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NOMENCLATURE 

a a constant in van Driest equation 

b a constant in the model 

c() indicates functional dependency on () 

e,,c. constants defined by equation (III-2) 

D pipe diameter 

E() indicates functional dependency on () 

f Moody friction factor 

f() indicates functional dependency on Q 

'£(•)• indicates functional dependency o n () 

GQ indicates functional dependency °n () 

k von Karman "universal constant" equal to 0.4 

L unit length 

m exponent of Reynolds number in power approximation 

n nondimensional distance from the pipe wall based 
on radius 

N a constant in the model 

p absolute pressure 

^p pressure drpp 

Re Reynolds number based on pipe diameter and average 
velocity 

R* Reynolds number based on friction velocity and pipe 
radius 

r radius variable 

r pipe radius 
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t • reference time 

T time 

t™ total shear stress 

TT shear stress due to viscous forces (laminar effects) 

T R Reynolds stress 

T wall shear stress 
w 
v velocity 

v* friction velocity 

v nondimensional velocity 

v^ fluctuating component of velocity 

v..." time averaged value of the velocity 

w() indicates functional dependency on Q 

yx distance from the pipe wall 

y nondimensional distance from the pipe wall based on 
wall shear stress and viscosity 

z axial coordinate in the pipe 

I mixing length 

I nondimensional mixing length 

U fluid viscosity 

P T turbulent viscosity 

v fluid kinematic viscosity 

v T turbulent kinematic viscosity (eddy diffusivity) 

v "effective" viscosity 
e • 

p fluid density 

Jin natural logarithm 

tan () arctangent () 
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SUMMARY 

A position dependent model of the Reynolds stresses 

is proposed. The model is offered as an alternative to the 

presently accepted "gradient-transport models." The model 

is shown to satisfy the constraints that must be placed upon 

any model of turbulence, that is, the model satisfies the 

physical boundary conditions of pipe flow, basic analytical 

formulations and experimental data. 

The Reynolds stress model is shown to be in agreement 

with experimental data very near the pipe wall, as well as 

in the core region. The velocity distribution is obtained 

by integration of the Reynolds equation with the present 

analysis used to model the Reynolds stresses. The resulting 

expression for the velocity distribution is shown to be in 

agreement with experimental data throughout the pipe, that 

is, from the wall to the pipe centerline. The "velocity 

defect law" is determined in terms of the present analysis 

and compared against experimental data. The friction factor 

based on the present analysis is given as a function of 

Reynolds number and is compared with the "Moody chart" as 

well as with experimental data. An eddy diffusivity model 

is presented in terms of the present analysis and is 

compared with experimental data near the wall and in the core 

Finally, a review of the presently employed models of 

turbulence is given. 



CHAPTER I 

INTRODUCTION 

1.1 Significance of the Problem 

To develop an accurate model of turbulent flows is 

one of the challenging problems confronting fluid dynamicists. 

Although the problem has received considerable attention in 

the past, it is still of great importance because of the 

development of modern nuclear, petroleum and chemical systems. 

The maximazation of plant efficiency and the safety analysis 

of nuclear reactors relies heavily upon our understanding of 

turbulent flows. This is a consequence of the coupling 

between fluid flow and the transport of energy in convective 

heat transfer. The petroleum industry must presently 

transport their products through pipelines over long 

distances, there emphasizing the economics of a detailed 

understanding of the frictional losses in turbulent flows. 

Enhancement of mass transport that is associated with turbu

lent flows is important in the optimization of chemical 

systems. Thus, if the technology is to continue to progress 

at the present rate, then the designers of modern systems 

must be furnished with an accurate model of turbulence. 

1.2 Purpose of the Thesis 

The purpose of the thesis is to propose a new approach 
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at modeling Reynolds stresses and turbulent flows; the model 

being applicable to steady, nonisotropic turbulent flows in 

circular ducts. 

In particular, it is the objective of this thesis to 

present a model (based on Reynolds stresses) which can be 

used to predict (a) the velocity profile throughout the pipe, 

that is from the wall to the pipe center; (b) the average 

velocity; (c) the friction factor and thus the pressure 

losses and (d) the eddy diffusivity throughout the pipe. 
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CHAPTER II 

BASIC FORMULATION AND DISCUSSION 

2.1 Analytical Formulation of Basic Relationships 

2.1,1 Shear Stress Distribution 

In general, we can make a force balance on a fluid 

cylinder in steady pipe flow; the results must be valid for 

all flow regimes, that is, for both turbulent and laminar 

flows, 

Pressure Forces = Shear Forces (II-l) 

AP-rrr2 = T(r)27rrL (H-2) 

Rearranging , 

x(r) . . - ^ f V ( i l -3) 

Thus 

t C r , J - T = A? V ( I I . 4 ) 
wJ w L 2 

Nondimensionalizing the shear, 
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III! = _I .. (1.n) (II-5a) 
w.. w 

where 

n = y/rw = 1 - ̂  (II-5b) 
. . • w 

(the relative distance from the wall) 

From (5) it "is apparent that the total shear stress in steady 

pipe flow is a linear function of the relative distance from 

the pipe center for turbulent as well as for laminar flow 

(see Figure 1) . 

2.1.2 Reynolds Equation 

The Navier-Stokes equations are of course applicable 

to turbulent flow. The difficulty in applying these equations 

to turbulent flow lies in the fact that the variables in the 

equations refer to the instantaneous values at the point 

under consideration. These values vary to such a degree 

that little information can be gained by direct application 

of the basic theory, and thus some form of modification or 

extension is required. An approach was introduced by 

Osborne Reynolds in 1895 that greatly simplified these 

equations. Reynolds decomposed the turbulent variables into 

a mean value plus a fluctuation, with the time averaged 

value of the fluctuation equal zero. That is, 



T-0 

Figure 1. Total Shear Stress Distribution 

_dLL 
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v . =• v.- + v! (II.-6) 
1 1 l *• J 

where 

v- = mean value of the i component 

of the variable v 

th v! = fluctuation of the i component 

of the variable v 

T->». 1 to 

In general, it is true that 

CII-7) 

CI.I-8) 

__ -. to+T _ 
y» = lim i J (Vi-v.Jdt = 0 (II-9) 

v[Vj f 0. (11-10) 

if the flow is turbulent. 

By substituting the decomposed velocity into the 

Navier-Stokes equation, Osborne Reynolds arrived at the time 

averaged momentum equation applicable to turbulent flows. 

In his honor, this momentum equation is termed the Reynolds 

equation. The Reynolds equation is derived in Appendix A 

and the result is given here in cylindrical coordinates for 

steady flow. 
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l r = "lal [ ^ ^If^TaF tr(p^VJ)] (11-11) 

It is noted that the Reynolds equation is identical with the 

laminar flow momentum equation, except for the last term, 

P v ; v ; = T R ( n - 1 2 ) 

where T R is termed the Reynolds stress. The Reynolds 

equation can be expressed as 

H = - F 3 f r ^ L + V t"'13) 

For steady state, fully developed flow it is assumed that 

the pressure gradient is constant, .i.e. 

M=-^r cn-u] 

Thus, integration of equation (13) gives 

T ; I = V + T R f"- l s> 

Employing equation (3), 

T = xL +.T (11-16) 



where T is the total shear stress already shown to be a 

linear function of r. By definition equation (16) becomes 

T = -* 3F+ P ̂ 1 (H-17) 

Employing equation (5a) 

dv 
Tw(l-n) = - y ^ + p ? F (H-18) 

r z 

Defining 

v* = Tjp (11-19) 
w 

where v* is the "friction velocity" equation (18) 

becomes 

(i-n) = - 4oT + - % in-ii) 

Notice that the Reynolds stress terms can be expressed as, 

vVv' p v'v' T 
trL =

 -~TLJL = T1 (11-21) 
V* W W 

and thus it scales the turbulent stress with the wall stress. 

