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SEMIANNUAL STATUS REPORT
GRANT NO. NAG-1-638
GEORGIA TECH PROJECT E16-668

Lawrence W. Rehfield
Principal Investigator

Attached is a report entitled "Some Observations on the Behavior

of the Langley Model Rotor Blade." This report was presented to Mr.
Mark Nixon in person at the Langley Research Center on 24 July 1986.
The report summarizes work completed in the first six-month period.

At this meeting, the decision was made to emphasize development

of a multicell theory for the remainder of the grant period.




"SOME OBSERVATIONS ON THE BEHAVIOR
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Interim Report
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INTRODUCTION

In our statement of work for this grant, the first item is
"support and coordinate with research underway at  the
Aerostructures Directorate ...." This interim report supports the
design of fhe model rotor and the COmpafatﬁve study of coupled beam
theory and fhé finite element analysis performed earlier at the
Aerostructures“Directorate by Robert Hodges and Mark Nixon.

Attentidn.is focused upon two matters ---_(1) an examination
of the small discrepancies between twist angle predictions under
pure‘xforque and radial Joading and (2) an assessment of
nonc]aééﬁcaT effects in bending behavior. |

OQur primary objective is underétanding, 'particu1ar1y with
regard to cause-effect relationships. Understanding, together with
the simple, affordable nature of the coupled beam analysis,

provides a sound basis for design.

STATIC APPLIED LOADING CASES
The three load cases considered by Hodges and Nixon have been
considered here. The first case is bending due to 1ift and blade
weight, the second is pure torque and the third is axial Tloading
due to cenfrifuga] force.
There is some inconsistency in the equations for the applied
loading. In the present work, the coordinate X is taken from the

blade root, which is radial station 5.23.

Bending Due to Lift and Blade Weight

The distributed loading is

q, = 0.02222X - 0.0123 (1bs/in) (1)

R
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The rotor model cross section appears in Figure 1. The
coupled beam analysis of this Toading case apbears in Attachment 1.

Beam def]gption results appear in Figure 2. Bernouli-Euler,
the classical engineering beam theory, resu]ﬁs are denoted by "BE."
This model s overly stiff. Also presented are three shear
deformation models, SD1, SD2 and SDS, and the finite element
results.

The shear deformation model S1 is an approxﬁmation obtained

by setting the coupling stiffness C25 and C36 to zero. This is the

classical shear deformation model 1in the spirit of Timoshenko.
C1ear1y. it is overly stiff also. This direct transverse shear
effect is small for a beam of this slenderness.

The compliete theory, which includes all coupling effects, is
denoted SD3. It providés good agreehent with the finite element
results. ‘ i

The abproximation denoted SD2 s obtained by neglecting
completely fhe classical shear deformation effect accounted for in
SD1 in favor of the coupling mechanism associated with C25 and C36'
This model, therefore, fincludes only deformations due to the
transverse shear-bending coupling and the usual bending
contribution. The magnitude of this new, unexplored form of
elastic coupling is seen to be enormous by comparing SD2 and BE
results. This is a finding of major importance in understanding
the behavior.

The SD2 or SD3 models are required in this application in
order to get sufficiently accurate predictions. This -clearly

excludes the earlier classical type theory of Mansfield and Sobey

from practical use.
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Pure Torque

Although there was generally good agreement for the torsion

. case in the .Hodges-Nixon comparative study, the effect of

torsion-re]aﬁed warping was not included. This effect has been
included in the analysis presented in Attachment‘2¥

The classical St. Venant torsion theory result (without
warping) is compared to the complete beam theory (CBT) and the
finite element results in Figure 3. The CBT results, which differ
from the classical (CL) only by tﬁe warping effect, are in
excellent agreement with‘the finite element analysis. Restrained
warping‘creates a boundary layer zonhe near the blade root that acts

to stiffen the blade and reduce the angle of twist.

