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Abstract— We propose a consistency model for a data store in 

the Cloud and work towards the goal of deploying Database as 

a Service over the Cloud. This includes consistency across the 

data partitions and consistency of any replicas that exist across 

different nodes in the system. We target applications which 

need stronger consistency guarantees than the applications 

currently supported by the data stores on the Cloud. We 

propose a cost-effective algorithm that ensures distributed 

consistency of data without really compromising on availability 

for fully replicated data. This paper describes a design in 

progress, presents the consistency and recovery algorithms for 

relational data, highlights the guarantees provided by the 

system and presents future research challenges. We believe 

that the current notions of consistency for databases might not 

be applicable over the Cloud and a new formulation of the 

consistency concept may be needed keeping in mind the 

application classes we aim to support. 
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I.  INTRODUCTION  

Data stores deployed over the Cloud have to be resistant 
to system and network failures and provide replica co-
ordination. In this paper, we are targeting a fully replicated 
database. A replica refers to a complete copy of the data. 
Fault-tolerance and availability is ensured by replicating (or 
caching) frequently used data across multiple locations. The 
downside of this is that co-ordination of the various replicas 
is a cause for overhead, possibly reducing system 
availability. In current Cloud environments, immediate 
consistency is not given high priority resulting in poor 
support for true online transaction processing. 

Most distributed data stores are scalable for large amount 
of data. These systems are highly available for data 
management but do not support general serializable 
transactions. Supporting serializable transactions over 
replicated and widely distributed systems is expensive [18, 
20]. Hence, to suit the requirements of web-based 

applications, designers of these systems have sacrificed the 
ability to provide scalable transactions. These systems have 
stringent performance requirements and provide eventual 
consistency guarantees [18]. In short, these systems use 
algorithms and access methods which compromise on 
consistency guarantees for availability and scalability. Also, 
it is relatively easier to deploy systems over the Cloud that 
are comparable to traditional databases when the major 
proportions of operations performed on the data are analytic 
[1].  

Examples include systems like Bigtable [10], PNUTS 
[11] and Dynamo [9] which are highly scalable. They use a 
key-value type data-store and allow single key accesses. 
They provide minimum consistency guarantees for multi-key 
accesses. However, these systems cannot match the 
consistency and recovery mechanisms guaranteed by 
traditional databases. Moreover, unlike traditional databases, 
these data stores do not have the concept of referential 
integrity (foreign keys). Other systems like Sinfonia [12] and 
Chubby [13] can be used in the design of scalable distributed 
systems. Sinfonia [12] introduces the minitransaction 
primitive. Lomet et al [17] and Brantner et al [14] suggest 
database design techniques but stop short of giving elasticity 
guarantees over the Cloud. ElasTras [19] does not guarantee 
consistency across data partitions. 

In three-tier applications, the scaling of the entire 
software stack is limited by the database layer. This is 
because the inability of the database layer to scale well is a 
bottleneck that limits the growth of applications sizes as a 
whole. Applications like airline reservations and employee 
data systems have been the bread and butter of database 
industry - but these applications need an RDMS and 
transaction processing capabilities. If these applications are 
to be deployed over the Cloud, it is essential to come up with 
a scalable consistency model over a scalable data store for 
the Cloud that supports referential integrity and a transaction 
mix with a majority of updates. This boils down to a problem 
of deploying databases over the Cloud without 
compromising on any of their existing features.  

We aim to deal with elastic and scalable transaction 
management when databases are deployed as a service over 



the Cloud, without any loss of functionality. For DaaS 
(Database as a Service), a scalable transaction management 
paradigm is necessary; one which would work well even 
when the majority of the transactions involve updates. 
Hence, it is necessary to decide the level of consistency 
needed for data management over the Cloud. This 
consistency guarantee should span across all partitions and 
over all replicas. This is the notion of consistency across all 
partitions or global consistency. If the proposed goal of 
global consistency is achieved, a Service Level Agreement 
(SLA) for the model is essential to measure the performance 
of the model. This is imperative because the methods of data 
access and the demands of each application on latency would 
not be the same. For some applications, transactions might 
involve majority of accesses in a single data partition but for 
others this might be unpredictable and would require global 
synchronization. In short, this would help in determining and 
enumerating the classes of transactions that could be 
supported. 