Equation (2 0) can be expressed in dimensionless form by 

defining a 
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Nondimensional v e l o c i t y ; v = — (11-2 2) 

and a 

+ yv* 
Nondimensional length; y = (11-23) 

Substituting equation (22) and (23) into equation (20) 

yields 

dv+ V T (1-n) = ffi_ + ri (n-24) 

Defining a Reynolds number based on frictional velocity, 

v*rw 
R* = — - (H-25) 

Thus in view of equat ion (5b) 

n = T / r
w

 = y + / R * (11-26) 

From equation (26) note that as n varies between 0 and 1, y 

varies between 0 and R* > and that R* itself may vary from 

approximately 70 for laminar flow to 10,000 or larger for 

very turbulent flow. Thus equation (24) becomes, 

^ • R i £ r + ! l i r tn-27) 
v * 
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Equation (24) and (27) are the differential equations of 

motion that will be used extensively in the present analysis. 

2.1.3 Closure Problem 

An examination of the Reynolds equation reveals that 

the equation contains two dependent variables: the velocity 

and the Reynolds stress. Having two unknowns and only one 

equation results in a closure problem. In order to obtain a 

unique solution to the differential equation, the dependence 

of one of the dependent variables on the independent variable 

must be assumed. Mathematically the choice is arbitrary; 

from a practical standpoint it is desirable to obtain the 

velocity distribution, thus, it is necessary to assume an 

expression for the turbulent stress and solve the differential 

equation to yield the velocity as a function of position. 

2.2 Present Methods 

There are presently several methods employed to 

specify the Reynolds stress, the most significant being the 

mixing length hypothesis due to L. Prandtl [1] and the eddy 

diffusivity model due to Boussinesq [2]. Some of the present 

methods are reviewed in Appendix B. 

The formulation of Prandtl assumes the turbulent 

stress to be proportional to a mixing length squared times 

the local velocity gradient squared, i.e. 

.TD = P*
2(H)2 (11-28) 
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An equation specifying the mixing length is required to 

obtain closure. The mixing length approach of Prandtl leads 

to a logarithmic velocity profile which is in satisfactory 

agreement with the experimental data. However, after an 

analysis of the mixing length approach, Tennekes and Lumley 

[3], state that "a gradient-transport model which links 

stress to the rate of strain at the same point in space and 

time cannot be used for turbulent flow.11 

The concept of eddy diffusivity assumes the turbulent 

stress to be proportional to an eddy viscosity times the 

local velocity gradient, i.e. 

TR= H§ (11-29) 

In order to obtain closure an equation specifying the eddy 

viscosity as a function of position is required. The eddy 

diffusivity concept is also very important in the analysis 

of the turbulent transport of thermal energy. 

2.3 General Observations Concerning Turbulent Flow 

Turbulent flow may be analyzed by dividing the flow 

into two regions, each having different characteristics that 

govern the flow. This introduces the so-called "problem of 

multiple length scales" and is a criterion that distinguishes 

laminar flow, which has a single length scale (the diameter), 

from the turbulent flow regime. These two hydrodynamic 

regions are termed the inner region and the outer region, 
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with the inner region characterizing flow near a bounding 

surface and the outer region characterizing flow in the 

core. The flow near a wall is governed by both viscosity 

and the local distance from the wall itself; it is not 

influenced by the wall curvature thus being independent of 

the pipe diameter. Prandtl proposed that it is within this 

narrow region that turbulent energy is dissipated by 

viscosity. In the inner region the characteristic length is 

, scaling the local distance from the wall gives 
w 
P r — 

... y* - J ^ (n-30) 

the quantity Sj— is often termed the "friction velocity" 

since it has the units of velocity and it is used to scale 

the turbulent velocity. Thus, near the wall 

/ = f(y ) (n-31) 

This is the "law of the wall," first suggested by Prandtl. 

In the core (or in the wake for a flat plate) 

viscosity plays little role in determining the flow pattern; 

it should be noted however, that just how far from the wall 

this is true is determined by y which itself accounts for 

the fluid viscosity. In the core the characteristic length 

is the pipe diameter and it becomes necessary to define a 

second nondimensional length n, 



13 

n •.= y/rw (11-32) 

Thus in the core, 

TT •• KCn) (II-33) v 

and the velocity profile is independent of fluid viscosity, 

i.e. there exists what von Karman termed "Reynolds number 

similarity." This is in fact the case only for large 

Reynolds numbers, where by definition the inertia! forces 

are large compared to the viscous forces. If the difference 

between the maximum velocity and the velocity at any point 

in the core is rendered dimensionless with the friction 

velocity, this velocity difference is a function of the 

relative distance from the wall alone; this is the so-called 

"velocity defect law" due to von Karman and characterizes 

flow far from a bounding surface, i.e. 

VW-*W = GCn) (11-34) 
V * 

2.4 Comments and Conclusions 

The turbulence models that are presently being employed 

by fluid dynamicists give fair agreement with experimental 

data in certain regions of the pipe. However, these models 

are known to be deficient in the proximity of the wall or 
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the pipe center, or in both regions. The "state of the art" 

consists of piecing together three velocity expressions in 

order to obtain the velocity from the wall to the pipe 

center: 

v+ = y+ 0<7+<5 (I I-35a) 

v+ = 5,0 In y+-3.05 5<y+<30 (II-3Sb) 

v+ = 2.5 In y%5.5 y+>30 (II-35c) 

The mixing length approach results in a logarithmic 

velocity distribution; it is easily verified that the "log 

law" is indeterminate at the wall and results in a nonzero 

shear stress at the pipe centerline. Furthermore, an 

equation describing the mixing length is required for closure. 

The mixing length is difficult to obtain experimentally 

since the velocity gradient must first be determined and with 

the flat profile in turbulent flow it is difficult to 

accurately measure the gradient. Moreover, it is shown in 

Appendix B that the mixing length becomes indeterminate at 

the pipe centerline. 

The eddy diffusivity approach suffers from the lack 

of a general formulation predicting the turbulent viscosity 

as a function of the relative distance from the wall. It is 

pointed out by Kays |.2_9.] that the eddy diffusivity model 

employed in convective heat transfer has a discontinuity at 
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+ VT 

y = 30 and predicts negative values of — near the pipe 

center. In Appendix B,Diessler's [12] and van Driest's [25] 

approach is shown to be incorrect in approaching the wall. 

Thus, the eddy diffusivity concept is still lacking a 

unified model of the turbulent viscosity. 
Both of these turbulent models, the mixing length 

hypothesis and the eddy diffusivity, formulate a relation

ship between the turbulent stress and the local velocity 

gradient. This approach is shown to be incorrect by 

Tennekes and Lumley [3], as mentioned in Section 2.2. 

However, due to the current information (both experimental 

and analytical) concerning Reynolds stresses in circular 

ducts, it is possible to formulate the Reynolds stresses as 

a function of position alone. This is the approach taken in 

this thesis. 
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CHAPTER III 

PRESENT ANALYSIS 

3.1 Outline of the Present Analysis 

The approach taken in the present analysis to model 

steady, nonisotropic turbulent flow in circular ducts can be 

summarized as follows. First, the Reynolds stress will be 

postulated as a function of position. Evidence is given to 

demonstrate that this model satisfies both analytical and 

experimental requirements on Reynolds stresses. With the 

Reynolds stress postulated as a function of position, the 

Reynolds equation (11-24) or (11-27) is integrated to yield 

the velocity distribution as a single, continuous function 

from the wall to the pipe centerline. The proposed model 

requires a zero velocity at the wall and a zero velocity 

gradient at the centerline. Integrating this velocity 

distribution over the pipe crossection yields the average 

velocity. The friction factor is immediately obtained from 

the nondimensional average velocity. Finally, the present 

analysis is employed to determine the eddy diffusivity 

throughout the entire pipe. 

3.2 Reynolds Stresses 

There are presently numerous accounts of experimental 

measurements in turbulent velocity fluctuations. The two 
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most notable of these being due to Laufer [4] and Sandborn 

[5] both of whom experimentally measured the root mean 

square velocity fluctuation as a function of position in 

fully developed pipe flow. These accounts conclude that in 

the pipe core the total stress is due almost entirely to 

turbulent fluctuation, with viscous forces playing little 

role. Thus, in the core the Reynolds stress must decrease 

to zero at the centerline as does the total stress (see 

Section 2.1.1). Both Laufer and Sandborn used hot wire 

anemometers to measure the velocity fluctuations and thus had 

some uncertainty in the near wall measurements. The velocity 

fluctuation near the wall can also be measured with a laser 

doppler technique so as not to disrupt the flow. Thus, there 

are sufficient experimental results presently available to 

check the validity of a position dependent model of Reynolds 

stresses. 

