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1. STABILIZATION OF REDUCED ORDER MODELS 

1.1 Development of standard reduced order model based on proper orthogonal 
decomposition 

 During this reporting period, efforts were concentrated on the stabilization of a Reduced Order 
Model (ROM) for the unsteady ship airwake using the combined POD method and a Galerkin projection 
technique. Starting from an existing unsteady flow-field solution/approximation for the non-dimensional 
incompressible Navier-Stokes equation 
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 The characteristics of the flow-field at any instant of time can be formed as a linear combination 
of the POD modes (using a total of NPOD modes) and the time-averaged mean value as follows: 
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where u୫ ൌ ∑ u୧
N౩
୧ୀଵ  is the time-averaged mean flow-field of all Ns “snapshots” and ai is the coefficient 

for the i−th POD mode. Substituting Eq. 3 into the governing Navier-Stokes equation (Eq. 2) and using 
the Galerkin projection  
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 In the current study, the integration on the domain boundary is ignored. Therefore, using the 
orthogonal property of the POD modes ( ൏ Ф୧, Ф୨ ൐ ൌ δ୧୨ ) converts the original full Navier-Stokes 
equation into a ROM which only involves NPOD ordinary differential equations (ODEs) as follows: 
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By rearrange Eq. 5,  
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where a = [a1, a2, · · · aNPOD]T is the collection of all NPOD POD mode coefficients; A and Q are the linear 
and quadratic term matrices, respectively; E is the constant term; and a0 are the initial values. 

1.2 A pressure extended reduced order model 

 As pointed out in Ref. [1], the effect of the pressure term may be important for convectively 
unstable shear flows such as the wake flow. Therefore, a pressure-extended ROM model similar to that 
proposed in Ref. [2] was implemented and investigated. The theory of the pressure extended ROM is first 
discussed in this section. Similarly to unsteady velocities, the unsteady pressure term can be also 
decomposed using the POD techniques as follows: 
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Substituting the POD representations for both the velocity and the pressure (Eqs.3 and 11) into the 
governing Navier-Stokes equation (Eq. 2) gives rise to 
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Galerkin projection  of Eq. 12 give rise to 
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By using Divergence theorem 
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ROM representation for the original Navier-Stokes equation are: 
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1.3 A modified ROM that satisfies both momentum and continuity equations 

 A modified ROM similar to that proposed in Ref. [2] was implemented and investigated. 
Derivation of a modified ROM starts from the weak form of Navier Stokes equations: 
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where ω୧  and q୧  belong to appropriate functional spaces. In the current study, ω୧ ൌ Ф୧ , q୧ ൌ
αሺ׏ · Ф୧ሻT׏ · Ф୨ are used because this approach gives better results [2].  Additional term is added for the 
linear term in the Eq.16.  
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where the weight ߙ has to be fixed. In this study, we chose 10-2 = ߙ.  



1.4 Stabilization of reduced order models 

 It is reported that a gradual drifting from the full-state solution to another erroneous state can 
arise after several vortex shedding periods when ROM equations are integrated in time. It precludes a 
correct description of the long-term dynamics [3]. What was worse, in some cases, it's hard to use POD 
ROM as a surrogate model of the original high-fidelity model because the short-term dynamics of the 
POD ROM may not be sufficiently accurate. For this kind of problem three sources of numerical errors 
were identified. First, the POD/Galerkin approach can present a lack of inherent numerical stability even 
for very simple problems [4]. Secondly, the pressure term is often not included in the POD ROM. It is 
possible to model this term. In current study a pressure extended Reduced Order Model similar to that 
proposed in Ref. [2] is used. The truncation involved in the POD-Galerkin approach is the third source of 
instability. Because only small number of POD modes which are the most energetic is kept, the POD 
ROM is not enough to dissipate the erroneous time amplifications of its solution. For example, 4 modes 
are sufficient to restore more than 99% of the kinetic energy of the 2D circular cylinder wake flow, but 
the solution of the such reduced order model does not converge towards the numerical solution of the 
Navier-Stokes equations [4]. It is thus necessary to stabilize the POD ROM. 

