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SUMMARY

Most mineral and energy resources such as ore, coal, petroleum, natural gas,

and geothermal energy are recovered from the Earth. Nuclear waste repositories

and CO2 storage systems are buried underground. Recovery of mineral resources,

storage of energy, and disposal of waste involve changes in coupled mechanical and

transport rock properties. The evolution of macroscopic poroelastic properties can

be explained by variations of microstructure descriptors upon thermo-hydro-chemo-

mechanical coupled processes. This research aims to gain fundamental understanding

of the damage/healing processes that contribute to the weakening/strengthening of

rocks and to the increase/decrease of permeability in porous media. The proposed

mechanical models are implemented in Finite Element Methods and applied to the

design of geostorage systems. This study focuses on salt rock, which is used as a

model material to study rock microstructure evolution under various stress paths,

and to understand the microscopic processes that lead to macroscopic mechanical

recovery. We investigated two modeling strategies to couple poroelastic properties

and microstructure upon damage and healing. First, the framework of Continuum

Damage Mechanics was enriched with fabric descriptors used as internal variables

in order to predict the changes of stiffness and deformation during crack debonding,

opening, closure and rebonding. We carried out creep tests on granular salt to infer

the form of fabric tensors from microstructure observation. Net damage evolution

is governed by a diffusion equation. Macroscopic and microscopic model predictions

highlight the increased efficiency of healing with time and temperature. Secondly, a
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self-consistent homogenization scheme was used to upscale the viscoplastic and dam-

age behavior of halite polycrystals from mono-crystal slip mechanisms. The model

provided micromechanical interpretations to important aspects of salt rock viscoplas-

tic and fatigue behavior, such as strain hardening, creep recovery, tertiary creep, and

plastic adaptation. We implemented the micromechanical model in a finite element

program and compared it to the FEM model with joint elements to characterize

damage accumulation and crack patterns in salt polycrystals during creep and during

cyclic loading paths typical of Compressed Air Energy Storage. We also benchmarked

a variety of viscoplastic damage models implemented in FEM to accurately predict

the accumulation of damage around salt caverns used for high-pressure gas storage.

This study is expected to improve the fundamental understanding of damage and

healing in rocks, and the long-term assessment of geological storage facilities.
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CHAPTER I

INTRODUCTION

1.1 Energy and Storage

The dominant mineral component of salt rock is halite (NaCl). Some rocks with highly

soluble salts, including NaCl, KCl, carnallite, bischofite, tachyhydrite, or anhydrite,

generally of evaporitic origin, are also recognized as salt rocks (Liang et al., 2011).

Halite polycrystals are typically white or transparent, with other colors possible in the

presence of impurities. Due to its favorable properties such as easy solubility in water,

low permeability, favorable creep deformation, and fast self-healing abilities, salt rock

is viewed as an attractive host medium for underground geological storage, including

storage of oil and natural gas (Bérest et al., 2001; Cosenza et al., 1999; Staudtmeister

and Rokahr, 1997; Wu et al., 2005), storage of high pressure gas (Ozarslan, 2012), nu-

clear waste disposals (Chan et al., 1997, 2001; Ghoreychi, 1996; Hunsche and Hampel,

1999; Langer, 1981; Munson and Dawson, 1979; Munson, 1979), and, more recently,

Compressed Air Energy Storage (CAES) (Fuenkajorn and Phueakphum, 2010; Kim

et al., 2012).

CAES in salt rock is often coupled to windmills: the surplus of energy produced

in periods of high wind is used to compress air that is stored to activate turbines at

peak hours. Salt rock caverns can also be used to store oil or natural gas for extended

periods of time at minimal cost. High in-situ stress closes and rebonds the cracks

present in the rock mass, which is said to “self-heal”. The difference of temperature

between the top and bottom of salt caverns results in a continuous convective flow of

oil, which maintains the quality of the crude oil stored in the caverns. In the U.S.,

the Strategic Petroleum Reserve (SPR), aimed to store federally-owned emergency
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crude oil, is located along the Gulf of Mexico. Moreover, salt rock has been studied

extensively in the context of the Waste Isolation Pilot Plant (WIPP) for the disposal

of radioactive waste.

In CAES facilities, air injection and withdrawal induce repeated loading phases.

By contrast, in nuclear waste disposals, packages release heat with an exponent de-

cay of power, responsible for a long-term increase of temperature in the surround-

ing rock mass (Liang et al., 2006). Therefore, in the Excavation Damaged Zone

(EDZ) of nuclear waste disposals, the rock mass is exposed to non-mechanical dam-

age. These cyclic loading conditions and thermo-mechancial couplings induce complex

microstructure changes that result in a variety of deformation regimes operating at

very different rates. The goal of this research is to understand the fundamental pro-

cesses that drive salt rock’s long term behavior in stress, temperature, and moisture

conditions typical of underground storage, and to formulate continuum damage and

healing mechanics models that can be used for engineering design purposes.

1.2 Salt Rock Mechanics

Damage refers to the decrease of bulk stiffness and strength upon the initiation, propa-

gation and even coalescence of microscopic cracks. Healing is defined as the mechan-

ical recovery induced by the rebonding of cracks. Damage and healing mechanics

allows predicting variations of stiffness and deformation during thermo-mechanical

stress paths, and is grounded on the fundamental understanding of the processes that

drive crack opening, propagation, closure and rebonding. That is why we investi-

gate theoretical methods that couple microstructure changes to the evolution of bulk

poroelastic properties during damage and healing processes. Salt rock is chosen as

a model material to study the mechanics of damage and healing in crystalline and

porous media, because the creep processes that drive crack rebonding take place over
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short periods of time compared to other rocks. Rapid creep processes make it possi-

ble to conduct physical experiments to validate or invalidate the assumptions made

on the dominating healing processes that are expected to occur in geological storage

conditions, and therefore predict whether crack rebonding will happen at a rate that

is fast enough to ensure the safety of repositories in salt formations.

Four creep mechanisms were characterized experimentally in halite (Fam et al.,

1998; Senseny et al., 1992). These mechanisms occur over different ranges of temper-

ature T and pressure σ, and include (1) glide (σ/µ > 5 · 10−4; 273K < T < 853K);

(2) cross slip (high σ; 298K < T < 853K); (3) diffusion (σ/µ < 5 · 10−4;T > 573K);

(4) dynamic recrystallization (low σ; high T ). Note that µ refers to salt rock shear

modulus. In typical geological storage conditions, Diffusive Mass Transfer (DMT)

is expected to be the dominating mechanism for creep. DMT not only results in

creep strain, but also accelerates crack healing through local transfer of mass, and

converts cracks into planar arrays of fluid inclusions. Atoms and molecules migrate

through the bulk of salt grains (volume diffusion, Nabarro-Herring creep) and along

the grain boundaries (boundary diffusion, Coble creep). In salt rock, crack rebonding

and consequent mechanical healing induced by DMT occur within a few days at room

temperature and low pressure. In addition, DMT is enhanced at higher temperatures.

At the microscopic scale, DMT results in the rebonding of crack faces, and at the

macroscopic scale, in the total or partial recovery of mechanical properties previously

degraded by micro-crack propagation.

However, not all facilities are designed for long-term storage. In CAES systems

for instance, the rock mass is subjected to cyclic loading. During these daily cycles,

healing processes are expected to occur at a lower rate than fatigue processes. The

main challenge is that mechanical properties of salt rocks subjected to cyclic loads

differ greatly from those under static loads. The Young’s modulus and the compressive

strength decrease as the number of loading cycles increase (Dubey and Gairola, 2000;
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Fuenkajorn and Phueakphum, 2010; Ma et al., 2013). Fatigue initiates faster for

lower loading frequency (Fuenkajorn and Phueakphum, 2010; Liang et al., 2011; Liu

et al., 2014a; Ma et al., 2013). The degradation of elastic moduli increases with the

maximum stress and with the amplitude of the loading (Guo et al., 2012). Compared

to amplitude and frequency, the confining stress does not influence fatigue significantly

(Ma et al., 2013). It has to be noted that the range of frequencies investigated in

laboratory studies are significantly higher than those in actual CAES conditions.

Low frequency experiments are more difficult to conduct in the laboratory, because

they require more time: a sufficiently long loading period and a large number of

loading cycles. As a result, laboratory tests performed so far were not able to reveal

the microscopic origin of fatigue. Furthermore, the long-term behavior of salt rock

subjected to thermo-mechanical couplings cannot be elucidated with macroscopic

laboratory tests, and requires an investigation of micro-level processes, completed by

up-scaling or micro-mechanics approaches.
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1.3 Thesis Structure

In the following, we propose continuum mechanics models of damage and healing.

The structure of this thesis is organized as follows.

Chapter 2 “Theoretical Background" presents the thermodynamic principles at

the foundation of the Continuum Damage and Healing Mechanics models formulated

and tested in this study.

Chapter 3 “Fabric-based Damage and Healing Mechanics" explains a “top-to-

bottom" microstructure-enrichment method, in which moments of probability of mi-

crostructure descriptors are used as fabric tensors in a Continuum Damage and Heal-

ing Mechanics closed formulation. The micro-macro model is used to predict the

effects of damage and healing on salt stiffness, deformation, and permeability, and to

interpret these effects from the evolution of microstructure descriptors.

Chapter 4 “Micro-macro Model of Viscous Fatigue" explains a “bottom-up" up-

scaling method, in which a self-consistent homogenization scheme is used to predict

the viscous damage and fatigue behavior of halite polycrystals from mono-crystal slip

mechanisms.

Chapter 5 “Finite Element Analyses Applied to Geostorage Systems" describes the

Finite Element Method (FEM) implementation, calibration and validation of micro-

macro models of salt damage. Finite Element continuum-based damage models are

benchmarked against joint element models to explain the formation of intra- and inter-

granular crack patterns in halite polycrystals. FEM models of viscoplastic damage

are also used to predict the long-term damage accumulation around salt caverns used

for geological storage.

Chapter 6 “Conclusions and Future Study" summarizes the major results obtained

in this doctoral thesis and proposes a few directions for future research.

7



CHAPTER II

THEORETICAL BACKGROUND

2.1 Introduction

This chapter aims to provide a comprehensive review of the theoretical backgrounds

of salt damage and healing mechanics. We review crack evolution processes, ex-

perimental assessments of damage and healing, theoretical salt mechanics models,

and numerical studies of rock damage and healing. The structure of this chapter

is organized as follows: Section 2.2 describes the crystallographic structure of salt

and explains how macroscopic phenomena are related to microscopic processes; Sec-

tion 2.3 summarizes published experimental studies conducted on rocks for damage

and healing analyses; Section 2.4 explains why rock mechanics requires multi-scale

models and discusses the applicability of different modeling approach at different

scales; Section 2.5 provides a summary of the state-of-the-art models based on Con-

tinuum Damage and Healing Mechanics; Section 2.6 presents the thermodynamic

foundation of the models formulated in this thesis, in particular the derivation of

the Inequality of Clausius-Duhem and the definition of internal variables; Section 2.7

explains the principle of self-consistent method and introduces the Hill’s tensor; Sec-

tion 2.8 compares state-of-the-art numerical models of damage and healing in rocks;

Section 2.9 lists the main objectives of this research work.

8



2.2 Micromechanical Processes in Salt Rock

2.2.1 Crystallographic Structure of Salt

The crystallographic structure of a mineral describes the form in which atoms, ions, or

molecules are spatially arranged. In 1850, Auguste Bravais found that crystals could

be described by means of 14 unit cells (Fig. 1), defined according to the following

criteria: (1) The unit cell is the simplest repeating unit; (2) Opposite faces of a unit

cell are parallel; (3) The edge of the unit cell connects equivalent points.

Figure 1 The 14 Bravais unit cells (Zumdahl and Zumdahl, 2006).

Each of the 14 unit cells characterizes a lattice. The 7 possible lattices, from most

to least symmetric, are: cubic, tetragonal, orthorhombic, rhombohedral, hexagonal,

monoclinic, and triclinic (Fig. 2).

Directional vectors (to describe a slip mechanism for example) are defined by the

intersections of grain boundaries with the axes and are indicated with square brackets

“[ ]". Parallel directions are indicated with the same values into square brackets. In

addition, Miller indices, indicated with parenthesis “( )", define crystal planes. Miller

indices are based on the reciprocal of the intersection of the plane with the cell axes.
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Figure 2 General features of the 7 basic unit cell geometry (Silberberg, 2012).

Fractions are converted to integers. Negative directions are denoted by a top bar on

the coordinate value. Coordinates in angle brackets such as 〈100〉 denote a family

of directions which are equivalent due to symmetry operations, such as [100], [010],

[001] or the negative of any of those directions. In the cubic system, planes having

the same indices regardless of order and sign are equivalent. Coordinates in curly

brackets or braces such as {100} denote a family of crystallographic planes, such as

(hkl), (lhk) and (hlk), which are equivalent due to symmetry operations, similar to the

way that angle brackets denote a family of directions. The mechanisms that originate

plastic deformation in crystalline materials are very different from those that occur

in amorphous materials (e.g., glasses). Although plasticity induced by slip mechaniss

is the most common mechanism of plastic deformation, there are other mechanisms

as well (Fig. 3).

Slip usually occurs on planes of highest packing density (atom/area) or in direc-

tions of highest linear density (atom/length). Slip preferentially occurs along those

directions because the distance of the distortion is minimum there. In general, metals

with Face-Centered Cubic (FCC) and Body-Centered Cubic (BCC) crystal structures
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Figure 3 Microprocesses leading to plastic deformation in crystalline materials.

have a relatively large number of slip systems (at least 12). Extensive plastic defor-

mation can be observed in those metals, which translates into a ductile behavior.

In contrast, metals with hexagonal close-packed (HCP) crystal structure have only

a few active slip systems. So they are usually brittle and can sustain less plastic

deformation. According to experimental studies (Carter and Heard, 1970; Munson,

1979; Stokes, 1966), at room temperature, halite plastic deformation is manly due

to the glide of dislocations. The stress-strain response of FCC salt crystals under a

compression in the [001] direction presents distinct hardening stages similar to those

of FCC metals. In FCC metals (Pouya, 2000), glide along the {101} planes is easier

than glide along the {111} planes. By contrast in halite, the preferential slip systems

belong to the {101} < 101 > family at room temperature. Under larger stresses,

{111} < 110 > and also {001} < 110 > slip systems can be activated and contribute

to the plastic deformation.

2.2.2 Impact of Creep Processes on Microstructure and Deformation

Halite is considered herein as a model material to characterize rock microstructure

organization during brittle, ductile and viscoplastic deformation, and to study the

microscopic processes leading to macroscopic mechanical recovery. Although poly-

crystalline halite (salt rock) is known for deformation by isochoric dislocation and

diffusion processes, cracking is also an important grain-scale process at lower mean
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stress (Fig. 4). The relationship between these micro-mechanisms and macroscopic

strain evolution is still not well understood, especially in transient states. The re-

lation between complex macroscopic phenomena (e.g., creep, damage, healing) with

elementary microscopic processes is still an open issue.

Figure 4 Micro-mechanism map for halite at repository conditions.

Microscopic dislocation processes are known to originate isochoric viscoplastic de-

formation during transient creep. At the transition to secondary creep, dislocation

generation is balanced by cross-slip, diffusion and recrystallization processes (Senseny

et al., 1992). Recent studies based on electron-backscattered-diffraction (EBSD) in-

dicate that under given conditions of temperature and water saturation, sub-grain

recrystallization depends on grain orientation relative to the compression axis, and

on rock texture (Pennock and Drury, 2005). At low pressure, dislocation pile-ups

and strain incompatibilities between grains induce stress concentrations resulting in

dilatant micro-cracking. The presence of brine can enhance diffusion processes, by

allowing mass transfer at lower temperature. The solution-precipitation mechanism

explained by Raj (1982) can only occur when the liquid phase is continuous: dis-

solved crystal is transported at another location of the lattice, where it precipitates.
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The pressure-solution mechanism presented by De Boer (1977) can take place in a

crack network partially saturated with brine - according to the island-channel flow

model proposed by Rutter (1976) and Spiers et al. (1990). The inter-granular pres-

sure solution will result in compaction of the bulk rock and decrease of porosity and

permeability (Meer and Spiers, 1997). As illustrated in Fig. 5, the chemical potential

difference between the solid at the grain-to-grain contact and the pore wall drives the

dissolution of materials at the grain contacts (∆µs), transport through the fluid films

at the grain boundaries (∆µd) and the precipitation at the free pore walls (∆µp).

Figure 5 Model of inter-granular pressure solution in a closed thermodynamic sys-
tem, modified from (Meer and Spiers, 1997). σn indicates the mean normal stress and
Pf the pore fluid pressure.

Under favorable temperature and pressure conditions, solution-precipitation creep

can produce similar strain rates to those solid-state creep processes (Carter and Heard,

1970). Fluid-assisted DMT not only can result in creep strain, but also can accelerate

healing of cracks through local transfer of mass and convert cracks into planar arrays

of fluid inclusions (Smith and Evans, 1984).
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2.3 Experimental Assessment of Damage and Healing in Rocks

Rock thermo-mechanical behavior was investigated with a variety of stress paths,

both at laboratory scale and field scale. Different types of mechanical loading condi-

tions were considered, including monotonic/cyclic, uniaxial/triaxial, short term/long

term, and drained/undrained. Table A.1 in Appendix I provides the strength and

Young’s modulus of rocks of interest for geological storage purposes. Rock samples

were tested in the laboratory under different thermo-mechanical stress paths, mainly:

(1) a temperature-controlled mechanical loading, or (2) a heating phase followed by

a mechanical loading, or (3) a heating phase followed by a relaxation period (until

the temperature of the sample reached room temperature) followed by a mechanical

loading. Most of the experimental results reported in the literature focus on rock

compressive strength. Temperature changes were limited to less than 1000 ◦C to pre-

vent any chemical change in rock minerals. Most often, rocks were subjected to a

heating phase. To the authors’ best knowledge, only granite and tuff were studied

upon cooling. Rock stiffness tends to increase (respectively decrease) upon cooling

(respectively heating). Granite has the highest compressive strength among all the

rocks tested. In gabbro, there exists a critical temperature above which drastic change

in mechanical properties occur (Keshavarz et al., 2010). Confined salt rock is sub-

ject to complex time-dependent microscopic processes, such as dislocation, glide, and

cross-slip. At the bulk scale, coupled processes make it challenging to discriminate

viscoplastic (dislocation-induced) deformation and damage (crack-induced) deforma-

tion. Overall, creep processes in salt rock result in much larger deformation at failure

compared to other types of rock (Wawersik and Hannum, 1980).

Mechanical properties of rocks subjected to cyclic loads differ greatly from those

under static loads. Rock fatigue is largely affected by the boundary and loading

conditions, such as the confining stress (Ma et al., 2013; Zhu and Arson, 2014a), the

stress/strain rate (Lajtai et al., 1991; Ray et al., 1999; Taylor et al., 1986), the loading
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amplitude and the maximum stress (Fuenkajorn and Phueakphum, 2010; Prost, 1988;

Tao and Mo, 1990; Xiao et al., 2010), as well as the type and frequency of the signal

(Attewell and Farmer, 1973), and the number of cycles (Singh, 1989). A review of

the fatigue behavior of different types of rocks is provided in (Bagde and Petroš,

2005). The presence of joints (Jafari et al., 2004; Li et al., 2003), the size of grains

(Burdine, 1963), humidity conditions (Ishizuka et al., 1990; Lajtai et al., 1991) and

fluid migration (Mahnken and Kohlmeier, 2001) play a critical role in the triggering

and evolution of fatigue in rocks. Experimental studies of rock fatigue under cyclic

loading remain scarce, and mostly focus on salt rock. Therefore, salt rock is an

adequate model material to study the microscopic origin of fatigue in crystalline

materials. Recently, a model of salt rock fatigue under cyclic loading was proposed

in (Ladani and Dasgupta, 2009). However, due to the numerous variables influencing

salt damage under cyclic loading (e.g., stress amplitude, loading frequency), and due

to the high number of cycles necessary to assess fatigue effects in the laboratory,

experimental characterization of fatigue in salt rock remains a challenge.

Much less has been done on crack healing effects in rocks although numerous ex-

periments have been executed upon other geological materials. Only a few laboratory

tests were conducted on salt rock under various temperatures for different durations

to study the role of crack rebonding on strength (Fuenkajorn and Phueakphum, 2011;

Miao et al., 1995), permeability (Chan et al., 2001; Schulze, 2007) and inelastic strains

(Hou, 2003; Lux et al., 2000). Houben et al. (2013) recently studied diffusion in ad-

sorbed aqueous films in salt and identified three physical mechanisms govern crack

healing and permeability reduction in halite: (1) purely mechanical closure of cracks

induced by an increase of the mean normal stress; (2) diffusive or “chemical" crack

healing driven by surface energy reduction; (3) recrystallization-induced crack heal-

ing.

15



2.4 Multi-scale Aspects of Rock Mechanics

Discontinuities in rocks exist at multiple scales. The propagation of isolated cracks

that do not interact with other cracks is well captured by fracture mechanics models.

However, computations becomes complicated and challenging when crack coalescence

or interactions are accounted for. That is why in Continuum Damage Mechanics

(CDM), subsets of cracks, defined as “damage", are considered in the evolution laws.

Fig. 6 provides an overview of the types of heterogeneities found in salt rock. In

the following, we use the following definitions to designate the subjects of interest:

(1) The microscopic scale (e.g., salt grain scale) ranges from 10−6m to 10−3m in

size; (2) The mesoscopic/laboratory/Representative Elementary Volume (REV) scale

(e.g., coalesced crack, specimen scale) ranges between 10−3m to 10−1m in size; (3)

The macroscopic/reservoir/field scale (e.g., fault, cavity) ranges from 10−1m to 103m

in size.

10-‐6m	   10-‐3m	   101m	   103m	  10-‐1m	  10-‐4m	  

Microscopic	  Scale	   Mesoscopic	  Scale	   Macroscopic	  Scale	  

Figure 6 Discontinuities in salt at multiple scales, modified from (Ding et al., 2016;
Schleder and Urai, 2007).

At the microscopic scale, we are interested in modeling the topological evolution

of micropores and microcracks. Diffusion, slip, dislocation, and recrystallization are

all microscopic processes occurring along the grain boundaries, which should be mod-

eled at the grain scale. The non-uniform distribution of micro-cracks and minerals

with various properties are the main contributing factor to the rock heterogeneity.

Mechanical anisotropy is usually modeled through the density, size, and geometry of
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cracks (Oda, 1984).

Engineering properties such as stiffness and porosity are defined over a “meso-

scopic” domain that contains heterogeneities; such properties are averaged over a

subdomain; the average typically oscillates around an asymptotic value as the sub-

domain size is increased; the REV is the minimum subdomain size that needs to be

considered to ensure that the average reaches this asymptotic value. Note that the

REV is specific to the property or field variable considered. For instance, in fractured

rocks, the permeability REV is typically larger than the stiffness REV because crack

coalescence implies fluid flow but not necessarily mechanical interaction or failure.

Note also that the REV is not necessarily defined in terms of space variables. For

instance, if an average is performed over a set of possible crystal orientations, the

REV size is the number of crystal orientations considered. Fig. 7 illustrates the defi-

nition of the REV for one specific property. In general, individual response functions

should be averaged over different REV window sizes to ensure statistical homogene-

ity (Lacy et al., 1999). In Fig. 8, the observation window B may be sufficient for

stiffness characterization. However, it may be insufficient to characterize statisti-

cally homogeneous (SH) response functions pertaining to damage evolution, such as

thermodynamic conjugate forces, damage evolution, and dissipation potential.

Basic assumptions made at the REV scale do not hold when studying a field

problem in which damage zone is much larger than the REV size. At the macro-

scopic scale, numerical methods are required to solve complex coupled problems or

analyze the critical state of damaged materials. Typical numerical approaches in-

clude: (1) Continuum methods, such as the Finite Difference Method (FDM), Finite

Element Method (FEM), Finite Volume Method (FVM), Extended Finite Element

Method (XFEM), Cohesive Zone Models (CZM), and Boundary Element Methods

(BEM); (2) Discontinuum methods, such as Discrete Element Method (DEM) and

Discrete Fracture Network Method (DFN); (3) Hybrid methods, such as the Combined
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Finite-Discrete Element Method (FEMDEM). The choice of the numerical modeling

approach depends, among other factors, on the heterogeneous rock properties of in-

terest, the type of fracture processes at stakes, the thermo-hydro-chemo-mechanical

couplings involved in the problem, and the time dependency of the rock properties.

More details are provided in Section 2.8.

Figure 7 Definition of the Representative Elementary Volume (REV) (Bear, 1972).

Figure 8 REV window size and statistically homogeneous (SH) response functions
(Lacy et al., 1999).
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2.5 State-of-the-Art of Continuum Damage and Healing Me-
chanics (CDHM)

Due to the multi-scale nature of damage in rocks, several approaches were proposed

to predict the evolution of stiffness degradation and recovery during damage and

healing processes. Micromechanical damage models (Dormieux et al., 2006; Levasseur

et al., 2011) assume that the rock REV is populated with a given distribution of

cracks characterized by a specific shape (usually, spherical, penny-shaped or ellipsoidal

cracks). Assumptions on the shape and density of cracks allow expressing explicitly

the strain concentration tensor, which is used to derive the theoretical expression

of the Helmholtz free energy of the rock solid skeleton. For dilute distributions of

cracks, the self-consistent method proved to provide an efficient scheme to model the

loss of stored elastic deformation energy induced by cracking. If microscopic cracks

open in pure mode I (crack displacement vector is normal to the crack planes), the

only damage variable needed to express the dissipation of energy associated to the

degradation of elastic moduli is the second-order crack density tensor, defined by

Kachanov (1992) as:

Ω =
N∑
k=1

dknk ⊗ nk (1)

in which the REV is assumed to contain N planar cracks with a normal direction

nk and a volumetric fraction dk. For mixed crack propagation modes (inducing a

non-zero tangential displacement at crack faces), a higher damage tensor is required -

at least of order four (Cauvin and Testa, 1999; Chaboche, 1992a; Halm and Dragon,

1998). Increasing the order of the damage tensor generally improves the compliance

of the model to symmetry properties required for the elasticity tensor (Lubarda and

Krajcinovic, 1993).

Phenomenological damage models are based on energy postulates (i.e. assump-

tions made on the expression of the free energy and dissipation of the REV) rather

than hypotheses on micro-structure geometry. Such formulations often resort to the
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concept of effective stress, which stands for the stress developed in the fictive un-

damaged counterpart of the system (de Borst et al., 1999). The principle of equiv-

alent elastic energy or the principle of equivalent elastic deformation (Lemaitre and

Desmorat, 2005) then makes it possible to compute the damaged stiffness tensor,

provided that the expression of the free energy of the solid skeleton of the rock is

given. The key point consists in defining a damage operator to express the effective

stress as a function of damage and of the stress applied at the boundaries (far-field

stress), so as to satisfy the symmetry and positivity requirements for the elasticity

tensor (Cordebois and Sidoroff, 1982).

In salt, creep damage has often been associated with inelastic dilatant deformation

because deformation induced by dislocation creep is isochoric (Chan et al., 2001).

Damage grows in stress states above the “dilatancy boundary", whereas below this

boundary, the decrease of inelastic strains compensates damage deformation (Hou,

2003; Lux and Eberth, 2007). Damage cannot grow or decrease within the dilatancy

boundary (Hunsche and Hampel, 1999). The model proposed by Chan et al. (1998)

can predict the influence of creep and micro-crack propagation on deformation, but

cannot account for the anisotropy induced by damage on strains and stiffness. A

scalar damage variable is introduced (Hou, 2003; Hunsche and Hampel, 1999) in

order to describe material softening and define long-term creep failure. This class of

models (see also Chan et al. (2001)) do not capture stiffness changes and could not

predict damage-induced anisotropy in a sedimentary rock. In the modeling approach

by Miao et al. (1995), stiffness reduction is modeled within the framework of CDM,

whereas inelastic deformation is considered to obey a plastic flow rule. Two dissipation

potentials are necessary to close the formulation (one for CDM, one for plasticity).

In most constitutive models that account for creep, damage and healing, water

content and brine saturation are not part of the thermodynamic variables. The de-

pendence on temperature is based on experimental observations made in isothermal
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conditions. By contrast, a coupled thermo-mechanical thermodynamic framework

was proposed by Zhou et al. (2011) to model creep and damage in geomaterials, and

a thermo-mechanical model of crack opening and closure was proposed by Zhu and

Arson (2014b). However, these models did not account for healing (defined herein

as mechanical recovery resulting from crack rebonding). Two groups of self-healing

systems have been recognized so far (Voyiadjis et al., 2011), including active systems

triggered by damage mechanisms (Kessler and White, 2001), and passive systems re-

quiring external stimulation. The damage and healing models proposed in this thesis

belong to the category of uncoupled passive systems, analogous to the close-then-heal

scheme proposed by Li and Uppu (2010).
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2.6 Thermodynamic Principles used in Microstructure-enriched
CDHM

2.6.1 Inequality of Clausius-Duhem

In the following, we explain the energy conservation and dissipation principles that

need to be enforced in order to satisfy “thermodynamic consistency” in our CDHM

models. The first law of thermodynamics is an energy balance equation. It states

that the change in the internal energy (U) of a closed system is equal to the energy

brought by external actions to the system (P ) minus the amount of heat that the

system gives to the environment (Q).

Ṗ − Q̇ = U̇ (2)

Entropy provides a measure of the amount of energy that cannot be used to pro-

duce mechanical work. The time-dependent entropy change (Ṡ) can be divided into

external entropy change (Ṡe) and internal entropy change (Ṡi):

Ṡ = Ṡe + Ṡi = −Q̇
τ

+ Ṡi (3)

in which τ is the temperature change relative to a reference temperature. The sec-

ond law of thermodynamics states that the energy that cannot be used to produce

mechanical work is dissipated because of irreversible microstructure changes:

Ṡi ≥ 0 =⇒ Ṡ ≥ −Q̇
τ

(4)

Locally, the rate of heat brought to the system from the surroundings is related to

entropy by:

Ṡ ≥ −Q̇
τ

= −∇ · q
τ

(5)

in which q is the outgoing heat flow vector. The Helmholtz free energy (Ψ) is a

thermodynamic potential that measures the maximum amount of work that can be

done by a system.

Ψ = U − τS (6)
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Combining the two first laws of thermodynamics, we have

Ṗ − τ̇S − Ψ̇− q

τ
· ∇τ ≥ 0 (7)

Using the Principle of Virtual Work, the Inequality of Clausius-Duhem can be ob-

tained:

σ : ε̇− τ̇S − Ψ̇− q

τ
· ∇τ ≥ 0 (8)

For reversible mechanical processes, in the absence of heat transfer, the inequality

changes to:

σ : ε̇e − τ̇Se · ∇τ − Ψ̇ = 0 (9)

in which ε̇e is the elastic deformation (reversible). Helmholtz free energy is sought in

the form Ψ = Ψ(εe, τ):

(σ − ∂Ψ

∂εe
) : ε̇e − (S +

∂Ψ

∂τ
)τ̇ = 0 (10)

The thermodynamic conjugation relationships are:

σ =
∂Ψ

∂εe
, Se = −∂Ψ

∂τ
(11)

For irreversible process, the reduced Inequality of Clausius-Duhem is:

ΦM + ΦT ≥ 0, ΦM = σ : (ε̇− ε̇e) + χ : ξ̇ ≥ 0, ΦT = − q
τ
· ∇τ (12)

in which ε̇ − ε̇e represents the irreversible deformation (such as plastic deformation,

viscoplastic deformation, or residual crack opening), χ and ξ denote internal variables

(such as damage variable or hardening variables).

2.6.2 Definition of Internal Variables

Three kinds of postulates are needed to close the CDHM model formulation: the

expression of the free energy Ψ (dependent on the expression of the damage and

healing variables), the expression of rate-independent dissipation criteria (e.g., time-

independent damage propagation) and the expression of evolution laws for the dissi-

pation variables (typically a damage potential and a time-dependent law for healing).
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Table 1 summarizes the postulates made in phenomenological thermo-mechanical

damage models proposed for rock. In most models, the damage flow rule was as-

sumed to be associate, i.e. the damage criterion (fd) was used as a damage potential

(gd) (Arson and Gatmiri, 2010, 2012; Shao et al., 2005). Damage models proposed

for rock could predict the occurrence of residual strains without resorting to any ad-

ditional plastic potential (Abu Al-Rub and Voyiadjis, 2003; Halm and Dragon, 1998).