Axial Loading Due to Centrifugal Force

This caée is of the utmost 1mporténce because extension-twist
coupling is to‘be used to control blade stall. In the Hodges-Nixon
comparative:study, the‘c1assica1 St. Venant theory was utilized for
the coup]eé beam analysis. The discrepancy between analytical
predictions and the finite element analysis was the greatest for
this case. Classical theory was too soft and it overestimated the
twist angle, a condition that is not conservative in view of the
stated purpose of the model demonstration.

As in the pure torsion case, the neglect of torsion-related
warping is the reason for the discrepancy between coupled beam
theory and the finite element analysis. A complete analysis of
this loading case is given 1in Attachments 3 and 4. Attachment 3
contains the overall response analysis. The axial force
distribution is

N = 913.83 - 7.875X - 0.75287%% (1b.) | (2)
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This expression differs from that qﬁoted-in the HodgeS—Nixon work
due to use of different coordinates.

The twist angle distribution appears in Figufe 4. The use of
CBT brings the beam theory results in very good agreement with the
finite element analysis. The rate of twist distribution is given
in Figure 5. Again, the agreement is very good.

Attachment 4 contains an analysis of the strain distributions
for this loading case. The strain distributions are given in
Figures 6 and 7. The results indicate that structural damage would
be 1ikely to occur at radial station 10‘(X = 5) rather than at the
rootxgs‘predicted by classical theory.

WARPING ANALYSIS

A complete analysis’'of the effects of torsion-related warping
appears in Atfachment 5. Also included 1is a description of a
simple warping model that is based upon a rectangular approximation
for the cell. The edﬁiva]ent rectangle is chosen to possess the
same encloséd area. An assessment of this model suggests that it
is adequate for the complete analysis.

The main difficulty in accounting for warping is determination
of the warping function and the étiffness C77. Both are

accomplished readily with the approximate rectangular model.

CONCLUSIONS
In structures designed for extension-twist coupling, a high
degree of bending-shear coupling is present which drastically
causes the structure to be more flexible in bending. The impact of

this effect on system performance must be assessed.
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Torsion-fe1ated warping is significant enough to warrant its
inclusion in the beam analysis. A simple rectangular approximation
may be u§ed, which avoids the complexities associated with warping
function and warping stiffness determination for sections similar
to the D spar. With warping accounted for, the coupled beam theory

is extremely accurate and easy to use.

12
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ATTACHIENT 1

6 July 198¢

COMPARISON OF COMPOSITE TROTOR BLADE MODBELS
CLASSICAL , CLASSICALSHEAR DEFORMATION ,
SHEAR DEFORMATION and AN MSC NASTRAN SHELL ELEMENT

A BENCH MARK CASE
BEAM DEFLECTION bUE TO LIFT and BLADE WEIGHT

THEORY
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ATTACHMENT 3

TWIST UNDER EXTENSION

- Rotor BPlade Model -
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15 July 1964
STRAINS UNDER EXTENSION

CLASSICAL THEORY
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The membrane shear strain . 15 . ...
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L{xs)CL = -—C—e- S CNO_ Ny - ?\l:,*x.z)

. COMPLETE BEAM THEORY .

The form of tne fotel ferue is
‘QMX) = Cgt, +« Cuqw, — Cyy @, =0
M one. eliminates . LU, ..in above.. . ...
U, = | _C_ZJ W — 990,

Ciq Cia
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CATTACHMENT 5

LA o

. WARPING EFFECTS ON ROTOR . BLADE MODELS

- THE TORSION.RELATED WARPING FUNCTION .

SR —— N TH@,.,4.A.£or.sfo.r.i,,‘.'r:szatzd._.,_Ycuarp.in9~ ﬁ—‘ncb‘m , %, is  defined.
‘ as o ‘

SR . N V1 €S WP Phe g 2w . . RGN
, c

e whzrz Ac .is _the _.enclosed . area..of the cross seckom

e G i R cwcum{erzmc.a ond

(8 = lg Fwds . (2
2 o

i which s the. sectorial _area _swept.  out. o5 s increases ...