 It was found that artificial viscosity can help stabilization of POD-Galerkin approach [5]. Adding 
a constant viscosity acting the same way on all POD modes which is called  Heisenberg model [6, 7] is a 
natural way. In this model, the global dimensionless viscosity 1/Re is thus replaced by another one 
defined as (1 + c)/Re. In current study, c/Re is used. Then, the next step is to determine or to adjust the 
constant c > 0 in order to obtain a better accuracy for the POD ROM. This concept has been improved by 
Rempfer and Fasel [8] and Rempfer [9]. They supposed that the dissipation is not identical on each of the 
POD modes. Thus they replaced the global viscosity with modal viscosities 1/Rei = (1 + ci)/Re on each 
POD mode. It is then necessary to determine a set of correction coefficients spanned by ci for i = 1, . . . , 
Nr.  

 

2. Flow configuration 

 In this study 2D circular cylinder wake is chosen as a prototype of separated flow. Because this 
flowfield involves detachments of the boundary layer, wake and vortices interactions with walls, it is 
interesting. CFD simulation was performed for the experimental condition conducted by Glezer et al. [10], 
at a Reynolds number (based on the cylinder diameter) of 75500. For this case, a cylinder is placed in the 
center of an external flow domain. The computational domain size is 32 times the cylinder diameter of 
0.0162m. An O-type grid with 257 points in the azimuthal direction and 129 grid points in the normal 
direction was chosen for the cylinder case (Figure 1). k-w SST turbulence model is used in these studies. 
The flow is initialized with the free stream conditions. Due to the high Reynolds number of the flow, 
unsteady flow is observed as expected. Flow separates behind the cylinder and vortex shedding is 
observed in the wake of the cylinder. Figure 2 shows an instantaneous snapshot of the vortex shedding in 
the wake of the cylinder. The time-averaged pressure distributions are compared with experimental data  
in Figure 3. Figure 4 shows time history of lift and drag coefficient. The time-averaged CL,CD, and 
strouhal number are compared with experiment in Figure 5. The drag coefficient from the CFD, 1.1, is 
within 3% of the experimental value of 1.07. For the simulation of  POD based ROM, the 2D flowfield is 
extended along spanwise direction. So, there is no variation in velocity and pressure along y-direction. 
 

 

 



3. Results of  standard reduced order model 

 Parametric studies were performed in order to investigate the effect of time step, vortex shedding 
cycle and number of POD modes on the predicted POD coefficients (solution of the ROM). A sampling 
box of dimensions 0.16 x 0.01 x 0.064 m was chosen as the sub-domain for computing the POD modes. 
The sampling box was located behind the cylinder. The box encompasses the region where vortex 
shedding occurs. The test matrix for the parametric studies is shown in Figure 6. The matrix is a 
combination of time step, scaling factor on Re term and number of POD modes. Figure 7 shows the 
results of ROM without scaling factor. The temporal evolutions of the predicted mode coefficients are 
shown in Figure 7.(a).  "ODE" means mode coefficient predicted by ROM and "REF" means mode 
coefficient from POD. Figure 7.(b) shows the comparison of velocity between CFD and POD. "REF" 
represent velocity from CFD simulation and "POD" is the velocity reconstructed by mode coefficients 
and shapes. The stability of the ODE generated from ROM is checked by investigating eigenvalues of 
linear term in Figure 7.(c).  The effect of scaling factor is tested in Figure 7 through 9. It is found that the 
amplitude of modes coefficients decreases by increasing scaling factor. The effect of time step is 
investigated in Figure 10 through 12 (fixed scaling factor 1500). The first and second mode coefficients 
shows good agreement with mode coefficient from POD. The amplitudes of third and fourth mode 
coefficients are underpredicted. It is also found that the divergence of modes coefficient is independent on 
time step. The effect of number of mode is shown in Figure 12 and 13 because, generally, higher mode 
shows unstable behavior. For those cases, the scaling factor is also fixed by 1500.  The amplitude of mode 
coefficients predicted by ROM below 6th mode remains within the range. Although the amplitudes over 
6th modes are overpredicted it slightly decreases as time increases. It is found that the approach using 
scaling factor is effective to stabilize the response even for higher modes. Case 8 shows the results with 
scaling factor of 1300. For this case, the amplitude of all mode coefficients remains almost constant.  The 
nondimensional x-direction velocity (u) reconstructed by ODE is compared with the velocity from POD 
in Figure 15. The results from ODE shows good agreement with POD. 