Analytical formulations of the velocity profile very 

near the wall have been presented in the literature. The 

first formulation was apparently given by Murphree [6]. It 

has been analytically shown by Hinze [7],.. Townsend [8], and 

Monin and Yaglom [9] that the velocity must approach the 

wall as a polynominal containing y to the first, fourth, 

and fifth powers. That is, 

lim v+ = y+ - c4y
+4 + c5y

 + 5 CHI-lj 
+ 

y +0 



r 

This result is obtained by differentiating equation (11-17) 

with respect to y and expressing the mean velocity by 

Taylor series expansion at y =o. This procedure yields the 

constants c, and c,, 

3 a3v'V 
-v f r z c4 = - ^ 5 ( T^V-o-' (IH-2a) 

4 24v; 9y b V o 

4 v̂̂ vj'i 
c s - T 4 t-TTV-o (in-2b) 5- i20v£ ay * y- -° 

Note that due to the closure problem, v'v^ (and thus c, and 

c,) cannot be determined without first knowing the velocity 

distribution. Tien and Wasan [10] used experimental data to 

determine these constants and suggest the following equation 

to represent the velocity profile very near the wall, 

v+ = y+ - 7.8 x 10"5y+4 + 2.1 x 10'6y+5 (III-3) 

This equation is in agreement with experimental data from 

the wall to y z 20.. Substituting equation (III-l) into 

the Reynolds equation yields the form in which the Reynolds 

stress must approach the wall, 

v f v f + •* + A 
lim _JL-| ̂  4c4y ^ - 5c5y

 4 (111.-4) 
+ • * * 

y -*o 
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Thus, there are analytical formulations available that 

suggest the position dependency of the Reynolds stresses 

very near the wall as well as in the core and experimental 

data that can be used to evaluate a model. 

3.3 Constraints on the Model 

In order to satisfy the requirements of (i) boundary 

conditions in pipe flow, (ii) basic analytical formulations, 

and (iii) experimental data, the model must satisfy the 

following constraints: 

(a) at y = o 

V* = o (1X1-5)' 

x/ V ^ - O , CIII-6) 
w 

-i = o . (III-7) 
v v J 

(b) as y -*o, that is, close to the wall 

1 • + + +4 +5 y-TT T -O^ 

lim v = y - c,y .+• c5y (III-8) 
+ 

y -*0 

This is needed to satisfy the results of [9]. Therefore, 

lim ̂  = 1 - 4c4y
+3 + 5c5y

+4 (III-9) 
+ dy 

y ->-o 



VT „ +3 , +4 

v " w 4 7 " 5 
+ 

y >o 

(c) as y increases, 

+ + 

t^ goes through a maximum at n (or y ) 

therefore at n . 

dn 

(d) in the intermediate region, that is, when 

+ 

>>1 but ,n = X— << 1 
y--.-•'• — - R 

we have the "law of the wall," 

this is the constant stress region where, 

20 

lim — = 4c,y - Sc^y (III-10) 

lim x* = 4c4y
+3 - 5c5y

+4 (III-ll) 
y +o 

dx* 

A2 + 
d TR 

j < O (111-13) 

v+(y+) * Y ln (y+) -+ constant (III-14) 
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+ 
TR z constant (111-15) 

and 

~ kn (111-16) v*r * w 

(e) in the core, that is, when 

n = t- - 1 

the "velocity defect law" is applicable, 

v+(l) - v+(n) = I G(n) (111-17) 

and 

v + (y + ) = ^ Jin (y+> + cons t an t + ^ w ( n ) (111-18) 

.* 

"law of the wall"+ "law of the wake" 

and 

.TR decreases to zero (111-19) 

(f) at the pipe center, that is, when n = 1, 
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therefore 

Also, 

v+ = v I a Y (111-20) 
max 

^™- = o (III-21a) 

,2v+ 
^—-^ < o (Ill-Zlbj 
dn' 

T + = o (III-22) 

v 
1 = finite (.III-23} v*r * w 

3.4 The Model 

In what follows, it will be shown that the proposed 

model satisfies all the requirements listed in the previous 

section. Recall the Reynolds equation, 

, •.+ v'V 
% = (l-n)V- -£-f (III-24) 
dy v, 

We shall express the dimensionless Reynolds stress by 
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v"7"^ 
r z 

R j± = F(n) =-.£Cy )U-n) (I II -2 5) 

Substituting (25) into (24), 

dv 

dy 
- = U-£(y )} (l-y /R*) (in-26) 

when y /R* << 1 this reduces to 

dv 

dy 
7: = i-f(y > (III-27) 

thus 

T* <£(y+) (III-28) 

Also, by definition, 

dv —I—r 
V -JL = V'V1 

T dy r z 

(111-29) 

therefore 

VT T R 
dy_ 

dy' 

(III-30) 

Substituting (25) and (26) into (30) yields, 
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!l _ £(y*) 
v i-fCy+) 

and 

V = _L f(y+) 
v*rw R* l-f(y+) 

Defining the effective viscosity v , 
w 

thus, 

(III-31) 

(111-32) 

v . v+vT vT 

-S. E — - ± = 1 + -i (111-33) 

-f = + + 1 > -1 + (111-34) 
v i-f(y ) l-£(y )• 

For the function f(y ) in equation (2 5) we shall choose the 

following expression [34] 

£^ > = >£ 3 " — V J 5 (111-35) 
y +̂N- E(y ) y 5+N5 

where 

E ^ + ) ' • T^r (I.H-36) 
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N and b are constants and k is the von Karman "universal 

constant." It will now be shown that this model satisfies 

the necessary constraints. 

(1) When y+ << N, 

+ 3 , +4 
lim £(y )• = ^-j - iZ-r (111-37) 

y++o N N 

Substituting (37) into (27) yields, 

•v. + +3 . +4 

lim dv_ = 1 - y + 1 Z__ (111-38) 
+ dy IT K Nb 

y ->o J 

which satisfies the constraint given by (9). Integrating 

equation (38) from the wall to y gives, 

-, . + + 1 +4 1 +5 >-__'.s 
lim v = y - -=-?• y + -^V y (111-39) 
+ 4KT SklT y ->o 

which satisfies the constraint given by (8). Substitution 

of (37) into (28) yields, 

+ 3 ., +4 
lim T+ = Z _ - ̂ . Z _ (111-40) 

y
+ . 0

 N ^ 

which satisfies the constraint given by (11). Substitution 



of (37) into (31) yields, 

which satisfies the constraint given by (10) 

(2) Considering the case when y >> N,' 

or 

dv+ 1 

dy ky 

26 

v T +3 -, +4 
nm ~± = y - I? -,(111-41) 

y +0 

lim f(y+) = 1 - | C y + } (III-42) 

y+>>N 

lim f(y+) = 1 - i i ^ (III-43) 

y +»N ^ 

Substitution of (43) into (26) yields 

d v + l+b(y+/R*) 
lim ^ = {- - -} (1-y /R*) (111-44) 

y
+>>N

 dY kX 

when y /R* « 1 this becomes 

(111-45) 

which satisfies the constraint required by (14). Substitution 

of (43) into (25) yields, 
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lim T R
+ = [1 - -L; - ̂ -](l-n) (111-46) 

y+>>N k^ * 

Note that the bracketed quantity is a function of RA, thus 

making T R a function of R* (see Figure 2). For a given 

Value of R* the bracketed quantity is approximately a 

constant less than, but close to One, in the intermediate 

region. This satisfies the constraint given by (15) . 

Substitution of (42) into (31) yields, 

lim _i = E(y )-l (111-47) 
+ v 

y >>N 

therefore in this region, 

E(y+) = 1 + -I = v^ (111-48) 
v e 

Substituting (36) into (47), 

y >>N 

+ + 

when y /R* << 1 but ky » 1 this becomes 

v • +-. 

