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A new approach for the inclusion of Computational Fluid Dynamics flow solutions into
predicting sonic boom signatures is developed. Using existing CFD tools, a near-field flow
solution is obtained over the surface of a computational cylinder a certain distance away
from the aircraft longitudinal axis. Near-field to far-field multipole matching methodology
is performed to calculate the corrected far-field without resorting to unnecessary numerical
procedure of calculating the multipole coefficients. The analytical derivation is provided
and some results are presented. The results obtained using this approach do not completely
match with those obtained using earlier approaches. This is to be investigated in future
work.

Nomenclature

()∞ = Corrected Far field condition
β =

√
M2 − 1

κ = τ
2βr

τ = x- βr
θ = azimuthal angle
ξ, ξ1 = dummy variables
An = multipole distribution
F = Whitham F-function
Fn = Near-field (uncorrected) Fourier component of the pressure cylinder
gn = multipole function of order n
K, K2 = Dummy functions used in simplification
M = Mach number
n = multipole order
ODE = Ordinary Differential Equation
p = Pressure values over a CFD cylinder
R = radius of the CFD cylinder
r = radial co-ordinate
x = axial co-ordinate

I. Introduction and Motivation

With the ever increasing power of computational resources, many researchers [1, 2, 3, 4, 5] are utilizing
Computational Fluid Dynamics, advanced optimization and multi-disciplinary techniques in the con-

ceptual and preliminary stages of aircraft design for sonic boom mitigation and shape optimization. CFD
simulations have the ability to offer much more accurate analysis of the flow field compared to the traditional
linearized methods. If accurate sonic boom signatures at the ground level are desired, the ideal computa-
tional scenario would be to use CFD simulation all the way to the ground [6]. However, since this cannot
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be done in practical simulations, Page and Plotkin [7] provided an efficient method to incorporate CFD so-
lutions for predicting sonic boom signatures on the ground. Using George’s multipole formulation [8], Page
and Plotkin showed that the solution of the perturbation potential equation using multipole formulation
offers an elegant way to map the near field results to their far field counterparts. It has also been shown
that if the extrapolation from near-field to far-field is not performed, the resulting ground signatures might
not converge [9]. It is the belief of the authors that the numerical procedure suggested by Page and Plotkin
can be avoided by considering the original equations and re-deriving the appropriate quantities. This forms
the motivation for the present study.

II. Background

Aircraft design for sonic boom reduction has received new life in recent years due to market demand [10,11]
and a successful flight demonstration of the shaped sonic boom design philosophy [12]. With the renewed
interest in this sector, many studies will be conducted to design aircraft for sonic boom reduction using non-
linear CFD analysis. Using CFD in sonic boom prediction is not straightforward as the interface between
CFD near-field and acoustic far-field has to be calculated. The method used for this calculation has been
proposed and implemented by Page and Plotkin [7]. Their procedure starts the numerical analysis by using
a general solution to the perturbation potential equation. Assuming lateral symmetry of the flow field,
the strength of the multipole distribution is obtained as shown in Equation 1 and the near-field Fourier
component is given in terms of the multipole coefficients as shown in Equation 2.

gn(x, r) = − 1
2π

cosh
(

n cosh−1( x
βr )

)
√

x2 − β2r2
(1)

Fn(τ, r) =
∫ τ

0

An(ξ)√
τ − ξ

Gn(τ − ξ, r)dξ (2)

The Fn distributions in Equation 2 are obtained from the azimuthal CFD pressure signatures as given
in Equation 3.

Fn(τ,R) =
√

2βR

γM2

1
π

∫ 2π

0

p(τ, θ, R) cos(nθ)dθ (3)

The objective is to use known values of Fn as obtained from Equation 3 to obtain a far field approximation
F∞n as shown in Equation 4.

F∞n (τ,R) =
∫ τ

0

An(ξ)√
τ − ξ

dξ (4)

Page and Plotkin [7] suggest using a numerical procedure to solve for multipole coefficients An using
Equations ?? and then using these coefficients to obtain the corrected far-field using Equation 4. Following
along similar lines, Lyman and Morgenstern [13] obtain the corrected far-field to a multipole order of 11. In
the following sections, it is shown mathematically that the far field Fourier component, F∞n , can be obtained
directly from its near field counterpart, Fn, without having to calculate the multipole coefficients.

