
TOWARDS TRANSACTIONAL DATA MANAGEMENT OVER THE CLOUD

Rohan G. Tiwari

Database Research Group, College of Computing

Georgia Institute of Technology

Atlanta, USA

rtiwari6@gatech.edu

Shamkant B. Navathe

Database Research Group, College of Computing

Georgia Institute of Technology

Atlanta, USA

sham@cc.gatech.edu

Gaurav J. Kulkarni

Database Research Group, College of Computing

Georgia Institute of Technology

Atlanta, USA

gauravjkulkarni@gatech.edu

Abstract— We propose a consistency model for a data store in

the Cloud and work towards the goal of deploying Database as

a Service over the Cloud. This includes consistency across the

data partitions and consistency of any replicas that exist across

different nodes in the system. We target applications which

need stronger consistency guarantees than the applications

currently supported by the data stores on the Cloud. We

propose a cost-effective algorithm that ensures distributed

consistency of data without really compromising on availability

for fully replicated data. This paper describes a design in

progress, presents the consistency and recovery algorithms for

relational data, highlights the guarantees provided by the

system and presents future research challenges. We believe

that the current notions of consistency for databases might not

be applicable over the Cloud and a new formulation of the

consistency concept may be needed keeping in mind the

application classes we aim to support.

Keywords-cloud computing; transaction management;

database update; queue manager; transaction manager;

transaction schedule; version; replication; Database as a

Service.

I. INTRODUCTION

Data stores deployed over the Cloud have to be resistant
to system and network failures and provide replica co-
ordination. In this paper, we are targeting a fully replicated
database. A replica refers to a complete copy of the data.
Fault-tolerance and availability is ensured by replicating (or
caching) frequently used data across multiple locations. The
downside of this is that co-ordination of the various replicas
is a cause for overhead, possibly reducing system
availability. In current Cloud environments, immediate
consistency is not given high priority resulting in poor
support for true online transaction processing.

Most distributed data stores are scalable for large amount
of data. These systems are highly available for data
management but do not support general serializable
transactions. Supporting serializable transactions over
replicated and widely distributed systems is expensive [18,
20]. Hence, to suit the requirements of web-based

applications, designers of these systems have sacrificed the
ability to provide scalable transactions. These systems have
stringent performance requirements and provide eventual
consistency guarantees [18]. In short, these systems use
algorithms and access methods which compromise on
consistency guarantees for availability and scalability. Also,
it is relatively easier to deploy systems over the Cloud that
are comparable to traditional databases when the major
proportions of operations performed on the data are analytic
[1].

Examples include systems like Bigtable [10], PNUTS
[11] and Dynamo [9] which are highly scalable. They use a
key-value type data-store and allow single key accesses.
They provide minimum consistency guarantees for multi-key
accesses. However, these systems cannot match the
consistency and recovery mechanisms guaranteed by
traditional databases. Moreover, unlike traditional databases,
these data stores do not have the concept of referential
integrity (foreign keys). Other systems like Sinfonia [12] and
Chubby [13] can be used in the design of scalable distributed
systems. Sinfonia [12] introduces the minitransaction
primitive. Lomet et al [17] and Brantner et al [14] suggest
database design techniques but stop short of giving elasticity
guarantees over the Cloud. ElasTras [19] does not guarantee
consistency across data partitions.

In three-tier applications, the scaling of the entire
software stack is limited by the database layer. This is
because the inability of the database layer to scale well is a
bottleneck that limits the growth of applications sizes as a
whole. Applications like airline reservations and employee
data systems have been the bread and butter of database
industry - but these applications need an RDMS and
transaction processing capabilities. If these applications are
to be deployed over the Cloud, it is essential to come up with
a scalable consistency model over a scalable data store for
the Cloud that supports referential integrity and a transaction
mix with a majority of updates. This boils down to a problem
of deploying databases over the Cloud without
compromising on any of their existing features.