 The effect of numerical scheme on stability of ROM is investigated in Figure 16 through 18. For 
those cases the scaling factor did not considered. In order to calculate derivatives first order backward, 
second order central scheme and third order backward scheme are used.  Because the first order scheme is 
dissipative the temporal evolution of mode coefficient shows rapid decrease of amplitude in Figure 16.(a). 
The solution of ODE using central scheme does not converge (Figure 17). This is because central scheme 
is less dissipative. The results of third order backward scheme shows diverging behavior (Figure 18). As a 
next step, the effect of numerical scheme on the magnitude of scaling factor which stabilizes the response 
of ROM is investigated in Figure 19. It is found that the small scaling factor is needed with higher order 
scheme. The difference between first and second modes is very small. However, the difference is seen in 
third and fourth modes between numerical schemes. 5th order scheme shows smaller amplitude than third 
order scheme.  The effect of mesh size used for ROM is tested in Figure 19 and 20. The interesting point 
is that the results are almost same between third and fifth order scheme even for higher modes. The effect 
of sampling box size is investigated in Figure 21. Sampling box size of 0.16 x 0.064m was used for above 
parametric studies. The reduced sampling box (0.0324 m x 0.0324 m) is used for the simulation in Figure 
21. It is found that the number of mode required to meet threshold value is increased with reduced 
sampling box size.       

    

4. Results of pressure extended reduced order model 

 The pressure term is often not included in the standard POD ROM. Ref. [2] says that absence of 
pressure term is one of possible reason for instability of POD ROM. It is possible to model this term. In 
current study a pressure extended Reduced Order Model similar to that proposed in Ref. [2] is derived and 



investigated.  Simulations were performed for 5 vortex shedding cycles. 51 x 6 x 21 is used as a sample 
box size. The effect of numerical scheme is investigated in Figure 22. The scaling factor was not applied 
to these simulations. 2nd, 3rd, 5th, 6th order backward difference schemes are used. The phase difference 
among numerical schemes are seen.  Figure 23 and 24 shows the effect of scaling factor with 5th and 6th 
order numerical scheme. It is found that the increase of scaling factor stabilizes the response of ROM. 
Also, another observation is that smaller scaling factor is required with higher order numerical scheme. 
Figure 25 shows the effect of continuity term on the temporal evolutions of the POD coefficients.  5th 

order spatial discretization scheme is used for both cases. The scaling factor for Reynolds number is fixed 
by one. The case without considering of continuity shows rapid increase of amplitude as time goes on. 
Although both cases show diverging response, the case with continuity term shows more stable behavior. 
The effect of numerical scheme between second order central and backward scheme is investigated in 
Figure 26. For these cases the scaling factor of 1300 is used. The central scheme shows slightly rapid 
decrease of amplitude than backward scheme. Interesting point is found between Figure 25 and 26 for 3rd 
and 4th modes. Results from 2nd order scheme follows the every peak with phase. However, 5th order does 
not follow every peak. The effect of scaling factor with 2nd order and 5th order scheme is studied in 
Figure 27 and 28. As expected, increase of scaling factor reduces the magnitude of amplitude.  

