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SUMMARY 

In this dissertation a finite element displacement formulation is 

proposed for the optimization of structural elements for stability and 

vibration. For columns, with a given volume and various boundary con

ditions and axial load distributions, with cross-sections for which the 

moment of inertia and area are related by I = pA (p and n are positive 

constants), the optimality condition is reduced to one of constant strain 

energy density. The problem reduces to the solution of one linear, and 

one nonlinear ordinary differential equation together with the integral 

constraint equation of constant volume. The column is discretized us

ing compatible finite elements, and an iterative procedure is used to 

converge to the optimum material distribution and the maximum critical 

load subject to an additional constraint of minimum allowable cross-

sectional area. 

In the case of transversely vibrating beams with I = pA and a 

given volume, no solutions of practical interest seem to exist for most 

boundary conditions without a given dead (non-structural) mass distri

bution and/or the inequality constraint of minimum allowable cross-

sectional area and/or a compressive axial load distribution. 

The optimality condition still reduces to a relation between the 

strain and kinetic energy densities and again, an iterative procedure 

similar to that of columns is used to converge to the optimum material 

distribution and the maximum first mode frequency of free vibration. 



XIV 

In addition to the optimization of columns and transversely 

vibrating beams, an investigation is made into the optimization of thin 

rectangular plates for vibration and stability. The problem of the 

optimal design of a thin rectangular freely vibrating plate (transverse 

vibration) is very similar to the optimal design of the vibrating beam 

when cast in matrix form for the discretized finite element models, and 

a similar iterative procedure can again be used. The investigation is 

limited to some typical boundary conditions and aspect ratios. 

In the case of the optimization of thin rectangular plates for 

stability, the problem is simplified by making the assumption of inex-

tensionality for the derivation of the optimality condition, which then 

is one of constant strain energy density. Again the investigation is 

limited to some typical boundary conditions, in-plane loading and aspect 

ratios. Some of the approximate solutions so obtained are then compared 

with stiffened plates of the same volume. This comparison weighs heavily 

in favour of stiffened plates and definitely warrants future research 

into the optimum stiffener orientation and spacing, the shape of the 

stiffener cross-section, etc. 
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CHAPTER I 

INTRODUCTION 

One of the objectives of the optimum design of structures in 

general is to obtain a desired structure which meets certain design 

criteria. These criteria might be minimum deflection, least weight, 

etc. In addition, in many cases the design is subject to certain con

straints such as fixed weight or minimum stiffness. Thus the problem 

of optimization is basically a problem in the calculus of variations 

--extremizing certain functionals subject to some given subsidiary con

straints. 

Complicated structural systems such as buildings, bridges, and 

water, air or space vehicles are composed of basic structural elements 

--straight and curved beams, columns, cables, arches, flat and curved 

plates. The constant demand for Light weight efficient systems has led 

many investigators to the field of structural optimization. 

To optimize a complicated system, the variables involved become 

prohibitively large in number, and the implementation of optimization 

is almost impossible. Because of this it is hoped that, by first deal

ing with basic structural elements , one eventually might be able to 

optimize a system of elements through an existing finite element mechan

ized program properly modified. 

In any structural optimization program one must clearly specify 
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(i) the design objective and (ii) the geometric and behavioral con

straints. In a given problem the design objective could be the minimi

zation of the cost of manufacture or, for some systems where cost is 

not of prime importance, minimization of total weight to carry the 

worst possible loads that the system will encounter. This latter design 

objective in many cases can be accomplished by stating the opposite 

(duality), which is to carry the most load for a given weight. The geo

metric constraints are usually associated with space requirements such 

as lengths or areas. The behavioral constraints are associated with the 

response of the structure to the loads. Limitations on maximum stress 

or minimum stiffness are examples of behavioral constraints. The total

ity of constraints can be classified as equality or inequality con

straints. In the treatment of columns and beams, it is assumed that 

the cross-sectional moment of inertia and area are related by 

I(x) = pA (x). This assumption is a restriction but with a suitable 

choice of p and n it covers a large class of structural configurations. 

The interest in minimum weight design of columns dates back to 

around 1770 when Lagrange first treated the strongest column problem but 

arrived at the wrong result due to computational errors. The correct 

solution was given by Clausen in 1351 for simply-supported columns with 

similar cross-sections (i.e. n=2) and prescribed shape--not necessarily 

convex. He found that the best tapering increased the buckling load by 

one third over that of uniform column of the same volume. Later this 
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problem was generalized and completely solved by Keller who determined 

that, of all simply-supported columns with convex and similar cross-

sections "the strongest column has an equilateral triangle as its cross-

section and is tapered along its length, being thickest in the middle 

and thinnest at its ends. Its buckling load is 61.2% larger than that 

of a circular cylinder." This was further generalized by Tadjbakhsh 

4 
and Keller to four different types of boundary conditions namely 

simply-supported, clamped-free, clamped-pinned and clamped-clamped. 

Subsequently Keller and Niordson treated the problem of finding the 

f> 7 

height of the tallest column under its own weight. Taylor and Salinas 

showed that the Euler-Lagrange equations obtained as a result of extre-

mizing the total potential energy with a superposed volume constraint, 

are identical with those obtained by direct minimum volume formulation 
o 

with superposed stability equations as a constraint. Prager and Taylor 

also provided exact solution for a simply-supported column of sandwich 

3 
construction (i.e. n=l). Exact solutions for the case when I(x) = pA (x) 

9 
have been obtained by Simitses et al. for two typical types of boundary 

conditions. These will be omitted from this dissertation for sake of 

brevity. 

An exhaustive search of the existing literature, Refs. 1 and 2, 

shows that the problem of column optimization with mixed boundary con

ditions (elastic restraints) has not received any attention. In addi

tion the generalization of moment of inertia to cross-sectional area 

relations (n=l,2,3) yields important results. Finally, since Tadjbakhsh 

and Keller solutions show that the. optimum column, depending upon the 
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boundary conditions, must have zero stiffness at some stations, the in

troduction of the inequality constraint (minimum stiffness [EI ]) is 

important from a practical manufacturing point of view. 

As regards the optimal design of vibrating beams, although 

Beesack , Schwarz ' ' investigated the effect of density variation 

on the extreme values of the natural frequencies of strings, beams and 

plates, the most significant contributions to the present problem would 

•u ^ r *,. J 17 m 18 m , 19,20 , n 21 
be those of Niordson , Turner , Taylor and Brach . Niordson 

treated the problem of a simply-supported vibrating beam through varia

tional formulation. Turner obtained exact and finite element solutions 

of minimum mass design, for a specified frequency, of bars and beams 

fastened at one end with a mass attached at the other end. Taylor also 

obtained solutions, through the variational formulation for the axial 

vibrations of bars with and without the inequality constraint and also 

for the transverse vibrations of a cantilever sandwich beam with a dis

tributed mass loading. Finally, Brach considered the transverse vibra

tions of beams for all classical boundary conditions and for a relation 

between the moment of inertia and area of the form I(x) = c + pA(x). 

As with columns, optimization of vibrating beams with elastic restraints 

does not appear to have been attempted by previous investigators. 

The only open literature on plates seems to be that on the opti-

24 
mal design of vibrating circular plates for three different boundary 

31 conditions while an unpublished report of Harvard University 

seems to be, to the author's best knowledge, the only work on the opti

mal design of a simply-supported plate for stability. In both cases of 

vibration and stability of the circular plate, due to rotational 
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symmetry, the resulting governing equations are ordinary nonlinear 

differential equations which have been solved by some numerical tech

niques. No work on the optimal design of rectangular plates for vibra

tion and stability seems to have been reported in the open literature. 

The problems of optimizing columns and vibrating beams lead to 

nonlinear ordinary differential equations which are fairly difficult to 

solve even for the simplest boundary conditions. The difficulty in

creases when the column or the beam is resting on a continuous elastic 

foundation with elastically restrained ends. As regards the problem 

of optimal design of thin plates for vibration and stability, they lead 

to nonlinear partial differential equations which are again still more 

difficult to solve. Because of this, one must resort to numerical 

techniques such as finite elements, finite differences, Galerkin, per

turbation or some gradient methods. It is decided to use the finite 

element displacement method for the following reasons: 

(i) The form of the governing matrix equations for the discre-

tized system is not affected by the type of the correspond

ing governing differential equations (ordinary or partial) 

for the continuous system. 

(ii) Generalization to all types of boundary conditions and load

ings does not require any special treatment. 

(iii) A wealth of literature on some of the most sophisticated 

finite elements with explicit derivations of the necessary 

element matrices is readily available. However, even if 

such explicitly derived finite element matrices are not 
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readily available, they can be generated by an automated 

numerical integration scheme and further, with proper non-

dimensionalization, they need be generated just once in the 

entire lifetime of the finite element method computer pro

gram • 

(iv) Finally, the method lends itself very easily to automated 

programming. 

This method is used in the solution of the following two problems: 

(i) Strongest columns with a given volume and relation between 

the cross-sectional moment of inertia and area of the form 

I(x) = pA (x), for various boundary conditions and axial 

loading with or without an inequality constraint of minimum 

allowable cross-sectional area. Numerical solutions are ob

tained for various cases and are discussed in Chapter II. 

(ii) Optimal vibrating beams with a given volume and relation 

between the cross-sectional moment of inertia and area of 

the form I(x) = pA (x), for various boundary conditions, and 

with a given dead (non-structural) mass distribution and/or 

an inequality constraint of minimum allowable cross-sectional 

area and/or a given compressive axial load. Numerical solu

tions obtained for various cases are discussed in Chapter III. 

Furthermore, it is proposed to use the same method to investigate 

the problems of the optimal design of thin rectangular plates for vibra

tion and stability for some boundary conditions and aspect ratios. Nu

merical solutions obtained are discussed in Chapter IV* 
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CHAPTER II 

STRONGEST COLUMN 

Assumptions and Objective 

In the development to follow, consideration is restricted to 

those columns for which the assumptions stated below are valid. 

(i) The material of the column is isotropic and linearly elastic 

(ii) Cross-sectional planes before deformation remain plane and 

normal to the deformed axis of the beam after deformation* 

(iii) The column is sufficiently long with a cross-section pos

sessing a plane of symmetry. The loading and deformation 

are restricted in this plane of symmetry. 

(iv) The minimum cross-sectional moment of inertia, I, can be 

expressed in terms of the cross-sectional area, A, by the 

relation 

I(x) = pAn(x) 

where p and n are positive constants. 

Although n can take on all positive values numerical results will be 

presented only for three specific values of n namely n = 1, 2 and 3. 

Consider such a column of specified length and volume (weight) 

under various boundary conditions (mixed or not -- with or without 

springs) and subjected to any given arbitrarily varying axial load 



distribution as shown in Figure 2.1. 

Next, define the critical load parameter as the smallest factor 

by which the given axial load distribution has to be scaled in order to 

produce instability in the column. 

The problem, then, is to determine the distribution of material 

along the length of the column such that the critical load parameter is 

a maximum (design objective) subject to the constraint that the minimum 

stiffness anywhere along the length of the column is no smaller than a 

prescribed value (inequality constraint). 

It can be shown that this design objective is equivalent to seek 

ing a minimum weight design for a given critical load. 

z ,w 

(x) 

1TTTT1TTTTTTTTTTT1TI 

kL 

R p 
L *~ x > u 

Figure 2.1. A Typical Column on a Continuous Elastic 
Foundation, Restrained Elastically at the 
Ends and Subjected to a Varying Axial Load. 

Derivation of the Rayleigh Quotient from Energy Principle 

From the assumption of plane sections remaining plane and normal 

to the deformed axis, one has 

e = e + ZH (2.1.1) 
xx o 
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where 

o.l fd\j\ 
e o = - d x + 2 V ^ ' (2*1-2) 

,2 
d w ,o i o\ 

K = - — ~ , (2.1.3) 
dx 

u is the axial displacement of the reference or centroidal axis of the 
o 

material points of the column and w the lateral displacement of the 

same points. 

The strain energytU > of the column is then given by 

1 0 

U° = ̂  f f E(e ) dA dx . 
2 «J «J xx 
0 A 

Substitution for e from Eq. (2.1.1) vields 
xx 

^ h E f t + K£)2-<7!)]2dAdx 

0 A d x 

Upon integrating and utilizing the fact that 

J z dA = 0 

A 

(since z = 0 is the centroidal axis) the above finally becomes 

, L r , du ., / j N 2. 2 . . 2 v 2̂  
„o 1 p L . o 1 / dw\ . „ / d w\ , 
u = 2 / L E A r ^ + 1 Cs)! + EIVTT; J

 dx 

0 d x 
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where 

J z2 dA = I(x) . 

A 

Next, the energy stored into the spring supports, U , is given by 
s 

„ o 1 , 0 2. J . 1 . L 2, l , ( V d w \ 2 | _,_ 1 ,L/dwA 2 i 
Us = 2 *T W lo + 2 N W 'L + 2 Sl ls) 'O + 2 ^ k 

+ f j w 2
d x 

0 

and the potential of the external loads (see Fig. 2.1.), T , is given 

by 

L 
T° = PT u I - P_ u | + f s(x) u dx . 

L o ' L 0 o' 0 * o 

0 

Hence, if TT denotes the total potential, then 

o o o 
TT = U + U + T . 

s 

By the principle of the stationary value of the total potential, 

equilibrium is characterized by the vanishing of the first variation of 

TT with respect to the displacements u and w. 
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Hence. 

6TT = J JEA(u' + — - ) (6u' + w'6w') + EI w"6wM + pw6w|dx+ k w6wiQ 

+ km w6wiT + L w ' S w ' u + L w'Sw'i + p 6u i 
T |L R |0 R L L o|L 

- P n 6u i + [ s (x) §u dx = 0 (2.2) 
0 o|L ^ o 

where the primes denote d i f f e r e n t i a t i o n wi th r e spec t to x . I n t e g r a t i n g 

by p a r t s Eq. (2 .2) y i e l d s 

- J | T E A ( U ' + - w , 2 ) j - s ( x ) | 6UQ dx + J | ( E I w " ) " - [̂ EA (u^ 

i 
1 9 ~1 f 1 9 

+ TT w' ) w' I + Pwj 6w dx + 1EA(u' + r w ' ) 
2 J J I o 2 

+ P J 6uo|L " W K + I W ' 2 > + Po} 6%|0 + {E AK 

+ 4 w'2) w' - (Elw")' + ki wl 6wiT - iEA(u' <£ 1 J IL C o 

+ |-w'2) w' - (Elw")' - k° wj 6wi0 + (Elw" 

+ k̂  w') 6w'iT - (Elw" - k° w') 6w'i = 0 . 
R |L R |0 

The above gives all equilibrium equations and the associated boundary 

conditions. Let u , w denote the equilibrium configuration. It can 
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be easily verified that w = 0 satisfies the governing differential 

equation and the boundary conditions on w . Hence;the prebuckled con

figuration is given by 

(EAu° ) - s(x) = 0 and w° = 0 

i.e. 

EAu° = J s(?) d£ + C;L 

or 

MJ X C. 

< • I EIW Qs (§) d £ ) d 1 1 +1 iihrd? + c2 

Assume u 1^=0; then it follows that c„ = 0. Also, EAu i_ = -. P im-
o 10 /. o 10 o 

o' 
plies that c. = - P~ and EAu i = - P, implies that 

1 0 o |L L 

L 
I s(x) dx = P - P . 
0 

Hence,finally one has 

i x 

EAu° = - PQ + J s(|) d^ = - S Q ( X ) . (2.3) 

It is necessary to scale the given applied axial loading by a certain 

factor X in order to produce instability in the column. Assume that at 
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the instant of instability the prebuckled configuration is given by 

u = X u , w = w = 0 . Then ~ it follows that EAu' = - \S (x) . 
o o * o o 

Next, it is necessary to consider the second variation of the 

total potential in order to investigate the stability of the prebuckled 

2 
equilibrium configuration. If 6 TTj is greater than zero, then the 

'u°,w 2 

equilibrium configuration is stable; while if 6 TTI is less than zero, 
'u ,w 

the equilibrium configuration is unstable. The critical point is then 

2 
characterized by 6 TTI = 0 for some virtual displacements and > 0 for 

'u°,w 2 

all other virtual displacements. This implies that 6 TTI is station-
'u ,w 

ary at the critical point with respect to the virtual displacements. 

2 
Thus? the factor X is obtained by requiring that 6 TTI = 0 . That is 

'u ,w 
to say 

9 f 9 9 9 9 i 
6 TT. = f ̂ EA(5u') - XS (x)(6w') + EI(6w") + P(5w) !f dx 

o s!. L o o ) 
'u ,w 0 

+ ^ ( 6 w ) 2 | Q + k^(6w)
2|L + k^(6w«)

2|0 + ^(6w')
2|L=0 

(2.4) 

W i t h t h e n o t a t i o n 6u = u and 6w =• w , Eq- ( 2 . 4 ) becomes 

2 'r j * ' 2 * ' 2 * " 2 * 2\ 
6 TT. = J |EA(u ) - XS (x ) (w ) + EI(w ) + (3(w ) j dx 

' u ,w 0 

, 0 * 2 T * 2 , 0 , * \ 2 
+ kT(w ) | Q + kT(w ) ) L + k R ( w ) | Q 

L *' 2 
+ Vw ML " ° 
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where u and w denote incremental quantities from the prebuckled con

figuration at the instant of instability. It then follows from the 

above that 

^ r _ *'\2 . „. , *\2~ 
J ! EI(w" ) + EA(u" ) ; dx + u] 

X = " L " (2-5) 

r S (x)(w"')2 dx 
0 ° 

where 

Us • *?<**>2|0 + ^ ( W* ) 2|L + kR(W*')2|0 + ^ W * ' ) 2 | L + I ̂  dx and 

denotes twice the incremental energy stored into the spring supports. 

2 
Since, as stated earlier 8 Hi is stationary with respect to 

* 2 u ° ' w 

u ,setting the variation of 8 Th with respect to this variable in-
'u ,w 

dependently equal to zero leads to 

(EAuX') = 0 (2.6.1) 

t oge the r wi th the boundary cond i t ions 

e i t h e r EAu = 0 or u = 0 a t x = 0,L . ( 2 .6 .2 ) 

Equat ions (2 .6 .1 ) and (2 .6 .2 ) imply t h a t 

EA(u" ) = 0 . (2 .7) 
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Since EA is not zero everywhere in the range 0 ̂  x ̂  L it follows that 

u" = 0 for 0 ̂  x < L. The expression for X can therefore be written 

as 

L 2 

J EI(w") dx + U 
0 s 

X = \ (2.8) 

J S (x)(w')2 dx 
0 

where for the sake of convenience, it has been decided to drop the stars 

on w with the understanding that it represents the incremental deforma

tion from the prebuckled configuration and that X is stationary with re

spect to w at the critical point. 

Formulation of the Optimization Problem 

It is required to maximize V (the lowest X) with respect to 

variations in the cross-sectional area A(x) subject to the constant 

volume constraint 

L 
J Adx = V . (2.9) 
0 

Since I(x) = pA (x) the new functional that must be extremized is 

\ T, ^ "2 J 
I EpA w dx + U 

* 0 s P-L 
x -h 1 XIL 

f S (x) wf dx 
0 ° 

J Adx - V I (2.10) 
0 

where X. is an undetermined Lagrange multiplier. Since X is stationary 

•k 

with respect to both w and A setting the variations of X with respect 
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to w and A independently equal to zero leads to the stability equation 

with the associated boundary conditions and the optimality condition 

respectively. 

6'V' X = ?L 
if 2 1 

\S (x) w' dx 
Lb ° J 

r-L „ L 
f n r> 
J (EpA w") 6w dx + J {3w6w dx 
0 0 

L , , 0 
+ EPAQW"6W'|Q - (EpAnw") 6W|Q + k̂  w6w|Q + k̂  w6w|L 

+ k° w'6w'L + k̂  w'6w' - x(s (x) w'J 5w| 
R '0 R L \ o / ' 

Lr ( V 1 
+ X J ( S (x) w'J 6w dxj = 0 . 

The above impl ies t h a t 

[EpAnw"] ' + X[s (x) w ' ] + |3w = 0 (2.11) 

wi th 

EpAnwM - k° w1 = 0 
R 

(EpAQwM) + XS (x)w' + k° w 
o T = 0 

• a t x = 0 , (2 .12 .1) 

EpAnwM + k^ w' = 0 

f a t x = L . (2 .12 .2) 
L (EpA w") + XS (w)w' - kZ w = 0 
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6"A"X* = 1 ~ U (EpQ All"lw"2 " XlQ So(x)w'
2 dx)} 6A dxj = 0 

; s o ( x ) w - 2 d x ] ° ° 

If 8A is arbitrary, i.e. the cross-sectional area is not prescribed, 

then it follows that 

An"1 w"2 = c2. (2.13) 

Equation (2.13) is valid only in those regions where A(x) is not 

prescribed. If A as determined by the use of Eq. (2.13) happens to be 

less than A , (A being the prescribed minimum value of area) then th( 
o o 

constraint A = A must be satisfied. 
o 

The optimality condition as given by Eq. (2.13) can also be ex

pressed in terms of the linear strain energy density and the average 

strain energy density as follows: 

the linear strain energy density, W, is given by 

and 

W = I Elw"2 = i EpA'V2 = ̂  [A11"1*"2] 

2 
j . = E|c_ =: c o n S t a n t # (2.14) 
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Also, the total strain energy of the entire column, U, is 

u = J w d x = J a A d x - E £ £ i v . 