Even so, two flow rules are needed to close the model formulation (Xu et al., 2013): the

rate of inelastic deformation and the rate of damage. Models reviewed in Table 1 are

based on a purely mechanical damage evolution law, which implies that temperature

can only affect damage if the tensile stress induced by heating exceeds the threshold

of mechanical tensile strain necessary to open cracks. In practice, this means that

most models are based on the expression of a damaged stiffness tensor, introduced

in a thermo-elastic stress-strain relationship. The damaged stiffness tensor itself is a

function of a mechanical damage variable.

In fact, the second-order crack density tensor emerging from micromechanical

analyses is a particular form of Oda’s fabric tensor, commonly used in structural

geology (Oda, 1984):

F =
π

4

N

VREV

∫ ∞
0

∫
Ω

r3E (r,n) n⊗ n dndr (13)

in which E (r,n) is the mathematical expectancy of the presence of a crack of radius

r and normal direction n in a REV of size VREV . For a given crack density and for

given probability density functions of crack shapes and orientations, a direct relation-

ship can be established between fabric tensors and the elasticity tensor of the rock

(Cowin, 1985; Lubarda and Krajcinovic, 1993). The key issue is to choose relevant

microstructure descriptors (Lecampion, 2010; Lu and Torquato, 1992) and associated

probability density functions to capture the overall mechanical degradation process.

Typical microstructure descriptors include local properties of grains, cracks, or pores

(e.g., size, shape, area, sphericity, aspect ratio for 2D; volume, specific surface for 3D)
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and their global properties (e.g., relative distance, coordination number, connectivity,

tortuosity).
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Table 1 State of the art: phenomenological models of thermo-mechanical rock dam-
age.

Main governing equations “Stress” paths simulated Phenomena observed References

Ψ = Ψe(εe, T,Ω) + Ψp(γp, T,Ω) + Ψvp(γvp, T,Ω),
fp(σ, η) = q − g(θ)ηp(T, γp,Ω)Rc(Cs + p

Rc
)m,

gp = q − (ηp − βp)(p+ CsRc),
fω(Y ω ,Ω) = Y ω − r(Ω) ≤ 0

(1) triaxial compression
tests (different confining
stress, different T );
(2) creep tests (different
stresses, different T )

temperature variable is intro-
duced in hardening function;
capture both long-term and
short-term deformation be-
havior under thermal effect

Zhou
et al.
(2011)

Ψ = Ψe−gMΩ : εM − gs
3

Ω : δεSv− gT
3

Ω : δεT , Ψe =
1
2
εM : De(Ω) : εM + 1

2
εSvβs(Ω)εSv + 1

2
εT βT (Ω)εT ,

fd(Yd1
+,Ω) =

√
1
2
Yd1

+ : Yd1
+ − (C0 + C1Ω)

(1) isothermal drained and
undrained triaxial com-
pression tests;
(2) study the behavior
of an unsaturated massif
hosting a heating source

damage influences heat trans-
fer isotropically;
damage increases with higher
damage rigidities;
water permeability grows with
damage and with the internal
length parameter

Arson
and

Gatmiri
(2010)

Ψ = 1
2
ε : E(d, g) : ε− Tn(d, g) : ε− 1

2
cT

2

T0
,

fd = ε̄− k(d, T ),
fg = T − k̄(g, T )

heating without loading,
and then the temperature
is kept constant while load
is applied

specific heat depends on dam-
age; positive dissipation when
thermal energy is in logarith-
mic form

Stabler
and
Baker
(2000)

Ψ = W (εie, κ, d
+, d−) + V (T ) + L(T, ξ) +H(ξ),

W = (1− d+)W+
e (εie, κ) + (1− d−)W−e (εie, κ),

f̂± =
√
σ̄± : C± : σ̄ − f±e r±,

εT = αT (T − T0)

(1) short term test with
isothermal or adiabatic
conditions considered;
(2) long term test with
monotonic or cyclic load-
ings

both the elastic moduli and
the strength depend on the
hardening;
strain-drivien model allows its
possibility for large-scale com-
putation

Cervera
et al.
(1999)

Ψ = εc(Js) + ΨT (Js, T ) +
G(Js,T )(α1−3)

2ρs0
,

Yf = Yc(cm + cnp
Yc
− cnYf

3Yc
)z ,

Y (φ, p, θ,Ω, δh, T ) = YTXC(p)FLode(θ)Ftherm(Js, T ),
Ftherm(Js,T )=G(Js,T )/G(Js,T=0)

(1) uniaxial/triaxial com-
pression to a single joint set
and randomly jointed vol-
umes;
(2) wave propagation in-
duced by spherical explo-
sions

use a 3D contact algorithm to
model block interaction;
account for rocks with various
rock quality and porosity;
effective properties of jointed
rocks is available numerically
in explicit calculations

Vorobiev
(2008)

Ψ = Ψ(ε− εp, T ) = e− sT ,
fp =

√
J2 + αI1 − km,

gp =
√
J2 + βI1,

ρcṪ = −∇qh + (σ : ε̇p − αTTδ : C : ε̇e)

(1) excavation of test tun-
nel and deposition holes
under isothermal condi-
tion;
(2) heating of rock pillar
for one hundred days in to-
tal

elastic and elastoplastic mod-
els cannot accurately describe
the failure process;
heating increases the tangen-
tial stress on the pillar wall

Chen
et al.
(2010)

Ψ = Helmholtz’s free energy

Ψ
e

= degraded elastic free energy

Ψ
p
,Ψ
vp

= plastic, viscoplastic strain
energy

e = specific internal energy

V,ΨT = thermal part of free energy

W = mechanical free energy

L = thermo-mechanical part of
free energy

H = chemical part of free energy

εc = volume-dependent potential

Y
ω
, Yd = damage conjugate force

Rc, Yc = unconfined compressive strength

Yf = failure strength

Ω = damage variable

d = mechanical damage parameter

g = thermal damage parameter

p = mean stress

q = deviatoric stress

θ = Lode angle

m = curvature of yield surface

n = thermo-elastic coupling tensor

Kw = permeability

d
+
, d
−

= damage indices

gM , gS , gT = crack-related rigidity

De, βs, βT = damaged stiffness

r = damage energy release
threshold

β
p

= transition point

η
p

= instantaneous plastic hardening

σ̄, σ = stress tensor

εe = elastic strain

εM = mechanical strain

εsv = capillary volumetric strain

εT = thermal volumetric strain

ε̄ = non-local equivalent strain

αT = thermal expansion coefficient

f
±
, f
p
, f
vp

= yield criterion

γ
p
, γ
vp

= hardening variable

g
p
, g
vp

= plastic potential

c = specific heat capacity

C = tangential modulus tensor

C0 = initial damage-stress rate

C1 = damage increase rate

C
±

= tensile/compressive metric
tensor

cm, cn, z = material parameter

Cs = coefficient of material cohesion

km = material property

qh = heat conduction

J2 = deviatoric stress invariant

I1 = principal stress invariant

α, β = experimental coefficient

ρ = density

φ = porosity

YTXC = triaxial compression yield
strength

α1 = invariant of symmetric
unimodular tensor

k, k̄ = hardening-softening parameter

κ = aging degree

r
±

= damage threshold

f
±
e = elastic limit in uniaxial test

G = shear modulus

ξ = hydration degree

T = absolute temperature

T0 = reference temperature

s = entropy

Ftherm = thermal softening term

Flode = Lode angle function

ε
id

= irreversible strain

Js = average dilatation of the solid
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2.7 Homogenization Method

When the evolution laws that represent the damage and healing dissipation processes

are better understood at the microscopic level, it is advisable to adopt a bottom-up ap-

proach, e.g. a self-consistent homogenization scheme, instead of a top-to-bottom ap-

proach such as microstructure-enriched CDHM. In homogenization theories, threshold

damage functions and flow rules are formulated at the microscopic scale. The balance

of microscopic stresses at the interface between two constituents (e.g. two grains) is

ensured by correcting the macroscopic stress (respectively strain) by a so-called eigen-

stress (respectively eigenstrain). REV properties (such as the REV stiffness matrix)

is deduced from the knowledge of stress (respectively strain) concentration tensors,

which depend on the geometry of the heterogeneity present in the REV (Berryman,

1995; Nemat-Nasser and Hori, 1993).

Salt is a polycrystalline aggregate, which can be macroscopically homogeneous and

infinite. The stress and strain tensors in the mesoscopic polycrystal and in a single

grain are denoted by σ, ε and σ, ε, respectively. The local tensors σ and ε vary

from one grain to another because grains differ in size, shape, and crystallographic

orientations. The average value of a local quantity is used to represent the macroscopic

value:

σ =< σ >, ε =< ε > (14)

in which < > represents the average value. In general, the single crystal behavior

is known, which will be used to determine the macroscopic response of stress and

strain. In the following, we upscale the stress state in salt grains subject to active slip

systems in order to predict salt viscous damage and fatigue. We use the self-consistent

method initially proposed by Kröner (1961). Hill (1965) applied the self-consistent

method to elastic composites for spherical inclusions. In Hill’s model, small variations

of the local stress in the inclusions and the small variations of the far-field stress in

the matrix are coupled to those of the microscopic strain and those of the macroscopic
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strain. The tensor that links the properties of the crystal at different scales is known

as the Hill’s tensor (denoted by L∗):

L∗ijkl =
µ

4− 5ν
[(3− 5ν)δijδkl +

7− 5ν

2
(δikδjl + δilδjk))] (15)

When all grains have identical linear and isotropic elastic characteristics, we have:

εe =< εe >, εp =< εp > (16)

in which εe, εe, εp, and εp represent respectively the macroscopic and local elastic

and plastic strain tensors.

In salt polycrystals, plastic and viscous deformation result from several funda-

mental mechanisms, e.g., dislocation glide, dislocation climb, polygonalization, inter-

granular slip, dissolution-precipitation. Under stress and temperature typical of stor-

age conditions, dislocation glide is the predominant mechanism that contributes to

macroscopic salt rock deformation (Arson et al., 2012; Munson, 1979; Senseny et al.,

1992). Dislocation glide can only occur on specific crystallographic planes, and in

a limited number of directions. The non-elastic deformation of mono crystals can

result in geometric incompatibilities between adjacent grains. Restricted movements

within monocrystals originate internal stresses within the polycrystal. Therefore, it is

natural to employ a bottom-up approach with threshold damage functions that rep-

resent glide or crack propagation mechanisms to explain salt viscous damage. Plastic

deformation of crystals generally occurs in some preferential directions with respect

to the crystallographic axes. For salt polycrystal, since the grain properties are rela-

tively homogeneous (Fig. 9), the orientation of the crystal lattice with respect to the

macroscopic stress or strain orientation is the most critical parameter affecting the

plastic strain of the grain (Pouya, 2000). Therefore, in this thesis, the orientation

is considered as the only heterogeneity of the polycrystal, i.e., the constituent grains

will be considered to differ only by their crystallographic orientation with respect to

the polycrystal axes.
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Figure 9Microscopic sectional view of synthetic salt rock, prepared by Mr. J. Ding at
Texas A&M University. Synthetic salt rock samples were produced through thermo-
mechanical coupled consolidation process (Grain size = 0.3 ∼ 0.355mm, T = 150 ◦C,
σ = 106.7MPa, final porosity = 2.93%).
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2.8 State-of-the-Art of Finite Element Models of Damage and
Healing in Rocks

Microstructure has a strong impact on damage evolution and strength recovery in

rocks. Microstructure-enriched models have been developed to understand the influ-

ence of grain size, orientation, shape, and boundary topology in polycrystalline mate-

rials (e.g., Barbe et al. (2001)). Simplified grain shapes (e.g., squared or a cubic) were

assumed to implement these models in Finite Element Methods, in which each ele-

ment corresponds to a specific grain orientation (Beaudoin et al., 1995; Havlicek et al.,

1990; Takahashi et al., 1998). Such methods are not based on a realistic representa-

tion of microstructure and cannot explain the fundamental processes that drive the

macroscopic behavior of a polycrystal. By contrast, the influence of microstructure on

crack propagation in a stress-induced heterogeneous medium was investigated using

Voronoi cell FEM (Li and Ghosh, 2004). Microstructure-based FEM simulations were

used to study metallic materials such as aluminum (Becker and Panchanadeeswaran,

1995), copper (Delaire et al., 2000; Musienko et al., 2007), interstitial-free (IF) steel

(Erieau and Rey, 2004), and a variety of alloys (Eberl et al., 2002; Musienko and

Cailletaud, 2009). To date however, FEM models cannot explain the time-dependent

viscous damage and fatigue behavior of polycrystals subject to long-term creep or

cyclic loading. Only a few studies are based on real grain structure and account for

various damage mechanisms including inter- and intra- granular crack propagation

(Musienko and Cailletaud, 2009).

Finite Element Methods (FEM) with discontinuities were proposed to predict the

deformation and strength of polycrystals at various scales in 2D, extended 2D, or 3D

(e.g., Musienko et al. (2007)). For instance, crack propagation within polycrystals was

simulated with Cohesive Zone Models (CZM) (Clayton and McDowell, 2004; Espinosa

and Zavattieri, 2003; Gui et al., 2015; Needleman, 1987) and XFEM (Sukumar et al.,
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2003) enriched with jump interpolation functions. Fracture propagation in homoge-

neous and layered media such as composites with delamination was also simulated

with extended Finite Element Methods (XFEM) (Nagashima and Suemasu, 2006).

To model the damaged zone ahead of the fracture tip, several numerical methods

were developed, including multi-scale frameworks (Sethuraman and Reddy, 2008), or

methods based on average damage variables (defined at the mesoscopic scale) (Suzuki,

2012; Valko and Economides, 1994). But such methods do not track damage variables

explicitly and justify the links between length scales for stress intensity factors.

CDM models were initially formulated to predict the degradation of stiffness and

strength properties of metals. With the increasing energy demand and the important

environmental issues that arose from waste management, rocks became an interesting

object of study for fracture mechanicians and material scientists - and not only geol-

ogists. Fracture Mechanics models allows predicting the state of stress around crack

tips, as well as the change of crack dimensions. Formulations get very complex when

several cracks propagate simultaneously. By contrast, CDM avoids modeling each

crack individually and was seen as a computationally efficient framework to predict

the changes of stress and deformation at the mesoscopic (REV) scale, which was well

suited for engineering design. The CDM thermodynamic framework is also well-suited

for numerical implementation in FEM because discontinuities are modeled as energy

losses at the REV scale.
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2.9 Research Objectives

Crack closure is the result of the normal displacement of open cracks faces under com-

pression, which is assumed to produce an elastic deformation at the REV scale. Crack

healing does not occur during crack closure, i.e. unilateral effects are not synonymous

of mechanical recovery. Healing requires an energy input to trigger the migration of

ions within the lattice, and is therefore a dissipative process independent from dam-

age (Arson et al., 2012). As a result, the free energy of the REV shall depend on two

state variables (purely elastic deformation εel, temperature change τ) and two dissi-

pation variables (damage Ω, healing H). At low moisture content, crack rebonding in

salt is mainly driven by DMT. Healing during DMT is usually described as the time-

dependent counter effect of dilatant cracking, which can be modeled by viscoplastic

deformation laws (Hou, 2003; Senseny et al., 1992). During DMT processes, wave

velocities increase exponentially with time (Brodsky and Munson, 1994) and elastic

moduli also increase exponentially over time (Chan et al., 1998). Damaged elastic

moduli can be related to wave velocities by means of O’Connell and Budiansky’s

(1974) micro-mechanical relationships, but these equations do not allow predicting

the evolution of microstructure over time or during changes of stress conditions. The

goal of this research work is to understand and predict the damage and healing pro-

cesses in salt rock at various scales subjected to complex geomechanical couplings or

extreme loading conditions, by correlating fabric descriptors with phenomenological

variables. We propose three complementary multi-scale analyses (Fig. 10):

• From REV-scale to grain-scale, “top-to-bottom approach” (Chapter 3): CDM

is enriched with fabric tensors in order to couple damage and healing variables

to microstructure evolution during crack debonding, opening, closure, and re-

bonding.
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• From grain-scale to REV-scale, “bottom-up approach” (Chapter 4): A self-

consistent homogenization scheme is employed to analyze the origin of salt fa-

tigue from the mechanisms of deformation of halite crystals forming the poly-

crystalline aggregates.

• From REV-scale to reservoir-scale (Chapter 5): Micro-macro models are imple-

mented in the Finite Element Method in order to investigate fracture propaga-

tion in salt polycrystals and assess the long-term performance of salt caverns.

Figure 10Multi-scale modeling approaches, modified from (Schleder and Urai, 2007).
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CHAPTER III

FABRIC-BASED DAMAGE AND HEALING MECHANICS

3.1 Introduction

This chapter presents the progressive development of our “top-to-bottom" microstructure-

enriched CDHM modeling approach, which is illustrated by Fig. 11. We use the

anisotropic Continuum Damage Mechanics (CDM) model of crack opening and clo-

sure formulated by Dragon et al. (2000) as a basis. This CDM framework is coupled

with a thermo-elastic model to study crack opening and closure in rocks subjected

to thermo-mechanical couplings (Section 3.2). The model is then extended to couple

halite thermo-mechanical behavior to micro-structure evolution during crack debond-

ing, opening, closure and rebonding (Section 3.3). In order to infer the form of fabric

tensors from microstructure observation, creep tests are carried out on granular salt

under constant stress and humidity conditions. With a microphysical model, we cal-

culate the crack cusp migration distance for three families of cracks represented by

the damage eigenvalues, which allows us to distinguish the cracks that heal from

those that do not heal under a given state of stress and temperature (Section 3.4).

Using microscope imaging and micro-CT scanning, we finally analyze the probability

distributions of crack radius, void areas and crack spacing and use them as a ba-

sis to derive macroscopic evolution laws. Using the percolation theory, we enhance

the fabric-enriched CDM model to investigate the coupled influence of damage and

healing on the mechanical and transport properties of salt rock (Section 3.5).
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Figure 11 Model development in Chapter 3.
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3.2 Thermo-mechanical Model of Crack Opening and Closure

3.2.1 Thermo-mechanical Stress Induced Crack Opening and Closure

The proposed constitutive model is formulated to couple crack opening and closure

within the framework of CDM. The strain energy loss due to crack propagation is used

to compute damaged stiffness and deformation. The second order crack density tensor

defined by Kachanov (1992) is adopted in the expression of energy dissipation. State

equations must be combined with the laws governing the evolution of internal variables

and the associated dissipative mechanisms. In the present work, the anisotropic CDM

model of crack opening and closure formulated by Dragon et al. (2000) is used as a

basis to predict thermo-mechanical anisotropic damage induced by crack debonding,

opening and closure. An associate flow rule is assumed for damage, which represents

crack debonding. Inelastic strains coupled to damage are introduced in order to

account for the geometric incompatibilities that remain at crack faces even after tensile

stress relaxation (irreversible crack opening). Crack closure is accounted for by means

of a unilateral effect in the expression of the stiffness tensor: crack closure induces

mechanical recovery of the damaged stiffness only in the directions in which the strain

field is compressive. This framework relies on very few equations, which makes it a

good exploratory tool before going further in the modeling of multiple damage and

healing processes. Table 2 summarizes the constitutive equations proposed in the

model.

Assuming that undamaged rock has a linear thermo-elastic behavior, the free en-

ergy of the damaged rock solid skeleton is expressed as a polynomial of order 2 in

elastic deformation εE and order 1 in temperature change τ . The damage criterion is

expressed as the difference between the norm of the energy release rate and an energy

threshold. As shown in Fig. 12, the total deformation tensor is split into three com-

ponents: purely elastic deformation (εe) that may occur in the absence of damage,

damage induced elastic deformation (εed) that is due to the degradation of stiffness,
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and damage induced irreversible deformation (εid) which is due to the residual ef-

fect. Conjugation relationships derived from thermodynamic principles provide the

expression of stress and of the energy release rate. The latter can be further decom-

posed into two parts: Y1 accounts for crack propagation; Y2 describes rock property

changes due to temperature variation. It is assumed that only certain components

of the thermodynamic variable conjugate to damage (Y ) have an influence on the

damage growth: the thermo-mechanical tensile damage-driving force (Y1a
+ = −gε+)

and the thermal damage-driving force (Y2
d). A dimensional analysis indicates that

the term 1
2τ0

∂C(Ω)
∂Ω

τ 2 is negligible compared to τ ∂K(Ω)
∂Ω

: εE. Note that the distance be-

tween rock crystals increases with temperature. At higher temperatures, more energy

is required to separate rock crystals, which are already more distant than at lower

temperature. To capture this temperature-induced reduction of rock strength, which

counter-acts the tensile damage-driving force Y1a
+, the thermal damage driving force

is defined as:

Y2
d = A · τ · αT (α + 2β)tr(εE+) (17)

Where εE+ is the tensile elastic deformation, which indicates the increase of inter-

particle distance at high temperature. A is a proportionality constant.

The concept of unilateral effect is adopted in order to account for crack closure.

Following Chaboche’s (1992b) approach, the Heaviside function (H) is used in the

expression of the stiffness tensor, in order to distinguish material response in tension

and compression (Table 2). The damage criterion is modified in order to capture the

recovery of stiffness induced by crack closure under compression: in these conditions,

the rock REV behaves like the undamaged REV. In this study, it is assumed that

full compressive strength recovery is achieved (η = 1) if all cracks are closed under

compression. Crack closure increases the number of inter-granular contacts in the

REV, which leads to a recovery in both stiffness (Fig. 12) and heat capacity.
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Table 2 Outline of thermo-mechanical damage model

Postulates
Free Energy for Crack Opening
(ΨS)

ΨS(εE , τ,Ω) = 1
2
εE : D(Ω) : εE + gΩ : ε− 1

2τ0
C(Ω)τ2 − τK(Ω) : εE

1
2
εE : D(Ω) : εE = 1

2
λ(trεE)2+µtr(εE ·εE)+αtrεE tr(εE ·Ω)+2βtr(εE ·εE ·Ω)

Free Energy for Crack Closure
(ΨS)

ΨS(εE , τ,Ω) = 1
2
εE : Deff(Ω) : εE + gΩ : ε− 1

2τ0
Ceff(Ω)τ2 − τKeff(Ω) : εE

Deff(Ω) = D(Ω) + η
∑3
i=1 H(−tr(Pi : ε))Pi : (D0 −D(Ω)) : Pi, 0 < η ≤ 1

Keff(Ω) = K(Ω) + η
∑3
i=1 H(−tr(Pi : ε))Pi : (K0 −K(Ω)) : Pi, 0 < η ≤ 1

Ceff(Ω) = C(Ω)+η
∑3
i=1 H(−tr(Pi : ε))Pi : [(C0−C(Ω))δ⊗δ] : Pi, 0 < η ≤ 1

Damage Criterion for Crack
Opening (fd)

fd(Yd
+,Ω) =

√
1
2
Yd

+ : Yd
+ − (C0 + C1Ω)

Damage Criterion for Crack
Closure (fd)

fd(Yd
+,Ω) =

√
1
2
Yd

+ : Yd
+ − [C0 + C1

∑3
i=1H(−εi)Ωi]

Strain Decomposition ε = εel + εed + εid = εEM + εET + εid

Conjugation Relationships
Stress (σ) σ = D(Ω) : εE + gΩ−K(Ω)τ

Damage Driving Force (Yd
+)

Y = − ∂ΨS(ε,τ,Ω)
∂Ω

= Y1 + Y2

Y1 = −gε− α(trεE)εE − 2β(εE · εE)

Y2 = 1
2τ0

∂C(Ω)
∂Ω

τ2 + τ
∂K(Ω)
∂Ω

: εE

Yd
+ = −gε+ +A · τ · αT (α+ 2β)tr(εE+)

εEM = mechanical deformation component
α, β = mechanical damage parameters
λ, µ = Lame coefficients
τ0 = initial temperature
D = damaged stiffness tensor
αT = thermal expansion coefficient
Deff = effective stiffness tensor after “partial recovery”
Keff = effective diagonal tensor after “partial recovery”
Ceff = effective heat capacity after “partial recovery”
Pi = 4th order project tensor for the projection

in crack planes normal to direction i

εET = thermal deformation component
C0 = initial damage threshold
C1 = damage hardening parameter
g = toughness parameter
k = bulk modulus
K = kαT “diagonal tensor”
C = damaged heat capacity
A = thermo-mechanical damage paramter
η = degree of maximum stiffness recovery
δ = second order identity tensor
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Figure 12 Strain decomposition (soil mechanics sign convention: compression
counted positive).

3.2.2 Model Calibration and Verification

The advantage of the model proposed above is that the number of parameters required

is minimal (seven mechanical parameters: λ, µ, α, β, g, C0, C1; and one thermal

parameter: αT ). Published datasets on thermo-mechanical behavior of sandstone and

granite are available in the literature (Homand-Etienne and Houpert, 1989; Li et al.,

2013; Tian et al., 2012; Wong, 1982). Table A.1 in Appendix I provides an overview

of experimental data available on the assessment of thermo-mechanical damage in

a variety of rocks. Most of the data is analyzed within the framework of thermo-

elasticity, and there is not enough evidence on stiffness weakening and irreversible

deformation induced by temperature gradients to really verify the proposed model

against experimental data. According to Halm and Dragon (1998, 2002), the proposed

thermo-mechanical damage model is expected to provide good predictions of tight

rock macroscopic failure induced by crack opening and closure. Many authors used

a similar mechanical damage model for sandstone, even though other mechanisms
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such as grain crushing and pore collapse are expected to drive macroscopic failure in

porous rock. The proposed model is seen as a versatile framework, that can be used

to capture the loss of energy induced by damage in any rock material, provided that

model parameters are well calibrated. In order to assess the performance of the model

in doing so, calibration and verification simulations were performed on sandstone, for

which experimental data was found in Sulem and Ouffroukh (2006) (drained triaxial

compression tests on saturated sandstone). Reference stress-strain curves for this

calibration were obtained for a confining pressure of 40 MPa. The triaxial tests used

for model verification purposes were performed for confining pressures amounting to

28 MPa and 50 MPa. The corresponding stress-strain curves are shown in Fig. 13.

Note that the soil mechanics sign convention is adopted (with compression counted

positive). Dots are reported experimental data found in Sulem and Ouffroukh (2006).

Solid and dashed lines represent the results of simulations performed in MATLAB

with the proposed damage model.
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Figure 13 Stress-strain curves obtained during drained triaxial compression tests
conducted on saturated sandstone. c - model calibration, v - model verification.

The plots obtained for the verification tests (at 28 MPa and 50 MPa) show that

the model predictions match experimental data with an error less than 5% before the
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peak of stress. This is considered as a satisfactory result, since the purpose of this

study is to predict the effect of thermo-mechanical crack opening and closure before

softening. Due to the thermo-elastic framework adopted in the proposed model, the

expression of the damaged thermo-mechanical stiffness K(Ω) results from the expres-

sion of the damaged stiffness tensor, so that the thermal expansion coefficient αT can

be considered as a purely thermo-elastic parameter. That is the reason why in the

present study, αT is assigned a value known to be a standard for rock materials (neg-

ative with the soil mechanics sign convention). Table 3 summarizes the parameters

obtained for sandstone after calibration and verification.

Table 3 Model parameters obtained for sandstone after calibration and verification
(with the soil mechanics sign convention).

λ (Pa) µ (Pa) α (Pa) β (Pa) g (Pa) C0 (Pa) C1 (Pa) αT (K−1)

8.13×109 1.53×1010 1.2 ×1010 -4 × 1010 1.17 × 108 700 3.8 × 105 −1× 10−5

A sensitivity analysis was carried out in order to explain the physical meaning of

the five mechanical damage parameters (α, β, g, C0, C1). Strain controlled triaxial

compression tests were simulated (for a confining pressure of 15 MPa). The initial

damage threshold C0 was used as a scaling factor. The values of the normalized

damage parameters (α/C0, β/C0, g/C0, C1/C0) were first assigned a value according

to the calibration study published in Halm and Dragon (1998) for sandstone (for

reference, the set of constitutive parameter is reported in Table 4). Each normalized

parameter was then varied one by one, keeping all the other parameters constant

(Fig. 14). Larger α and β values imply a more ductile behavior, as can be seen from the

portion of the stress-strain curve corresponding to higher deformation (Fig. 14a&b).

As g increases, the irreversible deformation and corresponding residual stress increase.

So the peak of the stress-strain curve tends to shift downward (Fig. 14c). C1 has an

influence on the strain hardening portion as damage starts to accumulate (Fig. 14d).
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Table 4 Reference set of constitutive parameters used in the sensitivity analysis (after
Halm and Dragon (1998)).

λ (Pa) µ (Pa) α (Pa) β (Pa) g (Pa) C0 (Pa) C1 (Pa) αT (K−1)

2.63×1010 1.75×1010 1.9×109 -2.04 × 1010 1.1 × 108 1000 5.5 × 105 −1× 10−5
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Figure 14 Sensitivity analysis on the mechanical damage parameters used in the
model (all expressed in units of pressure). C0: initial damage threshold; C1: hardening
parameter; α & β: parameters controlling the shape of the damaged stress/strain
curve (ductile vs. brittle trends).
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3.2.3 Simulation of Thermo-mechanical Crack Opening

The thermo-mechanical damage model presented in Section 3.2.1 is used to simu-

late crack-induced damage during a triaxial compression test comprising a thermo-

mechanical loading phase, for the sandstone studied in Section 3.2.2. The energy

released to propagate damage in a sample under mechanical compression is compared

to the energy released to propagate damage in a sample subject to heating under zero

axial strain. Such an analysis could be used, for instance, to study underground rock

pillars subjected to a rapid temperature increase caused by a fire or an explosion.

Three loading phases are considered:

(M1) Isotropic compression. An isotropic confining pressure (20 MPa) is applied un-

der stress-controlled conditions. The confining pressure is chosen so as to ensure that

the damage criterion is not reached: during this phase, the material remains elastic.

(M2) Triaxial compression. The sample is loaded by increasing the axial strain (di-

rection 1) at a constant strain rate (so as to reach a maximal axial strain of 0.00226).

The lateral stresses do not change throughout this phase.

(TM) Confined heating. Axial deformation is fixed while the temperature is increased

by 150K from the initial room temperature (assumed 293K). Lateral stresses are

fixed, which means that lateral expansion can occur.

Two sequences are simulated (Fig. 15):

(1) M1 → M2 → TM ; (2) M1 → TM → M2.

During the triaxial compression phase (M2), deviatoric stress q generates lateral

tensile strain, causing lateral damage (Ω1 = 0, Ω2 = Ω3 6= 0). Correspondingly, a

degradation of rock stiffness is observed, in both stress-strain curves (AB1 & B2C2

in Fig. 16a). For both sequences, q increases with temperature (AB2 & B1C1 in

Fig. 16a). This is due to the mechanical boundary conditions: axial thermal ex-

pansion is constrained, which generates compressive internal stress - in virtue of

the action/reaction principle. Temperature-induced compression adds to mechanical
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compression. Damage induced during the mechanical phase AB1 (axial compression)

lowers stiffness, which explains why the thermal compressive stress developed in re-

action to thermal expansion during the heating phase B1C1 (sequence 1) is smaller

than during the heating phase AB2 (sequence 2) (Fig. 16a).

Sequence 1 (M1→M2→TM)

(a) isotropic compression (OA) (b) triaxial compression (AB1) (c) confined heating (B1C1)

Sequence 2 (M1→TM→M2)

(a) isotropic compression (OA) (b) confined heating (AB2) (c) triaxial compression (B2C2)

Figure 15 Stress paths simulated to study the influence of thermo-mechanical crack
opening: comparison of mechanical and thermo-mechanical energy released during
the propagation of compression damage.

