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SEMIANNUAL. STATUS REPORT 
GRANT NO. NAG-1-638 

GEORGIA TECH PROJECT E16-668 

Lawrence W. Rehfield 
Principal Investigator 

Attached is a report entitled "Some Observations on the Behavior 

of the Langley Model Rotor Blade." This report was presented to Mr. 

Mark Nixon in person at the Langley Research Center on 24 July 1986. 

The report summarizes work completed in the first six-month period. 

At this meeting, the decision was made to emphasize development 

of a multicell theory for the remainder of the grant period. 



"SOME OBSERVATIONS ON THE BEHAVIOR 

OF THE LANGLEY MODEL ROTOR BLADE" 

Interim Report 
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July 1986 
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Center for Rotary Wing Aircraft Technology 

Georgia Institute of Technology 
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INTRODUCTION 

In our statement of work for this grant, the first item is 

"support and coordinate with research underway at the 

Aerostructures Directorate ...." This interim report supports the 

design of the model rotor and the comparative study of coupled beam 

theory and the finite element analysis performed earlier at the 

Aerostructures Directorate by Robert Hodges and Mark Nixon. 

Attention is focused upon two matters --- (1) an examination 

of the small discrepancies between twist angle predictions under 

pure torque and radial loading and (2) an assessment of 

nonclassical effects in bending behavior. 

Our primary objective is understanding, particularly with 

regard to cause-effect relationships. Understanding, together with 

the simple, affordable nature of the coupled beam analysis, 

provides a sound basis for design. 

STATIC APPLIED LOADING CASES 

The three load cases considered by Hodges and Nixon have been 

considered here. The first case is bending due to lift and blade 

weight, the second is pure torque and the third is axial loading 

due to centrifugal force. 

There is some inconsistency in the equations for the applied 

loading. In the present work, the coordinate X is taken from the 

blade root, which is radial station 5.23. 

Bending Due to Lift and Blade Weight  

The distributed loading is 

q
z 

= 0.02222X - 0.0123 (lbs/in) 
	

(1) 



The rotor model cross section appears in Fiyre 1. 	The 

coupled beam analysis of this loading case appears in Attachment 1. 

Beam deflection results appear in Figure 2. Bernouli-Euler, 

the classical engineering beam theory, results are denoted by "BE." 

This model is overly stiff. Also presented are three shear 

deformation models, SD1, SD2 and SD3, and the finite element 

results. 

The shear deformation model S1 is an approximation obtained 

by setting the coupling stiffness C25  and C36  to zero. This is the 

classical shear deformation model in the spirit of Timoshenko. 

Clearly it is overly stiff also. This direct transverse shear 

effect is small for a beam of this slenderness. 

The complete theory, which includes all coupling effects, is 

denoted SD3. It provides good agreement with the finite element 

results. 

The approximation denoted SD2 is obtained by neglecting 

completely the classical shear deformation effect accounted for in 

SD1 in favor of the coupling mechanism associated with C
25 

and C
36' 

This model, therefore, includes only deformations due to the 

transverse shear-bending coupling and the usual bending 

contribution. The magnitude of this new, unexplored form of 

elastic coupling is seen to be enormous by comparing SD2 and BE 

results. This is a finding of major importance in understanding 

the behavior. 

The SD2 or SD3 models are required in this application in 

order to get sufficiently accurate predictions. This clearly 

excludes the earlier classical type theory of Mansfield and Sobey 

from practical use. 
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Pure Torque  

Although there was generally good agreement for the torsion 

case in the Hodges-Nixon comparative study, the effect of 

torsion-related warping was not included. This effect has been 

included in the analysis presented in Attachment 2. 

The classical St. Venant torsion theory result (without 

warping) is compared to the complete beam theory (CBT) and the 

finite element results in Figure 3. The CBT results, which differ 

from the classical (CL) only by the warping effect, are in 

excellent agreement with the finite element analysis. Restrained 

warpindcreates a boundary layer zone near the blade root that acts 

to stiffen the blade and reduce the angle of twist. 

Axial Loading Due to Centrifugal Force  

This case is of the utmost importance because extension-twist 

coupling is to be used to control blade stall. In the Hodges-Nixon 

comparative study, the classical St. Venant theory was utilized for 

the coupled beam analysis. The discrepancy between analytical 

predictions and the finite element analysis was the greatest for 

this case. Classical theory was too soft and it overestimated the 

twist angle, a condition that is not conservative in view of the 

stated purpose of the model demonstration. 