0 0 A 

Thus finally 

2 
U W EpC . . /o i cs 
— = — = - = — = constant . (2.15) 
V A 2 

In Eq. (2.15) the optimality condition is independent of n. It is seen 

that for an optimum column the linear strain energy density per unit 

area is equal to the average strain energy density in the column (a con

stant) . 

Method of Solution and the Optimization Procedure 

Method of Solution 

Mathematically stated the problem of unconstrained optimization 

(i.e. without any inequality constraint) of columns reduces to the de

termination of functions w(x) and I(x) or A(x) which satisfy the follow

ing three equations together with certain given boundary conditions. 

[EpAnw"]' +\[S (x) w'] + $w = 0 (2.16) 

A ^ w " 2 = c2 (2.17) 
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and 

L 
J A dx = V • (2.18) 
0 

It is understood that X is the lowest eigenvalue of Eq. (2.16). By 

elimination of one variable Eqs. (2.16) and (2.17) could be reduced to 

one single non-linear integro-differential equation. In the case of a 

constant axial load with |3 = 0 the same would be an ordinary non-linear 

differential equation. Exact solutions of the latter have been obtained 

4 
as mentioned in the Introduction, by Tadjbakhsh and Keller for all 

classical boundary conditions and n. = 2. However, for columns with 

elastically restrained ends and (3 f 0, an exact solution seems to 

be out of the question, and one is forced to resort to numerical techni

ques such as the finite elements, finite differences, Galerkin or pertur

bation methods. The finite element displacement method being a direct 

derivative of the principle of stationary value of total potential 

seems to be a very good candidate for the solution of the present pro

blem. 

The details of the finite element displacement method as applied 

to buckling of columns are developed in full in the Appendix A. 

In terms of the finite elements Eq. (2.16) becomes 

[K] - X[KG]] {q} = {0} (2.19) 

where [K] is the assembled nonsingular stiffness matrix for the entire 

column including the effect of the elastic foundation and the elastic 

restraints if any, X is the lowest eigenvalue, [K ] the assembled 
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nonsingular stability matrix for the entire column and {q} the vector of 

the unrestrained degrees of freedom of the column. 

Equation (2.14) when multiplied throughout by A and integrated 

over the extent of, say,the i element takes the form 

where 

U. 2 
— = T7 = ̂ r ~ = constant (2.20) 
V. V A K ' 
1 

U. = strain energy of the i element 

th \i = l,...m 
v. = volume of the i element 

m 

u = L 
i= l 
m 

u. 
1 

V -Yv. . 
Z_i i 
i=l 

Finally, Eq. (2.18) becomes for the discretized system 

m m , 
,1 .N 1/n 

> A. 1. = ) (— I. = V . (2.21) 

i=l i=l 

Next, it remains to determine I. , i=l...m; {q} and the corresponding 

X which satisfy Eqs. (2.19), (2.20) and (2.21). This can be accomp

lished through the use of an iterative scheme to be described in the 

following section. 
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Unconstrained Optimization Procedure 

It is attempted to meet the optimality condition by successive 

iterations starting from a column of uniform cross-section (i.e. all 

the m elements having the same cross-sectional moment of inertia com

plying with the given volume V). Each iteration involves the solution 

of the eigenvalue problem as expressed by Eq. (2.19), for an assumed 

moment of inertia distribution, to obtain the lowest eigenvalue and the 

corresponding eigenvector. Having obtained X and {q} from Eq. 

(2.19) the average linear strain energy density in each element can be 

calculated as follows: 

Ut ! hf [k±] {q.} 
7:~i-r.7T7^—-• < 2 - 2 2 > 

( - ) *•• 

\ p / 1 

This distribution of the linear strain energy density is utilized for 

deciding the inertias of the elements for the next iteration. The re

currence relation for doing so being motivated by the following reason

ing. 

Assume that the r iteration begins with the i finite element 

r 

having the moment of inertia I. (i=l...m). After determining the asso

ciated eigenvalue and the eigenvector, the average strain energy den

sity in each element and the average strain energy density for the en-

r r 
tire column are computed; these quantities are denoted by U./v. 

m m 
r r Y r 

i=l,...m) and U /V, where U =.S, U. and V =.S, v. (specified volume). 
i=l i i=l i 

Suppose that the optimality condition is not satisfied; that is 
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r r i r 
U./v. =F U /V for all values of i. Therefore.it is now necessary to 
1 1 

r+1 
select new values for each I. , denoted by I. , such that at the end 

1 I 

r+1 r+I r+1 
of the (r+l)st iteration, U. /v. ' is closer to U /V for all finite 

1 1 

elements. 

The (r+1)st iteration begins with the requirement that 

r+1 
i _ pr+l u

1 . - 9 
r + 1 " C — - , i=l,z,...m 
v. 
l 

which is equivalent to a statement that 

Ur+1
 r r+lU^ 

V " C V ' 

This equation can be rewritten as 

r+1 r r 

rr+l^l=-l -1 - L - > 1=1,2,...m . (2.23) 
V r r "r+1 

U . v. v. 
l 1 1 

r r+1 
The quantity v./v. can easily be expressed in terms of the moment of 

inertia values as follows: 

/Ir
 Nl/n 

vr &.(•+-) , I* 1/n 

~^ T^TT" V+i'' ( } 

v. .I, vl/n I. 
I\ p 

r+1 r 
the ratio U. /U. is taken in the form 

I I 

Therefore.it
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TT r + 1 T r 

Ui f Ii ^ 
V~r+l7 a > ° ' i=l,2,...m . (2.25) r 

U. I 
1 I 

This relation is based on the following reasoning. Since the total 

volume is constant, it follows that there will be some finite elements 

with an increase in moment of inertia and some with a decrease. After 

this redistribution of moment of inertia, it is assumed that those ele

ments with increased (decreased) inertia will have a decrease (increase) 

in buckling curvature; and since the strain energy involves the curva

ture squared, the net result is a decrease (increase) in energy. From 

this argument follows the inverse relationship given by Eq. (2.25) 

After substitution of Eqs. (2.24) and (2.25) into Eq. (2.23), the 

recurrence relation finally assumes the form 

r+1 ,r+l 
I. = b 
l 

-Ur/vrnP 
l l 

-ur7v -
Ir (2.26) 
I 

where p = n/(na + 1) and b = (1/C ) . The constant b is deter

mined by the requirement 

m r+1 , 
V- f \ N.l/11 

M ~ ) A i " v < 2 - 2 7 > 
i= l 

and the value of the exponent p is selected such that 

^ r + 1 a xv 

cr cr 
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It will now be shown that one can always select a positive value 

of the exponent p in Eq. (2.26) which will insure that 

Xr+1 a Xr . 
cr cr 

The proof will be presented for a continuous system with only minor 

modifications necessary for a discrete system. 

From Rayleigh's quotient one has for the continuous system 

•p VTr+l, r+1" 2 , ^ r+1 
J EI (w ) dx + U 

Xr+l = 2 (2.28.1) 
cr V) 

n 

r+1 
where w is the eigenvector corresponding to the lowest eigenvalue 

A. and 
C r L 

r+1 r! r+11 2 
D = f S (x)(w ) dx • (2.28.2) 
Q J 0 V ^ 

The recurrence relation for the continuous system can be written as 

l r f l - b r f l i r
R P ( 2 . 2 9 . 1 ) 

where 

r 
W V 

R == = L - 1 , ( 2 . 2 9 . 2 ) 
A U 

r r 
W being the linear strain energy density, A the area of cross-section 

and U the total strain energy in the r iteration. The exponent p is 
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r+1 
assumed to be positive and the constant b has to be evaluated from the 

volume constraint 

L / T r + l . 1 / n 

r ( * — ) dX - v J0v P J 

i . e . 

, , 1/n L / T r + L , 

^ > J V - <*>p/n dx • v 

o p 

or 

, r+1 V̂ _ 
b " 1—~u ~ • (2-30) 

T r f L . ^ / R ^ p / n {vV) (R)P/n d*j 

Note that (I /p) is not only a continuous function of x but greater 

than or equal to zero for 0 ̂  x ̂  L and further (R) is also continuous 

for 0 < x ̂  L,since R is bounded. Hence, by the mean value theorem of 

integral calculus the denominator, D, of Eq.. (2.30) can be written as 

rrL. / i r + 1 \ 1 / n ') p / n ~\n 

D = i I v V / dxJ (R) V ^ J ; o < 5 l < L 

and s ince 

r L /n.r+lv 1/n -,n 

r r f s — } dX| = v
n 

LJ \ p y J 
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i t follows that 

r+1 

R< x=5. 

or 

I m = I r R 

V̂̂  
(2.31) 

r+1 
Substituting for I from Eq. (2.31) into Eq. (2.28.1) gives 

p ̂  r, r+1"; 2 
J EI (w ) 
0 

R* dx + U r+1 

-R1 

r+1 
lcr 

;x=5-

r+1 

By another application of the mean-value theorem, the above can be 

written as 

,P Rr 
rV ^rrr r+1" 2 1 T 
ij EI (w ) dxj h 

r+1 
kcr 

-^21] + u r + 1 

p J s 

D r+1 
, 0 < l2 < L . 

Let R(^,) = R, and R(5?) = R?. Note that R and R~ are positive by vir

tue of the positive definiteness of the strain energy density. Then the 

expression for A can be written as 
^ cr 

\ 

rt-,Tr, r + 1 " 2 , 1 rR21P ,T Tr+l 
| J EI (w ) dx j , — i +U 

r+1 L 0 J L R 1 J S 

cr D 
r+1 

(2.32) 
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r+1 
Since w is a kinematically admissible displacement field for the 

moment of inertia distribution I , it follows that 

\ r r+1" 2 r+1 
f EI (w + i ) dx + U + i 

n s 

- —, ^ XV . (2.33.1) 
r+1 cr v y 

n 

Assume that the left hand side of Eq. (2.33.1) is equal to X (1 + e) 

where e > 0. Then 

x' 
r (1 + e) D r + i - u = r E i r (w ) dx > 0 . (2 .33 .2) 
c r n s « J v / v ' 

Next, from Eqs . (2.32) and (2 .33 .1) i t i s c l e a r t h a t i f R2/R ^ 1 i t i s 

r+1 r 
guaranteed t h a t \ ^X for any p > 0. However i f (R»/R ) < 1 the ques> 

r+1 ^ , r t such t h a t / 

that p > 0 does exist. This means that 

r+1 r 
tion arises "Does a value of p > 0 exist such that X ^ X ?" Assume 

cr cr 

-} _ T r , r+1" 2 } r R
2 r+1 

J EI (W ) dx | ; — ; + U 
"0 " " 1" ,r+l = X 

Dr+1 
n 

= (1 + 6) Xr , 6 > 0 . (2.34) 

Hence 

/i 4. AN > r + 1 n r + 1 TTr+1 - ^ FT r/ r+1" 2 " rR2-;p 

(1 + 6) X^ Dn - u8 - |J EI (w ) dXj l~ 
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From Eq. (2.33.2), it therefore follows that 

or 

r V p Xr (1 + 8) Dr+1 - U r + 1 

r_2 cr n s 
• V ~ Xr (]. + «) Dr+1 - Ur+1 

cr n s 

r r+1 r+1 

r\ (1+6) D - U \ , R9-
p < log {-^ ^ ^r} / log! -^ , . (2.35) lXr (1 + e) Dr+1 - ur+1J LR1"J 

crv n s 

It can be seen that the right hand side of Eq. (2.35) exists by virtue 

of Eq. (2.34) and is positive. Hence this value of p given by Eq. 

(2.35) is sufficient to guarantee that 

Xr+1 a Xr 

cr cr 

It should be noted at this point, that at any stage during the 

iterative scheme when R(x) does not vanish anywhere along the length of 

the column, in other words if R /R . is finite, it can be shown by 
max m m 

proceeding similarly as before that a negative value of p does also 

r+1 r 
exist which guarantees that X ^X . Since it has been proposed to 

cr cr r r 

start with a uniform cross-section column, it is well known that regard

less of the boundary conditions there will always be a point or points 

in the range 0 < x ̂  L at which R(x) vanishes and hence9 at least for the 

continuous system , it is imperative to start the iterative scheme with 

p > 0 and continue the iterative scheme with p > 0 until it is guaranteed 
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that R(x) f 0 for 0 ̂  x ̂  L. Although for the discretized system the 

r r r 
corresponding quantity (U. V)/(v. U ) is a finite quantity, the ratio 

r r 

L rTTr_j L rTTr_! . v.U max v.U min 
i J 

is still an extremely large number especially if m is a fairly 

large number and again it is imperative to start the iterative scheme 

with p > 0 in order to achieve a fairly rapid convergence. 

If one begins with the assumption that a = 1 in Eq. (2.26) the 

initial value of p can be assumed to be (n/n+1). The iterative scheme 

r+1 r 
can be continued with this value of p for as long as X > X . I f 

1 cr cr 
r+1 r 
X < X then the value of p is reduced (see Eq. (2.35)) by a factor 

of \ or \ and the iteration is repeated. This process is carried on un

til no substantial change either in the value of X or the moment of 
cr 

inertia of each element is possible and the linear strain energy density 

distribution is essentially uniform. It must be stated at this point 

that starting the iterative scheme with a value of p equal to 0.75(n/n+1) 

or 0.5(n/n+1) or less for columns with rotational springs of moderate 

stiffness (see Fig. 2.6) is found to be more suitable from the point of 

view of the number of effective iterations necessary for convergence. 

To summarize, as long as R(x) is different from unity Eq. (2.29) 

r+1 r 
with a suitable value of p guarantees that X ^ X . Thus assuming 

r cr cr ° 

that there is a unique solution the iterative procedure guarantees a 

monotonic convergence to the maximum load though not always via a 
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monotonic convergence of the linear strain energy density distribution. 

Constrained Optimization Procedure 

In the case of the inequality constraint, assume the value of 

the prescribed minimum inertia to be I 
o 

The constrained optimization proceeds exactly in the same manner 

as the unconstrained optimization until such time at which the inertias 

of some elements violate the inequality constraint. This can be deter

mined by checking the final value of the inertia of each element corre

sponding to Eq. (2.26) in each iteration against the prescribed minimum 
value I . The inertias of those elements which violate the inequality 

o 

constraint are arbitrarily set equal to the prescribed minimum value, 

I , while the inertias of the remaining elements are adjusted to satis

fy the volume constraint 

j r+1 1/ri 

7 (—} *• • v , 
u \ p / i 1 
i=l 

where V. = total volume minus the volume of the effective elements with 

prescribed inertias. It should be noted that in the case of the in

equality constraint the strain energy density will be equal to a con

stant only in those region where the inequality constraint is not effec

tive. The regions within which the inequality constraint is effective 

the strain energy density will have different values. 

Numerical Results and Conclusions 

The method commonly used for the solution of the eigenvalue 
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problem as specified by Eq. (2.19), namely 

[[K] - X[KG] • {q} = {0} 

is the matrix iteration technique which converges to the highest eigen

value. Premultiplying both sides of Eq. (2.19) by [K] yields 

JJK]"1 [KG] - i [I]] {q} = {0} 

i.e. 

[F] - ttCl]j {q} = {0} (2.36) 

where 

[F] = [K]"1 [KG] and uu - i . 

Matrix iteration with an arbitrary vector converges to <JO and the 
max 

corresponding eigenvector. The critical load parameter is then given 

by X = (1/cu ). 
cr max 

Due to ill-conditioning of the stiffness matrix, rapid conver

gence to an accurate eigenvector is almost impossible with a finite 

number of iterations. This can be overcome by the following perturba-

bation technique. Assume X and fq] obtained by the matrix iteration n cr njcr J 
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technique to be approximations to the exact solutions. Using this X 

and {q} the residual vector can be computed as: 

M - [[K] - Xcr [KG]] [q]cr . (2.37) 

Assume that X = X + AX and {q} ^ - {q} + {Aq}. Then, it 
exact cr 1Jexact n cr n 

follows that 

[ [K] - (Xcr + AX) [KG]] [qcr + Aq} = {0} 

Expanding the above and using Eq. (2.37) one has: 

{r} + [K] {Aq} - AX[KG] [q}cr - AX[KG] {Aq} - X^C^] {Aq} = {o} .(2.38) 

Discarding the second order terms Eq. (2.38) becomes 

{r} + |"[K] - Xcr[KG] {Aq} - AXC^] {q}^ = {o} . (2.39) 

Since {Aq} is a correction to the eigenvector {q} any one of the com

ponents of {Aq} can be arbitrarily set equal to zero. Then Eq. (2.39) 

constitutes a system of n equations in n unknowns which are the n-1 com

ponents of {Aq} and AX. Solution of this system of equations yields the 

desired corrections. With new approximations X and {qL, the new re

sidual vector can be computed and the norm of this residual vector can 

be determined. If this norm is found to be greater than a preset 
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quantity the process can be repeated. The convergence of the process 

is extremely rapid and for further details the reader is referred to 

Ref. 12. 

In the case of columns, since the first two eigenvectors and 

eigenvalues are well separated, the eigenvector and eigenvalue of the 

t"T-\ 

zero iteration (i.e. corresponding to the uniform cross-section 

column) are the starting quantities of the first iteration of the opti

mization procedure. This necessitates that changes in moment of iner

tias of the elements in the first and subsequent iterations be small. 

Accomplishment of the above requires that the assumed value of p be 

small. This is another reason for starting the iterative scheme with a 

value of p less than n/n+1 in the case of columns with moderately stiff 

rotational springs (see Fig. 2.6). Using these known approximations 

and applying the perturbation technique outlined previously the corre

sponding exact quantities can be determined without having to invert an 

ill-conditioned stiffness matrix followed by an invariably large number 

of matrix iterations. The same procedure is adopted for successive 

iterations of the optimization procedure resulting in a substantial sav

ing of computer time and a high accuracy of the computed eigenvectors 

and eigenvalues, which is extremely essential for the success of the 

optimization procedure. 

Conclusions 
The criterion for convergence on the optimality condition is 

! (U./v.) / (U./v.) . - 1.0 1 X 100 < 0.50 . 
L I I max v j j'mm J 
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It is mandatory to define convergence based on the average linear strain 

energy density and not on the critical load parameter, because the aver

age linear strain energy density may be highly non-uniform and yet the 

critical load parameter may be extremely close to its final value with 

the subsequent increase being hardly a fraction of one per cent. 

The number of iterations required is small for all the classical 

boundary conditions and some of the elastically restrained cases. The 

agreement of the results of the finite element solution with the exact 

solution (Ref. 4) is excellent. Since the optimum moment of inertia 

distributions and critical load parameters for the simply-supported and 

clamped-clamped boundary conditions can be obtained from the correspond

ing quantities of a clamped-free column, results are presented for the 

latter. The critical load parameter is in error by about one per cent 

with the exact value, while the curve obtained by joining the mid-points 

of the steps of the finite element solution seems to be a very good 

approximation for the exact moment of inertia distribution (see Fig. 

2.2). 

Convergence is found to be rather slow for the case of a column 

clamped at one end and supported at the other with an infinitely stiff 

translational spring and a moderately stiff rotational spring, especi

ally for n=2,3. However even in this case, the critical load parameter 

achieved 99% of its maximum load after only five or six iterations. 

The number of iterations required is not only a function of the 

degree of nonlinearity (i.e. higher values of n) but also a function of 

the element and nodal disposition. However, the number of iterations 

does not bear a direct relation to the number of elements. The optimum 
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moment of inertia distribution and the critical load parameter are also 

affected to some extent by the nodal disposition with regard to points 

of inflection (see Fig. 2.3). 

The iterative scheme used demands an extremely accurate calcula

tion of the critical load parameter and the corresponding mode shape. 

All the calculations are therefore performed in double precision. As 

the number of iterations increases the critical load parameter does not 

change significantly, while the moment of inertia distribution does 

change until the optimality condition is met. Hence, if the critical 

load parameter is not determined accurately to several decimal places 

it may not be possible to find values of p that will lead to higher and 

higher values of the load parameter. 

Figures 2.4 through 2.6 show the optimum moment of inertia dis

tributions for three typical classes of elastically restrained cases. 