-~ = *r (in-so) 

or 
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v*r 
= kn (III-51) 

w 

which satisfies the constraint given by (16). When y /R^+l, 

that is, in the core, equation (44) becomes 

or, 

d'v *. rl+bn-, f, ,. 

dV ~ r 1 . b-, ,-, s 

air r [E + k ] ( 1 " n ) 

(111-52) 

(III-53) 

Which satisfies the constraint given by (21). Substituting 

(42) into (32), 

lim 

y+»N V*Tw 

E(y M (111-54) 

or 

at n = 1 

lim 
v*r 

y +»N w 

kn 
ITEn (III-55) 

v*r. w 

k 
" T+F 
xi-l 

(111-56) 

which satisfies the constraint given by (23). Thus, this 

model satisfies all the constraints outlined in Section 3.3. 
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Recall that the velocity distribution is obtained by 

substituting the Reynolds stress model into the Reynolds 

equation and integrating with respect to y (or n)V Due to 

the fact that integration is an averaging process, a model 

that yields good agreement with the experimental data on 

Reynolds stresses should yield even better agreement with 

the velocity profile. Moreover, the friction factor, being 

determined from the nondimensional average velocity, is 

obtained by yet another integration. Thus, a satisfactory 

model of the velocity distribution and the friction factor, 

the quantities of practical importance, can be obtained from 

a model that gives fair agreement with the Reynolds stresses. 

It is also important to note that the Reynolds 

stresses being,due to velocity fluctuations, are a physical 

parameter that can be directly measured by an experiment. 

This is not the case for the mixing length or the eddy 

diffusivity, which must be calculated by first obtaining 

the velocity profile and then differentiating to determine 

the velocity gradient. This may result in significant 

error in the core, where the velocity profile is flat. Thus, 

it is advantageous to model the Reynolds stresses by a 

position dependent model rather than by a "gradient transport" 

model. 
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3.5 Comparison of the Model with Experimental Results 

3.5.1 Reynolds Stresses 

As mentioned, there are numerous experimental data 

on the Reynolds stresses; the most extensive experimental 

analysis being due to Laufer [4] and Sandborn [5]. 

Recall equation (25) 

vnrvrr 
r z _ 

v 
^ = f(y )(l-n) 

Substituting in equation ^35)^yields the model for the 

Reynolds stress, 

+ 
VT7T +3 (1+b y /R*) v

+5 + 

- V "-I^r-J T ^ — ~^ni-y /R*> ( I I I-57) 

vj y +N ky y +N 

The model is compared with experimental data throughout the 

entire pipe in Figure 2. Note that for high Reynolds number 

flow, the Reynolds stresses obtain a maximum value very 

near the wall and thereafter account almost entirely for the 

total stress. However, it is shown in Section 3.5.2 (see 

equation (63)) that assuming that the total stress is equal 

to the Reynolds stress leads to a flat velocity profile, 

i.e. slug flow. Since the velocity defect data show that 

there is indeed a velocity defect in the core, there must be 

a finite difference between the total stress and the Reynolds 



n' 
"\ •. ' 

Figure 2. Comparison of the Present Analysis with Experimental Data on 
Reynolds Stresses for the Entire Pipe 
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stress, even in the core. Also note from Figure 2 that the 

assumption of a constant stress is only valid for a very 

small region of the pipe. 

The comparison with experimental data in the near wall 

region is given in Figure.3. Because the data are very 

near the wall the length scale y is used. Note that the 

Reynolds stress model approaches the wall as a third and 

fourth order polynominal, as given by the constraint in 

equation (11).Recall equation (4 0), 

. '•• i $ : y , ' - . : + 4 - '•'•• 

+ y ^ I y^ 
lim Tn =

 l—Y ~ T"
 l—r 

/ . 0
 R ^ ^ ^ 

the model approximation for the near wall region. Since k 

is the von Karman "universal constant," the only unknown 

constant is N. Thus, the experimental data on the Reynolds 

stresses very near the wall is used to determine the value 

of N. -., 

From Figures 2 and 3 it is noted that the proposed 

model is in good agreement with the experimental data 

throughout the core as well as the near wall region. As 

mentioned, the velocity profile is determined by integrating 

of the Reynolds equation. Thus, good agreement with the 

Reynolds stresses should lead to an accurate prediction of 

the velocity distribution. It will now be shown that this 

is in fact the case. 
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3.5.2 Velocity Distribution 

The analytical formulation of the velocity distribution 

may be obtained by direct integration of the differential 

equation of motion as given by equations (11-24) or (11-27); 

the choice upon the desired dependence of the velocity on 

nondimensional length. Recall the Reynolds equation, 

.+ . v *v TTTT 

%: = (l-y+/R*) - - V - -(111-58) 
dy .vi 

or 

t , , » 

R^3^= • H-^) - - ^ ... CIII-59) 

Direct integration of the above equations yield, 

+ T77T 

v + (y + ) = y + [ i - | y + / R * ] " ^ - ^ r d ^ + ( i n - 6 0 ) 
f o v* . 

laminar effect turbulent effect 

and, 

n î V2T n V' V' 

v+Cn) = R* { l i ^ Q U - - / -?* dn} (111-61) 
i ° v* 
' \ 

laminar effect turbulent effect 
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This clearly illustrates that the turbulent velocity profile 

must be flatter than the laminar profile, since the integrand 

(the Reynolds stress) is positive. The maximum velocity may 

be obtained immediately from equation (60) by setting 

y = R^, or from equation (61) by setting n = 1. 

. , 1 vTVT 

v (1) = R* {j - j -1* &n} (111-62) 
o v. I *i 

laminar turbulent 
effect effect 

Subtraction of equation (61) from (62) results in the 

"velocity defect law," 

n v2 1 vfvf 

v (1) - v (n) = RA (
U"^j - J - 1 ^ dn} (111-63) 

n v * 

The velocity profile can be determined by substitution 

of the position dependent model of the Reynolds stress into 

the above expressions. 

In Section 3.5.1 concerning the Reynolds stress, it 

was mentioned that it is often assumed that;in the core 

the total stress is due to the Reynolds stress, that is, 

that T R ~ (1-n). If this assumption is substituted into 

equation (63) the velocity defect becomes zero, i.e. slug 

flow. Moreover, the first term in equation (63) is equal to 

the area under the total stress "curve" from the pipe center 

to n, and the second term is equal to the area under the 



Reynolds stress "curve" from the pipe center to n; the 

velocity defect is equal to the difference between these 

two terms, which by definition is equal to the viscous 

forces. The velocity defect in turbulent flow is due to 

the integrated effect of the viscous forces from the pipe 

center to n, thus the effects of viscosity, no matter how 

small, must be considered. 

Substitution of the Reynolds stress model as given by 

equation (57) into equation (60) results in 

+ + + i + X+ v+3 (l+by+/R*) V
+ S 

v. (y ) = y [i4y+/R*J- / H r V - ;—— 4 r - T ] C1^ /R*^dy 
o y +N ky y +N 

(111-64) 

This can be integrated to give the complete analytic 

expression for the velocity distribution.\ Doing so yields 

the following expression: 



37 

v + (y + ) = 5¥ £nCy+5+N5) - £.JtnCNJ 

d l . y + *+}r . /3N 3 

, N2r 1owl)^\wT/ + o^1/2y+-Nw -1,- /3^, + t D ^ t " T A n i X * 4 } + / 3 ( t a n {-* } - t an l ^ r - v ) ] 
dK* z y 5 + N .-• - • • / I N . 