As in the pure torsion case, the neglect of torsion-related 

warping is the reason for the discrepancy between coupled beam 

theory and the finite element analysis. A complete analysis of 

this loading case is given in Attachments 3 and 4. Attachment 3 

contains the overall response analysis. The axial force 

distribution is 

N = 913.83 - 7.875X - 0.75287X
2 

(lb.) 
	

(2) 

5 
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This expression differs from that quoted in the Hodges-Nixon work 

due to use of different coordinates. 

The twist angle distribution appears in Figure 4. The use of 

CBT brings the beam theory results in very good agreement with the 

finite element analysis. The rate of twist distribution is given 

in Figure 5. Again, the agreement is very good. 

Attachment 4 contains an analysis of the strain distributions 

for this loading case. The strain distributions are given in 

Figures 6 and 7. The results indicate that structural damage would 

be likely to occur at radial station 10 (X 24 5) rather than at the 

root.as predicted by classical theory. 

WARPING ANALYSIS 

A complete analysis'of the effects of torsion-related warping 

appears in Attachment 5. Also included is a description of a 

simple warping model that is based upon a rectangular approximation 

for the cell. The equivalent rectangle is chosen to possess the 

same enclosed area. An assessment of this model suggests that it 

is adequate for the complete analysis. 

The main difficulty in accounting for warping is determination 

of the warping function and the stiffness C 77 . Both are 

accomplished readily with the approximate rectangular model. 

CONCLUSIONS 

In structures designed for extension-twist coupling, a high 

degree of bending-shear coupling is present which drastically 

causes the structure to be more flexible in bending. The impact of 

this effect on system performance must be assessed. 
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Torsion-related warping is significant enough to warrant its 

inclusion in the beam analysis. A simple rectangular approximation 

may be used, which avoids the complexities associated with warping 

function and warping stiffness determination for sections similar 

to the D spar. With warping accounted for, the coupled beam theory 

is extremely accurate and easy to use. 
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PREFACE 

This report summarizes the development of structural models for 

composite rotor blades. The models are intended for use in design 

analysis for the purpose of exploring the potential of elastic tailoring. 

The research has been performed at the Center for Rotary Wing Aircraft 

Technology, Georgia Institute of Technology. Professor Lawrence W. 

Rehfield was the Principal Investigator. 

Close collaboration with Mark Nixon, Renee Lake, Gary Farley and . 

Wayne Mantay of the Army Aerostructures Directorate, Langley Research 

Center, was maintained throughout the investigation. 



INTRODUCTION 

Composite material systems are now the primary materials for 

helicopter rotor system applications. In addition to reduced weight and 

increased fatigue life, these materials provide designs with fewer parts 

which means increased service life and improved maintainability. Also, in 

terms of manufacturing, it is possible to achieve more general aerodynamic 

shapes including flapwise variation in planform, section and thickness. 

The aeroelastic environment in which rotor blades operate consists of 

inertial, aerodynamic and elastic loadings. Because of the directional 

nature of the composite materials, it is possible to construct rotor 

blades with different ply orientations and hybrid combinations of 

materials exhibiting coupling between various elastic modes of 

deformation. For example, if the fibers are placed asymmetrically in the 

upper and lower portions of the blade, there will be a twist induced by 

flapwise bending. This provides a potential for improving the performance 

of a listing surface through aeroelastic tailoring of the primary 

load-bearing structure. Aeroelastic tailoring of a composite structure 

involves a design process in which the materials and dimensions are 

selected to yield specific coupling characteristics which in turn enhance 

the overall performance of the structure. The design of such advanced 

structures requires simple and reliable analytical tools which can take 

into consideration the directional nature of these materials. In this 

report, a description of analytical models is presented which aid in the 

design of composite rotor blades. 



SUMMARY OF ACCOMPLISHMENTS 

Foundation Provided by Previous Work 

The present research had its origin in the development and 

application of a new structural model for composite rotor blades with a 

single structural cell. The theory is presented in Accomplishment 1, an 

extensive numerical comparative study appears in Accomplishment 2 and a 

comparison with box beam experiments is given in Accomplishment 3. This 

body of knowledge established a sound technology base for applications and 

design-related studies. 

Research Objectives  

The present work has three main purposes. They are 

1. Support the research underway at the Aerostructures Directorate; 

2. Develop simple analytic solutions for beam vibrations for 

comparison with tests and finite element simulations; and 

3. Develop, validate and complete a simple analysis approach for 

multicell beams. 

Item 1 has lead to Accomplishments 5-9 and 13. • Item 3 corresponds to 

Accomplishment 11. Work supporting item 2 was presented in an informal 

report to the Langley Research Center. 