Figure 2.4 is the case of a column clamped at one end and supported at 

the other on a translational spring. If the point of inflection is de

fined to be the point at which the moment vanishes for 0 < x < L, then 

it can be easily seen with the use of the stress-strain law and the 

optimality condition that the point of inflection corresponds to the 

point of least moment of inertia î e. the element which contains this 

point. Thus Fig. 2.4 shows the shift: of the point of inflection with 

increased spring stiffness, approaching the clamped-pinned condition. 

In fact f a parametric study of this case shows the gradual change of the 

boundary conditions and the corresponding optimum moment of inertia 

distributions from a pure cantilever case to an intermediate simply-

supported case and finally to a clamped-pinned case. 
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Figure 2.5 is the case of a column pinned at one end and support

ed at the other with an infinitely stiff translational spring and a 

moderately stiff rotational spring. The limiting cases are the simply-

supported and clamped-pinned conditions. This figure also shows the 

effect of imposing the inequality constraint which is effective for 

elements 1, 12 and 13 resulting in a change of the overall moment of 

inertia distribution and a slight reduction of the critical load. 

Figure 2.6 is the case of a column clamped at one end and sup

ported at the other with an infinitely stiff translational spring and a 

moderately stiff rotational spring. The. limiting cases are the clamped-

pinned and the fully clamped-clamped conditions. This figure also shows 

the comparison between the fully clamped-clamped case and the elastically 

restrained case. The convergence for the elastically restrained case is 

extremely slow in comparison with the fully clamped-clamped case, which 

converged within a matter of three to four iterations. 

Figure 2.7 is the case of a cantilever column under a linearly 

varying axial load distribution. It is seen that the maximum critical 

load parameter is nearly twice that of the corresponding value for a 

uniform column of the same volume. 

Finally Fig. 2.8 shows the optimum moment of inertia distribu

tions for a simply-supported column under constant axial load for two 

different values of the foundation modulus (3. It can be seen that for 

a relatively flexible foundation the material distribution is similar 

to that of a simply-supported column, but with a relatively stiff founda

tion, the material distribution is similar to two, three or higher 
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simply-supported columns over the same length. 

In general, through the use of the finite element displacement 

method, optimization of columns under all possible boundary conditions 

and destabilizing loads can be successfully accomplished. 

It can be seen that although p has been assumed to be a constant 

throughout this development the cases for which p is a function of x or 

for which n takes on different values over different portions of the 

column or for which I(x) = c + pA(x) can be treated very similarly. 

This will be briefly touched upon in the following chapter in connection 

with the optimal vibrating beam. 

Numerical results for some typical cases are tabulated in Tables 

2.1 through 2.5. In these tables, the symbol (I ) . is used to denote 
e I 

f n\ 2 
the quantity I./i p(V/L) ), the symbol c. to denote the quantity (U.V/v.U) 

and the symbols ^npT and \ to denote the critical loads of the finite 

element models with the optimum and uniform moment of inertia distri

butions respectively. 
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T a b l e 2 . 1 . N u m e r i c a l R e s u l t s fo r t h e 16 E lemen t Column 
shown i n F i g . 2 . 4 , Case ( i i ) 

XOPT = 2 2 - 5 0 1 E P V / L 3 = 1 - 1 8 5 \ 

Element No. ( I ) . c . 
e l l 

1 1.3847 0.9991 

2 1.1429 0.9990 

3 0.8217 0.9987 

4 0.3982 0.9977 

5 0.2486 1.0026 

6 0.6649 1.0011 

7 0.9999 1.0006 

8 1.2563 1.0004 

9 1.4322 1.0003 

10 1.5272 1.0023 

11 1.5412 1.0018 

12 1.4638 1.0002 

13 1.2756 1.0001 

14 1.0031 1.0001 

15 0.6692 1.0001 

16 0.2729 1.0001 
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Table 2 . 2 . Numerical Resu l t s for the 16 Element Column 
shown in F i g . 2 . 5 , Case ( i ) 

\)PT = 2 4 , 7 " E P V 3 / L 5 = 1 ' 3 2 4 \ j 

Element No. (I ) . c . 
e I l 

1—
1 0.2500 

0.5992 2 

0.2500 

0.5992 1.0364 

3 1.0672 1.0364 

4 1.4951 1.0364 

5 1.8170 1.0364 

6 1.9652 1.0364 

7 1.9617 1.0364 

8 1.8254 1.0364 

9 1.5630 1.0364 

10 1.1899 1.0364 

11 0.7355 1.0364 

12 0.2500 

0.2500 

0.6761 

13 

0.2500 

0.2500 

0.6761 14 

0.2500 

0.2500 

0.6761 1.0364 

15 1.1637 1.0364 

16 1.5823 1.0364 
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Table 2 . 3 . Numerical Resu l t s for the 16 Element Column 
shown in F i g . 2 . 6 , Case ( i ) 

XQ?T = 50.007 EpV3/L5 = 1.318 ^ 

Element No. ( I ) . c . 
e l l 

1 2.3248 1.0004 

2 2.0114 1.0005 

3 1.4622 1.0009 

4 0.6878 1.0027 

5 0.1406 0.9979 

6 0.6892 0.9979 

7 1.2762 0.9992 

8 1.6686 0.9979 

9 1.8080 0.9998 

10 1.6786 0.9999 

11 1.2949 1.0000 

12 0.6582 1.0000 

13 0.1278 1.0000 

14 0.6134 0.9999 

15 1.1693 1.0000 

16 1.5281 0.9999 
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Table 2 . 5 . Numerical Resu l t s for the 16 Element Column 
shown in F i g . 2 , 8 , Case ( i ) 

\)PT = 6 U 9 2 E p v 2 / I j 4 = 1 ' 1 8 7 \ j 

Element No. (I ) . c . 
e l I 

1 0.3251 0.9978 

2 0.9392 1.0008 

3 1.3987 1.0004 

4 1.6335 1.0001 

5 1.6335 1.0001 

6 1.3987 1.0004 

7 0.9392 1.0008 

8 0.3251 0.9978 

9 0.3251 0.9978 

10 0.9392 1.0008 

11 1.3987 1.0004 

12 1.6335 1.0001 

13 1.6335 1.0001 

14 1.3987 1.0004 

15 0.9392 1.0008 

16 0.3251 0.9978 
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CHAPTER III 

OPTIMAL VIBRATING BEAM 

Assumptions and Objective 

It is assumed that the beams under consideration in this chapter 

satisfy the following assumptions. 

(i) The material of the beam is isotropic and linearly elastic. 

(ii) Cross-sectional planes before deformation remain plane and 

normal to the deformed axis of the beam after deformation* 

(iii) The transverse displacement w of the reference axis does 

not lead to any stretching of this axis (inextensional de

formation) • 

(iv) The only kinetic energy considered is due to transverse mo

tion. All other kinetic energies are considered negligibly 

small. 

(v) The cross-section possesses a plane of symmetry. The load

ing and deformation are restricted in this plane of symmetry. 

(vi) The cross-sectional moment of inertia, I, about the axis 

normal to the plane of vibration, can be expressed in terms 

of the cross-sectional area, A, by the relation 

I(x) = pAn(x) (3.1) 

where p and n have the same significance as in Chapter II. 
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Consider such a beam of specified length and volume (mass) rest

ing on a continuous elastic foundation with various boundary conditions 

(mixed or not -- with or without springs) and subjected to any given 

arbitrarily varying axial load and/or dead (non-structural) mass dis

tribution. The problem, then, is to determine the distribution of 

structural material along the length of the beam so as to maximize the 

fundamental (first mode) frequency of free transverse vibrations (design 

objective) subject to the constraint that the minimum area of the beam 

is not smaller than a specified value A (inequality constraint). 

Although the practicality of increasing the fundamental (first 

mode) frequency is not as important as increasing the buckling load of 

a column, nevertheless such a design is required in a number of cases. 

The above can be used to avoid resonance or in other cases to ensure 

response in the first mode. 

In addition to the type of relation given by Eq. (3.1), extensions 

to other type of relations (Ref. 21) will be briefly demonstrated. This 

problem, along with the method of solution, is in many ways similar to 

the one treated in Chapter II. Hence, only those features of the pre

sent solution which are substantially different from the problem of 

Chapter II will be elaborated upon. 

Formulation of the Problem 

The principle of the conservation of energy when applied to a 

freely vibrating beam yields 

UJ2 = ̂ S (3.2) 
u, 
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where V is the maximum total potential energy of the system at some max r OJ J 

instant of time, (j, is a constant depending upon the distribution of mass 

2 
and the mode shape such that |j,uu is the maximum total kinetic energy of 

the system in the same mode at some other instant of time. It is 

assumed that time is measured from the straight equilibrium configura

tion. 

Further, Rayleigh's principle states that in a natural mode of 

vibration of a conservative system the frequency of vibration, ou, is 

stationary. 

The motion of the beam which is assumed to be periodic can be 

expressed in the form 

(3.3) 

x,u 

«• L »-

Figure 3.1. A Typical Beam on a Continuous Elastic 
Foundation with Elastically Restrained 
Ends Under Arbitrarily Varying Axial 
Load and Dead Mass Distribution. 

The total potential energy of the beam with the afore mentioned assump

tions (see Fig. 3.1) and with the same notation as in Chapter II is then 

v(x,t) =: w(x) e 
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g i v e n by 

V = i f EpAnw"2 dx + - ^ - \ f S (x) , 2 d x ( 3 . 4 ) 
max z<J 2 Z <J o 

T A 1 1 

s i n c e I = pA 

The total kinetic energy of the beam is likewise given by 

L L k 

tuu = :r u) -"-Aw dx + -r- cu j m,w dx + / m .w. j , , CN 
P 2 J

0 g 2 \JQ d X ^ c i I J ( 3 . 5 ) 

where 

y = specific weight of the material of the beam 

g = acceleration due to gravity 

m, = non-structural(dead) mass distribution 
d 

m . = concentrated non-structural mass at the i point, 
ci 

i=l...k», k < (rrri-1) 

Substitution of Eqs. (3.4) and (3.5) into Eq. (3.2) finally 
yields 

L 0 n .2 
f EpAnw" dx + U - J S (x)w' dx 

£ . (3.6) 
o o —̂ o 

•̂  Aw dx + f m,w dx + } m ,w-
0 s 0 i=l 

2 
Since UJ is stationary with respect to displacement w this implies 

2 
that &,, ,,(W ) = 0. This yields the equation of motion along with the 
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associated boundary conditions. These are: 

[EpAnw"]" - u)2(^ A + m )w + Pv + [S (x)w']' = 0 , (3.7) 

EpAQw" - k°w' = 0 

[EpAnwM] + k°w + S (x)w' = 0 
r -J >ji O 

at x = 0 (3.8.1) 

EpAnw" + k^w'= 0 

[EpAnwM] - k̂ w + S (x)w1 = 0 

> at x = L , (3.8.2) 

and 

[(EpAV)' + So(x)w']|x = ^-.[(EpAV)
1 + SQ(X)W]|X = 4 = UMn^ 

(3.8.3) 

[(EPA
nw")lx = c-^[(EpA

nw")|x=!c+ 

wi - = wi + and w i - = w i + , f3.8.4) 
x=c. x=c. x=c. x^c. 

1 i ' I ' I ! i 

x=c. being the point of application of i concentrated mass m . , 
1 C l 

1 J. , « • • K « 

For any given area distribution, the square of the fundamental 

2 
frequency, U). , can be obtained by solving Eqs. (3.7) through (3.8.4) for 
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the lowest eigenvalue. 

Next, it is required to maximize the fundamental frequency UL 

with respect to variations in the cross-sectional area A(x) subject to 

the constant volume constraint 

J A dx = V . 
0 

(3.9) 

Hence, the new functional that must be extremized is 

J-l r\ J-l r\ 

f EpAnw" dx + U - f S (x)w' dx 

(<) ' = ̂  y r X If A dx - VJ 
L . L ,- o 0 

V L L k 

V Y 2 V 2 \ ' 2 
-'-Aw dx + m,w dx + ; m .w. 

•J e " i d .LA, ci l 

0 6 0 Is! 

where X is an undetermined Lagrange multiplier. The necessary condi-

2 * 
tion for (u> ) to be stationary with respect to A(x) is 

J" 
j_ .n-1 ,,2 . 
"jEpn A w" - A 

r V 2 r 2 
J — Aw dx + J m_.w dx 

+ / m .w. 
./Li, ci l 
1=1 

- 0). 1 w r 5 A dx 
1 g ^ 

= 0 

Hence, if 6A is arbitrary, i.e. the area is not prescribed, then the 

above implies that 

Ep 
.n-1 ii2 2 v 2 

n A w - U) ••*- w = c = constant . 
1 s 

(3.10) 
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Equation (3.10) is valid only in those regions where the area is not 

prescribed. In other regions, in the event that the area as determined 

by the use of Eq, (3,10) happens to be less than A the constraint 

A = A has to be satisfied, 
o 

Thus the problem of unconstrained optimization reduces to the 

2 
solution of Eqs, (3,7) through (3,10), it being understood that cu is 

the square of the fundamental frequency. 

Multiplication of Eq. (3.10) throughout by A followed by inte

gration from x = 0 to x = L yields 

J' EpAnw" dx - U) J ̂  Aw dx = c J* 
0 0 g 0 

or 

2(nU - U ) 2 L 2 

c = £ L-. . 2U « 0)7 [ -J- Aw dx 
V T 1 J g 

Equation (3.10) is therefore written as 

Epn A ^ V 2 - &1 ^w 2 = | (nUB - UT) . (3.11) 

Notice that for a beam with classical boundary conditions for 

n=l, the constant c is zero while for the same beam with elastic re

straints the constant c is negative. 

It can also be seen that Eqs. (3.7) through (3.10) remain un

changed in the event that p is a function of x. For relations of the 
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form 

I(x) = C Q + pA(x) 

although Eqs. (3.7) through (3.8) have to be modified, as it will be 

seen later, the corresponding matrix equations in terms of finite ele

ments remain the same, in form, while the optimality condition for this 

case is similar to the case of n=l with a new constant c~. 

r, .,2 2 y 2 
Epw" - cw, -1- w = constant = c0 1 g 2 

2 2 
where c„ = — (U - U - U_) = - — U (since U = II) and U is given by 

2 V B o T V o B T o 

L 2 
U = I Ec w" dx . 
o JQ o 

Method of Solution of the Problem 

The finite element displacement method is used, which reduces to 

the Rayleigh-Ritz method when the assumed displacement function satis

fies compatibility exactly. Further, as will be seen in the course of 

this development, the optimality condition, Eq. (3.9), when transformed 

in terms of finite elements, is much simpler to handle. 

Some comments regarding the finite element displacement method 

as applied to vibrating beams are given in the Appendix B. For more 

details of the same, the reader is referred to Refs. 22 and 23. 

In terms of finite elements the equation of motion together with 
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the boundary cond i t ions becomes 

LLKV] - U>Z[M]j {q} = {0} (3.12) 

where [K^] is the assembled nonsingular stiffness matrix including the 

effect of the elastic foundation, the elastic restraints, if any, and 

2 

any given arbitrarily varying axial load distribution; 03 is the eigen

value, [M] is the assembled mass matrix for the entire beam including 

the dead mass; and {q} is the vector of the unrestrained degrees of 

freedom of the beam. Having determined the fundamental frequency (the 

lowest eigenvalue) and the corresponding eigenvector {q} by the solu

tion of the eigenvalue problem as specified by Eq. (3.12), the strain 

energy and the kinetic energy densities in each element can be deter

mined. These are given by 

and 

Ub. l hf [k,] {q.} 
A.J&. 
i i 

U ^ _ 1 h / [M.] {^} 
v. 2 k.i. 

i. i 

(3.13.1) 

>i=l,2 . .m 

(3.13.2) 

•f-T-» 

where [k.] is the stiffness matrix of the i element without the effect 

of the elastic foundation and the axial load, while [M.] is the mass ma

trix of the i element without the effect of the dead (non-structural) 

mass. 
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Next, the optimality condition is transformed in terms of the 

f ini te elements. Multiplying Eq. (3.10) throughout by A and integrat-

ing over the extent of the i element, one obtains 

i+1 , 2 o ^~+^~ 2 J~+^ 
J Epn AQ~ w" dx - 0) J ^ Aw dx = c J* A dx , 
x . x . x . 

l i i 

i .e. 

2nlL. •- 2U . = cv. (3.14) 
bi ti i v ' 

o r 

U , . \ / U , . . / bA / tf\ c 
n I TT 

\ v 
l l 

^T"7 = 2 = ci 

Equation (3.14) can be written as 

f bi \ 
lv v. / 

rr = 1.0 if c > 0 

c i + v 1 \ v. / 
l 

u " ^ 

and 

a {—) ' c l 
ji = 1.0 if c < 0 

/ __tl 
v 
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Equation (3.14) expresses the optimality condition in terms of finite 

elements. 

Unconstrained Optimization Procedure 

The objective of this optimization procedure is to make the ratio 

Cn(Ubi/vi)]/(c1 + (Uti/vi)) if cL > 0 or the ratio [ n O ^ / v ^ - c^/ 

(U ./v.) if c. < 0 equal to unity. This is similar to the objective in 

Chapter II where it was required to make the ratio (U.V/v.U) equal to 

unity. Hence, a similar procedure is employed. 

One begins with a uniform beam, i.e. a beam having a uniform 

cross-section, and a given volume V. Then using Eqs. (3.13.1) and 

(3.13.2) the strain energy and kinetic energy densities in each of the 

elements can be determined. These distributions of strain and kinetic 

energy densities are used for deciding the inertias of the elements 

r r 
for the next iterations. Let these quantities be denoted by U, ./v. 

r r th 
and U ./v. for the r iteration. Let the corresponding average quanti-

r r 
ties for the entire beam be denoted by U_/V and U^/V where 

B T 

m m 
r V"1 r r \~' r 

UB " .L, Ubi ; UT = L. Utl 
i=l i=l 

and 

m 
'"' r 

V = / v. == specified volume 
u i v i=l 

The inertias of the elements for the next iteration are assumed to be 

given by the following recurrence relations 
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n(Ubi/vi) P 

r+1 r+1 Tr r ^ x 

i L. , „Tr / vrJ 
ti i' 

I. = c I.I — i if c, > 0 
•c + (U_./v.) 

and 

r r 
.i ,i r n(U, . /v.) - C.-np 

r+1 , r+1 r ' bt ^ 1 ,p 
l L <./vr, J X 

tl 1 

r+1 

where c is a constant to be determined from the constant volume con

straint and the exponent p is assumed to be positive. Next, it will be 

shown that as long as the ratio inside the brackets in the above re

currence relations is different from unity a value of p > 0 exists which 

2 r+1 2 r 
will guarantee that (uo ) ^ (uu ) . As before, the proof is presented 

for a continuous system. 

From Rayleigh's quotient one has for the continuous system 

} *T r + 1 / r+l\2 , . r+1 I EI (w ) dx + U 
, 2. r+1 __0 S a _ -_. 
O ) = ; r+iHTT; (3.15) 

L XflT+l\1/n , r+1. 2 , , r+1 
-J- . iw 1 nv + tn 

f» V 1 , r+1 ^ I 

-1- ,' (w ) dx + m 
JQ g \ p / e 

r+1 
where w is the eigenvector corresponding to the lowest eigenvalue 

(uu.) and 

fr+l _ , 0,__r+lx2 , ,L,r+lN2 . ,_0y__r+l\2 
sa U~~ = k T ( W } |0 + k T ( W } |L + kR(W >'|0 

. r+1',2 V. r+1, 2 V. r+1', 
(w ) i + I P(w ) dx - I S (x)(w ) 

|L 0 0 ° 
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and 

L
 k 

r+1 V. , r+1,2 V r+1.2 
m = m, (w ) dx + m . (w. ) 
e J„ dv J.A. CL L 

0 i=l 

The corresponding recurrence relations for the continuous system can be 

written as 

!r+l _ c
r + 1 ! r

 RP (3.16) 

where 

r r" 2 
R = nE^JwJ 

rsl/n 0 1 r. 2 + 1 i U . (w
r) 

1 R 0 V 

and 

r r" 2 
nEI (w ) •• c-

R = =-7 if c < 0 
,_r. 1/n 9 1 

*^-i (wr)2 
g P 

Notice that R ̂  0 for 0 ̂  x ^ L. Furthermore, R is also continuous for 

p/n 
0 ^ x ̂  L, which implies that for p > 0, R is positive and continuous 

for 0 < x < L. 

r+1 
The constant c in Eq. (3.16) must be evaluated from the volume 

constraint 
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L /Tr+1 1/n 

r ; ; dx = V , 
0 V p 

i.e. 