We aim to deal with elastic and scalable transaction
management when databases are deployed as a service over

the Cloud, without any loss of functionality. For DaaS
(Database as a Service), a scalable transaction management
paradigm is necessary; one which would work well even
when the majority of the transactions involve updates.
Hence, it is necessary to decide the level of consistency
needed for data management over the Cloud. This
consistency guarantee should span across all partitions and
over all replicas. This is the notion of consistency across all
partitions or global consistency. If the proposed goal of
global consistency is achieved, a Service Level Agreement
(SLA) for the model is essential to measure the performance
of the model. This is imperative because the methods of data
access and the demands of each application on latency would
not be the same. For some applications, transactions might
involve majority of accesses in a single data partition but for
others this might be unpredictable and would require global
synchronization. In short, this would help in determining and
enumerating the classes of transactions that could be
supported.

In the above DaaS scenario, we try to work a level above
the data storage layer but are really tightly coupled to it. A
method is required to deal with data objects being modified
by the client and to reconcile different versions or to keep a
single updated version. Two types of Consistency models are
considered as a basis for the development of the model:

• Deferred Consistency model
• Immediate Consistency model
Immediate consistency is the real threat to availability for

data stores over the Cloud. A deferred consistency model
could involve the use of a write back cache or a write back
data log or data versions. This model would ensure an
eventually consistent distributed non-relational database as it
does now. The advantage of immediate consistency is that
the data objects accessed by the client would always be
consistent. For example, a user may make some change to
his shopping cart and this change might go to an older
version of his shopping cart in the deferred model but in the
real-time model this is not possible. Immediate consistency
model does not need reconciliation of versions. Immediate
consistency with its strong guarantees of synchronous replica
consistency can be compared to the consistency guarantees
offered by traditional databases.

Our work is for a fully replicated data store. We aim for a
scalable, elastic model which can handle transactions for this
system and also provide the desired consistency guarantees
for a typical application like a hotel-room reservation system
implemented on a fully replicated scalable data store.

II. GENERAL ARCHITECTURE OF THE SYSTEM

A node (or a replica) is a virtual machine instance. Each
node has a complete copy of the data. The system is
distributed across many nodes. A bunch of nodes taken
together form an Interest Group. At this stage, each node has
only one table without any referencing constraint. In section
V, this is extended to multiple tables with referencing
constraints.

Each node consists of the following components:
1. Data Objects: Data Objects are simply tables stored as

.db files on Amazon S3. Each data file contains a single

table. A table has many attributes and rows (like a matrix).
Each table row has a unique row number and contains the
timestamp of the transaction which performed the last
update. Data Objects are fully replicated over the network.
Each row in the table has an entry for the last update time (or
the value of the global time stamp of the transaction which
last updated this row).

2. Update Queue: The Update Queue is the recovery
mechanism present at each node. The transaction requests
from the Transaction Managers (which are server-side virtual
machine instances) are added to the Update Queue at each
replica. It uses Amazon’s Elastic Block Storage.

3. Queue Manager: The Queue Manager handles the
Update Queue and runs the transaction with the smallest
time-stamp. After successful commit, this transaction is de-
queued.

Figure 1: The components of a node (or a replica).

Other components of the system include:
Interest Group (IG): An IG is a group of replicas in

which all (or a majority of replicas) have the most recent
global timestamp. Hence with the current setting (one table
per replica), there is only one IG. This will change in section
V when referential constraints are considered.

The IG is used for servicing client requests. The IG is the
core of the system and the replicas outside the IG act as
backups to the replicas in the IG. IG is dynamic- any change
(replica failure or replica boot up) in the network can lead to
addition of replicas to the IG. The IG is reflective of the
state (number of running nodes) of the network. The size of
an IG has a great impact on client waiting time. The
maximum size of an IG is currently kept at N/2 and the
minimum size at 2, where N is the total number of working
replicas in the network.

The necessary condition for an IG to exist is that it must
have the minimum number of nodes. The size of the IG
mainly depends on the transaction mix viz. the proportion of
reads and writes. The concept of an IG will be clearer in
sections III and IV. More on IG size in section VII.

