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SUMMARY

'A.positioﬁ dependent'modei ef the Reynoids.stresses
‘is proposed 'The model is offered as an alternative to the
-_presently accepted ”gradlent transport models.” The mode}
IS.ShQW“ to satisfy the constraints that must be placed upoﬁ
'any medel of'turhhlence, that_is, the model'satisfies the
'-physicai.boundafy cohditions of pipe flow,_basic analytical
-formulatlons and exper1menta1 data _ : | |

" The Reynolds stress model is shown to be in agreementd
ﬂ w1th experlmental data very near the p1pe wall, as well as
in the core reglon -The velocity dlstrlbutlon is obtained
by 1ntegrat10n of the Reynolds equation w1th the present
ana1y51s_used to:model:the Reynolds stresses, ;The_resulting
expressienffpfdthe #elpcity_distfibution'is shown to,be'in :
agreement withﬂekperiﬁental_deta'thfeughoﬁt the pipe; that.
is, from the'wall'to the pipe centerline..;The "velocity
defect'lsw"'is.deterﬁined_ih_terms'of the present anelysis
-end cpmparedEagainst:eXperimental.deta,. The frietion factor
basedpen the;preeent analysis is gifeh'as a fghetien=of
Reynolds number- and is eompared_with'the ”Meody chart" as
well as with-experimental data. An eddy dlffu51V1ty model

is presented in terms of the present ana1y51s and 15

compared w1th experlmental data near the Wall and in the core.

Finally, a review of the presently employed models of

turbulience is glven.




CHAPTER 1
INTRODUCTION

1.1 SignificaHCe of the Problem

.To-develop an accurate model of turbulent flows is

one of the chailenging problems confronting fluid dynamicists.

-Althoughﬁthe_problem has received considerable attention in .

the past, it is still of great importance because of the
deyelopment'of-modern nuclear, peétroleum and chemical systems.

The maximazation.oflplant efficienéy and the safety analysis

of nuclear reactors relles heavily upon our understandlng of
'turbulent flows.__Thls_ls a consequence of the coupling

between-flu;d_flow-and_the traneport of energy in conVeCtive"'

heat'transfer, The petroleum industry must presently

.transport their-products'through-pipelines over-long

.dlstances, there empha5121ng the economlcs of a detailed

understandlng of the fr1ctlona1 1osses in turbulent flows.

Enhancement of mass transport that 15 associated with turbu—

lent flows is 1mportant in the optlmlzatlon of chemlcal

systems. Thus, 1f the technology is to. contlnue to progress

~at the present rate, then the designers of modern systems_

must be furnished With en_accurate modelpof turbulence.

1.2 Pﬁrpose_of"the Thesis

The purpose of the thesis is to propose a new approach




at-ﬁodeling Reyno1ds stresses and turbulent flows; the model

being appiicable_to steady, nonisotropic turbulent flows in

~ circular ducts.

-In particu1ar, it is the objective Of'this_thesis to

present a model (based;oh'Reynolds stresses) which can be

usédﬁto ﬁreditt (a) the vélocity'prqfile'thfdﬁghOﬂt:the pipe,

that is from the wall'to.the pipe center;. (b) fhe'average

vélocity;_(C)_the friction factor and thus the pressure.

 losses and (d) the eddy_diffusivity;throughohf the pipe.




CHAPTER II

" BASTC. FORMULATION AND DISCUSSION

2.1 Anal?fical Formulation of Basic Relationships.

2.1.1 Shear-StfeSs Distribution

In general, we can make a force balance on a fluid

cylinder in steady pipe fipw; the results must be valid for

,all-flow-regimes,-fhat'is,.fpr both tUrbulent_and-laminar

" flows, - -

. Pressure Forces = Shear Forces (II-1)

_ﬁPnrz

Rearranging, -

(11-3)

(SR ]

IGRES
Thus
D T o
t(r) 2t = —% (1r-4)

Nondimensionalizing the shear,

DR E Lo A S ¢ s S5 S




where _
nzy/r, =1 - r—r - (II-5b)
W " o _

(the relative distance from the wall)

'FrOm (5} it'is apparent that the total Shear'streSS-in Eteady

'plpe flow is a 11near functlon of the relatlve distance from B

the plpe ‘center for turbulent as well as for laminar flow
(see F1gure 1) | .

2. 1 2 Reynolds Equat1on

The Nav1er Stokes equatlons are of course appllcable
to turbulent flow The d1ff1cu1ty in applylng these equatlons

to turbulent flow 11es in the fact that the varlables in. the

equatlons refer to the 1nstantaneous values at the p01nt

under con31derat10n These values vary to such a degree_”

that 11tt1e ;nformatlon can be gained by d1re;t_app11cat10n

of the basic theory, and thus some form'of.modifieation or’

éxtension-ieprequired...An'approech_was introduced by
Osberne Reyhdids;in'1895:that greatly_siﬁuiifieﬂ these
equations, Reynolds &ecoﬁpbsed the turbulent uariables.into
a mean ueiuerplus e-fluctuation, with the timegaveraged

value.ofethe_fluctuation equal zero. That is,
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Total Shear Stress Distribution




vi vy *tovi : (I1-6)
where
v; = mean value of the ith component -
i _ o o o (11-7)

f of the variable v

_Vi_z fluctuation of the ith component

_ (11-8)
of - the variable Vv
v o= lim = [ (v -V, )dt =0 - (11-9)
oTe T ot | :
In general, if-is'true that
YT 4O ar1-10)

"1f the flow 1s turbulent

By substltutlng the decomposed veloc1ty 1nto the

| Nav1er Stokes equatlon, Osborne Reynolds arrlved at the time

averaged momen tum equatlon-appllcable to_turbulent flows.
In-hié.honor,'this'mdﬁehtumfequation is termed the Reynolds
equation.' The Refnqlds equation is ‘derived iﬁ Appendix A
and the result is given here in cylindrical coordinates for

steady flow.
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(IT-11)

It is nbted that the Reynolds equation is.identical with the

laminar flow momentum equation, except_for-thé_last term,

{(I1-12)

where fR is termed the Reynolds stress. The Reynolds

equation can be expressed as

1 :
52 © " F 37 Tty * TRl

the pressure gradient is constant, .i.e.

_Employing-equafion (3)3 S

T"TL"'TR

(I1-13)

"ForasteadY;state, fui1Y deVéioped flbw‘it'is.assumed.that

(11-14) 

(I1-15)

: (II-lﬁj

e gt T - o

4




where T is the total shear stress already shown to be a

'linear'functi6ﬁ of T. By”definition'equatioh (16) becomes

T = -y %% + p vr'-vz' " - {I1-17)
_Employing”equétion'(53]
o w _
T (1) = -wegd o+ o VIVD L (TI-18)
B Defininé
RS o (11-19)

wwheré v*_isuthé "friction velocity” equation (18) . .

zbecdmeS'
s vy, eV P

Tz T Z R S
: =. = - . _ (II"’Z].) .
vz Iw Tw o

and'thus it scales the turbulent stress with the wall stress.

Equatioﬁ (20) can be expreséed in dimension1e5s form by

- defining a




v

Ndndimensional velocity; v o= = - (11-22)
o . . * ) .
and a
) ' . ' X . . yV* . . . . .
- Nondimensional length; y = - (11-23)

' Substituting equationi(22) and (23) into equation (20)

yields'
(l‘nJ = dV+ + I_'Zz . ) - (11“24) .
| -4 - 8
. . Y v* .

_Definihg.a Reyndldé.numbhr:based_qn frictional velocity,

VaT, o
- Ry =" (I1-25)
. v
Thus?in_view of equation (5b)
no=y/r =y Ry : (11-26).

_ From équation.(Zﬁ]_note that as n varies between 0 and 1, y*

variesfbetweénfo.and R,, and that R, itse1f7may vary from

'approkimatély 70 for laminar flow to 10,000 or largef'for

very turbulent flow. Thus-equation-(24) becomes,

<:i

' : S v’ V2 -
_ (1-n) ol vt + —= (11-27)
: ' L
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Equation (24)'and-(27) are the differential equations of:
motion that w111 be used exten51ve1y in the present analys1s.

2 1 3 Closure Problem E

' An exam1nat1on of the Reynolds equat1on reveels that
the equat1on conta1ns tWO dependent var1ab1es . the veloc1ty
_.and the Reynolds stress ' HaV1ng two-unknowns_and only one

equation results in a closure problem bIn-ordet.to obtain a
unique solut1on to the d1fferent1a1 equatlon, the dependence

of one_of_the;dependent variables on the lndependent variable

" must be assumed. Mathematically the choice is arbitrary;

from a practical standpoint it is desirable to obtain the

velocity'distfibution,_ thus, it is ‘necessary to assume an

express1on for the turbulent stress and solve the d1fferent1a1

_'equat1on to yleld the veIOC1ty as a functlon of poS1t10n

’2'2' Pfesent Methods'

There are presently several methods employed to

'speC1fy the Reynolds stress, the most s1gn1f1cant be1ng the

.m1x1ng length hypothesis due to L. Prandtl [1] and ‘the eddy

'd1ffu51V1ty-mode1 due to Boussinesq [2]. - Some_of'the-present

'methods are rev1ewed in Appendix- B.