In the above DaaS scenario, we try to work a level above 
the data storage layer but are really tightly coupled to it. A 
method is required to deal with data objects being modified 
by the client and to reconcile different versions or to keep a 
single updated version. Two types of Consistency models are 
considered as a basis for the development of the model: 

• Deferred Consistency model 
• Immediate Consistency model 
Immediate consistency is the real threat to availability for 

data stores over the Cloud. A deferred consistency model 
could involve the use of a write back cache or a write back 
data log or data versions. This model would ensure an 
eventually consistent distributed non-relational database as it 
does now. The advantage of immediate consistency is that 
the data objects accessed by the client would always be 
consistent. For example, a user may make some change to 
his shopping cart and this change might go to an older 
version of his shopping cart in the deferred model but in the 
real-time model this is not possible. Immediate consistency 
model does not need reconciliation of versions. Immediate 
consistency with its strong guarantees of synchronous replica 
consistency can be compared to the consistency guarantees 
offered by traditional databases.  

Our work is for a fully replicated data store. We aim for a 
scalable, elastic model which can handle transactions for this 
system and also provide the desired consistency guarantees 
for a typical application like a hotel-room reservation system 
implemented on a fully replicated scalable data store.  

II. GENERAL ARCHITECTURE OF THE SYSTEM 

A node (or a replica) is a virtual machine instance. Each 
node has a complete copy of the data. The system is 
distributed across many nodes.  A bunch of nodes taken 
together form an Interest Group.  At this stage, each node has 
only one table without any referencing constraint. In section 
V, this is extended to multiple tables with referencing 
constraints. 

Each node consists of the following components:  
1. Data Objects: Data Objects are simply tables stored as 

.db files on Amazon S3. Each data file contains a single 

table. A table has many attributes and rows (like a matrix). 
Each table row has a unique row number and contains the 
timestamp of the transaction which performed the last 
update. Data Objects are fully replicated over the network. 
Each row in the table has an entry for the last update time (or 
the value of the global time stamp of the transaction which 
last updated this row). 

2. Update Queue: The Update Queue is the recovery 
mechanism present at each node. The transaction requests 
from the Transaction Managers (which are server-side virtual 
machine instances) are added to the Update Queue at each 
replica. It uses Amazon’s Elastic Block Storage. 

3. Queue Manager: The Queue Manager handles the 
Update Queue and runs the transaction with the smallest 
time-stamp. After successful commit, this transaction is de-
queued. 

 

 
 
Figure 1:  The components of a node (or a replica). 
 
Other components of the system include: 
Interest Group (IG): An IG is a group of replicas in 

which all (or a majority of replicas) have the most recent 
global timestamp.  Hence with the current setting (one table 
per replica), there is only one IG. This will change in section 
V when referential constraints are considered.  

The IG is used for servicing client requests. The IG is the 
core of the system and the replicas outside the IG act as 
backups to the replicas in the IG. IG is dynamic- any change 
(replica failure or replica boot up) in the network can lead to 
addition of replicas to the IG.  The IG is reflective of the 
state (number of running nodes) of the network. The size of 
an IG has a great impact on client waiting time. The 
maximum size of an IG is currently kept at N/2 and the 
minimum size at 2, where N is the total number of working 
replicas in the network.  

The necessary condition for an IG to exist is that it must 
have the minimum number of nodes. The size of the IG 
mainly depends on the transaction mix viz. the proportion of 
reads and writes. The concept of an IG will be clearer in 
sections III and IV. More on IG size in section VII. 

Transaction Managers (TMs): The TM is a server-side 
virtual machine instance. A TM is very closely associated 
with the replicas. The TM is responsible for maintaining data 
related to the IG and also ensuring parallel execution of 
update operations on the IG nodes. One TM is designated as 
the Master TM (MTM). TMs have meta-data regarding 
table references. Read/write requests from the client are 
received by the TMs. TMs then issue these requests to the IG 
following the algorithm described in section III. Before 
sending any transaction to any IG, a TM is required to check 



if any transaction with a lower time-stamp is being processed 
in any other TM. If it is, then this TM must wait till its turn 
to send the transaction comes.  