- D spar cross sechons

ez L0 Ordinades _of - dne. D _spar._undertakea. Ja. showrm. ..

-_,_Mon.zo[ }hz,‘v_. coordinate , say 2., has o be. Afound . the .
. — —funchien...af . the . pther._one, Ysde_do so . the curve

e e e ....é(.l,h'rz‘a}_v methed may  be used . . This aralysis Qs summarized

......... et Appeadix Lo
e A _Obher cjuick.w.and,. weeful . _opproach . o find  the
S ] funcken s to .convider...the . .D.spar. as fwo . .
~region. i..one. of _them. s . rechengulor  the  other one. is . .

P Aa,,,,w,.P_ar_t.A...‘.a{.w_a. ciecle . This  approoch.. is.  Shown. n F9.2. ..

414 guly 186

et e e In‘..,‘,Figﬂ. n  order. to. ."_c_a.lcula,f.z_.>.,._i:h.¢...___,_warp,lm9,“. fg.lnc_,h',o.rz e
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% The radius. of the circle censidered is found o  be
B
E . as
i o | R. M. (3)
‘ ' 2H
b To find the encdosed orea the fo(lowins method 5 used :
i
4
} ) . o k
. lhe total area . Ayshy o s
k. 2 )
A,] + Ay = R arcsin b (4)
2 R
9]
- ond Ay s o _
. : As o (R-H).L (5
. > _
! S '{'L’\ere‘forz the area wanted , A,, is
. 2
- L . A . A,] - R arcain kb (P-H).E—. (6)
2 R 2
- The area o[ e rczc{—arzgular region AE, s
A, . LA . , (7)
2 : : :
. thus , the fokal enclosed  area of +the D .spar 2
!

Ag = 2( A+ 4) (8a)




L
3

._?‘. PN

8

-

) |
A= 2| UH . R arcsint _ (R-H).E ] (8b)
2 R 2

. The circumference. of _the  circular, part region ¢, , 15
- - _C2=__R_QI’C5“’L_1:.. B . . (9)
R
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b then  the tolal  circumference . of the D spar, o, s
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ce2.( L'sH Rarcsinb) (b))
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(15)

madle

becomes ( using

| H U c/2 sy @
1e . VKD gl ds . J o s f G wids (e |
5 77 {0 € 2 11 Yy
- ° ‘ H L'+ H
where , |
Y= BS - 2w,( 0¢s¢ H (17)
Y, = Bs‘ - 2w, (9 Hgs ¢ L4H (18)
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b 0
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2a,(s) . UM ) Hds 24)
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The Equivalert Rectangular Area Approach

Let comader a rechangular cross  section which has

He some enclosed areca as the D spar

2 Ltine 2
b b ;/ Line 1
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L Y
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Fig. 4.
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PREFACE

This report summarizes the development of structural models for
composite rotor blades. The models are intended for wuse 1in design
analysis for the purpose of exploring the potential of elastic tailoring.
The research has been performed at the Center for Rotary Wing Aircraft
Technology, Georgia Institute of Technology. Profeséor Lawrence W.
Rehfield was the Principal Investigator.

Close collaboration with Mark Nixon, Renee Lake, Gary Farley and
Wayne Mantay of the Army Aerostructures Directorate, Langley Research

Center, was maintained throughout the investigation.
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INTRODUCTION

Composite material systems are now the prﬁmary materials for
helicopter rotor system applications. In addition to reduced weight and
increased fatigue 1ife, these materials provide designs with fewer parts
which means increased service life and improved maintainability. Also, in
terms of manufacturing, it is possible to achieve more géneral aerodynamic
shapes including flapwise variatﬁon in planform, section and thickness.