III. Mathematical formulation of the proposed method

A. Derivation of the strength of the multipole distribution

The strength of the nth order multipole was given in Equation 1. Using τ = x − βr, the non-constant
denominator term in Equation 1 is expanded as follows:

x2 − β2r2 = τ2 + 2βrτ = 2βrτ(
τ

2βr
+ 1) (5)
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Using the above substitution, the denominator term in Equation 1 is written as:

1√
x2 − β2r2

=
1√

2βrτ

1√
κ + 1

(6)

with κ = τ
2βr . The Taylor series expansion of Equation 6 is given in Equation 7:

1√
2βrτ

1√
κ + 1

=
1√

2βrτ

[
1− κ

2
+

3κ2

8
− 5κ3

16
+

35κ4

128
+ ..

]
(7)

Using the inverse hyperbolic identity, the interior term in the numerator of Equation 1, is written as in
Equation 8.

cosh−1 x

βr
= sinh−1

√
(

x

βr
)2 − 1 (8)

Using the notation for κ, Equation 8 is recast in terms of κ as given in Equation 9.

cosh−1 x

βr
= sinh−1

√
(

x

βr
)2 − 1 = sinh−1

√
4κ(κ + 1) (9)

Using the inverse hyperbolic expansions, the hyperbolic cosine term in Equation 1 is expanded as given
in Equation 10:

cosh
(

n cosh−1(
x

βr
)
)

= 1 + 2n2κ + (
2n4

3
− 2n2

3
)κ2 + (

16n2

45
− 4n4

9
+

4n6

45
)κ3 + ... (10)

Now putting both denominator and numerator together in the expression 1 and simplifying yields Equa-
tion 11 for the general expression of the nth order multipole.

gn(x, r) = − 1
2π

1√
2βrτ

[
1 + (n2 − 1

4
)(

τ

βr
) + (

16n4 − 40n2 + 9
96

)(
τ

βr
)2

+ (
64n6 − 560n4 + 1036n2 − 225

5760
)(

τ

βr
)3 + ...

]
(11)

B. Solution strategy for far field Fourier component

The problem can be formally stated as: Given the uncorrected Fourier component given on the left hand
side of Equation 2, the goal is to determine the far-field Fourier component given on the left hand side of
Equation 4. Based on the derivation given in the previous section, the expression for the multipole function
of order n can be written as shown in Equation 12:

gn(τ, r) = g∞(τ, r)Gn(τ, r) (12)

where

Gn(τ − ξ, R) = 1 + (n2 − 1
4
)
(τ − ξ)

βR
+ f1(n)

(τ − ξ)2

(βR)2
+ O((τ − ξ)3) (13)

f1(n) =
16n4 − 40n2 + 9

96
(14)
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Let us assume a function for the indefinite integral in Equation 15. The existence of this integral is
guaranteed based on the existence of F∞n .

∫
An(ξ)√
τ − ξ

dξ = K(ξ) (15)

Using the indefinite integral function and imposing the limit values yields Equation 16 relating the
unknown indefinite integral with the far field Fourier component. Rearranging the terms leads to Equation
17.

∫ τ

0

An(ξ)√
τ − ξ

dξ = K(τ)−K(0) = F∞n (τ,R) (16)

K(τ) = K(0) + F∞n (τ,R) (17)

Let us bring the attention back to the original near field Fourier component, which is now written in
short form as given in Equation 18 after ignoring higher order terms beginning with order 3.

Fn(τ,R) =
∫ τ

0

An(ξ)√
τ − ξ

(
1 +

(
n2 − 1

4
)(

τ − ξ
)

βR
+ f1

(
n
)(

τ − ξ
)2(

βR
)2

)
dξ (18)

After expanding the terms and rearranging, Equation 19 is obtained.