The 3D plot in Fig. 16b shows the evolution of damage for the stress paths sim-

ulated in the two sequences described above. Fig. 16c and 16d are projections in the

strain-damage and temperature-damage spaces, respectively. Overall, less damage oc-

curs in sequence 2. This could be expected from the model formulation: in sequence

2, a mechanical loading is applied to a heated material, in which the “counter-acting”

damage driving force Y2
d, accounting for the decrease of rock strength with tem-

perature increase (Eq. 17), is larger than in sequence 1. As a result, the cumulated

damage driving force Yd
+ in sequence 2 is smaller than in sequence 1 - in other words,
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less energy is released to open cracks in sequence 2. Moreover, Fig. 16c indicates that

lateral damage progresses faster in a cooler sample (slope A′B1 > slope B2C2; segment

AA’ represents the purely elastic range).
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Figure 16 Simulation of the two thermo-mechanical stress paths described in Fig. 15
(confining pressure: 20 MPa; maximum axial strain: 0.00226; maximum temperature
change: 150K): (a) Deviatoric stress vs. axial and lateral deformation; (b) Damage
evolution vs. axial deformation and temperature variation; (c) Damage evolution vs.
axial and lateral deformation; (d) Damage evolution vs. temperature variation.

In both sequences, the sample expands laterally (due to mechanical or thermo-

mechanical compression). As expected, larger damage results in larger deformation,

and lateral strains (ε3) obtained at the end of sequence 1 are larger than at the end

of sequence 2 (Fig. 16c). In sequence 1, damage induced by mechanical compression

increases the minimum energy release rate required to further propagate cracks in the
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heating phase (slope of B1C1 < slope of OB1 in Fig. 16c for ε3). On the other hand,

for sequence 2, the damage threshold (i.e. the energy required to propagate cracks)

increases with both thermo-mechanical stress and higher ambient temperature. As

a result, slope of B2C2 is smaller than OB2 (Fig. 16c). In the undamaged material,

there is a damaged temperature threshold, below which thermo-mechanical cracks

will not develop - the temperature threshold is about 427K for the sandstone studied

(OAA′, Fig. 16d). However, if mechanical cracks have been produced before heating

the sample, any increase in temperature will immediately cause damage to propagate

in the sample (B1C1, Fig. 16d).

3.2.4 Simulation of Thermo-mechanical Crack Closure

The thermo-mechanical damage model presented in Section 3.2.1 is used to simulate

the evolution of damage in the same sandstone, during a uniaxial tension test followed

by a compression induced by either mechanical or thermo-mechanical stresses. This

stress path could be encountered in the context of tunneling. Indeed, galleries need

to be cooled before being exploited for mining, which raises some interest in study-

ing potential crack closure due to cooling in rock subject to displacement boundary

conditions. The stress path (Fig. 17) is as follows:

(1) Uniaxial tension: crack opening (OA-AB). The sample is loaded by increasing the

axial tensile strain (direction 1) at a constant strain rate (∆ε1), up to ε1 = −0.00016.

Temperature and lateral stresses are kept constant (∆σ2 = ∆σ3 = 0, ∆T = 0). Crack

planes perpendicular to the axis are produced due to the tensile stress.

(2) Mechanical “relaxation” : release of tensile stress (BC). The sample is unloaded

in order to release the tensile stresses completely. The unloading process is elastic

(linear stress / strain plot), and only the elastic part of crack-induced deformation is

compensated (at the end of this loading phase: εed = 0, but εid 6= 0).

(3) Compression (CD-DE). Two stress paths are considered to study unilateral effects
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induced by crack closure: a) decrease of temperature (∆T = -60K) with zero axial

deformation; b) purely mechanical axial compression at constant temperature.

(1) Uniaxial tension (2) Compression: release of tensile
stress

OA (elastic) - AB (damage) BC (“elastic" crack closure)

(3) Further compression: full closure and unilateral effects

(a) Compression induced by cooling (b) Mechanical compression

CD (closure of residual cracks) - DE (unilateral effects)

Figure 17 Stress paths simulated to study the influence of thermo-mechanical crack
closure: comparison of mechanical and thermo-mechanical compression loadings.

The present analysis focuses on opening and closure of one family of cracks per-

pendicular to the axis of loading. To avoid the formation of axial cracks, compression

in the third loading phase was kept below the compressive strength of the material

considered (Fig. 17). During cooling (3a, Fig. 17), the sample was free to contract

laterally, but not axially. Consequently, internal tensile forces developed in the un-

damaged part of the sample (i.e., outside the cracks). In virtue of the principle of ac-

tion and reaction, cracks closed due to the internal compression forces acting at crack

faces. In the mechanical compression phase (3b, Fig. 17), further compressive strain

was applied at a constant rate (∆ε1) under constant lateral stress (∆σ2 = ∆σ3 = 0).

Rock tensile strength is relatively low, so that damage starts to develop quickly

after the tensile load is applied. Correspondingly, the stress-strain curve is linear
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on a very short interval (OA, Fig. 18a), which is followed by a non-linear response

(AB, Fig. 18a) associated to the development of damage (AB, Fig. 18c). The stress-

strain curve compares satisfactorily with the experimental results obtained for a direct

tension test, reported in Luong (1990). During the stress release phase, the sample

is unloaded elastically. Pure elastic deformation (εel) and damage-induced elastic

deformation (εed) are recovered (BC, Fig. 18a). During this phase, damage does not

evolve (BC, Fig. 18c).

When cracks are completely closed, unilateral effects induce an increase of stiffness,

thus, an increase of the bulk modulus (slope D1E1, Fig. 18b). If cracks are closed by

cooling, lateral deformation is a contraction, and the sum of thermal and mechanical

axial deformation is zero (so that OC = OD′1 in Fig. 18a & 18b). Consequently,

the damage-driving force remains constant. As a result, damage does not increase

(C-D1-E1, Fig. 18c). If cracks are closed by mechanical compression, unilateral effects

are observed once cracks are completely closed (i.e. ε = 0). The slope (CD2) of the

stress-strain diagram in stage 3 is the same as in stage 2 (BC) (Fig. 18d) because

tensile deformation still exists. The slope of the stress-strain diagram becomes steeper

when deformation is negative (D2E2, Fig. 18d) and is actually equal to the slope of

OA (characteristic of the undamaged material).

The combined plots shown in Fig. 18d reveal that both thermo-mechanical and

purely mechanical processes can completely close the residual cracks. For the elas-

tic moduli and thermal expansion parameters of this sandstone, mechanical axial

compression produces more axial deformation (ε1) than cooling. The stress-strain

diagrams also show that the strain energy needed to close residual cracks by mechan-

ical compression is slightly larger than the energy needed to close residual cracks by

cooling. In other words, mechanical compression is less work-efficient than cooling to

close the cracks.
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Figure 18 Simulation of the thermo-mechanical stress paths described in Fig. 17:
(a) total stress vs. axial deformation (crack closure by cooling); (b) thermal stress
vs. thermal strain: length of OC equals to length of OD′1(crack closure by cooling);
(c) evolution of axial damage (direction 1) vs. axial deformation (TM – closure by
cooling; M – closure by compression); (d) evolution of stress components with axial
deformation (TM – closure by cooling; M – closure by compression).
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3.3 Diffusive Mass Transfer (DMT)-based Healing Model

3.3.1 Microstructure Characterization

The thermo-mechanical model presented above allows predicting the mechanical ef-

fects of crack debonding, opening and closure with a minimum set of parameters.

However, crack rebonding and subsequent stiffness recovery was not represented,

and the damage variable was purely phenomenological. In the following, we aim

to overcome these two shortcomings by introducing a healing variable that represents

mechanical recovery induced by solid diffusion. Solid diffusion in the salt crystal is

expected to result in the rebonding of inter-crystalline cracks. Ideally, micrographs

acquired at successive stages of the healing process could inform and constrain our

mechanical model. Unfortunately, such data is not available in the literature for salt

rock. Therefore, we propose to generate our own dataset from an analog material,

table salt, which has the same crystallographic structure and halite content as salt

rock. In the proposed model, we represent inter-granular space as cracks.

Observations are made in table salt in order to find mathematical descriptors that

can be used as parameters to model microstructure changes that occur during creep

processes. In the experiment described below, salt grains were confined in tubes

with both ends fixed by nails. The tubes were placed in a chamber with controlled

moisture conditions, at room temperature (Fig. 19). Constant humidity was ensured

by adding saturated salt water to the bottom of the container, as explained in Wexler

and Hasegawa (1954). Three constant loads (0.1MPa, 0.15MPa, and 0.2MPa) were

applied through the compression of springs of same rigidity. Constant stress could be

maintained since the deformed spring length was almost unchanged throughout the

test.

50



Figure 19 Experimental set up for observation of creep in salt.

Microscopic images of salt were recorded at regular time intervals. ImageJ appli-

cation (Abràmoff et al., 2004) was used for image processing. Fig. 20 presents the

principle of the image analysis. Transparent salt particles reflect light at their planar

surfaces during the stereoscopic observation, which impaired the quality of the im-

ages. After enhancing the contrast and removing the background, a binary image was

obtained. Removing outliers and filtering steps helped achieving an image of better

quality. The black regions indicate the presence of void space between salt grains.

Quantitative geometrical analysis was then carried out to determine appropriate fab-

ric descriptors.

Through testing of several shapes, fitting ellipses presented the best match with

void contours. Statistical results indicated that the probability density function of

ellipses’ area (“Void area", Av) follows a power law distribution (Fig. 21a):

pA(Av) = a · Atv (18)

For high values of Av, it was found that the power law did not fit the experimental

data as well as for smaller values of Av, but the error was found acceptable. Fitting
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(a) (b)

(c) (d)

Figure 20 Image processing: (a) Stereo-microscopic image; (b) Binary image; (c)
Void distribution; (d) Void outline (contours). Salt grains have a transparent cubic
structure with flat surfaces. The resulting transmitted and reflected light significantly
impair the microscopic image quality (Fig. 20a). Image processing techniques have
been proposed in MATLAB and ImageJ to improve the grain boundary detection
(Zhu et al., 2015b). We will continue to work on these issues in our future work.
Possible approaches include using colored epoxy to enhance the grain-void interfaces
and cutting the sample into thin sections.
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Figure 21 Probability density functions obtained for the void area (A) and for the
crack length (defined as the major semi-axis of fitting ellipses projected in the three
directions of space: Ri, i=x,y,z. (a) Power-law distribution of void area p(A); (b)
Log-normal distribution of crack length p(Ri). Note that the spikes are due to the
presence of small black dots in the binary image obtained after processing.

of microscopic data provided: a = 5 × 10−5 and t = −1.2. Despite the existence of

several spikes, the projections of the major semi-axes in three principal directions of

space (referred to as “crack length” in the following: Ri, i = x, y, z) were found to

follow a lognormal distribution (Fig. 21b):

pi(Ri) =
1√

2πRisi
e
− (lnRi−mi)

2

2s2
i (19)

in which si is the standard deviation and mi is the mean value.

The main purpose of our experiment work is to infer the appropriate microstruc-

ture descriptors and bridge the gap between microscopic phenomenon and macro-

scopic response. We study the effects of different governing factors such as loading,

temperature, and humidity conditions. It should be noted that further testing is

required to test the reproducibility of these experiments.

3.3.2 Theoretical Framework

A model is proposed to couple microscopic and macroscopic thermo-mechanical evo-

lution laws, in order to capture the effects of grain interface debonding, opening,

53



closure and rebonding, on deformation and stiffness. Table 5 summarizes the outline

of the CDM model used as a basis to study healing driven by Diffusion Mass Transfer

(DMT).

3.3.2.1 Continuum Damage Model

The free energy of the solid skeleton is written as the the sum of the purely thermo-

elastic deformation energy (ψETs ) and the potential energy of crack faces (ψΩT
s ). The

latter depends on a second-order tensor of damage (Ω), and on a damage-induced

deformation (εd). Thermodynamic conjugation relationships give the stress and the

damage driving force. Like in the thermo-mechanical damage model presented above,

a dimensional analysis shows that the quadratic term in temperature τ2

2τ0

∂C(Ω)
∂Ω

is

negligible. For simplicity, it is assumed that the damage criterion is independent of

temperature variation. The active damage driving force (Yd) is further simplified as a

function of total strain only. To capture the hardening phenomenon, which accounts

for the release of energy needed for growth of microcracks, the damage criterion is

expressed in the form of a norm minus the damage threshold (Table 5). Following

the classical CDM assumption recalled in the previous sections (Arson and Gatmiri,

2009, 2012; Dragon et al., 2000; Shao and Rudnicki, 2000), the damage flow rule is

assumed to be associative, i.e. fd is used as the damage potential:

dΩ = dλd
∂fd(Yd,Ω)

∂Yd

=

[
Yd√

2Yd:Yd

]
: dYd

a1δ :
[

Yd√
2Yd:Yd

] :

[
Yd√

2Yd : Yd

]
(20)

Like in the thermo-mechanical damage model described previously, Chaboche’s (1992a)

approach is used to account for the unilateral effects induced by crack closure.

3.3.2.2 DMT-induced Healing

Healing by crack rebonding does not occur upon mechanical closure. An energy

input is required to trigger the migration of ions within the lattice, and is therefore

a dissipative process independent from damage. DMT is the main driving factor
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for crack rebonding at low temperature. Cracks tend to be sealed by different ionic

species at the crack faces. Intra-granular diffusion is assumed to be an isotropic

phenomenon because of the uniform distribution of grain orientations. The healing

tensor H reduces to a scalar h: H = h δ. Healing is time-dependent, whereas

damage is a rate-independent dissipation variable which accounts for instantaneous

grain interface debonding and opening. Kuhn-Tucker consistency conditions impose

that damage cannot decrease. In order to represent the difference between damage

and healing, a mixed damage variable A is introduced as (Table 5)

A = Ω− δh (21)

The expressions of the recovered stiffness and heat capacity now depend on A instead

of Ω. The kinetics of healing are assumed to be governed by a general diffusion

equation:
∂u

∂t
= Dc∇2u (22)

in which Dc is the diffusion coefficient, which is considered constant in our model, u

represents the “intensity of net damage", defined as

u = U0 − h (23)

in which U0 is the intensity of damage in the REV before healing occurs: U0 =

tr(Ω)t=0. In our model, we constrain the healing variable h to be smaller than the

initial damage intensity U0. However, in reality, the material can achieve a larger

strength through the healing process, i.e., h > U0.

Crack healing is considered as complete when an ion reaches a crack face and

electronic forces bonds this ion to the lattice of the opposite crack face. Therefore,

the maximum diffusion distance within a salt grain is equal to half of the edge length of

the grain. At the boundaries, the net damage is taken as zero. The initial conditions

for healing in the REV are:

h(x, t = 0) = 0, u(x, t = 0) = U0 (24)
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Table 5 Outline of thermo-mechanical damage and healing model.

Postulates

Free Energy for Crack
Opening (ΨS)

ψs = ψETs + ψΩT
s

ψETs = 1
2
εel : C0 : εel − C0τ

2

2τ0
− τK0 : εel

ψΩT
s = 1

2
εd : C(Ω) : εd − C(Ω)τ2

2τ0
− τK(Ω) : εd

1
2
εd : D(Ω) : εd = 1

2
λ(trεd)2 + µ tr(εd · εd) + α trεd tr(εd ·Ω) + 2β tr(εd · εd ·Ω)

Free Energy for Crack
Closure (ΨS)

ψs = [ 1
2
εel : C0 : εel−C0τ

2

2τ0
−τK0 : εel]+[ 1

2
εd : C∗(Ω) : εd−C

∗(Ω)τ2

2τ0
−τK∗(Ω) : εd]

C∗(Ω) = C(Ω) +
∑3
i=1 H(−tr(Pi : ε))Pi : (C0 − C(Ω)) : Pi, 0 < η ≤ 1

K∗(Ω) = K(Ω) +
∑3
i=1 H(−tr(Pi : ε))Pi : (K0 −K(Ω)) : Pi, 0 < η ≤ 1

C∗(Ω) = C(Ω) +
∑3
i=1H(−tr(Pi : ε))Pi : [(C0 − C(Ω))δ ⊗ δ] : Pi, 0 < η ≤ 1

Free Energy for Crack
Rebonding (ΨS)

Replace Ω by A in the free energy for crack closure
A = Ω− δh

Damage Criterion (fd) fd(Yd
+,Ω) =

√
1
2
Yd

+ : Yd
+ − (a0 + a1Ω)

Strain Decomposition ε = εE + εid = εel + εd = εel + εed + εid

Diffusion Equation
ū(t) =< u(x, t) >= 1

l

∫ l
0 u(x, t)dx = 8U0

π l

∑∞
n=1,3,5...

e−λ
2
nDct

nλn

Dc = Dc0 e
− Q
RT

h(t) = 1− ū(t)
Conjugation Relationships
Stress (σ) σ = ∂ψs

∂εel
=

∂ψETs
∂εel

= C0 : εel − τK0

Damage Driving Force
(Yd)

Y = − ∂ψs
∂Ω

= −
[
C(Ω) : εd

]
: ∂ε

d

∂Ω
− 1

2
εd :

∂C(Ω)
∂Ω

: εd + τ2

2τ0

∂C(Ω)
∂Ω

+τK(Ω) : ∂ε
d

∂Ω
+ τ

∂K(Ω)
∂Ω

: εd

Yd = −(α+ 2β)ε · ε

C = damaged stiffness tensor
C∗ = effective stiffness tensor after “partial recovery”
K∗ = effective diagonal tensor after “partial recovery”

a0 = initial damage threshold
a1 = damage hardening parameter
C∗ = effective heat capacity after “partial recovery”
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Therefore, the solution can be written as follows:

u(x, t) =
4U0

π

∞∑
i=1,3,5,...

e−λ
2
nDctsin(λnx)

n
(25)

in which λn = nπ
l
. The space average of the density of net damage ū(t) is given

in Table 5. The diffusion coefficient Dc depends on both pressure and temperature,

following the constitutive model proposed in Weertman (1955). It requires more acti-

vation energy for a chloride ion to jump into a chloride vacancy than for a sodium in

to jump into a sodium ion vacancy (Mapother et al., 1950). So it can be reasonably

assumed that migration of sodium ions dominates the diffusion of sodium chloride.

Based on Mapother’s study on the temperature dependence of the self-diffusion co-

efficient Dc of sodium (for a temperature range of 573K ∼ 973K), the following

logarithmic relationship is adopted:

Dc = −1.67× 10−12

T
+ 2.99× 10−15 (26)

in which T is expressed in Kelvin, and Dc is expressed in m2/s.

3.3.2.3 Upscaling Method

Grain cementation is considred as the analog of crack rebonding. In the upscaling

method proposed in the following, damage and healing fabric tensors are defined

as moments of probability of microstructure descriptors determined above by image

analysis. Microscopic cracks are thus modeled as oblate spheroids, oriented perpen-

dicular to the loading axis (Fig. 22). The analogy to link microstructure changes and

phenomenological variables is established as follows:

(1) During elastic loading or unloading, only crack aperture varies.

(2) When damage occurs, the crack length increases. Note that we assumed that the

number of cracks was kept constant.

(3) Healing only occurs when the deformation in the loading direction is compressive.

During healing, the crack length decreases whereas the aperture remains constant.
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(a) Elastic tension (b) Non-elastic tension (c) Elastic unloading (d) Healing

Figure 22 Representation of the geometric evolution of micro-cracks in the proposed
model (solid line - original shape; dashed line - deformed shape): (a) Elastic tension:
∆λa 6= 0, ∆R = 0; (b) Non elastic tension: ∆λa 6= 0, ∆R 6= 0; (c) Elastic unloading
(compression): ∆λa 6= 0, ∆R = 0; (d) Healing (after closure): ∆λa = 0, ∆R 6= 0.

The concept of crack density tensor is adopted to account for the difference of crack

length in the three directions of space. Assuming that the principal directions of stress

and net damage are parallel, net damage eigenvalues (A) are related to the means of

the crack length components (Rj) as presented in Table 6. Standard deviations are

considered constant, because sensitivity analyses showed that it does not vary signif-

icantly under the pressure and temperature conditions of the creep tests presented.

In the adopted micro-macro computational method (Zhu and Arson, 2014a), only

the means mi are updated, according to the relationships established in Arson and

Pereira (2013). After some computations, it was shown that the probability density

function of Rj can be updated from the macroscopic strain as follows:

∆ε
Table 5−−−−→ ∆A

Table 6−−−−→ R1, R2, R3
Table 6−−−−→ pj(Rj) (27)

Grains are considered incompressible, so that the volume change of the REV is equal

to the porosity change. The variation of three-dimensional void volume cannot be

captured by microscopic observation. A linear interpolation is used to correlate 3D

porosity with 2D porosity. Based on the expressions of the lower and upper bounds

of 2D and 3D porosities (Zhu and Arson, 2014a), the probability density function of

void areas are updated as follows:

∆ε→ ∆n3D
Table 6−−−−→ ∆n2D

Table 6−−−−→ pA(Av) (28)

The lower bound of porosity is obtained at maximum packing. Salt grains tend to

rearrange and form an ordered pattern. However, voids exist even at the maximum
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packing state since particles do not have a perfect cubic shape. In this ordered

configuration, the lower bound of porosity is obtained by assuming that inter-granular

voids are spheres. The upper bound of porosity is reached at the initial stage, when

salt particles are assembled in a loose packing before the creep test starts. The

2D porosity was obtained through microscopic observation. The 3D porosity was

approximated from experimental measures of sample deformation. Using the strain

decomposition, the stress tensor is expressed as:

σ = C0 : εel − τK0 = C(Ω) : (εel + εed︸ ︷︷ ︸
εE

)− τK(Ω) (29)

The stress rate under isothermal conditions is obtained as follows:

dσ = C(Ω) : dε+
∂C(Ω)

∂Ω
: ε : dΩ− d(C(Ω) : εid) = C(Ω) : dε+

∂C(Ω)

∂Ω
: ε : dΩ+ dσR(30)

Table 6 Relations between microscopic and macroscopic variables.

Relation between Fabric Descriptors and Phenomenological Variables

R and A A =
∑3
j=1 Ajej ⊗ ej , A1 = Nv

(R2R3)
3
2

VREV
, A2 = Nv

(R1R3)
3
2

VREV
, A3 = Nv

(R1R2)
3
2

VREV
Rj =

∫
Rjpj(Rj)dRj

n3D and Av

n3D−n3D,lower

n3D,upper−n3D,lower
=

n2D−n2D,lower

n2D,upper−n2D,lower

n2D,lower =
Av,lower
AREV

= πr2

l2
, n3D,lower =

Vv,lower
VREV

=
4
3
πr3

l3

n2D,upper =
Av,upper

AT
, n3D,upper =

Vv,upper
VT

, Vv ,upper = VT − Vs = Atube · Lupper − ms
ρs

n2D =
∫ Av
AREV

pA(Av)dA

Relation between Fabric Descriptor and Residual Stress
σR and R, Av σR = Nvσr = Nv

2
√

2
π

µ
κ+1

Av
R2

R̄j = mean value of crack length
n2D,lower = lower bound of 2D porosity
n3D,lower = lower bound of 3D porosity
n2D,upper = upper bound of 2D porosity
n3D,upper = upper bound of 3D porosity

Vs = volume of the salt solid
ρs = density of the salt solid
ms = mass of the salt solid

Aj = net damage in principal direction j
VREV = volume of REV
σR = macroscopic residual stress for Nv cracks
σr = macroscopic residual stress for single crack
AT = longitudinal cross-sectional area of sample cylinder
VT = total volume of the sample cylinder
Av = void area

Atube = inner cross-sectional area of tube

Micro-cracks are assumed to be non-interacting, so that the zone of influence of

each crack (in the surrounding solid matrix) is considered to be constituted of an

isotropic linear elastic material. Thus we ignore microscopic crack coalescence and

the resulting macroscopic fracture propagation. Note that our goal is to capture the
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macroscopic damage behavior of the material and to correlate it with microcrack

descriptors. The theory of fracture mechanics (Anderson, 2005) is used to compute

the micro-crack opening vector of an ellipsoidal micro-crack propagating in mode I

(Fig. 23). The micro-crack displacement in the direction perpendicular to the micro-

crack axis is expressed as:

uy(r, θ) =
KI

2µ

√
r

2π
sin(

θ

2
)[κ+ 1− 2cos2(

θ

2
)] (31)

in which uy is half of the crack aperture at location (r, θ), KI is the stress intensity

factor in mode I at the crack tip (r = 0), and µ is the shear modulus of the linear

elastic bulk material. κ depends on the bulk Poisson’s ratio ν. KI depends on the

microscopic residual stress that applied to the micro-crack faces: KI = σr
√
πR. The

half aperture 0.5λa defined above is equal to the displacement uy when θ = π and

r = R, in which R is half of the crack length:

1

2
λa =

κ+ 1

2
√

2µ
Rσr (32)

With the void area Av = 0.5πλaR, the macroscopic residual stress for Nv micro-cracks

can be obtained (Table 6).

Figure 23 Schematic representation of a micro-crack subjected to residual stress
within the REV

The probability density functions of fabric descriptors are updated with defor-

mation and damage (Eq. 27 and 28). Then the residual stress is updated based on

those descriptors. The determination of the residual stress requires the computation

of the mean of the probability p(Av/RjRk). Details are provided in Appendix II.
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The relations between fabric descriptors and macroscopic variables are summarized

in Table 6. Fig. 24 describes the computational method used to update macroscopic

variables from the knowledge of microscopic descriptors.

Figure 24 Computation method to update macroscopic variables through the update

of microscopic descriptors.

3.3.3 Crack Opening, Closure and Rebonding during a Uniaxial Test

The macroscopic damage and healing model depends on seven mechanical parameters

λ, µ, α, β, g, C0, C1 and one thermal parameter αT . In the absence of relevant quan-

titative experimental datasets, macroscopic parameters could not be calibrated for

salt rock. For illustrative purposes, a set of parameters fitted for sandstone (Zhu and

Arson, 2014b) is employed in the following simulations. The microscopic parameters

are determined as follows:

(1) The solution of the diffusion equation (Table 5) is normalized (U0 = 1), and Dc

is computed according to Eq. 26.

(2) n2D,lower, n2D,upper, n3D,lower, n3D,upper, l are computed by using data obtained

from microscopic observation.

(3) The bounds of the fabric descriptors (Amin, Amax, Rmin, Rmax) are estimated, by

referring to the actual grain size and initial simulation results.

(4) The exponent of the power-law distribution of the void area (Eq. 18) is determined

from microscopic observation: t = −1.2.

(5) The number of voids Nv and the standard deviations of the distributions of crack
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length components (s1, s2, s3) are computed in the initialization phase of the algo-

rithm, and then kept constant.

(6) The means of void area and crack length components (a, m1, m2, m3) are updated

with the macroscopic phenomenological variables.

Table 7 summarizes the model parameters used in the simulations. Note that the

soil mechanics sign convention is adopted, with tension counted negative.

Numerical simulations are performed to study the influence of temperature on

the healing process leading to mechanical recovery during the stress path shown in

Fig. 25. Mechanical loading and unloading before and after the healing process are

simulated for a room temperature Troom = 293K, whereas the healing process is

taking place at a higher temperature Theal. In the simulations, healing is occurring

at constant axial strain, under zero lateral stress, and under constant temperature.

Table 8 summarizes the simulation plan for this sensitivity analysis. Scenario 1 is

taken as the reference case with a 10,000 second-healing period (about 3 hours) at

temperature Theal = 593K. The influence of temperature is studied with scenarios 2

and 3. The diffusion coefficient is updated with temperature according to Eq. 26.

Table 7 Model parameters used for the simulation of strain-controlled uniaxial ten-
sion loading/unloading/healing.

λ (Pa) µ (Pa) α (Pa) β (Pa) g(Pa) C0 (Pa) C1 (Pa) αT (K−1) U0(−) l (m)

2.63×1010 1.75×1010 1.9×109 -2.04×1010 1.1×108 1000 2.5×105 −1× 10−5 1 1×10−4

n2D,lower(−)n2D,upper(−)n3D,lower(−) n3D,upper(−) t(−) Rmin(m) Rmax(m) Amin(m2) Amax(m2) e0(−)

0.03 0.165 0.004 0.321 -1.2 1×10−5 1×10−4 1×10−14 1×10−12 0.008

Table 8 Simulation plan for DMT-based healing model.

Scenario Duration (s) Theal (K) Dc (m2/s)
1 (ref) 10,000 593 1.74×10−16

2 10,000 643 3.93×10−16

3 10,000 693 5.80×10−16
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(1) Uniaxial tension (OA-AB)
(2) Release of tensile stress and

further compression to close cracks
(BC-CD)

(3) Compression after crack closure
(DE)

(4) Healing phase under fixed end
boundaries (EF)

(5) Partial release of compression
(FG)

(6) Full release of compressive stress
and further tension (GH)

Figure 25 Stress path simulated to study thermo-mechanical crack opening, closure,
and healing.
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Parametric studies on the effect of temperature on healing are presented in Fig. 26.

The evolution of macroscopic variables is presented, followed by the evolution of mi-

croscopic variables. The stress-strain plots obtained numerically (Fig. 26a) follow the

expected trends: the slope first decreases due to damage propagation (AB); unilat-

eral effects are noted during the compression phase (DE); internal compressive stress

develops due to the restrained thermal expansion of the sample during the creep

phase at high temperature (EF), and partial mechanical recovery is achieved after

the healing phase (FG1). Additional damage is produced after recovery (G1H) when

the new damage threshold is reached (larger than the initial threshold but smaller

than the threshold obtained after the tension phase). The net damage variable (A)

increases when damage increases, and decreases when healing increases (Fig. 26b).

The model captures time-independent damage induced by thermo-mechanical tension

or compression, and time-dependent healing under compression. Stiffness recovery is

more important for higher healing temperatures.

Figures 26c & d show the evolution of the fabric descriptors for the stress paths

simulated. Due to the axis-symmetry of the problem and by construction of the model,

microscopic cracks propagate only in planes orthogonal to direction 1 (loading axis),

therefore crack lengths are non-zero only in directions 2 and 3 (R2 = R3 6= 0, R1 = 0).

According to the definition of net damage, the evolution of crack lengths follows the

evolution of net damage. The difference of convexity in Fig. 26c is due to the cubic

relationship between the eigenvalues of net damage and crack length. The mean of

void areas is proportional to the porosity of the sample, which is assumed to vary

like the volumetric deformation. In the tests simulated, axial deformation is about

three times larger than lateral deformation, therefore volumetric deformation mostly

varies with axial deformation. As a result, the mean of the void area evolves quasi-

linearly with axial deformation during the mechanical loading and unloading phases

(Fig. 26d). During the healing phase, crack lengths shorten while crack apertures

64



remain constant (according to the modeling assumptions summarized in Fig. 22),

therefore, overall the mean void area decreases. Note that the drop observed for the

void area during the healing phase is equal to the drop of crack length times 10−9m,

which is the order of magnitude of the crack aperture. The link between microstruc-

ture changes and macroscopic variables is complex and will require further analyses

with different stress paths and different fabric descriptors.
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Figure 26 Influence of healing temperature on mechanical recovery (direction 1 is
the direction of tensile loading).

65



3.4 Anisotropic Healing Model

3.4.1 2D Diffusion Controlled Healing

We now improve the model presented in Section 3.3 to account for the anisotropy

caused by healing - and not only for the anisotropy caused by damage. Healing-

induced anisotropy is expected to occur if the medium contains various population of

cracks with different orientations and/or different normal displacement vectors (i.e.,

open vs. closed). In order to distinguish the cracks that heal from those that do

not heal under a given state of stress and temperature, we calculate the crack cusp

migration distance for three families of cracks represented by the damage eigenvalues.

The microphysical model of crack cusp migration proposed by Houben et al. (2013),

based on single crack healing experiments, is used for that purpose:

x = [
DCVΩ(γSL + γLV )

πRT

δ

a

4cos θ
2

α3
t]0.25 (33)

in which D is the diffusion coefficient, C is the solubility, δ is the fluid film thickness,

a is a characteristic length scale, α = tan( θ
2
) is the orientation of the crack face (in

reference to the loading axis), VΩ is the molecular volume of the solid, γSL is the

solid-liquid interfacial energy, γLV is the liquid-vapor interfacial energy, R is the gas

constant, T is the absolute temperature.

