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 vii  

 SUMMARY 

 

 A generalization of multigroup energy condensation theory has been developed. 

The new method generates a solution within the few-group framework which exhibits the 

energy spectrum characteristic of a many-group transport solution, without the 

computational time usually associated with such solutions.  This is accomplished by 

expanding the energy dependence of the angular flux in a set of general orthogonal 

functions. The expansion leads to a set of equations for the angular flux moments in the 

few-group framework.  The 0th moment generates the standard few-group equation while 

the higher moment equations generate the detailed spectral resolution within the few-

group structure.  

It is shown that by carefully choosing the orthogonal function set (e.g., Legendre 

polynomials), the higher moment equations are only coupled to the 0th-order equation and 

not to each other. The decoupling makes the new method highly competitive with the 

standard few-group method since the computation time associated with determining the 

higher moments become negligible as a result of the decoupling. The method is verified 

in several 1-D benchmark problems typical of BWR configurations with mild to high 

heterogeneity.  
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CHAPTER 1 

INTRODUCTION 

 

 Multigroup treatment of the energy variable is extensively used in solving the 

transport equation or its diffusion approximation in reactor physics problems. For solving 

fixed source or eigenvalue problems in large complicated systems such as reactors, it is 

common practice, for the sake of efficiency and practicality, to condense the cross section 

data from an ultra-fine-group format to a set that is manageable (e.g., fine or coarse 

group) in terms of computational resource (memory and time) limitation and the desired 

accuracy. The condensation procedure requires the exact energy spectrum of the flux as a 

weighting function, which is not known a priori. As a result, approximate flux spectra are 

obtained for smaller subregions of the system (e.g., lattice cell) with approximate 

boundary conditions (e.g., full specular reflection), which are used to condense the cross 

sections into a smaller number of groups.  Clearly, this condensation procedure results in 

loss of energy resolution in addition to accuracy.    

 Recovering the energy resolution while maintaining the computational efficiency 

is highly desirable in both eigenvalue (criticality) and fixed source (shielding) 

calculations.   In this paper, we develop a new method to recover (unfold) the energy 

spectrum to any desired resolution (e.g., from coarse to fine or ultra-fine, fine to ultra-

fine).  This is achieved by generalizing the standard condensation procedure, assuming 

that the energy dependence of the neutron flux (spectrum) may be expanded in a set of 

orthogonal basis functions, and folding this dependence into the cross section 

condensation process.  It will be shown that the standard condensation procedure is 
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contained within this generalized method as a 0th-order approximation, and that through 

implementing this method, the computation time is reduced to that of standard coarse-

group computations, but with the detail usually associated with much finer group 

solutions.  The validity of the new method will be demonstrated by application to several 

one-dimensional problems with varying degrees of heterogeneity. The method is derived 

and tested in transport theory. Its extension to its diffusion approximation is 

straightforward. 
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CHAPTER 2 

BACKGROUND 

 

 Methods for treating the energy dependence of the neutron flux in a reactor are 

many and varied.  The usual multi-group formulation with few-group condensation is by 

far the most common, but a great deal of work has been done to find improved methods 

for treating the energy spectrum.  Work by M. L. Williams and M. Asgari [1] formulated a 

combination of multi-group theory and continuous-energy theory to improve the 

calculation of the energy spectrum in the resonance region.   Their work takes advantage 

of a Legendre “Sub-moment Expansion” in the scattering transfer function, and breaks 

the energy spectrum into three regions, using multi-group theory in the fast and thermal 

ranges, and a point-wise solution in the resonance region, all within a one-dimensional 

discrete-ordinates framework.   

 Work has also been done in reactor analysis using point-wise energy lattice 

methods.  M. L. Zerkle has developed methods for solving the neutron transport equation 

using a near-continuous energy point-wise solution method which collapses the energy 

dependence to a small number of groups from point-wise data [2,3].  These methods have 

been applied in the RAZOR lattice code by Zerkle, Abu-Shumays, Ott, and Winwood.  

Work by M. L.  Williams has also provided a solution for thermal neutrons in a reactor 

using continuous energy methodology implemented in the CENTRM solution module for 

the SCALE code system [4].  These techniques were all developed to improve the 

resonance and energy treatments within the multi-group methodology.   
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 Most work focusing on energy dependence has thus far been towards improving 

the accuracy of the multigroup approximation to the solution within single assemblies.  

There has not been much work towards preserving the spectral information during the 

condensation procedure and whole core calculation, where the detailed spectrum 

information is lost.  Work by Silver, Roeder, Voter, and Kress addresses a method of 

Kernel Polynomial Approximation for spectral functions, using applications of 

polynomial expansion in the computation of the density of energy states within electronic 

structures [5].  This allows for treatment of spectral functions with polynomial expansions 

in a straightforward and accurate way.  Their work fully treats the method for Chebyshev 

Polynomials, and it has similar applications to work that can be used in nuclear reactor 

computations, particularly in the treatment of the angular dependence of the scattering 

kernel. 
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CHAPTER 3 

METHOD 

 

 The generalized energy condensation theory represents a method whereby the 

energy spectrum of the neutron flux is produced to a high degree of accuracy during a 

few-group calculation.  This method begins by generating fine-group cross sections, as 

well as a fine-group transport solution for the individual lattice cells (e.g., fuel 

assemblies) which make up the system.   The method of fine-group cross section 

generation is entirely independent of the generalized theory, and should be done in 

whatever manner the user deems appropriate.  For example, lattice depletion codes 

generate fine or ultra-fine-group cross sections by properly accounting for resonance 

smearing and temperature effects. Similarly, fine or ultra-fine-group transport solutions 

within each assembly may be obtained using any computational method appropriate for 

the desired application (e.g., discrete ordinates, collision probability, etc).   In addition, 

the method is independent of the treatment of the angular dependence of the scattering 

kernel, and the user may use any desired technique. 

