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SUMMARY 

New experimental and analytical techniques have been developed 

for the study of thermal vibrations through measurements of the tempera- 

ture dependences of Bragg intensities. These techniques have been applied 

to the study of thermal vibrations in Al, KC1, and AgC1 in the 100 to 

300°  K temperature range. These techniques involve the collection of pre-

cision intensity data at temperature intervals which are small enough to 

allow useful determination of the slope and curvature of the intensity 

versus temperature data. From these slopes it is possible to obtain 

meaningful values for the temperature derivatives, dB/dT, of the Debye-

Waller factors for both a monatomic lattice and for each type of atom 

individually in an NaCl type lattice. These results have been related 

in a straightforward way to the frequency spectrum and have been used 

for the determination of 8(x-ray).as a function of temperature for both 

the monatomic and diatomic cases. A value for 6(x-ray) so obtained at a 

given temperature is absolute in the sense that it does not depend on 

the values which are appropriate to other temperatures. 

Comparison of the intensity versus temperature results obtained 

for Al in this study with calculations based on Walker's vibration 

spectrum for Al indicate that dB/dT is sensitive both to anharmonicity 

and to certain details in the character of the low and, possibly, inter-

mediate frequency portion of the vibrational spectrum. A five percent 

increase of the frequencies in the transverse branch of Walker's spectrum, 

suggested by the neutron inelastic scattering results of Brockhouse and 

Stewart, makes a significant improvement in the agreement between our 
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calculated and observed results for 8(x-ray). When thermal expansion 

effects on the elastic spectrum are also included, the calculated 8(x-ray) 

versus temperature curve is in excellent agreement with our experimental 

curve. Anharmonic effects other than thermal expansion were not found 

to be significant in Al in the 100 to 300 °  K temperature range. 

The experimental results obtained for AgCl show that d(BAg
)/dT is 

. larger than d(Bc1)/dT by approximately 20 - 30% in the 100 to 300 °  K 

temperature range. This result is in substantial agreement with our 

calculations which are based on Cole's dispersion curves for AgCl and 

on Brillouin's expression for the wave vector dependende or the atomic 

vibrational amplitude ratio in a one-dimensional diatomic lattice. Ac- 

cording to these calculations the optic modes contribute significantly to 

d(B
Cl

)/dT and to the temperature dependence of 8(x-ray). However, these 

contributions were not well determined. Therefore, no attempt was made 

to estimate the size of anharmonic effects, other than thermal expansion, 

in the AgCI even though the temperature dependence of 8(x-ray) could not 

be,accounted for by thermal expansion alone. 

For KC1 it is found that between 200 and 300°  K 8(x-ray) agrees 

well with the high temperature value calculated by Blackman and has a 

temperature dependence which is fully accounted for by thermal expansion 

effects on a Debye spectrum. As the temperature decreases below 200 °  K, 

8(x-ray) increases more than can be accounted for by thermal expansion 

alone. This increase is presumably due to differences between the real 

vibration spectrum of KC1 and the Debye spectrum. 

As expected, for all three materials 6(elastic) > 8(x-ray) at the 

temperatures where they could be compared. The discrepancy (according to 
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Blackman) between theory and experiment which once existed for KCl, viz., 

8(x-ray) > 8(elastic), has been removed by our data. At room temperature 

O(CV) is approximately 25% larger than 8(x-ray) for AgCl. This large dif-

ference is presumably due to the existence of optic branches in AgC1 

which represent a high frequency peak in the vibrational spectrum and 

which contribute more to 8(C
V 
 ) than to 8(x-ray). 

Attempts to fit the x-ray data with an expansion in terms of the 

moments of the frequency spectrum failed. Possible reasons for this 

failure are pointed out. 

The intensity versus temperature data were obtained from small 

(maximum diameter — 0.5 mm) approximately spherical single crystal sam- 

ples with a counter adapted Weissenberg camera and a Philip's x-ray 

unit. MoKa radiation, balanced filters, and a scintillation counter were 

used throughout the work. The geometry u%ed was such that all parts of 

the sample could "see" all parts of the x-ray target and the counter 

intercepted all of the diffracted beam. The bulk of the data consisted 

of measurements of peak heights versus temperature. The desired inte-

grated intensity versus temperature information was obtained from these 

data and measurements of the temperature dependence of the ratio of 

integrated intensity to peak height. The integrated intensities used 

for the determination or this ratio were obtained by the w-scan 

technique. All the data were obtained from zero layer reflections. Con-

trol or the sample temperature was achieved by means of a gas stream 

directed onto the sample. 

A rather extensive investigation of the thermal diffuse scat-

tering (TDS) contributions to the Bragg intensities measured in this 



study was made. Particularly examined were the possible effects of all 

experimental parameters, e.g., sample size and shape, beam divergence 

and inhomogeneity, counter window size, etc., on the TDS contributions. 

Expressions have been derived which can be used to determine both the 

one and two phonon contributions to the Bragg peak intensity. The re-

sults of specially devised experimental tests indicate that TDS contri-

butions in this study were determined to within 5 to 15%. 

Our own review treatment of the theory relating thermal vibrations 

to Bragg intensities is presented and some extensions of the theory are 

made in the process. Specifically treated are the cases or primitive 

and non-primitive (e.g. face-centered) cubic Bravais lattices containing 

both one and two atoms per lattice point. Expressions which relate the 

temperature slope of intensity to the temperature derivatives of the 

Debye-Waller factors for these crystal structures, and which relate these 

temperature derivatives to the frequency spectrum and 8(x-ray), are pre-

sented and discussed. Anharmonic contributions to the Debye-Waller 

factor are discussed. The analytical method developed for separating 

the contributions of the two atom types in an NaC1 type structure to the 

observed slopes of intensity versus temperature curves is described. 

	  it 
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CHAPTER I 

INTRODUCTION 

General  Problem  

This study is concerned with the general question of what informa-

tion about the thermal vibrations of the atoms in a crystal lattice can 

be determined from the temperature dependences of Bragg intensities and 

how, both experimentally and analytically, one obtains this information. 

As is discussed in the following paragraphs, the temperature dependence is 

of particular interest because of the opportunities such measurements pro-

vide for the determination of thermal vibration information with greater 

accuracy than is possible from other types of x-ray measurements. 

Background  

In the Born and Von Karman
1 

theory of the thermal vibrations of the 

atoms in a crystal, later generalized by Born and Begbie
2
, the vibrations 

are harmonic and can be described in terms of a superposition of independent 

plane waves. The vibrational frequency spectrum of these waves has been of 

considerable interest for many years because of its importance to many 

branches of solid state physics. Thermal vibrations, and hence the vibra-

tional spectrum, are related to, and can be investigated to some extent by, 

measurements of specific heats, electric and thermal resistivities, and 

elastic properties among other things. The most nearly complete information 

about thermal vibrations that can be obtained experimentally is that obtained 

from measurements of the inelastic scattering of x-rays (thermal diffuse 
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scattering) and of cold neutrons. Such measurements can, in principle, yield 

the entire vibrational spectrum. However, they are tedious to make because 

of the low intensities involved, and in the x-ray case are subject to large 

and usually not well known corrections. Thus, measurements of other solid 

state properties, such as those mentioned above, can be of considerable value 

in the study of thermal vibrations since they can be made relatively easily 

and often with high precision. However, the information obtained is less 

nearly complete than that obtained from the inelastic scattering experiments. 

As has already been implied, thermal vibrations are also related 

to the temperature dependences of x-ray diffraction maxima (Bragg reflec-

tions or peaks) intensities. Measurements of this temperature dependence 

should provide information about thermal vibrations and the vibrational 

spectrum which would supplement usefully the information obtained from other 

sources. However, a search of the literature reveals that very little really 

useful information has been obtained from such measurements. In a recent 

review article, Herbstein3  comes to the same conclusion and states that al-

though x-ray diffraction methods have been used fairly widely, difficulties 

in interpretation remain and, to date, such methods have not given unambigubus 

results. No valid reason for these difficulties is apparent. With present 

day experimental techniques x-ray intensities can be measured with high pre-

cision, and, at least in principle, the study of thermal vibrations with such 

measurements should be straightforward. Therefore, it seemed desirable that 

the present investigation be undertaken. 

Brief Outline of Theory and X-Ray Methods used Previously  

The influence of thermal vibrations on the intensities of Bragg re-

flections was first investigated by Debye 4. The result, in the form due to 
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Waller, is a standard part of x-ray diffraction theory. To the extent that 

the thermal vibrations are harmonic, the theory shows that the observed 

intensity, I, diffracted from a particular set of Bragg planes of a cubic, 

monatomic crystal lattice is related to I o, the intensity that would be 

observed if there were no thermal vibrations, by 

I = Ie
-2M  

0 
 

where 

/ 
M = B1r

2 
 un
2 
 sin

2 
 Q/X

2 
 = B sin

2
QA

2 
(1-2) 

Here M is the Debye-Waller temperature factor, 9 is the Bragg angle, T. is 

the x-ray wavelength, and u2 is the mean square displacement of each atom in 

the direction riperpendicular to the planes. 

The mean square displacement, and hence B, is related to the absolute 

temperature, T, and to an integral involving the vibrational spectrum in the 

manner described in Chapter II. However, as normally used, the Debye-Waller 

theory employs a Debye (parabolic) spectrum which is characterized by a maxi-

mum cutoff frequency, v m, and a characteristic Debye temperature e = hv m/k 

(where h is Planck's constant, k is Boltzmann's constant). B then becomes a 

relatively simple function of only T and e. The relationship of B to the 

true vibrational spectrum is of particular interest in the present study. 

In much of the work, however, it is convenient to express our results in 

terms of an assumed Debye spectrum. Such a spectrum provides a single ther-

mal parameter, 8, which can be measured many different ways, e.g., from 

1ft 	  
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specific heats and elastic constants. Casting the present x-ray results 

in terms of 8 facilitates simple comparison of our thermal vibration 

results with those obtained from different experimental techniques. Addi- 

tionally, except for the relatively few TDS studies, essentially all reported 

x-ray diffraction investigations of thermal vibrations are interpreted only 

to the point of yielding values for O. 

For the determination of 8 from x-ray Measurements, one of two methods 

is commonly used5 . One method involves isothermal intensity measurements 

from Bragg peaks occurring at different scattering angles, 2Q, and makes use 

2 , 
of the dependence of M on sin Qp\f - . From equation (1 -1) it follows that a 

plot of In (I/Io) versus sin
2Qi.X.

2 
is a line which has a slope -2B. A value 

for 8 can then be determined from the measured value for B. However, there 

are a number of problems associated with the use of such a plot. The Bragg 

reflections are superimposed on a nonuniform background of thermal diffuse 

scattering (TDS) which has a maximum at the same positions as the Bragg re-

flections. The TDS intensity is also a function of sin
2
QA.

2
. Thus, the 

true Bragg intensity must be obtained by subtraction of a calculated TDS 

correction from the observed intensity. The importance of this correction 

varies with the material investigated. For single crystal measurements on 

NaC1, Nilsson
6 
estimates that the application of this correction reduces 

Renninger's 7  measured 8 from 319°  K to 302 °  K. There is also a problem 

associated with an accurate calculation of I
o 
which is also, usually strong-

ly, dependent on angle. For the case of a monatomic single crystal and a 

particular experimental arrangement, I
o 

is given by 

1  + cos22Q  AEf2 
Io = sin 2Q 

(1-3) 
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Here G is the Bragg angle, K is a constant, A is an absorption factor whose 

dependence on angle is often not well known, E is the extinction factor whose 

value varies with angle and depends on the usually not well known perfection 

of the sample, and f is the atomic scattering factor which depends on angle 

and is obtained theoretically from imperfectly known electron distributions 

in the atoms. Further, tabulated values of f often require corrections for 

anomalous dispersion5  and accurate application of this correction is itself 

difficult. For these reasons the determination of accurate values for B and 

8 from isothermal x-ray measurements is very difficult, if not impossible. 

The other x -ray method sometimes used for the determination of 8 

involves measurements of intensities at different temperatures. Although 

TDS corrections are still required, an accurate determination of I 0  (see 

equation (1-3)) is not sine the dependences of A, E, and f on temperature 

are usually quite small. For this reason intensity versus temperature 

methods are much preferred over isothermal methods for the study of thermal 

vibrations. In addition, the particular methods we have used, which are 

mentioned briefly later in this chapter, have some advantages over the usual 

intensity versus temperature studies reported in the literature. Usually 

the ratio of the intensity, Il , of a particular Bragg peak measured at 

temperature T1  to the intensity, 12 , of the same peak measured at T 2  is ob-

tained. Then it follows from equation (1-1) and the dependence of B on T 

and 8 that 

In (I2/I1 ) = 2 [B(T 1, 8) - B(T2 , e)]  sin2Q/X2  , 	(1-4) 

where for simplicity TDS and the small dependence of sin
2
G/N

2 
and Io on 
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temperature has been neglected. If 8 is assumed temperature independent, 

it can be determined from equation (1-4). The main disadvantage of this 

method is that 8 is not independent of temperature because of both (1) the 

differences between the true vibrational spectrum and the Debye approxima-

tion and (2) the fact-that the vibrations are not harmonic so B has an 

additional temperature dependence due to anharmonicity (see Chapter II). 

Thus, 8(T1 ) and e(T2 ) should appear in the above equation. A measurement 

\ 8 
of the ratio I2/I1 is not sufficient to determine both e(T1 ) and 8(T2 ) 8 . 

Only if 8(T1 ) or 8(T2 ) is known from some independent experiment, which is 

usually not the case, can equation (1 -4) be solved for the unknown e. 

Chipman
8 
has suggested a method with which one can determine e versus 

T from measurements of intensity ratios. However, the method requires that 

some assumptions be made about the expected shape of a 8 versus T curve. 

Since the form of a curve of 8 versus T for a given solid depends on the 

usually unknown shape of the frequency spectrum and anharmonicity, results 

obtained with Chipman's method are somewhat ambiguous3 . Further, in so far 

as we are aware, all reported measurements of x-ray intensities at different 

temperatures, were made at temperatures which were separated by rather large 

o 	0. 
00 - 100 ) temperature intervals. Thus, the determination of the detailed 

dependence of e on T from x-ray measurements has not been reported in the 

literature. This situation contrasts with the detailed 8 versus T curves 

usually obtained from specific heat and elastic constant measurements. 

So far, only monatomic cubic crystal structures have been mentioned. 

However, it is also of interest to study the thermal vibrations of each kind 

of atom in more complex polyatomic structures. For a crystal structure 
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which contains more than one type of atom, there is a Debye-Waller factor, 

M., associated with the atomic scattering factor, f., of each kind of atom. 

It is theoretically possible to relate a certain linear combination of the 

Mi 's of the individual atoms to an integral involving the vibrational 

spectrum. Thence, the Mi 's can be related to a 'S which can be compared 

with 8's obtained from measurements of specific heats, elastic constants, 

etc. Also, the knowledge of the individual atomic vibrational amplitude, 

such as can be obtained with diffraction methods, would be of considerable 

value in examinations of the validity of theoretical models for the vibra-

tions in complex crystal structures -  For example s  Brillouin9  has derived 

an expression for the wave vector dependence of the ratio of the vibrational 

amplitude of one atom type to that of another for the case of a diatomic 

one-dimensional lattice. This expression has been used by Cole
10 for the 

interpretation of his TDS measurements for AgC1 although no examination of 

its validity for a three-dimensional lattice appears in the literature. (This 

point is mentioned in the analysis of the present results.) 

Isothermal x-ray intensity measurements have been used for the deter-

minationofM.for each atom in a polyatomic crystal, but we know of no 

attempts to use such data to investigate the frequency spectrum. Neither 

do we know of any previous attempts to use x-ray intensity versus temperature 

measurements as described above to determine a L B̂i  (of equation (1-4)) for 

each kind of atom in such crystals. Most measurements of this kind have 

been interpreted in terms of a LI3 where it is assumed either that Ti is some 

average of the individual Bi 's or that all B i  = B so that equations of the 

form (1-1) and (1-4) can be used3 ' 7 . It is then not clear what the relation-

ship of the resulting values for 8 is to those obtained from other experimen-

tal techniques. 
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Specific Problem Pursued  

The specific problem pursued in the present work was (a) the develop-

ment of the experimental and analytical techniques described in Chapters II 

and III for the study of thermal vibrations through measurements of the temp-

erature dependences of Bragg intensities, and (b) the application of these 

techniques to the study of thermal vibrations in Al, KC1, and AgC1 in the 

100°  to 300°  K temperature range. 

These techniques involved the collection of precision intensity data 

at temperature intervals which were small enough (5-15 9 ) to permit useful 

determination of the slope, dI/dT, of the intensity versus temperature data. 

The advantages of the intensity versus temperature method were thus exploited. 

From the temperature slopes the determination of the temperature 

dependence of dM/dT for the monatomic case and of dMi/dT for each type of 

atom in the diatomic case was possible. These results have been related in 

a straightforward way to the vibrational spectrum and, hence, have been used 

for the determination of the dependence of 8 on temperature, for both the 

monatomic and diatomic cases, without the necessity of assumptions regarding 

the expected shape of a 8 versus T curve. 

The 100 to 300°  K temperature range was chosen because it was ex- 

pected that the harmonic assumption would be more nearly valid at low temper-

atures and hence the simple theories should apply better. Thus, as is the 

case in low temperature studies of specific heats, it was hoped that some 

information about the vibrational spectrum could be obtained. The possible 

'existence of anharmonicity was also specifically investigated. 

The particular materials studied, Al, AgC1, and KC1, were chosen for 

several reasons: 
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1. Since a study of thermal vibrations by means of the temperature 

dependences of Bragg intensities was being attempted, it was desired that 

all atomic positions should be fully determined by symmetry so that no part 

of the observed changes in intensity would be due to changes in atomic posi-

tions. The structure of Al and the NaC1 type structure of KC1 and AgC1 

satisfy this condition. 

2. It was desired that the experimental and analytical techniques 

developed in this work be applied both (a) to monatomic materials, for which 

the data analysis was expected to be straightforward, and (b) to diatomic 

materials, in which the possibility existed for the study of the thermal 

vibrations of more than one type of atom. It was felt, however, that more 

than two types of atoms would be excessive for the present work. 

3. Aluminum was chosen for study because its vibrational spectrum 

had been particularly well determined by Walker
11 

from TDS measurements. 

Thus, it was possible for us to interpret the data in terms of the correct, 

or at least approximately correct , spectrum rather than only the Debye 

spectrum. It was felt that such an interpretation would provide a particu-

larly meaningful comparison of theory with experiment. 

4. KC1 was chosen because the atomic weights of K and Cl are nearly 

equal and the ions are isoelectronic. Hence, its structure and diffraction 

properties closely approximate the ideal simple cubic lattice for which the 

Debye theory was developed. Comparison between experiment and Debye t s 

theory in the case of KC1 therefore was expected to provide an interesting 

test of the validity of the theory in a near-ideal situation. Further, a 

The results of Walker's TDS experiments have been verified in most of the 
essential details by inelastic scattering of cold neutrons 12 . 

7  
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detailed analysis of specific heat measurements for KC1 has been reported 

recently
13 

and it was desirable to compare the specific heat results with 

those obtained from x-ray measurements. 

5. It was thought that AgC1 would be a particularly interesting 

material to study because of (a) the presence of two types of atoms with 

considerably different masses, (b) the presence of some co-valent bonding 

character which might produce vibrational anisotropy, and (c) the possi-

bility of comparing our data with theoretical calculations based on Cole's 

TDS measurements and Brillouin's expression for the atomic vibrational 

amplitude ratio. It was hoped that such a comparison would shed some light 

on the validity of Brillouin's expression for a three-dimensional lattice. 

In Chapter II the theory relating thermal vibrations to Bragg intensi-

ties is presented in some detail. This section starts with a pedagogical 

review treatment of existing theory and then proceeds to a discussion of 

the several extensions which we found necessary. Specifically treated are 

the cases of primitive and non-primitive (e.g., face-centered) cubic Bravais 

lattices containing both one and two atoms per lattice point. Expressions 

which relate the temperature slope of intensity to the temperature deriva-

tives of the Debye-Waller factors for these crystal structures, and which 

relate these temperature derivatives to the vibrational spectrum and e, are 

presented and discussed. Anharmonic contributions to the Debye-Waller,factor, 

are discussed. An analytical method for separating the contributions of the 

two atom types in an NaC1 type structure to the observed slope of intensity 

versus temperature curves is described. The relationship of the Debye 8 

obtained from intensity versus temperature measurements to those obtained 
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from specific heat and elastic constant measurements is briefly discussed 

and, finally, a method for determining the moments of the vibrational 

spectrum from the temperature derivative of the Debye-Waller factor is 

presented. 

In Chapter III the experimental methods of this study are des-

cribed. Because the results of the present study were expected to de-

pend critically on the accuracy of the measurements, one of the major 

problems of this work was the determination of changes in intensity with 

near maximum precision in a reasonable length of time. Considerable 

effort was expended in the examination of such accuracy -affecting factors 

as the various instrumental factors, matters of technique , and the con-

tribution of TDS to the apparent Bragg intensities. A detailed examina-

tion and computation of TDS contributions was necessary because no re- 

ported work which can be applied to the particular experimental techniques 

used in the present work is known. The details of this work are dis-

cussed in Appendix A. There we present a treatment of TDS theory which 

includes a review of James 5 treatment of the case of a simple cubic 

monatomic lattice and our extension of the theory to the cases of non-

primitive cubic Bravais lattices containing both one and two atoms per 

lattice point. The comparison of the TDS computations with specially de-

signed experimental measurements is discussed in Chapter III. 

In Chapter IV the results obtained for Al, KC1, and AgCl are pre- 

sented and discussed. In Chapter V the conclusions to be drawn from this 

work are presented. 
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CHAPTER II 

THEORY 

X-Ray Diffraction Intensities and Normal Modes  

According to the kinematic }  theory of x-ray diffraction the in-

tensity of x-rays scattered from a single crystal that contains N Bravais 

unit cells, each of which contains p atoms, is proportional to PP S, where
++ 

7 1g1 f
j  

n=1 j=1 

.
KS. 

-4 

eiR . nj 

 

N p 

= 

Here f., is the atomic 

the x-ray wavelength, 

scattering factor of atom nj, K equals 21T/X, T. is 

R
nj 

is the position vector of atom nj referred to 

an arbitrary origin, and S=s-so is the diffraction vector where s  

and 'a,re unit vectors in the direction of the incident and scattered 

radiation, respectively. ISI = 2 sin g, where g is the Bragg angle and 

2g is the total angular deflection of the scattered x-rays from the 

where  nj 	 nj' 
	r is 

 

the position vector of some reference point in the cell n, p
j 

is the 

+
Multiple reflections within the crystal are ignored. 

++
It is assumed that the charge distribution can be decomposed to a 
sum of spherical distributions located at each atom. 

(2-1) 
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position vector of the equilibirum position of atom nj referred to that 

point, and nj 
is the instantaneous displacement of atom nj from its 

equilibrium position. The vector VII  is given by nla> + n2V+ n3 ›  where 

nl, n2 , and n3  are integers and a, b, and c are the translation vectors 

of the lattice. From equation (2-1) one obtains +  

N p ---, ---, 	 -4,--> ->, 	. 7..;-> 1 -4 -4 \ 	.
i 
 7,4f-4 	-÷ \ 

PP
* 
 = 	 ff e

iKS
'
kr
n-rm

) elico.uoj-p i ) 
 e

Ko.ku
nj

-u
mi

) 	(2-2) 
J i 

n,m= ',i=1 

The thermal vibrational displacements of the 

equilibrium positions are not independent since the 

atom affects those or its neighbors because interato 

However, if it is assumed that the potential energy 

expressed as a quadratic function of the components 

a normal mode analysis of the vibrations can be made 

such an analysis have been described by a number Qf 

atoms from their 

displacement of one 

mic forces exist. 

of the solid can be 

of the displacements 

. The details of 

authors
2

' 14 ' 15 and 

will not be repeated here. The result of most interest for tne present 

-> study is that u
nj 

can be expressed as a superposition of independent 

plane waves with average amplitudes determinable from standard statisti-

cal mechanical results. Each wave has associated with it a wave vector 

V, a polarization unit vector -e->, and an angular frequency (1.). If each 

unit cell contains q lattice points with s atoms per lattice point, 

there are Nq distinct wave vectors. For each wave vector there are in 

general three different polarization vectors, for each of which, in turn, 

+
It is assumed that the electron cloud of each atom follows the nucleus 
as it is displaced from its equilibrium position (adiabatic assumption). 



there are s values of w. A plot of w as a function of I k l for any given 

direction of V will yield 3s dispersion curves. For three of the curves, 

called the acoustical branch, w goes to zero as 11.1 goes to zero. The 

other 3s-3 modes have frequencies which do not go to zero for any value 

of k and are called the optical vibration modes. 

One can thus write the instantaneous displacement nj in the 

following form, 

3s 

anj = I 	-e'(fi',a) a (k,a) cos 

 

w(k,a)t 	C/7"n.  + 	+ 5(1 , a) 	( 2-3) 

a=l 

 

where a identifies the branch and arc.,a) is a phase angle. The ampli- 

tudes, a.(k,a) are in general complex quantities because different atoms 

associated with the same lattice point may vibrate not only with differ-

ent amplitudes but with different phases as well. After substitution 

of equation (2-3) into the factor exp [ikS. (unj - umi )], it is necessary 

to average the resulting expression over a time, such as that of an 

observation, which is long compared to the period of the vibrations. 

Since the duration of the interaction between the radiation and the ther-

mal vibrations is short compared to the period of the vibrations, all 

possible configurations of the atoms are averaged over. The details of 

this averaging process have been described by Born and Sarginson 16 and, 

in somewhat different form, by James 5 . The result, written in a form 

similar to that obtained by James, is 
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--> 
S 	

nj
••• 7:1! 	= exp [- 1/ ‹,2j  ( a) + 	( 17', ct),  

-3 k,a 

-2 ‹.(r.,C) a McA cos fTe.(1 1.  - i-11 ) + Te.03 ,1 _V,eq I 
'.// 

(2-4) 

James derived the expression for < exp [iRS. (unj - Z
ia )] > for the case 

of only one atom per lattice point for which a (k,a) = ai (k,cii). Equation 

(2-4) is the result of our extension of James' derivation to the case of 

more than one atom per lattice point for which it is possible that 

a j (k>,0) 	a2Ma0. 

The term in equation (2-4) containing the cosine function leads 

to a description of the inelastic scattering
* 

of x-rays into directions 

which can be considerably different from those contributing to the in-

tensity maxima (Bragg'peaks) of the diffracted x-rays. This inelastic 

scattering is called thermal diffuse scattering (TDS) and is peaked, 

though not as sharply, in the same directions as the Bragg scattering. 

Its contribution to the measured diffraction peak intensity is not al-

ways negligible. However, to simplify the discussion, TDS will be ig-

nored for the present and will be discussed separately in Chapter III 

and Appendix A. 

The change in energy of the inelastically scattered x-ray photon due 
to its interaction with one of the normal vibration modes is quite 
small and usually ignored.' However,' the change in momentum is not 
small and hence scattering in directions other than the diffraction 
maxima results. 
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(2 -9) Io  (*\.) = 

N 
. 

e 1Kb.rn  

n=1 

e2rri(*:)./7  
/  
n=1 

16 

The factors in equation (2-2) which do not contain the instan- 

taneousdisplacements,u
n

.
' 
 need not be averaged since they do not 

depend on time. Therefore, substitution of equation (2-4) without the 

cosine term into (2-2) leads to 

N 

n,m j,2 

f
j
f
/ 

e -( mj -Fmt ) 	 ( 2 - 5 ) 

where, for instance, 

((Z, a) ) 2  7a2.(re,a> 

Ye, a 

Rearranging the terms in equation (2-5), one obtains 

(2-6) 

i6.(r-r 
e 	n m -{ e -Mt\  e iK .  073>j -T2  

J 	2 	,J 
n,m=1 

(2-7) 

or 

2 

<F> = Io(S/%) f.e -Mj e ikS. 
 

J 
j=1 

(2-8) 

where 
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Io  (ffN is called the interference function and, as is shown in standard 

texts on x-ray diffraction 5 , has appreciable values only when 

(B7%).17)  = integer, (2-10) 

and hence defines the positions of the Bragg peaks. The set of vectors, 

4 that satisfy, r.7', = integer, are usually considered the position 

vectors of a three-dimensional periodic array of points known as the re-

ciprocal lattice. The use of the reciprocal lattice to describe the geo-

metrical aspects of x-ray diffraction will be considered later when we 

discuss the contribution of TDS to the Bragg peaks. 

Thernearisquareamplitudes<a. 2 (k y a) > are, related to the mean 

energy, E(v(k,a)), of a simple harmonic oscillator having a frequency 

v(k,a) = w(k,a)/2T,as follows, 17  

 

p 

E(v(Te,a) = N 27 v 2 (Za)) mj  <a j2 (Te,a) > 

j=i 

(2-11) 

where 

E(v(k,a)) = hv(i,a) (n(v(V,a)) + 1/2) (2-12) 

-1 
ehy(Te,0)/kT \ - 

n(v(Z a )) 	-1 (2-13) 

and 

The sum in equation (2-11) is taken over all the atoms in a unit cell, 
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NiSthenumberofunitcells,m.is the mass of atom j, h is Planck's 

constant, is Boltzmann's constant, and T is the absolute temperature. 

To discuss the effect of thermal vibrations on the intensity of 

x-ray diffraction peaks in more detail, one finds it convenient to con-

sider separately those crystal structures which have only one atom per 

lattice point and those which have two or more. In addition only cubic 

Bravais unit cells will be considered. 

One Atom Per Lattice Point  

For a cubic unit cell with one atom per lattice point, equation 

(2-11) can be rewritten as follows 

<2 0z a  E(v(Za))  

2 	
( --> 27r Wm)2  (k, a) 

(2-14) 

where N' = qN = total 

form 

where 

and 

M = 

number 

<DP4  

1 

F 

of atoms. 	Equation 

= 	11'1 2  

= 	e 

iitg:e4(V.,a)}2 

(2-8) 

e -2M  

E(vMan 

then takes the 

(2-15) 

(2-16) 

• 	 (2-17) 
.2 

8ir N'm 
v2mco 
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From equations (2-3) and (2-6) it can be seen that M is proportion- 

al to the mean square of the projection of the vibrational amplitude of 

each atom along S. In the case of harmonic vibrations with all atoms at 

positions of cubic symmetry, M is required to be independent of the 

direction of S. For this case it can be shown18,19 that (Kg'.(Te,a)) 2 

 can be replaced by its average value, equation (2-18), and taken out-

side the summation sign in equation (2-17). 

. 2 
(a.(Z,a)12 - 10V sin 2g  

aye - 3 	2 (2-18) 

M can therefore be simplified to 

/ 2 	(zin 	E(v(k,a))  

	

M  = 3N'm \\ X 	 2,-) 	 v kk,a) 
(2-19) 

Vibrational Spectrum and Debye's Assumptions  

The sum over k and a in equation (2-19) is usually replaced by 

an integral over all the normal mode frequencies by introduction of the 

frequency distribution function, g(v). Then g(v)dv is defined as the 

number of normal modes having frequencies between v and v + dv and is 

normalized such that 

vm 

g(v)dv = 3N' 
	

(2-20) 

where v
m 

is the maximum frequency in the vibrational spectrum. 
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In terms of g(V) equation (2-19) becomes 

2 (sin G M = — 
m E(V)V -2g(V)dV g(v)dv 	(2-21) 

Actual vibrational spectra are so complex that approximate forms 

are of considerable practical importance in calculating quantities related 

to thermal vibrations such as M, specific heats, etc. The approximation 

most widely used is that introduced by Debye20. In this approximation 

one obtains the dependence of g(v) on V by assuming that a crystal can 

be treated as an isotropic continuous solid in which all waves of a given 

branch, a, are propagated with the same speed, independent of their 

direction or wavelength. The following form is then obtained for g(V), 

g(v) = +, 2 	VV
2 

= aV
2 

v32 	v3  / 

In an isotropic solid the three modes for each k correspond to one longi-

tudinally and two transversely polarized waves. Hence in equation (2-22) 

vi and vt correspond to the velocity of the longitudinal and transverse 

waves, respectively. V is the volume of the crystal. The atomic nature 

of a real crystal sets a lower limit for the wavelength of the waves. 