,, 1/n L 1/n , 
(c r + 1) J I r R p / n dx = V 

0 

By the mean-value theorem of integral calculus the above can be written 

as 

, 1 i/n r-L /Tr, i/n -, , 

Since, 

Wv 1 / 0 

it follows that 

r+1 1 
c 

RP| -|xBS51 

Hence, Eq. (3.16) becomes 

x r + l = i r _ X _ . (3.17) 
Ru= ? 1 
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r+1 
Substitution of I in Eq. (3.17) yields 

L- r T R P ""' , r+1" 2 , • . r+1 

0 L R P . 
„.2Nr+l

 1X h 

f r < K ' r+i 
EI i ! (w ) dxr + U 

i. \ L„P J J sa 

} 1 ' l V / n r RP -17" , r+1. 2 . ^ r+1 J- \ — ! i i (w ) dx + m 
0 S '^P/ L R P , p

 J 

lx=51 

By another application of the mean-value theorem the expression for 

. 2Nr+l 
( U L ) can be written as 

T R P | = F 
fT* _ r , r + 1 " 2 , ') ( ' X ^ _̂  T Tr+l 
| I EI (w ) dx I } + U 
L o "RP , =F ' s a 

(»?)r+1 ' r V L 1/n p 1/ti 

Lo g p ' • V p / e 

R | x - § 1 

0 < ? 2 < L ; 0 < ? 3 < L . 

Let R1 = R(52)/R(51) and R£ = [R(53)/R(51)]
1/tl • Next, by virtue 

of the positive definiteness of the strain and the kinetic energy den

sities R and R are both positive. Since the relative magnitudes of R. 

and R as compared to one are not known, all four possibilities, listed 

below, are considered. 

(i) R > 1 and R2 < 1 ; 

(ii) R >- 1 and R2 ^ 1 ; 
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( i i i ) R < 1 and R < 1 ; 

(iv) R < 1 and R > 1 . 

For the f i r s t poss ib i l i ty i t can be very easi ly seen that 

J Eir(wr+1M)2 dx + U^1 

( ^ ) r + 1 ^ I ^ - j ^ - . (3.18) 
P V fI\U

 f r + L 2 r+1 
-1- ! — • (w ) dx + m 

J
0 § * P e 

r+1 
Since w is a kinematically admissible displacement field for the mo-

r 
ment of inertia distribution I , the quantity on the right hand side of 

2 r 
Eq. (3.18) is greater than or equal to (uo-) by Rayleigh's principle. 

2 r+1 2 r 
Hence, it will be guaranteed that (uO ^ ((JU-) for all values of 

p > 0. As regards the remaining three cases, if a suitable value of p, 

2, r+1 . ,. 2sr 
wh ich would guarantee that (UO..) ^ (<JU ) , can be shown to exist for 

case (iv), it would immediately follow that the same value of p would 

2 r+1 ? r 
also guarantee that (0L) ^ (u)~) for cases (ii) and (iii). Assume 

2 r+1 
that for case (iv) R- < 1 and R > 1; the expression for (U) ) can 

then be written as 

\'\ __r r+1" 2 , ^ T Tr+n 
jj EI (w ) dx + U | p 

, 2,r+1 ̂  U 0 S a J
 v f\\ 

(CV * rL , * I T S — 7 7 ^ "T x KTJ • 
r p v -I \ , r+1. 2 r+1 2 
l -1- — < (w ) dx + m . 
i-J0 g • P / e 

r+1 
Next, because of the kinematic admissibility of w for the moment of 

inertia distribution I assume that 
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^ ^ r , r + 1 " 2 J , T r + 1 
EI (w ) dx + U 

0 s a 2 r 
= (1+0(0) , ) L , rx 1/n , , 0 , - 1 

f l L (wr+1)2 dx + m r + 1 

J
0 g V P J e 

where € > 0 . Therefore , the range of the va lues of p which w i l l 

2 r+1 2 r 
guarantee t h a t (cu-) ^ (^..) i s given by 

i°g <y% f l>. (3.i9) 
log ( R ^ ) * 

Thus, it can be seen that as long as R (see Eq. (3.16)) is differ

ent from unity for 0 ̂  x ̂  L a value of p can always be determined 

2 r+1 2 r 
which will guarantee that (ou ) ^ (a)-) 

The iterative scheme can therefore be started with a value of p 

equal to 1 or less and the scheme can be continued with this value of p 

, 2. r+1 ̂  . 2. r _ . 2. r+1 . . 2. r . _ _ _ 
as long as (a) ) £ (tJU ) . If (u> ) < (u),) , then the value of p 

is reduced by a factor of % or \ and the iteration is repeated. This 

process is carried on until no substantial change either in the value 

2 

of (UO ) or the moment of inertia distribution is possible and the func

tion R is essentially uniform. As in Chapter II this procedure guaran

tees a monotonic convergence to the maximum first mode frequency though 

not always via a monotonic convergence of the ratio (R /R . ). 
max min 

Constrained Optimization Procedure 

In the case of the inequality constraint, assume the value of the 

prescribed minimum inertia to be I . 
o 

The constrained optimization proceeds exactly in the same manner 
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as the unconstrained optimization until such time at which the moments 

of inertia of some elements violate the inequality constraint. The 

moments of inertia of these elements are arbitrarily set equal to the 

prescribed minimum value I , while the moments of inertia of the re-r o 

maining elements must be recalculated. Assume the number of elements 

with prescribed moments of inertia to be i and their volume to be V r J c 

The new value of c. can be determined for the remaining (m-j) elements, 

Let this new value of c. he denoted by c . Hence, the new. moments of 

inertia of these (m-j) elements are given by 

r+1 r+1 
I. = c 
1 

"("wK' ~,p 
r r 
I., if c, > 0 c' + (<./vr)J 1 3 

3 ti i 

or by 

r+1 r+ir^bV^ ' C31p 
I. = c 
i 

r r 
I. if el < 0 

/ r , rN _i i 3 
(u../v.) 
ti I 

r+1 
where c is determined from the constraint 

(m-j) r+1 1/n 
1 • \ 
— J I. = (V - V ) 

./_i \ p J i C 
1=1 r 

It should be noted that, in the case of the inequality constraint the 

quantity [n(U, ./v.) - (u\ ,/v.)l will be equal to a constant only over 
bi I ti I 

those (m-j) elements which do not violate the inequality constraint. 

For the j elements with prescribed inertias the afore mentioned quantity 
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will have different values. 

Numerical Results and Conclusions 

The criterion for convergence on the optimality condition is 

r((nlL . -U ,)/v.) 
I \ bi ti l/i 

Y(nU, . -U. ,)/v \ . ( bj tj jjmm 

m a x - 1.0 ! X 100 < 0.50 . 

A number of cases of freely vibrating beams with various boundary 

conditions and area-moment of inertia relations is discussed below. 

A uniform cross-section freely vibrating simply-supported beam 

with I = pA ,(n=l), satisfies the optimality condition trivially, i.e. 

(IL . - U .)/v. = (U - Um)/V = 0, i=l,...m and hence no increase in the 
bi ti i B T 

fundamental frequency is possible,. On the other hand, for a freely vi

brating simply-supported beam with I(x) = pA (x), n=2 and 3, a finite 

(6% for n=2 and 11.15% for n=3) increase of the fundamental frequency 

is obtained (see Fig. 3.2). This six per cent increase for n=2 com

pares very favourably with the 6.67o increase obtained by Niordson, Ref. 

17. 

Figure 3.3 shows the optimum area distribution for a simply-

supported beam on an elastic foundation of moderate stiffness. Two 

different finite element models are used, one with m = 10 and another 

with m = 20. 

Figure 3.4 shows the effect of an axial tensile prestress on the 

optimum distribution of area for a simply-supported beam with 

I(x) = pA (x). 

Beams with other types of boundary conditions (at least those 
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shown in Figs. 3.5 through 3.10) do not possess a finite optimum funda

mental frequency, (the optimum frequency of the stepped beam increases 

with increasing number of elements) in the absence of a dead mass dis

tribution and/or a concentrated dead mass and/or a compressive load 

(P/P < 1) and/or an inequality constraint. It seems that as soon as 

one of the ends of the beam is fully clamped, (in the limit) the opti

mum material distribution is one with all of the structural mass of the 

beam lumped at the clamped-end. The resulting fundamental frequency 

approaches infinity. 

For beams other than simply-supported beams no finite frequency 

seems to exist when vibrating under the influence of an axial tensile 

prestress. 

Figure 3.7 shows a vibrating cantilever beam under the combined 

influence of a compressive axial load and a linearly varying dead mass 

distribution for n = 2. 

Figure 3.8 shows a clamped-clamped beam under the influence of a 

compressive axial load for n = 2. Results are presented for m = 20 and 

m = 40. 

Figures 3.9 and 3.10 show two typical cases of the elastically 

restrained vibrating beams under the influence of a uniformly distri

buted dead mass. 

As regards the optimization procedure most of the conclusions 

given in Chapter II hold true here except that higher values of p than 

those used for columns can perhaps be entertained. In most cases, the 

convergence is rapid provided that the corresponding continuous system 
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does possess a finite frequency. 

It is worthwhile noting that the effect of shear deformation 

and rotary inertia can be very easily accounted for without changing 

the basic form of the optimality condition. For such cases, nU, . would 
A.-L 

be replaced by (nlL . + U . ) , where U . is the strain energy of the i 
* J v bi si 7' si OJ 

element due to the effect of shear deformation and U . would correspond 
ti r 

hVi 

to the total kinetic energy of the i element, which is composed of the 

kinetic energy of translation and n times the kinetic energy of rota

tion of the beam cross-section. The stiffness and mass matrices would 

have to be altered to take this effect into account. It appears that the 

same optimization procedure can be used. Including these effects would 

then perhaps ensure a finite frequency for the beam regardless of the 

boundary conditions and the dead mass distribution and/or a compressive 

axial load and/or an inequality constraint. This would be a subject of 

further research. 
From Appendices A and B it is clear that except for the matrix 

[M 1 no new element matrices are required to be calculated for this 
vJ 

problem. The assembled stiffness and mass matrices are readily obtained 

by a marginal change in the computer program used for optimization of 

columns. The only additional quantities that are required to be calcu

lated are the kinetic energy densities (u\ ./v.) and Um/V followed by the 
ti 1 T 

ratios n(U, ./v.)/(c, + (u\./v.)) if c, > 0 or the ratio 
bi i 1 ti I ' 1 

(n(lL /v ) - c )/(U. ./v ) if c. < 0. 
Dl 1 1 tl 1 1 

Numerical results for some typical cases are tabulated in Tables 

3.1 through 3.5 where the symbol (I ). denotes I./p(V/L) ; the symbol 
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c. denotes the quantity (nUn . - U .)/(c_v.), the symbol E denotes the 
i bi ti 1 1 m 

2 2 
quantity (Epg/y); the symbols (UL ) and (uOTT denote the squares of 

the fundamental frequencies of the finite element models with the opti

mum and the uniform moment of inertia distributions respectively; T] de

notes the ratio of the total dead mass to the structural mass M of the 
o 

beam; and finally x denotes the x coordinate of the point of applica

tion of the concentrated dead mass, if any. 
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2.0 

1.5 

(AL} 

1.0 

0*5 ~ 

( i ) (03^)opT == 109.622 EmV/L5 

( i i ) ( ^ ) 0 p T == 120.145 EmV2/L6 

. I. 
«=F =F 

=r 
Symmetrical 

0.0 0 . 1 0.2 0.3 

x/L 

0.4 0.5 

Figure 3.2. Optimum Area Distribution for a Beam with 

k£ = % k£ = 0, k£ = co, k£ = o; 

T] = 0.0; m = 20 

(i) _n = 2 

(ii) n = 3. 
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2 . 0 -

1.5 

( i ) (u)J)0pT = 116.553 EmV/L5 

( i i ) ( ^ ) 0 p T = H8 .122 EmV/L5 

1.0 

I 

0.5 = T 
I 

4=T— 

£ 

i 
Symmetrical 

0.0 0.1 0.2 0.3 
x/L 

0.4 0.5 

Figure 3.3. Optimum Area Distribution for a Beam with 

k£ = », k° = 0, k£ = oo, k^ = 0; p = 10 E pv
2/L 6; 

V[ = 0,0; n = 2 

(i) 

(ii) 

m = 10; 

m = 20. 
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2.0 

(AL} 

1.5 

1.0 

0.5 

« £ 0 p T = 152.201 EmV/L5 

£ 

Symmetrical 

0.0 0 .1 0.2 0 .3 0.4 0.5 
x/L 

Figure 3.4. Optimum Area Distribution for a Beam with 

k° - -, k£ - 0, k£ - », k£ - 0; P0 - PL - 5 EpV /L ; 

T] = 0.0; m = 20; n = 2. 
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2.0 

(i) (u£)0pT = 8.011 EmV/L
5 

(ii) (-i)0PT = 7.887 EmV/L
5 

1.5 

(AL) 

1.0 

0.5 

0.0 

0.5M 

Figure 3.5. Optimum Area Distribution for a Beam with 

T = C°' R = C°' \ = ' R = ; 

T] = 0.5, x = L; n = 2; 

(i) 

(ii) 

m = 10; 

m = 20. 
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( i ) < < £ o p T = 72.874 EmV/L5 

(ii) KW = 73'9" E m V / L 5 

2.5 

2.0 

1.5 

(AL) 
k V y 

1.0 

0.5 

-| 

0.0 0.2 0.4 0.6 0.8 1.0 

c/L 

Figure 3.6. Optimum Area Distribution for a Beam with 

k£ = % k° = », k£ = 0, k£ = 0; A * 0.2725 V/L; 

Tj = 0.0; n = 2; 

(i) 

(ii) 

m = 10; 

m = 20. 
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Figure 3.7. Optimum Area Distribution for a Beam with 

k£ = co, k° = BJ k^ = 0, k£ = 0; PQ = PL = EPV
2/L4; 

0.5M (1-x/L) 
o 

Tl = 0.25; m = 10; n = 2. 
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0 0.1 0.2 0.3 0.4 0.5 

x/L 

Figure 3.8. Optimum Area Distributioa for a Beam with 
f\ f\ y y O / 

k T = co, 1 ^ = oo, k T = oo, 1 ^ = oo; P Q = ? L = 10 EPV /L 

T] = 0 .0; n = 2; 

( i ) m = 20; 

( i i ) m = 40. 
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0.0 

Figure 3,9, Optimum Area Distribution for a Beam with 

kT = °°' kR = °' kT = °°' ^ = 2 5 E P V 3 / I J 4 ' 

m,(x) =: M /2L; m = 16; n = 3. 
a o 
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Figure 3.10. Optimum Area Distributioa for a Beam with 

k° = co, k° = co, ̂  = oo, ̂  = 25 EPV
2/L3; 

m,(x) == M /L; m = 16; n = 2. 
d o 
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T a b l e 3 . 1 . N u m e r i c a l R e s u l t s f o r t h e 10 E lemen t V i b r a t i n g Beam 
shown i n F i g . 3 . 2 , Case ( i ) 

(CW1}0PT = 1 0 9 ' 6 2 2 E
m

V / l j 5 = l ' 1 2 5 (W1}U 

Elemen t No. ( I ) . c . 
e I I 

1 0.1176 0.9980 

2 0.4008 0.9982 

3 0.6976 0.9981 

4 0.9553 0.9983 

5 1.1641 0.9982 

6 1.3270 0.9995 

7 1.4498 1.0003 

8 1.5377 1.0012 

9 1.5944 1.0018 

10 1.6222 1.0022 
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Table 3 . 2 . Numerical Resu l t s for the 10 Element Vib ra t ing Beam 
shown in F i g . 3 . 3 , Case ( i i ) 

(o> ) 2 = 118.122 EV/L5 = 1.10 (u> ) 2 

Element No. ( I ) . c . 
e I L 

1 0.1230 0.9993 

2 0.4157 0.9992 

3 0.7147 0.9992 

4 0.9675 0.9992 

5 1.1676 0.9994 

6 1.3213 0.9997 

7 1.4358 1.0001 

8 1.5171 1.0005 

9 1.5693 1.0009 

10 1.5948 1.0010 
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Table 3.3. Numerical Results for the 20 Element Vibrating Beam 
shown in Fig. 3.5, Case (ii) 

( U ,l4 T
 = 8 - ° U EmV/L5 " X'975 < V u 

Element No. (I ). c. 
e l I 

1 3.0108 1.0004 

2 2.7862 1.0004 

3 2.5660 1.0004 

4 2.3504 1.0003 

5 2.1395 1.0003 

6 1.9355 1.0002 

7 1.7328 1.0002 

8 1.5379 1.0002 

9 1.3495 1.0001 

10 1.1683 1.0000 

11 0.9953 0.9999 

12 0.8318 0.9998 

13 0.6789 0.9996 

14 0.5381 0.9994 

15 0.4107 0.9992 

16 0.2979 0.9991 

17 0.2008 0.9989 

18 0.1203 0.9989 

19 0.0574 0.9989 

20 0.0144 0.9990 
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Table 3 . 4 . Numerical Resu l t s for the 10 Element Vib ra t ing Beam 
shown in F i g . 3 . 7 . 

(VoPT = 4 2 '7 7 6 E m V / l j 5 = 6A8 (Vu 

Element No. ( I ) . c. 
e i i 

1 3.7171 1.0004 

2 3.0386 1.0004 

3 2.3841 1.0004 

4 1.7668 1.0002 

5 1.2118 1.0002 

6 0.7524 1.0000 

7 0.4142 0.9998 

8 0.1972 0.9993 

9 0.0755 0.9982 

10 0.0156 0.9966 
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Table 3 . 5 . Numerical Resu l t s for the 16 Element Vibra t ing Beam 
shown in F ig . 3 . 9 . 

(V(DPT = 1 8 1 ' 2 6 3 E m v 2 / L 6 = h 3 1 (Vu 

Element No. ( I ) . c . 
e I I 

1 0.1397 1.0000 

2 0.5432 1.0000 

3 0.9811 1.0000 

4 1.3355 1.0000 

5 1.5641 0.9999 

6 1.6550 0.9998 

7 1.6090 0.9998 

8 1.4333 0.9997 

9 1.1417 0.9995 

10 0.7594 0.9993 

11 0.3399 0.9988 

12 0.0586 1.0000 

13 0.4554 1.0011 

14 1.3674 1.0006 

15 2.6581 1.0005 

16 4.2439 1.0004 
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CHAPTER IV 

INVESTIGATION INTO THE OPTIMIZATION OF THIN 

RECTANGULAR PLATES FOR VIBRATION AND STABILITY 

Transversely Vibrating Thin Rectangular Plates 

Assumptions and Objective 

This development is restricted to plates for which the following 

assumptions are valid. 

(i) The material of the plate is isotropic and linearly elastic* 

(ii) The deflection w of the plate is small in comparison with 

the plate thickness h. 

(iii) The normal stresses in the direction transverse to the plate 

can be neglected. 

(iv) Material points on the normal to the midsurface before defor

mation remain on the normal after deformation with unchanged 

distances from the midsurface-

(v) The only kinetic energy considered is due to transverse motion. 

All other kinetic energies are considered negligibly small. 

As regards the objective, it is required to distribute the mater

ial over the extent of the plate with a given aspect ratio (see Fig. 4.1), 

total volume (mass) and with various boundary conditions so as to maxi

mize its fundamental frequency under the influence of any given arbitra

rily varying dead (non-structural) mass distribution (design objective) 

subject to the constraint that the minimum thickness is no smaller than 
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a specified value h (inequality constraint). The necessity of increas

ing the fundamental frequency is again to avoid resonance or to ensure 

response in the first mode. 

Formulation of the Problem 

The motion of the plate which is assumed to be periodic can be 

expressed by the relation 

v(x,y,t) = w(x,y) e 

For such a periodic motion the Raleigh quotient is obtained from the re

lation 

V = T (4.1.1) 
max max 

where V is the maximum potential energy of the plate at some instant 
max 

of time and T is the maximum kinetic energy of the plate at some 
max J r 

other instant of time. For the free vibration of a plate the total 

potential energy is equal to the strain energy of pure bending of the 

plate. 