 The fine-group transport solution within each lattice cell (fuel assembly) is then 

used as a weighting function in the generation of orthogonal expansion moments for the 

energy dependence of the cross sections and reaction rates for each region of the 

assembly for a set of coarse-groups.  This replaces the standard condensation procedure, 

which uses the ultra-fine or fine-group transport solution to generate fine or coarse-group 

cross sections that are constant in energy within each coarse group.  Using the expansion 

moments of the cross sections and reaction rates, the problem is then solved via a coupled 
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set of modified transport equations for the whole core.  The resultant series of flux 

moments within each coarse-group can then be used to construct the fine group energy 

spectrum of the neutron distribution in the entire core. The core energy spectrum is not 

accessible using the current standard condensation methods, but obtained using the 

generalized method presented here.  

 The generalized method is entirely independent of the transport solution 

methodology (e.g., spatial differencing and angular approximation schemes), and 

therefore allows for a high degree of flexibility in application.  It expands the standard 

few-group equations into a new set of expansion equations, which are then solved in any 

manner desired.  The standard condensation method is a special case (the 0th order) of the 

general theory. The additional moment equations coupled to the 0th order represent 

correction terms to the energetically flat flux assumed in the standard few-group model.  

It is noted that with a properly chosen expansion basis, this method can be used to 

generate very high order expansions with negligible computation time due to the 

decoupling of the set of equations, to be described in a later section. 

 The new method is tested by considering some 1-D example problems.  Legendre 

polynomials are used as the basis function and the lattice depletion code HELIOS [8] is 

used to generate the fine-group cross sections in these examples. Fine-group transport 

solutions, which are generated using a discrete-ordinates code written for the purpose of 

testing the new method, are then used as the weighting function for the generation of 

expansion moments.  
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3.1 Derivation 

 Within a reactor of arbitrary geometry, the balance of neutrons at position r
r

with 

lethargy u and moving in a direction ̂( , )θ ϕΩ  is described by the transport equation in its 

integro-differential form (Eq. (1)). 

0 4

0 4
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( ) ˆ ˆ' ' ( , ') ( , , ')

s

f

r u r u r u du d r u u r u

u
du d r u r u

k

π

π

ψ σ ψ σ ψ

χ νσ ψ

∞

∞
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where ˆ( , , )r uΨ Ωr
 is the angular flux and ( , )r uσ r

 represents the total macroscopic 

reaction cross section at position r
r for neutrons with lethargy u.  The function 

ˆ ˆ( , ' , ' )s r u uσ Ω → Ω →r
 is the macroscopic scattering cross section at position r

r
 with 

incoming lethargy u′  and angle ̂ ′Ω  and outgoing lethargy u and anglêΩ . The system 

multiplication constant is represented by k and ( , ')f r uνσ r
 and ( )uχ  are the fission 

neutron production cross section and fission spectrum, respectively. 

 The lethargy integrals on the right hand side of Eq. (1) can be broken up into 

smaller regions representing the energy intervals of the few-group structure chosen.  (The 

number of few-groups G is arbitrary.)  By applying the segmentation to the lethargy 

integral terms in Eq. (1) and breaking the spectrum into G (coarse) groups, Eq. (1) 

becomes 
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where gu∆  is the lethargy interval of coarse-group g.  The infinite-lethargy bound on the 

integral in Eq. (1) has also been chosen to be some value large enough to admit few 

neutrons beyond it.   

In the example problems presented later, the upper lethargy limit is chosen to be 

26.022, corresponding to an energy of 0.0001 eV.  This value was chosen to correspond 

to the energy bounds of the 47-group cross sections obtained from the lattice depletion 

code HELIOS, and could be changed to fit other applications, such as radiation detection 

or shielding problems. 

 As has been previously mentioned, the angular dependence of the scattering 

kernel can be treated in its most general form.  For  the derivations that follow, the 

angular dependence of the scattering kernel is treated with an expansion in angle using 

Spherical Harmonics [6], and fission is treated as isotropic:  

1 1
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               (3) 

where ( , ')r uφ r
 is the scalar flux at position r

r and lethargyu′ , and ( , ' )sl r u uσ →r
 and 

( , ')m
l r uφ r

 represent angular moments of the scattering kernel and angular flux: 

1

1

1
( , ' ) ( , ' , ) ( )

2sl o s o l or u u d r u u Pσ µ σ µ µ
−

→ = →∫
r r

                          (4) 

4

ˆ ˆ ˆ( , ') ( ) ( , ', )m
l lmr u d Y r u

π

φ ′ ′ ′= Ω Ω Ψ Ω∫
r r

          (5) 

where ˆ( )lmY Ω  are the normalized spherical harmonics, and ˆ ˆ
oµ ′= Ω ⋅ Ω is the cosine of the 

scattering angle.  The function( )lP µ  represents the lth order Legendre polynomials. 
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 In order to expand the angular flux in a particular lethargy region, we must first 

ensure that the basis functions chosen are orthogonal over it.  Since this is to be done for 

an arbitrary set of orthogonal basis functions, the lethargy variable is changed to a scaled 

variable within each group to align the interval of that group with the interval of 

orthogonality for the basis set.  Therefore, a new variable is defined in each group: 

i
g i

f i

u u
u u u

u u ⊥ ⊥

 −= ∆ +  − 
                          (6) 

where iu  and fu are the bounds of g f iu u u∆ = − , the lethargy interval of the coarse-

group, and iu ⊥  and fu ⊥  are the bounds of f iu u u⊥ ⊥ ⊥∆ = − , the interval of orthogonality 

of the basis functions.  To preserve the neutron distribution under this transformation, we 

enforce the balance conditions 

ˆ ˆ( , , ) ( , , )g gr u du r u duΨ Ω = Ψ Ωr r
  and  ( , ) ( , )x x gr u r uσ σ=r r

            (7) 

where ( , )x r uσ r
 represents the cross sections of the system.  This allows the right hand 

side (RHS) of Eq. (3) to be written as:   

1 1 1

0 0 1 0
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( , ) ( , ) ( , ) ( , )

4 4

G G
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r r r r     (8) 

 As a consequence of the balance condition above, the following transformations result: 

ˆ ˆ( , , ) ( , , ) ,    ( , ) ( , ) ,

                                                    ( , ) ( , )   

h h
h h

sl g sl g h
h

u u
r u r u r u r u

u u

u
r u u r u u

u

χ χ

σ σ

⊥ ⊥

⊥

∆ ∆Ψ Ω = Ψ Ω =
∆ ∆
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∆

r r r r

r r
         (9) 

With the assumption that the transport equation is valid for all values of the lethargy u, 

Eq. (3) can be split into G coupled equations, each describing the neutron balance within 

its own group h, with the lethargy variable scaled using the above transformations.  
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Therefore, neutron balance within a coarse-group h, with lethargy hu , position r
r , and 

direction Ω̂  is given by Eq. (10). 