The intensity of damage U varies over the distance x (“lag") that separates the

crack cusp and the point at which the crack is fully rebonded (Fig. 27). During

the healing process, tubular and porous structures emerging in that lag area induce

a partial mechanical recovery. These structures will gradually disappear over time

(Houben et al., 2013).

We assume that healing starts at the circumference of crack planes. The crack

cusp migrates towards the center of the crack region, according to a two-dimension

diffusion process, which is expressed as

Dx
∂2U

∂2x
+Dy

∂2U

∂2y
=
∂U

∂t
(34)
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Figure 27 Schematic model of healing propagation front in a crack (crack cusp
migration). Damage intensity U varies from 0 (bonded crack faces similar to an
intact material with no crack) to 1 (closed but not bonded faces).

in which U(x, y, t) is the damage intensity depending on position and time. Dx and

Dy are the diffusion coefficients along x and y directions, respectively.

Diffusion in x and y directions affects crack planes perpendicular to the z direction,

and therefore, the z component of the damage tensor. Fig. 28 shows the variations of

damage intensity U = Ωz within a (x, y) crack plane. The lag distance is indicated

by a solid line, over which the damage intensity varies from 0 (at the circumference)

to 1 (towards to the center of the grain). The mean value of the damage intensity

Ū(t) is ∫ ly

0

∫ lx

0

U(x, y, t)dxdy = U(t) · A (35)

in which A = lxly is the crack face area (A = 1 for the normalized crack area).

We define the net damage tensor (A) as the difference between the damage tensor

(Ω) and the healing tensor (H) as

Ai = Ωi −Hi = Ωi −H(σi)(1− U) (36)
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Figure 28 Distribution of damage intensity during the healing process within one
planar crack. The evolution of the lag distance is governed by a 2D diffusion model.

in which H(σi) is the Heaviside function depending on the stress sign. In our model,

we assume that healing takes place in damage directions in which cracks faces are

closed and subjected to local compressive stresses (which are known to enhance heal-

ing). Note that the Heaviside function is a function of the current stress state rather

than the current stress rate. If a crack is subjected to tension unloading, the stress

is negative whereas the stress rate is positive. Under such circumstance using stress

rate may be inappropriate because crack faces are not closed and healing process has

not started yet.

High temperature is not a necessary condition for healing to occur. In the presence

of brine, thin adsorbed water films between crack faces will assist in accelerating the

diffusion process. But higher temperature will provide more efficient healing (Zhu

and Arson, 2014a).

Grain size is not directly accounted for in this framework. Alternatively, we use a

characteristic length scale to indicate the effect of crack size on the healing process.

Here, healing is assumed to be governed by diffusive mass transfer. Accounting for

grain size is essential if we take into account other healing processes such as dissolution
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and precipitation controlled pressure solution at the interfaces.

3.4.2 Model Calibration

We calibrated the diffusion-controlled healing model against the experimental data

provided in Table 9. The first eight values are taken from (Houben et al., 2013;

de Meer et al., 2005). α is the slope of the crack wall, which has the same order of

magnitude as those values adopted in Houben et al. (2013). d is the diffusion distance,

which is equal to the half of a typical crack size. Dx and Dy are parameters to be

calibrated for the healing model. Since the structure of salt crystals is symmetric,

we assume: Dx = Dy, which implies that healing occurs at the same rate along the

x− and y−directions of each face. The lag x(t) in Eq. 33 is the distance between a

point at the circumference of the initial crack plane and a point at the circumference

of the current crack plane, after healing has started. We considered that the position

of the current crack circumference was at the point at which U = 1 ± 5% (Fig. 27).

We calibrated the diffusion coefficient in order to minimize the difference between

the numerical and experimental values after 20,000 seconds of healing (i.e., about 5.6

hours). Despite some deviations induced by the technique we used to update the

position of the crack circumference, the time evolution of the lag predicted with the

calibrated model follows the trends observed experimentally (Fig. 29).

Table 9 Parameters adopted for the diffusion-controlled healing model (Eq. 33
and 34)

R (JK−1mol−1) T (K) D (m2s−1) C (-)
8.314 296 1.3e-9 0.1675

γSL (Jm−2) γLV (Jm−2) Ω (m3mol−1) δ/a (-)
0.129 0.064 2.7e-5 9e-13
α d (m) Dx (m2s−1) Dy (m2s−1)

2.5e-3 1e-4 9e-7 9e-7
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Figure 29 Calibration of the two-dimensional diffusion-controlled healing model

against the experimental result. The numerical curve has a step-wise shape because

of the technique we used to update the position of the crack circumference: The

crack cusp migration distance is the horizontal distance between the bonded crack

face (U = 0) and the closed but not bonded face (U = 1). However, since 1 is the

asymptotic value for U as shown in Fig. 28, we consider the crack face as open if

U > 0.95.

3.4.3 Numerical Analysis at the REV Scale

We simulated a strain-controlled one-dimensional loading test in MATLAB. In order

to generate anisotropic damage in the specimen, we simulated a compression-tension

loading cycle, in stress conditions similar to those encountered in CAES or gas storage

sites (Ibrahim et al., 2008). The loading cycle consisted of uniaxial compression, fol-

lowed by compression unloading, uniaxial tension, tension unloading, time-dependent

healing, and reloading in tension. We assumed that the tension and compression loads

were applied instantaneously, and that the healing phase was the only time-dependent

load step. We assumed that the initial porosity of the sample was due to pre-existing

micro- cracks with various orientations (i.e. damage was non- zero in the initial state

before loading: Ω1 = 0.01, Ω2 = Ω3 = 0.02). We assumed that these micro-cracks
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were filled with saturated brine, which triggered DMT and consequent healing. Ta-

ble 7 in Subsection 3.3.3 provides the model parameters used in the simulations,

after (Maleki, 2004; Zhu and Arson, 2014a).

To facilitate the calculation of micro-macro relationships, we made a few simpli-

fying assumptions:

• During elastic compression, cracks perpendicular to the loading axis close,

whereas cracks parallel to the axis keep the same shape.

• The mass balance of the fluid inside cracks was not accounted for, since our

focus is the effect of DMT on the recovery of mechanical properties. The fluid

amount is relatively small and the resulting poroelastic effect is ignored.

• When the strain increment is tensile, only the cracks perpendicular to the load-

ing axis change shape.

We performed numerical simulations at room temperature (296K) for two different

diffusion periods: 10,000s and 20,000s. Contrary to the previous study in Section 3.3,

healing is fast even at room temperature because we assumed here that the inter-

granular space was filled with aqueous films. Fig. 30 presents the overall stress-strain

response of the sample. Under compression (in direction 1), the sample behaves

elastically before reaching the damage threshold (OA). Damage starts to accumulate

afterwards, causing significant stiffness degradation (AB). Compression unloading is

elastic (i.e. cracks parallel to direction 1 do not propagate), therefore the response of

the material on portion BC is linear elastic, with a stress-strain slope that is smaller

than during the loading phase OA, because of the accumulation of damage on portion

AB.

Point C lies slightly below the origin, which indicates the presence of residual stress

after unloading. At C, the axial deformation is zero: we assume that cracks are closed

at that point. Portion CD (in tension) illustrates the recovery of compression strength
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after crack closure (i.e., the slope of the stress-strain curve is the same as portion OA).

In this particular simulation, a smaller value was assumed for tensile strength than

for compressive strength as expected for rocks. At D, damage starts to propagate

in tension, up to point E. EF shows the elastic tension unloading that follows. At

F, tension cracks (perpendicular to direction 1) are closed, and compression cracks

(parallel to direction 1) start to re- open. The stress-strain plot of compression

reloading (FG) is parallel to that of compression unloading (BC). We simulated the

healing phase (constant stress, varying time) under the compression stress at point

G. Portions GH1 and GH2 show the response of the material when the material is

reloaded in tension (for two different healing periods). The slopes of GH1 and GH2

are steeper than that of DE and less steep than that of OA, which indicates partial

mechanical recovery. As expected, higher recovery is achieved for longer healing

periods.
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Figure 30 Stress-strain curve simulated for the compression-tension cycle (The mag-

nified portion shows the details of the unilateral effects).

Fig. 31 illustrates the evolution of the damage variable. As expected, micro-cracks

perpendicular to direction 1 (loading axis) do not propagate during the compression
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phase (OC) nor during the elastic phase under tension (CD). Damage in direction

1 propagates during the non-elastic tension phases (DE, GH) and remains constant

during the unloading and healing phases (EFG). Damage in directions 2 and 3 (micro-

cracks parallel to the axis of the loading) increase during non-elastic compression (AB)

and remain constant during compression unloading and tension loading (BH). The

evolution of net damage in Fig. 32 is the same as that of damage except for portion

GH, after healing has occurred. Cracks parallel to the loading axis do not heal

under compression, therefore damage and net damage in directions 2 and 3 are equal.

Cracks perpendicular to the loading axis heal at constant controlled deformation,

which explains the drop of net damage after point G. On portion GH, net damage in

direction 1 remains constant until the recovered tensile strength is exceeded. Longer

healing periods lead to a larger decrease of net damage.
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Figure 31 Evolution of the damage variable. Cracks perpendicular to the loading
axis (left) and parallel to the loading axis (right).

Figures 33 and 34 show the evolutions of the fabric descriptors introduced in the

model. By construction of the model, the evolution of crack length mirrors that of net

damage. The mean of void areas is proportional to the porosity of the sample, which

varies like the volumetric deformation in our model. The mean void area of micro-

cracks perpendicular to direction 1 decreases first because of the compression of cracks
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Figure 32 Evolution of net damage. Cracks perpendicular to the loading axis (left)
and parallel to the loading axis (right).

during the elastic state, remains constant after damage occurs (because we assume

that cracks parallel to the loading axis dominate deformation during compression),

and increases again when tension is applied. On the other hand, the surface area of

compression cracks varies only during compression phases. Healing under compression

leads to a drop in the mean void area of cracks perpendicular to the loading axis.

Since cracks parallel to the loading axis do not rebond, their mean area does not

change during the healing phase GH.

Fig. 35 illustrates the distribution of the damage intensity within a crack face

of normalized area. We verify that longer healing periods provide longer lags and

therefore lower damage intensity along the grain radial direction. We also check that

the lags shown in Fig. 35 are in agreement with the drop in crack lengths calculated

during the healing phase (Fig. 33). The average damage intensity value (shown in

Fig. 35) also matches the decrease in net damage variable (shown in Fig. 32).
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Figure 33 Evolution of crack length. Cracks parallel to the loading axis (left) and
parallel to the loading axis (right).
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Figure 34 Evolution of mean crack area. Cracks parallel to the loading axis (left)
and parallel to the loading axis (right).
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(a) (b)

Figure 35 Damage intensity after two different healing periods (grain scale).
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3.5 Fabric-based Permeability Model

3.5.1 Fabric Characterization

In Subsection 3.3.1, we did microscope observations of the salt granular assembly

through the tube walls at regular time intervals in order ensure continuous microstruc-

ture characterization without taking out the sample. However, light reflection and

transmission induced by transparent and cubic-shaped grains significantly impaired

the image quality, which increased the difficulty to detect grain boundaries (Zhu et al.,

2015b). To overcome this problem, we used micro-computed tomography (micro-CT),

which allows observing and re-generating the 3D porous structure of the salt granular

assembly. This technique can easily distinguish the solid NaCl from voids because

the salt grains and the porous fluid present a high density contrast. Micro-CT obser-

vations of the granular salt assembly confined in the tube (Fig. 36a) were conducted

at the Guldberg Laboratory at Georgia Tech. The voxel size was 30 µm while the

size of a single particle is 300 ∼ 400µm. We used ImageJ (Abràmoff et al., 2004) for

3D porous structure reconstruction (Fig. 36b). Cross-sectional views were produced

throughout the sample (Fig. 36c), from which we extracted binary images for further

image processing (Fig. 36d).

We performed statistical image analyses of the binary images to extract informa-

tion on the fabric. In particular, we characterized pore connectivity by studying the

distribution of void centroid-to-centroid distances. Using the location of the void cen-

troids (Fig. 37), we calculated the distance between each void centroid and its nearest

neighboring void centroid. We found that these centroid-to-centroid distances follow

a lognormal distribution (Fig. 38):

pi(li) =
1√

2πlisi
e
− (lnli−mi)

2

2s2
i (37)

This lognormal distribution reaches its peak value at a distance of about 0.4mm,

which corresponds to the typical size of a table salt grain.
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Figure 36 Image analysis during creep tests realized on table salt: (a) experimental
set up; (b) micro-CT image of the solid skeleton; (c) cross-sectional view (original
image); (d) cross-sectional view (binary image). Voxel size = 30µm. Sample diameter
= 19mm. Grain size = 300 ∼ 400µm.
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We also analyzed the distribution of void surface areas, which was found to follow

a power law distribution (Fig. 39), which is conform to our previous observations:

pA(Av) = a · Atv (38)
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Figure 37 Locations of void centroids processed from the binary image in Fig. 36d.
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Figure 38 Normalized probabilty distribution of the centroid-to-centroid distances
for all voids in the binary image (Fig. 36d). The peak appears at about 0.4 mm,
which is close to the typical size of a single table salt grain.

3.5.2 Theoretical Framework

Fabric evolution impacts both the mechanical stiffness and the hydraulic properties

of rocks. Table A.2 in Appendix I provides a summary of classical models that couple

rock microstructure to permeability.
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Figure 39 Normalized power law distribution of void area processed from the binary
image in Fig. 36d.

In the following, we improve the mechanical damage and healing model with

isotropic healing and anisotropic net damage, proposed in Section 3.3, in order to

account for the impact of damage and healing on permeability. We use the inter-

granular space as an analog of salt rock crack space, and we consider that cracks

are 3D spheroids. Spheroidal cracks are more realistic than the penny-shaped cracks

considered in Section 3.3, and can be described by geometric parameters similar to

the ones identified above: radius R, aperture 2 ∗ λ, and orientation n. L is the crack

spacing, i.e., the centroid-to-centroid distance between adjacent cracks (Fig. 40b).

We use the crack model proposed by Dienes (1982) and further modified by

Guéguen and Dienes (1989) as a basis to calculate permeability. This crack model is

chosen since it is established based on crack geometry, crack spacing, and the pore

network connectivity. For an isotropic distribution of cracks with narrowly distributed

width, radius, and spacing, the permeability can be computed as

k =
4π

15
f
λ̄3R̄2

l̄3
(39)

in which λ̄ is the average half-crack aperture, R̄ is the average crack radius, l̄ is

the average crack spacing, and the connectivity factor f accounts for the fraction

of cracks that belong to an infinite network (i.e., the fraction of cracks that passed
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Figure 40 (a) Comparison between a spheroidal crack and a penny-shaped crack
(3D view and 2D view). (b) Characterization of the spatial distribution of spheroidal
cracks. Each crack is characterized by its radius, aperture, orientation, and the crack
spacing.
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the percolation threshold). These three microstructural parameters are independent

from each other. From the CT-scan image analysis presented and from our previous

microscope observations (Zhu and Arson, 2014a), we know the probability density

functions of these fabric descriptors: the crack radius follows a lognormal distribution

(Subsection 3.3.1); the crack area follows a power law distribution (Fig. 39); the crack

spacing follows a lognormal distribution (Fig. 38). f is determined by the percolation

theory.

In this model, spheroidal cracks are allowed to grow, intersect, and form con-

nected porous pathways. Such pathways are limited to local regions at low crack

number densities, but percolation can occur after a critical density is reached, which

originates macroscopic permeability. After the percolation threshold is reached, per-

meability rapidly increases with crack density. Crack spacing is set as a constant in

this model, i.e. crack centroids are assumed to remain the same upon crack growth

(this means that cracks grow symmetrically about their centroid). In the absence

of further experimental evidence, this assumption was considered acceptable for the

proposed model of permeability.

The projection of orderly-packed granular salt assembly in 2D shows that each void

has a maximum number of four neighboring voids. Therefore, we used the four-fold

coordinated Bethe lattice (Dienes, 1982; Stauffer, 1985) to calculate the connectivity

factor f . This lattice is based on an idealized geometric representation, and becomes

inappropriate in 3D. Therefore, in future studies, we will resort to a pore network

model to predict the value of f . For the chosen Bethe lattice, the percolation factor,

which is used to determine whether a crack is connected to at least two infinite paths

for throughout flow, is given by:

f = 1− 4[

√
1

p
− 3

4
− 1

2
]3 + 3[

√
1

p
− 3

4
− 1

2
]4 (40)

in which p is the probability of existence of a connection between cracks, which is

equivalent to the probability of intersection between two cracks. We adopt the concept
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of excluded volume (De Gennes, 1976) to calculate p. The excluded volume is the

average volume around one crack within which a second crack must have its center

in order for the cracks to intersect. For two discs, the excluded volume is found as:

Ve = π2R
3 (41)

Given that 1/l
3 is the crack density, the probability of crack intersection is given as

(Guéguen and Dienes, 1989):

p ≈ π2R
3

4l
3 (42)

in which it is assumed that each crack has 4 neighbors.

Combining Eq. 39, 40, 42, the expression of permeability in terms of crack geom-

etry and percolation parameters becomes:

f =
4π

15

λ̄3R̄2

l̄3
{1− 4[

√
4l̄3

π2R̄3
− 3

4
− 1

2
]3 + 3[

√
4l̄3

π2R̄3
− 3

4
− 1

2
]4} (43)

The value of kmax is given by Eq. 39 for f = 1. Nonzero permeability is observed

for p > 1
3
: After this threshold is reached, the resulting crack intersection network

will percolate and carry flows through the cluster of intersecting cracks (Fig. 41).

Two possibilities exist for the development of permeability from critical region

(f < 1) to post-critical region (f = 1): (1) the crack number density increases and

the crack geometry does not change after f = 1; (2) a constant number of cracks widen

after f = 1. In this study, we fixed the total number of cracks and the crack spacing

parameter, but crack geometry evolves during the damage and healing processes. For

consistency, we thus used the 2nd scenario (crack widening) to model the increase

of crack- permeability after percolation. Beyond the critical region, permeability is

maximum:

k =
4π

15

λ̄3R̄2

l̄3
(44)
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Figure 41 The normalized permeability as a function of the probability of intersection
between two cracks (p). The percolation threshold for the four-fold coordinated Bethe
lattice is 1/3.

3.5.3 Computational Algorithm

The full resolution algorithm is summarized in Fig. 42. In the simulations presented

in the following, the computation is strain-controlled with a strain increment given

at the beginning of each step.

First, the crack closure condition is checked. Crack healing may occur only if crack

closure is satisfied. Crack closure influences the stiffness, heat capacity, and bulk

modulus, but does not change the microstructure descriptors and damage variable.

By contrast, crack geometry evolves during the healing process, which results in a

change in mixed damage variable and stress state.

If crack closure does not occur, we use the damage criterion to determine whether

the material reaches its damage state or remains elastic during the current increment.

In the elastic domain (elastic loading or unloading), the damage in the material does

not change and only the microstructure changes, which induces a change in stress.

If damage occurs, iterations are required to update the new damage variable. The
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microstructure and stress variables are updated accordingly.

Based on the calculation at the current step, strain, stress, damage, and mi-

crostructure variables are updated and stored for the next computational step.

3.5.4 Numerical Simulation

We simulate a strain-controlled uniaxial loading test in MATLAB. The stress path

consists of uniaxial tension, tension unloading, healing, and reloading in tension.

We assume that only the healing phase is time-dependent. Mechanical loads are

applied instantaneously. Model parameters used in the simulations are summarized

in Table 7. Mechanical loading and unloading phases were assumed to take place

at room temperature (22◦C = 295K), whereas the healing process was simulated at

elevated temperature (595K, 695K). The healing period was 10000s (about 3 hours).

The stress-strain response follows the expected trends (Fig. 43a). The linear

segment (OA) represents the initial elastic response - until damage initiates at point A.

The accumulation of damage degrades the stiffness (AB) before the unloading phase.

After releasing all tensile stress (BC) and applying additional compression to close

all cracks (CD), unilateral effects result in some unilateral recovery of the stiffness in

compression (DE). Healing occurs at elevated temperature (EF). Temperature was set

back to room temperature before initiating tensile deformation for the reloading phase

(FG). Additional damage is produced after recovery (GH) when the new damage

threshold is reached. The change in slope after reloading illustrates the effect of

temperature on healing: higher temperature over the same period of time leads to a

more mechanical recovery (i.e., stiffness recovery).

The evolution of damage is the same for both healing temperatures investigated

(Fig. 43b). Micro-cracks do not propagate during the elastic phase (OA) or the un-

loading phase (BCDE). Damage increases during the non-elastic tension phase (AB),

remains constant during healing phase (EF), and increases again during reloading
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Figure 42 Computational algorithm of the microstructure-enriched model.
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(GH). The mixed damage variable evolution follows a similar trend except during

the healing phase (Fig. 43c). When healing occurs at constant axial deformation, h

increases due to crack rebonding, which results in a decrease in net damage. After

10,000s healing at 595K and 695K, the healed stiffness increases from 81% of the

initial stiffness (after damage and before healing, point E) to 86% and 89% of the

initial stiffness (after healing, point F), respectively. Compared to healing processes

that occur in the presence of brine (Zhu and Arson, 2015), healing in dry conditions

is slower and requires higher temperature or longer healing time to produce the same

effect.

Evolutions of fabric descriptors are presented in Fig. 43d and Fig. 43e. Because

of the axis-symmetry of the problem and by construction of the model, micro-cracks

only propagate in planes orthogonal to the loading direction (R2 = R3 6= 0, R1 = 0).

Since crack length is updated with net damage, evolution of crack length is similar

to that of net damage (Fig. 43d). Crack aperture increases during elastic phase and

decreases when damage propagates (Fig. 43e), which means that microcracks become

longer but thinner during crack propagation.
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Figure 43 Numerical simulation results from MATLAB at the integration point: (a)

stress-strain; (b) damage variable; (c) net damage variable; (d) crack radius; (e) crack

aperture; (f) permeability; (g) volume change; (h) connectivity.

The material permeability depends on the evolution of microstructure descriptors

(Eq. 43 and 44). The overall trend of permeability evolution is similar to the evolution

of the crack radius (Fig. 43f). Permeability increases slightly during the elastic phase

since the crack aperture increases (OA). Note that we assumed that salt had a non-

zero initial permeability. Therefore, the variations of permeability due to damage

shown in Fig. 41 occur in addition to that initial permeability in our simulation results.

When damage starts to accumulate after point A, the radius of cracks increases,

which rapidly leads to the percolation threshold (Fig. 41). That is why permeability

increases dramatically after the initiation of damage (AB). Once the crack network

stabilizes and forms a fully connected flow path, the permeability will gradually reach

its maximum value. Similar trends were observed in many experimental studies (e.g.,

(Alkan, 2009)). During unloading, crack aperture decreases, however, crack faces

are not fully closed. As a result, permeability decreases but does not go back to its

initial value (BCDE). The change of crack radius also contributes to the decrease of
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permeability during healing (EF). Crack radius and permeability increase again when

the new damage criterion is satisfied during reloading (GH).

Permeability evolution is governed by changes of porosity (or equivalently REV

volume since grains are incompressible, Fig. 43h) and pore connectivity (Fig. 43g).

It is obvious that connectivity varies significantly when damage or healing occurs,

whereas the REV volume change is negligible. We conclude that for the case simu-

lated, permeability evolution is controlled by crack connectivity. Therefore, in-situ

measurement of volume or deformation change may not be sufficient to infer the per-

meability change of the rock. It would be necessary to obtain the microstructure

evolution through techniques such as in-situ X-ray microtomography.
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3.6 Conclusions

The fabric-enriched Continuum Damage and Healing Mechanics (CDHM) framework

is a top-to-bottom modeling approach that allows predicting damage and healing

anisotropy induced by thermo-mechanical crack opening, closure and healing in rocks.

In the work presented above on salt, the rearrangement of salt particles and the re-

bonding of grain boundaries during creep are described by the probability density

functions of two geometric descriptors: the void area and the crack lengths. Crack

closure is considered by adopting the concept of unilateral effect on rock stiffness.

Crack rebonding is assumed to result from Diffusive Mass Transfer (DMT) processes.

Net damage evolution obeys a diffusion equation in which the characteristic time

scales with the typical size of a grain of salt. The thermo-mechanical damage model

is calibrated and verified against experimental stress-strain curves during drained tri-

axial compression tests conducted on saturated sandstone. Healing parameters are

calibrated by comparing crack cusp migration distance with published experimen-

tal results. Constitutive models are programmed at the integration point in MAT-

LAB to simulate thermo-mechanical loading and unloading cycles in axis-symmetric

conditions. Macroscopic and microscopic model predictions are in agreement with

the assumptions made in the constitutive framework. Under anisotropic mechanical

boundary conditions, cracks can be produced during heating. Higher ambient tem-

perature increases the lateral expansion and produces more damage. The efficiency of

healing increases with temperature, time, and the presence of moisture. Permeability

changes are predominantly controlled by changes in crack connectivity rather than

the porosity change.

These numerical observations are expected to bring new thoughts to engineers and

guide the choice of rock material in the design of geological storage facilities. For a

nuclear waste disposal site, a proper control of the site temperature is advantageous

for damage recovery and long-term maintenance. Humidity control plays a key role
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in accelerating the rock healing process. Thermo-hydro-chemo-mechanical couplings

should be accounted for in the most general case where all factors such as temperature,

humidity and various healing mechanisms play a part.
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CHAPTER IV

MICRO-MACRO MODEL OF VISCOUS FATIGUE

4.1 Introduction

In this chapter, we present a “bottom-up" modeling approach, in which a self-consistent

homogenization scheme is used to predict the viscous damage and fatigue behavior of

halite polycrystals from mono-crystal slip mechanisms. Following the micromechan-

ical approach adopted by Pouya to study salt rock plastic behavior (Pouya, 1991a,

2000), our goal is to model the viscous behavior of polycrystalline salt by upscaling

viscous gliding mechanisms formulated at the crystal scale. Our study focuses on the

combination of time-dependent gliding and breakage mechanisms that occur at the

grain scale under cyclic loading. In this chapter, we propose a homogenization scheme

based on Hill’s incremental interaction model (Hill, 1965), in which we account for the

heterogeneity of the elastic stiffness tensor that results from different damage mech-

anisms occurring at the grain scale. In order to focus on the effects of grain breakage

on macroscopic viscoplastic strains, we disregard the viscous accommodation of the

matrix in the inclusion-matrix interaction model (evidenced in (Mercier and Molinari,

2009; Rougier et al., 1994) for instance). Note that in the absence of damage, this

simplifying assumption yields the Kröner - Weng interaction model (Kröner, 1961;

Weng, 1982). For future work, a review of incremental, secant, tangent, affine and

variational formulations may be found in (Bornert et al., 2001; Masson and Zaoui,

1999; Masson et al., 2000; Nebozhyn et al., 2001).

We first explain the microscopic origin of fatigue (Section 4.2) and the corre-

sponding macroscopic fatigue behavior (Section 4.3) in salt rock. Then we present

the homogenization scheme in Section 4.4. In Section 4.5, we explain a method to
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calculate the internal stress and damage in the polycrystal during cyclic loading. We

calibrate our micro-macro model of salt viscous fatigue against creep tests reported

in the literature: results are reported in Section 4.6. We simulate creep tests (Sec-

tion 4.7) and cyclic loading tests (Section 4.8), and conduct several parametric studies

in order to examine the micromechanical origin of fatigue.
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4.2 Microscopic Sliding Mechanisms

Halite is a Face-Centered Cubic crystal (FCC, Fig. 44). If all constituents of the

crystal were atoms, intra-granular dislocations would occur on planes separating the

two densest grain fractions, i.e. on planes normal to the < 1 1 1 > direction of the

grain coordinate system (Fig. 45). However, halite crystals comprise two FCC ionic

sub-networks (sodium Na+ and chloride Cl−). Due to electronic interaction forces

between ions, the planes along which sliding requires the minimum energy input are

the {1 0 1} planes.

Figure 44 Crystal structure of salt.

Figure 45 Sliding planes in FCC crystals (Barber et al., 2008).

In the local coordinate system of the mono-crystal, sliding systems (Al) are writ-

ten:

Al = Nl ⊗Ml (45)

in which Nl and Ml are respectively the vector normal to the lth sliding plane and

the lth unit sliding vector. The vectors normal to the preferential sliding planes are
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the following:

N1 = 1√
2
(0, 1, 1) N2 = 1√

2
(1, 0, 1) N3 = 1√

2
(−1,−1, 0)

N4 = 1√
2
(0,−1, 1) N5 = 1√

2
(−1, 0, 1) N6 = 1√

2
(−1, 1, 0)

(46)

The sliding directions are given by:

M1 = −N4 M2 = −N5 M3 = −N6

M4 = −N1 M5 = −N2 M6 = −N3
(47)

Sliding system N4 ⊗M4 (respectively N5 ⊗M5 and N6 ⊗M6) is normal to sliding

system N1 ⊗M1 (respectively N2 ⊗M2 and N3 ⊗M3). Moreover, we have:

N1 ⊗M1 = N2 ⊗M2 + N3 ⊗M3 (48)

So that there are only two independent sliding mechanisms for each grain. Note that

in global matrix coordinates, the lth sliding system of the mono-crystal is noted:

alij =
nlim

l
j + nljm

l
i

2
(49)

In which nl andml are respectively the vector normal to the lth sliding plane and the

lth unit sliding vector. Moreover, the viscoplastic deformation of the grain is written:

ε̇vpij =
L∑
l=1

γ̇lalij (50)

In which γ̇l is the viscoplastic (shear) deformation of grains subjected to the lth sliding

mechanism in the grain. For halite mono-crystals, L = 6 (with only 2 independent

sliding mechanisms). The local shear stress is related to the micro-stress by:

τ l = σ : al (51)

Based on experimental correlations (Pouya, 1991b; Wanten et al., 1996), the irre-

versible shear deformation is assumed to obey a power law:

γ̇l = γ0 h
l

∣∣∣∣τ lτ0

∣∣∣∣n (52)
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in which n is a material parameter, γ0 is a reference deformation rate, and τ0 is a

reference shear stress, arbitrarily set equal to 1MPa in the following (the model is

calibrated with γ0). hl depends on the sign of τ l: if τ l is positive, hl = 1; if τ l is

negative, hl = −1.

4.3 Macroscopic Fatigue Behavior

Table A.3 in Appendix I gives an overview of the main experimental results obtained

for salt rock under cyclic loading. Observations made in a variety of salt rocks are very

similar. The Young’s modulus and the compressive strength decrease as the number

of loading cycles increase (Dubey and Gairola, 2000; Fuenkajorn and Phueakphum,

2010; Ma et al., 2013). Fatigue initiates faster for lower loading frequency (Fuenka-

jorn and Phueakphum, 2010; Liang et al., 2011; Liu et al., 2014a; Ma et al., 2013).

The degradation of elastic moduli increases with the maximum stress and with the

amplitude of the loading (Guo et al., 2012). Compared to amplitude and frequency,

the confining stress does not influence fatigue significantly (Ma et al., 2013). The in-

fluence of the orientation of the bedding planes was investigated in Dubey and Gairola

(2000). Memory effects in salt subject to triaxial stress states were analyzed in Fil-

imonov et al. (2001). It has to be noted that the range of frequencies investigated in

laboratory studies are significantly higher than those in actual CAES conditions. Low

frequency experiments are more difficult to conduct in the laboratory, because they

require more time: a sufficiently long loading period and a large number of loading cy-

cles. Laboratory tests, performed at the macroscopic scale, were not able to reveal the

microscopic origin of fatigue. The micro-macro modeling approach presented in the

following addresses this shortcoming: numerical simulations were conducted to relate

the development of salt fatigue under cyclic loading to the evolution of micro-stresses

in halite grains.
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4.4 Homogenization Scheme

4.4.1 Averaging Method

The Representative Elementary Volume (REV) considered is an aggregate of halite

mono-crystals of different orientations. The upscaling scheme is based on averages

computed in the space of crystal orientations. To determine a system of coordinates

in this space, let (X, Y, Z) denote a system of crystallographic axes attached to the

inclusion (Fig. 46). The orientation of the Z-axis is determined by two spherical

coordinates (angles Ψ and θ), defined in the Cartesian coordinate system (x, y, z).