Transaction Managers (TMs): The TM is a server-side
virtual machine instance. A TM is very closely associated
with the replicas. The TM is responsible for maintaining data
related to the IG and also ensuring parallel execution of
update operations on the IG nodes. One TM is designated as
the Master TM (MTM). TMs have meta-data regarding
table references. Read/write requests from the client are
received by the TMs. TMs then issue these requests to the IG
following the algorithm described in section III. Before
sending any transaction to any IG, a TM is required to check

if any transaction with a lower time-stamp is being processed
in any other TM. If it is, then this TM must wait till its turn
to send the transaction comes.

Nodes in the system are numbered starting from 0. Each
TM contains a bitmap called as an IG map. The IG map
includes an entry for each node in the system. If X denotes
the IG map and i denotes an index into the IG map then:

Xi = 1 if node i is a part of the IG
Xi = 0 otherwise.
All the components of this system are deployed on the

Cloud.

Figure 2: A snapshot of the system showing an IG and 2

TMs. There is exactly one table on each node and it is fully-
replicated.

III. CONSISTENCY ALGORITHM

This section presents the consistency algorithm for a
single table fully replicated across all the nodes. A few terms
need to be defined:

Version: The global time stamp value assigned to the
data file at a given replica.

Current replica: A replica with the most recent version
of the data file. It is possible to have more than 1 current
replica.

The client must submit an estimate of the transaction
workload initially. This is used to determine the number of
TMs and number of nodes (total number of virtual machine
instances) to be launched on each hypervisor [21]. After this
initial startup phase, the system scales with the transaction
workload following the pay-as-you-go model. Initially, all
the replicas start with the same version number- Version 0.
All the IG maps are reset. The replicas are randomly grouped
together into an IG by the MTM. The starting size of the IG
is specified by the application developer. The MTM then
sends its IG map to other TMs for synchronization.
 A client request can go to any TM, thus ensuring that no
TM is overwhelmed by more requests than it can service
(load balancing). The TM which receives the client write
request multi-casts the request to all the nodes in the IG. The
TM is required to wait for acknowledgment from only the
current replicas in the IG. The nodes in the IG forward the
write requests to the other replicas after sending their
acknowledgements to the TM.

 Inside the IG, the updates are applied in parallel to the
replicas. Hence, the amount of time the client has to wait is
bounded by the slowest replica in the IG. This makes the
write latency of the IG equal to the write latency of the
slowest replica in the IG currently. Write latency of a replica
for a TM is the difference between the time at which a TM
sends an update to this replica and the time at which this TM
receives the acknowledgement. Write latency is variable due
to the dynamic nature of the IG. Suppose the IG has m nodes
and the write latency of i

th
node is ti and the write latency of

the IG is TIG. Then,
TIG = max (t1, t2, t3, …, tm).
 The updates are performed on those replicas which are
currently not 'in use'. These updates go into an Update
Queue at each replica. In each replica, the Queue Manager
de-queues the update with the smallest timestamp from the
Update Queue. If at least one of the rows affected by this
update is ‘in use’ then the update must wait in the Update
Queue. This ensures that the updates at all replicas are
applied consistently and in order. Each queue acts as a log.
Unlike the write operation, there is no multi-cast needed for
a read operation. The data can be read from any current
replica in the IG. Since there are two types of operations -
read and write, this leads to following dependencies of
operations on a single table row:

Read after Write: A read coming into the IG when a write
operation is being performed. The read can be issued on any
replica on which this write has been performed and
committed.

Read after Read: A read coming into the IG when a read
operation is being performed. The read can be issued on any
replica. The TM sends a read request to only one replica.

Write after Read: A write coming into the IG when a read
operation is being performed. The writes can be issued on all
the replicas except on which this read is being performed.
The write on this replica is issued after this read is done.