+-££^[y+-SUn(y%^ 

- 0 v 8 0 9 £ n ( y + 2 - l . 618y%J+N2)+^^ 
0..588N 

+ 1. 9 0 2 t a n " X ( ^ j g ^ 9 1 1 ) - 0 . 512} ] 

; - 2 
b 2 " [ | y + 2 - ^ - - { - i l n ( y + + N ) - G . 3 0 9 i l n ( y + 2 + 1.168y+N+N2) 

kR* 

+ 0 , 8 0 9 J l n C y + 2 - l o 6 l 8 y + N + N 2 ) + i a 7 6 t a n " 1 ( ^ ^ 
0.951N 

+1.9O2tan'1(>r0'^^
9N)-O.512}] (111-65) 

This expression is too complex to be of practical use, 

however, a much simpler expression for the velocity distri

bution will now be obtained. This simplified expression is 

in good agreement with experimental data in the viscous 

sublayer, through the logarithmic region and to the pipe 
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center. Moreover, the three velocity expressions required 

by the "state of the art" are seen to result from this 

single expression. 

If in equation (64) it is assumed that y /R*<<1 then 

the equation becomes, 

+ ' X • A 

v+(y+) - y+ - /Y [-ff-j - K ^ - ? ] ^ .(iu-6.6) 
o y +N .. y. +N . 

Integration results in the following velocity distribution: 

T*.(y?) = ̂ ^^^^[tkh-^irlNj^l^^ij-JlnCN) 
bJC d ^ n y +M 

(111-67) 

This expression (with N = 9.5) is plotted in Figure 4 and is 

seen to be in good agreement with the experimental data of 

Nikuradse [11] and Deissler [12] for the entire pipe. Thus, 

this single expression can be used to predict the velocity 

profile from the wall to the pipe center. 

The three region approximation that is required by 

the "state of the art" can be shown to result from equation 

(67). Consider the three regions: 

(1) -'o'<_ y+ < 5 

Expansion of the log terms and the arctangent by 

Taylor series about y = o yields, 
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v+(y+) = y+ - - ^ y 4 4 > - i ^ y + 5 "(111-68) 
4JT 5kN5 

For the range of y considered and with N = 9.5, 

this expression is similar to the "state of the art" for 

this region as given by equation (35a). 

(2) 5 < y+ < 30 

For this region both y and N are significant in the 

argument of the log term and thus no simple expansion can 

be given for equation (67). However, it is easily verified 

that in this region the velocity predicted by equation (67) 

is similar to that predicted by the "state of the art" 

for this region, i.e. 

v+(y+) = 5£n(y+) - 3 (111-69) 

(3) y+ > 30 

Considering this region the following approximations 

are applicable, 

^Lj,n(y+5
+N

5) '= ^ ^n(y+5) = £ Xn(y+) 

and, 

.. . -1,2'y :-N\ ~ ,~ tan (-̂ ——) ~ TT/2 
/3N 
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3 
in {<&t-} s o 

/W 

thus , 

8 / | N [ t a n - i ( 2 y ^ N ) + . j + N , n { i 0 i i f } 1 i £ N) , 5> 
3 /3N 6 6 y + 3 + N

3 k 

(with N = 9.5) 

With this approximation equation (67) becomes, 

v+(y+) = £ An(y+) > 5.8 (111-70) 

Thus in the appropriate region, equation (67) reduces to the 

"log law" obtained by Prandtl and von Karman and the 

constant in the "log law" is seen to result from the 

arctangent, and the second log term approaching an asymptotic 

value. 

In Figure 5 equation (67) is compared with experi

mental data for the intermediate region and in Figure 6 it 

is compared with experimental data for the near wall region. 

From these two figures and Figure 4 it is seen that the 

expression for the velocity distribution as given by 

equation (67) is in good agreement with experimental data 

throughout the entire pipe, that is, from the wall to the 
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pipe centerline. Thus, this single expression can replace 

the three expressions required by the "state of the art." 

The "velocity defect law" can be obtained by substi

tution of the Reynolds stress model into equation (63), 

however, the resulting expression is formidable. Rather, 

due to the fact that the "velocity defect law" is used to 

represent flow in the core region, the approximate expression 

as given by equation (53) can be employed. Recall equation 

(53), 

+ dv _ ,- 1 
dn 

b 
[ToT " ¥ ] (1"n) 

Integrating from n to 1 gives the "velocity defect 

law" 

v+(l)-v+(n) = l[£n(i)-(l-n) +|' (1-n)
2] (111-71) 

This result is compared with the experimental data of 

Nikuradse [11], von Karman [14] , and Stainton [15] in Figure 

7, Fair agreement is obtained with the experimental data; 

the best agreement being in the core., the region in which 

the assumptions leading to equation (71) are most valid. 

It is important to realize that the velocity defect is 

obtained by subtracting two velocities. If some experimental 

error is made in measuring the velocity itself or in 

positioning the instrument probe, significant error is being 
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introduced into the defect law "data," however, this error 

is of small consequence in the velocity profile (as in 

Figure 4). Thus, the velocity profile itself, not the 

defect law, should be the experimental data used to evaluate 

a turbulence model. The present analysis is in good agree

ment with the velocity profile data. 

It was noted in the section entitled General Observa

tions Concerning Turbulent Flows, that two length scales 

are associated with the phenomena of turbulence. One length 

scale pertains to the flow region near the wall where viscous 

forces are predominate; the other pertains to the core, where 

inertial forces are dominant. The model proposed by this 

thesis contains two* constants: N and b. (This is also the 

case with the formulations of Prandtl and von Karman). Two 

constants are required since turbulence has two length 

scales. One of the constants, N, was determined from data 

pertaining to the viscous region since the other constant, 

b, did not appear in the approximation applicable to this 

region (see Section 3.5.1). The constant, b, is determined 

from data pertaining to the inertial region (the "velocity 

defect law") since the constant, N, did not appear in the 

approximation applicable to this region (see equation (71)); 

thus justifying the need and the manner of determining the 

two constants. 

In concluding this section on the velocity distribution, 

it should be emphasized that the present analysis yields a 
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single expression for the velocity distribution that is in 

agreement with the experimental data from the wall to the 

pipe center. While the exact analytic expression is somewhat 

complex, a simplified expression is given and is seen to be 

in agreement with the velocity profile predicted by the state 

of the art. Moreover, the integral formulation of the 

velocity profile, which is valid for the entire pipe, (given 

by equation (64)) lends itself to computer application to 

the more difficult problem of turbulent convective heat 

transfer. 

3.5.3 Average Velocity and the Friction Factor 

By definition of the average velocity, 

r 
w v> = -lj J v ( r ) 2 f r r d r (111-72) 

7rrTr o w 

This can be integrated by parts, thus expressing the average 

velocity in terms of the velocity gradient. 

<v> -virlri ,*" . / |v (_r ) 2 d r , ( m . 7 3 ) 

r o o w 
w 

The first term is zero from the boundary conditions. 

Dividing by v* and introducing the dimensionless length 

scales, 



48 

lli . } |v! (i-nj'an (III-743) 
* o 

or 

R* + 
<v> r 3v /.• . + , „ v2 / ^ r (l-y+/R*)Zdy+ (III-74b) 

o 9y 

Substituting the expression for the velocity gradient as 

given by equation (26) yields 

R* 
< V> r • r i . '.r / + •* w i ' ' +' /r» > 3 i + = / {l-£(y+)}(l-y+/RJ3dy+ (III-7S) 
v- o 

or in terms of the model for f(y ) as given by equation (35) 

<v> /*/n y+3 (l+b y+/R,) + 5 + + 
— '•/ {1 - ~ ^ - 3 + , + -Tf-T}(l-y

+/R,)5dy+ 
v* o y'^+N^ ky' y"J+N' 

(111-76) 

The average velocity could be obtained by analytic integra

tion of the above expression, however, doing so results in 

some sixteen terms. Rather, the above expression for the 

average velocity is used to obtain a more meaningful 

quantity, the friction factor. 

By definition of the friction factor, 
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xw = f P l f l (111-77) 

Rearranging yields 

f V P 
i- = - ^ - T (111-78) 

<v> 

Recalling the definition of the friction velocity, this can 

be expressed as 

¥" Pfr 
V 4. 

(111-79) 

or from equation (74b) 

f * R +
 X : (HI-BO) 

[J —r(i-y./R*D <*y ] 
o 3y 

The form of this expression gives physical insight into the 

friction factor. The friction factor may be interpreted as 

the inverse square of the volume averaged rate of strain. 