Fn(τ,R) =
[
1 +

(
n2 − 1

4
) τ

βR
+ f1

(
n
)( τ

βR

)2
]
F∞n (τ,R)

−
[
(n2 − 1

4 )
βR

+ f1(n)
2τ

(βR)2

] ∫ τ

0

ξ
An(ξ)√
(τ − ξ)

dξ +
f1(n)
(βR)2

∫ τ

0

ξ2 An(ξ)√
(τ − ξ)

dξ (19)

The solution strategy is to break up the integral terms in Equation 19 by performing integration by
parts. Consider the integral portion of the second term which is simplified as given in Equation 20 using the
indefinite integral in Equation 15.

∫ τ

0

ξ
An(ξ)√
(τ − ξ)

dξ = τK(τ)−
∫ τ

0

K(ξ)dξ (20)

Using, Equation 17, Equation 20 is expanded as in Equation 21.

∫ τ

0

ξ
An(ξ)√
(τ − ξ)

dξ = τ

[
F∞n (τ,R) + K(0)

]
−

∫ τ

0

[
F∞n (ξ, R) + K(0)

]
dξ (21)

Equation 21 becomes Equation 22 after the terms involving K(0) drop out.

∫ τ

0

ξ
An(ξ)√
(τ − ξ)

dξ = τF∞n (τ,R)−
∫ τ

0

F∞n (ξ, R)dξ (22)

Let the indefinite integral of K(ξ) be as given in Equation 23.

∫
K(ξ)dξ = K2(ξ) (23)

Using Equation 17, Equation 23 is written as:
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∫
K(ξ)dξ =

∫
F∞n (ξ,R)dξ + K(0)ξ = K2(ξ) (24)

Using the definite integral, with limits as specified in Equation 19, Equation 25 is obtained.

∫ τ

0

K(ξ)dξ =
∫ τ

0

F∞n (ξ, R)dξ + K(0)τ = K2(τ)−K2(0) (25)

Shifting terms between left and right hand side of Equation 25, Equation 26 is obtained to give the
unknown function K2(τ) in terms of F∞n .

K2(τ) =
∫ τ

0

F∞n (ξ,R)dξ + K(0)τ + K2(0) (26)

Using Equation 23, the integral portion of the third term in Equation 19 becomes the following:

∫ τ

0

ξ2 An(ξ)√
(τ − ξ)

dξ = τ2K(τ)− 2τK2(τ) + 2
∫ τ

0

K2(ξ)dξ (27)

Using Equations 17 and 26, Equation 27 is simplified to

∫ τ

0

ξ2 An(ξ)√
(τ − ξ)

dξ = τ2F∞n (τ,R)− 2τ

∫ τ

0

F∞n (ξ, R)dξ + 2
∫ τ

0

∫ ξ1

0

F∞n (ξ,R)dξdξ1 (28)

Equations 22 and 28 allow Equation 19 to be simplified. After a few manipulations, a simple expression
relating the near-field Fourier component Fn(τ,R) and the far-field Fourier component F∞n (τ,R) is obtained
as given in Equation 29.

Fn(τ,R) = F∞n (τ,R) +
(n2 − 1

4 )
βR

∫ τ

0

F∞n (ξ, R)dξ +
2f1(n)
(βR)2

∫ τ

0

∫ ξ1

0

F∞n (ξ,R)dξdξ1 (29)

Equation 29 is differentiated to produce Equation 30.

dFn(τ,R)
dτ

=
dF∞n (τ,R)

dτ
+

(n2 − 1
4 )

βR
F∞n (τ,R) +

2f1(n)
(βR)2

∫ τ

0

F∞n (ξ,R)dξ (30)

Differentiating once again, Equation 31 is obtained.

d2Fn(τ,R)
dτ2

=
d2F∞n (τ,R)

dτ2
+

(n2 − 1
4 )

βR

dF∞n (τ,R)
dτ

+
2f1(n)
(βR)2

F∞n (τ,R) (31)

The objective of the multipole matching procedure is to obtain F∞n , starting with a known Fn distri-
bution so that this can be fed to the acoustic propagation procedure after necessary azimuthal corrections.
With this in mind, Equation 31 can be thought to be equivalent to a second order non-homogenous linear
ordinary differential equation with constant coefficients. There are standard methods for solving this type
of differential equations. The following sections briefly present the solution strategy of the above differential
equation depending upon the accuracy desired by the user.
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C. Solution method for the linear first order ODE