Since the velocities of transverse and longitudinal waves are generally 

different, there are different upper limits to the frequencies for waves 

having different polarizations. An average maximum frequency is chosen 

by requiring 

r y m 

J 	
aV

2
dv = 3N' 

0  

(2-23) 

  

(2-22) 



and hence 

v.= (9N1/a)1/3 (2-24) 
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Substitution of equation (2-22) into (2-21) leads to 

2 
6h (sin 	1 

M = — m 	X ) 3 
vm 

1317
1

17f-1 

1 
>dv 	(2-25) 

where equations (2-12) and (2-13) have also been used. Changing the inte-

gration variable to = hv/RT and introducing the Debye characteristic 

temperature e = hvik, one obtains 

6h2T M = 	
0(x)  + x sin 

mke-  
(2-26) 

where 

x = 8/T and 

0(x). (2-27) 

The function 0(x) must be evaluated numerically
*
. It is found 

to approach 1 as x approaches 0 and to approach 0 as x approaches infinity. 

No real solid is expected to satisfy the assumptions described 

above which lead to equation (2-26). Approximate vibrational spectra have 

A table of 0(x) can be found in "International Tables for X-Ray Crystal-
lography", edited by John S. Kasper and Kathleen Lonsdale (The Kynoch 
Press, Birmingham, England, 1959), Vol. II, p. 264. 
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been determined experimentally for a few solids (e.g., Al by Walker
11

) 

and are found to be appreciably different from the simple parabolic form 

in equation (2-22). HoWever, as is pointed out by several authors
3
'
21 

 the detailed differences between the true spectrum and the parabolic 

approximation often do not severely affect properties, such as M and the 

thermal vibration contribution to the specific heat, which are based 

on the integral over the entire spectrum. Thus in spite of the obvious 

shortcomings of the Debye theory, e is a widely used semi-empirical 

parameter which provides a convenient means for comparing theory with 

experiment. Experimentally determined e's are usually found to depend 

on temperature and on the experimental technique used. Such variations 

in e can usually be traced to the differences between the true spectrum 

and the parabolic approximation and to anharmonic effects. Expected 

differences between 8's determined by different experimental techniques 

ai  

will be discussed briefly later. 

Anharmonic Contributions to M  

One underlying assumption on which the derivation of equations 

(2-3) and (2-4) is based is that the potential energy of the crystal can 

beexPandedasaseriesintermsofthedisplacements,u.,of the atoms nj 

from their equilibrium positions, and that such a series can be terminated 

at the term which is quadratic in the displacements. The thermal vibra-

tions of an atom can then be written as a superposition of simple harmonic 

vibrations as given by equation (2-3). The frequencies, w(k,a), are then 

determined by the second order derivatives of the potential energy with 

respect to the displacements, taken at the equilibrium positions r
n 

+ p.. 
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This harmonic assumption is not consistent with the fact that all solids 

exhibit thermal expansion
22

. Thus it is necessary to consider the effect 

on M of anharmonicity, i.e. the inclusion of higher order terms in the 

expansion of the potential energy. 

The effect on M of including the third and fourth order terms of 

the potential energy expansion. has been considered recently by Hahn and 

Ludwig23  and by Maradudin and Flinn24  for the classical (high temperature) 

case. A quantum mechanical treatment which is valid for all tempera-

tures has been developed by H. Hahn
25

. The results obtained by the above 

authors are: (1) The frequencies which appear in equation (2-19) are 

temperature dependent since the points at which the second order deriva- 

tives of the potential energy are evaluated, i.e. the equilibrium posi-

tions of the atoms, vary with temperature due to thermal expansion. 

(2) In addition to equation (2-19) there is a term which represents the 

anharmonic corrections to the mean square amplitude of vibration of an 

atom and which is related to the third and fourth order derivatives of 

the potential energy with respect to the displacements. At high temper- 

atures this term is proportional to the square of the absolute tempera-

ture. (3) There is an additional term which represents the thermal 

average of the fourth power of an atomic displacement and which is re-

lated to the third and fourth order derivatives of the potential energy. 

This term is proportional to the cube of the absolute temperature and is 

not isotropic, although for a cubic crystal, it possesses cubic symmetry24 . 

The dependences of the normal mode frequencies on temperature via 

thermal expansion has been investigated by Maradudin
26

. His result for 

a completely general force law between the atoms is complex. For the 
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case of a face-centered cubic lattice with nearest neighbor, central 

force interactions, the result is considerably simplified and becomes 

v E!,00 - V(Tt;a) 	_ f_411 [0 ' (ro)]2 	(2-28) 
2 	[0 ,, (ro)l  

Here 0(r) is the potential energy of interaction between two atoms 

separated by a distance r, the primes denote derivatives with respect to 

r, €(T) is the vibrational energy per atom, and "NI(k,a) is the frequency 

which is obtained when the equilibrium separation of neighboring atoms 

is ro, the separation which corresponds to the minimum of the potential 

energy. 

The assumptions which lead to equation (2-28), e.g., nearest 

neighbor interactions are rather drastic and the simplified expression 

still contains some unknown quantities such as the second and third 

order derivatives of 0(r). Therefore, instead of equation (2-28), we 

have used an empirical approach to estimate the effect of thermal expan-

sion on the normal mode frequencies v(k,a). If it is assumed that this 

effect is independent of Yt!and a, then according to GrUneisen's theory 

of thermal expansion one hasp 

d In V (2-29) 	 -  d In V -Y  

where V is the crystal volume and y is the GrUnesisen constant which is 

assumed to be the same for all v(Za) and which at low temperatures is 

given approximately by 
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7 PV/KCv 	 (2-30) 

Here p is the volume coefficient of thermal expansion, K is the compressi-

bility, and Cv  is the specific heat at constant volume. If a Debye 

frequency spectrum is also assumed, it follows that (see reference 14) 

d In 8 
d In V - Y  

(2-31) 

  

Integrating equations (2.-29) and (2-31) one obtains 

VT  = vo  (Vo/VT) and 8T  = 80  (Vo/VT ) 	 (2-32) 

where T is the absolute temperature and o represents some arbitrary 

reference temperature . Since values of y for many solids, or the quan-

tities needed to calculate it, can be found in the literature, the cor-

responding estimation of the temperature dependence of v(R;a) and 8 is a 

simple matter. 

Several weak points of this empirical approach should be pointed 

out, however. (1) The use of the crystal volume, V, in the above 

equations means that the possibility that thermal expansion of the crystal 

in different directions may have different effects on any given frequency, 

v(k,a), is being ignored. Although we know of no reported theoretical 

analysis of this point, it would seem that such differences would be 

negligible when the thermal expansion is isotropic as it is for cubic 

structures such as those studied in this work. (2) Recent generaliza- 

• tions of GrUneisen's theory by Blackman
29 

and by Barron30  for several 

The use of equation (2-31) in the form shown above was first suggested 
by Paskin27. However this equation also follow§ directly from an ex-
pression derived earlier by Zener and Belinsky2°. 
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simple models of a solid show that the effects of thermal expansion on 

the normal mode frequencies are not necessarily independent of E!and 

i.e., there is a y(40, ) for each frequency, where 

d 
 -7(-1-4c6/ 
	In v(r1 c) 

 d ln V (2-33) 

The single 7 in equations (2-29) and (2-31) is found by the above authors 

to be a certain average over the individual y(k,a)'s, which average in 

general will vary with temperature if the individual 7(Za)'s are dif-

ferent from one another. Experimentally determined values of y sometimes 

do vary with temperature. However, this variation is small for many 

solids. In fact, Grilneisen's theory with a single temperature indepen-

dent y describes quite adequately the measured thermal expansion of both, 

Al and AgC1 in the 100 to 300°  K temperature range 31 . Thus, one might 

expect that although the individual y(k,a)'s are possibly different, 

the net effect of the temperature dependence of all the normal mode fre-

quencies on properties such as thermal expansion and M, which are. based 

on an integral over the entire frequency spectrum, can be approximated 

reasonably well by the use of a single y. Since the determination of 

individual y(Zo)'s is at best only now becoming, an experimental possi-

bility, and since the temperature dependence of the normal mode frequen-

cies is expected to represent a small contribution to the total tempera-

ture dependence of M, at least at low temperatures, it is felt that the 

It is interesting to note that since the terms in the brackets on the 
right side of equation (2-28) do not depend on (ZO), the individual 
y(k l a)'s are all equal for the case of a face-centered cubic lattice 
with nearest neighbor central force interactions. 
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empirical approach just described is a reasonable first approximation to 

use. The fact that this approach is an approximation whose accuracy is 

difficult for one to determine should be borne in mind, however. 

For the other anharmonic contributions to M, the dependence on 

temperature and the normal mode frequencies is extraordinarily compli-r 

cated except at high temperatures (T > 8)
25 
 . Even at high temperatures 

the dependence on the normal mode frequencies is complicated unless 

simplifying assumptions, such as those used for equation (2-28), are 

made. The general expression for the anharmonic term proportional to 

T2 , as given by Hahn and Ludwig23 , is 

(kT)2 

2N 'm 

-).-÷ .-+ 
k k' k" 2 0  	, 

(s-3.e1Z,cx112  [ 	Z 	a a' a" 1 	1  

2 .- 	 .- 	2,--) co (k ,a) 	 co k ,a 1  )w Oc' ,a") -, -, 
IC,k" 

k , a , 

re -re " 
012.22122L__ 

2 -> 
(k',a') 

(2.t34) 

The superscripts and subscripts on the crs denote the normal mode 

wave vectors and the branches of the dispersion curves respectively. 

The first term in equation (2-34) is proportional to the square of the 

coefficient of the third order term in the expansion of the potential 

energy and the second term is proportional to the coefficient of the 

fourth order term. For example, 



-* -4 -4 
im k k' k" = 	1 	rAr. ,s,t e . e.e " exp 	(It -Fres 	) 'cx,at ,a" 

	

	 1 
3 
	 r 	s 	t N'm rl s,t 

(e' = e (1-Z'a)) 
- 

Arst i Here piji  is the third derivative of the potential energy, 0, where, for 

instance, the superscript r and subscript i means that the first 

th 	

deriva- 

. 
tive of 0 is taken with respect to the a. component (i = x,y,z) of the 

-4 
displacement of the atom whose position vector - :s Rr, etc., and e i is 

the ith component of the polarization vector. 

The complexity of enharmonic expressions such as equations (2 -34) 

and (2-35) make it extremely difficult to calculate expected anharmonic 

contributions to M with much certainty. These expressions do give, 

however, the temperature dependence expected at high temperatures (where 

these effects are presUmably most significant) a knowledge of which may 

permit the determination of these anharmonic contributions from experi-

mental measurements of M (or of dM/dT, as discussed later) as a function 

of temperature. Since the contribution of the third and fourth order 

derivatives of the potential energy are of different sign, the experi- 

mental determination of merely the sign of the expression (2-34) could 

be useful for testing the validity of theoretical models of the inter-

atomic potential in a given solid. 

The anharmonic terms which depend on the cube of the absolute 

temperature and which are not isotropic are even more complex than ex-

pression (2-34). Maradudin and Flinn
24 

show that for the case of a 

nearest neighbor-central force model of a face-centered cubic crystal 

28 

(2-35) 
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the dependence of these terms on the components of S is given by the 

following expression: 

2 2 , 
a(S + S 	+ sz

4
) + b(S s '+ s 2s s 	+s 2S 2 ) 	(2-36) x x y 	y z 	x z 

where a and b are complicated functions of the normal mode frequencies 

and wave vectors and are given by Maradudin and Flinn. These authors 

find that (2-36) is quite negligible for the above crystal model with 

the elastic and thermal expansion properties of lead. (2-36) may not be 

negligible for all solids, however, and may lead to a measurable aniso-

tropy in M. From expression (2-36) it follows that if the x-y-z axes 

are chosen to be along the a, V, and "E'axes of the cubic unit cell, the 

differences between values for M corresponding to different crystal-

lographic directions would be largest for the [100], [110], and [111] 

directions. In the present study we have investigated the possible 

anisotropy , of M by obtaining data for these crystallographic directions. 

One additional point concerning anharmonic effects should be 

mentioned. It has been implicitly assumed that the potential energy has 

no explicit dependence on temperature. We know of no reported theore-

tical investigation of this point;however, such a dependence would re- 

sult if the energies of the bonding electrons were to vary with temper-

ature, and it seems reasonable that they could. Such an effect would 

lead to a temperature dependence of the.normal mode frequencies even when 

the crystal is held at constant volume. However, to simplify the follow- 

ing discussion it will be assumed that 9,v(ita)RT)v = 0, where the sub-

script v means that the temperature derivative is taken at constant 

volume. 



Temperature Derivative of Intensity 

We now consider the diffracted intensity observed when 57),■. satis-

fies equation (2-10) and combine all the quantities
+ 
which relate the 

observed intensity to < PP* into Io . The integrated intensity I of 

an x-ray diffraction (Bragg) peak of a monatomic cubic crystal is then, 

Thus 

I=I 
e-2M 

0 
 

lnI = 1nI0  -2M 

( 2-37 ) 

(2-38) 

and if one assumes for the moment that Io is independent of temperature 

then, 

.dM for a General Spectrum 
dT 

a 	dM _ - 	(ln I) — • 2 dT 	dT (2-39) 

     

Neglecting for the moment anharmonic effects other than thermal 

expansion, with M given by equation (2-19) one obtains 

dm/dT = 2h /sin Q 
2mN' \ 7`• 

2 

f4(1 TIT,a)p)  n2 (v(k,a)) ehv(Zo)/kT kT2  
V, a 

+
For example, L.P.,absorption, TDS, incident intensity, all systematic 
errors, etc. 



sin Q 

2s.2 	3mN ' kT2 	'2'.  
ehV/kT g(v)dv (2-42) 
(ehV/kT_1)2 

2 
2h2 (9 

V 

(Y(V)ce) — 2/3) 13 ( n(V(1Q)) 	1/2  )1 	(2-40) 
v(k,a) 

where equation (2-12) has been substituted for E(v(V,0))and n(V(4a)) is 

given in equation (2-13). Here p =(1/V)(dv/dT) is the volume coefficient 

of thermal expansion and equation (2-33) was used to determine dv(k,a)/dT = 

-y(E;c0v(E;a)p. The term containing 2/3 arises from the effect of thermal 

expansion on (sin (;)
2
A. The terms which contain y(T,0) and p arise 

from thermal expansion and the resulting dependence of v(ZoP) on volume. 

Although they are not expected to be negligible, they are so small that 

most of the information about the vibrational spectrum would be obtained 

from the temperature derivative of M at constant volume, 

Om 2h2  	(sin G12 nv(!, a )) ehV(ZO)/kT 
3mN'kT

2 

TE",,a 

which, written in terms of g(V), becomes, 

(2-41) 

where we have substituted the expression given in equation (2-31) for 

n(v(k,a)). 

dM af  for a_Debye Spectrum 

With M given by equation (2-26), one obtains 



(2 -43) /sin Q  d.M6h
2 

711  = 	 2 [f(x) 	g(x)]  mk0   

(2-44) 

(2-45) 

where 

f(x) = 20(x) - 

g(x) = PT [(y - 2/3)(0(x) 1-  ) 	yf(x)] 

-46) (N3,„\ (sin 6h2 f(x) 
iv 	 mk©2  

(2-47) f(x) = 

32 

and equation (2-31) was used to determine d6/dT = -rep. 

As shown in Figure 1, f(x) is a slowly varying function of x; 

changing only from 1 to 0.46 as x changes from 0 to 7, i.e., as T changes 

from 00 to 8/7. The term containing f(x) in equation (2-43) is equiva-

lent to what would be obtained by integrating over a Debye spectrum in 

equation (2-42). Thus, for a Debye spectrum, 

The expression for f(x) obtained by inserting a Debye spectrum in equation 

(2-42) is, 

The expression in eqVation (2-44) was used to obtain the f(x) vs x plot 

shown in Figure 1 since tables of 0(x) were readily available and x(ex-1) -1 

 is easily calculated. 
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Figure 1. The Function f(x). 
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The term containing g(x) results from thermal expansion. It is 

equivalent to the corresponding term in equation (2-40) with 7(r,01) = y 

and with a.Debye spectrum introduced. g(x) is small compared to f(x); 

normally being no larger than 10 per cent of f(x) at 300 °  K for the 

materials we have studied. The dependence of g(x) on x turns out to be 

small since (0(x) i) increases while f(x) decreases with increasing x. 

Thus the temperature dependence of g(x) is governed primarily by the 

product ST and the size of 7. 

Since f(x) and, to a lesser extent, g(x) depend on x, the deter-

mination of 8 from an experimentally measured dM/dT requires an iterative 

procedure at low temperatures (T < s). At high temperatures, T >> 8, 

(0(x) + -) and f(x) are both nearly one and are very insensitive to 8, 

so. that iterations are not required. 

The integrand appearing in equation (2-42) is the vibrational 

spectrum multiplied by a function which "weights" the frequencies of the 

spectrum differently at different temperatures. Thus if g(V) departs 

significantly from the Debye approximation, it is possible that the e 

(hereafter denoted ®(x-ray)) which makes.the right side of equation (2-46) 

equal to the right side of equation (2-42) will Mary with temperature. 

In addition, g(v) itself will vary with temperature due to the depen-

dence of the frequencies on temperature, which dependence is primarily a 

volume dependence. Hence, a e(x-ray) obtained from a measured dM/dT can 

vary with temperature both due to thermal expansion effects on g(v) and 

due to the probable difference between the real spectrum and the Debye 

approximation. 
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The use of equations (2-39) and (2-43) allows a determination of 

dO/dT and of e(x-ray) as a function of temperature directly from the 

temperature dependence of a single given Bragg reflection, and allows 

this to be done (as mentioned earlier in Chapter I) without the use of 

any assumptions regarding the expected shape of a 8(x-ray) vs T curve. 

Of course, the results we obtain for 8(x-ray) do depend on the assumptions 

we have made concerning the effects of thermal expansion on the normal 

mode frequencies. Fortunately, these assumptions affect the experimental-

ly determined e(x-ray) only through its dependence on g(x), (see equation 

(2 -43)) which, as already mentioned, is small compared to f(x). An 

error in 8(x-ray) and its temperature dependence will result if the 

additional anharmonic terms in M. are significant but not explicitly 

accounted for. Presumably, the significance of these terms can be deter- 

mined from the temperature dependence of e(x-ray) at high temperatures. 

For example, at high temperatures, the difference between the real spectrum 

and the Debye approximation should not affect the temperature dependence 

of 8(x-ray) since 	f(x) = 1 at these temperatures. Thus, if the 

temperature dependence of 8(x-ray) is not accounted for by equation (2-32) 

(assuming that this equation is valid), then these additional anharmonic 

terms are significant. 

Dependence of 8 on Experimental Methods  

The methods used most frequently for the determination of e are 

those which involve measurements of M (or of 4M), as was discussed in 

Chapter I, of specific heats, and of elastic constants. Differences 

+
The terms which vary as T2 and T3  in M vary respectively as T and T

2 

in dMidT. 
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between 8's so determined have been discussed by Blackman and by Herb-

stein3 , and are due to the fact that the above properties weight the 

frequencies of the spectrum differently. 

The limiting form of the true spectrum at very low frequencies 

is parabolic
21 
 . As only the very lowest frequencies are excited in 

measurements of elastic constants, e(elastic) will be that appropriate 

to a parabola which fits correctly this part of the true spectrum. Devia-

tions of the true spectrum from the Debye approximation will not influence 

the shape of the 8.(elastic) versus T curve. 

Although higher frequencies in the spectrum play a more important 

role in determining M, or dM/dT, than elastic constants, dM/dT is still 

primarily determined by the low frequency range of the spectrum. This 

fact can be seen easily by writing equation ,(2-42) for the case of high 

temperatures, i.e., when hV m/kT << 1. One obtains in this case: 

/M 	2k 

31n11"  

sin Q (2-48) 

Thus, even at high temperatures, where all of the frequencies in the 

spectrum are excited, the low frequencies are relatively much more impor-

tant to (M/T) v  since they are heavily weighted by the V -2  factor in the 

integrand of equation (2-48). As the temperature is lowered, the low 

frequencies become even more important to (NvI/T) v since the high fre-

quencies become less excited, and as T approaches zero, 8(x-ray) 

approaches e(elastic). For T A 0 one expects 8(x-ray) to be less than 
e(elastic) if the true spectrum rises above its initial parabolic shape. 



This is because the parabola that fits the true spectrum best over an 

appreciable part of the frequency range will be steeper and thus have a 

smaller value of Vm, than the parabola chosen to fit the limiting shape 

of g(v) at the very lowest values of V. The rule 8(x-ray) < 6(elastic) 

seems to be a general one since most frequency spectra have peaks in the 

lower frequency range 19 . 

In terms of g(v) the formula for C v, the specific heat at constant 

volume, can be written: 

C = 	

i 

	

h2 	m V2env /kTg(V)dV  

	

v 
kT

2 
	by kT. 

(-49) 

The factor which weights the frequencies of the spectrum is seen to be 

the factor appropriate to (aMVT) v  (see equation (2-42)) multiplied by 

V
2
. Thus, the higher frequencies play a more important role in deter-

mining Cv  than (610T) v . For example, at high temperatures (hV m/kT << 1) 

equation (2-49) becomes 

C
v 

= g(V)dv (2-50) 

and all the frequencies of the spectrum are equally weighted, in con- 

trast to the situation, discussed above, for the high temperature expres-

sion for (W6T)
v . The importance of high frequencies to C v makes pre-

dictions concerning comparisons of 0(C 
v
)with 8(x-ray) and 8(elastic) 

difficult at intermediate temperatures. At low temperatures, the low 

37 
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frequencies are heavily weighted for all three types of measurements and 

for T = 0 one expects B(C v) =: e(elastic) = 8(x-ray). At high temperatures 

one would expect a(Cv) to be larger than 8(x-ray) and e(elastic) if there 

is a high density of high frequencies in g(v). For example, Batterman 

and Chipman
32 

have recently shown that the large differences, 20 per cent, 

found between B(Cv) and 8(x-ray) in Ge and. Si, with B(Cv) being the 

larger, are due to the existence of a large number of high frequency 

optical modes in the frequency spectra of these materials. One would 

expect a similar situation to exist for AgC1 where the large difference 

in the masses of the two ions leads one to expect the existence of a large 

gap between the acoustical and optical frequencies10 . 

Moments Method  

The "moments method", which has been used some in the analysis of 

specific heat data
13

, appears not to have received any consideration for 

the analysis of x-ray intensity versus temperature data. This method 

appears to be equally useful for the analysis of either type of data; 

especially when thermal vibration information obtained from these two 

experimental techniques are to be compared. The method involves the use 

of a.Maclaurin expansion of the mean energy of a linear harmonic oscilla-

tor in powers of (hv/kT) where v is the oscillator frequency. If one 

writes the mean energy as 

E(v) = hv(n(v) + 1/2) 

with n(v) given in equation (2-13), this expansion takes the form 

00 

 E(v) = 	) (-1)
n 
 1 (1

Bn
77—T (2-51) 

n=1 



M = 
3N' m 

sin 
2‘. 

2 
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where Bn are Bernoulli numbers
21

, the first six of which are 

B1  = 1/6, B2  = 1/30, B = 1/42 

B4  = 1/30, B5  = 5/66, B6  = 691/2730. 

The expansion is convergent for (hv/kT) < 27r. In terms of either the 

maximum frequency, V im., of the vibrational spectrum or the Debye 8, the 

expansion is convergent only for temperatures, T, such that 

bym  T> 27k = 0/271-  

Insertion of equation (2-51) into equation (2-19) yields for M, 

CO 

kT 	1- 
v 0,o9 n=1 

n Bn (17 (,ct) 
(2-52) 77! kT 

The temperature derivative of the expression in equation (2-52) 

yields two terms; one is equal to (aM/61')
v 
and the other arises from the 

dependence of the frequencies, v(Z0), on volume. The thermal expansion 

contribution is small, so we assume that it can be determined with suf-

ficient accuracy by the corresponding term obtained when a Debye spectrum 

is used, i.e., by the g(x) term in equation (2-43). Assuming that the 

termproportional to g(x) has been subtracted from a measured dM/dT, we 

consider only (M/T)v  = (B/6T) vsin
2 

Q/2N.
2 

in what follows. One obtains, 

We are also assuming here that a 8 has already been calculated from the 
measured dM/dT. 



)v. _ aB 	2 
N 

k  
3N'm 

1 -I- 
V kk,a) 

 

-1 n 2n-1  B (hVgc!,p0 
 (2n):: n 	kT 

2-53) 

 

n=1 

  

where we have assumed (aV(Za.)/3T) v 
= 0. The frequencies which appear 

in equation (2-53) still depend on temperature through their dependence 

on volume. This additional temperature dependence can be eliminated 

through the use of equation (2-32), if we assume that the use of a single 

GrUneisen constant is valid. That is, we let v(Za) = v o (k,a)(vo/v) 7 , 

where V (k,o) is the normal mode frequency at some temperature T o. We 

also let 

= T(Vo/V) -7 	 (2-54) 

and define the n
th 

moment of the vibrational spectrum at temperature T o 

as 

V 
1 

Pn 7 3N , 
vn(V,a) 1 m 

V
n
go(V)dv . 

(2-55) 
3N' 

k, a 

Then equation (2-53) becomes 

(Ico  )2y (6B 	
2k [ 	 n 	

rn 
2n-1 	h 	o 

)v = m P -2 	 77 B 	p.! n kT' 	2(n-1) 
n=1 

or 

, (2-56) 



C 	= a 	.-2  + a (T' -4 	-6  
o 

- a a. T1 ( ) 	2 	) 	- a3
(T') 	+ 	 (2-57) 

where 

ao = (2k/m)i.J.°  2 

and 

2n-1 (1n  (2k 
an = 771 'n 	'm i-12(n-1) 	 (2-58) 

Now a1 is known because it does not depend on the vibrational spectrum 

since kt
o 
= 1. Thus, one can fit, using a high speed computer, experi- 

/ ./ mentally determined values for (V
o/V)

27 
 0
.
03/0T) v + a1(V) to the ex- 

\ -4 	\- 
pansion ao + a2 (T I ) 	- a

3
(T') 	+ ... to estimate the coefficients an . 

The results, along with the recursion formula, equation (2-58) can then 

be used to yield values for the various moments of the vibrational 

spectrum. 

The expansion which is appropriate for Cv is given by
21 : 

cv 
= 3N'k L: [1 + 

Te,a 

n 2n-1  n
n 
 ( 

kT 
 KLEL2.1Yn 

(2n)! - 	) 

 

• 	
(2-59) 

n=1 

 

As can be seen by comparison of equation (2-59) with equation (2-53), 

each term in the expansion for (aB/T)
v 

is proportional to the corres-

ponding term in the expansion of C v divided by V
2 
 (k,a). Therefore, 
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where 42n appears in the expansion for C v
, 

42(n-l) 
appears in the ex-

pansion for (aB/T)
v
. This means that a term proportional to 4 -2 

occurs 

in (aB/T)
v 
but not in C

v
. Except for this term, the same moments 

occur in the expansions for both C v 
and (aB/T)

v 
although they do not 

multiply the same power of the temperature. Therefore, in addition to 

giving specific information about the vibrational spectrum, the analysis 

of experimentally determined values for (aB/T)
v 
by the moments method 

yields results (except for 4_2 ) which are directly comparable to those 

obtained from a similar analysis of specific heat data. However, pro-

blems which were encountered in our attempts to perform such an analysis 

indicated that either the experimental precision obtainable by present 

day x-ray techniques is not sufficiently high or the thermal expansion 

corrections suggested above are not sufficiently valid to allow meaning- 

ful determinations of the vibrational spectrum moments except possibly 

4_2 . These problems are discussed in Chapter IV. 

Two Atoms per Lattice Point . 

Individual Temperature Factors for an NaCl Type Lattice and Their  

Relation to the Vibrational Spectrum 

For the case of more than one atom per lattice point, equation 

(2-8) takes the form 

where 

= I o(SV.) IF I2 

F = 	 e 7\* 
LL 

(2-6o) 

(2-61) 



and where M. is given by equation (2-6). For an NaC1 type lattice with 

V's. satisfying equation (2-10), F takes the form 5 , 

F = 4(f1 
e -Ml + f

2 
 -142 ) 

' (2-62) 

where for AgC1 (or for 01) the subscript 1 represents the Ag
+ 
(or e) 

ion and the subscript 2 represents the C1 -  ion. The plus sign in 

equation (2-62) corresponds to Bragg reflections which have all even 

Miller indices and the minus sign to those reflections which have all odd 

Miller indices. (No reflections with mixed indices are allowed.) 

The relation of M1  and M2  to the vibrational spectrum is obtained, 

neglecting anharmonic effects, by combining equations (2-6) and (2-11). 

If Mj  is multiplied by mj ; the mass of atom j, and summed over j, then 

from equation (2-6) one obtains, 

ZmjMi  = 

j=1 
\ai (K u)/ 

(2 -63) 

Substitution of equation (2-11) into the right side of (2-63) gives, 

m 
jmi  = 1 

J=1  

la.-8(r,a))2  E(v(E;a))  
2 2,-.0 

271-  NV kk, a) 

(2-64) 

Now for an NaC1 lattice, 

= 4(m1m1  + m2m2 ) 

j=1 

(2 -65) 



which when substituted into equation (2-64) yields, 
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m1M1  m2M2 - V 	c. O,(a ) 

1 (sin E? 2 	E(v(Z0)) 	, 	(2-66) 

Z, a 

where we have made use of equation (2-18) and have set K. = 27/X, and 

2sin Q. Insertion of the vibrational spectrum, g(v), into equation 

(2-66) yields, 

/ . 

m1  M1  m2M2  = 4 c7n  E(v)v -2g(v)dv 	g(v)dv . 	(2-67) 

and for a Debye spectrum, 

12h2T 	x 	9 

	

m11/11 m21\12 = ke 7-  Igx)  7 	X 
2 

(2-68) 

A result equivalent to equation (2-67) was derived by Blackman in a 

slightly different manner than that used above. Thus we see that neither 

Ml  nor M2 is simply related to the vibrational spectrum, but their sum, 

weighted by the masses of the appropriate atoms, is. 

Expressions can be obtained which relate M l  or M2  separately to 

the normal modes, however additional information is required, as is 

shown below, and the insertion of the vibrational spectrum into these 

expressions leads to little or no simplification. According to Laval
17 

(alsoseenater 33 )wecandefineasetofcmplexiumbersc.(k,a) such 

that 



1
2 Ic 1(Za)1 2  E ( y(Z a)) 

272Nm iv2 (Za) 
. 	 (2-72) 

= 

k, a 

Va.(re,a) = C .( ,a) a(k),a) 
	

(2-69) 

and 

1 0 ..( 1e,c6 )1 2  m. = m' 
	

(2-70) 

j=1 

where m' is the total mass of the atoms in the unit cell. Thus the dif-

ferences in the vibrational amplitudes and phases of different atoms are 

containedinthec.(k,a)'s and <,2 (V.,a)› is related to E(v(V,01))by, 

2T2Nba'V2 (re,a) <1, a2 ( 17e)0 = E(V(Te,a)) • 	(2-71) 

Substitution of equations (2-69) and (2-71) into (2-6) leads to, 

It is convenient, for future discussion, to define a quantity 

r(k,a) = c2 (Za)/c1(Za) 	 (2-73) 

which in the present experiment is the ratio of the Cl ion vibrational 

amplitude to that for the Ail-  (or e) ion. r(k,a) is negative for the 

optic modes, where adjacent atoms vibrate out of phase, and it is posi- 

tive for the acoustic modes, where adjacent atoms vibrate in phase
10

. 