Also note that the friction factor results from a smoothing 

process, that is, integration. 

Substitution of the nondimensional average velocity 

as given by equation (76) into equation (79) yields 
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i = i 
? r h x . _ ^ + d*b / / R « ) - ^ t d - y V R ^ V ] 2 " 

o y ̂ j r ky y 5+N 

(111-81) 

This expression may be integrated to obtain an 

analytic expression for the friction factor. This was done, 

however, the result is complex. The expression for the 

friction factor was also numerically evaluated on a machine. 

The comparison of the results with values taken from the 

Moody chart and with the experimental data of Nikuradse [11] 

are given in Figure 8. It is seen that the results are in 

fair agreement with the accepted values of the friction 

factor. However, much closer agreement with the data was 

expected in light of the fact tnat the friction factor is 

obtained by integration of the velocity distribution, which, 

was shown previously to be in good agreement with many 

experimental data. Moreover, it is shown by Schlichting 

[16] that integration of the Prandtl log law (which is known 

to be in agreement with the velocity data of Nikuradse) 

also results in poor agreement with the experimental data 

on the friction factor. The friction factor being much 

easier to experimentally measure than the velocity distri

bution is presumably the more reliable data. Thus, in light 

of the above comments there is some question as to the 

accuracy of the experimental data on the velocity distribution 
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3.5.4 Eddy Diffusivity 

The eddy diffusivity approach is often employed as a 

model for convective heat transfer in turbulent flows. 

Because of the universal acceptance of the eddy diffusivity 

approach, it is important to apply the results of the present 

analysis to the eddy diffusivity model. 

The eddy diffusivity is defined by the following 

equation, 

~ - Cv+vTi|^ cm-82] 

Substitution of equation (II-5a)in the above yields, 

^d-n) - CwT) f 

This can be expressed in dimensionless form by introducing 

the friction velocity and rearranging 

(l-ii) = (1 * ^ ^ V (111-84) 
dy+ 

Solving for the- eddy diffusivity, 

_T = (1-n) _ 1 (III-8S) 
v dy^ 

dy+ 

(111-83) 
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Noting that the velocity gradient appears in the denominator 

of the equation defining the eddy diffusivity it is no 

surprise that the experimental data on the eddy diffusivity 

are inconsistent. Some experimental data place the maximum 

value of the eddy diffusivity at the pipe center while other 

maintain that the eddy diffusivity is zero at the centerline. 

(Some models even have a negative eddy diffusivity at the 

center.) 

Substituting equation (26) into equation (85) 

yields, 

!T = _ £ ( £ L . ( I I I . 8 6 ) 

•i-f(y ) 

and 

J l _ = i f(x+) ( in -87) 
V*rw K* 1-f(y ) 

+ , Recalling the model proposed for f(y ) the above becomes, 

+ 3 (1+b y+/Rj y+5 

V™ +3 -KT3 , + +5 -KT5 
4 = iL--HL_ ^ _ y +N ; (111-88) 

••••,'.' r y + 3 C 1 + b y / R*) y + S •. 

"' [" + 3 i H 3 ~ + + 5 i M S ] 

y +N ley y +N 
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This expression can be used to determine the eddy diffusivity 

throughout the entire pipe. However, simplified expressions 

for equation (86) were given in Section 3.4. Recall that 

for the regions: 

(a) near the wall, that is, y << N, 

vT +3 ' ' +4 

IT K Nb 

+ 
(b) intermediate region, 4— « 1 but ky >> 1, 

VT + 
-i = ky (111-90) 

or 

1 = kn (I.II-91) 
v*r 

w 
* 

(c) in the core, y >> N 

VT kn 
* w 

TTTT- (111-92) 
1+bn v. • . . 

The eddy diffusivity model resulting from the present 

analysis is compared with the experimental data close to the 

wall of Laufer [4] and Sleicher [17] in Figure 9. It is seen 
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that there is good [agreement in the n^ar wall region. Also 

note that the turbulent viscosity is considerably larger 

than the mechanical viscosity for location as close to the 

wall as y equal 20. 

For the core region, the present model is compared 

against experimental data in Figure 10. It is noted that 

large scatter exists in the experimental data, as mentioned 

previously, this is due to the velocity gradient appearing 

in the denominator of the equation defining the eddy 

diffusivity. For the eddy diffusivity to be experimentally 

determined, the velocity profile must first be obtained and 

then differentiated to determine the velocity gradient. 

Significant error is possible in obtaining the derivative 

due to the flat velocity profile in turbulent flows. The 

data of Nikuradse [11] has a maximum value of the eddy 

diffusivity occuring at n = 0.5, and then declining to 

almost zero at the pipe centerline. If this result is true, 

then from equation (85) the velocity gradient must approach 

the centerline as (1-n) to the first power. There is no 

experimental evidence to indicate that this is in fact the 

case. The data of Laufer [4] and Nunner [18] indicate 

that the eddy diffusivity reaches a; maximum value of 
v T • ' : " ; , . ' . ' " * • : • • ' : " 

—- = 0.075 at n =0.3 and decreases very slightly to a value 

of approximately 0.06 at the centerline. Gosse [19] 

presents experimental data to indicate that the eddy 

diffusivity Continues to increase throughout the pipe, . * 
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reaching a maximum at the centerline. This result is 

predicted by the present analysis which has already been 

shown to be in good agreement with other turbulent phenomena. 
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CHAPTER TV-

CONCLUSIONS 

The following conclusions are drawn from this work: 

(1) A position dependent model of the Reynolds 

stresses can be formulated as an alternative to the presently 

employed "gradient-transport" models. 

(2) The constraints placed upon any turbulence model 

by analytic formulation, boundary conditions, and experi

mental data can be satisfied with a position dependent model. 

(3) The formulation can be used to accurately 

model turbulent phenomena, in particular: 

(i) the Reynolds stresses can be predicted as a 

function of position throughout the entire pipe; 

(ii) a single, continuous velocity distribution can 

be obtained with the results being applicable from the wall 

to the pipe center; 

(iii) the friction factor can be obtained as a 

function of Reynolds number, thus allowing the determination 

of pressure losses in turbulent flows; and 

(iv) the eddy diffusivity can be formulated as a 

function of position, thus extending the results of the 

present analysis to the important area of convective heat 

transfer in turbulent flows. 
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APPENDIX A 

REYNOLDS EQUATION 

In 1895 Osborne Reynolds introduced a procedure that 

can be used to simplify the Navier-Stokes equations as 

applied to turbulent flow. Reynolds decomposed the instan

taneous turbulent flow parameters into a mean value 

(indicated by a bar) plus a fluctuating value (indicated by 

a prime), i,e. 

v.' = v~ + v! (A-l) 
1 i l J 

It follows from the definition of the fluctuating quantities 

that the time averaged values, v!, are equal to zero, i.e. 

v| = o (A-2) 

However, it is generally true that the squares or products 

of the fluctuations are not equal to zero, 

:{vj t o (A-3) 

The formal definition of the averaging process is 
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T t o + T 
v . =• l ira j ! v i C t ) d t (A-4) 

T->a> tO 

with th i s def in i t ion the following re la t ionsh ips may be 

eas i ly ve r i f i ed , 

v i = v i CA-5a) 

v i v j = y iv j . (A-sb) 

v i + v j = v i + v j •>. (A-5c) 

v i V j = XV±+V|)-CVj+vj-) - v i v j + v i v j (A-5d) 

.a.v. 3v. 
_ i = _JL 
3x. 3x . ' 

1 l 

(A-Se) 

The continuity equation for steady flow can be written as 

3v. 
^ i = o (A-6) 

I 

where the repeated indicies indicate summation (Einstein 

notation). Substituting in the decomposed velocity yields 

3v. 3v! 

3^7 + 35̂ 7 = ° (A"7) 
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Taking t h e t ime a v e r a g e of e q u a t i o n ( 7 ) j 

3v. 3vT 
1 + _ I = 0 (A-8) 

3x. 3x. 
l l 

from (5e) and ( 2 ) , 

3vT 
3 5 T = ° (A-9) 

i 

t h u s , 

3v. .3v. 