If the user chooses to neglect higher order terms starting from second order in the Gn expression from
Equation 13, then the f1(n) term may be neglected. This causes Equation 31 to be written as in Equation
32, which is a first order non-homogenous linear ordinary differential equation.

dF∞n (τ,R)
dτ

+
(n2 − 1

4 )
βR

F∞n (τ,R) =
dFn(τ,R)

dτ
(32)

Any advanced engineering Mathematics book [14] provides the solution to the first order linear ODE.
Specifically, the solution to Equation 32 can be written as in Equation 33. The integration constant is also
included in the integration.

F∞n (τ) = e(0.25−n2) τ
βR

[∫
e(n2−0.25) τ

βR
dFn(τ,R)

dτ
dτ + c

]
(33)

The integral in Equation 33 involves a derivative of Fn(τ,R), which is slightly inconvenient to calculate
and may induce certain numerical errors depending on the numerical derivative scheme used. To overcome
this problem, integration by parts is used to yield Equation 34 for F∞n . In this Equation a boundary condition
such as F∞n (τ0, R) = Fn(τ0, R) is placed on F∞n . The resulting expression uses Fn(τ,R) directly instead of
its derivative. A simple numerical integration scheme (Simpson’s method) is chosen to evaluate the integral
in Equation 34 and F∞n is computed.

F∞n (τ) = Fn(τ,R)− e(0.25−n2) τ
βR

(n2 − 0.25)
βR

[∫ τ

τ0

e(n2−0.25) τ
βR Fn(τ,R)dτ

]
(34)

The computed F∞n is used to compute the actual F-function to be supplied to the acoustic propagation
scheme as given in Equation 35.

F (τ, θ) =
N∑

n=0

F∞n (τ) cos(nθ) (35)

D. Solution method for the linear second order ODE

If second order terms in the Gn expression are important, then the resulting differential equation is a linear
second order ODE as shown in Equation 36:

d2y(τ)
dτ2

+ a
dy(τ)
dτ

+ by(τ) = H(τ) (36)

where

a =
n2 − 0.25

βR
, b =

2f1(n)
(βR)2

, y(τ) = F∞n (τ,R),H(τ) =
d2Fn(τ,R)

dτ2
(37)

The solution can be separated into a homogenous and a non-homogenous solution. Homogenous solution
is given by a linear combination of solutions y1(τ) = eλ1τ and y2(τ) = eλ2τ .

yh(τ) = c1e
λ1τ + c2e

λ2τ (38)

where λ1 and λ2 are given by

λ1,2 =
1
2
[−a±

√
a2 − 4b] (39)
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The particular solution is given by Equation 40:

yp(τ) = −y1

∫
y2H

W
dτ + y2

∫
y1H

W
dτ (40)

where, W , the Wronskian, is given by

W = y1y
′

2 − y2y
′

1 = eλ1τeλ2τ (λ2 − λ1) (41)

Using Equation 41, the particular solution in Equation 40 is expanded as shown in Equation 42:

yp(τ) = − eλ1τ

(λ2 − λ1)

∫
H(τ)
eλ1τ

dτ +
eλ2τ

(λ2 − λ1)

∫
H(τ)
eλ2τ

dτ (42)

The integrals in the above Equation are simplified using integration by parts. Equations 43, 44 present
the first and second integrals respectively from Equation 42.

∫
d2Fn(τ,R)

dτ2
e−λ1τdτ =

dFn(τ,R)
dτ

e−λ1τ + λ1e
−λ1τFn(τ,R) + λ2

1

∫
e−λ1τFn(τ,R)dτ (43)

∫
d2Fn(τ,R)

dτ2
e−λ2τdτ =

dFn(τ,R)
dτ

e−λ2τ + λ2e
−λ2τFn(τ,R) + λ2

2

∫
e−λ2τFn(τ,R)dτ (44)

Using the above simplification, the particular solution of the linear second order ODE is represented as
shown in Equation 45.

yp(τ) = Fn(τ,R)− λ2
1e

λ1τ

(λ2 − λ1)

∫
Fn(τ,R)e−λ1τdτ +

λ2
2e

λ2τ

(λ2 − λ1)

∫
Fn(τ,R)e−λ2τdτ (45)

The general solution is the summation of the particular and homogenous solution. Combining the terms,
F∞n is obtained as shown in Equation 46.