The formulat1on of Prandtl ‘assumes the turbulent

stress to be proport;onal to a m1x1ng length squared times

'the*looel:velocity gradient-squared,_i;e;'

--fR_sng'cg-;“')_?* ._,(H'.zgj

| e S
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An equation-specifyrng the mixing length 1is required to
'obtain closure. The mixing. length approach of Prandtl leads
to a 1ogar1thm1c veloc1ty profile wh1ch is in sat1sfactory
agreement w1th the experlmental data. However, after an
analy51s of the mlxlng length approach Tennekes and Lumley

[3], state that "a gradient- transport model whlch links
stress to the rate of straln at the same p01nt in space and
tlme cannot be used for turbulent flow." _ _ |
The concept of eddy d1ffu51v1ty assumes the turbulent
stress to be proportlonal to an eddy V1scos1ty times the
_local veloc1ty gradlent, i.e.
:Qrﬁ.= ﬂT g; L o .f”. ' (11529)
In'order to obtain cloaure an equation-specifying the eddy
'?iSoositY_as:a function of position is required. The eddy
,'diffusivdtyhconoept.is also'very important in the ahalySis-.

- of the turbulent transport of thermal energy.

h2,3 GeneralZObseruations Concerning Turbulent Flow

'Turbulent'flow may be analyzed by dividing the flow
_into two regions,’each having different Characteriatics that
govern the flow This introducesthe so- called "problem of

' multlple length scales" and is a crlterlon that d15t1ngu1shes

' lam1nar flow,_whlch-has a single length scale (the.dlameterJ,

from the turbulent flow regime. These two hydrodynamic

regions are termed the inner region and the outer region,

b
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with the inner region characterizing flow hear a bounding =

surface and the outer region characterizing flow in the

_core.e.The'flow:near a walllis governed by both viscesity

and the local distance from the wall itself‘ it is not

influenced by the wall curvature thus being 1ndependent of

 the p1pe dlameter. Prandtl proposed that it is w1th1n this-

narrow reg1on that turbulent energy is dlsslpated by

: V13c031ty “In the ‘inner. region the characterlstlc length is

v

"'—3T=g, scallng the local distance from the wall g1ve5'
Jw . _ _
)

y+.= y_..\sﬂ_p_ ' (1I-30)

- the quantlty J 5 1s often termed the "frlctlon velocity"
"51nce it has the unlts of ve1001ty and it is used to scale

. the turbulent_veleclty. Thus,-near the_wall-

aLe O o (1;,31).

_Thls is the "law of the wall," flrst suggested by Prandtl

In the core (or in the wake for a flat plate)

viSCO51ty9plays.11tt1e-r01e in determining the flow pettern;

it should-be hoted however, that just how far from the wall

- thls is true is determlned by y which 1tse1f accounts for

the f1U1d v1sc051ty In the core the characterlstlc length
is the-pipe diameter and it becomes necessary to define a.

second nondimensional length n,
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n;s'y/rw | | / i_ | (11-32)

Thus in the core,

Cyptem) o (I1-33)

~.and the velecityfpfofile is-independent of fluid viscosity,

i.e. there exists what'von'Karman termed "Reynolds number

51m11ar1ty " Thls is in fact the case only for large_

Reynolds numbers, where by . deflnltlon the 1nert1a1 forces
are large compared to the viscous forces. If-the dlfference
between the maximum veloc1ty and the veIOC1ty at any po1nt

in the core. 15 rendered dlmen51on1ess with the frlctlon

~velocity, thls_veloc1ty dlfference is a functlon of_the

relative distance frem'the'wall'alone' this is the so-called

"veIOC1ty defect 1aw" due to von Karman and characterlzes

__flow far from: a boundlng surface, i.e.

Vgi)-V!n)'% 6(n) B t(IIf§4)

Vs

2.4 'Cemmentefand'CenclusionS"

_ ~ The turbulence models ‘that are presently being employed
by flu1d dynam1c1sts give fair agreement w1th experlmental
data in certain regions of the pipe. However, these models

are known to be deficient in the proximity of ‘the wall or
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the pipe center, or in both regions. The "state of the art"
‘consists of.piecing together three velocity expressions in
order to obtain the velocity from the wall to the pipe

center:

v' = 5.0 1n y*-3.05 s<yt<30 0 (11-35b)
vi = 2.5 1 y*+5.5 yh30 0 (11-350)

_ The mlxlng length approach results in a logarlthmlc
'veloc1ty dlstrlbutlon, it is ea511y verified that the ”log
law"zls 1ndeterm1nate at the wall and results in a nonzero
shear stress at the_plpe centerllne. Furthermore, an
'eQuation describing the mixing length is required for closure.
'The mlxlng length 1s dlfflcult to obtaln experlmentally
since the veloc1ty gradlent must’ flrst be determlned and w1th
'-the flat proflle in turbulent flow 1t is d1ff1cu1t to . |
accurately measure-the gradlent Moreover, it 15 shown in.

' Appendlx B that the m1x1ng length becomes 1ndeterm1nate at
the plpe centerllne _ _ o - o

The - eddy dlffu31V1ty approach suffers from the lack
of a general formulat1on predlctlng the turbulent v1sc051ty
as a functlon of the relatlve dlstance from the wall, It-lS
'.p01nted out. by Kays 529] that ‘the eddy d1ffus1v1ty model

employed 1n convectlve heat transfer has a dlscontlnulty at

R i e i L
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y+ = 30 and:pfedicts negative values of Eg'néar'thé pipe-

center. In-Appeﬁdix B,Diesslér?s'[lZ] and van Driest’s f25]
gpproach iﬁ.shOwn to be incorfect in approaching the.waii;
Thus,.thé-eddf'diffusifity concept is étill”laéking a )
un1f1ed model of the turbulent viscosity. _ |
Both of these turbulent models, the mixing length
hypqth¢515'and the eddy-dlffu51V1ty; formulate a relation-
ship Betwéen:the turbuleht StreSS'and the local velocity

gradient. This approach is35hown7to'be incorrect by

_Tennekes_and Lumley [3], as mentioned in Section 2.2.

Howevef, dué t0 the current information'(both'éxperimental

and analyfical) COhcerning Reynolds stresSeS in circular

ducts, it 15 p0551b1e to formulate the Reynolds stresses as
a function of p051t10n alone.' This is the approach taken in

| this thesis.
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. CHAPTER III
PRESENT ANALYSIS

']S.I'ioutline-of the Present Analysis .

.-_'The'approach taken in the-pfesent_analfSis to model

'-steady,;nonisotropicjturbulent flow in circular ducts can be
summarized as;follows. 'First, the Reynolds stress will be
- postulated as a function of position. Evidence is given to

demonstrate that this model satisfies both analytical and

experimental requirements oﬁ'Reynolds stresses., With the
Reyﬁolds;stress postulated as a function of position, the
ReYnoldé'equation (II-Z&) or (I1-27) is integrated-fo yield

the velocity distribution as a single, continuous function

from the:wall to the pipe centerline. The proposed model

' requires a zero velocity at the wall and a zero velocity

gradient at the centerline. Integrating this velocity
distribution over the pipe crossection yields the average

velocity. The'friction factor is immédiately.obtaiﬁed from

the nondimensibnal_average vélocity,_ Finally, the present

analysis is émployed to determine the eddy diffusivity

throughout'the'entiré pipe.-.

S.ZIIReznolds Stresées

There are presently numerous accounts of experimental

measurements in turbulent velocity fluctuations. The two
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.mOSt_netabie'of these being due to Leufef [4] and Sandborn

[5] both'of,whdm'experimentally neasured the root mean

square velocity fluctuation as a function of position in

'fu11y“develoﬁed;pipe'flow. These-aceounts_conclude that in"
 the pipe core the total etress is due almost'entirely to

_turbulent fluctuatlon, with viscous forces play1ng 11tt1e

rele Thus, in the core the Reynolds stress-must decrease

to 210 at the centerline as does the total stress (see

'_Sectlon 2.1.1). Both Laufer and Sandbern used hot wire
.anemometers to measure the veloc1ty fluctuatlons and thus had
' some_uncertalnty in the-near wall measurements. The veloC1ty
'flgdtﬁafieﬁ near tﬁe:ﬁallecan_eleo:be measured}w1th,a laser

doppler technique so as not to disrﬁpt_the flow. Thus, there

i are-sufficient experimentei results presently aveilable to

stresses

check the valldlty of a p051t10n dependent model of Reynolds

Analytlcal formulatlons of the veIOC1ty proflle very

dnear the wall have been presented in the- literature.. The

first fermulatlon was apparently glven by Murphree [6] It .
has been analyt1cally shown by Hlnze [7], Townsend.[S],-and
Monln and Yaglom [9] that the ve10c1ty must approach the

wall as a polynomlnal contalnlng y to the f1r5t, foprth,

- and fifth powere. That is,

lim v = y© - c4y*4_+ csy*5 S (I11-1)