Nodes in the system are numbered starting from 0. Each 
TM contains a bitmap called as an IG map. The IG map 
includes an entry for each node in the system. If X denotes 
the IG map and i denotes an index into the IG map then: 

Xi = 1 if node i is a part of the IG 
Xi = 0 otherwise. 
All the components of this system are deployed on the 

Cloud. 
 

 
 
Figure 2: A snapshot of the system showing an IG and 2 

TMs.  There is exactly one table on each node and it is fully-
replicated.      

III. CONSISTENCY ALGORITHM 

This section presents the consistency algorithm for a 
single table fully replicated across all the nodes. A few terms 
need to be defined: 

Version: The global time stamp value assigned to the 
data file at a given replica. 

Current replica: A replica with the most recent version 
of the data file. It is possible to have more than 1 current 
replica. 

The client must submit an estimate of the transaction 
workload initially. This is used to determine the number of 
TMs and number of nodes (total number of virtual machine 
instances) to be launched on each hypervisor [21].  After this 
initial startup phase, the system scales with the transaction 
workload following the pay-as-you-go model. Initially, all 
the replicas start with the same version number- Version 0. 
All the IG maps are reset. The replicas are randomly grouped 
together into an IG by the MTM. The starting size of the IG 
is specified by the application developer. The MTM then 
sends its IG map to other TMs for synchronization.  
      A client request can go to any TM, thus ensuring that no 
TM is overwhelmed by more requests than it can service 
(load balancing). The TM which receives the client write 
request multi-casts the request to all the nodes in the IG. The 
TM is required to wait for acknowledgment from only the 
current replicas in the IG. The nodes in the IG forward the 
write requests to the other replicas after sending their 
acknowledgements to the TM.  

     Inside the IG, the updates are applied in parallel to the 
replicas. Hence, the amount of time the client has to wait is 
bounded by the slowest replica in the IG. This makes the 
write latency of the IG equal to the write latency of the 
slowest replica in the IG currently. Write latency of a replica 
for a TM is the difference between the time at which a TM 
sends an update to this replica and the time at which this TM 
receives the acknowledgement. Write latency is variable due 
to the dynamic nature of the IG. Suppose the IG has m nodes 
and the write latency of i

th 
node is ti and the write latency of 

the IG is TIG. Then, 
TIG = max (t1, t2, t3, …, tm). 
      The updates are performed on those replicas which are 
currently not 'in use'.  These updates go into an Update 
Queue at each replica. In each replica, the Queue Manager 
de-queues the update with the smallest timestamp from the 
Update Queue. If at least one of the rows affected by this 
update is ‘in use’ then the update must wait in the Update 
Queue. This ensures that the updates at all replicas are 
applied consistently and in order. Each queue acts as a log. 
Unlike the write operation, there is no multi-cast needed for 
a read operation. The data can be read from any current 
replica in the IG. Since there are two types of operations - 
read and write, this leads to following dependencies of 
operations on a single table row: 

Read after Write: A read coming into the IG when a write 
operation is being performed. The read can be issued on any 
replica on which this write has been performed and 
committed.  

Read after Read: A read coming into the IG when a read 
operation is being performed. The read can be issued on any 
replica. The TM sends a read request to only one replica. 

Write after Read: A write coming into the IG when a read 
operation is being performed. The writes can be issued on all 
the replicas except on which this read is being performed. 
The write on this replica is issued after this read is done. 

Write after Write: A write coming into the IG when a 
write operation is being performed. The writes can be issued 
on all the replicas except on which this write is being 
performed. The write on this replica (or replicas) is issued 
after this write is committed. 

TMs put each read/write request into the Update Queue 
at each replica in the IG. The Queue Manager at each replica 
must keep track of these dependencies while issuing the 
transactions from the Update Queue. This algorithm ensures 
that whenever a client issues a read operation, a consistent 
and correct value is read from the data store. 

IV. RECOVERY ALGORITHM 

A failure is defined as a state in which a replica cannot 
service any client request at all. Partial failures are not 
considered.  