 

5. Results of CFD Ship Airwake of SFS2 

 The modified ROM including scaling factor was applied to SFS2 case. The SFS model, which 
was the predecessor to the SFS2, was developed as a result of international collaborative research under 
The Technical Cooperation Program (TTCP; Ref. [11]). The SFS geometry was proposed in 1996 to 
create a simple ship model for which a computational grid can easily be built for CFD simulation. The 
primary aim of these efforts was to enable comparison between different CFD solvers for a simple frigate 
model. The SFS model is representative of small-size frigates with a superstructure of length 150 ft and a 
deck of length 90 ft. The nominal height of the superstructure is approximately 35 ft with a small 20 ft 
projection on the top that represents the communication antennas on a frigate. The SFS model has a 
uniform width of 45 ft. Later, the updated version of the model, called SFS2, was developed which 
included an extended superstructure length of 230 ft and bow section of 135 ft at the front for a total 
length of 455 ft. An unstructured computational grid was generated for the SFS2 which consists of two 
zones, a near body zone that has a fine mesh to capture the boundary layer and an off body zone that 
extends to approximately one ship length in both the upstream and downstream directions. The grid 
consists of 4 million cells made of tetrahedrons in the near body grid and hexahedral cells in the core of 
the off body grid.  The CFD simulations for the SFS2 were performed using OpenFOAM. OpenFOAM is 
an open source CFD toolbox which is widely used in the fluid dynamics research community. 
OpenFOAM uses a combination of SIMPLE and PISO algorithms to perform an incompressible unsteady 
simulation of wind blowing over a stationary ship. Inlet and far field conditions are applied at the 
upstream and downstream boundaries of the grid, respectively. Slip boundary conditions are used to 
simulate the water surface. The CFD simulations are run for a WOD speed of 20 m/s at wind azimuths of 
0_ and Green 30_ (wind from the starboard side). The simulation is started from ambient conditions and 
is run for 15 seconds with a nominal time step of 0.006 second. Due to the large grid size, flow-field data 
was recorded only for the last 10 seconds at a frequency of 0.1 second. The simulations were run in 
parallel mode on 28 processors.  

 A sampling boxes of dimensions 108*58*26 ft was chosen as the sub-domain for the simulation 
of POD based ROM. The sampling box was centered approximately 30 ft aft of the hangar and 20 ft 
above the deck along the centerline of the ship. The box encompasses the region where a helicopter 
typically hovers (stationkeeping) before landing on the ship deck. Since the actual ship is not modeled in 
FLIGHTLAB, the sampling box serves as a representation of the ship deck location. Temporal evolutions 



of the predicted POD coefficients and eigenvalues of linear term are shown in Figure 29 for the case 
without scaling factor on Reynolds number. It was not converged. The "ODE" means the prediction from 
ROM and "REF" is the mode coefficient from the POD analysis. The real parts of eigenvalues  are all 
positive. The effect of scaling factor is seen in figure 30. The real parts of eigenvalues are negative except 
10th and 11th modes.  13 modes are required to meet the threshold requirement. Although the predicted 
temporal history of mode coefficients are not exactly matched with the mode coefficient from the POD 
analysis, it shows similar wave form. The effect of numerical scheme is seen between 2nd order (Figure 
30) and 5th order (Figure 31). The higher order scheme shows large amplitude than lower order scheme. 
Figure 32 shows the effect of threshold on temporal evolutions of the POD mode coefficients. The first 5 
modes are used. Left figures shows results with 90% threshold and right figures are results of 95% 
threshold. Overall wave forms are similar between them. There is difference after 8 second. Figure 33 and 
34 shows the simulation results with fine sampling box size. Due to the memory limit, large time step is 
used. The results with 2nd order scheme are seen in Figure 33.  In order to check the accuracy of POD 
analysis the reconstructed velocity at several points are compared with velocity from CFD. The "REF" in 
Figure33.(b)  means the velocity from CFD analysis and "POD" means the velocity reconstructed from 
the POD analysis. The reconstructed velocity shows good agreement with CFD data.  The results with 2nd 
order scheme are seen in Figure 34.   
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Figure 1: 2D circular cylinder computational grid 

 

Figure 2: Instantaneous vorticity behind the cylinder at Re = 75500 



 

Figure 3: Comparison of Cp between experiment and two-dimensional simulation. 