1 1
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3.1.1 Orthogonal Expansion 

 Assume a set of orthogonal functions of lethargy within coarse-group h: ( )i huξ , 

which obey the orthogonality condition on u⊥∆ : 

( ) ( ) ( ) ij
h h i h j h

ju

du w u u u
δ

ξ ξ
α

⊥∆

=∫     (11) 

where ( )hw u  is a weighting function, ijδ  is the Kronecker Delta, and jα  is a 

normalization constant determined by the choice of ( )i huξ .  Any function ( )hf u on u⊥∆  

can be then written according to the expansion: 

0

( ) ( )h i i i h
i

f u f uα ξ
∞

=
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Multiplying Eq. (10) by ( )hw u ( )i huξ and integrating over the orthogonality limits, which 

represent the lethargy bounds of group h, one obtains: 
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where the following energy (lethargy) moments have been introduced: 
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The moments ˆ( , )ih rσ Ωr
and ˆ( , )ih rχ Ωr

 are computed numerically, with ˆ( , )ih rσ Ωr
 weighted 

with the flux distribution obtained in a fine-group calculation (e.g., for a single 

assembly). 

 The collision term is modified to expand not the total reaction rate, as in Eq. (15), 

but rather to expand the deviation of the total collision reaction rate from the mean within 

each group, based on standard perturbation techniques.  Thus, the total cross section 

within group h is rewritten as: 

0
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where ˆ( , , )r uδ Ω
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 is the perturbation of the cross section from the spectral mean, and 

0
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 is the standard form of the flux-weighted cross-section in coarse group h, as 

defined in Eq. (18). 
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Thus, when multiplying Eq. (10) by ( )hw u ( )i huξ  and integrating, as done before, the 

collision term changes, and Eq. (13) becomes: 
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where the moment of the total cross-section perturbation is defined as 
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 In this manner, the only moment in the denominator of the perturbation is the 0th-

order flux moment, which is typically the largest, and therefore least likely to be too 

small.  This technique greatly reduces the likelihood of numerical issues due to dividing 

by near-zero flux moments.   

Treating the energy dependence of the right hand side of Eq. (13) is complicated 

by the desire to ensure that the total neutron reaction rates on the right hand side are 

preserved for expansions of arbitrary order.  To ensure that this is the case, rather than 

condensing the cross sections directly, the reaction rate energy density is expanded in 

orthogonal functions.  Let  
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The right hand side (RHS) of Eq. (13) can then be written as: 
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This leads us to an expansion of the incoming energy dependence of the reaction rate 

densities, either fission or scattering, in the chosen orthogonal basis: 



 13 
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This results in the following form for the RHS of Eq. (13): 
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The form of Eq. (26) is then modified by defining the moments of the fission production 

cross section and the scattering kernel in the following manner: 

( ) ( )

( )
( )

fjg g j g

u
fjg

jg

r du u

r
r

ξ
νσ

φ
⊥∆

′ ′ℜ
=

∫
r

r
r             

( , ) ( )

( , )
( )

m
sljg h g j g

um
sljg h m

ljg

r u du u

r u
r

ξ
σ

φ
⊥∆

′ ′ℜ
=

∫
r

r
r         (27) 

Substitute Eqs. (26) in Eq. (27) and then the resulting equation in Eq. (13) to get the 

general condensed form of the transport equation given in Eq. (28). 

1 1
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0 0 1 0

1

0 0
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4

G
j m m

ih h ih ih h lm ljg slijg h
g l m j

G
ih

j fjg jg
g j

r r r r r Y r r

r
r r h G i

k

α
σ δ φ σ

π
χα νσ φ

π

− ∞ ∞
∗

→
= = =− =

− ∞

= =

Ω ⋅ ∇Ψ Ω + Ω Ψ Ω + Ω Ψ Ω = Ω

+ = =

∑∑∑∑

∑∑

r r r r r r r

r
r r

K ,1, ∞K

     (28) 

where G is the number of coarse-groups the spectrum has been divided into, and i 

represents the expansion order of the moment this equation is used to calculate. 

 At this point, no approximations have been made, and Eq. (28) fully describes the 

energy dependence of the system.  By truncating the expansion after “I” terms, a solution 

can be found with accuracy determined only by the order of the approximation chosen.  
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Through this method, the energy dependence of the transport equation has been 

completely eliminated by folding it into the moments of the cross sections and fission 

distribution, and then allowing for the solution of each moment individually.  This 

amounts to a series of ( 1)I G+ ×  coupled equations which can be numerically solved for 

the flux moments, which can then be used to construct an approximation of the angular 

flux by the Eq. (29).  

0

( ) ( )
I

h i i i h
i

u uα ξ
=

Ψ = Ψ∑       (29) 

3.1.2 Legendre Expansion 

 Equation (28) was derived for an arbitrary orthogonal basis; however, for the 

remainder of this paper, shifted Legendre Polynomials have been chosen as the expansion 

basis [6].  This has several benefits that serve to greatly simplify the condensed form of 

the transport equation and the definitions of the cross section moments of the system.  