When a node (inside or outside the IG) fails, a check is 
run by any one TM on the network and on the IG. This 
checks if the IG continues to have the minimum number of 
nodes and establishes if more nodes can be added to the IG if 
it is at less than the maximum capacity. This is called re-
evaluation of the IG and is performed by the MTM. MTM 
sends the new contents of the IG map to the other TMs. 



More than one node can be added to the IG after re-
evaluation. 

The re-evaluation of IG does not mean that the system is 
down. While a node is getting added to an existing IG, a 
client operation can still be performed on the remaining 
nodes in the IG. If operation was a write, it can be performed 
on the new node added to the IG only when its addition to 
the IG is complete. 
      The algorithm presented in section III allows for a 
recovery scheme to handle failures. This is elaborated by 
considering the following possible events.  

When node(s) inside the IG fails: The IG is re-evaluated. 
If no node can be added to the IG and the IG has less than 
the minimum number of nodes, then the system is 
unavailable and does not service any client request until a 
new IG is formed. 

When node(s) outside the IG fails: The IG is re-
evaluated.  

When node(s) comes up: The IG (either existing or see if 
a new one can be formed) is re-evaluated. This node can 
become a part of the existing IG or forms a new IG.  

The above scenarios can be thought of as interrupts to the 
system. Each of which will lead to re-evaluation of the IG.  

Queue Manager: Each replica has a Queue Manager. As 
discussed earlier, the updates at each replica are first added 
to a queue, before applying to the respective table row. This 
queue called the Update Queue which ensures that the 
updates are applied in order of time. The queue also serves as 
a log of transactions which can be used when the replica 
comes up after failure. 

Let there be two replicas A and B. The version of the 
data file at B is V1 and that at A is V. If V1 is the most 
current version of the file, then B's update queue would be 
empty. If it is not the most current version of the file and 
suppose V is the most current version of the file then V1 
would need, say, n updates to reach V or simply V = V1 + n. 
Now, suppose B fails and is down for m units of time. In this 
time, the version at A would advance from V to a new 
version V2. Say there were n1 updates done during this time. 
Now the current version at this time is V2 and V needs to 
have (n + n1) updates to become V2 when B comes up.  

Now, the question to be answered is: From where would 
B get the updates after it comes up? To go to the version V1, 
it simply needs to de-queue all the updates in its update 
queue when it failed. Then to go to V2 it needs to ask A to 
send it the modified tuples or all the tuples. This being an 
operation conducted infrequently, should not affect the 
performance of the system greatly. If this is done, then B 
does not need to use its update queue at all. The updates 
from the TM(s) would still be coming to the replica B and 
would be added to its update queue. So if B comes up at time 
t, then it asks any replica in the IG for the most updated data. 
Until the file at B comes to the current version at the time t, 
the Queue Manager does not apply the updates to the table at 
B. 

When the IG fails (which implies that no node outside 
the IG can be added to the IG after IG re-evaluation), there is 
no need for the transmission of updates from other nodes as 
the IG nodes would already be current when they come up. 

A more general form of this is when the entire system fails; 
each replica which is not current has to do what B does in the 
above example. But these types of failures would be 
unlikely. 

When a node(s) executing a data operation fails: Reads 
can be forwarded to another node with the current version of 
the replica. This is done by the TM, when it does not get any 
acknowledgement from this node. In case of writes, the time 
stamp of the transaction is read from the front of the update 
queue and a local undo operation is executed on the 
corresponding row in the table.  

When a TM fails: Each Cloud node has one TM as a 
virtual machine instance and any number of virtual machine 
instances as nodes or replicas. When a TM fails, a new 
virtual machine instance is started and it has the same state 
as the failed TM. It continues processing from the time the 
TM had failed. 
      So when the system is down when either all replicas are 
down or there is no functional IG in the network (There 
might be current replicas active even without an IG in the 
network. This is a tradeoff between what the minimum size 
of an IG should be and also the maximum size. It is 
application dependent and it is best if the developer selects 
it.) 
      The algorithm is dynamic and reflects the current state of 
the network. The size of the IG is a function of the number of 
working nodes. As long as the IG is up and running, the 
client finds the system available and reading consistent 
values. The client latency depends on the current size of the 
IG currently. Since the size of the IG is dynamically 
dependent on the number of working replicas it is safe to say 
that the client latency also depends on the number of 
working replicas. Clients can get concurrent reads and writes 
which happen in parallel. When a replica in the IG fails, the 
IG is re-evaluated and possibly more replicas are brought 
into the IG hence the performance does not suffer for each 
IG replica failure. The replicas outside the IG (which are up 
and running) also keep on applying the updates but the TM 
does not wait for acknowledgments from them. But they are 
not left behind as the updates are sent to them as well. The 
system keeps evolving and ensures immediate consistency   
for the IG and eventual consistency for replicas outside the 
IG. 