 

Figure 4: Time history of lift and drag coefficient. 
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 CL CD 
Experiment 0.0 1.07 (CDpress) 

CFD (present) 0.0 1.1 (CDpress +CDvisc) 
 

- Strouhal number 
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Experiment 0.21 
CFD (present) 0.227 

 

Figure 5: Comparison of CL,CD, and Strouhal number with experiment. 

 

Case Factor Number of 
POD modes Time step for POD 

Cycle for 
vortex 

shedding 

Convergence of 
ODE 

1 1 4 4.76189E-06 sec 1 O 
2 1500 4 4.76189E-06 sec 1 O 
3 2000 4 4.76189E-06 sec 1 O 
4 1500 4 9.52379E-06 sec 2 O 
5 1500 4 1.42857E-05sec 3 O 
6 1500 4 2.38E-05 sec 5 O 
7 1500 10 2.38E-05 sec 5 O 
8 1300 10 2.38E-05 sec 5 O 

 

Figure 6: Test matrix for 2D cylinder parametric studies. 

  



  

(a)  Temporal evolutions of the predicted POD coefficients  

 

(b) Comparison of velocity between CFD and POD analysis 

Mode Eigenvalue 
1 0.1091 + 1.3729i 
2 0.1091 - 1.3729i 
3 0.1083 + 1.6117i 
4 0.1083 - 1.6117i 

(c) Stability check : eigenvalues of linear term 

Figure 7: Parametric study results (case 1). 

 



 

 

(a)  Temporal evolutions of the predicted POD coefficients  

 

(b) Comparison of velocity between CFD and POD analysis 

 

 



Mode Eigenvalue 
1 -0.0023 + 1.3778i 
2 -0.0023 - 1.3778i 
3 -0.3511 + 1.6086i 
4 -0.3511 - 1.6086i 

  (c) Stability check : eigenvalues of linear term 

Figure 8: Parametric study results (case 2). 

 

 

(a)  Temporal evolutions of the predicted POD coefficients  



 

  (b) Comparison of velocity between CFD and POD analysis 

Mode Eigenvalue 
1 -0.0389 + 1.3782i 
2 -0.0389 - 1.3782i 
3 -0.5050 + 1.6087i 
4 -0.5050 - 1.6087i 

  (c) Stability check : eigenvalues of linear term 

Figure 9: Parametric study results (case 3). 

 



 

(a)  Temporal evolutions of the predicted POD coefficients  

 

 

  (b) Comparison of velocity between CFD and POD analysis 

Mode Eigenvalue 
1 -0.0016 + 1.3783i 
2 -0.0016 - 1.3783i 
3 -0.3573 + 1.8949i 
4 -0.3573 - 1.8949i 

  (c) Stability check : eigenvalues of linear term 

Figure 10: Parametric study results (case 4). 



 

 

(a)  Temporal evolutions of the predicted POD coefficients 

 

(b) Comparison of velocity between CFD and POD analysis 

 

 



Mode Eigenvalue 
1 -0.0007 + 1.3794i 
2 -0.0007 - 1.3794i 
3 -0.3580 + 1.8518i 
4 -0.3580 - 1.8518i 

(c) Stability check : eigenvalues of linear term 

Figure 11: Parametric study results (case 5). 

 

 

(a)  Temporal evolutions of the predicted POD coefficients 



 

(b) Comparison of velocity between CFD and POD analysis 

Mode Eigenvalue 
1 -0.0002 + 1.3784i 
2 -0.0002 - 1.3784i 
3 -0.3524 + 1.8356i 
4 -0.3524 - 1.8356i 

(c) Stability check : eigenvalues of linear term 

Figure 12: Parametric study results (case 6). 

 

 



 

 

 

(a)  Temporal evolutions of the predicted POD coefficients 



 

(b) Comparison of velocity between CFD and POD analysis 

-Stability check : eigenvalues of linear term 

Mode Eigenvalue 
1 -0.0015 + 1.3768i 
2 -0.0015 - 1.3768i 
3 -0.4542 + 1.6901i 
4 -0.4542 - 1.6901i 
5 -0.4770 + 3.2011i 
6 -0.4770 - 3.2011i 
7 -0.5179 + 2.8226i 
8 -0.5179 - 2.8226i 
9 -0.4758 + 2.6528i 

10 -0.4758 - 2.6528i 
(c) Stability check : eigenvalues of linear term 

Figure 13: Parametric study results (case 7). 