Let (u, v, z) be the system obtained from (x, y, z) through a rotation around the z-

axis by an angle Ψ. Let (U, v, Z) be the system obtained from (u, v, z) through a

rotation around the v-axis by an angle θ. The system (X, Y, Z) is obtained from

(U, v, Z) by an additional “spinal” rotation around the Z-axis by an angle Φ, which

varies between 0 and 2π.

The probability of having a Z-axis of orientation (Ψ, θ, Φ) is the product of the

probability of occurrence of the solid angle Ω (measured by dΩ = sinθdθdΨ) by that

of the spinal rotation Φ (measured by dΦ). Therefore, the density of the probability

of occurrence of a grain orientation ω1 is measured by:

dp = p(ω1)dω1 = p(Ψ, θ,Φ) sinθ dθdΨdΦ (53)

Moreover, the average of a function f(ω1) is defined as:

f =
1

Ω1

∫
Ω1

f(ω1)dω1 =
1

8π2

∫ π

θ=0

∫ 2π

Ψ=0

∫ 2π

Φ=0

f(Ψ, θ,Φ) sinθ dθdΨdΦ (54)

Salt rock is made of halite (NaCl) mono-crystals, which all have the same FCC struc-

ture. Since the inclusion (or “grain”) considered represents a single crystal, crystalline

symmetries allow reducing the variation of Φ to the interval [0, π/2]. Finally, chang-

ing θ to π − θ, Ψ to 2π − Ψ and Φ to 2π − Φ leads to the same crystallographic

orientation (in which Y is changed into −Y ). This allows reducing the domain of
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Figure 46 Spherical coordinate system adopted to characterize mono crystal orien-
tations.

variation of θ to the interval [0, π/2]. Moreover, the following simulations focus on a

uniaxial macroscopic loading, in which the REV presents a symmetry about the z-

axis. Therefore, Ψ can be set equal to a constant. Without reducing the generality of

the model, Ψ = 0 is adopted in the following. As a result, in the proposed approach,

the average is defined as:

f =
2

π

∫ π/2

θ=0

∫ π/2

Φ=0

f(θ,Φ) sinθ dθdΦ (55)

Using the variable change u = cosθ, Eq. 55 can be rewritten as:

f =
2

π

∫ 1

u=0

∫ π/2

Φ=0

f(u,Φ) dudΦ (56)

All grain orientations are assumed to have the same probability of occurrence, i.e., the

orientation of the mono-crystals is assumed to follow a uniform probability density

function. To obtain equipotent points in a discrete integration scheme, it is sufficient

to divide the domain of variation of u ([0, 1]) into nu intervals of central value ui,

and the domain of variation of Φ ([0, π/2]) into nΦ intervals of central value Φj. The

average is finally computed as:

f =
1

N

∑
i,j

f(θi,Φj) (57)
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in which N = nu nΦ, and θi = Arcos(ui). In the simulations presented in the follow-

ing, 200 orientations are considered (i.e., N = 200).

4.4.2 Inclusion-Matrix Model

The stresses and strains in mono-crystals depend on the macroscopic load imposed

to the aggregate, and on the interactions between these mono-crystals. A simplified

“inclusion-matrix model” is used to account for the interaction between grains. Fol-

lowing a self-consistent upscaling scheme, each mono-crystal is viewed as an inclusion

embedded in an infinite homogeneous matrix, which represents the macroscopic ag-

gregate. The behavior of the matrix is a priori unknown. Therefore, the upscaling

method is based on an implicit system of equations: the unknown matrix model has

to be determined iteratively. In the model proposed below, mono-crystals are viewed

as spherical inclusions (Fig. 47).

For a homogeneous and isotropic elastic matrix, the model of Kröner, proposed

initially for elasto-plastic materials, was extended by Weng (1982) for viscoplastic

materials, in the following form:

σ̇ − σ̇ = 2µ(1− β)(ε̇
vp − ε̇vp) (58)

in which σ̇ is the rate of microscopic stress, and σ̇ is the rate of macroscopic stress.

ε̇
vp and ε̇vp denote the macroscopic and microscopic viscoplastic strain rates. β is

given by:

β =
2(4− 5ν)

15(1− ν)
(59)

in which ν is the Poisson’s ratio of the homogenized REV (a priori unknown).
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Figure 47 Salt rock Representative Elementary Volume (REV). (a) Monocrystal

inclusions in the homogeneous matrix. (b) Schematic representation of salt mono-

crystals in the inclusion-matrix model.

Both the mono-crystal inclusions and the matrix are considered to be viscoplastic.

The viscoelastic self-consistent model of Weng is adopted, which is based on Eshelby’s

inclusion model. But the matrix-inclusion interaction is assumed to be purely elastic,

which implies that macroscopic viscoplasticity only stems from grain-scale viscoplastic

deformation, and not from grain/matrix incompatibilities. The local stress in the

inclusions (σ) and the far-field stress in the matrix (σ) are coupled to the microscopic

strain (ε) and the macroscopic strain (ε) by the following relationship:

σ − σ = −L∗ : (ε− ε) (60)

in which L∗ is Hill’s tensor for a spherical inclusion in an isotropic matrix (Hill, 1965).

4.4.3 Micro-macro Damage Modeling

At the REV scale, damage is defined as the reduction of elastic moduli and rock

strength. Macroscopically, crack propagation in a rock REV can by driven by tension,

compression or shear (Bobet and Einstein, 1998; Ortiz, 1985). In the model proposed

here, macroscopic damage triggers when one mono-crystal fails. Microscopically, the

initiation of damage at the grain scale is restricted to mode I failure, which occurs
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when the microscopic stress exceeds the tensile strength of salt mono-crystals (equal

to 2MPa): if the major principal local stress of a grain exceeds 2 MPa, the grain

is breaking. Damage propagates when subsequent stress redistribution and further

loading bring micro-stress in other grains to the tensile limit. The number of unbroken

grains is noted Ng, the number of broken grains is noted Nb, and the total number

of grains in the REV is noted N (with N = nu nΦ, the number of mono-crystal

orientations considered in the REV). The dilute scheme estimate for the elastic matrix

yields the following effective bulk modulus (κ̃) and shear modulus (µ̃):

κ̃ =
Ng

N
κ =

N −Nb

N
κ = (1−D)κ, µ̃ =

Ng

N
µ =

N −Nb

N
µ = (1−D)µ (61)

In which the damage variable is defined as D = Nb/N = 1 − Ng/N . From the ex-

pressions of the damaged bulk and shear moduli in Eq. 61, it can be shown that

Poisson’s ratio does not change upon grain breakage: ν̃ = ν. The micro-macro mod-

eling approach proposed combines Hill’s scheme (Hill, 1965) for the rate-independent

non linear elastic matrix behavior (to represent the inclusion-matrix interaction), and

a brittle constitutive law for the grains subject to breakage (to represent damage).

Hill’s tensor is calculated for the damaged matrix. So, in the present work, the

inclusion-matrix interaction model accounts for brittle grain breakage, but does not

capture the “viscous accommodation” due to the viscous deformation of the matrix.

This simplification is considered acceptable for the sake of this study, which focuses

on macroscopic fatigue behavior induced by cyclic loading.

For each macroscopic stress loading increment δq(t) applied between times tn

and tn+1, the macroscopic and microscopic variables are updated in two steps, as

illustrated in Fig. 48:

1. The “damage phase” (tn ∼ t+n ) accounts for instantaneous variations due to

grain breakage at time tn: these variations are noted δσ, δε, δσ, δε.

2. The “viscous phase” (t+n ∼ tn+1): accounts for time-dependent variations due to
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viscous deformation on the time interval ∆nt = tn+1 − tn: these variations are

noted σ̇∆nt, ε̇∆nt, σ̇∆nt, ε̇∆nt.

Figure 48 Stress computational method: decomposition of the time step into damage

and viscous phases, for stress- or strain- controlled tests.

At each stress increment (i.e., time step), the grain breakage criterion is checked at

the beginning of the damage phase (t = tn). Grains are sorted into three categories,

depending on their stress state:

• The grain is non-broken if the maximum principal microscopic stress is less than

the mono-crystal tensile strength of 2 MPa;

• The grain is breaking if the maximum principal microscopic stress exceeds the

mono-crystal tensile strength of 2 MPa during the current loading increment;

• The grain is broken if the mono-crystal had already broken in a previous loading

increment.

Initially at t = tn, the damaged elastic moduli are calculated from Eq. 61, in which Nb

accounts for both breaking and broken grains. For all types of grains, the inclusion-

matrix interaction is governed by Kröner formula in Eq. 60. Grain breakage results
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in a redistribution of micro-stresses: when breaking grains actually fail, non-broken

grains become subjected to microscopic stresses of higher magnitude. At the begin-

ning of the viscous phase (at t = t+n ), resulting micro-stresses are updated by using

the equations governing the sliding mechanisms. Note that in some of the grains, the

redistribution of micro-stresses due to grain breakage (at t = t+n ) can result in tensile

stresses that exceed the tensile strength. Grains that are subjected to higher stresses

than the tensile strength are considered as non-broken during the viscous phase of

the loading (between t = t+n and t = tn+1), and the status of the grains is checked and

updated at the beginning of the damage phase of the following loading increment (at

t = tn+1).
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4.5 Micro-Macro Stress Computational Method

4.5.1 Stress Redistribution due to Damage

By definition, the macroscopic stress (respectively strain) is the average of microscopic

stresses (respectively strains). Other averaged local quantities are not necessarily

equal to the corresponding macroscopic quantities. For instance, the macroscopic

viscoplastic strain is the average of the microscopic viscoplastic strains, only if the

elastic tensor is uniform or homogeneous. In the present modeling approach, macro-

scopic damage is caused by the breakage of the grains where microscopic tensile stress

is the highest. In general, the spatial distribution of broken grains is not uniform.

Therefore the macroscopic viscous strain is not the average of the local viscous strain:

< εvp >6= εvp. This difference can be shown by using different stiffness tensors for

different grains in Eq. 60.

We assumed that the microscopic stress in a broken grain vanishes, which corre-

sponds to a perfectly brittle failure. The elastic moduli of broken grains are assigned

a zero value, and broken grains are modeled as void inclusions in the matrix. When

the REV is subjected to a macroscopic stress at its boundary, the whole matrix de-

forms, and these void inclusions deform as well. By definition, δσ = C : δε, where

the damaged elasticity tensor of the matrix (C) is related to the elasticity tensor of

non-broken grains (C0) as

C = (1−D)C0. (62)

The breaking and broken grains have no stiffness, and are both subjected to zero

microstress, therefore D(tn) = Nb(tn)/N in which Nb(tn) = N−Ng(tn). The damaged

elastic properties are updated as

µ(tn) = (1−D(tn))µ(t0) =
Ng(tn)

N
µ(t0),

κ(tn) = (1−D(tn))κ(t0) =
Ng(tn)

NT

κ(t0), ν(tn) = ν(t0), (63)
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in which µ(t0), κ(t0), ν(t0) are the elastic properties of the undamaged matrix. The

change of microscopic deformation (δε) is obtained by combining Eq. 60 with the

expression of the change of microscopic stress (δσ). Each type of grain undergoes a

different change of microscopic stress during the damage phase of the loading incre-

ment: δσ = C0 : δε for non-broken grains, δσ = −σ for breaking grains and δσ = 0

for broken grains. The resulting expressions of the change of microstress is given in

Table 10 for each type of grain.

Table 10 Microscopic stress change due to grain breakage.

Microscopic stress Microscopic deformation

Non-broken grains δσ = C0 : δε δε = [I+M∗ : C0]−1 : (δε+M∗ : δσ)

Breaking grains δσ = −σ δε = M∗ : σ + δε+M∗ : δσ

Broken grains δσ = 0 δε = δε+M∗ : δσ

Notation: M∗ = L∗−1 Iijkl = 1
2
(δikδjl + δilδjk)

For the special case of stress-controlled loading paths studied here, the variation

of macroscopic stress is applied during the viscous phase of the loading (t+n ∼ tn+1).

Therefore, during the damage phase: δσ = 0. Therefore, the variations of microscopic

deformation during the damage phase of the time step are given by

Non-broken grain: δε = [I +M∗ : C0]−1 : δε,

Breaking grain: δε = M∗ : σ + δε,

Broken grain: δε = δε.

(64)
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Recalling that δε =< δε >, at time t+n , Eq. 64 can be rewritten as

Nδε =
∑

non-broken

[I +M∗ : C0]−1 : δε

+
∑

breaking

M∗ : σ +
∑

breaking

I : δε

+
∑
broken

I : δε.

(65)

The variation of macroscopic strain δε is obtained from Eq. 65 as

δε =
1

Ng(tn)
[I − (I +M∗ : C0)−1]−1 : [M∗ : (

∑
breaking

σ)]. (66)

Then δε and δσ can be updated for each type of grain (according to the equations

listed in Table 10). It should be noted that at the end of the damage phase (at t = t+n ),

there are only two types of grains: non-broken and broken (the breaking grains get

counted as part of the broken grains). Broken grains are considered as voids, with:

σ(t+n ) = 0, σ̇(t+n ) = 0, ε̇vp(t+n ) = 0.

In summary, in the damage phase of each loading increment, calculations are

performed in the following order:

σ(tn)→


< 2 MPa : grain is non-broken

≥ 2 MPa : grain is breaking

broken grains remain broken

→
Ng(tn)

Nb(tn)
→ µ̃(tn)

σ(tn)−−−−→ δε(tn)→ δε(tn)→ δσ(tn)→ σ(t+n )

4.5.2 Stress Redistribution due to Viscoplasticity

At the beginning of the viscous phase (at t = t+n in Fig. 48), the following variables

are known:

• At the macroscopic scale: p(t+n ), q(t+n ), σ(t+n ), εvp(t+n ), ε(t+n ), µ(t+n ), ν(t+n ) =

ν(t0), C(t+n ), L∗(t+n ), Ng(t
+
n ) = Ng(tn), Nb(t

+
n ) = Nb(tn)

• At the microscopic scale: σ(t+n ), εvp(t+n ), ε(t+n )
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Viscous loading phase for the grains that are non-broken at time t = t+n

The microscopic stress σ(t+n ) is used to calculate the viscoplastic strain rate at the

grain scale:

γ̇l(t+n ) = γ0 h
l

∣∣∣∣τ l(t+n )

τ0

∣∣∣∣n = γ0 h
l

∣∣∣∣σ(t+n ) : al

τ0

∣∣∣∣n ⇒ ε̇vp(t+n ) =
6∑
l=1

γ̇l(t+n )al. (67)

The macroscopic loading rate σ̇(t+n ) is assumed to be given; it depends on the type of

loading considered, creep or sinusoidal cyclic loading. After replacing small variations

by rates in Eq. 60, and after some computations, the microscopic stress rate σ̇(t+n )

can be expressed as

(I +L∗(t+n ) : C−1
0 ) : σ̇(t+n ) = (I +L∗(t+n ) : C−1(t+n )) : σ̇(t+n )

+L∗(t+n ) : (ε̇
vp

(t+n )− ε̇vp(t+n )). (68)

The cumulated macroscopic stress at t = tn+1 is calculated as

σ(tn+1) = σ(t+n ) + σ̇(t+n )×∆nt. (69)

For non-broken grains, variables σ(tn+1), εvp(tn+1), ε(tn+1), εvp(tn+1) are obtained by

time integration (similar to Eq. 69). The microstress in non-broken grains is compared

to the tensile strength of the mono-crystal at the following loading increment.

Viscous loading phase for the grains that are broken at time t = t+n

Grains that are already broken at time t = t+n are replaced by voids, i.e. by stress-free

cavities with zero stiffness. Gliding mechanisms are no longer active in broken grains,

so that: σ(tn+1) = σ(t+n ) = 0, σ̇(tn+1) = σ̇(t+n ) = 0, ε̇vp(tn+1) = ε̇vp(t+n ) = 0. Then

the total strain rate of the broken grain (i.e. the deformation rate of the hole) is

computed as

ε̇(t+n ) = SD(t+n ) : σ̇(t+n ), (70)

in which σ̇(t+n ) is given by the type of macroscopic loading considered. Moreover,

SD(t+n ) = L∗−1(t+n ) +C−1(t+n ).
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In summary, in the viscous phase of each loading increment, calculations are

performed in the following order:

σ̇(t+n )

µ̃(t+n ) = µ̃(tn)
→

 ε̇
vp

(t+n )

γ̇l(t+n )→ ε̇vp(t+n )

→ σ̇(t+n )
σ(t+n )−−−→ σ(tn+1)

4.5.3 Computational method for axial loading

The computational method can be used to determine micro-stresses in an aggregate

subjected to axial macroscopic loading. We note, for a macroscopic axial loading

along the e3 axis:

σ = q(t)r, s = σ − Tr(σ)

3
δ = q(t)Ψ, ε̇

vp
=

3

2
ṗ(t)Ψ, (71)

in which:

r = −e3 ⊗ e3, Ψ = r − 1

3
Tr(r)δ. (72)

The loading rate q̇ at time t+n is calculated according to the type of loading considered:

• For a creep loading test:

q̇(t0) =∞, q̇(t+n , tn 6= t0) = 0 (73)

• For a sinusoidal cyclic loading test:

q̇(t+n ) = q0ωcos(ωtn) (74)

We introduce the following notation:

ρ̇(t) = q̇(t) + 3µ(1− β)ṗ(t), (75)

in which β is given by:

β =
2(4− 5ν)

15(1− ν)
(76)
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The value of ρ̇ is obtained from Ng(t
+
n ) (calculated during the damage phase), and

from Eq. 73-74:

ρ̇(t+n ) = q̇(t+n ) + 3µ(t+n )(1− β(t+n )) < ε̇vp(t+n ) >: Ψ, (77)

from which, the rate of macroscopic viscoplastic strain can be obtained as

ṗ(t+n ) =
ρ̇(t+n )− q̇(t+n )

3µ(t+n )[1− β(t+n )]
=< ε̇vp(t+n ) >: Ψ ⇒ ε̇

vp
(t+n ) =

3

2
ṗ(t+n )Ψ. (78)

The simulations presented in the following are based on Eq. 71-78 for a stress-

controlled axial loading.
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4.6 Model Calibration against Creep Tests

The following macroscopic relationship can be obtained from the micro-macro model

proposed above:

ṗ(t) =
M

3µ(1− β)

qn(t)

(τ0)n
(79)

in which:

M = 3µ(1− β)〈
L∑
l=1

γ0

∣∣r : al
∣∣n+1〉 (80)

The details of the derivations are provided in Appendix III. Note that an approxima-

tion was made: in Eq. 50 and 52, the microscopic stress σ was replaced by the macro-

scopic stress σ = q(t)r. The advantage of the form of relationship given by Eq. 79

is that it directly relates the macroscopic viscoplastic strain rate to the macroscopic

stress imposed in the simulations. Therefore, it is convenient to use it for calibra-

tion purposes. Note that an approximation is made: in the homogenized Eq. 51, the

microscopic stress σ is replaced by the macroscopic stress σ = q(t)r. After calibra-

tion, we verified that the variations of the macroscopic viscoplastic strains predicted

by the approximate law in Eq. 79 followed those predicted by the non-approximated

micro-macro model with less than 5% error.

Table 11 Model parameters calibrated against the creep tests reported in Fuenkajorn
and Phueakphum (2010).

Creep Test γ0 (day−1) n (-)
Short Term (7 hours) 5.17× 10−4 3.58
Long Term (30 days) 2.93× 10−5 4.04

The microscopic constitutive law in Eq. 52 depends on two parameters: γ0 and

n. In addition, the parameter β depends on the macroscopic elastic properties of the

polycrystal in the reference state. The Poisson’s ratio is not affected by damage in the

proposed model: a standard value of ν0 = 0.3 is adopted. The polycrystal Young’s

modulus is also given a value typical of rock salt (Fuenkajorn and Phueakphum, 2010):

E0 = 23GPa. The calibration procedure is based on a genetic algorithm that selects
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Figure 49 Calibration of the approximated macroscopic creep law against long-term
creep tests reported in Fuenkajorn and Phueakphum (2010).

the optimal set of parameters, i.e. the set of parameters that minimizes the difference

between the experimental and simulated creep curves. The distance between the two

curves is computed with a Least Square Method. The asymptotic strain rates at the

end of the 7-hour and 30-day creep tests reported in Fuenkajorn and Phueakphum

(2010) are computed for each loading condition considered, and are used as reference

data (Fig. 49). The best fit for the two creep tests provide the optimal values of γ0

and n, which are reported in Table 11 for both short-term and long-term creep. In

the following simulations, the long-term creep test parameters are used.
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4.7 Simulation of Salt Fatigue under Creep Loading

4.7.1 Microscopic Origin of Creep Recovery

In the following simulations, grain breakage is not accounted for, which implies that

macroscopic viscoplastic deformation is solely due to microscopic viscoplastic strains.

Two long-term creep tests are simulated, with the parameters calibrated against the

long-term creep test. The stress paths for both tests are illustrated in Fig. 50a. In

the first test, a constant macroscopic stress of 7 MPa is maintained for three days.

The second test includes the four following phases: (1) an instantaneous axial stress

loading from 0 MPa to 7 MPa, (2) a creep phase under a constant stress of 7 MPa,

maintained for about half a day, (3) an instantaneous stress unloading, from 7 MPa

to 1 MPa, (4) creep phase under a constant stress of 1 MPa, maintained for about

two and half days. The evolution of total macroscopic strains is shown in Fig. 50b.

As expected, macroscopic viscoplastic strains do not vary during the instantaneous

loading and unloading phases (Fig. 50b). In the first creep test, the macroscopic strain

increases (from B to C, and from C to E), which illustrates the macroscopic strain

hardening noted in most experiments. For extended periods of time, the strain rate

tends asymptotically to zero: Fig. 51, from E to F, illustrates the asymptotic creep

behavior over 180 days. After the unloading phase simulated in the second creep

test (i.e., after point D in Fig. 50b), the macroscopic strain rate is positive, which

indicates that the specimen is in extension, although the macroscopic load imposed

during phase 4 of test 2 is a compression. This phenomenon, named “creep recovery”,

was observed experimentally, and modeled phenomenologically. For instance, Munson

and Dawson (1979) introduced ad hoc parameters explicitly in their formulation to

match model predictions with experimental data. Qualitative explanations based on

internal stresses were sometimes invoked by researchers, but the cause of creep recov-

ery was not well understood. In the proposed micro-macro approach, creep recovery is

automatically captured, as a model output. The method is powerful, because results
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confirm that the origin of recovery actually stems from grain viscoplastic deformation

and grain interactions within the polycrystal.
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Figure 50 Simulation of two long-term creep tests (grain breakage was not consid-

ered): (a) Stress path. (b) Time evolution of macroscopic strains.

For each grain, the principal values of the micro-stress can be represented by a

vector σi−→v i, where the unit vector−→v i is the ith microstress eigenvector and σi is the ith

microstress eigenvalue. In the plane (r, z), a tensile principal stress is represented by

a vector
−−→
OM (in the upper right quadrant, z > 0, r > 0), and a compressive principal

stress is represented by a vector
−−→
ON (in the lower left quadrant, z < 0, r < 0). The

convention adopted to plot microscopic stresses is illustrated in Fig. 52, in which α

measures the angle between the direction of the principal microstress considered and

the compression axis z. Stress maps drawn according to the convention explained

in Fig. 52 show the sign and amplitude of the principal microstresses, as well as the

angle made by the principal microstresses with the compression axis, for each grain

orientation considered in the REV.
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Figure 51 Asymptotic creep behavior predicted by the micro- macro- model, in the

absence of grain breakage. (a) Stress path. (b) Time evolution of macroscopic strains.

Figure 52 Graphical representation of the microscopic principal stresses.

The comparison of the distribution of microscopic stresses at points C and D

(Fig. 53) provides a micromechanical explanation to the phenomenon of creep re-

covery. If the sample are instantaneously subjected to axial stress increase from 0

MPa to 1 MPa, lateral tensile microstresses would increase over time, starting from

a state of microstress equal to that of macrostress (the explanation is the same as for

the first loading stage of 7 MPa in Fig. 53). The response predicted when a creep

load of 1 MPa is applied after a creep load at 7 MPa is very different from the one
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that would be expected without pre-loading phase: the distribution of microstresses

tends to an isotropic distribution. A vertical tensile microstress of up to 1.3 MPa is

noted in some of the grains, despite the applied macroscopic compressive stress, which

amounts to 1MPa. The presence of vertical tensile microstresses within the aggregate

explains why the specimen is in extension during this creep recovery stage (Fig. 50).

By contrast, if the first creep load of 7 MPa is maintained for extended periods of

time, tensile lateral microstresses will continue to increase at a slower rate (point E).

It is worth noticing that in in this simulation, the value of the tensile microstresses

exceeds the tensile strength (2MPa) in some of the grains, because grain breakage is

not accounted for in the simulations.
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Figure 53 Micro-stress developed in the sample during the two-stage creep test

simulated in the absence of grain breakage: loading points C, D, E shown in Fig. 50.

4.7.2 Influence of Grain Breakage on Macroscopic Creep Regimes

Now, we investigate the impact of grain breakage on the creep deformation regime of

the salt polycrystal. The three following long-term creep tests are simulated:
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• In the first test (“no damage” case), a low creep stress (5 MPa) is applied, and

grain breakage is accounted for.

• In the second test (“non-damage model” case), a higher creep stress (7 MPa) is

applied, and grain breakage is not accounted for.

• In the third test (“damage model” case), a high creep stress (7 MPa) is applied,

and grain breakage is accounted for.

Results are presented in Fig. 54:

• First test: the macroscopic strain rate reaches a steady state in the secondary

creep phase, which indicates an absence of accelerated creep. Microscopic tensile

stresses remain below 2 MPa, which implies that none of the mono crystals

break, even though grain breakage is taken into account in the model.

• Second test: the macroscopic strain rate remains almost constant, and micro-

scopic stresses exceed the tensile strength limit, which indicates that grains

would have broken if damage had been accounted for.

• Third test: the microstress goes to zero in some of the grains, and the macro-

scopic strain rate increases abruptly at the end of the creep test.

These results indicate that the model can capture the accelerated creep regime (ter-

tiary creep) caused by grain breakage. The simulations reproduce well the trends

observed in the experiments reported in Fuenkajorn and Phueakphum (2010) (Fig.

4 and 5 in particular). Based on the results, we understand that it is critical to

capture the transition between steady state creep and tertiary creep for geostorage in

salt caverns. Continuous monitoring of the deformation, especially the deformation

rate, at the cavern wall is essential. Once the hosting rock reaches tertiary state, its

deformation increases rapidly, which could induce significant problems to geological

storage facilities.
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Figure 54 Comparison of different creep tests, with and without account for grain

breakage. (a) Time evolution of total macrostrains. (b) Time evolution of viscoplastic

macrostrains. (c) Major microstress component at the end of the creep tests. (d)

Minor microstress component at the end of the creep tests.
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4.8 Simulation of Salt Fatigue under Cyclic Loading

4.8.1 Damage Triggering due to Grain Viscous Deformation

The simulations presented in this subsection are performed with no account for grain

breakage, in order to focus the discussion on the increase of microscopic stress leading

to the initiation of damage due to grain breakage. The parameters calibrated for the

long-term creep behavior are adopted: γ0 = 2.93× 10−5day−1, n = 4.04.

4.8.1.1 Effect of the Loading Frequency

Stress-controlled cyclic loading tests are simulated, for the sinusoidal loading, with

a maximum stress of 8 MPa and a loading amplitude of 2 MPa. Results after 15

cycles are compared for two frequencies typical of CAES conditions: 2 day−1 and

1 day−1 (Fig. 55a). The imposed stress rate depends on the frequency. Fig. 55b

shows the resulting stress-strain curve, which is similar to the experimental curves

reported in Fuenkajorn and Phueakphum (2010) (Fig. 7 in particular). The stress-

strain cycles tend to a limit behavior, with a constant shifting at each cycle. This

limit behavior has some analogy with the “accommodation” or “shakedown” effect in

elastoplastic media. The determination of the limit cycle could enable the prediction

of the response expected after a high number of cycles, without modeling the transient

effects of intermediate cycles. Fig. 55c & d shows the distribution of internal stresses

at the end of the loading tests, at the maximum stress. The results confirm that at

higher frequency, less microscopic viscoplastic strains develop, which leads to smaller

microscopic stresses.

4.8.1.2 Effect of the Number of Cycles

For the cyclic loading test simulated at a frequency of 2 day−1, the distribution of

internal stresses at maximum stress after 15 cycles (point B in Fig. 55a) is compared

to that after the first loading cycle (point A in Fig. 55a). As expected, microscopic

stresses increase with the number of cycles: the tensile microstresses in the grains
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remain below the mono-crystal tensile strength after one cycle, and exceed the tensile

limit after 15 cycles. Higher the number of cycles under the same loading frequency,

longer the loading time, larger the microscopic viscoplastic strains, and higher the

microstresses. In fact, the effect of the number of cycles is essentially an effect of

time.

4.8.2 Viscous Damage Propagation upon Cyclic Loading

In the simulations presented in this subsection, grain breakage is accounted for. The

parameters calibrated for the long-term creep behavior are adopted: γ0 = 2.93 ×

10−5day−1, n = 4.04. The response of the polycrystal to a sinusoidal cyclic loading

of frequency 0.03 Hz (= 2592 day−1) is studied for several maximum loading stresses

and loading amplitudes. Two types of behaviors are observed:

(1) For small maximum stress and small loading amplitude, a limit cycle is reached.

The number of broken grains (Nb) remains low, and Young’s modulus decreases to

finite limit value. An example is shown in Fig. 56, in which the maximum loading

stress is 14 MPa and the amplitude is 6 MPa. Grain breakage first occurred at the

164th cycle. The whole polycrystal fails after the 191th cycle.

(2) For larger maximum stress or larger loading amplitude, failure occurs after a

limited number of cycles. Fig. 57 shows the results obtained for a cyclic loading

with a maximum loading stress of 20 MPa and an amplitude of 10 MPa. For minor

principal microstresses, some grains experience zero stress, which indicates that they

are broken. Grain breakage first occurred at the 6th cycle, and the whole polycrystal

failed after the 8th cycle. The increasing number of broken grains is visible in the

progressive reduction of the Young’s modulus in the plot shown the macroscopic

stress-strain curve. These results are in agreement with the experimental results

reported in Fig. 7 of Fuenkajorn and Phueakphum (2010). Damage initiates after a

low number of cycles, and the behavior becomes extremely brittle thereafter: total

failure usually occurs less than five cycles after the initiation of damage.
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Figure 55 Effect of the frequency of loading on macroscopic strains, in the absence
of grain breakage. (a) Cyclic loading history. (b) Evolution of macroscopic strains
with macroscopic stress. (c) Major principal internal stress distribution at the end
of the cyclic loading test. (d) Minor principal internal stress distribution at the end
of the cyclic loading test. (e) Major internal stress distribution after 1 cycle (point
A) and after 15 cycles (point B). (f) Minor internal stress distribution after 1 cycle
(point A) and after 15 cycles (point B).
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Under typical operational conditions, the CAES site is usually subjected to low

frequency cyclic loadings. Simulation results indicates that it becomes more critical

to check for early stage damage when the cavern pressure increases. Once damage

is detected, the operation of the CAES site should be suspended until the damage

issue can be solved. Otherwise, such damage may accumulate rapidly in the following

loading cycles, with the possibility of leading to a detrimental failure. A typical CAES

site is expected to sustain more than 700 loading cycles every year according to the

daily cavern pressure change at the Huntorf CAES plant in Germany (Crotogino

et al., 2001). The Huntorf power station is known as the first CAES plant in the

world and has been successfully operated for 38 years since 1978.
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Figure 56 Evolution of the damaged Young’s modulus with the number of cycles

(f=0.03 Hz; maximum stress = 14 MPa; stress amplitude = 6 MPa).
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Figure 57 Simulation of a cyclic loading with a frequency of 0.03 Hz, a maximum

loading stress of 20 MPa and an amplitude of 10 MPa (grain breakage considered). 2

grains are broken at A (after 6 cycles). 7 grains are broken at B (after 8 cycles).
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4.9 Conclusions

In this chapter, we formulated a micromechanical model of viscous fatigue for salt

rock, which was considered as an aggregate of halite mono-crystals. The REV contains

mono-crystals that have a uniform distribution of orientations. Viscoplastic strains

at the grain scale are triggered by the activation of preferential gliding mechanisms,

which are governed by a power law. We related microscopic stresses to macroscopic

stress, macroscopic viscoplastic strains and microscopic viscoplastic strains, by means

of an inclusion-matrix model. We extended a self-consistent homogenization scheme,

initially proposed for elasto-plasticity, to viscoplasticity. We introduced a grain break-

age condition, which allowed predicting the progressive loss of stiffness and strength

of the aggregate upon cyclic loading. Damage was defined as the ratio of the number

of broken grains by the total number of grain orientations considered in the REV.