The strain-displacement relations for pure bending of the plate 

with the afore mentioned assumptions are given by (see Fig. 4.1) 

e = - zv 
XX XX 

e = - zv, 
yy yy 

Y = -2zv, 
xy xy 
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and 

e = v = V = 0 zz yz xz 

The bending strain energy of the plate is then given by 

a b h/2 
U = T f f W(e ,e ,v ) dx dy dz 
B 0 0 -h/2 x x y y x y 

where W is the strain energy density function with the property that 

9W - . cM _ . oW _ 
e xx ' e yv ' v xy 

yy Txy xx 

Next, for an isotropic material in plane stress (a = 0) one has 

a = =— (e + v e ) 
xx ,„ Zs xx yy (1-v ) 

E . 
a = r- (e + v e ) , 

yy / i v A yy x x 
(l-v ) 

xy 2(l+v) Yxy y, 

Hence, it follows that 

E [ 2 _,_ 2 _,_ _ L (l-v) 2~) 
x- e + e + 2 v e e + s 0

 J v 
xx, yy,'xy' ^. 2 L xx yy xx yy 2 Txy J 

W(e e y ) = 

Using the strain-displacement relations the expression for the maximum 

strain energy density, W , final^ becomes 



89 

Ez2 r 2 2 1 
W = «- (w, + w, ) - 2(l-v) (w, w, - w, ) . 
m 2(l 2 Lv 'xx 'yy' 'xx 'yy 'xy 'J 

Hence 

a b 
v = ̂  P f D T (w, + w, ) - 2(l-v)(w, w, 
max 2 «J «J L xx yy xx yy 

2 1 
- w, ) j dxdy (4.1.2) 

xy J 

where 

D - — ^ 
12(l-v2) 

The kinetic energy of the plate is given by 

u)2 r ? p 2 ? £ 2 Tmax a U H = T J m(x,y)w dxdy + J J m (x,y)w dxdy 
max 11 - 0 0 00 

k 
*T 21 

+ - m .w. | 
.^_i- C l 1 J 
i = l 

and since m(x,y) - * h(X,y), where Y is the specific weight of the mater-

ial of the plate and g is the acceleration due to gravity, the expression 

for U finally becomes 

U)2 r? £ v 2 ? n 2 r~' 21 
U n = T | J J ^ w dxdy + J J m (x,y)w dxdy + > m w j (4.1.3) 
ii L Q 0 g 0 0 î l C 1 1J 
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In Eq. (4.1.3), m,(x,y) is the dead (non-structural) mass distribution 

and m . is the concentrated mass at: the point i of the plate, i=l. . .k. 
ci ' 

Substitution of Eqs. (4.1.2) and (4.1.3) into (4.1.1) yields 

a b r 2 2 n 

P J I D(w, + w, ) •• 2(l-v)(w, w, - w, ) j dxdy 
j *L *L L xx yy ^ xx yy xy J 

u) = £ 
a b _ a b _ ,-n 2 

J J -̂  hw dxdy + J J m_,w dxdy + , m .w. 
0 0 g 0 0 i=l C 1 L 

or 

where 

and 

^ Eh3 2 . A 

J J 9~ H y 

^2 . 0 0 12(l-v ) 
a 2 
J J ̂  hw dxdy + T 
0 0 g e 

2 2 2 
H = (w, + w, ) - 2(l-v)(w, w, - w, ) (4.1.5) 

xx yy s 'xx yy 'xy ' v 

a b 2 v 2 
f> f> Z \ Z. 

T = I J m w dxdy + ) m .w. (4.1.6) 
e 0 0 i=l C 1 X 

2 

Next, by Rayleigh's principle, 0) , the square of the fundamental fre

quency, is stationary with respect: to the displacement w. Setting the 

2 
variation of 03 as defined by Eq. (4.1.4)?with respect to w equal to 

zero, therefore yields the governing equation of motion together with 
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the associated boundary conditions. These are (see Fig. 4.1) 

D(w, + v w, ) + 2(l-v) i Dw, | + I D(w, + V w, | v '"" yy -J !-. xyJ L yy xxJ 
,xx J ,xy JJ ,yy 

L v 'xx 

2 .'v 
) , -i-+ tt> , -1- h + m,) w = 0 

\g d/ 
(4.1.7) 

Either or 

r- ~j p i 

w = 0 D(w, + v w, ) I + 2 D(l-v)w, i = 0 
_ xx yy J L. xyJ 

w 

" J , x •- x y " , y 

w, = 0 D| w, + v w, s - 0 
x L xx yy-

along x=0,a 

(4.1.8.1) 

r i r ~i 
= 0 D(w, + v w, ) ', + 2 D(l-v)w, I = 0 

L yy xx J L xyJ 
»y >x 

W, = 0 Bw, + v w, 1 = 0 
y L yy xxJ 

along x=0,b 

(4.1.8.2) 

In addition to these are the conditions of continuity of deflection w, 

the slopes w, , w, , moment and known discontinuities of shear at the 
x y 

points of application of the concentrated masses. 

For any thickness distribution, h, Eq. (4.1.7) together with the 

boundary conditions (4.1.8.1) and (4.1.8.2) is solved to obtain the low-

2 
est eigenvalue U) (the square of the fundamental frequency). Next, it 

is required to maximize (JU- with respect to variations in h subject to 
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the constant volume constraint 

a b 
J J h dxdy = V . (4.1.9) 
0 0 

Hence, the functional that must be extremized is 

a b 3 2 

I I 2~ K dxdy 
r-a b 

(^-^1211=^ Hinhdxdy-V] 
J J X h w2 dxdy + T ° ° 
0 0 

where A- is an undetermined Lagrange multiplier. The necessary condi-

2 * 
tion for (U),) to be stationary with respect to h is given by 

J J H ^ H2 - »?£ w 2 - XX(J J J hw
2 dxdy + Tj} 8h dxdy = 0 , 

0 0 12(l-v ) g h0 08 e 

Hence, for arbitrary variations 6h the above yields 

3Eh2 2 2 v 2 ^— H - U)j -1- w = c = constant . (4.1.10) 
12(l-v ) g 

Equation (4.1.10) is valid only in. those regions where the thickness is 

not prescribed. In other regions for which the thickness, as determined 

by the use of Eq. (4.1.10) happens to be less than h , the constraint 

h = h is used. 
o 

Multiplication of Eq. (4.1.10) throughout by h followed by inte

gration over the area of the plate yields 
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a b F, 3 0 0 a b 0 a b 
3 P r 7T- n dxdy - <JU \ \ -1- hw dxdy = c \ J h dxdy 

0 0 12( l -v ) 0 0 g 0 0 

i . e . 

6U - 2u = cV 
B T 

or 

, 6 u - 2UmN 0 a b 0 

. (-* 1\ . 2TT . ^ r n J c ( - V - i ; 2^=. //Wdxdy 
v i j . Q Q g 

Equation (4 .1 .10) can the re fo re be w r i t t e n as 

2 o 9 Y o /6U -2U mN 3Eh" 2 2 ^ 2 / V V 
=— K - U) - — W = K" - a)" - w - = ( - ^ - - ) . (4 .1 .11) 

12 ( l -v 2 ) l g V V / 

It is understood thatEqs. (4.1.7), (4.1.8.1), (4.1.8.2), (4.1.11) and 

(4.1.9) are solved simultaneously in order to obtain the fundamental fre

quency ty and the corresponding thickness distribution h. 

Method of Solution of the Problem 

The proposed method is again the finite element displacement meth

od, and although the governing equations in this case are partial dif

ferential equations, the corresponding equations in terms of the finite 

element formulation are exactly the same as those of Chapter III for the 

case of n=3, namely 
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[Ky] - CD2 [M] {q} = {0} (4 .1 .12) 

b i t i c _ B Tv: /y, , 1 Q X 

"7~ " V" = C l = 2 \ V / (4.1.13) 
i l 

Where [K.J is the assembled nonsingular stiffness matrix for the entire 

plate in bending and [M] is the assembled mass matrix for the entire 

plate including the effect of the non-structural mass and with the pre

scribed boundary conditions imposed while other quantities are as de

fined before in Chapter III. The explicit derivation of the plate 

bending element stiffness and mass matrices together with other details 

are given in Appendix C. 

Optimization Procedure 

The unconstrained optimization procedure is exactly the same as 

in Chapter III and the steps involved can be briefly summarized as fol

lows : 

(i) Begin with a uniform thickness plate complying with the giv

en volume V-

(ii) Solve the eigenvalue problem as specified by Eq. (4.1.12) to 

2 
obtain UU- and the corresponding eigenvector. 

(iii) Calculate the strain and kinetic energy densities in each 

element, namely 3U, ./v. and U ./v. , i=l...m and the constant 
bi I ti I 

c for the entire plate. 

(iv) Use the recurrence relation, which is 
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. rH „rfl r (3Ubl /vI> ' P . r > n ( . , , . , 
h . = C i h . , p > 0 ( 4 . 1 . 1 4 ) 

-c\ + (U^/vJ)-

St 

to determine the thickness of the elements in the (r+1) iteration. 
r+1 

In Eq. (4.1.14), C is a constant to be determined from the constant 

volume constraint 

m 
V r+1 
, a. b. h. = V/4 (see Fig. C-l) , 

./_u 1 1 1 

i=l 

and the value of the exponent p is selected so as to render 

, 2Nr+l ̂  . 2. r (up > (OJ1) 

The proof for the existence of such a p for the continuous 

system follows on exactly the same lines as the one in Chapter III and 

therefore it is not given here. The initial value of p can be assumed 

to be one or less and the iterative scheme is continued with this value 

2 r+1 2 r 
of p for as long as (UO ^ (uO . If it so happens that at some 

2. r+1 . . 2xr stage (<JU ) < (OL) , the value of p is reduced by a factor of % or \ 

and the iteration is repeated. This process is continued until no sub

stantial change in the value of u> ' is present and the criterion for con

vergence on the optimality condition is met. 

The constrained optimization procedure is exactly the same as the 

one described in Chapter III and therefore it is not repeated here. 
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Numerical Results and Conclusions 

The determination of the lowest eigenvalue and corresponding 

eigenvector is more difficult in the case of plates than it is for 

columns and vibrating beams. The reason is that the first two eigen

values are not very well separated for the non-uniform plate. For each 

iteration of the optimization procedure an approximate lowest eigenvalue 

and the corresponding eigenvector is determined by the inversion of the 

stiffness matrix followed by a high number of matrix iterations. Dur

ing the process of the matrix iterations a check is simultaneously made 

on the closeness of the first two eigenvalues. (The details of the 

method for resolving two close eigenvalues are described at great lengths 

in Ref. 25, pp. 277-279). If the first two eigenvalues are fairly well 

separated the method of perturbation correction is used to improve the 

approximate eigenvalue and eigenvector. The desired norm of the resid

ual vector (see Chapter II) is obtained in one or two perturbation cor

rections; and no difficulty is experienced for the cases shown in Figs. 

4.2 through 4.8. It must be noted at this point, that this perturba

tion scheme, although a powerful scheme, is successful only when the two 

successive eigenvalues are fairly well separated; and no more than per

haps one or two perturbation corrections are required to improve the 

approximate eigenvalue and eigenvector. 

In the optimization of a vibrating square plate clamped along all 

edges and carrying a uniformly distributed dead mass, the exact lowest 

eigenvalue and the corresponding eigenvector for non-uniform geometry 

could not be obtained by the present scheme owing to numerical 
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difficulties. The author feels that the root of the problem lies in 

the closeness of eigenvalues for the non-uniform geometry. This sug

gests that a radically different and a much more efficient method is 

required for the eigenvalue analysis. One such scheme is perhaps to 

use a perturbation technique to obtain an exact inverse of the stiffness 

matrix. Once an exact inverse of the stiffness matrix is obtained, the 

method outlined in Ref. 25 for resolving two close eigenvalues can be 

successfully employed. Although there is little doubt that the exact 

lowest eigenvalue and the corresponding eigenvector can be computed by 

this scheme, the computer time entailed in doing so may be prohibitively 

excessive. Other schemes which may be equally successful are the gra

dient techniques of determining the lowest eigenvalue and the corre

sponding eigenvector. Since the author has not attempted neither of 

these schemes the discussion of their relative merits is out of the 

question. 

The criterion for convergence on the optimality condition for all 

the cases shown in Figs. 4.2 through 4.8 is 

• bi ti\ / ( b! __ ti; _ 1 < 0H x 1 0 Q < 5 > 0 m 

c n v. / \ c., v. - . 
1 i max 1 j min 

However, the 8 X 8 element model shown in Fig. 4.5 is not carried to full 

convergence since all that is of interest in this case is the order of 

magnitude of the optimum frequency and not its exact final value in order 

to arrive at the final conclusion. 

The convergence in all the cases shown is very slow, brought 
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about, to some extent, by the necessity to use smaller values of the 

exponent p in the recurrence relation to avoid drastic changes in the 

mode shapes due to insignificant changes in the thickness distribution. 

In Figs. 4.2 through 4.8 the normalized thickness is defined to be the 

ratio h./h where h = V/ab and in Figs. 4.6 and 4.8 M denotes the 

total structural mass of the plate. 

Tables 4.1 through 4.12 show the percent increase of the funda

mental frequency obtained in each case over the fundamental frequency of 

9 -i 9 9 

bol D denotes the quantity U3g/12^(1-v )] (V/ab) ; the symbols (u) ) 

a uniform thickness plate of the same volume. In these tables the sym-

'oPT 

2 

and (u) ) denote the squares of the fundamental frequencies of the fin

ite element models with the optimum and uniform thickness distributions 

respectively and finally, the symbol (c..). denotes the quantity 

(3Ub. - U t.)/( V.) . 

Figure 4.2 shows the thickness distribution for a rectangular 

vibrating plate simply-supported on two sides and forced to bend cylin-

drically. The purpose is to model a vibrating beam using rectangular 

plate bending elements and to provide a check on the numerical computa

tions involved in the vibrating plate optimization computer program. 

The optimum frequency obtained agrees extremely well with the optimum 

3 
frequency for a simply-supported vibrating beam with I(x) = pA (x) and 

m=10. The numerical results for this case are tabulated in Table 4.1. 

Figure 4.3 shows the thickness distribution for a rectangular 

vibrating plate with aspect ratio a/b = 1/3, simply-supported along the 

edges x=0 and x=a and free on the other two edges using a 6 X 6 element 
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model. The numerical results for this case with h ^ h = 0.10 tv are 

tabulated in Table 4,2, Figure 4,4, on the other hand, shows the thick

ness distribution for a rectangular vibrating plate with aspect ratio 

a/b = 1/3 and simply-supported along all edges. The numerical results 

for this case with h ^ h = 0,10 h are tabulated in Table 4,3, Both 
o U 

these cases indicate that except for some portion of the plate in the 

center, where the plate behaves like a simply-supported vibrating beam, 

the tendency to concentrate the material towards the corners exists. 

This implies that such a tendency would be more pronounced as the mode 

shape departs further from a cylindrical surface. This would be the 

case as the aspect ratio, a/b , approaches unity and all the edges are 

simply-supported. This is confirmed by the results of a simply-supported 

vibrating square plate to be discussed next. 

Figure 4.5 shows the thickness distributions for a vibrating 

square plate simply-supported on all sides using a 4 X 4 , a 6 X 6 and 

an 8 X 8 element models. The numerical results for these three models, 

tabulated in Tables 4.4 through 4.6, indicate that no finite frequency 

and corresponding optimum shape can possibly exist. It can be seen that 

the material of the plate has a tendency to be concentrated more and 

more at the four corners of the plate as the number of elements of the 

model increases. 

Figure 4.6 shows the thickness distribution for a vibrating 

square plate simply-supported on all sides but with a concentrated dead 

mass at the center of the plate. A 4 X 4, a 6 X 6 and an 8 X 8 element 

models are used in this investigation. The results indicate that an 



100 

8 x 8 element model would be a good approximation of the continuous 

system. The changes in thickness distributions and corresponding fun

damental frequencies diminish as one proceeds to a higher element model. 

The numerical results for these three models with h ̂  h =0.10 h are 
o U 

tabulated in Tables 4.7 through 4.9. 

Figure 4.7 shows the thickness distribution for a vibrating 

square plate simply-supported on all sides and carrying a uniformly dis

tributed dead mass. A 4 X 4 and a 6 X 6 element models are used in this 

investigation. The numerical results for these models with 

h ^ h =0.10 hTT are tabulated in Tables 4.10 and 4.11. It is not sur-
o U 

prising that the fundamental frequency of the 4 X 4 element model is 

higher than the fundamental frequency corresponding to the 6 x 6 element 

model. By Rayleigh's principle, for any given thickness distribution 

the resulting lowest eigenvalue (fundamental frequency), with the assumed 

displacement field, has the exact solution as a lower bound. On the 

other hand, the exact optimum frequency of the discretized system has the 

optimum frequency of the corresponding continuous system as an upper 

bound. The final optimum frequency of the discretized system therefore 

approaches the exact value either from above or below. 

Finally, Fig. 4.8 shows the thickness distribution for a vibrat

ing square plate simply-supported on all sides with dead line masses 

acting along the center lines of the plate using a 6 X 6 element model. 

These dead line masses are transformed into equivalent concentrated 

masses as shown in the figure. Numerical results for this case with 

h ^ h = 0.10 h are tabulated in Table 4.12. 
o U 
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Figure 4.1. A Typical Transversely Vibrating Thin Rectangular Plate 
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Figure 4.2. Normalized Thickness Distribution for an Optimum Vibrating 
Rectangular Plate Simply-Supported on Two Opposite Sides 

with Imposed Cylindrical Bending 
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Figure 4.3. Normalized Thickness Distribution for an Optimum Vibrating Rectangular 
Plate Simply-Supported on the Sides x = 0, a and Free on the Other Two 
Sides; h ^ 0.10 h 

© 
1.4877 ^ 

© 
0.10 ^ 

© 
1.6798 

1 • 
1 
1 a 

1 
1 1 

I 

© 
2.1484 

© 
0.10 w 

© 
0.7470 w 

1 • 
1 
1 a 

1 
1 1 

/2 

© 
2.3968 w 

© 
0.10 w 

© 
0.2405 w 

1 • 
1 
1 a 

1 
1 1 

f 

- b/6 * b/6 »• •* b/6 

1 
I 
1 
1 

11 a 
1 
I 
1 
1 

II 
l| 1 

b J 
X a 1 

b 3 

J 
3 x 3 Element Quarter Plate (Not to scale) 

Figure 4.4. Normalized Thickness Distribution for an Optimum Vibrating Rectangular 
Plate Simply-Supported on All Sides; h ̂  0.10 hTT 

1 — » 
o 
ro 



© © 
0.1194 2.7940 

© © 
0.9672 0.1194 

© 
0.0856 

© 
0.0 

©1 
4.9156 

© 
0.3231 

© 
2.7048 

© 
0.0 

© 
0.5622 

© 
0.3231 

© 
0.0856 

2 X 2 Element Quarter Plate 3 X 3 Element Quarter Plate 

«• a/2 p. 

© 
0.0663 

® 
0.0 

© 
0.0899 

® 
6.5022 

ii 

a/ 

V 

© 
0.297 

© 
0.661 

© 
5.96 0.0899 

ii 

a/ 

V 

© 
0.0 

© 
1.8976 

® 
0.661 0.0 

ii 

a/ 

V 

© 
0.4107 

© 
0.0 

© 
0.297 

® 
0.0663 

ii 

a/ 

V 

4 X 4 Element Quarter Plate 
(Not carried to full convergence) 

Figure 4.5. Normalized Thickness Distribution for an 'Optimum' 
Vibrating Square Plate Simply-Supported on All Sides 



104 

© ©1 
0.10 2.0592 

© © 
1.7407 0.10 

© 
0.10 

© 
0.10 

© 
3.6344 

• 

© 
0.10 

© 
1.9559 

©1 
0.10 

© 
2.8198 

© 
0.10 

© 
0.10 

2 X 2 Element Quarter Plate 3 X 3 Element Quarter Plate 

a/2-

© 
0.10 

© 
0.10 

© 
1.3853 

© 
2.388 

0.10 

© 
0.10 

©1 
1.3656 

© 
1.3853' 

© 
0.10 

11 

0.174 

0.10 

© 
0.10 

n 4.993 

15 

0.10 

14 

0.10 

<£ 
0.10 

a /2 

4 x 4 Element Quarter Plate 

Figure 4.6. Normalized Thickness Distribution for an Optimum 
Vibrating Square Plate Simply-Supported on All 
Sides with a Concentrated Dead Mass at the Center; 
h > 0.10 h . 



Wi 
0.1947 

© 
1.0403 

2.5702 

© 
0.1947 

a /2 

2 X 2 Element Quar ter P l a t e 

a/2 

© 
0.0986 

© 
1.7054 

© 
2.5668 

© 
0.8584 

© 
0.001 

© 
1.7054 

1 
© 

1.1073 
© 

0.8584 
© 

0.0986 

1 

3 X 3 Element Quar te r P l a t e 

m d (x ,y) = 0.50 MQ/ab 

F igure 4 . 7 . Normalized Thickness D i s t r i b u t i o n for an Optimum Vibra t ing Square P l a t e 
Simply-Supported on Al l Sides wi th a Uniformly D i s t r i b u t e d Dead Mass; 

h £ 0.001 hy . 
o 
Ln 



© © © 
0.10 0.10 3.1962 

© © © 
a/ 2 1.2723 1.3649 0.10 

1 

© © © 
' 

1.5943 1.2723 0.10 

a/2 1 
3 X 3 Element Quar ter P l a t e m = 0.10 M 

c o 

Figure 4.8. Normalized Thickness Distribution for an Optimum Vibrating Square Plate 
Simply-Supported on All Sides with a Series of Concentrated Dead Masses; 
h ^ 0.10 hy . 

o 



Table 4 . 1 . Numerical Resu l t s for the 2 X 5 Element 
Half P l a t e Model shown in F i g . 4 . 2 . 