In terms of r(r,a) M
, 
becomes 



4'6 

M' 
  

1 

C
s in 9 

1 	oN 	
E(v(V,a)) 	(2-74) 

(m1 	INZa)1 2  )v2 (re,a) 

where again we have substituted the appropriate expression for 

(ICS 

As we have indicated, r(Za) is a function of the mode. 

Brillouin9  has derived r(Zot) for the case of a one-dimensional diatomic 

chain with only nearest-neighbor interactions. Even for this "simple" 

case, r(V,a), for a given ml  and m2 , is a rather complicated function 

of k (see appendix C). Thus the dependence of M1  (a similar result 

would apply to M2) on the normal modes is considerably complicated by 

the presence of r(Za), whose functional form for a general three-

dimensional lattice is unknown. Thus it appears that the use of equa-

tions (2-67) and (2-68) would permit the better investigation of the 

vibrational spectrum. However, experimentally determined values for 

M1  and M2  (or of dM1/dT and dM2/dT) could also be of considerable value 

in testing, for instance, the applicability of Brillouin's expression 

for r(k,a) to a three-dimensional lattice. 

Temperature Derivatives of M1  and M2  

The relationship between the vibrational spectrum and the temper-

ature derivatives of M
1 
and M, is essentially the same as that already 

discussed for the case of one atom per lattice point. For example when 

a Debye spectrum is assumed one obtains from equation (2-68) 

2 

2 	2 	
+ g(x)] (sin G 

mlivq m 	= 	( ) 
ke 	 X (2-75) 
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where the prime indicates the temperature derivative of the primed quan-

tity. If a Debye spectrum were not assumed, the right side of equation 

(2-75) would be proportional to the right side of equation (2-40). Here 

it has been assumed that thermal expansion effects on the normal mode 

frequencies are the same as that already discussed for the monatomic 

case. For the moment other anharmonic effects have been neglected. 

Actually the anharmonic terms for the diatomic solid are not necessarily 

the same as discussed for the monatomic case. Different atom-types 

may have different anharmonic character in their vibrations, especially 

if they have different vibrational amplitudes. For simplicity, however, 

it will be assumed that even if the anharmonic terms are not the same 

size for Ml  and M2, the temperature dependence is the same for both. 

The thermal motions of the two atom types in an NaC1 type lat-

tice are not in general identical. If the difference is negligible, 

i.e., if M1  M2 = M and Mi 	= M', equations (2-67), (2-68) and 

(2-75) reduce to the corresponding equations discussed earlier for the 

monatomic case with m replaced by (m l  + m2 )/2. The experimental deter-

mination of dM/dT also would proceed exactly as already discussed in 

the monatomic case since e -M1  = e -M2  = e -M, which can be taken outside 

the parenthesis in equation (2-62). It should be pointed out, however, 

that even if M1 M2 at, say, room temperature, they may not be equal 

at some other temperature, that is, Mi is not necessarily equal to 1M. 

Thus it is desirable to investigate the possibility of experimentally 

determining both Mi and M from intensity versus temperature, measure-

ments. 



Contributions of Mi and 	to d(InI)/dT 

We combine into K all quantities which relate the observed inte- 

grated intensity to IFI
2
. From equation (2-62) we can write, 

I = 16K (f1 e
-M 
 1+ f2  e -142 r (2-76) 

It is convenient to rewrite this expression in the following form, 

where 

. 	 f 
-2 2 e  M1 ( +

r 

1 ( 2 -77 ) 

= f2/f1 and al =M2  - M1  . 

We assume for the moment that K, f1, 	, and sin
2
AiN

2 are independent 

of temperature. Then, 

--cicit(in I)P-1M' + 	 (6W) 1 — 1 + e-6M (2-78) 

I 2% Denoting the right side by A sin2 	
* 

AO. ) , one obtains, in terms of B' 1 

and B2, 

 

AO  = 13'1  + ([0') 
(2-79) 

    

This agrees with the general definition of Ao given in Chapter III. 
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where Aa' = ]E3 - Bi. Thus we see that Bi, B2 and DM all contribute to 

the temperature derivative of the intensity of a given Bragg peak. It 

is possible, however, to separate the individual contributions of Bi 

and B2 to Ao 
with the help of the analytic methods discussed in the fol- 

lowing paragraphs. 

Ao Versus sin2G/0 Character and the Determination of B' and BI2 
 Separately 

From equation (2-79) and the definition of 6M, it follows that 

if the vibrational amplitudes of the two atom types in an NaCl type 

structure are different, A
o 
will vary with sin

2/2 
 . The purpose of 

the following discussion is, therefore, to investigate the use of an A o  

/ versus sin2  Qv%2  plot to determine, separately, Bi and B. To this end 

it is desirable that the possible distinguishing characteristics of an 

A
o 
versus sin

2
APN.

2 
plot be determined along with the manner in which 

these characteristics depend on the sizes and signs of B' and LAB, where 

61■11 = (B) sin
2
GA.

2
. Observations about the expected character of A

o 

versus sin
2
GA

2 
would also facilitate fitting curves to the experimental 

data, especially including curve fitting, done with the use of a high-

speed computer, should it be necessary. 

Intuitively it is expected that the lighter atoms will have the 

larger vibrational amplitude so that for < 1, (as it is according 

to the above definition), then OB > 0 . The actual situation will 

depend, however, in a complicated way on the interatomic forces so that 

the following discussion will cover both the case ALB < 0 as well 8.8-the - -_ 

The designation 1 and 2 for the atoms is completely arbitrary a,d will 
not affect any following concl sions. The case of LB > 0 and .< 1 
is redundant, with OB < 0 and 	> 1. 
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case 	> 0. For the purpose of simplification, however, it is assumed 

that B' and OB have the same sign, as would be expected, although it 

is not totally unreasonable for 	and LAB to have different signs. 

In addition to equation (2-79) it is desirable that the first and second 

derivatives of A
o 
with respect to sin

2 
 Gi%

2 
 be known. Letting sin

22 
 = 0 

and taking d(B)/d0 = dBi/d0 = dB/d0 = 0 +,one obtains from equation 

(2-79), 

and 

dA. o _ 

ABO 

ar 	/ ABM \2  
e 	1." 

(2-80) 

Several observations can now be made: 

1. Ao varies with 0 in a manner which depends on whether the 

Miller indices are even or odd such that 

Actually 	may vary with angle although the dependence is expected to 
be small. For example for 4C1/2- varies only + 3 percent from 0 = 
6 x 10 14=-2  to 0 = 80 x 1014cm 2 . Thus we will set di/d0 = 0 also. 
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B' + 	B' — 2 
(2-83) 

Since will generally be known fairly well, both B1 and ]3 

may be separately determined by extrapolation of either A o  (even) or 

A
o (odd) first to 0 = co and then to 0 = 0. 

2. If only 	is zero, Ao  for the even and odd parity cases 

will be equal and independent of 0. 

3. If only LaB is zero, or if (M)0 << 1 for the entire experi-

mentally observable range of 0, Ao for the even and odd parity cases 
will be respectively independent, or essentially independent, of 0. 

For this case B'
1 
 and B2 can be separately determined without extrapola- 

tions by comparing A o  (even) with Ao  (odd). 

4. If, as has been assumed, 	and AB have the same sign, the 

slope of Ao  versus 0 is never negative for the case of odd parity and 
is never positive for the case of even parity. 

5. A singularity (odd parity case) or an inflection point (even 

parity case) occurs at 

(2-84) 

Ao 77-77—T)  1 + 

For AB > 0 these points will not occur in the observable positive range 

of 0 for 	< 1. However for AB <: 0 the case when the heavy atom has 
the larger amplitude, these points will occur in the positive and 

possibly observable range of 0. Additional observations are made more 

easily by means of a qualitative sketch of Ao  versus 0. Figures 2 and 3 

are such sketches. From an analytic point of view the distinguishing 
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Figure 2. Dependence of Ao  on 0. 



53 

SMALLER IAB'l, SHARPER 
SINGULARITY - BECOMES 
5 FUNCTION AT A B =0 

ODD PARITY 

fi 
LARGER OF 
f3 AND 13; 

EVEN PARITY 

0 

[SMALLER OF 
AND El; 

0 

=0 FOR 
AB < 0 AND, < 1 

A 
14' 

AB = 0 FOR AB > 0, 
<1 AND B1 >g El; 

Figure 3. Dependence of A o  on 0 for Small I LB'l . 



54 

features of A
o 
versus 0 are the singularities and points of inflection; 

the sketches are therefore made with referenc,e to these points as fixed 

points. The point 0 = 0 is then treated b,s a dependent variable in the 

sketches. 

Further observations follow with the aid of the sketches: 

(1) Ao  (even) lies between Bi and B2 for all'0, approaching 

the smaller from above as 0 tends to infinity. 

(2) For AB > 0 and t< 1, Ao  (odd) is smaller than Ao  (even) 

for all observable values of 0 and approaches Ao  (even) as 0 tends to 
infinity. A0  (odd) can even be negative for some positive values of 0; 

the requirement being Bi < 19 B2. 

(3) For 6.B < 0 and f < 1, A0  (odd) is first larger and then 

smaller than A o (even) as 0 increases if the singularity lies within 

the observable range of 0. 

(4) As A6 -) 0 (see Figure 3) 

(a) the singularity becomes sharper and moves toward 

either + co or .. Do depending on the sign of AB:, and 

(b) the dependence of A o  (even) on 0 becomes smaller. 
Figures 2 and 3 along with the foregoing discussion indicate 

that an experimental A o  versus 0 plot can have enough character to be of 

considerable help in the interpretation of intensity versus temperature 

data obtained from a crystal having an NaCl type structure. The use-

fulness of such a plot is demonstrated in Chapter IV in the analysis 

of the data for Ael. 
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CHAPTER III 

EXPERIMENTAL PART 

Summary of Experimental Procedure  

The intensity versus temperature data were obtained from small 

(maximum diameter 0.5 mm) approximately spherical single crystal 

samples with a counter-adapted Weissenberg camera and a Philip's x-ray 

unit. MoKa radiation, balanced filters, and a scintillation counter 

were used throughout the work. The geometry used was such that all 

parts of the sample could "see" all parts of the x-ray target and the 

counter intercepted all of the diffracted beam. The , bulk of the data 

consisted of measurements of peak heights versus temperature. The 

desired integrated intensity versus temperature information was obtained 

from these data and measurements of the temperature dependence of B o 

(ratio of integrated intensity to peak height). The integrated intensi-

ties used for the determination of Bo were obtained by the w-scan 

technique (rotation of the sample about the Weissenberg spindle axis 

with the counter held stationary). The samples were so mounted that 

all the data were obtained from zero layer reflections. Control of the 

sample temperature was achieved by_means of a gas stream directed onto 

the sample. The gas stream temperature was determined with a well 

calibrated chromel-alumel thermocouple. The next several sections give 

detailed information on matters of apparatus and technique. 

*By peak height is meant the maximum intensity of a plot of intensity 
versus angle obtained for a Bragg reflection. 



56 

Apparatus  

X-Ray Apparatus  

The x-ray apparatus used in the present work includes a Philips 

x-ray generator, scintillation counter, associated scaling, pulse height 

discrimination (PHD), and recording circuits, and a Supper Weissenberg 

camera adapted for use with a counter. The counter adaptor is of Georgia 

Tech design and construction
34

. It provides a stable mounting for the 

counter with both coarse and fine adjustments in azimuth and elevation 

about the sample position as center (see figures 5 and 6). A scintil-

lation counter was chosen, in preference to a geiger or proportional 

counter, partly because of its high counting efficiency for MoKa 

radiation but mainly because of the uniform response (+ 1/4% or better) 

across the window. This uniformity is important because the diffracted 

beam does not always impinge at exactly the same place on the counter 

window. 

The x-ray generator and associated circuits are supplied with 

regulated voltage (+ 1/4% or better) and a separate beam current stabi-

lizer. The overall stability of the x-ray generator and detection 

apparatus was generally better than + 1% as determined experimentally. 

Although the long term (one to two hours) stability was somewhat beam 

current dependent (improving, for instance, from + 2% to + 1/2% as the 

current was changed from 20 ma to 10 ma with no PHD and a Mo tube 

operated at 50 KV), data for the low intensity reflections were ob-

tained at the higher current, settings. This decrease in machine sta-

bility was generally compensated by the fact that the low intensity 

2 / 2 reflections occur at large values of sin A/ T. and hence exhibit a 
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correspondingly large temperature dependence. Analysis of data obtained 

from both high and low intensity reflections yielded substantially the 

same results. 

The linearity of the response of the overall detection equipment 

to counting rate was checked by the multiple absorber technique. Pieces 

of Al foil were used as absorbers. It was found that with the PHD in 

the circuit the response was linear to within 1% up to counting rates 

of 20,000 counts per second. 

All the data were obtained with MoKOe radiation (T. = 0.709 A). 

This relatively short wavelength was used in order that reciprocal lat-

tice points (relp) comparatively far out in reciprocal space could be 

observed. (All observations are limited, by the wavelength used, to a 

sphere in reciprocal space which is centered at the origin .and has a 

radius equal to twice the reciprocal wavelength.) Data extending as 

far out in reciprocal space as possible are desired for several 

reasons: (1) the magnitude of the temperature effect for "far out" 

/ 	, 
reflections is enhanced due to the dependence of M oh sin2  G/X

2 
 (see 

theory), (2) other sin2G/0 dependent effects, such as TDS or such 

as that possible for an NaCi type structure (see theory), can be 

/ 
detected more easily if the data extend over a large range of sin

2  g/N,2  , 

and (3) more independent observations are thereby made available. 

Temperature Control Amara-Lys  

Control of the sample temperature was achieved by means. of a 

gas stream, approximately 1/2 inch in diameter, directed onto the 

sample. The gas train is shown in Figure 4. The liquid nitrogen 

container was a standard 25 liter Linde dewar. Nitrogen gas at liquid 
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nitrogen temperature ( 78 °  K) was obtained by vaporizing liquid 

nitrogen with electrical heater no. 1. This heater was a coil of no. 

18 kanthal wire which had a resistance of approximately 5 ohms when 

immersed in liquid nitrogen. Under normal operating conditions this 

heater dissipated approximately. 125 watts to give a calculated gas flow 

rate of about 25 liters per minute at liquid nitrogen temperature. 

The escaping gas was collected in a glass transfer tube and 

directed onto the sample with the gas stream "nozzle" as shown in 

Figure 4. The gas stream was directed to flow co-axially with the 

Weissenberg spindle axis. With this geometric arrangement the nozzle 

could be brought to within 1 mm of the sample without obstructing either 

the incident or diffracted beams in the zero layer. The transfer tube 

and the inner conductor of the nozzle had double walls with an eva-

cuated space between then, shown cross hatched in Figure 11, to minimize 

the conduction of heat to the cold stream. Heat leaks were satisfac-

torily small. Moisture never condensed on the outer surface of the 

transfer tube and the lowest temperature of the gas obtained at the 

nozzle exit (more than two feet from the liquid nitrogen container) 

was between 85 and 90 °  K. An annular stream of dry, room temperature 

air surrounded the cooling stream (see Figure 4) to minimize turbulence 

and, hence, sample frosting due to moisture in the room air. 

The temperature of the gas stream could be varied between 90 and 

350°  K by variation of the voltage applied to electrical heater no. 2, 

located inside the transfer. tube. This voltage was supplied by a step= 

less auto-transformer and could be continuously and linearly increased 

or decreased by driving the auto-transformer shaft, with a synchronous 
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(Haydon) motor. The heater was a coil (coiled lengthwise along the 

transfer tube to minimize obstruction of the gas stream) of no. 36 

copper wire which had a resistance of approximately 110 ohms at room 

temperature. For this resistance the maximum gas stream temperature, 

3500  K, corresponded to nearly the maximum of the variac voltage output. 

Copper wire was used because of its favorably high thermal coefficient 

of resistance. The heat dissipated by this heater, and hence the gas 

stream temperature, was more nearly a linear function of the applied 

voltage, V , than the power equation P = V2/R indicates because the 

heater resistance, R, increased significantly with an increase in tem-

perature. Therefore it was possible to vary the gas stream temperature 

at a nearly constant rate by constant rate variation of the auto-

transformer setting with the synchronous motor. 

To keep heaters no. 1 and no. 2 from being damaged because of 

over-heating, a protective electrical circuit was incorporated into the 

cold stream system. This circuit consisted of a thermistor, placed in 

the nitrogen gas stream in the nozzle, which was connected in series 

with a variable resistor, a battery, and a relay. When the nitrogen 

gas temperature became higher than some preselected temperature (select-

able by adjustment of the variable resistor) the thermistor resistance 

decreased to the point at which the current flow in the circuit was 

sufficiently , large to actuate the relay and thereby to shut off the 

power to both heaters. 

Figure 5 shows the entire experimental setup, including the low 

temperature apparatus. Figure 6 is a close up view of the region sur-

rounding the sample. The aluminum foil wrapped around the goniometer 
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head had room temperature-dry, air blown on it from behind to help shield 

the goniometer head and Weissenberg spindle housing from the cold gas. 

Thermal expansion of these parts of the apparatus was thereby minimized. 

Temperature Determination  

The temperature of the gas stream was determined with a specially 

calibrated chromel-alumel thermocouple having 3-mil diameter leads. It 

was placed < 1 mm from the sample. The small wire diameter was found 

necessary for the elimination of significant heat conduction along the 

leads. That the thermocouple actually measured the gas stream tempera-

ture was demonstrated several ways. The indicated temperature did not 

depend on whether the thermocouple leads were situated perpendicular to 

the gas stream, so that about 1/4 inch of the leads was in the stream, or 

whether several inches of the leads were parallel to and in the stream. 

Thus heat conduction along the leads was negligible. Temperature measure-

ment errors due to the effects of radiation from objects at room temper-

ature were also shown to be negligible. The indicated temperature did 

not depend on whether the thermocouple junction was in its normal posi-

tion outside the nozzle or whether it was placed inside the nozzle where 

it was essentially surrounded by a surface at the gas stream temperature. 

Temperature measurements made with the sample removed indicated that at 

the sample position the temperature of the gasstream, throughout a region 

several times the size of the sample, was within 1/2 °  K of the tempera-

ture indicated by the thermocouple in its normal position. The reference 

junction of the thermocouple was always immersed in a room temperature 

water bath whose temperature was monitored by a standard laboratory 

thermometer'. 
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As will be discussed later, the intensity measurements on which 

all of the intensity vs temperature analyses are based were made under 

dynamic conditions, i.e., as the temperature was changing. The thermo-

couple output was displayed on a Brown strip chart recorder just before 

and just after each intensity measurement. The temperature correspond-

ing to the intensity measurement was obtained by interpolation. That the 

lag of the sample temperature behind the gas stream, or thermocouple, 

temperature was insignificant is indicated by the lack of a measurable 

hysteresis in the intensity vs temperature data obtained while cooling 

and then while heating a sample. 

Besides being convenient, temperature control by means of a gas 

stream has some additional advantages over other possible methods. The 

moving gas is a nearly perfectly agitated fluid bath with effectively 

infinite heat capacity and with excellent heat transfer properties. Thus 

for the small, approximately spherical samples used the surface of the 

sample was held at the gas stream temperature. An estimate of the thermal 

gradients which existed in the sample was not attempted. However the 

lack of hysteresis in the intensity vs temperature data, mentioned .earlier, 

indicates that thermal gradients were satisfactorily small. In addition, 

work done with similar gas stream geometry and quartz specimens at 575 0  C 

indicated that the sample temperature in that case was uniform to within 

10 K35 or less. The largest uncertainty in sample temperature is esti-

mated to be + 10 K and arises from the interpolation of the thermocouple 

output readings on the Brown recorder. The uncertainty in temperature 

increments was substantially smaller, however, because of the nearly con-

stant rate at which the gas stream temperature was varied and because the 

recorder chart advanced at a constant rate. 
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Samples  

As mentioned in Chapter I, the materials studied in this work 

were Al, KC1, and AgCl. Aluminum samples were prepared from a single-

crystal rod of about 99.9% purity. Potassium chloride samples were pre- 

pared from optical-grade single-crystal material obtained from the Harshaw 

Chemical Company. Silver chloride samples were prepared from ultrapure 

single-crystal material kindly provided by F. Moser of the Eastman 

Kodak Company and from optical-grade single-crystal material obtained 

from the Harshaw Chemical Company. Data were obtained.from at least 

two samples of each material in order that the results obtained be indi-

cative of the material studied rather than of a particular sample. No 

residual darkening of the KC1 and AgC1 samples due to exposure to x-rays 

was observed. 

Some attempt was made to shape the samples into approximations Of 

spheres. There are several reasons that justify such an effort. The 

combination of an irregularly shaped sample and non-uniform x-ray source 

illumination can cause the top of a diffraction peak to-have more than 

one maximum. Variations in peak shape will affect the relationship 

between peak height and integrated intensity and hence complicate the 

determination of B. Also the amount of absorption of x-rays in an 

irregularly shaped sample is dependent on the sample orientation. Since 

thermal expansion causes the Bragg angle, Q, and, hence, the optimum 

sample orientation to be temperature dependent, the absorption correction 

for an irregularly shaped sample would be temperature dependent. This 

The preparation and purity of ultrapure AgC1 are described by N. R. 
Nail, F. Moser, P. E. Goddard, and F. Urback, Rev. Sci. Instr. 28, 
275 (1957). 
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situation would considerably complicate the interpretation of intensity 

vs temperature data. In addition, an irregularly shaped sample would 

cause the cross-fire in the incident beam to be dependent on sample 

orientation and hence on the Bragg reflection being observed. This 

situation would complicate the calculation of TDS corrections to the in-

tensity vs temperature data (see Appendix A and the end of this chapter 

for a discussion of TDS corredtions). 

Sample Preparation 

Silver Chloride  

At room temperature AgC1 is so subject to plastic flow that con- 

siderable care must be taken in cutting and shaping it. In fact, it was 

shown by Laue photographs that all mechanical methods tried hopelessly 

distorted the single crystals. 

In order to avoid distortion, etching techniques had to be used. 

Two methods for cutting AgCl samples from large "parent" single crystals 

have been used successfully. They both involve the use of a standard 

photographic "hypo" solution (sodium thiosulfate) which is an excellent 

etchant for AgCl. In one method, Figure 7(a), a 5-mil thick circular saw 

is rotated with a small motor (Dremel "Moto-Tool"). The rotating saw is 

kept wet with hypo as the crystal is advanced onto the saw slowly enough 

so that the cut is made solely by etching. The saw itself does not 

actually touch the crystal; the teeth in the saw are useful for carrying 

the hypo to the crystal. The other method, Figure 7(b), is similar in 

principle and makes use of a string saw arrangement. The saw is a con-

tinuous piece of string which is passed over several pulleys made of 
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teflon and over one which is made of rubber and driven by a Haydon motor. 

The string is wet in a hypo solution before it passes over the crystal; 

cutting of the crystal consists of controlled etching. The string is 

advanced onto the crystal by the weight of a pulley which rests on top 

of the string at a point just past the crystal. 

The small cubes which were cut from the parent crystals by the 

methods just described were made approximately spherical by a shaping 

technique which also involved etching with hypo. The crystal to be 

shaped was fastened to a shaft rotated by the Dremel Moto-Tool. The 

rotating crystal was brought into contact with an ink blotter placed on 

end in a beaker half filled with hypo as indicated in Figure 8. The 

"high spots" on the crystal were etched off by contact with the hypo-

soaked blotter. Thus any portion 'of the crystal could be given a fairly 

circular cross section. Through remounting of the crystal several times 

and repetition of the process a fairly spherical sample could be obtained. 

The AgCl samples used in the present work are described in Table 1. 

Table 1. List of AgCl Samples 

Sample No. Size Source 

7 0.14 mm ave. dia. Harshaw Chemical Company 
11 0.14 mm ave. dia. Eastman Kodak Company 
17 0.50 mm ave. dia. Harshaw Chemical Company 
18 0.47 mm ave. dia. Harshaw Chemical Company 

Potassium Chloride  

KC1 is not subject to plastic flow at room temperature so it was 

not necessary for us to resort to etching techniques for cutting and 
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shaping of the KC1 samples. Small cubic crystals could be obtained from 

a large parent crystal by cleavage, as KC1 cleaves readily on 100 faces. 

The small cubic crystals were then ground to a nearly spherical shape, 

with a diameter of approximately 2 mm, by being tumbled in an air stream 

on the periphery of a cylindrical cavity lined with diamond dust. The 

sphere was etched in water to a diameter of approximately 0.5 mm to 

remove surface distortions caused by the grinding. The KC1 samples used 

are described in Table 2. 

Table 2. List of KC1 Samples 

Sample No. Size Source 

1 0.61 mm ave. dia. Harshaw Chemical Company 
2 0.50 mm ave. dia. Harshaw Chemical Company 
3 0. 36 mm ave. dia. Harshaw Chemical Company 

Aluminum 

Small Al cubes, approximately 2 mm on a side, were sawed from the 

rod of single crystal material with a jewelers saw. It was found that 

etching these cubes in a solution of HC1 + HNO
3 
yielded sufficiently 

spherical samples for our purposes. As for the KC1 samples, the etching 

removed any surface distortions caused by mechanical shaping. The Al 

samples are described in Table 3. 

Table 3. List of Al Samples 

Sample No.  Size 	 Source 

2 
4 

0.35 mm ave. dia. 	 Georgia Tech 
0.52 mm ave. dia. 	 Georgia Tech 
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The sharpness of the w-scans of the reflections of the KC1 and 

Al samples indicated that preparation induced residual strains in these 

samples were not a problem. 

Sample Mounting  

In order that heat conduction problems be minimized, the shaped 

crystals were mounted on glass fibers approximately 1 cm in length with 

any one of several adhesives. The glass fiber was first affixed, with 

wax, to a small brass plug which fits the goniometer head. The following 

procedure was used to mount a sample: 

The glass fiber is held in a vertical position by attachment of 

the brass plug, with clay, to the vertical side of any convenient object. 

The sample is then placed on the adhesive side of Scotch tape which is 

in turn taped, adhesive side up, to a rectangular metal weight. The 

weight is placed on a laboratory microjack (such as illustrated in 

Figures 7(a) and 7(b)) positioned so that the sample lies directly under 

the end of the glass fiber. With a second fiber the adhesive is applied 

both to the sample and to the end of the mounting fiber. The jack is 

then raised to bring the fiber and sample into contact. The whole 

operation is monitored through a stereomicroscope. 

Since the shaped samples have no distinguishing exterior character-

istics which aid in mounting the sample in a desired orientation, re-

mounting of a sample was sometimes necessary because the desired orienta-

tion could not be achieved with the first mounting or because the align-

ment required excessively large goniometer arc displacements. 
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Remounting of a sample was facilitated by the use of a series of 

two pairs of adhesives. Either member of a pair is insoluble in the sol-

vent of the other member. Table 4 lists these adhesives. 

Table 4. List of Adhesives 

Adhesive 

 

Soluble In 

 

Formvar 
polyvinyl alcohol 
collodion 
mucilage 

ethylene dichloride 
H2O 
amyl acetate 
H2O 

For remounting, the sample was placed below a brass plug and fiber as 

usual, but it was held in a known orientation by the goniometer head. 

The second member of the adhesive pair was then used to make a joint 

between the new fiber and sample. When the second adhesive hardened, 

the first fiber was removed by dissolution of the first adhesive. 

Intensity Measurement Considerations  

The integrated intensity corresponds to the total power dif- 

fracted during one complete passage of a reciprocal lattice point (relp) 

either into or out of the Ewald sphere of reflection as the crystal is 

rotated with a constant angular velocity. Most formulas for intensity 

are based on this measure. In the present study we need only to follow 

the changes in the total intensity associated with a given relp as the 

temperature is changed.. Neither the total intensity itself nor its value 

relative to that for any other relp need be determined. Thus for the 

sake of speed, measurement of peak height may be considered adequate 

for the collection of nearly continuous intensity versus temperature data. 
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Of course occasional measurements of Bo 
at different temperatures are 

also desired to insure that the measured changes of the peak height are, 

or can be corrected to yield, adequate measures of the changes of the 

integrated intensity. 

Geometry 

The geometry used in the present study was such that all parts 

of the sample could "see" all parts of the x-ray target. This broad 

beam geometry was chosen to minimize variations in peak height (or B 0 ) 

resulting from nonuniform illumination of the x-ray target and small 

temperature induced sample displacements and misalignments. In addi-

tion this geometry yields broad diffraction peaks which results in ex-

tensive overlap of the Kai  and Ka2 components of the peak. Hence the 

percent variations in the overall peak width (and B 0) resulting from 

the thermal expansion induced variations in the Kai  and Ka2  doublet 

separation are minimized. 

The counter window was large enough so that all of the dif-

fracted beam was detected during measurement of either peak height or 

integrated intensity. A lead aperture was placed between the counter 

and sample (see Figure 6). Its purpose was to limit the "view" of the 

counter to the sample and its immediate neighborhood, thereby minimi-

zing background contributions (I mist) resulting from scattering of 

the incident beam by air and the exit end of the collimator
36

. 

Background Determination 

The proper determination of background intensities is the sub- 

ject of an extensive study made recently in connection with the present 
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research work36 . It turns out that measurements of peak heights and 

integrated intensities by the w-scan method are particularly susceptible 

to errors arising from harmonic, including both sub-harmonic and non-

integral harmonic, contributions arising from the Bremstrahlung on 

which.. the characteristic Ka radiation of interest is superimposed. 

For the purposes of the present work, the balanced filter technique 

offers the best compromise between high intensity and discrimination 

against unwanted wavelengths. It is preferred here for reasons of speed 

and of insensitivity to nonuniformity in both the x-ray target illu-

mination and in effective sample reflectivity due to absorption and 

shape. Two filters are said to be balanced when they both have the 

same absorption for wavelengths lying outside the region between their 

closely spaced absorption edges, which ordinarily are chosen to bracket 

the Ka wavelength. Thus the difference between two intensity measure-

ments, one with each filter, is due entirely to wavelengths in the 

interval between the absorption edges (pass-band region). 

Proper peak and background measurements with balanced filters re-

quire at least four separate measurements, one on and one off the peak 

with each filter36 . Figure 9 shows a sketch of a diffraction peak ob-

tained by rotation of the sample about the Weissenberg spindle axis with 

the counter held stationary. One curve is shown for each filter. The p 

filter and a filter have absorption edges on the Short, wavelength and 

long wavelength side of the Ka characteristic respectively. The small 

peak at B is usually almost entirely due to harmonic contributions. The 

use of the intensity-at C, IC , as the whole background would miss this 

contribution. On the other hand, the use of I
B 

as the whole background 
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would miss some of the angle-independent background (IC  - ID ) which is 

due to non-Bragg scattering of pass-band wavelengths. It is composed 

of I(misc) and TDS. Our best corrected peak height is given by I = 

(IA  - IC ) - (IB  - ID ). The contribution from TDS of pass-band wave-

lengths is only partially accounted for by, these four measurements 

since it also peaks at the Bragg peak position. However, the TDS con-

tribution to the peak height can be calculated adequately as is shown 

later. An analogous procedure with obvious modifications must be fol-

lowed when one obtains integrated intensities. 

For MoKa radiation the filter materials are zirconium and either 

yttrium or strontium. In the present work we have used a Zr-Y203  filter 

pair which was carefully balanced with a procedure described elsewhere 37 . 