F∞n (τ,R) = yh + yp = Fn(τ,R) +
[
c1 −

λ2
1

(λ2 − λ1)

∫
Fn(τ,R)e−λ1τdτ

]
eλ1τ

+
[
c2 +

λ2
2

(λ2 − λ1)

∫
Fn(τ,R)e−λ2τdτ

]
eλ2τ (46)

Boundary conditions are imposed to determine the integration constants. If the boundary condition is
as specified as in Equation 47, then F∞n is obtained as given in Equation 48. By imposing the boundary
conditions, indefinite integrals become definite integrals.

F∞n (τ0, R) = Fn(τ0, R) (47)

F∞n (τ,R) = yh + yp = Fn(τ,R)− λ2
1e

λ1τ

(λ2 − λ1)

∫ τ

τ0

Fn(τ,R)e−λ1τdτ

+
λ2

2e
λ2τ

(λ2 − λ1)

∫ τ

τ0

Fn(τ,R)e−λ2τdτ (48)

The above integration is not straightforward for all multipole orders n = 0, 1, 2.... This is because the
values of λ1,2 are complex numbers except for the first and second order multipoles. Therefore, a special
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consideration has to be made to evaluate the integrals for the “complex” multipole orders. This procedure is
quite simple but lengthy. Using the fact that λ1,2 would be complex conjugates a1± ib1 and the well known
Euler relationship (ex+iy = cos x + i sin y) for complex numbers, simplification of Equation 48 is attempted.
After a few steps of calculation, Equation 49 is obtained. According to this Equation, F∞n turns out to be
a real quantity even though the integrands in Equation 48 themselves are complex quantities. The reason
for this is the complex multiplying factor in front of each complex integral resulting in cancellation of all
complex terms.

F∞n (τ,R) = Fn(τ,R) +
[
2a1 cos b1τ +

a2
1 − b2

1

b1
sin b1τ

]
ea1τ

∫ τ

τ0

Fn(τ,R)e−a1τ cos b1τdτ

+
[
2a1 sin b1τ −

a2
1 − b2

1

b1
cos b1τ

]
ea1τ

∫ τ

τ0

Fn(τ,R)e−a1τ sin b1τdτ (49)

IV. Results

In this section, results obtained over two arbitrary configurations are presented. Also provided are
comparisons with the results obtained using MDBOOM [7].

A. Example Case 1

In order to demonstrate the aforementioned approach, CFD cylindrical pressure data is obtained around an
arbitrary aircraft (Configuration 1) [15] of length = 120 feet for a free stream Mach number = 2, altitude
= 50000 feet and gross weight = 88000 lbs. Following the derivation given in the previous sections, the Fourier
components of the near field signature and the corresponding far field corrected signature are computed.
Figure 1 depicts the comparison of those components for multipole orders 0, 1 and 2. The multipole of order
0, a monopole, is a contribution from the volume effects of the body. This contribution does not have any
directivity and does not include lifting effects. The area enclosed by the monopole distribution over the
length of the aircraft is close to zero as the volume effects produce minor lift forces. A multipole of order 1,
a dipole, is the primary contributor of the lifting effects. Higher order multipoles represent diffraction and
other three dimensional effects. It is observed from the Figure that after performing the mapping procedure,
higher order multipoles are corrected to a higher degree than the multipole of order 0.

After the computation of several multipole far field Fourier components, they are azimuthally summed
together to obtain the actual F-function to be supplied to the acoustic propagation program. Figure 2
compares the result of Equation 35 with n = 6 (6 multipoles) using Fn and F∞n respectively. F∞n is
obtained using the second order ODE solution. Because of the three dimensional multipole correction, the
magnitude of the peaks is increased due to diffraction effects as well as flat regions are removed due to
azimuthal averaging. Increasing the number of multipoles to 12, produces the comparison shown in Figure
3. Comparison of these two Figures shows that by including additional multipoles, the shape and magnitude
of both uncorrected and corrected F-function distributions are changed. Using the formulation proposed in
this paper, the computational cost of using 12 multipoles is not much different from the cost required using
5 multipoles. Hence, more number of multipoles can be chosen for improved accuracy without much cost
penalty.