V. EXTENDING TO MULTIPLE TABLES WITH  

REFERENCING 

Each node now has more than one table. Each table is 
fully replicated over each node; this means that each node 
has exactly the same data.  The attributes of these tables can 
have referential constraints between them. 

An update to a single row in one table may lead to 
updates of referenced rows in other tables. Consider a typical  
example of EMPLOYEE and DEPARTMENT tables. 
Suppose the primary key of DEPARTMENT table is deptID 
and it references the deptID attribute in the EMPLOYEE 
table. Any change in the deptID value in DEPARTMENT 
table must be consistent with the referenced attribute in the 
EMPLOYEE table. For example, suppose the deptID is 
changed from 4000 to 5000, then all the corresponding 



EMPLOYEE tuples in the EMPLOYEE table must be 
updated. This is a simple example of referential integrity. 
      The IG concept is extended to solve this problem by 
creating separate IGs for each table. So, the EMPLOYEE 
and DEPARTMENT tables would have their own separate 
IG. A node can be a part of more than one IG but copies of 
one table constitute a single IG (See figure 3 below). In this 
case, when the data is updated in the EMPLOYEE IG a 
separate update is launched on all the replicas in the 
DEPARTMENT IG. But when the EMPLOYEE table is 
being updated (in its IG) no DEPARTMENT table to which 
this update has not been applied yet  can be updated or read 
on any node This would lead to inconsistency.  
 

 
 
Figure 3: The system showing two IGs. Note one node is 
common to both the IGs. 
 
      To avoid this inconsistency an independent locking 
scheme is needed which would lock the tuples from the 
various tables that would be updated as a result of our 
current update. As an example, if the deptID is changed from 
4000 to 5000 then all EMPLOYEE tuples and all 
DEPARTMENT tuples with the deptID 4000 would have to 
be marked locked. These tuples have to be locked by the TM 
before the updates are sent to the respective IGs.  To make 
clear why this is important, assume that query updating the 
deptID from 4000 to 5000 is in progress and currently the 
department table IG is being updated and there is a query to 
update the salaries of all employees (in the EMPLOYEE 
table) with the DEPARTMENT ID 5000. There will not be 
any EMPLOYEE tuple with DEPARTMENT ID 5000 yet 
(as the the deptID from the previous update has not been 
applied to the EMPLOYEE table). So this query would not 
update anything in the EMPLOYEE table. This implies that 
until all the required tables are not updated no operation can 
be allowed to go forward on any of the related tables. It may 
be allowed on those tables which have already been updated. 
This is a performance bottleneck.  

VI. MAINTAINING META-DATA ABOUT REFERENCING 

CONSTRAINTS IN THE TM 

To implement the scheme discussed in section V, some 
additional information is stored in each TM. Each TM has 
meta-data containing the referencing information about 
tables viz. which updates are cascaded. The TM makes a 
transaction schedule (the set of updates to be sent over the 

network). This schedule is a map (key-value pairs) and 
specifies which table and row have to be updated. Suppose 
an update is to be made on table Ti, row Rj by transaction T1 
with timestamp tx (timestamp is the time at which the 
transaction is issued by the client). The schedule for T1 
would have the corresponding key entry: 

(Ti, Rj, tx) 
The value part of the map has the update query to be 

executed. Whenever a TM gets an update transaction, it 
prepares a list of tables which need to be updated because of 
this transaction and creates the transaction schedule. This 
essentially prepares the TM for sending independent updates 
to each of the table IGs. But these updates are still a part of 
the main transaction, so it is important that the TM sends 
these updates together in time. After these updates are sent, 
this works as in the normal case (the single table case). 