It is impossible to obtain a perfect balance for all wavelengths in the 

x-ray tube spectrum. Thus the filters were balanced to within 1% at 

wavelength near and on both sides of their K absorption edges, i.e. near 

the MoKa wavelength. Possible inbalance at wavelengths far from the Ka 

was rendered unimportant by the use of electronic pulse height discri-

mination. The filter pair was mounted in front of the counter window 

on a bar which could slide in a groove in a cap which fits over the 

front of the counter (see Figure 6). One changes from one filter to the 

other by Sliding the bar until a spring loaded ball riding on the edge 

of the bar falls into an indentation, thereby positioning the filter re-

producibly in the diffracted beam. Significant effects due to the 

fluorescence of the a-filter were absent. Any fluorescent radiation from 

the a-filter which reaches the counter merely introduces a scale factor 

which will not affect the intensity versus temperature results. 
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Data Collection Procedures  

The samples were aligned so that the [110] direction was coaxial 

with the spindle axis of the Weissenberg. With this alignment all three 

principal crystallographic directions, [001], [3210], and [111] are in the 

zero layer. This alignment is preferred for several reasons: 

1. If the observed reflections are confined to the zero layer, 

the gas stream nozzle can be brought close (within < 1 mm) to the sample 

without obstructing the incident and diffracted beams. 

2. TDS calculations are greatly simplified for zero layer as com- 

pared to upper layer reflections. 

3. The [hhh] reciprocal lattice row contains reflections having 

both all odd and all even Miller indices. Thus it may be possible to 

determine the difference in the vibration amplitudes of the different 

atom types in an NaC1 structure (see theory) without the possible com-

plication of (crystallographic) directionally dependent anharmonic effects. 

4. The possible anisotropy of M due to anharmonic effects (see 

theory) may be most easily detected by comparing data obtained from re-

flections in these principal crystallographic directions. 

The alignment procedures used have been described in detail 

elsewhere38 . Briefly they can be described as follows. The counter 

elevation angle (T) is set to zero, the counter azimuth angle (v) is set 

equal to the Bragg angle, Q, for some (hh0) reflection (usually the (220)), 

and the Weissenberg table is rotated by Q. The goniometer arc settings 

are then systematically changed until the reflection is found, i.e. until 

the (220) Bragg plane normal is made coincident with the spindle axis so 

that a beam is diffracted into the counter. The arc settings are then ' 



adjusted until the diffracted intensity is a maximum at each of four 

spindle settings separated by 90 ° . This procedure will fail if the 

sample has been mounted too far out of alignment. The sample must then 

be remounted. In such cases, precession photographs were often used 

for determination of the crystal orientation in the first mounting. 

I vs T  

As mentioned earlier the integrated intensity versus temperature 

information desired was obtained from measurements of peak height versus 

temperature subsequently corrected, when necessary, for the temperature 

dependence of B
o
. Since thermal expansion causes the peak position to 

be a function of temperature, continual readjustment of the crystal 

orientation to the optimum diffracting position is required as the tem-

perature is varied. Manual optimization of the sample position at each 

temperature was shown to be inferior to a motorized method. The sample 

was made to oscillate (m-oscillation) through a small angle including 

the optimum position by means of the motor and cam arrangement shown in 

Figure 10. The maximum intensity recorded during each oscillation was 

then the desired peak height. 

This method of optimizing the sample orientation made it possible 

partially, to automate data-taking procedures. Two flat surfaces were 

cut 	apart on a cylindrical extension of the piece of lucite from 

which the cam was made. The flat surfaces were positioned to arrive at 

the micro-switch plunger, normally depressed by the lucite cylinder, 

when the crystal was at one end of its oscillating travel, and hence 

was off the peak maximum position. The micro-switch plunger was then 

released thereby switching the Brown strip chart recorder from the rate 
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1. WEISSENBERG SPINDLE AXIS 
2. MANUAL SPINDLE DRIVE 
3. LEVER 
4. SCREW 

5. SYNCHRONOUS MOTOR 
6. LUCITE CAM 
7. FLAT CUT IN LUCITE CYLINDER 
8. MICRO-SWITCH 

Figure 10. Crystal Oscillation Apparatus. 
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meter output to the output of the thermocouple. During a run, the output 

of the autotransformer which supplied power to heater no. 2 (see Figure 4) 

was varied continuously by variation of the variac setting with a syn-

chronous motor. Thus the top of the Bragg peak and temperature readings 

could be alternately displayed on the recorder chart as the crystal 

temperature was being continuously varied from 90°  to 300°  K or vice 

versa. The results of a typical intensity versus temperature run are 

shown in Figure 11. The temperatures at the peak positions were obtained 

by interpolation. Background measurements on and off the peak (B, C, 

and D in Figure 9) were usually taken at the beginning and end of each 

run. Occasional background readings made during runs indicated that the 

background at each temperature could be determined satisfactorily by a 

linear interpolation between measurements made at the temperature extremes. 

Bo vs T 

For the determination of B o at a given temperature, the area of 

a peak was obtained by collection, on a count register, of the total 

number of counts obtained during a continuous w-scan from background on 

one side of the peak to background on the other side. One scan was made 

with each member of the balanced filter pair. 

B
0 was determined at room temperature and at approximately 100

o 
K 

for the (400), (600), and (10,00) reflections for at least one sample of 

each material studied. Essentially no ( < 1%) change in B 0  for the (400) 

and (600) reflections were observed. Bo 
for the (10,00), however, was 

several percent larger at•room temperature than at 100°  K for each 

sample on which Bo  measurements were made. 



TIME 295°K 
2 MIN. 

Figure 11. Typical Intensity Versus Temperature Run. 
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The major contributions to the temperature variation of B o  are 

expected to be TDS and the variation in the Kai  and Ka2  doublet separa-

tion due to thermal expansion. Both of these would have a larger 

effect at large Bragg angles Co, such as that for the (10,00) reflections. 

The expected effect of the variation of the a-doublet separation is 

opposite to that observed however. That is, the observed variations in 

Bo indicated a "sharpening up" of the peak as the temperature was re-

duced, such as that expected from TDS contributions, whereas a "sharpen-

ing up" would result only as the temperature was raised if the a-doublet 

separation were the only contribution. 

Therefore it may be assumed that the major contribution to the 

temperature dependence of Bo  arises from TDS and that the variation in 

the a-doublet separation was rendered insignificant by the broad beam 

geometry used. Since the peak height data were to be corrected for 

TDS contributions, no Bo  versus T corrections were applied to the ob-

served peak height versus temperature data. The apparent validity of 

this procedure is indicated by the good agreement between results ob-

tained from the (10,00) reflection and other reflections, such as the 

(400 and (600)
*

. 

Data Reduction 

Definition of A and A 
 

In order to compare easily the intensity versus temperature re-

sults obtained from different Bragg reflections, we found it convenient 

In addition since good agreement was found between the results obtained 
for the [100], [110], and [111] directions, no examination of the direc-
tional dependence of the temperature dependence of B o  was made. 
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to eliminate the obvious sin2G/0 dependence of d(lnI)/dT (see for 

instance equations (2-39), (2-43), and (2-78)) and to define the quan-

tity A; 

A = - 1/2 (sin2Q/X2)-1 
dT 
 lnI(obs) 
	

3-1) 

where I(obs) denotes the observed intensity. There are "small" contri-

butions to the temperature dependence of I(obs) in addition to the temper- 

ature factor. Although these contributions are discussed separately in 

the following paragraphs, they are mentioned here briefly as an aid to 

understanding how they all contribute to A. Consider the case of a 

monatomic cubic crystal . For this case the observed integrated inten- 

sity can be written (see equations (1-1), and (1-3)) 

= 	l+cof
2
Q f2 (g)e -!2M(1 	) I(obs) 

sin 2Q 	\ 	 TDS' 
(3-2) 

where all temperature independent factors are included in C, .the TDS 

contribution is contained in 
eTDS' 

and the other factors have been de-

fined earlier. The quantities which are shown to depend on Q in equation 

(3-2) depend on temperature since Q varies because of thermal expansion. 

.// Denoting the Lorentz and polarization factor (1 + cos
2 
 2Q)/ksin 2Q), by 

(L.P.), and sin2Q/%2  by 0 one obtains 

 

1 d 	 1 dM 	d 	ir p  ) „e2 _ 	d 
- — 2p dT InI(obs) = p dT - 	dT 	[` 41"'j j- 	'V dT 

(i+ens) ( 3-3) 

 

    

The general situation is essentially the same for an NaCl type struc-
ture. Any differences will be pointed out. 
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A = A
o 

+ A
LEf 

+ ATDS 
(3-4) 

or 

( .3-5) 

(3-7) 

and for the special case treated here, 

1 dM dB 
Ao 7 7 dT dT 

a 	1 	d(L.P.) 2 df
-+ALPf 	2 p 	7:15:7 df3 	f ap (3-8) 

where 

1 a A
LPf 	2p dT — In [(L.P.) f 

1 d 
ATDS 	2 dT in 1 + , E TDS/ (3-6) 

Ao represents the contribution to A resulting from only the temperature 

factor. For an NaCl type lattice, A o  is not as simple as shown above but 

depends on the temperature factors of both atom types as indicated in 

equation (2-79). Auf  and Ams  represent corrections which must be applied 

to the measurements of A in order to obtain the quantity of interest in 

the present study, viz. A. These corrections are discussed in more 

detail below. 

Corrections to I vs T Data  

A
LEf. For a monatomic cubic crystal, one obtains 
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where fi,  = sin g/% and a is the linear coefficient of thermal expansion. 

It was found convenient to take the derivatives with respect to p because 

f is usually found tabulated along with p and (L.P.) is usually found 

tabulated along with sin Q = p.x... The derivatives were obtained graphically. 

For the case of an NaCl type lattice some assumptions which were 

used should be pointed out. If it is not assumed that f l  and / are 

independent of temperature as was done to obtain equation (2-78), one 

finds that the contribution to Alp,
f 

of the atomic scattering factors f 1 

and f2 is 

( 3 -9) 

. Since A
LEf 

represents a small correction, we set e .1 in equation (3-9). 

When this assumption is made equation (3-9) simplifies and A Lpf  for an 

NaC1 type lattice becomes the same as equation (3-8) with f replaced by 

fl ± f2 . It also turned out that the difference between A
LEf 

for re-

flections having odd Miller indices and for reflections having even Miller 

indices was less than 1/2% of the. A values obtained for AgC1 (as mentioned 

in Chapter IV no KC1 data were obtained from reflections having odd 

Miller indices). Thus the A
LEf 

correction used for both types of AgC1 

reflections was that obtained by replacing f with f 1  + f2  in equation 

, 
(3-8) . Figures 12, 13, and 14 are plots of A

L2f 
versus sin2'  Q/2\.

2 
 for 

Al, KC1, and AgC1 respectively and for MoKa radiation. 

*The atomic scattering factors for Al, K
+
, Ag

+
, and Cl were obtained 

from International Tables for X-ray Crystallography, edited by Caroline 
H. Macgillavry, Gerard D. Rieck, and Kathleen Lonsdale (The Kynock Press, 
Birmingham, England, 1962), Vol. III, p. 201. 
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Thermal. Diffuse Scattering and TDS. It is well known that thermal 

diffuse scattering can contribute significantly to the measured intensity 

of an x-ray diffraction peak
6,39,4o,41. 

It is apparent from the work of 

the authors referred to above that an accurate determination of the TDS 

contribution to the measured peak intensity depends on the particular 

experimental technique used. We know of no work which can be directly 

applied to the experimental technique we have used in the present study. 

Thus, although the work referred to above is helpful in pointing 

out the necessity of TDS corrections, we have found it necessary to make 

a rather extensive study of the possible effects of all experimental para-

meters, e.g. sample size and shape, beam size and divergence, counter 

window size, etc., on the TDS corrections. The development of these cor-

rections has necessitated a thorough review and synthesis of existing 

TDS theory followed by some recasting and extension of it. This necessari-

ly extensive discussion, and the resulting statement and solution of the 

specific problems in the present research, are put in Appendix A because 

of their length. For continuity of the present discussion, we shall dis-

cuss only briefly in the following paragraphs the general approach used 

in making the TDS corrections, the results obtained, and an experimental 

test of the calculations. It should be pointed out that the calculations 

made were of the TDS contributions to a peak height  measurement. However 

the temperature independence of Bo  discussed earlier indicates that the 

contributions obtained are also probably adequate corrections to some 

w-scan integrated intensity measurements. 

The general approach to the problem is most easily discussed by means 

of a specific case. For simplicity consider the first order (or one phonon) 
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scattering from a monatomic-cubic crystal. According to the general theory 

of thermal diffuse scattering (see Appendix A), the diffuse intensity 

corresponding to a point in reciprocal space a distance 1 -Eil from some re-

ciprocal lattice point (hk,e) is proportional to J 1  and 

J1 
	 N1F(hk,e)1 2e - 2M 	cos2 ( 9(s,) )E(vm00) /v2 (i), 0) 	, 	(3 -10) 

a=1 

where re= 27Z 1 -0 = 1/A, A is the wavelength of the normal mode wave, 

Q('S-, -6) is the, angle between g) and the polarization vector -e(g,a) and the 
other quantities in equation (3 -10) have been defined earlier in 

Chapter II. 

In a peak height measurement only that TDS which corresponds to 

points in reciprocal space that are in the immediate neighborhood of 

the relp under investigation is observed. Thus the following approxi-

mations were made: 

1. The wave vectors, ZWhich contribute to TDS in the vicinity of 

a relp are relatively small and correspond to long wavelength normal 

modes. For these modes the dispersion curves are linear and pass througb 

V(Za) . 	= 0. It should be a good approximation to set v(i',G) = igiV ce 

 where Va is the velocity of the waves in branch a for Fel 0. Va is de-

terminable from measured elastic constants. 
PI 

2. cos2  (Q(S,e)) was replaced by an average value 1/3, the value 

obtained when all possible orientations of e .with respect to g'occur 

with equal probability . 

This assumption is discussed in Appendix A. 
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3. Since 1 -0 and, hence v(i;a), is small, to a good approxima-

tion hv(74a) << kT, and hence E(v(g,a)) kT for temperature between 

100
o 
and 300° K. 

With these assumptions J1  becomes 

vI 
J 
	N1F(hk,eji 2 e -2M  A  kT 	

1 A  
1 	 3m 	

V a=1 a 

(3-11) 

The total one phonon scattering observed during a peak height measurement 

1-N 
was then obtained by integration of the function Igi

-2 
 = g

-2 
throughout 

the region in reciprocal space_"seen." by the detector. The size of this 

region is determined both by the size of the detector window and the 

maximum crossfire in the incident beam in the plane of incidence. This 

crossfire is determined by the sizes of both the sample and the x-ray 

target projection. 

Actually, the integration of J i  is not as straightforward as 

just implied. The diffuse intensity will depend on the intensity inci-

dent on the crystal and, according to equation (3-11), on the number, 

N, of contributing unit cells in the crystal. Thus before the inte-

gration of J
1 could be carried out, it was found necessary to determine 

a function w(g) which would weight each point in the reciprocal lattice 

seen by the counter according to (1) how much of the crystal volume 

could contribute to each point and (2) the point on the x-ray target 

from which the scattered ray originated. In general, the function 

<4 depends on the sample shape and on the variation of illumination 

across the x-ray target. 



1 a3k 
6- -7371  2 

a=1 Va 

(3-13) 
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The calculations of the TDS contributions for more complex cases, 

e.g. second order (or two phonon) scattering and/or two atoms per unit 

cell, were carried out in a manner similar to that just discussed. 

Third and higher order scattering processes were assumed negligible. 

Also the contribution of the optic modes to the diffuse scattering near 

the relps in KC1 and AgC1 was assumed negligible, although it may be 

significant farther away. The result obtained for the total intensity 

observed during a peak height measurement is given by the following 

equation, 

I(obs) = I
o 

(1 + °TA; 2  + ( /2)(T2T2M..0. 
1 	

1 

	

` / 	7" 	2 ) 	• ( 3 -32 ) 

The first term is the intensity due to the true Bragg peak, the second 

term is the one phonon TDS intensity, and the third term is the two 

phonon TDS intensity. t:Q
1 
 and dl 

2  are complicated functions of 2Q and 

of the sample size, x-ray target size, and counter window size (see 

Appendix A). The derivation of these functions required a knowledge of, 

the sample shape and of the illumination variations across the x-ray 

target. T is the absolute temperature and a for the monatomic cubic 

crystal is given by 

where a is the lattice parameter, k is Boltzmann's constant, m is the 

mass of the atoms in the lattice, and Va  is defined above. For KC1 and 



AgC1, m in equation (3-13) is replaced by m l  + m2 . Calculations of a 

for Al, KC1, and Agel are described in Appendix A. 

Ex•erimental Verification of TDS Calculations. In order to test 

experimentally the validity of the intensity expressions derived in 

Appendix A, we made measurements of the intensity both on and 1.5 °  off 

(in w) the (10,00) reflection of AgC1 sample no. 18 at several temper- 

atures. To eliminate the temperature dependence of I o  in equation (3-12), 

the quantity compared with theory was the ratio, R, of the peak inten-

sity to the intensity observed 1.5 °  off the peak. Measurement of this 

ratio should also eliminate Compton scattering contributions since they 

are slowly varying functions of angle. One and one-half degrees was 

far enough from the actual diffraction peak so that it does not contri-

bute significantly to the measured intensity but near enough so that a 

measurable amount of TDS was present. Since nearly all of the intensity 

above background at 1.5 °  off the peak is presumably due to TDS, com- 

parisons of measured and calculated ratios, R, should provide a sensi-

tive check of our TDS calculations. The background was measured 5 °  

off the peak. Calculations of 1 and grl•2 on ,  1.5° off, and 5° off 

the (10,00) peak of AgC1 were made with equations (A-30), (A-31), 

(A-33), (A-38), (A-39), and (A-40) respectively and with the appro-

priate experimental parameters. We get 

ON PEAK: c;1 = 2 1 .3 x 10
6cm-  

2 
= 10.2 x 10

14
cm

-1  

1.5 °  OFF FEAK: 1  = 3.5 x 106cm
-1 
 

5 °  OFF PEAK: 1 = 0.3 x 10
6
cm

-1  

41t.   
2 = 8.2 x 10

14
cm

-1  

2 
= 1.5 x 10

14
cm

-1 
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With a = 4.68 x 10-27cm3°K-1  and 0 = 0.91 x 1016cm-2  one obtains, after 

subtracting background, 

ON PEAK: 	 I = 10 (1 7.9T x 10
4 

+ 6.4T2  x 10-7 ) 
	

(3 -14) 

1 1/2°  OFF PEAK: 	I = I0 (1.2T x 10 
4 + 4.8T2  x 10 -7 ) 
	

(3-15) 

The experimental results for R are compared with the calculations in 

Table 5. 

Table 5. Comparison of Measured and Calculated TDS Contributions 

T( °K) 	 R(calc) 	 R(obs)  

88 71.4 55 + 1 
185 30.8 29.7.  + 0.6 
301 16.5 16.3 + 0.3 

The agreement is seen to be quite good except at 88 °  K. This is 

probably due to the fact that no Bragg peak tail was included in the cal-

culations of the "off peak" intensity. If as little as 0.4 percent of 

the Bragg peak intensity is assumed to contribute to the off peak inten-

sity, R(calc) at 88°  K is reduced to 56, at 185 °  K to 28, and at 301 °  K 

to 15.7, each of which is within 5 percent of the measured ratios. Other 

comparisons made of calculated ratios with those measured imply that if 

no Bragg peak tail contributes to the intensity 1.5
0 

off the peak, the 

calculated TDS corrections are at most 15% too small. Such an error 

would produce approximately a 1 percent error in A 0 
 because an error of 

y% in the calculated TDS corrections produces less than 0.1y0 error in A o
. 

Thus we conclude that equation (3-12) adequately represents the TDS con-

tributions to the measured Bragg intensities in the present study. 

tl 



ATDS 
1 +TO + akT202/2 

- 1/2(41  + 40.2T0) (3-16) 
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It is of interest to point out how large the TDS contribution can 

get. At 300°  K equation (3-14) yields the results that 19 percent of the 

measured Bragg peak intensity for the (10,00) of AgCl and the present 

experimental geometry is due to one-phonon scattering while 5 percent is 

due to two-phonon scattering. That is, roughly one-fourth of the measured 

intensity is due to TDS! 

ATDS. From equations (3-6) and (3-12) one obtains, 

The expressions obtained fortL41 and 2 are rather complicated func-

tions of 2Q. Thus rather than calculate A
TDS 

for each Bragg peak, it 

was calculated for only a few values of 2Q and then plotted against 0. 

ATDS for each Bragg peak was then obtained by interpolation. In Figure 15 

are the results for Al and in Figure 16 are the results for both KC1 and 

AgCl. The values of a for AgCl and KC1 are only 2 percent different. 

Thus one curve was used for both KC1 and AgCl. The plots of A TDS  are 

shown only for T = 300°  K. It turns out that the temperature dependence 

of  ATDS is extremely small, e.g. ATDS for Al, AgC1, and KC1 changed less 

than 1/2 percent of the A values measured for these materials for a change 

in temperature from 300 °  to 100°  K. Thus only the ATDS 
 versus 0 plot 

at 300
o 
K was used to determine the TDS corrections to the A values 

discussed in Chapter IV. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

Some typical semilog plots of intensity versus temperature that 

were obtained in this work are shown in Figure 17. These data were ob-

tained from the (h00) Bragg peaks of Al sample no. 2. The curves clearly 

show the expected trend with (hki) due to the dependence of M on sin29/0. 

The non-linear dependence of lnI on T is also apparent and agrees quali-

tatively with the predictions of equations (2-39) and (2-43) and the 

f(x) versus x plot in Figure 1. Such detail in the dependence of I 

on T would be completely overlooked if only the logarithm of the ratio 

of I at, say, 300 °  K to that at 100°  K were determined as is often done. 

The scatter of the experimental points about the smooth lines drawn is 

small and indicates that the experimental methods used should allow 

meaningful determinations of the slope of lnI versus T. 

For each Bragg peak the intensity versus temperature data were 

plotted on a semilog scale as indicated in Figure 17. Graphically 

determined slopes were then used to calculate values for A at various 

temperatures with equation (3-1). No attempt was made to determine 

slopes by fitting the data with various functions or with polynomials 

of various degrees, with a high speed computer. It was felt that 

slopes so determined would be undesirably biased because of the lack of 

knowledge of the proper fitting function. In addition, the results of 

98 
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thermal expansion data which. were obtained at the time of the present 

study25 , indicated that graphically determined slopes were just as 

reliable as those obtained from polynomials. The results obtained for 

Al, KC1, and AgCl are conveniently discussed separately. 

Aluminum 

The values for A determined at 290 °  K for the two Al samples used 

in the present study are shown plotted against sin 2Q/0 in Figure 18. 

A shows no significant variation with sample, crystallographic direction, 

or with angle except at small values of sin 28/X2  where A decreases 

slightly as sin2Q/22  decreases below 25 x 10
14

cm
-2

. This decrease is 

expected and, as can be seen in Table 6, is accounted for by the Auf 

 correction to A (also see Figure (12)). This correction varies from 

approximately 10 percent of A for the (220) reflection to less than 1/2 

percent for the (10,00) reflection. The angular dependence of the Tro 

contribution, ATios , to A as shown in Figure 15 is much too small to be 

detected in the presence of the scatter of the data. AIDS  represents a 

significant correction, however, being between t and 7 percent of the A 

values in Figure 18. 

Because of the lack of dependence on sin
2 
 Q/X

2 
 , crystallographic 

direction, or sample, A
o 
 at 290° K for Al was obtained by arithmetic 

averaging of the Ao  values shown in Table 6 for each Bragg reflection. 

The mean deviation from the mean is 1.8 percent, indicating that data 

obtained from different Bragg reflections and different samples are in 

very good agreement. 
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Table 6. Aluminum A Values and Corrections at 290 °  K 

hk. Sample No. 

Ao = A  - ALPf 	ATDS 

A LPf ATDS 
A
o 

220 2 2.40 -0.22 -0.10 2.72 
4 2.40 -0.22 -0.10 2.72 

222 2 2.38 -0.17 -0.11 2.66 
4 2.48 -0.17 -0.11 2.72 

400 2 2.53 -0.15 -0.12 2.80 
4 2.49 -0.15 -0.12 2.76 

333 2 2.55 -0.11 -0.15 2.81 
4 2.57 -0.11 -0.15 2.83 

44o 2 2.56 -0.09 -0.15 2.80 
2 2.61 -0.09 -0.15 2.85 
4 2.58 -0.09 -0.15 2.82 

600 2 2.51 -0.08 -0.16 2.75 
4 2.58 -0.08 -0.16 2.82 
4 2.60 -0.08 -0.16 2.84 

444 2 2.64 -0.06 -0.17 2.87 
4 2.58 -0.06 -0.17 2.81 

800 2 2.55 -0.04 -0.17 2.76 
4 2.71 -0.04 -0.17 2.92 

66o 2 2.59 -0.02 -0.17 2.78 
4 2.63 -0.02 -0.17 2.82 

555 2 2.47 -0.02 -0.17 2.66 
2 2.62 -0.02 -0.17 2.81 
4 2.56 -0.02 -0.17 2.75 

10,00 2 2.54 +0.01 -0.15 2.68 
2 2.57 +0.01 -0.15 2.71 
4 2.75 +0.01 -0.15 2.89 
4 2.63 +0.01 -0.15 2.77 

666 2 2.48 +0.02 -0.14 2.60 
2 2.64 +0.02 -0.14 2.76 
4 2.65 +0.02 -0.14 2.77 
4 2.63 +0.02 -0.14 2.75 
4 2.67 +0.02 -0.14 2.79 

Units: 10-
19c

m
2 oic-1 Ave. = 2.78 
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Values for A for the Bragg peaks shown in Figure 18 were determined 

at 240
o
, 200° , 160°, 140°, 120°, and 100°  K and are shown, along with 

the corrections Ams  and A p
f' 

in Tables 16 to 21 in Appendix D. At each 

temperature the dependence of A on sin
2 
 GO.

2 
 , sample, and crystallographic 

direction was as negligible as that indicated for 290 °  K in Figure 18. 

Thus, the A
o 
values obtained for different Bragg reflections were again 

arithmetically averaged at each temperature. The largest mean deviation 

from the mean obtained was 4 percent at 100°  K. The Ao values obtained 

for Bragg reflections occurring at angles less than that for the (400) 

were not included in these averages. Although at 290°  K the A values 

for these reflections show the expected trend with sin
2
QPN.2 , at lower 

temperatures these Ao  values had considerable scatter because of the 

large errors in the measurement of the small slopes that these reflec-

tions have (compare, for instance, the slope for the (200) reflection 

in Figure 17 with that of the other reflections). 

In order to compare these results with theory and with the results 

obtained from other experimental techniques, a Debye 8 at each of the 

above temperatures was calculated from A o  with equations (3-7) and (2-43). 

The values used for the thermal coefficient of expansion, p, and the 

GrUneisen constant, y, were those measured at the time of the present 

study
31

. The results obtained are shown in Figure 19 along with the 

results obtained by Sutton
42 

from elastic constant measurements, by 

Chipman
8 
from x-ray measurements, and by Walker 11 from the specific heat 

measurements of Giauque and Meads
43

. As can be seen, our results for 

8(x-ray) agree in most respects with those of Chipman in the 100 °  to 300°  K 

temperature range. However, our results do show more detail in the depen-

dence of 8(x-ray) on temperature than do Chipman's. 
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As discussed earlier, the temperature dependence of e(x-ray) can 

be due both to anharmonic effects and to the differences between the true 

vibrational spectrum and the Debye parabolic approximation. In an attempt 

to separate these contributions to the measured e(x-ray) versus T results 

for Al, we have used the actual vibrational spectrum for Al, determined 

by Walker
11 

from TDS measurements, to calculate (6B/?T) v with equation 

(2-42) and a Burroughs 220 computer. These calculations are described 

in Appendix B where the vibrational spectrum can also be found. The 

resulting e(x-ray) versus T curve obtained from these machine calculations 

by iteration with equation (2 -46) is shown in Figure 20 as a dot -dashed 

line along with our measurements. Two observations of special note can 

be made: (1) the calculated e(x-ray) versus temperature curve is essen-

tially independent of temperature above 100°  K, and (2) the magnitudes 

of the calculated e's'are significantly smaller than those measured. 

No anharmonic contributions have been included in the calculations 

of (B/T)v and thus one might presume that the differences found between 

the calculated and measured sets of 8's are due to anharmonic effects. 

Apart from the detail in the measured temperature dependence of 8(x-ray), 

the actual temperature dependence observed is larger than can be accounted 

for with the values used for y and S and equation (2-32). By increasing 

the value of 7, or by assuming that there are additional anharmonic terms 

in the measured dM/dT, it was found that one could account for the magni-

tude of the measured temperature dependence of 8(x-ray). However, the 

detail in the temperature dependence still remained unaccounted for and 

it was not found possible for one to explain, in this manner, the dif-

ferences obtained in the absolute magnitudes of the measured and calculated 

e's. 
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It was therefore concluded that the source of the disagreement must 

lie in errors in the original data, in the subsequent corrections applied 

to them, or in the vibrational spectrum used. The actual measurements 

seem to be in good shape in view of the very good agreement obtained 

between Ao values determined from completely independent data obtained 

from different Bragg reflections and different samples. While it is 

always possible in principle that our TDS corrections are badly in 

error , it seems unlikely since good agreement between the calculated and 

measured TDS contributions to the (10,00) Bragg reflection of AgCl was 

obtained as discussed in Chapter III. We were thus impelled to look for 

errors of the size of a few percent in Walker's vibrational spectrum; 

presumably at low frequencies since these are the frequencies to which 

our type of x-ray measurements are most sensitive. 

To expect such errors even in such superb work as Walker's is not 

unreasonable in view of the large corrections which must be applied to 

the original TDS measurements before the spectrum can be determined 

from them
11

. In addition, the spectrum is approximate in the sense that 

some force-law model must be assumed before the spectrum can be calcu-

lated even from the corrected TDS measurements. Fortunately, the thermal 

vibrations of Al have also been studied by Brockhouse and Stewart by 

means of the inelastic scattering of cold neutrons. Although a vibra-

tional spectrum was not determined from the neutron data, it was pos-

sible to compare the dispersion curves obtained by Brockhouse and Stewart 

with those obtained by Walker. Such a comparison revealed that for the 

As stated in Chapter III, the TDS corrections are possibly 15% too small 
at most. Such an error would make Ao  for Al approximately 1% too small 
and hence, e(x-ray), one-half percent too large, whereas nearly a 4% re- 
duction in the observed e(x-ray) at 290°K is needed to bring it into, agree-
ment with that calculated. 
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[110]direction, the dispersion curves obtained from the neutron measure-

ments for the transverse branch were about 10 percent higher in frequency 

than the corresponding curves obtained from the x-ray measurements. Since 

no large corrections need to be applied to the neutron data, such as 

those which were applied to the x-ray data, it is likely that the dis-

persion curves obtained from the neutron data are the more reliable and 

that the part of the vibrational spectrum which corresponds to the trans-

verse branch needs to be stretched somewhat to higher frequencies. Such 

a change in the spectrum should have a pronounced effect on the calcu-

lated values of (6B/6T)
v 

since, as indicated by the histogram of the 

vibrational spectrum shown in Appendix B, the shape of the low frequency 

part of the spectrum is almost entirely determined by the transverse 

branch. 