(U,1>0PT = U 7 - 2 5 V ^ = U 2 ° 5 <Vu 

Element No. ( h . / t O (c ) . 

1 1.2250 0.9995 

2 1.1.824 0.9992 

3 1.0874 0.9995 

4 0.9128 1.0002 

5 0.5924 1.0009 

6 1.2250 0.9995 

7 1.1824 0.9992 

8 1.0874 0.9995 

9 0.9128 1.0002 

10 0.5924 1.0009 



Table 4.2. Numerical Results for the 3 X 3 Element 
Quarter Plate Model shown in Fig. 4.3. 

(V0PT = 4°8 V ^ = 3'4° ("Vu 

at No. <VV ( c , ) . 

i—
i 1.7223 0.9996 

2 1.5458 0.9996 

3 1.0694 0.9997 

4 0.10 

0.10 

0.10 

1.7398 

5 

0.10 

0.10 

0.10 

1.7398 

6 

0.10 

0.10 

0.10 

1.7398 7 

0.10 

0.10 

0.10 

1.7398 1.0145 

8 1.5557 0.9961 

9 1.0671 1.0000 



Table 4.3. Numerical Results for the 3 X 3 Element 
Quarter Plate Model shown in Fig. 4.4. 

1>0PT " 212 V a 4 " 2-22 <VD 

Element No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

<VV 
2.3968 

2.1484 

1.4877 

0.10 

0.10 

0.10 

0.2405 

0.7470 

1.6798 

(Vi 

0.9985 

0.9990 

1.0079 

1.0038 

0.9965 

0.9946 



Table 4 . 4 . Numerical Resu l t s for the 2 x 2 Element 
Quar ter P l a t e Model shown in F i g . 4 . 5 . 

X ) Q P T = 1369 D v / a 4 = 3.56 (u^ 

nt No. (VV (0lh 

1 

2 

3 

4 

0.9672 

0.1194 

0.1194 

2.7940 

0.9983 

1.0172 

1.0172 

0.9991 
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Table 4 . 5 . Numerical Resu l t s for the 3 X 3 Element 
Quar ter P l a t e Model shown in F i g . 4 . 5 . 

(V0PT = 2°55 V a 4 = 5-35 <Vu 

Element No. ( h . / h ) ( O . 
l U 1 l 

1 0.5622 0.9999 

2 0.3231 1.0000 

3 0.0856 0.9999 

4 0.3231 1.0000 

5 2.7048 1.0000 

6 0.0 

0.0856 7 

0.0 

0.0856 0.9999 

8 0.0 

4.9156 9 

0.0 

4.9156 1.0000 



Table 4 . 6 . Numerical Resu l t s for the 4 X 4 Element 
Quar ter P l a t e Model shown in F i g . 4 . 5 . 

<Vora s 3645 V 3 ' 

Element No. (h./h_.) ( c , ) . 
I U 1 I 

1 0.4107 1.176 

2 0.0 

0.297 3 

0.0 

0.297 1.0878 

4 0.0663 1.0978 

5 0.0 

1.8976 6 

0.0 

1.8976 1.0095 

7 0.661 0.9675 

8 0.0 

0.297 9 

0.0 

0.297 1.0878 

10 0.661 0.9675 

11 5.96 1.0878 

12 0.0899 0.9912 

13 0.0663 1.0978 

14 0.0 

0.0899 15 

0.0 

0.0899 0.9912 

16 6.5022 0.9913 
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Table 4,7, Numerical Results for the 2 X 2 Element 
Quarter Plate Model shown in Fig, 4,6, 

<V0PT = " 2 V a 4 " 3-43 <Vu 

Element No. (h./h) (c„) . 
l U l i 

1 1.7407 0.9895 

2 0.10 

3 0.10 

4 2.0592 1.0089 



Table 4.8. Numerical Results for the 3 X 3 Element 
Quarter Plate Model shown in Fig, 4,6. 

<V0PT = 3 6 8 '5 V a 4 - 4-625 < V B 

Element No. (h./hTT) (cj. 
I U 1 I 

1.0047 1 2.8189 

2 0.10 

3 0.10 

4 0.10 

5 1.9559 

6 0.10 

7 0.10 

8 0.10 

9 3.6344 

0.9956 

0.9987 



Table 4.9. Numerical Results for the 4 X 4 Element 
Quarter Plate Model shown in Fig. 4.6. 

<V0PT " 3" V ^ " 5'24 <Vu 

\ en t No. <VV < c i> i 

1 

2 

3 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

1.0122 

0.9760 

4 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

5 

6 

7 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

0.9760 

1.0036 

8 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

9 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

10 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

11 

12 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

1.0988 

13 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

14 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 

15 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 16 

2.388 

1.3853 

0.10 

0.10 

1.3853 

1.3656 

0.10 

0.10 

0.10 

0.10 

0.1741 

0.10 

0.10 

0.10 

0.10 

4.9928 1.0006 



Table 4.10. Numerical Results for the 2 x 2 Element 
Quarter Plate Model shown in Fig. 4.7. 

<V0PT = " 5 V 3 ' " 2'83 <Vu 

Element No. (h./hTT) (c,). 
l U 1 l 

1 1.0403 0.9990 

2 0.1947 0.9858 

3 0.1947 0.9858 

4 2.5702 1.0025 



Table 4.11. Numerical Results for the 3 X 3 Element 
Quarter Plate Model shown in Fig. 4.7. 

(V0PT = 639 V ^ - 2-455 <Vu 

Element No. (h./h) (c ). 

1 1.1073 0.9990 

2 0.8584 0.9991 

3 0.0986 1.0001 

4 0.8584 0.9991 

5 0.001 

6 1.7054 1.0050 

7 0.0986 1.0001 

8 1.7054 1.0050 

9 2.5668 0.9944 



Table 4.12. Numerical Results for the 3 X 3 Element 
Quarter Plate Model shown in Fig. 4.8. 

j l ^ = 262.5 Dv/a
4 = 2.32 ( 

nt No. ^ i / V (cl^i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1.5943 

1.2723 

0.10 

1.2723 

1.3649 

0.10 

0.10 

0.10 

3.1962 

0.9938 

1.0107 

1.0107 

0.9935 

0.9937 
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Thin Rectangular Plates Under Destabilizing Loads 

Assumptions and Objective 

The assumptions made for the vibrating plate hold also for the 

stability analysis. In addition, it is assumed that although the strains 

are small, the slopes w, and w, are moderately large; such that u, , 
x y x 

2 2 
u, , v, and v, are of the same order of magnitude as (w, ) , (w, ) 
y x y x y 

and the corresponding strains. 

As regards the objective, it is again required to distribute the 

material over the extent of the plate with a given aspect ratio, total 

volume (mass), with various boundary conditions and subjected to a giv

en distribution of in-plane loading, so as to maximize the critical load 

parameter (see Chapter II for definition of the critical load parameter) 

subject to the constraint that the minimum thickness is no smaller than 

a specified value h . Consideration is restricted only to those types 

of externally applied in-plane loadings for which N is a constant or at 

most a function of y, N is a constant or at most a function of x while 
y 

N is a constant (see Fig. 4.9). 
x y 

Formulation of the Problem 

Although the Rayleigh quotient for this problem can be derived in 

a manner similar to the one used for columns in Chapter II, the details 

are omitted here for sake of brevity. Instead, the Rayleigh quotient is 

obtained from Ref. 26, page 168. where it has been derived by the appli

cation of the principle of virtual work to an initial stress problem. 

The expression for this Rayleigh quotient, with the sign convention for 

positive stress resultants as shown in Fig. 4.9, is given by 
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& b fu r 2 9 ~i 
f [' T~ (w> + w, ) - 2 ( l - v ) ( w , w, - w, ) I dxdy 
0 0 1 2 ( l - v ) L X X y y X X y y x y J 

\ = £rr 
a D p 2 2"1 

f | N w, + 2 N W, W, + N W, i dxdy 
^ J

0 L xx x xy x y yy yJ 

(4.2.1) 

, , , , 0 0 , 0 

where A is stationary with respect to w and N , N and N represent 
xx yy xy 

the prebuckled stress distribution. 

A simplified form of the Rayleigh quotient can be derived from 

the virtual work principle based on the assumption of inextensional de

formation. This simplified form is 

a b _ 2 « -
f r D (w, + w, ) - 2(l-v)(w, w, - w, ) I dxdt 
i, r> L xx yy xx yy xy J 0 0 

X = — — (4.2.2) 

[* f N w, +2N W, W, + N W, dxdy J
0
 J
0 L x 'x xy 'x y y yJ 

where D = Eh3/[12(1-V2)]. 

This assumption of inextensionality, although inconsistent, pre

dicts the critical loads surprisingly close to the exact values. This 

has been verified by a number of uniform plates with non-uniform trac

tions and non-uniform plates with uniform tractions. Another attractive 

feature of this assumption is that it simplifies the problem of optimi

zation tremendously. Although no claim is made about obtaining an ex

act solution to the problem of optimization of a given plate by this 

simpler form, the conclusions drawn from this analysis lead to useful 

results associated with the order of magnitude of the critical load. 
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Hence, for the purposes of the development of the optimality condition, 

Eq, (4,2,2) will be used as the definition of the critical load parameter 

X . 

Thus, it is required that X as defined by Eq, (4.2.2) be sta

tionary with respect to w and h subject to the constant volume constraint 

a b 
J J h dxdy = V . (4.2.3) 
0 0 

Hence, the functional that must be extremized is 

a b 

X = 
I [ ((W'xx + W'yy ) 2 " 2 ( 1" V ) ( W'xx W'yy " W'xy )] d x d y 

a . r ? 2"1 
f f N w, + 2 N w, w, + N w, ! dxdy 
^ ^ L x 'x xy 'x 'y y 'yJ 

ra b n 

- X I J' J h dxdy - V| . (4.2.4) 
1 ~0 0 

Setting the variations of A with respect to both w and h, independently 

equal to zero leads to the governing equation with the associated bound

ary conditions and the optimality condition respectively. These are 

-| r ^ r -i 
D(w, + w, ) I + 2(l-v) | D w, i + D(w, + v w, ) 
. x x yy J L xyJ L. yy xx J 

,xx J ,xy JJ ,yy 

+ X | N w , + 2 N W, + N W , 1 = 0 (4 .2 .5 ) 
L x xx xy xy y yyj 
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Either or 

w = 0 j D(w,„w + v w, ) I + 2 J D(l-v)w, 
xx 

,x 
xy-

,y 

+ N w, + N w, = 0 
x x xy y 

w, = 0 Dlw, + v w , i = 0 
x L xy yy_ 

> along x=0,a 

(4.2.6.1) 

w = 0 i D(w, + v w, ) I •»• 2 ! D(l-v)w, 
L yy xx J L 

»y 

+ N w, + N w, = 0 
y 'y xy 'x 

xyJ 

w, = 0 D w, + v w, I = 0 
y L yy XXJ 

x 

along y = 0,b 

(4.2.6.2) 

and 

2 r 2 2 1 2 
h ! (w, + w, ) - 2(l-v)(w, w, - w, ) j = c = constant. 

L xx yy xx yy xy J 
(4.2.7) 

Equation (4.2.7) is the mathematical expression of the optimality condi 

2 
tion. Multiplication of both sides of this equation by Eh/[l2(l-v )] 

followed by integration with respect to x and y over the extent of the 

2 2. 
plate yields U =[EC /12(1-V )] V . 
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That is to say 

2 = 12(l-v
2) U 

: E V 

Hence, Eq. (4.2.7) can be written as 

— = — = constant (4.2.8) 
h V 

where 

W = — ^ 
3 

12(l-v2) 

2 2 1 
(w, + w, ) - 2(l-v)(w, w, - w, ) . 

xx yy v xx yy xy J 

Optimization Procedure 

From the development in Chapter II it follows that the solution 

of the optimization problem of plates with the underlying assumptions 

reduces to the solution of the following equations in finite element 

matrix form 

i [KJ„ -* £KrVl ̂  = [05 ' (4.2.9) 
L S p G p.J 

Ui U 
— = — = constant (4.2,10) 
v. V 
l 

and 

m 

i=l 

h. a. b. = f (see Fig. C-l) (4.2.11) 
l l l 4 
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where [K ] and [K_] are the assembled nonsingular stiffness and sta-
s p G p 

bility matrices for the entire plate. The problem in finite element 

form is in no way different from the column problem of Chapter II and no 

further details need be repeated. 

Numerical Results and Conclusions 

The criterion for convergence on the optimality condition is 

^ , fV 
(—) / [-1) - 1.0 i X 100 < 5.0 . 
\v./ W./ . J 

I max j min 

A number of cases of plates with various aspect ratios, boundary condi

tions and in-plane loadings, shown in Figs. 4.10 through 4.17, is dis

cussed next. The numerical results for these cases are tabulated in 

Tables 4.13 through 4.23. In these tables, the symbol D denotes the 
s 

2 3 
quantity (E/[l2(l-v )])(v/ab) ; the symbol h denotes the quantity 
V/(ab); the symbols A. and X denote critical loads for the finite 

element models with the optimum and uniform thickness distributions re-

2 
spectively; and the symbol c. denotes the quantity (U.V/v.U). Normalized 

thickness is defined to be the ratio h./h 
i U 

Figure 4.10 shows the case of a rectangular plate simply-supported 

along two opposite edges and forced to bend cylindrically while loaded 

with a uniform compression acting in a direction normal to the simply-

supported edges. This is intended to model a column using plate bending 
elements. The results agree well (see Table 4.13) with those obtained 

3 
for a column with I(x) = pA (x) and m=1.0. Exactly the same results are 

obtained even when the stability matrix is calculated using the true 
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prebuckled plane stress distribution at each iteration of the optimi

zation procedure. This implies that the assumption of inextensionality 

is not in error for buckled surfaces which are cylindrical or very 

nearly so. This conclusion is also confirmed by the next two cases. 

Figure 4.11 shows the case of a rectangular plate with an aspect 

ratio a/b = 1/3, simply-supported along the edges y = constant and free 

on the edges x = constant. The plate is loaded with uniform compression 

in the x-direction. The plate with such an aspect ratio and boundary 

conditions behaves very much like an Euler column and the assumption of 

inextensionality is not again very much in error. The numerical results 

for this case are tabulated in Table 4.14. 

Figure 4.12 shows the case of a rectangular plate with an aspect 

ratio a/b = 1/3 and simply-supported along all edges. The plate is 

loaded with uniform compression in the x-direction. The numerical re

sults for this case are tabulated in Table 4.15. Comparison of these 

results with those reported in Table 4.14, for Fig. 4.11, shows that the 

effect of boundary conditions is negligible for this aspect ratio 

a/b = 1/3. 

Figure 4.13 shows the thickness distribution for a 4 X 4 element 

model of a square plate simply-supported on all sides and loaded with 

uniform compression in the x-direction. Numerical results for these 

two models with h ̂  h =0.10 hTT are tabulated in Tables 4.16 and 4.17 
o U 

respectively. 

Figure 4.14 shows the thickness distributions for a 4 X 4, a 

6X6 and an 8 X 8 element models of a square plate simply-supported on 
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all sides and subjected to equal biaxial compression. The differences 

in the final values of the critical loads obtained for these three 

models (see Tables 4.18 through 4.20) are small enough to perhaps con

clude that the corresponding continuous system does possess a finite 

optimum critical load. 

Figure 4.15(i) shows the thickness distribution for a 6 X 6 ele

ment model of a simply-supported square plate under equal biaxial com

pression and with the inequality constraint of h ^ h =0.10 h . As a 
o U 

result of this inequality constraint, the critical load of this model 

(see Table 4.21) is reduced by about seven per cent in comparison with 

the critical load of the 6 X 6 element model of Fig. 4.14 (see Table 

4.19). Incidently, the exact critical load for the thickness distribu

tion of Fig. 4.15(i) (the true prebuckled stress distribution is used) 

shows a reduction of about \TL in comparison with the value shown in 

Table 4.21. 

Figure 4.15(ii), on the other hand, shows the thickness distri

bution for another 6 X 6 element model of the same square plate con

sidered in Fig. 4.15(i). This is a model which meets the optimality 
condition, Eq. (4.2.10), with h ̂  h =0.10 h although for each itera-

o U 

tion of the optimization procedure the true prebuckled stress distribu

tion, as determined by the plane stress analysis, is used for the con

struction of the stability matrix. This model has therefore been called 

a quasi-optimum extensional model; and would be much closer to the truly 

optimum model than the one shown in Fig. 4.15(i). The reason for this 

is as follows. Had Eq. (4.2.1) been adopted as the definition of the 
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critical load parameter \ , then the only approximation for this model 

is that the variation of the denominator of the Rayleigh quotient with 

respect to h is ignored. This way the same optimality condition, Eq. 

(4.2.8), is obtained. The numerical results for this quasi-optimum ex-

tensional model are tabulated in Table 4.22. 

Finally, Fig. 4.6 shows the thickness distribution for a 4 X 4 

element model of a square plate simply-supported on all sides and sub

jected to a uniform shear. The optimized model which is extremely 

strong in buckling for the assumed direction of shear seems to be ex

tremely weak in buckling shear acting in the opposite direction. The 

material is concentrated along the tension diagonal which seems to be 

the preferential direction for the optimized model. The numerical re

sults for this case with h ^ h = 0.10 hTT are tabulated in Table 4.24. 
o U 

Next, the 6 X 6 element model of Fig. 4.13 is compared with a 

simply-supported stiffened square plate of the same volume and with two 

equally spaced stiffeners in the direction of the load (see Fig. 4.17). 

It will be shown that, with a proper choice of stiffener dimensions, 

such a plate under uniaxial compression is capable of carrying almost 

three times the critical load of a uniform thickness simply-supported 

square plate of the same volume. 
Consider a simply-supported square plate of uniform thickness h 

and size a X a under a uniaxial compression N = constant. The critical 
x 

value of N for such a plate is well known to be 
x 

f™ "\ 4 T T 2 E , , N3 

VNx h = — 19n \ <V • 
cr a 12( l -v ) 
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Next, consider the stiffened plate shown in Fig. 4.17 with two identical 

stiffeners which are equally spaced. 

a 5 
Assume b = TTTTT , h = 1 0 hTT and hn = — h . Total volume of the 

s 120 s U 1 6 U 

stiffened plate is given by 

(-LS 
6 \ a + Hi2oi <10 V a = \ a - v • 

I = C r o s s - s e c t i o n a l moment of i n e r t i a of one s t i f f e n e r s 

h 3 

1 I a \ . . . , 3 / 100V U' 

12VT20/1 ( 1 0 V VTTATI. 
a . 

(This seems conservative for stiffeners placed on both sides of the 

sheet.) 

A = Cross-sectional area of the stiffener 
s 

a \ , v a 
(10 V h„ . 

120/ v V' 12 u 

Hence, in the notation of Ref. 30 (pp. 394-400) 

3 

EI E „ (122)(hi) a1 
^ = arT = ELW U\ \ H - 1 3-1 0 f o r v = 0-3 0 

1 I W ^ * W aJ 

A af -rj 
6 = -£- = / ' N = 0.10 and 3=1.0. 

all ^5 x 

1 <6 V 
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Hence, if y is conservatively assumed to be equal to 10 with 6 = 0.10 

and p = 1.0, Table 9-17, page 400, Ref. 30 yields 

2 n2 E , (\ h ) 3 

fS ) = 25.6 -yl = 25.6 12^-V > 
cr s a a 

2 
TT D / 

_ 14.248 — ^ ~ 3.56 IN 
2 - \ x /_. 

a cr U 

where ~ 

Eh 
D - U 

U 12(l-v2) 

Thus, the critical load of this stiffener-sheet combination is 

nearly 3% times that of the uniform thickness plate of the same volume. 

