

 1

memory

network

bus

Traditional
Security
Research

Radical
New
Ideas

Loss-Tolerant and Secure Embedded Computing
via Inscrutable Instruction-Set Architectures (I2SA)

Technical Report GIT-CC-04-12
Vincent J. Mooney III, Krishna V. Palem and Richard B. Wunderlich

Center for Research on Embedded Systems and Technology

School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia, U.S.A.

17 November 2004

1. INNOVATIVE CLAIMS

As a contrast to prior work and as shown in the red

area in the picture to the right, we propose an

Instruction-Set Architecture (ISA) and associated

processor hardware design which implements an

Inscrutable ISA (I2SA). An I2SA operates on non-

standard numbers such that the data are

inscrutable or nearly impossible to fully recover

with possession only of the hardware chips

implementing an I2SA programmed with some

application(s). In short, we examine secure

computing where a microprocessor reads, writes and

executes operations ideally in an inscrutable domain. The goal is to provide methods and

implementations for computation where data never leave the inscrutable domain in which they

reside; the intended effect is twofold. The first intended effect is that any transmissions between

computing media using our approach would be unbreakable in any reasonable amount of time;

i.e., intercepted instructions and/or data would be meaningless to the unauthorized interceptor.

The second intended effect is that, as a result of embedded computing platforms realized using

inscrutable computing elements, any loss of equipment utilizing such computing hardware would

not be very meaningful to the recoverer: we refer to this as loss tolerance. In other words, if the

computing hardware – and associated instructions, data and microchips – were to fall into hostile

hands, no data could be fully understood (all bits uncovered) in a reasonable amount of time

(e.g., less than one year). Furthermore, we also investigate degrees of inscrutability where

portions of the data are inscrutable and other portions are not inscrutable (i.e., not easy to

 2

understand).

Shown on the previous page is a juxtaposition of research proposed here versus

“traditional” security research regarding processors and ISA. Traditional security processor and

ISA research to date has focused on providing protections and encryption support for bus,

network and memory contents and traffic. However, in all prior research, encrypted data must be

unencrypted to plain, standard text (i.e., typical Boolean numbers implemented with

straightforward bit patterns such as two’s complement for number representation) prior to

execution with the ISA.

We realize such loss-tolerant computing using an Instruction-Set Architecture (ISA) we

call an Inscrutable ISA (I2SA). To our knowledge, we are the first such group to ever investigate

this approach.

2. EXAMPLE SCENARIO AND DOMAIN IMPACT

Consider the following embedded computing scenario as an example. Wireless

transmission hardware shown to the right is placed in the theatre. This hardware

receives, transmits and generates data.

To further clarify the situation, assume that the wireless transmission hardware

is unmanned and falls into malicious hands with all microchips fully functional. The result is that

engineers in hostile territory end up with all chips in hand.

Now consider this scenario with current state-of-the-art encrypted buses, memory and

network traffic. Let us assume the best of published state-of-the-art; thus, decryption is not

performed on a separate coprocessor chip but instead is inside the single microprocessor chip.

Furthermore, various hardware protections have been added to make sections of memory

readable only by certain software processes with proper keys. Unfortunately, known techniques

(such as electrical signal monitoring, power analysis, differential fault analysis and reverse

engineering) can potentially read the hardware logic, thereby uncovering how the internal

hardware carries out decryption, including any keys stored in internal register locations. Given

this information, the memory can be decrypted and all bits recovered.

As an alternative, take all of the above plus one additional fact: the microprocessor uses an

I2SA. If the hardware were to fall into malicious hands, the hardware logic could potentially be

reverse engineered. However, the raw data and instructions operate in an inscrutable domain.

Even with expensive large-scale equipment for reverse engineering available, say, to a nation-

state, nonetheless the hostile engineering staff have an additional complicating factor: all

computation is carried out with an I2SA. In short, even in this scenario, the possibility that data

 3

Processor
ISA +

Microarch.

Network traffic

Processor on-chip buses

Processor on-chip memory

Decryption
chips

Separate memory chips

could be recovered in any reasonable amount of time (say, less than a year) is essentially zero.

3. TECHNICAL APPROACH

To the right is shown increasing levels of use of

encrypted data. At the outermost level are network

traffic and external, separate memory chips. Also,

in the outermost level are separate decryption chips

which take incoming encrypted data and output

unencrypted data. Recent work has maintained

data in encrypted format in parts of on-chip memory

and on-chip buses (on the microprocessor chip

itself). This is shown to the right in the blue-green

middle circle. At the innermost circle in red to the

right, the processor ISA is shown the processor ISA

with the associated microarchitecture. Currently, all prior work known to the authors implements

the ISA in an unencrypted microarchitecture, namely, everything in the red circle is non-

inscrutable. As a result, none of the processor hardware implementing the assembly instructions

operates on anything other than unencrypted, raw data.

To approximate an inscrutable ISA we

shrink the red inner circle shown above. For

example, we could consider operating on

encrypted instructions except for branch

instructions. For a branch instruction alone, we

would unencrypt in order to execute the branch.

The result is shown on the right where the red

(unencrypted) domain of operation is much

smaller.

Homomorphisms
In one interpretation, the problem of

realizing a fully inscrutable ISA (or I2SA) is intimately related to that of homomorphic encryption

schemes. While such schemes are sufficient for our needs, it is not at all evident that they are

necessary. Much of our effort along the foundational domain in the context of realizing I2SA has

been devoted to innovating “weaker” notions of realizations than those required either by

complete homomorphisms on the one hand, or by the need for a completely secure system

Network traffic

Processor on-chip buses

Processor on-chip memory

Decryption
chips

Separate memory chips

Processor
ISA +

Microarch.

 4

following the rigorous characterizations based on semantic security. Clearly, an auxiliary goal

will be to understand the feasibility of realizing such systems where the notion of weakness,

relative to a fixed ISA, will be quantified. Finally, based on these foundations, an analysis of the

I2SA frameworks innovated can reconcile the quality of security afforded by them against the

theoretically feasible limits.

4. TARGET ENVIRONMENT

To demonstrate feasibility, we port the I2SA to a well known compiler infrastructure, Trimaran.

Trimaran is in use worldwide with over 30 sites active (e.g., publishing results and dissertations

using Trimaran). Furthermore, the Center for Research on Embedded Systems and Technology

(CREST) at Georgia Tech has an active and vibrant research program in customization of

embedded systems. Research performed at CREST is leveraged in this research, especially for

power modeling, analysis and optimization for design of the I2SA embedded processor.

 We evaluate the research along three dimensions: speed, energy and increase in

security. As a baseline case, we consider a microprocessor with the same attributes (chip

technology, sizes of memories, etc.) running the same applications. Thus, reported simulation

results comparing metrics for instructions per second, instructions per Joule, and increase in

security should always have a baseline case so that clear and precise quantitative statements

can be made.

5. CONCLUSION

In conclusion, we propose an Instruction-Set Architecture (ISA) and associated processor

hardware design which implements an Inscrutable ISA (I2SA). An I2SA operates on non-

standard numbers such that the data are inscrutable or nearly impossible to fully recover with

possession only of the hardware chips implementing an I2SA programmed with some

application(s). In short, we examine secure computing where a microprocessor reads, writes

and executes operations ideally in an inscrutable domain. The goal is to provide methods and

implementations for computation where data never leave the inscrutable domain in which they

reside. Finally, we also investigate degrees of inscrutability where portions of the data are

inscrutable and other portions are not inscrutable.