To determine what effect stretching the transverse branch to 

higher frequencies has on (6B/6T) v  and the resulting 8(x-ray) versus T 

curve, we recalculated (613/6T) v, using the Burroughs 220 computer as 

before, with all the frequencies of the transverse branch of the spectrum 

increased by 5 percent. The 5 percent increase seemed consistent with 

the 10 percent difference between the [110] dispersion curves mentioned 

earlier, because the spectrum is an average over all directions in a 

solid and because 6, the multiplicity of the [110] direction, is 

roughly the same as 7, the sum of the multiplicities of the [100] and 

[111]directions, the other directions for which dispersion curves were 

obtained. Other details of the calculation are discussed in Appendix B. 
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The resulting e(x-ray) versus temperature curve obtained from 

these calculations by iteration with equation (2-46) is shown as a dotted 

line in Figure 20. As discussed earlier in Chapter III, the normal mode 

frequencies may depend on volume as shown in equation (2-32). Inclusion 

of that dependence of the normal mode frequencies on volume in these 

calculations yields the e(x-ray) versus temperature curve shown as a 

full line in Figure 20. The agreement between this line and the experi-

mental e versus temperature results is seen to be quite good. The small 

differences which remain are well within experimental error. Thus, the 

temperature dependence of the x -ray Debye e is well accounted for by 

the modified vibrational spectrum and by the volume dependence of the 

normal mode frequencies in the 100°  to 300°  K temperature range. In 

addition, we conclude that the intensity versus temperature technique 

employed here provides a good. method for the examination of something of 

the character of the low and intermediate frequency portion of the vibra-

tional spectrum. 

Had x-ray measurements been made by us at higher temperatures, 

it is likely that anharmonic contributions in addition to thermal expan-

sion would have become significant in view of the strong temperature 

dependence of e(x-ray) found by Chipman8. It is noteworthy that the x-ray 

This volume dependence was included by application in reverse of the 
method suggested earlier in the "moments expansion" discussion for the 
elimination of the thermal expansion contributions to an experithental 
(?B/6T) v. That is, the value of (6B/6T) v  calculated for a temperature 
T was changed to (ITT/V0 ) 27  (aBi6T)v and T was changed to T' = T(VT/V 0 ) -7 . 
The reference temperature, To, used with equation (2-32) was 290 0  K. 
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values for 8 obtained by us and by Chipman are slightly less than those 

obtained from elastic constant measurements, as expected. The fact that 

e(C
v
) <8(x-ray) indicates that there is not a high density of high 

frequencies in the spectrum of Al. 

Potassium Chloride  

The values for A determined at 290°  K from the KC1 samples used 

in this study are shown plotted against sin2Q/X2  in Figure 21. As for 

Al, A shows no significant variation with sample, crystallographic direc- 

tion, or with angle except at the smaller values of sin
2
Q/X

2
. Ao at 

290°  K was therefore obtained by arithmetic averaging of the A o  values ob-

tained for each Bragg reflection (except those which occur at angles less 

than that for the ()+oo)) after applying to A the Au, and A
TDS 

 correc-

tions shown in Table 7. The mean deviation from the mean is 2.1 percent, 

again indicating that good agreement was obtained between data obtained 

from different Bragg reflections and different, samples. It should be 

pointed out that since the mass of the K
+ 

ion is nearly the same as that 

for the Cl .ion, and since both ions are isoelectronic, we have assumed 

that LAB and LB' are zero
**

. Attempts to obtain intensity versus temper-

ature data from Bragg reflections haling all odd Miller indices failed. 

Since f1 f2 for KC1, the intensities of these reflections were so 

weak that no meaningful data could be obtained. 

That is, in comparison to what would be expected from a parabolic 
extrapolation based on the low frequency part of the spectrum. 

** 
Isothermal x-ray measurements made by Wasastjerna44 indicate that 

BK  and B
Cl differ by only 4 percent. 
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Table 7. Potassium Chloride A Values and Corrections at 290 0  K 

hk/ Sample No. 

Ao = A  - AL2f 	ATDS 

A 	
ALpf --- ATDS 

Ao  

222 2 5.70 -0.59 -0.23 6.52 
400 1 5.95 -0.44 -0.26 6.65 

2 5.95 -0.44 -0.26 6.65 
44o 1 6.25 -0.22 -0.35 6.82 

2 6.45 -0.22 -0.35 7.02 
600 1 6.45 -0.20 -0.37 7.02 

2 6.30 -0.20 -0.37 6.87 
3 6.4o -0.20 -0.37 6.97 

444 1 6.15 -0.16 -0.41 6.72 
3 6.55 -0.16 -0.41 7.12 

800 1 6.25 -0.13 -0.46 6.84 
3 6.4o -0.13 -0.46 6.99 

66o 1 6.65 -0.11 -0.48 7.24 
3 6.45 -0.11 -0.48 7.04 

10,00 1 6.35 -0.09 -0.53 6.97 
3 6.3o -0.09 -0.53 6.92 

666 1 6.65 -0.08 -0.54 7.27 
3 6.35 -0.08 -0.54 6.97 

88o 1 6.80 -0.07 -0.54 7.41 

) *
Units: 10

-19
cm
2 o

K-1 Ave. = 6.98 

112 
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Values for A and A
o 
for the Bragg peaks shown in Figure 21 were 

also determined at 240° , 200°, 160°, 140°, and 120°  K and are shown, 

along with Aims  and Auf, in tables 22 to 26 in Appendix E. The A o 

values obtained for different Bragg peaks were arithmetically averaged 

at each temperature. The largest mean deviation from the mean obtained 

was 3.8 percent at 120°  K. 

At each of the above temperatures, a Debye S was determined from 

the measured A
o 
values by iterative calculations with equations (3-7) 

and (2-i.3). The values used for the thermal coefficient of expansion, 

p, and the GrUneisen constant, y, were those measured by R. Srinivasan
45

. 

The results we obtained are shown in Figure 22 along with the results 

obtained from elastic constant measurements, from specific heat measure-

ments, and from other x-ray measurements reported in the literature 5
. 

The values for 8(x-ray) obtained from our data decrease as the 

temperature increases. Above 200°  K this decrease is well accounted for 

by thermal expansion contributions to 8 (see equation (2-32)). However, 

below 200o K a small amount of temperature dependence still remains after 

the application of corrections to S for thermal expansion modifications 

of the normal mode frequencies. Since anharthonic contributions are not 

expected to increase as the temperature is decreased, the observed 

temperature dependence of S(x-ray) is probably due to the differences 

between the true vibrational spectrum and the Debye approximation. (Re-

call that a similar result was obtained for Al.) 

The S(x-ray) values for KC1 seem to be tending toward S(elastic) 

determined at 0 o K as one would expect. The elastic constant values for 
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8 are those quoted by Blackman
19 

for room temperature and by Barron, et 

al
13

, for 0o K. As expected the value at room temperature ('- 300
o  K) is 

a little larger than our x-ray values. It is interesting to note that 

the 8(x-ray) value obtained by James is larger than e(elastic). Blackman i9 

 has pointed out that this does not agree with theory. Our data remove 

this discrepancy, presumably due to the fact that we have made correc-

tions for TDS while James 5 did not. Such corrections always reduce the 

measured x-ray values for the Debye 8 below the incorrect values, even 

though the TDS corrections do enter differently for the two x-ray methods. 

The specific heat values for 8 agree with the x-ray measurements 

just above 120°  K. However, they fall off fairly rapidly as the tempera-

ture is increased. This rapid decrease of 8(C v) with increasing tempera-

ture has been interpreted by Barron, et al
13

, as being due to enharmonic 

effects. It is interesting, therefore, that the 8(x-ray) values do not 

show the same decrease. This may well be due to the fact that the enhar-

monic terms (other than thermal expansion) which apply to M do not have 

the same dependence on the third and fourth order derivatives of the 

potential energy (see equations (2-34) and (2-35)) as do those which 

apply to specific heats (compare reference 23 with Leibfried and Ludwig 2 ). 

Therefore, comparisons of high temperature Debye 8's obtained from speci-

fic heat with those obtained from x-ray measurements may provide a 

useful technique for the examination of anharmonicity. 

The high temperature value shown for the 8(x-ray), 8(03), was 

calculated by Blackman from the vibrational spectrum calculated by Tona
46. 

As can be seen in Figure 22 the values for 8(x-ray) obtained from our 

data above 200o K agree quite well with this calculated value. 
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Silver Chloride  

The values for A determined at 290°  K for the AgC1 samples used 

in this study are shown in Table 8 along with Ao  and the corrections 

/ Auf  and ATDs . A plot of Ao  versus sin2  CV%2  is shown in Figure 23. Ao 

shows no significant variation with crystallographic direction or sample. 

In addition to the (333) Bragg reflection, data were also obtained from 

the (113), (331), (115), and (551) Bragg reflections of sample no. 18 

in order to verify the result that A o(odd) is definitely larger than 

Ao(even). The (555) Bragg reflections were too low in intensity to 

allow the collection of meaningful intensity versus temperature data for 

them. Also the slopes of the intensity versus temperature data obtained 

from the (111), (200), and (220) Bragg reflections were too small to 

permit a meaningful determination of A for them. 

According to the earlier discussion (pages 50-55) pertaining to 

/ 	. the characteristic features, of an A
o 
versus 0(0 = sin2  00.2  ) plot for an 

NaC1 type structure, the general features of the plot in Figure 23 

indicate that AB' and probably LB are negative, i.e. BAg  > BL.  and 

B
Ag > BC1. 

That is, since A
o
(odd) is larger than A

o
(even), BI must 

be negative (see Figures 2 and 3 and equation (2-79)). Note that 

Figure 23 agrees qualitatively with the portion of Figure 3 near 0 = 0 

for Ad' < 0 and f< 1. The small increase of Ao (odd) with increasing 

0 indicates that 04. may also be negative. However, the observed in-

crease is small and not on statistically firm ground in view of the 

small range in 0 over which data were obtained and in view of the small 

number of data obtained from Bragg reflections, other than the (333), 

having odd Miller indices. At least there is no strong indication that 
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Table 8. Silver Chloride A Values and Corrections at 290 °  K 

Even hk,8 

Ao = A  - ALrf 

Sample No. 	A* 

ATDS 

ALFf 
A
o  A  ns 

222 7 9.20 -0.36 -0.25 9.81 
17 9.00 -0.36 -0.25 9.61 

4.00 7 9.15 -0.28 -0.29 9.72 
11 9.20 -0.28 -0.29 9.77 
17 9.35 -0.28 -0.29 8.92 

44o 7 9.00 -0.15 -0.39 9.54 
11 9.45 -0.15 -0.39 9.99 
17 9.4o -0.15 -0.39 9.94 
18 8.95 -0.15 -0.39 9.49 
18 8.65 -0.15 -0.39 9.19 

600 7 8.95 -0.14 -0.40 9.49 
11 8.75 -0.14 -0.40 9.29 
17 8.55 -0.14 -0.40 9.09 

444 17 9.15 -0.11 -0.46 9.72 
18 9.05 -0.11 -0.46 9.62 

800 7 9.00 -0.08 -0.51 9.59 
17 8.75 -0.08 -0.51 9.34 

66o 17 9.3o -0.07 -0.52 9.89 
18 10.1 -0.07 -0.52 10.7 

10,00 17 8.7o -0.05 -0.55 9.30 
18 9.75 -0.05 -0.55 10.4 
18 9.90 -0.05 -0.55 10.5 

Units: 10
-19

cm
2 o

K
-1 Ave. = 9.69 

(Table continued on next page) 
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Table 8. Silver Chloride A Values and Corrections at 290°  K (Continued) 

Odd hki 	 A* 	ALI,f Sample No. 	 ATDS 	
Ao 

113 18 10.2 -0.39 -0.24 10.8 
331 18 10.3 -0.24 -0.31 10.9 

18 10.2 -0.24 -0.31 10.8 
115 18 11.0 -0.17 -0.36 11.5 
333 7 10.7 -0.17 -0.36 11.2 

11 10.9 -0.17 -0.36 11.4 
17 10.9 -0.17 -0.36 11.4 
18 10.6 -0.17 -0.36 11.1 

551 18 11.1 -0.10 -0.47 11.7 
18 11.1 -0.10 -0.47 11.7 

-19cm2 oic-1 
Units: 10 Ave. = 11.3 

Ave of (115) and (333) = 11.3 

a 
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is positive. The lack of 0 dependence for Ao(even) is probably due 

to the fact that31.0 and .L.B are small. For instance, from Figures 2 and 

3, as AB' gets small so does the slope of the A
0 
 versus 0 plot except near 

the singularity points. Also according to these figures, A o(odd) may 

show a stronger dependence on 0 than A o(even). This of course will de-

pend on the size of LaB and the relationship of 0 = (in/P)/(AS) to the 

observable range of 0. We are therefore led to the interesting con-

clusion that the vibrational amplitude of the Ag
+ 

ion is larger than 

that for the Cl ion in AgCl. 

To provide additional experimental evidence on the relative 

sizes of B
Ag and B01' 

 we made room temperature measurements of the inte- 

grated intensities of several Bragg reflections of AgCl sample no. 18. 

According to equation (2-76) the observed integrated intensity, I(obs), 

is proportional to IF(obs)1
2 
 , where 

IF(obs)I = IfAg e 	
01 BAg° + fCl e- BC1 —  

(4-1) 

If BAg > B01, the relative decrease, with increasing 0, of the first 

term in equation (4-1) is more than that of the second term. In this 

case values of IF(obs)I/IF(Cal)I, where IF(Cal)I = IfAg — 
+ f01J, 

 for 

reflections having all odd Miller indices should decrease more with 

increasing 0 than those for reflections having all even Miller indices. 
Figure 24 shows the results obtained. As is seen these results are 

consistent with B
Ag 

> B
Cl 

and hence are in qualitative agreement with 

the intensity versus temperature results. 
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Figure 24. Dependence ofl F(obs)I /1F(cal)I on 0 for AgC1 Sample No. 18. 
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Determination of Observed Values of B' and B' 1 	2 

In view of the small number of Ao(odd) values obtained for 0 
values other than that for the (333) and (115) reflections, the method 

described below was used to determine B' and B'2 
 (hereafter denoted 
 

B t1(obs) and W(2 obs) respectively) from the data rather than an extra- 

polation procedure. The first step was to determine L.B'(obs). From 

equation (2-79) one obtains 

Ao(odd) - Ao (even) = - PAP) 2e  
2A30 	2 

e 

Although there is no value of 0 for which values of both A o(even) and 

Ao(odd) were obtained, Ao (even) is independent of 0 at 2900 K according 

to Figure 23. We therefore assumed that the arithmetic average of the 

A0(even) values shown in Figure 23 could be used in equation (4-2) with 

any 0 at which Ao(odd) had been determined. The value used for A 0 (odd) 

was the arithmetic mean of the A o(odd) values measured for the (333) 

and (115) reflections. It was also assumed that B(obs) was approxi-

mately given by zB(obs) = B'(obs)T. This should be a fair approxi-

mation for temperatures T 6, which is the case here for AgCl. (For 

these temperatures the energy per normal mode approaches kT so that 

B1 and B2 vary nearly linearly with temperature according to equation 

(2-74) and the-definition of B.) Actually it turned out that 63'(obs) 

was quite insensitive to B(obs) in equation (4-2). For example, in 

the iterative solution of equation (4-2), a 100% change in B(obs) 

produced only a 15% change in 6B'(obs). 
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The evaluation of AB T (obs) by iterative solution of equation (4-2) 

proceeded as follows: First tB(obs) was set equal to zero and a trial 

value for 6211'(obs) was obtained. The 6114'(obs) value so obtained was 

used to calculate a trial B(obs). This B.(obs) was then inserted in 

equation (4-2 . ) along with the value of 0 for the (333) and (115) reflec-

tions to calculate a new value for 6B'(obs). The calculations were 

repeated until successive values for 6B 1 (obs) agreed to within one to 

two percent. Bi(obs) was determined from 60'(obs) and A o(even) with 

the following equation, 

Ao(even) = Bi + (B19/(1 -1) 	. 	(4-3) 

Equation (4-3) was obtained from equation (2-79). after setting e M  = 

e6B0 equal to unity (because of the lack of 0 dependence of Ao (even)). 
B 12 (obs) was then obtained from Bi(obs) and 6B"(obs) with 

B2 - B' = 6B 1 	 (4-4) 

The results obtained for B 1 (obs) and B2 (obs) at several tempera- 

tures are shown in Table 9 along with the results of the theoretical 

calculations of these quantities to be discussed later. Values obtained 

for A and Ao 
at 240, 200, 160, 140, and 120° K are shown, along with 

A
TDS and Auf 

in Tables 27 to 31 in Appendix F. The main characteris-

tics of the A
o 
versus 0 plot as discussed above for 290 0 K were essen-

tially temperature independent. The errors shown for Bi(obs) and 

B2(obs) result from the propagation of the mean deviations of A 0(odd) 

and A(even) through the calculations carried out with equations (4-2), 

(4-3), and (4-4). 
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Determination of Calculated Values of B' and B' 
2 

To compare our results for AgCl with theory and with other experi-

mental results reported in the literature for AgC1, we have made calcu- 

lations of B1 and B2 (hereafter denoted as BI(cal) and B2 (cal) respective-

ly) as a function of temperature, using the Burroughs 220 computer. We 

have also obtained values for the Debye 0, at the temperatures shown 

in Table 9, from the experimentally determined Bi(obs) and 1Vobs). 

The computer calculations will be discussed briefly first. 

According to equation (2-74) the calculation of B 1 (and similarly 

B2 ) requires a knowledge of the dependence of the normal mode frequen-

cies, v(k,a), (the dispersion curves) and the atomic vibrational ampli-

tude ratio, r(k,a), on the wave vector, k, and the branch, a. Cole
10 

has determined the dispersion curves in the [100], [110], and [111] 

directions for the acoustic modes, transverse and longitudinal, in AgC1 

from TDS measurements. The determination of these curves from the TDS 

data was based on an assumed set of optical frequencies and on the assump-

tion that the expression for r(k*„0) obtained by Brillouin 9 (see Appendix B) 

for a one-dimensional diatomic chain was valid for a three-dimensional 

lattice such as AgCl. 

, 
Our calculations of B

I
(cal) and B

2 (cal)
* 
 are based on Cole's 

measured dispersion curves and on the same assumptions made by Cole 

, 
B1(cal) and B2(cal),  were calculated as a function of temperature rather 
than Bj(cal) and Bgcal) since it was then possible to determine B(cal) 
as well as B'1(cal) and B2-(cal) from one calculation. 

a. 



12 5 

concerning the form of l'(k,1a) and the optical frequencies in AgCl. It 

was felt that the subsequent comparison of these calculations with our 

experimental results could serve as an indication of the validity of 

the techniques used by Cole to interpret the TDS from a solid containing 

two types of atoms. In addition it was desirable to see if values for 

. 
BI (cal) and B2 (cal) indicate, as does our data, that the Ag

+ 
 ion has 

the larger vibrational amplitude in AgCl; and the use of Cole's data 

and of Brillouin's expression for rMo0 seemed to provide the only 

method for doing so. 

The calculations are described in detail in Appendix B, but it 

is desirable to mention here two other major assumptions on which they 

are based before we compare their results with experiment. For the 

acoustic modes the dispersion curves obtained by Cole were used to change 

.74 each frequency, vkg,a), where 2Trg = k, to a product of an appropriate 

phase velocity, V(g,a), and 0, i.e., Va, 00 = V(i),a)M. We then 

assumed that the directionally dependent phase velocities, v(g,a) could 

be arithmetically averaged, after each direction had been weighted 

according to its multiplicity, to obtain an average isotropic phase 

velocity v(alya)•  The dependence on 0 and the branch, a was not 
neglected. However, the Brillouin zone was replaced by a sphere. With 

these assumptions the sum over wave vectors, g, could be reduced to an 

integral, e.g. 

41T  

g,cx 
a 
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with a resulting great simplification of the calculation. It should be 

pointed out that such an averaging procedure, while hopefully not intro-

ducing great error, does neglect the fact that waves traveling in direc-

tions other than those mentioned cannot be separated into truly trans-

verse and longitudinal modes. 

The contribution to B1  (cal) and B2
(cal) of the optic modes was 

expected to be small. We therefore simplified the calculation by 

assuming that the optical frequencies were independent of direction, as 

Cole had done, and independent of wave vector. That is, single fre-

quencies were assumed, one for the transverse modes and one for the 

longitudinal modes. Cole had also used a single frequency for the 

transverse modes but he assumed some wave vector dependence for the 

longitudinal mode frequencies. The resulting spread in the longi-

tudinal mode frequencies was small, however, amounting to only 5 per-

cent on either side of the single average frequency we used. It 

should be pointed out that the optic mode frequencies used are high 

compared to those of the acoustic modes. Thus the optic modes give 

rise to a high frequency peak in the vibrational spectrum of AgCl. 

The results of these calculations are shown in Tables 9 and 10 

along with our experimental results. 	Values for the calculated 

temperature derivatives were assumed to be adequately given by 03 1sT 

and A82/T, where, for example for 290°  K, 031  = B1(300°  K) - B1 (280°  K) 

and 4T = 20o K. 

Comparison of Calculated and Observed Values for B1 and 

As can be seen the calculations also indicate that both the vi- 

+ i brational amplitude and its temperature derivative for the Ag ion are 



127 

Table 9. Calculated and Measured Temperature Derivatives 
of B1 and B0 for AgC1 

Calculated 	 Observed 
Acoustic plus 

Optic Modes Acoustic Modes Optic Modes 
T (oK) 6B1/6T* 6B2/6T 6B1/6T 6B2/6T 6B1/6T 6B2/6T 

	

B' 	B' 

	

1 	2 

290 0.095 3.25 10.73 4.64 10.83 7.89 10.2+0.2 8.1+0.7 
240 0.091 3.18 10.71 4.63 10.80 7.81 9.870.2 7.7+0.7 
200 0.089 3.12 10.70 4.63 10.79 7.75 9.4T-0.3 7.2+0.9 
160 0.087 3.03 10.66 4.61 10.75 7.64 8.7T-0.2 6.7+1.3 
140 0.083 2.95 10.63 4.61 10.72 7.56 8.470.3 6.3+1.5 
120 0.078 2.83 10.58 4.59 10.66 7.42 7.9+0.3 5.7+1.5 

*
Units: 10-19cm2 oK-1 

Table 10. Calculated Values of B1  and B2 for AgC1 

Optic Modes 
B1 	B2  B2 

Acoustic Modes 
B1 	B2 

Acoustic plus Optic Modes 
B1 	B2 

290 0.029 0.99 3.13 1.35 3.16 2.34 
240 0.024 0.83 2.59 1.12 2.61 1.95 
200 0.021 0.71 2.17 0.93 2.19 1.64 
160 0.017 0.58 1.74 0.75 1.76 1.33 
140 0.015 0.52 1.53 0.66 1.55 1.18 
120 0.014 0.46 1.31 0.56 1.32 1.02 

*
Units: 10-i6cm2  
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larger than those for the Cl ion; in qualitative agreement with experi- 

ment. In fact the agreement between the calculated and measured tempera-

ture derivatives of B 1 and B2 is fairly good in view of the seemingly 

drastic approximations on which the calculations are based. It there- 

fore appears that Brillouin's expression for the atomic vibrational ampli-

tude ratio is at least not an extremely bad approximation for a three-

dimensional lattice. Another interesting result concerning the calcula-

tions is the rather large contribution, nearly 50 percent, of the optic 

modes to both 
B2 2 

 (calc) and B'(calc). Nearly 411 of the temperature de- 

pendence of B 1
2
(calc) is due to the optic modes. On the other hand the 

contribution of the optic modes to B1(calc) and Bi(calc) are very small. 

Thus the vibrational amplitude of the Ag
+ 
 ion is due almost entirely to 

the acoustic modes while that for the C1 ion arises almost equally from 

the acoustic and optic modes. 

Although the qualitative agreement between the calculationS and 

the experimental results is good, there are significant differences, 

particularly with regard to the temperature dependences of Bi and B. 

B l1 (calc) and B2(calc) show very little dependence on temperature while 

the experimental values decrease significantly with decreasing tempera-

ture. Presumably part of the temperature dependence of the experimental 

values is due to anharmonic effects for-which they have not been corrected. 

To investigate this point further, Bi(obs) and li(obs) were combined, as 

indicated 'in equation (2-75) for Mi and N, to give miBi(obs) + m2B(obs) = 

G(obs). The thermal expansion contribution to G(obs) was eliminated in 

a manner analogous to that suggested in the discussion pertaining to the 

ir  
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expansion of B I (obs) in terms of the moments of the vibrational spectrum. 

That is, the term proportional to g(x) in equation (2-75) was first sub-

tracted from G(obs) using the Debye 8 values for AgC1 to be discussed 

later. The resulting numbers were then multiplied by (V o
/V)2y, Vo being 

the volume at 290 °  K, and plotted against T' as shown in Figure 25. The 

corresponding values for G(cal) are shown in the same figure. As can be 

seen the experimental results still vary more with temperature than those 

calculated. There may be anharmonic contributions to B'(obs) in addition 

to thermal expansion.. However the entire temperature dependence of G(obs) 

cannot be explained by an anharmonic term which varies only linearly with 

temperature as would be expected if that were the only consideration . 

Part of the discrepancy between the measured and calculated values 

for G may be due to errors in the calculations which could arise both be-

cause of the grossness of the approximations made and because of some 

errors in the dispersion curves obtained by Cole resulting from his use 

of Brillouin's expression for r(Zor.). Recent theoretical calculations of 

the dispersion of the normal modes in the [100], [110], and [111] direc-

tions in AgC1 by Joshi and Gupta47 show quite large discrepancies between 

theory and the experimental results of Cole. In particular these authors 

find (1) the frequencies of the longitudinal optic modes are signif i-

cantly less (— 30%) than those used in our calculations and (2) the fre-

quencies of the acoustic modes are considerably larger (as much as 100% 

for some values of ii1) than those obtained by Cole. Such a decrease in 

*
Anharmonic terms which vary as T

2 
are presumably not significant since 

no anisotropy in Ao  was observed. 

	 II 	I 
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the frequencies of the optic modes would increase the contribution of 

these modes to B t1
(cal) and B2(cal). Since almost all of the temperature 

' 

dependence of G(cal) is due to the optic modes, it is quite possible that 

the use of these calculated optic mode frequencies would bring the temper-

ature dependence of G(obs) and G(cal) into better agreement. Also an 

increase in the frequencies of the acoustic modes would decrease their 

contribution to G(cal). Since the magnitude of G(cal) is primarily deter-

mined by the acoustic modes, the use of these calculated acoustic modes 

would tend to improve the agreement between the magnitudes of G(cal) and 

G(obs). Problems remain however. Joshi and Gupta find that at long 

wavelengths the slopes of the calculated acoustic dispersion curves do 

not agree with the velocities calculated from elastic constants. In 

any event it is clear that our data indicate that the dispersion curves 

calculated by Joshi and Gupta are to be preferred over those obtained by 

Cole. 

Debye 8 Values  

We obtained values for the Debye O of AgC1 from the measured values 

for B'1  and B2 and equation (2-75) (divided by sin
2
Q/7). The values 

used for the thermal coefficient of expansion, p, and for the GrUneisen 

constant, y, were those measured at the time of the present study
31 . 

The results are plotted against temperature in Figure 26 along with some 

results obtained from other experimental techniques. Our results for 8 

show more temperature dependence than can be accounted for by thermal 

expansion effects alone. This may be due to additional anharmonic effects 

or to a contribution to B'1  and B2 from high frequency optic modes as 
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mentioned earlier. Because the probable existence of a poorly determined 

contribution of the optic modes to Bi and B2 we have made no attempt to 

determine the size of anharmonic effects other than thermal expansion. 

The value for e determined from elastic constants was calculated 

by us from the room temperature elastic constant data of Arenberg using 

the method suggested by Quimby and Sutton
49

. It is in good agreement 

with our x-ray values, being a little larger as expected. We were unable 

to find in the literature any elaStic constant measurements for AgC1 

below room temperature: Presumably the 8 obtained from such measurements 

would remain larger than the x-ray values and thus would increase as the 

temperature decreases. 

We were unable to find in the literature very many values for 

e(Cv). The value shown at 0o K was obtained by Lonsdale
50 

from appli-

cation of the T 3 law to the data of Clusius and Harteck
51

. No tempera-

ture was quoted by Lonsdale but since the T 3  law is valid only at very 

low temperature we have assumed that this is the value for e(C, v) which 

would be measured at 0°  K. Although this assumption may not be valid, 

at least there is an indication that her value for S(CV ) obtained from 

low temperature specific heat measurements is in fair agreement with 

those obtained from elastic constant and x-ray measurements as expected 

(see Chapter II). The value for e(Cy) shown at 300 ° K was found in the 

American Institute of Physics Handbook
52

. Since no references or tempera-

tures were given in the handbook, it was assumed that the 8(Cy) listed 

was determined at about room temperature. This S(C V) is considerably 

larger than those determined from the elastic constants or our x-ray 
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measurements. This difference is presumably due to the existence of rela-

tively high frequency modes in AgC1 and to the fact that e(CV) is 

influenced more by the high frequencies in the vibrational spectrum than 

are those 8's obtained from either elastic constant or x-ray measurements. 

Thus both (1) the difference between 8(Cv) at 300°  K and 8(x-ray) and, 

(2) the temperature dependence of G(obs), discussed earlier, are con- 

sistent with the existence of a high frequency peak in the vibrational 

spectrum of AgCl. 

Moments Expansion of Data  

Considerable difficulty was encountered in our attempts to it our 

x-ray data with a "moments" expansion such as that shown in equation 

(2-57). Most of our efforts were expended on the KC1 data, primarily 

because the moments ki2 , 114 , and [1,6  had been determined from specific heat 

data by Barron, et al 13 . It was considered most desirable to compare 

their results with those obtained from x-ray measurements. Since the 

difficulties encountered were similar for KC1, Al, and AgCl, we shall 

discuss only the moments expansion work done with the KC1 data. 

As discussed earlier A
o 
values for KC1 were determined at 290, 

240, 200, 160, 140, and 120°  K. It was desired that the ratio of the 

number of independent observations to the number of adjustable para-

meters in the moments expansion be made as large as conveniently pos-

sible. To increase, with a minimum of effort, the number of pieces of 

data to be fit, we used A
o values determined for the (800) Bragg re-

flection of KC1 sample no. 3 at 180, 220, 260, and 320°  K in addition 

to the temperatures mentioned above. At the temperatures where they 
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could be compared, the Ao  values obtained from this particular reflec- 

tion were all within 1/2% of the average Ao  values determined previously 

for KCl. Thus, although the use of the data obtained from only one 

reflection would otherwise be statistically inadequate, it was felt that 

the agreement just cited indicated that the A o values used adequately re-

presenred the averaged KC1 data. The correction of these A o values for 

thermal expansion contributions and the subsequent reduction of them to 

(aB/T) cr  (Vo/V)27  + al(T') -2  

was accomplished as described in Chapter II (see pages 40 and 41). T o 

 was 1200  K. 

Two computer calculations were made. In the first the values for 

(6B/T),;  (V o 	al /V)27  + (T i-) -2  were fit, in a least squares sense, to the 

expansion ao + a2 (T')
-4 

- a3(TI)
6 

+ 	(see page 41), carried out 

,-6 only to the a
3
(T') term, with a Burroughs 220 computer. Thus the 

three adjustable parameters a o, a2 , and a3  were determined from ten 

independent pieces of data. The results were then used with equation 

(2-58) to determine the moments p -2 , p.2 , and 1A4  which are shown in 

Table 11. The percent standard deviation in the least squares fit 

amow.ted to 1/3%. 

Table 11. Vibrational Spectrum Moments for KC1 

X-ray 	 Specific Heat 

1.4 x 10-25 sec2  

'12 27. 8  x 1024sec -2  

I-1.4 	954 x 1049sec -4  

14.45 x 1024sec -2 

27.5 x 1049sec
-4 
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From equations (2-20), (2-46), with f(x) = 1, (2-47), and (2-54) 

and the value obtained for 4_ 2 , we obtain 222 ° K for the high tempera-

ture limit of 8(x-ray), i.e. 8(m). This value agrees well with the 

8(x-ray) values determined earlier from our data for temperatures above 

200° K and with 8(m) obtained, as discussed earlier, by Blackman
19

. 

However the values obtained for 42  and µ are much too large when com-

pared with the specific heat results. 