The micromechanical modeling approach enabled predicting important aspects

of salt rock viscoplastic and damage behavior. Strain hardening during creep was

evidenced by the increase of macroscopic viscoplastic strains at a decreasing rate,

and by the progressive increase of microscopic stresses over time, until an asymptotic

value. In creep tests in which a high compressive stress was applied before a lower

compressive stress, tensile macroscopic strains were accompanied by a re-orientation

of microscopic stresses towards an isotropic distribution: simulations provided a mi-

croscopic interpretation to the phenomenon known as “creep recovery”, which is a

memory effect. Grain breakage occurred for creep tests under high stress, and for

cyclic loading tests simulated at lower frequencies, higher maximum stress, and/or

higher loading amplitude. As expected, the Young’s modulus decreases with the in-

crease of damage. Grain breakage provides a micro mechanical explanation to the

phenomenon known as “accelerated creep” (also called “tertiary creep”). The depen-

dence of viscoplastic strains to cyclic loading frequency is well captured by the model:
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higher the frequency, smaller the macroscopic viscoplastic strain, and smaller the mi-

croscopic stresses. The increment of macroscopic viscoplastic deformation decreased

over the cycles, which is in agreement with the phenomenon of plastic adaptation or

“shakedown” observed in elasto-plastic media. Such findings are critical in optimiz-

ing the usage of salt for geological storage purpose. For example, a comprehensive

investigation of mechanical properties of salt will assist engineers in determining the

feasible operational pressure and period for a CAES site.

The study of this “adaptation” effect was beyond the scope of this thesis. However,

the determination of limit cycles would open interesting perspectives for the modeling

the long term behavior of, for instance, salt caverns under cyclic loading. More work

is needed to account for non-elastic inclusion/matrix interactions known as “viscous

accommodation”, which results from geometric incompatibilities between grains. The

micro-macro model is currently being improved in order to account for the progressive

breakage of the grains in preferential directions, which is more representative than

replacing broken grains by voids. Elastic anisotropy is introduced both at the grain

and at the matrix scales:

σ = C̃(d(n)) : ε, σ = C(D) : ε (81)

in which C̃(d(n)) is the damage stiffness tensor of the nth grain, d represents the

microscopic damage tensor, C(D) is the damage stiffness tensor of the matrix, andD

represents the macroscopic phenomenological damage tensor. The resulting matrix-

inclusion interaction model is expressed as:

σ − σ = −L∗(D) : (ε− ε) (82)

The main theoretical challenges are: (1) The linkage between grain unidirectional

anisotropy and REV anisotropy, (2) The derivation of Hill’s tensor for an anisotropic

elastic matrix (we are assuming ellipsoidal anisotropy in our current developments);
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(3) The calculation of the macroscopic and microscopic responses through an iterative

process.
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CHAPTER V

FINITE ELEMENT ANALYSES APPLIED TO

GEOSTORAGE SYSTEMS

5.1 Introduction

Finite Element Method (FEM) is a powerful numerical tool for modeling transient

and coupled thermo-hydro-mechanical phenomena in engineering or physics problems.

FEM allows accounting for heterogeneities and nonlinearities and is generally more

time-efficient than other (discrete) methods. Nevertheless, the FEM has not been

used extensively for fractured porous media, for two different reasons (Pouya, 2015).

The first one is related to automatic mesh generation method for domains containing

a great number of fractures. The second one is related to the difficult modeling of

fracture-matrix interactions in various stress conditions. Dr. A. Pouya at Paris-Est

University developed 2D numerical codes to address these issues. In this thesis, we

use POROFIS (for POROus FISsured media). Other tools are available, such as DIS-

ROC, which permits the creation of FEM meshes for domains containing thousands

of fractures in a few minutes. In POROFIS, transient problems are treated with the

Euler explicit method for time integration, with very small time increments (Pouya,

2015). The geometry can be meshed by linear triangular or quadrilateral elements.

POROFIS is written in Fortran and requires using the FEM pre- and post-processor

GiD (GiD, 2002) for mesh generation and results visualization.

In Section 5.2, we compared a POROFIS model that contains Finite Elements and

joint elements with micro-macro model presented above in Chapter 4. We simulated

intra- and inter-granular damage in salt polycrystal subjected to creep and cyclic

loadings. In Section 5.3, we used phenomenological models of secondary and tertiary
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creep in order to simulate the accumulation of viscous damage around a salt cavern

subject to depressurization with the FEM.
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5.2 Inter-granular and Intra-granular Damage in Salt Poly-
crystal

5.2.1 Single-crystal Deformation Mechanisms

In Chapter 4, we presented an inclusion-matrix model of grain breakage, based on a

3D self-consistent method. In the following, we compare our homogenized model to a

2D Finite-Element based model that distinguishes intra- and inter- granular damage.

In order to make this comparison and see the benefits of both modeling approaches,

we start by adapting our homogenization scheme to 2D plane strain conditions. In

plane strain, all representative salt crystal orientations are contained in the plane, i.e.

representative grain orientations are obtained by rotation about the axis normal to

the plane under study, as shown in Fig. 58.

Figure 58 2D salt polycrystal: representative halite crystal orientations are obtained

by varying only one degree of freedom, the angle of rotation θ about the axis normal

to the plane.

In a two-dimensional plane strain case, two of the six salt slip systems control

shear deformation (Fig. 59). The two slip systems are oriented by an angle of 90

degrees. We note N and M the normal vector and the gliding vector in the local

coordinate system of the grain, respectively.
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Figure 59 Representation of the two slips systems that control shear deformation

at the grain scale in 2D plane strain (N and M are the normal vector and gliding

vector, respectively).

Given a specific angle θ, the two possible slip systems in the global coordinate

system (n1, m1) and (n2, m2) are:

n1 =

cos(θ + π
4
)

sin(θ + π
4
)

 , m1 =

cos(θ + 3π
4

)

sin(θ + 3π
4

)

 (83)

n2 =

cos(θ + 3π
4

)

sin(θ + 3π
4

)

 , m2 =

cos(θ + π
4
)

sin(θ + π
4
)

 (84)

5.2.2 Hill’s Tensor in 2D

The Hill’s tensor for a spherical inclusion embedded in a 3D isotropic elastic matrix is

available in the literature (e.g., (Hill, 1965)). To express Hill’s tensor for a 2D plane

strain case, we consider the spherical inclusion as a cylinder of circular section (“bore-

hole”) subject to internal pressure and far-field stresses (Fig. 60). The solution is

obtained by superimposing three independent displacement fields that correspond to

three independent stress fields in plane strain conditions: (1) Displacements induced

by an isotropic pressure field applied at the borehole wall; (2) Pure shear displace-

ments; (3) Homogeneous displacements. The detailed derivations are provided in

Appendix IV. The Hill’s tensor L∗ for 2D plane strain conditions is finally expressed

as:

L∗ijkl =
E

2(1 + ν)(3− 4ν)
[
1− 2ν

ν
δijδkl + (δikδjl + δilδjk)], (85)
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in which E and ν are the Young’s modulus and Poisson’s ratio of the matrix, and δ

is the 2D identity tensor. We verified the solution for the asymptotic case in which

an internal pressure σp is applied on the inner wall of a borehole that has an outer

radius that tends to infinity.

Figure 60 Cross-sectional view of the salt rock REV considered in the homogeniza-

tion scheme. (a) Salt polycrystal; (b) Inclusion-matrix model; (c) Equivalence of the

grain-matrix interaction problem with that of a borehole subject to internal pressure

and far-field stresses.

5.2.3 Joint Element Model

To design a numerical model in which salt grains are modeled with Finite Elements

(FE), and cracks are modeled with joint elements, we use POROFIS as introduced in

Section 5.1. Grain FEs are assigned the single-crystal viscoplastic behavior described

in Subsection 5.2.1, and different crystal orientations are accounted for by using FEs

with different slip mechanisms (see Subsection 5.2.4). For the joint elements, we

adopt the strength model presented in Pouya and Yazdi (2015). Strength evolves

with damage (D) as follows:

F (σ,D) = τ 2 − σ2
ntan

2η + 2g(D)σcσn − g2(D)C2 (86)

in which C and η are respectively the cohesion and the friction angle of intact rock

joints. Stresses at joint faces (σ) are related to the joint stiffness (k) and to the joint
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relative displacement (u) by the following elastic damage law:

σ = (1−D)k : u (87)

The expression of g(D) is (Pouya and Yazdi, 2015):

g(D) = (1−D)(1− βln(1−D)) (88)

in which g(D = 0) = 1 represents the initial intact state and g(D = 1) = 0 represents

the completely damaged state (i.e. ultimate failure). σc is a constant related to C, η,

and to the tensile strength σR of the intact rock joint by the following relation:

σc =
C2 + σ2

Rtan
2η

2σR
(89)

in which σc is an auxiliary stress value related to the shape of the yield surface

(Fig. 61). When g = 1, we obtain the outer hyperbolic surface. The asymptotic

behavior under high compressive stresses corresponds to a conical surface that forms

an angle η with the σn axis. When damage increases, the yield surface moves towards

the interior while the friction angle η remains the same. For the limiting case of a

completely damaged joint with g = 0, the frictional fracture has zero cohesion and

the friction angle η satisfies the following criterion:

F (τ, σn) = τ 2 − σ2
ntan

2η (90)

As can be seen in Fig. 61, the tensile strength σR and the cohesion parameter C have

to satisfy the following inequality:

σR tan(η) < C (91)

Under a normal tensile stress, the cohesive joint remains undamaged until a critical

displacement value u0 is reached. The corresponding damage D is assumed to depend

exponentially on the relative displacement:

D = 1− e−(u−u0)/βu0 (92)
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in which the constant parameter β characterizes the material ductility (the smaller

β, the more brittle the material behavior). Note that damage models similar to that

presented in Eq. 92 are often used for interfaces in cementitious materials (Jefferson,

1998).

Figure 61 Evolution of the damage-plasticity criterion used in joint elements, from

the intact state to the completely damaged state. The yellow dashed line is parallel

to the line that represents the limiting criterion when D = 1, and intersects the τ

axis at σRtan(η).

5.2.4 Model Configuration

We used POROFIS to model a single inclusion embedded in a homogeneous medium

(Zhu et al., 2015a). The match between this FEM model and the 3D inclusion-matrix

model was satisfactory. The next step, presented in detail in the following, is to model

a polycrystal made of a representative number of inclusions (i.e., grains). However,

3D images of halite microstructure are scarce in the literature. Several methods can
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be used to represent crystal orientations in 2D micrographs, including optical and

electron microscopy, automated Electron BackScatter Diffraction (EBSD) and serial

sectioning techniques (Lewis and Geltmacher, 2006). In the following, we construct

a 2D FEM polycrystal model based on the EBSD map of the salt specimen studied

by Schleder and Urai (2007). Crystal orientations are represented by different colors

in the EBSD map (Fig. 62).

We use the software Plot Digitizer to extract grain boundaries from the EBSD

map, and we export them in GiD in order to construct the mesh. For the sake of

simplicity, we select only 12 crystal orientations for this 2D model (in which θ is the

only orientation angle that varies). These 12 grain FE orientations are uniformly

distributed in the interval [cos(θ = 0) = 0, cos(θ = π
2
) = 1], in order to follow the

same microstructure assumptions as in the inclusion-matrix model, and to approxi-

mately match the orientations represented in the EBSD map. Our mesh contains a

relatively isotropic and uniform distribution of grains with various orientations, which

is a realistic representation of a salt polycrystal. We construct two FEM models with:

(1) Joint elements that are only located along the grain boundaries (inter-granular

cracks); and (2) Joint elements that are located both between and inside the grains

(inter- and intra- granular cracks). In total, model (1) comprises 3,368 surface el-

ements, which are all 0.2 mm in size (Fig. 63). In model (2), inter-granular and

intra-granular joint elements follow the same behavior (Subsection 5.2.3), but have

different constitutive parameters (Fig. 64).
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Figure 62 Salt thin sections (adapted from Schleder and Urai (2007)): Microstruc-

ture (left) and Automated EBSD map (right).

Figure 63 POROFIS FEM model with inter-granular joints only (8mm × 8mm). In

the legend, grain numbers refer to grain orientations (12 orientations considered in

total), and OG is the color used for joint elements.
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Figure 64 POROFIS FEMmodel with inter-granular and intra-granular joints (8mm

× 8mm). In the legend, grain numbers refer to grain orientations (12 orientations

considered in total), OG is the color used for inter-granular joint elements, and IG is

the color used for intra-granular joint elements.

5.2.5 Model Calibration

The POROFIS model requires the calibration of: (a) the elastic properties and viscous

parameters of the grain Finite Elements; (b) the stiffness and damage parameters

of the joint elements. For the elastic properties of single-crystals (grain FEs), we

take a Young’s modulus of 43 GPa (in reference to experimental data published in

(Simmons and Wang, 1971)) and a Poisson’s ratio of 0.3 (in reference to experimental

data published in (Fuenkajorn and Phueakphum, 2010)). Note that the stiffness of a

single-crystal is greater than that of halite polycrystal (typically, 23 GPa according to

(Fuenkajorn and Phueakphum, 2010)). This statement is true in other materials such

as Ottawa sand: the Young’s modulus of a single sand particle is 105 GPa (Dutta

and Penumadu, 2007), whereas the Young’s modulus of Ottawa sandstone is only 1

GPa (Dittes and Labuz, 2002). In order to be consistent with the inclusion-matrix

model, we perform the calibration in plane strain conditions, according to the three

following steps:
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1. We determine the stiffness of the inter-granular joint elements by matching

the global Young’s modulus of the POROFIS model with that of a reference

specimen tested experimentally;

2. With the calibrated inter-granular joint stiffness, we calibrate the viscous pa-

rameters of the grain FEs so as to match the steady-state strain rate observed

during secondary creep in the reference experiments;

3. We determine the inter-granular joint strength by matching the time of tertiary

creep initiation predicted with POROFIS with that measured experimentally.

Table 12 summarizes the joint-enriched Finite Element parameters calibrated for the

POROFIS model, and the calibration procedure is detailed below.

Table 12 Parameters calibrated for the POROFIS model with inter-granular joints
only.

Grain
E (GPa) ν (-) γ0 (day−1) n (-)
4.3× 104 0.3 2.0× 10−5 4.0

Inter-granular Joint
kt (MPa/mm) kn (MPa/mm) ktn (MPa/mm) σR (MPa)

1.0× 104 1.0× 105 0 6.13
C (MPa) η (degrees) β (-)

6.13 30 1.0

Stiffness of inter-granular joints. In order to obtain the global stress-strain curve

of the POROFIS model (as opposed to the stress-strain curve of individual FEs or

joint elements), we calculate the average values of stresses and strains over the en-

tire set of integration points. The reference Young’s modulus of the polycrystal (23

GPa) is measured experimentally during a uniaxial compression test (Fuenkajorn and

Phueakphum, 2010). As shown in Fig. 65 and 66, in a log scale, the global Young’s

modulus calculated numerically increases almost linearly with the joint stiffness. For
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very high values of the joint stiffness, the numerical specimen behaves like a solid

made of grains that are perfectly glued together, and the global Young’s modulus

calculated numerically tends towards the Young’s modulus of the grain element (43

GPa). We study five ratios kt/kn (kt is the joint tangential stiffness, kn is the joint

normal stiffness). The green dashed lines in Fig. 65 and 66, for kt = 2×103 MPa/mm

and kn = 2 × 103 MPa/mm respectively, show that the global Young’s modulus is

more impacted by changes of normal stiffness than by changes of tangential stiff-

ness. Therefore we calibrate only the normal joint stiffness and assume a fixed ratio

kt/kn. Because this study focuses on crack propagation induced by internal glide and

inter-granular slip, we consider that the tangential joint stiffness is smaller than the

normal joint stiffness: kt = 0.1kn. The red dashed lines in Fig. 65 and 66 represent

the value of the Young’s modulus of the reference specimen (23 GPa). In Fig. 66,

the intersection between the red line and the curve that shows the variations of the

global Young’s modulus for kt = 0.1kn provides the calibrated value of the normal

joint stiffness. We obtain: kn = 1× 105 MPa/mm and kt = 1× 104 MPa/mm.

Viscous parameters of the grain FEs. We obtain the viscous parameters (γ0, n) of

the grain elements by matching the steady strain rate predicted by POROFIS with

the strain rate predicted by the inclusion-matrix model presented in Chapter 4 for a

uniaxial creep tests simulated in the experimental conditions described in (Fuenkajorn

and Phueakphum, 2010) (Fig. 67). The correlation established between the steady

state creep rate and the creep loading stress made it possible to calibrate the two

viscoplastic parameters. We obtained: γ0 = 2.0× 10−5 day−1, n = 4.0. We simulated

two other uniaxial creep tests, performed under 2 and 15 MPa (black triangles in

Fig. 67), and verified that the calibrated values of (γ0, n) were satisfactory.
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Figure 65 Evolution of the Young’s modulus of the POROFIS model with inter-
granular joints only, for different values of joint tangential stiffness, and for three
ratios of tangential vs. normal stiffness.
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Figure 66 Evolution of the Young’s modulus of the POROFIS model with inter-
granular joints only, for different values of joint normal stiffness, and for three ratios
of tangential vs. normal stiffness.
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stress, obtained from the simulation of the uniaxial creep tests with POROFIS, in
plane strain. The correlation line is obtained from a previous numerical study (Pouya
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2010). Red stars: numerical results used for calibration. Black triangles: numerical
results used for verification.

Tensile strength of the inter-granular joint elements. As explained in Subsec-

tion 5.2.3, the joint strength criterion depends on the tensile strength parameter σR,

the joint cohesion C, the joint friction angle η, and the ductility parameter β. At

the transition between secondary and tertiary creep, the strain rate increases signifi-

cantly. We expect that the initiation of tertiary creep will take more time when the

joint strength, the joint cohesion, or the joint ductile parameter increases. In uni-

axial creep tests performed under 30 MPa (Fuenkajorn and Phueakphum, 2010), the

initiation of tertiary creep occurred after 0.22 days (i.e. 5.2 hours). A good match is

found for σR = C = 6.13 MPa, η = 30o, and β = 1 (along with the calibrated values

for joint stiffness and grain viscous parameters). We verify that the tensile strength

of the joint satisfies the criterion stated above (Eq. 91).

Fig. 68 confirms that lower strength values (5 MPa, 6 MPa) lead to an early

triggering of tertiary creep, while higher strength values (7 MPa, 10 MPa) lead to
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a later triggering of tertiary creep. It was expected that the tensile strength of the

joints would be lower than that of the grains and higher than that of the polycrystal,

because the joints represent defects that are naturally present in the polycrystal. We

verified that the transition between secondary and tertiary creep was independent

from the time increment size used in the simulations.
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Figure 68 Calibration of the joint element strength parameters of the POROFIS

model. For σR = 5 MPa, 6 MPa, and 6.13 MPa, the creep acceleration noted at

the end of the simulation corresponds to the initiation of tertiary creep. The vertical

dashed line (at t=0.22 days) indicates the initiation of tertiary creep noted during a

uniaxial creep test performed under 30 MPa (Fuenkajorn and Phueakphum, 2010).

5.2.6 Comparison of the Inclusion-matrix Models with Joint-enriched
FEM Models

We compare the effects of viscous damage and fatigue mechanisms that operate in

halite polycrystals during uniaxial creep loading tests. We use the three following

models:

1. POROFIS model (1): inter-granular crack propagation accounted for by dam-

age evolution in one family of joint elements; 3,368 surface elements and 678
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inter-granular joint elements; calibrated parameters presented in Subsection 5.2.5;

2. POROFIS model (2): inter-granular and intra-granular crack propagation ac-

counted for by damage evolution in two families of joint elements; 3,368 surface

elements, 678 inter-granular joint elements and 4,294 intra-granular joint el-

ements; calibrated parameters presented in Subsection 5.2.5, with additional

intra-granular joint parameters (see below);

3. Inclusion-matrix model programmed in MATLAB (in plane strain): polycrystal

damage evolution accounted for by grain breakage; 200 possible grain orienta-

tions; calibrated parameters presented in Section 4.6.

We simulated a uniaxial creep test with the inter-granular crack propagation Finite

Element model (1) and with the matrix-inclusion model of grain breakage (3). We

used plane strain conditions in the POROFIS model (1), in order to be consistent

with the formulation of the homogenization model (3). The axial stress was 35 MPa,

which corresponds to the maximum stress amplitude that can be applied at the wall of

a salt cavern by depressurization after sealing and abandonment (Bérest and Brouard,

2003). The time evolution of the axial stress applied during the simulations is shown

in Fig. 69.

Contrary to the inclusion-matrix model (3), the joint-enriched Finite Element

model (1) accounts for the geometric incompatibilities induced by shear deforma-

tion in the grains and by sliding relative displacements along grain boundaries. As

expected, the macroscopic deformation of the polycrystal modeled with Finite Ele-

ments is higher than that of the polycrystal modeled with the self-consistent method

(Fig. 70). For instance, the axial deformation predicted by model (1) at the end of the

creep test is twice higher than that predicted with model (3). The strain-time history

also indicates that the inclusion-matrix model predicts ultimate failure at the end

of the test (after 0.012 days, which is about 17 minutes), whereas the joint-enriched
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Figure 69 Stress-time input for the axial creep test simulated with models (1) and
(3). P1 indicates the time needed to apply the total loading stress, which is increased
incrementally up to 35 MPa. P2 (respectively P3) marks the time just before (respec-
tively after) the transistion between secondary and tertiary creep. P4 indicates the
end of the creep test.

FEM model predicts that the polycrystal is still in steady state at the end of the

creep test.
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Figure 70 Time evolution of the macroscopic axial deformation of the polycrystal

during the uniaxial creep test simulated with the joint-enriched FEM model of inter-

granular crack propagation (1) and with the inclusion-matrix model of grain breakage

(3).

In both models (1) and (3), the viscous grain parameters were calibrated so as to

match secondary creep strain rates measured experimentally. In the inclusion-matrix

model (3), the initiation of tertiary creep coincides with the first grain breakage

that occurs in the polycrystal (Pouya et al., 2016; Zhu et al., 2015c). In the joint-

enriched FEM model (1), joint strength was calibrated so as to capture the initiation

of tertiary creep at the scale of the polycrystal. Therefore damage can propagate

in the inter-granular joints before the initiation of tertiary creep, which corresponds

to the coalescence of inter-granular cracks. In the present case, inter-granular cracks

propagate during the incremental loading phase, before the creep stress loading is

fully applied (see Fig. 74b). As a result, the stiffness of the polycrystal predicted

with the FEM is less than the stiffness of the (intact) polycrystal modeled with the

self-consistent method. This is the reason why the slope of the stress-strain curve

during the initial loading phase is smaller for model (1) than for model (3), as can be
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seen in Fig. 71.
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Figure 71Macroscopic stress-strain curve of the polycrystal during the uniaxial creep

test simulated with the joint-enriched FEM model of inter-granular crack propagation

(1) and with the inclusion-matrix model of grain breakage (3).

The distributions of major and minor microscopic stresses in the inclusion-matrix

model are shown in Fig. 72 and 73, respectively. Each point in the figure repre-

sents a principal stress value for one of the 200 grain orientations considered in the

polycrystal. P1 marks the state of the polycrystal after completion of the loading; P2

(respectively P3) marks the state of the polycrystal just before (respectively after) the

transition between secondary and tertiary creep. At stage P1, the polycrystal is sub-

jected to the total macroscopic stress load (35 MPa), but viscoplastic deformation in

the grains has not started. At stage P2, viscous shear deformation in the grains induce

stress concentrations within the polycrystal, which translates into higher microscopic

stresses (more compression, and more tension). Microscopic slip mechanisms result

in a redistribution of microscopic stresses. In particular, tensile microscopic stresses

increase continuously in the lateral directions until the strength threshold is reached

(Fig. 72). The maximum tensile micro-stress noted in the polycrystal is 7.495 MPa,
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which corresponds to the grain tensile strength. At stage P3, the tensile stress in

some grains exceeds the grain tensile strength, which results into local grain breakage

(i.e., zero micro-stress in Fig. 73) and global stress redistribution. To restore the

stress balance, non-broken grains become subjected to larger compressive stress in

both axial and lateral directions (Fig. 72 and 73).
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Figure 72 Distribution of the major principal micro-stresses of the polycrystal during

the creep test simulated with the inclusion-matrix model.

147



−50 0 50

−60

−40

−20

0

20

 

 

Tensile strength of a grain
Minor principal micro−stress (P

1
)

Minor principal micro−stress (P
2
)

Minor principal micro−stress (P
3
)

MPa

MPa

r

z

Figure 73 Distribution of the minor principal micro-stresses of the polycrystal during

the creep test simulated with the inclusion-matrix model.

Post-processed Finite Element results explain the differences between the two

models noted in Fig. 70 and 71. In model (1), concentrations of vertical stress are

noted at the contact of angular grains even before the initiation of creep (Fig. 74a),

which results in inter-granular slip and subsequent damage in some joints that are

parallel to the loading axis (Fig. 74). At the end of the creep test, viscous shear

deformation in the grains induces more geometric incompatibilities, which results in

higher stress (Fig. 75a) and inter-granular crack coalescence (Fig. 75b). By contrast,

in model (3), geometric incompatibilities are not accounted for, and ultimate failure

occurs shortly after the first grain breakage. We conclude that the joint-enriched FEM

model of inter-granular crack propagation provides a more realistic representation of

the microstructure evolution and of the creep behavior of halite than the inclusion-

matrix model. The main advantage of the inclusion-matrix model (3) is that it is less

computation-intensive than a detailed Finite Element model like model (1).

148



(a) (b)

Figure 74 Results of the creep test obtained with the joint-enriched FEM inter-

granular crack propagation model (1) after the intial loading phase (P1): (a) vertical

stress (in MPa); (b) damage in the joint elements - deformed mesh (10×).

(a) (b)

Figure 75 Results of the creep tests obtained with the joint-enriched FEM inter-

granular crack propagation model (1) at the end of the creep test (P4): (a) vertical

stress (in MPa); (b) damage in the joint elements - deformed mesh (10×).

To examine the influence of intra-granular crack propagation, we present a creep
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test simulated in plane stress conditions under an axial loading stress of 9 MPa with

the joint-enriched FEM model (2), which accounts for both intra- and inter- granular

crack propagation. Model parameters are the same as for model (1) for the grain

finite elements and for the inter-granular joint elements (see Subsection 5.2.5). We

calibrate the intra-granular joint stiffness so as to maintain a global Young’s modulus

of 23 GPa for the polycrystal. In the absence of reference data on the tensile strength

of a single crystal, we assume that the intra-granular joints have a higher strength

than the inter-granular joints. For intra-granular joint elements, we choose σ′R = 7.495

MPa, which is the same as the tensile strength of the grain in the inclusion-matrix

model. Note that for inter-granular joint elements, we had σR = 6.13 MPa.

Fig. 76 shows the vertical (i.e. axial) stress distribution in the polycrystal at the

end of the creep test. Most stress concentrations are located around joints where

several angular grains are in contact. As a result, damage in the joints is mainly

observed at the edges of the most angular grains (Fig. 77). Note that for the particular

creep test simulated with model (2), damage propagates in intra-granular joints only

(i.e. we observe no damage in inter-granular joints). It would be interesting to

determine the tensile and shear strengths of the single crystal in order to understand

in which loading conditions cracks initiate, propagate and coalesce within the grains

as opposed to between the grains.
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Figure 76 Vertical stress distribution (Syy, MPa) at the end of the uniaxial creep

test simulated with the joint-enriched FEM model that accounts for both intra- and

inter-granular crack propagation. The test duration was 0.018 day, i.e. about 26

minutes.

Figure 77 Distribution of damage in the joints at the end of the unaxial creep test

simulated with the joint-enriched FEM model that accounts for both intra- and inter-

granular crack propagation. The test duration was 0.018 day, i.e. about 26 minutes.
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5.2.7 Cyclic Loading Tests with the Joint-enriched FEM Model of Inter-
granular Crack Propagation

It is critical to understand the evolution of the mechanical properties of halite for

the design of salt caverns used for natural gas storage or CAES. Typically, geological

storage is done under pressures ranging between 5 MPa and 20 MPa, with loading

frequencies up to one cycle per day (Bérest, 2011; Bullough et al., 2004; Raju and

Khaitan, 2012) . Cyclic loading tests at such low frequencies are experimentally chal-

lenging, because they are time consuming and require sophisticated power supply

systems. We propose to address this issue by performing a series of virtual exper-

iments with the joint-enriched FEM model of inter-granular crack propagation (1)

presented in Subsection 5.2.6. Simulations explained in the following are done at

the laboratory scale in plane stress conditions, which is in better agreement with the

stress conditions applied in typical cyclic loading tests than plane strain conditions.

Table 13 summarizes the five loading tests simulated with model (1). In order to

track the gradual degradation of the stiffness of the polycrystal, we simulate rapid

unloading and reloading after each loading cycle. We use the slope of the correspond-

ing stress-strain curve to calculate the Young’s modulus at the peak of each cycle (see

Fig. 78a and 78b).

Table 13 Cyclic loading tests performed with the joint-enriched FEM model of inter-
granular crack propagation (1 - axial direction; 3 - lateral direction).

Test Number Loading type Applied stresses (MPa) Period (day)

1 uniaxial
(σ1 ≥ σ3 = 0) σ1,max = 5, σ1,min = 0 T = 2

2 uniaxial
(σ1 ≥ σ3 = 0) σ1,max = 10, σ1,min = 0 T = 2

3 triaxial
(σ1 ≥ σ3 > 0) σ1,max = 15, σ1,min = 5, σ3 = 5 T = 2

4 triaxial
(σ3 ≥ σ1 > 0) σ3,max = 15, σ3,min = 5, σ1 = 5 T = 2

5 triaxial
(σ3 ≥ σ1 > 0) σ3,max = 15, σ3,min = 5, σ1 = 5 T = 20
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Influence of the stress amplitude (tests 1-2). The comparison of tests 1 and 2

shows that: (a) When the stress amplitude increases, the number of cycles before

failure decreases (Fig. 78a and Fig. 78c). For example, the polycrystal can undergo

more than 20 loading cycles before failure for a loading stress of 5 MPa whereas it

reaches failure after the 6th cycle for a loading stress of 10 MPa (Fig. 78b and 78d);

(b) For the same number of cycles, strains and damage increase with stress amplitude

(Fig. 78b, Fig. 78d and Fig. 79).

Influence of the confining stress (tests 1-2-3). The comparison of tests 2 and 3

shows that for the same axial stress amplitude, more confining stress delays failure

(Fig. 78c and Fig. 78e) and reduces strains and damage (Fig. 78d, Fig. 78f and

Fig. 79). The confining pressure effectively reduces the viscous-deformation that

induces fatigue in the polycrystal, which increases the strength of the polycrystal

and its ability to sustain more cycles. For the same deviatoric stress, a lower axial

stress delays failure (Fig. 78a - Fig. 78e) and reduces strains and damage (Fig. 78b,

Fig. 78f and Fig. 79). Note that in tests 1, 2 and 3, the stress-strain cycles tend to

a limit behavior, in which the same constant strain increment adds up at each cycle.