+
¥y 20
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- This fe$u1t isLbbtained-by'&ifferentiating_eqﬁatidn (11417)

with-respect'to y+ ahd-expressing the'mean-véibcity:by'-

_ Taylbr.séries_expansion at y+=o;' This procedure yields the

gonstants-g¢.apd Cgo

3 33v‘v' a

il e o % o ir-2a)
24v; 3y : - _ -
. v4 3 vrvz.iy _ ( : .
co = —Y o 11I-2b)
S 120v8 | aytt V7O | . -

Note that due ‘to the closure problem, v, (and thus c4 and

) cannot be determlned without first know1ng the velocity

| d15tr1but10n.-_Tlen and;Wasan [10]'used.experlmental ‘data to

determine thése'conStants”and suggest thé following equation

to represent fhe velocity profile very near the wall,

RASCIC AN P S UL AT S PR AL 645 55 ) N

" This equation is in agreement with experimental'data from

’_the'wéll'td y" = 20. Substituting'equation (111-1) into

the Reynolds equatlon ylelds the form ‘in whlch ‘the Reynolds

 stress must approach the wall

o _V;VL' ' +3 '
lim — = 4c4y: - Scsy
"‘t‘* : _ ..

+
y. >0

+4 (111-4)




19

- Thus, there_aré analytical'fotmhlations:available that

suggest the pritiﬁn dependency of the Reynolds stresses

very near'the wall as well as in the core and experimental

'data that can be used to evaluate a model.

3.3 ConstraintSIOn-thejModel

In order to satisfy the fequirements-of (i) bouhdary

conditions in pipe flow, (ii) basic analytical formulations,

and (iii) experimental data, the model must satisfy the

following constraints:

 (a) _a't'y+ =0

T
. R
T = — = 0
'-3 v
Ve
._'I_"=° .

-(b)'“aS“y++o, that is, close to the wall

+4 +5

limy =y - Cuy o+ CcY

Y
y.ro

This is needed to satisfy the results of [9];

. _ .-__ +
lim =1 | 4c4y f_5c5y

3 44

(III-5)
(I1I-6)

'(111-7)'

(IT11-8)

_ Therefbre,

(111-9)




e e
~{¢) as y increases,

., . A N
Tp goes through a maximum at n, (or ye)_

thetefofé-at'né;~'“

(@) in the intérmediate region, that is, when
w1l -but noe - << 1.
e e

we have thé,“law‘of the wall,"

vigyh) = %'ln (') + constant

this is the constant stress region where,

20

(111-10)

.'(III-lli

(Iixflé) g

(I11-13)

(111-14)
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TE - % constant  (I11-15)

andf-

(e) :ihjthefcore, thét_is, when

Ry '

the."velocify defect law" is appiicable;

vy - v = &6 . (111-17)

Cand

% kn o S (IuI-16)

\ ”“f+(yfj ; %;zﬁfty*)-+ constant + %.w(n) - (1114;8)

P co . F
L N J L .

"law of the wall"+ "law of the wake”
and

+

TR

) at*thé'pipe cénter, that is, wvhenn = 1,

détreases to zero ' : o (111-19)

. ) N _____,_,_,,l
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vie v I (111-20)

therefore

., . (11I-21a)
4 e qrr-21b)

Also,

Tg = © o | | (I11-22)

= finite . . (III-23)

3.4 The Model

" In what follows, it will be shown that the proposed
_model_safisfies.all the requirements listed in- the ﬁrevious

section. Recall the-Reynolds-equatiQn,_

-+.é:(1?n)?"—3—% .{ ,52: 1 -
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T o |
£(y')(1-n) - (III-25)

11l

T Iy = F)

Va

Substituting (25) into (24),
'

dy

- -£0N) At i)

¥

when y+/R* <<'1 this reduces to

. .

A N S arr-zn)

+

dy

‘thus -

s £ (111-28)

Also,by.définitioh,
'  "d' ;. - o o
VT dy ~ rY _ o - (111 29)'

| therefqre:.

5 . | s : :
—% = R SR S (111-30)

Substituting (25) and (26) into (30) yields,




énd

N U Y T T
VT R, - ¥
*w * 1-f(y )

Defining the effective viScosity Vg

v .v+vT v

- - T
thus,',
.lv' .f 7y |
_e=_.....(.z_..2._+1== 1
v

B {cab N

1-£G7)

24

(I11-31)

(1I1-32)

' (III?33}

(111-34)

For'the fﬁncti¢n”f(y+)-in equati¢n (25) we shall choose the

following expfession'[34]

_'\-f(y*l - % -

where

(III-35)

(II1-36)




25._'

N and b are constants and k is the von Karman "universal
constant.” It will now be shown that this model satisfies

the necessary constraints.

(1) When y' << N,

. | (111-37)

Substituting (37) into (27) yields,

e

L &'+ a3 +4
o limEp=1 - I - (III-38)
:Y++o”dy : N N _ |

.which_SatiSfies'the.donstraint given by (9). Integrating

‘equation (38) from the wall to y gives,

-.+4‘ +S '

.1 1 o
- =w Yy Y (III-39)
+ 4N~ SkNY _ -
Y o .
which'satisfiQS-the constréint given by (8). Substitution
of (37) into (28) yields,
: ‘+3 - +4 _ '
L A A ! i
Climty = Iy - g X_g o (111-40)
+ . N " N° _ S
y *0 : . : .

which satisfies the comstraint given by (11). Substitution




of (37) into (31) yields,

XLy 1y
o e T3 E 5.
')"+"'0 . N N

which satlsfles the constraint glven by (10).

(2j Con51der1ng the case when y' >> N,

11m f(y ) =1 - 1
y >>N

or

Lin. £G") = 1 - l*?ﬂ |

y'eeN I

'_’Substitutiﬁn_of.[43) into (26) yields

B +.' . 1+b()’ /R)
lim dv+ = { “y (1 Y /Ry)

+

. y.+>>'N dy . kY

when y /R, << 1 this becomes

whlch satlsfles the constraint required by (14)

of (43) into. (25) y1e1ds,

T By

26

S (I11-41)

C(I11-42)

(111-43)

(I11-44)

t111-45)

Substitution

—
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lim ©,% = [1 - kl* ;'E%;](l‘“)'- S (111-46)
k' | |

R
y" >>N
- Note that the bracketed quantity is a function of R,, thus
makiﬁg'rR+ a function of R, (see Figure 2), For a given
Valﬁe'of'Rﬁ the bracketed quantity is approximétely a
constant less thah, but close-to_dne, in the intermediate.
region. = This satisfies the constraint given by (15).
Substitution of (42) into (31) yields, o
.'- . v
lim -

_ = E(y')-1 R O (I111-47)
T . !
) y >>N . .

'CIH

therefore in this region, .
e

. . Vo . '
CE(y) =1+ ;% =V, (II1-48)

Substituting (36) into (47),

vy ky' - ‘
ilm - =-T¢%H—' 1 | | (111-49)

when y+/R¥ << 1 but ky+ >> 1 this becomes

ﬂ;%.:.ky+ (III-50)

or




which Satisfieé'the cons

traint given by (16).

that is, in the core, equation (44) becomes

- _dv+

T

or,
dv
I

:Wthh sat15f1es the cons

(42) into (32),

x [1+b“](1— )
* I+ 2w

tralnt glven by (21);

wh1ch satisfies the cons

. V) +
lim - = Ely -1
S V*rw R*
’ y'.)).N . .
or -
Ve '
7 s ST 5 . kn
ilm VaT, l+bn
y >>N
“atn = 1'.:i"
| Vo } "k
Val 1+b

¥In=1

tra1nt g1ven by (23).

28

(111-51)

When'y+/R*+l,

(111-52)

(;11253)

Substituting

(111-54)

(111-58)

(I11-56)

‘Thus, this'

model sat15fles all the constra1nts outlined in Sectlon 3 3.
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| Récail that the velocity'distribufion is obtained by
'-substituting~tﬁe Reynolds stress model into thé Reynolds
equatlon and 1ntegrat1ng with respect to y (br n). Due to
: the fact that 1ntegrat10n is an averaglng process, a model
that_ylelds_good agreement with the experlmental data on
Reynolds Stréssés should yield evénﬁbétfe; agfeément wiih
“the Velqciijprofile.:'MoréOVer,-thé friction factor; being
deﬁérmined from tﬁe.non&imeﬁsional average ?eiocity, is
"obtalned by yet another 1ntegrat10n. Thus,'a'sétisfaCtory
model of the veloC1ty d15tr1but1on and the fr1ct10n factor,
 the quant1t1es of practlcal 1mportance, can be. obtalned from
a model that glves falr agreement with the: Reynolds stresses;
| Ituls,also important to note that_the_Reynolds |
sfrésseS'being;dué to.velocity.fluctuatiohs, are a_physicai
parémetér.that_éan;bé directly measured by:an experiment.
This is hbt]thescasejfor'the.mixiﬁg'1épgth or the eddy
&iffusivity,fwhich nust be calculated by first obtaining
Iﬁhe vé1o¢ity'prdfilé;énd theh'differentiatiﬂg'tp determine -
the vélpcity gfadient;-'This may result in significant |
error in the,core;'whEre the velocity ﬁrofile-is flat. Thus,
it is.advanfageous to model the Reynolds stfessés_by a
position dependenf model rather than by:a."gradient transport"

model.
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3.5 _Comparison of the Model with Experimental Results

3.5.1 Reynolds Stresses

~ As mentioned, there are numerous experimental data

‘on the ReynOIds stresses; the most extensive exﬁerimental

analy51s belng due to Laufer [4] and Sandborn [5]

Recall equatlon (25)

vIvr.