Single Cell Theory  

The theory of Rehfieldl was compared with a finite element simulation 

of the static response of a model rotor blade 2 . While the results showed 

generally good agreement, the effect of torsion-related warping was not 

accounted for. Later a complete analysis was performed 5  which provided 

excellent agreement. Also, a physical assessment of the various elastic 

couplings has been made. 



A summary of the above results appears in Appendix I, which is the 

abstract corresponding to Accomplishment 13. Also, a description of the 

improvements in twisting kinematics over the original theory' is provided. 

Multicell Theory  

Multicell theory requires a new modeling approach. The essential 

difference between single cell and multicell thin-walled beams is in the 

analysis of torsion. The innovative approach that has been used" is 

described in Appendix II. This appendix is the abstract for a new paper 

that has been submitted for presentation at the 29th AIAA SDM Conference. 
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A STRUCTURAL MODEL FOR COMPOSITE 

ROTOR BLADES AND LIFTING SURFACES* 

Lawrence W. Rehfield and Ali R. Atilgan** 
Center for Rotary Wing Aircraft Technology 

School of Aerospace Engineering 
Georgia Institute of Technology 

Atlanta, Georgia 30332 
(404)894-3067 

EXTENDED ABSTRACT  

Introduction  

Composite material systems are currently primary candidates 

for aerospace structures. One key reason for this is the design 

flexibility that they offer. It is possible to tailor the material 

and manufacturing approach to the application. Two notable 

examples are the wing of the Grumman/USAF/DARPA X-29 and rotor 

blades under development by the U.S.A. Aerostructures Directorate 

(AVSCOM), Langley Research Center. 1  

A working definition of elastic or structural tailoring is the 

use of structural concept, fiber orientation, ply stacking sequence 

and a blend of materials to achieve specific performance goals. In 

the design process, choices of materials and dimensions are made 

which produce specific response characteristics' which permit the 

selected goals to be achieved. Common choices for tailoring goals 

are preventing instabilities or vibration resonances or enhancing 

damage tolerance. 

* Sponsored by ARO under Contract DAAS29-82-K-0097 and by USA 
Aerostructures Directorate under grant NAG1-638. 

** Professor, Associate Fellow AIAA and NATO Scholar, respectively. 



An essential, enabling factor in the design of tailored 

composite structures is structural modeling that accurately, but 

simply, characterizes response. Simplicity is needed as 

cause-effect relationships between configuration and response must 

be clearly understood and numerous design iterations are required. 

The objective of this paper is to improve the single closed-cell 

beam model previously developed by the senior author 2  for composite 

rotor blades or lifting surfaces and to demonstrate its usefulness 

in applications. 

Modeling Improvements  

Two major improvements have been made in the model 

Reference 2. They are: 

(1) More accurate representation of twisting deformation; and 

(2) Simplification of the representation of torsion-related 

warping. 

Outline of the Present Work  

An analysis of the behavior of the model Langley rotor blade 

under three static load cases appears in Reference 1. The model 

rotor cross section is shown in Figure 1. The same three loading 

cases hatie been considered. The first case is bending due to lift 

and blade weight, the second is pure torque and the third is axial 

loading due to centrifugal force. 

In Reference 1, a classical version of the theory of Reference 

2 is compared with an extensive finite element simulation based 

upon orthotropic shell eleiments. Attention is focused upon the 

small discrepancies in the:earlier study which are correctly 

- 2 - 



attributed to torsion-related warping. This confirms the findings 

reported in Reference 3. Also, an assessment of nonclassical 

effects in bending behavior has been made. 

Bending Due to Lift and Blade Weight  

Beam deflection results from the bending case appear in Figure 

2. Bernouli-Euler, the classical engineering beam theory, results 

are denoted by "BE." This model is overly stiff. Also presented 

are three shear deformation models, SD1, SD2 and SD3, and the 

finite element results. 

The shear deformation model S1 is an approximation obtained by 

setting the coupling stiffness C
25 

and C
36 
 in Reference 2 to zero. 

This is the classical shear deformation model in the spirit of 

Timoshenko. 	Clearly it is overly stiff also. 	This direct 

transverse shear effect is small for a beam of this slenderness. 

The complete theory, which includes all coupling effects, is 

denoted SD3. It provides good agreement with the finite element 

results. 

The approximation denoted SD2 is obtained by neglecting 

completely the classical shear deformation effect accounted for in 

SD1 in favor of the coupling mechanism associated with C
25 

and 

C36. This model, therefore, includes only deformations due to the 

transverse shear-bending coupling and the usual bending 

contribution. The magnitude of , this new, unexplored form of 

elastic coupling is seen to be enormous by comparing SD2 and BE 

results. This is a finding of major importance in understanding 

the behavior. 