 



 

 

 

 

(a)  Temporal evolutions of the predicted POD coefficients 



   

 

 

 

(b) Comparison of velocity between CFD and POD analysis 



Mode Eigenvalue 
1 0.0134 + 1.3766i 
2 0.0134 - 1.3766i 
3 -0.3862 + 1.6855i 
4 -0.3862 - 1.6855i 
5 -0.4094 + 3.2057i 
6 -0.4094 - 3.2057i 
7 -0.4388 + 2.8186i 
8 -0.4388 - 2.8186i 
9 -0.3957 + 2.6568i 

10 -0.3957 - 2.6568i 
(c) Stability check : eigenvalues of linear term 

Figure 14: Parametric study results (case 8). 
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< t = 0.1 T > 



 

< t = 0.2 T > 

 

< t = 0.3 T > 

 

< t = 0.4 T > 
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Figure 15: Comparison of nondimensional u velocity (Left : POD, Right : ODE). 



 

 

(a)  Temporal evolutions of the predicted POD coefficients 

Mode Eigenvalue 
1 -0.1624 + 1.4255i 
2 -0.1624 - 1.4255i 
3 -0.7129 + 1.9308i 
4 -0.7129 + 1.9308i 

(b) Stability check : eigenvalues of linear term 

Figure 16 : ROM results with first order spatial discretization scheme. 

 

 

 

 

 

 

 



 

(a)  Temporal evolutions of the predicted POD coefficients 

Mode Eigenvalue 
1 0.1183 + 1.3851i 
2 0.1183 - 1.3851i 
3 0.0821 + 1.8470i 
4 0.0821 - 1.8470i 

(b) Stability check : eigenvalues of linear term 

Figure 17 : ROM results with second order central spatial discretization scheme. 

 

 

(a)  Temporal evolutions of the predicted POD coefficients 

 



Mode Eigenvalue 
1 0.1037 + 1.4062i 
2 0.1037 - 1.4062i 
3 0.0499 + 2.2578i 
4 0.0499 - 2.2578i 

(b) Stability check : eigenvalues of linear term 

Figure 18 : ROM results with third order backward spatial discretization scheme 

 

 

 

Figure 19: Comparison between third and fifth order (sample box size : 51 x 6 x 21, Time step: 2.38E-05 
sec, cycle for vortex shedding:5 ) 



 

 

Figure 20: Comparison between third and fifth order ( sample box size : 109 x 12 x 45, Time step: 4.76E-
5 sec, cycle for vortex shedding:3 ) 

 



 

 

 

Figure 21: Effect of scaling factor ( sample box size : 0.0324 m x 0.0324 m, Time step: 2.38E-05 sec, 
cycle for vortex shedding:5  ) 



 

 

Figure 22: Effect of numerical scheme with a pressure extended ROM ( sample box size : 51 x 6 x 21, 
Time step: 2.38E-05 sec, cycle for vortex shedding:5 ) 

 



 

 

Figure 23: Effect of numerical scaling factor with 5th order scheme ( sample box size : 51 x 6 x 21, Time 
step: 2.38E-05 sec, cycle for vortex shedding:5 ) 

 



 

 

Figure 24: Effect of numerical scaling factor with 6th order scheme ( sample box size : 51 x 6 x 21, Time 
step: 2.38E-05 sec, cycle for vortex shedding:5 ) 

 



 

 

Figure 25: Effect of considering continuity term ( sample box size : 51 x 6 x 21, Time step: 2.38E-05 sec, 
cycle for vortex shedding:5 ) 

 



 

 

Figure 26: Comparison between backward and central scheme fixed scaling factor 1300 ( sample box 
size : 51 x 6 x 21, Time step: 2.38E-05 sec, cycle for vortex shedding:5 ) 

 



 

 