R - ) A

V%

Substltutlng in equatlon (35) yields the model for the

,Reynolds stress,

TINT 43 (1+b yT/R,) 45 - y
s Py - sl /R*) (111-57)
e Y N ky oy -

-The model is. compared W1th exper1menta1 data throughout the

entire p1pe_1n Elgure 2. Note that for high Reynolds number
flow,fthe Reynolds'3tresses obtaln a maximum value very

near the well and thereafter account almost eutireIY‘for the
totel stfess' HoweVer,.it is shown in Seotion 3.5.2 fsee

equatlon (63)) that assuming that the total stress is equal

~to the Reynolds stress leads to a flat veloC1ty proflle,

i.e. slug flow. Slnce the veloC1ty defect data show that

there is 1ndeed a veIOC1ty defect in the core, there must be

a f1n1te dlfference between the total stress and the Reynolds
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: 2 .5 R,=100 : , w(l.

K 3

% - {) ¥ l 1 4+ [ [ [ | N I. [ 3 { I [ 3 [ 3 [ |
{ .1 .2 3 A 5 .6 .7 8 9
| h_ n

f Figure 2. Comparlson of the Present Ana1y51s with Experlmental Data on
i o Reynolds Stresses for the Entire Pipe
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stress, even ih:the core.' Also note from Figure'z that the

assumption-of'a'constant stress is only valid for a very

- small reglon of the pipe.

The comparlson with exper1menta1 data 1n the near wall

_region is: glven 1n Figure .3. Because the data are very

near the wall the length scale y is used. Note that the

Reynolds stress model approaches ‘the wall as a thlrd and

: fourth order polynomlnal, as glven by the constralnt ‘in

equat1on (11) _ Recall equatlon [40),

o +3
11m T
the model_approXimation for the near wall region. Since k';-
is:the'von_Karman “"universal constant,” the only unknown
constant is-N’ 'Thus, the experimental data on the Reynolds

stresses very mnear - the wall is used to determlne the value

' of N

From Flgures 2. and 3 it is noted that the proposed

model is in good agreement with the experlmental data
'throughout_the'core as well as the near wall region.' As.

mentioned,_the velocity profile is determined by integrating

Of.t.h_e '-Re)’ﬁoid_s .eql_lation- Thus, good agreement with the .-

Reynolds stresses should lead to an accurate prediction of

| the velocity diStribution. It will now be shown that this

is in fact the case.
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Figure 3. Comparlson of the Present Analysis with Experlmental Data

on Reynolds Stresses Near the Wall
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3.5.2 Velocity Distribution

~The analytlcal formulatlon of the veloc1ty distribution
may be-obtalned by_dlrect integration of the differential !
equation of mqtion'és given by equdfions'(II{24) or_fII-Z?);
tﬁe choice upon the'deéired'dependence of the velocity on

nondimensional length. Recall the Reynqlds équation, '

vt +, ?;F; o : |
= = (1-y /Ry) - (III-58)
dy+j _ . | VZ . _
or
b e . :
_— H—— [1 n) - _ o _ (II1-59)

Direcf'ihtegration of the above equations yield,

| N 'Y*tviv'
+ .
Vi) = yTe3 vt Rg - ] SRyt © (II1I-60)

laminar effect turbulent_effect

and,

i

V.V o
v = Ry . (i (1 n’ | f R, - (III-61)

2
f o

~ laminar effect turbulent effect

(= Y=




i

h{._:_”,_ -
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This C1ear1y iIIUStfates that-the_tufbulent velocity profile

must be flatter than the laminar profile, since the_integtand'

(the Reyholds stress) is positive. The maximum-velocity may

be obtalned 1mmed1ate1y from equatlon (60) by settlng

y+ = R*, or from equatlon (61) by sett1ng n ='1.

+ .. 1 1 W - : ' o
V1) = Ry 3 - ] _T. dn} O (111-62)
SR ' 0 Vy .
laminar turiuleht.

effect effect

Y

eSﬁbtractiOn of'eqﬁation (61) from (62) results in the

“velocity defetf_law,"
B P LN 2 AL
v (1) -vi(n) = Ry {~7—— - f.—-z—-'dn} (II1-63)

The veIOC1ty proflle can ‘be determlned by substltutlon

-lof the pos1t10n dependent model of the Reynolds stress 1nto

the above expre351ons. _
| In.Section 3.5.1 concerning the Reynolds: stress, ie

was mentioned that it is often assumed that in the core *

-the-total_streSs is due to the Reynolds stress, that[is,

that r (1- n) - If this assumption is subsfitﬁted.intoe7-
quatlon-(GS)ethe velocity defect becomes iero,.i;e. slug

flow. MOreever; the first term ih equatione(GSj is equel to
the area under the total stress "curve" from the plpe center

to n, and the second term 13 equal to the area under the




IRéynolds'sfress."cﬁfvéﬁ from the pipe'ceﬁter_to n; the
" velocity defecf is equal to:the difference betWeen:thése
-two_terms, Whi¢h by definition is equal to the viscous
_.forées.f_Thé_vélocity defect in turbuienfjfloﬁ'is &ue-td
.the integréted éffect of thé viscous fﬁrcés from'the pipe
centér td2n, thus_the'effects of viscosity, no.matter-how
_smali;.must befcdnsidefed..

iSubstitution'oflfhe Reynoids strés§ modél as given by

equation (57) into equation (60) results in

+, + 4 .01+ 4 y*3 {1+b y /Ry y+5 + +
V) =y 15y /R [ . —=] (1-y /R,)dy
| TUEIS AR T T Y "

- (111-64)

This can be integrated to give the complete analytic
éxbfeSsioh for thé”veloCity distribution.: Doing so yields

the following expression:
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vy - 51 in(y*5en®) - §anow) -

N +N 1,2
" 3[72 {ixszi%-}+¢3(tan. {;éﬁ_‘} -tan { 7 })]

1, /51 -
<

+ ° .

s lﬁﬁll[ {zn(y +N)+0. 3008 (y" +0.6§8y*N+N2)

- -0.809n(y" %1 618y "Nen? )+1. 176tan" 1( -0, SDQN)
+1.902tdn" 1 'g§3§9Nj-o,512}]e:.

L, . o
[%szfgé{-zn(y++N)-o,309£n(y+2+1.168y*N+N2)_

S R | | e Lo
o +° 809£HEY 2.1, 618y N+N2 )+1 176tan” 1 (¥ fO.SgQNJ

S -1 .+-D.éb9N N N T
+1;902ten'-(XUnggﬁ—e]-O.SIZ}]- T (111-65)

This‘éxpfeSSieniis teo'compiex to be of practical use,

however, a mUCh-simpler ekpressioﬁ for. the-velocity'distriF
'butlon w111 now be obtalned This 31mp11fied expre331on is-
'_in good agreement with experlmental data in the viscous

_sublayer? through the logarithmic reglon_and to the pipe
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centef. .Mereever; the three Velocity expreSSioﬁe_required
by the "state.of the art" are seen to resuit from this
.eingle expfeesien | |

-~ If in equatlon (64) it is assumed that y /R*<<1 then

_the equat1on becomes,

- _ y +3 +4 : _
+, + + 1 . + -
vVo)=y - [ k= - St—<ldy (II1I-66)
| | oy Kyt y : o
IntegrationtfeSults in the'following'velocityedistribﬁtion:"

( Y4y

V (Y ) = ‘S'E-an()’ "‘N )+—-§N[tan (_)';_3-_111)+6]+—2n{ N }- T(-fln(\i)

(III-G?]