7x7 " 3x7 "' ° CA-10^' 
1 1 

Thus t h e c o n t i n u i t y e q u a t i o n y i e l d s t h e r e s u l t 

3v#. 3v. 
*5E7fc ° i 33T-= ° •CA.-iOb) 

1 1 

The 'Navier-Stokes equations written in index notation are 

3v.' 3v. .„ 32v 
P f ^ + v j ^ 7 > - - ^7 + ^33rkr) VCA^II.) 

Substituting in the decomposed form of instantaneous 

quantities yields: 
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3 V . 3v! T ^ 9 V . __dvl av . av! 
P % T + -9T + -VJixT + vj33T + v j ^ + >j^> = 

J J 3 J -j j -j 

"a^ â t 92v7 a2v! 
- IE IP— +' uf L_ + !_) fA-12) 

ax. ax. yiax.ax. ax.ax.J > A 1ZJ 

3v! 
The term v! ̂ — can be transformed by noting that 

3 i 

8v!v! av! av! 

-Wf° Vi IxJ-+ vj 3i7 (A-13) 

The first term in equation (13) is zero by the continuity 

equation, thus, 

vj S T = W: ^P -(A.-wo. 

The next step is to take the time average of equation (12), 

in doing so the terms 

3vT avT av. a2v! .-, 
J v.^-— ; v! at ' jax. ' j 9x ' • - 2 ' 3x. 

J dX . 1 

must be equal to zero. Thus, the momentum equation assumes 

the final form, 
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/ *y. _ 9v . 92
y 3(p7TVp 

p ^ + v3 3x7> = " HT + ^ ~ - 3 3 ^ - ^"^ 
J 1 1 d X .' • J 

J 0 J 

This is referred to in the literature as the Reynolds equation 

Note that this equation is identical with the laminar flow 

form except for the last term. The quantity pviv! is termed 

the Reynolds stress, TR, 

tR = pvlvj (A-16) 

Note that this quantity comes from the stress term in the 
• ' • • ' . ' • ' 

original form of the Navier-Stokes equation. It is shown 

by Tennekes and Lumley [ 3] that "a stress that is generated 

as a momentum flux can always be written as (16.) , no matter 

what mechanism causes the momentum flux." 



APPENDIX B 

PRESENTLY EMPLOYED MODELS OF TURBULENCE 

This appendix deals with the models that are 

frequently applied to turbulence, in particular, the mixing 

length model,eddy diffusivity model, and power approxi

mations will be analyzed. A few comments will be made 

regarding statistical methods. The state of the art is also 

reviewed. It is intended that this discussion be more 

detailed than that presented in the main body of the thesis. 

Mixing Length Model 

This approach at modeling the turbulent stress was 

introduced by Prandtl in the 1920's, however, the conclusions 

from this work have found practically universal acceptance 

among workers in fluid mechanics and convective heat 

transfer. This is primarily due to the simplicity of the 

obtained logarithmic velocity distribution that is in 

apparent good agreement with experimental data. However, 

the velocity distribution obtained does not satisfy the 

boundary conditions of turbulent flow, that is,there is a 

nonzero velocity at the wall (in fact, it is indeterminate) 

and a gradient exists at the pipe center requiring a shear 

stress. The data of Nikuradse f11] are in good agreement 

with the Prandtl velocity expression, however, there have 
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been reports that cast some uncertainty on the validity of 

Nikuradse's data, in particular, Lindgen [20] and Ross [21]. 

Prandtl assumed that the turbulent stress could be 

modeled by 

T R = P ^ ( g ) 2 CB-1) 

As mentioned, it is necessary to specify the turbulent 

stress in order to obtain closure, however, Prandtl's 

approach introduces a new variable, &, the mixing length, 

which requires an additional equation. Equation (1) can be 

expressed in nondimensional form to give 

^ = * + 2 ( £ H 2 (B-2J 
w 

where & = Jl/r . Substituting this into the Reynolds 
W 

equation yields, 

irlf> (l-n)^ + 2 ( ^ ) 2 (B-3) 
K* d n dy 

Rearranging, 

C^4)2 • ' ^ T ( ^ T ) - - ^ = o (B-4) 
dy V..0.* dy I 
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Using the quadratic formula, 

4 = f [ - ^ ^ / ^ + i i ^ V (B-5) 
dy L R*il+Z V R2$,+4 £+2 

It is necessary to choose the plus sign in order that the 

velocity gradient be zerp at the centerline. Doing so and 

rearranging gives, 

# = - I ^ d l + 4Cl-n)R2^- 1 } CB-6) 

Equation (6) is an exact expression and can be used to 

determine the velocity profile provided there exists an 

equation describing the mixing length as a function of n. 

Equation (1) can be rearranged to give, 

1 = -W2- c B - 7 ) 
3y 

Note that equation (7) is indeterminate at the pipe center-

line: one of the disadvantages to the mixing length approac 

Equation (6) can be used to clearly show the assump

tion necessary to arrive at the Prandtl velocity expression. 

For regions that are not near the wall nor the pipe core, it 

can be assumed that 



2 
4(l-n)R* ii+ >>1 (B-8) 

Assuming this, equation (6) gives 

& - - ^ . . CB-9D 

In this region n<<l and it is assured that /l-n~l 

3 ^ = ^ CB-10) 

Prandtl assumed the mixing length to be proportional to 

n (see Figure 11), i.e. 

H+ = kn (B-ll) 

Thus from equation (10) 

#=H CB-12) 

This is usually expressed in terms of y , 

dv+ 1 1 

dy ,y 
(B-1'3) 

and integration gives 
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v+(y+) = i &n(y+) + constant (B-14) 

This is the Prandtl velocity distribution or the so-called 

"log law." k is the von Karman "universal constant" equal to 

0.4 and the constant is usually chosen to be 5.5. Due to 

the assumption involved in equation (8) the log law should 

not be valid at the pipe center, nevertheless, equation (12) 

integrated to the pipe center gives the "yelbcity defect law" 

v+(l)-v+(n) / £-'An(l/n) (B-15) 

This expression should fit the data as a straight line if 

plotted on semi-log paper. Figure 12 shows that there is 

good agreement only in a limited region of the pipe. 

Prandtl assumed the mixing length to be proportional 

to n. From Figure 11 it is seen that the mixing length 

could be assumed constant. This is a particularly good 

approximation in the core. Assuming I =0.13 results in a 

model obtained by H. Darcy [22] in 1855. From equation (9) 

it is seen that a constant mixing length results in 

v+(l)-v+(n) 

constant is taken as 5.08, this expression is in 

agreement with the experimental data for the core 

(n >.. .25) than is the logarithmic defect law. 

= constant x (l-n)3>/2 (B-16) 

If the 

better 

region 
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For the region near the pipe center 1-n̂ o and near 

the wall, I ~kn-o, thus it can be assumed that 

2 + 2 

4(l-n)R*Jl « 1 (B-17) 

With this assumption, equation (6) is of the form 

: F(x} = /T+x (B-18) 

with X<<1 

Thus, F(x) ~ l-x/2 

Therefore, 

3JT - R*Cl-n) CB-19) 

Integrating this near the pipe center gives 

v+(l)-v+(n) = -~(l-n)2 (B-20) 

Thus, according to this model the defect law should be 

parabolic near the pipe centerline. 

Near the wall, 1-n ~ 1 and equation (19) becomes 

a s 1 = ** (B-2D 
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or 

dy 

thus 

d v- = 1 (B-2'2) 

v+ = y+ (B-23) 

This expression has been shown valid for y <5. 