First, the weighting function, ( )gw u , is equal to unity, which simplifies all the moment 

definitions in the derivation.  In addition, the definition of the cross section moments are 

simplified by the property of the Legendre polynomials, as well as most standard 

orthogonal polynomials,  

1

0

0

( ) ( )g i g g i g i

u

du u du P uξ δ
⊥∆

′ ′ ′ ′= =∫ ∫                                      (30) 

This relation, when applied in Eq. (27), causes the fission and scattering cross 

sections to vanish for all expansion orders except the 0th-order, which serves to uncouple 

the equations in Eq. (28) such that all orders are coupled to the 0th-order, but not to any 

others.  This simultaneously increases the efficiency of the solution method and removes 
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the dependence of the eigenvalue and converged reaction rates on the order of the 

expansion.  

The Legendre application of the Generalized Energy Condensation Theory can 

then be seen as an unfolding of the energy spectrum, as all the integral properties are 

encompassed in the 0th-order calculation, and the detailed shape is recovered from that 

solution by higher order computations.  The converged eigenvalue will then be the same 

as the eigenvalue computed with the 0th-order approximation in Eq. (31). 

1 1 1
0

0 0 0 00 0 0
0 0 1 0

ˆ( ) ( )ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( ) ( ) ( ) ( )
4 4

G G
m mlm h

h h h gl sl g h fg g
g l m g

Y r
r r r r r r r

k

χσ φ σ νσ φ
π π

∗− ∞ −

→
= = =− =

ΩΩ ⋅∇Ψ Ω + Ω Ψ Ω = +∑∑∑ ∑
r

r r r r r r r  (31) 

Examining this approximation, as well as the definitions of the cross sections, it is 

apparent that the 0th-order is nothing more than the standard few-group condensation, as 

was desired.  The perturbation term is suppressed because definition of the cross-section 

in Eq. (17) leads to the definition of the 0th order perturbation term in Eq. (32). 

0 0

0

0

ˆ ˆ ˆ( ( , , ) ( , )) ( , , ) ( ) ( )
ˆ( , )

ˆ( , , ) ( ) ( )

h h h h h

u
h

h h h h

u

du r u r r u w u u

r
du r u w u u

σ σ ξ
δ

ξ
⊥

⊥

∆

∆

Ω − Ω Ψ Ω
Ω =

Ψ Ω

∫

∫

r r r

r
r

                           (32) 

This term is clearly equal to zero for any coarse group h.  

 Under the Legendre application, then, we have the following equations to solve: 

0 0

1 1 1

0 0 1 0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )

ˆ( ) ( )
                               ( ) ( ) ( ) ( )

4 4

ih h ih ih h

G G
m mlm ih
gl slig h fg g

g l m g

r r r r r

Y r
r r r r

k

σ δ

χφ σ νσ φ
π π

∗− ∞ −

→
= = =− =

Ω ⋅∇Ψ Ω + Ω Ψ Ω + Ω Ψ Ω

Ω= +∑∑∑ ∑

r r r r r

r
r r r r

                 (33) 

0,1,

0,1,

h G

i I

=
=

K

K
 

where the j terms have been suppressed, since all non-zero moments are eliminated by 

the Legendre application, and 
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1

0

ˆ ˆ( , ) ( , , ) ( )ih h h i hr du r u P uΨ Ω = Ψ Ω∫
r r               

1

0

ˆ ˆ( , ) ( , , ) ( )ih h h i hr du r u P uχ χΩ = Ω∫
r r                (34) 
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1

0
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1

0
1

0

ˆ( ( , ) ( , )) ( , , ) ( )
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h h h h i h
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du r u r u r u P u

r

du r u P u

σ σ
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∫

r r r
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    (36) 

1 1

0 0
1

0

( ) ( , ) ( , )

( )

( , )

m
h i h g sl g h l g

m
slig h

m
g l g

du P u du r u u r u

r

du r u

σ φ
σ

φ
→

′ ′ ′→
=

′ ′

∫ ∫

∫

r r

r

r
       (37) 

 With the elimination of the jth moments in the description of the source term on 

the right side of Eq. (28), the general energy condensation method can be viewed as 

solving for the energy spectrum of neutrons entering group h.  The jth moment represents 

the neutron spectrum of the neutrons leaving various other groups to enter group h, which 

is not particularly important, as long as we know the spectrum they enter group h with, 

and this is accounted for in the ith moments of the scattering kernel and fission spectrum 

distribution.  This demonstrates the value of the decoupling.  Because only the total 

(energy integrated) reaction rate is important in the source terms, the detailed spectrum of 

the flux is not needed to determine the spectrum of the source term.  This allows the 

problem to be solved only for the 0th order, and the rest of the moments to be generated 

from the 0th order solution.    

For shifted Legendre polynomials, the normalization constant of the orthogonality 

condition (Eq. (11)) takes the value: 
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(2 1)i iα = +           (38) 

and the expansion of the angular flux becomes: 

0

( , ) (2 1) ( ) ( )
I

h i i h
i

x u i x P u
=

Ψ = + Ψ∑              (39) 

3.2 Application in 1-D Discrete Ordinates 

As an initial verification of the method and starting point for further development 

in more robust applications, the generalized condensation procedure is applied in a one-

dimensional discrete ordinates formulation.  Within slab geometry, Eq. (33) can be 

rewritten as:  

 
0 0

1 1

0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )

(2 1) ( ) ( )
                          ( ) ( ) ( ) ( )

4 4

ih h ih ih h

G G
l ih

gl slig h fg g
g l g

x x x x x

l P x
x x x x

k

σ δ
µ χφ σ νσ φ

π π

− ∞ −

→
= = =

Ω ⋅ ∇Ψ Ω + Ω Ψ Ω + Ω Ψ Ω
+= +∑∑ ∑

              (40) 

Here, the m subscript in the scattering term has been suppressed as it is equal to zero for 

slab geometry.  Eq. (40) is assumed to be valid for N distinct values of the direction 

cosineµ , as in the standard discrete ordinates formulation of the transport equation.  The 

scalar flux and any other angularly integrated values (such as angular current) are 

replaced with a Gauss-Legendre quadrature formulation [6].  The one-dimensional, 

discrete ordinates transport equations, with generalized lethargy collapse, are thus: 