Figure 27: Effect of scaling factor with 2nd order scheme ( sample box size : 51 x 6 x 21, Time step: 
2.38E-05 sec, cycle for vortex shedding:5 ) 

 



 

 

Figure 28: Effect of scaling factor with 5th order scheme ( sample box size : 51 x 6 x 21, Time step: 
2.38E-05 sec, cycle for vortex shedding:5 ) 

 

 

 (a)  Temporal evolutions of the predicted POD coefficients 



Mode Eigenvalue 
1 1.1313 +12.4195i 
2 1.1313 -12.4195i 
3 1.0946 + 9.5968i 
4 1.0946 - 9.5968i 
5 0.8147 + 8.0008i 
6 0.8147 - 8.0008i 
7 0.4078 
8 0.9604 + 2.4822i 
9 0.9604 - 2.4822i 

10 1.6444 + 3.8344i 
11 1.6444 - 3.8344i 
12 1.1713 + 5.8961i 
13 1.1713 - 5.8961i 

(b) Stability check : eigenvalues of linear term 

Figure 29: ROM results of SFS2 case without scaling factor ( sample box size : 80 x 40 x 25, Time step: 
0.1 sec, theshold: 0.99 ) 

 

 



 

 

 

 



 

 (a)  Temporal evolutions of the predicted POD coefficients 

Mode Eigenvalue 
1 -3.0520 +12.2633i 
2 -3.0520 -12.2633i 
3 -3.0351 + 9.2775i 
4 -3.0351 - 9.2775i 
5 -2.2757 + 8.4401i 
6 -2.2757 - 8.4401i 
7 -2.2203 
8 -0.7533 + 2.5894i 
9 -0.7533 - 2.5894i 

10 0.2292 + 3.6805i 
11 0.2292 - 3.6805i 
12 -1.5466 + 5.8823i 
13 -1.5466 - 5.8823i 

(b) Stability check : eigenvalues of linear term 

Figure 30: ROM results of SFS2 case with 2nd order central spatial discretization scheme ( sample box 
size : 80 x 40 x 25, Time step: 0.1 sec, theshold: 0.99, scaling factor:8000 ) 

 



 

 

 

 



 

 

(a)  Temporal evolutions of the predicted POD coefficients 

Mode Eigenvalue 
1 -3.3227 +12.9183i 
2 -3.3227 -12.9183i 
3 -2.9679 + 9.9939i 
4 -2.9679 - 9.9939i 
5 -2.3976 + 8.3495i 
6 -2.3976 - 8.3495i 
7 -1.7370 
8 -0.4896 + 2.6983i 
9 -0.4896 - 2.6983i 

10 0.2294 + 3.7406i 
11 0.2294 - 3.7406i 
12 -1.5696 + 6.0945i 
13 -1.5696 - 6.0945i 

(b) Stability check : eigenvalues of linear term 



 

(c) Comparison of velocity between CFD and POD analysis 

Figure 31: ROM results of SFS2 case with 5th order backward spatial discretization scheme ( sample box 
size : 80 x 40 x 25, Time step: 0.1 sec, theshold: 0.99, scaling factor:800 ) 

 

 



 

 

 

(a) Temporal evolutions of the predicted POD coefficients, Left : 90%, Right : 95%   

Figure 32: Effect of threshold ( sample box size: 80 x 40 x 25, Time step: 0.1 sec, scaling factor: 800, 5th 
order backward spatial discretization scheme ) 



 

 

 

 



 

 

 

(a)  Temporal evolutions of the predicted POD coefficients 

 



 

 

(b) Comparison of velocity between CFD and POD analysis 

Figure 33: ROM results of SFS2 case with 2nd order backward spatial discretization scheme ( sample box 
size: 120 x 65 x 30, Time step: 0.5 sec, theshold: 0.99, scaling factor: 7500 ) 

 



 

 

 

 



 

 

Figure 34: ROM results of SFS2 case with 5th order backward spatial discretization scheme ( sample box 
size: 120 x 65 x 30, Time step: 0.5 sec, theshold: 0.99, scaling factor: 800 ) 

 

 

 

 

 

 

 

 

 