In order to apply the mixing length model it is 

necessary to specifyI . As noted above, .Brandt 1 assumed I 

proportional to the relative distance from the wall while 

Darcy's formula results from the assumption of a constant 

mixing length. Nikuradse used his experimental data and 

determined £ from equation (7) and gave the following 

equation for determining I , 

l+ = 0.14 - 0.08(l-n)2 - 0.06(l-n)4 (B-24) 

Near the wall this can be approximated as 

i+ = 0.4n - 0.44n2 (B-25) 

The Russian, Kutateladze [23], suggested 
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l+ = 0.39n - 0.36n2 + O.lln3 (B-26) 

In conclusion it should be emphasized that the mixing 

length approach has some deficiencies. Recalling equation 

( 7 ) '; • ; '. 

i y v R/P (B-27) 

' • • • - 3 7 . ". 

note t h a t near the p ipe cen t e r T* ~ 1-n and employing equat ion 

(19) > 

I ~ £EElL = _ _ i _ (B-28) 
1 " n /T^n~ 

Thus, the mixing length is indeterminate at the pipe center 

Moreover, some authors, Tennekes and Lumley f 4 ] , state 

that "a gradient-transport model which links stress to.the 

rate of strain at the same point in space and time cannot 

be used for turbulent flow." 

Eddy Diffusivity Model 

The concept of eddy diffusivity was first introduced 

by J. Bossinesq [ 2] in 1877. Eddy diffusivity is a logical 

first extension of the laminar viscosity concept in that it 

assumes the existence of a turbulent viscosity coefficient 

relating the turbulent shear stress directly to the velocity 
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gradient. That is, 

T = - (V+VT) ^ (B-29) 

This would be a simple model provided there existed a unique 

turbulent viscosity coefficient for each fluid, however, this 

is not the case. Experiments show that y„ is a function of 

the fluid flow in addition to the fluid itself. Moreover, 

for a given fluid flow, yT varies across the pipe, i.e. it 

is a function of the relative distance from the wall. Thus 

an additional equation is needed to specify the eddy diffusivity 

in order to obtain closure. 

Equation (29.) can be rearranged to give 

-f•- -(v+v T)^ (B-30) 

or since the total stress is linearly related to the wall 

shear stress, 

l^(l-n).= -(v+vT)|^ (B-31) 

Introducing the friction velocity, this can be expressed in 

dimensionless form as 
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^ = R * ^ CB-32) 

v+(n) = R ( ] » (B-33) 

VT If — << 1 then the laminar profile results, i.e. 

R 
v+(l) ^ v+(n) = ~ (1-n)2 (B-34) 

VT If —— >> 1 and assumed constant then 

V+(l) - v+(n) = -^ R* (1-n)2 (B-35) 
VT 

This result is similar to the expression obtained by Darcy 

for the velocity defect in the core. Thus, specifying —• . 

as a function of n immediately determines the velocity 

distribution. Several investigations, Deissler [24], 

van Dreist [25], and von Karman [26] have attempted to obtain 

this relationship. Deissler suggested the following equation 

for flow near a boundary, 

vl = a2v+y+[l-exp(-a2v+y+)] CB-36) 
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where a must be experimentally determined. This can be 

expanded near the wall by recalling that v = y near the 

wall and expanding the exponential to yield 

4 ~ 7 (B-37) 

It has been shown by Davies [Z7] that near the wall 

••.-£ = c3y - c4y (B-38) 

thus the expression suggested by Deissler (and also van Diest) 

does not approach the wall correctly. Theodore von Karman 

assumed that turbulent fluctuations are similar at all points 

in the flow field (similarity hypothesis); and concluded that 

.dv. 3 
vT = k2 ~Mr~ (B-39) 

rcTv>.2 
dyZ 

when k is the von Karman universal constant equal to 0.4. 

The use of von Karman's expression gives a logarithmic 

defect law that differs only slightly from Prandtl's. 

Equation (33) can be used to give the average velocity and 

then to express a relationship involving the friction factor, 
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4 }-(l-n?3dn (B.40) 

0 i-4 

The integral is a measure of the deviation from a laminar 

flow resistance in that for laminar flow the right-hand side 

be unity. This expression could be used to correlate 

experimental data and to give some insight into the turbulent 

viscosity concept. Since the eddy diffusivity model is also 

used in convective heat transfer it is desirable to have an 

acceptable model for the eddy diffusivity. 

Power Approximations 

A simplified approach that is often used to model 

turbulent flows is to assume that the nondimensional velocity 

is directly proportional to the nondimensional distance 

raised to some exponent, that is 

V - = c C n M y V (B-41) 

This approach is seen to be deficient when one considers the 

variation on c(n) and n required to fit experimental data; 

for Ro * 10
3, n = i, for R& ~ 10

5 n = i and at R * 106 

e • *• .. 6* e 7 e 

n = T7p Thus it simply is not possible to obtain a universal 

velocity expression by an assumed power approximation. 

Nevertheless, the power approximation offers some insights 

in that it can be shown that the relationship between the 

1 64 

i ir 
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average velocity and the maximum velocity is 

4 r cn*i)W../ CB-42) 

This illustrates the fact that the turbulent velocity 

profile is much flatter than the laminar one. The ratio of 

average to maximum velocities vary from 0.79 with n = j - to 

0.86 with n = TTT as compared to 0.50 for a laminar profile. 

With the power approximation for the velocity 

distribution, it can be shown that if the friction factor is 

assumed proportional to the Reynolds number to some exponent 

then this exponent must necessarily be related to the exponent 

in the velocity distribution. That is, if 

f - :constant CR-A'O 
m • 

Re 

then 

m = JJ§£ (B-44) 

A commonly used expression for the friction factor is the 

Blausis formula, 

f = 0.316/Re0,25 (B-45) 
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If this is to hold then from (44) n - 7 and 

v+(y+) = constant x(y +) 1 / / 7 (B-46) 

• i ' ; • . . , " ' - . . . . ; , ; . . • • ' . . : ' . . : 

A constant of 8.74 best fits the experimental data. 

In conclusion, this simple approach gives a quanti

tative description of turbulent flows. Indeed, this approach 

is more efficient than the mixing length model in that one 

obtains about equal agreement with the data for less work 

input. Moreover, this approach has some esthetic appeal 

in clearly showing the intimate connection between the 

velocity distribution and the friction factor. 

Statistical Methods 

There is presently available numerous accounts of 

statistical turbulent models, in particular, Hlnze [7 ], 

Batchelor [28]-, and Tennekes and Lumley [4]. This section 

is included for completeness rather then as an attempt to 

discuss the many approaches that have 'been taken to 

statistically model turbulence. It is sufficient to say 

that in the methods previously discussed only average 

values of fluctuating quantities were considered where as 

the statistical approach examines the distribution of fluctu

ation about the average value and the correlation of 

adjacent fluctuations. This requires the introduction of 

mathematical techniques such as the Fourier transform, 
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correlation function and probability densities. In 

resorting to this approach the physical insight into the 

problem is diminished somewhat. Moreover, the proponents 

of statistical applications to fluid mechanics do not enjoy 

the success found by the quantum physicist. 

State of the Art 

In order to accurately predict the velocity distri

bution in turbulent flow, workers in fluid mechanics divide 

the flow into three hydrodynamic regions with a separate 

velocity expression for each region. These velocity 

expressions are 

y+<5 (B-47) 

5<y+<30 (B-48) 

y+>30 (B-49) 

Thus, for y>30 it is common practice to use the log law 

derived by Prandtl and von Karman. This expression appears 

to be in fair agreement with experimental data, however, it 

is easily verified that the "log law" gives a finite 

velocity gradient at the pipe centerline, which is certainly 

incorrect. Moreover, the logarithmic formulation assumes a 

constant shear stress across the pipe, thus it is little 

surprise that the "log law" does not fit the experimental 

data near the pipe center. There is a more fundamental 

v = y 

v+ = 5 m(y+) -3. 05 

v+ = 2.5 £n(y+)+5.5 
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error in equations (47), (48), and (49) in that the 

velocity profiles are independent of Reynolds number, while 

there is experimental data to indicate that the velocity 

profile is indeed a function of the Reynolds number. The 

most notable account of this is due to J. 0. Hinze [13], who 

states that "Reynolds number similarity and the consistency 

of the von Karman constant appear not to hold strictly." 

Hinze's account of many different experimental data clearly 

exhibits the dependency of the velocity profile on Reynolds 

number. In addition to the purely fluid mechanics problems, 

the application of three velocity expressions +,o forced 

convection heat transfer is cumbersome. 
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