The inclusion-matrix model can predict that the Young’s modulus decreases when

the number of broken grains increases (Chapter 4), but it cannot predict properly the

progressive degradation of the Young’s modulus with the number of cycles, because

failure occurs shortly after the first grain breakage. By contrast, in the proposed

joint-enriched FEM model of inter-granular crack propagation, the Young’s modulus

decreases with the number of loading cycles according to an exponential relationship,

which is in agreement with experimental observations made in salt (Fuenkajorn and

Phueakphum, 2010; Ma et al., 2013), as well as in other geomaterials such as basalt

(Heap et al., 2009).
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Figure 78 Cyclic loading tests 1-3 (vertical deviatoric stress), simulated with the

joint-enriched FEM model of inter-granular crack propagation.
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Figure 79 Variations of the polycrystal Young’s modulus with the number of cycles

in tests 1-3.

Influence of the loading direction vs. polycrystal anisotropy (tests 3-4). The only

difference between tests 3 and 4 is the direction of the deviatoric stress: deviatoric

compression is vertical in test 3, and horizontal in test 4. The stress-strain response

is similar in both tests (Fig. 78e, 78f, 80a and 80b), which shows that the polycrystal

model is relatively homogeneous (i.e. the orientations of grain FEs and joints elements

approximatively follow a uniform distribution). Because the deviatoric stress is hor-

izontal in test 4, damage after the first loading cycle mainly develops in horizontal

joints (parallel to the differential compression axis - see Fig. 81).

Influence of the loading frequency (tests 4-5). The period of the loading cycles

in test 5 is 10 times longer than in test 4. Therefore in test 5, more viscoplastic

deformation accumulates at each cycle, which results in earlier failure (Fig. 80a and

Fig. 80c), higher strains (Fig. 80b and Fig. 80d) and higher damage (Fig. 82). Like

in tests 1-3, the evolution of the Young’s modulus with the number of cycles follows

an exponential trend (note that in tests 1-3, the Young’s modulus was calculated from

the slope of the axial stress-strain curves, whereas in tests 4-5, the Young’s modulus

was calculated from the slope of the lateral stress-strain curves).
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Figure 80 Cyclic loading tests 4-5 (horizontal deviatoric stress), simulated with the

joint-enriched FEM model of inter-granular crack propagation.
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Figure 81 Damage in the joint elements at the end of the initial loading cycle in test

4 (mostly horizontal cracks).
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Figure 82 Variations of the polycrystal Young’s modulus with the number of cycles

in tests 4-5.

5.2.8 Comparison of different damage mechanisms

We used the joint-enriched FEM modeling approach presented above to understand

the damage mechanisms that occur in salt polycrystals upon dry consolidation. Ex-

periments were performed by our collaborators including Dr. F. Chester, Dr. J.
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Chester, and Mr. J. Ding at Texas A&M University. Dry granular salt specimens

were consolidated under different temperature and loading conditions. The average

grain size was 1.7∼2.0 mm. After consolidation, samples were first saturated with

blue epoxy resin to enhance the grain and void interfaces, and then polished and

cleaned with isopropyl alcohol. The typical thickness of a thin section was about 200

micrometers.

We selected a thin section micrograph that presented a relative homogeneity

(Fig. 83). This specimen was consolidated at 473K under 52 MPa for about 10

minutes. The resulting porosity after consolidation was 6%. Intra-granular cracks

can be observed in some grains as a result of the consolidation, which highlights the

importance of accounting for intra-granular damage in the Finite Element model.

Figure 83 Thin section image of consolidated granular salt saturated with blue
epoxy. Left: Grey regions represent granular salt particles while blue areas filled with
epoxy indicates inter-granular pores. Right: The FEM mesh was generated with Plot
Digitizer and GiD.

In order to minimize boundary effects, we constructed a 2D FEM polycrystal
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model of the central region of the micrograph (bounded by a square in Fig. 83). Like

in the previous sections, we used the software Plot Digitizer to extract grain and void

boundaries from the microstructure image and export them into GiD FEM pre- and

post-processor (GiD, 2002) for meshing.

Since the section selected was relatively homogeneous, we assumed that grain

orientations in the mesh followed a uniform distribution. For simplicity, similar to the

approach described in Subsection 5.2.4, we used 12 grain orientations, i.e., 12 cosine

values of θ uniformly distributed in the interval [cos(θ = 0) = 0, cos(θ = π
2
) = 1]. We

assigned a grain orientation of the surface elements in such a way that the distribution

of grain orientations be relatively isotropic and homogeneous (Fig. 84). Empty spaces

(white color) represent the inter-granular voids. We also used joint elements along

grain boundaries. Note that the microstructure topology, such as grain and void

distributions, has a significant impact on numerical results. However, general damage

and viscous phenomena should be independent from minor microstructure variations.

Figure 84 Joint-enriched FEM (12mm×12mm). In the legend, grain numbers refer

to grain orientations. Fracture 1 is the inter-granular joint element.

We calibrated the joint-enriched FEM model according to the procedure explained
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in Subsection 5.2.5. Table 2 summarizes the material parameters calibrated for the

joint-enriched finite element model designed with POROFIS. Because joints are es-

sentially contacts among grains and their physical properties are experimentally chal-

lenging to measure, the calibration process still requires further improvement in order

to apply this model for more practical problems.

In the following simulations, the polycrystal is subjected to a rapid monotonic

loading followed by a uniaxial creep load of 5 MPa applied for 0.3 days, which is a

typical operation pressure at a CAES geological site (Raju and Khaitan, 2012). The

creep loading is applied uniformly at both the upper and lower boundaries of the

model (Fig. 84). Horizontal displacements are fixed (Ux = 0) for the central nodes

of the upper and lower boundaries. Vertical displacement is fixed (Uy = 0) for the

central node along the right boundary.

We compare the results obtained with the three models presented in Table 14

at two key stages of the consolidation experiment: (1) at the end of the monotonic

loading phase (t = 0.005d, point A); (2) during the creep process (t = 0.24d, point

B).

Table 14 Three finite element models based on different damage mechanisms.

Model Number Inter-granular Intra-granular

Model 1 Damageable
joint elements

Visco-elastic
surface elements

Model 2 Elastic joint
elements

Visco-damageable
surface elements

Model 3 Damageable
joint elements

Visco-damageable
surface elements

At point A, the stress and displacement fields are the same for the three models

(Fig. 85). This is because both grains and joints remain intact at this initial stage

(D = Dg = 0). Under the influence of uniaxial stress imposed at the top and

bottom of the domain, grains expand laterally, which induces tensile stress at grain

boundaries, mostly in the direction that is parallel to the loading axis (Fig. 86a).
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Grains adjacent to voids undergo less deformation constraints. Compressive stress

concentrations appear at the grain boundaries where grain shapes are highly irregular

or where several angular grains are in contact. Because of the distribution of the

crystal orientations, the displacement field within the grains is antisymmetric about

the central axis of the polycrystal (Fig. 86b).
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Figure 85 Stress time history imposed in the creep simulations. Point A marks the

transition between the monotonic increasing stress loading and creep loading phases

(t = 0.005d). Point B is during the creep process (t = 0.24d).
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(a) (b)

Figure 86 Results at the end of monotonic loading phase at t = 0.005d - Point

A (same for the three models): (a) vertical stress (MPa); (b) vertical displacement

(mm). Note: compression is negative with POROFIS.

When the creep process starts, viscoplastic deformation in grains evolves. We

continue to observe strong concentrations of vertical stresses at the contact of angular

grains. This results in inter-granular slip and subsequent damage in joints and grains.

Using the same stress scale in the legends of Fig. 87a, 87b, 88a, it can be seen that

stress distributions and concentrations are similar in the three models. The highest

tensile stress concentrations appear in model 2 at the locations where voids exist or

several angular grains are in contact. This is due to the fact that unlike in models

1 and 3, energy cannot be dissipated by crack propagation in the joints. Energy

accumulates until sudden dissipation occurs through grain breakage, leading to a

brittle response. The contours of displacement fields are almost the same in the three

models (Fig. 87c, 87d, 88b). Models 2 and 3 experience relatively higher deformation

than model 1 since broken grains behave like voids, which allows neighboring grains

to rearrange significantly.
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(a) (b)
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(c) (d)

(e) (f)

Figure 87 Simulation results during the creep process at t = 0.24d - Point B: (a)

vertical stress in model 1 (MPa); (b) vertical stress in model 2 (MPa); (c) vertical

displacement in model 1 (mm); (d) vertical displacement in model 2 (mm); (e) damage

in joint elements in model 1; (f) damage in grain elements in model 2.

The three models differ for the prediction of damage accumulation at point B

(t = 0.24d), under the same loading magnitude and for the same loading period

(Fig. 87e, 87f, 88c and 88d). In the absence of energy dissipation in the joints, model

2 is exposed to a considerable amount of damage in the grains. By contrast, as shown
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(a) (b)

(c) (d)
Figure 88 Simulation results during the creep process at t = 0.24d - Point B: (a)
vertical stress in model 3 (MPa); (b) vertical displacement in model 3 (mm); (c)
inter-granular damage in joint elements in model 3; (d) intra-granular damage in
grain elements in model 3.
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in Fig. 88d, grains in model 3 undergo less damage since inter-granular joint breakage

contributes to energy dissipation. In model 3, damage accumulates faster in grains

than in joints and most joints remains undamaged at point B.

In order to obtain the creep curve of the polycrystal modeled with POROFIS, we

calculated the average values of strains over the entire set of integration points. The

plots of strain-time history for the three models during the creep phase are shown

in Fig. 89. In model 1, the polycrystal remains in the steady state creep regime

whereas tertiary creep is reached in models 2 and 3. With intra-granular damage

mechanism only, model 2 presents the most brittle failure and reaches tertiary state

at t = 0.24d, which shows a good agreement with the rapid damage accumulation in

grain elements shown in Fig. 87f. Although the creep curve obtained from model 3

matches the general trend of the curve obtained with model 2, the transition between

steady state and tertiary state is much smoother. This indicates the importance

of accounting for inter-granular slip-induced damage in joints for salt polycrystals.

However, the impact of intra- granular damage observed in the experiments cannot

be ignored (Fig. 83). As shown in Fig. 89, results obtained with model 1 reveal

a completely different behavior: the polycrystal is very ductile and remains almost

undamaged (Fig. 87e). Future work will concentrate on the validation of these results,

in particular the prediction of deformation at the macroscopic scale and fracture

patterns at the microscopic scale.
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Figure 89 Creep curves obtained with the three models. Note that the strains from

the initial monotonic loading phase are the same for the three models and not shown

in this figure.

The rapid deformation observed during tertiary creep is the result of accelerated

damage accumulation at the microscopic level. We continued the simulations until

failure with the three models. We find that model 1 requires the longest time to

reach failure (6.68 days, against 0.276 days with model 3 and 0.25 days with model

2). With model 1, most damaged joints are parallel to the creep loading direction.

At failure, some damaged joints have coalesced with the pre-existing voids (Fig. 90).

The ultimate damage distribution in model 2 exhibits only a few damage zones. The

highest damage values are observed in the upper left region of the polycrystal, maybe

because of the local heterogeneities (Fig. 91). Similar damage distributions in the

grains are obtained with model 3 (Fig. 92b). In model 3, high stress concentrations

not only lead to grain stiffness weakening, but also inter-granular damage (Fig. 92a).

As a result of the coalescence of damaged joints and voids, the upper left portion

tends to slip downward, along joint interfaces, which causes ultimate failure in model

3 (Fig. 92b).
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Figure 90 Damage in joints of model 1 at ultimate failure (t = 6.68d)

Figure 91 Damage in grains of model 2 at ultimate failure (t = 0.25d).

(a) (b)

Figure 92 Results of model 3 at ultimate failure (t = 0.276d): (a) damage in joints;

(b) grain damage in the deformed shape.

168



5.3 Viscous Damage in Salt Cavern

5.3.1 Phenomenological Modeling Framework

To study salt viscous damage at the field scale, we propose a phenomenological model

of viscoplastic deformation that captures the transition between secondary and ter-

tiary creep regimes (Zhu et al., 2015c). In the following, we calibrate this transition

against the micro-macro model presented in Chapter 4. During the secondary creep

regime, the viscoplastic deformation is the result of grain-scale sliding mechanisms.

During tertiary creep, the strain rate increases with damage as the consequence of

grain breakage. We use Norton-Hoff law for secondary creep (Carter and Hansen,

1983):

ε̇vpss =
3

2
Ac · exp(−

Q

RT
)(
σe
σ0

)n1
1

σe
s, (93)

in which Ac and n1 are material constants, Q is the activation energy for the slip

mechanism, R is the universal gas constant, T is the absolute temperature, s is the

deviatoric stress tensor, σ0 is a reference stress, arbitrarily set equal to 1MPa, σe =
√

3J2 is the equivalent von Mises stress, and J2 =
sijsij

2
is the second deviatoric stress

invariant. Experiments conducted at various temperatures led to similar empirical

power laws (Handin et al., 1986; Heard et al., 1972).

For the case of uniaxial creep, according to Eq. 93, we have

ε̇vpa = Ac · exp(−
Q

RT
)(
σe
σ0

)n1 , (94)

in which σe is the uniaxial stress.

As shown in the previous sections, micro-stresses increase with macroscopic vis-

coplastic deformation, which may cause grain breakage if grain tensile strength is

exceeded. The consequent redistribution of microstresses leads to higher local stress

concentrations, which further accelerate viscoplastic deformation and damage proga-

gation. This phenomenon is known as tertiary creep (Fig. 93).
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Figure 93 Complete creep curve. Tertiary creep phase initiates when first grain

breakage occurs.

According to the micromechanical analysis presented in Chapter 4, the onset of

the tertiary creep corresponds to the damage initiation. The consequent mechani-

cal macroscopic damage (Dm) is obtained by scaling the elastic properties by the the

fraction of non-broken grains in the REV. In the following, we denote the damage vari-

able in the phenomenological model as DM to account for the change of viscoplastic

strain rate induced by grain breakage (Ashby and Hallam, 1986; Hutchinson, 1983).

The tertiary creep deformation law is similar to the secondary creep law (Leckie and

Hayhurst, 1974):

ε̇vpts =
3

2
Bc · exp(−

Q

RT
)[
σe/(1−DM)

σ0

]n2
1

σe
s, (95)

in which Bc and n2 are material constants. σe
1−DM

is the effective stress. The damage

variable DM contributes to the degradation of material stiffness, as follows:

CD = (1−DM)C0, (96)

in which CD is the stiffness of the damaged material, C0 is the initial stiffness of the

undamage material. For uniaxial creep, Eq. 95 becomes:

ε̇vpa = Bc · exp(−
Q

RT
)[
σe/(1−DM)

σ0

]n2 , (97)
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in which σe takes the value of the uniaxial axial stress.

We compare two damage evolution laws. The first law (noted as damage evolution

law 1), initially proposed for metallic materials (Hayhurst et al., 1984), depends on

both the current damage and stress states as

ḊM =
Ccσ

ξ
e

(1−DM)ϕ
, (98)

in which Cc, ξ, and ϕ are material constants governing the damage accumulation

during the tertiary creep phase. The second damage evolution law (denoted as dam-

age evolution law 2), which depends on the current viscoplastic deformation state

only, was successfully employed to model concrete (Mazars, 1984) and interfaces in

cementitious materials (Jefferson, 1998). We assume that damage remains equal to

zero up to a critical viscoplastic deformation εvp0 , and then increases exponentially

with deformation as

DM = 1− e
−
εvp−εvp0

κεvp0 , (99)

As a result, the rate of damage is expressed as:

ḊM =
1

κεvp0

||ε̇vp||e
− ε

vp−ε0
κεvp0 , (100)

in which εvp0 is the critical viscoplastic strain at the onset of tertiary creep state. κ

is a damage parameter which measures the ductility of the material: the larger the

value of κ, the more ductile the material. ||ε̇vp|| =
√

2
3
ε̇vpij ε̇

vp
ij is the equivalent von

Mises strain.

We used the micro-macro model presented in Chapter 4 to simulate creep tests

under various axial stresses, and determined the critical viscoplastic strain as the

accumulated viscoplastic strain reached at the first occurance of grain breakage. In

Fig. 94, the onset of tertiary creep (cross symbol) is indicated by the point where

the viscoplastic deformation predicted in the absence of grain breakage (non-damage

model) separates from the one predicted with the consideration of grain breakage

(damage model).

171



0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5
x 10

−4

Time (day)

−
ε
v
p
(−

)

 

 

Non−damage Model

Damage Model

Figure 94 Evolution of macroscopic viscoplastic strain during the long-term creep
test with 7 MPa creep load.

We determined the critical viscoplastic deformation for creep tests under various

axial stresses, and established a relationship between critical viscoplastic strain εvpc

and creep load σc at a material point - for both short-term and long-term creep tests.

Fig. 95 shows the resulting damage threshold, which is similar to a yield surface.
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Figure 95 Damage criterion determined from micromechanical model (long term and
short term).

Note that the damage criterion obtained with short-term creep parameters is

similar to that obtained with long-term creep parameters, which confirms that the
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occurrence of damage depends on the cumulated viscoplastic strain - as opposed to

the viscoplastic strain rate. In addition, our modeling approach is in agreement with

the work presented by Kranz and Scholz (1977), according to which the onset of

tertiary creep should not depend on stress (but rather, on viscoplastic strain).

Since this study focuses on the long-term behavior of salt cavern subjected to

creep load, we used the damage criterion based on long-term creep datasets for the

following simulations. The damage threshold takes a bilinear form. Linear fitting

provides:

εvpc = 5× 10−5σc − 2× 10−5 (2 ≤ σc ≤ 4.78) (101)

εvpc = 4× 10−6σc + 2× 10−4 (σc > 4.78) (102)

When σc is less than 2 MPa, we assume that microstress remains below 2 MPa in all

grains, and therefore, that grain breakage does not occur (i.e., the material remains

in the secondary creep regime at the macroscopic scale).

5.3.2 Model Calibration

We calibrated material constants Ac and n1 against experimental results from steady

state creep for both short-term and long-term tests. In the following, we calibrate

tertiary creep constitutive paramters. For damage evolution law 1, these are Bc, n2,

Cc, ξ, and ϕ; For damage evolution law 2, these are Bc, n2, and κ. At the transition

between secondary and tertiary creep, when DM = 0, we have:

Ac · exp(−
Q

RT
)(
σe
σ0

)n1 = Bc · exp(−
Q

RT
)(
σe
σ0

)n2 . (103)

In addition, the creep deformation curve should fit experimental data. For consis-

tency, we use the experimental data obtained from the same salt rock as in the

calibration done in the secondary creep regime (Fuenkajorn and Phueakphum, 2010).

Tests are carried out at room temperature (T = 295K). The activation energy Q for

cross-slip in pure alkali halides is 1.538 × 104 J ·mol−1 (Senseny et al., 1992). The

universal gas constant R is 8.314 J ·mol−1 ·K−1.
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For short term creep, we obtained Ac = Bc and n1 = n2. After damage initiation,

the viscoplastic strain rate kept its value of 6.89× 10−2 day−1. We used the tertiary

creep strain rate to fit the parameters involved in the damage evolution laws (Fig. 96).

Tc and εvpc represent the time and the critical viscoplastic strain at the onset of the

tertiary phase, respectively.
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Figure 96 Calibration of short-term parameters for the tertiary creep phase. We

obtain the experimental data from the short-term creep test with the creep load 30

MPa (Fuenkajorn and Phueakphum, 2010).

We also calibrated our model against long term creep datasets (Fuenkajorn and

Phueakphum, 2010). The tertiary parameters Bc and n2 were different from the

secondary parameters Ac and n1 (Fig. 97). The resulting strain rate for long term

steady state creep is 5.61 × 10−4 day−1. Although some deviation exists between

experimental data and theoretical model, the trend is well captured by both damage

models.
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Figure 97 Calibration of long-term parameters for the tertiary creep phase. We

obtain the experimental data from the short-term creep test with the creep load 12.6

MPa (Fuenkajorn and Phueakphum, 2010).

We verified our calibrated model against independent experimental datasets. For

short term creep, we used the creep curve of another type of salt rock (Yang et al.,

1999) (complete creep curve, including secondary and tertiary creep regimes). The

steady state viscoplastic strain rate using calibrated parameters is 1.72× 10−2 day−1,

same as the reported experimental result. Damage evolution in salt rock depends

on its microstructure and defects, which varies greatly among different types of salt

rocks. So while keeping other parameters unchanged, we had to do an additional

calibration of the two damage parameters. Using the experimental data reported in

(Yang et al., 1999), we found Cc = 0.18 in model 1 and κ = 41 in model 2.
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Figure 98 Verification of short-term parameters for the tertiary creep phase. We

obtain the experimental data from the short-term creep test with the creep load 21.5

MPa (Yang et al., 1999).

Tables 15 and 16 summarize all calibrated parameters, for both damage evolution

laws. As expected, the values of Ac and Bc for long-term creep are significantly

smaller than those obtained for short term creep. The value of κ is larger for long-

term creep - as the material becomes more ductile. Note that the proposed model is

able to capture the transition between secondary and tertiary creep with an input of

8 constitutive parameters.

Table 15 Model parameters calibrated for damage evolution law 1 based on the
experimental data (Fuenkajorn and Phueakphum, 2010).

short term
Ac (day−1) n1 (-) Bc (day−1) n2 (-)
1.88× 10−4 3.58 1.88× 10−4 3.58
Cc (-) ξ (-) ϕ (-)
0.915 0.7 2.05

long term
Ac (day−1) n1 (-) Bc (day−1) n2 (-)
1.06× 10−5 4.04 1.00× 10−8 6.9
Cc (-) ξ (-) ϕ (-)
0.0037 0.8 4.92
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Table 16 Model parameters calibrated for damage evolution law 2 based on the
experimental data (Fuenkajorn and Phueakphum, 2010).

short term
Ac (day−1) n1 (-) Bc (day−1) n2 κ (-)
1.88× 10−4 3.58 1.88× 10−4 3.58 23

long term
Ac (day−1) n1 (-) Bc (day−1) n2 κ (-)
1.06× 10−5 4.04 1.00× 10−8 6.9 115

5.3.3 Pressurized Salt Cavern under Long-term Creep

We implemented the phenomenological models in POROFIS. The rock stiffness is up-

dated at each time increment, which allows representing the accumulation of damage

around the cavern and, in this way, we account for the damage effect on the stress

field around the cavern.

We simulated the depressurization of an axisymmetric salt cavern of irregular

shape (Fig. 99), which consists of both convex and concave regions and is similar to

that of the Eminence salt dome site (Warren, 2006). The depth and height of the

cavern were 850m, and 100m, respectively. The salt formation had a unit weight

of γ = 0.02 MN/m3, a Young’s modulus of 23 GPa and a Poisson’s ratio of 0.3

(Fuenkajorn and Phueakphum, 2010). In the FEM analysis, to focus on the neigh-

boring region, we extracted a 500m by 500m domain close to the salt cavern (Fig. 99).

In order to account for the overburden, we applied a vertical stress of PV = γz = 12

MPa at the top boundary. To achieve a homogeneous stress field and apply an in-situ

level storage pressure, we applied a 12 MPa lateral stress PH and a 12 MPa initial

storage pressure PA in the cavern. The vertical displacement was fixed at the bottom

of the domain and the radial displacement fixed at the left side of the domain (axis of

symmetry). We carried out the FEM simulations with both damage evolution laws

and simulated a depressurization process under typical CAES conditions, in three
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stages:

• In stage 1 (steady state, time-independent), we applied the initial stresses.

• In stage 2 (transient state, time-dependent), within one time step, we reduced

the cavern pressure from 12 MPa to 8 MPa - which is in the same order of

magnitude as the stresses encountered in CAES (Ibrahim et al., 2008).

• In stage 3 (transient state, time-dependent), we maintained a stress of 8 MPa

at the cavity wall for a long time (360 days), in order to reach a tertiary creep

phase.

Figure 99 Geometry and boundary conditions of a typical salt cavern studied in

POROFIS. Element W is the tracing element. Maximum width of the cavern is 40m

at element W.
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Figure 100 Equivalent stress distribution at the end of stage 2 using a 500m×500m

domain.

We simulated the salt cavern depressurization by adopting a larger domain (1100m

height by 500m width for a 100m-high cavern) in order to check the boundary effect.

At the end of stage 2, both the 500m×500m and the 1100m×500mmodels provide the

same equivalent stress distributions, with less than 3% difference. The zones of stress

concentration are also similar. Comparison of other results such as the distribution

of various stress components further indicates that the discrepancy is within the

acceptable range of 3%. Therefore, in the following analysis, to save computational

time, we used the smaller domain shown in Fig. 99. Fig. 100 shows the equivalent

stress distribution around the cavern for the small domain case. Note that results are

reliable close to the cavern while relatively larger deviations exist at the far-field.

At the end of the first stage, the damage variable DM is zero for all elements. The

stress distribution is homogeneous. The resulting equivalent von Mises stress σe is

close to zero all over the domain.

At the end of the second stage, after the depressurization in the cavern, we obtain

extreme stresses around the cavern. The equivalent stress concentrates at the vicinity

of the cavern, with the highest values appearing at specific locations including the

roof, the most convex and concave parts (Fig. 100). This reveals the significant
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influence of the irregular shape of the cavern on the stress distribution surrounding

the cavern. Fig. 101a and 101b show the distribution of stress components Srr and

Szz around the cavern after stage 2.

(a) (b)

Figure 101 Stress distribution at the end of stage 2: (a) radial stress, (b) vertical

stress.

Before the simulation reaches the end of the third stage, as a result of the stress

dependence in the damage evolution law 1 (Eq. 98), damage increases rapidly in

the element with the highest stress intensity (Fig. 102). Because the damage is

so concentrated, it evolves very fast and does not propagate in the other elements.

Therefore, damage evolution law 2 (Eq. 100) is more approriate for the long-term

creep test simulation. Using damage evolution law 2, we obtained the distribution of

equivalent stress around the cavern after 360 days (Fig. 103).
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Figure 102 Damage distribution at the end of stage 3, using damage evolution law

1 (Eq. 98). Only roof elements are damaged in this magnified image.

Figure 103 Equivalent stress distribution at the end of stage 3, using damage evo-

lution law 2 (Eq. 100). We use the same scale of color bar as in Fig. 100.

As expected, damage predicted with damage evolution law 2 reaches its highest

value at the roof. We can observe that in addition to the roof, damage tends to accu-

mulate faster at the most convex and concave parts (Fig. 104). The damage evolution

law 2 governed by Eq. 100 is more appropriate and allows the observation of the pro-

gressive damage accumulation in all elements surrounding the cavern. Therefore, the

following results are all based on simulation with damage evolution law 2 (Eq. 100).

Overall, the cavern does not undergo severe damage for the particular geometry
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and boundary conditions adopted in this problem. But as a result of viscoplastic de-

formation, salt caverns with complex geometries may be subjected to various types of

failure such as rock fall (Djakeun, 2014). Irreversible strain evolves around the cavern

because of the creep load induced by internal pressure (Fig. 105). The distribution

of irreversible strain matches the distribution of damage.

Figure 104 Damage distribution around the cavern wall at the end of stage 3, using

damage evolution law 2 (Eq. 100).

Figure 105 Irreversible equivalent strain at the end of stage 3, using damage evolu-

tion law 2 (Eq. 100).

Fig. 106 compares the stress distribution at the end of stage 2 and at the end of

stage 3 along path WW’ (refer to Fig. 99). Both radial and vertical stress compo-

nents decrease during the creep process. This phenomenon corresponds to the stress

relaxation that follows the intiation of damage. The distribution of equivalent stress

along WW’ confirms this phenomenon (Fig. 107). The equivalent stress drops at the

cavern wall whereas it remains almost unchanged in the far field.
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Figure 106 Radial/vertical stress distributions along path WW’ after stages 2 and

3.
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Figure 107 Equivalent stress distributions along path WW’ after stages 2 and 3.

We tracked one element (element W in Fig. 99) at the cavern wall. We plotted the

evolution of the equivalent stress in Fig. 108. Even though the pressure applied at the

cavern wall is constant during stage 3, the equivalent stress decreases over time, as

a result of stress relaxation induced by damage. Because of the bilinear relationship

between critical viscoplastic strain and the equivalent stress, the evolution of the

critical strain follows the evolution of the equivalent stress (Fig. 109). The evolution

of damage in element W (Fig. 110) follows that of the viscoplastic equivalent strain,

which can exceed the critical viscoplastic strain in this simulation.
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Figure 108 Evolution of equivalent stress of element W.
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Figure 109 Evolution of equivalent viscoplastic strain of element W.
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Figure 110 Evolution of damage variable of element W.
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5.4 Conclusions

The FEM is used to investigate salt damage evolution at two different scales: fracture

propagation in salt polycrystals and viscous damage in salt cavern. We implemented

micromechanical and phenomenological models of viscoplasticity in POROFIS to

perform the simulations.

For the study of the salt polycrystal, we first compared the performance of the

self-consistent scheme in predicting grain breakage in a polycrystal subject to creep

and cyclic loads to that of a joint-enriched FEM model. The self-consistent model

is computationally economical and enables predicting important aspects of salt rock

viscoplastic and damage behavior. By contrast, the FEM model is able to present the

concentrations of vertical stresses at the contact of angular grains and the resulting

geometric incompatibilities, which induces higher stress and inter-granular crack coa-

lescence. The FEM model also captures the mechanical behavior of salt under cyclic

loading: Higher stress amplitude, lower confining stress, and lower loading frequency

increase the deformation and damage of the polycrystal; the Young’s modulus of

the polycrystal decreases exponentially with the number of cycles. We are currently

working on the explicit representation of pores and cracks in FEM models, which

is critical for analyzing intra- and inter-granular crack propagation and volumetric

deformation during salt thermal consolidation.

For the study of the salt cavern, we used a tertiary creep law that is similar to

the secondary creep law, except that the deformation rate is made dependent on a

phenomenological damage variable. The transition between secondary and tertiary

creep laws is governed by the bilinear damage threshold that was obtained from our

self-consistent model. A salt cavern of irregular shape in axis-symmetric conditions

was simulated. We compared two phenomenological damage evolution laws. Sim-

ulations of cavern depressurization with the stress-dependent damage evolution law

provided concentrated damage at the crown, which led to numerical challenges. By
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contrast, the strain-dependent damage evolution law allowed capturing the formation

of a damaged zone that tends to appear at the most convex and concave parts of

the cavity. Considering that salt caverns can undergo thermo-mechanical damage

resulting in a decrease of its stiffness and strength, more work is needed to estimate

the damage and potential failure in the near-field of underground salt cavities based

on the stress and deformation fields. A more accurate estimation of the damage po-

tential requires constitutive laws that account for both viscoplastic deformation and

damage.

Through FEM analyses, we can understand better the viscous and damage be-

havior of a halite polycrystal at different scales. Capturing inter-granular and intra-

granular damage allows us to explain the failure mechanism of the polycrystal. This

is helpful for the study of polycrystals subjected to complex loading paths, and for

the optimization of polycrystal mechanical properties for different engineering appli-

cations. FEM simulations at the reservoir scale enables the long-term assessment of

geostorage facilities. Through the study of damage, stress, and deformation under

long-term conditions, engineers could improve their design and operation plans for

the cavern.
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CHAPTER VI

CONCLUSIONS AND FUTURE STUDY

6.1 Summary

Continuum Damage Mechanics (CDM) models were initially formulated to predict

the degradation of stiffness and strength properties of metals. With the increas-

ing energy demand and the important environmental issues that arose from waste

management, rocks became an interesting object of study for fracture mechanicians

and material scientists - and not only geologists. Compared to fracture mechanics,

CDM was seen as a computationally efficient framework to predict the changes of

stress and deformation at the bulk scale, which was well suited for engineering de-

sign. The first attempts to extend CDM to rock mechanics date back to the 1990’s,

with the works of French researchers like Dragon and Chaboche, who grounded their

formulations on micromechanical analyses presented by Kachanov in the 1980’s. Two

damage mechanics schools emerged: the first puts emphasis on the thermodynamic

consistency of phenomenological laws expressed for the continuum and the second fo-

cuses on fracture micromechanics and homogenization-based upscaling methods. In

the late 1990’s, models were improved to account for anisotropic unilateral effects

induced by crack closure. In the early 2000’s, researchers coupled CDM models to

the Biot’s theory to account for hydro-mechanical couplings, and later, to plastic-

ity models. In the 2010’s, the first theories of damage and healing mechanics were

born, with the pioneering works of Ju and Voyiadjis in particular. However, these

mathematical frameworks do not yet allow distinguishing crack closure and crack re-

bonding, and require using tensor variables that are unrelated to microstructure. As

a result, evolution laws are expressed at the bulk scale and are disconnected from the
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physical processes that drive crack healing and subsequent changes of stiffness and

permeability.