In an attempt to determine if the large values we obtained for 

42  and µ were due to poor convergence of the series, we made the second 

calculation with the expansion carried out to the a
5
(T I )

-10 
 term. Thus 

for this calculation five adjustable parameters ao , a2 , a3 , a) , and a
5 

were determined from ten pieces of data. For this calculation all the 

parameters, except a o, had signs which when used in equation (2-58) 

yielded negative values for the vibrational spectrum moments. This 

result is physically impossible since all the normal mode frequencies 

are positive. 

The reason for the difficulties encountered in our attempts to 

fit our data to a moments expansion is not certain. However several 

plausible qualitative arguments come to mind: 

(1) It turns out that most of the temperature dependence Of 

(aB/T)v  (Vo/V)27  comes from al (T 1 ) -2 , the term in equation (2-57) 

which does not depend on the moments. This is illustrated for KOl in 

Figure 27 where OBPT)
J  (V o  /V) 27 

 and (6B/6T)
V 
 (v o  /V) 27 

 + a1  (T')
-2  for 

 

the (800) 'Bragg reflection of K01 sample no. 3 are shown plotted against 

T'. As is seen the temperature dependence of the points we attempted 
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to fit with the moments expansion is quite small, possibly too small in 

comparison to experimental uncertainties to permit a meaningful evalua-

tion of the coefficients of the expansion. Some evidence of this possi-

bility was provided by the computer program that was used in the fitting 

procedure. This program applied a statistical t-test to the coef-

ficients to test the hypothesis that the coefficients in the expansion 

were zero. For both of the abovecalculations, this test yielded the 

result that all the coefficients, except a c , were not significantly dif-

ferent from zero. That is, in a statistical sense, the data which were 

fit to the moments expansions did not provide sufficient evidence that 

the coefficients were different from zero. 

(2) It is possible that the thermal expansion corrections which 

were applied were either incorrect or did not account fully for anharmoni- 

city. It is interesting to note that Barron, et al
13 

state that an-

harmonic effects rendered their attempts to fit measured values of C V 

 to a moments expansion unsuccessful. They actually obtained the values 

for p2  and id4  shown in Table 11 from a moments expansion of e(Cv) in a 

temperature region where e(C v) exhibits considerable temperature depen- 

dence. An expansion of B(Cv) in terms of the vibrational spectrum 

moments is obtained by comparison of equation (2-59), written in terms 

of pn, with the analogous equation written in terms of the moments of 

a Debye spectrum. A similar technique may prove successful for x-ray 

data. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

From the temperature slope of essentially continuous Bragg in-

tensity versus temperature data, it is possible to obtain meaningful 

values of dB/dT for a cubic lattice with one atom per lattice point 

and of dBi/dT for each type of atom in an NaC1 type lattice as a func- 

tion of temperature. These temperature derivatives of the Debye-Waller 

factors can be related in a straightforward way to the vibrational 

spectrum and, hence, can be used to determine 8(x-ray) as a function of 

temperature for both the monatomic and diatomic cases. A value for 

8(x-ray) so obtained at a given temperature is absolute in the sense 

that it does not depend on the 8(x-ray) values which are appropriate 

to other temperatures. That is, no assumptions regarding the ex-

pected shape of a 8(x-ray) versus temperature curve are required. 

The comparison of our intensity versus temperature results for 

Al with calculations based on Walker's vibrational spectrum for Al 

have shown that the temperature dependence of dB/dT is sensitive both 

to anharmonicity and to certain details in the character of the low 

and, possibly, intermediate frequency portion of the vibrational 

spectrum. A 5% expansion of the transverse branch of Walker's spectrum 

to higher frequencies, suggested by the neutron inelastic scattering 

results of Brockhouse and Stewart
12 
 , makes a significant improvement 

in the agreement between our calculated and observed results for 8(x-ray). 

1  
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When thermal expansion effects on the frequencies are also included, the 

calculated 8(x-ray) versus temperature curve is in excellent agreement 

with our experimental curve. Anharmonic effects other than thermal ex-

pansion are not significant in Al in the 100 to 300°  temperature range. 

However according to the 8(x-ray) versus temperature results obtained 

by Chipman, anharmonic effects probably become significant above 300 °  K. 

It would be desirable to extend our intensity versus temperature data for 

Al above 300°  K to examine this point. It would also be desirable to 

extend the data below 100 o K to examine experimentally the rapid increase 

of the calculated e(x-ray) versus temperature curve below 80°  K (see 

Figure 20). 

The Ao versus 0 plot was very useful in the interpretation of the 

intensity versus temperature results for AgCl. The results obtained show 

that d(BAg)/dT is larger than d(Bc1)/dT by approximately 20 - 30% in the 

100 to 300o temperature range. This result is in substantial agreement 

with our calculations based on Cole's
10 

dispersion curves for AgC1 and 

on Brillouin's 9  expression for the wave vector dependence of the atomic 

amplitude ratio in a one-dimensional lattice. This agreement indicates 

that (1) the experimental and analytical methods used are capable of 

yielding useful information about the thermal vibrations of each type of 

atom in an NaC1 type lattice and (2) Brillouin's one-dimensional model 

is not completely invalid for at least one NaC1 type lattice. It would 

be desirable to carry out new calculations based on the dispersion curves 

obtained by Joshi and Gupta 47 to determine if better agreement between 

theory and experiment can be obtained. According to our calculations 



(1) the acoustic modes account for nearly all of B Ag, (2) however, the 

optic modes account for nearly 50% of BCl 
and hence contribute signifi-

cantly to the temperaturefhdependence of e(x-ray) for AgC1 in the 100 to 

300°  temperature range. Partially because of the presence of optical modes 

one might expect anharmonic effects in AgC1 even at relatively low tempera-

tures such as those encountered in the present study. The first order an- 

harmonic effect, i.e. that of thermal expansion on the normal mode fre-

quencies, accounted for a portion of the temperature dependence of 8(x-ray). 

The contributions from higher order anharmonic effects were not examined 

because the optic mode contributions to e(x-ray) were not sufficiently 

well known. 

For KC1 we find that between 200
o 
K and 300 ° K e(x-ray) agrees 

well with the high temperature value calculated by Blackman
19 

and has a 

temperature dependence which is fully accounted for by thermal expansion. 

Below 200o K e(x-ray) increases more than can be accounted for by thermal 

expansion alone as the temperature decreases. This increase is presumably 

due to the differences between the real vibrational spectrum and the 

Debye spectrum. A similar type of increase is also found at low tempera-

tures in the calculated 8(x-ray) versus temperature curve for Al. 

For all three materials, Al, KC1, and AgC1, we have found e(elastic) 

, 
> e(x-ray) as expected. The discrepancy (according to Blackman 19) between 

theory and experiment which once existed for KC1, viz. e(x-ray) > 

e(elastic), has been removed by our data. The large difference (— 25%) 

between 8(x-ray) and 0(C v) for AgC1 is probably due to the existence of 

optic branches in AgOl which are fairly far removed from the acoustic 



branches and which contribute more to 0(C
V
) than to 8(x-ray). As 

mentioned, earlier a similar effect is found in Ge and Si
32 . 

Attempts to fit the temperature slope of intensity versus tempera-

ture data with an expansion in terms of the moments of the vibrational 

spectrum failed. Pbssible reasons for the failure are: 

1. Most of the temperature dependence of (n/T) v  is due to a 

term that does not depend on any moment. The temperature dependence of 

the other terms is too small compared to the uncertainties in the data 

to be useful. 

2. Thermal expansion corrections may be in error or may not fully 

account for anharmonicity. The advantages of the moments expansion 

technique are sufficiently appealing to warrant continued effort in this 

area of the data analysis. 

We find that TDS contributions to Bragg intensities depend on 

various experimental parameters such as illumination gradients in the 

incident beam, sample size and shape, counter aperture size, etc. Ex-

pressions have been derived which can be used to determine both the one 

and two phonon contributions to the Bragg peak intensity. The results 

of specially devised experimental tests indicate that these contributions 

in this study probably were determined to within 5 to 15%. 

On the basis of the comparisons made in this study between experi-

ment and theory (particularly for Al and AgC1) we conclude that with 

the experimental and analytical techniques used in the present study, 

Bragg intensity versus temperature data are capable of yielding valuable 

information concerning (1) anharmonic effects, (2) the validity of 
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experimentally or theoretically determined vibrational spectra and dis-

persion curves for both monatomic and NaCl type lattices and (3) the 

validity of various theoretical models related to thermal vibrations. 



APPENDIX A 

Thermal Diffuse Scattering 

The general theory of thermal diffuse scattering is given by Laval 
17 

and, in somewhat different form, by James 5 . We shall use the form given 

by James, but since he considers only a monatomic cubic crystal, we shall 

extend his form of the theory to include diatomic cubic crystals in order 

to permit calculation of the TDS corrections necessary for our KC1 and 

AgCl data. 

The intensity of the thermal diffuse scattering can be expressed 

as a series of terms obtained by expanding in a Maclaurin series the 

term in equation (2-4) containing the cosine function. The linear term, 

called the first order or one phonon scattering, describes the scattered 

intensity resulting from the interaction of an x-ray photon with a single 

phonon*. Similarly the nth order term describes the intensity resulting 

from the interaction of an incident photon with n phonons. We will be 

concerned only with the first two terms. The third and higher order 

terms are usually neglected since they are small and are quite difficult 

to calculate. For our purposes they will be assumed negligible. The 

validity of this and other assumptions to be made later are demonstrated 

in Chapter III where we compare with experiment our calculations based 

on the one and two phonon scattering. As in the discussions of M, it is 

convenient to consider separately those crystal structures with only one 

The phonon is the quantum of vibrational energy, hV, where V is a 
normal mode frequency. 
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atom per lattice point and those with two or more. The relatively simple 

case of one phonon scattering from a crystal having only one atom per 

lattice point is described in detail. The more complex cases (e.g:, two 

phonon scattering and/or two atoms per lattice point) are then discussed 

in somewhat outline form by reference to the detailed treatment of the 

more simple case. 

One Atom per Lattice Point 

One Phonon Scattering Theory 

If the term containing the cosine function is included when 

equation (2-4) is substituted into equation (2-2), equation (2-15) 

becomes, with a j  (ZO) = a (Ii!'
'
0) = a(E!,0) 

PP 	= e 	 f.f e 1KO.krn-rm ) e 1K 6."3 ,1 -pi )  
i 	

exp G(Za)cos() I -2M 	 -->„ /--> -0 	. 	-+ 

n,[[

mm=1 j,/=1 	 -0 ka 

(A-a.) 

where 

and 

G(rc,c1)= 	 42 (1-e0a> (A-2) 

• cos( ) = cos (Z.(7ii-rin) + 	 (A-3) 

We now expand the last term of equation (A-1) in a Maclaurin series, 

keep only the first two terms, and let 
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and 

1  ( i() 	-10) cos{ = 	+ e 

= 	 = A-1  

(A-4) 

(A-5) 

where A is the normal mode wavelength. Equation (A-1) then becomes, 

< 	
•- PP 	Io  (!/X) I

F  I2 e -2M  + 

1 e-2M 
\L: (C6(;a))Z f f 	e27ri  

I 
Io (g/x + i) 

 

+ e271.(gYX i)• 	1;)I(e/x 0  

 

(A-6) 

where Io(g/X) and F are defined in equations (2-9) and (2-16) respectively 

and we have :set 

2Ti(g/X 	
- rm) . o (

g/x i) (A-7) 

n,m=1 

Io(g/X + -4 is the same function of g/X + it as I o(g/X) is of g/X and 

thus has appreciable values only when equation (2-10) is satisfied with 

g/X replaced by g/X + it. For each value of g such that g/X + i'is equal 

to a given Ire, the sums over j and i will yield the same result, 
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2. 
2Tri(g/X+. .i)5* . -15* 	_ 	f 	arri e 07%-  0.54j) 	2 = 1 F 1 Zfifl  e 	 j - X ) - 	j 	 (A-8) 

and can be taken outside the summation. Thus 

<P>= Io(gNIF12 e-2M1 12 -214 * 	IFI 	e ca(e,a)fi ocsix+-4 iocpx-01 

g, a 

(A-9) 

where the second term represents the first order thermal diffuse scat- 

tering. Since for each normal mode with a wave vector + 2vg 4 there is 

, a similar one with a wave vector -27re, it is easily shown 5 that for any 

given O. the contribution to the first order scattering from the term 

r4 , 
containing Io(S/X - g) is the same as that from the term containing 

Io (g/A g). Thus the first order scattering is proportional to 

Ji  = IF1 2  e -2M  X(G(11,a) Io(VN + "g) 	 (A-10) 

g, a 

For convenience we also define 

J = I (V?,.)IFI
2 
 e 

-2M 
o 	o (A-11) 

Part of the problem to be solved is the determination of how 

much of J
1 
 is measured when a measurement of J o 

is attempted. As one 

mighf suspect from the dependence of Jo  and J1  on quantities such as 

and g, which have the units of reciprocal length, the solution of 77X 

t'ae problem is most easily described in terms of the reciprocal lattice. 
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Reciprocal Lattice and Ewald Sphere  

The reciprocal lattice and its use for the description of certain 

aspects of x-ray diffraction is described in detail by James 5 . 

The general features which are of use to us are , most conveni-
ently introduced by means of a few figures. In Figure 28(a) are shown 

several reciprocal lattice points which lie in the plane of the page. 

2.1e circle shown is the intersection of this plane with the Ewald 

sphere. The Ewald sphere has a radius of 1/X, where X is the x-ray 

wavelength, and is situated such that the origin of the reciprocal 

lattice lies on its surface and such that the line connecting its 

center to the origin is parallel to the direction, o, of the incident 

beam of x-rays. A diffracted beam having an intensity proportional 

to Jo results when the reciprocal lattice is rotated such that some 

reciprocal lattice point (relp), designated by the indices (hk2), 

also lies on the surface. This situation is shoirn in Figure 28(a). 

The diffracted beam is in the direction along 7,Ei, and e/X =(s- i 0 )/X 

coincides with the position vector, it, of the point (hki) and thus as 

mentioned earlier, satisfies equation (2-10). 

Similarly each term of the sum in equation (A-10) is proportional 

• 'to the intensity of x-rays scattered in a direction determined by V 

-* 	 -0 such that ff/x 	g + 	is equal to h. This situation is illustrated in 

Figure 28(b) where only one relp is shOwn. 

Present Experimental Geometer in Direct and Reciprocal Space 

The features of the experimental geometry necessary for the dis-

cussion of the TDS contribution to our measured intensities are illustrated 



(h) 

Figure 28. X-ray Scattering Viewed in Reciprocal Space. 
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in Figure 29. Consider two rays, A and B, in the plane of the page which 

have wavelength %, originate at the extreme top and bottom, respectively, 

of the x-ray tube target projection, and travel to the volume element dvi 

of an ideally perfect single crystal. Associated with these two rays, 

corresponding to two incident directions o, are two Ewald spheres, por-

tions of which are shown in Figure 30. 

Any x-ray scattered into the counter window by the volume element 

dV
1 
 whether it corresponds to a diffraction peak or TDS, has associated 

with it a vector -e/N. which terminates somewhere on or between these two 

spheres. We shall assume that the crystal is oriented so that all relps 

of interest lie in the plane of Figure 30. Similarly x-rays scattered 

by the volume element dv correspond to vectors 	which terminate 
2 

somewhere on or between the Ewald sphere associated with the rays C and 

D. If dv 1-and  dv
2 
are located respectively at the extreme bottom and 

extreme top of'the sample, the entire sample can contribute to the dif-

fracted beam only when the (hk2) relp is located in the region which is 

common to the two sets of Ewald spheres defined by the rays A, B, C, 

and D. This region is shown shaded in Figure 30. 

The intensity measurements in the present study were obtained as 

the crystal was oscillated through the optimum diffracting position, 

that is, as the (hki) relp was made to pass back and forth through the 

shaded region in Figure 30. The diffraction peak intensity, taken as 

the maximum intensity measured during such a pass, presumably corresponds 

to the time that the relp is in the center of the shaded region. When 

the crystal is so oriented, the counter detects all TDS that originates 



Figure 29. Present Experimental Geometry in Direct Space. 

TARGET 
PROJECTION 
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Figure 30. Present Experimental Geometry in Reciprocal Space. 
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in a region surrounding the relp which, in the present experiment, is 

approximately coin shaped. This region has a radius determined by p, the 

angle subtended at the sample by the counter window, and a height deter-

mined by the sum of (1) 8, the angle subtended at the sample by the x-ray 

target, and (2) y, the angle subtended at the x-ray target by the sample 

(see Figure 29). The intersection of this region with the plane of 

incidence is illustrated in Figure 30 with the lines ab, bc, cd, and da. 

The x-rays which can enter the stationary counter window and which result 

from scattering of the incident ray A have a different average value of 

scattering angle 29 than do those which result from scattering of ray D. 

Thus the top of the region of interest, indicated by the line ad in 

Figure 29, is offset from the bottom, indicated by the line bc, as shown 

in Figure 30* . The amount of offset, is determined by the sum of (1) the 

angle 6, (2) the angle y, and (3) the angle subtended at the counter by 

the sample. In the present experiment this offset was less than 20% of 

the diameter of the region of interest. Thus to simplify the calculations 

which are described later we assume that this offset can be neglected. 

In addition we assume that the curvature of the Ewald sphere within the 

region just described can be neglected. With these assumptions we can 

replace the region described above by a right circular cylinder. 

The validity of these assumptions is difficult to establish theo-

retically. However in view of the good agreement obtained between the 

calculated and measured TDS contributions to the (10,00) Bragg reflection 

The two lines in Figure 30 which form the angle p illustrate the 2G range 
for the detected x-rays which result from scattering of the incident cen-
tral ray which joins the center of the x-ray target with the center of the 
sample. 
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of Aga (see Chapter III) these assumptions, and several others to be 

discussed later, either (1) arQ sufficiently valid for our purposes or 

(2) produce compensating errors. 

A typical diffuse scattered ray is shown in Figure 30. The dis-

placement from the relp of the associated ff'd% vector, D standing for 

diffuse scattering, is determined by g. The intensity of this scattered 

ray can be determined from equation (A-10) by summing over iand a with 

V% = ffio/x. The total diffuse intensity which is detected during a peak 

height measurement is then obtained by summing the contributions from all 

vectors cp/% which terminate somewhere in the volume described above. 

One Phonon TDS Contribution and Dependence on Experimental Parameters  

With the use of equation (2-14) and (A-2), equation (A-10) can be 

rewritten as 

2 -214 x 
1F1 e 	

(aona0)2 E(Y(Z' a))  IoreDIA J1 (c/%)  47N m 	 V2(C) 
Zy a 	 (A-12) 

The sum over g can be changed to an integral by insertion of the 

number of waves which have wave vectors between g and g + a. This num- 

ber is independent of g and is equal to Vdv 14  ,where V is the volume of 

the crystal and dv is a volume element, dxdydz, of reciprocal space. The 

evaluation of this integral is described in detail by James5 . The result 

is 

J 
-1-12  e -2M  sin2Q y 	2 	-)N\ E(V(Z, 0 )) = 1\11-rl

m 	 cos (G(S 	e)) D' %2  	 V2(i>ya) a 

(A-13) 
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where we have substituted V = Na3
, 

17-7> 10
D 
 = 2 sin Q, and N' = 4N, its value 

for a f.c.c. crystal such as Al. Q(E)D' 	
is the angle between -e) D  and 

-6)(g;a). J1 (g) is the distribution function for the diffuse scattering 

power density in reciprocal space and --g is the vector which joins the 

relp with the maximum of Io(c/X + Z). 

The diffuse intensity will naturally depend on the intensity inci-

dent on the crystal and, according to equation (A-13), to the number of 

contributing unit cells in the crystal. On the basis of the discussion 

of Figure 30, the diffuse intensity corresponding to a particular point 

in the reciprocal lattice volume "seen" by the counter will depend on 

how much of the crystal can contribute to that point and, since the tar-

get illumination is not necessarily uniform, on the point on the target 

from which the scattered ray originated. For example, if the point lies 

on the Ewald sphere designated. A in Figure 30, the diffuse scattering at 

that point arises only from x-rays which originate at the extreme top of 

the target projection and which are scattered by the extreme bottom of 

the sample. Thus before we can integrate J1  to obtain the total diffuse 

scattering observed, a function, say w(i), must be derived which will 

"weight" each point in the reciprocal lattice volume of interest accord-

ing to the incident intensity and the volume of the sample which contri-

butes to the diffuse scattering at each point. 

To begin we shall neglect absorption and mosaic spread and assume 

that volume elements in the crystal which lie on any given line perpendi-

cular to the plane of Figure 29 and points on the target projection which 

lie on any other given line perpendicular to the same plane contribute 
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scattering to only one Ewald sphere. That is, we neglect crossfire of 

the beam perpendicular to the plane of incidence since rotation of an 

incident ray out of the plane of Figure 30 merely slides the correspond-

ing Ewald sphere nearly along its own surface (in the vicinity of the re-

ciprocal lattice volume of interest) in a direction perpendicular to the 

plane of Figure 30. We shall further assume that the crystal size is 

small compared to the distance of the crystal from the target, so that 

the angle, 3, which defines the beam convergence for each volume ele-

ment is the same for all volume elements. 

The derivation of the desired weighting function will proceed most 

easily with the aid of several additional figures. In Figure 31 is shown 

an example of a target intensity distribution projected on a vertical 

line in the target projection. The sample will be divided into horizon- 

tal layers of thickness LIZ. as shown. According to the above assumptions 

the volume of each layer may be projected onto a vertical line through 

the sample to give the sample volume distribution along the Z direction. 

In Figure 32 is shown an enlarged view of the reciprocal space 

volume of interest. It is convenient to define a cartesian coordinate 

system with its origin at the (hk/) relp. The z axis is perpendicular 

to the surface of the Ewald sphere which passes through 'the center of 

the (hk/) relp and the x and y axes are tangent to the same sphere. Re-

ferring to Figure 32, a small rotation of an incident ray about an axis 

perpendicular to the page corresponds to a displacement of the surface 

of the Ewald sphere in a direction which makes an angle 0 with the per- 

pendicular to the sphere's surface for 20 angles which are not too large. 
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Figure 32. Typical Component of w(z). 
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(Obviously this is not true for 20 -› 180 °  since the axis of rotation in 

reciprocal space passes through the origin.) If we assume that 20 for 

all the Bragg peaks observed in the present study are sufficiently small, 

distances along z can be simply related to Z and Z, actually 1Z - 2 1, via 

the angle which a ray that joins Z and Z makes with any horizontal line 

joining the points 2 = Z. So for Z = Z, Z = 0. For example, for the ray 

in Figure 31 which joins Z = 0 to Z = Zi , one can easily verify that 

z.= (7A.) sin 20 (A-14) 

Projection of the target intensity and the sample volume onto 

Z and Z respectively results in a weighting function which depends only 

on z, i.e., w(g)= w(gz ) = w(z) * . The contribution of the volume of the 

crystal within the LZ i  shown in Figure 31 to the total weighting function 

is illustrated in Figure 32. It lies entirely between the Ewald spheres 

E and F, is centered about the point z = z, and has a shape which is 

related to the shape of the target intensity distribution, F(Z) -)f(z-z i ), 

multiplied by the volume of the crystal within 	a(Zi )LZi  

Thus formally we have, 

w(z) = 	A 

i=1 

f(z-z.) Lz. 

(e = number of sample layers) which for 	co and 	or Lz. -) 0 can be 

written, 

kitaally we are assuming that the sample is either a sphere or a right 
circular cylinder with its axis perpendicular to the plane of Figure 31. 

Oterwise the projection of the sample volume onto Z would be delpendent 
on O. 
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w(z) = f(z-z')dz' 	 (A-15) 

The limits on z' will depend on the sample size. 

The intensity distribution along Z for the x-ray tube used in the 

Present study has been experimentally determined and is shown sketched 

in Figure 33(a). To a good approximation this distribution could be re-

presented by the trapezoid shown. The trapezoid could in turn be approxi-

mated by a series of rectanges stacked as shown in Figure 33(b). Actual 

calculation of the one phonon TDS contribution using rectangles of various 

widths yielded a result which was a nearly linear function of the width. 

This means that the TDS contribution obtained. by summing n calculations 

based on n uniform intensity distributions each having a height I/n and 

appropriate widths to give a trapezoidal shape is the same as that ob-

tained by assuming the intensity distribution to be uniform with height 

I over a width which is equal to the average width of the trapezoid. 

If we use a uniformly illuminated target projection and assume 

that the sample is a sphere, the function w(z) can be determined without 

formally carrying out the integration as indicated in equation (A-15). 

In Figure 34, some of the contributions to w(z) are shown separated for 

the case of a uniformly illuminated target and spherical sample. Each 

rectangle represents the contribution from a layer of the sample such 

as illustrated earlier in Figures31 and 32. For a spherical sample of 

radius r as shown in Figure 31, the layers are cylinders having a height 

,AZ,andavolumeequalto7 ,2 	2, 	 the same for all 
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Figure 33. Intensity Distribution in X-ray Target Projection. 
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Figure 3L. The Function w(z) for a Spherical Sample. 
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layers, the heights of the corresponding rectangles, being proportional 

to the layer volume, will vary as illustrated in Figure 34. Then for any 

z = z', w(z') is equal to the sum of the heights of the rectangles which 

can contribute to w(z'), i.e., as discussed earlier, w(z') is proportional 

to the volume of the crystal which can contribute diffuse scattering at 

z'. Between -z
o 
and +z

o the entire crystal contributes to w(z); corres- 

ponding to the shaded region of Figures 30 and 32. As z increases above 

z
o 

(or decreases below -z
o
), the decrease  in w(z) from its maximum value 

is proportional to the volume of the sample between Z = r and-Z = r s 

such as indicated in Figure 35. 

From equation (A-14), with 7 expressed in terms of Z, Z, and R, 

one obtains 

z - 

12
o 
-ZI 

sin 2Q, for z < z < z 
R2s. 	 o - - 1 

If s is used the absolute value signs can be removed to yield, 

for z
o 
 < z < z 
 - - 

(2 	r + s) 
z - 	

RX 	sin 2G = z o + 	sin 2G 

Now the volume of the sample between Z = r and Z = r - s is 

V(s) = vs2( 
	1 - 	s) 

(A-16) 

(A-17) 

Then for z > z , w(z) is 
- o 
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Figure 35. Fraction of Crystal Volume Which Contributes to TDS. 
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1 

sin 2Q 
%Pt 
	
(z-z ) 2  ( 	

. 	  ( z1-z o ) 	3 v(z-z o , sin 2Q 	sin 2Q 
1 

 
- w(z) = C 

3 
4

2Q/  (z7  -z-z o )3o )3  

(A-18) 

or simplified, 

(. ) 2 
w(z ) 	c 	

0
3_ 	[ ( z,_z ) _ 3  (z_z ) 1 -  , 	(A-19) 

(z'-z 

and for 0 < z < z 
o
, w(z) = C, where we have used (A-17) and z' = z

o — —  

i sin 2Q. The second term in equation (A-18) is actually the fraction 

of the sample which does  not contribute diffuse scattering at z. C can 

be determined by considering the fact that the integral of w(z) from -z, 

to +z1  must be equal to the product -1.5, where I is the total intensity 

incident on the sample, and N is the total number of unit cells in the 

sample. Thus since the width of the w(z) versus z curve is directly 

proportional to (sin 2Q/X) and since IN is independent of 2Q. C must be 

N 
equal 'to I7(sin 2Q)

1 
 . N is not included here since it is already in- 

eluded in equation (A-13). 

To determine how much of the observed diffraction peak intensity 

is due to TDS, we must first determine how much of the observed intensity 

is due to J. To obtain the integrated intensity of a diffraction peak 

we will follow the technique described by James 5  for a non-absorbing 

crystal. Both Jo  and 	have to be multiplied by 

Ij 

2 
e
2 \, 

1 cos
2 

2Q  B 
2 

mc
/ 
	2R2 	R

2 
(A-20) 



0 	 a3sin 20 

I%3B N IF 2  e -2M  
I = (A-24) 

166 

where R is the distance from the crystal at which the scattered intensity 

is measured. Since R
2
dS1 is the area intercepted by a solid angle 12 on 

the surface of a sphere of radius R, the total energy diffracted by the 

sample is 

_ 	B 
o 

= 
 R

2 
E2dS2 w(z)dz (A-21) 

If d12 is expressed in reciprocal space we have, on the surface of 

the Ewald sphere, dS2 =
2
dxdy. As mentioned earlier, the x and y axes 

are tangent to the Ewald sphere. Thus we have 

I
o 

=
2
B 
	IFI 2  e -2M  I0 (S/,>) w(z)dxdydz 	(A-22) 

The function I
o
(gA) is sharply peaked at 572‘. = g(hki) (see equation (2-10)). 

The other functions in the integral vary relatively slowly with S/k so 

that in performing the integration we may take them as constant with 

values corresponding to 	= H(hki). The remaining integration of 

I
o
(SiX) yields 5  N/a3 , where N is the number of unit cells in the crystal 

and a is the lattice parameter. Equation (A.22) then becomes 

2 
Io = X21 

IFI e
-2M 

 w(0)N/a3  (A-23) 

or finally, 
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The integration of J1  proceeds similarly. The following approxi-

mations will be made 

1. The wave vectors Zwhich contribute to TDS in the vicinity of 

a relp are relatively small and correspond to long wavelength normal modes. 

For these modes the dispersion curves, V versus 	are linear and it 

should be a good approximation to set v(Z,a) = lielVce  where Va  is the 

velocity of the waves of branch a. Va will be determined from measured 

elastic constants. 

2. Since 0 and hence v are small, hv << kT, and hence E(v) 

kT for temperatures between 100°  and 300°  K. 

3. We will assume that the isofrequency contours are spherical 

near a relp. This assumption is quite good for many cubic solids. For 

example, the variation of Va  with direction for the solids studied here 

is no greater than + 15%. 

4. With assumption 3 the only direction dependent quantity in 

, ,—, equation (A-13) is cos 2  OkSD' e)). If we consider the total TDS inten-

sity in a spherical shell of radius 	,2 cos (Q(S
D' 
 e)) can be replaced 

by its average value, 1/3, since in such a shell all possible orientations 

of i)(g,a) with respect to SD  occur with equal probability. Unfortunately 

the region throughout which J1  must be integrated is not spherical. 

However, we will assume that for each value of LEI in the actual region 

sufficiently many different orientations of .6.(g,a) with respect to SD  
2, 	N% occur so that cos I,(DS D' e)) may be replaced by 1/3 in equation (A-13). 

Equation (A-13) then becomes, 

11 

1 , 1 
] 
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1 12 -2M 	2 NjF1 -  e 	sin 9 
J1 = 3m 	x2 	 2_ 2 

g V U=1 	a 

(A-25) 

Multiplying this expression by B/R
2 
and integrating, as indicated 

in (A-21) with Jo  replaced by J1, one obtains 

- IX3B NIF1 2  e -2M  ( 
X 

 sin 
sin 29 	 3m 	 

1 
I 

 
2 

a=l 
v
a 

 
h(z)dxdydz 

2 
g 

(A-26) 

where we have set w(z) = h(z) I%/sin 29. If we assume that the curva-

ture of the Ewald sphere is negligible within the solid angle subtended 

at the crystal by the counter aperture, the region throughout which the 

integration must be performed can be considered a cylinder having a height 

determined by the maximum cross fire in the incident x-ray beam and a 

radius determined by the size of the counter window. It is therefore 

desirable to introduce cylindrical coordinates. The integral in equation 

(A-26) then becomes, with. 
g 2_ z2 	r2 ,  

7:=D" = 27 
h(z)rdrdz  

z
2
+ r

2 (A-27) 

The radius of the cylinder is p/2X, where i3 is the angle subtended at the 

crystal by the counter window. One then obtains 

2 	2 13/X h(z)dz Len( z 	r0  
)] 

1 

or, 

' 	 r  
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in(z2  + P2/40) 	inz2 ]h(z)dz (A-28) 

The limits for z are changed since h(z) is symmetric about z = 0 and we 

have obtained h(z) only for 0 < z. It turns out that for the experimental 

geometry used in the present study, z 1  << fV22. Thus little error (less 

than 1/2 percent) is introduced by neglecting z 2  in the first term of 

the integrand. With this approximation the integration is straight-

forward and yields the following results, 

v 

+ 

1 

19 

7)3 
(37 	6) 

3 ) 

2 (3 -7) 

sin 20 
[ P2 

] 

sin 20 

(3  

/8 

7 

- 	3  , 

in 16 % 

sin 20 

2 	2 (5 + 7) - sin 20 

f32 

\ 

33  

7 

1(J24 

in 16% 

5(5 - 7) 

(6  

2  

7)2 sin22g ] 

- ;-_]t ( 5 	- 7)
3 

7 - 22 

	

+ (' - 	[11 	21 	 sin 20  

	

7 	5 	(3  ... 7) ] 

' 	2% (A-29) 

where 5 is the angle subtended at the sample by the target and 7 is the 

angle subtended at the target by the sample (see Figure 29). 