ThisfexpreSSieh'(with N = 9.5) is plotted in Figﬁre 4 and is

‘seen to. be in”gOOd agreement with the experimental'data of

~ Nikuradse [11] and Deissler [12] ‘for the entire pipe. Thus,

this 51ng1e expre551on can be used to predlct the veloc1ty :
'?proflle fronm. the wall to the p1pe center | |
-The three reglon approximation that is'required'by
the "eteteeef{the artﬁ.ean be shown tO“resuit.fromjeqﬁation
- (67). Consider the three regions:
W esytes
__Expansien of the log.terms.and'the-arctahgent by

.Iaylot seriesﬁabeut_y+_= 0 yields,

=
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. == Equation (III-67)
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Comparison of the Present Analysis with Experimental Data
on the Velocity Distribution for the Entire Pipe
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s 1 ed ., 1 45
- y oo+ =Y
N s

Vot =y - (111-68)
_"For thé_rahge of y' considered énd with N .= 9.5,
this.exp;eSSibn'iS similar to the "state.ofsfhefart".for'
this_région'aé.giveh by equation-(ESa)._ - |
. ) 5‘2 y+ < 30 : .. |
For'ﬁhis region both y' and N'aressignificant in the
afguﬁent of.thé log term-and*thus no simﬁle expansion ¢én
be given for équétiOn'(ﬁ?); However, it is éaéily verified
that in-this fegion thé velocity predicted by.equation_(67)

is similar to that pfedicted by the "state of the art"

- for this region, i.e.

-v+ty+) = 5£n(y+j -3 7 _ :_tIII-GQJ.
3) vt > 30

: Conéidéring-this.region the.f0110wihg'approximatigns

'are_applicabléy_

-and, .

: : .+ . .
Ctan LALLMy x4y
/3N
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' )
in { *N -}

i
o

thus,

. — ' +_f' S . 3 _— = o
73 N[tan PE e R e g zn'{i§g+§§~} L ognwy = 5.8
a 3N M .

- (with N = 9.5)

- With this approximation-eqﬁatibn (67) becomes,

v oN =t wmeh s 5.8 . (I11-70)

Thus in thexapPTOpriaté region, equation (67) reduces to the
"log law" thained'by Prandtl and von Karman and the
constant in the "log law" is seen to result from the

arcténgent:andfthe second log'term appr0aching-an asymptotic

value.

In Figure 5 gquatioh (67) is compared with experi-

-mental'data:for the intermediate region and:in-Figure'6 it

is compared with experimental data for the near wall region.

_ Fromfthese two figures and Figure 4 it is seen that the

expression fbr:the velocity distribution as given by

equationu{6?)_is in good agreement with expérimental data .

‘throughout the entire pipe, that'is,_from_the wall to the
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—— Equation (III-67)
: ._Deissler's Data

1 'y
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Figure 5._-Cbmparisonfof the Present Analysis with Experimental Data on
the Velocity Distribution for the Intermediate Region
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Figure 6. Comparison of the Present Analy51s with the "Log Law” and Experlmental Data
‘for the Near Wall Reglon _ _
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pipe'centeriine' Thus, this single expressioﬁ can-replace

the three expre551ons required by the '"state of the art."

The "veIOC1ty defect law" can be obtained by substi-

~tution of the Reynolds stress model into equatlon (63),

however, the resulting expression is formidable. Rather,

due to the fact that the ”VeIOCity'&efect.leﬁ" is used to
represent flow in the core reglon, the approximate expre551on
as given by equatlon (53) can be . employed Recall equat1on

(53),

- gf___': [k_ E] (1- n]
"'_Integreting from n to l'gives'the "velocity defeet

ey
v (1) v (n) E[f,n( ) (1-n) + b (1-n)-g] . o _"(III.-_7_1)

'This'resuit'is'cnmpared with the experimental data of
Nikuradse [11], voh'Karman [14], and Stainton-[lS] in . Figure
7. Falr agreement is obtalned with the exper1mental dataj

the best agreement belng in the core, the reglon in whlch '

.the.assumpttons 1ead1ng to.equatlon (71) are.most valld,
It is impbrtant to realize that the velocity defect is
_Obtained'by subtracting two velocities.' If some experimental

error is made in measuring the velocity itself or. in

positioning the instrument probe, significant error is being
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wes Present Analysis
o Nikuradse's Data =~ v
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e von Karman's Data
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'Figure 7.

Comparlson of the Present Analy51s ‘with Experlmental
Data on the '"Velocity Defect Law" - _
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introdﬁced_into the defect law ”data;ﬁ hOﬁever; this error
is of smallicpnsequence in the velocity:prefile (as in .
Figure.4)._ Thus, the velocity profile itself; not the
defect law;:shbuld be the experimental data used to evaleate
‘a turbuleﬁce model. The present analysis 1S in good agree-
ment w1th the veIOC1ty profile data. | | o

It was noted in the sectlon entitled General Observa—
tiqns Concerning Turbulent Flows, that two length scales:
are.associeted.with the phenomena of turbulence. One length
scale ﬁertains to.the floﬁ_region_near the we11'where.viscous
forces are predOminate;'thetother pertaihs to the coie where
ineitial'forcee are-dominahtt_ ‘The model proposed by th15
thesis COﬁtains:two‘COnstantS' N and b. (Thls is also the
case w1th the formulatlons of Prandtl and von Karman) Two
;constants are requlred 51nce turbulence has two length.
.scales.' One_of.the,constents,.N,-was determlned.from_data_
pertainingfto7tﬁe viscoﬁs regibn'sincefthe other_cqnstant,
b,!did.not appear in'the apﬁroximation applicable to ‘this
region (see Section 3.5.1). The constant,:b; is deterﬁined_.
from data ﬁertaining-to the'inertial'region (the'"ﬁelocity 
defect 1aw") since the constant N, did not appear in the |
approxlmatlon appllcable to this reglon (see. equatlon (?1)),
thus Just1fy1ng the need and the manner.of determining the
twoiconstantet . | |

In cthlﬁding this section on the #eibcity distributidn,

.it[sheuld'be:emphasiZed that the present analySiS-yieids-a
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51ng1e expre551on for the velocity dlstrlbutlon that is in

agreement ‘with the exper1menta1 data from the wall to the

'plpe center, Wh11e the exact analytlc expre351on is somewhat

complex, a 51mpl1f1ed expre551on is given and is seen to be
1n-agreement with the velocity proflle predicted by the state
of the art. Moreover, the integral formulatien of the

velocity profile, which is valid for the entire pipe; (given'

. by ‘equation (64)) lends itself to computer app11cat10n to

the more dlfflcult problem of turbulent convectlve heat

transfer

- 3. 5 3 Average Ve1001ty and the Frlctlon Factor

By deflnltlon of the average VeloC1ty, v:_

s = Ly / v(r)zmedr - (111-72)

This can be 1ntegrated by parts, thus expre551ng the average

ve1001ty in- terms of the veloc1ty gradlent

e = XOTD T T A L Dy2ge C (111-73)
- : 0 w : S

The first term is zero from the boundary conditioms.

Dividing by v, and introducing the dimensionless length

scales,




48

1 D S
V> o7 9V N2 - L -
~, " g = (1-n)%n - (111-742)
. or
s ’ R* 3.1- '+ 2 . o : .
<¥* = [ S5 (-yT /Ry “dy I (ITI-74b)
0 | o |

ay

Substituting tlie expression for the velocity gradient. as

given by equation (26) yields

: . Ry R : '
e asse"asy RSyt arnrs)

or in terms of the model for f(y+) as given by equétion (35).

AR e —f—} (2-y*/R )de+
oo .'y+3+N3';- Ky NS T (_' o
- - : - | | (111-76)

The-aVErage féiocity could be dbtained'by-énﬁlytic_integraf
tion'df'the aﬁoﬁe_expressiOn, however,'dbing so-results in -
.soﬁé.sixtéen terms. Rather, the aBove.expreséioﬁ'for the
-éverage veldcity is used'tO'oBtaih_a more meaningful
QUahtity,'theﬁffiCtioh factor. |

" By definition of the friction factor,
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2 o o
weiet  anm

Rearrahging_fiélds
Lo ¥ - (111-78)

A
*
Y

Recalling the definition of the friction velocity, this can.

be expressed as

T s o {III-79)
[2¥) .
Va
:_I.or froh.eqﬁafion (?4b)
£ 1 o (111-80)
%3 .
j v *) dy ] '
0 By

The form of this expféésion gives physical ihsight_infolthe
friction factor. The frictiqn factor may Be interpréted as
the-inverseiéqﬁare'pf_the volume éveraged rate of strain.
Also.note thatfthe friction factor résults.ffom a smoothing
process, that is, 1ntegrat10n | o

Substltutlon of the nondimensional average veloc1ty

as given by equation (76) into equation (79) ylelds
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1

37 R, 3 /Re) _y"?

) Be oy eb yT/Re) v 3

_ - Y 8 Y1~y /R )dy”* ]
0 . Yf3+N3 ky' oy Y : ’

(111-81)

This expressipn may be integrated'to obtaih_an

analytic_expression for the friction factor. This was done,

_however, the result 15'c0mplei; The expression for the
_ frictibnffacfor was also numerically evaluated on a'machihe;
‘The cOmparison'of the resultS'with'values'takéﬁ from the

