response data.

� The residual error should be at least two orders of magnitude less than the actual

response levels.

R2 = 1− SSerror
SStotal

(16a Revisited)

SS =
∑(

Y − Ȳ
)2

(16b Revisited)

Ȳ =

∑
Y

N
(16c Revisited)

The following two sections contain figures visualizing the fit quality and statistics of

each surrogate model of interest. Models were trained for both the core defining engine

characteristics as well as the common core engine variant design. The core defining engine

surrogates are functions of the control and noise variables defining the design engine. How-

ever, the common core engine surrogates are functions of the control and noise variables
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corresponding to both the design and variant engines. This is due to the common core

definition originating from the design engine and being applied to the variant engine.
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C.2 Core Defining Engine - Fit Statistics

Figure 109: Core Defining Engine - Deterministic model fit statistics - LPC inlet corrected
flow at ADP.
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Figure 110: Core Defining Engine - Deterministic model fit statistics - LPC inlet corrected
flow at TKO.

Figure 111: Core Defining Engine - Deterministic model fit statistics - HPC exit corrected
flow at ADP.
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Figure 112: Core Defining Engine - Deterministic model fit statistics - HPC exit total
temperature (T3) at TKO.

Figure 113: Core Defining Engine - Deterministic model fit statistics - LPT inlet total
temperature (T45) at TKO.

360



Figure 114: Core Defining Engine - Deterministic model fit statistics - HP shaft power at
ADP.

Figure 115: Core Defining Engine - Deterministic model fit statistics - HP shaft power at
TKO.
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Figure 116: Core Defining Engine - Deterministic model fit statistics - Bypass ratio at
ADP.

Figure 117: Core Defining Engine - Deterministic model fit statistics - Fan diameter.
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Figure 118: Core Defining Engine - Deterministic model fit statistics - TSFC at ADP.

Figure 119: Core Defining Engine - Deterministic model fit statistics - Engine pod weight.

363



C.3 Common Core Variant Engine - Fit Statistics

Figure 120: Common Core Variant Engine - Deterministic model fit statistics - LPC inlet
corrected flow at ADP.
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Figure 121: Common Core Variant Engine - Deterministic model fit statistics - LPC inlet
corrected flow at TKO.

Figure 122: Common Core Variant Engine - Deterministic model fit statistics - HPC exit
total temperature (T3) at TKO.
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Figure 123: Common Core Variant Engine - Deterministic model fit statistics - LPT inlet
total temperature (T45) at TKO.

Figure 124: Common Core Variant Engine - Deterministic model fit statistics - Net thrust
at TKO.
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Figure 125: Common Core Variant Engine - Deterministic model fit statistics - Net thrust
at TOC.

Figure 126: Common Core Variant Engine - Deterministic model fit statistics - HP shaft
power at ADP.
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Figure 127: Common Core Variant Engine - Deterministic model fit statistics - HP shaft
power at TKO.

Figure 128: Common Core Variant Engine - Deterministic model fit statistics - Bypass
ratio at ADP.
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Figure 129: Common Core Variant Engine - Deterministic model fit statistics - Fan diam-
eter.

Figure 130: Common Core Variant Engine - Deterministic model fit statistics - TSFC at
ADP.
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Figure 131: Common Core Variant Engine - Deterministic model fit statistics - Minimum
TSFC at CRZ.

Figure 132: Common Core Variant Engine - Deterministic model fit statistics - Engine pod
weight.
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APPENDIX D

PROBABILISTIC SURROGATE MODEL FIT STATISTICS

D.1 Overview

Probabilistic surrogate models were generated to estimate an inputted confidence interval’s

estimated performance for an inputted set of unique control variable settings. Again, these

surrogate models are in the form of Artificial Neural Network models. The models are

functions of the control variables, made up of design parameters and uncertainty distribution

shape parameters. For each desired model, the ANN architecture was explored in order to

find the number of hidden nodes that offered the best model fit quality within the imposed

training time limits. The data generated by the Monte Carlo analysis script shown in

Appendix B was used as training data for these probabilistic surrogate models.