1

0 0
0 0

1

0

(2 1)
( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( ) ( )

2

( )
( ) ( )

2

G

n ih n h n ih n ih n h n l n gl slig h
g l

G
ih

fg g
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l
x x x x x P x x

x

x
x x

k

µ µ σ µ µ δ µ µ µ φ σ

χ νσ φ

− ∞

→
= =

−

=

∂ +Ψ + Ψ + Ψ =
∂

+

∑∑

∑

   (41) 

0,1,

0,1,

1,2,

h G

i I

n N

=
=
=

K

K

K

 

where the moments have been truncated at the Ith order. 
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In the example problems, for the sake of simplicity, we make the usual 

approximation of neglecting the angular dependence of the energy moment of the total 

cross section (both the standard and perturbation term). 
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CHAPTER 4 

EXAMPLE PROBLEMS 

 

As an example of the application of the generalized energy condensation theory to 

actual problems, several 1-D reactor problems typical of boiling water reactor (BWR) 

core configurations are chosen, each composed of seven fuel assemblies.  The cores 

represent a variety of situations, including both super-critical and sub-critical systems 

with varying amounts of highly absorbing material (gadolinium mixed in the fuel).  Each 

fuel assembly (see Figure 1) is based on a simplified fresh GE9 assembly design 

containing four regions of fuel and water mixture, each 3.2512 cm thick, surrounded by 

1.1176 cm of water. In assembly 1, the two interior regions have different enrichment 

than the outer fuel regions. The enrichment in assembly 2 is uniform. Gadolinium is 

added to the two inner most regions of assembly 3 while all of the fuel regions in 

assembly four contain gadolinium. Appendix A contains the material definitions and 

densities for each material present in the system.  See Figure 1 for core and assembly 

geometries.  
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Core 1 
 

Core 2 
 

Core 3 
 

 
Assembly 1 Assembly 2 Assembly 3 Assembly 4 

 Water Fuel I Fuel II Fuel + Gd  

Figure 1: Sample Problem Structure 

  The standard discrete ordinates method using S16 approximation is used to 

calculate the individual assembly and the whole core reference solutions in 47 groups. 

The fine-group cross sections at the hot operating condition for each assembly were 

generated using the direct collision probability method in HELIOS with its 47-group 

production library. The single assembly 47 group solutions were used to generate the 

Legendre moments.  The boundary conditions for the single assembly and the core 

calculations were specular reflective and vacuum, respectively. 

 Table 1 shows the eigenvalue of each assembly and core, obtained through a full 

47 group transport calculation, using a one-dimensional discrete ordinates code. 

Table 1: Forty-Seven Group Eigenvalues 
Structure k 

Assembly 1 1.236117 
Assembly 2 1.182026 
Assembly 3 0.615100 
Assembly 4 0.322272 

Core 1 1.154540 
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Core 2 0.910321 
Core 3 0.729803 

 
Full solutions are obtained for each region of each assembly; however, for brevity, we 

pick several regions which are representative of the materials present in the system.  The 

selected regions are presented in Table 2. 

Table 2: Selected Regions, Assemblies 
Assembly Region Material 

1 1  Water 
2 3 Fuel (Low Enrichment) 
3 3 Fuel (High Enrichment) 

 
All solutions are region-averages (over the material/layer), normalized to the total 

number of neutrons within the region, and integrated over all energies.  Figure 2 contains 

the fine-group reference solution for each region in table 2. 
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Figure 2: Fine-group Spectra (for (a) Assembly 1, Region 1 (water), (b) Assembly 2, 

Region 3 (fuel I), and (c) Assembly 3, Region 3 (fuel II)) 

4.1 Single Assembly Verification 

 For initial verification of the general condensation method, the 47 group flux from 

a fine-group transport solution performed on a single assembly is used as the weighting 

function during the condensation procedure.  The 47 group material cross sections are 

condensed down to two group expansion moments of the cross sections. These are used 

in Eq. (41), which is used to provide an approximate solution (flux moments) for that 

assembly.  The spectrum produced from these flux moments should, for high order, 

reproduce the fine group reference spectrum very accurately, since the exact solution is 

used as the weighting function. 
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For all calculations performed,  in order to maintain consistency with HELIOS, 

transport-corrected cross sections are used.  Also,  as discussed earlier, the angular 

dependence of the total cross section is removed by weighting the fine-group transport 

cross section with the scalar flux as opposed to the angular flux.  In addition, for the 

example problems, the angular dependence of the scattering kernel is treated as linearly 

isotropic by applying the transport correction as described below (Eq. 42).  In this case 

Eq. (41) takes the following form.  

0

1 1

0
0 0

1 ( )
( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( ) ( ) ( )

2 2h

G G
tr ih

ih n ih n ih n h n g sig h fg g
g g

x
x x x x x x x x x

x k

χµ µ σ µ µ δ µ µ φ σ νσ φ
− −

→
= =

∂ Ψ + Ψ + Ψ = +
∂ ∑ ∑%    (42) 

where ( )tr
ih xσ  is the moment of the transport-corrected cross section, 
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h h h h
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h h h

du x u x u P u

x

du x u P u

σ
σ

Φ
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Φ

∫

∫

 

 and ( )sig h xσ →% is the energy moment of the scattering kernel, in which the within group 

elements have been replaced using: 

1

0

( ) ( ) ( ) ( ) ( )
G

iso tr iso
sg g sg g ag g sg h

h

x x x x xσ σ σ σ σ
−

→ → →
=

= − + −∑%                     (43) 

where ( )tr
g xσ  is the standard multigroup transport cross section.    Moments of the 

transport-corrected scattering cross section are then condensed from the cross sections 

computed in Eq. (43).  The perturbation moment is computed in the same manner as 

before, using the transport cross-section instead of the total cross section. 