-Moody chart and w1th the experumental data of N1kuradse [11]

are glven in Flgure 8, It is seen: ‘that the results are 1n '

fair agreement_wlth ‘the accepted values of the frlctxon _

factor, However, much closer agreement with the data was
expected_in'light of the fact tﬁat the frictiOn factor is

obtained-by_integration of the_veloeity'distribution, which,

- was shown.p:eViOUSly to be in_good agreement with many.
| experimentalydata' -Moreever 3it 'is shown by Schlichting-

[16] that 1ntegrat10n of the Prandtl log law (which is known

to be in agreement w1th the velocity data of leuradse)

~also results in poor agreement with the experlmental data

on_the.frictiOn feCtor}- The friction factor being much

‘easier to_experimentally measure than the veloeity distri-
: butioﬁ is presumably the more reliable data.-'Thus,'in light

of the above comments there is some question as to the

aceuraey_of,the experimental data on the veloeity distribution.
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3.5.4  Eddy Diffusivity

" The eddy diffusivity appfoach is often employed as a
model for conﬁéctive heat'transfer'in turbulent floﬁs.
Because of the ﬁniversal écceptance of.fhe eddy diffﬁsivity
approach, it .is important to apply the results of the pfesent
ana1y31s to the eddy d1ffus1V1ty model

 The eddy d1ffus1v1ty is deflned by the follow1ng

equation,

Substitution of éguation (iI-5a)in the above yields,

T : :
-{}(1=n)_=.(v+vT) %%_, - . (I11-83)

This can be expressed-in dimensionless form by introducing

the frictioh velocity and rearranging

vT dv

(14n) (III-84)
Solving'fqrfthé,eddy diffusivity,
I am oy (I11I-85)
v ot
dv
+
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Notlng that the veloc1ty grad1ent appears in the denomlnator
of the equatlon defining the eddy d1ffus1v1ty it is no
surprise that-the experimental data on the eddy diffusivity
are incoﬁéistéht. Some experimental déta'ﬁiace the mﬁximum |
.value of the eddy.diffusivity-ét'the pipe Centef while other
maintain: that the eddy d1ffus1v1ty is zero at the centerllne,
(Some models even have a negatlve eddy d1ffu51V1ty at. the
;enter.) | |

Substituting equation (26) into equation (85)

yields;
v. . ..'+ : o ) )
—=E0) - (111-386)
1-£(y ) |
and
Vo 1 . fevty - |
g =_ﬁ_‘-__£x_l# o ~ (111-87)

..l?*rw . * 'l-f(Y+)

' Recalling the model proposed for £(y') the above becomes,

. B S |
] +
Lyt by R S

\ kS ¥ E .5 - -
EI =;zf;TN _ ky . y N, _ (III-88)
v f"' ; ] y+3 (l*b Y+/R*) y+5
o - % 75 5]

~ ky y “+N
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This expfeésigﬁ_éaﬂ_beﬂﬁéed tdzdét;rhine the“édﬂy diffusivity
throughouf.the;eﬁfire pipé,: Howevgr%'simplified expiessions
foi equation (86) were given in Seﬁtioh 3.4. Recall that
forJthe ?egi6ns: o

(2) near the wall, that is, y= << N!'

BN A | (111-89)
V'ooN E NY
o * . .
(b) intermediate region, %— <<l but ky >> 1, -
. e o X . T
v _ S e _
- = _— (111-90)
.or._. - -  ; N
Vo R : o
B v'f. = kn C . (IT1-91)
. - ] W : .
- (c) in. the core, y >> N
\ ) o
T - kn (111-92)

Va.r.. 1I+bn
Val,,

The eddy.diffusivify model fesulting from_thc_present

~analysis is compared with the experimental_dafa c1ose to the

“wall of Lauferu[4]-and Sleicher [17] in Figure 9. It is seen
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'Figure 5. Comparlson of the Present Analy51s with Experlmental
. - ‘Data:-on the Eddy lefu51V1ty Near the Wall
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that theredi5 good:§§?eement in the n%ﬁ; wall region. 'Also
noﬁe that.the turbulent viscosity is considerably larger
than the mechanlcal V1sc051ty for location as close to the
wall as y equal 20. |
- For the core region, the pfesent model is compared
"agéinef.eXﬁeriﬁental data in Figure 10. It.is“noted:that
large scatter exists in ‘the experimental data, as mentioned
prev1ously, thlS is due to the veloc1ty gradlent appearing
in the dendminator_of the equatidn defining the eddy |
diffueivity;' For the eddy_diffusivity to be_experimentally
detefmined,dthe_veloCity profile must firﬁt:be_obtained'and
then differeﬁtieted'te_deterﬁine the'Velecityﬁgradient.
Significeﬁt.efror_is possible in obtainipg_thedderivative'
‘due to the flatdfeiecity profile in.tUrbulent.flows.: The'
.ddata'of Nikuradsé:[lll_has a maximumlvalue of the eddy
diffﬁsivity ec;uring atn = 0.5, and then declining to
almos;r;erq et:;he_piﬁe centeriine; dIf this iesult_is.true,
o then;fromdequatibﬁ_(85)'the velocity gfadient must.approach
the centerlinéeas (Kinjfto the first power. .There is no
experimentai evidence to iﬁdicate_that this ie_in-fact'thed
eese The data of Laufer.[d]dand Nuﬁner.[18] indicate
'-that the eddy dlffu51v1ty reaches a; maximum value of
T
2
of approxlmately 0506;at-the centerline. Gosse [19]
.preeents experimenfdl data td.ihdicaﬁe that the eddy

diffusivity_tohtihues.to increase throughout the pipe,

- 0.075 at. n =.0 3 and decreases very sllghtly to a Value
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Figure 18.

Comparison of the Present Analysis with
Experimental Data on the Eddy D1ffu51v1ty
in the Corte _
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reaching a maximum at the centerline. This result is
predicted by the present analysis which has already been

shown to be in good agreement with pther;turbulent phenomena.
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CHAPTER 1V
CONCLUSIONS

The following conclusions are drawn from this work:

(1) Alposition dependent model of’the'Reynolds

stresses can be formulated as ‘an alternative to the presently

employed "grad1ent transport" models
' (2) The constralnts placed upon any turbulence model
by analytlc formulatlon, boundary cond1t10ns, and experi-
'_mental data can be sat1sf1ed w1th a pos1tlon ‘dependent model'
(3) The-formulat1on can be used to accurately
model turbulent phenomens,.ih.particular:
_(i); the Reinolds stresses can be predicted as a
funotion'otiposition:throughouththe“entire pipe; |
(ii) ‘a single, continuous velocity distribution.can.

'be ‘obtained Wlth the results being app11cab1e from the wall

o 'to the pipe center,

(iii) the friction factor can be obtained as a
lfunction of Re?nolds number, thuS-allowing the determination
of pressure losses in turbulent flows; and : |

(iv). the eddy d1ffus1v1ty can be formulated as a
funct1on of p051tlon, thus extend1ng the results of the

present analy51s to the 1mportant area of convectlve heat

o transfer in turbulent flows
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APPENDIX A
'REYNOLDS EQUATION
-In_1895 Osborne Reynolds introduced a procedure that

can be used to.simplify-the'Navier-Stokes_equatidns as
applied to turbulent flow. Reynolds decomposed the instan-
taneous turbulent flow parameters into a mean value
(indicated by a bar) plus a fluctuating value (indicéted-by
a primej, i,e.. |

: = 3 1 ' . - -

Vi =V "' Vi _ s (A-1)
It_foliows from the-definition of the fluctuating quantities

that_the-time-averaged values, VI, are_equai to zero, i.e.
=0 7 (A2)

However,_if is generally true that the squares-or'products'

of the fluctuations are not equal to zero, .

YT 4o a3y
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o tof_T |
v, = lim & v. {(t)dt S (A-4)
1 Tre T to ! _

with thlS deflnltlon the follow1ng relatlonshlps may be

ea511y ver1f1ed

V=V o ((A-5a)
PURAA o e
'.W“]Fiﬁj’ - o _(AlSC')

'vii}J | c'v' WD D - F;“f;‘?ﬁj sy
el sl - e

: | - S (A8

where the repeated indicies indicate-summatidn (Einstein :

: notation), _Sﬁbstituting in the-decomposed velocity vields

9 i Bv{ : o
7% Yk ° - (A-7)
i R 1 . - '
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Takiﬁg the time average Qf'equation (7);

Bvi 3vg _ ' - _
5%, | ax.  ° : (A-8)
i i .
froh {5Se) and (2),
ol N (N

thus,
oV, OV .
Y ST - © (A-10a)
i i o
Thus the_continuity-equation yields-thé result
v, v, . : - :
1_ .. l- . - _. .—
5%, . 0’ ax,  °© S CA'IQb)-
i i

.The'Navier?Stokes equations written in index notation are

2

v, = dv, . 3%y, -
5 iy _ _9p i : : 1
Plyg+ Vj—"-axj) 3X; *.H(-—-———-—axjaxj) (A 1_1_)

Substituting in the decomposed form of instantaneous

quantities Yieids:




must be equal to zéro.

the final form,
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e N ap b — ' Froul )
p(avi . Bvi v Bvl ayi V.avi. v}avl )
5t 3t * ek KRR jEEE' Y33
) 2"‘"’_‘ 2 ]
S apt, gl ve o, BV 0
axl axi axJaxj_ -BxJBxJ
avi' _ _ o
The term vj 5;— can be transformed by noting -that
]
aviv! av:  avy
: = ¥ ¥ ' R . A~
7;?3.1 vi “"laxj "Yiw o (A-13)

The first term in equatlon (13) is zero by the contlnu1ty

equatlon, thus,

= d fapt - ' - 4 |
. %o (VV) . . I:A__'.l )
R

The next step is to take the time average of equatlon (12),

in d01ng S0 the terms

Thus, the momentum equation assumes
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— : — 2 ey =
" T oAV, n B%v. a(pvivl) :
: 1 — iy . .9 ; i ij° )

 This is referred to in the literature as the Reynolds equation.