Equation (A-29) is rather unwieldy and hence we found it desirable 

to investigate the possibility of obtaining a simpler expression for 4 1 

 which is adequate for our purposes. A surprisingly good approximation 
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to ,S) 1 
 is obtained by setting h(z) equal to 1 over the range -z' to z'. 

With regard to the form of h(z), this is equivalent to neglecting the 

effect of the sample's size and shape . The expression obtained for 

is then, 

74 5 sin 29  in (1+ 2
0
2 ) + T- tan 

p 	-1 (5 sin 20) } 
(A-30) 

5 sin 29 

For p = 7.0 x 10 -2  rad., 8 = 7.6 x 10 -3  rad., y = 3.8 x 10 -3  rad. and 

sin 29 1, values which apply to our experimental geometry and the 

(800) reflection of aluminum, the following results are obtained: for 

equation (A-29), z9 1  = 7r 6.7 x 106; for equation (A-30), 	= 7f 6.9 x 106 . 

The simplified equation seems adequate, therefore. 

Some experimental measurements, which were described in Chapter 

III were made to check the validity of TDS calculations which were based 

on the one phonon contribution. described above and on the two phonon con-

tribution to be discussed later. The measurements include the determina-

tion of the intensity scattered by the sample when it is rotated a few 

degrees from the diffraction peak. Thus it is necessary to calculate 410.111 

 for the case when h(z) is symmetrically situated about some point, say 

z", rather than z = 0. For the case of the simplified h(z) used to ob-

tain equation (A-29) we merely have to change the integration limits of 

equation (A-28) to go from z" - z' to z" + 	The result, written 

Another effect of the sample's size and shape on the TDS calculations 
was neglected earlier. Recall that in Figure 29 the offset of the line 
ad from the line be depends on the angle subtended by the sample at the 
counter and that this offset has been neglected. 



sin 29 (
A 5/2) in X 1 + 	  

- 	4(A - 5/2)
2 

sin
2
20 

P
2 

in terms of 5 and A , the angle in radians through which the sample is 

rotated off the diffraction peak, is 

) 	sin 29
LA + 5/2) in 1 + 	P

2 

i[CL + 5/2)2  sin 29- 

171 

+ tan-1  

 

205 sin 2Q 

 

(A-31)  
2 A 

/ 	 2 
- p + 4kA + 6/2)(n, - 5/2) sin 2Q - 

  

     

In addition, since a measurement of the background intensity is 

required to determine the true diffraction peak intensity, it is necessary 

to calculate the TDS contribution to a background measurement. This 

could be done with equation (A-31) by inserting the appropriate A. It 

is, however, expected that the TDS contribution to the background will 

be small. Thus for the purpose of simplification it will be assumed that 

the background contribution can be obtained by considering the solid angle 

subtended at, the' relp by the cylindrical region used above when it is a 

distance, say z , from the relp, where z is determined by the angle through 

which the sample is rotated for a background measurement. Thus 

z+z' 

-s4  1(Bg )= g
2 

 
(A-32) 
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2 
where an is the solid angle, 'Now 61Q = (area of the cylinder's base ),/" 

.212 
7"0/2%) /z . In terms of Cs, one obtains 

2 

1  
(B 

g
) = 7313  2  cot Q (A-33) 

Two Phonon TM. Contributions 

For the case of one atom per lattice point, the two phonon scat-

tering is proportional to 39 

, 	x 	, J2 = 1 IF'2 e
-a 	/ C4 g,a) 0•(li,b) I 

0
mx 	E) , (A-34) 

g,a h,b 

where h and b denote the wave vector and branch respectively. If the 

same assumptions are made which lead to equation (A-25), one obtains 

J2 = 1 I F12 e  
-2M sin Q 	k`?'

X 	OmN 	2 ,r 
CC 

dh0
(e7A, + g + 171.)dg 

(Na3)2 
[ 11 2 	1g 2  

(A -35) 

According to Paskin39  the integration yields N 73/a3 p, where p is the 

distance. in reciprocal space from the relp nearest the point at which 

the diffuse scattering is measured. Integration of J 2  throughout the 

volume described above in the one phonon calculation then yields 

IX3BNa3 IF 1 2  e -2M  12 - sin 2Q (A-36) 
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)dxdydz (A-37 ) 
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Assuming again, that h(z) can be replaced by 1 between -z' and +z' and 

changing to cylindrical coordinates, one obtains 

= 7  4 6 sin 29 
2 	 2 p

2 
+

2 
sin

2 

( R2 	2 	2 1/2 + 8 sin , 2Q) 	+ 	sin 2G  + 13
2 

--- in 
4%2 	-(P

2 62  
sin 5 sin 29 - 

When h(z) is symmetric about z" = (L sin 20)/X, 

} 
(A-38) 

7102 
= Try 

 4 fsin 20 ( + 6/2) A sin 2Q  

2% 	 2X
2 	(l\  - 5/2 ) B 

P
2 

+ 	--7 in 
x 

2(A + 8 2) sin 2@ + A 

_ sin 20 + B 

. 2 
8 A 1 , 	( A-39) 

sin 20 

%
2 

where 

A = [p2  + (2(A + 8/2) sin 20)2
]
112  

B  = [p2 	(2 ,(A  6/2) sin 2Q) 21 1/2 

and 

1  
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And finally for the two-phonon contribution to the background, 

,C)-- (Be - 7 	cos 0 
2 	4,A,\

2 - (A-4o) 

Total Observed Intensity 

The total intensity observed at the diffraction peak is obtained 

by adding I o, 31  and I2 ,1thich gives 

where 

I(obs) = 10  (1 + d10 
1 2 2 \  

(1 	"*V-2 )  (A-41) 

(A-42) 

sin2 

X
2 

and I
o is given in equation (A-24). The intensity above background is 

obtained by subtracting fro4 1  and 2 ,,4111P 1 (Bg) and ,g2 (Bg) respective-

ly. The value of a will depend on the material studied_and is discussed 

later. The contribution of TDS to the temperature derivative of £nI(obs) 

has been discussed in Chapter III. 

Two Atoms per Lattice Point  

One Phonon Scattering Theory  

One phonon scattering theory fora crystal with two atoms per lat-

tice point is very similar to the theory discussed above for the case of 
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one atom per lattice point. The difference arises from the facts (1) that 

the vibrational amplitudes and phases for the two atoms are not necessarily 

the same and (2) that there are optic vibration modes which have to • be 

considered. 

If we let (see equation (2-69)), 

Za.( ,a) = 	a(Z,a) 

then for two atoms per lattice point one obtains 

2 
\ 

'11=   G(Z, a) [()  f -C 	-M  • 277-i(V7"+i)  • e 	e 
J 

2 

)

f.C.Zu) e -M 7 e27i("' 
J J 

Io (ff7x-n 	. 	(A-43) 

We consider now only the term multiplying I 0 (S2s. + i) and multiply it by 

two since the second term will give the same contribution as for the mon-

atomic case. Performing the sum over j for a f.c.c. lattice such as 

AgCl and KC1 one obtains 

16 ) GMa g, a)f1 e M1  ± C2 ( 0 )f2 
, 	(A-44) 

Z, a 

where the subscript 1 refers to Ag
+ 

(or K
+
) and the subscript 2 refers to 

With the use of equation (2-11) and (A•2), equation (A-44) becomes 

I 	, 
I 
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E(v(Z,a)) c 12 (i,a)(ii 9.;9(Za))2 	m, 16 	
1

e 	+ r(11,a) f2 2 2,—) , 
-4  4T Nv kg,a) g,a  m.0 . 	a) 

J J 

(A -45) 

where rMol0 = (c 2 (g,a)/c 1(g,a)) is the ratio of the vibration amplitude 

, 	, 
of the Cl -  ion to that of the Ag

+ 
 (or K

+ 
 ) ion. For acoustic modes r(Za) 

is positive and for optic modes it is negative 10 . Now 

m.
J 
 C.

J
2 (g,a) = 4 (m1C12 (g, a) + m2C22 (e,a)) 

and 

(44:6-7,a))2  sin
2 
 G cos2 (Q(e,i)) 

X
2 

 

  

So for J1 one finally obtains, 

 

  

0 T = 14 
(sin A)2 E(vlgi2/)LELgsu.L211_ 1 	x 	NV`" - 	 2 

(i), a)(mi+ INg, a) I m2 ) 
g,a 

+ FMCO f2  e -M2
2 
 I0(VX + (A-46) 

The amplitude ratio r(g,a) is a function of the mode and has been 

calculated9  only for a one-dimensional diatomic chain with nearest neigh-

bor interactions. For this particular case r(i;a1) approaches unity for 
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acoustic waves and small rgl. To simplify J1  the following assumptions 

will be made: 

,--> 
1. For the region throughout which J1 

must be integrated v
-2

g,a) 

for the optic modes is negligible compared to that for the acoustic 

modes. 

2. For the acoustic modes of interest r(g,a) = 1. 

3. For the acoustic modes of interest v(g),a) = I1V where V
a 
 is 
 

the average wave velocity calculable from elastic constants. 

4. E(v( --g>,a)) = kT. 

5. cos2 (Q(SYE)) = 1/3 . 

One then obtains for J
1 

J = 11'1 2  (sin 	g  2 	kT 	\ 	°(S 
--7X•  

1 	 ) 3N(m1  + m2 ) / 	
a
21-412 	' 

' 	V 	Igl 
g,a 

(A -47) 

where the sum over a includes only the acoustic modes. If the same 

assumptions are made for two phonon scattering, the derivation of the 

total intensity observed at the diffraction peak proceeds identically to 

that already discussed for the monatomic case. We can therefore use 

equation (A-41) for both monatomic and diatomic crystals except that 

for the diatomic case m must be replaced by m1  + m2  and e
-2M 

 cannot be 

2 
taken out of WI 

Calculation of a for Al, AgC1, and KC1  

We now calculate the a defined by equation (A-42) for waves 

traveling in the [100], [110], and [111] directions in a cubic crystal 
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the velocities of both the longitudinal and transverse polarizations are 

related to the elastic constants C11' C12' 
and c44  as follows 5 

	

[100]: 	pV 	= Cl]  2
2 	

. 

2 
Pv,  t = c44 

2 

	

[110]: 	2pV = C11 + C12  + 2044 

2 
2pV

tl 
= C11 - C12 

2 , 
(3v  t2 

[ill]: , 	2 
.5PV = C11 + 2C 12 

+ 40
44 

 

 

2pVt
2 
= C 	01 .2 11 	12 	̀'44 

(A-48)  

where p is the density and i and t refer to longitudinal and transverse 

polarizations respectively. For the [110] direction the velocities of 

the two transverse polarizations are not the same as for the other direc-

tions. For most cubic solids, Va, as determined from equations (A-48) 

and measured elastic constants, is direction dependent with V = 2V t  for 

each of the above three directions. The dependence of Va  on direction 

is small however, the variation being only about + 10 percent for Al, so 

- that we will assume 	a2 to be adequately given by 

a 

a 

_ - 
Va

2 
= V

i
-2 

+ 2Vt 
 _2

= 3V -2  (A-49) 

with V and Vt being arithmetic averages of the velocities corresponding 

to the [100], [110], and [111] directions. Other averaging procedures 



179 

could be used such as weighting the velocity of a wave in a given direc-

tion in proportion to the multiplicity of that direction or the method 

described by Quimby and Sutton
49 

for calculating the Debye 8 from elastic 

constants. However, since the TDS correction is expected to be small, 
• 

the use of a more elaborate averaging procedure does not seem to be worth 

the effort. The data used to calculate a and the values obtained are 

listed in Table 12. 

Table 12. Data Used to Calculate a 

Potassium 
Aluminum 	Silver Chloride 	Chloride 

C11 (1012  dyne/cm2 ) 

0 12  (1012  dyne/cm
2 ) 

C44 (10 dyne/cm2 ) 

p(gm/cm3 ) 

IT -2  (105  cm/sec) -2  

m or (m1+m2 )(10
-24

gm) 

a(10-8cm) 

0(10 -27cm3 °K-1 ) 

1.118a 	0.605b  

0.60 	 0.36413  

0.276a 	 0.062413  

2.697 	 5.56 

0.079 	 0.473 

44.8 	 238 ' . 

4.04 	 5.55 

1.60 	 4.68 

0.407c  

0.066c  

0.063c  

1.98 

0.165 

124. 

6.29 

4.58 

a 	see reference 42 

b 	see reference 48 

c 	see reference 22 

The values used for f3., 5, and Aare 7.0 x 10 -2  rad., 0.76 x 10
-2 

rad. 

and 8.7 x 10 -2  rad. respectively. 
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Calculation of (aB/3T)v  for Aluminum Using the 

Frequency Spectrum Determined by Walker  

According to equations (2-20) and (2-42), (313/T) v  is given by 

180 

211' (3B/3T) = 
'V 2 

mkT 
 

 

m ehv/kTg(v)dv 
(ehv/kT_1) 2 g(v)dv 	(B-1) 

0 0 

 

Walker
11 

has determined the frequency spectrum for Al in the form of a 

histogram. This histogram is shown plotted in Figure 36 and in tabular 

form in Table 13 . The designation TH, L, and TL  refer to the contri-

butions to the total spectrum, g, from the "high transverse", the 

"longitudinal", and the "low transverse" branches respectively (see 

Walker11 ). In order to compute (3B/3T)
V 
 with this spectrum, the range 

of integration in equation (B-1), v = 0 to v = v m, was subdivided into 

intervals of width AN) = 0.01 x 10
13

sec
-1 

to agree with the frequency 

intervals used by Walker. The calculation required is therefore 

(3B/ T )v  = 
hV./kT hv./kT )-2 

-1 	g(v i )6v 	. 	(B-2) 

This table is included here because it is not given in Walker's publica-
tion. We wish to thank Dr. Walker for kindly furnishing us with the 
information shown in the table. 
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Figure 36. Aluminum Vibration Spectrum. 
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Table 13. Frequency Spectrum of Aluminum in Tabular Form 

V 	 g 	
T
H 	 L 	 1L

(1013cps) 	(10 -3cps) -1 	(1013cps) -1 	(1013cps)
-1 	

(1013cps) -1  

0.01 0.0 0.0 0.0 0.0 
0.02 0.0 0.0 0.0 0.0 
0.03 0.007348 0.001845 0.0 0.005503 
0.04 0.008597 0.006151 0.0 0.002446 
0.05 0.005529 0.001845 0.001850 0.001834 
0.06 0.029437 0.014763 0.0 0.014674 
0.07 0.011005 0.0 0.o 0.011005 
0.08 0.040507 0.20299 0.003700 0.016508 
0.09 0.036765 0.009842 0.002467 0.024456 
0.10 0.049718 0.029526 0.001850 0.018342 
0.11 0.066154 0.020299 0.0 0.045855 
0.12 0.073655 0.036907 0.007401 0.029347 
0.13 0.056383 0.011687 0.007401 0.037295 
0.14 0.132420 0.059052 0.0 0.073368 
0.15 0.088319 0.040598 0.003700 0.044021 
0.16 0.163782 0.075660 0.009251 0.078871 
0.17 0.144682 0.054131 0.007401 0.083150 
0.18 0.139910 0.073815 0.007401 0.058694 
0.19 0.211931 0.049825 0.009867 0.152239 
0.20 0.198802 0.095959 0.014801 0.088042 
0.21 0.27525 0.10765 0.00925 0.15835 
0.22 0.28330 0.11810 0.01480 0.15040 
0.23 0.23181 0.08858 0.01850 0.12473 
0.24 0.40210 0.14824 0.01480 0.23906 
0.25 0.30521 0.11072 0.00740 0.18709 
0.26 0.43210 0.14209 0.02405 0.26596 
0.27 0.41574 0.16977 0.02220 0.22377 
0.28 0.40101 0.17593 0.00987 0.21521 
0.29 0.63606 0.19376 0.02960 0.41270 
0.30 0.51704 0.22883 0.02775 0.26046 
0.31 0.68862 0.17962 0.0370o 0.47200 
0.32 0.73947 0.30818 0.02960 0.40169 
0.33 0.74264 0.23621 0.02220 0.48423 
0.34 0.84317 0.27004 0.02960 0.54353 
0.35 0.86985 0.31002 0.04625 0.51358 
0.36 1.04527 0.32540 0.02960 0.69027 
0.37 1.12399 0.36169 0.05747 0.70433 
0.38 1.25854 0.40844 0.02960 0.82050 
0.39 1.39328 0.43735 0.03700 0.91893 
0.40 1.49194 0.44909 0.0565 0.98925 

(Continued on next page) 
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Table 13. Frequency Spectrum of Aluminum in Tabular Form (Continued) 

V 

(1013cps) 

g 

(1013cps) -1  

-H 

(1013cps)-1 

L 

iI212=1:1 

vfi 
-L 

(1013cps)-1 

0.41 1.95280 0.52101 0.05920 1.37259 
0.42 2.12474 0.67541 0.03700 1.41233 
0.43 2.55740 0.60344 0.06290 1.89106 
0.44 2.38761 0.70493 0.08326 1.59942 
0.45 2.17524 0.69940 0.06167 1.41417 
0.46 2.22736 0.62743 0.05920 1.54073 
0.47 2.21383 0.78428 0.08141 1.34814 
0.48 2.13057 0.67172 0.07586 1.38299 
0.49 2.23577 0.77321 0.09141 0.38115 
0.50 2.02270 0.68648 0.10731 1.22891 
0.51 2.19959 0.83595 0.09621 1.26743 
0.52 1.91076 0.71047 0.08326 1.11703 

0.53 2.24072 0.89131 0.14801 1.20140 
0.54 1.95589 0.75291 0.11347 1.08951 
0.55 2.12302 0.91715 0.09251 1.11336 
0.56 1.99682 0.94668 0.11286 0.93728 
0.57 1.95794 0.84887 0.14061 0.96846 
0.58 1.93152 1.06017 0.11841 0.75294 
0.59 1.60546 1.05555 0.17206 0.37785 
o. 60 1.23436 0.9 .7067 0.16281 0.10088 
0.61 1.27249 0.11091 0.16158 0.o 
0.62 1.20552 1.01126 0.19426 
0.63 1.10401 0.91900 0.18501 
0.64 1.29241 1.04079 0.25162 
0.65 1.15013 0.97067 0.17946 
0.66 1.22597 0.97805 0.24792 
0.67 1.08573 0.83411 0.25163 
0.68 1.18727 0.91900 0.26827 
0.69 1.27296 0.93007 0.34289 
0.70 0.92327 0.69755 -0.22572 
0.71 1.14326 0.76398 0.37928 
0.72 1.00484 0.63481 0.37003 
0.73 1.03263 0.61635 0.41628 
0.74 0.81302 0.40229 0.41073 
0.75 0.84363 0.25282 0.59081 
0.76 0.59559 0.05905 0.53654 
0.77 1.03047 0.01845 1.101202 
0.78 0.87881 0.o 0.87881 
0.79 1.70952 1.70952 
0.8o 2.18500 2.1850 
0.81 3.10513 3.10513 
0.82 4.59202 4.59202 

(Continued on next page) 
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Table 13. Frequency Spectrum of Aluminum in Tabular Form (Continued) 

v 

(1013cps) 

g 

(1013cps) -1  

T L 	 -, H 	
m 

(1013cps) -1 	(1013cps) -1
13 	.-1 

(10 	cps) 

0.83 2.86955 2.86955 
0.84 1.83810 1.83810 
0.85 1.44557 1.44557 
0.86 1.10268 1.10268 
0.87 1.01387 1.01387 
0.88 0.90286 0.90286 
0.89 0.83133 0.83133 
0.90 0.68825 0.68825 
0.91 0.56984 o.56984 
0.92 0.47610 0.47620 
0.93 0.35522 0.35522 
0.94 0.09991 0.09991 
0.95 0.0 0.0 
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Here N is the number of frequency intervals, which depends on the branch 

(see Table 13), and v i  = (i)Av. It should be noted that g(v i ) is a 

function of i only, i.e., g(v i ) = g(i). Also the spectrum is normalized 

so that 

N ,  

g(li i )Av =1 

with each branch contributing 1/3, 	 „ 

The computation indicated in equation (B-2) was carried out on 

the Burroughs 220 computer. Four separate calculations were made; one 

with the entire spectrum g, one with only the longitudinal branch L, 

one with the high transverse branch T H, "stretched" 5% to higher fre-

quencies (see Al results discussion), and one using the low transverse 

Vi 
branch, TL, stretched 5% to higher frequencies. The resulting contri- 

butions to (330T)
V 
 are shown in Table 14. 

II 
When the stretched transverse branches were used, each frequency 

v. = (i)Av of the unstretched transverse branches was replaced by 

V i  = MAY', where v' = (1.05)Cw. Thus although the number of fre- 

quency intervals remains unchanged by this stretching process the width 

of each interval is increased by 5%. In order for the spectrum to remain 

normalized, the product g(v 1 )Av' for each i must be equal to g(v
i
)AY = 

g(i)Av. This could have been accomplished by setting g(vi) = g(i)/(1.05). 

However, since 

g(i) 
1.05 (1.05Av) = g(i)Av 

and since g(i) always occurs multiplied by AY, normalization was assured 

merely: by not changing Av to At,/' where it multiplied g(i). 

ail 

1 1 1 1 
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Table 14. 	Calculated Values for (aB/3T) v  for Aluminum 

T( °K) _ 

* 
g 

(Unmodified) 
L 

(Unmodified) 

TH 
(Modified) 

-LL 
(Modified) 

10 0.14969 0.005499 0.052777 0.069435 
20 0.36921 0.016233 0.130010 0.171028 
30 0.62354 0.027933 0.212165 0.294587 
40 0.90545 0.041698 0.300006 0.436756 
50 1.18349 0.059334 0.388188 0.577231 
60 1.43537 0.081237 0.470492 0.701528 
7o 1.65301 0.106103 0.543339 0.805192 
8o 1.83663 0.132061 0.605756 0.889338 
90 1.98989 0.157534 0.658397 0.957004 

100 2.11737 0.181503 0.702203 1.011421 
110 2.22352 0.203445 0.738802 1.055399 
120 2.31219 0.223183 0.769370 1.091204 
130 2.38662 0.240752 0.795001 1.120597 
140 2.44945 0.256295 0.816599 1.144937 
150 2.50279 0.270006 0.834904 1.165264 
160 2.54834 0.282090 0.850508 1.182380 
170 2.58747 0.292747 0.863889 1.196905 
180 2.62127 0.302158 0.875429 1.209319 
190 2.65064 0.310488 0.885438 1.220005 
200 2.67627 0.317878 0.894165 1.229260 
210 2.69877 0.324452 0.901812 1.237323 
220 2.71861 0.330318 0.908546 1.244387 
230 2.73617 0.335567 0.914503 1.250708 
240 2.75179 0.340277 0.919794 1.256113 
25o 2.76573 0.344517 0.924514 1.261006 
26o 2.77823 0.348343 0.928740 1.265373 
27o 2.78947 0.351806 0.932537 1.269286 
28o 2.79961 0.354948 0.935961 1.272806 
290 2.80878 0.357806 0.939057 1.275982 
300 2.81711 0.360413 0.941867 1.278858 
310 2.82470 0.363796 0.944423 1.281470 
32o 2.83162 0.364980 0.946756 1.283849 
33o 2.83796 0.366985 0.948889 1.286021 
340 2.84377 0.368831 0.950845 2.288010 
350 2.84911 0.370532 0.952643 1.289836 
36o 2.85403 0.372104 0.954299 1.291516 
37o 2.85858 0.373559 0.955828 1.293065 
380 2.86279 0.374908 0.957241 1.294496 
390 2.86669 0.376161 0.958551 1.295821 
400 2.87031 0.377327 0.959767 1.297050 

-19 2 o -1 Units for all entries: 10 cm K 



APPENDIX C 

Calculation of Individual Tem 

 

erature Factors for • 

 

Silver and Chlorine in AE21  

According to equation (2-74) M1  is given by 

1 (sin 1 
M = oN 

r, a 

E(v(k,a))  

ml 	ir(Zci)i 2m2 )v2 (Za) 

As before the subscripts 1 and 2 refer to silver and chlorine respec-

tively. In equation (C-1) r(V,a) is the ratio of the Cl vibrational 

amplitude to that for the Ag
+ 

ion. A similar equation can be obtained 

for M2, namely, 

	

1 sin 9\ 		E(v(V,o))  

1.12  = 	(-7--/ 	(15(k,a)1
2  m 	2 ki  +mdv (,a) -) 

(% -2 • 

Here bkk,00 is the ratio of the Ag
+ 

ion vibrational amplitude to that for 

Cl ion. Obviously, 

Ism001 2  = Irm001 2  

For a diatomic linear chain having only nearest neighbor forces, Brill-

ouin9  obtained 
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-1/2 
m1 + m2  + 2m1m2 

cos (2tga) 
1 	2 

 

1111 	n12 
5kg) = 

 

2m1  cos(7rga) 

 

where g = 1/A, A is the normal mode wavelength, and a is the repeat dis-

tance in the chain. The plus sign in front of the square root in the 

numerator is used for the acoustic branch and the minus sign is used for 

the optic branch. Now for AgOl, m l  3m2, then 

2 + [ 10 + 6 cos (27ga) 
5(g) - 	  

6 cos (7rga) 

For the one-dimensional lattice the maximum value of g is (2a)
-1
. In a 

three-dimensional lattice the maximum value for g depends somewhat on 

direction, however, for simplicity one often neglects this direction 

dependence and replaces the Brillouin zone by a sphere of equal volume. 

The maximum value for 11 then becomes, for a f.c.c. Bravais lattice 

such as AgC1, 

= (3/7) 1/3/a, 

where a is the lattice parameter. We then have for AgC1, 

  

10 + 6 cos (11-0/ O m)] 

1/2 

 

2 
5 (1Z1) -  (c-5) 

 

6 cos ('irli1/20 m) 

 

It turns out that 

for the optic branch: no 	) -.› ,c0 as 

and for the acoustic branch: bon,- as g I -) 

(c 
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In view of the computer calculation to be made it is necessary that infini-

ties be avoided. We therefore break up the sums for Ml  and 142 into two 

parts; one for the acoustic modes and one for the optic modes, and re- 

/ place 5(g) by rkg) -1  , or vice versa, where infinities would occur. We 

then have for B 1 and B2, 

acoustic 
1 B1  (acoustic) = 7•••  oN 

g, a 

E(1)(1), 0)) 

(ml + r( 	)2  iii2 )v2  (Z, a) 

oric 

B1(optic) 	= TN- 1  E(v(Z,a)) 5 ( 0)2  

acoustic 
1 B2 (acoustic) = 

(z, a)) 	(1  
r(Ii1)2m2 )V2M00 

B2 (optic) 	= 4. 
tic 

E(v, (g,a))  

( 5(0)2  ml  + m2 )v
2  (g,o) 

. 	(c-6) 

   

    

By the insertion of the appropriate density, p, of wave vectors, -i, in 

reciprocal space, the above sums over Zcan be changed to integrals. The 

value for p is Na 3  = V* . With p written in terms of Iii m  and dropping 

vector notations, one obtains 

* 
See Appendix A 

( 5(0)2 in 	m2)V2 (iia) 
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B1(acoustic) 

	

2 	r gm 	E(v(g,a))g2dg  

	

... 3
m 	a=]_a=]_

(1/ 1 c . 	r(g)2  m
2
)v2 (g,a) 

'  

for example. 

For the acoustic modes'we used the dispersion curves obtained by 

Cole
10 

for acoustic waves traveling in the [100], [110], and [111] direc-

tions to change each frequency to an appropriate phase velocity, V(g,a), 

times g such that 

v(g,a) = gV(g,a) 	. 	 (c-8) 

Cole has already obtained plots of V(g,a) versus g and for each direction 

mentioned above they are essentially straight lines. We assumed that an 

appropriate average , linear v(g,a) versus g relationship for both the 

longitudinal and transverse branches could be obtained from these plots 

in the following manner. For each branch we arithmetically averaged the 

values of V(0,a) for the individual V(g,a) versus g plots, after weight-

ing each direction according to its multiplicity, to give an average 

isotropic value for V(0,a). An average value for V(g m,0) was obtained 

similarly. An average, linear V(g,a) versus g relationship was then 

obtained for each branch by passing a straight line through the appro-

priate average values obtained for V(0,a) and V(gm,a). 

In order that the calculation indicated in equation (C-7) could 

be performed by the computer, the range 0 to g m, gm  = 1.77 x 107cm-1 , 

was divided into 177 intervals all of width &g, = 0.01 x 107cm-1 . The 

That is, averaged over the above crystallographic direction. 
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integral was thereby changed to a sum over an integer i such that gi  = 

(i)g.1 and i ranged from 0 to 177 as shown below, 

B1
(acoustic) - 

177 
'1 	1 	1  

ehV ts 1 
(g.)g./kT_11 (m 14„( g. )2) 

1 	
m, 

[
2  

. 

2h 
177 

gi 1 
[2 

1 ( 
3 

gm i=o gi 
hV (g.)g./kT e 	-1- 

2 (mi+F(gi ) m2) 

and 

' (C-9)  

B2 (acoustic) = 

177 	_ same as for trans- 	4,11(gi)2 
2h) 	gi 	verse mode contribu- 

	 t (g.) 	tion to B1 -(acoustic) 	(m +11(g )
2
m ) 

177  
gi 	same as for longitu- 	g,11 (gi )2 

1  dinal mode contribution 	  (C-10) 
2 \61 / 	to B1 

(acoustic) 	 (m 	2m ) 
i=0 	 i 1 	i 2 

where we have introduced equations (2-12) and (2-13) for E(v). The t 

and subscripts represent the transverse and longitudinal modes respec-

tively. The factor two in front of the transverse mode contribution 

arises from there being two. transverse modes for each value of g. 

For the optic modes we have assumed that v(g,a) is independent of 

‘, g. Thus E(v(g,a))/v 2  (g,a) can be taken outside the summation in equation 

i=0 	 t 1 	i 2 

(C-6). The value used for the transverse frequency is that used by Cole, 

vt = 3.1 x 10
12

sec
-1

. Cole assumed some dependence of v 2  on g such that 
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V went from 7.0 x 10
12 

 sec
-1 
 for g = 0 to 6.0 x 10

12 
 sec

-1 
 at g = g

m
. We 

have used the arithmetic average of these two frequencies, viz. V
i 

= 

12 	 -1 
6.5 x 10 sec . The equations obtained for the optic mode contributions 

to B1 and B2 are analogous to equations 0-9) and (C-10) are 

[

B1(optic = 
3vt)
4h  

 

 

177 6(g.) 2g. 2 g  (jh  
hv 

V 

Xre 
i 	1(6(g.) m 	) i= 	1 2 

177 	2 

B(optic) same as for 	gi g  
/ 

[B1 ( optic) 
i= 

(c-11) 

• 	(c-12) 

The results of these calculations are shown in Table 15. 