0

ˆ ˆ( , ) ( , , ) ( , )
h

tr trr u r u rδ σ σ= Ω − Ω
r r r

      (44) 
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 The two-group boundary used in these examples is 0.625 eV.  Standard two-group 

approximations (0th order) for the regions in table 2 are presented in Figure 3, overlaid on 

the 47 group reference solution from Figure 2.  
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Figure 3: Standard 2-Group Collapsed Spectra (for (a) Assembly 1, Region 1 (water), (b) 
Assembly 2, Region 3 (fuel I), and (c) Assembly 3, Region 3 (fuel II)) 

 
 Figure 3 clearly demonstrates the information loss in the condensation from 

many/fine-groups to a few/coarse-groups.  This loss of information is quantified in the 

error analysis section of this paper.  Next, to demonstrate the generalized condensation 

method, the same systems are solved using Eq. (42) for various orders of expansion i.  As 

discussed previously, the eigenvalues of the expansion calculation are identical to the 

two-group, as a result of the properties of the Legendre polynomial set.  In addition, total 
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fission densities and other integral properties are also completely equivalent to two group 

values, since preservation of the neutron reaction rates in the source distribution is strictly 

enforced during the condensation procedure.  Due to this, if one is only interested in 

energy integrated quantities (such as the total fission reaction rate), than  this method, in 

its current from, does not provide an improvement;  however, Two applications are 

immediately apparent: shielding and detection [11,12] and reactor physics, in which one 

would be interested in improving the results (eigenvalue, power distributions, etc.) by re-

condensation of the cross sections iteratively within the whole core calculation.   

Though the eigenvalue may not improve during this initial step, the higher the 

order of the expansion, the more accurate the spectrum that will be produced, as is 

evident in Figure 4, which shows the progression from a first order approximation to a 

third and fifth order approximation in the fast and thermal regions of Assembly 1, Region 

1 (water), overlaid with the 47 group solution.  

From Figure 4, it is evident that even at low order we have spectra that are much 

closer to the many-group solution than the standard two-group solution.  Also apparent, 

particularly when the flux is very near zero, is the issue of negative flux in the 

polynomial approximation.  This is an inherent result of approximating a highly varying 

function with a truncated expansion, particularly when truncating at low order.  This does 

not, however, impact the integral quantities, which are maintained in the 0th term of the 

expansion.  Presently, it is sufficient that the distribution is approaching the actual flux 

spectrum, with much greater detail as one goes to higher and higher order, and that 

negative flux values become negligible at high enough order.  Figure 5 shows a twentieth 

order expansion approximation for the selected regions.    
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(c) 

Figure 4: 1st (a), 3rd (b), and 5th (c) order approximations in Assembly 1, Region 1 

(water).  
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(c) 

Figure 5: Twentieth Order Approximation for (a) Assembly 1, Region 1 (water), (b) 

Assembly 2, Region 3 (fuel I), and (c) Assembly 3, Region 3 (fuel II). 
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 It has thus been shown that for a single assembly, using fine-group cross sections 

and a fine-group solution to condense the cross sections into expansion moments, a large 

amount of spectral information can be obtained, in contrast with standard few-group 

condensation methods.   The solution was compared over the entire assembly, and shown 

to have the same accuracy as in the selected regions.   

4.2 Whole Core Verification 

 For whole core verification, the process is as previously discussed.  Single 

assembly, 47 group, transport calculations are performed for each unique assembly in the 

reactor core.  The single-assembly solutions are then used to weight the fine-group cross 

sections for that assembly, generating region-specific, two-group, cross section moments.  

These moments are then used in Eq. (41) to compute two-group, core-level flux 

moments, which are used to produce the core-level energy spectrum of the neutron flux.   

As in the single assembly verification, comparisons are performed in a few representative 

regions.  We present the results for Core 3 since this is the most heterogeneous and 

therefore most challenging geometry.   The selected regions are shown in Table 3.  Figure 

6 contains the 47 group whole core reference solution, the two-group 0th-order 

approximation for the selected core regions, as well as the twentieth order approximate 

solutions. 

Table 3: Selected Regions, Whole Core 
Core Region Material 

3 7  Water 
3 15 Fuel (High Enrichment) 
3 21 Fuel + Gd 
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(c)  

Figure 6: Core 3 Spectra ((Fine, 0th order, and 20th order) for  
regions (a) 7 (water), (b) 15 (enriched fuel), and (c) 21(fuel + gd)) 
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The generalized method has thus produced, within each coarse-group h, a very 

accurate approximation to the energy spectrum of the neutron distribution throughout the 

whole core, without ever having to solve the whole core using a fine group transport 

solution method.  Averaging over the entire core also produces figures similar to that of 

Figure 6, and has the same accuracy as the selected regions above. 
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CHAPTER 5 

TIME COMPARISON AND ERROR ANALYSIS 

5.1 Solution Time Comparison 

The goal of the development of a generalized energy condensation theory was to 

produce accurate spectral information for the neutron flux during a few-group 

computation, with significant speedup compared to a many-group transport calculation. 

  As previously discussed, for certain orthogonal polynomial sets, namely those 

that are defined such that 

0( )i i

u

du uξ δ
⊥∆

=∫                                                      (45) 

the computation time can be reduced even further.  The selection of Legendre 

polynomials (and most other standard orthogonal polynomials), for instance, decouples 

Eq. (41) in spectral expansion order.  This leaves I few-group equations, each coupled 

through the source term to the 0th-order solution, as discussed in the Legendre Expansion 

section.   

One of the advantages of this decoupling is that due to the discrete nature of the 

fine-group structure, the computation time for the cross section moments is dependent 

almost solely on the group structure chosen.  Since each cross section is constant over a 

fine group, the only computationally expensive operation in condensation is computing 

the integrals of the basis function over the fine groups.  These integrals depend only on 

the group structure (and not on the geometry or material composition), and therefore are 

calculated only once. 
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   In fact, if one has already solved the problem with the standard two-group 

method, meaning they would already have fine-group solutions for the individual 

assemblies as well as the coarse-group solution for the whole core, they could produce  

moments of arbitrary order in negligible time, as long as they have computed the 

integrals of the Legendre polynomials over the fine-group energy intervals for that order.  