The aeroelastic environment in which rotor blades operate consists'of
inertial, aerodynamic and elastic loadings. Because of the directional
nature of the composite materials, it is poésib]e to consfruct rotor
blades with different p]y orientations and hybrid combinations of
materials exhibiting coupling between various eiastic modes of
deformation. For example, if the fibers are placed asymmetficaiTy in the
upper and lower portions of the b]adé, there will be a twist induced by
flapwise bending. This provides a potential.for improvingAthe performance
of a Tisting surface through aeroelastic tailoring of the primary
load-bearing structure. Aeroelastic tailoring of a composite structure
involves a design process in which the wmaterials and dimensions are
selected to_yig]d specific coupling characteristics which in turn enhance
the overall pe}formance of the structure. The design of such advanced
structures requires simple and reliable analytical tools which can take

into consideration the directional nature of these materials. In this

report, a description of analytical models is presented which aid in the

design of composite rotor blades.
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SUMMARY OF ACCOMPLISHMENTS

Foundation Provided by Previous Work

The present research had 1its origin in the development and
application of a new structural model for composite rotor blades with a
single structural cell. The theory is presented in Accomplishment 1, an
extensive numerical comparative study appears in Accomplishment 2 and a
comparison with box beam experiments is given in Accomplishment 3. This
body of knowledge established a sound technology base for applications and
design-related studies.

Research Objectives

The present work has three main purposes. They are
1. Support the research underway at the Aerostructures Directorate;
2. Develop simple analytic solutions for beam vibrations for
comparison with tests and finite element simulations; and
. 3. Develop, validate and complete a simple ana]ysis approach for
multicell beams.
Item 1 has lead to Accomplishments 5-9 and 13.  Item 3 corresponds to
Accomplishment 11. Work supporting item 2 was presented in an informal
report to the Lang]ey Research Center.

Single Cell Théory_

The theory of Rehfield! was compared with a finite element simulation
of the static response of a model rotor blade?. While. the results showed
generally good agreement, the effect of torsion-related warping was not
accounted for. Later a complete analysis was performed® which provided
excellent agreement. Also, a physical assessment of the various elastic

couplings has been made.
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A summary of the above results appears in Appendix I, which is the
abstract corresponding to Accomplishment 13. Also, a description of the
improvements in twisting kinematics over the original theory! is provided.

Multicell Theory

Multicell theory requires a new modeling approach. The essential
difference between single cell and multicell thin-walled beams is in the
analysis of torsion. The innovative approach that has been usedl! is
described in Appendix II. This appendix is‘the abstract for a new paper

that has been submitted for presentation at the 29th AIAA SDM Conference.
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A STRUCTURAL MODEL FOR COMPOSITE

ROTOR BLADES AND LIFTING SURFACES*

Lawrence W. Rehfield and Ali R. Atilgan**
Center for Rotary Wing Aircraft Technology
School of Aerospace Engineering
Georgia Institute of Technology .
Atlanta, Georgia 30332
(404)894-3067

EXTENDED ABSTRACT

Introduction

Composite material systems are currently primary candidates
for aerbspace structures. One key reason for this is the design
f]exibiTity that they offer. It is possible to tailor the material
and bmanufacturing approach to the application. Two notable
examples are the wing of the Grumman/USAF/DARPA X-29 and rotor
blades under development by the U.S.A. Aerostructures Directorate -
(AVSCOM), Langley Research Center.l . vl

A working definition of elastic or.strUCtural tailoring is the

use of structural concept, fiber orientation; ply stacking sequence

and a blend of materials to achieve specific performance goals. In

the design process, choices of materials and dimensions are made

which produce specific response characteristics’ which permit the

" selected goals to be achieved. Common’choices for tailoring goals

‘are preventing instabilities or vibration resonances or enhancing

damage tolerance.

*- Sponsored by ARO under Contract DAA529-82-K-0097 and by USA
Aerostructures Directorate under grant NAG1-638.