_Note that this equation is identical with the laminar flow

form except for the 1ast_term. The quantity pVivE is termed

the Reynolds stress, TR»

Tp = PVIV) o a-16)

Note that this quantity comes from the stress term in the

original form'of the Navier?Stokes-equation. It is shown

_byuTennékes and Lumley [ 3] that "a stress that is generated

as a momentum flux can always be written as (16), no matter

what mechanism causes the momentum flux,"
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APPENDIX B
PRESENTLX-EMPLOYED MODELS OF TURBULENCE

This appendix deals with the models.that are
-'frequeﬁtly apﬁlied to turbulence, in.particulhr, the mixing
length,model,eddy diffusivity model, and power apprOxi;
mations wili_be an§1yzed. A few comments will be made
regarding_statistical methdds. 'The.state of the art is also
reviewed. It is ihtended that f§i$ discussion'bé m6re

detailed than that presented inthe main body of thé'thesis.

Mixing Length Model

This approach at modeling the turﬁulent stress ﬁas
introduced by Prandt1 ;n.the'1920?5;.howeVef,'the conclusions
from this wprk have found practically'uhiversal'aéCeptance
among workefs in'fluidlmethani;s'and convettivg'heat_
frénsfer."This is primarily due to the siﬁpliéity of the
obtained logarithmic'velbcity distfibution tha# is in
épparent gobd'agreement with experimental data; However,'
the velocity\distributiOnlobtained'does not satisfy the
bdundary coﬁditions of turbulent flow, that is,;there is é
nonzero_veldcity at the w#ll (ip fadt,.it is_ingeterminate)
and a gradient exists -at the pipe.céhter requiring a shear
stress. The déta of Nikuradse [11] are in good%ag;eement

~with the Prandtl velocity expression, however, there have
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been repofts that cast some uncertainty dn.the validity of
_ Nikuradse's data, in particular, Lindgen_[ZD]-and Ross [21].
Prandtl assumed that the turbulent stress could be
modeled by-_'
g = o4 (g . | (8-2)
As mentioned, it is necessary to specify the turbulent
stress in order to obtain closure, however,'Prandtl's.
approach introduces a new variable, %, the mixing;léngth,
which requires an_additioha;lequqtion, Equation (1) can be -

~ expressed in nondimensional form to. give

—

R _ «.dv |2 L
-,I:"*‘ = £+ (a““‘n ) - . (B‘ZJ |

=

‘where £+,='£/rﬁ; VSubeituting this into the Réynolds

equation yields,

o, | — |
1 dv’. 42 Ayt
== = (1-n)-&" { B-3
 Ryam - . (dyJ | (B-3)
Rearranging,
En? e Lo @ - .o (3-4)
dy RA*TY dy 2 _
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Using the quadratic formula,

avt 1. -1 L 1., 4(1- n). | "
— = [~ - ] L ' (B-5)
ayt T TR+l R§£+4 el '

-It_is necessary to choose the plus sign in order thatjthe_
veloCity-gradient be zérp at the centerline. Doing so and

rearranging gives,

dv =t {V1+4(1 n)RS L+2 -1y (B-6)

2Ry %
"Equatien (6) is an exact ekpréssion and can be used to
determzne the velocity proflle provided there éxists an

equatlon descrlblng the mixing length as a function of n.

Bquatlonf(l) can be rearranged to.glve;

~

- YR/o e
dv . L o T
Note that eqﬁatiOn'[7) is indeterminate at the pipe center-
line: one of the disadvantéges to the mixing'léngth approach,
Equation (6) can be used to clearly show the assump-
tion necessary to arrive at the Prandtl velocitfaexpression.
. For regions that are not near the wall nor the pipe core, it

~ can be assumed that
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) 3 |
a(1-m)RZ 2" o (B-8)

Assuming this, equation (6) gives B

V- == - (B-9)

In this regionn<<land it is assured that /IT-mzl.

+ ‘ _

Prandtl assumed the mixing length to be prpportional to

n (see Figure.il), i.e.

2% = kn - (B-11)
Thus from eduaiion'(lﬂj.
. o .
dK = % % | | - (B-12)

L. . Ny : . +
This is usually expressed in terms of y ,

(B-13)

and integration gives
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_v+(y+) = % 2n(y+):+_constant' _ (BR-14)}
This'is'the_Ptandtl'felocity distribufion or .the so-called
"log law." 'k is the von Karman "universal cﬁnstaﬁt" equal to

0.4 and the constant is usually chosen to be 5.5. Due to
the assumptipﬁiinvolved'in'equation (8) thezlog'iaw éhould
not be valid.at.the-pipé.cénter,'nevertheless;'equation (12)

integrated to the pipe center gives the "véibcity defect law"
viy-vim) = § an(l/m) . (B-18)

-This_expressi@n shoﬁld_éit thé data.as:a_étraight line if
plotted on semi-log paper Figure 12 shows that-there is
good agreement only in a limited region of the plpe |
Prandtl ‘assumed the m1x1ng 1ength to be proportlonal
to. n. Prom Figure 11 it is seen that the m1x1ng length
Cou1d bé éésumed cdhst§nt. This is a partlcularly good
apprbximatioh in:the core. Assuming 2= 0. 13 results in a
model obtalned by H. Darcy [22] in 1855, From equatlon [9)

it is seen that é constant mlxlng length results in
_vf(l)—vf(ﬁ) = constant x (1 n)3/2 ' - (B-16)
If'the.COBStént_ié.taken.as_5.08,'this expression is in 

better agreement with the experimental data for the core

-region (n > .25) than is the logarithmic defect law.
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- For the region near the pipe Center 1;hz6.and near
the wall, i*zkngo,'thus it can be assumed that

4Q-mRyET <<l (BA17)

With-this]assumption, equation (6) is of the form

F(x) = /IFX - (B-18)
._with”x<<1 | | | | |
Thus,  33_Ij ' | _F(x)-:.i—x/Z' '
Thetefofe,f',- '
& - raw S e

Infegratihg_thisTnear thé_pipe.centér gives

V)T () = —(1-n) o (B-20)
Thus, acchdihg to this model the defect law should be
parabolic mnear the pipe centerline.

_ Neaf'the wall; 1-n = 1 and equation (19) becomes

E

ot R o (B-21)
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or
gt S . o :
':V+_=.1 S © (B-22)
S SRR _
thus
eyt o . (B-23)

~ This expresSibh-haS-beeﬁ Shéwﬁ vaiid f6f y+<5,:

- In o;&ef_to abply fhe ﬁixing length model it is
ﬁecesSary:to_Sﬁeéify.£. :As:ggf?d_abpve;¢Rrandt}:aésume& '
prOporfiohalftqfthé rexﬁfive diégance from.tﬂé wali wﬁile__l
: Dar¢yﬁéf0rmﬁlﬁ.resﬁlts ffbm fhe“aésumptidn'of a congtént
mixing lenéth E N1kuradse used h1s experlmental data and
determlned 2 from equatlon (7) and gave ‘the f0110w1ng |

equatlon for determlnlng 2t

P =014 - 0.08(1-n)% - 0.06(2-m)* (B+24)

Near. the wali this can be approximated as
= 0.4n - 0.44n°  (B-25)

-The'Rﬁssian, Kutételadze [23], suggested
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+

C2* = 0.30m - 0.36n% + 0.11n> - (B-26)
In cohdluéioh_it should be emphasized that the mixing

‘length apprdach has_sbmerdéficiencies.- Recalling equation
YR S

note that near the pipe center TE_: L-n and employing equation

(19}, -

:

gL YIm 1
“ . 1-n AR .

(B-28)

Thus, the mlxlng 1ength is 1ndeterm1nate at the p1pe center
_Moreover, some authors, Tennekes and Lumley [47, state
fthat "a grad1ent transport model which 11nks stress to the
rate of strain at the same point in space and tlme cannot

- be used-for turbplent flow."