This is the greatest advantage of using basis functions that satisfy Eq. (45). In order to 

compare the solution times for a general case (fully coupled), rather than a simplified one 

(decoupled), the Legendre moments of the flux are solved as though the equations are 

coupled. For fair comparison, the flux moments for every order were converged to the 

same criteria.  For all calculations presented in this paper, the flux was converged to 

within 10-4, and the eigenvalue was converged to within 10-6.  “Solution Time” refers to 

the time it takes to solve for the flux moments.  Pre-Computation is also required to 

generate the integrals of the basis function (Legendre Polynomials) over the energy range 

of each fine group.   This takes approximately 2 seconds for each expansion order, when 

going from 47 groups to 2 groups. The pre-computation only needs to be done once, 

however, for each specific group structure, and from that, the cross-sections for any 

material specifications or geometry can be condensed for arbitrary order in negligible 

time (less than 3 seconds for up to 200th order).  

 The solution time, in seconds, for convergence are presented in Table 4.  These 

times were computed by solving the equations as though they were coupled, as would be 

necessary for an arbitrary set of orthogonal functions.   Single assembly values are 

averaged over all four of the assembly types.  Core values are averaged over all three 

core types (see Figure 1).   
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Table 4: Computation Times (coupled) 

47g Single Assembly 19.7 47g Full Core 258.9 
2g, 0th Order Single Assembly 0.3 2g, 0th Order Full Core 2.1 
2g, 4th Order Single Assembly 1.9 2g, 4th Order Full Core 21.3 

2g, 10th Order Single Assembly 6.3 2g, 10th Order Full Core 69.2 

 
 

Table 4 does not take advantage of the decoupling of spectral moments, and 

therefore the times produced are characteristic of those that would appear for any choice 

of basis function.  Even without the decoupling, the improvement in computation time it 

is evident from Table 4, which shows a significant speedup for the 10th order.  As will be 

seen later (figure 8), the 10th order full core solution is off by less than 3% RMS.   This is 

because performing a 10th-order calculation, without decoupling, requires the solution of 

22 equations (11 expansion orders * 2 coarse-groups), whereas solving with the fine-

group method requires the solution of 47 equations.   

   The standard two-group method gives one the ability to solve the system in 

approximately 0.7 - 1.5 % of the time it takes to solve the fine-group, however, one loses 

detailed spectral information.  The new method, in its coupled form, however, produces 

that information, and still only requires (for 10th-order) about 30% of the computation 

time of the fine-group calculation.  For large reactors or highly complex shielding 

problems which can take hours or days to solve, this can reduce the needed time by a 

significant amount.  In this manner, the new method, even without decoupling, is faster 

than performing fine-group, whole-core transport calculations.  

 The use of Legendre Polynomials, as discussed earlier, decouples the spectral 

moments in the right hand side of Eq. (41), which greatly speeds up the solution.  When 

taking advantage of the decoupling of the spectral moments by solving the system in the 
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0th-order, and then unfolding the spectral dependence from that solution, the computation 

times reduce significantly, as seen in Table 5.  

Table 5: Solution Times for Legendre Polynomials (decoupled) 
47g Single Assembly 19.7 47g Full Core 258.9 

2g, 0th Order Single Assembly 0.25 2g, 0th Order Full Core 2.1 
2g, 4th Order Single Assembly 0.33 2g, 4th Order Full Core 2.2 

2g, 10th Order Single Assembly 0.33   2g, 10th Order Full Core 2.3 

 
In this manner, the Legendre generalized equations are solved in a time 

comparable to that of the standard two-group solution (0.7 – 1.5 % of the fine-group 

computation time), but with a large amount of spectral information produced.  Each 

additional order adds the computational time of a single outer iteration, which is 

negligible given the number of inner iterations performed in the core calculation.    

5.2 Error Analysis 

 We have shown that the generalized condensation theory does an effective job of 

preserving the fine group spectrum during a coarse group whole core transport solution.  

It remains however, to quantify the improvement this allows over standard two group 

solutions.  The total flux in each coarse group, which is the most important quantity, has 

been preserved by the method, but if one wants to unfold the spectrum and determine an 

approximate whole core flux for a subinterval of the coarse group, such as to compare 

detector response, there is no readily available technique for use in neutron transport 

problems.  It is here that the generalized condensation theory becomes very useful. 

 To demonstrate, a solution was obtained for several systems using generalized 

expansion theory.  This solution was then integrated over the fine-group limits, and the 

RMS error from a fine-group transport solution was computed for several orders of 

expansion.  The first system tested in this manner was a simple, homogeneous 1-D slab 
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composed of the enriched fuel material used in Assembly 2 in the previous section, with 

specular reflective conditions on both sides.  A 47-group solution was obtained, and this 

solution was used to generate 2-group moments.  The expansion equations (Eq. 40) were 

then solved for a series of increasing orders.  From this, the reconstructed 47-group flux 

was computed by integrating the flux over the fine-group limits.  How close the47 group 

flux is to the reconstructed flux is a good measure of how effectively the high order 

effects are preserved.  The RMS error of these group fluxes, as a function of expansion 

order are plotted in figure 7.  As seen in figure 7, the flat flux (0th order) has an RMS 

error of 23.9%.  It is also clear from figure 7 that for high expansion order, the expanded 

flux is approaching the fine-group flux. 

 

Figure 7: Group Flux Error vs. Expansion Order for a Homogeneous Slab 

 Figure 7 demonstrates that the generalized condensation theory is able to produce 

the fine-group spectrum quite well.   It does not, however, demonstrate how this will 

affect whole-core problems when the assembly level flux is used to condense, as is the 

case in practical application.  
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One of the most useful aspects of the generalized theory is that it results in a 

solution that is much closer to the core level reference than to the assembly level flux that 

was used to weight the moments.  To show how effective the generalized method is in 

producing the core-level spectrum, the same computations were done as in the 

homogenous slab, averaged over the entirety of core 3.  The expansion solution was 

computed for a series of orders, as in the slab problem, and the resultant group flux was 

compared with the whole-core fine-group reference solution.  These results are presented 

in figure 8. 
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Figure 8: Group Flux Error vs. Expansion Order for Core 3.  