Write after Write: A write coming into the IG when a
write operation is being performed. The writes can be issued
on all the replicas except on which this write is being
performed. The write on this replica (or replicas) is issued
after this write is committed.

TMs put each read/write request into the Update Queue
at each replica in the IG. The Queue Manager at each replica
must keep track of these dependencies while issuing the
transactions from the Update Queue. This algorithm ensures
that whenever a client issues a read operation, a consistent
and correct value is read from the data store.

IV. RECOVERY ALGORITHM

A failure is defined as a state in which a replica cannot
service any client request at all. Partial failures are not
considered.

When a node (inside or outside the IG) fails, a check is
run by any one TM on the network and on the IG. This
checks if the IG continues to have the minimum number of
nodes and establishes if more nodes can be added to the IG if
it is at less than the maximum capacity. This is called re-
evaluation of the IG and is performed by the MTM. MTM
sends the new contents of the IG map to the other TMs.

More than one node can be added to the IG after re-
evaluation.

The re-evaluation of IG does not mean that the system is
down. While a node is getting added to an existing IG, a
client operation can still be performed on the remaining
nodes in the IG. If operation was a write, it can be performed
on the new node added to the IG only when its addition to
the IG is complete.
 The algorithm presented in section III allows for a
recovery scheme to handle failures. This is elaborated by
considering the following possible events.

When node(s) inside the IG fails: The IG is re-evaluated.
If no node can be added to the IG and the IG has less than
the minimum number of nodes, then the system is
unavailable and does not service any client request until a
new IG is formed.

When node(s) outside the IG fails: The IG is re-
evaluated.

When node(s) comes up: The IG (either existing or see if
a new one can be formed) is re-evaluated. This node can
become a part of the existing IG or forms a new IG.

The above scenarios can be thought of as interrupts to the
system. Each of which will lead to re-evaluation of the IG.

Queue Manager: Each replica has a Queue Manager. As
discussed earlier, the updates at each replica are first added
to a queue, before applying to the respective table row. This
queue called the Update Queue which ensures that the
updates are applied in order of time. The queue also serves as
a log of transactions which can be used when the replica
comes up after failure.

Let there be two replicas A and B. The version of the
data file at B is V1 and that at A is V. If V1 is the most
current version of the file, then B's update queue would be
empty. If it is not the most current version of the file and
suppose V is the most current version of the file then V1
would need, say, n updates to reach V or simply V = V1 + n.
Now, suppose B fails and is down for m units of time. In this
time, the version at A would advance from V to a new
version V2. Say there were n1 updates done during this time.
Now the current version at this time is V2 and V needs to
have (n + n1) updates to become V2 when B comes up.

Now, the question to be answered is: From where would
B get the updates after it comes up? To go to the version V1,
it simply needs to de-queue all the updates in its update
queue when it failed. Then to go to V2 it needs to ask A to
send it the modified tuples or all the tuples. This being an
operation conducted infrequently, should not affect the
performance of the system greatly. If this is done, then B
does not need to use its update queue at all. The updates
from the TM(s) would still be coming to the replica B and
would be added to its update queue. So if B comes up at time
t, then it asks any replica in the IG for the most updated data.
Until the file at B comes to the current version at the time t,
the Queue Manager does not apply the updates to the table at
B.

When the IG fails (which implies that no node outside
the IG can be added to the IG after IG re-evaluation), there is
no need for the transmission of updates from other nodes as
the IG nodes would already be current when they come up.

A more general form of this is when the entire system fails;
each replica which is not current has to do what B does in the
above example. But these types of failures would be
unlikely.

When a node(s) executing a data operation fails: Reads
can be forwarded to another node with the current version of
the replica. This is done by the TM, when it does not get any
acknowledgement from this node. In case of writes, the time
stamp of the transaction is read from the front of the update
queue and a local undo operation is executed on the
corresponding row in the table.