Consider the DEPARTMENT and EMPLOYEE table 
example. The above approach would lead to two independent 
update requests to be multi-cast to two different IGs from the 
TM. The problem arises due to network delay- the update for 
DEPARTMENT goes to the DEPARTMENT table IG and is 
added to the Update Queue of the member nodes and 
similarly the update for the EMPLOYEE table goes to the 
EMPLOYEE table IG. Now, say a read or a write request 
comes in and can enter between these two updates on the 
time line hence is ahead in the respective update queue. This 
may cause a problem. This is avoided by having each TM 
first verify that no transaction with a smaller timestamp is 
being processed at another TM before sending the 
transaction to the replicas in an IG. 

Consider the EMPLOYEE and DEPARTMENT tables’ 
example. The TM issues two transactions with the same 
timestamp at the same time to two different IGs. This 
ensures that these transactions are consistent in time and no 
read/write request (as the case pointed out above) can sneak 
in between.  The Queue Manager at each node picks up the 
transaction with the minimum time stamp value to run. 

VII. SELECTING THE MINIMUM AND MAXIMUM SIZES OF 

AN IG     

      The minimum and maximum sizes of an IG play a major 
role in availability and performance guarantees of the 
system.  The term size here refers to the number of virtual 
machines which access the data file.  
      When the IG has less than the minimum number of 
nodes, then the system does not service any client request 
and is unavailable.  This implies that a low minimum size 
increases the availability. But if the minimum size is too 
small the system would be available for a longer time but the 
load on the IG would become high when the number of 
working nodes becomes less thereby increasing the chances 
of failures. If the minimum size is too large then the system 
is unavailable for a longer time leading to more client 
waiting time.  
       Unlike the minimum size, the maximum size of an IG 
has impact on the performance of the system. A large 
maximum size would lead to higher write latency for the 
client as the TMs would have to wait for more number of 



acknowledgements. A small maximum size would lead to 
larger Update Queues at each replica and more queuing time.  
       As the IG itself is not static, it would be a good idea to 
have the minimum and maximum sizes of an IG as variable. 
If there is an increase in the transaction load then the 
maximum size can be increased to a higher value depending 
on the load. Similarly, the maximum can be reduced to a 
lower value if the transaction load decreases.  A very low 
value of minimum size is not recommended. The minimum 
size can be lowered if the system is experiencing high failure 
rates otherwise a relatively high value of minimum size can 
be chosen giving a desired size of the IG. These decisions are 
dependent on the transaction load and are taken at the server 
side. Client would be required to give the initial load 
estimates to facilitate the initialization of minimum and 
maximum IG sizes. Currently, the value of minimum size is 
2 and that of maximum size is N/2 where N is the total 
number of replicas in the system. 

VIII. FUTURE SCOPE 

This is a work in progress. We are implementing this idea 
on a room reservation system as a prototype. This fully 
replicated system has an almost equal proportion of reads 
and writes transactions. We aim to measure average client 
waiting time for different IG sizes; costs of IG maintenance, 
cost efficiency of getting computing power proportional to 
the amount client pays and also fault tolerance which would 
test the recovery algorithm. We aim to conduct experiments 
on different IG sizes for various transaction loads which 
would give a good idea about what an ideal IG size would be 
for a given system and a given transaction load. In the future, 
we would like to measure the feasibility of this design for 
analytic workloads too and also extend the proposed design 
to partially replicated data stores. 

IX. CONCLUSION 

We are working on one of the limitations with Cloud 
computing – transactional data management. This algorithm 
aims to use a SQL-like interface to the data management 
applications over the Cloud but internally have consistency 
algorithms adapted to the Cloud. We are also trying to 
incorporate the paradigm of relational integrity into our 
system which is the corner stone of RDMS. We have this 
algorithm supporting updates to a single table or many 
related tables replicated over the network. We are sure this 
would raise questions relating to the trade-offs between 
performance v/s availability and also performance v/s 
consistency (overhead of our consistency scheme). We aim 
to find out a satisfactory way of deploying database 
applications over the Cloud and also support update 
operations apart from data analysis. 
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