** Professor, Associate Fellow AIAA and NATO Scholar, respectively.
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An essential, enabling factor‘ in the design of tailored
composite structures is structural modeling that accurately, but
simply, characterizes response. Simplicity is needed as
cause-effect re1ationships between configuration and response must
be clearly understood and numerous design iterations are required.
The objective of this paber is to improve the single c1osed;ce11

beam model previously developed by the senior author2 for composite

rotor blades or 1lifting surfaces and to demonstrate its usefulness

in applications.

Modeling Improvements

Two major improvementﬁ have been made in‘ the mode]l of
Reference 2. They are: |
(1) More accurate representation of twisting deformation; and
(2) Simp]ification of the representation of‘tOrsion~re1ated
warping. -

Outline of the Present Work

| An analysis of the behavior of the model Langley rotor blade
under three static Toad cases appéars’in Réference'l. The model
rotor cross section is showm'inkFigure'l;v The same three loading
cases hale been considered. The first case is bending due to 1ift
and‘b]ade,weight, the second is pure torque and the third is axial
Joading due to centrifugal force.
In Reference 1, alc]assica] version of ther£heory of Reference
2 is cdmpared with an. extensive finitéheiéﬁent simulation based
upon orthotropic shell e]éments.‘ ‘Attention is focused: upbn the .

small discrepancies in the earlier study which are‘correct1y

-2 -




attributed to torsion-related warping. This confirms the findings
reported in Reference 3. Also, an assessment of nonclassical
effects in bending behavior has been made.

Bending Due to Lift and Blade Weight

Beam deflection results from the bending case appear in Figure
2. Bernouli-Euler, the classical engineering beam theory, results
are denoted by “BE." This model is overly stiff. Also presented

are three shear deformation models, SD1, -SD2 and SD3, and the

finite element results.

The shear deformation model S1 is an apprdximation obtained by

setting the coupling stiffness 025 and C36 in Reference 2 to zero.

This is. the classical shear deformation model in the spirit of
Timoshenko. Clearly it 1is overly stiff also. This direct
trénsverse shear effect is small for a beam of this slenderness.
The complete théory,_which includes all coupling effects, is
denoted SD3. It provides good agreement with the finite e]ement

results.

The approximation denoted SD2 is obtained by neglecting-

completely the classical shear deformation effect accounted for in

- SD1 5n %avor of the coupling mechanism assbciated with 025 and

Cqg- This mode],-theréfore, includes only deformations due to the

transverse shear-bending coupling and the usual bending

contribution. - The magnitude of this new, ‘unexplored form of

elastic coupling is seen to be enormous by comparing 502 and BE

results. This is a finding of major importance ih understanding

the behavior.
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The SD2 or SD3 @p%g]s are required inﬁthis application in
order to get sufficiently accurate pred{cf%ons. This c]ear1y
excludes the earlier classical type theory 6f Mansfie]d and Sobey4
from practical use.

Pure Torque

The c]aséica] St. Venant torsion theqry  reSu1t‘ (without
warping) is compared to the complete beah- fheory (CBT) and .the
finite element results in Figure 3. The CBT resq1ts, which différ
from the classical (CL) only by .the warping effect, are in
excellent agréement with the finite e1ement-ana1ysis. Restrained
warping creates a boundary layer zone near the-blade rodt that acts

to stiffen the bTade-and reduce the ang1e’of.twist.

Axial Loading Due to Centrifugal Force

This case is of the utmost'importancé;bé@ausé_gxtension-twist
coupling is tb be used to control blade stall, an app1icati6n‘0f
elastic tailoring. The discrepancy between analytical predictions
and the finite element analysis was the gréafest for this case.
Classical theory-was too soft andkit dveréstimated the twist angle, .

a conditjon that is not conservative in view of fhe_stated,purpose

- of the model demonstration.