Having obtained the corrected far-field F-function distributions, the modified Thomas waveform param-
eter method [16] included within PCBOOM [17] is used to calculate the ground pressure signatures. Figure
4 provides the comparison of the ground pressure signatures using MDBOOM and the proposed method
using 6 multipoles with different orders of the ODE. It is observed from the Figure that, the length of the
signature matches well with MDBOOM signature. However, the shock magnitudes and the rate of expansion
are different. These differences should be investigated in the future.

B. Example Case 2

The foregoing CFD matching methodology is used to compare the uncorrected and corrected signatures for
a second configuration (Configuration 2). The pressure contour CFD cylinder for this geometry [18, 12] is
shown in Figure 5 for a flow-field Mach number of 1.4. The first and second order linear ODE solutions
are obtained and the results are shown in Figure 6. The left side of the Figure shows the comparison of
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Figure 1. Near-field and corrected far field Fourier F-functions up to Order 2
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Figure 2. F-function comparison using 6 multipoles
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Figure 3. F-function comparison using 12 multipoles
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the uncorrected F-function corresponding to the CFD cylinder as well as the far-field correction using six
multipoles using solutions of both first and second order ODE’s. The right side shows the same except
using eleven multipoles. It is observed that there is an apparent change in magnitude and phase of the
corrected signatures when different order ODE schemes are used, which could result in different ground
pressure signatures. A similar change is observed by comparing the same order ODE solutions but varying
the number of multipoles used. It is also observed that this configuration has a higher initial shock followed
by smaller shocks. Therefore, from the sonic boom minimization theory, one could predict that the sonic
boom foot print of this configuration is going to be less intense.

Figure 5. CFD cylinder pressure contours for Configuration 2

In the final comparison, the ground pressure signatures obtained using different multipoles and different
ODE accuracy schemes are compared with the ground signatures obtained using MDBOOM for this config-
uration with propagation carried out from an altitude of 32000 feet. It is seen from Figure 7 that if the CFD
cylinder data is used directly without performing near to far field matching (Uncorrected), the obtained
ground signatures span less time thus increasing the calculated loudness levels. The 1st order ODE solution
seems to produce magnitudes closer to the MDBOOM results although the shock locations are shifted. It
is also seen that using the 2nd order ODE solution, the pressure perturbation is over-predicted compared
to the MDBOOM solution. Taking atmospheric absorption and other phenomena into consideration, the
signature may be attenuated to a certain extent.

Given the differences in the corrected far field and ground signatures from the proposed method and
MDBOOM, further comparisons are warranted. These discrepancies should be addressed by comparing
additional computational and experimental data.

V. Conclusions

A new approach for near-field to far-field matching procedure has been developed and implemented.
This method offers an elegant and efficient method to calculate corrected far field F-functions for easy
extrapolation of CFD signatures to any desired multipole order. The multipole operations do not consume
much computational time because additional multipoles only increase the number of summation operations
which are cheap. This procedure provides sufficient speed and flexibility for the designer to use CFD
simulations in predicting sonic boom signatures. The results obtained show similar results compared to
existing schemes, however there are certain differences that need further investigation. These differences will
be looked into in future work.
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Time (ms)

δp
(p

sf
)

0 20 40 60 80

-1

-0.5

0

0.5

1

Ground signature using MDBOOM
Uncorrected ground signature 6 multipoles
1st Order ODE ground signature 6 multipoles
2nd Order ODE ground signature 6 multipoles

Time (ms)

δp
(p

sf
)

0 20 40 60 80

-1

-0.5

0

0.5

1

Ground signature using MDBOOM
Uncorrected ground signature 11 multipoles
1st Order ODE ground signature 11 multipoles
2nd Order ODE ground signature 11 multipoles

Figure 7. Sonic boom ground signature comparison for Configuration 2
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