It can indeed be argued that this distribution of material h(x,y) does 

not fall, in the same class of functions as was assumed apriori for the 

derivation of the optimality condition. However, the fact still re

mains that stiffened plates are indeed very promising candidates in the 

optimization of thin rectangular plates for buckling more so because 

they can be manufactured with relatively higher saving in cost and la

bour in comparison with machined or chem-milled plates. Further, it 

must be recognized that the stiffener dimensions chosen are by no means 

unrealistic and for such dimensions, the stiffener crippling will not 

reduce the design capability of the plate. For instance, consider a 

7075-T6 (bare) plate with a = 30" and h = 0.75". Then b = 0.25" and r U s 

h =7.5". For such a plate it is found that the crippling allowable 

for the stiffener is far in excess of the buckling allowable for the 
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uniform thickness plate. Finally, it must be remarked that there might 

very well be other stiffener-sheet combinations which might lead to 

critical loads well in excess of 3.5 IN j . The number of stiffeners, 
. x /.. 

cr U 

their spacing, orientation and the type of stiffeners cross-section 

which will maximize the critical load would be a subject of further re

search -- a research that will most certainly yield very fruitful re

sults. 
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Figure 4.9. A Typical Rectangular Plate Under In-Plane Loading 
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T a b l e 4 . 1 3 . Numer i ca l R e s u l t s f o r t h e 2 x 5 E lemen t 
Ha l f P l a t e Model shown i n F i g . 4 . 1 0 . 

X0PT " 1 3 - ° 5 V 3 ' " U325 \ 

Elemen t No. ( h . / h ) c . 

1 0.6043 0.9879 

2 0.6043 0.9879 

3 0.9117 1.0008 

4 0.9117 1.0008 

5 1.0819 1.0018 

6 1.0819 1.0018 

7 1.1179 1.0017 

8 1.1179 1.0017 

9 1.2235 1.0016 

10 1.2235 1.0016 
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Table 4.14. Numerical Results for the 3 X 3 Element 
Half Plate Model shown in Fig. 4.11. 

>^ m = 12.12 D /a
2 = 1.25 \ 

OPT s U 

Element No. (h./h) c. 

1 1.2016 1.0024 

2 1.0846 1.0046 

3 0.7537 1.0081 

4 1.1539 0.9915 

5 1.0345 0.9904 

6 0.7147 0.9888 

7 1.2016 1.0024 

8 1.0846 1.0046 

9 0.7537 1.0081 



Table 4 . 1 5 . Numerical Resu l t s for the 3 X 3 Element 
Half P l a t e Model shown in F i g . 4 . 1 2 . 

XQpT = 16.82 D s / a 2 = 1.385 ^ 

Element No. ( h . / h ) c . 

1 0.8825 0.9786 

2 0.8835 0.9895 

3 0.6817 0.9960 

4 1.7220 1.0223 

5 1.4450 1.0129 

6 0.9321 1.0048 

7 0.8825 0.9786 

8 0.8835 0.9895 

9 0.6817 0.9960 
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Table 4,16, Numerical Results for the 2 X 2 Element 
Quarter Plate Model shown in Fig, 4,13, 

\>PT = 41'65 V a 2 " 2'U \ 

Element No. (h./h ) c. 

1 1.5599 0.9910 

2 0.5176 0.9954 

3 0.10 

4 2.0226 1.0081 



Table 4.17. Numerical Results for the 3 X 3 Element 
Quarter Plate Model shown in Fig. 4.13. 

\>PT = 36'7 D s / a 2 = U 8 1 \j 

Element No. (h./h ) c. 

1 1.4171 0.9959 

2 1.1924 1.0088 

3 0.7026 1.0176 

4 1.1224 1.0031 

5 1.1512 0.9900 

6 0.10 

0.8140 7 

0.10 

0.8140 1.0081 

8 0.10 

2.4004 9 

0.10 

2.4004 0.9935 



Table 4 . 1 8 . Numerical Resu l t s for the 2 x 2 Element 
Quar te r P l a t e Model shown in F i g . 4 .14 . 

VT = 31-15 V * 2 • U58 \ 

Element No. ( h . / h „ ) c . 
I U i 

1 1.1493 0.9964 

2 0.4828 0.9952 

3 0.4828 0.9952 

4 1.9852 1.0046 
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Table 4 . 19. Numerical Resu l t s for the 3 X 3 Element 
Quar ter P l a t e Model shown in F i g . 4 . 14. 

\)PT " 3 8 ' 0 5 V 3 ' " X - 9 0 \ j 

Element No. (h. /h ) c . 

1 1.4397 1.0000 

2 1.1840 1.0000 

3 0.7951 1.0000 

4 1.1840 1.0000 

5 1.1636 1.0000 

6 0.0 

0.7951 7 

0.0 

0.7951 1.0000 

8 0.0 

2.4386 9 

0.0 

2.4386 1.0000 
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Table 4.20. Numerical Results for the 4 X 4 Element 
Quarter Plate Model shown in Fig. 4. 14. 

\)PT = 36#6° V a 2 = 1'835 \ 

Element No. (h ./h ) c. 

1 1.4667 0.9953 

2 1.3382 0.9950 

3 1.1747 0.9912 

4 0.7459 0.9910 

5 1.3382 0.9950 

6 1.1400 0.9900 

7 0.9067 0.9933 

8 0.0 

1.1747 9 

0.0 

1.1747 0.9912 

10 0.9067 0.9933 

11 0.0 

1.7026 12 

0.0 

1.7026 1.0319 

13 0.7459 0.9910 

14 0.0 

1.7026 15 

0.0 

1.7026 1.0319 

16 1.8584 0.9826 



Table 4 . 2 1 . Numerical Resu l t s for the 3 X 3 Element 
Quar ter P l a t e Model shown in F i g . 4 . 1 5 ( i ) . 

\>PT = 35-55 V 3 ' " U3° \ 

Element No. (h . /h ) c. 

1 1.4055 1.0307 

2 1.1571 1.0258 

3 0.7770 1.0115 

4 1.1571 1.0258 

5 1.1392 1.0060 

6 0.10 

0.7770 7 

0.10 

0.7770 1.0115 

8 0.10 

2.3872 9 

0.10 

2.3872 1.0118 



Table 4 .22 . Numerical Resu l t s for the 3 X 3 Element 
Quar ter P l a t e Model shown in F i g . 4 . 1 5 ( i i ) . 

\>FI = 3 0 - 9 ° D s / a 2 = U 5 6 5 \ 

Element No. ( h . / h ) c . 

1 1.4911 1.0369 

2 1.2502 1.0410 

3 0.7625 1.0353 

4 1.2502 1.0410 

5 1.1512 1.0432 

6 0.10 

0.7625 7 

0.10 

0.7625 1.0353 

8 0.10 

2.1324 9 

0.10 

2.1324 1.0234 



Table 4 . 2 3 . Numerical Resu l t s for the 4 X 4 Element 
F u l l P l a t e Model shown in F i g . 4 . 1 6 . 

\>PT = 2 9 - 4 5 V 3 ' = 3 - 1 7 \ l 

Element No. <w 2 
c. 
i 

1 0.10 

1.5423 2 

0.10 

1.5423 0.9885 

3 0.10 

2.5014 4 

0.10 

2.5014 1.0073 

5 1.5423 0.9885 

6 0.10 

2.0140 7 

0.10 

2.0140 0.9952 

8 0.10 

0.10 

2.0140 

9 

0.10 

0.10 

2.0140 10 

0.10 

0.10 

2.0140 0.9952 

11 0.10 

1.5423 12 

0.10 

1.5423 0.9885 

13 2.5014 1.0073 

14 0.10 

1.5423 15 

0.10 

1.5423 0.9885 

16 0.10 
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APPENDIX A 

FINITE ELEMENT DISPLACEMENT METHOD AS APPLIED TO BUCKLING OF COLUMNS 

As a first step it is assumed that the response of the system 

which has in fact infinite degrees of freedom can be effectively repre

sented by a finite number of degrees of freedom as shown below. To do 

this, the system is broken into small elements each extending, in this 

case, between two nodes. The response of each of these elements to ex

ternally applied equivalent nodal loads is determined. Finally by 

assembling all the elements together the response of the complete system 

i s ob ta ined . 

z ,w 

t 
l L

q 2 m - l » q 2 m + l 

K ± } 
Lio 

© © © © 0 

L2m 4 2m+2 

,~h ny-
© © 

Figure A-l. Finite Element Representation of a Column 

In the case of the column, each element has only two generalized 

forces at each node namely a shear force and a moment and corresponding 

to these two generalized forces are the two generalized displacements 

namely the vertical displacement and the slope or the rotation. Let 

i i i i (u. , u ?), (u~ , u, ) denote these generalized displacements at the two 
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nodes of the i element whose length is denoted by A. . 

i-1 i-1 

| U 1 

§ 
i-1 

'i-1 ^h u 2 ^ 

l3 lk 

I. 

0 © 4) 
Figure A-2. Two Typical Adjacent Beam Elements 

The next step is the choice of a suitable displacement function 

for each element. Since this method is derived from the principle of 

the stationary value of total potential, it is necessary that the dis

placement field be compatible, both within the element and at the inter

face between the two elements meeting at a node. Necessary compatibility 

between the two elements will be satisfied if the appropriate general

ized displacements are equal at the node common to the two elements. 

This can be assured by requiring that 

i-1 

i-1 

= u, = q 

= u0 = q 

2i-l 

2i 

> for the i node (see Fig. A-2) 

In addition to these above equations for each of the intermediate nodes, 

there are similar equations for the two end nodes namely 

u - q U2 = q2 
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and 

m 
U3 = q2m+l 

m 
u/. = q 2m+2 

All these equations can be written concisely in the matrix form as 

H. = B £ (A-1) 

where u and Q are column vectors with 4m and (2m+2) rows respectively 

and B is a rectangular array of size 4m X (2m+2) whose elements are 

either 0 or 1. An illustration of Eq. (A-1) for a two beam-element 

idealization of a column would be 

4 
© 

4v 
© 

^ 

© 
Figure A-3. A Two Beam -Element M 

r o 
u i 

1 0 0 0 0 0 

i 
u2 

0 1 0 0 0 0 

1 
u3 0 0 1 0 0 0 

1 
u4 

1 2 
Ul 

> = 
0 

0 

0 

0 

0 

1 

1 0 

0 0 

0 

0 

2 
U2 

0 0 0 1 0 0 

2 
U3 

0 0 0 0 1 0 

2 
u4 

0 0 0 0 0 1 

> 
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Compatibility within the element requires that the displacement 

field be continuous with continuous derivatives within the element. The 

element has four degrees of freedom and a complete cubic polynomial ex

pansion has also four unknown parameters and is continuous with contin-

uous derivatives. Hence one can write for the i element 

2 3 
w.(x.) = a + anx. + a0x. + a_x. ; 0 ̂  x ^ X (A-2) 
l i o li 2 i 3 i ' i i 

Further this displacement function includes rigid body motion and con

stant strain (i.e. constant curvature in this case) which are necessary 

for convergence to the true solution. 

Next, it is necessary to relate the unknown parameters a's to q's 

Equation (A-2) can be written in matrix form as 

vv •D 

r >i 
a 

o 

x . x, 
l J 

< y ; o < x. ^ i. 
f i i 

L a 3 

Next, s ince 

w (0) 
i = u. 

w.(0) 
I 

w . ( J & . ) 
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w'(J&.) = u.L 
1 1 4 

there are four equations which relate a's to q's and these can be ex

pressed in matrix form as 

[c1] [a} = [u1} (A-3) 

where 

[ c 1 ] -

1 0 0 0 

0 1 0 0 

1 I. 
1 

I1 

1 1 

0 1 2JL. 
I 

2 
31 

i 

(A-4) 

Hence i-i-1 {a} = [c1]"1 {u1} 

where 

r li-1 

Lc ] 

1 0 0 0 

0 1 0 0 

-3 -2 3 - 1 
o2 &. ,;2 Q>. 
&. I 4 . i 

l l 

2 1 -2 1 
,3 „2 ,3 ,? 

I I. 4 . 1 
l I I i 

(A-5) 

Hence 
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w . ( x . ) 
1 1 

i 2 3" 
1 X . X . X . 

1 1 1 . 

i - i - 1 [ c 1 ] " 1 {u1} 

d V u1 

Upon l e t t i n g 5. = x . / i - . one has 

(A-6) 

Hence 

[ H i } t = < 

(1 - 35^ + 25J) 

4. (5- - 25 2 + 53) 
i v ^ i * i i y 

2 3 
(3§ . " 2g1) 

V^i + £ 

w . ( x . ) = 
1 1 

1 /4 . ( - 65. + 652) 

(1 - 45, + 35 . ) 
i i 

< 

{ u 1 } -
i . t i 

(a ) u 

1 /^ . (65 . - 6 5 p 

(- 25, + 357) 
i i 

(A-7) 

and 



155 

w.(x.) 
1 1 

= < 

1/£T( - 6 + 12?.) 
iv I 

1/A±(~ 4 + 6?.) 

1/Ai(6 - 12§p 

1/J&.(- 2 + 6§ ) 
iv I 

> {u1} = 
, iN t i 
(1 ) H. (A-8) 

where primes denote differentiation with respect to x.. It therefore 

follows that 

.WJ = (u1)' H ^ H V u1 = ufc G ^ G V U (A-9) 

L i i _1 ~ - - - = - - - - (A-10) 

I- ~ T ^ . . . . . . 

" / \ / l v t 1 , l.t 1 t 1, l.t 

|_wi(xi)J = (u ) x (I ) H. = H. 2. (£. ) H 
(A-11) 

In Eqs. (A-9), (A-10) and (A-11) the matrix u is a column array having 

4m entries which represent the 4m degrees of freedom of the m elements 

and matrices £ , L and R are nothing but matrices H , a and y_ 

which are expanded from their original sizes of (4X1) to (4mXl) by in

serting zeros in all but the elements (4i,..., 4i+4) where the four 

elements of H , a or y appear. 

Using Eq. (A-l), Eqs. (A-9), (A-10) and (A-11) can be written as 
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i w.(x.) 
L 1 i J 

2 t t i, iNt ̂  
= £ B G (G ) B £ (A-12) 

w. (x ) 
L l i J 

2 t t i, iNt n = £ B L (L ) B £ (A-13) 

.WJ 
2 =at

 B6 R^RV H (A-14) 

Next,the total potential for the column is given by 

1 9 /\ 9 R 9 1 

TT = - J1 EI(w") dx - j J p(x)w' dx + | J w dx + 2 U s s 

a. a, 
X r>L . . , , . 2 . . p p1 2 

m 4. 

Y i f EI .Cw!) 2 dx. - £ f p . ( x . ) ( w ! ) 2 dx. + | f w2 dx. + | U 
LA 2 «J i i i 2 «J r i v i / N i I 2«J i i 2 

i = l 0 0 0 ss 

where 

2 2 2 
Uss = ^ [ W ( 0 ) ] + ^ [W ( L )] + k R L W ' ( 0 ) ] + k R L w / ( L ) ] 

^ ( q p 2 + ^ ( q 2 n H . ! ) 2 + ^ ( q 2 ) 2 + ^«l2m+2>2 

= a §.£ 

The matrix S is a diagonal matrix of size (2m + 2)x(2m + 2) with 

Sll " kT ' S22 " kR 
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S2m+1 kT ' S2m+2 KR 

all the rest of the elements of the matrix S_ being zero. 

Using Eqs. (A-12), (A-13) and (A-14) the expression for TT becomes 

m I 
1 t_t f V lr-

i,„i,t . „ i, ixt TT * 7 q B { ) f EI. R^R1) + 3G1(G1) dx. j B q 

i=l 0 

m i. 

- \ 1 B' ( V j" p^x.) L 1 ^ 1 ) ' dx.) B £ 

i=l 0 

+ \ 1 S £ 

Letting 

m 4 

[K] = t / V 
1 r i.^ixt . .^i^i.t 

- \ L J' LEIi - (- ' + P- (- ' J dxi) ~ + -
i=l 0 

(A-15) 

and 

m I 
i „ ix t 

^KG] = B C ( 2. J Pi^i) k(k) d xJ B ; 
i=l 0 

(A-16) 

the expression for TT finally becomes 

TT = | - a t K a - | a t K G a 
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The p r i n c i p l e of the s t a t i o n a r y value of the t o t a l p o t e n t i a l re

qu i r e s 6JT = 0 for e q u i l i b r i u m . Hence 

6TT = acĵ CK - XK_) £ = 0 

Hence, for arbitrary variations of the generalized displacements £ it 

follows that 

CK] - X[KG]J [q] = {0} (A-17) 

In the absence of {3 and S, the matrices K and K will be both 

singular since rigid body motion has not been eliminated. Hence the 

boundary conditions must be imposed in order to solve the eigenvalue 

problem specified by Eq. (A-17). The imposition of the boundary condi

tions can be made in several ways (see Ref« 22, pp. 233-234), but the 

best way from the point of view of computation time would be to cross 

out the rows and columns corresponding to prescribed zero displacements. 

This, in essence, corresponds to partitioning the matrices K and K into 

submatrices retaining the portions of these matrices corresponding to 

externally applied active loads (which in the case of the homogeneous 

eigenvalue problem are zero) for eigenvalue analysis and throwing out 

the rest of the portions of these matrices corresponding to reactive 

tractions which do not enter into the formulation of the total potential 

of the system. 

Next, returning to Eqs. (A-15) and (A-16) some explicit expres

sions for the integrated quantities pertaining to the i element can 
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be obtained. The matrix represented by 

,i.„iv t J EI R V ) dx 
0 x 

is a symmetric matrix of size (2m + 2}X(2m + 2) given by 

where 

4i -

4i+4-

4i 
i 

\ 

r 

4i+4 

"f ' 

1 — 
I 0 

1 0 
1 

T 
1 
1 

0 

[k1] = EI. 

12 6 -12 6 
,3 ""Z ,3 ,2 

i . 4. 4 . 47 
i l I i 

4 -6 2 
X. .2 4. 

I A . 
I 

I 

12 -6 
,3 ,2 
A. I. 

SYM 

I I 

4 

i 

J PG^GV dx. 

0 

is also a symmetric matrix of size (2m + 2)X (2m + 2) given by 
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where 

4i-

4i+4 

4i 
I 

m 

4i+4 

Jl_°_l 

PA. 
[ m l ] = 42^ 

156 224. 54 - 134 
I I 

SYM 

44. 134. 
I I 

- 34' 

156 - 224 

44' 

J p.(x.) i / a V dx. 

is a symmetric matrix of size (2m + 2) x(2m + 2). For a linear variation 

of p.(x.) given by p.(x.) = P-(l-5.) + ?o5. the matrix becomes: 
1 L 1 1 1 1 2 1 

4 i 
i 

4i+4 
I 

0 
I 
i 0 ! o 

4 i 
. i j -

0 ! £ 
r 
i 0 

4i+4 - - - L _ J. 
0 r o 7 o 
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where 

L GJ 

5l" <P1+P2> 

SYM 

P2 
10 - sf: < W 

i 

P l 
10 

P 1 + P 2 ) 
P 2 
10 

I 
1 

60 
( P1+ P2> 

1 

4. 

P l 
10 

I 
30 

(P1+3P2) 

If P = Pp = P then the matrix k reduces to the one given in Ref. 10 

taking the proper signs. 
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APPENDIX B 

EQUATION OF MOTION -- FINITE ELEMENT FORMULATION 

For the sake of uniformity of treatment, the equation of motion 

in terms of finite element formulation will be derived from Rayleigh's 

principle rather than by the use of Hamilton's principle. From Eq. (3.6), 

2 
Chapter III, the expression for U) is given byj 

L L XJ r\ XJ r\ 

J EpAn w" dx + U - J S (x) w' dx 
^2 = 0 0  

•p Y 2 L. 2 k 2 
-L Aw dx + in, w dx + S m . w. 

0 8 0 d i=l C 1 x 

where 

i 0 2
 L 1 L 2 , 0 , 2 L 1 L I 2 _ ^ 2 J 

Us = k T W |0 + k T W |L
 = k R W |0 + k R W |L+ P J W d x 

From Appendix A, Eq. (B-1) can be immediately cast in matrix form as 

2 ilf [K_] {q} 
m y- (B-2) 

[if M {q} 

where 

m I 

[K„] = ^ ( '"; f [EI, R ^ R V + PG^GV 
v xi=l 0 L 1 

- p.(x ) ̂ (L1)11] dx.) B + S_ (B-3) 
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m I 
t ( 

[M] = B [) [' i^A. +m,.(x.)r GL(GL) dx.) B + M (B-4) 
— \ u «J Ig 1 di v i'j — v— 1/ — -~c \ L 

i=l 0 

Assuming as an approximation a linear variation of dead mass dis

tribution between any two consecutive nodes (this assumption is capable 

of approximating the arbitrarily varying dead mass distribution with in

creasing number of elements m) the expression for m can be written as 

m,. = m,.(l - X./J£P) + m0.(x./j£.) di liN i i' 2i N i i' 

and t h e e x p r e s s i o n f o r [ M ] t h e r e f o r e becomes 

m I 
t ( l ,-

W~F{L J" l ^ i ^ i i U 1 ^ 1 ) dxi 
i = l 0 

i (m 9 . - m ) . 
+ J' — ^ — x , ^(G1)11 dx, ]B + M 

0 a 1 / — 

where 

m 

= B 
n u . - m„ 

7 (* A. + m. .) M1 + ( -2i , i i ) M1"! B + 
Z-J \ e i l i / —u \ J&. / —vJ — 

M 

i = l 

[M1] = 

41 4 i + 4 
0 ! 0 I 0 

i I 
m 

u 

_ _i-4i 

0 

0 T 0 
-4i+4 
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and where 

Cm1] = 
4. 
i_ 

420 

156 224. 54 -134. 
l I 

SYM 

w 134. - 347 
I I 

156 -221 

44' 

4i 

LM 1] 
v 

4i+4 
0 4. 0 it TL 

m 

uvi 
4 
1_ 

840 

SYM 

J 

4i 

4i+4 

72 144. 54 
I 

34' 144 

240 

-124. 
l 

- 34' 

-304 

54' 

both the matrices [M ] and [M ] being of size (2m +2)X (2m + 2) and finally 

the matrix M is a diagonal matrix with [2(i-l) + 1] st element being 

2 

equal to m .. Returning to Eq. (B-2), by Rayleigh's principle au is sta

tionary with respect to the generalized displacements {q}. 
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2 
Hence, it follows that 6(uu ) = 0 i.e. 