Just as was done when evaluating the quality of deterministic surrogate models, several

measures are used to evaluate the quality of the probabilistic surrogate models. Refer to

the requirements of surrogate fit quality statistics listed in Section C.1. A model whose

characteristics meet these requirements are considered to adequately represent the model

and corresponding space explored during the generation of data used to train and evaluate

the model under consideration.

The following two sections contain figures visualizing the fit quality and statistics of each

probabilistic surrogate model of interest. Models were trained for both the core defining

engine characteristics as well as the common core engine variant design. The core defining

engine surrogates are functions of the control variables defining the design engine. However,

the common core engine surrogates are functions of the control variables corresponding to

both the design and variant engines. This is due to the common core definition originating

from the design engine and being applied to the variant engine. Implicit in these proba-

bilistic surrogates are the effects of the range of uncertainty distributions considered within

the range of shape parameter settings explored.
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D.2 Core Defining Engine - Fit Statistics

Figure 133: Core Defining Engine - Probabilistic model fit statistics - LPC inlet corrected
flow at ADP.
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Figure 134: Core Defining Engine - Probabilistic model fit statistics - LPC inlet corrected
flow at TKO.

Figure 135: Core Defining Engine - Probabilistic model fit statistics - HPC exit corrected
flow at ADP.
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Figure 136: Core Defining Engine - Probabilistic model fit statistics - HPC exit total
temperature (T3) at TKO.

Figure 137: Core Defining Engine - Probabilistic model fit statistics - LPT inlet total
temperature (T45) at TKO.
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Figure 138: Core Defining Engine - Probabilistic model fit statistics - HP shaft power at
ADP.

Figure 139: Core Defining Engine - Probabilistic model fit statistics - HP shaft power at
TKO.
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Figure 140: Core Defining Engine - Probabilistic model fit statistics - Bypass ratio at ADP.

Figure 141: Core Defining Engine - Probabilistic model fit statistics - Fan diameter.
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D.3 Common Core Variant Engine - Fit Statistics

Figure 142: Common Core Variant Engine - Probabilistic model fit statistics - LPC inlet
corrected flow at ADP.

377



Figure 143: Common Core Variant Engine - Probabilistic model fit statistics - LPC inlet
corrected flow at TKO.

Figure 144: Common Core Variant Engine - Probabilistic model fit statistics - HPC exit
total temperature (T3) at TKO.
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Figure 145: Common Core Variant Engine - Probabilistic model fit statistics - LPT inlet
total temperature (T45) at TKO.

Figure 146: Common Core Variant Engine - Probabilistic model fit statistics - Net thrust
at TKO.
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Figure 147: Common Core Variant Engine - Probabilistic model fit statistics - Net thrust
at TOC.

Figure 148: Common Core Variant Engine - Probabilistic model fit statistics - HP shaft
power at ADP.
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Figure 149: Common Core Variant Engine - Probabilistic model fit statistics - HP shaft
power at TKO.

Figure 150: Common Core Variant Engine - Probabilistic model fit statistics - Bypass ratio
at ADP.
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Figure 151: Common Core Variant Engine - Probabilistic model fit statistics - Fan diameter.

Figure 152: Common Core Variant Engine - Probabilistic model fit statistics - Minimum
TSFC at CRZ.
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Figure 153: Common Core Variant Engine - Probabilistic model fit statistics - Engine pod
weight.
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APPENDIX E

EXPERIMENT 1C: ROBUST CYCLE AND TECHNOLOGY DESIGN

To highlight the added features of the ERDS process compared to the RDS process before

modification, this experiment allows the designer to select designs for different correspond-

ing technology scenarios, all with the use of a single set of probabilistic surrogate models.

With the ERDS method, the designer is no longer limited to a single technology scenario

when performing a robust design study. The designer can now input the desired distri-

bution shape parameters as control variables, and design selections can be made for any

uncertainty scenario with shape parameter values within the ranges considered during sur-

rogate training.