- 3 - 



The SD2 or SD3 models are required in this application in 

order to get sufficiently accurate predictions. This clearly 

excludes the earlier classical type theory of Mansfield and Sobey
4 

from practical use. 

Pure Torque  

The classical St. Venant torsion theory result (without 

warping) is compared to the complete beam theory (CBT) and the 

finite element results in Figure 3. The CBT results, which differ 

from the classical (CL) only by the warping effect, are in 

excellent agreement with the finite element analysis. Restrained 

warping creates a boundary layer zone near the blade root that acts 

to stiffen the blade and reduce the angle of twist. 

Axial Loading Due to Centrifugal Force  

This case is of the utmost importance because extension-twist 

coupling is to be used to control blade stall, an application of 

elastic tailoring. The discrepancy between analytical predictions 

and the finite element analysis was the greatest for this case. 

Classical theory was too soft and it overestimated the twist angle, 

a condition that is not conservative in view of the stated purpose 

of the model demonstration. 

As in the pure torsion case, the neglect of torsion-related 

warping is the reason for the discrepancy between coupled beam 

theory and the finite element analysis. 

The twist angle distribution appears in Figure 4. The _use of 

CBT brings the beam theory results in very good agreement with the 

finite element analysis. The rate of twist distribution is given 

in Figure 5. Again, the agreement is very good. 



Conclusions  

In structures designed for extension-twist coupling, a high 

degree of bending-shear coupling is present which drastically 

causes the structure to be more flexible in bending. The impact of 

this effect on system performance must be assessed. 

Torsion-related warping is significant enough to warrant its 

inclusion in the beam analysis. With warping accounted for, the 

coupled beam theory is extremely accurate and easy to use 
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EXTENDED ABSTRACT  

Introduction  

Composite material systems are currently primary candidates for 

aerospace structures. One key reason for this is the design - 

flexibility that they offer. It is possible to tailor the material 

and manufacturing approach to the application. Two notable examples 

are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under 

development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley 

Research Center. ' 

A working definition of elastic or structural tailoring is the 

use of structural concept, fiber orientation, ply stacking sequence 

and a blend of materials to achieve specific performance goals. In 

the design process, choices of materials and dimensions are made which 

produce specific response characteristics which permit the selected 

goals to be achieved. Common choices for -tailoring goals are 

preventing instabilities or vibration resonances or enhancing damage 

tolerance. 

* Sponsored by ARO under Contract DAAS29-82-K-0097 and by USA 
Aerostructures Directorate under grant NAG1-638. 

** Professor, Associate Fellow AIAA and NATO Scholar, respectively. 



An essential, enabling factor in the design of tailored composite 

structures is structural modeling that accurately, but simply, 

characterizes response. Simplicity is needed as cause-effect 

relationships between configuration and response must be clearly 

understood and numerous design iterations are required. The objective 

of this paper is to present a new multicell beam model for composite 

rotor blades and to validate predictions based upon the new model by 

comparison with a finite element simulation in three benchmark static 

load cases. 

Outline of the Present Work  

The most significant difference between single cell and multicell 

thin-walled beams is in the analysis of torsion. The first step is 

to determine the shear center of the multicell section which is needed 

to establish the twisting kinematics. In the present approach, an 

innovative application of the unit load theorem is employed which 

utilizes the St. Venant torsion solution as a basis. This approach 

leads to closed form expressions for the coordinates of the shear 

center that are in terms of physically meaningful parameters. 

Torsion-related warping, which earlier works 2 ' 3 ' 4  on single cell 

theory indicate is important, is determined in a manner similar to 

that of Benscoter. 5  In contrast to obtaining the stiffness matrix 

using the principle of virtual work 2 , the unit load theorem is 

employed also to find the flexibility matrix, which is inverse of the 

stiffness matrix. Therefore, fleKibilities are directly found, which 

is convenient for application. 



After the above analytical steps are completed, the global beam 

theory is created in a manner similar to the single cell case. 2  

Application  

The present model is applied to a two cell beam. The model cross 

section is shown in Figure 2. The benchmark static load cases appear 

in Figure 3. The first case is bending due to a tip load, the second 

is pure torque and the third is axial loading due to a centrifugal 

force. 

The predictions are compared with an extensive finite element 

simulation 6  based upon orthotropic shell elements. They are found to 

be in very good agreement as can be seen in Figures 4, 5 and 6. 

Concluding Remarks  

A multicell beam theory is developed and validated. Predictions 

based upon the new model are compared with an extensive finite element 

simulation as the means of validation. 
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