When a TM fails: Each Cloud node has one TM as a
virtual machine instance and any number of virtual machine
instances as nodes or replicas. When a TM fails, a new
virtual machine instance is started and it has the same state
as the failed TM. It continues processing from the time the
TM had failed.
 So when the system is down when either all replicas are
down or there is no functional IG in the network (There
might be current replicas active even without an IG in the
network. This is a tradeoff between what the minimum size
of an IG should be and also the maximum size. It is
application dependent and it is best if the developer selects
it.)
 The algorithm is dynamic and reflects the current state of
the network. The size of the IG is a function of the number of
working nodes. As long as the IG is up and running, the
client finds the system available and reading consistent
values. The client latency depends on the current size of the
IG currently. Since the size of the IG is dynamically
dependent on the number of working replicas it is safe to say
that the client latency also depends on the number of
working replicas. Clients can get concurrent reads and writes
which happen in parallel. When a replica in the IG fails, the
IG is re-evaluated and possibly more replicas are brought
into the IG hence the performance does not suffer for each
IG replica failure. The replicas outside the IG (which are up
and running) also keep on applying the updates but the TM
does not wait for acknowledgments from them. But they are
not left behind as the updates are sent to them as well. The
system keeps evolving and ensures immediate consistency
for the IG and eventual consistency for replicas outside the
IG.

V. EXTENDING TO MULTIPLE TABLES WITH

REFERENCING

Each node now has more than one table. Each table is
fully replicated over each node; this means that each node
has exactly the same data. The attributes of these tables can
have referential constraints between them.

An update to a single row in one table may lead to
updates of referenced rows in other tables. Consider a typical
example of EMPLOYEE and DEPARTMENT tables.
Suppose the primary key of DEPARTMENT table is deptID
and it references the deptID attribute in the EMPLOYEE
table. Any change in the deptID value in DEPARTMENT
table must be consistent with the referenced attribute in the
EMPLOYEE table. For example, suppose the deptID is
changed from 4000 to 5000, then all the corresponding

EMPLOYEE tuples in the EMPLOYEE table must be
updated. This is a simple example of referential integrity.
 The IG concept is extended to solve this problem by
creating separate IGs for each table. So, the EMPLOYEE
and DEPARTMENT tables would have their own separate
IG. A node can be a part of more than one IG but copies of
one table constitute a single IG (See figure 3 below). In this
case, when the data is updated in the EMPLOYEE IG a
separate update is launched on all the replicas in the
DEPARTMENT IG. But when the EMPLOYEE table is
being updated (in its IG) no DEPARTMENT table to which
this update has not been applied yet can be updated or read
on any node This would lead to inconsistency.

Figure 3: The system showing two IGs. Note one node is
common to both the IGs.

 To avoid this inconsistency an independent locking
scheme is needed which would lock the tuples from the
various tables that would be updated as a result of our
current update. As an example, if the deptID is changed from
4000 to 5000 then all EMPLOYEE tuples and all
DEPARTMENT tuples with the deptID 4000 would have to
be marked locked. These tuples have to be locked by the TM
before the updates are sent to the respective IGs. To make
clear why this is important, assume that query updating the
deptID from 4000 to 5000 is in progress and currently the
department table IG is being updated and there is a query to
update the salaries of all employees (in the EMPLOYEE
table) with the DEPARTMENT ID 5000. There will not be
any EMPLOYEE tuple with DEPARTMENT ID 5000 yet
(as the the deptID from the previous update has not been
applied to the EMPLOYEE table). So this query would not
update anything in the EMPLOYEE table. This implies that
until all the required tables are not updated no operation can
be allowed to go forward on any of the related tables. It may
be allowed on those tables which have already been updated.
This is a performance bottleneck.