2{6jt [Kj {q} , {6J6 [M] {q} 

_ S L 2 2lU
2 -J. = {o} 

{q}' M lq} {q}' M {q} 

Hence,for arbitrary variation of the generalized displacements {q} the 

above finally yields 

[[Ky] - U)2 [ M ] ] {q} = {0} • (B-5) 

Equation (B-5) is the equation of motion. If [3 = 0 and S_ is the 

null matrix,suitable boundary conditions are to be imposed before 

attempting to solve the eigenvalue problem as specified by Eq. (B-5) 

(see Appendix A). For a free-free beam,however, the two equations of 

constraint corresponding to the conservation of linear and angular 

momenta have to be used to transform the stiffness matrix in order to 

render it nonsingular before solving the eigenvalue problem of Eq. (B-5) 

This seems very specialized, so hence the problem of the free-free beam 

is not attempted. 
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APPENDIX C 

FINITE ELEMENT DISPLACEMENT METHOD AS APPLIED TO 

VIBRATION AND STABILITY ANALYSIS OF THIN" RECTANGULAR PLATES 

The details of the assembly of the individual element stiffness 

and mass matrices to obtain the assembled stiffness and mass or stabil

ity matrices for the entire plate are in no way different from those 

outlined for the column in Appendix A. Hence, this appendix will be de

voted solely to the development of individual element stiffness, mass 

and stability matrices for a plate bending element. 

The types of rectangular plate bending elements can be broadly 

classified into two distinct classes. Firstly, there are the non-conform

ing elements which do not satisfy compatibility exactly,and depending up

on the degree of lack of compatibility an assembly of such elements will 

converge to the true solution from either side or oscillate (Ref. 27). 

Secondly, there are the conforming elements which satisfy compatibility 

exactly, and lead to an assembly which is stiffer than the actual plate 

because of discretization. For the optimization procedure which has been 

proposed, it is necessary that the finite elements which are used for the 

modelling of the plate be fully compatible. If this is not the case, a 

r+1 r 
value of p which will guarantee that (\ ) ^ (\ ) for the stability r \ c r / v c r / J 

2 r+1 2 r 
or that (uo ) ^ (uO-) for the vibration analysis cannot be shown to 

exist. 

The conforming plate bending element developed in Ref. 28 or 29 
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will be. outlined in detail next and expressions for all the matrices 

required for the stability and vibration analysis of a plate will be 

developed. Since the types of plates to be analyzed are rectangular, 

it would suffice to restrict the following development to a conforming 

rectangular plate bending element. This element with a total of 16 

degrees of freedom i.e. four degrees of freedom namely w w w 
i i,x ' i,y 

a n d Wi,xy at e a c h o f t h e f o u r c o r n e r s of the rectangular plate element 

can be shown to satisfy compatibility exactly when the displacement 

function within this element is chosen as 

^(x.y) 
L L 
j=0 k=0 

a xJy 
jk J 

(C-l) 

Note that this representation satisfies the criterion of completeness 

since it is a complete polynomial of the third degree in x and y. it 

can also be shown that ̂ (x.y) includes constant strain states 

which are necessary for convergence to the true solution as the mesh is 

refined (Refs. 22 and 28). 

® 

© 

I 1 
• * ^ -

G ) 
l 

1 

b 
I 

f - - £ 
a. 
I 

l 

Figure C-l. A Typical Rectangular Plate Bending Element 
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Consider a rectangular element of size 2a. X 2b. with the local co-
1 1 

ordinates axes located as shown in Fig. C-1. The displacement function 

given in Eq. (C-1) can be written in the non-dimensionalized form as 

w.(5,H) = L «Jk ^ 
(C-2) 

j=0 k=0 

The same can be written in the matrix form as 

w. = [ i 5 r r TI §TI TTI IJTI T I T TTIZ r T T ST I T n ] {*} 

(C-3) 

Let {u}. denote tine vector of generalized nodal displacements (nondimen-

sionalized for convenience) for the i element. Then 

u 

{u}_. - < > where {u }. = <, 

w. 
I 

a.w. 
1 1-X 

b.w. 

f r w, 
w. 

>= S 
i,5 

a.b.w. 
I i i,xy 

/ 

w i,T] 

w i.sn 

(C-4) 

Next, it is necessary to relate the vector {u}. with the vector {QJ. 

This will enable the displacement function w. to be expressed in terms 

of the generalized nodal displacements. This can be done by evaluating 

the function w. and its derivatives at all the four corners of the plate 
I 

and identifying them with the generalized nodal displacements. From 
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Eq. (C-3) one has upon d i f f e r e n t i a t i o n 

w,_ = [0 1 21 3§2 0 71 2̂ 7) 3§271 0 712 2§712 3 § V 0 713 2 ^ 3 3 ? V ] {<*} 

w,^ = [0 0 0 0 1 I I2 S3 271 2̂ 71 2§271 2§3*T} 37]2 3§7]2 3 ? V 3 5 V ] {«} 

w n , „ = [0 0 0 0 0 1 2§ 3 ^ 2 0 27] 4§T) 6§271 0 37]2 6 ^ 9 5 V ] {a} 
%T\ 

Using these relations the vector {u}. can be related to the vector [a] 

by the relation 

{uh = [c] [a] (C-5) 

where the matrix [c] is given by: 

(see next page) 
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[c ] 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

0 0 0 0 0 1 2 3 0 2 4 6 0 3 6 9 

1 - 1 1 -1 1 - 1 1 - 1 1 -1 1 -1 1 -1 1 -1 

0 1 -2 3 0 1 -2 3 0 1 -2 3 0 1 -2 3 

0 0 0 0 1 - 1 1 -1 2 -2 2 -2 3 -3 3 -3 

0 0 0 0 0 1 -2 3 0 2 -4 6 0 3 -6 9 

1 - 1 1 - 1 - 1 1 - 1 1 1 - 1 1 - 1 - 1 1 -1 1 

0 1 -2 3 0 -1 2 -3 0 1 -2 3 0 -1 2 -3 

0 0 0 0 1 - 1 1 -1 -2 2 -2 2 3 -3 3 -3 

0 0 0 0 0 1 -2 3 0 -2 4 -6 0 3 -6 9 

1 1 1 1 -1 - 1 -1 - 1 1 1 1 1 -1 -1 - 1 - 1 

0 1 2 3 0 -1 -2 -3 0 1 2 3 0 -1 -2 -3 

0 0 0 0 1 1 1 1 -2 -2 -2 -2 3 3 3 3 

0 0 0 0 0 1 2 3 0 -2 -4 -6 0 3 6 9 

Hence$one can write 

w. = [ l 5 I2 53 TI ?T1 ?2T1 53T] I]2 stf t ¥ t ¥ Tl3 5T)3 t ¥ sVlCc] ^{u.} 

t 
= EE: (C-6) 

w. - = [0 1 2? 3|2 0 11 25H 3?211 0 II2 2§T]2 3 ? V 0 II3 2 ^ 3 a i V l t c ] " 1 ^ . } 

= aV (C-7) 
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w. - = [0 0 0 0 1 5 I1 I3 271 2511 25271 25371 3712 35712 3^2T12 35V][c- |~ 1 {u. } 

= R u. ,„ ON i (C-8) 

w. = [0 0 2 65 0 0 271 6571 0 0 2712 6^T]2 0 0 253 65713] [ c ] " 1 [ u . ] 
11SS i 

= sSi. (C-9) 

w. m = [0 0 0 0 0 0 0 0 2 25 252 253 671 6571 65% 653'H][c]"1{u. } = G V 

(C-10) 

w ^ = [0 0 0 0 0 1 25 352 0 271 4571 65% 0 37^ 6^T|2 9 5 V ] [ c ] " 1 {u±} 

= H \ I . (C-ll) 

The strain energy of bending of the i element is given by 

1 1 2 
ui - (¥) [x I i(Vi,55 + ;rwi,Tm) " 2 ( 1 " v ) b ^ w i , ^ wi,nn a.b . 

1 1 

-O- i .p) }^ 
a. b. 

1 1 

{T>ab\ }• |. fJL_ 2 1 2 2v 
V 2 Ji J-l J-i V Wi-§5 + 7 "i-m + 7 7 wi,K Wi a~b" " ' ^ ^ ' ^ 

1 i 

+ ^ i < J d | d , 
1 1 
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/Dab^> p }• J" 1 t t , 1 t „ „ t , v t / t 
Vl-J . J. J. i - J J k ^ S "i + J H i G G 2 . + T 2 . . I U 

i -1 -1 a. b . a . b . 
i i i i 

+ G s*) u^ + 2<*2~2^ J±i £L Hfc u . j d^dTl 
a . b . 

I I 

Hence U. can be expressed as 

U. = i u* fk, + k9 + k. + k,~| u. = \ {u.}* [K .] {u.} (C-12) 
l 2—i L—1 —2 —3 -^J —I 2 i vi p i 

where LK.,.] is the stiffness matrix of the i element and 

1 1 

.. J' J" 
a ' i -1 -1 

kx = ( 3 ) J J £ sfc d§ dTl (c-13) 

^9 = ( ^ I J' £ G11 d? dTl (C-14) 
Z X b 1 - 1 - 1 

1 1 

^3 = (3D I I (£ ^ + G s*) d? dTl (C-15) 
i -1 -1 

3 

k, - P ^ ^ l } }' H Hfc d? dn with D. = Ehl
 9 ,„ _ 

-A L ab Ji ̂  ^ * 1 !2(i-v
2) (C"16) 

It should be noticed that in the case of the stability analysis the 

strain energy U. can be interpreted as the incremental bending strain 

energy from the prebuckled configuration and the displacement function 

w. as the incremental deformation from the prebuckled configuration. 
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Let the stiffness matrix in the case of stability analysis be denoted 

by [K .] instead of [KT.] although both are numerically identical. 

SI p VI p 
t-Vi 

Next, the kinetic energy for the i element including the non-

structtiral mass is given by 

U = -X-
ti 2g 

a b a) 1 1 
. b. h. u> }• f. wf d? dTi + - ^ r — J J' m^-w- d5 dTl 
i i i J J i 2 _{ i± di i -1 -1 

Assume m, .(5,T|) = a + a-5 + a„7] + a^^ where the coefficients a„ , a. 

a and a can be related to the intensities of dead mass distribution 

namely m , nu , nu and m, at the four corners of the rectangular ele

ment. These relations are given by 

a = (m + nu + nu + m,)/4 

a = [(m + m.) - (m + nu)]/4a. 

a2 = [(m + m2) - (m3 + m^)]/4bjL 

a = [(m + mQ) - (m0 + m.)]/4a.b. 3 1 3 2 4 l i 

(C-17) 

Hencejthe kinetic energy U . can be expressed as 

u t i " & a i b i h i ^ J' J" ^ £ E ' % i? an 

a.b.OJ 1 1 

+ 1
2

1 an J' J' H, £ £ H, d ? dTl 
- 1 - 1 L L 
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? 1 l t- t-

+ a. b. u) (ax +a2) J J* uj(? £ £ ) t^ d? dT] 

a.b.w 1 1 

+ ^T— a3 J' I \(^ ^ * ̂  Hi' d? dT] , 
-1-1 

Hence 

2 2 
® t ^ t 1 2 3 

U . = T" (u.} [M.] {U.} = -7T u. [M + M + M ] U. (C-18) 
ti 2 i l p i 2 — 1 — — — —l 

where [M.1 is the mass matrix for the i element and 
i P 

^ = ai bi(g hi + ao) J5 J' £ £C d? dTl , (c-19) 

2 X X 

M = a b (a + a ) J J § £ £
c d? dl] , (C-20) 

1 1 - 1 - 1 

q 1 1 . 

MJ = a b a J J* §n £ £ d£ dT) . (C-21) 
1 x -1-1 

The effect of concentrated masses can be accounted for by adding to the 

assembled mass matrix another matrix given by M which is a diagonal 
-̂c 

matrix of the same size with the [4(i-l) + l]th term being equal to 

m . (the concentrated dead mass at the i node) with all- the remain-
ci 

ing terms being zero. 

In the case of the stability analysis it is necessary to construct 

a stability matrix for each element. This is achieved by expressing the 

potential (w ). of the internal prebuckled stress field during bending 
P L 
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in the matrix form. Assume the prebuckled stress state can be expressed 

in the form 

° ° . <? o , ~ o 
a5? = °?0 + * a5l

 + Tl a|2 

am • < V + ? °m + ^ CT^2 ( ° - 2 2 ) 

0 _ ° , F ° 4. 71 ° 
T ^ " T§^0 ^ T ^ l ' T ^ 2 

for any element. (This sort of representation is exactly what one ob

tains as a resul t of the plane s t ress analysis using rectangular ele

ments; see page 182). Then 

a.b.h. 1 1 r T o i o 
i i i c i ' i l _ o , x 2 . 1 o . . 2 / \ 1 1 1 (' (• 1 O. N <£• , 1 O . . 

(Vi= s— [x [x LT V ' S ' + 7 W 

a.b.h. 1 1 -
1 _ o t « «t . 1 o t t - i i r l ' J- o t ^ _ c , i o t „ „ t 

-5 -r- a u. QQ u. + -R- a u. R R u. 
2 ^ ^ L&2 § 5 - i ^ ^ - i b2 T|T| - l - i 

i i 

1 o t ,_ t 
+ ~"T"~ Tp<n u - (2. R 

a i i ^ ~ L 

+ R a11) H i j d ? dTi 

or 
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<Vi = ^ fel + h2 +
 £G3

 + h* +
 SG5

 + h6 

+ %7 + SGS + SG9J Hi 

= 7 {u.}t [Kr.] {u,} (C-23) 
Z 1 bl p 1 

where [K„.1 is the stability matrix for the i element and 
Gi 

hi • IT hi i o Jj ^ a a ' d 5 dT1 < c" 2 4 ) 

b . 1 1 

hi = S7 M °f 1 J" J' S a 2. <H dTl (C-25) 

b . 1 1 

Jfes = r" h i CT?2 J* J" ^ a a « < » i <c-26> 
i - 1 - 1 

^ " ^ i ^ o / J ^ ^ <C"2 7> 

a. 1 1 

^G5 = b^" h i G m ^ J' § *- R ^ ^ (C-27) 

a i -1 l 

^G6 = b 1 h i Q^2 I J ^ £ ^ d ? <"1 (C-29) 
i - 1 - 1 

1 1 

^ G ? = h i T p o J* .f ( £ £ + * afc> d5 dTi ( c" 3°) 
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1 1 

^ 8 = h i T ™ J' J' ? ( £ ^ + s a " ) d ? dTi ( c - 3 1 ) 
- 1 - 1 

1 1 

^ G 9 = h i T?i°i21 J' ^ £ + £ a ) d? dTi • ( c - 3 2 ) 

In the case of inextensional buckling the potential of the externally 

applied tractions must be expressed in the matrix form. From the known 

distribution of the externally applied tractions, the values of these 

tractions along the boundaries of any element i can be determined. 

f-Ti 

These fictitious tractions for the i element can be approximated by 

expressions of the form given by Eq. (C-22) and the stability matrix for 

the i element can be generated as before. Finally the element stiff

ness matrices, mass matrices and/or stability matrices can be assembled 

to yield the corresponding master matrices for the entire plate. Assum

ing as in Appendix A a relation between the local co-ordinates {u.} , 

i = l,..m and the global co-ordinates {q} in the form 

M = [B] {qj (C-33) 

The expressions for the master matrices can be written as 

m 

[K ] = Y B* [K .] B = [K ] (C-34) 
v p /_. — vi p — s p 

i=l 

m 

[M] = y Bfc[M.] B (C-35) 
Jp L - iJp -

i=l 
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m 

t R
r ] n

 = ) ^ [K ] B (C-36) 
(j p /J "~ Gl p 

i=l 

Finally, at times, due to structural symmetry and/or loading symmetry it 

may be possible to separate the unrestrained degrees of freedom {q} into 

two distinct sets of variables namely the 'master1 variables and the 

'slave1 variables such that the latter can be related to the former by 

a relation of the form 

{q} = [=-] {r} = [F] {r} (C-37) 

where I is the identity matrix while the matrix L is a rectangular ma

trix with elements which are either +1, -1 or 0. Using Eq. (C-37) the 

master matrices of Eqs. (C-34) through (C-36) can be transformed to a 

size much smaller than their original size. This leads to a consider

able saving of computer time. The transformed matrices can be obtained 

by the same transformation as in Eqs. (C-34) through (C-36). 

All the component matrices which make up the element matrices 

[K .] , or [K .] , [M.1 and [K_.] are generated by numerical inte-
vi p si p ' iJp Gi p b J 

gration using Gaussian Quadratures (Ref. 22, pp. 261-267). 

As far as the details of the plane stress analysis required for 

the stability analysis of the plate, the same are developed in full in 

Ref. 22, pp. 66-69. For the development of the element stiffness matrix 

the following displacement field is assumed. 
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u(x,y) = a + ax + a~y + oi.xy 

v(x,y) = Px + P2x + P4y + p4xy 

(C-38) 

The resulting stiffness matrix [K.] for the i element (see Fig. c-1) 
X o 

is given by 

(see next page) 



<Vi ( v 1 ) 1 ( u 2 ) . <V2>i ( u 3 ) . (Vi ( u , ) . 
4 L <Vi 

Eh 

^ S (1 -v 2 ) 

sir ^ i r ) 

SYM 

tP. 

KJ - v 

K»5 

O ^ ) 1/1 ^ i !f'2 1/1 o v | ( I - ^ <^>i> 

(V",Pl) I V, V ! V2 I 
r ^ 2 r - T / | - ~ 

V * 1 N ( N M p l > 
Ti rH ? - —-, 

V I 
S V ^ l * ' ' 4 

K-V 

|-Kf -fi' 

(v-tp1) 

1 iHt\ i f i , ^ 

1/ ^ 1 

«P 

f>. 

1/1 \ ' Y2 1/1 „ ' 

i / ^ tir+T 
( v "9 1 ) 

1/1 . "\ 

fir+ vy 

1/ ^ n 

v. 

6\ r / 

(V"<P1) 

K«- ? 

4 

1/ x ^ 

3V*7V 
(C-39) 

00 

o 
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. 1-v l+v , ., 
where cp =-r— , cp0 = -=— and r = a./b. . Tl 2 T2 2 1 1 

The resulting matrix equation after the formation of the master 

plane stress stiffness matrix with the imposed boundary conditions is 

given by 

W c [q) = tQ) (C-40) 
S fa S 

where {Q} is the vector of work-equivalent nodal forces obtained from 

the prescribed tractions. It can be seen that for the type of assumed 

displacement field (see Eq. C-38) the work-equivalent nodal forces are 

nothing more than the forces that would be obtained by simple beaming of 

the given tractions to the two nodes of the face on which the tractions 

are prescribed. From Eq. (C-40) the vector {q} of the unrestrained de-
s 

grees of freedom of the plate can be obtained as 

{q}s = [K]."1 {Q}s (C-41) 

Having obtained {q} the resulting stress resultants distribution in the 

i element is given by 

(see next page) 
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< 

xx 

o 
yy 

o 
xy 

Eh 

d-^2) 

(b+y) 

v(a+x) 

"(b+y) 

v(a-x) 

-(b-y) 

-v(a-x) 

(b-y) 

-v(a+x) 

v(b+y) 

(a+x) 

-v(b+y) 

(a-x) 

-v(b-y) 

-(a-x) 

v(b-y) 

-(a+x) 

cpx(a+x) 

cpx(b+y) 

91(a-x) 

-<p]L(b+y) 

-cpx(a-x) 

-cp1(b-y) 

-cp]L(a+x) 

cp1(b-y) 

Ki 

(C-42) 

where [q] . is the vector of the eight degrees of freedom for the i 
w 1 

th 

element. 
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