As in the pure torsion case, the neglect of torsion-re]ated_
warping is the reason for the  discrepancy bef&éen coupled beam .
theory and thevfinite'e1ement ana]ysié. h |

The twist angle diétribution'abpéarsfiﬁ-Fféure 4. The .use of
CBT brings -the beam theory resthé in'very.good agreeﬁent'with the o
finite eTement analysis. The rate.bf‘twist.distribﬁtiOnis given

in Figure 5. _Again, the agreement is very good.

-4 -



Conclusions

) oo

In structures designed for extension-twist coupling, a high

degree of 'bending-shear coupling 1is present which drastically

~causes the structure to be more flexible in bending.' The impact of

this effect on System performance must be asseSsed.

Tors1on re]ated warp1ng is s1gn1f1cant enough to warrant its
inclusion in the beam ana]ys1s - With warp1ng accounted for, the
coupled beam theory is extreme]y‘accurate"and.easy te use.
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STRUCTURAL MODELING FOR
MULTICELL COMPOSITE ROTOR BLADES

Lawrence W. Rehfield and A1i R. Ati]gan**
Center for Rotary Wing Aircraft Technology
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332
(404)894-3067

EXTENDED ABSTRACT

Introduction

Composite material systems afe currently primary candidates for
aerospace structures. One key reason for this 1is the design -
flexibility that they offer. It s possible to tailor the material
and manufacturing approach to the application. Two notable examples
are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under
development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley
Research Center.

A working definition»of elastic or structural tai1oring is the
use of structural concept, fiber orientation, ply stackingﬂsequence
and a blend of materials to achieve specific performance goals. In
the design‘proéess,-choices of materials and dimensions are made.which

produce specific response characteristics which permit the selected

goals to be achieved. v Common choices. for - tailoring goals are

- preventing instabilities or vibration resonances or enhancing damage

tolerance.

* Sponsored by ARO under Contract DAAS29-82-K-0097 and by USA
Aerostructures Directorate under grant NAG1-638.

** professor, Associate Fellow AIAA and NATO Scholar, respective]y;
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An eséentia1, enabling factor in the design of tai1oréd composite
structures 1is structural  modeling that accurately, but simply,
characterizes response. Simplicity 1is needed as cause-effect
relationships between configuration and response must be clearly
understood and numerous design iterations are required. The objective
of this paper is to present a new mu]ticelj beam model for composite
rotor blades and to validate predictions based upon the new model by
comparison with a finite element simulation in three benchmark static

1oad cases.

Outline of the Present Work
The most significanf difference between single cell and multicell

thin-walled beams is in the analysis of torsion. The first step is
to detérmine the shear center of the multicell section which is needed
to establish the twisting kinematics. 1In the present approach,ran
innovative application of the unit load theorem is employed which
utilizes the St. Venant torsion solution as a baéis. This approach
leads to closed form expressions for the coordinates of the shear
center that are in terms of physically meaningful parameters.

 Torsion-related warping, which earlier works2’3’“ on single cell
theory 1nd1caté is important, is determined in a manner similar to
that of Benscoter.5 In contrast to obtaininé the stiffness matrix
using the principle of virtual  work?, the unit load theorem is
employed also to find the f]éxibiﬂity matrix, which is inverse of- the
stiffness matrix. Therefore, flexibilities are directly found, whith‘

is convenient for application.
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After the above analytical steps are completed, the global beam

theory is created in a manner similar to the single cell case.?

Application

The present model is applied to a two cell beam. The model cross
section is shown in Figure 2; The benchmark static load cases appear
in Figure 3. The first case is bending due to_é tip load, the second
is pure torque and the third is axial loading due to a centrifugal
force. |

The predictions are compared with an extensive finite element
simulation® based upon orthotropic shell‘e1ements. They are found to

be in very good agreement as can be seen in Figures 4, 5 and 6.

Concluding Remarks

A multicell beam theory is developed and validated. Predictions
based upon the new model are compared with an extensive finite element

simulation as the means of validation.
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