VI. MAINTAINING META-DATA ABOUT REFERENCING

CONSTRAINTS IN THE TM

To implement the scheme discussed in section V, some
additional information is stored in each TM. Each TM has
meta-data containing the referencing information about
tables viz. which updates are cascaded. The TM makes a
transaction schedule (the set of updates to be sent over the

network). This schedule is a map (key-value pairs) and
specifies which table and row have to be updated. Suppose
an update is to be made on table Ti, row Rj by transaction T1
with timestamp tx (timestamp is the time at which the
transaction is issued by the client). The schedule for T1
would have the corresponding key entry:

(Ti, Rj, tx)
The value part of the map has the update query to be

executed. Whenever a TM gets an update transaction, it
prepares a list of tables which need to be updated because of
this transaction and creates the transaction schedule. This
essentially prepares the TM for sending independent updates
to each of the table IGs. But these updates are still a part of
the main transaction, so it is important that the TM sends
these updates together in time. After these updates are sent,
this works as in the normal case (the single table case).

Consider the DEPARTMENT and EMPLOYEE table
example. The above approach would lead to two independent
update requests to be multi-cast to two different IGs from the
TM. The problem arises due to network delay- the update for
DEPARTMENT goes to the DEPARTMENT table IG and is
added to the Update Queue of the member nodes and
similarly the update for the EMPLOYEE table goes to the
EMPLOYEE table IG. Now, say a read or a write request
comes in and can enter between these two updates on the
time line hence is ahead in the respective update queue. This
may cause a problem. This is avoided by having each TM
first verify that no transaction with a smaller timestamp is
being processed at another TM before sending the
transaction to the replicas in an IG.

Consider the EMPLOYEE and DEPARTMENT tables’
example. The TM issues two transactions with the same
timestamp at the same time to two different IGs. This
ensures that these transactions are consistent in time and no
read/write request (as the case pointed out above) can sneak
in between. The Queue Manager at each node picks up the
transaction with the minimum time stamp value to run.

VII. SELECTING THE MINIMUM AND MAXIMUM SIZES OF

AN IG

 The minimum and maximum sizes of an IG play a major
role in availability and performance guarantees of the
system. The term size here refers to the number of virtual
machines which access the data file.
 When the IG has less than the minimum number of
nodes, then the system does not service any client request
and is unavailable. This implies that a low minimum size
increases the availability. But if the minimum size is too
small the system would be available for a longer time but the
load on the IG would become high when the number of
working nodes becomes less thereby increasing the chances
of failures. If the minimum size is too large then the system
is unavailable for a longer time leading to more client
waiting time.
 Unlike the minimum size, the maximum size of an IG
has impact on the performance of the system. A large
maximum size would lead to higher write latency for the
client as the TMs would have to wait for more number of

acknowledgements. A small maximum size would lead to
larger Update Queues at each replica and more queuing time.
 As the IG itself is not static, it would be a good idea to
have the minimum and maximum sizes of an IG as variable.
If there is an increase in the transaction load then the
maximum size can be increased to a higher value depending
on the load. Similarly, the maximum can be reduced to a
lower value if the transaction load decreases. A very low
value of minimum size is not recommended. The minimum
size can be lowered if the system is experiencing high failure
rates otherwise a relatively high value of minimum size can
be chosen giving a desired size of the IG. These decisions are
dependent on the transaction load and are taken at the server
side. Client would be required to give the initial load
estimates to facilitate the initialization of minimum and
maximum IG sizes. Currently, the value of minimum size is
2 and that of maximum size is N/2 where N is the total
number of replicas in the system.

VIII. FUTURE SCOPE

This is a work in progress. We are implementing this idea
on a room reservation system as a prototype. This fully
replicated system has an almost equal proportion of reads
and writes transactions. We aim to measure average client
waiting time for different IG sizes; costs of IG maintenance,
cost efficiency of getting computing power proportional to
the amount client pays and also fault tolerance which would
test the recovery algorithm. We aim to conduct experiments
on different IG sizes for various transaction loads which
would give a good idea about what an ideal IG size would be
for a given system and a given transaction load. In the future,
we would like to measure the feasibility of this design for
analytic workloads too and also extend the proposed design
to partially replicated data stores.