E.1 Technology Scenarios

The efficiency distributions considered in Table 35 are redisplayed below in Table 73, show-

ing the uncertainty distributions considered for the various component efficiency improve-

ments considered in this experiment. The most likely efficiency improvement for each com-

ponent was assumed to be a quarter of a point in efficiency. The present experiment con-

siders effects of various technology advancements, each advancement’s impact on the best

design selection, and their corresponding achievable performance. Five discrete technology

scenarios are considered. Each scenario allows a different component of the engine to have

its original efficiency improvement distribution replaced by a more advanced improvement

distribution. The push distribution has an improved mean value with a reduction in vari-

ability around the improved mean. The push distribution is shown in Figure 73 next to

the baseline distribution used for each of the five turbomachinery baseline efficiency im-

provement distributions. Replacing the baseline distribution with the pushed distribution

increases the most likely efficiency improvement from 0.25 points to 0.75 percent in effi-

ciency and also has a higher probability in achieving that most likely improvement level.
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Table 73: Experiment 1c - Baseline and Pushed Efficiency Improvement Distributions

Impact Min, Max, Alpha, Beta PDF

∆ηBase 0.00, 0.01, 1.5, 3.0

∆ηPush 0.00, 0.01, 6.0, 2.25

The five technology pushes represent maturation in each component’s most likely efficiency

and an increase in the likelihood of achieving the improved efficiency increase. Note that

the absolute range of improvement is consistent between technology scenarios. Only the

probability of achieving values throughout the fixed range is modified.

E.2 Engine Design Space Exploration for Various Technology Scenar-
ios

The probabilistic surrogate models referred to as Surrogate Set C are again employed for

this experiment. For the present experiment, six unique technology scenarios are considered.

The first scenario, referred to as the base scenario, assumes all the original efficiency im-

provement distributions considered in the previous experiment. The remaining five scenarios

each apply the pushed efficiency improvement distribution to one of the five turbomachinery

components. The efficiency improvement uncertainty distributions used for each of the six

technology scenarios are listed in Table 74.

For each scenario, the design cycle space is explored, considering 20,000 unique candidate

cycles. The efficiency improvement distribution parameters contained in A and B are
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Table 74: Experiment 1c - Component efficiency improvement distribution shape parameter
settings for each of the technology scenarios considered.

Technology Scenario

Distribution Parameter Base
Fan
Push

LPC
Push

HPC
Push

HPT
Push

LPT
Push

∆ηFan
α∆ηFan

1.5 6.0 1.5 1.5 1.5 1.5
β∆ηFan

3.0 2.25 3.0 3.0 3.0 3.0

∆ηLPC
α∆ηLPC

1.5 1.5 6.0 1.5 1.5 1.5
β∆ηLPC

3.0 3.0 2.25 3.0 3.0 3.0

∆ηHPC
α∆ηHPC

1.5 1.5 1.5 6.0 1.5 1.5
β∆ηHPC

3.0 3.0 3.0 2.25 3.0 3.0

∆ηHPT
α∆ηHPT

1.5 1.5 1.5 1.5 6.0 1.5
β∆ηHPT

3.0 3.0 3.0 3.0 2.25 3.0

∆ηLPT
α∆ηLPT

1.5 1.5 1.5 1.5 1.5 6.0
β∆ηLPT

3.0 3.0 3.0 3.0 3.0 2.25

fixed to each scenario’s settings, and the five cycle design parameters contained in X are

varied throughout the ranges considered. The probabilistic surrogate models previously

generated are used to predict the likely performance due to both the cycle settings and the

distribution shape parameter settings for each of the candidate cycles. The designer is then

able to select a candidate cycle that achieves maximum performance among the feasible

candidates for each of the six scenarios. In the end, the designer is then able to select both

the technology scenario of his choice and the corresponding best candidate cycle for that

particular technology scenario.

The design cycle explorations that are performed for each technology scenario aim to

answer two questions:

� Which engine component should be matured in order to get the most performance

benefit?

� How should the design cycle be selected in order to achieve the best performance for

each technology scenario considered?