'Ed&y Diffusivity Model

_ The concept of .eddy dlffu51v1ty was f1rst 1ntroduced |
.'tby_Jt.B0551nesq.[ 2] 1n-18??. Eddy dlffu51V1ty is a. 10g1ca1
first_eittﬁsipn of the laminar viscosity concept in that it
'éésﬁﬁeg_thé.exiétence'of a-thrbuieht'tiScosithcdefficdent

reiating-thq.turbuleht shear stress directlydtO‘thEIVelocitY
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gradient. That is,

dv

Ir (8-29)

| r_='- (u+uT)
Thiseﬁouidebe7e eimple model provi&ed there.exisfed_a unique
turbulenf:viscpsity coefficient for eacH fiuid ﬁowever,'this
is net the case Bxperlments show that Py is a funct1on of
‘the f1u1d flow in addltlon to- the f1u1d 1tself Moreover,
for a given fluid flow, ”T varies across the. plpe, i.e. it
is a functlon of the relatlve distance from the wall Thus
an addltlonal equatlon is needed to speC1fy the eddy dlffu51V1ty
; in order to obtaln closure.,

- Equation (29) ean be rearranged to.give -

or sihce the total stress is linearly related to the wall

shear stress,

,”_—gilfn)¢= ~(vaT)§¥ B :;;.' - (B-31)

 Introducing the'friction velocity, this can be expressed in

dimensionless form as
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dv_ . p,{Lon (B-32)
_ 1+_L :
v
thus |
v (n) = R4 I L;_g_dn o (B-33)
’r . o
vp | » |
If — << 1 then the laminar profile results, i.e.
V) - v - -f a-m* o (8-34)
Vp , - :
- If — >> 1 and assumed constant then.
V) - v = 52 R, (1-n)% . (B-35)
L R - LT _

This result 15 51m11ar to the: expre551on obtalned by Darcy -
 for the veloc1ty defect in the core. Thus, spec}fy1ng_2§-
as a functlon of n 1mmed1ate1y determlnés the velocity
dlstrlbutlon Several 1nvest1gat10ns, Delssler [24],

van Drelst [25], and von Karman [26] have. attempted to obtaln

thls relatlonshlp Deissler suggested the follow1ng equatlon

for flow near a boundary,

'.'2'_,_

SR |

a v:?f[l-exp(-azv+y+)]. o fB’36)'.
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wherefé“must be experiméntally-determined._ This can be
expan&ed-near'the wall by recalling that v'o= y+ near the -
wall and éxpanding the exponential to yield

4

~ +

v :

T .

—~ 7 S _ o (B-37)
It.hasfbeen éhbwﬂ'by Davies [27] that near the wall

. v 3 4 . . .
L= eyt - cyy’ S e

thus the'ekﬁréssion'Sﬁggestedfby Deissler (and also van Diest)
“does ndt approach the wall correctly. 'Thed&o;é'von"Kafmén
assumed that turbﬁlent.fluttuations are similar at all points

in the'flow-field'(Similarity hypothesis); and cohcluded that

- «° i o o (3-39)

when k_is_ﬁhe ;on Karman universai constant equal to_0;4.
Tﬁe.usé of vdn'KarmaniS éxpression'gives.a logarithmic_.
défecf 13# £hat-differs oniy inghtly from Pfandtl'
Equat1on (33) can be used to- glve the average veloc1ty and

then to express a relat1onsh1p 1nV01V1ng the friction factor,

e e e o TP SRRSO
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(B-40)
o 1+ T

‘The integraliie a measure of the deViation ffom a 1aminer
flow re51stance in that for lamlnar flow the rlght hand 51de
be unlty Thls expre5310n could be used to correlate
experimenta; detaland to glve some. 1n51ght 1nto “the turbﬁlent.
viscosity concept  Since the eddy dlffu51v1ty model 15 also

used 1n convectlve heat transfer it is de51rab1e to have an

acceptable_mooel for the eddy_dlffu51V1ty.

' Power Approxlmatlons

A 51mp11f1ed approach that is often used to model
_-turbulent flows is to assume that the nond1men51onal veloc1ty'
is d;rectly proportlonal to the nond1men51ona1 distance

raiSed_to:soﬂe'exponeﬁt,'that is -
BT ¢ ) 1 ¢ 20 L ¢ WSS
Vg T o N -

This approaoh;isfseen to be defioieﬁt.when'one considers the
variatioﬁ-onec(n)-andfn_required toufit expefimental data;'
:for;Re g_lﬂs, n = %-.,'for.Re = 105'n'é % and=ét5Re 3_106_ |
n9=v%ﬁ._ Thde“it simply is'not'possibie to obtain a universal
VeIOC1ty expre551on by an assumed power approx1mat1on.
Nevertheless, the power approximation offers some 1n51ghts.

in that it can be shown that the relatlonshlp between the
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average velocity and the maximum velocity is

Vo  whae o (B

.This.illustrates.the fact that the turbulent velocity |

profilé'is much flatter than the laminar one. The ratio of
average_to ﬁaximum velocities.ﬁéry fr0m 0.79 with n = % to
0.86 with n = g3 as compared to 0.50 for a laminar profile.
With_the'pbwer'apﬁroxiﬁétioﬁ for the velocity
distribution,'if_cah Bé.ghownikﬁat if the friction factor is

assumed'proportional to -the Reynolds number to some -exponent

then this exponent must necessarily be related to the exponent

in the velocity distribution. That is, if

¥ *'Eoziﬁﬂgi"l. I (B-43)
[=] .
then
m T e o (B-44)

A commonly uSed éxpressioh for the friction factor is the

Blausis formula, '

£ = 0.316/Re* 23 o (B-43)
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If this is to hold then from (44) n = 7 and

viy") = constant x. (y )1/7 ) :(B?46)

A constant of 8.74 beat-fits thelexperimental'data,
In'conciusion, this sinpledapproach gives a quanti-
tative.description'of-turbulent flowsfh Indeed this approachh
is more eff1c1ent than the mlxlng length model 1n that one
_obtalns about equal agreement Wlth ‘the data for less work -
.1nput. _ Moreover, thlS approach has some esthetlc appeal
in clearly show1ng the 1nt1mate connectlon between the

o velocity dlstrlbutlon and the friction factor,_

Statistical Methods

There.is oresently auailable“numerous accounts of

'statlstlcal turbulent models, in partlcular, Hinze [ 7],

' Batchelor[Z&], and Tennekes and Lumley [4 1 Thls sectrond
is 1nc1uded for completeness.rather then as,anvattemptdto
discuss ‘the many approaches that have been taken to- |

"stat15t1ca11y model turbulence. It is suff1c1ent to say

d'that 1n the methods preV1ou51y dlscussed only average

--values of fluctuatlng quantltles were con51dered where as
the_statlstlcal approach_examlnes the d15tr1but1on of fluctu-_'

- ation about the average value and the correiation of
.adjacent:fiuctuations. This requlres the 1ntroduct1on of

mathematlcal technlques such as the Fourler transform,h'
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coffelatien.fﬁﬁction.and probability densitiesﬁ_'In.
-resortihg to this approach the physical insight'into the
problem is diﬁinished somewhat. Moreever, thE”proponehts
of statisticel applications to fluid mechanics dothot enjoy

the success found by the quahtum physicist. .

State of the Art

In order to accurately predlct the veIOC1ty distri-
but1on in turbulent flow workers in f1u1d mechan1cs leldB
the flow_lnto three hydrodynamic regions with a separate
) ?eioeity”expression for each'fegioh. These“Velocity;

_expressions are

+ +

Ve y S | . | ')'+.'<5 | : (34'4-7)
v =5 gn(y*)-3.08 seyt<zo 0 (B-48)
*= 2.5 an(y")+5.s yTe30 0 (B-49)

]

| Thﬁs,tfefeyfﬁzﬁ ittis_common practice:te ﬁse'the.log.laﬁ.
derived bf-Prandti and'vqh.Kerman, This expreseion appears
to be in faif agreement with experimentei.data;ehowever, it
is. ea511y verlfled that the "log law" gives a f1n1te
veloc1ty gradlent at the pipe centerllne, which is certa1n1y
1ncorrect Moreover,.the 10gar1thm1c formulatlon assumes a
'constant sﬁear stress across the plpe, ‘thus 1t 1s little
surprlse that the "1og law" does not flt the experlmental

~data near-the pipe center. There ls_a more fundamental

o
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_error in equatlons (47) 4 (48), and (49) in that the
_ve10c1ty prof11es are 1ndependent of Reynolds number, whlle :
_there is experlmental data to indicate. that the veIOC1ty
proflle is 1ndeed a function of the Reynolds number. The
most_notable:account of this is due to J, O._Hlnze [13], who
states.that'"ReYnoldsrnUmber similerity”aﬁd_the cohsisteney_
of the VOh-Karman-eonstant apbear not to hold Strictly."
Hinze's account of many dlfferent experlmental ‘data clearly
exhlblts the dependency of the Ve10c1ty proflle on Reynolds
number, In addltlon to the purely fluld.mechan1c3~prob1ems,i
the application of thfee:veleﬁity expressions *o forced

convection heat transfer is cumbersome.
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