IX. CONCLUSION

We are working on one of the limitations with Cloud
computing – transactional data management. This algorithm
aims to use a SQL-like interface to the data management
applications over the Cloud but internally have consistency
algorithms adapted to the Cloud. We are also trying to
incorporate the paradigm of relational integrity into our
system which is the corner stone of RDMS. We have this
algorithm supporting updates to a single table or many
related tables replicated over the network. We are sure this
would raise questions relating to the trade-offs between
performance v/s availability and also performance v/s
consistency (overhead of our consistency scheme). We aim
to find out a satisfactory way of deploying database
applications over the Cloud and also support update
operations apart from data analysis.

REFERENCES

[1] Daniel Abadi, “Data Management in the Cloud: Limitations and

Opportunities”, IEEE Data Engineering Bulletin, vol. 32 no. 1, March
2009.

[2] Ashraf Aboulnaga, Kenneth Salem, Ahmed A. Soror, Umar Farooq
Minhas, Peter Kokosielis and Sunil Kamath, “Deploying Database
Appliances in the Cloud”, IEEE Data Engineering Bulletin, vol. 32
no. 1, March 2009.

[3] Robert L. Grossman and Yunhong Gu, “On the Varieties of Clouds
for Data Intensive Computing”, IEEE Data Engineering Bulletin, vol.
32 no. 1, March 2009.

[4] Bo Peng, Bin Cui and Xiaoming Li, “Implementation Issues of A
Cloud Computing Platform”. IEEE Data Engineering Bulletin, vol. 32
No. 1, March 2009.

[5] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres and Maik
Lindner, “A break in the clouds: towards a cloud definition”, ACM
SIGCOMM Computer Communication Review, vol. 39 no.1,
January 2009.

[6] Dionysios Logothetis , Kenneth Yocum, “Ad-hoc data processing in
the cloud”, proceedings of the VLDB Endowment, vol .1 no.2,
August 2008.

[7] Aaron Weiss, “Computing in the clouds”, NetWorker, vol. 11 no.4,
December 2007.

[8] E. Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, John
Goodl, “The Cost of Doing Science on the Cloud: The Montage
Example”, proc. 2008 ACM/IEEE Conf. Supercomputing. High-
Performance Networking and Computing, IEEE Press. 2008.

[9] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin,S.
Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store”, in proc. 2007 ACM SIGOPS
symposium on Operating systems principles,2007.

[10] Fay Chang , Jeffrey Dean , Sanjay Ghemawat , Wilson C. Hsieh ,
Deborah A. Wallach , Mike Burrows , Tushar Chandra , Andrew
Fikes , Robert E. Gruber, “Bigtable: a distributed storage system for
structured data”, proc. 2006 of the 7th conference on USENIX
Symposium on Operating Systems Design and Implementation,
November 2006.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!'s hosted data serving platform”, Technical report,
Yahoo! Research, 2008.

[12] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C.
Karamanolis, “Sinfonia: a new paradigm for building scalable
distributed systems:, in SOSP, 2007.

[13] M. Burrows, “The chubby lock service for loosely-coupled
distributed systems”, in OSDI, 2006.

[14] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska,
“Building a database on S3”, in SIGMOD, 2008.

[15] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the Clouds: A Berkeley view of Cloud Computing”,
Technical Report 2009-28, UC Berkeley, 2009.

[16] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective”, in PODC, 2007.

[17] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling,
“Unbundling transaction services in the cloud”, in CIDR
Perspectives, 2009.

[18] W. Vogels, “Eventually consistent”, Communications of the ACM,
vol. 52 no.1, 2009.

[19] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi, “Elastras: An
elastic transactional data store in the cloud”, in Workshop on Hot
Topics in Cloud Computing, 2009.

[20] P. Helland, “Life beyond distributed transactions: an apostate’s
opinion”, in Proc. Conference on Innovative Data Systems Research
(CIDR), 2007.

[21] “Hypervisor”, December 2004. [Online]. Available:
http://en.wikipedia.org/wiki/Hypervisor. [Accessed: Apr. 23, 2010].