Figure 154 contains the parallel coordinate plot for the base scenario, where all the en-

gine components’ efficiency improvements have the assumed distributions as in the previous
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Figure 154: Experiment 1c - Constrained parallel coordinate chart of 95% likely perfor-
mance, base efficiency distributions.

experiment. Similar plots are constructed for each scenario, showing the candidate cycles

that are feasible and score highest in terms of specific fuel consumption and engine weight.

Comparing each to the base plot identifies how the best cycle settings shift in response to

maturation of the different turbomachinery components. Each plot shows the impact the

associated efficiency improvements have on the number of feasible candidate designs, the cy-

cle preference of each technology scenario, and the corresponding performance improvement

possible from each scenario.

Figures 155 through 159 display the top scoring feasible cycle designs for each of the

technology advancement scenarios, each corresponding to the push of one of the turboma-

chinery components’ design efficiency level.

Table 75 displays the top scoring feasible candidate design samples for each technology

push scenario considered, along with their 95% likely performance estimates. Since the

selections were made from a populations of design candidate samples considered, it is likely

for each scenario that performance would be able to be slightly improved beyond the values

of these selections if optimization of the feasible design space were performed. However,

these candidates give the decision maker good indications of which component(s) offer the

most performance improvement over the baseline scenario. Considering the top design

performance of each technology scenario, the LPT Push offered the most improvement
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Figure 155: Experiment 1c - Constrained parallel coordinate chart of 95% likely perfor-
mance, fan efficiency distribution push.

Figure 156: Experiment 1c - Constrained parallel coordinate chart of 95% likely perfor-
mance, LPC efficiency distribution push.

Figure 157: Experiment 1c - Constrained parallel coordinate chart of 95% likely perfor-
mance, HPC efficiency distribution push.
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Figure 158: Experiment 1c - Constrained parallel coordinate chart of 95% likely perfor-
mance, HPT efficiency distribution push.

Figure 159: Experiment 1c - Constrained parallel coordinate chart of 95% likely perfor-
mance, LPT efficiency distribution push.
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Table 75: Experiment 1c - Highest scoring candidate cycle designs for each technology
scenario considered and corresponding 95% likely performance levels.

Parameter
Technology Scenario

Base
Fan
Push

LPC
Push

HPC
Push

HPT
Push

LPT
Push

πFan 1.363 1.364 1.364 1.355 1.364 1.364

πHPC 15.875 15.880 15.880 15.836 15.880 15.880

πOverall 44.937 45.060 45.060 45.402 45.060 45.060

T4,max, ◦R 3,627. 3,612. 3,612. 3,612. 3,612. 3,612.

ER 1.199 1.176 1.176 1.212 1.176 1.176

TSFC at ADP, lbm/(lbf · hr) 0.6057 0.6041 0.6051 0.6045 0.6041 0.6032

Pod Weight, lbm 9,475. 9,481. 9,501. 9,467. 9,516. 9,497.

in the TSFC, while having a negligible increase in the engine weight. Therefore, given

the technology advances assumed available, and assuming each advancement being equally

expensive to develop, the LPT Push would be selected for advancement. However, it is

likely that the variability in the remaining sources of uncertainty may need to be addressed

and possibly reduced through testing in order to improve the 95% likely performance of the

candidate engine cycles. Since significant uncertainty exists due to technology uncertainty,

which is epistemic in nature and knowledge of the actual technology impacts could be

improved, reduction of the uncertainty of these impacts could be pursued in order to further

improve both the likely performance estimates as well as the resulting cycle selections.

E.3 Conclusions

This follow-on to Experiment 1 highlights an added capability of the ERDS method making

it very flexible. By producing probabilistic surrogate models as functions of uncertainty dis-

tribution shape parameter settings, a wide variety of uncertainty scenarios can be simulated

with a single set of surrogate models. Initial design decisions not only aim at the selection of

the proper design variable settings, but concurrently consider various technology develop-

ment options and corresponding design implications. The ERDS allows for such concurrent

exercises to be performed in an efficient manner.
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