 As is evident in figure 8, the expansion solution converges to about 2% away 

from the core-level reference solution (RMS).   The expansion solution is, by 

comparison, 15.3% away from the assembly-level, fine-group transport solution. The 

expansion solution on the core-level is therefore significantly closer to the actual core-

level flux, even at relatively low order.  This implies that an iterative condensation 

procedure has merit (see the summary and future work section). 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

The standard multigroup theory has been generalized in this paper. The new 

energy condensation theory generates detailed (many-group) spectral resolution within 

the few-group structure without the computational expense associated with solving the 

many-group transport equations. The generalization, which contains the standard 

multigroup theory as a special (0th-order) case, is achieved by using an energy expansion 

of the angular flux in an arbitrary set of orthogonal functions. This expansion leads to a 

set of equations for the energy moments of the flux with a coupling characteristic that 

directly depends on the choice of the expansion functions.  It was shown that the higher 

moment equations are only coupled to the 0th-order moment equation and not to each 

other if Legendre polynomials are used as the expansion set. As a result of this 

decoupling, the computational time associated with the solution of the higher order 

moments become negligible as compared to that for the 0th-order solution. This desirable 

feature makes the new theory very attractive for application to reactor core simulations 

since the few-group calculations can now produce the energy resolution of the many-

group method with negligible computational penalty. The method was developed in the 

framework of transport theory. However, its extension to diffusion theory is 

straightforward. 

The new theory, which is completely independent of the transport solution 

method, was verified and tested in a few 1-D BWR benchmark problems within the 

discrete ordinates approximation.  As expected, it was shown that the energy resolution 
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within a two-group structure is increased with increasing expansion order close to that of 

the reference (47) fine-group spectrum with computational expense competitive to that of 

the standard two-group solution.  

One of the issues with condensation is that the data we have to input into the 

problem is  discrete, and anytime a continuous expansion basis is being used to 

approximate a discrete set of points, numerical issues arise, such as Gibbs oscillations at 

energy group boundaries.  These are mostly small effects, but in cases where it is 

desirable to remove such effects, one possible way to correct this issue is to implement a 

discrete form of Legendre Polynomials [10].  The method presented in this paper (with 

continuous Legendre Polynomials) can already produce the fine-group spectrum to a high 

degree of accuracy, but because they do not suffer these numerical effects, using discrete 

Legendre Polynomials could possibly produce the same results more efficiently. Discrete 

Legendre polynomials might make it possible to produce high accuracy solutions at lower 

orders, and cut down on pre-computation time.   

We note that the generalized method is not limited to reactor eigenvalue problems 

as applied in this paper. This in general is an energy unfolding method and therefore 

should find applications to detection and shielding problems as future work.   

The most common use of spectral unfolding similar to this method is in detection, 

either for neutrons, photons, or electrons.  One problem inherent in detection schemes is 

the inherent imperfections of spectrometers.  Detector responses must be passed through 

an unfolding scheme to determine actual incident neutron spectra.  This is due to the 

individual detector mechanics causing the incidence of neutrons at various energies to bin 

themselves into a discrete number of channels.  The standard method (FERDoR 
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technique) for unfolding requires knowledge of the particular folding effect of that 

individual detector, in order to invert that effect. [11,12] This can be done in a couple of 

ways; however, the generalized method can potentially provide a way to determine it 

more exactly, by using a transport or Monte Carlo solution and folding it into the 

appropriate bins for that scenario.  Then, within each bin, the actual spectrum can be 

unfolded based on the detector response.  These applications will be tested as future 

work. 

Given that the whole-core expansion solution produced a result significantly 

closer to the fine-group whole-core transport solution than to the fine-group assembly-

level solution, it would be very useful and interesting to extend the method to re-

condense (update) the fine-group cross sections within the few-group calculations in a 

self contained iterative manner.  In this way, the few-group macro or microscopic cross 

sections are corrected for spectral effects and as a result one would expect significant 

increase in accuracy of the few-group calculations with negligibly small additional 

computational effort.  As seen in the example problems, slightly negative fluxes may 

result in some energy ranges because of the flux expansion.  It is not clear if these 

negative fluxes would present a problem with the re-collapsing procedure.  
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APPENDIX A 

BENCHMARK PROBLEM MATERIAL DEFINITIONS 

 

 Region dependent macroscopic cross sections for the benchmark problems were 

generated using the HELIOS[8] collision probability lattice depletion code. The 47 group 

production library based on the ENDF/B-VI.8 data files [7, 8] was used as the fine-group 

library.  The compositions of the materials used in the assemblies are given in Table A-1.  

Table 6: Material Definitions, Densities in 1024/cm3 

Material Component Number Density 
16O 2.02E-2 
1H 4.03E-2 Water 

Natural Zr 7.86E-3 
234U 1.50E-6 
235U 1.68E-4 
238U 7.39E-3 
16O 2.87E-2 
1H 2.73E-2 

Fuel 1 

Natural Zr 4.79E-3 
234U 2.52E-6 
235U 2.75E-4 
238U 7.28E-3 
16O 2.87E-2 
1H 2.73E-2 

Fuel 2 

Natural Zr 4.79E-3 
234U 2.63E-6 
235U 2.87E-4 
238U 6.88E-3 
16O 2.86E-2 
1H 2.73E-2 

Natural Zr 4.79E-3 
154Gd 9.68E-6 
155Gd 6.58E-5 
156Gd 9.10E-5 
157Gd 6.96E-5 
158Gd 1.10E-4 

Fuel + Gd 

160Gd 9.80E-5 

 
These 1-D material compositions (isotopic densities) were derived by 

approximately conserving the transverse integrated reaction rates of the 2-D GE9 
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assembly design of reference [9].  For the computation of the macroscopic cross sections 

using HELIOS, it was assumed that the assembly was at the hot operating condition; i.e., 

833K for fuel and 500K for coolant/moderator.   
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