Table 15, Calculated Values for BAg  and Br1 for AgC1 

T( °K) Optic Modes 

BA  B, 

Acoustic Modes 

BAg 	 BCl 

100 0.011998 0.40962 1.10329 0.47138 
110 0.012789 0.43662 1.20848 0.51716 
120 0.613607 0.46452 1.31408 0.56305 
130 0.014445 0.49313 1.41999 0.60902 
140 0.051300 0.52233 1.52613 0.65505 
150 0.016170 0.55202 1.63247 0.70113 
160 0.017051 0.58212 1.73897 0.7)4726 
170 0.017943 0.61255 0.84561 0.79342 
180 0.018843 0.64328 1.95235 0.83961 
190 0.019750 0.67426 2.05917 0.88582 
200 0.020664 0.70544 2.16609 0.93206 
210 0.021583 0.73682 2,27307 0.97831 
220 0.022507 0.76836 2.38011 1.02458 
230 0.023434 0.80003 2.48719 1.07086 
240 0.024366 0.83184 2.59433 1.11715 
250 0.025301 0.86375 2.70150 1.16346 
260 0.026238 0.89576 2.80871 1.20977 
270 0.027179 0.92786 2.91595 1.25609 
280 0.028121 0.96004 3.02321 1.30242 
290 0.029066 0.99224 3.13050 1.34875 
300 0,030013 1.02461 3.23782 1.39510 

*Units for all entries: 10
-16

cm
2 

19 .R 
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ALUMINUM A VALUES AND CORRECTIONS 
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Table 16. Aluminum A Values and Corrections at 240°  K 

Ao = A  - ALPT ATDS 

hki Sample No. 
A ALp 

400 2 2.22 -0.14 -0.12 2.48 
4 2.25 -0.14 -0.12 2.51 

333 2 2.47 -0.10 -0.15 2.72 
2 2.46 -0.10 -0.15 2.71 

440 2.42 -0.09 -0.15 2.66 
2 2.49 -0.09 -0.15 2.73 
4 2.45 -0.09 -0.15 2.69 

600 2 2.39 -0.08 -0.16 2.63 
4 2.41 -0.08 -0.16 2.65 
4 2.46 -0.08 -0.16 2.70 

444 2 2.54 -0.06 -0.17 2.77 
4 2.47 -0.06 -0.17 2.70 

800 2 2.44 -0.03 -0.17 2.64 
4 2.60 -0.03 -0.17 2.8o 

66o 2 2.48 -0.02 -0.17 2.67 
4 2.55 -0.02 -0.17 2.74 

555 2 2.39 -0.02 -0.17 2.58 
2 2.52 -0.02 -0.17 2.71 

2.48 -0.02 -0.17 2.69 
10,00 2 2.43 -0.01 -0.15 2.57 

2 2.43 +0.01 -0.15 2.57 
4 2.59 +0.01 -0.15 2.73 
4 2.55 +0.01 -0.15 2.69 

666 2 2.37 +0.02 -0.14 2.49 
2 2.46 t0.02 -0.14 2.58 
4 2,50 +0.02 -0.14 2.62 

2.53 +0.02 -0.14 2.65 
4 2.56 +0.02 -0.14 2.68 

*Units: 10 19cm2 o K-1 
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Table 17. Aluminum ANalues and Corrections at 200°  K 

Ao A - Ar2±, - Arius  

hki Sample No. 
A
* 

ALPf ATDS 

400 2 2.16 -0.13 -0.12 2.41 
4 2,13 -0.13 -0.12 2.38 

333 2 2 0 20 -0.10 -0.15 2.45 
4 2.30 -0,10 -0.15 2.55 

440 2 2 0 31 -0.08 -0.15 2.54 
2 2 0 26 -0,08 -0.15 2.49 
If 2.30 -0.08 -0.15 2.53 

600 2 2.25 -0.07 -0.16 2.48 
If 2,19 -0,07 -0.16 2.42 
4 2.31 -0,07 -0.16 2.54 

444 2 2.42 -0.06 -0.17 2.65 
2.37 -0.06 -0.17 2.60 

800 2 2036 -0.03 -0.17 2.56 
if 2.32 -0,03 -0.17 2,52 

66o 2 2,32 -0.02 -0.17 2.51 
4 2.40 -0,02 -0,17 2.59 

555 2 2031 -0.02 -0.17 2,50 
2 2.32 -0.02 -0.17 2.51 

2,27 -0.02 -0.17 2.46 
10,00 2 2,25 +0.01 -0,15 2.39 

2 2.33 +0.01 -0,15 2.47 
If 2.42 +0,01 -0.15 2,56 
4 2.43 +0.01 -0.15 2.57 

666 2 2.34 +0,02 -0.14 2.46 
2 2,29 +0.02 -0.14 2.41 

2.38 +0.02 -0.14 2.50 
2.32 +0.02 -0.14 2.44 
2.38 +0.02 -0.14 2.50 

*
Units: 10

-19cm
2 o -1K 



Table 18. Aluminum A Values and Corrections at 160°  K 

Ao = A  - ALPf ATDS 

hk £ Sample No. A ALPF ATDS 
A 
0 

400 2 2.05 -0.11 -0.12 2.28 
4 2.00 -0.11 -0.12 2.23 

333 2 1.96 -0.08 -0.15 2.19 
4 2.09 -0.08 -0.15 2.32 

44o 2 1.98 -0.07 -0.15 2.20 
2 2.22 -0.07 -0.15 2.44 

2.07 -0.07 -0.15 2.29 
600 2 2.01 -0.06 -0.16 2.23 

4 2.00 -0.06 -0.16 2.22 
4 1.98 -0.06 -0.16 2.20 

444 2 2.17 -0.04 -0.17 2.38 
4 2.09 -0.04 -0.17 2.30 

800 2 2.27 -0.02 -0.17 2.46 
4 2.11 -0.02 -0.17 2.30 

66o 2 2.08 -0.01 -0.17 2.26 
4 2.20 -0.01 -0.17 2.38 

555 2 2.21 -0.01 -0.17 2.39 
2 2.10 -0.01 -0.17 2.28 
4 2.11 -0.01 -0.17 2.29 

10,00 2 2.11 +0.01 -0.15 2.25 
2 2.22 4.0.01 -0.15 2.36 

2.13 +0.01 -0.15 2.27 
4 2.16 +0.01 -0.15 2.30 

666 2 2.08 +0.01 -0.14 2.21 
2 2.16 4-0.01 -0.14 2.29 
4 2.17 +0.01 -0.111. 2.30 
4 2.13 -0.01 -0.14 2.26 
4 2.13 +0.01 -0.14 2.26 

*
Units: 10-19cm2 o K

-1 
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Table 19. Aluminum A Values and Corrections at 140
0 
 K 

AO . A A_ 
ATDS 

hk2 Sample No. 
ALPf ATDS 

400 2 1.94 -0.11 -0.12 2.17 
4 1.80 -0.11 -0.12 2.03 

333 2 1.94 -0.08 -0,15 2.17 
4 1.91- -0.08 -0.15 2,17 

440 2 1.92 -0.07 .0.15 2.14 
2 1.86 -0.07 -0.15 2.08 
4 2.12 -0.07 -0.15 2.34 

600 2 1.90 -0.06 -0.16 2.12 
4 1.88 -0.06 -o.16 2.10 
4 1.90 -0,06 -0.16 2,12 

444 2 2.08 -0.05 -0.17 2.30 
4 2.02 -0.05 -0.17 2.24 

800 2 2.08 -0.02 -0.17 2.27 
4 1.94 -0.02 -0.17 2.13 

66o 2 1.98 -0.02 -0.17 2.17 
4 2.08 -0.02 -0,17 2.27 

555 2 2.17 -0.01 -0.17 2,35 
2 1.92 -0001 -0.17 2.10 
4 1.94 -0.01 -0.17 2.12 

10,00 2 2.09 +0.01 -0.15 2.23 
2 2.04 +0.01 -0.15 2.18 
4 1.98 +0.01 -0.15 2.12 
4 2.08 -Fo.ol -0.15 2.22 

666 2 2.05 +0.01 -0.14 2,18 
2 1.97 +0.01 -0.14 2.10 
4 2.01 +0.01 -0.14 2.1 4 
4 2.01 

(():(°D1 
-0,14 2.14 

4 2.05 j : -0.14 2.16 

9 	° K-1  tLi s: 10-1  c/ri  



Table 20. Aluminum A Values and Corrections at 1200 K 

Ao 	A - A_ LPf ATDS 

Sample No. Pf ATDS 

400 2 1.80 -3.10 -0.12 2.02 
4 1.70 -0.10 -0.12 1.92 

333 2 1.86 -0.07 -0.15 2.08 
4 1.81 -0.07 -0.15 2.03 

44o 2 1.75 -0.06 -0.15 1.96 
2 1.98 -0.06 -0.15 2.19 
4 1.88 -0.06 -0.15 2.09 

600 2 1.80 -0.06 -0.16 2.02 
1.84 -0.06 -0.16 2.06 
1.74 -0.06 -0.16 1.96 

444 2 1.90 -0.04 -0.17 2.11 
4 1.82 ..,0.04 -0.17 2.03 

800 2 1.94 -0.02 -0.17 2.13 
4 1.73 -0.02 -0.17 1.92 

66o 2 1.82 -0.01 -0.17 2.00 
4 1.93 -0.01 -0.17 2.11 

555 2 2.04 -0.01 -0.17 2.22 
2 1.77 -0.01 -0.17 1.95 

1.81 -0.01 -0.17 1.99 
10,00 2 1,92 +0,01 -0.15 2,06 

2 1.99 +0.01 -0,15 2.13 
4 1.79 +0.01 -0.15 1.93 
4 1.96 4.0.01 -0.15 2.10 

666 2 1.98 +0.01 -0.14 2.13 
2 1.82 +0.01 -0.14 1.95 
4 1.88 =i-0.01 -0.14 2,01 
4 1.88 +0.01 -0.14 2.01 
4 1.91 +0.01 -0.14 2.04 

units: 
19=2 o K-1 

10 

199 



Table 21. Aluminum A Values and Corrections at 100°  K 

A 
	: 

A- A_ LPf ATDS 

tki Sample No. AI,Pf ATDS 
A 	• 

400 2 1.59 -0.09 -0.12 1.80 
4 1.51 -0.09 -0,12 1.72 

333 2 1.63 -o.o6 -0.15 1.84 
4 1.7o -0.06 -0.15 1.91 

44o 2 1.83 -0.05 -0.15 2.03 
2 1.49 -0.05 -0.15 1.69 
4 1.66 -0.05 -0.15 1.86 

600 2 1.66 -0.05 -0.16 1.87 
4 1.55 -0.05 -0.16 1.76 

444 2 1.67 -0,03 -0.17 1.87 
4 1.76 -0.03 -0.17 1.96 

800 2 1.87 -0.02 -0.17 2.06 
4 1.54 -0.02 -0.17 1.73 

66o 2 1.63 -0.01 -0.17 1.81 
4 1.78 -0.01 -0.17 1.96 

555 2 1.95 -0.01 -0.17 2.13 
2 1.56 -0.01 -0.17 1.74 
4 1.63 -0.01 -0.17 1.81 

10,00 2 1.81 +0.01 -0.15 1.95 
2 1.73 +0.01 -0.15 1.87 
4 1.63 +0.01 -0.15 1.77 
4 1.77 +0.01 -0.15 1.91 

666 2 1.74 I-0.01 -0.24 1.87 
2 1.67 +0.01 -0.14 1.80 
4 1.81 +0.01 -0.14 1.94 
4 1.70 +0.01 -0.1 11 1.83 
4 1.66 +0.01 -0.14 1.79 

ifunits: 10-1 9cm2  ° K-1  

200 
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APPENDIX E 

POTASSIUM CFLORIDE A VALUES AND CORRECTIONS 
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• 

Table 22. Potassium Chloride A Values and Corrections at 2400  X 

Ao  -7. A - Auf  ATDs  

Savoie No, Auf AILS 

400 1. 5.35 -0.42 -0.26 6.03 
2 5.75 -0,42 -0.26 6.43 

440 1 6.00 -0.21 -0.35 6.56 
2 6.15 -0.21 -0.35 6.71 

600 1 6.30 -0.19 -0.57 6.86 
2 6.10 -0.19 ..0.37 6.66 
3 6.15 -0.19 -0 .37 6.71 

444 1 5.90  -0,15 -0.41 6.1,6 

3 6.20 -0.15 -0.41 6.76 
800 1 6.00 -0.1.2 -0.46 6.58 

3 6.15 -0.12 -o.46 6.73 
660 1 6.35 -0.11 -0.48 6.94 

3 6.10 -0.11 -0.48 6.69 
10,00 6.15 -0.08 -0.53 6.76 

3 6.05 -0.08 -0.53 6.66 
666 6.35 -o.o8 -0.54 6.97 

3 6.15 -0.08 -0.54 6.77 
88o 1 6.6o -0.07 -0.54 7.01 

if 
Hits lo- 

19=2 0 K-1 

 



Table 23. Potassium Chloride A Values and Corrections at 2000  K 

Ao = A  - ALPf AIDS 

Sample No. 
ALPf 

A0  

400 2 5.40 -0.40 -0.26 6,06 
440 1 5.85 -0.20 -0.39 6.4o 

2 5.95 -0.20 -0 .35 6.50 
600 1 6,05 -0.18 -0.37 6.60 

2 5.90 -0.18 -0 .37 6.45 
3 5.90 -0.18 -0.37 6.45 

444 1 5.70 -0.15 -0.41 6.26 
3 6.05 -0.15 -0.41 6.61 

800 1 5.80 -0.11 -o.46 6.37 
3 5.95 -0.11 -0.46 6.52 

66o 1 6.10 -0.10 -0.48 6.68 
3 5.90 -0.10 -0.48 6.48 

10,00 1 5.90 -0.08 -0.53 6.49 
3 5.75 -0.08 -0.53 6.34 

666 1 6.15 -0.07 -0.54 6.76 
3 6.00 -0.07 -0.54 6.61 

88o 1 6.4o -0.06 -0.54 7.00 

:its: 10
-19cm2 o K-1 

2 03 
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Table 24. ,Potassium Chloride A Values and Corrections, at 160 ° 'K 

Ao  = A 
ALPf ATDS 

hk2 Sample No. 
ALPf 

400 2 5.35 -0.37 -0.26 5.98 
440 1 5.50 -3.18 -0.35 6.03 

2 5.7o -0.18 -0.35 6.23 
600 1 5.60 -0.17 -0.37 6.14 

2 5.55 -0.17 -0.37 6.09 
3 5.30 -0.17 -0.37 5.811. 

444 1 5. 11.5 -0.13 -0.41 5.89 

3 5.85 -0.13 -0.41 6.39 
800 1 5.6o -0.10 -0.46 6.16 

3 5.65 -0.10 -0.46 6.21 
66o 1 5.70 -0.10 -0.48 6.28 

3 5.65 -0.10 -0.48 6.23 
10,00 1 5.65 -0.07 -0.53 6.25 

3 5.65 -0.07 -0.53 6.25 
666 1 5.85 -0.07 -0.54 6.46 

3 5.8o -0.07 -0.511. 6.41 
880 1 5.95 -0.06 -0.54 6.55 

- 
Units: 10

-19  cm2 o 
 K 1  



Table 25. Potassium Chloride A Values and Corrections at 140 °  K 

A . A - A_ 
LPf ATDS 

hki Sample No. Pf ATDS A 

400 2 5.05 -0.34 -0.26 5.65 
440 5.05 -0.17 -0.35 5.57 

2 5.50  -0.17 -0.35 6.02 
600 1 5.25 -0.15 -0 .37 5.77 

2 5.30 -0.15 -0.37 5.82 
3 5.05 -0.15 -0.37 5.57 

444 5.20 -0.12 -0.41 5.75 
3 5.55 -0.12 -0.41 6.08 

800 1 5.35 -0.10 -0.46 5.91 

3 5.35 -0.10 -0.46 5.91 
660 1 5.45 -0.09 -0.48 6.02 

3 5.4o -0.09 -0.48 5.97 
10,00 1 5.4o -0.07 -0.53 6.00 

3 5.45 -0.07 -0.53 6.05 
666 1 5.55 -0.06 -0.51 6.15 

3 5.7o ..0.06 -0.54 6.30 
88o 1 5.60 -0.o5 -0.54 

'grafts: 10-19=2 o K-1 
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Table 26. Potassium Chloride A Values and Corrections at 120 °  K 

Ao  . A- ALpf ATDS 

hk.e 	Sample No. ALPf 	
Am,c 

v 

400 2 4. 75 -0.28 -0.26 5.29 
44o 4.75 -0.14 -0.35 5.24 

2 5.25 -0.14 -0.35 5.74 
600 1 4.95 -0.13 -0.57 5.45 

2 4.85 -0.13 -0.37 5.35 
3 4.80 -0.13 _0.37 5.30 

444 4.85 -o.lo -o.41 5.36 
3 5.25 -0.10 -0.41 5.76 

800 5.20 -0.08 -0.46 5.74 
3 5.10 -o.o8 -o.46 5.64 

66o 5.20 -0.08 -0.48 5.76 

3 5.10 -0.08 -0.48 5.66 
10,00 1 5.10 -o.o6 -0.53 5.69 

3 5.25 -0.06 -0.53 5.84 
666 1 5.25 -0.05 -0.54 5.84 

3 5.55 -0.05 -0.54 6.14 
88o 1 5.20 -0.04 -0.54 5.78 

-19=2 o K-1 *
Units: 10 
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APPENDIX F 

SILVER CHLORIDE A VALUES AND CORRECTIONS 

11 



2 08 

Table 27. Silver Chloride A Values and Corrections at 240 °  K 

Ao  . A Auf ATDS 

Even hki Sample No. ALPf 	AADS 

222 7 8.85 -0.34 -0.25 9.44 
17 8.70 -0.34 -0.25 9.29 

400 7 8.8o -0.26 -0.29 9.34 
11 8.75 -0.26 -0.29 9.29 
17 7.90 -0.26 -0.29 8.44 

44o 7 8.65 -0.14 -0.59 9.18 
11 9.15 -0.14 -0.39 9.68 
17 9.00 -0.14 -0.59 9.55 
18 8.45 -0.14 -0.39 8.98 
18 8.35 -0.14 -0 .39 8.88 

600 7 8.60 -0.13 -0.40 9.13 
11 8.4o -0.13 -0.4o 8.95 
17 8.10 -0.13 -0.40 8.63 

444 17 8.8o -0.10 -o.46 9.36 
18 8.70 -0.10 -o.46 9.26 

800 7 8.75 -0.08 -0.51 9.54 
17 8.45 -0.08 -0.51 9.04 

660 17 8.90 -0.07 -0.52 9.49 
18 9.80 -0.07 -0.52 10.39 

10,00 17 8.20 -0.05 -0.55 8.8o 
18 9.45 -0.05 -0.55 10.05 
18 9.35 -0.05 -0.55 9.95 

*__ 	__-19cm2 o K-1 
units: 10 

(Continued) 
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Table 27. Silver Chloride A Values and Corrections at 2 1-0°  K (Continued) 

A = A - A- 
LPf ATDS 

Odd hk2 Sample No. ALPf 

113 18 9.4o -0.36 -0.24 10.0 
331 18 9.80 -0.22 -0.31 10.3 

9.8o -0.22 -0.31 10.3 
115 18 10.6 -0.36 -0.36 11.1 
333 18 10.1 -0.16 -0.36 10.6 

7 10.4 -0.16 -0.36 10.9 
11 10.4 -0.16 -0.36 10.9 
17 10.5 -0.16 -0.36 11.0 

551 18 10.6 -0.10 -0.47 11.2 
10.7 -0.10 -0.47 11.3 

*
Units: 10

-19
cm

2 o 
K
-1 
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Table 28. Silver Chloride A Values and Corrections at 200 0  K 

A
o 

= A - A_ 
LPf ATDS 

E en hki Sample No. ALpf 
ATDS 

222 7 8.65 -0.31 -0.25 9.21 
17 8.40 -0.31 -0.25 8.96 

400 7 8.5o -0.24 -0.29 9.03 
11 7.8 5 -0.24 -0.29 8.38 
17 7.65 -0.24 -0.29 8.18 

440 7 8.40 -0.13 -0.39 8.92 
11 8.70 -0.13 -0.39 9.22 
17 8.70 -0.13 -0.39 9.22 
18 7.75 -0.13 -0.39 8.27 
18 7.85 -0.13 -0.39 8.37 

600 7 8.30 -0.12 -0.40 8.82 
11 7.75 -0.12 -0.40 8.27 
17 7.60 -0.12 -0.40 8.12 

444 17 8.40 -0.10 -0.46 8.96 
18 8.3o -0.10 -0.46 8.86 

800 7 8.45 -0.07 -0.51 9.03 
17 8.20 -0.07 -0.51 8.78 

66o 17 8.65 -0.07 -052 9.24 
18 9.35 -0.07 -0.52 9.94 

10 9  00 17 7.90 -0.05 -0.55 8.50 
18 9.15 -0.05 -0.55 9.75 
18 9.10 -0.05 -0.55 9.7o 

Units: 10
-19

cm
2 o 

K
-1 

(Continued) 

If 	 
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Table 28. .Silver Chloride A Values and Corrections at 200 0  K (Continued) 

Ao  = A - ALpf ATDS 

Odd hk2 Sample No. A 
LPf AIDS 

113 18 8.90 -0 .33 -0.24 9.47 
331 18 9.30 -0.21 -0.31 9.82 

9.10 -0.21 -0.51 9.62 
115 18 9.90 .0.15 -0.36 10.4 
333 18 9.70 -0.15 -0.56 10.2 

7 9.95 -0.15 -0.36 10.5 
11 10.1 -0.15 -0.36 10.6 
17 10.1 -0.15 -0.36 10.6 

551 18 10.3 -0.09 -0.47 10.8 
10.2 -0.09 -0.47 10.7 

Units: 10-19cm2 o K-1 
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Table 29. .Silver Chloride A Values and Corrections at 1600  K 

Ao  = A 
ALPf AMOS 

Even hki 
	

Sample No. 	 ALpf 
	

T.DS 	
A
° 

222 7 7.95 -0,50 -0.25 8.50 
17 7.55 -0,50 -0.25 8.10 

400 7 7.85 -0.23 -0.29 8.37 
11 6.90 -0.25 -0.29 7.42 
17 7.20 -0.23 -0.29 7.72 

440 7 8.15 -0.12 -0.39 8.66 
11 8.05 -0.12 -0.39 8.61 
17 8.15 -0.12 -0.59 8.66 
18 7.00 -0.12 -0.39 7.51 
18 7.15 -0.12 -0.39 7.66 

600 7 7.75 -0.11 -0.40 8.26 
11 7.05 -0.11 -0.40 7.56 
17 6.90 -0.11 -0.40 7.41 

444 17 8.10 -0.09 -o.46 8.65 
18 7.4o -0,09 -0.46 7.95 

800 7 7.95 -0.07 -0.51 8.53 
17 7.75 -0.07 -0.51 8.33 

660 17 8.20 -0.06 -0.52 8.78 
18 8.50 -0.06 -0.52 9.08 

10,00 17 7.50 -0.04 -0.55 8.09 
18 8.6o -0.04 -0.55 9.19 
18 8.65 -0_04 -0.55 9.24 

-19=2 o K-1 
Units: 10 

(Continued) 
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Table 29. Silver Chloride A Values and Corrections at 160 0  K (Continued) 

A
o 
= A 

ALPf ATDS 

Odd hki Sample ho. ALpf 
AIDS 

113 18 8.45 -0,31 -0.24 9.00 
331 18 8.25 -0.20 -0.31 8.76 

8.15 -0.20 -0.31 8.66 
115 18 8.80 -0.14 -0.36 9.30 
333 18 8.65 -0.l4 -0.36 9.15 

7 9.15 -0.14 -0.36 9.65 
11 9.8o -0.14 -o.36 10.3 
17 9.35 -9.14 -0.36 9.85 

551 18 9.75 -0.08 10.30 
9.4o -0.08 -0.47 9.95 

9 
Units: 10-1 

cm2 o 
 



Table 30. Silver Chloride A Values and Corrections at 140 °  K 

Ao = A  - ALPf Atds 

Even hki Sample No. 
ATDS 

222 7 7.75 -0.28 -0.25 8.28 
17 6.90 -0.28 -0.25 7.43 

400 7 7.40 -0.22 -0.29 7.91 
11 6.40 -0.22 -0.29 6.91 
17 6.8o -0.22 -0.29 7.31 

44o 7 7.85 -0.11 -0.39 8.35 
11 7.55 -0.11 -0.39 8.05 
17 7.20 -0.11 -0.39 7.70 
18 6.4o -0.11 -0.39 6.90 
18 6.70 -0.11 -0.39 7.20 

600 7 7.55 -0.11 -0.40 8.06 
11 6.55 -0.11 -0.40 7.06 
17 6.65 -0.11 -0.40 7.16 

444 17 7.80 -0.08 -0.46 8.34 
18 7.05 -0.08 -0.46 7.59 

800 7 7.75 -0.06 -0.51 8.32 
17 7.50 -0.06 -0.51 8.07 

66o 17 7.80 -0.06 -0.52 8,38 
18 8.15 -0.06 -0.52 8.73 

10,00 17 6.65 -0.04 -0.55 7.24 
18 8.4o -0.04 -0.55 8.99 
18 8.25 -0.04 -0.55 8.84 

-19=2 o K-1 
Units: 10 

  

   

(Continued) 
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Table 30. Silver Chloride A Values and Corrections at 140 0 	Continued) 

A = A - A- LPf ATDS 

Odd hki .  Sample No. 
ALPf 

113 18 7.85 -0.30 -0.24 8.39 
331 18 7.85 -0.18 -0.31 8. 34 

7.8o -0.18 -0.31 8 .29 
115 18 8.55 -0.13 -0.36 9.04 
333 18 8.3o • -0.13 -0.36 8.79 

8.8o -0.13 -0.36 9.29 
11 9.55 -0.13 -0.36 10.04 

17 8.95 -0.13 -0.36 9.44 
551 18 9.30 -0.08 -0.47 9.85 

8.90 -0.08 -o.47 9.45 

Units: 10
-19

cm
2 o 

K
-1 
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Table 31. Silver Chloride A Values and Corrections at 120 °  K 

A = A - 
Livf 	TDS 

Even h102 Sample No. A ALPf ATDS 

222 7 7.25 -0.26 -0.25 7.76 
17 6.25 -0.26 -0.25 6.76 

400 7 6.80 -0.20 -0.29 7.29 
11 5.85 -0.20 -0.29 6.34 
17 6.30 -0.20 -0.29 ;6.79 

44o 7 7.30 -0.11 -0.39 7.80 
11 7.10  -0.11 -0.39 7.60 
17 7.40 -0.11 -0.39 7.90  
18 6.4o -0.11 -0.39 6.90 

600 7 7.05 -0.10 -0.4o 7.55 
11 6.15 -0.10 -0.40 6.65 
17 6.10 -0.10 -0.40 6.6o 

444 17 7.35 -0.08 -0.46 7.89 
18 6.55 -0.08 -0.46 7.09 

800 7 6.5o -0.06 -0.51 7.07 
17 6.7o -0.06 -0.51 7.27 

66o 17 7.45 -0.06 -0.52 8.03 
18 7.7o -0.06 -0.52 8.28 

10, 00 17 6.35 -0.04 -0.55 6.91  
18 8.00 -0.04 -0.55 8.59 
18 7.75 -0.04 -0.55 8.44 

Units: 10-19cm2 o K-1 

(Continued) 



217 

Table 31. Silver Chloride A Values and Corrections at 120 °  K (Continued) 

Ao . A - LPf ATDS 

Odd hk/ Sample No. ALPf 

113 18 7.15 -0.28 -0.24 7.67 
331 18 7.45 -0.17 00.31 7.93 

7.05 -0.17 -0.31 7.53 
115 18 8.05 -0.13 -0.36 8.54 
333 18 7.95 -0.13 -0.36 8.14 

7 8.45 -0.13 -0.36 8.94 
11 9.3o -0.13 -0.36 9.79 
17 8.5o -0.13 -0.36 8.99 

551 18 8.85 -0.07 -0.47 9.39 
8.45 40.07 -0.47 8.99 

Units: 10-
19=2 o K-1 
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GLOSSARY 

a 	 linear coefficient of thermal expansion 

a 	 dispersion curve branch 

P 	volume coefficient of thermal expansion 

P 	(sin e)4 

7 	 Grtineisen constant 

vibrational amplitude ratio of two different types of atoms 

phase angle of normal mode wave 

5 r-1 

2e 	 angular deflection of scattered x-rays from the incident 
direction 

9 	 Debye characteristic temperature 

8(elastic) 8 determined from elastic constants 

8(x-ray) 	'8 determined from x-ray measurements 

8(CV ) 	8 determined from specific heat measurements 

X 	 x-ray wavelength 

A 	 normal mode wavelength 

nth moment of vibration spectrum 

V 	 normal mode frequency 

Vm 	 cut off frequency of the Debye vibrational spectrum 

position vector of the jth atom in a Bravais unit cell 
referred to some point in the cell 

0 	 (sin
2e)/x2 
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GLOSSARY (Continued) 

27TH 

absorption factor 

.. ( 20)-1 d 
lnI(obs) dT 

contribution to A from thermal expansion 

contribution to A from TDS 

A-(Auf AS) 
amplitude of normal mode wave 

Bo 	 ratio of integrated intensity to peak height 

B
2 2 

87r Un 
B1 	 B for Ai+  ion or for e ion 

B2 	 B for Cl-  ion 

B(cal) 	calculated value of B 

B(obs) 	observed value of B 

B' 	 temperature derivative of B 

CV 	 specific heat measured at constant volume 

E mean energy of simple harmonic oscillator 

E extinction factor 

polarization vector of normal mode wave 

f atomic scattering factor 

f1 	 atomic scattering factor of Ai l-  i

• 

on or of K+  ion 

f2 	 atomic scattering factor of Cl .  i

• 

on 

f2/f1 
structure factor 

G m1  B' + m2  B' 

g
1 	2 

frequency distribution function 

h Miller index 

w 

A 

A 

ALlof 

ATDS 

A 
 

a . 
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GLOSSARY (Continued) 

h 

Io 

Planck's constant 

reciprocal lattice vector 

x-ray intensity diffracted in the absence of thermal 
vibrations 

Io 	 interference function 

observed x-ray intensity 

I(obs) 	observed x-ray intensity 

k 	 Boltzman's constant 

k 	 Miller index 

k 	 wave vector of normal mode wave 

Miller index 

m 	 atomic mass 

m1 	 mass of silver atom or of potassium atom 

mass of chlorine atom 

M
2 

Debye-Wdller factor 

temperature derivative of M 
. 

1 	
M for Ag

+ 
 ion or for K+  Ion 

M2 	 M for Cl-  ion 

N 	 number of Bravais unit cells in crystal 

N' 	 number of atoms in crystal 

number of atoms in Bravais unit cell 

q 	 number of lattice points in Bravais unit cell 

n position vector of nth Bravais cell 

j 
111 

	

	 position vector of the jth atom in the nth Bravais unit cell 

number of atoms per lattice point 

unit vector in the direction of the scattered x-rays 

so 	 unit vector in the direction Of the incident x-rays 

diffraction vector; equals 

T 	 absolute temperature 

TDS 	thermal diffuse scattering 
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GLOSSARY Continued) 

-4 
U . 	 instantaneous displacement of the jth atom in the nth no 

Bravais unit cell 

2 	 mean square displacement of an atom normal to the Bragg 
un 	 planes 

V 	 crystal volume 

V 	 phase velocity of normal mode wave 

8/T 
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