In this thesis, we present the first attempt to couple Continuum Damage and Heal-

ing Mechanics to microstructure evolution, in order to understand why some rocks

recover from mechanical damage, and some do not. Salt rock is an attractive host for

deep waste disposals, due to favorable creep characteristics and low gas permeabil-

ity. Salt cavities can also store high-pressure gas to activate turbines at peak hours.

Halite is considered herein as a model material to characterize rock microstructure

organization during brittle, ductile and viscoplastic deformation, and to study the

microscopic processes leading to macroscopic mechanical recovery. Although poly-

crystalline halite (salt rock) is known for deformation by isochoric dislocation and

diffusion processes, cracking is also an important grain-scale process at lower mean

stress. The relationship between these micro-mechanisms and macroscopic strain evo-

lution is still not well understood, especially in transient states. How and why do

complex macroscopic phenomena (e.g., creep, damage, healing) emerge from elemen-

tary microscopic processes? We examined these fundamental scientific questions by

performing a series of theoretical and numerical experiments.

In the first set of theoretical models, presented in Chapter 3, we adopt a “top-to-

bottom" approach, in which the framework of CDM is enriched by internal variables

defined as moments of probability of microstructure descriptors. The work involves:

(i) image acquisition and processing during salt creep tests reported in the litera-

ture, performed by our collaborators at Texas A&M University, or conducted in our

laboratory at Georgia Tech; (ii) statistical analysis of these images; (iii) theoretical

derivations to relate probability density functions to field variables; (iv) formula-

tion of a continuum mechanics framework; (v) numerical calibration and validation
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with MATLAB. We successively improved a CDM model to: account for thermo-

mechanical crack debonding, opening and closure; include mechanical recovery in-

duced by Diffusive Mass Transfer in dry polycrystals; study mechanical anisotropy

induced by healing; extend the concept of microstructure-enriched CDM to the pre-

diction of permeability variations upon crack propagation and rebonding.

In the second theoretical modeling strategy, presented in Chapter 4, we use a

“bottom-up" approach to upscale viscoplastic glide mechanisms that occur in salt

mono-crystals to predict the transition between secondary and tertiary creep defor-

mation regimes, and to gain fundamental understanding of fatigue in salt subject

to cyclic loading. We propose a self-consistent scheme, which accounts for damage

accommodation due to grain breakage. The model required: (i) defining an averag-

ing method and kinetic laws at the micro-scale; (ii) formulating a continuum-based

damage viscoplastic model based on the self-consistent method; (iii) explaining a

computation algorithm to update iteratively microscopic and macroscopic variables

and damage upon creep and cyclic loading paths; (iv) calibrating and validating the

micro-macro model with MATLAB.

The third series of experiments presented in Chapter 5 is numerical and has two

purposes: (i) we assessed the bottom-up model of creep damage and fatigue by com-

paring it with a joint-enriched Finite Element Method (FEM); (ii) we simulated the

accumulation of damage around salt caverns subject to depressurization at the tran-

sition between secondary and tertiary creep. We used the FEM code POROFIS,

developed by Dr. A. Pouya at Paris-Est University in France.
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6.2 Main Findings

In Chapter 2, we explained why salt rock is a model material, relevant to the micro-

macro modeling of coupled thermo-hydro-chemo-mechanical damage and healing pro-

cesses. Salt is mono-mineralic, and heals within days at temperature, moisture and

stress conditions that are achievable in the laboratory. Microscopic processes occur-

ring in salt upon healing are also well documented, which makes it possible to bench-

mark different multi-scale mechanical models. We also reviewed the main strategies

available to predict the effects of mechanical damage and healing, and discussed the

capabilities of state-of-the-art numerical tools. The main challenge in rock mechanics

is the linkage between continuum variables and microstructure descriptors.

In order to address this issue, in Chapter 3, a fabric-enriched Continuum Damage

Mechanics (CDM) framework is proposed. The theoretical framework was built and

improved step by step, in order to allow predicting damage and healing anisotropy

induced by thermo-mechanical crack opening, closure and healing in rocks. In order

to infer the form of fabric tensors from microstructure observation, creep tests were

carried out on granular salt under constant stress and humidity conditions. Grain

boundaries were viewed as analogs of cracks in salt rock. The rearrangement of

salt particles and the rebonding of grain boundaries during creep were monitored by

microscope and micro-CT scan imaging. Statistical analyses focused on three mi-

crostructure descriptors: the void area and the lengths of grain boundaries, which

were used in the definition of the mechanical damage and healing variables, and the

crack spacing, which was included in the expression of permeability. Crack closure

was considered by adopting the concept of unilateral effect on rock stiffness. Crack

rebonding was assumed to result from Diffusive Mass Transfer (DMT) processes. Net

damage evolution obeys a diffusion equation in which the characteristic time scales

with the typical size of a grain of salt. Healing parameters were calibrated by compar-

ing crack cusp migration distance with published experimental results. Constitutive
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models were programmed at the integration point in MATLAB to simulate thermo-

mechanical loading and unloading cycles in axis-symmetric conditions. Macroscopic

and microscopic model predictions are in agreement with the assumptions made in

the constitutive framework, in particular: (i) under anisotropic mechanical bound-

ary conditions, cracks can be produced during heating; (ii) the efficiency of healing

increases with temperature, time, and the presence of moisture; (iii) permeability

changes are predominantly controlled by changes in crack connectivity rather than

the porosity change.

In Chapter 4, we used a self-consistent homogenization scheme to upscale the vis-

coplastic and damage behavior of salt polycrystals from mono-crystal viscous glide

and breakage mechanisms. The micromechanical modeling approach enabled predict-

ing important aspects of salt rock viscoplastic and damage behavior. Strain hardening

during creep was evidenced by the increase of macroscopic viscoplastic strains at a

decreasing rate, and by the progressive increase of microscopic stresses over time, un-

til an asymptotic value. In creep tests in which a high compressive stress was applied

before a lower compressive stress, tensile macroscopic strains were accompanied by

a reorientation of microscopic stresses towards an isotropic distribution: simulations

provided a microscopic interpretation to the phenomenon known as “creep recovery",

which is a memory effect. Grain breakage occurred for creep tests under high stress,

and for cyclic loading tests simulated at lower frequencies, higher maximum stress,

and/or higher loading amplitude. As expected, the Young’s modulus decreased with

the increase of damage. Grain breakage provided a micromechanical explanation to

the phenomenon known as “accelerated creep" (also called “tertiary creep"). The

dependence of viscoplastic strains to cyclic loading frequency was well captured by

the model: higher the frequency, smaller the macroscopic viscoplastic strain, and

smaller the microscopic stresses. The increment of macroscopic viscoplastic deforma-

tion decreased over the cycles, which is in agreement with the phenomenon of plastic
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adaptation or “shakedown" observed in elasto-plastic media.

In Chapter 5, we first compared the performance of the self-consistent scheme in

predicting grain breakage in a polycrystal subject to creep and cyclic loads to that

of a joint-enriched Finite Element Method (FEM) model. In the latter, different

viscoplastic Finite Elements are used for grains of different orientations, and joint

elements are introduced to predict crack propagation. The mesh is generated from

an automated Electron BackScatter Diffraction (EBSD) map of salt microstructure.

During creep tests, concentrations of vertical stress are noted at the contact of angu-

lar grains even before the initiation of creep, which results in inter-granular slip and

subsequent damage in some joints. At the end of the creep test, viscous shear defor-

mation in the grains induces more geometric incompatibilities, which results in higher

stress and inter-granular crack coalescence. The joint-enriched FEM model captures

the mechanical behavior of salt under cyclic loading: Higher stress amplitude, lower

confining stress, and lower loading frequency increase the deformation and damage

of the polycrystal; the Young’s modulus of the polycrystal decreases exponentially

with the number of cycles. Second, we used the self-consistent model to calibrate

the transition between secondary and tertiary creep against the critical viscoplastic

strain at which grain breakage is initiated. We used phenomenological models of sec-

ondary and tertiary creep in order to simulate the accumulation of viscous damage

around a salt cavern subject to depressurization with the FEM. The tertiary creep

law is similar to the secondary creep law, except that the deformation rate depends

on a phenomenological damage variable. We compared two phenomenological dam-

age evolution laws. Simulations of cavern depressurization with the stress-dependent

damage evolution law provided concentrated damage at the crown, which led to nu-

merical challenges. By contrast, the strain-dependent damage evolution law allowed

capturing the formation of a damaged zone that tends to appear at the most convex

and concave parts of the cavity.
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6.3 Plans for Future Study

Several unknowns and challenges still arouse our scientific curiosity. Below are a few

suggestions for future studies:

• A more complete set of independent fabric descriptors is needed to better cap-

ture the evolution of mechanical and transport properties of rocks during dam-

age and healing processes.

• The reconstruction of the pore network based on 3D image processing is required

to estimate fluid flow anisotropy within the crack network.

• More work is needed to account for non-elastic inclusion-matrix interactions

(known as “viscous accommodation"), which results from geometric incompati-

bilities between grains. The bottom-up damage model could also be improved

in order to account for the residual stiffness of grains, which requires introducing

elastic anisotropy for both the grains and the matrix.

• The explicit representation of pores and cracks in FEM models of polycrystals is

still numerically challenging; research towards the improvement of joint-enriched

FEM seems promising to address this issue. Such numerical scheme could be

used to analyze intra- and inter-granular crack propagation during salt thermal

consolidation for instance.

• The knowledge of the dominating halite crystal deformation mechanisms is crit-

ical to understand salt rock macroscopic creep rates observed around caverns

and to predict the transition between secondary and tertiary creep. More work

is needed to link grain breakage to the phenomenological damage variable used

in CDM to predict the reduction of elastic moduli.

• Further studies on micro-macro damage mechanics are needed to understand

the origin of the fatigue behavior of crystalline materials upon cyclic loading.
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APPENDIX I

LITERATURE REVIEW

A.1 State of the Art: Experimental Assessment of Thermo-
mechanical Damage in Rocks

Material Experimental test T ( ◦C)
Peak stress σP

(MPa)

Strain at peak stress

εP

Stiffness (GPa)

(high T - low

T)

References

Limestone

UC without cooling 25 ∼ 800 25 ∼ 110 0.005 ∼ 0.013 3.2 ∼ 17.8 (E)
Mao et al.

(2009)

UC after cooling 20 ∼ 250 43.2 ∼ 46.4 0.0023 ∼ 0.0029 23.7 ∼ 25 (E)
Lion et al.

(2005)

Salt rock

TC without cooling 23 ∼ 200 15 ∼ 65 0.02 ∼ 0.35 29.6 ∼ 36.5 (E)
Wawersik and

Hannum (1980)

UC without cooling 20 ∼ 180 10 ∼ 22 0.005 - 0.018
1.14 ∼ 2.15

(Et)

Liang et al.

(2006)

Gabbro UC after cooling
25 ∼

1000
35 ∼ 230 0.0023 ∼ 0.006 2.5 ∼ 85 (E)

Keshavarz et al.

(2010)

Breccia UC after cooling 20 ∼ 800 92.4 ∼ 130.3
0.0034 ∼ 0.0045

(high T - low T)
11.8 ∼ 30.3 (E)

Zhu et al.

(2006)

Granite

TC without cooling 20 ∼ 700 600 ∼ 1150 0.015 ∼ 0.025 32 ∼ 60 (E) Wong (1982)

UC without cooling 20 ∼ 600 150 ∼ 260 0.007 ∼ 0.014 20 ∼ 50 (Et)

Homand-

Etienne and

Houpert (1989)

UT without cooling 20 ∼ 600 1 ∼ 9 0.0002 ∼ 0.0006 5 ∼ 20 (E)

Homand-

Etienne and

Houpert (1989)

UC and radial

compression test

under thermal

hysteresis without

restoring to room

temperature

-160 ∼

100

σc

heat: 155 ∼

195

cool: 180 ∼

220

σt

heat: 8 ∼ 9.5

cool: 8.5 ∼ 14

heat: 0.00015 ∼ 0.0008

cool: -0.0018 ∼

-0.0001 (ετ )

heat: 46 ∼ 54

cool: 40 ∼ 50

(Et)

Inada et al.

(1997)

UC after cooling 20 ∼ 800 105.5 ∼ 152.9 0.0026 ∼ 0.0099 15.9 ∼ 32.4 (E)
Zhu et al.

(2006)
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Material Experimental test T ( ◦C)
Peak stress σP

(MPa)

Strain at peak stress

εP

Stiffness (GPa)

(high T - low

T)

References

Andesite UC without cooling 23 ∼ 200 100 ∼ 117 0.0062 ∼ 0.0093 16 ∼ 21 (E)
Jeong et al.

(2007)

Mudstone UC without cooling 25 ∼ 800 25 ∼ 275 0.0045 ∼ 0.013 6.6 ∼ 24.7 (E)
Liu et al.

(2014b)

Tuff

UC and radial

compression test

under thermal

hysteresis without

restoring to room

temperature

-160 ∼

100

σc

heat: 10 ∼ 15

cool: 22 ∼ 30

σt

heat: 1.5 ∼ 2.3

cool: 2 ∼ 4

heat: 0.0001 ∼ 0.0007

cool: -0.0016 ∼

-0.0001 (ετ )

heat: 3.2 ∼ 4

cool: 3.5 ∼ 4.6

(Et)

Inada et al.

(1997)

UC after cooling 20 ∼ 800 101.6 ∼ 147.7 0.0043 ∼ 0.0069 19.9 ∼ 30.7 (E)
Zhu et al.

(2006)

Marble UC after cooling 20 ∼ 600 57 ∼ 131 0.0087 ∼ 0.0123 9.18 ∼ 16.8 (E) Shi et al. (2008)

Notations:
E = elastic modulus

Et = tangent modulus

UC = uniaxial compression

σc = compressive strength

σt = tensile strength

TC = triaxial compression

T = temperature

ετ = thermal strain

UT = uniaxial tension
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A.2 Review of Microstructure-enriched Permeability Model for
Rocks

Rock type Authors Permeability Expression Microstructure factors

sandstone Koplik et al.
(1984)

k = gmt, t =< 1
A(P )

∑
b∩P Lb · n̂ >∑

iNi
gi−gm

gi+( z̄
2
−1)gm

= 0
totuosity, path length, throat size

sandstone and
carbonate

rocks

Katz and
Thompson
(1986)

k = cl2c(σ/σ0) characteristic length of pore space

cracked rocks
Gavrilenko and

Gueguen
(1989)

K = 4π
15
N0
f < c5 >∫ αM−β

0 α3nα(α+ β)dαF [x(β)]

aspect ratio, fraction of cracks, crack
number density, crack radius and

aperture, crack roughness

naturally
fractured rocks

Lee et al.
(1995) Kij = 1

12
(Pkkδij − Pij) Pij =

∑Nf
k=1 P

k
ij

effect of hydromechanical coupling,
normal closure, and fracture geometry

(aperture, size and orientation)
dolomite,

siltstone, and
sandstone

Ioannidis et al.
(1996)

lnk = a+ b+ ln(φ) + cln(IS)
IS =

∫∞
0 Rz(u)du

correlation length, lag vector
measuring the separation of two

points in space

salt Peach and
Spiers (1996)

k = 2
15
θαD < w >2 [1− 4(( 8Aα

πD
− 3

4
)1/2 −

1
2

)3 + 3(( 8Aα
πD
− 3

4
)1/2 − 1

2
)4]

crack geometry and dilatancy

large-scale
fractured
outcrop

Brown and
Bruhn (1998)

Kij = λ(Pkkδij − Pij)
σ2 = −C πsα−1sec(απ/2)

2α−1[(Γα+1
2

)]2

influence of crack closure, fracture
surface roughness

salt Chan et al.
(2001) K = CP (1−γ)3(1−Df )3+CCK [

γ3(1−Df )3

(1−γ+γDf )2
]

tortuosity parameter, specific pore
surface area, geometric shape

granite Oda et al.
(2002)

kij = λ
12

(Pkkδij − Pij)
Pij = πρ

∫ rm
0

∫ tm
0

∫
Ω/2 r

2t3ninj ×
2E(n, r, t)dΩdrdtn

crack size, crack number

fractured rock
masses

Min et al.
(2004)

kx = knx + kdx = fx
12
b3x + fdx

12
d3
x

ky = kny + kdy =
fy
12
b3y +

fdy
12
d3
y

crack closure, shear dilation

brittle rocks Shao et al.
(2005)

k = k0 + kc, kc =
(N

Ω
)(λπ

12
) 1

4π

∫
S2 R(n)e(n)3r(n)2(δ − n⊗ n)dS

crack orientation, radius, aperture,
number of cracks

salt Alkan (2009) k1/3 = m− nlnσ3

k = Akf [(1− e−(σ1/σC/D))− 0.63]2
aperture width, surface roughness,

pore pressure

rocks Arson and
Pereira (2013)

k = γ
8µ

Φ 1∫∞
0 f(r)dr

∫∞
0 f(r)r2dr pore radius, porosity, volumetric

frequency

3D fractured
porous media

Pouya and Vu
(2012)

k̂ = kδ +
∑
m kfm

kfm = ρm
16kcmRm3

3cm+ 16
3
kRm

(δ − nm ⊗ nm) ·A
fracture radius, orientation, density,

conductivity
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A.3 Review of Experimental Studies of Salt Fatigue under Cyclic
Loading

Salt studied

Loading conditions (σmax =
maximum stress; σmin = minmum
stress; N = Number of cycles; f
= frequency; ε̇ = strain rate)

Key findings Reference

78.84% NaCl, 18.92%
water insoluble materials
(quartz, clay, mud, and
marl), 2.14-2.74% MgCl2

and CaSO4 (India)

σmax = 10, 20, 30, 40, 50, 60, 65,
70, 72, 75% of the compressive

strength; f = 3.5× 10−3 Hz; N =
50-400

Below a certain stress level, the compressive
strength and the elastic modulus depend on
intrinsic anisotropy (bedding plane) and on
the number of cycles; above this stress level,

the influence is negligible.

Dubey and
Gairola
(2000)

pure rock salt and less
than 0.5% insoluble
component (Russia)

N = 2: triaxial compression
followed by uniaxial compression

Memory effects in stress were measured
when the maximum in-situ stress exceeded

the elastic limit.

Filimonov
et al. (2001)

relatively pure halite
with less than 1-2%

anhydrite, clay minerals
and ferrous oxide

(Thailand)

σmax = 15.9 to 34.6 MPa; σmax =
0.15 MPa; f = 0.001− 0.3 Hz; N

= 7-595

Strength decreases for larger numbers of
loading cycles; salt viscoplasticity decreases

with increasing loading frequency.

Fuenkajorn
and

Phueakphum
(2010)

two types of samples:
salt rock with pure
halite; salt rock

dominated by thenardite
(Na2SO4) (China)

uniaxial compression; ε̇ =
2× 10−5, 2× 10−4, 2× 10−3s−1;

σmax = 12.5-15.4 MPa

Elastic moduli slightly increase with the
strain rate; Poisson’s ratio decreases with the

strain rate; the failure stress is lower for
lower strain rates.

Liang et al.
(2011)

high purity (NaCl,
Na2SO4, CaSO4) with
less than 10% insolubles
(glauberite, argillaceous,

anhydrite) (China)

σmax = 75-90% of the compressive
strength; σmin = 37.5-45% of the
compressive strength; f = 1 Hz;

N =1041-14789

The maximum and mean stresses affect
fatigue significantly; failure modes for

uniaxial compression and cyclic loading are
different.

Guo et al.
(2012)

75-85% NaCl (halite),
0.72% Na2SO4 (sodium
sulfate), 1.2% CaSO4

(anhydrite), 7-10%
insoluble components

(China)

σmax = 24.9-53.2 MPa; σmin =
16.9-28.2 MPa; sinusoidal form;
f = 0.025, 0.05, 0.1 Hz; confining

pressure = 7, 14, 21 MPa;
N =500-850

Elastic moduli decrease exponentially for
increasing number of cycles; modulus

degradation is independent of stress level and
confining pressure; higher loading frequencies
cause less viscoplastic deformation; triaxial

compressive strength and total strain
increase with stress amplitude, loading

frequency, and confining pressure.

Ma et al.
(2013)

salt rock with salt
content up to

84.76-93.76% (China)

σmax = 20, 30, 40, 50, 60, 70, 85%
of the compressive strength (20
MPa); σmin = 1 MPa; sinusoidal

form; f = 1 Hz; N = 31

The stress level leading to the initiation of
fatigue damage under cyclic loading is 20%
of the uniaxial compressive strength; damage
accumulation accelerates beyond the point of

volume expansion.

Liu et al.
(2014a)
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APPENDIX II

RELATION BETWEEN RESIDUAL STRESS AND

PROBABILITY DENSITY FUNCTIONS OF FABRIC

DESCRIPTORS

According to Table 6 in Section 3.3,

σ
(i)
R = Nv

2
√

2

π

µ

κ+ 1
Mi (104)

in which:

Mi =
Av

Rj Rk

(105)

Mi is a random variable, defined as the product of three independent random vari-

ables: Av, zj = 1/Rj and zk = 1/Rk. Therefore, the probability of Mi writes:

p(Mi) = pA(Av)× pzj(zj)× pzk(zk) (106)

The components of the residual stress are updated with the means of M1, M2 and

M3, noted M1, M2 and M3 respectively:

σ
(i)
R = Nv

2
√

2

π

µ

κ+ 1
M i (107)

M i =

∫ Amax

Amin

∫ 1/(Rmin)2

1/(Rmax)2

Av × zj × zk (108)

× pA(Av)× pzj(zj)× pzk(zk) dzkdzjdA

In the equation above, we have:

pA(Av) = aAtv (109)
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The probability pzj(zj) is obtained by differentiating the cumulative density function

F ∗j (zj) = pzj(z ≤ zj):

pzj(zj) =
dF ∗j (zj)

dzj
(110)

With:

F ∗j (zj) = pzj(R
−1 ≤ zj) = pj(R ≥ z−1

j ) (111)

F ∗j (zj) = 1− pj(R ≤ z−1
j ) = 1− Fj(z−1

j )

(112)

Therefore:

pzj(zj) = −
dFj(z

−1
j )

dzj
= −

dFj(z
−1
j )

d(z−1
j )︸ ︷︷ ︸

pj(z
−1
j )

dz−1
j

dzj︸ ︷︷ ︸
−z−2

j

(113)

As a result:

pzj(zj) = pj(z
−1
j )× (zj)

−2 (114)

Using the expression of the probability density function of the crack length compo-

nents:

pzj(zj) =
z−1
j√

2π sj
exp

[
−
(
ln
(
z−1
j

)
−mj

)2

2s2
j

]
(115)

By this means, the residual stress can be derived from the fabric descriptors, i.e. from

the void area and the crack length components.
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APPENDIX III

APPROXIMATED MACROSCOPIC VISCOPLASTIC LAW

For a homogeneous and isotropic elastic matrix, Kröner’s model (Kröner, 1961), pro-

posed initially for elasto-plastic materials, was extended by Weng for viscoplastic

materials (Weng, 1982), in the following form:

σ̇ − σ̇ = 2µ(1− β)(ε̇
vp − ε̇vp) (116)

in which σ̇ is the rate of microscopic stress, and σ̇ is the rate of macroscopic stress.

ε̇
vp and ε̇vp denote the macroscopic and microscopic viscoplastic strain rates. β is

given by:

β =
2(4− 5ν)

15(1− ν)
(117)

In which ν is the Poisson’s ratio of both the matrix and the grains (uniform elasticity).

According to Eq. 50 in Section 4.2, the microscopic and macroscopic viscoplastic

strains are purely deviatoric. Taking the deviatoric part of Eq. 116 yields:

ṡ = ṡ + 2µ(1− β)(ε̇
vp − ε̇vp) (118)

Where s and s are the micro- and macro- deviatoric stresses, respectively.

We derive a simple relationship between the macroscopic viscoplastic strain rate

and the macroscopic stress imposed during the simulations. Let us recall the consti-

tutive law adopted in the model:

ε̇vp =
6∑
l=1

γ̇lal, γ̇l = γ0 h
l

∣∣∣∣τ lτ0

∣∣∣∣n , τ l = σ : al (119)

And the homogenization scheme based on Weng’s model (Eq. 118), for the axial

loading (Eq. 71-72), provides:

ṡ = ˙ρ(t)Ψ− 2µ(1− β)ε̇vp (120)
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Taking the average of Eq. 120:

ṡ = ρ̇(t)Ψ− 2µ(1− β)〈ε̇vp〉 (121)

We propose to approximate the relation given in Eq. 120 by replacing the microscopic

stress σ by the macroscopic stress σ = q(t)r in Eq. 119. Eq. 121 then becomes:

q̇(t)Ψ = ρ̇(t)Ψ− 2µ(1− β)〈
L∑
l=1

γ0 h
l

∣∣∣∣q(t)r : al

τ0

∣∣∣∣n al〉 (122)

Multiplying both sides of Eq. 122 by Ψ:

q̇(t)Ψ : Ψ = ρ̇(t)Ψ : Ψ− 2µ(1− β)〈
L∑
l=1

γ0 h
l

∣∣∣∣q(t)r : al

τ0

∣∣∣∣n al : Ψ〉 (123)

Then noticing that Tr(al) = 0, Eq. 123 can be rewritten as:

q̇(t)Ψ : Ψ = ρ̇(t)Ψ : Ψ− 2µ(1− β)〈
L∑
l=1

γ0 h
l

∣∣∣∣q(t)r : al

τ0

∣∣∣∣n r : al〉 (124)

Noticing that hl · r : al has the same sign as τ l · r : al, and since q(t) ≥ 0, we have:

τ l · r : al = (σ : al) · (r : al) = q(t) · (r : al) · (r : al) ≥ 0 (125)

Therefore:

hl · r : al = |r : al| (126)

Eq. 124 can be rewritten as:

q̇(t)Ψ : Ψ = ρ̇(t)Ψ : Ψ− 2µ(1− β)〈
L∑
l=1

γ0

∣∣∣∣q(t)τ0

∣∣∣∣n ∣∣r : al
∣∣n+1〉 (127)

After dividing by (Ψ : Ψ):

q̇(t) = ρ̇(t)− qn(t)
1

(τ0)n
2µ(1− β)

Ψ : Ψ
〈
L∑
l=1

γ0

∣∣r : al
∣∣n+1〉 (128)

Then recalling that (Ψ : Ψ) = 2/3, Eq. 128 can be simplified into:

q̇(t) = ρ̇(t)− qn(t)

(τ0)n
3µ(1− β)〈

L∑
l=1

γ0

∣∣r : al
∣∣n+1〉︸ ︷︷ ︸

M

(129)
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The expression of q as a function of time is obtained by solving the following non-linear

differential equation:

q̇(t) + M
qn(t)

(τ0)n
= ρ̇(t) (130)

Recalling that:

ρ̇(t) = q̇(t) + 3µ(1− β)ṗ(t) (131)

The following equation is obtained:

ṗ(t) =
M

3µ(1− β)

qn(t)

(τ0)n
(132)

Eq. 132, based on an approximation, provides a direct relationship between the macro-

scopic viscoplasic strain rate ṗ(t) and the macroscopic stress q(t).
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APPENDIX IV

2D PLANE STRAIN HILL’S TENSOR

As a result of an internal stress inside the inclusion (Fig. 60c in Section 5.2), the

displacement u1 and stress fields σ1 are

u1
r = a1

R2

r
, u1

θ = 0, (133)

σ1
rr = −a1

E

1 + ν

R2

r2
, σ1

θθ = a1
E

1 + ν

R2

r2
, (134)

in which R is the radius of the spherical inclusion, a is a stress-dependent coefficient,

E is the Young’s modulus, and ν is the Poisson’s ratio.

For a pure shear displacement field homogeneous in r−3, the displacement u2 and

stress fields σ2 are

u2
r = a2

R4

r3
cos2θ, u2

θ = a2
R4

r3
sin2θ, (135)

σ2
rr = −a2

3E

1 + ν

R4

r4
cos2θ, σ2

θθ = a2
3E

1 + ν

R4

r4
cos2θ, σ2

rθ = −a2
3E

1 + ν

R4

r4
sin2θ. (136)

For an auxiliary homogeneous displacement field, the displacement u3 and stress

fields σ3 are

u3
r = 2a3(1− ν)

R2

r
cos2θ, u3

θ = −a3(1− 2ν)
R2

r
sin2θ, (137)

σ3
rr = −a3

2E

1 + ν

R2

r2
cos2θ, σ3

θθ = 0, σ2
rθ = −a3

E

1 + ν

R2

r2
sin2θ. (138)

The 2D Hill’s tensor L∗, correlated by a stress tensor A and a strain tensor B,

has to satisfy the condition that when r = R, we have

σ · n = A · n, (139)

u = B · x, (140)
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B = −M∗ : A, (141)

in which M∗ = L∗−1 is the inverse of 2D Hill’s tensor under plane strain condition.

For the transition from a Cartesian coordinate to a cylindrical coordinate, we knowσ1 0

0 σ2

←→
σ1cos

2θ + σ2sin
2θ (σ2 − σ1)sinθcosθ

(σ2 − σ1)sinθcosθ σ1sin
2θ + σ2cos

2θ

 . (142)

Therefore, in the cylindrical coordinate, the matrix J that represents the antisym-

metric component of the strain can be writes as

J =

1 0

0 −1

 −→ J =

 cos2θ −sin2θ

−sin2θ −cos2θ

 . (143)

We note the principal directions of A and choose them as the (x, y) axes:

A =

σ1 0

0 σ2

 =
σ1 + σ2

2
δ +

σ1 − σ2

2
J, (144)

in which δ represents the symmetric part and J represents the antisymmetric part.

On the cavity wall, we have

σrr = er · σ · er =
σ1 + σ2

2
+
σ1 − σ2

2
cos2θ, (145)

σrθ = eθ · σ · er = −σ1 − σ2

2
sin2θ. (146)

in which er and eθ are the unit vectors along the radial and tangential directions,

respectively.

The combination of the 3 fields σ1, σ2, σ3 yields,

σrr = − E

1 + ν
[a1 + (3a2 + 2a3)cos2θ], (147)

σrθ = − E

1 + ν
(3a2 + a3)sin2θ. (148)
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By comparing two sets of equations and ensuring that they satisfy all possible θ, we

have 
a1 = −1+ν

E
σ1+σ2

2

a2 = 1+ν
E

σ1−σ2

2

a3 = −1+ν
E

(σ1 − σ2).

(149)

Similarly, the displacement field is u = u1 + u2 + u3 on r = R:

ur = a1R + a2Rcos2θ + 2a3(1− ν)Rcos2θ, (150)

uθ = a2Rsin2θ − a3(1− 2ν)Rsin2θ. (151)

If we write, on r = R, x = Rer, then we have

B = b0δ + b1J = b0

1 0

0 −1

+ b1

 cos2θ −sin2θ

−sin2θ −cos2θ

 , (152)

ur = (RB · er)r = Rb0 +Rb1cos2θ, (153)

uθ = (RB · er)θ = −Rb1sin2θ. (154)

Comparing the previous two sets of equations, we have
b0 = a1

b1 = a2 + 2a3(1− ν)

b1 = −a2 + a3(1− 2ν).

(155)

So we can obtain 
b0 = a1 = −1+ν

E
σ1+σ2

2
= −1+ν

2E
δ : A

b1 = a2 + 2a3(1− ν) = 1+ν
E

(4ν − 3)σ1−σ2

2
.

(156)

By substituting Eq. 156 into the expression for B (Eq. 141), we can deduce that,

M∗ = L∗−1 =
1 + ν

E
[(3− 4ν)I − (1− 2ν)δ ⊗ δ], (157)

in which Iijkl = 1
2
(δikδjl + δilδjk).
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